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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-
gether scientists with broadly varying backgrounds in statistics, mathematics, com-
puter science, physics, electrical engineering, neuroscience, and cognitive science,
unified by a common desire to develop novel computational and statistical strate-
gies for information processing, and to understand the mechanisms for information
processing in the brain. As opposed to conferences, these workshops maintain a
flexible format that both allows and encourages the presentation and discussion of
work in progress, and thus serves as an incubator for the development of important
new ideas in this rapidly evolving field.

The series editors, in consultation with workshop organizers and members of the
NIPS Foundation Board, select specific workshop topics on the basis of scientific
excellence, intellectual breadth, and technical impact. Collections of papers chosen
and edited by the organizers of specific workshops are built around pedagogical
introductory chapters, while research monographs provide comprehensive descrip-
tions of workshop-related topics, to create a series of books that provides a timely,
authoritative account of the latest developments in the exciting field of neural com-
putation.

Michael I. Jordan
Thomas Dietterich





Preface

In the course of some 60 to 65 years, going back to the 1940s, signal processing and
neural computation have evolved into two highly pervasive disciplines. In their own
individual ways, they have significantly influenced many other disciplines. What is
perhaps surprising to see, however, is the fact that the cross-fertilization between
signal processing and neural computation is still very much in its infancy. We only
need to look at the brain and be amazed by the highly sophisticated kinds of
signal processing and elaborate hierarchical levels of neural computation, which are
performed side by side and with relative ease.

If there is one important lesson that the brain teaches us, it is summed up
here:

There is much that signal processing can learn from neural computa-

tion, and vice versa.

It is with this aim in mind that in October 2003 we organized a one-week
workshop on “Statistical Signal Processing: New Directions in the Twentieth Cen-
tury,” which was held at the Fairmont Lake Louise Hotel, Lake Louise, Alberta. To
fulfill that aim, we invited some leading researchers from around the world in the
two disciplines, signal processing and neural computation, in order to encourage
interaction and cross-fertilization between them. Needless to say, the workshop was
highly successful.

One of the most satisfying outcomes of the Lake Louise Workshop is that it
has led to the writing of this new book. The book consists of 14 chapters, divided
almost equally between signal processing and neural computation. To emphasize,
in some sense, the spirit of the above-mentioned lesson, the book is entitled New

Directions in Statistical Signal Processing: From Systems to Brain. It is our sincere
hope that in some measurable way, the book will prove helpful in realizing the
original aim that we set out for the Lake Louise Workshop.

Finally, we wish to thank Dr. Zhe Chen, who had spent tremendous efforts and
time in LATEX editing and proofreading during the preparation and final production
of the book.

Simon Haykin
José C. Pŕıncipe
Terrence J. Sejnowski
John McWhirter





1 Modeling the Mind: From Circuits
to Systems

Suzanna Becker

Computational models are having an increasing impact on neuroscience, by shed-
ding light on the neuronal mechanisms underlying information processing in the
brain. In this chapter, we review the contribution of computational models to our
understanding of how the brain represents and processes information at three broad
levels: (1) sensory coding and perceptual processing, (2) high-level memory systems,
and (3) representations that guide actions. So far, computational models have had
the greatest impact at the earliest stages of information processing, by modeling
the brain as a communication channel and applying concepts from information the-
ory. Generally, these models assume that the goal of sensory coding is to map the
high-dimensional sensory signal into a (usually lower-dimensional) code that is op-
timal with respect to some measure of information transmission. Four information-
theoretic coding principles will be considered here, each of which can be used to
derive unsupervised learning rules, and has been applied to model multiple levels of
cortical organization. Moving beyond perceptual processing to high-level memory
processes, the hippocampal system in the medial temporal lobe (MTL) is a key
structure for representing complex configurations or episodes in long-term memory.
In the hippocampal region, the brain may use very different optimization princi-
ples aimed at the memorization of complex events or spatiotemporal episodes, and
subsequent reconstruction of details of these episodic memories. Here, rather than
recoding the incoming signals in a way that abstracts away unnecessary details,
the goal is to memorize the incoming signal as accurately as possible in a single
learning trial. Most efforts at understanding hippocampal function through compu-
tational modeling have focused on sub-regions within the hippocampal circuit such
as the CA3 or CA1 regions, using “off-the-shelf” learning algorithms such as com-
petitive learning or Hebbian pattern association. More recently, Becker proposed
a global optimization principle for learning within this brain region. Based on the
goal of accurate input reconstruction, combined with neuroanatomical constraints,
this leads to simple, biologically plausible learning rules for all regions within the
hippocampal circuit. The model exhibits the key features of an episodic memory
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system: the capacity to store a large number of distinct, complex episodes, and
to recall a complete episode from a minimal cue, and associate items across time,
under extremely high plasticity conditions. Finally, moving beyond the static repre-
sentation of information, we must consider the brain not simply a passive recipient
of information, but as a complex, dynamical system, with internal goals and the
ability to select actions based on environmental feedback. Ultimately, models based
on the broad goals of prediction and control, using reinforcement-driven learning
algorithms, may be the best candidates for characterizing the representations that
guide motor actions. Several examples of models are described that begin to ad-
dress the problem of how we learn representations that can guide our actions in a
complex environment.

1.1 Introduction

How does the brain process, represent, and act on sensory signals? Through the
use of computational models, we are beginning to understand how neural circuits
perform these remarkably complex information-processing tasks. Psychological and
neurobiological studies have identified at least three distinct long-term memory
systems in the brain: (1) the perceptual/semantic memory system in the neocortex
learns gradually to represent the salient features of the environment; (2) The
episodic memory system in the medial temporal lobe learns rapidly to encode
complex events, rich in detail, characterizing a particular episode in a particular
place and time; (3) the procedural memory system, encompassing numerous cortical
and subcortical structures, learns sensory-motor mappings. In this chapter, we
consider several major developments in computational modeling that shed light
on how the brain learns to represent information at three broad levels, reflecting
these three forms of memory: (1) sensory coding, (2) episodic memory, and (3)
representations that guide actions. Rather than providing a comprehensive review
of all models in these areas, our goal is to highlight some of the key developments
in the field, and to point to the most promising directions for future work.

1.2 Sensory Coding

At the earliest stages of sensory processing in the cortex, quite a lot is known
about the neural coding of information, from Hubel and Wiesel’s classic findings of
orientation-selective neurons in primary visual cortex (Hubel and Wiesel, 1968) to
more recent studies of spatiotemporal receptive fields in visual cortex (DeAngelis
et al., 1993) and spectrotemporal receptive fields in auditory cortex (Calhoun and
Schreiner, 1998; Kowalski et al., 1996). Given the abundance of electrophysiological
data to constrain the development of computational models, it is not surprising
that most models of learning and memory have focused on the early stages of sen-
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sory coding. One approach to modeling sensory coding is to hand-design filters,
such as the Gabor or difference-of-Gaussians filter, so as to match experimentally
observed receptive fields. However, this approach has limited applicability beyond
the very earliest stages of sensory processing for which receptive fields have been
reasonably well mapped out. A more promising approach is to try to understand the
developmental processes that generated the observed data. Note that these could
include both learning and evolutionary factors, but here our focus is restricted to
potential learning mechanisms. The goal is then to discover the general underlying
principles that cause sensory systems to self-organize their receptive fields. Once
these principles have been uncovered, they can be used to derive models of learning.
One can then simulate the developmental process by exposing the model to typical
sensory input and comparing the results to experimental observations. More im-
portant, one can simulate neuronal functions that might not have been conceived
by experimentalists, and thereby generate novel experimental predictions.

Several classes of computational models have been influential in guiding current
thinking about self-organization in sensory systems. These models share the general
feature of modeling the brain as a communication channel and applying concepts
from information theory. The underlying assumption of these models is that the goal
of sensory coding is to map the high-dimensional sensory signal into another (usually
lower-dimensional) code that is somehow optimal with respect to information
content. Four information-theoretic coding principles will be considered here: (1)
Linsker’s Infomax principle, (2) Barlow’s redundancy reduction principle, 3) Becker
and Hinton’s Imax principle, and (4) Risannen’s minimum description length
(MDL) principle. Each of these principles has been used to derive models of
learning and has inspired further research into related models at multiple stages of
information processing.

1.2.1 Linsker’s Infomax Principle

How should neurons respond to the sensory signal, given that it is noisy, high-
dimensional and highly redundant? Is there a more convenient form in which to
encode signals so that we can make more sense of the relevant information and take
appropriate actions? In the human visual system, for example, there are hundreds
of millions of photoreceptors converging onto about two million optic nerve fibers.
By what principle does the brain decide what information to discard and what to
preserve?

Linsker proposed a model of self-organization in sensory systems based on the
Infomax principle: Each neuron adjusts its connection strengths or weights so as toInfomax principle
maximize the amount of Shannon information in the neural code that is conveyed
about the sensory input (Linsker, 1988). In other words, the Infomax principle
dictates that neurons should maximize the amount of mutual information between
their input x and output y:

Ix;y = 〈ln [p(x|y)/p(x)]〉
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Environmental input

Figure 1.1 Linsker’s multilayer architecture for learning center-surround and
oriented receptive fields. Higher layers learned progressively more ‘Mexican-hat-
like’ receptive fields. The inputs consisted of uncorrelated noise, and in each layer,
center-surround receptive fields evolved with progressively greater contrast between
center and surround.

Assuming that the input consists of a multidimensional Gaussian signal with
additive, independent Gaussian noise with variance V (n), for a single neuron whose
output y is a linear function of its inputs and connection weights w, the mutual
information is the log of the signal-to-noise ratio:

Ix;y =
1
2

ln
V (y)
V (n)

Linsker showed that a simple, Hebb-like weight update rule approximately max-
imizes this information measure. The center-surround receptive field (with either
an on-center and off-surround or off-center and on-surround spatial pattern of con-
nection strengths) is characteristic of neurons in the earliest stages of the visual
pathways including the retina and lateral geniculate nucleus (LGN) of the thala-
mus. Surprisingly, Linsker’s simulations using purely uncorrelated random inputs,
and a multi-layer circuit as shown in fig 1.1, showed that neurons in successive lay-
ers developed progressively more “Mexican-hat” shaped receptive fields (Linsker,
1986a,b,c), reminiscent of the center-surround receptive fields seen in the visual sys-
tem. In further developments of the model, using a two-dimensional sheet of neurons
with local-neighbor lateral connections, Linsker (1989) showed that the model self-
organized topographic maps with oriented receptive fields, such that nearby units
on the map developed similarly oriented receptive fields. This organization is a good
first approximation to that of the primary visual cortex.

The Infomax principle has been highly influential in the study of neural
coding, going well beyond Linsker’s pioneering work in the linear case. One of the
major developments in this field is Bell and Sejnowksi’s Infomax-based independentindependent com-

ponents analysis components analysis (ICA) algorithm, which applies to nonlinear mappings with
equal numbers of inputs and outputs (Bell and Sejnowski, 1995). Bell and Sejnowski
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showed that when the mapping from inputs to outputs is continuous, nonlinear,
and invertible, maximizing the mutual information between inputs and outputs is
equivalent to simply maximizing the entropy of the output signal. The algorithm
therefore performs a form of ICA.

Infomax-based ICA has also been used to model receptive fields in visual cortex.
When applied to natural images, in contrast to principal component analysis (PCA),
Infomax-based ICA develops oriented receptive fields at a variety of spatial scales
that are sparse, spatially localized, and reminiscent of oriented receptive fields in
primary visual cortex (Bell and Sejnowski, 1997). Another variant of nonlinear
Infomax developed by Okajima and colleagues (Okajima, 2004) has also been
applied to modeling higher levels of visual processing, including combined binocular
disparity and spatial frequency analysis.

1.2.2 Barlow’s Redundancy Reduction Principle

The principle of preserving information may be a good description of the very
earliest stages of sensory coding, but it is unlikely that this one principle will
capture all levels of processing in the brain. Clearly, one can trivially preserve
all the information in the input simply by copying the input to the next level up.
Thus, the idea only makes sense in the context of additional processing constraints.
Implicit in Linsker’s work was the constraint of dimension reduction. However, in
the neocortex, there is no evidence of a progressive reduction in the number of
neurons at successively higher levels of processing.

Barlow proposed a slightly different principle of self-organization based on
the idea of producing a minimally redundant code. The information about anredundancy re-

duction principle underlying signal of interest (such as the visual form or the sound of a predator)
may be distributed across many input channels. This makes it difficult to associate
particular stimulus values with distinct responses. Moreover, there is a high degree
of redundancy across different channels. Thus, a neural code having minimal
redundancy should make it easier to associate different stimulus values with different
responses.

The formal, information-theoretic definition of redundancy is the information
content of the stimulus, less the capacity of the channel used to convey the
information. Unfortunately, quantities dependent upon calculation of entropy are
difficult to compute. Thus, several different formulations of Barlow’s principle have
been proposed, under varying assumptions and approximations. One simple way for
a learning algorithm to lower redundancy is reduce correlations among the outputs
(Barlow and Földiák, 1989). This can remove second-order but not higher-order
dependencies.

Atick and Redlich proposed minimizing the following measure of redundancy
(Atick and Redlich, 1990):

R = 1 − Iy;s

Cout(y)
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Input channel
x=s+v1

y

s

Recoding
Ax+v2

x

Figure 1.2 Atick and Redlich’s learning principle was to minimize redundancy in
the output, y, while preserving information about the input, x.

subject to the constraint of zero information loss (fixed Iy;s). Cout(y), the output
channel capacity, is defined to be the maximum of Iy;s. The channel capacity is atchannel capacity
a maximum when the covariance matrix of the output elements is diagonal, hence
Atick and Redlich used

Cout(y) =
1
2

∏
i

[
Ryy

Nv22

]
ii

Thus, under this formulation, minimizing redundancy amounts to minimizing the
the channel capacity. This model is depicted in fig 1.2. This model was used to
simulate retinal receptive fields. Under conditions of high noise (low redundancy),
the receptive fields that emerged were Gaussian-shaped spatial smoothing filters,
while at low noise levels (high redundancy) on-center off-surround receptive fields
resembling second spatial derivative filters emerged. In fact, cells in the mammalian
retina and lateral geniculate nucleus of the thalamus dynamically adjust their
filtering characteristics as light levels fluctuate between these two extremes under
conditions of low versus high contrast (Shapley and Victor, 1979; Virsu et al., 1977).
Moreover, this strategy of adaptive rescaling of neural responses has been shown to
be optimal with respect to information transmission (Brenner et al., 2000).

Similar learning principles have been applied by Atick and colleagues to model
higher stages of visual processing. Dong and Atick modeled redundancy reduction
across time, in a model of visual neurons in the lateral geniculate nucleus of the
thalamus (Dong and Atick, 1995). In their model, neurons with both lagged and
nonlagged spatiotemporal smoothing filters emerged. These receptive fields would
be useful for conveying information about stimulus onsets and offsets. Li and Atick
(1994) modeled redundancy reduction across binocular visual inputs. Their model
generated binocular, oriented receptive fields at a variety of spatial scales, similar
to those seen in primary visual cortex. Bell and Sejnowski’s Infomax-based ICA
algorithm (Bell and Sejnowski, 1995) is also closely related to Barlow’s minimal
redundancy principal, since the ICA model is restricted to invertible mappings; in
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a

b
Maximize
l(a;b)

X2

X1 f1(s + n1)

f2(s + n2)

Figure 1.3 Becker and Hinton’s Imax learning principle maximizes the mutual
information between features a and b extracted from different input channels.

this case, the maximization of mutual information amounts to reducing statistical
dependencies among the outputs.

1.2.3 Becker and Hinton’s Imax Principle

The goal of retaining as much information as possible may be a good description
of early sensory coding. However, the brain seems to do much more than simply
preserve information and recode it into a more convenient form. Our perceptual
systems are exquisitely tuned to certain regularities in the world, and consequently
to irregularities which violate our expectations. The things which capture our
attention and thus motivate us to learn and act are those which violate our
expectations about the coherence of the world—the sudden onset of a sound, the
appearance of a looming object or a predator.

In order to be sensitive to changes in our environment, we require internal rep-
resentations which first capture the regularities in our environment. Even relatively
low-order regularities, such as the spatial and temporal coherence of sensory sig-
nals, convey important cues for extracting very high level properties about objects.
For example, the coherence of the visual signal across time and space allows us to
segregate the parts of a moving object from its surrounding background, while the
coherence of auditory events across frequency and time permits the segregation of
the auditory input into its multiple distinct sources.

Becker and Hinton (1992) proposed the Imax principle for unsupervised learn-
ing, which dictates that signals of interest should have high mutual information
across different sensory channels. In the simplest case, illustrated in fig 1.3, there
are two input sources, x1 and x2, conveying information about a common under-
lying Gaussian signal of interest, s, and each channel is corrupted by independent,
additive Gaussian noise:

x1 = s + n1,

x2 = s + n2.

However, the input may be high dimensional and may require a nonlinear
transformation in order to extract the signal. Thus the goal of the learning is to
transform the two input signals into outputs, y1 and y2, having maximal mutual
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a b

Maximize I(a;b)

Left strip
Right strip

Figure 1.4 Imax architecture used to learn stereo features from binary images.

information. Because the signal is Gaussian and the noise terms are assumed to
be identically distributed, the information in common to the two outputs can be
maximized by maximizing the following log signal-to-noise ratio (SNR):

Iy1;y2 ≈ log
(

V (y1 + y2)
V (y1 − y2)

)
This could be accomplished by multiple stages of processing in a nonlinear neural
circuit like the one shown in fig 1.4. Becker and Hinton (1992) showed that this
model could extract binocular disparity from random dot stereograms, using the
architecture shown in fig 1.4. Note that this function requires multiple stages
of processing through a network of nonlinear neurons with sigmoidal activation
functions.

The Imax algorithm has been used to learn temporally coherent features
(Becker, 1996; Stone, 1996), and extended to learn multidimensional features (Zemel
and Hinton, 1991). A very similar algorithm for binary units was developed by Kay
and colleagues (Kay, 1992; Phillips et al., 1998). The minimizing disagreement
algorithm (de Sa, 1994) is a probabilistic learning procedure based on principles of
Bayesian classification, but is nonetheless very similar to Imax in its objective to
extract classes that are coherent across multiple sensory input channels.

1.2.4 Risannen’s Minimum Description Length Principle

The overall goal of every unsupervised learning algorithm is to discover the im-
portant underlying structure in the data. Learning algorithms based on Shannon
information have the drawback of requiring knowledge of the probability distri-
bution of the data, and/or of the extracted features, and hence tend to be either
very computationally expensive or to make highly simplifying assumptions about
the distributions (e.g. binary or Gaussian variables). An alternative approach is
to develop a model of the data that is somehow optimal with respect to coding
efficiency. The minimum description length (MDL) principle, first introduced byminimum descrip-

tion length
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M
d’d

data model reconstructed
data

code

c
M
-1

Figure 1.5 Minimum description length (MDL) principle.

Rissanen (1978), favors models that provide accurate encoding of the data using as
simple a model as possible. The rationale behind the MDL principle is that the cri-
terion of discovering statistical regularities in data can be quantified by the length
of the code generated to describe the data.

A large number of learning algorithms have been developed based on the MDL
principle, but only a few of these have attempted to provide plausible accounts of
neural processing. One such example was developed by Zemel and Hinton (1995),
who cast the autoencoder problem within an MDL framework. They proposed
that the goal of learning should be to encode the total cost of communicating
the input data, which depends on three terms, the length of the code, c, the cost of
communicating the model, M (which depends on the coding cost of communicating
how to reconstruct the data), M−1, and the reconstruction error:

Cost = Length(c) + Length(M−1) + Length(|d − d′|)

as illustrated in fig 1.5. They instantiated these ideas using an autoencoder archi-
tecture, with hidden units whose activations were Gaussian functions of the inputs.
Under a Gaussian model of the input activations, it was assumed that the hidden
unit activations, as a population, encode a point in a lower-dimensional implicit
representational space. For example, a population of place cells in the hippocam-
pus might receive very high dimensional multisensory input, and map this input
onto a population of neural activations which codes implicitly the animal’s spatial
location—a point in a two-dimensional Cartesian space. The population response
could be decoded by averaging together the implicit coordinates of the hidden units,
weighted by their activations. Zemel and Hinton’s cost function incorporated a re-
construction term and a coding cost term that measured the fit of the hidden unit
activations to a Gaussian model of implicit coordinates. The weights of the hidden
units and the coordinates in implicit space were jointly optimized with respect to
this MDL cost.

Algorithms which perform clustering, when cast within a statistical framework,
can also be viewed as a form of MDL learning. Nowlan derived such an algorithm,
called maximum likelihood competitive learning (MLCL), for training neural net-
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works using the expectation maximization (EM) algorithm (Jacobs et al., 1991;
Nowlan, 1990). In this framework, the network is viewed as a probabilistic, genera-
tive model of the data. The learning serves to adjust the weights so as to maximize
the log likelihood of the model having generated the data:

L = log P (data | model).

If the training patterns, I(α), are independent,

L = log
n∏

α=1

P (I(α) | model)

=
n∑

α=1

log P (I(α) | model).

The MLCL algorithm applies this objective function to the case where the units
have Gaussian activations and form a mixture model of the data:

L =
n∑

α=1

log

[
m∑

i=1

P (I(α) | submodeli) P (submodeli)

]

=
n∑

α=1

log

[
m∑

i=1

yi
(α) πi

]
,

where the πi’s are positive mixing coefficients that sum to one, and the yi’s are the
unit activations:

yi
(α) = N (�I(α), �wi, Σi),

where N ( ) is the Gaussian density function, with mean �wi and covariance matrix
Σi.

The MLCL model makes the assumption that every pattern is independent of
every other pattern. However, this assumption of independence is not valid under
natural viewing conditions. If one view of an object is encountered, a similar view
of the same object is likely to be encountered next. Hence, one powerful cue for
real vision systems is the temporal continuity of objects. Novel objects typically
are encountered from a variety of angles, as the position and orientation of the
observer, or objects, or both, vary smoothly over time. Given the importance of
temporal context as a cue for feature grouping and invariant object recognition, it
is very likely that the brain makes use of this property of the world in perceptual
learning. Becker (1999) proposed an extension to MLCL that incorporates context
into the learning. Relaxing the assumption that the patterns are independent,
allowing for temporal dependencies among the input patterns, the log likelihood
function becomes:

L = log P (data | model)

=
∑
α

log P (I(α) | I(1), . . . , I(α−1), model).
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Figure 1.6 Contextually modulated competitive learning.

To incorporate a contextual information source into the learning equation, a con-
textual input stream was introduced into the likelihood function:

L = log P (data | model, context)

=
∑
α

log P (I(α) | I(1), . . . , I(α−1), model, context),

as depicted in fig 1.6. This model was trained on a series of continuously rotating
images of faces, and learned a representation that categorized people’s faces ac-
cording to identity, independent of viewpoint, by taking advantage of the temporal
continuity in the image sequences.

Many models of population encoding apply to relatively simple, one-layer feed-
forward architectures. However, the structure of neocortex is much more complex.
There are multiple cortical regions, and extensive feedback connections both within
and between regions. Taking these features of neocortex into account, Hinton has
developed a series of models based on the Boltzmann machine (Ackley et al., 1985),
and the more recent Helmholtz machine (Dayan et al., 1995) and Product of Experts
(PoE) model(Hinton, 2000; Hinton and Brown, 2000). The common idea underly-
ing these models is to try to find a population code that forms a causal model
of the underlying data. The Boltzmann machine was unacceptably slow at sam-
pling the “unclamped” probability distribution of the unit states. The Helmholtz
machine and PoE model overcome this limitation by using more restricted archi-
tectures and/or approximate methods for sampling the probability distributions
over units’ states (see fig 1.7A). In both cases, the bottom-up weights embody a
“recognition model”; that is, they are used to produce the most probable set of
hidden states given the data. At the same time, the top-down weights constitute
a “generative model”; that is, they produce a set of hidden states most likely to
have generated the data. The “wake-sleep algorithm” maximizes the log likelihood
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Figure 1.7 Hinton’s Product of Experts model, showing (A) the basic architec-
ture, and (B) Brief Gibbs sampling, which involves several alternating iterations of
clamping the input units to sample from the hidden unit states, and then clamping
the hidden units to sample from the input unit states. This procedure samples the
“unclamped” distribution of states in a local region around each data vector and
tries to minimize the difference between the clamped and unclamped distributions.

of the data under this model and results in a simple equation for updating either
set of weights:

Δwkj = εsα
k (sα

j − pα
j ),

where pα
j is the target state for unit j on pattern α, and sα

j is the corresponding
network state, a stochastic sample based on the logistic function of the unit’s
net input. Target states for the generative weight updates are derived from top-
down expectations based on samples using the recognition model, whereas for the
recognition weights, the targets are derived by making bottom-up predictions based
on samples from the generative model. The Products of Experts model advances on
this learning procedure by providing a very efficient procedure called “brief Gibbs
sampling” for estimating the most probable states to have generated the data, as
illustrated in fig 1.7B).
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1.3 Models of Episodic Memory

Moving beyond sensory coding to high-level memory systems in the medial temporal
lobe (MTL), the brain may use very different optimization principles aimed at the
memorization of complex events or spatiotemporal episodes, and at subsequent
reconstruction of details of these episodic memories. Here, rather than recoding the
incoming signals in a way that abstracts away unnecessary details, the goal is to
memorize the incoming signal as accurately as possible in a single learning trial.
The hippocampus is a key structure in the MTL that appears to be crucial for
episodic memory. It receives input from most cortical regions, and is at the point
of convergence between the ventral and dorsal visual pathways, as illustrated in
fig 1.8 (adapted from (Mishkin et al., 1997)). Some of the unique anatomical and
physiological characteristics of the hippocampus include the following: (1) the very
large expansion of dimensionality from the entorhinal cortex (EC) to the dentate
gyrus (DG) (the principal cells in the dentate gyrus outnumber those of the EC
by about a factor of 5 in the rat (Amaral et al., 1990)); (2) the large and potent
mossy fiber synapses projecting from CA3 to CA1, which are the largest synapses
in the brain and have been referred to as “detonator synapses” (McNaughton and
Morris, 1987); and (3) the extensive set of recurrent collateral connections within the
CA3 region. In addition, the hippocampus exhibits unique physiological properties
including (1) extremely sparse activations (low levels of activity), particularly in
the dentate gyrus where firing rates of granule cells are about 0.5 Hz (Barnes et al.,
1990; Jung and McNaughton, 1993), and (2) the constant replacement of neurons
(neurogenesis) in the dentate gyrus: about about 1% of the neurons in the dentate
gyrus are replaced each day in young adult rats (Martin Wojtowicz, University of
Toronto, unpublished data).

In 1971 Marr put forward a highly influential theory of hippocampal coding
(Marr, 1971). Central to Marr’s theory were the notions of a rapid, temporary
memory store mediated by sparse activations and Hebbian learning, an associative
retrieval system mediated by recurrent connections, and a gradual consolidation
process by which new memories would be transferred into a long-term neocortical
store. In the decades since the publication of Marr’s computational theory, many
researchers have built on these ideas and simulated memory formation and retrieval
in Marr-like models of the hippocampus. For the most part, modelers have focused
on either the CA3 or CA1 fields, using variants of Hebbian learning, for exam-
ple, competitive learning in the dentate gyrus and CA3 (Hasselmo et al., 1996;
McClelland et al., 1995; Rolls, 1989), Hebbian autoassociative learning (Kali and
Dayan, 2000; Marr, 1971; McNaughton and Morris, 1987; O’Reilly and Rudy, 2001;
Rolls, 1989; Treves and Rolls, 1992), temporal associative learning (Gerstner and
Abbott, 1997; Levy, 1996; Stringer et al., 2002; Wallenstein and Hasselmo, 1997)
in the CA3 recurrent collaterals, and Hebbian heteroassociative learning between
EC-driven CA1 activity and CA3 input (Hasselmo and Schnell, 1994) or between
EC-driven and CA3-driven CA1 activity at successive points in time (Levy et al.,
1990). The key ideas behind these models are summarized in fig 1.9.
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Figure 1.8 Some of the main anatomical connections of the hippocampus. The
hippocampus is a major convergence zone. It receives input via the entorhinal cortex
from most regions of the brain including the ventral and dorsal visual pathways.
It also sends reciprocal projections back to most regions of the brain. Within
the hippocampus, the major regions are the dentate gyrus (DG), CA3, and CA1.
The CA1 region projects back to the entorhinal cortex, thus completing the loop.
Note that the subiculum, not shown here, is another major output target of the
hippocampus.

In modeling the MTL’s hippocampal memory system, Becker (2005) has shown
that a global optimization principle based on the goal of accurate input recon-
struction, combined with neuroanatomical constraints, leads to simple, biologically
plausible learning rules for all regions within the hippocampal circuit. The model
exhibits the key features of an episodic memory system: high storage capacity,
accurate cued recall, and association of items across time, under extremely high
plasticity conditions.

The key assumptions in Becker’s model are as follows:

During encoding, dentate granule cells are active whereas during retrieval they
are relatively silent.

During encoding, activation of CA3 pyramidals is dominated by the very strong
mossy fiber inputs from dentate granule cells.

During retrieval, activation of CA3 pyramidals is driven by direct perforant path
inputs from the entorhinal cortex combined with time-delayed input from CA3 via
recurrent collaterals.

During encoding, activation of CA1 pyramidals is dominated by direct perforant
path inputs from the entorhinal cortex.
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Figure 1.9 Various models have been proposed for specific regions of the hip-
pocampus, for example, (A) models based on variants of competitive learning have
been proposed for the dentate gyrus; (B) many models of the CA3 region have been
based upon the recurrent autoassociator, and (C) several models of CA1 have been
based on the heteroassociative network, where the input from the entorhinal cortex
to CA1 acts as a teaching signal, to be associated with the (nondriving) input from
the CA3 region.

During retrieval, CA1 activations are driven by a combination of perforant path
inputs from the entorhinal cortex and Shaffer collateral inputs from CA3.

Becker proposed that each hippocampal layer should form a neural represen-
tation that could be transformed in a simple manner—i.e. linearly—to reconstruct
the original activation pattern in the entorhinal cortex. With the addition of bio-
logically plausible processing constraints regarding connectivity, sparse activations,
and two modes of neuronal dynamics during encoding versus retrieval, this results
in very simple Hebbian learning rules.

It is important to note, however, that the model itself is highly nonlinear, due to
the sparse coding in each region and the multiple stages of processing in the circuit
as a whole; the notion of linearity only comes in at the point of reconstructing the
EC activation pattern from any one region’s activities. The objective function made
use of the idea of an implicit set of reconstruction weights from each hippocampal
region, by assuming that the perforant path connection weights could be used in
reverse to reconstruct the EC input pattern. Taking the CA3 layer as an example,
the CA3 neurons receive perforant path input from the entorhinal cortex, EC(in),
associated with a matrix of weights W (EC,CA3). The CA3 region also receives input
connections from the dentate gyrus, DG, with associated weights W (DG,CA3) as well
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as recurrent collateral input from within the CA3 region with connection weights
W (CA3,CA3). Using the transpose of the perforant path weights, (W (EC,CA3))T , to
calculate the CA3 region’s reconstruction of the entorhinal input vector

EC(reconstructed) = W (EC,CA3)T
CA3, (1.1)

the goal of the learning is to make this reconstruction as accurate as possible. To
quantify this goal, the objective function Becker proposed to be maximized here is
the cosine angle between the original and reconstructed activations:

Perf (CA3) = cos(EC(in), W (EC,CA3)T
CA3)

=
(EC(in))T (W (EC,CA3)T

CA3)

||EC(in)|| ||W (EC,CA3)T
CA3||

. (1.2)

By rearranging the numerator, and appropriately constraining the activation levels
and the weights so that the denominator becomes a constant, it is equivalent to
maximize the following simpler expression:

Perf (CA3) = (W (EC,CA3)EC(in))
T

CA3, (1.3)

which makes use of the locally available information arriving at the CA3 neurons’
incoming synapses: the incoming weights and activations. This says that the in-
coming weighted input from the perforant path should be as similar as possible
to the activation in the CA3 layer. Note that the CA3 activation, in turn, is a
function of both perforant path and DG input as well as CA3 recurrent input. The
objective functions for the dentate and CA1 regions have exactly the same form
as equation 1.3, using the DG and CA1 activations and perforant path connection
weights respectively. Thus, the computational goal for the learning in each region is
to maximize the overlap between the perforant path input and that region’s recon-
struction of the input. This objective function can be maximized with respect to
the connection weights on each set of input connections for a given layer, to derive
a set of learning equations.

By combining the learning principle with the above constraints, Hebbian learn-
ing rules are derived for the direct (monosynaptic) pathways from the entorhinal
cortex to each hippocampal region, a temporal Hebbian associative learning rule is
derived for the CA3 recurrent collateral connections, and a form of heteroassociative
learning is derived the Shaffer collaterals (the projection from CA3 to CA1).

Of fundamental importance for computational theories of hippocampal coding
is the striking finding of neurogenesis in the adult hippocampus. Although there is
now a large literature on neurogenesis in the dentate gyrus, and it has been shown to
be important for at least one form of hippocampal-dependent learning, surprisingly
few attempts have been made to reconcile this phenomenon with theories of
hippocampal memory formation. Becker (2005) suggested that the function of new
neurons in the dentate gyrus is in the generation of novel codes. Gradual changes
in the internal code of the dentate layer were predicted to facilitate the formation
of distinct representations for highly similar memory episodes.
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Figure 1.10 Architecture of a learning system that incorporates perceptual learn-
ing, episodic memory, and motor control.

Why doesn’t the constant turnover of neurons in the dentate gyrus, and
hence the constant rewiring of the hippocampal memory circuit, interfere with
the retrieval of old memories? The answer to this question comes naturally from
the above assumptions about neuronal dynamics during encoding versus retrieval.
New neurons are added only to the dentate gyrus, and the dentate gyrus drives
activation in the hippocampal circuit only during encoding, not during retrieval.
Thus, the new neurons contribute to the formation of distinctive codes for novel
events, but not to the associative retrieval of older memories.

1.4 Representations That Guide Action Selection

Moving beyond the question of how information is represented, we must consider
the brain not simply a passive storage device, but as a part of a dynamical
computational system that acts and reacts to changes within its environment, as
illustrated in fig 1.10. Ultimately, models based on the broad goals of prediction
and control may be our best hope for characterizing complex dynamical systems
which form representations in the service of guiding motor actions.

Reinforcement learning algorithms can be applied to control problems, and
have been linked closely to specific neural mechanisms. These algorithms are built
upon the concept of a value function, V (st), which defines the value of being in the
current state st at time t to be equal to the expected sum of future rewards:

V (t) = rt + γrt+1 + γ2rt2 + . . . + γnrtn
+ . . .

The parameter γ, chosen to be in the range 0 ≤ γ ≤ 1, is a temporal discount
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factor which permits one to heuristically weight future rewards more or less heavily
according to the task demands. Within this framework, the goal for the agent is
to choose actions that will maximize the value function. In order for the agent to
solve the control problem—how to select optimal actions, it must first solve the
prediction problem—how to estimate the value function. The temporal differenceTD-learning
(TD) learning algorithm (Sutton, 1988; Sutton and Barto, 1981) provides a rule for
incrementally updating an estimate V̂t of the true value function at time t by an
amount called the TD-error: TD-error = rt+1 + γV̂t+1 − V̂t, which makes use of rt,
the amount of reward received at time t, and the value estimates at the current and
the next time step. It has been proposed that the TD-learning algorithm may be
used by neurobiological systems, based on evidence that firing of midbrain dopamine
neurons correlates well with TD-error (Montague et al., 1996).

The Q-learning algorithm (Watkins, 1989) extends the idea of TD learning toQ-learning
the problem of learning an optimal control policy for action selection. The goal
for the agent is to maximize the total future expected reward. The agent learns
incrementally by trial and error, evaluating the consequences of taking each action
in each situation. Rather than using a value function, Q-learning employs an action-
value function, Q(st, at), which represents the value in taking an action at when the
state of the environment is st. The learning algorithm for incrementally updating
estimates of Q-values is directly analogous to TD learning, except that the TD-error
is replaced by a temporal difference between Q-values at successive points in time.

Becker and Lim (2003) proposed a model of controlled memory retrieval based
upon Q-learning. People have a remarkable ability to encode and retrieve infor-
mation in a flexible manner. Understanding the neuronal mechanisms underlying
strategic memory use remains a true challenge. Neural network models of memory
have typically dealt with only the most basic operations involved in storage and
recall. Evidence from patients with frontal lobe damage indicates a crucial role
for the prefrontal cortex in the control of memory. Becker and Lim’s model was
developed to shed light on the neural mechanisms underlying strategic memory
use in individuals with intact and lesioned frontal lobes. The model was trained
to simulate human performance on free-recall tasks involving lists of words drawn
from a small set of categories. Normally when people are asked repeatedly to study
and recall the same list of words, their recall patterns demonstrate progressively
more categorical clustering over trials. This strategy thus appears to be learned,
and correlates with overall recall scores. On the other hand, when patients with
frontal lobe damage perform such tests, while they do benefit somewhat from the
categorical structure of word lists, they tend to recall fewer categories in total, and
tend to show lower semantic clustering scores. Becker and Lim (2003) postulated a
role for the prefrontal cortex (PFC) in self-organizing novel mnemonic codes that
could subsequently be used as retrieval cues to improve retrieval from long-term
memory. Their model is outlined in fig 1.11.

The “actions” or responses in this model are actually the activations generated
by model neurons in the PFC module. Thus, the activation of each response unit
is proportional to the network’s current estimate of the Q-value associated with
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Figure 1.11 Becker and Lim’s architecture for modeling the frontal control of
memory retrieval. The model operated in two different modes: (A) During percep-
tion of an external stimulus (during a study phase) there was bottom-up flow of
activation. (B) During free recall, when a response was generated internally, there
was a top-down flow of activation in the model. After an item was retrieved, but
before a response was generated, the item was used to probe the MTL memory
system, and its recency was evaluated. If the recency (based on a match of the item
to the memory weight matrix) was too high, the item was considered to be a repeti-
tion error, and if too low, it was considered to be an extralist intrusion error. Errors
detected by the model were not generated as responses, but were used to generate
internal reinforcement signals for learning the PFC module weights. Occasionally, a
repetition or intrusion error might go undetected by the model, resulting in a recall
error.

that response, and response probabilities are calculated directly from these Q-
values. Learning the memory retrieval strategy involved adapting the weights for the
response units so as to maximize their associated Q-values. Reinforcement obtained
on a given trial was self-generated by an internal evaluation module, so that the PFC
module received a reward whenever a nonrepeated study list item was retrieved, and
a punishment signal (negative reinforcement) when a nonlist or repeated item was
retrieved. The model thereby learned to develop retrieval strategies dynamically in
the course of both study and free recall of words. The model was able to capture
the performance of human subjects with both intact and lesioned frontal lobes on
a variety of types of word lists, in terms of both recall accuracy and patterns of
errors.

The model just described addresses a rather high level of complex action
selection, namely, the selection of memory retrieval strategies. Most work on
modeling action selection has dealt with more concrete and observable actions such
as the choice of lever-presses in a response box or choice of body-turn directions
in a maze. The advantage of this level of modeling is that it can make contact
with a large body of experimental literature on animal behavior, pharmacology,
and physiology. Many such models have employed TD-learning or Q-learning, under
the assumption that animals form internal representations of value functions, which
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Figure 1.12 Simulation of Cousins et al.’s T-maze cost-benefit task. The MDP
representation of the task is shown in panel A, the T-maze with a barrier and larger
reward in the left arm of the maze is shown in panel B, and the performance of the
model as a function of dopamine depletion is shown in panel C.

guide action selection. As mentioned above, phasic firing of dopamine neurons has
been postulated to convey the TD-error signal critical for this type of learning.
However, in addition to its importance in modulating learning, dopamine plays an
important role in modulating action choice. It has been hypothesized that tonic
levels of dopamine have more to do with motivational value, whereas the phasic
firing of dopamine neurons conveys a learning-related signal (Smith et al., 2005).

Rather than assuming that actions are solely guided by value functions, Smith
et al. (2005) hypothesized that animals form detailed internal models of the world.
Value functions condense the reward value of a series of actions into that of a single
state, and are therefore insensitive to the motivational state of the animal (e.g.,
whether it is hungry or not). Internal models, on the other hand, allow a mental
simulation of alternative action choices, which may result in qualitatively different
rewards. For example, an animal might perform one set of actions leading to water
only if it is thirsty, and another set of actions leading to food only if it is hungry.
The internal model can be described by a Markov decision process (MDP) over
a set of internal states, with associated transition function and reward function,
as in fig 1.12A). The transition function and (immediate) reward value of each
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state are learned through trial and error. Once the model is fully trained, action
selection involves simulating a look-ahead process in the internal model for one or
more steps in order to evaluate the consequences of an action. Finally, at the end of
the simulation sequence, the animal’s internal model reveals whether the outcome is
favorable (leads to reward) or not. An illustrative example is shown in fig 1.12B. The
choice faced by the animal is either to take the right arm of the T-maze to receive a
small reward, or to take the left arm and then jump over a barrier to receive a larger
reward. The role of tonic dopamine in this model is to modulate the efficacy of the
connections in the internal model. Thus, when dopamine is depleted, the model’s
ability to simulate the look-ahead process to assess expected future reward will be
biased toward rewards available immediately rather than more distal rewards. This
implements an online version of temporal discounting.

Cousins et al. (1996) found that normal rats trained in the T-maze task in
fig 1.12B) are willing to jump the barrier to receive a larger food reward nearly
100% of the time. Interestingly, however, when rats were administered a substance
that destroys dopaminergic (DA) projections to the nucleus accumbens (DA lesion),
they chose the smaller reward. In another version of the task, rats were trained on
the same maze except that there was no food in the right arm, and then when
given DA lesions, they nearly always chose the left arm and jumped the barrier to
receive a reward. Thus, the DA lesion was not merely disrupting motor behavior,
it was interacting with the motivational value of the behavioral choices. Note that
the TD-error account of dopamine only provides for a role in learning, and would
have nothing to say about effects of dopamine on behavior subsequent to learning.
Smith et al. (2005) argued, based on these and other data, that dopamine serves
to modulate the motivational choice of the animals, with high levels of dopamine
favoring the selection of action sequences with more distal but larger rewards. In
simulations of the model, depletion of dopamine therefore biases the choice in favor
of the right arm in this task, as shown in fig 1.12C).

1.5 New Directions: Integrating Multiple Memory Systems

In this chapter, we have reviewed several approaches to modeling the mind, from
low-level sensory coding, to high-level memory systems, to action selection. Some-
how, the brain accomplishes all of these functions, and it is highly unlikely that
they are carried out in isolation from one another. For example, we now know that
striatal dopaminergic pathways, presumed to carry a reinforcement learning signal,
affect sensory coding even in early sensory areas such as primary auditory cortex
(Bao et al., 2001). Future work must address the integration of these various levels
of modeling.





2 Empirical Statistics and Stochastic Models
for Visual Signals

David Mumford

The formulation of the vision problem as a problem in Bayesian inference (Forsyth
and Ponce, 2002; Mumford, 1996, 2002) is, by now, well known and widely accepted
in the computer vision community. In fact, the insight that the problem of recon-
structing 3D information from a 2D image is ill posed and needs inference can be
traced back to the Arab scientist Ibn Al-Haytham (known to Europe as Alhazan)
around the year 1000 (Haytham, c. 1000). Inheriting a complete hodgepodge of
conflicting theories from the Greeks,1 Al-Haytham for the first time demonstrated
that light rays originated only in external physical sources, and moved in straight
lines, reflecting and refracting, until they hit the eye; and that the resulting signal
needed to be and was actively decoded in the brain using a largely unconscious
and very rapid inference process based on past visual experiences. In the modern
era, the inferences underlying visual perception have been studied by many people,
notably H. Helmholtz, E. Brunswik (Brunswik, 1956), and J. J. Gibson.

In mathematical terms, the Bayesian formulation is as follows: let I be the
observed image, a 2D array of pixels (black-and-white or colored or possibly a
stereoscopic pair of such images). Here we are assuming a static image.2 Let w

stand for variables that describe the external scene generating the image. Such
variables should include depth and surface orientation information (Marr’s 2.5 D
sketch), location and boundaries of the principal objects in view, their surface
albedos, location of light sources, and labeling of object categories and possibly
object identities. Then two stochastic models, learned from past experience, are
required: a prior model p(w) specifying what scenes are likely in the world we live
in and an imaging model p(I|w) specifying what images should look like, given the
scene. Then by Bayes’s rule:Bayes’s rule

p(w|I) =
p(I|w)p(w)

p(I)
∝ p(I|w)p(w).

Bayesian inference consists in fixing the observed value of I and inferring that w

equals that value which maximizes p(w|I) or equivalently maximizes p(I|w)p(w).
This is a fine general framework, but to implement or even test it requires (1) a
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theory of stochastic models of a very comprehensive sort which can express all the
complex but variable patterns which the variables w and I obey, (2) a method of
learning from experience the many parameters which such theories always contain,
and (3) a method of computing the maximum of p(w|I).

This chapter will be concerned only with problem 1. Many critiques of vision
algorithms have failed to allow for the fact that these are three separate problems:
if 2 or 3, the methods, are badly implemented, the resulting problems do not imply
that the theory itself (1) is bad. For example, very slow algorithms of type 3 may
reasonably be used to test ideas of type 1. Progress in understanding vision does not
require all these problems to be solved at once. Therefore, it seems to me legitimate
to isolate problems of type 1.

In the rest of this chapter, I will review some of the progress in constructing
these models. Specifically, I will consider, in section 2.1, models of the empirical
probability distribution p(I) inferred from large databases of natural images. Then,
in section 2.2, I will consider the problem of the first step in so-called intermediate
vision: inferring the regions which should be grouped together as single objects or
structures, a problem which includes segmentation and gestalt grouping, the basic
grammar of image analysis. Finally in section 2.3, I look at the problem of priors on
2D shapes and the related problem of what it means for two shapes to be “similar”.
Obviously, all of these are huge topics and I cannot hope to give a comprehensive
view of work on any of them. Instead, I shall give my own views of some of the
important issues and open problems and outline the work that I know well. As this
inevitably emphasizes the work of my associates, I must beg indulgence from those
whose work I have omitted.

2.1 Statistics of the Image Alone

The most direct approach to studying images is to ask whether we can find good
models for images without any hidden variables. This means first creating a large
database of images I that we believe are reasonably random samples of all possible
images of the world we live in. Then we can study this database with all the tools
of statistics, computing the responses of various linear and nonlinear filters and
looking at the individual and joint histograms of their values. “Nonlinear” should
be taken in the broadest sense, including order statistics or topological analyses.
We then seek to isolate the most important properties these statistics have and
to create the simplest stochastic models p(I) that duplicate or approximate these
statistics. The models can be further tested by sampling from them and seeing if
the resulting artificial images have the same “look and feel” as natural images; or
if not, what are the simplest properties of natural images that we have failed to
capture. Another recent survey of such models is referred to (Lee et al., 2003b).
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2.1.1 High Kurtosis As The Universal Clue To Discrete Structure

The first really striking thing about filter responses is that they always have large
kurtosis. It is strange that electrical engineers designing TV sets in the 1950s do
not seem to have pointed this out and this fact first appeared in the work of David
Field (Field, 1987). By kurtosis, we mean the normalized fourth moment. If x is akurtosis
random real number, its kurtosis is

κ(x) = E((x − x̄)4)/E((x − x̄)2)2.

Every normal variable has kurtosis 3; a variable which has no tails (e.g., uniformly
distributed on an interval) or is bimodal and small at its mean tends to have
kurtosis less than 3; a variable with heavy tails or large peak at its mean tends
to have kurtosis larger than 3. The empirical result which is observed for images
is that for any linear filter F with zero mean, the values x = (F ∗ I)(i, j) of the
filtered image follow a distribution with kurtosis larger than 3. The simplest case
of this is the difference of adjacent pixel values, the discrete derivative of the image
I. But it has been found (Huang, 2000) to hold even for random mean zero filters
supported in an 8 × 8 window.

This high kurtosis is shown in fig 2.1, from the thesis of J. Huang (Huang, 2000).
This data was extracted from a large database of high-resolution, fully calibrated
images of cities and country taken in Holland by van Hateren (1998). It is important,
when studying tails of distributions, to plot the logarithm of the probability or
frequency, as in this figure, not the raw probability. If you plot probabilities, all tails
look alike. But if you plot their logarithms, then a normal distribution becomes a
downward facing parabola (since log(e−x2

) = −x2), so heavy tails appear clearly
as curves which do not point down so fast.stationary

Markov process It is a well-known fact from probability theory that if Xt is a stationary Markov
stochastic process, then the kurtosis of Xt − Xs being greater than 3 means that
the process Xt has discrete jumps. In the case of vision, we have samples from an
image I(s, t) depending on two variables rather than one and the zero-mean filter
is a generalization of the difference Xt −Xs. Other signals generated by the world,
such as sound or prices, are functions of one variable, time. A nice elementary
statement of the link between kurtosis and jumps is given by the following result,
taken from Mumford and Desolneux:

Theorem 2.1
Let x be any real random variable which we normalize to have mean 0 and standard
deviation 1. Then there is a constant c > 0 depending only on x such that if, for
some n, x is the sum

x = y1 + y2 + · · · + yn

where the yi are independent and identically distributed, then

Prob
(
max

i
|yi| ≥

√
(κ(x) − 3)/2

)
≥ c.



26 Empirical Statistics and Stochastic Models for Visual Signals

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

standard deviation

lo
g(

pd
f)

Figure 2.1 Histograms of filter values from the thesis of J. Huang, using the van
Hateren database. On the left, the filter is the difference of (a) horizontally adjacent
pixels, and (b) of adjacent 2 × 2, (c) 4 × 4 and (d) 8 × 8 blocks; on the right, several
random mean-zero filters with 8 × 8 pixel support have been used. The kurtosis of
all these filter responses is between 7 and 15. Note that the vertical axis is log of
the frequency, not frequency. The histograms on the left are displaced vertically for
legibility and the dotted lines indicate one standard deviation.

A striking application of this is to the stock market. Let x be the log price
change of the opening and closing price of some stock. If we assume price changes
are Markov, as many have, and use the experimental fact that price changes have
kurtosis greater than 3, then it implies that stock prices cannot be modeled as a
continuous function of time. In fact, in my own fit of some stock-market data, I
found the kurtosis of log price changes to be infinite: the tails of the histogram of
log price changes appeared to be polynomial, like 1/xα with α between 4 and 5.

An important question is, How big are the tails of the histograms of image
filter statistics? Two models have been proposed for these distributions. The first
is the most commonly used model, the generalized Laplacian distribution:generalized

Laplacian
distribution plaplace(x) =

e−|x/a|b

Z
, Z =

∫
e−|y/a|bdy.

Here a is a scale parameter and b controls how large the tails are (larger tails
for smaller b). Experimentally, these work well and values of b between 0.5 and
1 are commonly found. However, no rationale for their occurrence seems to have
been found. The second is the Bessel distribution (Grenander and Srivastava, 2001;Bessel

distribution Wainwright and Simoncelli, 2000):

pbessel(x) = q̂(ξ), q(ξ) = 1/(1 + (aξ2))b/2.

Again, a is a scale parameter, b controls the kurtosis (as before, larger kurtosis
for smaller b), and the hat means Fourier transform. pbessel(x) can be evaluated
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explicitly using Bessel functions. The tails, however, are all asymptotically like
those of double exponentials e−|x/a|, regardless of b. The key point is that these
distributions arise as the distributions of products r ·x of Gaussian random variables
x and an independent positive “scaling” random variable r. For some values of b,
the variable r is distributed like ‖�x‖ for a Gaussian �x ∈ Rn, but in general its square
has a gamma (or chi-squared) distribution. The great appeal of such a product is
that images are also formed as products, especially as products of local illumination,
albedo, and reflectance factors. This may well be the deep reason for the validity
of the Bessel models.

Convincing tests of which model is better have not been made. The difficulty
is that they differ most in their tails, where data is necessarily very noisy. The
best approach might be to use the Kolmogorov-Smirnov statistic and compare the
best-fitting models for this statistic of each type.

The world seems to be composed of discrete jumps in time and discrete objects
in space. This profound fact about the physical nature of our world is clearly
mirrored in the simple statistic kurtosis.

2.1.2 Scaling Properties of Images and Their Implications

scale invariance
After high kurtosis, the next most striking statistical property of images is their
approximate scale invariance. The simplest way to define scale invariance precisely
is this: imagine we had a database of 64 × 64 images of the world and that this
could be modeled by a probability distribution p64(I) in the Euclidean space R4096

of all such images. Then we can form marginal 32 × 32 images in two different
ways: we either extract the central 32 × 32 set of pixels from the big image I or
we cover the whole 64 × 64 image by 1,024 2 × 2 blocks of pixels and average each
such block to get a 32× 32 image (i.e., we “blow down” I in the crudest way). The
assertion that images are samples from a scale-invariant distribution is that the
two resulting marginal distributions on 32 × 32 images are the same. This should
happen for images of any size and we should also assume that the distribution is
stationary, i.e., translating an image gives an equally probable image. The property
is illustrated in fig 2.2.

It is quite remarkable that, to my knowledge, no test of this hypothesis on
reasonably large databases has contradicted it. Many histograms of filter responses
on successively blown down images have been made; order statistics have been
looked at; and some topological properties derived from level curves have been
studied (Geman and Koloydenko, 1999; Gousseau, 2000; Huang, 2000; Huang and
Mumford, 1999). All have shown approximate scale invariance. There seem to be
two simple facts about the world which combine to make this scale invariance
approximately true. The first is that images of the world are taken from random
distances: you may photograph your spouse’s face from one inch away or from
100 meters away or anything in between. On your retina, except for perspective
distortions, his or her image is scaled up or down as you move closer or farther
away. The second is that objects tend to have surfaces on which smaller objects
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Figure 2.2 Scale invariance defined as a fixed point under block renormalization.
The top is random 2N × 2N image which produces the two N × N images on the
bottom, one by extracting a subimage, the other by 2 × 2 block averaging. These
two should have the same marginal distributions. (Figure from A. Lee.)

cluster: your body has limbs which have digits which have hairs on them, your office
has furniture which has books and papers which have writing (a limiting case of
very flat objects on its surface) on them, etc. Thus a blowup of a photograph not
only shows roughly the same number of salient objects, but they occur with roughly
the same contrast.3

The simplest consequence of scale invariance is the law for the decay of power
at high frequencies in the Fourier transform of images (or better, the discrete cosine
transform to minimize edge effects). It says that the expected power as a function
of frequency should drop off likepower law

EI

(
|Î(ξ, η)|2

)
≈ C/(ξ2 + η2) = C/f2,

where f =
√

ξ2 + η2 is the spatial frequency. This power law was discovered in the
1950s. In the image domain, it is equivalent to saying that the autocorrelation of
the image is approximated by a constant minus log of the distance:

EI

(∑
x,y

(I(x, y) − Ī).(I(x + a, y + b) − Ī)

)
≈ C − log(

√
a2 + b2).

Note that the models have both infrared4 and ultraviolet divergences: the total
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power diverges for both f → 0 and ∞, and the autocorrelation goes to ±∞ as
a, b → 0, and ∞. Many experiments have been made testing this law over moderate
ranges of frequencies and I believe the conclusion to draw is this: for small databases
of images, especially databases of special sorts of scenes such as forest scenes or city
scenes, different powers are found to fit best. These range from 1/f3 to 1/f but
with both a high concentration near 1/f2 and a surprisingly large variance5 (Frenkel
et al.; Huang, 2000). But for large databases, the rule seems to hold.

Another striking consequence of the approximate scale-invariance is that im-
ages, if they have infinitely high resolution, are not functions at all but must be con-
sidered generalized functions (distributions in the sense of Schwartz). This means
that as their resolution increases, natural images do not have definite limiting nu-
merical values I(x, y) at almost all points x, y in the image plane. I think of this as
the “mites on your eyelashes” theorem. Biologists tell us that such mites exist and
if you had Superman’s X-ray vision, you not only could see them but by the laws
of reflectance, they would have high contrast, just like macroscopic objects. This
mathematical implication is proven by Gidas and Mumford (Gidas and Mumford,
2001).

This conclusion is quite controversial: others have proposed other function
spaces as the natural home for random images. An early model for images (Mumford
and Shah, 1989) proposed that observed images were naturally a sum:

I(x, y) = u(x, y) + v(x, y),

where u was a piecewise smooth “cartoon”, representing the important content of
the image, and v was some L2 noise. This led to the idea that the natural function
space for images, after the removal of noise, was the space of functions of bounded
variation, i.e.,

∫
||∇I||dxdy < ∞. However, this approach lumped texture in with

noise and results in functions u from which all texture and fine detail has been
removed. More recent models, therefore, have proposed that

I(x, y) = u(x, y) + v(x, y) + w(x, y),

where u is the cartoon, v is the true texture, and w is the noise. The idea was put
forward by DeVore and Lucier (1994) that the true image u+v belongs to a suitable
Besov space, spaces of functions f(x, y) for which bounds are put on the Lp norm
of f(x + h, y + k) − f(x, y) for (h, k) small. More recently, Carasso has simplified
their approach (Carasso, 2004) and hypothesizes that images I, after removal of
“noise” should satisfy∫

|I(x + h, y + k) − I(x, y)|dxdy < C(h2 + k2)α/2,

for some α as (h, k) → 0.
However, a decade ago, Rosenfeld argued with me that most of what people

discard as “noise” is nothing but objects too small to be fully resolved by the
resolution of the camera and thus blurred beyond recognition or even aliased. I think
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Figure 2.3 This photo is intentionally upside-down, so you can look at it more
abstractly. The left photo has a resolution of about 500 × 500 pixels and the right
photo is the yellow 40 × 40 window shown on the left. Note (a) how the distinct
shapes in the road made by the large wet/dry spots gradually merge into dirt texture
and (b) the way on the right the bush is pure noise. If the bush had moved relative
to the pixels, the pattern would be totally different. There is no clear dividing line
between distinct objects, texture, and noise. Even worse, some road patches which
ought to be texture are larger than salient objects like the dog.

of this as clutter. The real world is made up of objects plus their parts and surface
markings of all sizes and any camera resolves only so many of these. There is an
ideal image of infinite resolution but any camera must use sensors with a positive
point spread function. The theorem above says that this ideal image, because it
carries all this detail, cannot even be a function. For example, it has more and
more high-frequency content as the sensors are refined and its total energy diverges
in the limit,6 hence it cannot be in L2.

In fig 2.3, we illustrate that there is no clear dividing line between objects,
texture, and noise: depending on the scale at which you view and digitize the ideal
image, the same “thing” may appear as an object, as part of a texture, or as just
a tiny bit of noise. This continuum has been analyzed beautifully recently by Wu
et al. (2006, in revision).

Is there is a simple stochastic model for images which incorporates both high
kurtosis and scale invariance? There is a unique scale-invariant Gaussian model,
namely colored white noise whose expected power spectrum conforms to the 1/f2

law. But this has kurtosis equal to 3. The simplest model with both propertiesrandom wavelet
model seems to be that proposed and studied by Gidas and me (Gidas and Mumford,

2001), which we call the random wavelet model. In this model, a random image is
a countable sum:

I(x, y) =
∑
α

ψα(erαx − xα, erαy − yα).
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Here (rα, xα, yα) is a uniform Poisson process in 3-space and ψα are samples from
the auxiliary Levy process, a distribution on the space of scale- and position-
normalized elementary image constituents, which one may call mother wavelets
or textons. These expansions converge almost surely in all the Hilbert-Sobolev
spaces H−ε. Each component ψα represents an elementary constituent of the image.
Typical choices for the ψ’s would be Gabor patches, edgelets or curvelets, or more
complex shapes such as ribbons or simple shapes with corners. We will discuss these
in section 2.1.4 and we will return to the random wavelet model in section 2.2.3.

2.1.3 Occlusion and the “Dead Leaves” Model

There is, however, a third basic aspect of image statistics which we have so far
not considered: occlusion. Images are two-dimensional projections of the three-
dimensional world and objects get in front of each other. This means that it is a
mathematical simplification to imagine images as sums of elementary constituents.
In reality, objects are ordered by distance from the lens and they should be combined
by the nonlinear operation in which nearer surface patches overwrite distant ones.
Statistically, this manifests itself in a strongly non-Markovian property of images:
suppose an object with a certain color and texture is occluded by a nearer object.
Then, on the far side of the nearer object, the more distant object may reappear,
hence its color and texture have a larger probability of occurring than in a Markov
model.

This process of image construction was studied by the French school of Math-
eron and Serra based at the École des Mines (Serra, 1983 and 1988). Their
“dead leaves model” is similar to the above random wavelet expansion except
that occlusion is used. We imagine that the constituents of the image are tuples
(rα, xα, yα, dα, Dα, ψα) where rα, xα and yα are as before, but now dα is the dis-
tance from the lens to the αth image patch and ψα is a function only on the set of
(x, y) ∈ Dα. We make no a priori condition on the density of the Poisson process
from which (rα, xα, yα, dα) is sampled. The image is then given by

I(x, y) = ψα(x,y)(erα(x,y)x − xα(x,y), e
rα(x,y)y − yα(x,y)), where

α(x, y) = argmin{dα

∣∣(x, y) ∈ Dα}

This model has been analyzed by A. Lee, J. Huang and myself (Lee et al., 2001)
but has more serious infrared and ultraviolet catastrophes than the additive one.
One problem is that nearby small objects cause the world to be enveloped in a sort
of fog occluding everything in the distance. Another is the probability that one big
nearby object occludes everything. In any case, with some cutoffs, Lee’s models are
approximately scale-invariant and seem to reproduce all the standard elementary
image statistics better than any other that I know of, e.g., two-point co-occurrence
statistics as well as joint wavelet statistics. Examples of both types of models are
shown in fig. 2.4.

I believe a deeper analysis of this category of models entails modeling directly,
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Figure 2.4 Synthetic images illustrating the generic image models from the text.
On the left, a sample dead leaves model using disks as primitives; on the right, a
random wavelet model whose primitive are short ribbons.

not the objects in 2D projection, but their statistics in 3D. What is evident then is
that objects are not scattered in 3-space following a Poisson process, but rather are
agglutinative: smaller objects collect on or near the surface of bigger objects (e.g.,
houses and trees on the earth, limbs and clothes on people, buttons and collars
on clothes, etc.). The simplest mathematical model for this would be a random
branching process in which an object had “children”, which were the smaller objects
clustering on its surface. We will discuss a 2D version of this in section 2.2.3.

2.1.4 The Phonemes Of Images

The final component of this direct attack on image statistics is the investigation
of its elementary constituents, the ψ above. In analogy with speech, one may call
these constituents phonemes (or phones). The original proposals for such building
blocks were given by Julesz and Marr. Julesz was interested in what made two
textures distinguishable or indistinguishable. He proposed that one should breaktexton
textures locally into textons (Julesz, 1981; Resnikoff, 1989) and, supported by his
psychophysical studies, he proposed that the basic textons were elongated blobs
and their endpoints (“terminators”). Marr (1982), motivated by the experiments
of Hubel and Wiesel on the responses of cat visual cortex neurons, proposed that
one should extract from an image its “primal sketch”, consisting of edges, bars,
and blobs. Linking these proposals with raw image statistics, Olshausen and Field
(1996) showed that simple learning rules seeking a sparse coding of the image,
when exposed to small patches from natural images, did indeed develop responses
sensitive to edges, bars, and blobs. Another school of researchers have taken the
elegant mathematical theory of wavelets and sought to find those wavelets which
enabled best image compression. This has been pursued especially by Mallat (1999),
Simoncelli (1999), and Donoho and their collaborators (Candes and Donoho, 2005).

Having large natural image databases and powerful computers, we can ask now
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for a direct extraction of these or other image constituents from a statistical analysis
of the images themselves. Instead of taking psychophysical, neurophysiological, or
mathematical results as a basis, what happens if we let images speak for themselves?
Three groups have done this: Geman-Koloydenko (Geman and Koloydenko, 1999),
Huang-Lee-Pedersen-Mumford (Lee et al., 2003a), and Malik-Shi (Malik et al.,
1999). Some of the results of Huang and of Malik et al. are shown in fig. 2.5.

The approach of Geman and Koloydenko was based on analyzing all 3 × 3
image patches using order statistics. The same image patches were studied by Lee
and myself using their real number values. A very similar study by Pedersen and Lee
(2002) replaced the nine pixel values by nine Gaussian derivative filter responses.
In all three cases, a large proportion of such image patches were found to be either
low contrast or high contrast cut across by a single edge. This, of course, is not a
surprise, but it quantifies the significance of edges in image structure. For example,
in the study by Lee, Pedersen and myself, we took the image patches with the
top 20% quantile for contrast, then subtracted their mean and divided by their
standard deviation, obtaining data points on a seven-dimensional sphere. In this
sphere, there is a surface representing the responses to image patches produced by
imaging straight edges with various orientations and offsets. Close analysis shows
that the data is highly concentrated near this surface, with asymptotic infinite
density along the surface itself.

Malik and Shi take small patches and analyze these by a filter bank of 36
wavelet filters. They then apply k-means clustering to find high-density points
in this point cloud. Again the centers of these clusters resemble the traditional
textons and primitives. In addition, they can adapt the set of textons they derive
to individual images, obtaining a powerful tool for representing a single image.

A definitive analysis of images deriving directly the correct vocabulary of basic
image constituents has not been made but the outlines of the answer are now clear.

2.2 Grouping of Image Structures

In the analysis of signals of any kind, the most basic “hidden variables” are the
labels for parts of the signal that should be grouped together, either because they
are homogeneous parts in some sense or because the components of this part occur
together with high frequency. This grouping process in speech leads to words and
in language leads to the elements of grammar—phrases, clauses, and sentences.
On the most basic statistical level, it seeks to group parts of the signal whose
probability of occurring together is significantly greater than it would be if they
were independent: see section 2.2.3 for this formalism. The factors causing grouping
were the central object of study for the Gestalt school of psychology. This school
flourished in Germany and later in Italy in the first half of the twentieth century
and included M. Wertheimer, K. Koffka, W. Metzger, E. Brunswik, G. Kanizsa,
and many others. Their catalog of features which promoted grouping included
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Figure 2.5 Textons derived by k-means clustering applied to 8× 8 image patches.
On the top, Huang’s results for image patches from van Hateren’s database; on
the bottom, Malik et al.’s results using single images and filter banks. Note the
occasional terminators in Huang’s results, as Julesz predicted.
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color and proximity,

alignment, parallelism, and symmetry,

closedness and convexity.

Kanizsa was well aware of the analogy with linguistic grammar, titling his last book
Grammatica del Vedere (Kanizsa, 1980). But they had no quantitative measures
for the strength of these grouping principles, as they well knew. This is similar to
the situation for traditional theories of human language grammar—a good story
to explain what words are to be grouped together in phrases but no numbers. The
challenge we now face is to create theories of stochastic grammars which can express
why one grouping is chosen in preference to another. It is a striking fact that, faced
either with a sentence or a scene of the world, human observers choose the same
groupings with great consistency. This is in contrast with computers which, given
only the grouping rules, find thousands of strange parses of both sentences and
images.

2.2.1 The Most Basic Grouping: Segmentation and Texture

The simplest grouping rules are those of similar color (or brightness) and proximity.grouping
These two rules have been used to attack the segmentation problem. The most
naive but direct approach to image segmentation is based on the assumption that
images break up into regions on which their intensity values are relatively constant
and across whose boundaries those values change discontinuously. A mathematical
version of this approach, which gives an explicit measure for comparing different
proposed segmentations, is the energy functional proposed by Shah and myself
(Mumford and Shah, 1989). It is based on a model I = u+v where u is a simplified
cartoon of the image and v is “noise”:

E(I, u,Γ) = C1

∫
D

(I − u)2 + C2

∫
D−Γ

‖∇u‖2 + C3 · length(Γ), where

D = domain of I,

Γ = boundaries of regions which are grouped together, and

Ci = parameters to be learned.

In this model, pixels in D−Γ have been grouped together by stringing together pairs
of nearby similarly colored pixels. Different segmentations correspond to choosing
different u and Γ and the one with lower energy is preferred. Using the Gibbs
statistical mechanics approach, this energy can be thought of as a probability:
heuristically, we set p(I, u,Γ) = e−E(I,u,Γ)/T /Z, where T and Z are constants.
Taking this point of view, the first term in E is equivalent to assuming v = I − u

is a sample from white noise. Moreover, if Γ is fixed, then the second term in
E makes u a sample from the scale-invariant Gaussian distribution on functions,
suitably adapted to the smaller domain D−Γ. It is hard to interpret the third term
even heuristically, although Brownian motion ((x(t), y(t)) is heuristically a sample
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from the prior e− ∫
(x′(t)2+y′(t)2)dt, which, if we adopt arc length parameterization,

becomes e−length(Γ). If we stay in the discrete pixel setting, the Gibbs model
corresponding to E makes good mathematical sense; it is a variant of the Ising
model of statistical mechanics (Blake and Zisserman, 1987; Geman and Geman,
1984).

The most obvious weakness in this model is its failure to group similarly
textured regions together. Textural segmentation is an example of the hierarchical
application of gestalt rules: first the individual textons are grouped by having similar
colors, orientations, lengths, and aspect ratios. Then these groupings of textons are
further grouped into extended textured regions with homogeneous or slowly varying
“texture”. Ad hoc adaptations of the above energy approach to textural grouping
(Geman and Graffigne, 1986; Hofmann et al., 1998; Lee et al., 1992) have been
based on choosing some filter bank the similarity of whose responses are taken as
a surrogate for the first low-level texton grouping. One of the problems of this
approach is that textures are often not characterized so much by an average of
all filter responses as by the very large response of one particular filter, especially
by the outliers occurring when this filter precisely matches a texton (Zhu et al.,
1997). A careful and very illuminating statistical analysis of the importance of
color, textural, and edge features on grouping, based on human segmented images,
was given by Malik’s group (Foulkes et al., 2003).

2.2.2 Extended Lines and Occlusion

The most striking demonstrations of gestalt laws of grouping come from occlusion
phenomena, when edges disappear behind an object and reappear. A typical
example is shown in fig 2.6. The most famous example is the so-called Kanizsa
triangle, where, to further complicate matters, the foreground triangle has the same
color as the background with only black circles of intermediate depth being visible.
The grouping laws lead one to infer the presence of the occluding triangle and the
completion of the three partially occluded black circles. An amusing variant, the
Kanizsa pear, is shown in the same figure.

These effects are not merely psychophysical curiosities. Virtually every image
of the natural world has major edges which are occluded one or more times by
foreground objects. Correctly grouping these edges goes a long way to finding the
correct parse of an image.

A good deal of modeling has gone into the grouping of disconnected edges
into extended edges and the evaluation of competing groupings by energy values or
probabilities. Pioneering work was done by Parent and Zucker (1989) and Shashua
and Ullman (1988). Nitzberg, Shiota, and I proposed a model for this (Nitzberg
et al., 1992) which was a small extension of the Mumford-Shah model. The new
energy involves explicitly the overlapping regions Rα in the image given by the
3D objects in the scene, both the visible and the occluded parts of these objects.
Therefore, finding its minimum involves inferring the occluded parts of the visible
objects as well as the boundaries of their visible parts. (These are literally “hidden
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Figure 2.6 Two examples of gestalt grouping laws: on the left, the black bars are
continued under the white blob to form the letter T, on the right, the semicircles
are continued underneath a foreground “pear” which must completed by contours
with zero contrast.

variables”.) Moreover, we need the depth order of the objects—which are nearer,
which farther away. The cartoon u of the image is now assumed piecewise constant,
with value uα on the region Rα. Then,

E(I, {uα}, {Rα}) =
∑
α

C1

∫
R′

α

(I − uα)2 +
∫

∂Rα

(
C2κ

2
∂Rα

+ C3
)
ds,

R′
α =

⎛⎝Rα −
⋃

nearer Rβ

Rα ∩ Rβ

⎞⎠ = visible part of Rα,

κ∂Rα = curvature of ∂Rα.

This energy allows one to quantify the application of gestalt rules for inferring
occluded objects and predicts correctly, for example, the objects present in the
Kanizsa triangle. The minima of this E will infer specific types of hidden contours,
namely contours which come from the purely geometric variational problem of
minimizing a sum of squared curvature and arc length along an unknown curve.
This variational problem was first formulated by Euler, who called the resulting
curves elastica.

To make a stochastic model out of this, we need a stochastic model for the
edges occurring in natural images. There are two parts to this: one is modeling the
local nature of edges in images and the other is modeling the way they group into
extended curves.

Several very simple ideas for modeling curves locally, based on Brownian
motion, were proposed in Mumford (1992). Brownian paths themselves are too
jagged to be suitable, but one can assume the curves are C1 and that their
orientation θ(s), as a function of arc length, is Brownian. Geometrically, this is like
saying their curvature is white noise. Another alternative is to take 2D projections
of 3D curves whose direction of motion, given by a map from arc length to points
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on the unit sphere, is Brownian. Such curves have more corners and cusps, where
the 3D path heads toward or away from the camera. Yet another option is to
generate parameterized curves whose velocity (x′(t), y′(t)) is given by two Ornstein-
Uhlenbeck processes (Brownian functions with a restoring force pulling them to 0).
These paths have nearly straight segments when the velocity happens to get large.

A key probability distribution in any such theory is p(x, y, θ), the probability
density that if an image contour passes through (0, 0) with horizontal tangent, then
this contour will also pass through (x, y) with orientation θ. This function has been
estimated from image databases in (Geisler et al., 2001), but I do not know of any
comparison of their results with mathematical models.

Subsequently, Zhu (1999) and Ren and Malik (2002) directly analyzed edges
and their curvature in hand-segmented images. Zhu found a high-kurtosis empirical
distribution much like filter responses: a peak at 0 showing the prevalence of straight
edges and large tails indicating the prevalence of corners. He built a stochastic
model for polygonal approximations to these curves using an exponential model of
the form

p(Γ) ∝ e− ∫
Γ ψ1(κ(s))+ψ2(κ′(s))ds,

where κ is the curvature of Γ and the ψi are unknown functions chosen so that
the model yields the same distribution of κ, κ′ as that found in the data. Finding
continuum limits of his models under weak convergence is an unsolved problem.
Ren and Malik’s models go beyond the previous strictly local ones. They are kth-
order Markov models in which the orientation θk+1 of a curve at a sample point
Pk+1 is a sample from a joint probability distribution of the orientations θα

k of both
the curve and smoothed versions of itself at other scales α, all at the previous point
Pk.

A completely different issue is finding probabilities that two edges should be
joined, e.g., if Γ1, Γ2 are two curves ending at points P1, P2, how likely is it that
in the real world there is a curve Γh joining P1 and P2 and creating a single curve
Γ1 ∪ Γh ∪ Γ2? This link might be hidden in the image because of either occlusion,
noise or low contrast (anyone with experience with real images will not be surprised
at how often this happens). Jacobs, Williams, Geiger, and others have developed
algorithms of this sort based on elastica and related ideas (Geiger et al., 1998;
Williams and Jacobs, 1997). Elder and Goldberg (2002) and Geisler et al. (2001)
have carried out psychophysical experiments to determine the effects of proximity,
orientation difference, and edge contrast on human judgments of edge completions.

One of the subtle points here (as Ren and Malik make explicit) is that this
probability does not depend only on the endpoints Pi and the tangent lines to the
Γi at these points. So, for instance, if Γ1 is straight for a certain distance before
its endpoint P1, then the longer this straight segment is, the more likely it is that
any continuation it has will also be straight. An elegant analysis of the situation
purely for straight edges has been given by Desolneux et al. (2003). It is based
on what they call maximally meaningful alignments, which come from computing
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Figure 2.7 An experiment finding the prostate in a MRI scan (from August
(2002)). On the left, the raw scan; in the middle, edge filter responses; on the right,
the computed posterior of August’s curve indicator random field, (which actually lives
in (x, y, θ) space, hence the boundary of the prostate is actually separated from the
background noise).

the probabilities of accidental alignments and no other prior assumptions. The most
compelling analysis of the problem, to my mind, is that in the thesis of Jonas August
(August, 2001). He starts with a prior on a countable set of true curves, assumed to
be part of the image. Then he assumes a noisy version of this is observed and seeks
the maximally probable reconstruction of the whole set of true curves. An example
of his algorithms is shown in fig 2.7. Another algorithm for global completion of all
image contours has been given recently by Malik’s group (Ren et al., 2005).

2.2.3 Mathematical Formalisms for Visual Grammars

The “higher level” Gestalt rules for grouping based on parallelism, symmetry,
closedness, and convexity are even harder to make precise. In this section, I want
to describe a general approach to these questions.

So far, we have described grammars loosely as recursive groupings of parts of
a signal, where the signal can be a string of phonemes or an image of pixels. The
mathematical structure which these groupings define is a tree: each subset of the
domain of the image which is grouped together defines a node in this tree and,
whenever one such group contains another, we join the nodes by an edge. In the
case of sentences in human languages, this tree is called the parse tree. In the case
of images, it is similar to the image pyramid made up of the pixels of the image
plus successively “blowndown” images 2n times smaller. However, unlike the image
pyramid, its nodes only stand for natural groupings, so its structure is adaptively
determined by the image itself.

To go deeper into the formalism of grammar, the next step is to label these
groupings. In language, typical labels are “noun phrase”, “prepositional clause,” etc.
In images, labels might be “edgelet,” “extended edge,” “ribbon,” “T-junction,” or



40 Empirical Statistics and Stochastic Models for Visual Signals

Figure 2.8 The parse tree for the letter A which labels the top node; the lower
nodes might be labeled “edge” and “corner.” Note that in grouping the two sides,
the edge has an attribute giving its length and approximate equality of the lengths
of the sides must hold; and in the final grouping, the bar of the A must meet the two
sides in approximately equal angles. These are probabilistic constraints involving
specific attributes of the constituents, which must be included in B�.

even “the letter A.” Then the grouping laws are usually formulated as productions:

noun phrase −→ determiner + noun

extended edge −→ edgelet + extended edge

where the group is on the left and its constituents are shown on the right. The
second rule creates a long edge by adding a small piece, an edgelet, to one end. But
now the issue of agreement surfaces: one can say “a book” and “some books” but
not “a books” or “some book.” The determiner and the noun must agree in number.
Likewise, to group an edge with a new edgelet requires that the edgelet connect
properly to the edge: where one ends, the other must begin. So we need to endow
our labeled groupings with a list of attributes that must agree for the grouping to
be possible. So long as we can do this, we have created a context-free grammar.
Context-freeness means that the possibility of the larger grouping depends only on
the labels and attributes of the constituents and nothing else. An example of the
parse of the letter A is shown in fig 2.8.

We make the above into a probability model in a top-down generative fashion
by assigning probabilities to each production. For any given label and attributes, the
sum (or integral) of the probabilities of all possible productions it can yield should
be 1. This is called a PCFG (probabilistic context-free grammar) by linguists. It isprobabilistic

context-free
grammar

the same as what probabilists call a random branching tree (except that grammars
are usually assumed to almost surely yield finite parse trees).

A more general formalism for defining random trees with random data attached
to their nodes has been given by Artur Fridman (Fridman, 2003). He calls his models
mixed Markov models because some of the nodes carry address variables whose value
is the index of another node. Thus in each sample from the model, this node adds
a new edge to the graph. His models include PCFGs as a special case.
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Figure 2.9 A simplification of the parse tree inferred by the segmentation algo-
rithm of Galun et al. (2003). The image is at the bottom and part of its tree is
shown above it. On the right are shown some of the regions in the image, grouped
by successive levels of the algorithm.

Random trees can be fit naturally into the random wavelet model (or the dead
leaves model) described above. To see this, we consider each 4-tuple {xα, yα, rα, ψα}
in the model not merely as generating one elementary constituent of the image,
but as the root of a whole random branching tree. The child nodes it generates
should add parts to a now compound object, expanding the original simple image
constituent ψα. For example the root might be an elongated blob representing the
trunk of a person and the tree it generates would add the limbs, clothes, face, hands,
etc., to the person. Or the root might be a uniform patch and the tree would add
a whole set of textons to it, making it into a textured patch. So long as the rate of
growth of the random branching tree is not too high, we still get a scale-invariant
model.

Two groups have implemented image analysis programs based on computing
such trees. One is the multiscale segmentation algorithm of Galun, Sharon, Basri,
and Brandt (Galun et al., 2003), which produces very impressive segmentation re-
sults. The method follows Brandt’s adaptive tree-growing algorithm called algebraic

multi-grid. In their code, texture and its component textons play the same role as
objects and their component parts: each component is identified at its natural scale
and grouped further at a higher level in a similar way (see fig 2.9). Their code is
fully scale-invariant except at the lowest pixel level. It would be very interesting to
fit their scheme into the Bayesian framework.

The other algorithm is an integrated bottom-up and top-down image parsing
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program from Zhu’s lab (Tu et al., 2003). The output of their code is a tree with
semantically labeled objects at the top, followed by parts and texture patches in
the middle with the pixels at the bottom. This program is based on a full stochastic
model.

A basic problem with this formalism is that it is not sufficiently expressive:
the grammars of nature appear to be context sensitive. This is often illustrated
by contrasting languages that have sentences of the form abcddcba, which can be
generated recursively by a small set of productions as in

s → asa → absba → abcscba → abcddcba,

versus languages which have sentences of the form abcdabcd, with two complex
repeating structures, which cannot be generated by simple productions. Obviously,
images with two identical faces are analogs of this last sentence. Establishing
symmetry requires you to reopen the grouped package and examine everything
in it to see if it is repeated! Unless you imagine each label given a huge number of
attributes, this cannot be done in a context-free setting.

In general, two-dimensional geometry creates complex interactions between
groupings, and the strength of higher-order groupings seems to always depend
on multiple aspects of each piece. Take the example of a square. Ingredients of
the square are (1) the two groupings of parallel edges, each made up of a pair of
parallel sides of equal length and (2) the grouping of edgelets adjacent to each vertex
into a “right-angle” group. The point is that the pixels involved in these smaller
groupings partially intersect. In PCFGs, each group should expand to disjoint sets
of primitives or to one set contained in another. The case of the square is best
described with the idea of graph unification, in which a grouping rule unifies parts
of the graph of parts under each constituent.

S. Geman and his collaborators (Bienenstock et al., 1998; Geman et al., 2002)
have proposed a general framework for developing such probabilistic context-
sensitive grammars. He proposes that for grouping rule , in which groups
y1, y2, · · · , yk are to be unified into a larger group x, there is a binding function
B�(y1, y2, · · · , yk) which singles out those attributes of the constituents that affect
the probability of making the k-tuple of y’s into an x. For example, to put two
edgelets together, we need to ask if the endpoint of the first is near the beginning
of the second and whether their directions are close. The closer are these points
and directions, the more likely it is that the two edgelets should be grouped. The
basic hypothesis is that the likelihood ratio p(x, y1, · · · , yk)/

∏
i p(yi) depends only

on B�(y1, · · · , yk). In their theory, Geman and colleagues analyze how to compute
this function from data.

This general framework needs to be investigated in many examples to further
constrain it. An interesting example is the recent work of Ullman and collaborators
(Ullman et al., 2002) on face recognition, built up through the recognition of parts:
this would seem to fit into this framework. But, overall, the absence of mathematical
theories which incorporate all the gestalt rules at once seems to me the biggest gap
in our understanding of images.
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2.3 Probability Measures on the Space of Shapes

The most characteristic new pattern found in visual signals, but not in one-
dimensional signals, are shapes, two-dimensional regions in the domain of the image.
In auditory signals, one has intervals on which the sound has a particular spectrum,
for instance, corresponding to some specific type of source (for phonemes, some
specific configuration of the mouth, lips, and tongue). But an interval is nothing
but a beginning point and an endpoint. In contrast, a subset of a two-dimensional
region is much more interesting and conveys information by itself. Thus people
often recognize objects by their shape alone and have a rich vocabulary of different
categories of shapes often based on prototypes (heart-shaped, egg-shaped, star-
shaped, etc.). In creating stochastic models for images, we must face the issue
of constructing probability measures on the space of all possible shapes. An even
more basic problem is to construct metrics on the space of shapes, measures for
the dissimilarity of two shapes. It is striking how people find it quite natural to
be asked if some new object has a shape similar to some old object or category of
objects. They act as though they carried a clear-cut psychophysical metric in their
heads, although, when tested, their similarity judgments show a huge amount of
context sensitivity.

2.3.1 The Space of Shapes and Some Basic Metrics on It

What do we mean by the space of shapes? The idea is simply to define this
space as the set of 2-dimensional shapes, where a shape is taken to mean an open
subset S ⊂ R2 with smooth boundary7. We let S denote this set of shapes. The
mathematician’s approach is to ask: what structure can we give to S to endow it
with a geometry? In particular, we want to define (1) local coordinates on S, somanifold
that it is a manifold, (2) a metric on S, and (3) probability measures on S. Having
probability measures will allow us to put shapes into our theory as hidden variables
and extend the Bayesian inference machinery to include inferring shape variables
from images.

S itself is not a vector space: one cannot add and subtract two shapes in a
way satisfying the usual laws of vectors. Put another way, there is, no obvious way
to put global coordinates on S, that is to create a bijection between points of S
and points in some vector space. One can, e.g. describe shapes by their Fourier
coefficients, but the Fourier coefficients coming from shapes will be very special
sequences of numbers. What we can do, however, is put a local linear structure

on the space of shapes. This is illustrated in fig 2.10. Starting from one shape S,
we erect normal lines at each point of the boundary Γ of S. Then nearby shapes
will have boundaries which intersect each normal line in a unique point. Suppose
ψ(s) ∈ R2 is arc-length parameterization of Γ. Then the unit normal vector is given
by �n(s) = ψ′⊥(s) and each nearby curve is parameterized uniquely in the form

ψa(s) = ψ(s) + a(s) · �n(s), for some function a(s).
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Figure 2.10 The manifold structure on the space of shapes is here illustrated: all
curves near the heavy one meet the normal “hairs” in a unique point, hence are
described by a function, namely, how far this point has been displaced normally.

All smooth functions a(s) which are sufficiently small can be used, so we have
created a bijection between an open set of functions a, that is an open set in a
vector space, and a neighborhood of Γ ∈ S. These bijections are called charts and
on overlaps of such charts, one can convert the a’s used to describe the curves in
one chart into the functions in the other chart: this means we have a manifold. For
details, see the paper (Michor and Mumford, 2006). Of course, the function a(s)
lies in an infinite-dimensional vector space, so S is an infinite-dimensional manifold.
But that is no deterrent to its having its own intrinsic geometry.

Being a manifold means S has a tangent space at each point S ∈ S. Thistangent space
tangent space consists in the infinitesimal deformations of S, i.e., those coming
from infinitesimal εa(s). Dropping the ε, the infinitesimal deformations may be
thought of simply as normal vector fields to Γ, that is, the vector fields a(s) · �n(s).
We denote this tangent space as TS,S .

How about metrics? In analysis, there are many metrics on spaces of functions
and they vary in two different ways. One choice is whether you make a worst-case
analysis or an average analysis of the difference of two functions—or something in
between. This means you define the difference of two functions a and b either as
the supx |a(x) − b(x)|, the integral

∫
|a(x) − b(x)|dx, or as an Lp norm, (

∫
|a(x) −

b(x)|pdx)1/p (which is in between). The case p = ∞ corresponds to the sup, and
p = 1 to the average. Usually, the three important cases8 are p = 1, 2, or ∞. The
other choice is whether to include derivatives of a, b as well as the values of a, b in
the formula for the distance and, if so, up to what order k. These distinctions carry
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Figure 2.11 Each of the shapes A, B, C, D, and E is similar to the central
shape, but in different ways. Different metrics on the space of shape bring out these
distinctions (adapted from B. Kimia).

over to shapes. The best-known measures are the so-called Hausdorff measure,

d∞,0(S, T ) = max
(

sup
x∈S

inf
y∈T

‖x − y‖, sup
y∈T

inf
x∈S

‖x − y‖
)

,

for which p = ∞, k = 0, and the area metric,

d1,0(S, T ) = Area(S − S ∩ T ) ∪ Area(T − S ∩ T ),

for which p = 1, k = 0.
It is important to realize that there is no one right metric on S. Depending

on the application, different metrics are good. This is illustrated in fig 2.11. The
central bow-tie-like shape is similar to all the shapes around it. But different metrics
bring out their dissimilarities and similarities in each case. The Hausdorff metric
applied to the outsides of the shapes makes A far from the central shape; any
metric using the first derivative (i.e., the orientation of the tangent lines to the
boundary) makes B far from the central shape; a sup-type metric with the second
derivative (i.e., the curvature of the boundary) makes C far from the central shape,
as curvature becomes infinite at corners; D is far from the central shape in the area
metric; E is far in all metrics, but the challenge is to find a metric in which it is
close to the central shape. E has “outliers,” the spikes, but is identical to the central
shape if they can be ignored. To do this needs what are called robust metrics of
which the simplest example is L1/2 (not a true metric at all).

2.3.2 Riemannian Metrics and Probability Measures via Diffusion

Riemannian
metrics There are great mathematical advantages to using L2, so-called Riemannian met-

rics. More precisely, a Riemannian metric is given by defining a quadratic inner
product in the tangent space TS,S . In Riemannian settings, the unit balls are nice
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and round and extremal problems, such as paths of shortest length, are usually well
posed. This means we can expect to have geodesics, optimal deformations of one
shape S to a second shape T through a family St of intermediate shapes, i.e., we can
morph S to T in a most efficient way. Having geodesics, we can study the geometry
of S, for instance whether its geodesics diverge or converge9—which depends on
the curvature of S in the metric. But most important of all, we can define diffusion
and use this to get Brownian paths and thus probability measures on S.

A most surprising situation arises here: there are three completely different
ways to define Riemannian metrics on S. We need to assign a norm to normal
vector fields a(s)�n(s) along a simple closed plane curve Γ.

local metric
In infinitesimal metric, the norm is defined as an integral along Γ. In general, this

can be any expression

‖a‖2 =
∫

Γ
F (a(s), a′(s), a′′(s), · · · , κ(s), κ′(s), · · · )ds,

involving a function F quadratic in a and the derivatives of a whose coefficients can
possibly be functions associated to Γ like the curvature and its derivatives. We call
these local metrics. We might have F = a(s)2 or F = (1 + Aκ2(s)) · a(s)2, where
A is a constant; or F = a(s)2 + Aa′(s)2, etc. These metrics have been studied by
Michor and Mumford (Michor and Mumford, 2006, 2005). Globally, the distance
between two shapes is then

d(S0, S1) = inf
paths {St}

∫ 1

0
‖∂St

∂t
‖dt,

where ∂St/∂t is the normal vector field given by this path.

In other situations, a morph of one shape to another needs to be considered as
part of a morph of the whole plane. For this, the metric should be a quotient of adiffeomorphism
metric on the group G of diffeomorphisms of R2, with some boundary condition, e.g.,
equal to the identity outside some large region. But an infinitesimal diffeomorphism
is just a vector field �v on R2 and the induced infinitesimal deformation of Γ is given
by a(s) = (�v ·�n(s)). Let V be the vector space of all vector fields on R2, zero outside
some large region. Then this means that the norm on a is

‖a‖2 = inf
	v∈V,(	v·	n)=a

∫
R2

F (�v,�vx, �vy, · · · )dxdy,

where we define an inner product on V using a symmetric positive definite quadratic
expression in �v and its partial derivatives. We might have F = ‖�v‖2 or F =
‖�v‖2 + A‖�vx‖2 + A‖�vy‖2, etc. It is convenient to use integration by parts and write
all such F ’s as (L�v,�v), where L is a positive definite partial differential operator
(L = I −A� in the second case above). These metrics have been studied by Miller,Miller’s metric
Younes, and their many collaborators (Miller, 2002; Miller and Younes, 2001) and
applied extensively to the subject they call computational anatomy, that is, the
analysis of medical scans by deforming them to template anatomies. Globally, the
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Figure 2.12 A diffusion on the space of shapes in the Riemannian metric of Miller
et al. The shapes should be imagined on top of each other, the translation to the
right being added in order that each shape can be seen clearly. The diffusion starts
at the unit circle.

distance between two shapes is then

dMiller(S, T ) = inf
φ

∫ 1

0

(∫
R2

F (
∂φ

∂t
◦ φ−1)dxdy

)1/2

dt, where

φ(t), 0 ≤ t ≤ 1 is a path in G, φ(0) = I, φ(1)(S) = T.

Finally, there is a remarkable and very special metric on S̄ = S modulo trans-
lations and scalings (i.e., one identifies any two shapes which differ by translation
plus a scaling). It is derived from complex analysis and known as the Weil-PetersenWeil-Petersen

metric (or WP) metric. Its importance is that it makes S̄ into a homogeneous metric space,
that is, it has everywhere the same geometry. There is a group of global maps of S to
itself which preserve distances in this metric and which can take any shape S to any
other shape T . This is not the case with the previous metrics, hence the WP metric
emerges as the analog of the standard Euclidean distance in finite dimensions. The
definition is more elaborate and we do not give it here, see the paper (Mumford and
Sharon, 2004). This metric also has negative or zero curvature in all directions and
hence finite sets of shapes as well as probability measures on Ḡ should always have
a well-defined mean (minimizing the sum of squares of distances) in this metric.
Finally, this metric is closely related to the medial axis, which has been frequently
used for shape classification.

The next step in each of these theories is to investigate the heat kernel, the
solution of the heat equation starting at a delta function. This important question
has not been studied yet. But diffusions in these metrics are easy to simulate. In
fig 2.12 we show three random walks in S in one of Miller’s metrics. The analog of
Gaussian distributions are the probability measures gotten by stopping diffusion at
a specific point in time. And analogs of the scale mixtures of Gaussians discussed
above are obtained by using a so-called random stopping time, that is, choosing the
time to halt the diffusion randomly from another probability distribution. It seems
clear that one or more of these diffusion measures are natural general-purpose priors
on the space of shapes.
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2.3.3 Finite Approximations and Some Elementary Probability Measures

A completely different approach is to infer probability measures directly from
data. Instead of seeking general-purpose priors for stochastic models, one seeks
special-purpose models for specific object-recognition tasks. This has been done
by extracting from the data a finite set of landmark points, homologous points
which can be found on each sample shape. For example, in 3 dimensions, skulls
have long been compared by taking measurements of distances between classical
landmark points. In 2 dimensions, assuming these points are on the boundary of
the shape, the infinite dimensional space S is replaced by the finite dimensional
space of the polygons {P1, · · · , Pk} ∈ R2k formed by these landmarks. But, if we
start from images, we can allow the landmark points to lie in the interior of the
shape also. This approach was introduced a long time ago to study faces. More
specifically, it was used by Cootes et al. (1993) and by Hallinan et al. (1999) to fit
multidimensional Gaussians to the cloud of points in R2k formed from landmark
points on each of a large set of faces. Both groups then apply principal component
analysis (PCA) and find the main directions for face variation.

However, it seems unlikely to me that Gaussians can give a very good fit. I
suspect rather that in geometric situations as well, one will encounter the high
kurtosis phenomenon, with geometric features often near zero but, more often than
for Gaussian variables, very large too. A first attempt to quantify this point of
view was made by Zhu (1999). He took a database of silhouettes of four-legged
animals and he computed landmark points, medial axis, and curvature for each
silhouette. Then he fit a general exponential model to a set of six scalar variables
describing this geometry. The strongest test of whether he has captured some of
their essential shape properties is to sample from the model he gets. The results
are shown in fig 2.13. It seems to me that these models are getting much closer
to the sort of special-purpose prior that is needed in object-recognition programs.
Whether his models have continuum limits and of what sort is an open question.

There are really three goals for a theory of shapes adapted to the analysis
of images. The first is to understand better the global geometry of S and which
metrics are appropriate in which vision applications. The second is to create the
best general-purpose priors on this space, which can apply to arbitrary shapes. The
third is to mold special-purpose priors to all types of shapes which are encountered
frequently, to express their specific variability. Some progress has been made on all
three of these but much is left to be done.

2.4 Summary

Solving the problem of vision requires solving three subproblems: finding the right
classes of stochastic models to express accurately the variability of visual patterns
in nature, finding ways to learn the details of these models from data, and finding
ways to reason rapidly using Bayesian inference on these models. This chapter has
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Figure 2.13 Six “animals” that never existed: they are random samples from the
prior of S. C. Zhu trained on real animal silhouettes. The interior lines come from
his use of medial axis techniques to generate the shapes.

addressed the first. Here a great deal of progress has been made but it must be said
that much remains to be done. My own belief is that good theories of groupings
are the biggest gap. Although not discussed in this article, let me add that great
progress has been made on the second and third problems with a large number
of ideas, e.g., the expectation maximization (EM) algorithm, much faster Monte
Carlo algorithms, maximum entropy (MaxEnt) methods to fit exponential models,
Bayesian belief propagation, particle filtering, and graph-theoretic techniques.

Notes
1The chief mistake of the Greeks was their persistent belief that the eye must emit some sort

of ray in order to do something equivalent to touching the visible surfaces.
2This is certainly biologically unrealistic. Life requires rapid analysis of changing scenes. But

this article, like much of vision research, simplifies its analysis by ignoring time.
3It is the second idea that helps to explain why aerial photographs also show approximate scale

invariance.
4The infrared divergence is readily solved by considering images mod constants. If the pixel

values are log of the photon energy, this constant is an irrelevant gain factor.
5Some have found an especially large concentration near 1/f1.8 or 1/f1.9, especially for forest

scenes (Ruderman and Bialek).
6Scale invariance implies that its expected power at spatial frequency (ξ, η) is a constant times

1/(ξ2 + η2) and integrating this over (ξ, η) gives ∞.
7A set S of points is open if S contains a small disk of points around each point x ∈ S. Smooth

means that it is a curve that is locally a graph of a function with infinitely many derivatives; in
many applications, one may want to include shapes with corners. We simplify the discussion here
and assume there are no corners.

8Charpiat et al., however, have used p-norm as for p � 1 in order to “tame” L∞ norms.
9This is a key consideration when seeking means to clusters of finite sets of shapes and in

seeking principal components of such clusters.





3 The Machine Cocktail Party Problem

Simon Haykin and Zhe Chen

Imagine you are in a cocktail party environment with background music, and you
are participating in a conversation with one or more of your friends. Despite the
noisy background, you are able to converse with your friends, switching from one
to another with relative ease. Is it possible to build an intelligent machine that is
able to perform like yourself in such a noisy environment? This chapter explores
such a possibility.

The cocktail party problem (CPP), first proposed by Colin Cherry, is a psy-cocktail party
problem choacoustic phenomenon that refers to the remarkable human ability to selectively

attend to and recognize one source of auditory input in a noisy environment, where
the hearing interference is produced by competing speech sounds or various noise
sources, all of which are usually assumed to be independent of each other (Cherry,
1953). Following the early pioneering work (Cherry, 1953, 1957, 1961; Cherry and
Taylor, 1954), numerous efforts have been dedicated to the CPP in diverse fields:
physiology, neurobiology, psychophysiology, cognitive psychology, biophysics, com-
puter science, and engineering.1 Over half a century after Cherry’s seminal work,
however, it is fair to say that a complete understanding of the cocktail party phe-
nomenon is still missing, and the story is far from being complete; the marvelous
auditory perception capability of human beings remains enigmatic. To unveil the
mystery and thereby imitate human performance by means of a machine, com-
putational neuroscientists, computer scientists, and engineers have attempted to
view and simplify this complex perceptual task as a learning problem, for which a
tractable computational solution is sought. An important lesson learned from the
collective work of all these researchers is that in order to imitate a human’s un-
beatable audition capability, a deep understanding of the human auditory system
is crucial. This does not mean that we must duplicate every aspect of the human
auditory system in solving the machine cocktail party problem, hereafter referredmachine cocktail

party problem to as the machine CPP for short. Rather, the challenge is to expand on what we
know about the human auditory system and put it to practical use by exploiting
advanced computing and signal-processing technologies (e.g., microphone arrays,
parallel computers, and VLSI chips). An efficient and effective solution to the ma-
chine CPP will not only be a major accomplishment in its own right, but it will also
have a direct impact on ongoing research in artificial intelligence (such as robotics)
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and human-machine interfaces (such as hearing aids); and these lines of research
will, in their own individual ways, further deepen our understanding of the human
brain.

There are three fundamental questions pertaining to the CPP:

1. What is the cocktail party problem?

2. How does the brain solve it?

3. Is it possible to build a machine capable of solving it in a satisfactory manner?

The first two questions are human oriented, and mainly involve the disciplines of
neuroscience, cognitive psychology, and psychoacoustics; the last question is rooted
in machine learning, which involves computer science and engineering disciplines.
While these three issues are equally important, this chapter will focus on the third
question by addressing a solution to the machine CPP.

To understand the CPP, we may identify three underlying neural processes:2

Analysis: The analysis process mainly involves segmentation or segregation, which
refers to the segmentation of an incoming auditory signal to individual channels

or streams. Among the heuristics used by a listener to do the segmentation,
spatial location is perhaps the most important. Specifically, sounds coming from the
same location are grouped together, while sounds originating from other different
directions are segregated.

Recognition: The recognition process involves analyzing the statistical structure
of essential patterns contained in a sound stream. The goal of this process is to
uncover the neurobiological mechanisms through which humans are able to identify
a segregated sound from multiple streams with relative ease.

Synthesis: The synthesis process involves the reconstruction of individual sound
waveforms from the separated sound streams. While synthesis is an important
process carried out in the brain, the synthesis problem is of primary interest to
the machine CPP.

From an engineering viewpoint, we may, in a loose sense, regard synthesis as the
inverse of the combination of analysis and recognition in that synthesis attempts
to uncover relevant attributes of the speech production mechanism. Note also that,
insofar as the machine CPP is concerned, an accurate synthesis does not necessarily
mean having solved the analysis and recognition problems, although additional
information on these two problems might provide more hints for the synthesis
process.

Bearing in mind that the goal of solving the machine CPP is to build an
intelligent machine that can operate efficiently and effectively in a noisy cocktail
party environment, we propose a computational framework for active audition

that has the potential to serve this purpose. To pave the way for describing this
framework, we will discuss the important aspects of human auditory scene analysis

and computational auditory scene analysis. Before proceeding to do so, however,
some historical notes on the CPP are in order.
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3.1 Some Historical Notes

In the historical notes that follow, we do two things. First, we present highlights
of the pioneering experiments performed by Colin Cherry over half a century ago,
which are as valid today as they were then; along the way, we also refer to the other
related works. Second, we highlight three machine learning approaches: independent

component analysis, oscillatory correlation, and cortronic processing, which have
been motivated by the CPP in one form or another.

3.1.1 Cherry’s Early Experiments

In the early 1950s, Cherry became interested in the remarkable hearing capability of
human beings in a cocktail party environment. He himself raised several questions:
What is our selective attention ability? How are we able to select information coming
from multiple sources? Some information is still retained even when we pay no
attention to it; how much information is retained? To answer these fundamental
questions, Cherry (1953) compared the ability of listeners to attend to two different
spoken messages under different scenarios. In his classic experimental set-up called
dichotic listening, the recorded messages were mixed and presented together to the
same ear of a subject over headphones, and the listeners were requested to test the
intelligibility3 of the message and repeat each word of the message to be heard,
a task that is referred to as shadowing. In the cited paper, Cherry reported that
when one message is delivered to one ear (the attended channel) and a different
message is delivered to the other ear (the unattended channel), listeners can easily
attend to one or the other of these two messages, with almost all of the information
in the attended message being determined, while very little about the unattended
message is recalled. It was also found that the listeners became quite good at the
shadowing task after a few minutes, repeating the attended speech quite accurately.
However, after a few minutes of shadowing, listeners had no idea of what the
unattended voice was about, or even if English was spoken or not. Based on these
observations and others, Cherry conjectured that some sort of spatial filtering of the
concurrently occurring sounds/voices might be helpful in attending to the message.
It is noteworthy that Cherry (1953) also suggested some procedures to design a
“filter” (machine) to solve the CPP, accounting for the following: (1) the voices
come from different directions; (2) lip reading, gesture, and the like; (3) different
speaking voices, mean pitches, mean speeds, male vs. female, and so forth; (4)
different accents and linguistic factors; and (5) transition probabilities (based on
subject matter, voice dynamics, syntax, etc.). In addition, Cherry also speculated
that humans have a vast memory of transition probabilities that make the task of
hearing much easier by allowing prediction of word sequences.

The main findings of the dichotic listening experiments conducted by Cherry
and others have revealed that, in general, it is difficult to attend to two sound
sources at once; and when we switch attention to an unattended source (e.g., by
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listening to a spoken name), we may lose information from the attended source.
Indeed, our own common experiences teach us that when we attempt to tackle
more than one task at a time, we may end up sacrificing performance.

In subsequent joint investigations with colleagues (Cherry, 1961; Cherry and
Sayers, 1956, 1959; Sayers and Cherry, 1957), Cherry also studied the binaural

fusion mechanism and proposed a cross-correlation-based technique for measuring
certain parameters of speech intelligibility. Basically, it was hypothesized that the
brain performs correlation on signals received by the two ears, playing the role
of localization and coincidence detection. In the binaural fusion studies, Sayers
and Cherry (1957) showed that the human brain does indeed execute short-term
correlation analysis for either monaural or binaural listening.

To sum up, Cherry not only coined the term “cocktail party problem,” but
also was the first experimentalist to investigate the benefits of binaural hearing and
point to the potential of lip-reading, etc., for improved hearing, and to emphasize
the critical role of correlation in binaural fusion—Cherry was indeed a pioneer of
human communication.

3.1.2 Independent Component Analysis

The development of independent component analysis (ICA) was partially motivatedindependent com-
ponent analysis by a desire to solve a cocktail party problem. The essence of ICA can be stated

as follows: Given an instantaneous linear mixture of signals produced by a set of

sources, devise an algorithm that exploits a statistical discriminant to differentiate

these sources so as to provide for the separation of the source signals in a blind

manner (Bell and Sejnowski, 1995; Comon, 1994; Jutten and Herault, 1991). The
key question is how? To address this question, we first recognize that if we are
to achieve the blind separation of an instantaneous linear mixture of independent
source signals, then there must be a characteristic departure from the simplest
possible source model: an independently and identically distributed (i.i.d.) Gaussian

model; violation of which will give rise to a more complex source model. The
departure can arise in three different ways, depending on which of the three
characteristic assumptions embodied in this simple source model is broken, as
summarized here (Cardoso, 2001):

Non-Gaussian i.i.d. model: In this route to blind source separation, the i.i.d.
assumption for the source signals is retained but the Gaussian assumption is
abandoned for all the sources, except possibly for one of them. The Infomax
algorithm due to Bell and Sejnowski (1995), the natural gradient algorithm due
to Amari et al. (1996), Cardoso’s JADE algorithm (Cardoso, 1998; Cardoso and
Souloumiac, 1993), and the FastICA algorithm due to Hyvärinen and Oja (1997)
are all based on the non-Gaussian i.i.d. model. Besides, these algorithms differ from
each other in the way in which incoming source information residing in higher-order
statistics (HoS) is exploited.
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Gaussian non-stationary model: In this second route to blind source separation,
the Gaussian assumption is retained for all the sources, which means that second-
order statistics (i.e., mean and variance) are sufficient for characterizing each
source signal. Blind source separation is achieved by exploiting the property of
nonstationarity, provided that the source signals differ from each other in the ways
in which their statistics vary with time. This approach to blind source separation
was first described by Parra and Spence (2000) and Pham and Cardoso (2001).
Whereas the algorithms focusing on the non-Gaussian i.i.d. model operate in the
time domain, the algorithms that belong to the Gaussian nonstationary model
operate in the frequency domain, a feature that also makes it possible for the
second class of ICA algorithms to work with convolutive mixtures.

Gaussian, stationary, correlated-in-time model: In this third and final route to
blind source separation, the blind separation of Gaussian stationary source signals is
achieved on the proviso that their power spectra are not proportional to each other.
Recognizing that the power spectrum of a wide-sense stationary random process
is related to the autocorrelation function via the Wiener-Khintchine theorem,
spectral differences among the source signals translate to corresponding differences

in correlated-in-time behavior of the source signals. It is this latter property that is
available for exploitation.

To sum up, Comon’s 1994 paper and the 1995 paper by Bell and Sejnowski
have been the catalysts for the literature in ICA theory, algorithms, and novel
applications. Indeed, the literature is so extensive and diverse that in the course of
ten years, ICA has established itself as an indispensable part of the ever-expanding
discipline of statistical signal processing, and has had a great impact on neuroscience
(Brown et al., 2001). On technical grounds, however, Haykin and Chen (2005)
justify the statement that ICA does not solve the cocktail party problem; rather,
it addresses a blind source separation (BSS) problem.

3.1.3 Temporal Binding and Oscillatory Correlation

Temporal binding theory was most elegantly illustrated by von der Malsburg (1981)temporal binding
in his seminal technical report entitled “Correlation Theory of Brain Function,” in
which he made two important observations: (1) the binding mechanism is accom-
plished by virtue of correlation between presynaptic and postsynaptic activities, and
(2) strengths of the synapses follow Hebb’s postulate of learning. When the syn-
chrony between the presynaptic and postsynaptic activities is strong (weak), the
synaptic strength would correspondingly increase (decrease) temporally. Moreover,
von der Malsburg suggested a dynamic link architecture to solve the temporal bind-
ing problem by letting neural signals fluctuate in time and by synchronizing those
sets of neurons that are to be bound together into a higher-level symbol/concept.
Using the same idea, von der Malsburg and Schneider (1986) proposed a solution
to the cocktail party problem. In particular, they developed a neural cocktail-party

processor that uses synchronization and desynchronization to segment the incom-
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ing sensory inputs. Though merely based on simple experiments (where von der
Malsburg and Schneider used amplitude modulation and stimulus onset synchrony
as the main acoustic cues, in line with Helmholtz’s suggestion), the underlying
idea is illuminating in that the model is consistent with anatomic and physiologic
observations.

The original idea of von der Malsburg was subsequently extended to differ-
ent sensory domains, whereby phases of neural oscillators were used to encode the
binding of sensory components (Brown and Wang, 1997; Wang et al., 1990). Of par-
ticular interest is the two-layer oscillator model due to Wang and Brown (1999).
The aim of this model is to achieve “searchlight attention” by examining the tem-
poral cross-correlation between the activities of pairs (or populations) of neurons.
The first layer, segmentation layer, acts as a locally excitatory, globally inhibitory

oscillator; and the second layer, grouping layer, essentially performs computational
auditory scene analysis (CASA). Preceding the oscillator network, there is an au-
ditory periphery model (cochlear and hair cells) as well as a middle-level auditory
representation stage (correlogram). As reported by Wang and Brown (1999), the
model is capable of segregating a mixture of voiced speech and different interfering
sounds, thereby improving the signal-to-noise ratio (SNR) of the attended speech
signal. The correlated neural oscillator is arguably biologically plausible; however,
unlike ICA algorithms, the performance of the neural oscillator model appears to
deteriorate significantly in the presence of multiple competing sources.

3.1.4 Cortronic Processing

The idea of so-called cortronic network was motivated by the fact that the human
brain employs an efficient sparse coding scheme to extract the features of sen-
sory inputs and accesses them through associative memory (Hecht-Nielsen, 1998).
Specifically, in (Sagi et al., 2001), the CPP is viewed as an aspect of the human

speech recognition problem in a cocktail party environment, and the solution is re-
garded as an attended source identification problem. In the experiments reported
therein, only one microphone was used to record the auditory scene; however, the
listener was assumed to be familiar with the language of conversation under study.
Moreover, all the subjects were chosen to speak the same language and have the
similar voice qualities. The goal of the cortronic network is to identify one attended
speech of interest, which is the essence of the CPP.

According to the experimental results reported in (Sagi et al., 2001), it appears
that the cortronic network is quite robust with respect to variations in speech,
speaker, and noise, even under a −8 dB SNR (with a single microphone). Compared
to other computational approaches proposed to solve the CPP, the cortronic
network distinguishes itself by exploiting prior knowledge pertaining to speech
and the spoken language; it also implicitly confirms the validity of Cherry’s early
speculation in terms of the use of memory (recalling Section 3.1.1)
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3.2 Human Auditory Scene Analysis: An Overview

Human auditory scene analysis (ASA) is a general process carried out by the
auditory system of a human listener for the purpose of extracting information
pertaining to a sound source of interest, which is embedded in a background of
noise or interference.

The auditory system is made up of two ears (constituting the organs of hearing)
and auditory pathways. In more specific terms, it is a sophisticated information-
processing system that enables us to detect not only the frequency composition of
an incoming sound wave but also locate the sound sources (Kandel et al., 2000).
This is all the more remarkable, given the fact that the energy in the incoming
sound waves is exceedingly small and the frequency composition of most sounds is
rather complicated.

3.2.1 Where and What

The mechanisms in auditory perception essentially involve two processes: sound

localization (“where”) and sound recognition (“what”). It is well known that for
localizing sound sources in the azimuthal plane, interaural time difference (ITD)
is the main acoustic cue for sound location at low frequencies; and for complex
stimuli with low-frequency repetition, interaural level is the main cue for sound
localization at high frequencies (Blauert, 1983; Yost, 2000; Yost and Gourevitch,
1987). Spectral differences provided by the head-related transfer function (HRTF)
are the main cues used for vertical localization. Loudness (intensity) and early
reflections are possible cues for localization as a function of distance. In hearing,
the precedence effect refers to the phenomenon that occurs during auditory fusion
when two sounds of the same order of magnitude are presented dichotically and
produce localization of the secondary sound waves toward the outer ear receiving
the first sound stimulus (Yost, 2000); the precedence effect stresses the importance
of the first wave in determining the sound location.

The what question mainly addresses the processes of sound segregation
(streaming) and sound determination (identification). While having a critical role
in sound localization, spatial separation is not considered to be a strong acoustic
cue for streaming or segregation (Bregman, 1990). According to Bregman’s stud-
ies, sound segregation consists of a two-stage process: feature selection and feature

grouping. Feature selection invokes processing the auditory stimuli into a collec-
tion of favorable (e.g., frequency-sensitive, pitch-related, temporal-spectral-like)
features. Feature grouping, on the other hand, is responsible for combining similar
elements of incoming sounds according to certain principles into one or more co-
herent streams, with each stream corresponding to one informative sound source.
Sound determination is more specific than segregation in that it not only involves
segmentation of the incoming sound into different streams, but also identifies the
content of the sound source in question.
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3.2.2 Spatial Hearing

From a communication perspective, our two outer ears act as receive antennae for
acoustic signals from a speaker or audio source. In the presence of one (or fewer)
competing or masking sound source(s), the human ability to detect and understand
the source of interest (i.e., target) is degraded. However, the influence of masking
source(s) generally decreases when the target and masker(s) are spatially separated,
compared to when the target and masker(s) are in the same location; this effect is
credited to spatial hearing (filtering).

As pointed out in section 3.1.1, Cherry (1953) suggested that spatial hearing
plays a major role in the auditory system’s ability to separate sound sources
in a multiple-source acoustic environment. Many subsequent experiments have
verified Cherry’s conjecture. Specifically, directional hearing (Yost and Gourevitch,
1987) is crucial for suppressing the interference and enhancing speech intelligibility
(Bronkhorst, 2000; Hawley et al., 1999). Spatial separation of the sound sources
is also believed to be more beneficial to localization than segregation (Bregman,
1990). The classic book by Blauert (1983) presents a comprehensive treatment of the
psychophysical aspect of human sound localization. Given multiple-sound sources
in an enclosed space (such as a conference room), spatial hearing helps the brain to
take full advantage of slight differences (e.g., timing, intensity) between the signals
that reach the two outer ears. This is done to perform monaural (autocorrelation)
and binaural (cross-correlation) processing for specific tasks (such as coincidence
detection, precedence detection, localization, and fusion), based on which auditory
events are identified and followed by higher-level auditory processing (i.e., attention,
streaming, and cognition). Fig. 3.1 provides a functional diagram of the binaural
spatial hearing process.

3.2.3 Binaural Processing

One of the key observations derived from Cherry’s classic experiment described in
section 3.1.1 is that it is easier to separate sources heard binaurally than when
they are heard monaurally. Quoting from Cherry and Taylor (1954): “One of the
most striking facts about our ears is that we have two of them—and yet we hear one
acoustic world; only one voice per speaker.” We believe that nature gives us two ears
for a reason just like it gives us two eyes. It is the binocular vision (stereovision)
and binaural hearing (stereausis) that enable us to perceive the dynamic world
and provide the main sensory information sources. Binocular/binaural processing
is considered to be crucial in certain perceptual activities (e.g., binocular/binaural
fusion, depth perception, localization). Given one sound source, the two ears receive
slightly different sound patterns due to a finite delay produced by their physically
separated locations. The brain is known to be extremely efficient in extracting and
then using different acoustic cues (to be discussed in detail later) to perform specific
audition tasks.

An influential binaural phenomenon is the so-called binaural masking (e.g.,
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Figure 3.1 A functional diagram of of binaural hearing, which consists of physical,
psychophysical, and psychological aspects of auditory perception. Adapted from
Blauert (1983) with permission.

Moore, 1997; Yost, 2000). The threshold of detecting a signal masked in noise can
sometimes be lower when listening with two ears than it is when listening with
only one ear, which is demonstrated by a phenomenon called binaural masking

level difference (BMLD). It is known (Yost, 2000) that the masked threshold of a
signal is the same when the stimuli are presented in a monotic or diotic condition;
when the masker and the signal are presented in a dichotic situation, the signal
has a lower threshold than in either monotic or diotic conditions. Similarly, many
experiments have also verified that binaural hearing increases speech intelligibility
when the speech signal and noise are presented dichotically.

Another important binaural phenomenon is binaural fusion, which is the
essence of directional hearing. As pointed out in section 3.1.1, the fusion mechanism
is naturally modeled as performing some kind of correlation (Cherry, 1961; Cherry
and Sayers, 1956), for which a binaural fusion model based on the autocorrelogram
and cross-correlogram was proposed (as illustrated in fig. 3.1).
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3.3 Computational Auditory Scene Analysis

In contrast to the human auditory scene analysis (ASA), computational auditory
scene analysis (CASA) relies on the development of a computational model of the
auditory scene with one of two goals in mind, depending on the application of
interest:

The design of an intelligent machine, which, by itself, is able to automatically
extract and track a sound signal of interest in a cocktail party environment.

The design of an adaptive hearing system, which computes the perceptual group-
ing process missing from the auditory system of a hearing-impaired individual,
thereby enabling that individual to attend to a sound signal of interest in a cocktail
party environment.

Naturally, CASA is motivated by or builds on the understanding we have of
human auditory scene analysis, or even more generally, the understanding of human
cognition behavior.

Following the seminal work of Bregman (1990), many researchers (see e.g.,
Brown and Cooke, 1994; Cooke, 1993; Cooke and Ellis, 2001; Rosenthal and Okuno,
1998) have tried to exploit the CASA in different ways. Representative approaches
include the data-driven scheme (Cooke, 1993) and the prediction-driven scheme
(Ellis, 1996). The common feature in these two schemes is to integrate low-level
(bottom-up, primitive) acoustic cues for potential grouping. The main differences
between them are: Data-driven CASA aims to decompose the auditory scene into
time-frequency elements (“strands”), and then run the grouping procedure. On
the other hand, prediction-driven CASA views prediction as the primary goal, and
it requires only a world model that is consistent with the stimulus; it contains
integration of top-down and bottom-up cues and can deal with incomplete or
masked data (i.e., speech signal with missing information). However, as emphasized
by Bregman (1996), it is important for CASA modelers to take into account
psychological data as well as the way humans carry out ASA; namely, modeling
the stability of human ASA, making it possible for different cues to cooperate and
compete, and accounting for the propagation of constraints across the frequency-
by-time field.

3.3.1 Acoustic Cues

The psychophysical attributes of sound mainly involve three forms of information:
spatial location, temporal structure, and spectral characterization. The perception
of a sound signal in a cocktail party environment is uniquely determined by this
kind of collective information; any difference in any of the three forms of infor-
mation is believed to be sufficient to discriminate two different sound sources. In
sound perception, many acoustic features (cues) are used to perform specific tasks.acoustic cue
Table 3.1 summarizes some visual/acoustic features (i.e., the spatial, temporal, or
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Table 3.1 The Features and Cues Used in Sound Perception

Feature/Cue Domain Task

Visual Spatial “Where”
ITD Spatial “Where”
IID Spatial “Where”
Intensity, loudness Temporal “Where” + “What”
Periodicity Temporal “What”
Onsets Temporal “What”
AM Temporal “What”
FM Temporal-spectral “What”
Pitch Spectral “What”
Timbre, tone Spectral “What”
Hamonicity, formant Spectral “What”

spectral patterns) used for a single-stream sound perception. A brief description of
some important acoustic cues listed in table 3.1 is in order:

Interaural time difference (ITD): A measure of the difference between the time
at which the sound waves reach the left ear and the time at which the same sound
waves reach the right ear.

Interaural intensity difference (IID): A measure of the difference in intensity of
the sound waves reaching the two ears due to head shadow.

Amplitude modulation (AM): A method of sound signal transmission whereby
the amplitude of some carrier frequency is modified in accordance with the sound
signal.

Frequency modulation (FM): Another method of modulation in which the instan-
taneous frequency of the carrier is varied with the frequency of the sound signal.

Onset: A sudden increase in the energy of a sound signal; as such, each discrete
event in the sound signal has an onset.

Pitch: A property of auditory sensation in which sounds are ordered on a musical
scale; in a way, pitch bears a relationship to frequency that is similar to the
relationship of loudness to intensity.

Timbre: The attribute of auditory sensation by which a listener is able to
discriminate between two sound signals of similar loudness and pitch, but of different
tonal quality; timbre depends primarily on the spectrum of a sound signal.

A combination of some or more of these acoustic cues is the key to perform CASA.
Psychophysical evidence also suggests that useful cues may be provided by spectral-

temporal correlations (Feng and Ratnam, 2000).

3.3.2 Feature Binding

One other important function involved in CASA is that of feature binding, whichfeature binding
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refers to the problem of representing conjunctions of features. According to von der
Malsburg (1999), binding is a general process that applies to all types of knowledge
representations, which extend from the most basic perceptual representation to
the most complex cognitive representation. Feature binding may be either static

or dynamic. Static feature binding involves a representational unit that stands
for a specific conjunction of properties, whereas dynamic feature binding involves
conjunctions of properties as the binding of units in the representation of an
auditory scene. The most popular dynamic binding mechanism is based on temporal

synchrony, hence the reference to it as “temporal binding”; this form of binding was
discussed in section 3.1.3. König et al. (1996) have suggested that synchronous firing
of neurons plays an important role in information processing within the cortex.
Rather than being a temporal integrator, the cortical neurons might be serving the
purpose of a coincidence detector, evidence for which has been addressed by many
researchers (König and Engel, 1995; Schultz et al., 2000; Singer, 1993).

Dynamic binding is closely related to the attention mechanism, which is used
to control the synchronized activities of different assemblies of units and how the
finite binding resource is allocated among neuronal assemblies (Singer, 1993, 1995).
Experimental evidence has shown that synchronized firing tends to provide the
attended stimulus with an enhanced representation.

3.3.3 Dereverberation

For auditory scene analysis, studying the effect of room acoustics on the cocktail
party environment is important (Blauert, 1983; MacLean, 1959). A conversation
occurring in a closed room often suffers from the multipath effect: echoes and re-

verberation, which are almost ubiquitous but rarely consciously noticed. According
to the acoustics of the room, a reflection from one surface (e.g., wall, ground) pro-
duces reverberation. In the time domain, the reflection manifests itself as smaller,
delayed replicas (echoes) that are added to the original sound; in the frequency
domain, the reflection introduces a comb-filter effect into the frequency response.
When the room is large, echoes can sometimes be consciously heard. It is known
that the human auditory system is so powerful that it can take advantage of bin-
aural and spatial hearing to efficiently suppress the echo, thereby improving the
hearing performance. However, for a machine CPP, the machine design would have
to include specific dereverberation (or deconvolution) algorithms to overcome this
effect.

Those acoustic cues listed in table 3.1 that are spatially dependent, such as ITD
and IID, are naturally affected by reverberation. On the other hand, acoustic cues
that are space invariant, such as common onset across frequencies and pitch, are
less sensitive to reverberation. On this basis, we may say that an intelligent machine
should have the ability to adaptively weight the spatially dependent acoustic cues
(prior to their fusion) so as to deal with a reverberant environment in an effective
manner.
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3.4 Insights from Computational Vision

It is well known to neuroscientists that audition (hearing) and vision (seeing) share
substantial common features in the sensory processing principles as well as anatomic
and functional organizations in higher-level centers in the cortex. It is therefore
highly informative that with the design of an effective and efficient machine CPP as
a design goal, we address the issue of deriving insights from the extensive literature
on computational vision. We do so in this section by first looking to Marr’s classic
vision theory.

3.4.1 Marr’s Vision Theory and Its Insights for Auditory Scene

Analysis

In his landmark book, David Marr presented three levels of analysis of information-
processing systems (Marr, 1982):

Computation: What is the goal of the computation, why is it appropriate, and
what is the logic of the strategy by which it can be carried out?

Representation: How can this computational theory be implemented? In particu-
lar, what is the representation for the input and output, and what is the algorithm
for the transformation?

Implementation: How can the representation and the algorithm be realized phys-
ically?

In many perspectives, Marr’s observations highlight the fundamental questions that
need to be addressed in computational neuroscience, not only in the context of vision
but also audition. As a matter of fact, Marr’s theory has provided many insights
into auditory research (Bregman, 1990; Rosenthal and Okuno, 1998).

In a similar vein to visual scene analysis (e.g., Julesz and Hirsh, 1972), auditory
scene analysis (Bregman, 1990) attempts to identify the content (what) and the
location (where) of the sounds/speech in an auditory environment. In specific terms,
auditory scene analysis consists of two stages. In the first stage, the segmentation

process decomposes a complex acoustic scene into a collection of distinct sensory
elements; in the second stage, the grouping process combines these elements into a
stream according to some principles. Subsequently, the streams are interpreted by a
higher-level process for recognition and scene understanding. Motivated by Gestalt
psychology, Bregman (1990) has proposed five grouping principles for ASA:grouping

principle
Proximity: Characterizes the distances between auditory cues (features) with

respect to their onsets, pitch, and intensity (loudness).

Similarity: Usually depends on the properties of a sound signal, such as timbre.

Continuity: Features the smoothly-varying spectrum of a sound signal.

Closure: Completes fragmentary features that have a good gestalt; the completion
may be viewed as a form of auditory compensation for masking.
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Common fate: Groups together activities (e.g., common onsets) that are syn-
chronous.

Moreover, Bregman (1990) has distinguished at least two levels of auditory or-
ganization: primitive streaming and schema-based segregation, with schemas being
provided by phonetic, prosodic, syntactic, and semantic forms of information. While
being applicable to general sound scene analysis involving speech and music, Breg-
man’s work has focused mainly on primitive stream segregation.

3.4.2 A Tale of Two Sides: Visual and Auditory Perception

Visual perception and auditory perception share many common features in terms of
sensory processing principles. According to Shamma (2001), these common features
include the following:

Lateral inhibition for edge/peak enhancement: In an auditory task, it aims to
extract the profile of the sound spectrum; whereas in the visual system it aims to
extract the form of an image.

Multiscale analysis: The auditory system performs the cortical spectrotemporal
analysis, whereas the visual system performs the cortical spatiotemporal form
analysis.

Detecting temporal coincidence: This process may serve periodicity pitch percep-
tion in an auditory scene compared to the perception of bilateral symmetry in a
visual task.

Detecting spatial coincidence: The same algorithm captures binaural azimuthal
localization in the auditory system (stereausis), while it gives rise to binocular depth
perception in the visual system.

Not only sharing these common features and processes, the auditory system also
benefits from the visual system. For example, it is well known that there exist inter-
actions between different sensory modalities. Neuroanatomy reveals the existence of
corticocortical pathways between auditory and visual cortices. The hierarchical or-
ganization of cortices and numerous thalamocortical and corticothalamic feedback
loops are speculated to stabilize the perceptual object. Daily life experiences also
teach us that a visual scene input (e.g., lip reading) is influential to attention (Jones
and Yee, 1996) and beneficial to speech perception. The McGurk effect (McGurk
and MacDonald, 1976) is an auditory-visual speech illusion experiment, in which
the perception of a speech sound is modified by contradictory visual information.
The McGurk effect clearly illustrates the important role played by a visual cue in
the comprehension of speech.

3.4.3 Active Vision

In the last paragraph of the introduction section, we referred to active audition
as having the potential to build an intelligent machine that can operate efficiently
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and effectively in a noisy cocktail party environment. The proposal to build such
a machine has been inspired by two factors: ongoing research on the use of active
vision in computational vision, and the sharing of many common sensory principles
between visual perception and auditory perception, as discussed earlier. To pave
the way for what we have in mind on a framework for active audition, it is in order
that we present some highlights on active vision that are of value to a formulation
of this framework.

First and foremost, it is important to note that the use of an active sensor
is not a necessary requirement for active sensing, be that in the context of vision
or audition. Rather, a passive sensor (which only receives but does not transmit
information-bearing signals) can perform active sensing, provided that the sensor is
capable of changing its own state parameters in accordance with a desired sensing
strategy. As such, active sensing may be viewed as an application of intelligent
control theory, which includes not only control but also reasoning and decision
making (Bajcsy, 1988).4 In particular, active sensing embodies the use of feedback

in two contexts:

1. The feedback is performed on complex processed sensory data such as extracted
features that may also include relational features.

2. The feedback is dependent on prior knowledge.

Active vision (also referred to as animated vision) is a special form of activeactive vision
sensing, which has been proposed by Bajcsy (1988) and Ballard (1988), among
others (e.g., Blake and Yuille, 1992). In active vision, it is argued that vision is
best understood in the context of visual behaviors. The key point to note here is
that the task of vision is not to build the model of a surrounding real world as
originally postulated in Marr’s theory, but rather to use visual information in the
service of the real world in real time, and do so efficiently and inexpensively (Clark
and Eliasmith, 2003). In effect, the active vision paradigm gives “action” a starring
role (Sporns, 2003).

Rao and Ballard (1995) proposed an active vision architecture, which is mo-
tivated by biological studies. The architecture is based on the hierarchical decom-

position of visual behavior involved in scene analysis (i.e., relating internal models
to external objects). The architecture employs two components: the “what” com-
ponent that corresponds to the problem of object identification, and the “where”
component that corresponds to the problem of objective localization. These two vi-
sual components or routines are subserved by two separate memories. The central
representation of the architecture is a high-dimensional iconic feature vector, which
is comprised of the responses of different-order derivatives of Gaussian filters; the
purpose of the iconic feature vector is to provide an effective photometric descrip-
tion of local intensity variations in the image region about an object of interest.
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3.5 Embodied Intelligent Machines: A Framework for Active Audition

Most of the computational auditory scene analysis (CASA) approaches discussed
in the literature share a common assumption: the machine merely listens to the
environment but does not interact with it (i.e., the observer is passive). However, as
remarked in the previous section, there are many analogies between the mechanisms
that go on in auditory perception and their counterparts in visual perception. In a
similar vein to active vision, active audition is established on the premise that the
observer (human or machine) interacts with the environment, and the machine (in
a way similar to human) should also conduct the perception in an active fashion.

According to Varela et al. (1991) and Sporns (2003), embodied cognitive modelsembodied cogni-
tive models rely on cognitive processes that emerge from interactions between neural, bodily,

and environmental factors. A distinctive feature of these models is that they use “the
world as their own model.” In particular, embodied cognition has been argued to be
the key to the understanding of intelligence (Iida et al., 2004; Pfeifer and Scheier,
1999). The central idea of embodied cognitive machines lies in the observation that
“intelligence” becomes meaningless if we exclude ourselves from a real-life scenario;
in other words, an intelligent machine is a self-reliant and independent agent capable
of adapting itself to a dynamic environment so as to achieve a certain satisfactory
goal effectively and efficiently, regardless of the initial setup.

Bearing this goal in mind, we may now propose a framework for active audition,
which embodies four specific functions: (1) localization and focal attention, (2)
segregation, (3) tracking, and (4) learning. In the following, we will address these
four functions in turn.

3.5.1 Localization and Focal Attention

Sound localization is a fundamental attribute of auditory perception. The task ofsound localization
sound localization can be viewed as a form of binaural depth perception, repre-
senting the counterpart to binocular depth perception in vision. A classic model
for sound localization was developed by Jeffress (1948) using binaural cues such
as ITD. In particular, Jeffress suggested the use of cross-correlation for calculating
the ITD in the auditory system and explained how the model represents the ITD
that is received at the ears; the sound processing and representation in Jeffress’s
model are simple yet elegant, and arguably neurobiologically plausible. Since the
essential goal of localization is to infer the directions of incoming sound signals, this
function may be implemented by using an adaptive array of microphones, whose
design is based on direction of arrival (DOA) estimation algorithms developed in
the signal-processing literature (e.g., Van Veen and Buckley, 1988, 1997).

Sound localization is often the first step to perform the beamforming, the aim
of which is to extract the signal of interest produced in a specific direction. For a
robot (or machine) that is self-operating in an open environment, sound localization
is essential for successive tasks. An essential ingredient in sound localization is
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time-delay estimation when it is performed in a reverberant room environment. To
perform this estimation, many signal-processing techniques have been proposed in
the literature:

Generalized cross-correlation (GCC) method (Knappand and Carter, 1976): This
is a simple yet efficient delay-estimation method, which is implemented in the
time domain using maximum-likelihood estimation (however, a frequency-domain
implementation is also possible).

Cross-power spectrum phase (CSP) method (Rabinkin et al., 1996): This delay-
estimation method is implemented in the frequency domain, which computes the
power spectra of two microphone signals and returns the phase difference between
the spectra.

Adaptive eigenvalue decomposition (EVD)–based methods (Benesty, 2000; Doclo
and Moonen, 2002): It is noted that the GCC and CSP methods usually assume
an ideal room model without reverberation; hence they may not perform satisfac-
torily in a highly reverberant environment. In order to overcome this drawback
and enhance robustness, EVD-based methods have been proposed to estimate (im-
plicitly) the acoustic impulse responses using adaptive algorithms that iteratively
estimate the eigenvector associated with the smallest eigenvalue. Given the esti-
mated acoustic impulse responses, the time delay can be calculated as the time
difference between the main peak of the two impulse responses or as the peak of
the correlation function between the two impulse responses.

Upon locating the sound source of interest, the next thing is to focus on the
target sound stream and enhance it. Therefore, spatial filtering or beamforming
techniques (Van Veen and Buckley, 1997) will be beneficial for this purpose. Usually,
with omnidirectional microphone (array) technology, a machine is capable of picking
up most if not all of the sound sources in the auditory scene. However, it is hoped
that “smart microphones” may be devised so as to adapt their directivity (i.e.,
autodirective) to the attended speaker considering real-life conversation scenarios.
Hence, designing a robust beamformer in a noisy and reverberant environment
is crucial for localizing the sound and enhancing the SNR. The adaptivity also
naturally brings in the issue of learning, to be discussed in what follows.

3.5.2 Segregation

In this second functional module for active audition, the target sound stream is
segregated and the sources of interference are suppressed, thereby focusing attention
on the target sound source. This second function may be implemented by using
several acoustic cues (e.g., ITD, IID, onset, and pitch) and then combining them
in a fusion algorithm.

In order to emulate the human auditory system, a computational strategy for
acoustic-cue fusion should dynamically resolve the ambiguities caused by the simple-
cue segregation. The simplest solution is the “winner-take-all” competition, which
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Figure 3.2 A flowchart of multiple acoustic cues fusion process (courtesy of Rong
Dong).

essentially chooses the cue that has the highest (quantitatively) confidence (where
the confidence values depend on the specific model used to extract the acoustic cue).
When several acoustic cues are in conflict, only the dominant cue will be chosen
based on some criterion, such as the weighted-sum mechanism (Woods et al., 1996)
that was used for integrating pitch and spatial cues, or the Bayesian framework
(Kashino et al., 1998).

Recently, Dong (2005) proposed a simple yet effective fusion strategy to solve
the multiple cue fusion problem (see fig. 3.2). Basically, the fusion process is
performed in a cooperative manner: in the first stage of fusion, given IID and
ITD cues, the time-frequency units are grouped into two streams (target stream
and interference stream), and the grouping results are represented by two binary
maps. These two binary maps are then passed through an “AND” operation to
obtain a spatial segregation map, which is further utilized to estimate the pitch of
the target signal or the pitch of the interference. Likewise, a binary map is produced
from the pitch segregation. If the target is detected as an unvoiced signal, onset
cue is integrated to group the components into separate streams. Finally, all these
binary maps are pooled together by a second “AND” operation to yield the final
segregation decision. Empirical experiments on this fusion algorithm reported by
Dong (2005) have shown very promising results.5

3.5.3 Tracking

The theoretical development of sound tracking builds on a state-space model ofstate-space model
the auditory environment. The model consists of a process equation that describes
the evolution of the state (denoted by xt) at time t, and a measurement equation

that describes the dependence of the observables (denoted by yt) on the state.
More specifically, the state is a vector of acoustic cues (features) characterizing the
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Figure 3.3 An information flowchart integrating “bottom-up” (shaded arrow) and
“top-down” flows in a hierarchical functional module of an intelligent machine (in
a similar fashion as in the human auditory cortex).

target sound stream and its direction. Stated mathematically, we have the following
state-space equations:

xt = f(t,xt−1,dt), (3.1)

yt = g(t,xt,ut,vt), (3.2)

where dt and vt denote the dynamic and measurement noise processes, respectively,
and the vector ut denotes the action taken by the (passive) observer. The process
equation 3.1 embodies the state transition probability p(xt|xt−1), whereas the
measurement equation 3.2 embodies the likelihood p(yt|xt). The goal of optimum
filtering is then to estimate the posterior probability density p(xt|y0:t), given the
initial prior p(x0) and y0:t that denotes the measurement history from time 0 to
t. This classic problem is often referred to as “state estimation” in the literature.
Depending on the specific scenario under study, such a hidden state estimation
problem can be tackled by using a Kalman filter (Kalman, 1960), an extended
Kalman filter, or a particle filter (e.g., Cappé et al., 2005; Doucet et al., 2001).

In Nix et al. (2003), a particle filter is used as a statistical method for
integrating temporal and frequency-specific features of a target speech signal. The
elements of the state represent the azimuth and elevation of different sound signals
as well as the band-grouped short-time spectrum for each signal; whereas the
observable measurements contain binaural short-time spectra of the superposed

voice signals. The state equation, representing the spectral dynamics of the speech
signal, was learned off-line using vector quantization and lookup table in a large
codebook, where the codebook index for each pair of successive spectra was stored
in a Markov transition matrix (MTM); the MTM provides statistical information
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about the transition probability p(xt|xt−1) between successive short-time speech
spectra. The measurement equation, characterized by p(yt|xt), was approximated
as a multidimensional Gaussian mixture probability distribution. By virtue of its
very design, it is reported in Nix et al. (2003) that the tracker provides a one-step
prediction of the underlying features of the target sound.

In the much more sophisticated neurobiological context, we may envision
that the hierarchical auditory cortex (acting as a predictor) implements an online
tracking task as a basis for dynamic feature binding and Bayesian estimation,
in a fashion similar to that in the hierarchical visual cortex (Lee and Mumford,
2003; Rao and Ballard, 1999). Naturally, we may also incorporate “top-down”
expectation as a feedback loop within the hierarchy to build a more powerful
inference/prediction model. This is motivated by the generally accepted fact that
the hierarchical architecture is omnipresent in sensory cortices, starting with the
primary sensory cortex and proceeding up to the highest areas that encode the
most complex, abstract, and stable information.6 A schematic diagram illustrating
such a hierarchy is depicted in fig 3.3, where the bottom-up (data-driven) and
top-down (knowledge-driven) information flows are illustrated with arrows. In the
figure, the feedforward pathway carries the inference, given the current and past
observations; the feedback pathway conducts the prediction (expectation) to lower-
level regions. To be specific, let z denote the top-down signal; then the conditional
joint probability of hidden state x and bottom-up observation y, given z, may be
written as

p(x,y|z) = p(y|x, z)p(x|z), (3.3)

and the posterior probability of the hidden state can be expressed via Bayes’s rule:Bayes’s rule

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z)
, (3.4)

where the denominator is a normalizing constant term that is independent of the
state x, the term p(x|z) in the numerator characterizes a top-down contextual prior,
and the other term p(y|x, z) describes the likelihood of the observation, given all
available information. Hence, feedback information from a higher level can provide
useful context to interpret or disambiguate the lower-level patterns. The same
inference principle can be applied to different levels of the hierarchy in fig. 3.3.
To sum up, the top-down predictive coding and bottom-up inference cooperate
for learning the statistical regularities in the sensory environment; the top-down
and bottom-up mechanisms also provide a possible basis for optimal action control

within the framework of active audition in a way similar to active vision (Bajcsy,
1988).

3.5.4 Learning

Audition is a sophisticated, dynamic information-processing task performed in the
human brain, which inevitably invokes other tasks almost simultaneously (such
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Figure 3.4 (A) The sensorimotor feedback loop consisting of three distinct func-
tions: perceive, think, and act. (B) The interaction between the agent and environ-
ment.

as action). Specifically, it is commonly believed that perception and action are
mutually coupled, and integrated via a sensorimotor interaction feedback loop, as
illustrated in fig 3.4A. Indeed, it is this unique feature that enables the human
to survive in a dynamic environment. For the same reason, it is our belief that an
intelligent machine that aims at solving the CPP must embody a learning capability,
which must be of a kind that empowers the machine to take action whenever changes
in the environment call for it.

In the context of embodied intelligence, an autonomous agent is also supposed
to conduct a goal-oriented behavior during its interaction with the dynamic en-
vironment; hence, the necessity for taking action naturally arises. In other words,
the agent has to continue to adapt itself (it terms of action or behavior) to maxi-
mize its (internal or external) reward, in order to achieve better perception of its
environment (illustrated in fig. 3.4B). Such a problem naturally brings in the the-
ory of reinforcement learning (Sutton and Barto, 1998). For example, imagine areinforcement

learning maneuverable machine is aimed at solving a computational CPP in a noisy room
environment. The system then has to learn how to adjust its distance and the angle
of the microphone array with respect to attended audio sources (such as speech,
music, etc.). To do so, the machine should have a built-in rewarding mechanism
when interacting with the dynamic environment, and it has to gradually adapt its
behavior to achieve a higher (internal and external) reward.7

To sum up, an autonomous intelligent machine self-operating in a dynamic
environment will always need to conduct optimal action control or decision making.
Since this problem bears much resemblance to the Markov decision process (MDP)
(Bellman and Dreyfus, 1962), we may resort to the well-established theory of
dynamical programming and reinforcement learning.8

3.6 Concluding Remarks

In this chapter, we have discussed the machine cocktail party problem and explored
possible ways to solve it by means of an intelligent machine. To do so, we have briefly
reviewed historical accounts of the cocktail party problem, as well as the important
aspects of human and computational auditory scene analysis. More important, we
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have proposed a computational framework for active audition as an inherent part of
an embodied cognitive machine. In particular, we highlighted the essential functions
of active audition and discussed its possible implementation. The four functions
identified under the active audition paradigm provide the basis for building an
embodied cognitive machine that is capable of human-like hearing in an “active”
fashion. The central tenet of active audition embodying such a machine is that
an observer may be able to understand an auditory environment more effectively
and efficiently if the observer interacts with the environment than if it is a passive
observer. In addition, in order to build a maneuverable intelligent machine (such
as a robot), we also discuss the issue of integrating different sensory (auditory and
visual) features such that active vision and active audition can be combined in a
single system to achieve the true sense of active perception.

Appendix: Reinforcement Learning

Mathematically, a Markov decision process 9 is formulated as follows:

Definition 3.1
A Markov decision process (MDP) is defined as a 6-tuple (S,A,R, p0, ps, pr), where

S is a (finite) set of (observable) environmental states (state space), s ∈ S;

A is a (finite) set of actions (action space), a ∈ A;

R is a (finite) set of possible rewards;

p0 is an initial probability distribution over S; it is written as p0(s0);

ps is a transition probability distribution over S conditioned on a value from
S ×A; it is also written as pa

ss′ or ps(st|st−1, at−1);10

pr is a probability distribution over R, conditioned on a value from S; it is written
as pr(r|s).

Definition 3.2
A policy is a mapping from states to probabilities of selecting each possible action. A
policy, denoted by π, can be deterministic, π : S �→ A, or stochastic, π : S �→ P (A).
An optimal policy π∗ is a policy that maximizes (minimizes) the expected total
reward (cost) over time (within finite or infinite horizon).

Given the above definitions, the goal of reinforcement learning is to find an
optimal policy π∗(s) for each s, which maximizes the expected reward received
over time. We assume that the policy is stochastic, and Q-learning (a special form
of reinforcement learning) is aimed at learning a stochastic world in the sense that
the ps and pr are both nondeterministic. To evaluate reinforcement learning, a
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common measure of performance is the infinite-horizon discounted reward, which
can be represented by the state-value function

V π(s) = Eπ

{ ∞∑
t=0

γtr(st, π(st))
∣∣∣s0 = s

}
, (3.5)

where 0 ≤ γ < 1 is a discount factor, and Eπ is the expectation operator over the
policy π. The value function V π(s) defines the expected discounted reward at state
s, as shown by

V π(s) = Eπ{Rt|st = s}, (3.6)

where

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·
= rt+1 + γ(rt+2 + γrt+2 + · · · )
= rt+1 + γRt+1.

Similarly, one may define a state-action value function, or the so-called Q-function

Qπ(s, a) = Eπ{Rt|st = s, at = a}, (3.7)

for which the goal is not only to achieve a maximal reward but also to find an
optimal action (supposing multiple actions are accessible for each state). It can be
shown that

V π(s) = Eπ{r(s, π(s))} + γ
∑
s′

π(s, s′)V π(s′),

Qπ(s, a) =
∑
s′∈S

pa
ss′ [R(s, a, s′) + γV π(s′)], and

V π(s) =
∑
a∈A

π(s, a)Qπ(s, a) =
∑
a∈A

π(s, a)
(
ra
s + γ

∑
s′

pa
ss′V π(s′)

)
,

which correspond to different forms of the Bellman equation (Bellman and Drey-
fus, 1962). Note that if the state or action is continuous-valued, the summation
operations are replaced by corresponding integration operations.

The optimal value functions are then further defined as:

V π∗
(s) = max

π
V π(s), Qπ∗

(s, a) = max
π

Qπ(s, a).

Therefore, in light of dynamic programming theory (Bellman and Dreyfus, 1962),
the optimal policy is deterministic and greedy with respect to the optimal value
functions. Specifically, we may state that given the state s and the optimal policy
π∗, the optimal action is selected according to the formula

a∗ = arg max
a∈A

Qπ∗
(s, a),

such that V π∗
(s) = max

a∈A
Qπ∗

(s, a).
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A powerful reinforcement learning tool for tackling the above-formulated prob-
lem is the Q-learning algorithm (Sutton and Barto, 1998; Watkins, 1989). The
classic Q-learning is an asynchronous, incremental, and approximate dynamic pro-
gramming method for stochastic optimal control. Unlike the traditional dynamic
programming, Q-learning is model-free in the sense that its operation requires nei-
ther the state transition probability nor the environmental dynamics. In addition,
Q-learning is computationally efficient and can be operated in an online manner
(Sutton and Barto, 1998). For finite state and action sets, if each (s, a) pair is
visited infinitely and the step-size sequence used in Q-learning is nonincreasing,
then Q-learning is assured to converge to the optimal policy with probability 1
(Tsitsiklis, 1994; Watkins and Dayan, 1992). For problems with continuous state,
functional approximation methods can be used for tackling the generalization is-
sue; see Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) for detailed
discussions.

Another model-free reinforcement learning algorithm is the actor-critic model
(Sutton and Barto, 1998), which describes a bootstrapping strategy for reinforce-
ment learning. Specifically, the actor-critic model has separate memory structures
to represent the policy and the value function: the policy structure is conducted
within the actor that selects the optimal actions; the value function is estimated by
the critic that criticizes the actions made by the actor. Learning is always on-policy
in that the critic uses a form of temporal difference (TD) error to maximize the
reward, whereas the actor will use the estimated value function from the critic to
bootstrap itself for a better policy.

A much more challenging but more realistic reinforcement learning problem
is the so-called partially observable Markov decision process (POMDP). Unlike the
MDP that assumes the full knowledge of observable states, POMDP addresses
the stochastic decision making and optimal control problems with only partially
observable states in the environment. In this case, the elegant Bellman equation
does not hold since it requires a completely observable Markovian environment
(Kaelbling, 1993). The literature of POMDP is intensive and ever growing, hence
it is beyond the scope of the current chapter to expound this problem; we refer the
interested reader to the papers (Kaelbling et al., 1998; Lovejoy, 1991; Smallwood
and Sondik, 1973) for more details.

Acknowledgments

This chapter grew out of a review article (Haykin and Chen, 2005). In particular,
we would like to thank our research colleagues R. Dong and S. Doclo for valuable
feedback. The work reported here was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada.



NOTES 75

Notes
1For tutorial treatments of the cocktail party problem, see Chen (2003), Haykin and Chen

(2005), and Divenyi (2004).
2Categorization of these three neural processes, done essentially for research-related studies, is

somewhat artificial; the boundary between them is fuzzy in that the brain does not necessarily
distinguish between them as defined herein.

3In Cherry’s original paper, “intelligibility” is referred to as the probability of correctly
identifying meaningful speech sounds; in contrast, “articulation” is referred to as a measure of
nonsense speech sounds (Cherry, 1953).

4As pointed out by Bajcsy (1988), the proposition that active sensing is an application of
intelligent control theory may be traced to the PhD thesis of Tenenbaum (1970).

5At McMaster University we are currently exploring the DSP hardware implementation of the
fusion scheme that is depicted in fig. 3.2.

6The “top-down” influence is particularly useful for (1) synthesizing missing information (e.g.,
the auditory “fill-in” phenomenon); (2) incorporating contextual priors and inputs from other
sensory modalities; and (3) resolving perceptual ambiguities whenever lower-level information
leads to confusion.

7The reward can be a measure of speech intelligibility, signal-to-interference ratio, or some sort
of utility function.

8Reinforcement learning is well known in the machine learning community, but, regrettably,
not so in the signal processing community. An appendix on reinforcement learning is included at
the end of the chapter largely for the benefit of readers who may not be familiar with this learning
paradigm.

9For the purpose of exposition simplicity, we restrict our discussion to finite discrete state and
action spaces, but the treatment also applies to the more general continuous state or action space.

10In the case of finite discrete state, ps constitutes a transition matrix.





4 Sensor Adaptive Signal Processing of
Biological Nanotubes (Ion Channels) at
Macroscopic and Nano Scales

Vikram Krishnamurthy

Ion channels are biological nanotubes formed by large protein molecules in the cell
membrane. All electrical activities in the nervous system, including communications
between cells and the influence of hormones and drugs on cell function, are regulated
by ion channels. Therefore understanding their mechanisms at a molecular level is
a fundamental problem in biology. This chapter shows how dynamic stochastic
models and associated statistical signal-processing techniques together with novel
learning-based stochastic control methods can be used to understand the structure
and dynamics of ion channels at both macroscopic and nanospatial scales. The
unifying theme of this chapter is the concept of sensor adaptive signal processing,
which deals with sensors dynamically adjusting their behavior so as to optimize
their ability to extract signals from noise.

4.1 Introduction

All living cells are surrounded by a cell membrane, composed of two layers of phos-
pholipid molecules, called the lipid bilayer. Ion channels are biological nanotubes
formed by protein macromolecules that facilitate the diffusion of ions across the cell
membrane. Although we use the term biological nanotube, ion channels are typically
the size of angstrom units (10−10 m), i.e., an order of magnitude smaller in radius
and length compared to carbon nanotubes that are used in nanodevices.

In the past few years, there have been enormous strides in our understanding of
the structure-function relationships in biological ion channels. These advances have
been brought about by the combined efforts of experimental and computational
biophysicists, who together are beginning to unravel the working principles of these
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exquisitely designed biological nanotubes that regulate the flow of charged particles
across the cell membrane. The measurement of ionic currents flowing through single
ion channels in cell membranes has been made possible by the gigaseal patch-

clamp technique (Hamill et al., 1981; Neher and Sakmann, 1976). This was a major
breakthrough for which the authors Neher and Sakmann won the 1991 Nobel Prize
in Medicine (Neher and Sakmann, 1976). More recently, the 2003 Nobel Prize in
Chemistry was awarded to MacKinnon for determining the structure of several
different types of ion channels (including the bacterial potassium channel; Doyle
et al. (1998)) from crystallographic analyses. Because all electrical activities in
the nervous system, including communications between cells and the influence of
hormones and drugs on cell function, are regulated by membrane ion channels,
understanding their mechanisms at a molecular level is a fundamental problem in
biology. Moreover, elucidation of how single ion channels work will ultimately help
neurobiologists find the causes of, and possibly cures for, a number of neurological
and muscular disorders.

We refer the reader to the special issue of IEEE Transactions on NanoBio-
Science Krishnamurthy et al. (2005) for an excellent up-to-date account of ion
channels written by leading experts in the area. This chapter addresses two funda-
mental problems in ion channels from a statistical signal processing and stochastic
control (optimization) perspective: the gating problem and the ion permeation prob-

lem.
The gating problem (Krishnamurthy and Chung, 2003) deals with understand-

ing how ion channels undergo structural changes to regulate the flow of ions into
and out of a cell. Typically a gated ion channel has two states: a “closed” state
which does not allow ions to flow through, and an “open” state which does al-
low ions to flow through. In the open state, the ion channel currents are typically
of the order of pico-amps (i.e., 10−12 amps). The measured ion channel currents
(obtained by sampling typically at 10 kHz, i.e, 0.1 millisecond time scale) are ob-
fuscated by large amounts of thermal noise. In sections 4.2 4.3 of this chapter, we
address the following issues related to the gating problem: (1) We present a hidden
Markov model (HMM) formulation of the observed ion channel current. (2) We
present in section 4.2 a discrete stochastic optimization algorithm for controlling a
patch-clamp experiment to determine the Nernst potential of the ion channel with
minimal effort. This fits in the class of so-called experimental design problems. (3)
In section 4.3, we briefly discuss dynamic scheduling algorithms for activating mul-
tiple ion channels on a biological chip so as to extract maximal information from
them.

The permeation problem (Allen et al., 2003; O’Mara et al., 2003) seeks to
explain the working of an ion channel at an Å(10−10 m) spatial scale by studying the
propagation of individual ions through the ion channel at a femto (10−15) second
time scale. This setup is said to be at a mesoscopic scale since the individual
ions (e.g., Na+ions) are of the order of a few Åin radius and are comparable in
radius to the ion channel. At this mesoscopic level, point-charge approximations
and continuum electrostatics break down. The discrete finite nature of each ion
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needs to be taken into consideration. Also, failure of the mean field approximation
in narrow channels implies that any theory that aspires to relate channel structure
to its function must treat ions explicitly. In sections 4.4, 4.5, and 4.6 of this chapter,
we discuss the permeation problem for ion channels. We show how Brownian
dynamics simulation can be used to model the propagation of individual ions. We
also show how stochastic gradient learning based schemes can be used to control
the evolution of Brownian dynamics simulation to predict the molecular structure
of an ion channel. We refer the reader to our recent research (Krishnamurthy
and Chung, a,b) where a detailed exposition of the resulting adaptive Brownian
dynamics simulation algorithm is given. Furthermore numerical results presented
in Krishnamurthy and Chung (a,b) for antibiotic Gramicidin-Aion channels show
that the estimates obtained from the adaptive Brownian dynamics algorithm are
consistent with the known molecular structure of Gramicidin-A.sensor adaptive

signal processing An important underlying theme of this chapter is the ubiquitous nature
of sensor adaptive signal processing. This transcends standard statistical signal
processing, which deals with extracting signals from noisy observations, to examine
the deeper problem of how to dynamically adapt the sensor to optimize the
performance of the signal-processing algorithm. That is, the sensors dynamically
modify their behavior to optimize their performance in extracting the underlying
signal from noisy observations. A crucial aspect in sensor adaptive signal processing
is feedback—past decisions of adapting the sensor affect future observations. Such
sensor adaptive signal processing has recently been used in defense networks (Evans
et al., 2001; Krishnamurthy, 2002, 2005) for scheduling sophisticated multimode
sensors in unattended ground sensor networks, radar emission control, and adaptive
radar beam allocation. In this chapter we show how the powerful paradigm of sensor
adaptive signal processing can be successfully applied to biological ion channels both
at the macroscopic and nano scales.

4.2 The Gating Problem and Estimating the Nernst Potential of Ion Channels

In this section we first outline the well-known hidden Markov model (HMM) for
modeling the ion channel current in the gating problem. We refer the reader to the
paper by Krishnamurthy and Chung (2003) for a detailed exposition. Estimating
the underlying ion channel current from the noisy HMM observations is a well-
studied problem in HMM signal processing (Ephraim and Merhav, 2002; James
et al., 1996; Krishnamurthy and Yin, 2002). In this section, consistent with the
theme of sensor adaptive signal processing, we address the deeper issue of how to
dynamically control the behavior of the ion channels to extract maximal information
about their behavior. In particular we propose two novel applications of stochastic
control for adapting the behavior of the ion channel. Such ideas are also relevant in
other applications such as sensor scheduling in defense networks (Krishnamurthy,
2002, 2005).
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4.2.1 Hidden Markov Model Formulation of Ion Channel Current

ion
channel
current

The patch clamp is a device for isolating the ion channel current from a single
ion channel. A typical trace of the ion channel current measurement from a patch-
clamp experiment (after suitable anti-aliasing filtering and sampling) shows that
the channel current is a piecewise constant discrete time signal that randomly jumps
between two values—zero amperes, which denotes the closed state of the channel,
and I(θ) amperes (typically a few pico-amperes), which denotes the open state.
I(θ) is called the open-state current level. Sometimes the current recorded from a
single ion channel dwells on one or more intermediate levels, known as conductance
substates.

Chung et al. (1990, 1991) first introduced the powerful paradigm of hidden
Markov models (HMMs) to characterize patch-clamp recordings of small ion chan-
nel currents contaminated by random and deterministic noise. By using sophisti-
cated HMM signal-processing methods, Chung et al. (1990, 1991) demonstrated
that the underlying parameters of the HMM could be obtained to a remarkable
precision despite the extremely poor signal-to-noise ratio. These HMM parameter
estimates yield important information about the dynamics of ion channels. Since
the publications of Chung et al. (1990, 1991), several papers have appeared in the
neurobiological community that generalize the HMM signal models in Chung et al.
(1990, 1991) in various ways to model measurements of ion channels (see the paper
of Venkataramanan et al. (2000) and the references therein). With these HMM tech-
niques, it is now possible for neurobiologists to analyze not only large ion channel
currents but also small conductance fluctuations occurring in noise.

Markov Model for Ion Channel Current Suppose a patch-clamp exper-
iment is conducted with a voltage θ applied across the ion channel. Then, as de-
scribed in Chung et al. (1991) and in Venkataramanan et al. (2000), the ion channel
current {in(θ)} can be modeled as a three-state homogeneous first-order Markov
chain. The state space of this Markov chain is {0g, 0b, I(θ)}, corresponding to the
physical states of gap mode, burst-mode-closed, and burst-mode-open. For conve-
nience, we will refer to the burst-mode-closed and burst-mode-open states as the
closed and open states, respectively. In the gap mode and the closed state, the ion
channel current is zero. In the open state, the ion channel current has a value of
I(θ).

The 3 × 3 transition probability matrix A(θ) of the Markov chain {I(θ,λ)
n (θ)},

which governs the probabilistic behavior of the channel current, is given by

A(θ) =

0g 0b I(θ)

0g a11(θ) a12(θ) 0

0b a21(θ) a22(θ) a23(θ)

I(θ) 0 a32(θ) a33(θ)

(4.1)

The elements of A(θ) are the transition probabilities aij(θ) = P (I(θ,λ)
n+1 (θ) =

j|I(θ,λ)
n (θ) = i) where i, j ∈ {0g, 0b, I(θ)}. The zero probabilities in the above
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matrix A(θ) reflect the fact that a ion channel current cannot directly jump from
the gap mode to the open state; similarly an ion channel current cannot jump
from the open state to the gap mode. Note that in general, the applied voltage θ

affects both the transition probabilities and state levels of the ion channel current
{I(θ,λ)

n (θ)}.hidden Markov
model (HMM) Hidden Markov Model (HMM) Observations Let {yn(θ)} denote the mea-

sured noisy ion channel current at the electrode when conducting a patch-clamp
experiment:

yn(θ) = in(θ) + wn(θ), n = 1, 2, . . . (4.2)

Here {wn(θ)} is thermal noise and is modeled as zero-mean white Gaussian noise
with variance σ2(θ). Thus the observation process {yn(θ)} is a hidden Markov model
(HMM) sequence parameterized by the model

λ(θ) = {A(θ), I(θ), σ2(θ)} (4.3)

where θ denotes the applied voltage. We remark here that the formulation trivially
extends to observation models where the noise process wn(θ) includes a time-varying
deterministic component together with white noise — only the HMM parameter
estimation algorithm needs to be modified as in Krishnamurthy et al. (1993).
HMM Parameter Estimation of Current Level I(θ) Given the HMM mode
for the ion channel current above, estimating I(θ) for a fixed voltage θ involves
processing the noisy observation {yn(θ)} through a HMM maximum likelihood
parameter estimator. The most popular way of computing the maximum likelihood
estimate (MLE) I(θ) is via the expectation maximization (EM) algorithm (Baum
Welch equations). The EM algorithm is an iterative algorithm for computing
the MLE. It is now fairly standard in the signal-processing and neurobiology
literature—see Ephraim and Merhav (2002) for a recent exposition, or Chung et al.
(1991), which is aimed at neurobiologists.

Let ÎΔ(θ) denote MLE of I(θ) based on the Δ-point measured channel current
sequence (y1(θ), . . . , yΔ(θ)). For sufficiently large batch size Δ of observations, due
to the asymptotic normality of the MLE for a HMM (Bickel et al., 1998),

√
Δ
(
ÎΔ(θ) − I(θ)

)
∼ N(0, Σ(θ)), (4.4)

where Σ−1(θ) is the Fisher information matrix. Thus asymptotically ÎΔ(θ) is
an unbiased estimator of I(θ), i.e., E

{
ÎΔ(θ)

}
= I(θ) where E {·} denotes the

mathematical expectation operator.

4.2.2 Nernst Potential and Discrete Stochastic Optimization for Ion

Channels

To record currents from single ion channels, the tip of an electrode, with the
diameter of about 1 μm, is pushed against the surface of a cell, and then a tight
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seal is formed between the rim of the electrode tip and the cell membrane. A patch
of the membrane surrounded by the electrode tip usually contains one or more
single ion channels. The current flowing from the inside of the cell to the tip of the
electrode through a single ion channel is monitored. This is known as cell-attached
configuration of patch-clamp techniques for measuring ion channel currents through
a single ion channel. Figure 4.1 shows the schematic setup of the cell in electrolyte
and the electrode pushed against the surface of the cell.

+

−

cell

Electrode

ci, Ei

co Eo

Figure 4.1 Cell-attached patch experimental setup.

In a living cell, there is a potential difference between its interior and the
outside environment, known as the membrane potential. Typically, the cell interior
is about 60 mV more negative with respect to outside. Also, the ionic concentrations
(mainly Na+, Cl−, and K+) inside of a cell are very different from outside of the
cell. In the cell-attached configuration, the ionic strength in the electrode is usually
made the same as that in the outside of the cell. Let Ei and Eo, respectively,
denote the resting membrane potential and the potential applied to the electrode.
If Eo is identical to the membrane potential, there will be no potential gradient
across the membrane patch confined by the tip of the electrode. Let ci denote the
intracellular ionic concentration and co the ionic concentration in the electrode.
Here the intracellular concentration ci inside the cell is unknown as is the resting
membrane potential Ei. co and Eo are set by the experimenter and are known.

Let θ = Eo − Ei denote the potential gradient. Both the potential gradient
θ and concentration gradient co − ci drive ions across an ion channel, resulting in
an ion channel current {I(θ,λ)

n (θ)}. This ion channel current is a piecewise constant
signal that jumps between the values of zero and I(θ), where I(θ) denotes the
current when the ion channel is in the open state.

The potential Eo (and hence potential difference θ) is adjusted experimentally
until the current I(θ) goes to zero. This voltage θ∗ at which the current I(θ∗)Nernst potential
vanishes is called the Nernst potential and satisfies the so-called Nernst equation

θ∗ = −kT

e
ln

co

ci
= −59 log10

co

ci
(mV), (4.5)
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where e = 1.6 × 10−19 C denotes the charge of an electron, k denotes Boltzmann’s
constant, and T denotes the absolute temperature. The Nernst equation (4.5) gives
the potential difference θ required to maintain electrochemical equilibrium when
the concentrations are different on the two faces of the membrane.

Estimating the Nernst potential θ∗ requires conducting experiments at different
values of voltage θ. In patch-clamp experiments, the applied voltage θ is usually
chosen from a finite set. Let

θ ∈ Θ = {θ(1), . . . , θ(M)}

denote the finite set of possible voltage values that the experimenter can pick. For
example, in typical experiments, if one needs to determine the Nernst potential to
a resolution of 4 mV, then M = 80 and θ(i) are uniformly spaced in 4 mV steps
from θ(1) = −160 mV and θ(M) = 160 mV.

Note that the Nernst potential θ∗ (zero crossing point) does not necessarily
belong to the discrete set Θ—instead we will find the point in Θ that is closest to
θ∗ (with resolution θ(2) − θ(1)). With slight abuse of notation we will denote the
element in Θ closest to the Nernst potential as θ∗. Thus determining θ∗ ∈ Θ can
be formulated as a discrete optimization problem:

θ∗ = arg min
θ∈Θ

|I(θ)|2.

Discrete Stochastic Approximation Algorithm Learning the Nernst Po-discrete
stochastic
approximation

tential can be formulated as the following discrete stochastic optimization problem

Compute θ∗ = arg min
θ∈Θ

[
E
{

Î(θ)
}]2

, (4.6)

where Î(θ) is the MLE of the parameter I(θ) of the HMM. Since for a HMM, no
closed-form expression is available for Σ−1(θ) in equation 4.4, the above expectation
cannot be evaluated analytically. This motivates the need to develop a simulation-
based (stochastic approximation) algorithm. We refer the reader to the paper by
Krishnamurthy and Chung (2003) for details.

The idea of discrete stochastic approximation (Andradottir, 1999) is to design
a plan of experiments which provides more observations in areas where the Nernst
potential is expected and less in other areas. More precisely what is needed is a dy-
namic resource allocation (control) algorithm that dynamically controls (schedules)
the choice of voltage at which the HMM estimator operates in order to efficiently
obtain the zero point and deduce how the current increases or decreases as the
applied voltage deviates from the Nernst potential. We propose a discrete stochas-
tic approximation algorithm that is both consistent and attracted to the Nernst
potential. That is, the algorithm should spend more time gathering observations
{yn(θ)} at the Nernst potential θ = θ∗ and less time for other values of θ ∈ Θ.
Thus in discrete stochastic approximation the aim is to devise an efficient (Pflug,
1996, chapter 5.3) adaptive search (sampling plan) which allows finding the mini-
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mizer θ∗ with as few samples as possible by not making unnecessary observations
at nonpromising values of θ. Here we construct algorithms based on the random
search procedures of Andradottir (1995, 1999). The basic idea is to generate a ho-
mogeneous Markov chain taking values in Θ which spends more time at the global
optimum than at any other element of Θ. We will show that these algorithms can
be modified for tracking time-varying Nernst potentials. Finally, it is worthwhile
mentioning that there are other classes of simulation-based discrete stochastic opti-
mization algorithms, such as nested partition methods (Swisher et al., 2000), which
combine partitioning, random sampling, and backtracking to create a Markov chain
that converges to the global optimum.

Let n = 1, 2, . . . denote discrete time. The proposed algorithm is recursive
and requires conducting experiments on batches of data. Since experiments will
be conducted over batches of data, it is convenient to introduce the following
notation. Group the discrete time into batches of length Δ—typically Δ = 10, 000
in experiments. We use the index N = 1, 2, . . . to denote batch number. Thus batch
N comprises the Δ discrete time instants n ∈ {NΔ, NΔ + 1, . . . , (N + 1)Δ − 1}.
Let DN = (DN (1), . . . , DN (M))′ denote the vector of duration times the algorithm
spends at the M possible potential values in Θ.

Finally, for notational convenience define the M dimensional unit vectors, em,
m = 1, . . . , M as

em =
[
0 · · · 0 1 0 · · · 0

]′
, (4.7)

with 1 in the mth position and zeros elsewhere.
The discrete stochastic approximation algorithm of Andradottir (1995) is not

directly applicable to the cost function 4.6, since it applies to optimization problems
of the form minθ∈Θ E {C(θ)}. However, equation 4.6 can easily be converted to this
form as follows: Let Î1(θ), Î2(θ) be two statistically independent unbiased HMM
estimates of I(θ). Then defining Ĉ(θ) = Î1(θ)Î2(θ), it straightforwardly follows that

E
{

Ĉ(θ)
}

=
[
E
{

Î(θ)
}]2

= |I(v)|2. (4.8)

The discrete stochastic approximation algorithm we propose is as follows:

Algorithm 4.1
Algorithm for Learning Nernst Potential

Step 0 Initialization: At batch-time N = 0, select starting point X0 ∈ {1, . . . , M}
randomly. Set D0 = eX0 , Set initial solution estimate θ̂∗

0 = θ(X0).
Step 1 Sampling: At batch-time N , sample X̃N ∈ {XN − 1, XN + 1} with uniform
distribution.
Step 2 Evaluation and acceptance: Apply voltage θ̃ = θ(X̃N ) to patch-clamp
experiment. Obtain two Δ length batches of HMM observations. Let Î

(1)
N (θ̃) and

Î
(2)
N (θ̃) denote the HMM-MLE estimates for these two batches, which are computed

using the EM algorithm (James et al., 1996; Krishnamurthy and Chung, 2003). Set
ĈN (θ̃)) = Î

(1)
N (θ̃)Î(2)

N (θ̃).
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Then apply voltage θ = θ(XN ). Compute the HMM-MLE estimates for these
two batches, denoted as Î

(1)
N (θ) and Î

(2)
N (θ). Set ĈN (θ)) = Î

(1)
N (θ)Î(2)

N (θ).
If ĈN (θ̃) < ĈN (θ), set XN+1 = X̃N , else, set XN+1 = XN .

Step 3 Update occupation probabilities of XN : DN+1 = DN + eXN+1 .

Step 4 Update estimate of Nernst potential: θ̂∗
N = θ(m∗) where

m∗ = arg max
m∈{1,... ,M}

DN+1(m).

Set N → N + 1. Go to step 1.

The proof of convergence of the algorithm is given in theorem 4.1 below. The
main idea behind the above algorithm is that the sequence {XN} (or equivalently
{θ(XN )}) generated by steps 1 and 2 is a homogeneous Markov chain with state
space {1, . . . , M} (respectively, Θ) that is designed to spend more time at the global
maximizer θ∗ than any other state. In the above algorithm, θ̂∗

N denotes the estimate
of the Nernst potential at batch N .
Interpretation of Step 3 as Decreasing Step Size Adaptive Filtering

Algorithm Define the occupation probability estimate vector as π̂N = DN/N .
Then the update in step 3 can be reexpressed as

π̂N+1 = π̂N + μN+1
(
eXN+1 − π̂N

)
, π̂0 = eX0 . (4.9)

This is merely an adaptive filtering algorithm for updating π̂N with decreasing step
size μN = 1/N .

Hence algorithm 4.1 can be viewed as a decreasing step size algorithm which
involves a least mean squares (LMS) algorithm (with decreasing step size) in tandem
with a random search step and evaluation (steps 1 and 2) for generating Xm.
Figure 4.2 shows a schematic diagram of the algorithm with this LMS interpretation
for step 3.

In Andradottir (1995), the following stochastic ordering assumption was used
for convergence of the algorithm 4.1.

(O) For any m ∈ {1, . . . , M − 1},

I2(θ(m + 1)) > I2(θ(m)) =⇒ P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
> 0.5,

I2(θ(m + 1)) < I2(θ(m)) =⇒ P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
< 0.5

Step 2.
HMM MLE
estimator.
Evaluate CN(  )
and C(  ).

Step 2.
Run patch clamp
expt at voltages
  (XN) and   (XN).

Step 1.
Sample XN from
{XN–1, XN+1}

ˆ

ˆ

ˆ
˜˜

˜

XN

XN

˜

Step 3.
Adaptive filter 
step size N

M

θ θ
μ

π N̂
*θ

θ
θ

max

Figure 4.2 Schematic of algorithm 4.1.
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Theorem 4.1
Under the condition (O) above, the sequence {θ(XN )} generated by algorithm 4.1
is a homogeneous, aperiodic, irreducible Markov chain with state space Θ. Fur-
thermore, algorithm 4.1 is attracted to the Nernst potential θ∗, i.e., for sufficiently
large N , the sequence {θ(XN )} spends more time at θ∗ than at another state.
(Equivalently, if θ(m∗) = θ∗, then DN (m∗) > DN (j) for j ∈ {1, . . . , M} − {m∗}.)

The above discrete stochastic approximation algorithm can be viewed as the
discrete analog of the well-known LMS algorithm. Recall that in the LMS algorithm,
the new estimate is computed from the previous estimate by moving along a
desirable search direction (based on gradient information). In complete analogy
with the above discrete search algorithm, the new estimate is obtained by moving
along a discrete search direction to a desirable new point. We refer the reader to
Krishnamurthy and Chung (2003) and our recent papers (Krishnamurthy et al.,
2004; Yin et al., 2004) for complete convergence details of the above discrete
stochastic approximation algorithm.

4.3 Scheduling Multiple Ion Channels on a Biological Chip

In this section, we consider dynamic scheduling and control of the gating process
of ion channels on a biological chip. Patch clamping has rapidly become the “gold
standard” (Fertig et al., 2002) for study of the dynamics of ion channel function by
neurobiologists. However, patch clamping is a laborious process requiring precision
micromanipulation under high-power visual magnification, vibration damping, and
an experienced, skillful experimenter. Because of this, high-throughput studies
required in proteomics and drug development have to rely on less valuable methods
such as fluorescence-based measurement of intracellular ion concentrations (Xu
et al., 2001). There is thus significant interest in an automated version of the whole
patch-clamp principle, preferably one that has the potential to be used in parallel
on a number of cells.

In 2002, Fertig et al. (2002) made a remarkable invention—the first successful
demonstration of a patch clamp on a chip—a planar quartz-based biological chip
that consists of several hundred ion channels (Sigworth and Klemic, 2002). This
patch-clamp chip can be used for massively parallel screens for ion channel activity,
thereby providing a high-throughput screening tool for drug discovery efforts.

Typically, because of their high cost, most neurobiological laboratories have
only one patch-clamp amplifier that can be connected to the patch-clamp chip. As
a result, only one ion channel in the patch-clamp chip can be monitored at a given
time. It is thus of significant interest to devise an adaptive scheduling strategy that
dynamically decides which single ion channel to activate at each time instant in
order to maximize the throughput (information) from the patch-clamp experiment.
Such a scheduling strategy will enable rapid evaluation and screening of drugs.
Note that this problem directly fits into our main theme of sensor adaptive signal
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Figure 4.3 One-dimensional section of planar biological chip.

processing.
Here we consider the problem of how to dynamically schedule the activation of

individual ion channels using a laser beam to maximize the information obtained
from the patch-clamp chip for high-throughput drug evaluation. We refer the
reader to Krishnamurthy (2004) for a detailed exposition of the problem together
with numerical studies. The ion channel activation scheduling algorithm needs to
dynamically plan and react to the presence of uncertain (random) dynamics of the
individual ion channels in the chip. Moreover, excessive use of a single ion channel
can make it desensitized. The aim is to answer the following question: How should

the ion channel activation scheduler dynamically decide which ion channel on the

patch clamp chip to activate at each time instant in order to minimize the overall

desensitization of channels while simultaneously extracting maximum information

from the channels?

We refer the reader to Fertig et al. (2002) for details on the synthesis of a patch-
clamp chip. The chip consists of a quartz substrate of 200 micrometers thickness
that is perforated by wet etching techniques resulting in apertures with diameters
of approximately 1 micrometer. The apertures replace the tip of glass pipettes
commonly used for patch-clamp recording. Cells are positioned onto the apertures
from suspension by application of suction.

A schematic illustration of the ion channel scheduling problem for the patch-
clamp chip is given in fig. 4.3. The figure shows a cross section of the chip with 4 ion
channels. The planar chip could, for example, consist of 50 rows each containing 4
ion channels. Each of the four wells contains a membrane patch with an ion channel.
The external electrolyte solutions contain caged ligands (such as caged glutamate).
When a beam of laser is directed at the well, the inert caged ligands become
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active ligands that cause a channel to go from the closed conformation to an open
conformation. Ions then flow across the open channel, and the current generated
by the motion of charged particles is monitored with a patch-clamp amplifier. The
amplifier is switched to the output of one well to another electronically. Typically,
the magnitude of currents across each channel, when it is open, is about 1 pA (10−12

A).
The design of the ion channel activation scheduling algorithm needs to take

into account the following subsystems.
Heterogeneous ion channels (macro-molecules) on chip: In a patch-clamp chip,

the dynamical behavior of individual ion channels that are activated changes with
time since they can become desensitized due to excessive use. Deactivated ion
channels behave quite differently from other ion channels. Their transition to the
open state becomes less frequent when they are de-sensitized due to excessive use.

Patch-clamp amplifier and heterogeneous measurements: The channel current
of the activated ion channel is of the order of pico-amps and is measured in large
amounts of thermal noise. Chung et al. (1990, 1991), used the powerful paradigm
of HMMs to characterize these noisy measurements of single ion channel currents.
The added complexity in the patch-clamp chip is that the signal-to-noise ratio is
different at different parts of the chip—meaning that certain ion channels have
higher SNR than other ion channels.

Ion channel activation scheduler: The ion channel activation scheduler uses the
noisy channel current observations of the activated ion channel in the patch-clamp
chip to decide which ion channel to activate at the next time instant to maximize
a reward function that comprises the information obtained from the experiment. It
needs to avoid activating desensitized channels, as they yield less information.

4.3.1 Stochastic Dynamical Models for Ion Channels on Patch-Clamp

Chip

In this section we formulate a novel Markov chain model for the ion channels that
takes into account both the ion channel current state and the ion channel sensitiv-
ity. The patch-clamp chip consists of P ion channels arranged in a two-dimensional
grid indexed by p = 1, . . . , P . Let k = 0, 1, 2, . . . , denote discrete time. At each time
instant k the scheduler decides which single ion channel to activate by directing a
laser beam on the ion channel as described above. Let uk ∈ {1, . . . , P} denote the
ion channel that is activated by the scheduler at time k. The remaining P − 1 ion
channel channels on the chip are inactive. It is the job of the dynamic scheduler
to dynamically decide which ion channel should be activated at each time instant
k in order to maximize the amount of information that can be obtained from the
chip. If channel p is active at time k, i.e., uk = p, the following two mechanisms
determine the evolution of this active ion channel.
Ion Channel Sensitivity Model The longer the channel is activated, the more
probably it becomes desensitized. Let d

(p)
k ∈ {normal, de-sens} denote the sensi-

tivity of ion channel p at any time instant k. If ion channel p is activated at time
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k, i.e, uk = p, then d
(p)
k can be modeled as a two-state Markov chain with state

transition probability matrix

D =
normal de-sens

normal d11 1 − d11

de-sens 0 1

, 0 ≤ d11 ≤ 1. (4.10)

The above transition probabilities reflect the fact that if the channel is overused it
becomes desensitized with probability d12. The 0, 1 in the second row imply that
once the channel is desensitized, it remains de-sensitized. Note that the sensitivity
of the inactive channels remains fixed, i.e., d

(q)
k+1 = d

(q)
k , q �= p.

Ion Channel Current Model Suppose channel p is active at time k, i.e., uk = p.
Let i

(p)
k ∈ {0, I} = {closed, open} denote the channel current. As is well known

(Chung et al., 1991), the channel current is a binary valued signal that switches
between zero “closed state” and the current level I “open state.” The open-state
current level I is of importance to neurobiologists since it quantifies the effect of
a drug on the ion channel. Moreover, i

(p)
k can be modeled as a two-state Markov

chain (Chung et al., 1991) conditional on d
(p)
k with transition probability matrix

Q = (P (i(p)
k+1|i

(p)
k , d

(p)
k+1)) given by

Q(d(p)
k+1 = normal) =

closed open

closed q11 q12

open q21 q22

Q(d(p)
k+1 = de-sens) =

closed open

closed q̄11 q̄12

open q̄21 q̄22

. (4.11)

For each ion channel p ∈ {1, . . . , P} on the patch clamp chip, define the ion
channel state as the vector Markov process s

(p)
k

�
= (d(p)

k , i
(p)
k ) with state space

{(normal,closed), (normal,open), (de-sens,closed), (de-sens,open)} = {1, 2, 3, 4} where
for notational convenience we have mapped the four states to {1, 2, 3, 4}. It is clear
that only the state s

(uk)
k of the ion channel that is activated evolves with time.

Since

P (s(p)
k+1|s

(p)
k ) = P (d(p)

k+1|d
(p)
k )P (i(p)

k+1|i
(p)
k , d

(p)
k+1)

if channel p is active at time k, i.e., uk = p, then s
(p)
k has transition probability

matrix

A(p) =

⎡⎢⎢⎢⎢⎣
d11q11 d11q12 (1 − d22)q̄11 (1 − d11)q̄12

d11q21 d11q22 d12q̄21 d12q̄22

0 0 q̄11 q̄12

0 0 q̄21 q̄22

⎤⎥⎥⎥⎥⎦ . (4.12)
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More generally one can assume that the state s
(p)
k of each ion channel p has a

finite number of values Np (instead of just four states). If uk = p, the state s
(p)
k

of ion channel p evolves according to an Np-state homogeneous Markov chain with
transition probability matrix

A(p) = (a(p)
ij )i,j∈Np = P

(
s
(p)
k+1 = j | s(p)

k = i
)

(4.13)

if ion channel p is active at time k. The states of all the other (P − 1) ion channels
that are not activated are unaffected, i.e., s

(q)
k+1 = s

(q)
k , q �= p. To complete our

probabilistic formulation, assume the initial states of all ion channels on the chip
are initialized with prior distributions: s

(p)
0 ∼ x

(p)
0 where x

(p)
0 , are specified initial

distributions for p = 1, . . . , P .
The above formulation captures the essence of an activation controlled patch-

clamp chip—the channel activation scheduler dynamically decides which single ion
channel to activate at each time instant.

4.3.2 Patch-Clamp Amplifier and Hidden Markov Model Measurements

The state of the active ion channel s
(p)
k on the chip is not directly observed. Instead,

the output of the patch-clamp amplifier is the ion channel current i
(p)
k observed

in large amounts of thermal noise. This output is quantized to an M symbol
alphabet set y

(p)
k ∈ {O1, O2, . . . , OM}. The probabilistic relationship between the

observations y
(p)
k and the actual ion channel state s

(p)
k of the active ion channel p

is summarized by the (Np ×M) state likelihood matrix:

B(p) = (b(p)
im)i∈Np,m∈M, (4.14)

where b
(p)
im

�
= P (y(p)

k+1 = Om|s(p)
k+1 = i, uk = p) denotes the conditional probability

(symbol probability) of the observation symbol y
(p)
k+1 = Om when the actual state is

s
(p)
k+1 = i and the active ion channel is uk = p. Note that the above model allows for

the state likelihood probabilities (b(p)
im) to vary with p, i.e., to vary with the spatial

location of the ion channel on the patch-clamp chip, thus allowing for spatially
heterogeneous measurement statistics.

Let Yk = (y(u0)
1 , . . . , y

(uk−1)
k ) denote the observed history up to time k. Let

Uk = (u0, . . . , uk) denote the sequence of past decisions made by the ion channel
activation scheduler regarding which ion channels to activate from time 0 to time
k.

4.3.3 Ion Channel Activation Scheduler

The above probabilistic model for the ion channel, together with the noisy mea-
surements from the patch-clamp amplifier, constitute a well-known type of dynamic
Bayesian network called a hidden Markov model (HMM) (Ephraim and Merhav,
2002). The problem of state inference of a HMM, i.e., estimating the state s

(p)
k given
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(Yk, Uk), has been widely studied. (see e.g., Chung et al. (1991); Ephraim and Mer-
hav (2002)). In this chapter we address the deeper and more fundamental issue
of how the ion channel activation scheduler should dynamically decide which ion
channel to activate at each time instant in order to minimize a suitable cost func-
tion that encompasses all the ion channels. Such dynamic decision making based on
uncertainty (noisy channel current measurements) transcends standard sensor-level
HMM state inference, which is a well-studied problem (Chung et al., 1991).

The activation scheduler decides which ion channel to activate at time k,
based on the optimization of a discounted cost function which we now detail: The
instantaneous cost incurred at time k due to all the ion channels (both active and
inactive) is

Ck = −c0(uk) + c1(s
(uk)
k , uk) +

∑
p�=uk

r(s(p)
k , p), (4.15)

where −c0(uk)+c(s(uk)
k , uk) denotes the cost incurred by the active ion channel uk,

and
∑

p�=uk
r(s(p)

k , p) denotes the cost of remaining P − 1 inactive ion channels.
The three components in the above cost function 4.15, can be chosen by the
neurobiologist experimenter to optimize the information obtained from the patch-
clamp experiment. Here we present one possible choice of costs:
Ion channel quality of service (QoS): c0(p) denotes the quality of service of the
active ion channel p. The minus signs in equation 4.15 reflects the fact that the
lower the QoS the higher the cost and vice versa.
State information cost: The final outcome of the patch-clamp experiment is often
the estimate of the open-state level I. The accuracy of this estimate increases
linearly with the number of observations obtained in the open state (since the
covariance error of the estimate decreases linearly with the data length according
to the central limit theorem). Maximizing the accuracy I requires maximizing
the utilization of the patch-clamp chip, i.e., maximizing the expected number of
measurements made from ion channels that are in the open normal state. That
is, preference should be given to activating ion channels that are normal (i.e., not
desensitized) and that quickly switch to the open state compared to other ion
channels.
Desensitization cost of inactive channels: The instantaneous cost r(s(p)

k , p) in equa-
tion 4.15 incurred by each of the P−1 inactive ion channels p ∈ {1, 2, . . . , P}−{uk}
should be chosen so as to penalize desensitized channels.

Based on the observed history Yk = (y(u0)
1 , . . . , y

(uk−1)
k ), and the history of

decisions Uk−1 = (u0, . . . , uk−1), the scheduler needs to decide which ion channel
on the chip to activate at time k. The scheduler decides which ion channel to
activate at time k based on the stationary policy μ : (Yk, Uk−1) → uk. Here μ is a
function that maps the observation history Yk and past decisions Uk−1 to the choice
of which ion channel uk to activate at time k. Let U denote the class of admissible
stationary policies, i.e., U = {μ : uk = μ(Yk, Uk−1)}. The total expected discounted
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reward over an infinite time horizon is given by

Jμ = E

{ ∞∑
k=0

βkCk

}
, (4.16)

where Ck is defined in equation 4.15 and E {·} denotes mathematical expectation.
The aim of the scheduler is to determine the optimal stationary policy μ∗ ∈ U
which minimizes the cost in equation 4.16.infinite horizon

discounted cost
POMDP

The above problem of minimizing the infinite horizon discounted cost 4.16
of stochastic dynamical system 4.13 with noisy observations (equation 4.14) is a
partially observed Markov decision process (POMDP) problem. Developing numer-
ically efficient ion channel activation scheduling algorithms to minimize this cost is
the subject of the rest of this section.

4.3.4 Formulation of Activation Scheduling as a Multiarmed Bandit

The above stochastic control problem (eq. 4.16) is an infinite-horizon partially ob-
served Markov decision process with a multiarmed bandit structure which con-
siderably simplifies the solution. But first, as is standard with partially observed
stochastic control problems—we convert the partially observed multiarmed bandit
problem to a fully observed multiarmed bandit problem defined in terms of the
information state (Bertsekas, 1995a).

4.3.5 Information State Formulation

For each ion channel p, the information state at time k—which we will denote by
x

(p)
k (column vector of dimension Np)—is defined as the conditional filtered density

of the Markov chain state s
(p)
k given Y

(p)
k and Uk−1:information state

x
(p)
k (i)

�
= P

(
s
(p)
k = i |Yk, Uk−1

)
, i = 1, . . . ,Np. (4.17)

The information state can be computed recursively by the HMM state filter, which
is also known as the forward algorithm or Baum’s algorithm (James et al., 1996),
according to equation 4.18 below.

In terms of the information state formulation, the ion channel activation
scheduling problem described above can be viewed as the following dynamic
scheduling problem: Consider P parallel HMM state filters, one for each ion channel
on the chip. The pth HMM filter computes the state estimate (filtered density) x

(p)
k

of the pth ion channel, p ∈ {1, . . . , P}. At each time instant, only one of the P

ion channels is active, say ion channel p, resulting in an observation y
(p)
k+1. This is

processed by the pth HMM state filter, which updates its Bayesian estimate of the
ion channel’s state asHMM filter

x
(p)
k+1 =

B(p)(y(p)
k+1)A

(p)′x(p)
k

1′B(p)(y(p)
k+1)A

(p)′x(p)
k

if ion channel p is active, (4.18)
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where if y
(p)
k+1 = Om, then B(p)(m) = diag[b(p)

1m, . . . , b
(p)
Np,m] is the diagonal matrix

formed by the mth column of the observation matrix B(p) and 1 is an Np-
dimensional column unit vector (we use ′ to denote transpose).

The state estimates of the other P − 1 HMM state filters remain unaffected,
i.e., if ion channel q is inactive,

x
(q)
k+1 = x

(q)
k , q ∈ {1, . . . , P}, q �= p. (4.19)

Let X (p) denote the state space of information states x(p) for ion channels
p ∈ {1, 2, . . . , P}. That is, for all i ∈ {1, . . . ,Np}

X (p) =
{

x(p) ∈ RNp : 1′x(p) = 1, 0 < x(p)(i) < 1
}

. (4.20)

Note that X (p) is an (Np − 1)-dimensional simplex. Using the smoothing property
of conditional expectations, the cost function 4.16 can be rewritten in terms of the
information state as

Jμ = E

⎧⎨⎩
∞∑

k=0

βk

(
c′(uk)x(uk)

k +
∑

p�=uk

r′(p)x(p)
k

)⎫⎬⎭ (4.21)

where c(uk) denotes the Nuk
-dimensional reward vector [c(s(p)

k = 1, uk), . . . , c(s(p)
k =

Nuk
, uk)]′, and r(p) is the Nuk

-dimensional reward vector [r(s(p)
k = 1, p), . . . , c(s(p)

k =
Np, p)]′. The aim is to compute the optimal policy arg minμ∈U Jμ. In terms of equa-
tions 4.18 and 4.21, the multiarmed bandit problem reads thus: Design an optimal
dynamic scheduling policy to choose which ion channel to activate and hence which
HMM Bayesian state estimator to use at each time instant.

As it stands the POMDP problem of equations 4.18, 4.19, and 4.21 or equiva-
lently that of equations 4.16, 4.13, and 4.14 has a special structure:
(1) Only one Bayesian HMM state estimator operates according to 4.18 at each time
k, or equivalently, only one ion channel is active at a given time k. The remaining
P − 1 Bayesian estimates x

(q)
k remain frozen, or equivalently, the remaining P − 1

ion channels remain inactive.
(2) The active ion channel incurs a cost depending on its current state and QoS.
Since the state estimates of the inactive ion channels are frozen, the cost incurred
by them is a fixed constant depending on the state when they were last active.on-going multi-

armed bandit The above two properties imply that equations 4.18, 4.19, and 4.21 constitute
what Gittins (1989) terms as an ongoing multiarmed bandit. It turns out that by a
straightforward transformation an ongoing bandit can be formulated as a standard
multiarmed bandit.

It is well known that the multiarmed bandit problem has a rich structure
which results in the ion channel activation scheduling problem decoupling into P

independent optimization problems. Indeed, from the theory of multiarmed bandits
it follows that the optimal scheduling policy has an indexable rule (Whittle, 1980):
for each channel p there is a function γ(p)(x(p)

k ) called the Gittins index, which is
only a function of the ion channel p and its information state x

(p)
k , whereby the
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optimal ion channel activation policy at time k is to activate the ion channel with
the largest Gittins index, i.e.,

activate ion channel q where q = max
p∈{1,... ,P}

{
γ(p)(x(p)

k )
}

. (4.22)

A proof of this index rule for general multiarmed bandit problems is given by
Whittle (1980). Computing the Gittins index is a key requirement for devising
an optimal activation policy for the patch-clamp chip. We refer the reader to the
paper of Krishnamurthy (2004) for details on how the Gittins index is computed
and numerical examples of the performance of the algorithm.
Remarks: The indexable structure of the optimal ion channel activation policy
(eq. 4.22) is convenient for two reasons:
(1) Scalability: Since the Gittins index is computed for each ion channel indepen-
dently of every other ion channel (and this computation is off-line), the ion channel
activation problem is easily scalable in that we can handle several hundred ion
channels on a chip. In contrast, without taking the multiarmed bandit structure
into account, the POMDP has NP

p underlying states, making it computationally
impossible to solve—e.g., for P = 50 channels with Np = 2 states per channel,
there are 250 states!
(2) Suitability for heterogeneous ion channels: Notice that our formulation of the
ion channel dynamics allows for them to have different transition probabilities and
likelihood probabilities. Moreover, since the Gittins index of an ion channel does
not depend on other ion channels, we can meaningfully compare different types of
ion channels.

4.4 The Permeation Problem: Brownian Stochastic Dynamical Formulation

In the previous section we dealt with ion channels at a macroscopic level—both
in the spatial and time scales. The permeation problem considered in this and
the following two sections seeks to explain the working of an ion channel at an
Å(angstrom unit = 10−10m) spatial scale by studying the propagation of individual
ions through the ion channel at a femto second (10−15 timescale). This setup is
said to be at a mesoscopic scale since the individual ions (e.g., Na+ions) are of the
order of a few Åin radius and are comparable in radius to the ion channel. At this
mesoscopic level, point charge approximations and continuum electrostatics break
down. The discrete finite nature of each ion needs to be taken into consideration.
Also, failure of the mean field approximation in narrow channels implies that any
theory that aspires to relate channel structure to its function must treat ions
explicitly.gramicidin-A

For convenience we focus in this section primarily on gramicidin-A channels—
which are one of the simplest ion channels. Gramicidin-A is an antibiotic produced
by Bacillus brevis. It was one of the first antibiotics to be isolated in the 1940s
(Finkelstein, 1987, p. 130). In submicromolar concentrations it can increase the
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conductance of a bacterial cell membrane (which is a planar lipid bilayer membrane)
by more than seven orders of magnitude by the formation of cation selective
channels. As a result the bacterial cell is flooded and dies. This property of
dramatically increasing the conductance of a lipid bilayer membrane has recently
been exploited by Cornell et al. (1997) to devise gramicidin-A channel based
biosensors with extremely high gains.

The aim of this section and the following two sections is to develop a stochastic
dynamical formulation of the permeation problem that ultimately leads to estimat-
ing a potential of mean force (PMF) profile for an ion channel by optimizing the
fit between the simulated current and the experimentally observed current. In the
mesoscopic simulation of an ion channel, we propagate each individual ion using
Brownian dynamics (Langevin equation), and the force experienced by each ion is
a function of the PMF. As a result of the PMF and external applied potential to
the ion channel there is a drift of ions from outside to inside the cell via the ion
channel resulting in the simulated current.

Determining the PMF profile that optimizes the fit between the mesoscopic
simulated current and observed current yields useful information and insight into
how an ion channel works at a mesoscopic level. Determining the optimal PMF
profile is important for several reasons: First, it yields the effective charge density
in the peptides that form the ion channel. This charge density yields insight into
the crystal structure of the peptide. Second, for theoretical biophysicists, the PMF
profile yields information about the permeation dynamics including information
about where the ion is likely to be trapped (called binding sites), the mean velocity
of propagation of ions through the channel, and the average conductance of the ion
channel.

We refer the reader to Krishnamurthy and Chung (a,b) for complete details
of the Brownian dynamics algorithm and adaptively controlled Brownian dynamics
algorithms for estimating the PMF of ion channels. Also the tutorial paper by
Krishnamurthy and Chung (2005) and references therein give a detailed overview
of Brownian dynamics simulation for determining the structure of ion channels.

4.4.1 Levels of Abstraction for Modeling Ion Channels at the Nanoscale

The ultimate aim of theoretical biophysicists is to provide a comprehensive physical
description of biological ion channels. At the lowest level of abstraction is the ab
initio quantum mechanical approach, in which the interactions between the atoms
are determined from first-principles electronic structure calculations. Due to the ex-
tremely demanding nature of the computations, its applications are limited to very
small systems at present. A higher level of modeling abstraction is to use classicalmolecular dynam-

ics vs. Brownian
dynamics

molecular dynamics. Here, simulations are carried out using empirically-determined
pairwise interaction potentials between the atoms, via ordinary differential equa-
tions (Newton’s equation of motion). However, it is not computationally feasible
to simulate the ion channel long enough to see permeation of ions across a model
channel. For that purpose, one has to go up one further step in abstraction to
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stochastic dynamics, of which Brownian dynamics (BD) is the simplest form, where
water molecules that form the bulk of the system in ion channels are stochastically
averaged and only the ions themselves are explicitly simulated. Thus, instead of
considering the dynamics of individual water molecules, one considers their average
effect as a random force or Brownian motion on the ions. This treatment of water
molecules can be viewed as a functional central limit theorem approximation. In
BD, it is further assumed that the protein is rigid. Thus, in BD, the motion of
each individual ion is modeled as the evolution of a stochastic differential equation,
known as the Langevin equation.

A still higher level of abstraction is the Poisson-Nernst-Planck (PNP) theory,
which is based on the continuum hypothesis of electrostatics and the mean-field
approximation. Here, ions are treated not as discrete entities but as continuous
charge densities that represent the space-time average of the microscopic motion of
ions. For narrow ion channels—where continuum electrostatics does not hold—the
PNP theory does not adequately explain ion permeation.
Remark: Bio-Nanotube Ion Channel vs. Carbon Nanotube There has recently been
much work in the nanotechnology literature on carbon nanotubes and their use
in field effect transistors (FETs). BD ion channel models are more complex thanion channel vs.

carbon nanotube that of a carbon nanotube. Biological ion channels have radii of between 2 Åand 6
Å. In these narrow conduits formed by the protein wall, the force impinging on a
permeating ion from induced surface charges on the water-protein interface becomes
a significant factor. This force becomes insignificant in carbon nanotubes used in
FETs with radius of approximately 100 Å, which is large compared to the debye
length of electrons or holes in Si. Thus the key difference is that while in carbon
nanotubes point charge approximations and continuum electrostatics holds, in ion
channels the discrete finite nature of each ion needs to be considered.

4.4.2 Brownian Dynamics (BD) Simulation Setup

Figure 4.4 illustrates the schematic setup of Brownian dynamics simulation for
permeation of ions through an ion channel. The aim is to obtain structural infor-
mation, i.e., determine channel geometry and charges in the protein that forms the
ion channel.

Figure 4.4 shows a schematic illustration of a BD simulation assembly for a
particular example of an antibiotic ion channel called a gramicidin-Aion channel.
The ion channel is placed at the center of the assembly. The atoms forming the ion
channel are represented as a homogeneous medium with a dielectric constant of 2.
Then, a large reservoir with a fixed number of positive ions (e.g., K+ or Na+ions)
and negative ions (e.g., Cl−ions) is attached at each end of the ion channel. The
electrolyte in the two reservoirs comprises 55 M (moles) of H2O, and 150 mM
concentrations of Na+and Cl−ions.
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Figure 4.4 Gramicidin-Aion channel model Gramicidin-Acomprising 2N ions
within two cylindrical reservoirs R1, R2, connected by the ion channel C.



98 Sensor Adaptive Signal Processing of Biological Nanotubes

4.4.3 Mesoscopic Permeation Model of Ion Channel

Our permeation model for the ion channel comprises 2 cylindrical reservoirs R1

and R2 connected by the ion channel C as depicted in fig. 4.4, in which 2N ions
are inserted (N denotes a positive integer). In fig. 4.4, as an example we have
chosen a gramicidin-Aantibiotic ion channel—although the results below hold for
any ion channel. These 2N ions comprise (1) N positively charged ions indexed
by i = 1, 2, . . . , N . Of these, N/2 ions indexed by i = 1, 2, . . . N/2 are in R1, and
N/2 ions indexed by i = N/2 + 1, . . . , 2N are in R2. Each Na+ion has charge q+,
mass m(i) = m+ = 3.8 × 10−26 kg and frictional coefficient m+γ+, and radius r+;
and (2) N negatively charge ions indexed by i = N + 1, N + 2, . . . , 2N . Of these,
N/2 ions indexed by i = N = 1, . . . 3N/2 are placed in R1 and the remaining N/2
ions indexed by i = 3N/2 + 1, . . . , 2N are placed in R2. Each negative ion has
charge q(i) = q−, mass m(i) = m−, frictional coefficient m−γ−, and radius r−.
R = R1 ∪R2 ∪C denotes the set comprised of the interior of the reservoirs and ion
channel.

Let t ≥ 0 denote continuous time. Each ion i, moves in three-dimensional
space over time. Let x

(i)
t = (x(i)

t , y
(i)
t , z

(i)
t )′ ∈ R and v

(i)
t ∈ R3 denote the po-

sition and velocity of ion i and time t. The three components x
(i)
t , y

(i)
t , z

(i)
t of

x
(i)
t ∈ R are, respectively, the x, y, and z position coordinates. An external

potential Φext
λ (x) is applied along the z-axis of fig. 4.4, i.e., with x = (x, y, z),

Φext
λ (x) = λz, λ ∈ Λ. Here Λ denotes a finite set of applied potentials. Typ-

ically Λ = {−200,−180, . . . , 0, . . . , 180, 200} mV/m. Due to this applied ex-
ternal potential, the Na+ions drift from reservoir R1 to R2 via the ion chan-
nel C in fig. 4.4. Let Xt =

(
x

(1)′
t ,x

(2)′
t ,x

(3)′
t , . . . ,x

(2N)′
t

)′ ∈ R2N and Vt =(
v

(1)′
t ,v

(2)′
t ,v

(3)′
t , . . . ,v

(2N)′
t

)′ ∈ R6N denote the velocities of all the 2N ions. The
position and velocity of each individual ion evolves according to the following
continuous-time stochastic dynamical system:

x
(i)
t = x

(i)
0 +

∫ t

0
v(i)

s ds, (4.23)

m+v
(i)
t = m+v

(i)
0 −

∫ t

0
m+γ+(X(i)

s )v(i)
s ds +

∫ t

0
F

(i)
θ,λ(Xs)ds + b+w

(i)
t ,

i ∈∈ {1, 2, . . . , N}, (4.24)

m−v
(i)
t = m−v

(i)
0 −

∫ t

0
m−γ−(X(i)

s )v(i)
s ds +

∫ t

0
F

(i)
θ,λ(Xs)ds + b−w

(i)
t ,

i ∈ {N + 1, N + 2, . . . , 2N}. (4.25)

Equations 4.24 and 4.25 constitute the well-known Langevin equations and describeLangevin
equation the evolution of the velocity v

(i)
t of ion i as a stochastic dynamical system. The

random process {w(i)
t } denotes a three-dimensional Brownian motion, which is

component-wise independent. The constants b+ and b− are, respectively, b+2 =
2m+γ+kT , b−2 = 2m−γ−kT . Finally, the noise processes {w(i)

t } and {w(j)
t }, that

drive any two different ions, j �= i, are assumed to be statistically independent.
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In equations 4.24 and 4.25, F
(i)
θ,λ(Xt) = −q(i)∇x(i)

t
Φ(i)

θ,λ(Xt) represents the

systematic force acting on ion i, where the scalar-valued process Φ(i)
θ,λ(Xt) is the

total electric potential experienced by ion i given the position Xt of the 2N ions.
The subscript λ is the applied external potential. The subscript θ is a parameter
that characterizes the potential of mean force (PMF) profile, which is an important
component of Φ(i)

θ,λ(Xt).
It is convenient to represent the above system (equations 4.23, 4.24, and

4.25) as a vector stochastic differential equation. Define the following vector-valued
variables:

Vt =

[
V+

t

V−
t

]
, V+

t =

⎡⎢⎢⎣
v

(1)
t

...

v
(N)
t

⎤⎥⎥⎦ , V−
t =

⎡⎢⎢⎣
v

(N+1)
t

...

v
(2N)
t

⎤⎥⎥⎦ , wt =

⎡⎢⎢⎢⎢⎢⎣
02N×1

w
(1)
t

...

w
(2N)
t

⎤⎥⎥⎥⎥⎥⎦ , ζt =

⎡⎢⎢⎣
Xt

V+
t

V−
t

⎤⎥⎥⎦ ,

F+
θ,λ(Xt) =

⎡⎢⎢⎣
F

(1)
θ,λ(Xt)

...

F
(N)
θ,λ (Xt)

⎤⎥⎥⎦ , F−
θ,λ(Xt) =

⎡⎢⎢⎣
F

(N+1)
θ,λ (Xt)

...

F
(2N)
θ,λ (Xt)

⎤⎥⎥⎦ ,Fθ,λ(Xt) =

[
1

m+ F+
θ,λ(Xt)

1
m− F−

θ,λ(Xt)

]
.

(4.26)

Then equations 4.23, 4.24, and 4.25 can be written compactly as

dζt = Aζtdt + fθ,λ(ζt)dt + Σ1/2dwt, (4.27)

where Σ1/2 = block diag(06N×6N , b+/m+I3N×3N , b−/m−I3N×3N ),

A =

⎡⎢⎢⎣
06N×6N I6N×6N

06N×6N
−γ+I3N×3N 03N×3N

0N×N −γ−IN×N

⎤⎥⎥⎦ , fθ,λ(ζt) =

[
06N×1

Fθ,λ(Xt)

]
. (4.28)

We will subsequently refer to equations 4.27 and 4.28 as the Brownian dynamics
equations for the ion channel.
Remark: The BD approach is a stochastic averaging theory framework that models
the average effect of water molecules:
1. The friction term mγv

(i)
t dt captures the average effect of the ions driven by

the applied external electrical field bumping into the water molecules every few
femtoseconds. The frictional coefficient is given from Einstein’s relation.
2. The Brownian motion term w

(i)
t also captures the effect of the random motion

of ions bumping into water molecules and is given from the fluctuation-dissipation

theorem.
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4.4.4 Systematic Force Acting on Ions

As mentioned after equation 4.25, the systematic force experienced by ion i is

F
(i)
θ,λ(Xt) = −q(i)∇x(i)

t
Φ(i)

θ,λ(Xt),

where the scalar valued process Φ(i)
θ,λ(Xt) denotes the total electric potential expe-

rienced by ion i given the position Xt of all the 2N ions. We now give a detailed
formulation of these systematic forces.

The potential Φ(i)
θ,λ(Xt) experienced by each ion i comprises the following five

components:

Φ(i)
θ,λ(Xt) = Uθ(x

(i)
t ) + Φext

λ (x(i)
t ) + ΦIW (x(i)

t ) + ΦC,i(Xt) + ΦSR,i(Xt). (4.29)

Just as Φ(i)
θ,λ(Xt) is decomposed into five terms, we can similarly decompose the

force F
(i)
θ,λ(Xt) = −q∇x(i)

t
Φ(i)

θ,λ(Xt) experienced by ion i as the superposition (vector
sum) of five force terms, where each force term is due to the corresponding potential
in equation 4.29—however, for notational simplicity we describe the scalar-valued
potentials rather than the vector-valued forces.

Note that the first three terms in equation 4.29, namely Uθ(x
(i)
t ), Φext

λ (x(i)
t ),

ΦIW (x(i)
t ), depend only on the position x

(i)
t of ion i, whereas the last two terms in

equation 4.29, ΦC,i(Xt), ΦSR,i(Xt), depend on the distance of ion i to all the other
ions, i.e., the position Xt of all the ions. The five components in equation 4.29 are
now defined.

PMF
Potential of mean force (PMF), denoted Uθ(x

(i)
t ) in equation 4.29, comprises

electric forces acting on ion i when it is in or near the ion channel (nanotube C in
fig. 4.4). The PMF Uθ is a smooth function of the ion position x

(i)
t and depends

on the structure of the ion channel. Therefore, estimating Uθ(·) yields structural
information about the ion channel. In section 4.6, we outline an adaptive Brownian
dynamics approach to estimate the PMF Uθ(·). The PMF Uθ originates from two
different sources; see Krishnamurthy and Chung (2005) for details. First, there are
fixed charges in the channel protein, and the electric field emanating from them
renders the pore attactive to cations and repulsive to anions, or vice versa. Some of
the amino acids forming the ion channels carry the unit or partial electronic charges.
For example, glutamate and aspartate are acidic amino acids, being negatively
charged at pH 6.0, whereas lysine, arginine, and histidine are basic amino acids,
being positively charged at pH 6.0. Second, when any of the ions in the assembly
comes near the protein wall, it induces surface charges of the same polarity at the
water-protein interface. This is known as the induced surface charge.
External applied potential: In the vicinity of the cell, there is a strong electric field
resulting from the membrane potential, which is generated by diffuse, unpaired,
ionic clouds on each side of the membrane. Typically, this resting potential across a
cell membrane, whose thickness is about 50 Å, is 70 mV, the cell interior negative
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with respect to the extracellular space. In simulations, this field is mimicked by
applying a uniform electric field across the channel. This is equivalent to placing a
pair of large plates far away from the channel and applying a potential difference
between the two plates. Because the space between the electrodes is filled with
electrolyte solutions, each reservoir is in isopotential. That is, the average potential
anywhere in the reservoir is identical to the applied potential at the voltage place
on that side. For ion i at position x

(i)
t = x = (x, y, z), Φext

λ (x) = λz denotes the
potential on ion i due to the applied external field. The electrical field acting on
each ion due to the applied potential is therefore −∇x(i)

t
Φext

λ (x) = (0, 0, λ) V/m
at all x ∈ R. It is this applied external field that causes a drift of ions from the
reservoir R1 to R2 via the ion channel C. As a result of this drift of ions within the
electrolyte in the two reservoirs, eventually the measured potential drop across the
reservoirs is zero and all the potential drop occurs across the ion channel.
Inter-ion Coulomb potential: In equation 4.29, ΦC,i(Xt) denotes the Coulomb
interaction between ion i and all the other ions

ΦC,i(Xt) =
1

4πε0

2N∑
j=1,j �=i

q(j)

εw‖x(i)
t − x

(j)
t ‖

. (4.30)

Ion-wall interaction potential: The ion-wall potential ΦIW , also called the (σ/r)9,
potential ensures that the position x

(i)
t of all ions i = 1, . . . , 2N lie in Ro. With

x
(i)
t = (x(i)

t , y
(i)
t , z

(i)
t )′, it is modeled as

ΦIW (x(i)
t ) =

F0

9
(r(i) + rw)9[

rc + rw −
(√

(x(i)
t

2
+ y

(i)
t

2
)]9 , (4.31)

where for positive ions r(i) = r+ (radius of Na+atom) and for negative ions r(i) = r−

(radius of Cl−atom); rw = 1.4 Åis the radius of atoms making up the wall; rc

denotes the radius of the ion channel, and F0 = 2 × 10−10N, which is estimated
from the ST2 water model used in molecular dynamics (Stillinger and Rahman,
1974). This ion-wall potential results in short-range forces that are only significant
when the ion is close to the wall of the reservoirs R1 and R2 or anywhere in the
ion channel C (since the ion channel is comparable in radius to the ions).
Short-range potential: Finally, at short ranges, the Coulomb interaction between
two ions is modified by adding a potential ΦSR,i(Xt), which replicates the effects
of the overlap of electron clouds. Thus,

ΦSR,i(Xt) =
F0

9

2N∑
j=1,j �=i

(r(i) + r(j))

‖x(i)
t − x

(j)
t ‖9

. (4.32)

Similar to the ion-wall potential, ΦSR,i is significant only when ion i gets very
close to another ion. It ensures that two opposite-charge ions attracted by inter-ion
Coulomb forces 4.30 cannot collide and annihilate each other. Molecular dynamics
simulations show that the hydration forces between two ions add further structure
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to the 1/|x(i)
t − x

(j)
t ‖9 repulsive potential due to the overlap of electron clouds

in the form of damped oscillations (Guàrdia et al., 1991a,b). Corry et al. (2001)
incorporated the effect of the hydration forces in equation 4.32 in such a way that
the maxima of the radial distribution functions for Na+-Na+, Na+-Cl−, and Cl−-
Cl− would correspond to the values obtained experimentally.

4.5 Ion Permeation: Probabilistic Characterization and Brownian Dynamics

(BD) Algorithm

Having given a complete description of the dynamics of individual ions that perme-
ate through the ion channel, in this section we give a probabilistic characterization
of the ion channel current. In particular, we show that the mean ion channel cur-
rent satisfies a boundary-valued partial differential equation. We then show that
the Brownian dynamics (BD) simulation algorithm can be viewed as a randomized
multiparticle-based algorithm for solving the boundary-valued partial differential
equation to estimate the ion channel current.

4.5.1 Probabilistic Characterization of Ion Channel Current in Terms

of Mean Passage Time

The aim of this subsection is to give a probabilistic characterization of the ion
channel current in terms of the mean first passage time of the diffusion process
(see equation 4.27). This characterization also shows that the Brownian dynamical
system 4.27 has a well-defined, unique stationary distribution.

A key requirement in any mathematical construction is that the concentration
of ions in each reservoir R1 and R2 remains approximately constant and equal to the
physiological concentration. The following probabilistic construction ensures that
the concentration of ions in reservoir R1 and R2 remain approximately constant.

Step 1: The 2N ions in the system are initialized as described above, and the
ion channel C is closed. The system evolves and attains stationarity. Theorem 4.2
below shows that the probability density function of the 2N particles converges
geometrically fast to a unique stationary distribution. Theorem 4.3 shows that in
the stationary regime, all positive ions in R1 have the same stationary distribution
and so are statistically indistinguishable (similarly for R2).

Step 2: After stationarity is achieved, the ion channel is opened. The ions evolve
according to equation 4.27. As soon as an ion from R1 crosses the ion channel C and
enters R2, the experiment is stopped. Similarly if an ion from R2 cross C and enters
R1, the experiment is stopped. Theorem 4.3 gives partial differential equations for
the mean minimum time an ion in R1 takes to cross the ion channel and reach R2

and establishes that this time is finite. From this a theoretical expression for the
mean ion channel current is constructed (eq. 4.42).
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Note that if the system was allowed to evolve for an infinite time with the
channel open, then eventually, due to the external applied potential, more ions
would be in R2 than R1. This would violate the condition that the concentration
of particles in R1 and R2 remain constant. In the BD simulation algorithm 4.2
presented later in this chapter, we use the above construction to restart the
simulation each time an ion crosses the channel—this leads to a regenerative process
that is easy to analyze.

Let

π
(θ,λ)
t (X,V) = p(θ,λ)(x(1)

t ,x
(2)
t , . . . ,x

(2N)
t ,v

(1)
t ,v

(2)
t , . . . ,v

(2N)
t

)
denote the joint probability density function (pdf) of the position and velocity of
all the 2N ions at time t. We explicitly denote the θ, λ dependence of the pdfs since
they depend on the PMF Uθ and applied external potential λ. Then the joint pdf
π

(θ,λ)
t (X) = p(θ,λ)

(
x

(1)
t ,x

(2)
t , . . . ,x

(2N)
t

)
of the positions of all 2N ions at time t is

π
(θ,λ)
t (X) =

∫
R6N

π
(θ,λ)
t (X,V)dV.

The following result, proved in Krishnamurthy and Chung (a), states that for
the above stochastic dynamical system, π

(θ,λ)
t (X,V) converges exponentially fast

to its stationary (invariant) distribution π
(θ,λ)
∞ (X,V).

Theorem 4.2
For the Brownian dynamics system (4.27, 4.28), with ζ = (X,V), there exists a
unique stationary distribution π

(θ,λ)
∞ (ζ), and constants K > 0 and 0 < ρ < 1, such

that

sup
ζ∈R2N ×R6N

|π(θ,λ)
t (ζ) − π(θ,λ)

∞ (ζ)| ≤ KV(ζ)ρt. (4.33)

Here V(ζ) > 1 is an arbitrary measurable function on R2N × R6N .

The above theorem on the exponential ergodicity of ζt = (Xt,Vt) has two con-
sequences that we will subsequently use. First, it implies that as the system evolves,
the initial coordinates x

(i)
0 , v

(i)
0 of all the 2N ions are forgotten exponentially fast.

This allows us to efficiently conduct BD simulations in section 4.5.2 below. Second,
the exponential ergodicity also implies that a strong law of large numbers holds—
this will be used below to formulate a stochastic optimization problem in terms of
the stationary measure π

(θ,λ)
∞ for computing the potential mean force.

Notation is as follows: For ζ = (ζ(1), . . . ζ(4N))′, define

∇ζ =
(

∂

∂ζ(1) ,
∂

∂ζ(2) , . . . ,
∂

∂ζ(4N)

)′
.
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For a vector field fθ,λ(ζ) =
[
f (1)(ζ) f (2)(ζ) · · · f (4N)(ζ)

]′
defined on R4N , define

the divergence operator

div (fθ,λ) =
∂f (1)

∂ζ(1) +
∂f (2)

∂ζ(2) + · · · + ∂f (4N)

∂ζ(4N) .

For the stochastic dynamical system 4.27, comprising 2N ions, define the
backward elliptic operator (infinitesimal generator) L and its adjoint L∗ for any
test function φ(ζ) as

L(φ) =
1
2
Tr[Σ∇2

ζφ(ζ)] + (fθ,λ(ζ) + Aζ)′ ∇ζφ(ζ), (4.34)

L∗(φ) =
1
2
Tr
[
∇2

ζ(Σφ(ζ))
]
− div[(Aζ + fθ,λ(ζ))φ(ζ)].

Here, fθ,λ and Σ are defined in equation 4.28.
It is well known that the probability density function π

(θ,λ)
t (·) of ζt = (X′

t,V
′
t)

′

satisfies the Fokker-Planck equation (Wong and Hajek, 1985):

dπ
(θ,λ)
t

dt
= L∗π(θ,λ)

t . (4.35)

Also the stationary probability density function π
(θ,λ)
∞ (·) satisfiesFokker-Planck

equation
L∗(π(θ,λ)

∞ ) = 0,
∫

R6N

∫
R2N

π(θ,λ)
∞ (X,V)dX dV = 1. (4.36)

We next show that once stationarity has been achieved, the N positive ions
behave statistically identically, i.e., each ion has the same stationary marginal
distribution. Define the stationary marginal density π

(θ,λ)
∞ (x(i),v(i)) of ion i as

π(θ,λ)
∞ (x(i),v(i)) =

∫
R6N−3

∫
R2N−1

π(θ,λ)
∞ (X,V)

2N∏
j=1,j �=i

dx(j)dv(j). (4.37)

The following result states that the ions are statistically indistinguishable—see
the paper of Krishnamurthy and Chung (a) for proof.

Theorem 4.3
Assuming that the ion channel C is closed, the stationary marginal densities for the
positive ions in R1 are identical:

π(θ,λ),R1∞
�
= π(θ,λ)

∞ (x(1),v(1)) = π(θ,λ)
∞ (x(2),v(2)) = · · · = π(θ,λ)

∞ (x(N),v(N/2)).

Similarly, the stationary marginal densities for the positive ions in R2 are identical:

π(θ,λ),R2∞
�
= π(θ,λ)

∞ (x(N/2+1),v(N/2+1)) = π(θ,λ)
∞ (x(N/2+2),v(N/2+2))

= · · · = π(θ,λ)
∞ (x(N),v(N)). (4.38)

Theorem 4.3 is not surprising: equations 4.23, 4.24, and 4.25 are symmetric in
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i, therefore intuitively one would expect that once steady state as been attained, all
the positive ions behave identically—similarly with the negative ions. Due to above
result, in our probabilistic formulation below, once the system has attained steady
state, any positive ion is representative of all the N positive ions, and similarly for
the negative ions.

Assume that the system 4.27 comprising 2N ions has attained stationarity with
the ion channel C closed. Then the ion channel is opened so that ions can diffuse
into it. Let τ

(θ,λ)
R1,R2

denote the mean first-passage time for any of the N/2 Na+ions
in R1 to travel to R2 via the gramicidin-Achannel C, and τ

(θ,λ)
R2,R1

denote the mean
first-passage time for any of the N/2 Na+ions in R2 to travel to R1:mean first-

passage time
τ

(θ,λ)
R1,R2

= E {tβ} where tβ
�
= inf

{
t : max

(
z
(1)
t , z

(2)
t , . . . , z

(N/2)
t

)
≥ β

}
,

τ
(θ,λ)
R2,R1

= E {tα} where tα
�
= inf

{
t : min

(
z
(N/2+1)
t , z

(N/2+2)
t , . . . , z

(2N)
t

)
≤ α

}
.

(4.39)

Note that for ion channels such as gramicidin-A, only positive Na+ions flow through
the channel to cause the channel current—so we do not need to consider the mean
first-passage times of the Cl−ions. In order to give a partial differential equation
for τ

(θ,λ)
R1,R2

and τ
(θ,λ)
R2,R1

, it is convenient to define the closed sets

P2 =
{

ζ : {z(1) ≥ β} ∪ {z(2) ≥ β} ∪ · · · ∪ {z(N/2) ≥ β}
}

,

P1 =
{

ζ : {z(N/2+1) ≤ α} ∪ {z(N/2+2) ≤ α} ∪ · · · ∪ {z(2N) ≤ α}
}

. (4.40)

Then it is clear that ζt ∈ P2 is equivalent to max
(
z
(1)
t , z

(2)
t , . . . , z

(N/2)
t

)
≥ β

since either expression implies that at least one ion has crossed from R1 to R2.
Similarly ζt ∈ P1 is equivalent to min

(
z
(N/2+1)
t , z

(N/2+2)
t , . . . , z

(2N)
t

)
≤ α. Thus

tβ and tα defined in system 4.39 can be expressed as tβ = inf{t : ζt ∈ P2},
tα = inf{t : ζt ∈ P1}. Hence system 4.39 is equivalent to

τ
(θ,λ)
R1,R2

= E {inf{t : ζt ∈ P2}} , τ
(θ,λ)
R2,R1

= E {inf{t : ζt ∈ P1}} . (4.41)

In a gramicidin-Achannel, typically τ
(θ,λ)
R2,R1

is much larger compared to τ
(θ,λ)
R1,R2

.
In terms of the mean first-passage times τ

(θ,λ)
R1,R2

, τ
(θ,λ)
R2,R1

defined in equations
4.39 and 4.41, the mean current flowing from R1 via the gramicidin-Aion channel
C into R2 is defined as

I(θ,λ) = q+

(
1

τ
(θ,λ)
R1,R2

− 1

τ
(θ,λ)
R2,R1

)
. (4.42)

The following result adapted from (Gihman and Skorohod, 1972, p. 306) shows
that τ

(θ,λ)
R1,R2

, τ
(θ,λ)
R2,R1

satisfy a boundary-valued partial differential equation.
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Theorem 4.4
The mean first-passage times τ

(θ,λ)
R1,R2

and τ
(θ,λ)
R2,R1

in 4.42 are obtained as

τ
(θ,λ)
R1,R2

=
∫

ΞR1

τ
(θ,λ)
R1,R2

(ζ)π(θ,λ)
∞ (ζ)dζ, (4.43)

τ
(θ,λ)
R2,R1

=
∫

ΞR2

τ
(θ,λ)
R2,R1

(ζ)π(θ,λ)
∞ (ζ)dζ, (4.44)

where

τ
(θ,λ)
R1,R2

(ζ)E {inf{t : ζt ∈ P2|ζ0 = ζ}} , (4.45)

τ
(θ,λ)
R2,R1

(ζ)E {inf{t : ζt ∈ P1|ζ0 = ζ}} . (4.46)

Here τ
(θ,λ)
R1,R2

(ζ) and τ
(θ,λ)
R2,R1

(ζ) satisfy the following boundary-valued partial differ-
ential equationsboundary-valued

PDE for mean
first passage time L(τ (θ,λ)

R1,R2
(ζ)) = −1 ζ �∈ P2, τ

(θ,λ)
R1,R2

(ζ) = 0 ζ ∈ P2,

L(τ (θ,λ)
R2,R1

(ζ)) = −1 ζ �∈ P1, τ
(θ,λ)
R2,R1

(ζ) = 0 ζ ∈ P1, (4.47)

where L denotes the backward operator defined in equation 4.34. Furthermore,
τ

(θ,λ)
R1,R2

and τ
(θ,λ)
R2,R1

are finite.

The proof of the equations 4.47 directly follows from corollary 1, p. 306 in
Gihman and Skorohod (1972), which shows that the mean first-passage time from
any point ζ to a closed set P2 satisfies equations 4.47. The proof that τ

(θ,λ)
R1,R2

and
τ

(θ,λ)
R2,R1

are finite follows directly from p. 145 of Friedman (1975).
Remark: Equation 4.42 specifies the mean current as the charge per mean time it
takes for an ion to cross the ion channel. Instead of equation 4.42, an alternative
definition of the mean current is the expected rate of charge across the ion channel,
i.e.,

Ĩ(θ, λ) = q+
(
μ

(θ,λ)
R1,R2

− μ
(θ,λ)
R2,R1

)
, (4.48)

where with tα and tβ defined in equation 4.39, the mean rates μ
(θ,λ)
R1,R2

and μ
(θ,λ)
R2,R1

are defined as

μ
(θ,λ)
R1,R2

�
= E

{
1
tβ

}
, μ

(θ,λ)
R2,R1

�
= E

{
1
tα

}
. (4.49)

It is important to note that the two definitions of current—namely I(θ,λ) in 4.42
and Ĩ(θ, λ) in 4.48 are not equivalent, since E {1/tβ} �= 1/E {tβ}. Similar to the
proof of theorem 4.4, partial differential equations can be obtained for μ

(θ,λ)
R1,R2

and
μ

(θ,λ)
R2,R1

—however, the resulting boundary conditions are much more complex than
equations 4.47.
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4.5.2 Brownian Dynamics Simulation for Estimation of Ion Channel

Current

It is not possible to obtain explicit closed-form expressions for the mean first passage
times τ

(θ,λ)
R2,R1

and τ
(θ,λ)
R2,R1

and hence the current I(θ,λ) in equation 4.42. The aim of
BD simulation is to obtain estimates of these quantities by directly simulating
the stochastic dynamical system 4.27. In this subsection we show that the current
estimates Î(θ,λ)(L) (defined below) obtained from an L-iteration BD simulation are
statistically consistent, i.e., limL→∞ Î(θ,λ)(L) = I(θ,λ) almost surely.

Due to the applied external potential Φext
λ (see equation 4.29), ions drift from

reservoir R1 via the ion channel C to the reservoir R2 thus generating an ion channel
current. In order to construct an estimate for the current flowing from R1 to R2

in the BD simulation, we need to count the number of upcrossings of ions (i.e., the
number of times ions cross from R1 to R2 across the region C) and downcrossings
(i.e., the number of times ions cross from R2 to R1 across the region C). Recall
from fig. 4.3 that z = α = −12.5Å denotes the boundary between R1 and C, and
z = β = 12.5Å denotes the boundary between R2 and C.

Time Discretization of Ion Dynamics To implement the BD simulation
algorithm described below on a digital computer, it is necessary to discretize
the continuous-time dynamics (see e.g. 4.27) of the 2N ions. The BD simulation
algorithm typically uses a sampling interval of Δ = 10−15, i.e., 1 femtosecond for
this time discretization, and propagates the 2N ions over a total time period of
T = 10−4 seconds. The time discretization proceeds as follows: Consider a regular
partition 0 = t0 < t1 < · · · < tk−1 < tk < · · · < T with discretization interval
Δ = tk − tk−1 = 10−15 seconds. There are several possible methods for time
discretization of the stochastic differential equation 4.27; see Kloeden and Platen
(1992) for a detailed exposition. Here we briefly present a zero-order hold and first-
order hold approximation. The first-order hold approximation was derived by van
Gunsteren et al. (1981).

It is well known (Wong and Hajek, 1985) that over the time interval [tk, tk+1),
the solution of equation 4.27 satisfies

ζtk+1 = eAΔζtk
+
∫ tk+1

tk

eA(tk+1−τ)fθ,λ(ζτ )dτ +
∫ tk+1

tk

eA(tk+1−τ)Σ1/2dwτ . (4.50)

In the zero-order hold approximation, fθ,λ(ζτ ) is assumed to be approximately
constant over the short interval [tk, tk+1) and is set to the constant fθ,λ(ζtk

) in
equation 4.50. This yields

ζtk+1 = eAΔζtk
+
∫ tk+1

tk

eA(tk+1−τ)fθ,λ(ζtk
)dτ +

∫ tk+1

tk

eA(tk+1−τ)Σ1/2dwτ . (4.51)

In the first-order hold, the following approximation is used in equation 4.50:

fθ,λ(ζτ ) ≈ f(ζtk
) + (τ − tk)

∂fθ,λ(ζt)
∂t

.
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In van Gunsteren et al. (1981), the derivative above is approximated by

∂fθ,λ(ζt)
∂t

≈
fθ,λ(ζtk

) − fθ,λ(ζtk−1)
Δ

.

Thus the first-order hold approximation of van Gunsteren et al. (1981) yields

ζtk+1 = eAΔζtk
+
∫ tk+1

tk

eA(tk+1−τ)fθ,λ(ζtk
)dτ

+
∫ tk+1

tk

eA(tk+1−τ)(τ − tk)
fθ,λ(ζtk

) − fθ,λ(ζtk−1)
Δ

dτ +
∫ tk+1

tk

eA(tk+1−τ)Σ1/2dwτ .

(4.52)

Let k = 0, 1, . . . denote discrete time where k corresponds to time tk. Note
that the last integral above is merely a discrete-time Gauss-Markov process, which
we will denote as w

(d)
k . Moreover, since the first block element of w in (4.26) is 0,

w
(d)
k =

[
06N×1

w̄
(d)
k

]
. (4.53)

where the 6N dimensional vector w̄
(d)
k denotes the nonzero components of w

(d)
k .

We now elaborate on the zero-order hold model. Next, due to the simple
structure of A in equation 4.28, the matrix exponentials

Γ
�
= eAΔ, B

�
=
∫ tk+1

tk

eA(tk+1−τ)dτ (4.54)

in equation 4.50 can be explicitly computed as

Γ = eAΔ =

[
I6N×6N L

06N×6N eDΔ

]
, B =

∫ tk+1

tk

eA(tk+1−τ)dτ =

[
I6N×6N L

06N×6N eDΔ

]

where D =

[
−γ+I3N×3N 03N×3N

03N×3N −γ−I3N×3N

]
, L = D−1 (eDΔ − I

)
. (4.55)

Then the above update for ζtk+1 in discrete-time notation reads:

ζ
(d)
k+1 = Γζ

(d)
k + Bfθ,λ(ζ(d)

k ) + w
(d)
k . (4.56)

Expanding this out in terms of Xk and Vk, we have the following discrete time
dynamics for the positions and velocities of the 2N ions:

Xk+1 = Xk + LVk + D−1(L − ΔI)Fθ,λ(Xk) (4.57)

Vk+1 = eDΔVk + LFθ,λ(Xk) + w̄
(d)
k , (4.58)

where w̄
(d)
k is a 6N dimensional discrete-time Gauss Markov process.

Brownian Dynamics Simulation Algorithm In the BD simulation Algo-
rithm 4.2 below, we use the following notation:
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The algorithm runs for L iterations where L is user specified. Each iteration l,
l = 1, 2, . . . , L, runs for a random number of discrete-time steps until an ion crosses
the channel. We denote these random times as τ̂

(l)
R1,R2

if the ion has crossed from
R1 to R2 and τ̂

(l)
R2,R1

if the ion has crossed from R2 to R1. Thus

τ̂
(l)
R1,R2

= min{k : ζ
(d)
k ∈ P2}, τ̂

(l)
R2,R1

= min{k : ζ
(d)
k ∈ P1}.

The positive ions {1, 2, . . . , N/2} are in R1 at steady state π
(θ,λ)
∞ , and the positive

ions {N/2 + 1, . . . , 2N} are in R2 at steady state.
LR1,R2 is a counter that counts how many Na+ions have crossed from R1 to R2,
and LR2,R1 counts how many Na+ions have crossed from R2 to R1. Note that
LR1,R2 + LR2,R1 = L. We only consider passage of positive Na+ions i = 1, . . . , N

across the ion channel since in a gramicidin-Achannel the ion channel current is
caused only by Na+ions.

Algorithm 4.2
Brownian Dynamics Simulation Algorithm (for Fixed θ and λ)

Input parameters θ for PMF and λ for applied external potential.

For l = 1 to L iterations:

Step 1: Initialize all 2N ions according to stationary distribution π
(θ,λ)
∞

defined in equation 4.36.
Open ion channel at discrete time k = 0 and set k = 1.

Step 2: Propagate all 2N ions according to the time-discretized Brownian
dynamical system 4.56 until time k∗ at which an ion crosses the channel.

∗ If ion crossed ion channel from R1 to R2, i.e., for any ion i∗ ∈
{1, 2, . . . , N/2}, z

(i∗)
k∗ ≥ β, then set τ̂

(l)
R1,R2

= k∗.
Update number of crossings from R1 to R2: LR1,R2 = LR1,R2 + 1.

∗ If ion crossed ion channel from R2 to R1, i.e., for any ion i∗ ∈ {N/2 +
1, . . . , N}, z

(i)
k∗ ≤ α then set τ̂

(l)
R2,R1

= k∗.
Update number of crossings from R2 to R1: LR2,R1 = LR2,R1 + 1.

Step 3: End for loop.

Compute the mean first passage time and mean current estimate after L iterations
as

τ̂
(θ,λ)
R1,R2

(L) =
1

LR1,R2

LR1,R2∑
l=1

τ̂
(l)
R1,R2

, τ̂
(θ,λ)
R2,R1

(L) =
1

LR2,R1

LR2,R1∑
l=1

τ̂
(l)
R2,R1

, (4.59)

Î(θ,λ)(L) = q+

(
1

τ̂
(θ,λ)
R1,R2

(L)
− 1

τ̂
(θ,λ)
R2,R1

(L)

)
. (4.60)

The following result shows that the estimated current Î(θ,λ)(L) obtained from
a BD simulation run over L iterations is strongly consistent.
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Theorem 4.5
For fixed PMF θ ∈ Θ and applied external potential λ ∈ Λ, the ion channel current
estimate Î(θ,λ)(L) obtained from the BD simulation algorithm 4.2 over L iterations
is strongly consistent, i.e.,

lim
L→∞

Î(θ,λ)(L) = I(θ,λ) w.p.1 (4.61)

where I(θ,λ) is the mean current defined in equation 4.42.

Proof Since by construction in algorithm 4.2, each of the L iterations is statis-
tically independent, and E

{
τ̂

(l)
R1,R2

}
, E

{
τ̂

(l)
R2,R1

}
are finite (see theorem 4.4), by

Kolmogorov’s strong law of large numbers

lim
L→∞

τ̂
(θ,λ)
R1,R2

(L) = τ
(θ,λ)
R1,R2

, lim
L→∞

τ̂
(θ,λ)
R2,R1

(L) = τ
(θ,λ)
R2,R1

w.p.1.

Thus q+
(

1
τ̂
(θ,λ)
R1,R2

(L)
− 1

τ̂
(θ,λ)
R2,R1

(L)

)
→ I(θ,λ) w.p.1 as L → ∞.

Remark: Instead of equation 4.42, if the mean rate definition in equation 4.48 is used
for the mean current Ĩ(θ, λ), then the following minor modification of algorithm 4.2
yields consistent estimates of Ĩ(θ, λ). Instead of equations 4.59 and 4.60, use

μ̂
(θ,λ)
R1,R2

(L) =
1

LR1,R2

LR1,R2∑
l=1

1

τ̂
(l)
R1,R2

, μ̂
(θ,λ)
R2,R1

(L) =
1

LR2,R1

LR2,R1∑
l=1

1

τ̂
(l)
R2,R1

,

(4.62)

Î(θ,λ)(L) = q+
(
μ̂

(θ,λ)
R1,R2

(L) − μ̂
(θ,λ)
R2,R1

(L)
)

. (4.63)

Then a virtually identical proof to theorem 4.5 yields that Î(θ,λ)(L) → Ĩ(θ, λ) w.p.1,
as L → ∞.

Implementation Details and Variations of Algorithm 4.2 In algorithm
4.2, the procedure of resetting all ions to π

(θ,λ)
∞ in step 1 when any ion crosses the

channel can be expressed mathematically as

ζ
(d)
k+1 = 1

ζ
(d)
k �∈P2∪P1

[f (d)
θ,λ(ζ(d)

k ) + w
(d)
k ] + 1

ζ
(d)
k ∈P2∪P1

ζ
(d)
0 , ζ

(d)
0 ∼ π(θ,λ)

∞ , (4.64)

where P1, P2 are defined in equation 4.40. The following approximations of algo-
rithm 4.2 can be used in actual numerical simulations.

Instead of steps 2a and 2b, only remove the crossed ion denoted as i∗ and put
it back in its reservoir with probability π

(θ,λ),R1∞ or π
(θ,λ),R2∞ (eqs. 4.3 and 4.38)

depending on whether it originated from R1 or R2. The other particles are not
reset. With ζ(d)i∗

k denoting the position and velocity of the crossed ion and ¯ζ(d)
k

denoting the positions and velocities of the remaining 2N − 1 ions, mathematically
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this is equivalent to replacing equation 4.64 by

ζ
(d)
k+1 = 1

ζ
(d)
k �∈P2∪P1

[f (d)
θ,λ(ζ(d)

k ) + w
(d)
k ] + 1

ζ
(d)
k ∈P2∪P1

[f (d)
θ,λ( ¯ζ(d)

k, ζ(d)i∗

k ) + w
(d)
k ],

(4.65)

where ζ(d)i∗

k ∼ π
(θ,λ),R1∞ if i ∈ {1, . . . , N/2}, and ζ(d)i∗

k ∼ π
(θ,λ),R2∞ if i ∈

{N + 1, . . . , 3N/2}.
As in the above approximation (eq. 4.65), except that ζ(d)i∗

k is replaced according
to an uniform distribution.
The above approximations are justified for three reasons:

1. Only one ion can be inside the gramicidin-Achannel C at any time instant.
When this happens the ion channel behaves as though it is closed. Then the
probabilistic construction of step 1 in section 4.5.1 applies.

2. The probability density functions of the remaining 2N − 1 ions converge
rapidly to their stationary distribution and forget their initial distribution
exponentially fast. This is due to the exponential ergodicity theorem 4.2. In
comparison the time taken for an ion to cross the channel is significantly
larger. As a result the removal of crossed particles and their replacement in the
reservoir happens extremely infrequently. Between such events the probability
density functions of the ions rapidly converge to their stationary distribution.

3. If an ion enters the channel C, then the change in concentration of ions in
the reservoir is of magnitude 1/N . This is negligible if N is chosen sufficiently
large.

4.6 Adaptive Brownian Dynamics Mesoscopic Simulation of Ion Channel

Having given a complete description of the dynamics of individual ions in section 4.4
and the Brownian dynamics algorithm for estimating the ion channel current, in
this section we describe how the Brownian dynamics algorithms can be adaptively
controlled to determine the molecular structure of the ion channel.

We will estimate the PMF profile Uθ parameterized by θ, by computing the θ

that optimizes the fit between the mean current I(θ,λ) (defined above in eq. 4.42)
and the experimentally observed current y(λ) defined below. Unfortunately, it is im-
possible to explicitly compute I(θ,λ) from equation 4.42. For this reason we resort to
a stochastic optimization problem formulation below, where consistent estimates of
I(θ,λ) are obtained via the Brownian dynamics simulation algorithm 4.2. The main
algorithm presented in this section is the adaptive Brownian dynamics simulation
algorithm (algorithm 4.3) which solves the stochastic optimization problem and
yields the optimal PMF. We have showed the effective surface charge density along
the protein of the inside surface of the ion channel from the PMF (Krishnamurthy
and Chung, b).
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4.6.1 Formulation of PMF Estimation as Stochastic Optimization

Problem

The stochastic optimization problem formulation for determining the optimal PMF
estimate comprises the following four ingredients:

Experimentally Observed Ion Channel Current y(λ) Neurobiologists use the
patch-clamp experimental setup to obtain experimental measurements of the cur-
rent flowing through a single ion channel. Typically the measured discrete-time
(digitized) current from a patch-clamp experiment is obtained by sampling the
continuous-time observed current at 10 kHz (i.e., 0.1 millisecond intervals). Note
that this is at a much slower timescale than the dynamics of individual ions which
move around at a femtosecond timescale. Such patch clamping was widely regarded
as a breakthrough in the 1970s for understanding the dynamics of ion channels at
a millisecond timescale.

From patch-clamp experimental data, neurobiologists can obtain an accurate
measurement of the actual current y(λ) flowing through a gramicidin-Aion channel
for various external applied potentials λ ∈ Λ. For example, as shown in Chung
et al. (1991), the resulting discrete time series can be modeled as HMM. Then by
using a HMM maximum likelihood estimator (Chung et al., 1991; James et al.,
1996), accurate estimates of the open current level y(λ) of the ion channel can be
computed. Neurobiologists typically plot the relationship between the experimen-
tally determined current y(λ) vs. applied voltage λ on an IV curve—such curves
provide a unique signature for an ion channel. For our purposes y(λ) denotes the
true (real-world) channel current.

Loss Function Let n = 1, 2, . . . denote the batch member. For fixed applied
field λ ∈ Λ, consider at batch n, running the BD simulation algorithm 4.2, resulting
in the simulated current I

(θ,λ)
n . Define the mean square error loss function equation

as

Q(θ, λ) = E
{
|I(θ,λ)

n − y(λ)|2
}

, (4.66)

where Q(θ, λ)n =
(
I
(θ,λ)
n −y(λ)

)2. Define the total loss function obtained by adding
the mean square error over all the applied fields λ ∈ Λ on the IV curve as

Q(θ) =
∑
λ∈Λ

Q(θ, λ). (4.67)

The optimal PMF Uθ∗ is determined by the parameter θ∗ that best fits the mean
current I(θ,λ) to the experimentally determined IV curve of a gramicidin-Achannel,
i.e.,

θ∗ = arg min
θ∈Θ

Q(θ). (4.68)
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Figure 4.5 Adaptive Brownian dynamics simulation for estimating PMF.

Let Θ∗ denote the set of local minima whose elements θ∗ satisfy the second-order
sufficient conditions for being a local minimum:

∇̂θQ(θ) = 0, ∇̂2
θQ(θ) > 0, (4.69)

where the notation ∇2Q(θ) > 0 means that it is a positive definite matrix.
However, the deterministic optimization (eqs. 4.66,4.68) cannot be directly

carried out since it is not possible to obtain explicit closed-form expressions for
4.66—this is because the partial differential equation 4.47 for the mean first passage
times τ

(θ,λ)
R2,R1

and τ
(θ,λ)
R2,R1

cannot be solved explicitly. This motivates us to formulate
the estimation of the PMF as a stochastic optimization problem.

4.6.2 Stochastic Gradient Algorithms for Estimating Potential of

Mean Force (PMF) and the Need for Gradient Estimation

We now give a complete description of the adaptive Brownian dynamics simula-
tion algorithm for computing the optimal PMF estimate Uθ∗ . The algorithm is
schematically depicted in fig. 4.5. Recall that n = 0, 1, · · · , denotes batch number.

Algorithm 4.3
Adaptive Brownian Dynamics Simulation Algorithm for Estimating PMF

Step 0: Set batch index n = 0, and initialize θ0 ∈ Θ.

Step 1 Evaluation of loss function: At batch n, evaluate loss function Qn(θn, λ) for
each external potential λ ∈ Λ according to equation 4.66. This uses one independent
BD simulation (algorithm 4.2) for each λ.

Step 2 Gradient estimation: Compute gradient estimate ∇̂θQn(θn, λ) either as a
finite difference (see eq. 4.72 below), or according to the SPSA algorithm (eq. 4.73)
below.
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Step 3 Stochastic approximation algorithm: Update PMF estimate:

θn+1 = θn − εn+1

∑
λ∈Λ

∇̂θQn(θn, λ) (4.70)

where εn denotes a decreasing step size (see discussion below for choice of step size).

Step 4: Set n to n + 1 and go to step 1.

A crucial aspect of the above algorithm is the gradient estimation step 2. In
this step, an estimate ∇̂θQn(θ, λ) of the gradient ∇θQn(θ, λ) is computed. This
gradient estimate is then fed to the stochastic gradient algorithm (step 3) which
updates the PMF. Note that since the explicit dependence of Qn(θ, λ) on θ is
not known, it is not possible to compute ∇θQn(θ, λ). Thus we have to resort to
gradient estimation, e.g., the finite difference estimators described below or a more
sophisticated algorithm such as IPA (infinitesimal perturbation analysis).

The step size εn is typically chosen as

εn = ε/(n + 1 + R)κ, (4.71)

where 0.5 < κ ≤ 1 and R is some positive constant. Note that this choice of
step size automatically satisfies the condition

∑∞
n=1 εn = ∞, which is required for

convergence of algorithm 4.3.
Kiefer-Wolfowitz Finite Difference Gradient Estimator An obvious

gradient estimator is obtained by finite differences as follows: Suppose θ is a p

dimensional vector. Let e1, e2, . . . , ep denote p-dimensional unit vectors, where ei

is a unit vector with 1 in the ith position and zeros elsewhere. Then the two-sided
finite difference gradient estimator is

∇̂θQn(θ, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Qn(θn + μne1, λ) −Qn(θn − μne1, λ)
2μn

Qn(θn + μne2, λ) −Qn(θn − μne2, λ)
2μn

...
Qn(θn + μnep, λ) −Qn(θn − μnep, λ)

2μn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.72)

Using equation 4.72 in algorithm 4.3 yields the so-called Finite difference stochastic

gradient algorithm.
In the above gradient estimator, μk = μ/(k+1)γ , where typically γ < κ (where

κ is defined in eq. 4.71), e.g., γ = 0.101 and κ = 0.602.
The main disadvantages of the above finite gradient estimator are twofold.

First, the bias of the gradient estimate is O(μ2
n), i.e.,

E
{
∇̂θQn(θ, λ)|θ1, . . . , θn

}
= O(μ2

n).

Second, the simulation cost of implementing the above estimator is large. It requires
2p BD simulations, since one BD simulation is required to evaluate Qn(θn + μnei, λ)
and one BD simulation is required to evaluate Qn(θn − μnei, λ) for each i =
1, 2, . . . , p.
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Simultaneous Perturbation Stochastic Approximation (SPSA) Algo-

rithm Unlike the Kiefer-Wolfowitz algorithm, the SPSA algorithm (Spall, 2003)
is a novel method that picks a single random direction dn along which direction
the derivative is evaluated at each batch n. Thus the main advantage of SPSA
compared to finite difference is that evaluating the gradient estimate ∇̂θQn(θ, λ)
in SPSA requires only two BD simulations, i.e., the number of evaluations is in-
dependent of the dimension p of the parameter vector θ. We refer the reader to
Spall (2003) and to the Web site www.jhuapl.edu/SPSA/ for details, variations,
and applications of the SPSA algorithm. The SPSA algorithm proceeds as follows:
Generate the p-dimensional vector dn with random elements dn(i), i = 1, . . . , p

simulated as follows:

dn(i) =

{
−1 with probability 0.5

+1 with probability 0.5.

Then the SPSA algorithm uses the following gradient estimator together with the
stochastic gradient algorithm (eq. 4.70):

∇̂θQn(θ, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qn(θn + μndn, λ) −Qn(θn − μndn, λ)
2μndn(1)

Qn(θn + μndn, λ) −Qn(θn − μndn, λ)
2μndn(2)

...
Qn(θn + μndn, λ) −Qn(θn − μndn, λ)

2μndn(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.73)

Here μk is chosen by a process similar to that of the Kiefer-Wolfowitz algorithm.
Despite the substantial computational efficiency of SPSA compared to Kiefer-
Wolfowitz, the asymptotic efficiency of SPSA is identical to the Kiefer-Wolfowitz
algorithm. Thus SPSA can be viewed as a novel application of randomization in
gradient estimation to break the curse of dimensionality. It can be proved that, like
the finite gradient scheme, SPSA also has a bias O(μ2

n) (Spall, 2003).
Remarks: In the SPSA algorithm above, the elements of dn were chosen according
to a Bernoulli distribution. In general, it is possible to generate the elements of
d according to other distributions, as long as these distributions are symmetric,
zero mean, and have bounded inverse moments; see Spall (2003) for a complete
exposition of SPSA.
Convergence of Adaptive Brownian Dynamics Simulation Algorithm 4.3

Here we show that the estimates θn generated by algorithm 4.3 (whether using
the Kiefer-Wolfowitz or SPSA algorithm) converge to a local minimum of the loss
function.

Theorem 4.6
For batch size L → ∞ in algorithm 4.2, the sequence of estimates {θn} generated
by the controlled Brownian dynamics simulation algorithm 4.3, converge at n → ∞
to a the locally optimal PMF estimate θ∗ (defined in eq. 4.68) with probability 1.
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Outline of Proof Since by construction of the BD algorithm, for fixed θ,
Qn(θ, λ) are independent and identically distributed random variables, the proof of
the above theorem involves showing strong convergence of a stochastic gradient
algorithm with i.i.d. observations—which is quite straightforward. In Kushner
and Yin (1997), almost sure convergence of stochastic gradient algorithms for
state dependent Markovian noise under general conditions is presented. For the
independent and identically distributed case we only need to verify the following
condition for convergence.
Condition A.4.11 in section 8.4 of Kushner and Yin (1997) requires uniform
integrability of ∇̂θQn(θn, λ) in equation 4.70. This holds since the discretized
version of the passage time τ̂

(θ,λ)
R1,R2

(L) ≥ 1, implying that the estimate Î
(θ,λ)
n

from equation 4.60 in algorithm 4.2 is uniformly bounded. Thus the evaluated
loss Qn(θ, λ) (eq. 4.66) is uniformly bounded. This in turn implies that the finite
difference estimate (eq. 4.72) for the Kiefer-Wolfowitz algorithm or equation 4.73
of the SPSA algorithm are uniformly bounded, which implies uniform integrability.

Then theorem 4.3 of Kushner and Yin (1997) implies that the sequence {θn}
generated by the above controlled BD simulation algorithm 4.3 converges with
probability 1 to the fixed points of the following ordinary differential equation:

dθ

dt
= −E

{∑
λ∈Λ

∇̂θQn(θ, λ)

}
= −∇̂θQ(θ),

namely the set Θ∗ of local minima that satisfy the second-order sufficient conditions
in equation 4.69.

4.7 Conclusions

This chapter has presented novel signal-processing and stochastic optimization (con-
trol) algorithms for two significant problems in ion channels—namely, the gating
problem and the permeation problem. For the gating problem we presented novel
discrete stochastic optimization algorithms and also a multiarmed bandit formula-
tion for activating ion channels on a biological chip. For the permeation problem,
we presented an adaptive controlled Brownian dynamics simulation algorithm for
estimating the structure of the ion channel. We refer the reader to Krishnamurthy
and Chung (a,b) for further details of the adaptive Brownian dynamics algorithm
and convergence proofs.

The underlying theme of this chapter is the idea of sensor adaptive signal

processing that transcends standard statistical signal processing (which deals with
extracting signals from noisy measurements) to address the deeper issue of how to
dynamically minimize sensor costs while simultaneously extracting a signal from
noisy measurements. As we have seen in this chapter, the resulting problem is a
dynamic stochastic optimization problem—whereas all traditional statistical signal-
processing problems (such as optimal and adaptive filtering, parameter estima-
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tion) are merely static stochastic optimization problems. Furthermore, we have
demonstrated the use of sophisticated new algorithms such as stochastic discrete
optimization, partially observed Markov decision processes (POMDP), bandit pro-
cesses, multiparticle Brownian dynamics simulations, and gradient estimation-based
stochastic approximation algorithms. These novel methods provide a powerful set
of algorithms that will supersede conventional signal-processing tools such as ele-
mentary stochastic approximation algorithms (e.g., the LMS algorithm), subspace
methods, etc.

In current work we are examining several extensions of the ideas in this chapter,
including estimating the shape of ion channels. Finally, it is hoped that this paper
will motivate more researchers in the areas of statistical signal processing and
stochastic control to apply their expertise to the exciting area of ion channels.
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5 Spin Diffusion: A New Perspective in
Magnetic Resonance Imaging

Timothy R. Field

5.1 Context

In this chapter we outline some emerging ideas relating to the detection of spin pop-
ulations arising in magnetic resonance imaging (MRI). MRI techniques are already
at a mature stage of development, widely used as a research tool and practised in
clinical medicine, and provide the primary noninvasive method for studying inter-
nal brain structure and activity, with excellent spatial resolution. A lot of attention
is typically paid to detecting spatial anomalies in brain tissue, e.g., brain tumors,
and in localizing certain areas of the brain that correspond to particular stim-
uli, e.g., within the motor, visual, and auditory cortices. More recently, functional
magnetic resonance imaging (fMRI) techniques have been successfully applied in
psychological studies analyzing the temporal response of the brain to simple known
stimuli. The possibility of enhancing these techniques to deal with more sophisti-
cated neurological processes, characterized by physiological changes occurring on
shorter timescales, provides the motivation for developing real-time imaging tech-
niques, where there is much insight to be gained, e.g., in tracking the auditory
system.

The concept of MRI is straightforward and can be briefly summarized as follows
(e.g., Brown and Semelka, 2003). The physical phenomenon of magnetic resonance
is due to the Zeeman effect, which accounts for the splitting of energy levels in
atomic nuclei due to an applied magnetic field. In the presence of a background
magnetic field B0, the majority of protons (hydrogen nuclei) N+ in a material tend
toward their minimum energy spin configuration, with their spin vectors aligned
with B0, in the “spin-up” state (and thus in the minimum energy eigenstate of
the quantum mechanical spin Hamiltonian). A smaller number N− take up the
excited state with spin antiparallel to B0, the “spin-down” state. According to
statistical mechanics arguments, the ratio of the spin-up to spin-down populations
N+/N− is governed by the Bose-Einstein distribution. Thus, the majority of protons
are able to absorb available energy and make a transition to an excited state,
provided the energy is applied in a way that matches the resonance properties of
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the protons in the material. The details of this energy absorption stem from the
design of the MR experiment. A pulse of energy is applied to the material inside the
background field, which is absorbed (deterministically) and subsequently radiated
away in a random-type fashion. Although the intrinsic nuclear atomic energies are
very large in comparison, the differences between the spin-up/down energy levels,
as predicted by the Zeeman interaction, lie in the radio frequency (RF) band of
the electromagnetic spectrum. It is these energy differences (quantum gaps, if you
like) that give rise to the received signal in MR experiments, through subsequent
radiation of the absorbed energy. Although it is a quantum effect, many ideas from
classical physics can be drawn into play in terms of a qualitative understanding
of the origin of the MR signal. Conservation of energy is a key component, as
also are the precessional dynamics of the net magnetization and Faraday’s law of
electromagnetic induction, described in section 5.2. It turns out that molecular
environment affects the precise values of splitting in proton spin energy levels, so
that, e.g., a proton in a fat molecule has a different absorption spectrum from
a proton in water. The determination of the values of these “chemical shifts” is
the basis of magnetic resonance spectroscopy (MRS). Once these “fingerprint”
resonance absorption values are known, one can design spectrally selective RF pulses
in MR experiments so that only protons in certain chemical environments, with
magnetic resonance absorption properties matching the frequency (photon energy)
spectrum of the pulse, are excited into states of higher energy.

The point of view taken here is that the spin population itself is the object
of primary significance in constructing an image, especially when it comes to
the study of neural brain activity. The reasons for this emphasis on the spin
population size, as opposed to certain notions of its time average behavior, are
twofold. First, it is the spin density of protons, in a given molecular environment,
that is the fundamental object of the detection. Second, the spin population is
something that can in principle be studied in real time. In contrast, the more
familiar techniques known as T1- and T2-weighted imaging involve a statistical
time average, measuring the respective “spin-lattice” and “spin-spin” relaxation
times: T1 is the average restoration time for the longitudinal component and T2
the average decay time for the transverse component of the local magnetic field in
the medium. Thereby, information concerning the short timescale properties of the
population is necessarily lost. It is argued here that in principle one can infer the
(local) size of a resonant spin population, from a large population whose dynamics is
arbitrary, through a novel type of signal-processing technique which exploits certain
ingredients in the physics of the spin dephasing process occurring in T2 relaxation.

The emphasis in this chapter is on the ideas and novel concepts, their signif-
icance in drawing together ideas from physics and signal processing, and the im-
plications and new perspectives they provide in the context of magnetic resonance
imaging. The detailed underlying mathematics, although an essential part of the
sustained theoretical development, is highly technical and so reported separately,
in elsewhere Field (2005). In section 5.2 we give the background to the descrip-
tion of an electromagnetic field interacting with a random population, in terms of
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the mathematics of stochastic differential equations (SDEs). Section 5.3 illustrates
how this dynamics can be applied to an arbitrary spin population, in the context
of constructing an image in magnetic resonance experiments. The possible impli-
cations of these ideas for future MRI systems are described in section 5.4, where
we identify certain domains of validity of the proposed model and the appropriate
corresponding choice of some design parameters that would be necessary for suc-
cessful implementation. We provide, without proof, two key mathematical results
behind this line of development, concerning the dynamics of spin-spin relaxation
in proposition 5.1 and the observability of the spin population through statistical
analysis of the phase fluctuations in theorem 5.1. The reader is referred to Field
(2005) for their detailed mathematical derivation.

5.2 Conceptual Framework

Our purpose is to identify the dynamics of spin-spin (T2) relaxation using a
geometrical description of the transverse spin population, and the mathematics
of SDEs (e.g., Oksendal, 1998) to derive the continuous time statistical properties
of the net transverse magnetization. In doing so we are led to an exact expression
for the “hidden” state (the spin population level) in terms of the additional phase
degrees of freedom in the MR signal, described in section 5.3. In our discussion
we shall not confine ourselves to any specific choice of population model, and
thus encompass the possibility of describing the highly nonstationary behavior
characteristic of brain signals that encode information in real time in response
to stimuli, such as occur in the auditory system.

Let us assume that the RF pulse is applied at a “pulse flip” angle of 90◦ to
the longitudinal B0 direction. As a result, RF energy ΔE is absorbed, and the net
local magnetization is rotated into the transverse plane. Each component spin vector
then rotates about the longitudinal axis at (approximately) the Larmor precessional
frequency ω0, governed by the following relations:

ΔE = ˜ω0 = hγB0/2π, (5.1)

where γ is the gyromagnetic ratio (which varies throughout space depending on
the details of the molecular environment). The resulting motion of the net local
magnetization vector Mt can be understood by analogy with the Eulerian top in
classical mechanics. As time progresses following the pulse, energy is transferred
from the proton spins to the surroundings during the process of “spin-lattice”
relaxation, and the longitudinal component of the net magnetization is gradually
restored to the equilibrium value prior to the pulse being applied. Likewise, random
exchange of energy between neighboring spins and small inhomogeneities in the
total magnetic field cause perturbations in the phases of the transverse spin
components and “dephasing” occurs, so that the net transverse component of
magnetization decays to zero. The motion of Mt can thus be visualized as a
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Figure 5.1 Geometry of transverse spin population—each point represents a
constituent proton, with respect to which each connecting vector (in the direction
of the random walk away from the origin) represents the transverse component of
the associated spin vector.

precession about the longitudinal axis, over the surface of a cone whose opening
angle tends from π to 0 as equilibrium is restored. It is convenient for visualization
purposes to work in a rotating frame of reference, rotating at the Larmor frequency
ω0 about the longitudinal axis. (It is worth remarking that in the corresponding
situation for radar scattering, ω0 is the Doppler frequency arising from bulk wave
motion in the scattering surface.) This brings each transverse spin vector to rest, for
a perfect homogeneous B0. Nevertheless it is the local inhomogeneities in the total
(background plus internal) magnetic field, due to the local magnetic properties of
the medium, that give rise to spin-spin (or T2) relaxation constituting the (random)
exchange of energy between spins.

The local perturbations in the total magnetic field can reasonably be considered
as independent for each component spin, so that the resultant (transverse) spin
vector can be modeled as a sum of independent random phasors. Thus, the pertinent
expression for the resultant net transverse magnetization is

M(Nt)
t =

Nt∑
j=1

s(j)︷ ︸︸ ︷
aj exp

[
iϕ

(j)
t

]
, (5.2)
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with (fluctuating) spin population size Nt, random phasor step s(j), and component
amplitudes aj . Observe that this random walk type model is directly analogous to
what has been used in the dynamical description of Rayleigh scattering (Field and
Tough, 2003b) introduced in Jakeman (1980). Thus, the geometrical spin structure,
transverse to the background longitudinal magnetic field, lies in correspondence
with the plane-polarized (perpendicular to the propagation vector) components of
the electromagnetic field arising in (radar) scattering and (optical) propagation
(Field and Tough, 2003a), where the same types of ideas, albeit for specific types
of (stationary) populations, have been experimentally verified (Field and Tough,
2003b, 2005). The geometry of fig. 5.1 illustrates the isomorphism between the
transverse spin structure of atomic nuclei and photon spin for a plane-polarized
state, the latter familiar from radio theory as the (complex valued) electromagnetic
amplitude perpendicular to the direction of propagation. Indeed, this duality be-
tween photon spin (EM wave polarization) and nuclear spin is a key conceptual
ingredient in this development.

The dynamical structure of equation 5.2 is supplied by a (phase) diffusion
model (Field and Tough, 2003b) which takes the component phases {ϕ(j)

t } to be
a collection of (displaced) Wiener processes evolving on a suitable timescale. Thus
ϕ

(j)
t = Δ(j) +B 1

2 W
(j)
t , with initialization Δ(j). In magnetic resonance the 90◦ pulse

explained above causes the spin phasors s(j) to be aligned initially; thus Δ(j) are
identical for all j. Let T be the phase decoherence or spin-spin relaxation time (T2)
such that {ϕ(j)

t | t ≥ T} have negligible correlation. Then for t ≥ T , defining the
(normalized) resultant by mt = limN→∞

[
M(N)

t /N
1
2

]
, we obtain the resultant spin

dynamics or net magnetization in the transverse plane (cf. Field, 2005).

Proposition 5.1
For sufficiently large times t ≥ T the spin dynamics, for a constant population, is
given by the complex Ornstein-Uhlenbeck equation

dmt = −1
2
Bmtdt + B 1

2 〈a2〉 1
2 dξt, (5.3)

where ξt is a complex-valued Wiener process (satisfying |dξt|2 = dt, dξ2
t = 0).

As the collection of spins radiates the absorbed energy, this gives rise to
the received MR signal ψt (the free induction decay or FID), which is detected
through the generation of electromotive force in a coil apparatus, due to the time-
varying local magnetic field. This effect is the result of Faraday’s law, i.e., Maxwell’s
vector equation ∇ × E = −∂B/∂t integrated around a current loop. The receiver
coil is placed perpendicular to the transverse plane, and so only the transverse
components of the change in magnetic flux contribute to the FID. The MR signal
thus corresponds to an amplitude process that represents the (time derivative of
the) net transverse magnetization, and has the usual in-phase (I) and quadrature-
phase (Q) components familiar from radio theory, so ψ = I + iQ. Moreover it
can be spatially localized using standard gradient field techniques (e.g., Brown and
Semelka, 2003). The constant B in equation 5.3, which has dimensions of frequency,
is (proportional to) the reciprocal of the spin-spin relaxation time T2.
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In the case that the population size fluctuates over the timescale of interest,
we introduce the continuum population variate xt, and the receiver amplitude then
has the compound representation

ψt = x
1
2
t mt, (5.4)

in which xt and mt are independent processes.

5.3 Image Extraction

An essential desired ingredient is the ability to handle real-time nonstationary
behavior in the spin population. Moreover we do not wish to make any prior
assumptions concerning the statistical behavior of this population, for it is this
unknown state that we are trying to estimate from the observed MR signal. Indeed,
its value depends on the external stimuli in a way that is not well understood, and it
is precisely our purpose to uncover the nature of this dependence by processing the
observable data in an intelligent way. But in doing so, we do not wish to prejudice
our notions of spin population behavior, beyond some very generic assumptions set
in place for the purpose of mathematical tractability.

Accordingly we shall assume that the population process xt is an Ito process,
i.e., that it satisfies the SDE (e.g., Oksendal, 1998):

dxt = Abtdt + (2AΣt)
1
2 dW

(x)
t , (5.5)

in which the respective drift and diffusion parameters bt, Σt are (real-valued)
stochastic processes (not necessarily Ito), and in general include the effects of
nonstationary and non-Gaussian behavior. Thus, we make no prior assumption
concerning the nature of these parameters, and wish to estimate the values of {xt}
from our observations of the MR signal.

The SDE for the resultant phase can be derived from equations 5.3, 5.4 and
5.5. Intriguingly, the behavior for a general population is functionally independent
of the parameters bt and Σt, the effect of these parameters coming through in the
resulting evolutionary structure of the processes xt, ψt. Calculation of the resulting
squared phase fluctuations leads to the key noteworthy result of this chapter.

Theorem 5.1
The spin population is observable through the intensity-weighted squared phase
fluctuations of the (FID) signal according to

xt =
2
B ztdθ2

t /dt (5.6)

throughout space and time, where zt = |ψt|2 and the field mt is scaled so that
〈a2〉 = 1.



5.4 Future Systems 125

The significance of this result is that the relation 5.6 is exact, instantaneous
in nature, and moreover independent of the dynamics of the spin population. It is
straightforward to illustrate this result with data sampled in discrete time (Field,
2005). The result approaches exactness as the pulse repetition rate tends to infinity.
More precisely, for discretely sampled data theorem 5.1 implies that

ziδθ
2
i ∝ xin

2
i , (5.7)

where i is a discrete time index and {ni} are an independent collection of N (0, 1)
distributed random variables. This can be used to estimate the state xt via local
time averaging. Applying a smoothing operation 〈·〉Δ to the left-hand side (the
“observations”) of 5.7 with window Δ = [t0 − Δ, t0 + Δ] yields an approximation
to xt0 , with an error that tends to zero as the number of pulses inside Δ tends to
infinity and Δ → 0 (Field, 2005). In this respect we observe as a consequence that
in order to achieve an improved signal-to-noise ratio (SNR), it is sufficient merely

to increase the pulse rate, without (necessarily) requiring a high-amplitude signal.
The term SNR is used here in the sense of extracting the signal xt from ψt, thus
overcoming the noise in mt (cf. eq. 5.4).

This inference capability has been demonstrated in analysis of synthetic data,
with population statistics chosen deliberately not to conform to the types of model
usually encountered (Field, 2005). Instead of “filtering out” the noise to obtain the
signal, we have exploited useful information contained in the random fluctuations
in the phase. Indeed the phase noise is so strongly colored that, provided it is
sampled at high enough frequency, it enables us to extract the precise values of the
underlying state, in this case the population size of spins that have absorbed the
RF energy. A comparison of time series of the state inferred from the observations
alone, with the exact values recorded in generation of the synthetic data, shows a
very high degree of correlation (Field, 2005).

5.4 Future Systems

For MR imaging purposes, we have proposed focusing on the local size of the trans-
verse spin population that results from the applied RF pulse, which is assumed to
be spectrally selective. Our results demonstrate, at a theoretical/simulation level,
how this “signal” can be extracted through statistical analysis of the (phase) fluc-
tuations in the received (complex) amplitude signal. In the MR context, the spin
population, which assumes a Bose-Einstein distribution in equilibrium, responds in
a dynamical nonstationary fashion to applied RF radiation, and our results suggest
means for detecting this dynamical behavior using a combination of physical mod-
eling and novel statistical signal-processing techniques based on the mathematics
of SDEs.

The idea of focusing attention on the spin population size appears to be more
intuitive than measurements of the single point statistic T2, the average transverse
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decay time, that is commonly used in T2-weighted imaging (Brown and Semelka,
2003). Primarily here one is concerned with estimating the population of spins that
absorb energy from the RF pulse at different locations, since this implies the spin
density of (protons in) the molecular environments of interest whose energy res-
onances (predicted through the Zeeman interaction) match those of the designed
pulse. Our discussion demonstrates how the error in the estimate of a random pop-
ulation interacting with the electromagnetic field can be reduced to an arbitrarily
small amount. In the MR context this suggests that a moderate/low background
field strength B0 and short pulse repetition time TR could be sufficient for gener-
ating real-time images. A complication posed by the high specific absorption rate
SAR ∝ B2

0/TR (which measures the deposition of energy in the medium in the
form of heat) for short TR can presumably be overcome by using short-duration
bursts of RF energy (just as in radar systems) to detect short timescale properties.

In summary, the results suggest means for real-time image construction in fMRI
experiments at moderate to low magnetic field strength, and identify the choice of
parameters necessary in the design of fMRI systems for the technique to be valid.
There are indications that, for appropriate parameter values, the technique should
succeed in extracting the real-time spin population behavior in the context of MR,
without prior assumptions concerning the nature of this population needing to be
made. Indeed, at the level of simulated data, this result has been verified (see fig. 2 in
Field, 2005). The ability to track the spin population from the observed amplitude
in local time suggests the possibility of detecting spatiotemporal changes in neural
activity in the brain, e.g., in the localization and tracking of evoked responses.
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6 What Makes a Dynamical System
Computationally Powerful?

Robert Legenstein and Wolfgang Maass

We review methods for estimating the computational capability of a complex
dynamical system. The main examples that we discuss are models for cortical neural
microcircuits with varying degrees of biological accuracy, in the context of online
computations on complex input streams. We address in particular the question to
what extent earlier results about the relationship between the edge of chaos and the
computational power of dynamical systems in discrete time for off-line computing
also apply to this case.

6.1 Introduction

Most work in the theory of computations in circuits focuses on computations in
feedforward circuits, probably because computations in feedforward circuits are
much easier to analyze. But biological neural circuits are obviously recurrent; in
fact the existence of feedback connections on several spatial scales is a characteristic
property of the brain. Therefore an alternative computational theory had to be
developed for this case. One neuroscientist who emphasized the need to analyze
information processing in the brain in the context of dynamical systems theory
was Walter Freeman, who started to write a number of influential papers on
this topic in the 1960s; see Freeman (2000, 1975) for references and more recent
accounts. The theoretical investigation of computational properties of recurrent
neural circuits started shortly afterward. Earlier work focused on the engraving of
attractors into such systems in order to restrict the dynamics to achieve well-defined
properties. One stream of work in this direction (see, e.g., Amari, 1972; Cowan,
1968; Grossberg, 1967; Little, 1974) culminated in the influential studies of Hopfield
regarding networks with stable memory, called Hopfield networks (Hopfield, 1982,
1984), and the work of Hopfield and Tank on networks which are able to find
approximate solutions of hard combinatorial problems like the traveling salesman
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problem (Hopfield and Tank, 1985, 1986). The Hopfield network is a fully connected
neural network of threshold or threshold-like elements. Such networks exhibit rich
dynamics and are chaotic in general. However, Hopfield assumed symmetric weights,
which strongly constrains the dynamics of the system. Specifically, one can show
that only point attractors can emerge in the dynamics of the system, i.e., the activity
of the elements always evolves to one of a set of stable states which is then kept
forever.

Somewhat later the alternative idea arose to use the rich dynamics of neural
systems that can be observed in cortical circuits rather than to restrict them
(Buonomano and Merzenich, 1995). In addition one realized that one needs to
look at online computations (rather than off-line or batch computing) in dynamical
systems in order to capture the biologically relevant case (see Maass and Markram,
2005, for definitions of such basic concepts of computation theory). These efforts
resulted in the “liquid state machine” model by Maass et al. (2002) and the “echo
state network” by Jaeger (2002), which were introduced independently. The basic
idea of these models is to use a recurrent network to hold and nonlinearly transform
information about the past input stream in the high-dimensional transient state of
the network. This information can then be used to produce in real time various
desired online outputs by simple linear readout elements. These readouts can be
trained to recognize common information in dynamical changing network states
because of the high dimensionality of these states. It has been shown that these
models exhibit high computational power (Jaeger and Haas, 2004; Joshi and Maass,
2005; Legenstein et al., 2003). However, the analytical study of such networks with
rich dynamics is a hard job. Fortunately, there exists a vast body of literature on
related questions in the context of many different scientific disciplines in the more
general framework of dynamical systems theory. Specifically, a stream of research is
concerned with system dynamics located at the boundary region between ordered
and chaotic behavior, which was termed the “edge of chaos.” This research is of
special interest for the study of neural systems because it was shown that the
behavior of dynamical systems is most interesting in this region. Furthermore, a
link between computational power of dynamical systems and the edge of chaos was
conjectured.

It is therefore a promising goal to use concepts and methods from dynamical
systems theory to analyze neural circuits with rich dynamics and to get in this
way better tools for understanding computation in the brain. In this chapter, we
will take a tour, visiting research concerned with the edge of chaos and eventually
arrive at a first step toward this goal. The aim of this chapter is to guide the reader
through a stream of ideas which we believe are inspiring for research in neuroscience
and molecular biology, as well as for the design of novel computational devices in
engineering.

After a brief introduction of fundamental principles of dynamical systems
theory and chaos in section 6.2, we will start our journey in section 6.3 in the field of
theoretical biology. There, Kauffman studied questions of evolution and emerging
order in organisms. We will see that depending on the connectivity structure,
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Table 6.1 General Properties of Various Types of Dynamical Systems

Cellular Iterative Boolean Cortical Microcircuits
Automata Maps Circuits and Gene Regulation

networks
Analog states? no yes no yes
Continuous time? no no no yes
High dimensional? yes no yes yes
With noise? no no no yes
With online input? no no usually no yes

networks may operate either in an ordered or chaotic regime. Furthermore, we
will encounter the edge of chaos as a transition between these dynamic regimes.
In section 6.4, our tour will visit the field of statistical physics, where Derrida and
others studied related questions and provided new methods for their mathematical
analysis. In section 6.5 the reader will see how these ideas can be applied in the
theory of computation. The study of cellular automata by Wolfram, Langton,
Packard, and others led to the conjecture that complex computations are best
performed in systems at the edge of chaos. The next stops of our journey in
sections 6.6 and 6.7 will bring us close to our goal. We will review work by
Bertschinger and Natschläger, who analyzed real-time computations on the edge
of chaos in threshold circuits. In section 6.8, we will briefly examine self-organized
criticality, i.e., how a system can adapt its own dynamics toward the edge of chaos.
Finally, section 6.9 presents the efforts of the authors of this chapter to apply
these ideas to computational questions in the context of biologically realistic neural
microcircuit models. In this section we will analyze the edge of chaos in networks
of spiking neurons and ask the following question: In what dynamical regimes are
neural microcircuits computationally most powerful? Table 6.1 shows that neural
microcircuits (as well as gene regulation networks) differ in several essential aspects
from those examples for dynamical systems that are commonly studied in dynamical
systems theory.

6.2 Chaos in Dynamical Systems

In this section we briefly introduce ideas from dynamical systems theory and chaos.
A few slightly different definitions of chaos are given in the literature. Although
we will mostly deal here with systems in discrete time and discrete state space, we
start out with the well-established definition of chaos in continuous systems and
return to discrete systems later in this section.

The subject known as dynamics deals with systems that evolve in time (Stro-
gatz, 1994). The system in question may settle down to an equilibrium, may enter
a periodic trajectory (limit cycle), or do something more complicated. In Kaplan
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and Glass (1995) the dynamics of a deterministic system is defined as being chaotic
if it is aperiodic and bounded with sensitive dependence on initial conditions.

The phase space for an N -dimensional system is the space with coordinates
x1, . . . , xN . The state of an N -dimensional dynamical system at time t is represented
by the state vector x(t) = (x1(t), . . . , xN (t)). If a system starts in some initial
condition x(0), it will evolve according to its dynamics and describe a trajectory
in state space. A steady state of the system is a state xs such that if the system
evolves with xs as its initial state, it will remain in this state for all future times.
Steady states may or may not be stable to small outside perturbations. For a stable
steady state, small perturbations die out and the trajectory converges back to the
steady state. For an unstable steady state, trajectories do not converge back to the
steady state after arbitrarily small perturbations.

The general definition of an attractor is a set of points or states in state space
to which trajectories within some volume of state space converge asymptotically
over time. This set itself is invariant under the dynamic evolution of the system.1

Therefore, a stable steady state is a zero-dimensional, or point, attractor. The set
of initial conditions that evolve to an attractor A is called the basin of attraction

of A. A limit cycle is an isolated closed trajectory. Isolated means that neighboring
trajectories are not closed. If released in some point of the limit cycle, the system
flows on the cycle repeatedly. The limit cycle is stable if all neighboring trajectories
approach the limit cycle. A stable limit cycle is a simple type of attractor. Higher-
dimensional and more complex types of attractors exist.

In addition, there exist also so-called strange, or chaotic attractors. For example
all trajectories in a high-dimensional state space might be brought onto a two-
dimensional surface of some manifold. The interesting property of such attractors
is that, if the system is released in two different experiments from two points on
the attractor which are arbitrarily close to each other, the subsequent trajectories
remain on the attractor surface but diverge away from each other. After a sufficient
time, the two trajectories can be arbitrarily far apart from each other. This
extreme sensitivity to initial conditions is characteristic of chaotic behavior. In fact,
exponentially fast divergence of trajectories (characterized by a positive Lyapunov
exponent) is often used as a definition of chaotic dynamics (see, e.g., Kantz and
Schreiber, 1997). There might be a lot of structure in chaotic dynamics since the
trajectory of a high-dimensional system might be projected merely onto a two-
dimensional surface. However, since the trajectory on the attractor is chaotic, the
exact trajectory is practically not predictable (even if the system is deterministic).

Systems in discrete time and with a finite discrete state space differ from con-
tinuous systems in several aspects. First, since state variables are discrete, trajecto-
ries can merge, whereas in a continuous system they may merely approximate each
other. Second, since there is a finite number of states, the system must eventually
reenter a state previously encountered and will thereafter cycle repeatedly through
this state cycle. These state cycles are the dynamical attractors of the discrete sys-
tem. The set of states flowing into such a state cycle or lying on it constitutes the
basin of attraction of that state cycle. The length of a state cycle is the number
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of states on the cycle. For example, the memory states in a Hopfield network (a
network of artificial neurons with symmetric weights) are the stable states of the
system. A Hopfield network does not have state cycles of length larger than one.
The basins of attraction of memory states are used to drive the system from re-
lated initial conditions to the same memory state, hence constituting an associative
memory device.

Characteristic properties of chaotic behavior in discrete systems are a large
length of state cycles and high sensitivity to initial conditions. Ordered networks
have short state cycles and their sensitivity to initial conditions is low, i.e., the state
cycles are quite stable. We note that state cycles can be stable with respect to some
small perturbations but unstable to others. Therefore, “quite stable” means in this
context that the state cycle is stable to a high percentage of small perturbations.
These general definitions are not very precise and will be made more specific for
each of the subsequent concrete examples.

6.3 Randomly Connected Boolean Networks

The study of complex systems is obviously important in many scientific areas. In
genetic regulatory networks, thousands or millions of coupled variables orchestrate
developmental programs of an organism. In 1969, Kauffman started to study such
systems in the simplified model of Boolean networks (Kauffman, 1969, 1993). He
discovered some surprising results which will be discussed in this section. We will
encounter systems in the ordered and in the chaotic phase. The specific phase
depends on some simple structural feature of the system, and a phase transition
will occur when this feature changes.

A Boolean network consists of N elements and connections between them. The
state of its elements is described by binary variables x1, . . . , xN . The dynamical
behavior of each variable, whether it will be active (1) or inactive (−1) at the next
time step, is governed by a Boolean function.2 The (directed) connections between
the elements describe possible interactions. If there is a connection from element
i to element j, then the state of element i influences the state of element j in the
next time step. We say that i is an input of element j.

An initial condition is given by a value for each variable x(0). Thereafter, the
state of each element evolves according to the Boolean function assigned to it. We
can describe the dynamics of the system by a set of iterated maps

x1(t + 1) = f1(x1(t), . . . , xN (t))
...

xN (t + 1) = fN (x1(t), . . . , xN (t)),

where f1, . . . , fN are Boolean functions.3 Here, all state variables are updated in
parallel at each time step.

The stability of attractors in Boolean networks can be studied with respect to
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minimal perturbations. A minimal perturbation is just the flip of the activity of a
single variable to the opposite state.

Kauffman studied the dynamics of Boolean networks as a function of the
number of elements in the network N , and the average number K of inputs to
each element in the net. Since he was not interested in the behavior of particular
nets but rather in the expected dynamics of nets with some given N and K, he
sampled at random from the ensemble of all such networks. Thus the K inputs to
each element were first chosen at random and then fixed, and the Boolean function
assigned to each element was also chosen at random and then fixed. For each such
member of the ensemble, Kauffman performed computer simulations and examined
the accumulated statistics.

The case K = N is especially easy to analyze. Since the Boolean function of
each element was chosen randomly from a uniform distribution, the successor to
each circuit state is drawn randomly from a uniform distribution among the 2N

possible states. This leads to long state cycles. The median state cycle length is
0.5 · 2N/2. Kauffman called such exponentially long state cycles chaotic.4 These
state cycles are unstable to most perturbations, hence there is a strong dependence
on initial conditions. However, only a few different state cycles exit in this case:
the expected number of state cycles is N/e. Therefore, there is some characteristic
structure in the chaotic behavior in the sense that the system will end up in one of
only a few long-term behaviors.

As long as K is not too small, say K ≥ 5, the main features of the case K = N

persist. The dynamics is still governed by relatively few state cycles of exponential
length, whose expected number is at most linear in N . For K ≥ 5, these results can
be derived analytically by a rough mean field approximation. For smaller K, the
approximation becomes inaccurate. However, simulations confirm that exponential
state cycle length and a linear number of state cycles are characteristic for random
Boolean networks with K ≥ 3. Furthermore, these systems show high sensitivity to
initial conditions (Kauffman, 1993).

The case K = 2 is of special interest. There, a phase transition from ordered
to chaotic dynamics occurs. Numerical simulations of these systems have revealed
the following characteristic features of random Boolean networks with K = 2
(Kauffman, 1969). The expected median state cycle length is about

√
N . Thus,

random Boolean networks with K = 2 often confine their dynamical behavior to
tiny subvolumes of their state space, a strong sign of order. A more detailed analysis
shows that most state cycles are short, whereas there are a few long ones. The
number of state cycles is about

√
N and they are inherently stable to about 80% to

90% of all minimal transient perturbations. Hence, the state cycles of the system
have large basins of attraction and the sensitivity to initial conditions is low. In
addition to these characteristics which stand in stark contrast to networks of larger
K, we want to emphasize three further features. First, typically at least 70% of the
N elements have some fixed active or inactive state which is identical for all the
existing state cycles of the Boolean network. This behavior establishes a frozen core

of elements. The frozen core creates walls of constancy which break the system into
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functionally isolated islands of unfrozen elements. Thus, these islands are prevented
from influencing one another. The boundary regime where the frozen core is just
breaking up and interaction between the unfrozen islands becomes possible is the
phase transition between order and chaos. Second, altering transiently the activity
of a single element typically propagates but causes only alterations in the activity
of a small fraction of the elements in the system. And third, deleting any single
element or altering its Boolean function typically causes only modest changes in
state cycles and transients. The latter two points ensure that “damage” of the
system is small. We will further discuss this interesting case in the next section.

Networks with K = 1 operate in an ordered regime and are of little interest
for us here.

6.4 The Annealed Approximation by Derrida and Pomeau

The phase transition from order to chaos is of special interest. As we shall see in the
sections below, there are reasons to believe that this dynamical regime is particu-
larly well suited for computations. There were several attempts to understand the
emerging order in random Boolean networks. In this section, we will review the ap-
proach of Derrida and Pomeau (1986). Their beautiful analysis gives an analytical
answer to the question of where such a transition occurs.

In the original model, the connectivity structure and the Boolean functions
fi of the elements i were chosen randomly but were then fixed. The dynamics of
the network evolved according to this fixed network. In this case the randomness
is quenched because the functions fi and the connectivity do not change with
time. Derrida and Pomeau presented a simple annealed approximation to this
model which explains why there is a critical value Kc of K where the transition
from order to chaos appears. This approximation also allowed the calculation of
many properties of the model. In contrast to the quenched model, the annealed
approximation randomly reassigns the connectivity and the Boolean functions of the
elements at each time step. Although the assumption of the annealed approximation
is quite drastic, it turns out that its agreement with observations in simulations of
the quenched model is surprisingly good. The benefits of the annealed model will
become clear below.

It was already pointed out that exponential state cycle length is an indicator
of chaos. In the annealed approximation, however, there are no fixed state cycles
because the network is changed at every time step. Therefore, the calculations
are based on the dependence on initial conditions. Consider two network states
C1, C2 ∈ {−1, 1}N . We define the Hamming distance d(C1, C2) as the number
of positions in which the two states are different. The question is whether two
randomly chosen different initial network states eventually converge to the same
pattern of activity over time. Or, stated in other words, given an initial state C1

which leads to a state C(t)
1 at time t and a different initial state C2 which leads to

a state C(t)
2 at time t, will the Hamming distance d(C(t)

1 , C(t)
2 ) converge to zero for
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Figure 6.1 Expected distance between two states at time t+1 as a function of the
state distance yt between two states at time t, based on the annealed approximation.
Points on the diagonal yt = yt+1 are fixed points of the map. The curves for K ≥ 3
all have fixed points for a state distance larger than zero. The curve for K = 2
stays close to the diagonal for small state distances but does not cross it. Hence,
for K = 2 state distances converge to zero for iterated applications of the map.

large t? Derrida and Pomeau found that this is indeed the case for K ≤ 2. For
K ≥ 3, the trajectories will diverge.

To be more precise, one wants to know the probability P1(m, n) that the
distance d(C′

1, C′
2) between the states at time t = 1 is m given that the distance

d(C1, C2) at time t = 0 was n. More generally, one wants to estimate the probability
Pt(m, n) that the network states C(t)

1 , C(t)
2 obtained at time t are at distance

m, given that d(C1, C2) = n at time t = 0. It now becomes apparent why
the annealed approximation is useful. In the annealed approximation, the state
transition probabilities at different time steps are independent, which is not the
case in the quenched model. For large N , one can introduce continuous variables
n
N = x. Derrida and Pomeau (1986) show that P annealed

1 (m, n) for the annealed
network has a peak around a value m = Ny1 where y1 is given by

y1 =
1 − (1 − x)K

2
. (6.1)

Similarly, the probability P annealed
t (m, n) has a peak at m = Nyt with yt given by

yt =
1 − (1 − yt−1)K

2
(6.2)

for t > 1. The behavior of this iterative map can be visualized in the so called
Derrida plot; see fig. 6.1. The plot shows the state distance at time t + 1 as a
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function of the state distance at time t. Points on the diagonal yt = yt+1 are fixed
points of the map.

For K ≤ 2, the fixed point y = 0 is the only fixed point of the map and it
is stable. In fact, for any starting value y1, we have yt → 0 for t → ∞ in the
limit of N → ∞. For K > 2, the fixed point y = 0 becomes unstable and a new
stable fixed point y∗ appears. Therefore, the state distance need no longer always
converge to zero. Hence there is a phase transition of the system at K = 2. The
theoretical work of Derrida and Pomeau was important because before there was
only empirical evidence for this phase transition.

We conclude that there exists an interesting transition region from order
to chaos in these dynamical systems. For simplified models, this region can be
determined analytically. In the following section we will find evidence that such
phase transitions are of great interest for the computational properties of dynamical
systems.

6.5 Computation at the Edge of Chaos in Cellular Automata

Evidence that systems exhibit superior computational properties near a phase
transition came from the study of cellular automata. Cellular automata are quite
similar to Boolean networks. The main differences are that connections between
elements are local, and that an element may assume one out of k possible states at
each time step (instead of merely two states as in Boolean networks). The former
difference implies that there is a notion of space in a cellular automaton. More
precisely, a d-dimensional space is divided into cells (the elements of the network).
The state of a cell at time t+1 is a function only of its own state and the states of its
immediate neighbors at time t. The latter difference is made explicit by defining a
finite set Σ of cell states. The transition function Δ is a mapping from neighborhood
states (including the cell itself) to the set of cell states. If the neighborhood is of
size L, we have Δ : ΣL → Σ.

What do we mean by “computation” in the context of cellular automata? In
one common meaning, the transition function is interpreted as the program and
the input is given by the initial state of the cellular automaton. Then, the system
evolves for some specified number of time steps, or until some “goal pattern”—
possibly a stable state—is reached. The final pattern is interpreted as the output of
the automaton (Mitchell et al., 1993). In analogy to universal Turing machines, it
has been shown that cellular automata are capable of universal computation (see,
e.g., Codd, 1968; Smith, 1971; von Neumann, 1966). That is, there exist cellular
automata which, by getting the algorithm to be applied as part of their initial
configuration, can perform any computation which is computable by any Turing
machine.

In 1984, Wolfram conjectured that such powerful automata are located in a
special dynamical regime. Later, Langton identified this regime to lie on a phase
transition between order and chaos (see below), i.e., in the regime which corresponds
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Figure 6.2 Evolution of one-dimensional cellular automata. Each horizontal line
represents one automaton state. Successive time steps are shown as successive
horizontal lines. Sites with value 1 are represented by black squares; sites with
value 0 by white squares. One example each for an automaton of class 1 (left), class
4 (middle), and class 3 (right) is given.

to random Boolean networks with K = 2.
Wolfram presented a qualitative characterization of one-dimensional cellu-

lar automaton behavior where the individual automata differed by their transfer
function.5 He found evidence that all one-dimensional cellular automata fall into
four distinct classes (Wolfram, 1984). The dynamics for three of these classes are
shown in fig. 6.2.

Class 1 automata evolve to a homogeneous state, i.e., a state where all cells are in
the same state. Hence these systems evolve to a simple steady state.

Class 2 automata evolve to a set of separated simple stable states or separated
periodic structures of small length. These systems have short state cycles.

Both of these classes operate in the ordered regime in the sense that state cycles
are short.

Class 3 automata evolve to chaotic patterns.

Class 4 automata have long transients, and evolve “to complex localized struc-
tures” (Wolfram, 1984).

Class 3 automata are operating in the chaotic regime. By chaotic, Wolfram refers to
the unpredictability of the exact automaton state after a few time steps. Successor
states look more or less random. He also talks about nonperiodic patterns. Of course
these patterns are periodic if the automaton is of finite size. But in analogy with
the results presented above, one can say that state cycles are very long.

Transients are the states that emerge before the dynamics reaches a stable
long-lasting behavior. They appear at the beginning of the state evolution. Once the
system is on a state cycle, it will never revisit such transient states. The transients
of class 4 automata can be identified with large basins of attraction or high stability
of state cycles. Wolfram conjectured that class 4 automata are capable of universal
computations.

In 1990, Langton systematically studied the space of cellular automata con-
sidered by Wolfram with respect to an order parameter λ (Langton, 1990). This
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parameter λ determines a crucial property of the transfer function Δ: the fraction
of entries in Δ which do not map to some prespecified quiescent state sq. Hence, for
λ = 0, all local configurations map to sq, and the automaton state moves to a ho-
mogeneous state after one time step for every initial condition. More generally, low
λ values lead to ordered behavior. Rules with large λ tend to produce a completely
different behavior.

Langton (1990) stated the following question: “Under what conditions will
physical systems support the basic operations of information transmission, storage,
and modification constituting the capacity to support computation?” When Lang-
ton went through different λ values in his simulations, he found that all automaton
classes of Wolfram appeared in this parameterization. Moreover, he found that the
interesting class 4 automata can be found at the phase transition between ordered
and chaotic behavior for λ values between about 0.45 and 0.5, values of intermediate
heterogeneity. Information-theoretic analysis supported the conjectures of Wolfram,
indicating that the edge of chaos is the dominant region of computationally powerful
systems.

Further evidence for Wolfram’s hypothesis came from Packard (1988). Packard
used genetic algorithms to genetically evolve one-dimensional cellular automata for
a simple computational task. The goal was to develop in this way cellular automata
which behave as follows: The state of the automaton should converge to the all-one
state (i.e., the state where every cell is in state 1), if the fraction of one-states in
the initial configuration is larger than 0.5. If the fraction of one-states in the initial
configuration is below 0.5, it should evolve to the all-zero state.

Mutations were accomplished by changes in the transfer function (point mu-
tations which changed only a single entry in the rule table, and crossover which
merged two rule tables into a single one). After applying a standard genetic algo-
rithm procedure to an initial set of cellular automaton rules, he examined the rule
tables of the genetically evolved automata. The majority of the evolved rule tables
had λ values either around 0.23 or around 0.83. These are the two λ values where
the transition from order to chaos appears for cellular automata with two states
per cell.6 “Thus, the population appears to evolve toward that part of the space of
rules that marks the transition to chaos” (Packard, 1988).

These results have later been criticized (Mitchell et al., 1993). Mitchell and
collaborators reexamined the ideas of Packard and performed similar simulations
with a genetic algorithm. The results of these investigations differed from Packard’s
results. The density of automata after evolution was symmetrically peaked around
λ = 0.5, but much closer to 0.5 and definitely not in the transition region. They
argued that the optimal λ value for a task should strongly depend on the task.
Specifically, in the task considered by Packard one would expect a λ value close to
0.5 for a well-performing rule, because the task is symmetric with respect to the
exchange of ones and zeros. A rule with λ < 0.5 tends to decrease the number of
ones in the state vector because more entries in the rule table map the state to
zero. This can lead to errors if the number of ones in the initial state is slightly
larger than 0.5. Indeed, a rule which performs very well on this task, the Gacs-
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Kurdyumov-Levin (GKL) rule, has λ = 0.5. It was suggested that artifacts in the
genetic algorithm could account for the different results.

We want to return here to the notion of computation. Wolfram and Langton
were interested in universal computations. Although universality results for au-
tomata are mathematically interesting, they do not contribute much to the goal
of understanding computations in biological neural systems. Biological organisms
usually face computational tasks which are quite different from the off-line compu-
tations on discrete batch inputs for which Turing machines are designed.

Packard was interested in automata which perform a specific kind of compu-
tation with the transition function being the “program.” Mitchell at al. showed
that there are complex tasks for which the best systems are not located at the
edge of chaos. In Mitchell et al. (1993), a third meaning of computation in cellular
automata—a kind of “intrinsic” computation—is mentioned: “Here, computation
is not interpreted as the performance of a ’useful’ transformation of the input to
produce the output. Rather, it is measured in terms of generic, structural compu-
tational elements such as memory, information production, information transfer,
logical operations, and so on. It is important to emphasize that the measurement of
such intrinsic computational elements does not rely on a semantics of utility as do
the preceding computational types” (Mitchell et al., 1993). It is worthwhile to note
that this “intrinsic” computation in dynamical systems can be used by a readout
unit which maps system states to desired outputs. This is the basic idea of the liq-
uid state machine and echo state networks, and it is the basis of the considerations
in the following sections.

To summarize, systems at the edge of chaos are believed to be computationally
powerful. However, the type of computations considered so far are considerably
different from computations in organisms. In the following section, we will consider
a model of computation better suited for our purposes.

6.6 The Edge of Chaos in Systems with Online Input Streams

All previously considered computations were off-line computations where some
initial state (the input) is transformed by the dynamics into a terminal state or
state cycle (the output). However, computation in biological neural networks is quite
different from computations in Turing machines or other traditional computational
models. The input to an organism is a continuous stream of data and the organism
reacts in real time (i.e., within a given time interval) to information contained in
this input. Hence, as opposed to batch processing, the input to a biological system
is a time varying signal which is mapped to a time-varying output signal. Such
mappings are also called filters. In this section, we will have a look at recent work
on real-time computations in threshold networks by Bertschinger and Natschläger
(2004); see also Natschläger et al. (2005)). Results of experiments with closely
related hardware models are reported in Schuermann et al. (2005).
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Threshold networks are special cases of Boolean networks consisting of N

elements (units) with states xi ∈ {−1, 1}, i = 1, . . . , N . In networks with online
input, the state of each element depends on the state of exactly K randomly chosen
other units, and in addition on an external input signal u(·) (the online input). At
each time step, u(t) assumes the value ū + 1 with probability r and the value ū− 1
with probability 1 − r. Here, ū is a constant input bias. The transfer function of
the elements is not an arbitrary Boolean function but a randomly chosen threshold
function of the form

xi(t + 1) = Θ

⎛⎝ N∑
j=1

wijxj(t) + u(t + 1)

⎞⎠ , (6.3)

where wij ∈ R is the weight of the connection from element j to element i and
Θ(h) = +1 if h ≥ 0 and Θ(h) = −1 otherwise. For each element, exactly K of its
incoming weights are nonzero and chosen from a Gaussian distribution with zero
mean and variance σ2. Different dynamical regimes of such circuits are shown in
fig. 6.3. The top row shows the online input, and below, typical activity patterns
of networks with ordered, critical, and chaotic dynamics. The system parameters
for each of these circuits are indicated in the phase plot below. The variance σ2 of
nonzero weights was varied to achieve the different dynamics. The transition from
the ordered to the chaotic regime is referred to as the critical line.

Bertschinger and Natschläger used the approach of Derrida to determine the
dynamical regime of these systems. They analyzed the change in Hamming distance
between two (initial) states and their successor states provided that the same input
is applied in both situations. Using Derrida’s annealed approximation, one can
calculate the Hamming distance d(t + 1) given the Hamming distance d(t) of the
states at time t. If arbitrarily small distances tend to increase, the network operates
in the chaotic phase. If arbitrarily small distances tend to decrease, the network
operates in the ordered phase. This can also be expressed by the stability of the
fixed point d∗ = 0. In the ordered phase, this fixed point is the only fixed point and
it is stable. In the chaotic phase, another fixed point appears and d∗ = 0 becomes
unstable. The fixed point 0 is stable if the absolute value of the slope of the map
at d(t) = 0,

α =
∂d(t + 1)

∂d(t)

∣∣∣
d(t)=0

,

is smaller than 1. Therefore, the transition from order to chaos (the critical line) is
given by the line |α| = 1. This line can be characterized by the equation

rPBF (ū + 1) + (1 − r)PBF (ū − 1) =
1
K

, (6.4)

where the bit-flip probability PBF (v) is the probability that a single changed state
component in the K inputs to a unit that receives the current online input v leads to
a change of the output of that unit. This result has a nice interpretation. Consider
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Figure 6.3 Threshold networks with online input streams in different dynamical
regimes. The top row shows activity patterns for ordered (left), critical (middle),
and chaotic behavior (right). Each vertical line represents the activity in one time
step. Black (white) squares represent sites with value 1 (−1). Successive vertical
lines represent successive circuit states. The input to the network is shown above
the plots. The parameters σ2 and ū of these networks are indicated in the phase
plot below. Further parameters: number of input connections K = 4, number of
elements N = 250.

a value of r = 1, i.e., the input to the network is constant. Consider two network
states C1, C2 which differ only in one state component. This different component is
on average mapped to K elements (because each gate receives K inputs, hence there
are altogether N · K connections). If the bit-flip probability in each of these units
is larger than 1/K, then more than one of these units will differ on average in the
successor states C′

1, C′
2. Hence, differences are amplified. If the bit-flip probability

of each element is smaller than 1/K, the differences will die out on average.

6.7 Real-Time Computation in Dynamical Systems

In the previous section we were interested in the dynamical properties of systems
with online input. The work we discussed there was influenced by recent ideas
concerning computation in neural circuits that we will sketch in this section.

The idea to use the rich dynamics of neural systems which can be observed in
cortical circuits, rather than to restrict them, resulted in the liquid state machine
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model by Maass et al. (2002) and the echo state network by Jaeger (2002).7 They
assume time series as inputs and outputs of the system. A recurrent network is
used to hold nonlinearly transformed information about the past input stream in
the state of the network. It is followed by a memoryless readout unit which simply
looks at the current state of the circuit. The readout can then learn to map the
current state of the system onto some target output. Superior performance of echo
state networks for various engineering applications is suggested by the results of
Jaeger and Haas (2004).

The requirement that the network is operating in the ordered phase is impor-
tant in these models, although it is usually described with a different terminology.
The ordered phase can be described by using the notion of fading memory (Boyd
and Chua, 1985). Time-invariant fading memory filters are exactly those filters
which can be represented by Volterra series. Informally speaking, a network has
fading memory if its state at time t depends (up to some finite precision) only on
the values (up to some finite precision) of its input from some finite time window
[t − T, t] into the past (Maass et al., 2002). This is essentially equivalent to the
requirement that if there are no longer any differences in the online inputs then the
state differences converge to 0, which is called echo state property in Jaeger (2002).

Besides the fading memory property, another property of the network is
important for computations on time series: the pairwise separation property (Maass
et al., 2002). Roughly speaking, a network has the pairwise separation property if
for any two input time series which differed in the past, the network assumes at
subsequent time points different states.

Chaotic networks have such separation property, but they do not have fading
memory since differences in the initial state are amplified. On the other hand,
very ordered systems have fading memory but provide weak separation. Hence, the
separation property and the fading memory property are antagonistic. Ideally, one
would like to have high separation on salient differences in the input stream but still
keep the fading memory property (especially for variances in the input stream that
do not contribute salient information). It is therefore of great interest to analyze
these properties in models for neural circuits.

A first step in this direction was made by Bertschinger and Natschläger (2004)
in the context of threshold circuits. Similar to section 6.6, one can analyze the
evolution of the state separation resulting from two input streams u1 and u2 which
differ at time t with some probability. The authors defined the network-mediated

separation (short: NM -separation) of a network. Informally speaking, the NM -
separation is roughly the amount of state distance in a network which results from
differences in the input stream minus the amount of state difference resulting from
different initial states. Hence, the NM -separation has a small value in the ordered
regime, where both terms are small, but also in the chaotic regime, where both
terms are large. Indeed, it was shown that the NM -separation peaks at the critical
line, which is shown in fig. 6.4a. Hence, Bertschinger and Natschläger (2004) offer a
new interpretation for the critical line and provide a more direct link between the
edge of chaos and computational power.
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a b

Figure 6.4 The network-mediated separation and computational performance for
a 3-bit parity task with different settings of parameters σ2 and ū. (a) The NM-
separation peaks at the critical line. (b) High performance is achieved near the
critical line. The performance is measured in terms of the memory capacity MC

(Jaeger, 2002). The memory capacity is defined as the mutual information MI

between the network output and the target function summed over all delays τ > 0
on a test set. More formally, MC =

∑∞
τ=0 MI(vτ , yτ ), where vτ (·) denotes the network

output and yτ (t) = PARITY (u(t − τ), u(t − τ − 1), u(t − τ − 2)) is the target output.

Since the separation property is important for the computational properties
of the network, one would expect that the computational performance peaks near
the critical line. This was confirmed with simulations where the computational task
was to compute the delayed 3-bit parity8 of the input signal. The readout neuron
was implemented by a simple linear classifier C(x(t)) = Θ(w · x(t) + w0) which
was trained with linear regression. Note that the parity task is quite complex since
it partitions the set of all inputs into two classes which are not linearly separable
(and can therefore not be represented by the linear readout alone), and it requires
memory. Figure 6.4b shows that the highest performance is achieved for parameter
values close to the critical line, although it is not clear why the performance drops
for increasing values of ū. In contrast to preceding work (Langton, 1990; Packard,
1988), the networks used were not optimized for a specific task. Only the linear
readout was trained to extract the specific information from the state of the system.
This is important since it decouples the dynamics of the network from a specific
task.

6.8 Self-Organized Criticality

Are there systems in nature with dynamics located at the edge of chaos? Since the
edge of chaos is a small boundary region in the space of possible dynamics, only
a vanishingly small fraction of systems should operate in this dynamical regime.
However, it was argued that such “critical” systems are abundant in nature (see,
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e.g., Bak et al., 1988). How is this possible if critical dynamics may occur only
accidentally in nature? Bak and collaborators argue that a class of dissipative
coupled systems naturally evolve toward critical dynamics (Bak et al., 1988). This
phenomenon was termed self-organized criticality (SOC) and it was demonstrated
with a model of a sand pile. Imagine building up a sand pile by randomly adding
sand to the pile, a grain at a time. As sand is added, the slope will increase.
Eventually, the slope will reach a critical value. Whenever the local slope of the pile
is too steep, sand will slide off, therefore reducing the slope locally. On the other
hand, if one starts with a very steep pile it will collapse and reach the critical slope
from the other direction.

In neural systems, the topology of the network and the synaptic weights
strongly influence the dynamics. Since the amount of genetically determined con-
nections between neurons is limited, self-organizing processes during brain develop-
ment as well as learning processes are assumed to play a key role in regulating the
dynamics of biological neural networks (Bornholdt and Röhl, 2003). Although the
dynamics is a global property of the network, biologically plausible learning rules
try to estimate the global dynamics from information available at the local synaptic
level and they only change local parameters. Several SOC rules have been suggested
(Bornholdt and Röhl, 2003, 2000; Christensen et al., 1998; Natschläger et al., 2005).
In Bornholdt and Röhl (2003), the degree of connectivity was regulated in a locally
connected network (i.e., only neighboring neurons are connected) with stochastic
state update dynamics. A local rewiring rule was used which is related to Hebbian
learning. The main idea of this rule is that the average correlation between the
activities of two neurons contains information about the global dynamics. This rule
only relies on information available on the local synaptic level.

Self-organized criticality in systems with online input streams (as discussed in
section 6.6) was considered in Natschläger et al. (2005). According to section 6.6,
the dynamics of a threshold network is at the critical line if the bit-flip probability
PBF (averaged over the external and internal input statistics) is equal to 1/K,
where K is the number of inputs to a unit. The idea is to estimate the bit-flip
probability of a unit by the mean distance of the internal activation of that unit
from the firing threshold. This distance is called the margin. Intuitively, a node
with an activation much higher or lower than its firing threshold is rather unlikely
to change its output if a single bit in its inputs is flipped. Each node i then applies
synaptic scaling to its weights wij in order to adjust itself toward the critical line:

wij(t + 1) =

{
1

1+ν · wij(t) if P esti

BF (t) > 1
K

(1 + ν) · wij(t) if P esti

BF (t) < 1
K

, (6.5)

where 0 < ν � 1 is the learning rate and P esti

BF (t) is an estimate of the bit-flip
probability P i

BF of unit i. It was shown by simulations that this rule keeps the dy-
namics in the critical regime, even if the input statistics change. The computational
capabilities of randomly chosen circuits with this synaptic scaling rule acting online
during computation were tested in a setup similar to that discussed in section 6.7.
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The performance of these networks was as high as for circuits where the parame-
ters were a priori chosen in the critical regime, and they stayed in this region. This
shows that systems can perform specific computations while still being able to react
to changing input statistics in a flexible way.

6.9 Toward the Analysis of Biological Neural Systems

Do cortical microcircuits operate at the edge of chaos? If biology makes extensive
use of the rich internal dynamics of cortical circuits, then the previous considerations
would suggest this idea. However, the neural elements in the brain are quite different
from the elements discussed so far. Most important, biological neurons communicate
with spikes, discrete events in continuous time. In this section, we will investigate
the dynamics of spiking circuits and ask: In what dynamical regimes are neural
microcircuits computationally powerful? We propose in this section a conceptual
framework and new quantitative measures for the investigation of this question (see
also Maass et al., 2005).

In order to make this approach feasible, in spite of numerous unknowns
regarding synaptic plasticity and the distribution of electrical and biochemical
signals impinging on a cortical microcircuit, we make in the present first step of
this approach the following simplifying assumptions:

1. Particular neurons (“readout neurons”) learn via synaptic plasticity to extract
specific information encoded in the spiking activity of neurons in the circuit.

2. We assume that the cortical microcircuit itself is highly recurrent, but that the
impact of feedback that a readout neuron might send back into this circuit can be
neglected.9

3. We assume that synaptic plasticity of readout neurons enables them to learn
arbitrary linear transformations. More precisely, we assume that the input to such
readout neurons can be approximated by a term

∑n−1
i=1 wixi(t), where n − 1 is the

number of presynaptic neurons, xi(t) results from the output spike train of the
ith presynaptic neuron by filtering it according to the low-pass filtering property
of the membrane of the readout neuron,10 and wi is the efficacy of the synaptic
connection. Thus wixi(t) models the time course of the contribution of previous
spikes from the ith presynaptic neuron to the membrane potential at the soma of
this readout neuron. We will refer to the vector x(t) as the “circuit state at time t”
(although it is really only that part of the circuit state which is directly observable
by readout neurons).

All microcircuit models that we consider are based on biological data for generic
cortical microcircuits (as described in section 6.9.1), but have different settings of
their parameters.
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6.9.1 Models for Generic Cortical Microcircuits

Our empirical studies were performed on a large variety of models for generic
cortical microcircuits (we refer to Maass et al., 2004, , for more detailed definitions
and explanations). All circuit models consisted of leaky integrate-and-fire neurons11

and biologically quite realistic models for dynamic synapses.12 Neurons (20% of
which were randomly chosen to be inhibitory) were located on the grid points of a 3D
grid of dimensions 6×6×15 with edges of unit length. The probability of a synaptic
connection from neuron a to neuron b was proportional to exp(−D2(a, b)/λ2), where
D(a, b) is the Euclidean distance between a and b, and λ is a spatial connectivity
constant (not to be confused with the λ parameter used by Langton). Synaptic
efficiencies w were chosen randomly from distributions that reflect biological data
(as in Maass et al., 2002), with a common scaling factor Wscale.
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Figure 6.5 Performance of different types of neural microcircuit models for clas-
sification of spike patterns. (a) In the top row are two examples of the 80 spike
patterns that were used (each consisting of 4 Poisson spike trains at 20 Hz over
200 ms), and in the bottom row are examples of noisy variations (Gaussian jit-
ter with SD 10 ms) of these spike patterns which were used as circuit inputs. (b)
Fraction of examples (for 200 test examples) that were correctly classified by a lin-
ear readout (trained by linear regression with 500 training examples). Results are
shown for 90 different types of neural microcircuits C with λ varying on the x-axis
and Wscale on the y-axis (20 randomly drawn circuits and 20 target classification
functions randomly drawn from the set of 280 possible classification functions were
tested for each of the 90 different circuit types, and resulting correctness rates were
averaged). Circles mark three specific choices of λ, Wscale pairs for comparison with
other figures; see fig. 6.6. The standard deviation of the result is shown in the inset
on the upper right.

Linear readouts from circuits with n − 1 neurons were assumed to compute a
weighted sum

∑n−1
i=1 wixi(t)+w0 (see section 6.9). In order to simplify notation we

assume that the vector x(t) contains an additional constant component x0(t) = 1, so
that one can write w ·x(t) instead of

∑n−1
i=1 wixi(t)+w0. In the case of classification

tasks we assume that the readout outputs 1 if w · x(t) ≥ 0, and 0 otherwise.
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In order to investigate the influence of synaptic connectivity on computational
performance, neural microcircuits were drawn from this distribution for 10 different
values of λ (which scales the number and average distance of synaptically connected
neurons) and 9 different values of Wscale (which scales the efficacy of all synaptic
connections). Twenty microcircuit models C were drawn for each of these 90
different assignments of values to λ and Wscale. For each circuit a linear readout was
trained to perform one (randomly chosen) out of 280 possible classification tasks on
noisy variations u of 80 fixed spike patterns as circuit inputs u. See fig. 6.5 for two
examples of such spike patterns. The target performance of any such circuit was to
output at time t = 200 ms the class (0 or 1) of the spike pattern from which the
preceding circuit input had been generated (for some arbitrary partition of the 80
fixed spike patterns into two classes). Each spike pattern u consisted of four Poisson
spike trains over 200 ms. Performance results are shown in fig. 6.5b for 90 different
types of neural microcircuit models.

6.9.2 Locating the Edge of Chaos in Neural Microcircuit Models

It turns out that the previously considered characterizations of the edge of chaos
are not too successful in identifying those parameter values in the map of fig. 6.5b
that yield circuits with large computational power (Maass et al., 2005). The reason
is that large initial state differences (as they are typically caused by different spike
input patterns) tend to yield for most values of the circuit parameters nonzero
state differences not only while the online spike inputs are different, but also long
afterward when the online inputs agree during subsequent seconds (even if the
random internal noise is identical in both trials). But if one applies the definition
of the edge of chaos via Lyapunov exponents (see Kantz and Schreiber, 1997),
the resulting edge of chaos lies for the previously introduced type of computations
(classification of noisy spike templates by a trained linear readout) in the region of
the best computational performance (see the map in fig. 6.5b, which is repeated for
easier comparison in fig. 6.6d). For this definition one looks for the exponent μ ∈ R
that provides through the formula

δΔT ≈ δ0 · eμΔT

the best estimate of the state separation δΔT at time ΔT after the computation was
started in two trials with an initial state difference δ0. We generalize this analysis
to the case with online input by choosing exactly the same online input (and the
same random noise) during the intervening time interval of length ΔT , and by
averaging the resulting state differences δΔT over many random choices of such
online inputs (and internal noise). As in the classical case with off-line input it
turns out to be essential to apply this estimate for δ0 → 0, since δΔT tends to
saturate for each fixed value δ0. This can be seen in fig. 6.6a, which shows results
of this experiment for a δ0 that results from moving a single spike that occurs in
the online input at time t = 1s by 0.5 ms. This experiment was repeated for three
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Figure 6.6 Analysis of small input differences for different types of neural micro-
circuit models as specified in section 6.9.1. Each circuit C was tested for two arrays
u and v of 4 input spike trains at 20 Hz over 10 s that differed only in the timing
of a single spike at time t = 1 s. (a) A spike at time t = 1 s was delayed by 0.5 ms.
Temporal evolution of Euclidean differences between resulting circuit states xu(t)
and xv(t) with 3 different values of λ, Wscale according to the three points marked
in panel c. For each parameter pair, the average state difference of 40 randomly
drawn circuits is plotted. (b) Lyapunov exponents μ along a straight line between
the points marked in panel c with different delays of the delayed spike. The delay is
denoted on the right of each line. The exponents were determined for the average
state difference of 40 randomly drawn circuits. (c) Lyapunov exponents μ for 90
different types of neural microcircuits C with λ varying on the x-axis and Wscale

on the y-axis (the exponents were determined for the average state difference of 20
randomly drawn circuits for each parameter pair). A spike in u at time t = 1 s was
delayed by 0.5 ms. The contour lines indicate where μ crosses the values −1, 0, and
1. (d) Computational performance of these circuits (same as fig. 6.5b), shown for
comparison with panel c.

different circuits with parameters chosen from the 3 locations marked on the map in
fig. 6.6c. By determining the best-fitting μ for ΔT = 1.5s for three different values
of δ0 (resulting from moving a spike at time t = 1s by 0.5, 1, 2 ms) one gets the
dependence of this Lyapunov exponent on the circuit parameter λ shown in fig. 6.6b
(for values of λ and Wscale on a straight line between the points marked in the map
of fig. 6.6c). The middle curve in fig. 6.6c shows for which values of λ and Wscale the
Lyapunov exponent is estimated to have the value 0. By comparing it with those
regions on this parameter map where the circuits have the largest computational
power (for the classification of noisy spike patterns, see fig. 6.6d), one sees that this
line runs through those regions which yield the largest computational power for
these computations. We refer to Mayor and Gerstner (2005) for other recent work
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on studies of the relationship between the edge of chaos and the computational
power of spiking neural circuit models.

Although this estimated edge of chaos coincides quite well with points of
best computational performance, it remains an unsatisfactory tool for predicting
parameter regions with large computational power for three reasons:

1. Since the edge of chaos is a lower-dimensional manifold in a parameter map (in
this case a curve in a 2D map), it cannot predict the (full dimensional) regions of a
parameter map with high computational performance (e.g., the regions with light
shading in fig. 6.5b).

2. The edge of chaos does not provide intrinsic reasons why points of the parameter
map yield small or large computational power.

3. It turns out that in some parameter maps different regions provide circuits with
large computational power for different classes of computational tasks (as shown
in Maass et al. (2005), for computations on spike patterns and for computations
with firing rates). But the edge of chaos can at best single out peaks for one of
these regions. Hence it cannot possibly be used as a universal predictor of maximal
computational power for all types of computational tasks.

These three deficiencies suggest that one has to think about different strategies
to approach the central question of this chapter. The strategy we will pursue in the
following is based on the assumption that the computational function of cortical
microcircuits is not fully genetically encoded, but rather emerges through various
forms of plasticity (“learning”) in response to the actual distribution of signals that
the neural microcircuit receives from its environment. From this perspective the
question about the computational function of cortical microcircuits C turns into
the following questions:

What functions (i.e., maps from circuit inputs to circuit outputs) can the circuit
C learn to compute?

How well can the circuit C generalize a specific learned computational function
to new inputs?

In the following, we propose quantitative criteria based on rigorous mathematical
principles for evaluating a neural microcircuit C with regard to these two questions.
We will compare in section 6.9.5 the predictions of these quantitative measures with
the actual computational performance achieved by neural microcircuit models as
discussed in section 6.9.1.

6.9.3 A Measure for the Kernel-Quality

One expects from a powerful computational system that significantly different input
streams cause significantly different internal states and hence may lead to different
outputs. Most real-world computational tasks require that the circuit give a desired
output not just for two, but for a fairly large number m of significantly different
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inputs. One could of course test whether a circuit C can separate each of the
(
m
2

)
pairs of such inputs. But even if the circuit can do this, we do not know whether a
neural readout from such circuit would be able to produce given target outputs for
these m inputs.

Therefore we propose here the linear separation property as a more suitable
quantitative measure for evaluating the computational power of a neural microcir-
cuit (or more precisely, the kernel quality of a circuit; see below). To evaluate the
linear separation property of a circuit C for m different inputs u1, . . . , um (which
are in the following always functions of time, i.e., input streams such as, for ex-
ample, multiple spike trains) we compute the rank of the n × m matrix M whose
columns are the circuit states xui(t0) that result at some fixed time t0 for the pre-
ceding input stream ui. If this matrix has rank m, then it is guaranteed that any

given assignment of target outputs yi ∈ R at time t0 for the inputs ui can be im-
plemented by this circuit C (in combination with a linear readout). In particular,
each of the 2m possible binary classifications of these m inputs can then be carried
out by a linear readout from this fixed circuit C. Obviously such insight is much
more informative than a demonstration that some particular classification task can
be carried out by such circuit C. If the rank of this matrix M has a value r < m,
then this value r can still be viewed as a measure for the computational power of
this circuit C, since r is the number of “degrees of freedom” that a linear readout
has in assigning target outputs yi to these inputs ui (in a way which can be made
mathematically precise with concepts of linear algebra). Note that this rank mea-
sure for the linear separation property of a circuit C may be viewed as an empirical
measure for its kernel quality, i.e., for the complexity and diversity of nonlinear
operations carried out by C on its input stream in order to boost the classification
power of a subsequent linear decision hyperplane (see Vapnik, 1998).

6.9.4 A Measure for the Generalization-Capability

Obviously the preceding measure addresses only one component of the computa-
tional performance of a neural circuit C. Another component is its capability to
generalize a learned computational function to new inputs. Mathematical criteria
for generalization capability are derived by Vapnik (1998) (see ch. 4 in Cherkassky
and Mulier, 1998, for a compact account of results relevant for our arguments).
According to this mathematical theory one can quantify the generalization ca-
pability of any learning device in terms of the VC-dimension of the class H of
hypotheses that are potentially used by that learning device.13 More precisely: if
VC-dimension (H) is substantially smaller than the size of the training set Strain,
one can prove that this learning device generalizes well, in the sense that the hy-
pothesis (or input-output map) produced by this learning device is likely to have
for new examples an error rate which is not much higher than its error rate on
Strain, provided that the new examples are drawn from the same distribution as
the training examples (see eq. 4.22 in Cherkassky and Mulier, 1998).

We apply this mathematical framework to the class HC of all maps from a set
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Suniv of inputs u into {0, 1} that can be implemented by a circuit C. More precisely:
HC consists of all maps from Suniv into {0, 1} that could possibly be implemented
by a linear readout from circuit C with fixed internal parameters (weights etc.) but
arbitrary weights w ∈ Rn of the readout (which classifies the circuit input u as
belonging to class 1 if w · xu(t0) ≥ 0, and to class 0 if w · xu(t0) < 0).

Whereas it is very difficult to achieve tight theoretical bounds for the VC-
dimension of even much simpler neural circuits (see Bartlett and Maass, 2003),
one can efficiently estimate the VC-dimension of the class HC that arises in our
context for some finite ensemble Suniv of inputs (that contains all examples used
for training or testing) by using the following mathematical result (which can be
proved with the help of Radon’s theorem):

Theorem 6.1
Let r be the rank of the n × s matrix consisting of the s vectors xu(t0) for all
inputs u in Suniv (we assume that Suniv is finite and contains s inputs). Then
r ≤ VC-dimension(HC) ≤ r + 1.

Proof Idea. Fix some inputs u1, . . . , ur in Suniv so that the resulting r circuit
states xui(t0) are linearly independent. The first inequality is obvious since this
set of r linearly independent vectors can be shattered by linear readouts from the
circuit C. To prove the second inequality one assumes for a contradiction that there
exists a set v1, . . . , vr+2 of r+2 inputs in Suniv so that the corresponding set of r+2
circuit states xvi(t0) can be shattered by linear readouts. This set M of r+2 vectors
is contained in the r-dimensional space spanned by the linearly independent vectors
xu1(t0), . . . ,xur

(t0). Therefore Radon’s theorem implies that M can be partitioned
into disjoint subsets M1, M2 whose convex hulls intersect. Since these sets M1, M2

cannot be separated by a hyperplane, it is clear that no linear readout exists that
assigns value 1 to points in M1 and value 0 to points in M2. Hence M = M1 ∪ M2

is not shattered by linear readouts, a contradiction to our assumption.

We propose to use the rank r defined in theorem 6.1 as an estimate of VC-
dimension(HC), and hence as a measure that informs us about the generalization
capability of a neural microcircuit C. It is assumed here that the set Suniv contains
many noisy variations of the same input signal, since otherwise learning with a
randomly drawn training set Strain ⊆ Suniv has no chance to generalize to new
noisy variations. Note that each family of computational tasks induces a particular
notion of what aspects of the input are viewed as noise, and what input features are
viewed as signals that carry information which is relevant for the target output for
at least one of these computational tasks. For example, for computations on spike
patterns some small jitter in the spike timing is viewed as noise. For computations
on firing rates even the sequence of interspike intervals and the temporal relations
between spikes that arrive from different input sources are viewed as noise, as long
as these input spike trains represent the same firing rates.

An example for the former computational task was discussed in section 6.9.1.
This task was to output at time t = 200 ms the class (0 or 1) of the spike pattern
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Figure 6.7 Measuring the generalization capability of neural microcircuit models.
(a) Test error minus train error (error was measured as the fraction of examples that
were misclassified) in the spike pattern classification task discussed in section 6.9.1
for 90 different types of neural microcircuits (as in fig. 6.5b). The standard deviation
is shown in the inset on the upper right. (b) Generalization capability for spike
patterns: estimated VC-dimension of HC (for a set Suniv of inputs u consisting of
500 jittered versions of 4 spike patterns), for 90 different circuit types (average
over 20 circuits; for each circuit, the average over 5 different sets of spike patterns
was used). The standard deviation is shown in the inset on the upper right. See
section 6.9.5 for details.

from which the preceding circuit input had been generated (for some arbitrary
partition of the 80 fixed spike patterns into two classes; see section 6.9.1). For a
poorly generalizing network, the difference between train and test error is large.
One would suppose that this difference becomes large as the network dynamics
become more and more chaotic. This is indeed the case; see fig. 6.7a. The transition
is is pretty well predicted by the estimated VC-dimension of HC ; see fig. 6.7b.

6.9.5 Evaluating the Influence of Synaptic Connectivity on

Computational Performance

We now test the predictive quality of the two proposed measures for the compu-
tational power of a microcircuit on spike patterns. One should keep in mind that
the proposed measures do not attempt to test the computational capability of a
circuit for one particular computational task, but rather for any distribution on
Suniv and for a very large (in general, infinitely large) family of computational
tasks that have in common only a particular bias regarding which aspects of the
incoming spike trains may carry information that is relevant for the target output
of computations, and which aspects should be viewed as noise. fig. 6.8a explains
why the lower left part of the parameter map in fig. 6.5b is less suitable for any
such computation, since there the kernel quality of the circuits is too low.14 Fig-
ure 6.8b explains why the upper right part of the parameter map in fig. 6.5b is
less suitable, since a higher VC-dimension (for a training set of fixed size) entails
poorer generalization capability. We are not aware of a theoretically founded way
of combining both measures into a single value that predicts overall computational
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Figure 6.8 Values of the proposed measures for computations on spike patterns.
(a) Kernel quality for spike patterns of 90 different circuit types (average over 20
circuits, mean SD = 13). (b) Generalization capability for spike patterns: estimated
VC-dimension of HC (for a set Suniv of inputs u consisting of 500 jittered versions
of 4 spike patterns), for 90 different circuit types (same as fig. 6.7b). (c) Difference
of both measures (the standard deviation is shown in the inset on the upper
right). This should be compared with actual computational performance plotted
in fig. 6.5b.

performance. But if one just takes the difference of both measures (after scaling
each linearly into a common range [0,1]), then the resulting number (see fig. 6.8c)
predicts quite well which types of neural microcircuit models perform well for the
particular computational tasks considered in Figure 6.5b.15

Results of further tests of the predictive power of these measures are reported
in Maass et al. (2005). These tests have been applied there to a completely different
parameter map, and to diverse classes of computational tasks.

6.10 Conclusions

The need to understand computational properties of complex dynamical systems is
becoming more urgent. New experimental methods provide substantial insight into
the inherent dynamics of the computationally most powerful classes of dynamical
systems that are known: neural systems and gene regulation networks of biological
organisms. More recent experimental data show that simplistic models for com-
putations in such systems are not adequate, and that new concepts and methods
have to be developed in order to understand their computational function. This
short review has shown that several old ideas regarding computations in dynamical
systems receive new relevance in this context, once they are transposed into a more
realistic conceptual framework that allows us to analyze also online computations
on continuous input streams. Another new ingredient is the investigation of the
temporal evolution of information in a dynamical system from the perspective of
models for the (biological) user of such information, i.e., from the perspective of
neurons that receive inputs from several thousand presynaptic neurons in a neural
circuit, and from the perspective of gene regulation mechanisms that involve thou-
sands of transcription factors. Empirical evidence from the area of machine learning



NOTES 153

supports the hypothesis that readouts of this type, which are able to sample not
just two or three, but thousands of coordinates of the state vector of a dynamical
system, impose different (and in general, less obvious) constraints on the dynamics
of a high-dimensional dynamical system in order to employ such system for complex
computations on continuous input streams. One might conjecture that unsupervised
learning and regulation processes in neural systems adapt the system dynamics in
such a way that these constraints are met. Hence, suitable variations of the idea of
self-organized criticality may help us to gain a system-level perspective of synaptic
plasticity and other adaptive processes in neural systems.

Notes
1For the sake of completeness, we give here the definition of an attractor according to Strogatz

(1994): He defines an attractor to be a closed set A with the following properties: (1) A is an
invariant set: any trajectory x(t) that starts in A stays in A for all time. (2) A attracts an open
set of initial conditions: there is an open set U containing A such that if x(t) ∈ U , then the distance
from x(t) to A tends to zero as t → ∞. The largest such U is called the basin of attraction of A.
(3) A is minimal: there is no proper subset of A that satisfies conditions 1 and 2.

2In Kauffman (1969), the inactive state of a variable is denoted by 0. We use −1 here for
reasons of notational consistency.

3Here, xi potentially depends on all other variables x1, . . . , xN . The function fi can always be
restricted such that xi is determined by the inputs to elements i only.

4In Kauffman (1993), a state cycle is also called an attractor. Because such state cycles can be
unstable to most minimal perturbations, we will avoid the term attractor here.

5Wolfram considered automata with a neighborhood of five cells in total and two possible cell
states. Since he considered “totalistic” transfer functions only (i.e., the function depends on the
sum of the neighborhood states only), the number of possible transfer functions was small. Hence,
the behavior of all such automata could be studied.

6In the case of two-state cellular automata, high λ values imply that most state transitions
map to the single nonquiescent state that leads to ordered dynamics. The most heterogeneous
rules are found at λ = 0.5.

7The model in Maass et al. (2002) was introduced in the context of biologically inspired neural
microcircuits. The network consisted of spiking neurons. In Jaeger (2002), the network consisted
of sigmoidal neurons.

8The delayed 3-bit parity of an input signal u(·) is given by PARITY (u(t−τ), u(t−τ −1), u(t−
τ − 2)) for delays τ > 0. The function PARITY outputs 1 if the number of inputs which assume
the value ū + 1 is odd and −1 otherwise.

9This assumption is best justified if such readout neuron is located, for example, in another
brain area that receives massive input from many neurons in this microcircuit and only has diffuse
backward projection. But it is certainly problematic and should be addressed in future elaborations
of the present approach.

10One can be even more realistic and filter it also by a model for the short-term dynamics of
the synapse into the readout neuron, but this turns out to make no difference for the analysis
proposed in this chapter.

11Membrane voltage Vm modeled by τm
dVm

dt
= −(Vm −Vresting)+Rm ·(Isyn(t)+Ibackground+

Inoise), where τm = 30 ms is the membrane time constant, Isyn models synaptic inputs from other
neurons in the circuits, Ibackground models a constant unspecific background input, and Inoise

models noise in the input. The membrane resistance Rm was chosen as 1MΩ.
12Short-term synaptic dynamics was modeled according to Markram et al. (1998), with distri-

butions of synaptic parameters U (initial release probability), D (time constant for depression), F
(time constant for facilitation) chosen to reflect empirical data (see Maass et al., 2002, for details).

13The VC-dimension (of a class H of maps H from some universe Suniv of inputs into {0, 1})
is defined as the size of the largest subset S ⊆ Suniv which can be shattered by H. One says that
S ⊆ Suniv is shattered by H if for every map f : S → {0, 1} there exists a map H in H such that
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H(u) = f(u) for all u ∈ S (this means that every possible binary classification of the inputs u ∈ S
can be carried out by some hypothesis H in H).

14The rank of the matrix consisting of 500 circuit states xu(t) for t = 200 ms was computed
for 500 spike patterns over 200 ms as described in section 6.9.3; see fig. 6.5a. For each circuit, the
average over five different sets of spike patterns was used.

15Similar results arise if one records the analog values of the circuit states with a limited precision
of, say, 1%.



7 A Variational Principle for Graphical
Models

Martin J. Wainwright and Michael I. Jordan

Graphical models bring together graph theory and probability theory in a powerful
formalism for multivariate statistical modeling. In statistical signal processing—
as well as in related fields such as communication theory, control theory, and
bioinformatics—statistical models have long been formulated in terms of graphs,
and algorithms for computing basic statistical quantities such as likelihoods and
marginal probabilities have often been expressed in terms of recursions operating on
these graphs. Examples include hidden Markov models, Markov random fields, the
forward-backward algorithm, and Kalman filtering (Kailath et al., 2000; Pearl, 1988;
Rabiner and Juang, 1993). These ideas can be understood, unified, and generalized
within the formalism of graphical models. Indeed, graphical models provide a
natural framework for formulating variations on these classical architectures, and
for exploring entirely new families of statistical models.

The recursive algorithms cited above are all instances of a general recursive
algorithm known as the junction tree algorithm (Lauritzen and Spiegelhalter, 1988).
The junction tree algorithm takes advantage of factorization properties of the joint
probability distribution that are encoded by the pattern of missing edges in a
graphical model. For suitably sparse graphs, the junction tree algorithm provides a
systematic and practical solution to the general problem of computing likelihoods
and other statistical quantities associated with a graphical model. Unfortunately,
many graphical models of practical interest are not “suitably sparse,” so that the
junction tree algorithm no longer provides a viable computational solution to the
problem of computing marginal probabilities and other expectations. One popular
source of methods for attempting to cope with such cases is the Markov chain

Monte Carlo (MCMC) framework, and indeed there is a significant literature on
the application of MCMC methods to graphical models (Besag and Green, 1993;
Gilks et al., 1996). However, MCMC methods can be overly slow for practical
applications in fields such as signal processing, and there has been significant
interest in developing faster approximation techniques.

The class of variational methods provides an alternative approach to computing
approximate marginal probabilities and expectations in graphical models. Roughly
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speaking, a variational method is based on casting a quantity of interest (e.g.,
a likelihood) as the solution to an optimization problem, and then solving a
perturbed version of this optimization problem. Examples of variational methods for
computing approximate marginal probabilities and expectations include the “loopy”
form of the belief propagation or sum-product algorithm (McEliece et al., 1998;
Yedidia et al., 2001) as well as a variety of so-called mean field algorithms (Jordan
et al., 1999; Zhang, 1996).

Our principal goal in this chapter is to give a mathematically precise and com-
putationally oriented meaning to the term variational in the setting of graphical
models—a meaning that reposes on basic concepts in the field of convex analy-
sis (Rockafellar, 1970). Compared to the somewhat loose definition of variational

that is often encountered in the graphical models literature, our characterization has
certain advantages, both in clarifying the relationships among existing algorithms,
and in permitting fuller exploitation of the general tools of convex optimization
in the design and analysis of new algorithms. Briefly, the core issues can be sum-
marized as follows. In order to define an optimization problem, it is necessary to
specify both a cost function to be optimized, and a constraint set over which the
optimization takes place. Reflecting the origins of most existing variational meth-
ods in statistical physics, developers of variational methods generally express the
function to be optimized as a “free energy,” meaning a functional on probability
distributions. The set to be optimized over is often left implicit, but it is generally
taken to be the set of all probability distributions. A basic exercise in constrained
optimization yields the Boltzmann distribution as the general form of the solution.
While useful, this derivation has two shortcomings. First, the optimizing argument
is a joint probability distribution, not a set of marginal probabilities or expecta-
tions. Thus, the derivation leaves us short of our goal of a variational representation
for computing marginal probabilities. Second, the set of all probability distributions
is a very large set, and formulating the optimization problem in terms of such a set
provides little guidance in the design of computationally efficient approximations.

Our approach addresses both of these issues. The key insight is to formulate
the optimization problem not over the set of all probability distributions, but
rather over a finite-dimensional set M of realizable mean parameters. This set is
convex in general, and it is a polytope in the case of discrete random variables.
There are several natural ways to approximate this convex set, and a broad range
of extant algorithms turn out to involve particular choices of approximations.
In particular, as we will show, the “loopy” form of the sum-product or belief
propagation algorithm involves an outer approximation to M, whereas the more
classical mean field algorithms, on the other hand, involve an inner approximation

to the set M. The characterization of belief propagation as an optimization over
an outer approximation of a certain convex set does not arise readily within the
standard formulation of variational methods. Indeed, given an optimization over
all possible probability distributions, it is difficult to see how to move “outside”
of such a set. Similarly, while the standard formulation does provide some insight
into the differences between belief propagation and mean field methods (in that
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they optimize different “free energies”), the standard formulation does not involve
the set M, and hence does not reveal the fundamental difference in terms of outer
versus inner approximations.

The core of the chapter is a variational characterization of the problem solved
by the junction tree algorithm—that of computing exact marginal probabilities
and expectations associated with subsets of nodes in a graphical model. These
probabilities are obtained as the maximizing arguments of an optimization over
the set M. Perhaps surprisingly, this problem is a convex optimization problem
for a broad class of graphical models. With this characterization in hand, we show
how variational methods arise as “relaxations”—that is, simplified optimization
problems that involve some approximation of the constraint set, the cost function,
or both. We show how a variety of standard variational methods, ranging from
classical mean-field to cluster variational methods, fit within this framework. We
also discuss new methods that emerge from this framework, including a relaxation
based on semidefinite constraints and a link between reweighted forms of the max-
product algorithm and linear programming.

The remainder of the chapter is organized as follows. The first two sections
are devoted to basics: section 7.1 provides an overview of graphical models and
section 7.2 is devoted to a brief discussion of exponential families. In section 7.3, we
develop a general variational representation for computing marginal probabilities
and expectations in exponential families. section 7.4 illustrates how various exact
methods can be understood from this perspective. The rest of the chapter—
sections 7.5 through 7.7—is devoted to the exploration of various relaxations of this
exact variational principle, which in turn yield various algorithms for computing
approximations to marginal probabilities and other expectations.

7.1 Background

7.1.1 Graphical Models

A graphical model consists of a collection of probability distributions that factorize
according to the structure of an underlying graph. A graph G = (V, E) is formed
by a collection of vertices V and a collection of edges E. An edge consists of a pair
of vertices, and may either be directed or undirected. Associated with each vertex
s ∈ V is a random variable xs taking values in some set Xs, which may either be
continuous (e.g., Xs = R) or discrete (e.g., Xs = {0, 1, . . . , m− 1}). For any subset
A of the vertex set V , we define xA := {xs | s ∈ A}.

Directed Graphical Models In the directed case, each edge is directed from
parent to child. We let π(s) denote the set of all parents of given node s ∈ V . (If s has
no parents, then the set π(s) should be understood to be empty.) With this notation,
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a directed graphical model consists of a collection of probability distributions that
factorize in the following way:

p(x) =
∏
s∈V

p(xs | xπ(s)). (7.1)

It can be verified that our use of notation is consistent, in that p(xs | xπ(s)) is, in
fact, the conditional distribution for the global distribution p(x) thus defined.

Undirected Graphical Models In the undirected case, the probability
distribution factorizes according to functions defined on the cliques of the graph
(i.e., fully connected subsets of V ). In particular, associated with each clique C is
a compatibility function ψC : Xn → R+ that depends only on the subvector xC .
With this notation, an undirected graphical model (also known as a Markov random

field) consists of a collection of distributions that factorize as

p(x) =
1
Z

∏
C

ψC(xC), (7.2)

where the product is taken over all cliques of the graph. The quantity Z is a constant
chosen to ensure that the distribution is normalized. In contrast to the directed
case 7.1, in general the compatibility functions ψC need not have any obvious or
direct relation to local marginal distributions.

Families of probability distributions as defined as in equation 7.1 or 7.2 also
have a characterization in terms of conditional independencies among subsets of
random variables. We will not use this characterization in this chapter, but refer
the interested reader to Lauritzen (1996) for a full treatment.

7.1.2 Inference Problems and Exact Algorithms

Given a probability distribution p(·) defined by a graphical model, our focus will
be solving one or more of the following inference problems:

1. computing the likelihood;

2. computing the marginal distribution p(xA) over a particular subset A ⊂ V of
nodes;

3. computing the conditional distribution p(xA | xB), for disjoint subsets A and B,
where A ∪ B is in general a proper subset of V ;

4. computing a mode of the density (i.e., an element x̂ in the set arg maxx∈X n p(x)).

Problem 1 is a special case of problem 2, because the likelihood is the marginal
probability of the observed data. The computation of a conditional probability in
problem 3 is similar in that it also requires marginalization steps, an initial one
to obtain the numerator p(xA, xB), and a further step to obtain the denominator
p(xB). In contrast, the problem of computing modes stated in problem 4 is funda-
mentally different, since it entails maximization rather than integration. Although
problem 4 is not the main focus of this chapter, there are important connections
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between the problem of computing marginals and that of computing modes; these
are discussed in section 7.7.2.

To understand the challenges inherent in these inference problems, consider
the case of a discrete random vector x ∈ Xn, where Xs = {0, 1, . . . , m−1} for each
vertex s ∈ V . A naive approach to computing a marginal at a single node—say
p(xs)—entails summing over all configurations of the form {x′ | x′

s = xs}. Since
this set has mn−1 elements, it is clear that a brute-force approach will rapidly
become intractable as n grows. Similarly, computing a mode entails solving an
integer programming problem over an exponential number of configurations. For
continuous random vectors, the problems are no easier1 and typically harder, since
they require computing a large number of integrals.

Both directed and undirected graphical models involve factorized expressions
for joint probabilities, and it should come as no surprise that exact inference
algorithms treat them in an essentially identical manner. Indeed, to permit a simple
unified treatment of inference algorithms, it is convenient to convert directed models
to undirected models and to work exclusively within the undirected formalism. Any
directed graph can be converted, via a process known as moralization (Lauritzen
and Spiegelhalter, 1988), to an undirected graph that—at least for the purposes of
solving inference problems—is equivalent. Throughout the rest of the chapter, we
assume that this transformation has been carried out.

Message-passing on trees For graphs without cycles—also known as trees—
these inference problems can be solved exactly by recursive “message-passing”
algorithms of a dynamic programming nature, with a computational complexity
that scales only linearly in the number of nodes. In particular, for the case of
computing marginals, the dynamic programming solution takes the form of a
general algorithm known as the sum-product algorithm, whereas for the problem of
computing modes it takes the form of an analogous algorithm known as the max-

product algorithm. Here we provide a brief description of these algorithms; further
details can be found in various sources (Aji and McEliece, 2000; Kschischang and
Frey, 1998; Lauritzen and Spiegelhalter, 1988; Loeliger, 2004).

We begin by observing that the cliques of a tree-structured graph T =
(V, E(T )) are simply the individual nodes and edges. As a consequence, any tree-
structured graphical model has the following factorization:

p(x) =
1
Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E(T )

ψst(xs, xt). (7.3)

Here we describe how the sum-product algorithm computes the marginal distribu-
tion μs(xs) :=

∑
{x′ | x′

s=xs} p(x) for every node of a tree-structured graph. We will
focus in detail on the case of discrete random variables, with the understanding
that the computations carry over (at least in principle) to the continuous case by
replacing sums with integrals.

Sum-product algorithm The essential principle underlying the sum-product
algorithm on trees is divide and conquer: we solve a large problem by breaking it
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down into a sequence of simpler problems. The tree itself provides a natural way
to break down the problem as follows. For an arbitrary s ∈ V , consider the set of
its neighbors N (s) = {u ∈ V | (s, u) ∈ E}. For each u ∈ N (s), let Tu = (Vu, Eu)
be the subgraph formed by the set of nodes (and edges joining them) that can be
reached from u by paths that do not pass through node s. The key property of a
tree is that each such subgraph Tu is again a tree, and Tu and Tv are disjoint for
u �= v. In this way, each vertex u ∈ N (s) can be viewed as the root of a subtree Tu,
as illustrated in fig. 7.1a. For each subtree Tt, we define xVt

:= {xu | u ∈ Vt}. Now
consider the collection of terms in equation 7.3 associated with vertices or edges in
Tt: collecting all of these terms yields a subproblem p(xVt

; Tt) for this subtree.
Now the conditional independence properties of a tree allow the computation

of the marginal at node μs to be broken down into a product of the form

μs(xs) ∝ ψs(xs)
∏

t∈N (s)

M∗
ts(xs). (7.4)

Each term M∗
ts(xs) in this product is the result of performing a partial summation

for the subproblem p(xVt ;Tt) in the following way:

M∗
ts(xs) =

∑
{x′

Tt
| x′

s=xs}
ψst(xs, x

′
t) p(x′

Tt
;Tt). (7.5)

For fixed xs, the subproblem defining M∗
ts(xs) is again a tree-structured summation,

albeit involving a subtree Tt smaller than the original tree T . Therefore, it too can
be broken down recursively in a similar fashion. In this way, the marginal at node
s can be computed by a series of recursive updates.

Rather than applying the procedure described above to each node separately,
the sum-product algorithm computes the marginals for all nodes simultaneously and
in parallel. At each iteration, each node t passes a “message” to each of its neighbors
u ∈ N (t). This message, which we denote by Mtu(xu), is a function of the possible
states xu ∈ Xu (i.e., a vector of length |Xu| for discrete random variables). On the
full graph, there are a total of 2|E| messages, one for each direction of each edge.
This full collection of messages is updated, typically in parallel, according to the
following recursion:

Mts(xs) ← κ
∑
x′

t

{
ψst(xs, x

′
t) ψt(x′

t)
∏

u∈N (t)/s

Mut(x′
t)
}

, (7.6)

where κ > 0 is a normalization constant. It can be shown (Pearl, 1988) that
for tree-structured graphs, iterates generated by the update 7.6 will converge to
a unique fixed point M∗ = {M∗

st, M
∗
ts, (s, t) ∈ E} after a finite number of

iterations. Moreover, component M∗
ts of this fixed point is precisely equal, up to a

normalization constant, to the subproblem defined in equation 7.5, which justifies
our abuse of notation post hoc. Since the fixed point M∗ specifies the solution to all
of the subproblems, the marginal μs at every node s ∈ V can be computed easily
via equation 7.4.
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Max-product algorithm Suppose that the summation in the update 7.6
is replaced by a maximization. The resulting max-product algorithm solves the
problem of finding a mode of a tree-structured distribution p(x). In this sense,
it represents a generalization of the Viterbi algorithm (Forney, 1973) from chains
to arbitrary tree-structured graphs. More specifically, the max-product updates
will converge to another unique fixed point M∗—distinct, of course, from the sum-
product fixed point. This fixed point can be used to compute the max-marginal

νs(xs) := max{x′ | x′
s=xs} p(x′) at each node of the graph, in an analogous way

to the computation of ordinary sum-marginals. Given these max-marginals, it is
straightforward to compute a mode x̂ ∈ arg maxx p(x) of the distribution (Dawid,
1992; Wainwright et al., 2004). More generally, updates of this form apply to
arbitrary commutative semirings on tree-structured graphs (Aji and McEliece, 2000;
Dawid, 1992). The pairs “sum-product” and “max-product” are two particular
examples of such an algebraic structure.

Junction Tree Representation We have seen that inference problems on trees
can be solved exactly by recursive message-passing algorithms. Given a graph with
cycles, a natural idea is to cluster its nodes so as to form a clique tree—that is,
an acyclic graph whose nodes are formed by cliques of G. Having done so, it is
tempting to simply apply a standard algorithm for inference on trees. However,
the clique tree must satisfy an additional restriction so as to ensure consistency
of these computations. In particular, since a given vertex s ∈ V may appear in
multiple cliques (say C1 and C2), what is required is a mechanism for enforcing
consistency among the different appearances of the random variable xs.

In order to enforce consistency, it turns out to be necessary to restrict attention
to those clique trees that satisfy a particular graph-theoretic property. In particular,
we say that a clique tree satisfies the running intersection property if for any two
clique nodes C1 and C2, all nodes on the unique path joining them contain the
intersection C1∩C2. Any clique tree with this property is known as a junction tree.

For what type of graphs can one build junction trees? An important result
in graph theory asserts that a graph G has a junction tree if and only if it is
triangulated.2 This result underlies the junction tree algorithm (Lauritzen and
Spiegelhalter, 1988) for exact inference on arbitrary graphs, which consists of the
following three steps:

Step 1: Given a graph with cycles G, triangulate it by adding edges as necessary.

Step 2: Form a junction tree associated with the triangulated graph.

Step 3: Run a tree inference algorithm on the junction tree.

We illustrate these basic steps with an example.

Example 7.1
Consider the 3 × 3 grid shown in the top panel of fig. 7.1b. The first step is to
form a triangulated version, as shown in the bottom panel of fig. 7.1b. Note that
the graph would not be triangulated if the additional edge joining nodes 2 and 8
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Figure 7.1 (a): Decomposition of a tree, rooted at node s, into subtrees. Each
neighbor (e.g., u) of node s is the root of a subtree (e.g., Tu). Subtrees Tu and
Tv, for t �= u, are disconnected when node s is removed from the graph. (b), (c)
Illustration of junction tree construction. Top panel in (b) shows original graph: a
3×3 grid. Bottom panel in (b) shows triangulated version of original graph. Note the
two 4-cliques in the middle. (c) Corresponding junction tree for triangulated graph
in (b), with maximal cliques depicted within ellipses. The rectangles are separator
sets; these are intersections of neighboring cliques.

were not present. Without this edge, the 4-cycle (2 − 4 − 8 − 6 − 2) would lack a
chord. Figure 7.1c shows a junction tree associated with this triangulated graph,
in which circles represent maximal cliques (i.e., fully connected subsets of nodes
that cannot be augmented with an additional node and remain fully connected),
and boxes represent separator sets (intersections of cliques adjacent in the junction
tree). ♦

An important by-product of the junction tree construction is an alternative repre-
sentation of the probability distribution defined by a graphical model. Let C denote
the set of all maximal cliques in the triangulated graph, and define S as the set of
all separator sets in the junction tree. For each separator set S ∈ S, let d(S) denote
the number of maximal cliques to which it is adjacent. The junction tree framework
guarantees that the distribution p(·) factorizes in the form

p(x) =
∏

C∈C μC(xC)∏
S∈S [μS(xS)]d(S)−1 , (7.7)

where μC and μS are the marginal distributions over the cliques and separator sets
respectively. Observe that unlike the representation of equation 7.2, the decompo-
sition of equation 7.7 is directly in terms of marginal distributions, and does not
require a normalization constant (i.e., Z = 1).
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Example 7.2 Markov Chain
Consider the Markov chain p(x1, x2, x3) = p(x1) p(x2 |x1) p(x3 |x2). The cliques in
a graphical model representation are {1, 2} and {2, 3}, with separator {2}. Clearly
the distribution cannot be written as the product of marginals involving only the
cliques. However, if we include the separator, it can be factorized in terms of its
marginals—viz., p(x1, x2, x3) = p(x1,x2)p(x2,x3)

p(x2)
. ♦

To anticipate the development in the sequel, it is helpful to consider the following
“inverse” perspective on the junction tree representation. Suppose that we are given
a set of functions τC(xC) and τS(xS) associated with the cliques and separator sets
in the junction tree. What conditions are necessary to ensure that these functions
are valid marginals for some distribution? Suppose that the functions {τS , τC} are
locally consistent in the following sense:∑

xS

τS(xS) = 1 normalization (7.8a)∑
{x′

C | x′
S=xS}

τC(x′
C) = τS(xS) marginalization . (7.8b)

The essence of the junction tree theory described above is that such local consistency
is both necessary and sufficient to ensure that these functions are valid marginals
for some distribution.

Finally, turning to the computational complexity of the junction tree algo-
rithm, the computational cost grows exponentially in the size of the maximal
clique in the junction tree. The size of the maximal clique over all possible tri-
angulations of a graph defines an important graph-theoretic quantity known as
the treewidth of the graph. Thus, the complexity of the junction tree algorithm is
exponential in the treewidth. For certain classes of graphs, including chains and
trees, the treewidth is small and the junction tree algorithm provides an effective
solution to inference problems. Such families include many well-known graphical
model architectures, and the junction tree algorithm subsumes many classical re-
cursive algorithms, including the forward-backward algorithms for hidden Markov
models (Rabiner and Juang, 1993), the Kalman filtering-smoothing algorithms for
state-space models (Kailath et al., 2000), and the pruning and peeling algorithms
from computational genetics (Felsenstein, 1981). On the other hand, there are many
graphical models (e.g., grids) for which the treewidth is infeasibly large. Coping with
such models requires leaving behind the junction tree framework, and turning to
approximate inference algorithms.

7.1.3 Message-Passing Algorithms for Approximate Inference

In the remainder of the chapter, we present a general variational principle for
graphical models that can be used to derive a class of techniques known as
variational inference algorithms. To motivate our later development, we pause to
give a high-level description of two variational inference algorithms, with the goal
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of highlighting their simple and intuitive nature.
The first variational algorithm that we consider is a so-called “loopy” form of

the sum-product algorithm (also referred to as the belief propagation algorithm).
Recall that the sum-product algorithm is designed as an exact method for trees;
from a purely algorithmic point of view, however, there is nothing to prevent one
from running the procedure on a graph with cycles. More specifically, the message
updates 7.6 can be applied at a given node while ignoring the presence of cycles—
essentially pretending that any given node is embedded in a tree. Intuitively, such
an algorithm might be expected to work well if the graph is suitably “tree like,” such
that the effect of messages propagating around cycles is appropriately diminished.
This algorithm is in fact widely used in various applications that involve signal
processing, including image processing, computer vision, computational biology,
and error-control coding.

A second variational algorithm is the so-called naive mean field algorithm. For
concreteness, we describe it in application to a very special type of graphical model,
known as the Ising model. The Ising model is a Markov random field involving a
binary random vector x ∈ {0, 1}n, in which pairs of adjacent nodes are coupled with
a weight θst, and each node has an observation weight θs. (See examples 7.4 and 7.11
for a more detailed description of this model.) To motivate the mean field updates,
we consider the Gibbs sampler for this model, in which the basic update step is
to choose a node s ∈ V randomly, and then to update the state of the associated
random variable according to the conditional probability with neighboring states
fixed. More precisely, denoting by N (s) the neighbors of a node s ∈ V , and letting
x

(p)
N (s) denote the state of the neighbors of s at iteration p, the Gibbs update for xs

takes the following form:

x(p+1)
s =

{
1 if u ≤ {1 + exp[−(θs +

∑
t∈N (s) θstx

(p)
t )]}−1

0 otherwise
, (7.9)

where u is a sample from a uniform distribution U(0, 1). It is well known that
this procedure generates a sequence of configurations that converge (in a stochastic
sense) to a sample from the Ising model distribution.

In a dense graph, such that the cardinality of N (s) is large, we might attempt to
invoke a law of large numbers or some other concentration result for

∑
t∈N (s) θstx

(p)
t .

To the extent that such sums are concentrated, it might make sense to replace
sample values with expectations, which motivates the following averaged version of
equation 7.9:

μs ←
{

1 + exp
[
− (θs +

∑
t∈N (s)

θstμt)
]}−1

, (7.10)

in which μs denotes an estimate of the marginal probability p(xs = 1). Thus,
rather than flipping the random variable xs with a probability that depends on
the state of its neighbors, we update a parameter μs using a deterministic function
of the corresponding parameters {μt | t ∈ N (s)} at its neighbors. Equation 7.10
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defines the naive mean field algorithm for the Ising model, which can be viewed as
a message-passing algorithm on the graph.

At first sight, message-passing algorithms of this nature might seem rather
mysterious, and do raise some questions. Do the updates have fixed points? Do
the updates converge? What is the relation between the fixed points and the exact
quantities? The goal of the remainder of this chapter is to shed some light on such
issues. Ultimately, we will see that a broad class of message-passing algorithms,
including the mean field updates, the sum-product and max-product algorithms,
as well as various extensions of these methods can all be understood as solving
either exact or approximate versions of a certain variational principle for graphical
models.

7.2 Graphical Models in Exponential Form

We begin by describing how many graphical models can be viewed as particular
types of exponential families. Further background can be found in the books by
Efron (1978) and Brown (1986). This exponential family representation is the
foundation of our later development of the variational principle.

7.2.1 Maximum Entropy

One way in which to motivate exponential family representations of graphical
models is through the principle of maximum entropy. The set up for this principle
is as follows: given a collection of functions φα : Xn → R, suppose that we have
observed their expected values—that is, we have

E[φα(x)] = μα for all α ∈ I, (7.11)

where μ =
{
μα | α ∈ I

}
is a real vector, I is an index set, and d := |I| is the length

of the vectors μ and φ :=
{
φα | α ∈ I

}
.

Our goal is use the observations to infer a full probability distribution. Let
P denote the set of all probability distributions p over the random vector x. Since
there are (in general) many distributions p ∈ P that are consistent with the observa-
tions 7.11, we need a principled method for choosing among them. The principle of
maximum entropy is to choose the distribution pME such that its entropy, defined
as H(p) := −

∑
x∈X n p(x) log p(x), is maximized. More formally, the maximum

entropy solution pME is given by the following constrained optimization problem:

pME := arg max
p∈P

H(p) subject to constraints 7.11. (7.12)

One interpretation of this principle is as choosing the distribution with maximal
uncertainty while remaining faithful to the data.

Presuming that problem 7.12 is feasible, it is straightforward to show using a
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Lagrangian formulation that its optimal solution takes the form

p(x; θ) ∝ exp
{∑

α∈I
θθφα(x)

}
, (7.13)

which corresponds to a distribution in exponential form. Note that the exponential
decomposition 7.13 is analogous to the product decomposition 7.2 considered
earlier.

In the language of exponential families, the vector θ ∈ Rd is known as
the canonical parameter, and the collection of functions φ =

{
φα | α ∈ I

}
are known as sufficient statistics. In the context of our current presentation,
each canonical parameter θα has a very concrete interpretation as the Lagrange
multiplier associated with the constraint E[φα(x)] = μα.

7.2.2 Exponential Families

We now define exponential families in more generality. Any exponential family
consists of a particular class of densities taken with respect to a fixed base measure
ν. The base measure is typically counting measure (as in our discrete example
above), or Lebesgue measure (e.g., for Gaussian families). Throughout this chapter,
we use 〈a, b〉 to denote the ordinary Euclidean inner product between two vectors
a and b of the same dimension. Thus, for each fixed x ∈ Xn, the quantity
〈θ, φ(x)〉 is the Euclidean inner product in Rd of the two vectors θ ∈ Rd and
φ(x) =

{
φα(x) | α ∈ I

}
.

With this notation, the exponential family associated with φ consists of the
following parameterized collection of density functions:

p(x; θ) = exp
{
〈θ, φ(x)〉 − A(θ)

}
. (7.14)

The quantity A, known as the log partition function or cumulant generating

function, is defined by the integral:

A(θ) = log
∫

X n

exp〈θ, φ(x)〉ν(dx). (7.15)

Presuming that the integral is finite, this definition ensures that p(x; θ) is properly
normalized (i.e.,

∫
X n p(x; θ)ν(dx) = 1). With the set of potentials φ fixed, each

parameter vector θ indexes a particular member p(x; θ) of the family. The canonical
parameters θ of interest belong to the set

Θ := {θ ∈ Rd | A(θ) < ∞}. (7.16)

Throughout this chapter, we deal exclusively with regular exponential families, for
which the set Θ is assumed to be open.

We summarize for future reference some well-known properties of A:
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Lemma 7.1
The cumulant generating function A is convex in terms of θ. Moreover, it is infinitely
differentiable on Θ, and its derivatives correspond to cumulants.

As an important special case, the first derivatives of A take the form

∂A

∂θα
=

∫
X n

φα(x)p(x; θ)ν(dx) = Eθ[φα(x)], (7.17)

and define a vector μ := Eθ[φ(x)] of mean parameters associated with the ex-
ponential family. There are important relations between the canonical and mean
parameters, and many inference problems can be formulated in terms of the mean
parameters. These correspondences and other properties of the cumulant generating
function are fundamental to our development of a variational principle for solving
inference problems.

7.2.3 Illustrative Examples

In order to illustrate these definitions, we now discuss some particular classes of
graphical models that commonly arise in signal and image processing problems, and
how they can be represented in exponential form. In particular, we will see that
graphical structure is reflected in the choice of sufficient statistics, or equivalently
in terms of constraints on the canonical parameter vector.

We begin with an important case—the Gaussian Markov random field
(MRF)— which is widely used for modeling various types of imagery and spa-
tial data (Luettgen et al., 1994; Szeliski, 1990).

Example 7.3 Gaussian Markov Random Field
Consider a graph G = (V, E), such as that illustrated in fig. 7.2(a), and suppose
that each vertex s ∈ V has an associated Gaussian random variable xs. Any
such scalar Gaussian is a (2-dimensional) exponential family specified by sufficient
statistics xs and x2

s. Turning to the Gaussian random vector x :=
{
xs | s ∈ V

}
,

it has an exponential family representation in terms of the sufficient statistics
{xs, x

2
s | s ∈ V } ∪ {xsxt | (s, t) ∈ E}, with associated canonical parameters{

θs, θss | s ∈ V
}
∪
{
θst | (s, t) ∈ E

}
. Here the additional cross-terms xsxt allow for

possible correlation between components xs and xt of the Gaussian random vector.
Note that there are a total of d = 2n + |E| sufficient statistics.

The sufficient statistics and parameters can be represented compactly as
(n + 1) × (n + 1) symmetric matrices:

X =

[
1

x

] [
1 x

]
U(θ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 θ1 θ2 . . . θn

θ1 θ11 θ12 . . . θ1n

θ2 θ21 θ22 . . . θ2n

...
...

...
...

...

θn θn1 θn2 . . . θnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.18)
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Figure 7.2 (a) A simple Gaussian model based on a graph G with 5 vertices. (b)
The adjacency matrix of the graph G in (a), which specifies the sparsity pattern of
the matrix Z(θ).

We use Z(θ) to denote the lower n × n block of U(θ); it is known as the precision

matrix. We say that x forms a Gaussian Markov random field if its probability
density function decomposes according to the graph G = (V, E). In terms of
our canonical parameterization, this condition translates to the requirement that
θst = 0 whenever (s, t) /∈ E. Alternatively stated, the precision matrix Z(θ) must
have the same zero-pattern as the adjacency matrix of the graph, as illustrated in
fig. 7.2b.

For any two symmetric matrices C and D, it is convenient to define the inner
product 〈C, D〉 := trace(C D). Using this notation leads to a particularly compact
representation of a Gaussian MRF:

p(x; θ) = exp
{
〈U(θ), X〉 − A(θ)

}
, (7.19)

where A(θ) := log
∫
Rn exp

[
〈U(θ), X〉

]
dx is the log cumulant generating function.

The integral defining A(θ) is finite only if the n×n precision matrix Z(θ) is negative
definite, so that the domain of A has the form Θ = {θ ∈ Rd | Z(θ) ≺ 0}.

Note that the mean parameters in the Gaussian model have a clear interpre-
tation. The singleton elements μs = Eθ[xs] are simply the Gaussian mean, whereas
the elements μss = Eθ[x2

s] and μst = Eθ[xsxt] are second-order moments. ♦

Markov random fields involving discrete random variables also arise in many
applications, including image processing, bioinformatics, and error-control cod-
ing (Durbin et al., 1998; Geman and Geman, 1984; Kschischang et al., 2001;
Loeliger, 2004). As with the Gaussian case, this class of Markov random fields
also has a natural exponential representation.

Example 7.4 Multinomial Markov Random Field
Suppose that each xs is a multinomial random variable, taking values in the space
Xs = {0, 1, . . . , ms − 1}. In order to represent a Markov random field over the vector
x =

{
xs | s ∈ V

}
in exponential form, we now introduce a particular set of sufficient

statistics that will be useful in what follows. For each j ∈ Xs, let I j(xs) be an
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indicator function for the event {xs = j}. Similarly, for each pair (j, k) ∈ Xs × Xt,
let I jk(xs, xt) be an indicator for the event {(xs, xt) = (j, k)}. These building blocks
yield the following set of sufficient statistics:{

I j(xs) | s ∈ V, j ∈ Xs

}
∪
{
I j(xs)I k(xt) | (s, t) ∈ E, (j, k) ∈ Xs ×Xt

}
. (7.20)

The corresponding canonical parameter θ has elements of the form

θ =
{
θs;j | s ∈ V, j ∈ Xs

}
∪
{
θst;jk | (s, t) ∈ E, (j, k) ∈ Xs ×Xt

}
. (7.21)

It is convenient to combine the canonical parameters and indicator functions using
the shorthand notation θs(xs) :=

∑
j∈Xs

θs;jI j(xs); the quantity θst(xs, xt) can be
defined similarly.

With this notation, a multinomial MRF with pairwise interactions can be
written in exponential form as

p(x; θ) = exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt) − A(θ)
}
, (7.22)

where the cumulant generating function is given by the summation

A(θ) := log
∑

x∈X n

exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}
.

In signal-processing applications of these models, the random vector x is often
viewed as hidden or partially observed (for instance, corresponding to the correct
segmentation of an image). Thus, it is frequently the case that the functions θs

are determined by noisy observations, whereas the terms θst control the coupling
between variables xs and xt that are adjacent on the graph (e.g., reflecting spatial
continuity assumptions). See fig. 7.3(a) for an illustration of such a multinomial
MRF defined on a two-dimensional lattice, which is a widely used model in
statistical image processing (Geman and Geman, 1984). In the special case that
Xs = {0, 1} for all s ∈ V , the family represeted by equation 7.22 is known as the
Ising model.

Note that the mean parameters associated with this model correspond to
particular marginal probabilities. For instance, the mean parameters associated
with vertex s have the form μs;j = Eθ[I j(xs)] = p(xs = j; θ), and the
mean parameters μst associated with edge (s, t) have an analogous interpretation
as pairwise marginal values.

♦

Example 7.5 Hidden Markov Model
A very important special case of the multinomial MRF is the hidden Markov
model (HMM), which is a chain-structured graphical model widely used for the
modeling of time series and other one-dimensional signals. It is conventional in the
HMM literature to refer to the multinomial random variables x =

{
xs | s ∈ V

}
as “state variables.” As illustrated in fig. 7.3b, the edge set E defines a chain
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Figure 7.3 (a) A multinomial MRF on a 2D lattice model. (b) A hidden Markov
model (HMM) is a special case of a multinomial MRF for a chain-structured
graph. (c) The graphical representation of a scalar Gaussian mixture model: the
multinomial xs indexes components in the mixture, and ys is conditionally Gaussian
(with exponential parameters γs) given the mixture component xs.

linking the state variables. The parameters θst(xs, xt) define the state transition

matrix; if this transition matrix is the same for all pairs s and t, then we have a
homogeneous Markov chain. Associated with each multinomial state variable xs is
a noisy observation ys, defined by the conditional probability distribution p(ys|xs).
If we condition on the observed value of ys, this conditional probability is simply
a function of xs, which we denote by θs(xs). Given these definitions, equation 7.22
describes the conditional probability distribution p(x |y) for the HMM. In fig. 7.3b,
this conditioning is captured by shading the corresponding nodes in the graph. Note
that the cumulant generating function A(θ) is, in fact, equal to the log likelihood
of the observed data. ♦

Graphical models are not limited to cases in which the random variables
at each node belong to the same exponential family. More generally, we can
consider heterogeneous combinations of exponential family members. A very natural
example, which combines the two previous types of graphical model, is that of a
Gaussian mixture model. Such mixture models are widely used in modeling various
classes of data, including natural images, speech signals, and financial time series
data; see the book by Titterington et al. (1986) for further background.

Example 7.6 Mixture Model
As shown in fig. 7.3c, a scalar mixture model has a very simple graphical in-
terpretation. In particular, let xs be a multinomial variable, taking values in
Xs = {0, 1, 2, . . . , ms − 1}, specified in exponential parameter form with a function
θs(xs). The role of xs is to specify the choice of mixture component in the mixture
model, so that our mixture model has ms components in total. We now let ys be
conditionally Gaussian given xs, so that the conditional distribution p(ys |xs; γs)
can be written in exponential family form with canonical parameters γs that are
a function of xs. Overall, the pair (xs, ys) form a very simple graphical model in
exponential form, as shown in fig. 7.3c.
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The pair (xs, ys) serves a basic block for building more sophisticated graphical
models. For example, one model is based on assuming that the mixture vector x

is a multinomial MRF defined on an underlying graph G = (V, E), whereas the
components of y are conditionally independent given the mixture vector x. These
assumptions lead to an exponential family p(y,x; θ, γ) of the form∏

s∈V

p(ys |xs; γs) exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
]}

. (7.23)

For tree-structured graphs, Crouse et al. (1998) have applied this type of mixture
model to applications in wavelet-based signal processing. ♦

This type of mixture model is a particular example of a broad class of graphical
models that involve heterogeneous combinations of exponential family members
(e.g., hierarchical Bayesian models).

7.3 An Exact Variational Principle for Inference

With this set up, we can now rephrase inference problems in the language of
exponential families. In particular, this chapter focuses primarily on the following
two problems:

computing the cumulant generating function A(θ),

computing the vector of mean parameters μ := Eθ[φ(x)].

In Section 7.7.2 we discuss a closely related problem—namely, that of computing a
mode of the distribution p(x; θ).

The problem of computing the cumulant generating function arises in a variety
of signal-processing problems, including likelihood ratio tests (for classification and
detection problems) and parameter estimation. The computation of mean param-
eters is also fundamental, and takes different forms depending on the underlying
graphical model. For instance, it corresponds to computing means and covariances
in the Gaussian case, whereas for a multinomial MRF it corresponds to computing
marginal distributions.

The goal of this section is to show how both of these inference problems can
be represented variationally—as the solution of an optimization problem. The vari-
ational principle that we develop, though related to the classical “free energy” ap-
proach of statistical physics (Yedidia et al., 2001), also has important differences.
The classical principle yields a variational formulation for the cumulant generating
function (or log partition function) in terms of optimizing over the space of all dis-
tributions. In our approach, on the other hand, the optimization is not defined over
all distributions—a very high or infinite-dimensional space—but rather over the
much lower dimensional space of mean parameters. As an important consequence,
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solving this variational principle yields not only the cumulant generating function
but also the full set of mean parameters μ =

{
μα | α ∈ I

}
.

7.3.1 Conjugate Duality

The cornerstone of our variational principle is the notion of conjugate duality. In
this section, we provide a brief introduction to this concept, and refer the interested
reader to the standard texts (Hiriart-Urruty and Lemaréchal, 1993; Rockafellar,
1970) for further details. As is standard in convex analysis, we consider extended

real-valued functions, meaning that they take values in the extended real line
R∗ := R∪ {+∞}. Associated with any convex function f : Rd → R∗ is a conjugate
dual function f∗ : Rd → R∗, which is defined as follows:

f∗(y) := sup
x∈Rd

{
〈y, x〉 − f(x)

}
. (7.24)

This definition illustrates the concept of a variational definition: the function value
f∗(y) is specified as the solution of an optimization problem parameterized by the
vector y ∈ Rd.

As illustrated in fig. 7.4, the value f∗(y) has a natural geometric interpretation
as the (negative) intercept of the hyperplane with normal (y,−1) that supports the
epigraph of f . In particular, consider the family of hyperplanes of the form 〈y, x〉−c,
where y is a fixed normal direction and c ∈ R is the intercept to be adjusted.
Our goal is to find the smallest c such that the resulting hyperplane supports the

#epif#
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#linea#

#lineb#
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#x#

Figure 7.4 Interpretation of conjugate duality in terms of supporting hyperplanes
to the epigraph of f , defined as epi(f) := {(x, y) ∈ Rd × R | f(x) ≤ y}. The dual
function is obtained by translating the family of hyperplane with normal y and
intercept −c until it just supports the epigraph of f (the shaded region).

epigraph of f . Note that the hyperplane 〈y, x〉 − c lies below the epigraph of f

if and only if the inequality 〈y, x〉 − c ≤ f(x) holds for all x ∈ Rd. Moreover,
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it can be seen that the smallest c for which this inequality is valid is given by
c∗ = supx∈Rd

{
〈y, x〉 − f(x)

}
, which is precisely the value of the dual function. As

illustrated in fig. 7.4, the geometric interpretation is that of moving the hyperplane
(by adjusting the intercept c) until it is just tangent to the epigraph of f .

For convex functions meeting certain technical conditions, taking the dual twice

recovers the original function. In analytical terms, this fact means that we can
generate a variational representation for convex f in terms of its dual function as
follows:

f(x) = sup
y∈Rd

{
〈x, y〉 − f∗(y)

}
. (7.25)

Our goal in the next few sections is to apply conjugacy to the cumulant gener-
ating function A associated with an exponential family, as defined in equation 7.15.
More specifically, its dual function takes the form

A∗(μ) := sup
θ∈Θ

{〈θ, μ〉 − A(θ)}, (7.26)

where we have used the fact that, by definition, the function value A(θ) is finite only
if θ ∈ Θ. Here μ ∈ Rd is a vector of so-called dual variables of the same dimension as
θ. Our choice of notation—using μ for the dual variables—is deliberately suggestive:
as we will see momentarily, these dual variables turn out to be precisely the mean
parameters defined in equation 7.17.

Example 7.7
To illustrate the computation of a dual function, consider a scalar Bernoulli random
variable x ∈ {0, 1}, whose distribution can be written in the exponential family
form as p(x; θ) = exp{θx − A(θ)}. The cumulant generating function is given by
A(θ) = log[1 + exp(θ)], and there is a single dual variable μ = Eθ[x]. Thus, the
variational problem 7.26 defining A∗ takes the form

A∗(μ) = sup
θ∈R

{
θμ − log[1 + exp(θ)]

}
. (7.27)

If μ ∈ (0, 1), then taking derivatives shows that the supremum is attained at
the unique θ ∈ R satisfying the well-known logistic relation θ = log[μ/(1 − μ)].
Substituting this logistic relation into equation 7.27 yields that for μ ∈ (0, 1), we
have A∗(μ) = μ log μ + (1 − μ) log(1 − μ). By taking limits μ → 1− and μ → 0+,
it can be seen that this expression is valid for μ in the closed interval [0, 1].

Figure 7.5 illustrates the behavior of the supremum in equation 7.27 for
μ /∈ [0, 1]. From our geometric interpretation of the value A∗(μ) in terms of
supporting hyperplanes, the dual value is +∞ if no supporting hyperplane can
be found. In this particular case, the log partition function A(θ) = log[1 + exp(θ)]
is bounded below by the line θ = 0. Therefore, as illustrated in fig. 7.5a, any slope
μ < 0 cannot support epiA, which implies that A∗(μ) = +∞. A similar picture
holds for the case μ > 1, as shown in fig. 7.5b. Consequently, the dual function is
equal to +∞ for μ /∈ [0, 1]. ♦
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Figure 7.5 Behavior of the supremum defining A∗(μ) for (a) μ < 0 and (b)
μ > 1. The value of the dual function corresponds to the negative intercept of
the supporting hyperplane to epi A with slope μ.

As the preceding example illustrates, there are two aspects to characterizing the
dual function A∗: determining its domain (i.e., the set on which it takes a finite
value); and specifying its precise functional form on the domain. In example 7.7,
the domain of A∗ is simply the closed interval [0, 1], and its functional form on
its domain is that of the binary entropy function. In the following two sections,
we consider each of these aspects in more detail for general graphical models in
exponential form.

7.3.2 Sets of Realizable Mean Parameters

For a given μ ∈ Rd, consider the optimization problem on the right-hand side of
equation 7.26: since the cost function is differentiable, a first step in the solution is
to take the derivative with respect to θ and set it equal to zero. Doing so yields the
zero-gradient condition:

μ = ∇A(θ) = Eθ[φ(x)], (7.28)

where the second equality follows from the standard properties of A given in
lemma 7.1.

We now need to determine the set of μ ∈ Rd for which equation 7.28 has
a solution. Observe that any μ ∈ Rd satisfying this equation has a natural
interpretation as a globally realizable mean parameter—i.e., a vector that can be
realized by taking expectations of the sufficient statistic vector φ. This observation
motivates defining the following set:

M :=
{

μ ∈ Rd
∣∣ ∃ p(·) such that

∫
φ(x)p(x)ν(dx) = μ

}
, (7.29)

which corresponds to all realizable mean parameters associated with the set of
sufficient statistics φ.
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Example 7.8 Gaussian Mean Parameters
The Gaussian MRF, first introduced in example 7.3, provides a simple illustration
of the set M. Given the sufficient statistics that define a Gaussian, the associated
mean parameters are either first-order moments (e.g., μs = E[xs]), or second-
order moments (e.g., μss = E[x2

s] and μst = E[xsxt]). This full collection of mean
parameters can be compactly represented in matrix form:

W (μ) := Eθ

[
1

x

] [
1 x

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 μ1 μ2 . . . μn

μ1 μ11 μ12 . . . μ1n

μ2 μ21 μ22 . . . μ2n

...
...

...
...

...

μn μn1 μn2 . . . μnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.30)

The Schur product lemma (Horn and Johnson, 1985) implies that detW (μ) =
det cov(x), so that a mean parameter vector μ =

{
μs | s ∈ V

}
∪
{
μst | (s, t) ∈ E

}
is globally realizable if and only if the matrix W (μ) is strictly positive definite.
Thus, the set M is straightforward to characterize in the Gaussian case. ♦
Example 7.9 Marginal Polytopes
We now consider the case of a multinomial MRF, first introduced in example 7.4.
With the choice of sufficient statistics (eq. 7.20), the associated mean parameters
are simply local marginal probabilities, viz.,

μs;j := p(xs = j; θ) ∀ s ∈ V, μst;jk := p((xs, xt) = (j, k); θ) ∀ (s, t) ∈ E. (7.31)

In analogy to our earlier definition of θs(xs), we define functional versions of the
mean parameters as follows:

μs(xs) :=
∑
j∈Xs

μs;jI j(xs), μst(xs, xt) :=
∑

(j,k)∈Xs×Xt

μst;jkI jk(xs, xt). (7.32)

With this notation, the set M consists of all singleton marginals μs (as s ranges
over V ) and pairwise marginals μst (for edges (s, t) in the edge set E) that can
be realized by a distribution with support on Xn. Since the space Xn has a finite
number of elements, the set M is formed by taking the convex hull of a finite
number of vectors. As a consequence, it must be a polytope, meaning that it can be
described by a finite number of linear inequality constraints. In this discrete case,
we refer to M as a marginal polytope, denoted by MARG(G); see fig. 7.6 for an
idealized illustration.

As discussed in section 7.4.2, it is straightforward to specify a set of necessary
conditions, expressed in terms of local constraints, that any element of MARG(G)
must satisfy. However—and in sharp contrast to the Gaussian case—characterizing
the marginal polytope exactly for a general graph is intractable, as it must require
an exponential number of linear inequality constraints. Indeed, if it were possi-
ble to characterize MARG(G) with polynomial-sized set of constraints, then this
would imply the polynomial-time solvability of various NP-complete problems (see
section 7.7.2 for further discussion of this point). ♦
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Figure 7.6 Geometrical illustration of a marginal polytope. Each vertex corre-
sponds to the mean parameter μe := φ(e) realized by the distribution δe(x) that
puts all of its mass on the configuration e ∈ X n. The faces of the marginal polytope
are specified by hyperplane constraints 〈aj , μ〉 ≤ bj .

7.3.3 Entropy in Terms of Mean Parameters

We now turn to the second aspect of the characterization of the conjugate dual
function A∗—that of specifying its precise functional form on its domain M. As
might be expected from our discussion of maximum entropy in section 7.2.1, the
form of the dual function A∗ turns out to be closely related to entropy. Accordingly,
we begin by defining the entropy in a bit more generality: Given a density function
p taken with respect to base measure ν, its entropy is given by

H(p) = −
∫

X n

p(x) log [p(x)]ν(dx) = −Ep[log p(x)]. (7.33)

With this set up, now suppose that μ belongs to the interior of M. Under this
assumption, it can be shown (Brown, 1986; Wainwright and Jordan, 2003b) that
there exists a canonical parameter θ(μ) ∈ Θ such that

Eθ(μ)[φ(x)] = μ. (7.34)

Substituting this relation into the definition of the dual function (eq. 7.26) yields

A∗(μ) = 〈μ, θ(μ)〉 − A(θ(μ)) = Eθ(μ)
[
log p(x; θ(μ))

]
,

which we recognize as the negative entropy −H(p(x; θ(μ))), where μ and θ(μ) are
dually coupled via equation 7.34.

Summarizing our development thus far, we have established that the dual
function A∗ has the following form:

A∗(μ) =

{
−H(p(x; θ(μ))) if μ belongs to the interior of M
+∞ if μ is outside the closure of M.

(7.35)

An alternative way to interpret this dual function A∗ is by returning to the
maximum entropy problem originally considered in section 7.2.1. More specifically,
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suppose that we consider the optimal value of the maximum entropy problem given
in 7.12, considered parametrically as a function of the constraints μ. Essentially,
what we have established is that the parametric form of this optimal value function
is the dual function—that is:

A∗(μ) = max
p∈P

H(p) such that Ep[φα(x)] = μα for all α ∈ I. (7.36)

In this context, the property that A∗(μ) = +∞ for a constraint vector μ outside
of M has a concrete interpretation: it corresponds to infeasibility of the maximum
entropy problem (eq. 7.12).

Exact variational principle Given the form of the dual function (eq. 7.35),
we can now use the conjugate dual relation 7.25 to express A in terms of an
optimization problem involving its dual function and the mean parameters:

A(θ) = sup
μ∈M

{
〈θ, μ〉 − A∗(μ)

}
. (7.37)

Note that the optimization is restricted to the set M of globally realizable mean
parameters, since the dual function A∗ is infinite outside of this set. Thus, we
have expressed the cumulant generating function as the solution of an optimization
problem that is convex (since it entails maximizing a concave function over the
convex set M), and low dimensional (since it is expressed in terms of the mean
parameters μ ∈ Rd).

In addition to representing the value A(θ) of the cumulant generating function,
the variational principle 7.35 also has another important property. More specifically,
the nature of our dual construction ensures that the optimum is always attained at
the vector of mean parameters μ = Eθ[φ(x)]. Consequently, solving this optimiza-
tion problem yields both the value of the cumulant generating function as well as

the full set of mean parameters. In this way, the variational principle 7.37 based on
exponential families differs fundamentally from the classical free energy principle
from statistical physics.

7.4 Exact Inference in Variational Form

In order to illustrate the general variational principle given in equation 7.37,
it is worthwhile considering important cases in which it can be solved exactly.
Accordingly, this section treats in some detail the case of a Gaussian MRF on an
arbitrary graph—for which we rederive the normal equations—as well as the case
of a multinomial MRF on a tree, for which we sketch out a derivation of the sum-
product algorithm from a variational perspective. In addition to providing a novel
perspective on exact methods, the variational principle 7.37 also underlies a variety
of methods for approximate inference, as we will see in section 7.5.
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7.4.1 Exact Inference in Gaussian Markov Random Fields

We begin by considering the case of a Gaussian Markov random field (MRF) on
an arbitrary graph, as discussed in examples 7.3 and 7.8. In particular, we showed
in the latter example that the set MGauss of realizable Gaussian mean parameters
μ is determined by a positive definiteness constraint on the matrix W (μ) of mean
parameters defined in equation 7.30.

We now consider the form of the dual function A∗(μ). It is well known (Cover
and Thomas, 1991) that the entropy of a multivariate Gaussian random vector can
be written as

H(p) =
1
2

log det cov(x) +
n

2
log 2πe,

where cov(x) is the n×n covariance matrix of x. By recalling the definition (eq. 7.30)
of W (μ) and applying the Schur complement formula (Horn and Johnson, 1985), we
see that det cov(x) = detW (μ), which implies that the dual function for a Gaussian
can be written in the form

A∗
Gauss(μ) = −1

2
log det W (μ) − n

2
log 2πe, (7.38)

valid for all μ ∈ MGauss. (To understand the negative signs, recall from equa-
tion 7.35 that A∗ is equal to the negative entropy for μ ∈ MGauss.) Combining this
exact expression for A∗

Gauss with our characterization of MGauss leads to

AGauss(θ) = sup
W (μ)�0, W11(μ)=1

{
〈U(θ), W (μ)〉 +

1
2

log det W (μ) +
n

2
log 2πe

}
,

(7.39)

which corresponds to the variational principle 7.37 specialized to the Gaussian case.
We now show how solving the optimization problem 7.39 leads to the normal

equations for Gaussian inference. In order to do so, it is convenient to introduce the
following notation for different blocks of the matrices W (μ) and U(θ):

W (μ) =

[
1 zT (μ)

z(μ) Z(μ)

]
, U(θ) =

[
0 zT (θ)

z(θ) Z(θ)

]
. (7.40)

In this definition, the submatrices Z(μ) and Z(θ) are n×n, whereas z(μ) and z(θ)
are n × 1 vectors.

Now if W (μ) � 0 were the only constraint in problem 7.39, then, using the fact
that ∇ log det W = W−1 for any symmetric positive matrix W , the optimal solution
to problem 7.39 would simply be W (μ) = −2[U(θ)]−1. Accordingly, if we enforce
the constraint [W (μ)]11 = 1 using a Lagrange multiplier λ, then it follows from
the Karush-Kuhn-Tucker conditions (Bertsekas, 1995b) that the optimal solution
will assume the form W (μ) = −2[U(θ) + λ∗E11]−1, where λ∗ is the optimal setting
of the Lagrange multiplier and E11 is an (n + 1) × (n + 1) matrix with a one
in the upper left hand corner, and zero in all other entries. Using the standard
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formula for the inverse of a block-partitioned matrix (Horn and Johnson, 1985), it
is straightforward to verify that the blocks in the optimal W (μ) are related to the
blocks of U(θ) by the relations:

Z(μ) − z(μ)zT (μ) = −2[Z(θ)]−1 (7.41a)

z(μ) = −[Z(θ)]−1 z(θ) (7.41b)

(The multiplier λ∗ turns out not to be involved in these particular blocks.) In order
to interpret these relations, it is helpful to return to the definition of U(θ) given
in equation 7.18, and the Gaussian density of equation 7.19. In this way, we see
that the first part of equation 7.41 corresponds to the fact that the covariance
matrix is the inverse of the precision matrix, whereas the second part corresponds
to the normal equations for the mean z(μ) of a Gaussian. Thus, as a special case
of the general variational principle 7.37, we have rederived the familiar equations
for Gaussian inference.

It is worthwhile noting that the derivation did not exploit any particular
features of the graph structure. The Gaussian case is remarkable in this regard,
in that both the dual function A∗ and the set M of realizable mean parameters can
be characterized simply for an arbitrary graph. However, many methods for solving
the normal equations 7.41 as efficiently as possible, including Kalman filtering on
trees (Willsky, 2002), make heavy use of the underlying graphical structure.

7.4.2 Exact Inference on Trees

We now turn to the case of tree-structured Markov random fields, focusing for
concreteness on the multinomial case, first introduced in example 7.4 and treated
in more depth in example 7.9. Recall from the latter example that for a multinomial
MRF, the set M of realizable mean parameters corresponds to a marginal polytope,
which we denote by MARG(G).

There is an obvious set of local constraints that any member of MARG(G) must
satisfy. For instance, given their interpretation as local marginal distributions, the
vectors μs and μst must of course be nonnegative. In addition, they must satisfy
normalization conditions (i.e.,

∑
xs

μs(xs) = 1), and the pairwise marginalization
conditions (i.e.,

∑
xt

μst(xs, xt) = μs(xs)). Accordingly, we define for any graph G

the following constraint set:

LOCAL(G) := { μ ≥ 0 |
∑
xs

μs(xs) = 1,
∑
xt

μst(xs, xt) = μs(xs) ∀(s, t) ∈ E}.

(7.42)

Since any set of singleton and pairwise marginals (regardless of the underlying graph
structure) must satisfy these local consistency constraints, we are guaranteed that
MARG(G) ⊆ LOCAL(G) for any graph G. This fact plays a significant role in our
later discussion in section 7.6 of the Bethe variational principle and sum-product on
graphs with cycles. Of most importance to the current development is the following
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consequence of the junction tree theorem (see section 7.1.2, subsection on junction-
tree representation): when the graph G is tree-structured, then LOCAL(T ) =
MARG(T ). Thus, the marginal polytope MARG(T ) for trees has a very simple
description given in 7.42.

The second component of the exact variational principle 7.37 is the dual func-
tion A∗. Here the junction tree framework is useful again: in particular, specializing
the representation in equation 7.7 to a tree yields the following factorization:

p(x;μ) =
∏
s∈V

μs(xs)
∏

(s,t)∈E

μst(xs, xt)
μs(xs)μt(xt)

(7.43)

for a tree-structured distribution in terms of its mean parameters μs and μst.
From this decomposition, it is straightforward to compute the entropy purely

as a function of the mean parameters by taking the logarithm and expectations and
simplifying. Doing so yields the expression

−A∗(μ) =
∑
s∈V

Hs(μs) −
∑

(s,t)∈E

Ist(μst), (7.44)

where the singleton entropy Hs and mutual information Ist are given by

Hs(μs) := −
∑
xs

μs(xs) log μs(xs), Ist(μst) :=
∑
xs,xt

μst(xs, xt) log
μst(xs, xt)

μs(xs)μt(xt)
,

respectively. Putting the pieces together, the general variational principle 7.37
takes the following particular form:

A(θ) = max
μ∈LOCAL(T )

{
〈θ, μ〉 +

∑
s∈V

Hs(μs) −
∑

(s,t)∈E

Ist(μst)
}

. (7.45)

There is an important link between this variational principle for multinomial MRFs
on trees, and the sum-product updates (eq. 7.6). In particular, the sum-product
updates can be derived as an iterative algorithm for solving a Lagrangian dual
formulation of the problem 7.45. This will be clarified in our discussion of the
Bethe variational principle in section 7.6.

7.5 Approximate Inference in Variational Form

Thus far, we have seen how well-known methods for exact inference—specifically,
the computation of means and covariances in the Gaussian case and the com-
putation of local marginal distributions by the sum-product algorithm for tree-
structured problems—can be rederived from the general variational principle
(eq. 7.37). It is worthwhile isolating the properties that permit an exact solu-
tion of the variational principle. First, for both of the preceding cases, it is possible
to characterize the set M of globally realizable mean parameters in a straightfor-
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ward manner. Second, the entropy can be expressed as a closed-form function of
the mean parameters μ, so that the dual function A∗(μ) has an explicit form.

Neither of these two properties holds for a general graphical model in expo-
nential form. As a consequence, there are significant challenges associated with
exploiting the variational representation. More precisely, in contrast to the sim-
ple cases discussed thus far, many graphical models of interest have the following
properties:

1. the constraint set M of realizable mean parameters is extremely difficult to
characterize in an explicit manner.

2. the negative entropy function A∗ is defined indirectly—in a variational manner—
so that it too typically lacks an explicit form.

These difficulties motivate the use of approximations to M and A∗. Indeed, a broad
class of methods for approximate inference—ranging from mean field theory to
cluster variational methods—are based on this strategy. Accordingly, the remainder
of the chapter is devoted to discussion of approximate methods based on relaxations
of the exact variational principle.

7.5.1 Mean Field Theory

We begin our discussion of approximate algorithms with mean field methods,
a set of algorithms with roots in statistical physics (Chandler, 1987). Working
from the variational principle 7.37, we show that mean field methods can be
understood as solving an approximation thereof, with the essential restriction that
the optimization is limited to a subset of distributions for which the dual function
A∗ is relatively easy to characterize. Throughout this section, we will refer to a
distribution with this property as a tractable distribution.

Tractable Families Let H represent a subgraph of G over which it feasible to
perform exact calculations (e.g., a graph with small treewidth); we refer to any such
H as a tractable subgraph. In an exponential formulation, the set of all distributions
that respect the structure of H can be represented by a linear subspace of canonical
parameters. More specifically, letting I(H) denote the subset of indices associated
with cliques in H, the set of canonical parameters corresponding to distributions
structured according to H is given by:

E(H) := {θ ∈ Θ | θα = 0 ∀ α ∈ I\I(H)}. (7.46)

We consider some examples to illustrate:

Example 7.10 Tractable Subgraphs
The simplest instance of a tractable subgraph is the completely disconnected
graph H0 = (V, ∅) (see fig. 7.7b). Permissible parameters belong to the subspace
E(H0) := {θ ∈ Θ | θst = 0 ∀ (s, t) ∈ E}, where θst refers to the collection of
canonical parameters associated with edge (s, t). The associated distributions are
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of the product form p(x; θ) =
∏

s∈V p(xs; θs), where θs refers to the collection of
canonical parameters associated with vertex s.

To obtain a more structured approximation, one could choose a spanning tree
T = (V, E(T )), as illustrated in fig. 7.7c. In this case, we are free to choose the
canonical parameters corresponding to vertices and edges in T , but we must set to
zero any canonical parameters corresponding to edges not in the tree. Accordingly,
the subspace of tree-structured distributions is given by E(T ) = {θ | θst =
0 ∀ (s, t) /∈ E(T )}. ♦

For a given subgraph H, consider the set of all possible mean parameters that
are realizable by tractable distributions:

Mtract(G; H) := {μ ∈ Rd | μ = Eθ[φ(x)] for some θ ∈ E(H)}. (7.47)

The notation Mtract(G; H) indicates that mean parameters in this set arise from
taking expectations of sufficient statistics associated with the graph G, but that they
must be realizable by a tractable distribution—i.e., one that respects the structure
of H. See example 7.11 for an explicit illustration of this set when the tractable sub-
graph H is the fully disconnected graph. Since any μ that arises from a tractable dis-
tribution is certainly a valid mean parameter, the inclusion Mtract(G; H) ⊆ M(G)
always holds. In this sense, Mtract is an inner approximation to the set M of
realizable mean parameters.

Optimization and Lower Bounds We now have the necessary ingredients to
develop the mean field approach to approximate inference. Let p(x; θ) denote the
target distribution that we are interested in approximating. The basis of the mean
field method is the following fact: any valid mean parameter specifies a lower bound
on the cumulant generating function. Indeed, as an immediate consequence of the
variational principle 7.37, we have:

A(θ) ≥ 〈θ, μ〉 − A∗(μ) (7.48)

for any μ ∈ M. This inequality can also be established by applying Jensen’s
inequality (Jordan et al., 1999).

Since the dual function A∗ typically lacks an explicit form, it is not possible,
at least in general, to compute the lower bound (eq. 7.48). The mean field approach
circumvents this difficulty by restricting the choice of μ to the tractable subset
Mtract(G; H), for which the dual function has an explicit form A∗

H . As long as μ

belongs to Mtract(G; H), then the lower bound 7.48 will be computable.
Of course, for a nontrivial class of tractable distributions, there are many

such bounds. The goal of the mean field method is the natural one: find the best
approximation μMF, as measured in terms of the tightness of the bound. This
optimal approximation is specified as the solution of the optimization problem

sup
μ∈Mtract(G;H)

{
〈μ, θ〉 − A∗

H(μ)
}
, (7.49)
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(a) (b) (c)

Figure 7.7 Graphical illustration of the mean field approximation. (a) Original
graph is a 7 × 7 grid. (b) Fully disconnected graph, corresponding to a naive mean
field approximation. (c) A more structured approximation based on a spanning tree.

which is a relaxation of the exact variational principle 7.37. The optimal value
specifies a lower bound on A(θ), and it is (by definition) the best one that can be
obtained by using a distribution from the tractable class.

An important alternative interpretation of the mean field approach is in terms
of minimizing the Kullback-Leibler (KL) divergence between the approximating
(tractable) distribution and the target distribution. Given two densities p and q,
the KL divergence is given by

D(p ‖ q) =
∫

X n

log
p(x)
q(x)

p(x)ν(dx). (7.50)

To see the link to our derivation of mean field, consider for a given mean parameter
μ ∈ Mtract(G; H), the difference between the log partition function A(θ) and the
quantity 〈μ, θ〉 − A∗

H(μ):

D(μ ‖ θ) = A(θ) + A∗
H(μ) − 〈μ, θ〉.

A bit of algebra shows that this difference is equal to the KL divergence 7.50
with q = p(x; θ) and p = p(x;μ) (i.e., the exponential family member with
mean parameter μ). Therefore, solving the mean field variational problem 7.49
is equivalent to minimizing the KL divergence subject to the constraint that μ

belongs to tractable set of mean parameters, or equivalently that p is a tractable
distribution.

7.5.2 Naive Mean Field Updates

The naive mean field (MF) approach corresponds to choosing a fully factorized or
product distribution in order to approximate the original distribution. The naive
mean field updates are a particular set of recursions for finding a stationary point
of the resulting optimization problem.
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Example 7.11
As an illustration, we derive the naive mean field updates for the Ising model,
which is a special case of the multinomial MRF defined in example 7.4. It involves
binary variables, so that Xs = {0, 1} for all vertices s ∈ V . Moreover, the canonical
parameters are of the form θs(xs) = θsxs and θst(xs, xt) = θstxsxt for real numbers
θs and θst. Consequently, the exponential representation of the Ising model has the
form

p(x; θ) ∝ exp
{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}
.

Letting H0 denote the fully disconnected graph (i.e., without any edges), the
tractable set Mtract(G; H0) consists of all mean parameters {μs, μst} that arise
from a product distribution. Explicitly, in this binary case, we have

Mtract(G; H0) := {(μs, μst) | 0 ≤ μs ≤ 1, μst = μs μt }.

Moreover, the negative entropy of a product distribution over binary random
variables decomposes into the sum A∗

H0
(μ) =

∑
s∈V

[
μs log μs+(1−μs) log(1−μs)

]
.

Accordingly, the associated naive mean field problem takes the form

max
μ∈Mtract(G;H0)

{
〈μ, θ〉 − A∗

H0
(μ)

}
.

In this particular case, it is convenient to eliminate μst by replacing it by the
product μsμt. Doing so leads to a reduced form of the problem:

max
{μs}∈[0,1]n

{∑
s∈V

θsμs +
∑

(s,t)∈E

θstμsμt −
∑
s∈V

[
μs log μs + (1 − μs) log(1 − μs)

]}
.

(7.51)

Let F denote the function of μ within curly braces in equation 7.51. It can be seen
that the function F is strictly concave in a given fixed coordinate μs when all the
other coordinates are held fixed. Moreover, it is straightforward to show that the
maximum over μs with μt, t �= s fixed is attained in the interior (0, 1), and can
be found by taking the gradient and setting it equal to zero. Doing so yields the
following update for μs:

μs ← σ
(
θs +

∑
t∈N (s)

θstμt

)
, (7.52)

where σ(z) := [1 + exp(−z)]−1 is the logistic function. Applying equation 7.52
iteratively to each node in succession amounts to performing coordinate ascent in
the objective function for the mean field variational problem 7.51. Thus, we have
derived the update equation presented earlier in equation 7.10. ♦

Similarly, it is straightforward to apply the naive mean field approximation to
other types of graphical models, as we illustrate for a multivariate Gaussian.
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Example 7.12 Gaussian Mean Field
The mean parameters for a multivariate Gaussian are of the form μs = E[xs],
μss = E[x2

s] and μst = E[xsxt] for s �= t. Using only Gaussians in product form, the
set of tractable mean parameters takes the form

Mtract(G; H0) = {μ ∈ Rd | μst = μsμt ∀s �= t, μss − μ2
s > 0 }.

As with naive mean field on the Ising model, the constraints μst = μsμt for
s �= t can be imposed directly, thereby leaving only the inequality μss − μ2

s > 0
for each node. The negative entropy of a Gaussian in product form can be written
as A∗

Gauss(μ) = −
∑n

s=1
1
2 log(μss − μ2

s) − n
2 log 2πe. Combining A∗

Gauss with the
constraints leads to the naive MF problem for a multivariate Gaussian:

sup
{(μs,μss) | μss−μ2

s>0}

{
〈U(θ), W (μ)〉 +

n∑
s=1

1
2

log(μss − μ2
s) +

n

2
log 2πe

}
,

where the matrices U(θ) and W (μ) are defined in equation 7.40. Here it should
be understood that any terms μst, s �= t contained in W (μ) are replaced with the
product μsμt.

Taking derivatives with respect to μss and μs and rearranging yields the
stationary conditions 1

2(μss−μ2
s) = −θss and μs

2(μss−μ2
s) = θs +

∑
t∈N (s) θstμt. Since

θss < 0, we can combine both equations into the update μs ← − 1
θss

{
θs +∑

t∈N (s) θstμt

}
. In fact, the resulting algorithm is equivalent to the Gauss-Jacobi

method for solving the normal equations, and so is guaranteed to converge under
suitable conditions (Demmel, 1997), in which case the algorithm computes the
correct mean vector [μ1 . . . μn]. ♦

7.5.3 Structured Mean Field and Other Extensions

Of course, the essential principles underlying the mean field approach are not limited
to fully factorized distributions. More generally, one can consider classes of tractable
distributions that incorporate additional structure. This structured mean field

approach was first proposed by Saul and Jordan (1996), and further developed by
various researchers. In this section, we discuss only one particular example in order
to illustrate the basic idea, and refer the interested reader elsewhere (Wainwright
and Jordan, 2003b; Wiegerinck, 2000) for further details.

Example 7.13 Structured Mean Field for Factorial Hidden Markov Models
The factorial hidden Markov model, as described in Ghahramani and Jordan (1997),
has the form shown in fig. 7.8a. It consists of a set of M Markov chains (M = 3
in this diagram), which share at each time a common observation (shaded nodes).
Such models are useful, for example, in modeling the joint dependencies between
speech and video signals over time.

Although the separate chains are independent a priori, the common observation
induces an effective coupling between all nodes at each time (a coupling which is
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captured by the moralization process mentioned earlier). Thus, an equivalent model
is shown in fig. 7.8b, where the dotted ellipses represent the induced coupling of
each observation.

#etaalpha#

#mbeta# #mgam#

(a) (b) (c)

Figure 7.8 Structured mean field approximation for a factorial HMM. (a) Original
model consists of a set of hidden Markov models (defined on chains), coupled
at each time by a common observation. (b) An equivalent model, where the
ellipses represent interactions among all nodes at a fixed time, induced by the
common observation. (c) Approximating distribution formed by a product of chain-
structured models. Here μα and μδ are the sets of mean parameters associated with
the indicated vertex and edge respectively.

A natural choice of approximating distribution in this case is based on the sub-
graph H consisting of the decoupled set of M chains, as illustrated in fig. 7.8c. The
decoupled nature of the approximation yields valuable savings on the computational
side. In particular, it can be shown (Saul and Jordan, 1996; Wainwright and Jordan,
2003b) that all intermediate quantities necessary for implementing the structured
mean field updates can be calculated by applying the forward-backward algorithm
(i.e., the sum-product updates as an exact method) to each chain separately. ♦

In addition to structured mean field, there are various other extensions to naive
mean field, which we mention only in passing here. A large class of techniques, in-
cluding linear response theory and the TAP method (Kappen and Rodriguez, 1998;
Opper and Saad, 2001; Plefka, 1982), seek to improve the mean field approximation
by introducing higher-order correction terms. Although the lower bound on the log
partition function is not usually preserved by these higher-order methods, Leisink
and Kappen (2001) demonstrated how to generate tighter lower bounds based on
higher-order expansions.

7.5.4 Geometric View of Mean Field

An important fact about the mean field approach is that the variational problem
(eq. 7.49) may be nonconvex, so that there may be local minima, and the mean
field updates can have multiple solutions.
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One way to understand this nonconvexity is in terms of the set of tractable
mean parameters: under fairly mild conditions, it can be shown (Wainwright and
Jordan, 2003b) that the set Mtract(G; H) is nonconvex. Figure 7.9 provides a
geometric illustration for the case of a multinomial MRF, for which the set M
is a marginal polytope.

#margpoly#

#m

#tractpoly#

Figure 7.9 The set Mtract(G; H) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the multi-
nomial case where M(G) ≡ MARG(G) is a polytope. The circles correspond to
mean parameters that arise from delta distributions with all their mass on a single
configuration , and belong to both M(G) and Mtract(G; H).

A practical consequence of this nonconvexity is that the mean field updates
are often sensitive to the initial conditions. Moreover, the mean field method can
exhibit spontaneous symmetry breaking, wherein the mean field approximation is
asymmetric even though the original problem is perfectly symmetric; see Jaakkola
(2001) for an illustration of this phenomenon. Despite this nonconvexity, the mean
field approximation becomes exact for certain types of models as the number of
nodes n grows to infinity (Baxter, 1982).

7.5.5 Parameter Estimation and Variational Expectation Maximization

Mean field methods also play an important role in the problem of parameter estima-
tion, in which the goal is to estimate model parameters on the basis of partial ob-
servations. The expectation-maximization (EM) algorithm (Dempster et al., 1977)
provides a general approach to maximum likelihood parameter estimation in the
case in which some subset of variables are observed whereas others are unobserved.
Although the EM algorithm is often presented as an alternation between an expec-
tation step (E step) and a maximization step (M step), it is also possible to take a
variational perspective on EM, and view both steps as maximization steps (Csiszar
and Tusn’ady, 1984; Neal and Hinton, 1999). More concretely, in the exponen-
tial family setting, the E step reduces to the computation of expected sufficient
statistics—i.e., mean parameters. As we have seen, the variational framework pro-
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vides a general class of methods for computing approximations of mean parameters.
This observation suggests a general class of variational EM algorithms, in which
the approximation provided by a variational inference algorithm is substituted for
the mean parameters in the E step. In general, as a consequence of making such a
substitution, one loses the guarantees that are associated with the EM algorithm.
In the specific case of mean field algorithms, however, a convergence guarantee is
retained: in particular, the algorithm will converge to a stationary point of a lower
bound for the likelihood function (Wainwright and Jordan, 2003b).

7.6 The Bethe Entropy Approximation and the Sum-Product Algorithm

In this section, we turn to another important message-passing algorithm for approx-
imate inference, known either as belief propagation or the sum-product algorithm. In
section 7.4.2, we described the use of the sum-product algorithm for trees, in which
context it is guaranteed to converge and perform exact inference. When the same
message-passing updates are applied to graphs with cycles, in contrast, there are
no such guarantees; nonetheless, this “loopy” form of the sum-product algorithm is
widely used to compute approximate marginals in various signal-processing appli-
cations, including phase unwrapping (Frey et al., 2001), low-level vision (Freeman
et al., 2000), and channel decoding (Richardson and Urbanke, 2001).

The main idea of this section is the connection between the sum-product
updates and the Bethe variational principle. The presentation given here differs from
the original work of Yedidia et al. (2001), in that we formulate the problem purely in
terms of mean parameters and marginal polytopes. This perspective highlights a key
point: mean field and sum-product, though similar as message-passing algorithms,
are fundamentally different at the variational level. In particular, whereas the
essence of mean field is to restrict optimization to a limited class of distributions
for which the negative entropy and mean parameters can be characterized exactly,
the the sum-product algorithm, in contrast, is based on enlarging the constraint set
and approximating the entropy function.

The standard Bethe approximation applies to an undirected graphical model
with potential functions involving at most pairs of variables, which we refer to as a
pairwise Markov random field. In principle, by selectively introducing auxiliary
variables, any undirected graphical model can be converted into an equivalent
pairwise form to which the Bethe approximation can be applied; see Weiss and
Freeman (2000) for a detailed description of this procedure. Moreover, although
the Bethe approximation can be developed more generally, we also limit our
discussion to a multinomial MRF, as discussed earlier in examples 7.4 and 7.9. We
also make use of the local marginal functions μs(xs) and μst(xs, xt), as defined
in equation 7.32. As discussed in Example 7.9, the set M associated with a
multinomial MRF is the marginal polytope MARG(G).

Recall that there are two components to the general variational principle 7.37:
the set of realizable mean parameters (given by a marginal polytope in this case),
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and the dual function A∗. Developing an approximation to the general principle
requires approximations to both of these components, which we discuss in turn in
the following sections.

7.6.1 Bethe Entropy Approximation

From equation 7.35, recall that dual function A∗ corresponds to the maximum
entropy distribution consistent with a given set of mean parameters; as such, it
typically lacks a closed-form expression. An important exception to this general
rule is the case of a tree-structured distribution: as discussed in section 7.4.2, the
function A∗ for a tree-structured distribution has a closed-form expression that is
straightforward to compute; see, in particular, equation 7.44.

Of course, the entropy of a distribution defined by a graph with cycles will not,
in general, decompose additively like that of a tree. Nonetheless, one can imagine
using the decomposition in equation 7.44 as an approximation to the entropy. Doing
so yields an expression known as the Bethe approximation to the entropy on a graph
with cycles:

HBethe(μ) :=
∑
s∈V

Hs(μs) −
∑

(s,t)∈E

Ist(μst). (7.53)

To be clear, the quantity HBethe(μ) is an approximation to the negative dual
function −A∗(μ). Moreover, our development in section 7.4.2 shows that this
approximation is exact when the graph is tree-structured.

An alternative form of the Bethe entropy approximation can be derived by
writing mutual information in terms of entropies as Ist(μst) = Hs(μs) + Ht(μt) −
Hst(μst). In particular, expanding the mutual information terms in this way, and
then collecting all the single-node entropy terms yields HBethe(μ) =

∑
s∈V (1 −

ds)Hs(μs) +
∑

(s,t)∈E Hst(μst), where ds denotes the number of neighbors of node
s. This representation is the form of the Bethe entropy introduced by Yedidia et al.
(2001); however, the form given in equation 7.53 turns out to be more convenient
for our purposes.

7.6.2 Tree-Based Outer Bound

Note that the Bethe entropy approximation HBethe is certainly well defined for
any μ ∈ MARG(G). However, as discussed earlier, characterizing this polytope of
realizable marginals is a very challenging problem. Accordingly, a natural approach
is to specify a subset of necessary constraints, which leads to an outer bound on
MARG(G). Let τs(xs) and τst(xs, xt) be a set of candidate marginal distributions.
In section 7.4.2, we considered the following constraint set:

LOCAL(G) = { τ ≥ 0 |
∑
xs

τs(xs) = 1,
∑
xs

τst(xs, xt) = τt(xt) }. (7.54)
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Although LOCAL(G) is an exact description of the marginal polytope for a tree-
structured graph, it is only an outer bound for graphs with cycles. (We demonstrate
this fact more concretely in example 7.14.) For this reason, our change in notation—
i.e., from μ to τ—is quite deliberate, with the goal of emphasizing that members
τ of LOCAL(G) need not be realizable. We refer to members of LOCAL(G) as
pseudomarginals (these are sometimes referred to as beliefs).

Example 7.14 Pseudomarginals
We illustrate using a binary random vector on the simplest possible graph for which
LOCAL(G) is not an exact description of MARG(G)—namely, a single cycle with
three nodes. Consider candidate marginal distributions {τs, τst} of the form

τs :=
[
0.5 0.5

]
, τst :=

[
βst 0.5 − βst

0.5 − βst βst

]
, (7.55)

where βst ∈ [0, 0.5] is a parameter to be specified independently for each edge (s, t).
It is straightforward to verify that {τs, τst} belong to LOCAL(G) for any choice of
βst ∈ [0, 0.5].

First, consider the setting βst = 0.4 for all edges (s, t), as illustrated in
fig. 7.10a. It is not difficult to show that the resulting marginals thus defined are
realizable; in fact, they can be obtained from the distribution that places probability
0.35 on each of the configurations [0 0 0] and [1 1 1], and probability 0.05 on
each of the remaining six configurations. Now suppose that we perturb one of
the pairwise marginals—say τ13—by setting β13 = 0.1. The resulting problem is
illustrated in fig. 7.10b. Observe that there are now strong (positive) dependencies
between the pairs of variables (x1, x2) and (x2, x3): both pairs are quite likely
to agree (with probability 0.8). In contrast, the pair (x1, x3) can only share the
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#Tmargset#
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Figure 7.10 (a), (b): Illustration of the marginal polytope for a single cycle graph
on three nodes. Setting βst = 0.4 for all three edges gives a globally consistent set of
marginals. (b) With β13 perturbed to 0.1, the marginals (though locally consistent)
are no longer globally so. (c) For a more general graph, an idealized illustration of
the tree-based constraint set LOCAL(G) as an outer bound on the marginal polytope
MARG(G).
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same value relatively infrequently (with probability 0.2). This arrangement should
provoke some doubt. Indeed, it can be shown that τ /∈ MARG(G) by attempting
but failing to construct a distribution that realizes τ , or alternatively and much
more directly by using the idea of semidefinite constraints (see example 7.15). ♦

More generally, figure 7.10c provides an idealized illustration of the constraint
set LOCAL(G), and its relation to the exact marginal polytope MARG(G). Observe
that the set LOCAL(G) is another polytope that is a convex outer approximation

to MARG(G). It is worthwhile contrasting with the nonconvex inner approximation

used by a mean field approximation, as illustrated in fig. 7.9.

7.6.3 Bethe Variational Problem and Sum-Product

Note that the Bethe entropy is also well defined for any pseudomarginal in
LOCAL(G). Therefore, it is valid to consider a constrained optimization prob-
lem over the set LOCAL(G) in which the cost function involves the Bethe entropy
approximation HBethe. Indeed, doing so leads to the so-called Bethe variational

problem:

max
τ∈LOCAL(G)

{
〈θ, τ〉 +

∑
s∈V

Hs(τs) −
∑

(s,t)∈E

Ist(τst)
}
. (7.56)

Although ostensibly similar to a (structured) mean field approach, the Bethe
variational problem (BVP) is fundamentally different in a number of ways. First, as
discussed in section 7.5.1, a mean field method is based on an exact representation
of the entropy, albeit over a limited class of distributions. In contrast, with the
exception of tree-structured graphs, the Bethe entropy is a bona fide approximation

to the entropy. For instance, it is not difficult to see that it can be negative, which
of course can never happen for an exact entropy. Second, the mean field approach
entails optimizing over an inner bound on the marginal polytope, which ensures
that any mean field solution is always globally consistent with respect to at least
one distribution, and that it yields a lower bound on the log partition function. In
contrast, since LOCAL(G) is a strict outer bound on the set of realizable marginals
MARG(G), the optimizing pseudomarginals τ∗ of the BVP may not be globally
consistent with any distribution.

7.6.4 Solving the Bethe Variational Problem

Having formulated the Bethe variational problem, we now consider iterative meth-
ods for solving it. Observe that the set LOCAL(G) is a polytope defined by
O(n + |E|) constraints. A natural approach to solving the BVP, then, is to at-
tach Lagrange multipliers to these constraints, and find stationary points of the
Lagrangian. A remarkable fact, established by Yedidia et al. (2001), is that the
sum-product updates of equation 7.6 can be rederived as a method for trying to
find such Lagrangian stationary points.
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A bit more formally, for each xs ∈ Xs, let λst(xs) be a Lagrange multiplier as-
sociated with the constraint Cts(xs) = 0, where Cts(xs) := τs(xs)−

∑
xt

τst(xs, xt).
Our approach is to consider the following partial Lagrangian corresponding to the
Bethe variational problem 7.56:

L(τ ;λ) := 〈θ, τ〉 + HBethe(τ) +
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs) +
∑
xt

λst(xt)Cst(xt)
]
.

The key insight of Yedidia et al. (2001) is that any fixed point of the sum-product
updates specifies a pair (τ∗, λ∗) such that

∇τL(τ∗;λ∗) = 0, ∇λL(τ∗;λ∗) = 0 (7.57)

In particular, the Lagrange multipliers can be used to specify messages of the form
Mts(xs) = exp(λts(xs)). After taking derivatives of the Lagrangian and equating
them to zero, some algebra then yields the familiar message-update rule:

Mts(xs) = κ
∑
xt

exp
{
θst(xs, xt) + θt(xt)

} ∏
u∈N (t)\s

Mut(xt). (7.58)

We refer the reader to Yedidia et al. (2001) or Wainwright and Jordan (2003b)
for further details of this derivation. By construction, any fixed point M∗ of these
updates specifies a pair (τ∗, λ∗) that satisfies the stationary3 conditions given in
equation 7.57.

This variational formulation of the sum-product updates—namely, as an algo-
rithm for solving a constrained optimization problem—has a number of important
consequences. First of all, it can be used to guarantee the existence of sum-product
fixed points. Observe that the cost function in the Bethe variational problem 7.56 is
continuous and bounded above, and the constraint set LOCAL(G) is nonempty and
compact; therefore, at least some (possibly local) maximum is attained. Moreover,
since the constraints are linear, there will always be a set of Lagrange multipliers
associated with any local maximum (Bertsekas, 1995b). For any optimum in the
relative interior of LOCAL(G), these Lagrange multipliers can be used to construct
a fixed point of the sum-product updates.

For graphs with cycles, this Lagrangian formulation provides no guarantees on
the convergence of the sum-product updates; indeed, whether or not the algorithm
converges depends both on the potential strengths and the topology of the graph.
Several researchers (Heskes et al.; Welling and Teh, 2001; Yuille, 2002) have
proposed alternatives to sum-product that are guaranteed to converge, albeit at
the price of increased computational cost. It should also be noted that with the
exception of trees and other special cases (McEliece and Yildirim, 2002; Pakzad
and Anantharam, 2002), the BVP is usually a nonconvex problem, in that HBethe

fails to be concave. As a consequence, there may be multiple local optima to the
BVP, and there are no guarantees that sum-product (or other iterative algorithms)
will find a global optimum.
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As illustrated in fig. 7.10c, the constraint set LOCAL(G) of the Bethe varia-
tional problem is a strict outer bound on the marginal polytope MARG(G). Since
the exact marginals of p(x; θ) must always lie in the marginal polytope, a natural
question is whether solutions to the Bethe variational problem ever fall into the
region LOCAL(G)\MARG(G). There turns out be a straightforward answer to
this question, stemming from an alternative reparameterization-based characteri-
zation of sum-product fixed points (Wainwright et al., 2003b). One consequence
of this characterization is that for any vector τ of pseudomarginals in the interior
of LOCAL(G), it is possible to specify a distribution for which τ is a sum-product
fixed point. As a particular example, it is possible to construct a distribution p(x; θ)
such that the pseudomarginal τ discussed in example 7.14 is a fixed point of the
sum-product updates.

7.6.5 Extensions Based on Clustering And Hypertrees

From our development in the previous section, it is clear that there are two distinct

components to the Bethe variational principle: (1) the entropy approximation
HBethe, and (2) the approximation LOCAL(G) to the set of realizable marginal
parameters. In principle, the BVP could be strengthened by improving either one,
or both, of these components. One natural generalization of the BVP, first proposed
by Yedidia et al. (2002) and further explored by various researchers (Heskes et al.;
McEliece and Yildirim, 2002; Minka, 2001), is based on working with clusters of
variables. The approximations in the Bethe approach are based on trees, which are
special cases of junction trees based on cliques of size two. A natural strategy, then,
is to strengthen the approximations by exploiting more complex junction trees, also
known as hypertrees. Our description of this procedure is very brief, but further
details can be found in various sources (Wainwright and Jordan, 2003b; Yedidia
et al., 2002).

Recall that the essential ingredients in Bethe variational principle are local
(pseudo)marginal distributions on nodes and edges (i.e., pairs of nodes). These
distributions, subject to edgewise marginalization conditions, are used to spec-
ify the Bethe entropy approximation. One way to improve the Bethe approach,
which is based on pairs of nodes, is to build entropy approximations and impose
marginalization constraints on larger clusters of nodes. To illustrate, suppose that
the original graph is simply the 3 × 3 grid shown in fig. 7.11a. A particular group-
ing of the nodes, which is known as Kikuchi four-plaque clustering in statistical
physics (Yedidia et al., 2002), is illustrated in fig. 7.11b. This operation creates four
new “supernodes” or clusters, each consisting of four nodes from the original graph.
These clusters, as well as their overlaps—which turn out to be critical to track for
certain technical reasons (Yedidia et al., 2002)—are illustrated in fig. 7.11c.

Given a clustering of this type, we now consider a set of marginal distributions
τh, where h ranges over the clusters. As with the singleton τs and pairwise τst

that define the Bethe approximation, we require that these higher-order cluster
marginals be suitably normalized (i.e.,

∑
x′

h
τh(x′

h) = 1), and be consistent with one
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Figure 7.11 (a) Ordinary 3 × 3 grid. (b) Clustering of the vertices into groups
of 4, known as Kikuchi four-plaque clustering. (c) Poset diagram of the clusters as
well as their overlaps. Pseudomarginals on these subsets must satisfy certain local
consistency conditions, and are used to define a higher-order entropy approximation.

another whenever they overlap. More precisely, for any pair g ⊆ h, the following
marginalization condition

∑
{x′

h | x′
g=xg} τh(x′

h) = τg(xg) must hold. Imposing
these normalization and marginalization conditions leads to a higher-order analog
of the constraint LOCAL(G) previously defined in equation 7.54.

In analogy to the Bethe entropy approximation, we can also consider a
hypertree-based approximation to the entropy. There are certain technical aspects
to specifying such entropy approximations, in that it turns out to be critical to
ensure that the local entropies are weighted with certain “overcounting” num-
bers (Wainwright and Jordan, 2003b; Yedidia et al., 2002). Without going into
these details here, the outcome is another relaxed variational principle, which can
be understood as a higher-level analog of the Bethe variational principle.

7.7 From the Exact Principle to New Approximations

The preceding sections have illustrated how a variety of known methods—both
exact and approximate—can be understood in an unified manner on the basis of
the general variational principle given in equation 7.37. In this final section, we turn
to a brief discussion of several new approximate methods that also emerge from this
same variational principle. Given space constraints, our discussion in this chapter
is necessarily brief, but we refer to reader to the papers of (Wainwright and Jordan,
2003a,b; Wainwright et al., 2002, 2003a) for further details.

7.7.1 Exploiting Semidefinite Constraints for Approximate Inference

As discussed in section 7.5, one key component in any relaxation of the exact vari-
ational principle is an approximation of the set M of realizable mean parameters.
Recall that for graphical models that involve discrete random variables, we refer to
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this set as a marginal polytope. Since any polytope is specified by a finite collection
of halfspace constraints (see fig. 7.6), one very natural way in which to generate an
outer approximation is by including only a subset of these halfspace constraints.
Indeed, as we have seen in section 7.6, it is precisely this route that the Bethe
approximation and its clustering-based extensions follow.

However, such polyhedral relaxations are not the only way in which to generate
outer approximations to marginal polytopes. Recognizing that elements of the
marginal polytope are essentially moments leads very naturally to the idea of a
semidefinite relaxation. Indeed, the use of semidefinite constraints for characterizing
moments has a very rich history, both with classical work (Karlin and Studden,
1966) on scalar random variables, and more recent work (Lasserre, 2001; Parrilo,
2003) on the multivariate case.

Semidefinite Outer Bounds on Marginal Polytopes We use the case of a
multinomial MRF defined by a graph G = (V, E), as discussed in example 7.4,
in order to illustrate the use of semidefinite constraints. Although the basic idea
is quite generally applicable (Wainwright and Jordan, 2003b), herein we restrict
ourselves to binary variables (i.e., Xs = {0, 1}) so as to simplify the exposition.
Recall that the sufficient statistics in a binary MRF take the form of certain
indicator functions, as defined in equation 7.20. In fact, this representation is
overcomplete (in that there are linear dependencies among the indicator functions);
in the binary case, it suffices to consider only the sufficient statistics xs = I 1(xs) and
xsxt = I 11(xs, xt). Our goal, then, is to characterize the set of all first- and second-
order moments, defined by μs = E[xs] and μst = E[xsxt] respectively, that arise
from taking expectations with respect to a distribution with its support restricted
to {0, 1}n. Rather than focusing on just the pairs μst for edges (s, t) ∈ E, it is
convenient to consider the full collection of pairwise moments {μst | s, t ∈ V }.

Suppose that we are given a vector μ ∈ Rd (where d = n +
(
n
2

)
), and wish to

assess whether or not it is a globally realizable moment vector (i.e., whether there
exists some distribution p(x) such that μs =

∑
x p(x) xs and μst =

∑
x p(x) xsxt).

In order to derive a necessary condition, we suppose that such a distribution p

exists, and then consider the following (n + 1) × (n + 1) moment matrix:

Ep

{[
1

x

] [
1 x

]}
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 μ1 μ2 · · · μn−1 μn

μ1 μ1 μ12 · · · · · · μ1n

μ2 μ21 μ2 · · · · · · μ2n

...
...

...
...

...
...

μn−1
...

...
...

... μn,(n−1)

μn μn1 μn2 · · · μ(n−1),n μn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.59)

which we denote by M1[μ]. Note that in calculating the form of this moment matrix,
we have made use of the relation μs = μss, which holds because xs = x2

s for any
binary-valued quantity.
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We now observe that any such moment matrix is necessarily positive semidefi-
nite, which we denote by M1[μ] ! 0. (This positive semidefiniteness can be ver-
ified as follows: letting y := (1, x), then for any vector a ∈ Rn+1, we have
aT M1[μ]a = aT E[yyT ]a = E[‖aT y‖2], which is certainly nonnegative). Therefore,
we conclude that the semidefinite constraint set SDEF1 := {μ ∈ Rd |M1[μ] ! 0}
is an outer bound on the exact marginal polytope.

Example 7.15
To illustrate the use of the outer bound SDEF1, recall the pseudomarginal vector
τ that we constructed in example 7.14 for the single cycle on three nodes. In terms
of our reduced representation (involving only expectations of the singletons xs and
pairwise functions xsxt), this pseudomarginal can be written as follows:

τs = 0.5 for s = 1, 2, 3, τ12 = τ23 = 0.4, τ13 = 0.1.

Suppose that we now construct the matrix M1 for this trial set of mean parameters;
it takes the following form:

M1[τ ] =

⎡⎢⎢⎢⎢⎣
1 0.5 0.5 0.5

0.5 0.5 0.4 0.1

0.5 0.4 0.5 0.4

0.5 0.1 0.4 0.5

⎤⎥⎥⎥⎥⎦ .

A simple calculation shows that it is not positive definite, so that τ /∈ SDEF1.
Since SDEF1 is an outer bound on the marginal polytope, this reasoning shows—in
a very quick and direct manner— that τ is not a globally valid moment vector. In
fact, the semidefinite constraint set SDEF1 can be viewed as the first in a sequence
of progressively tighter relaxations on the marginal polytope.

Log-Determinant Relaxation We now show how to use such semidefinite
constraints in approximate inference. Our approach is based on combining the first-
order semidefinite outer bound SDEF1 with Gaussian-based entropy approximation.
The end result is a log-determinant problem that represents another relaxation of
the exact variational principle (Wainwright and Jordan, 2003a). In contrast to the
Bethe and Kikuchi approaches, this relaxation is convex (and hence has a unique
optimum), and moreover provides an upper bound on the cumulant generating
function.

Our starting point is the familiar interpretation of the Gaussian as the max-
imum entropy distribution subject to covariance constraints (Cover and Thomas,
1991). In particular, given a continuous random vector x̃, its differential entropy
h(x̃) is always upper bounded by the entropy of a Gaussian with matched covari-
ance, or in analytical terms

h(x̃) ≤ 1
2

log det cov(x̃) +
n

2
log(2πe), (7.60)

where cov(x̃) is the covariance matrix of x̃. The upper bound 7.60 is not directly



7.7 From the Exact Principle to New Approximations 197

applicable to a random vector taking values in a discrete space (since differential
entropy in this case diverges to minus infinity). However, a straightforward dis-
cretization argument shows that for any discrete random vector x ∈ {0, 1}n, its
(ordinary) discrete entropy can be upper bounded in terms of the matrix M1[μ] of
mean parameters as

H(x) = −A∗(μ) ≤ 1
2

log det
{

M1[μ] +
1
12

blkdiag[0, In]
}

+
n

2
log(2πe), (7.61)

where blkdiag[0, In] is a (n + 1) × (n + 1) block-diagonal matrix with a 1 × 1 zero
block, and an n × n identity block.

Finally, putting all the pieces together leads to the following result (Wainwright
and Jordan, 2003a): the cumulant generating function A(θ) is upper bounded by
the solution of the following log-determinant optimization problem:

A(θ) ≤ max
τ∈SDEF1

{
〈θ, μ〉 +

1
2

log det
[
M1(τ) +

1
12

blkdiag[0, In]
]}

+
n

2
log(2πe).

(7.62)

Note that the constraint τ ∈ SDEF1 ensures that M1(τ) ! 0, and hence a fortiori
that M1(τ)+ 1

12 blkdiag[0, In] is positive definite. Moreover, an important fact is that
the optimization problem in equation 7.62 is a determinant maximization problem,
for which efficient interior point methods have been developed (Vandenberghe et al.,
1998).

Just as the Bethe variational principle (eq. 7.56) is a tree-based approxima-
tion, the log-determinant relaxation (eq. 7.62) is a Gaussian-based approximation.
In particular, it is worthwhile comparing the structure of the log-determinant re-
laxation (eq. 7.62) to the exact variational principle for a multivariate Gaussian, as
described in section 7.4.1. In contrast to the Bethe variational principle, in which
all of the constraints defining the relaxation are local, this new principle (eq. 7.62)
imposes some quite global constraints on the mean parameters. Empirically, these
global constraints are important for strongly coupled problems, in which the perfor-
mance log-determinant relaxation appears much more robust than the sum-product
algorithm (Wainwright and Jordan, 2003a). In summary, starting from the exact
variational principle (eq. 7.37), we have derived a new relaxation, whose properties
are rather different than the Bethe and Kikuchi variational principles.

7.7.2 Relaxations for Computing Modes

Recall from our introductory comments in section 7.1.2 that, in addition to the
problem of computing expectations and likelihoods, it is also frequently of interest
to compute the mode of a distribution. This section is devoted to a brief discussion
of mode computation, and more concretely how the exact variational principle
(eq. 7.37), as well as relaxations thereof, again turns out to play an important role.
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Zero-Temperature Limits In order to understand the role of the exact varia-
tional principle 7.37 in computing modes, consider a multinomial MRF of the form
p(x; θ), as discussed in example 7.4. Of interest to us is the one-parameter family
of distributions {p(x; βθ) |β > 0}, where β is the real number to be varied. At one
extreme, if β = 0, then there is no coupling, and the distribution is simply uniform
over all possible configurations. The other extreme, as β → +∞, is more interest-
ing; in this limit, the distribution concentrates all of its mass on the configuration
(or subset of configurations) that are modes of the distribution. Taking this limit
β → +∞ is known as zero-temperature limit, since the parameter β is typically
viewed as inverse temperature in statistical physics. This argument suggests that
there should be a link between computing modes and the limiting behavior of the
marginalization problem as β → +∞.

In order to develop this idea a bit more formally, we begin by observing that
the exact variational principle 7.37 holds for the distribution p(x;βθ) for any value
of β ≥ 0. It can be shown (Wainwright and Jordan, 2003b) that if we actually
take a suitably scaled limit of this exact variational principle as β → +∞, then we
recover the following variational principle for computing modes:

max
x∈X n

〈θ, φ(x)〉 = max
μ∈MARG(G)

〈θ, μ〉 (7.63)

Since the log probability log p(x; θ) is equal to 〈θ, φ(x)〉 (up to an additive con-
stant), the left-hand side is simply the problem of computing the mode of the
distribution p(x; θ). On the right-hand side, we simply have a linear program, since
the constraint set MARG(G) is a polytope, and the cost function 〈θ, μ〉 is linear in
μ (with θ fixed). This equivalence means that, at least in principle, we can compute
a mode of the distribution by solving a linear program (LP) over the marginal poly-
tope. The geometric interpretation is also clear: as illustrated in fig. 7.6, vertices
of the marginal polytope are in one-to-one correspondence with configurations x.
Since any LP achieves its optimum at a vertex (Bertsimas and Tsitsiklis, 1997),
solving the LP is equivalent to finding the mode.

Linear Programming and Tree-Reweighted Max-Product Of course, the
LP-based reformulation in equation 7.63 is not practically useful for precisely the
same reasons as before—it is extremely challenging to characterize the marginal
polytope MARG(G) for a general graph. Many computationally intractable opti-
mization problems (e.g., MAX-CUT) can be reformulated as LPs over the marginal
polytope, as in equation 7.63, which underscores the inherent complexity of char-
acterizing marginal polytopes. Nonetheless, this variational formulation motivates
the idea of forming relaxations using outer bounds on the marginal polytope. For
various classes of problems in combinatorial optimization, both linear programming
and semidefinite relaxations of this flavor have been studied extensively.

Here we briefly describe an LP relaxation that is very natural given our
development of the Bethe variational principle in section 7.6. In particular, we
consider using the local constraint set LOCAL(G), as defined in equation 7.54, as
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an outer bound of the marginal polytope MARG(G). Doing so leads to the following
LP relaxation for the problem of computing the mode of a multinomial MRF:

max
x∈X n

〈θ, φ(x)〉 = max
μ∈MARG(G)

〈θ, μ〉 ≤ max
τ∈LOCAL(G)

〈θ, μ〉. (7.64)

Since the relaxed constraint set LOCAL(G)—like the original set MARG(G)—is a
polytope, the relaxation on the right-hand side of equation 7.64 is a linear program.
Consequently, the optimum of the relaxed problem must be attained at a vertex
(possibly more than one) of the polytope LOCAL(G).

#Margset#

#eparam1#

#Margset#

#eparam1#

Figure 7.12 The constraint set LOCAL(G) is an outer bound on the exact marginal
polytope. Its vertex set includes all the vertices of MARG(G), which are in one-to-
one correspondence with optimal solutions of the integer program. It also includes
additional fractional vertices, which are not vertices of MARG(G).

We say that a vertex of LOCAL(G) is integral if all of its components are zero
or one, and fractional otherwise. The distinction between fractional and integral
vertices is crucial, because it determines whether or not the LP relaxation 7.64
specified by LOCAL(G) is tight. In particular, there are only two possible outcomes
to solving the relaxation:

1. The optimum is attained at a vertex of MARG(G), in which case the upper
bound in equation 7.64 is tight, and a mode can be obtained.

2. The optimum is attained only at one or more fractional vertices of LOCAL(G),
which lie strictly outside MARG(G). In this case, the upper bound of equation 7.64
is loose, and the relaxation does not output the optimal configuration.

Figure 7.12 illustrates both of these possibilities. The vector θ1 corresponds to
case 1, in which the optimum is attained at a vertex of MARG(G). The vector
θ2 represents a less fortunate setting, in which the optimum is attained only at a
fractional vertex of LOCAL(G). In simple cases, one can explicitly demonstrate a
fractional vertex of the polytope LOCAL(G).

Given the link between the sum-product algorithm and the Bethe variational
principle, it would be natural to conjecture that the max-product algorithm can be
derived as an algorithm for solving the LP relaxation 7.64. For trees (in which
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case the LP 7.64 is exact), this conjecture is true: more precisely, it can be
shown (Wainwright et al., 2003a) that the max-product algorithm (or the Viterbi
algorithm) is an iterative method for solving the dual problem of the LP 7.64.
However, this statement is false for graphs with cycles, since it is straightforward
to construct problems (on graphs with cycles) for which the max-product algorithm
will output a nonoptimal configuration. Consequently, the max-product algorithm
does not specify solutions to the dual problem, since any LP relaxation will output
either a configuration with a guarantee of correctness, or a fractional vertex.
However, Wainwright et al. (2003a) derive a tree-reweighted analog of the max-
product algorithm, which does have provable connections to dual optimal solutions
of the tree-based relaxation 7.64.

7.8 Conclusion

A fundamental problem that arises in applications of graphical models—whether
in signal processing, machine learning, bioinformatics, communication theory, or
other fields—is that of computing likelihoods, marginal probabilities, and other
expectations. We have presented a variational characterization of the problem of
computing likelihoods and expectations in general exponential-family graphical
models. Our characterization focuses attention on both the constraint set and
the objective function. In particular, for exponential-family graphical models, the
constraint set M is a convex subset in a finite-dimensional space, consisting of all
realizable mean parameters. The objective function is the sum of a linear function
and an entropy function. The latter is a concave function, and thus the overall
problem—that of maximizing the objective function over M—is a convex problem.
In this chapter, we discussed how the junction tree algorithm and other exact
inference algorithms can be understood as particular methods for solving this
convex optimization problem. In addition, we showed that a variety of approximate
inference algorithms—including loopy belief propagation, general cluster variational
methods and mean field methods—can be understood as methods for solving
particular relaxations of the general variational principle. More concretely, we saw
that belief propagation involves an outer approximation of M whereas mean field
methods involve an inner approximation of M. In addition, this variational principle
suggests a number of new inference algorithms, as we briefly discussed.

It is worth noting certain limitations inherent to the variational framework as
presented in this chapter. In particular, we have not discussed curved exponential
families, but instead limited our treatment to regular families. Curved exponential
families are useful in the context of directed graphical models, and further research
is required to develop a general variational treatment of such models. Similarly, we
have dealt exclusively with exponential family models, and not treated nonparamet-
ric models. One approach to exploiting variational ideas for nonparametric models
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is through exponential family approximations of nonparametric distributions; for
example, Blei and Jordan (2004) have presented inference methods for Dirichlet
process mixtures that are based on the variational framework presented here.

Notes
1The Gaussian case is an important exception to this statement.
2That graph is triangulated means that every cycle of length four or longer has a chord.
3Some care is required in dealing with the boundary conditions τs(xs) ≥ 0 and τst(xs, xt) ≥ 0;

see Yedidia et al. (2001) for further discussion.





8 Modeling Large Dynamical Systems with
Dynamical Consistent Neural Networks

Hans-Georg Zimmermann, Ralph Grothmann,
Anton Maximilian Schäfer, and Christoph Tietz

Recurrent neural networks are typically considered to be relatively simple archi-
tectures, which come along with complicated learning algorithms. Most researchers
focus on improving these algorithms. Our approach is different: Rather than fo-
cusing on learning and optimization algorithms, we concentrate on the network
architecture. Unfolding in time is a well-known example of this modeling philoso-
phy. Here, a temporal algorithm is transferred into an architectural framework such
that the learning can be done using an extension of standard error backpropagation.

As we will show, many difficulties in the modeling of dynamical systems can
be solved with neural network architectures. We exemplify architectural solutions
for the modeling of open systems and the problem of unknown external influences.

Another research area is the modeling of high-dimensional systems with large
neural networks. Instead of modeling, e.g., a financial market as small sets of time
series, we try to integrate the information from several markets into an integrated
model. Standard neural networks tend to overfit, like other statistical learning
systems. We will introduce a new recurrent neural network architecture in which
overfitting and the associated loss of generalization abilities is not a major problem.
In this context we will point to different sources of uncertainty which have to be
handled when dealing with recurrent neural networks. Furthermore, we will show
that sparseness of the network’s transition matrix is not only important to dampen
overfitting but also provides new features such as an optimal memory design.

8.1 Introduction

Recurrent neural networks (RNNs) allow the identification of dynamical systems in
the form of high-dimensional, nonlinear state space models. They offer an explicit
modeling of time and memory and allow us, in principle, to model any type of dy-
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namical systems (Elman, 1990; Haykin, 1994; Kolen and Kremer, 2001; Medsker and
Jain, 1999). The basic concept is as old as the theory of artificial neural networks,
so, e.g., unfolding in time of neural networks and related modifications of the back-
propagation algorithm can be found in Werbos (1974) and Rumelhart et al. (1986).
Different types of learning algorithms are summarized by Pearlmutter (1995). Nev-
ertheless, over the last 15 years most time series problems have been approached
with feedforward neural networks. The appeal of modeling time and memory in
recurrent networks is opposed to the apparently better numerical tractability of a
pattern-recognition approach as represented by feedforward neural networks. Still,
some researchers did enhance the theory of recurrent neural networks. Recent devel-
opments are summarized in the books of Haykin (1994), Kolen and Kremer (2001),
Soofi and Cao (2002), and Medsker and Jain (1999).

Our approach differs from the outlined research directions in a significant but,
at first sight nonobvious, way. Instead of focusing on algorithms, we put network
architectures in the foreground. We show that a network architecture automatically
implies using an adjoint solution algorithm for the parameter identification problem.
This correspondence between architecture and equations holds for simple as well as
complex network architectures. The underlying assumption is that the associated
parameter optimization problem is solved by error backpropagation through time,
i.e., a shared weights extension of the standard error backpropagation algorithm.

In technical and economical applications virtually all systems of interest arerecurrent neural
networks open dynamical systems (see section 8.2). This means that the dynamics of the

system is determined partly by an autonomous development and partly by external
drivers of the system environment. The measured data always reflect a superposition
of both parts. If we are interested in forecasting the development of the system,
extracting the autonomous subsystem is the most relevant task. It is the only part
of the open system that can be predicted (see subsec. 8.2.3). A related question is
the sequence length of the unfolding in time which is necessary to approximate the
recurrent system (see subsec. 8.2.2).

The outlined concepts are only applicable if we have a perfectly specifiederror correction
neural networks open dynamical system, where all external drivers are known. Unfortunately, this

assumption is virtually never fulfilled in real-world applications. Even if we knew
all the external system drivers, it would be questionable whether an appropriate
amount of training data would be available. As a consequence, the task of identifying
the open system is misspecified right from the beginning. On this problem, we
introduce error correction neural networks (ECNN) (Zimmermann et al., 2002b)
(see section 8.2.4).

Another weakness of our modeling framework is the implicit assumption thatdynamical consis-
tent neural net-
works

we only have to analyze a small number of time series. This is also uncommon
in real-world applications. For instance, in economics we face coherent markets
and not a single interest or foreign exchange rate. A market or a complex technical
plant is intrinsically high dimensional. Now the major problem is that all our neural
networks tend to overfit if we increase the model dimensionality in order to approach
the true high-dimensional system dynamics. We therefore present recurrent network
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architectures, which work even for very large state spaces (see section 8.3). These
networks also combine different operations of small neural networks (e.g., processing
of input information) into one shared state transition matrix. Our experiments
indicate that this stabilizes the model behavior to a large extent (see section 8.3.1).

If one iterates an open system into the future, the standard assumption is that
the system environment remains constant. As this is not true for most real-world
applications, we introduce dynamical consistent recurrent neural networks, which
try to forecast also the external influences (see section 8.3.2). We then combine
the concepts of large networks and dynamic consistency with error correction. We
show that ECNNs can be extended in a slightly different way than basic recurrent
networks (see section 8.3.3).

We also demonstrate that some types of dynamical systems can more easily be
analyzed with a (dynamical consistent) recurrent network, while others are more
appropriate for ECNNs. Our intention is to merge the different aspects of the
competing network architectures within a single recurrent neural network. We call
it DCNN, for dynamical consistent neural network. We found that DCNNs allow us
to model even small deviations in the dynamics without losing the generalization
abilities of the model. We point out that the networks presented so far create state
trajectories of the dynamics that are close to the observed ones, whereas the DCNN
evolves exactly on the observed trajectories (see section 8.3.4). Finally, we introduce
a DCNN architecture for partially known observables to generalize our models from
a differentiation between past and future to the (time-independent) availability of
information (see section 8.3.5).

The identification and forecasting of dynamical systems has to cope with auncertainties
number of uncertainties in the underlying data as well as in the development of
the dynamics (see section 8.4). Cleaning noise is a technique which allows the
model itself—within the training process—to correct corrupted or noisy data (see
section 8.4.1). Working with finite unfolding in time brings up the problem of
initializing the internal state at the first time step. We present different approaches
to achieve a desensitization of the model’s behavior from the initial state and
simultaneously improve the generalization abilities (see section 8.4.2). To stabilize
the network against uncertainties of the environment’s future development we
further apply noise to the inputs in the future part of the network (see section 8.4.3).

Working with (high-dimensional) recurrent networks raises the question of howfunction & struc-
ture a desired network function can be supported by a certain structure of the transition

matrix (see section 8.5). As we will point out, sparseness alone is not sufficient
to optimize the network functions regarding conservation and superposition of
information. Only with an inflation of the internal dimension of the recurrent neural
network can we implement an optimal balance between memory and computation
effects (see sections 8.5.1 and 8.5.2). In this context we work out that sparseness of
the transition matrix is actually a necessary condition for large neural networks (see
section 8.5.3). Furthermore we analyze the information flow in sparse networks and
present an architectural solution which speeds up the distribution of information
(see section 8.5.4).
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Finally, section 8.6 summarizes our contributions to the research field of
recurrent neural networks.

8.2 Recurrent Neural Networks (RNN)

Figure 8.1) illustrates a dynamical system (Zimmermann and Neuneier, 2001,
p. 321).

Dynamical
System

u

y

s

Figure 8.1 Identification of a dynamical system using a discrete time description:
input u, hidden states s, and output y.

The dynamical system (fig. 8.1) can be described for discrete time grids as a
set of equations (eq. 8.1), consisting of a state transition and an output equation
(Haykin, 1994; Kolen, 2001):

st+1 = f(st, ut) state transition

yt = g(st) output equation
(8.1)

The state transition is a mapping from the present internal hidden state of the
system st and the influence of external inputs ut to the new state st+1. The output
equation computes the observable output yt.

The system can be viewed as a partially observable autoregressive dynamic
state transition st → st+1 which is also driven by external forces ut. Without
the external inputs the system is called an autonomous system (Haykin, 1994;
Mandic and Chambers, 2001). However, in reality most systems are driven by a
superposition of an autonomous development and external influences.

The task of identifying the dynamical system of equation 8.1 can be statedsystem identifica-
tion as the problem of finding (parameterized) functions f and g such that a distance

measurement (eq. 8.2) between the observed data yd
t and the computed data yt of
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the model is minimal:1

T∑
t=1

(
yt − yd

t

)2 → min
f,g

(8.2)

If we assume that the state transition does not depend on st, i.e., yt = g(st) =
g(f(ut−1)), we are back in the framework of feedforward neural networks (Neuneier
and Zimmermann, 1998). However, the inclusion of the internal hidden dynamics
makes the modeling task much harder, because it allows varying intertemporal
dependencies. Theoretically, in the recurrent framework an event st+1 is explained
by a superposition of external inputs ut, ut−1, . . . from all previous time steps
(Haykin, 1994; Mandic and Chambers, 2001).

8.2.1 Representing Dynamic Systems by Recurrent Neural Networks

The identification task of equations 8.1 and 8.2 can be easily modeled by a recurrentbasic RNN
neural network (Haykin, 1994; Zimmermann and Neuneier, 2001)

st+1 = tanh(Ast + c + But) state transition

yt = Cst output equation
(8.3)

where A, B, and C are weight matrices of appropriate dimensions and c is a bias,
which handles offsets in the input variables ut.

Note that the output equation yt = Cst is implemented as a linear function.
It is straightforward to show that this is not a functional restriction by using an
augmented inner state vector (Zimmermann and Neuneier, 2001, pp. 322–323).

By specifying the functions f and g as a neural network with weight matrices
A, B and C and a bias vector c, we have transformed the system identification task
of equation 8.2 into a parameter optimization problem:

T∑
t=1

(
yt − yd

t

)2 → min
A,B,C,c

(8.4)

As Hornik et al. (1992) proved for feedforward neural networks, it can be shown
that recurrent neural networks (eq. 8.3) are universal approximators, as they can
approximate any arbitrary dynamical system (eq. 8.1) with a continuous output
function g.

8.2.2 Finite Unfolding in Time

In this section we discuss an architectural representation of recurrent neural net-
works that enables us to solve the parameter optimization problem of equation 8.4
by an extended version of standard backpropagation (Haykin, 1994; Rumelhart
et al., 1986).2 Figure 8.2 unfolds the network of equation 8.3 (fig. 8.2, left) over
time using shared weight matrices A, B, and C (fig. 8.2, right). Shared weights
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share the same memory for storing their weights, i.e., the weight values are the
same at each time step of the unfolding and for every pattern t ∈ {1, . . . , T}
(Haykin, 1994; Rumelhart et al., 1986). This guarantees that we have in every time
step the same dynamics.
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Figure 8.2 Finite unfolding using shared weight matrices A, B, and C.

We approximate the recurrence of the system with a finite unfolding which
truncates after a certain number of time steps m ∈ N. The important question
to solve is the determination of the correct amount of past information needed
to predict yt+1. Since the outputs are explained by more and more external
information, the error of the outputs is decreasing with each additional time step
from left to right until a minimum error is achieved. This saturation level indicates
the maximum number of time steps m which contribute relevant information
for modeling the present time state. A more detailed description is given in
Zimmermann and Neuneier (2001).

We train the unfolded recurrent neural network shown in fig. 8.2 (right) withbackpropagation
through time error backpropagation through time, which is a shared weights extension of standard

backpropagation (Haykin, 1994; Rumelhart et al., 1986). Error backpropagation is
an efficient way of calculating the partial derivatives of the network error function.
Thus, all parts of the network are provided with error information.

In contrast to typical feedforward neural networks, RNNs are able to explicitlyadvantages of the
RNN model memory. This allows the identification of intertemporal dependencies. Fur-

thermore, recurrent networks contain less free parameters. In a feedforward neural
network an expansion of the delay structure automatically increases the number of
weights (left panel of fig. 8.3). In the recurrent formulation, the shared matrices A,
B, and C are reused when more delayed input information from the past is needed
(right panel of fig. 8.3).

Additionally, if weights are shared more often, more gradient information is
available for learning. As a consequence, potential overfitting is not as dangerous
in recurrent as in feedforward networks. Due to the inclusion of temporal structure
in the network architecture, our approach is applicable to tasks where only a small
training set is available (Zimmermann and Neuneier, 2001, p. 325).
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Figure 8.3 An additional time step leads in the feedforward framework (left)
with yt+1 = V tanh(Wu + c) to a higher dimension of the input vector u, whereas
the number of free parameters remains constant in recurrent networks (right), due
to the use of shared weights.

8.2.3 Overshooting

An obvious generalization of the network in fig. 8.2 is the extension of the au-
tonomous recurrence (matrix A) in future direction t + 2, t + 3, . . . (see fig. 8.4)
(Zimmermann and Neuneier, 2001, pp. 326–327). If this so-called overshooting leads
to good predictions, we get a whole sequence of forecasts as an output. This is
especially interesting for decision support systems. The number of autonomous it-
erations into the future, which we define with n ∈ N, most often depends on the
required forecast horizon of the application. Note that overshooting does not add
new parameters, since the shared weight matrices A and C are reused.
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Figure 8.4 Overshooting extends the autonomous part of the dynamics.

The most important property of the overshooting network (fig. 8.4) is the
concatenation of an input-driven system and an autonomous system. One may
argue that the unfolding-in-time network (fig. 8.2) already consists of recurrent
functions, and that this recurrent structure has the same modeling characteristics as
the overshooting network. This is definitely not true, because the learning algorithm
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leads to different models for each of the architectures. Backpropagation learning
usually tries to model the relationship between the most recent inputs and the
output because the fastest adaptation takes place in the shortest path between input
and output. Thus, learning mainly focuses on ut. Only later in the training process
may learning also extract useful information from input vectors uτ (t−m ≤ τ < t)
which are more distant from the output. As a consequence, the unfolding-in-time
network (fig. 8.2, right) tries to rely as much as possible on the part of the dynamics
which is driven by the most recent inputs ut, . . . , ut−k with k < m. In contrast,
the overshooting network (fig. 8.4) forces the learning through additional future
outputs yt+2, . . . , yt+n to focus on modeling an internal autonomous dynamics
(Zimmermann and Neuneier, 2001).

In summary, overshooting generates additional valuable forecast information
about the analyzed dynamical system and stabilizes learning.

8.2.4 Error Correction Neural Networks (ECNN)

If we have a complete description of all external influences, recurrent neural net-
works (eq. 8.3) allow us to identify the intertemporal relationships (Haykin, 1994).
Unfortunately, our knowledge about the external forces is typically incomplete and
our observations might be noisy. Under such conditions, learning with finite data
sets leads to the construction of incorrect causalities due to learning by heart (over-
fitting). The generalization properties of such a model are questionable (Neuneier
and Zimmermann, 1998).

If we are unable to identify the underlying system dynamics due to insufficient
input information or unknown influences, we can refer to the actual model error
yt − yd

t , which can be interpreted as an indicator that our model is misleading.
Handling this error information as an additional input, we extend equation 8.1,
obtaining:

st+1 = f(st, ut, yt − yd
t ),

yt = g(st).
(8.5)

The state transition st+1 is a mapping from the previous state st, external
influences ut, and a comparison between model output yt and observed data yd

t . If
the model error (yt − yd

t ) is zero, we have a perfect description of the dynamics.
However, due to unknown external influences or noise, our knowledge about the
dynamics is often incomplete. Under such conditions, the model error (yt − yd

t )
quantifies the model’s misfit and serves as an indicator of short-term effects or
external shocks (Zimmermann et al., 2002b).

Using weight matrices A, B, C and D of appropriate dimensions correspondingerror correction
network to st, ut, and (yt−yd

t ) and a bias c, a neural network approach to 8.5 can be written
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as

st+1 = tanh(Ast + c + But + D tanh(Cst − yd
t )),

yt = Cst.
(8.6)

In 8.6 the output yt is computed by Cst and compared to the observation yd
t .

The matrix D adjusts a possible difference in the dimension between the error
correction term and st. The system identification is now a parameter optimizationsystem identifica-

tion task of appropriately sized weight matrices A, B, C, D, and the bias c (Zimmermann
et al., 2002b):

T∑
t=1

(
yt − yd

t

)2 → min
A,B,C,D,c

(8.7)

We solve the system identification task of 8.7 by finite unfolding in time usingfinite unfolding
shared weights (see section 8.2.2). Figure 8.5 depicts the resulting neural network
solution of 8.6.
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Figure 8.5 Error correction neural network (ECNN) using unfolding in time and
overshooting. Note that −Id is the fixed negative of an appropriate-sized identity
matrix, while zτ with t − m ≤ τ ≤ t are output clusters with target values of zero in
order to optimize the error correction mechanism.

The ECNN (eq. 8.6) is best understood by analyzing the dependencies of st,
ut, zt = Cst − yd

t , and st+1. The ECNN has two different inputs: the externals
ut directly influencing the state transition; and the targets yd

t . Only the difference
between yt and yd

t has an impact on st+1 (Zimmermann et al., 2002b). At all future
time steps t < τ ≤ t + n, we have no compensation of the internal expectations yτ ,
and thus the system offers forecasts yτ = Csτ .

The autonomous part of the ECNN is—analogous to the RNN case (seeovershooting
section 8.2.3)—extended into the future by overshooting. Besides all advantages
described in section 8.2.3, overshooting influences the learning of the ECNN in an
extended way. A forecast provided by the ECNN is in general, based on a modeling
of the recursive structure of a dynamical system (coded in the matrix A) and on
the error correction mechanism which acts as an external input (coded in C and
D). Now, the overshooting enforces an autoregressive substructure allowing long-
term forecasts. Of course, we have to supply target values for the additional output
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clusters yτ , t < τ ≤ t + n. Due to the shared weights, there is no change in the
number of model parameters (Zimmermann et al., 2002b).

8.3 Dynamical Consistent Neural Networks (DCNN)

The neural networks described in section 8.2 not only learn from data, but also
integrate prior knowledge and first principles into the modeling in the form of
architectural concepts.

However, the question arises if the outlined neural networks are a sufficientmarket dynamics
framework for the modeling of complex nonlinear dynamical systems, which can
only be understood by analyzing the interrelationship of different subdynamics.
Consider the following economic example: The dynamics of the US dollar–euro
foreign exchange market is clearly influenced by the development of other major
foreign exchange, stock or commodity markets (Murphy, 1999). In other words,
movements of the US dollar–euro foreign exchange rate can only be comprehended
by a combined analysis of the behavior of other coherent markets. This means that
a model of the US dollar and euro foreign exchange market must also learn the
dynamics of related markets and intermarket dependencies. Now it is important
to note that, due to their computational power (in the sense of modeling high-
dimensional nonlinear dynamics), the described medium-sized recurrent neural
networks are only capable of modeling a single market’s dynamics. From this point
of view an integrated approach of market modeling is hardly possible within the
framework of those networks. Hence, we need large neural networks.

A simple scaling up of the presented neural networks would be misleading. Our
experiments indicate that scaling up the networks by increasing the dimension of
the internal state results in overfitting due to the large number of free parameters.
Overfitting is a critical issue, because the neural network does not only learn theoverfitting
underlying dynamics, but also the noise included in the data. Especially in economic
applications, overfitting poses a serious problem.

In this section we deal with architectures which are feasible for large recurrent
neural networks. These architectures are based on a redesign of the recurrent neural
networks introduced in section 8.2. Most of the resulting networks cannot even
be designed with a low-dimensional internal state (see section 8.3.1). In addition,
we focus on a consistency problem of traditional statistical modeling: Typically
one assumes that the environment of the system remains unchanged when the
dynamics is iterated into the future. We show that this is a questionable statistical
assumption, and solve the problem with a dynamical consistent recurrent neural
network (see section 8.3.2). Thereafter, we deal with large error correction networks
and integrate dynamical consistency into this framework (see section 8.3.3). Finally,
we point out that large RNNs and large ECNNs are appropriate for different types of
dynamical systems. Our intention is to merge the different characteristics of the two
models in a unified neural network architecture. We call it DCNN for dynamical

consistent neural network (see section 8.3.4). Finally we discuss the problem of
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partially known observables (see section 8.3.5).

8.3.1 Normalization of Recurrent Networks

Let us revisit the basic time-delay recurrent neural network of 8.3. The state
transition equation st is a nonlinear combination of the previous state st−1 and
external influences ut using matrices A and B. The network output yt is computed
from the present state st employing matrix C. The network output is therefore a
nonlinear composition applying the transformations A, B, and C.

In preparation for the development of large networks we first separate the state
equation of the recurrent network (eq. 8.3) into a past and a future part. In this
framework st is always regarded as the present time state. That means that for this
pattern t all states sτ with τ ≤ t belong to the past part and those with τ > t to
the future part. The parameter τ is hereby always bounded by the length of the
unfolding m and the length of the overshooting n (see sections 8.2.2 and 8.2.3),
such that we have τ ∈ {t − m, . . . , t + n} for all t ∈ {m, . . . , T − n} with T as the
available number of data patterns. The present time (τ = t) is included in the past
part, as these state transitions share the same characteristics. We get the following
representation of the optimization problem:

τ ≤ t : sτ+1 = tanh(Asτ + c + Buτ )

τ > t : sτ+1 = tanh(Asτ + c)

yτ = Csτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,B,C,c

. (8.8)

As shown in section 8.2, these equations can be easily transformed into a neural
network architecture (see fig. 8.4).

In this model, past and future iterations are consistent under the assumption
of a constant future environment. The difficulty with this kind of recurrent neural
network is the training with backpropagation through time, because a sequence of
different connectors has to be balanced. The gradient computation is not regular,
i.e., we do not have the same learning behavior for the weight matrices in different
time steps. In our experiments we found that this problem becomes more important
for training large recurrent neural networks. Even the training itself is unstable due
to the concatenated matrices A, B, and C. As training changes weights in all of
these matrices, different effects or tendencies—even opposing ones—can influence
them and may superpose. This implies that no clear learning direction or weight
changes result from a certain backpropagated error.

The question arises of how to redesign the basic recurrent architecture (eq. 8.8)
to improve learning behavior and stability especially for large networks.

As a solution, we propose the neural network of 8.9, which incorporates besidesnormalized recur-
rent networks the bias c only one connector, the matrix A. The corresponding architecture is

depicted in fig. 8.6. Note that from now on we change the formulation of the system
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Figure 8.6 Normalized recurrent neural network.

equations (e.g., eq. 8.8) from a forward (st+1 = f(st, ut)) to a backward formulation
(st = f(st−1, ut)). As we will see, the backward formulation is internally equivalent
to a forward model.

τ ≤ t : sτ = tanh

⎛⎜⎜⎝Asτ−1 + c +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦uτ

⎞⎟⎟⎠
τ > t : sτ = tanh(Asτ−1 + c)

yτ = [Id 0 0]sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c

. (8.9)

We call this model a normalized recurrent neural network (NRNN). It avoids
the stability and learning problems resulting from the concatenation of the three
matrices A, B, and C. The modeling is now focused solely on the transition matrix
A. The matrices between input and hidden as well as between hidden and output
layers are fixed and therefore not learned during the training process. This implies
that all free parameters—as they are combined in one matrix—are now treated the
same way by backpropagation.

It is important to note that the normalization or concentration on only one
single matrix is paid for with an oversized (high-dimensional) internal state. At first
view it seems that in this network architecture (fig. 8.6) the external input uτ is
directly connected to the corresponding output yτ . This is not the case, though,
because we increase the dimension of the internal state sτ , such that the input
uτ has no direct influence on the output yτ . Assuming that we have a number p

of network outputs, q computational hidden neurons, and r external inputs, the
dimension of the internal state would be dim(s) ≥ p + q + r.

With the matrix [Id 0 0] we connect only the first p neurons of the internal
state sτ to the output layer yτ . This connector is a fixed identity matrix of
appropriate size. Consequently, the neural network is forced to generate the p

outputs of the neural network at the first p components of the state vector sτ .
Let us now focus on the last r state neurons, which are used for the processing
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of the external inputs uτ . The connector [0 0 Id]T between the externals uτ and the
internal state sτ is an appropriately sized fixed identity matrix. More precisely, the
connector is designed such that the input uτ is connected to the last state neurons.
Recalling that the network outputs are located at the first p internal states, this
composition avoids a direct connection between input and output. It delays the
impact of the externals uτ on the outputs yτ by at least one time step.

To additionally support the internal processing and to increase the network’s
computational power, we add a number q of hidden neurons between the first p and
the last r state neurons. This composition ensures that input and output processing
of the network are separate.

Besides the bias vector c the state transition matrix A holds the only tunable
parameters of the system. Matrix A does not only code the autonomous and the
externally driven parts of the dynamics, but also the processing of the external
inputs uτ and the computation of the network outputs yτ . The bias added to the
internal state handles offsets in the input variables uτ .

Remarkably, the normalized recurrent network of 8.9 can only be designed aslarge networks
a large neural network. If the internal network state is too small, the inputs and
outputs cannot be separated, as the external inputs would at least partially cover
the internal states at which the outputs are read out. Thus, the identification of
the network outputs at the first p internal states would become impossible.

Our experiments indicate that recurrent neural networks in which the only
tunable parameters are located in a single state transition matrix (e.g., eq. 8.9)
show a more stable training process, even if the dimension of the internal state is
very large. Having trained the large network to convergence, many weights of the
state transition matrix will be dispensable without derogating the functioning of
the network. Unneeded weights can be singled out by using a weight decay penalty
and standard pruning techniques (Haykin, 1994; Neuneier and Zimmermann, 1998).

In the normalized recurrent neural network (eq. 8.9) we consider inputs andmodeling observ-
ables outputs independently. This distinction between externals uτ and the network

output yτ is arbitrary and mainly depends on the application or the view of
the model builder instead of the real underlying dynamical system. Therefore,
for the following model we take a different point of view. We merge inputs and
targets into one group of variables, which we call observables. So we now look
at the model as a high-dimensional dynamical system where input and output
represent the observable variables of the environment. The hidden units stand for
the unobservable part of the environment, which nevertheless can be reconstructed
from the observations. This is an integrated view of the dynamical system.

We implement this approach by replacing the externals uτ with the (observ-
able) targets yd

τ in the normalized recurrent network. Consequently, the output yτ
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and the external input yd
τ have now identical dimensions.

τ ≤ t : sτ = tanh

⎛⎜⎜⎝Asτ−1 + c +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yd
τ

⎞⎟⎟⎠
τ > t : sτ = tanh(Asτ−1 + c)

yτ = [Id 0 0]sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c

. (8.10)

The corresponding model architecture is shown in fig. 8.7.
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Figure 8.7 Normalized recurrent net modeling the dynamics of observables yd
τ .

Note that, because of the one-step time delay between input and output, yd
τ

and yτ are not directly connected. Furthermore, it is important to understand that
we now take a totally different view of the dynamical system. In contrast to 8.9,
this network (eq. 8.10) not only generates forecasts for the dynamics of interest but
for all external observables yd

τ . Consequently, the first r state neurons are used for
the identification of the network outputs. They are followed by q computational
hidden neurons, and r state neurons that read in the external inputs.

8.3.2 Dynamical Consistent Recurrent Neural Networks (DCRNN)

The models presented so far are all statistical but not dynamical consistent, as we
assume that the environment stays constant for the future part of the network. In
the following we improve our models with dynamical consistency.

An open dynamical system is partially driven by an autonomous development
and partially by external influences. When the dynamics is iterated into the future,
the development of the system environment is unknown. Now, one of the standard
statistical paradigms is to assume that the external influences are not significantly
changing in the future part. This means that the expected value of a shift in an
external input yd

τ with τ > t is 0 by definition. For that reason we have so far
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neglected the external inputs yd
τ in the normalized recurrent neural network at all

future unfolding time steps, τ > t (see eq. 8.10).
Especially when we consider fast-changing external variables with a high

impact on the dynamics of interest, the above assumption is very questionable.
In relation to 8.10 it even poses a contradiction, as the observables are assumed to
be constant on the input and variable on the output side. Even in case of a slowly
changing environment, long-term forecasts become doubtful. The longer the forecast
horizon is, the more the statistical assumption is violated. A statistical model is
therefore not consistent from a dynamical point of view. For a dynamical consistent
approach, one has to integrate assumptions about the future development of the
environment into the modeling of the dynamics.

For that reason we propose a network that uses its own predictions as replace-
ments for the unknown future observables. This is expressed by an additional fixed
matrix in the state equation. The resulting DCRNN is:

τ ≤ t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

0 0 0

⎤⎥⎥⎦ tanh(Asτ−1 + c) +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yd
τ

τ > t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

Id 0 0

⎤⎥⎥⎦ tanh(Asτ−1 + c)

yτ = [Id 0 0] sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c

(8.11)

Similarly to the end of section 8.3.1, we look at the state vector sτ in a verystate vector
structured way. The recursion of the state equations (eq. 8.11) acts in the past
(τ ≤ t) and future (τ > t) always on the same partitioning of that vector. For all
τ ∈ {t − m, . . . , t + n}, sτ can be described as

sτ =

⎡⎢⎢⎢⎢⎣
yτ

hτ{
τ ≤ t : yd

τ

τ > t : yτ

}
⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
expectations

hidden states{
τ ≤ t : observations

τ > t : expectations

}
⎤⎥⎥⎥⎥⎦ . (8.12)

This means that in the first r components of the state vector we have the
expectations yτ , i.e., the predictions of the model. The q components in the middle
of the vector represent the hidden units hτ . They are actually responsible for the
development of the dynamics. In the last r components of the vector we find in
the past (τ ≤ t) the observables yd

τ , which the model receives as external input. In
the future (τ > t) the model replaces these unknown future observables by its own
expectations yτ . This replacement is modeled with two consistency matrices:consistency ma-

trices
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C≤ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

0 0 0

⎤⎥⎥⎦ and C> =

⎡⎢⎢⎣
Id 0 0

0 Id 0

Id 0 0

⎤⎥⎥⎦ . (8.13)

Let us explain one recursion of the state equation (eq. 8.11) in detail: In the
past (τ ≤ t) we start with a state vector sτ−1, which has the structure of 8.12.
This vector is first multiplied with the transition matrix A. After adding the bias
c, the vector is sent through the nonlinearity tanh. The consistency matrix then
keeps the first r+q components (expectations and hidden states) of the state vector
but deletes (by multiplication with zero) the last r ones. These are finally replaced
by the observables yd

τ , such that sτ again has the partitioning of 8.12. Note that
in contrast to the normalized recurrent neural network (eq. 8.10) the observables
are now added to the state vector after the nonlinearity. This is important for the
consistency structure of the model.

The recursion in the future state transition (τ > t) differs from the one in the
past in terms of the structure of the consistency matrix and the missing external
input. The latter is now replaced with an additional identity block in the future
consistency matrix C>, which maps the first r components of the state vector, the
expectations yτ , to its last r components. Thus we get the desired partitioning of
sτ (eq. 8.12) and the model becomes dynamical consistent.

Figure 8.8 illustrates this architecture. Note that the nonlinearity and the final
calculation of the state vector are separate and hence modeled in two different
layers. This follows from the dynamical consistent state equation (eq. 8.11), in
which the observables are added separately from the nonlinear component.

Regarding the single transition matrix A, we want to point out that in atransition matrix
statistical consistent recurrent network (eq. 8.10) the matrix has to model the state
transformation over time and the merging of the input information. However, the

Id Id

0 0

AA

t−1y

t+1st−1s

Id

d
t−1y d

ty

0
0

Id

0
0

Id

t
y

ts

0 00 0

>CC<

t+1y

non−
linear

c

non−
linear

c

Figure 8.8 Dynamical consistent recurrent neural network (DCRNN). At all
future time steps of the unfolding the network uses its own forecasts as substitutes
for the unknown development of the environment.
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network is only triggered by the external drivers up to the present time step t. In
a dynamical consistent network we have forecasts of the external influences, which
can be used as future inputs. Thus, the transition matrix A is always dedicated to
the same task: modeling the dynamics.

8.3.3 Dynamical Consistent Error Correction NNs (DCECNN)

The ECNN is a nonlinear state space model employing the shared weight matrices
A, B, C, and D (eq. 8.6). Matrix A computes the state transformation over time,
B processes the external input information, C derives the network output, and D is
responsible for the error correction mechanism. The latter composition of nonlinear
transformations A, B, C, and D is difficult to handle when the network’s internal
state is high dimensional.

Therefore we developed a dynamical consistent error correction neural network
(DCECNN) of the form of 8.14. It is an analogous approach to the DCRNN
(eq. 8.11) and consequently the equations are very similar. The only changes concern
the two consistency matrices C≤ and C>.

τ ≤ t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

−Id 0 0

⎤⎥⎥⎦ tanh(Asτ−1 + c) +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yd
τ

τ > t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

0 0 0

⎤⎥⎥⎦ tanh(Asτ−1 + c)

yτ = [Id 0 0] sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c
.

(8.14)

Due to the error correction, the definition or partitioning of the state vectorstate vector
differs in the last r components. We now have for all τ ∈ {t − m, . . . , t + n}

sτ =

⎡⎢⎢⎢⎢⎣
yτ

hτ{
τ ≤ t : eτ

τ > t : 0

}
⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
expectations

hidden states{
τ ≤ t : error correction

τ > t : 0

}
⎤⎥⎥⎥⎥⎦ . (8.15)

In the past part (τ ≤ t) we get the error correction term in the state vector
by subtracting the expectations yτ from the observations yd

τ . This is performed by
the negative identity matrix −Id within the consistency matrix C≤. In the future
part (τ > t) we expect that our model is correct. Therefore we replace the error
correction by zero. The future consistency matrix C> simply overwrites the last r
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components of the state vector with zero. Analogous to the DCRNN, the internal
transition matrix A is only used for the modeling of the dynamics over time.

The graphical illustration of a dynamical consistent error correction neural
network is identical to the recurrent one (fig. 8.8), but note, that the consistency
matrices C≤ and C> have changed their structure.

8.3.4 Dynamical Consistent Neural Networks (DCNN)

Dynamical consistent neural networks(see section 8.3.2) are most appropriate if the
observed dynamics is not hidden by noise and evolves smoothly over time, e.g.,
modeling of a sine curve. However, modeling can only be successful if we know all
external drivers of the system and the dynamics is not influenced by external shocks.
In many real-world applications, e.g. trading (see Zimmermann et al. (2002a)), this
is simply not true. The dynamics of interest is often covered with noise. External
shocks or unknown external influences disturb the system dynamics. In this case,
one should apply DCECNNs (see section 8.3.3), which describe the dynamics with
an internal expectation and its deviation from the observables. Now the question
arises of whether and how we can merge the different model characteristics within
a single dynamical consistent neural network (DCNN).

There are two different ways to set up this combination. In our first approach
(eq. 8.18) we keep the framework of the DCRNN (eq. 8.11), whereas the second one
(eq. 8.22) is based on the DCECNN (eq. 8.14).

The first approach is based on the DCRNN. Consequently, the state vector
sτ has, in the past (τ ≤ t) and future (τ ≤ t) for all τ ∈ {t − m, . . . , t + n}, the
partitioning of 8.16 (see also eq. 8.12).

sτ =

⎡⎢⎢⎢⎢⎣
yτ

hτ{
τ ≤ t : yd

τ

τ > t : yτ

}
⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
expectations

hidden states{
τ ≤ t : observations

τ > t : expectations

}
⎤⎥⎥⎥⎥⎦ (8.16)

In comparison to the DCRNN (eq. 8.11) the recursion of the new model
(eq. 8.18) is extended by an additional consistency matrix

C =

⎡⎢⎢⎣
0 0 Id

0 Id 0

−Id 0 Id

⎤⎥⎥⎦ (8.17)

between the state vector and the transition matrix A. As we will see, this matrix
ensures that the model is supplied with the information of the observables yd

τ as
well as the error corrections eτ . We call this approach DCNN1 (eq. 8.18). The
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corresponding network architecture is depicted in fig. 8.9.

τ ≤ t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

0 0 0

⎤⎥⎥⎦ tanh

⎛⎜⎜⎝A

⎡⎢⎢⎣
0 0 Id

0 Id 0

−Id 0 Id

⎤⎥⎥⎦ sτ−1 + c

⎞⎟⎟⎠+

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yd
τ

τ > t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

Id 0 0

⎤⎥⎥⎦ tanh

⎛⎜⎜⎝A

⎡⎢⎢⎣
0 0 Id

0 Id 0

−Id 0 Id

⎤⎥⎥⎦ sτ−1 + c

⎞⎟⎟⎠
yτ = [Id 0 0] sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c

(8.18)

To describe how the model evolves, we explain the state equations step by
step: We start with a state vector sτ−1 which has the structure of 8.16. Throughinner state vector
the multiplication with the additional consistency matrix C the state vector is
transformed into a vector with the partitioning

s̃τ =

⎡⎢⎢⎣
yd

τ

hτ

eτ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
observations

hidden states

error correction

⎤⎥⎥⎦ (8.19)

for all τ ∈ {t − m, . . . , t + n}. This inner state vector s̃τ contains the observables
and the error correction and combines the ideas of DCRNN and DCECNN. The
rest of the recursion is identical with the DCRNN (eq. 8.11). As before, the only
learnable parameters of the network are located in matrix A and the bias c.
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Figure 8.9 Dynamical consistent neural network (DCNN).

As already mentioned, the second approach to a dynamical consistent neuralDCNN2
network (DCNN2) is based on the DCECNN model (dq. 8.14). The state vector sτ
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assumes the corresponding structure (see eq. 8.15):

sτ =

⎡⎢⎢⎢⎢⎣
yτ

hτ{
τ ≤ t : eτ

τ > t : 0

}
⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
expectations

hidden states{
τ ≤ t : error correction

τ > t : 0

}
⎤⎥⎥⎥⎥⎦ . (8.20)

Analogous to the development of the DCNN1 (eq. 8.18) the DCECNN equation
is extended by an additional consistency matrix C, which now has the structure

C =

⎡⎢⎢⎣
Id 0 Id

0 Id 0

0 0 Id

⎤⎥⎥⎦ . (8.21)

The resulting DCNN2 can be described with the following set of equations:

τ ≤ t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

−Id 0 0

⎤⎥⎥⎦ tanh

⎛⎜⎜⎝A

⎡⎢⎢⎣
Id 0 Id

0 Id 0

0 0 Id

⎤⎥⎥⎦ sτ−1 + c

⎞⎟⎟⎠+

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yd
τ

τ > t : sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

0 0 0

⎤⎥⎥⎦ tanh

⎛⎜⎜⎝A

⎡⎢⎢⎣
Id 0 Id

0 Id 0

0 0 Id

⎤⎥⎥⎦ sτ−1 + c

⎞⎟⎟⎠
yτ = [Id 0 0] sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c

(8.22)

Looking at the multiplication C · sτ−1 we can easily confirm that—supposing that
sτ−1 is structured as in 8.20—we once again get an inner state vector s̃τ partitioned
as in 8.19.

This implies that the transition matrix A is applied in both models to the same
inner state vector s̃τ . Consequently, although the two models look quite different,
they share an identical modeling of the dynamics. It may depend on additional
modeling tools or a particular application which approach is preferable.

The network architecture for the alternative approach, DCNN2, is identical to
DCNN1 (fig. 8.8), but note that the consistency matrices C, C≤, and C> differ.

Opposite to the DCRNN (eq. 8.11) and DCECNN (eq. 8.14) the two approachesadvantages of the
DCNN to the DCNN (eqs. 8.18 and 8.22) compute the state trajectory of the dynamics

in the past exactly on the observed path. This follows from the partitioning of
the inner state vector s̃τ (eq. 8.19), which is responsible for the calculation of the
dynamics. It contains the observables in the first r components, which are directly
used to determine the prediction yτ . The error corrections, which are now located in
the last r components, act as additional inputs. Furthermore, the DCNN offers an
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interesting new insight into the observation of dynamical systems: Typically, small
movements of the dynamics are treated as noise, and thus the modeling focuses
on larger shifts in the dynamics. Our view is different. We believe that small
system changes characterize the autonomous part of our open system, while the
large swings originate at least partially from the external forces. If we neglect small
system changes, we also suppress valuable substructure in our observations. We
found that DCNNs allow us to model even small changes in the dynamics without
losing the generalization abilities of the model. This introduces a new perspective
on the structure/noise dilemma in modeling dynamical systems.

8.3.5 Partially Known Observables

So far our models have always distinguished between a past and a future devel-
opment of the state equation. We assumed that in the past part (τ ≤ t) all the
identified observables are available. In the future part (τ > t) we accepted that we
do not know anything about the observables and hence we replaced them by the
model’s own expectations.

In many practical applications we have observables which are not available
for all time steps in the past. In contrast, one might have observables which are
also available in the future, e.g., calendar data. In the following we therefore switch
from a model differentiating between past and future to a modeling structure which
distinguishes between available and missing external inputs.

The DCNN with partially known observables merges the two state equations
of the DCNN (e.g., eq. 8.22) into one single equation that allows us to differentiate
between available and unavailable observables. Consequently, it is a reformulation
of the normal DCNN providing an easier and more general structure. The simplifi-
cation in one equation makes the model also more tractable for further discussions
(see sections 8.4 and 8.5). The following model (eq. 8.23) is based on the DCNN2
(eq. 8.22), but an analogous model can also easily be created for DCNN1 (eq. 8.18).
For all τ ∈ {t − m, . . . , t + n}, we have

sτ =

⎡⎢⎢⎣
Id 0 0

0 Id 0

E 0 0

⎤⎥⎥⎦ tanh

⎛⎜⎜⎝A

⎡⎢⎢⎣
Id 0 Id

0 Id 0

0 0 Id

⎤⎥⎥⎦ sτ−1 + c

⎞⎟⎟⎠+

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yE
τ

yτ = [Id 0 0] sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c
.

(8.23)

In this model the external inputs yE
τ and the included matrix E are defined as

follows:

yE
τ :=

{
0

yd
τ

if
input missing

input available

}
(8.24)
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and

E :=

{
0

−1
if

input missing

input available

}
. (8.25)

It is important to note that the inner consistency matrix C is independent of
the input availability. We only adapt the consistency matrix

CE =

⎡⎢⎢⎣
Id 0 0

0 Id 0

E 0 0

⎤⎥⎥⎦ . (8.26)

The structure guarantees that an error correction is calculated in the last r

state components if external input is available. Thus, we have a time-independent
combination of the former two state equations (eq. 8.22). The corresponding model
architecture (fig. 8.10) does not change significantly in comparison to the former
(time-oriented) DCNN (fig. 8.9).
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Figure 8.10 DCNN with partially known observables.

The DCNN with partially known observables is more general in the sense of
observable availability and hence better applicable to real-world problems. The
following discussions are mainly based on this model.

8.4 Handling Uncertainty

In practical applications our models have to cope with several forms of uncertainty.
So far we have neglected their possible influence on generalization performance.
Uncertainty can disturb the development of the internal dynamics and seriously
harm the quality of our forecasts. In this section we present several methods which
reduce the model’s dependency on uncertain data.

There are actually three major sources of uncertainty. First, the input data
itself might be corrupted or noisy. We deal with that problem in section 8.4.1. In
the framework of finitely unfolded in time recurrent neural networks we also have
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the uncertainty of the initial state. We present different approaches to overcome
that uncertainty and achieve a desensitization of the model from the unknown
initialization (see section 8.4.2). Finally, we discuss the uncertainty of the future
inputs and question once more the assumption of a constant environment (see
section 8.4.3).

8.4.1 Handling Data Noise

So far we have always assumed our input data to be correct. In most practical
applications this is not true. In the following we present an approach which tries to
minimize input uncertainty.

Cleaning noise is a method which improves the model’s learning behavior bycleaning noise
correcting corrupted or noisy input data. The method is an enhancement of the
cleaning technique which is described in detail in (Neuneier and Zimmermann,
1998). In short, cleaning considers the inputs as corrupted and adds corrections to
the inputs if necessary. However, we want to keep the cleaning correction as small
as possible. This leads to an extended error function

Ey,x
t =

1
2
[(yt − yd

t )2 + (xt − xd
t )

2] = Ey
t + Ex

t → min
xt,w

. (8.27)

Note that this new error function does not change the usual weight adaption rule

w+ = w − η
∂Ey

∂w
, (8.28)

where η > 0 is the so-called learning rate and w+ stands for the adapted weight.
To calculate the cleaned input

xt = xd
t + ρt (8.29)

we need the correction vectors ρt for all input data of the training set. The update
rule for these corrections, initialized with ρt = 0, can be derived from typical
adaption sequences:

x+
t = xt − η

∂Ey,x

∂x
, (8.30)

leading to

ρ+
t = (1 − η)ρt − η

∂Ey

∂x
. (8.31)

This is a nonlinear version of the error-in-variables concept from statistics.
We derive all the information needed, especially the residual error ∂Ey,x

∂x , from
training the network with backpropagation (fig. 8.18), which makes the compu-
tational effort negligible. It is important to note that in this way the corrections
are performed by the model itself and not by applying external knowledge (see
“observer-observation dilemma” in Neuneier and Zimmermann, 1998).

We now assume that the data is not only corrupted but also noisy. For that
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reason we add an extra noise vector, −ρτ , to the cleaned value:

xt = xd
t + ρt − ρτ . (8.32)

The noise vector ρτ is a randomly chosen row vector {ρiτ}i=1,... ,r of the cleaning
matrix

CCleaning :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ11 · · · · · · · · · ρr1

ρ12
. . . ρr2

... ρit

...
...

. . .
...

ρ1T · · · · · · · · · ρrT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which stores the input error corrections of all data patterns. The matrix has the
same size as the pattern matrix, as the number of rows equals the number of patterns
T and the number of columns equals the number of inputs r.

One might wonder why disturb the cleaned input xt = xd
t + ρt with an

additional noise-term −ρτ . The reason for this is, that we want to benefit from
representing the whole input distribution to the network instead of only using one
particular realization (Zimmermann and Neuneier, 1998).

A variation on the Cleaning Noise method is called local cleaning noise.local cleaning
noise Cleaning noise adds to every training pattern the same noise term −ρτ and therefore

assumes that the noise of the different inputs is correlated. Especially in high-
dimensional models it is improbable that all the components of the input vector
follow an identical or at least correlated noise distribution. For these cases we
propose a method which is able to differentiate component-wise:

xit = xd
t + ρt − ρiτ . (8.33)

In contrast to the normal cleaning technique, the local version is correcting each
component of the input vector xit individually by a cleaning correction and a
randomly taken entry ρiτ of the corresponding column {ρit}t=1,... ,T of the cleaning
matrix CCleaning.

A further advantage of the local cleaning technique is that—with the increased
number of (local) correction terms (T · r)—we can cover higher dimensions. In
contrast, with the normal cleaning technique the dimension is bounded by the
number of training patterns T , which can be insufficient for high-dimensional
problems.

8.4.2 Handling the Uncertainty of the Initial State

One of the difficulties with finite unfolding in time is to find a proper initialization
for the first state vector of the recurrent neural network. An obvious solution is to
set the first state s0 to zero. We then implicitly assume that the unfolding includes
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enough (past) time steps such that the misspecification of the initialization phase is
compensated along the state transitions. In other words, the network accumulates
information over time, and thus can eliminate the impact of the arbitrary initial
state on the network outputs.

The model can be improved if we make the unfolded recurrent network lessstate initializa-
tion sensitive to the unknown initial state s0. For this purpose we look for an initializa-

tion, for which the interpretation of the state recursion is consistent over time. Since
the initialization procedure is identical for all types of DCNNs, we demonstrate the
approach on the DCNN with partially known observables (eq. 8.23):

sτ = CE tanh(A · C · sτ−1 + c) +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yE
τ

yτ = [Id 0 0]sτ ,

T−n∑
t=m

t+n∑
τ=t−m

(yτ − yd
τ )2 → min

A,c
.

(8.34)

In a first step we explicitly integrate a first state vector s0 (see fig. 8.11). This
is no longer set to zero but receives the target information ytarget

t−1 of the first output
vector yt−1. The vector is then multiplied by the consistency matrix CE , such that
the first r components of the first state vector st−1 coincide with the first expected
output. This avoids the generation of an excessively large error for the first output.
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Figure 8.11 Time consistent initialization of a DCNN with an additional initial
state s0.

The hidden states of this model are arbitrarily initialized with zero. In a second
step we add a noise term ε to the first state vector s0 to stiffen the model against
the uncertainty of the unknown initial state. A fixed noise term ε that is drawn from
a predetermined noise distribution is clearly inadequate to handle the uncertainty
of the initial state. Instead we apply—according to the cleaning noise method—an
adaptive noise term, which fits best the volatility of the unknown initial state s0.
As explained in section 8.4.1, the characteristics of the adaptive noise term are
automatically determined as a by-product of the error backpropagation algorithm.
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The basic idea is as follows: The residual error ρ as measured at the initial stateresidual error
s0 can be interpreted as the uncertainty stemming from missing information about
the true initial state vector. If we disturb s0 with a noise term which follows the
distribution of the residual error of the network, we diminish the uncertainty about
the unknown initial state during system identification. In addition, this allows a
better fitting of the target values over the training set. A corresponding network
architecture is depicted in fig. 8.12.
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Figure 8.12 Desensitization of a DCNN from the unknown initial state s0.

Technically, noise is introduced into the model via an additional input layer.
The dimension of noise is equal to that of the internal state. The input values
are fixed at zero over time. Due to the incomplete identity matrix between noise

and the initial state the noise is only applied to the hidden values of the initial
state, where no input information is available. The desensitization of the network
from the initial state vector s0 can therefore be seen as a self-scaling stabilizer of
the modeling. Note that the noise term ρ is drawn randomly from the observed
residual errors, without any prior assumption on the underlying noise distribution.

In general, a discrete-time state trajectory forms a sequence of points over
time. Such a trajectory is comparable to a thread in the internal state space. The
trajectory is very sensitive to the initial state vector s0. If we apply noise to s0,
the space of all possible trajectories becomes a tube in the internal state space
(fig. 8.13). Due to the characteristics of the adaptive noise term, which decreases
over time, the tube contracts. This enforces the identification of a stable dynamical
system. Consequently, the finite volume trajectories act as a regularization and
stabilization of the dynamics.

The question arises, what may be the best method to create an appropriateinitialization
techniques noise level. Table 8.1 gives an overview of several initialization techniques we have

developed and examined so far. Remember that in all cases the corrections are only
applied to the hidden variables of the initial state s0.

We already explained the first three methods in section 8.4.1. The idea behind
the initialization with start noise is, that we do not need a cleaning correction
but solely focus on the noise term. double start noise tries to achieve a nearly
symmetrical noise distribution, which is also double in comparison to normal start
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s t

steps of unfolding in time

Figure 8.13 Creating a tube in the internal state space by applying noise to the
initial state.

Table 8.1 Overview of Initialization Techniques

Cleaning: s0 = 0 + ρt

Cleaning noise: s0 = 0 + ρt − ρτ

Local Cleaning noise: s0i = 0 + ρt − ρτi

Start noise: s0 = 0 + ρτ

Local start noise: s0i = 0 + ρτi

Double start noise: s0 = 0 + (ρ1
τ − ρ2

τ )
Double local start noise: s0i = 0 + (ρ1

τi
− ρ2

τi
)

noise. In all cases local always corresponds to the individual application of a noise
term to each component of the initial state s0 (see local cleaning noise in section
8.4.1).

From top to bottom the methods listed in table 8.1 use less and less information
about the training set. Hence double start noise emphasizes more the generalization
abilities of the model. This is also confirmed by our experiments. Furthermore we
could confirm that the local initialization techniques lead to better performance in
high-dimensional models (see section 8.4.1).

8.4.3 Handling the Uncertainty of Unknown Future Inputs

In the past part of the network, the influence of the unknown externals is reflected
in the error corrections as calculated by the backpropagation algorithm. In the
future part we do not have any information about the correctness of our inputs. As
explained in section 8.3, we either use our own forecasts as future inputs, or simply
assume that the inputs in the future stay constant. The underlying assumption is
that the observables evolve in the future like they did in the past. We cannot verify
if this is correct. Anyway, for most practical applications it is a very questionable
assumption.
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To stabilize our model against these uncertainties of the future inputs we apply
a Gaussian noise term εt+τ to the last r components of each future state vector
st+τ . The corresponding architecture is depicted in fig. 8.14.
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Figure 8.14 Handling the uncertainty of the future inputs by adding a noise term
εt+τ to each future state vector st+τ .

The additional noise is used during the training of the model to achieve a more
stable output. For the actual deterministic forecast we either skip the application
of noise to avoid a disturbance of the predictions or average our results over a
sufficient number of different forecasts (Monte Carlo approach).

8.5 Function and Structure in Recurrent Neural Networks

Our discussion about function and structure in recurrent neural networks is focused
on the autonomous part of the model, which is mapped by the internal state
transition matrix A. So far the transition matrix A has always been assumed to
be fully connected. In a fully connected matrix the information of a state vector
st is processed using the weights in A to compute st+1. This implies that there is
a high proportion of superposition (computation) but hardly any conservation of
information (memory) from one state to a succeeding one (see the right panel of
fig. 8.15).

For the identification of dynamical systems such memory can be essential, as
information may be needed for computation in subsequent time steps. A shift reg-
ister (see the left panel of fig. 8.15) is a simple example for the implementation of
memory, as it only transports information within the state vector s. No superposi-
tion is performed in this transition matrix.

At first view we have two contradicting functions: superposition and conserva-superposition and
conservation of
information

tion of information. Superposition of information is necessary to generate or adapt
changes of the dynamics. In contrast, conservation of information causes memory
effects by transporting information more or less unmodified to a subsequent state
neuron. In this context, memory can be defined as the average number of state
transitions necessary to transmit information from one state neuron to any other
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Figure 8.15 Function and structure in dynamical systems: computation versus
memory in the transition matrix A.

one in a subsequent state. We call this number of necessary state transitions the
path length of a neuron. To overcome the apparent dilemma between superposition
and conservation of information the transition matrix A needs a structure which
balances memory and computation effects. Sparseness of the transition matrix re-
duces the number of paths and the computation effect of the network but at the
same time increases the average path length, and therefore allows for longer-lasting
memory. A possible solution is an inflation of the recurrent network, i.e., of the
transition matrix A.

We show that with such an inflation an optimal balance between memory and
computation can be achieved (section 8.5.1). In this context we present conjectures
about the optimal level of sparseness and the required minimum dimension. An
experiment with artificial data underlines our results (section 8.5.2). In section 8.5.3
we conclude that sparseness is actually an essential condition for high-dimensional
neural networks. Finally, we discuss in section 8.5.4 the information flow in sparse
networks.

8.5.1 Inflation of Recurrent Neural Networks

Based on the length of the past unfolding m (see section 8.2.2) and the optimal
state dimension dim(s) of a fully connected recurrent network, we can define a
procedure for an optimal design of the neural network structure, which solves the
dilemma between memory and computation.

The idea is to inflate the network to a higher dimensionality, while maintaining
the computational complexity of the former lower-dimensional and fully connected
network, and at the same time allowing for memory effects. With an inflated transi-
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tion matrix A we can optimize both superposition and conservation of information.
To determine the optimal dimension and the level of sparseness, we proposeoptimal inflation

two conjectures, which we will empirically investigate in section 8.5.2. In a first step
we calculate the new dimension of the internal state s by

dim(snew) := m · dim(s). (8.35)

As the former dimension of s was supposed to be optimal, we have to ensure that
the higher-dimensional network has the same superposition of information as the
original one. This can be achieved by keeping the number of active weights constant.
On average we want to have the same number of nonzero elements as in the former
lower-dimensional network. Thus, the sparseness level of the new matrix Anew is
given by

initialize Anew with Random

(
dim(s)

dim(snew)

)
= Random

(
1
m

)
. (8.36)

Hereby Random(·) represents the percentage of randomly initialized weights,
whereas the remaining weights are set to zero. Proceeding this way, we repli-
cate on average the computation effect of the former network. At the same time we
increase the path lengths (memory) with the sparseness level of the new transition
matrix Anew. Note that the sparseness level only depends on the length of the past
unfolding m.

The conjecture (eq. 8.36) implies that the sparseness of Anew is generated
randomly. In section 8.5.3 we present techniques which try to optimize the sparse
structure and consequently the memory and computation abilities of the network.

Based on our conjectures about inflation, a proper training procedure fortraining proce-
dure for RNNs recurrent neural networks should consist of four steps: First, one has to set up

an appropriate network architecture (e.g., DCNN, eq. 8.23). Second, the length
of the past unfolding m and the optimal internal state dimension dim(s) of the
system have to be estimated by analyzing the network errors along the time steps
of the unfolding (see section 8.2.2). Third, we use the estimated parameters m

and dim(s) to determine the optimal dimensionality and sparseness (eqs. 8.35 and
8.36). Fourth, the inflated network is trained until convergence by backpropagation
through time using, e.g., the vario-eta learning rule (Neuneier and Zimmermann,
1998).

8.5.2 Experiments: Testing Conjectures About Inflation

In the following experiments we want to evaluate our conjectures about optimal
inflation of recurrent networks. To ensure a straight analysis of our proposed
equations (eqs. 8.35 and 8.36), we modeled an artificial network which consists of an
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autonomous development only. We applied the network to forecast the development
of the following artificial data generation process

st = tanh(A · st−m) + εt , (8.37)

where dim(s) = 5, A is randomly initialized, m = 3, and ε is white noise with
σε = 0.2, one time step ahead. The unfolding in time of the recurrent network
includes five time steps from t−3 to t+1. As the data generation process is a closed
dynamical system, there are no inputs, but time-delayed states st−k (k = 1, . . . , m)
are used as external influences.

Each of the following experiments is based on 100 Monte Carlo simulation runs.
For each run we generated 1000 observations, 25% for training and 75% for testing
purposes. The network was trained until convergence with error backpropagation
through time using vario-eta learning (Neuneier and Zimmermann, 1998).

First we evaluated our conjecture about the sparse random initialization of the
transition matrix Anew. For this purpose we randomly initialized matrix Anew with
different levels of sparseness (100 test runs per sparseness degree). The dimension
of the internal state was fixed according to 8.35 at dim(snew) = 3 · 5 = 15 for all
test runs. The mean square error of the network measured on the test set was used
as a performance criterion.

0 10 20 30 40 50 60 70 80 90 100
5.3

5.4

5.5

5.6

5.7

5.8

5.9
x 10

−3

% of random initialization

ge
ne

ra
liz

at
io

n 
er

ro
r

Figure 8.16 Effects of different degrees of sparseness on matrix Anew.

The results of the experiment (Figure 8.16) confirm our conjecture about an
optimal sparseness level: If we initialize matrix Anew randomly 35% sparse, we
observe the best performance (i.e., lowest average error on the test set). This
corresponds to equation 8.36, where an optimal sparseness level computes to 33%.
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The second series of experiments was connected with the optimal internal
state dimension. During these experiments we kept the sparseness level constant at
33% (see eq. 8.36), whereas the dimension of the internal state was variable. We
performed 100 runs for each dimension of the internal state with different random
initializations of matrix Anew. Again we used the network error as an indicator of
the model performance. The results are shown in fig. 8.17.
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Figure 8.17 Impacts of different internal state dimensions dim(snew).

It turns out that the best performance is achieved if the dimension of the
internal state is equal to dim(snew) = 18. Our conjecture of dim(snew) = 3 · 5 = 15
(eq. 8.35) slightly underestimates the empirically measured optimal dimensionality.
However, because of the noise term εt, we suppose that the optimal dimension of
the system is larger than 5. This indicates that our conjecture in 8.35 is a helpful
estimate of an optimal level of sparseness.

Both experiments show that mismatches between dimensionality and sparse-
ness cause problems in the function (superposition and conservation) of the transi-
tion matrix. In other words, an unbalanced parameterization of the inflation leads
to lower generalization performance of the network.

8.5.3 Sparseness as a Necessary Condition for Large Systems

One might come up with the idea of initializing a model with a fully connected
transition matrix A, and then pruning it during the learning process until a desired
degree of sparseness is reached. This approach is misleading, as sparseness is an
essential condition for the performance of the backpropagation algorithm in large
networks.
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Figure 8.18 Forward and backward information flow in the backpropagation
algorithm.

Figure 8.18 shows the forward and backward information flow in the backprop-backpropagation
agation algorithm. 3 When we look at the calculations, it becomes obvious that if
the transition matrix A is fully connected and dim(s) is increasing, we get a growing
number as well as a lengthening of the sums in the matrix times vector operations.
Due to the law of large numbers the probability for large sum values also increases.
This does not pose any problems in the forward flow of the algorithm. The hyper-
bolic tangent as the nonlinear activation function guarantees that the calculated
values stay numerically tractable. In contrast, backward information flow is linear.
In this part of the algorithm large values are spread all over a fully connected ma-
trix A. They quickly sum up to values which cause numerical instabilities and may
destroy the whole learning process. This can be avoided if we use a sparse transition
matrix A. The number of summands is then smaller and therefore the probability
of large sums is low.

In the remainder of this section we want to discuss the question of how tosparse initializa-
tion of A choose a sparse transition matrix A that is still trainable to a stable model.

One intuitive answer is to initialize the model several times and then compare
the different results. We performed 100 test runs of the neural network using
different random initializations of matrix A. The prestructuring of the network
followed our conjectures about inflation (eqs. 8.35 and 8.36).

An obvious approach to overcome the uncertainty of the random initialization
is to pick the best-performing network out of the 100 test runs. However, it is
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not clear if 100 test runs are effectively required to find an appropriate model. To
study how many test runs are needed to find a good solution with a minimum of
computational effort, we picked all possible subsets of k = 1, 2, . . . , 100 solutions
out of the 100 test runs. From each subset we chose the solution with the lowest
error on the test set and computed the average performance:

Ek =
1(100
k

) ∑
i1≤...≤ik

min(ei1 , ei2 , . . . , eik
). (8.38)

The resulting average error curve for k = 1, 2, . . . , 100 is depicted in fig. 8.19 (solid
line).
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Figure 8.19 Estimating the number of random initializations for matrix A.

As can be seen from the error curve in fig. 8.19, an appropriate solution can be
obtained on the average by choosing the best model out of a subset of 10 networks
(vertical dotted line). Of course, the performance is worse than picking the best
model out of 100 solutions. However, the additional computational effort does not
justify the small improvement of performance.

As an apparently easier guideline to determine the number of required testcoverage percent-
age runs, we choose the number k such that the so-called coverage percentage,

c(k) = 1 −
(

1 − 1
m

)k

, (8.39)

is close to 1. The idea behind the coverage percentage c(k) in 8.39 is that the first
inflated network covers c(1) = 1/m active elements in the internal transition matrix
Anew. Assuming that we have c(k), the next initialization covers another percentage
of the weights in the transition matrix, resulting in c(k+1) = c(k)+(1/m)·(1−c(k)).
The coverage percentage c(k) for the different numbers of initializations is also
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reported in fig. 8.19 (dashed line). A number of k = 10 random initializations
already leads to a coverage of c(10) ≈ 0.983.

To further reduce the computational effort, we developed a more sophisticatedpruning & re-
creation approach, a process we call pruning and re-creation of weights. As described in

section 8.5.1, we initialize matrix A with a sparseness level of Random(1/m)
(eq. 8.36). The idea is now to optimize the initial sparse structure by alternating
weight pruning and re-creation. Using this method, matrix A is always sparse and
the number of active weights stays constant. The network still gets the opportunity
to replace active weights by initially inactive ones that it considers more important
for the identification of the dynamics.

For the first step, the weight pruning, we use a test criterium similar to optimal

brain damage (OBD) (LeCun et al., 1990):

testw(w �= 0) =
∂2E

∂w2 w2. (8.40)

We prune a certain percentage (e.g., 5%) of the lowest values, as these weights w

are assumed to be less important for the identification of the dynamics. To simplify
our calculations we use

∂2E

∂w2 ≈ 1
T

∑
t

g2
t , (8.41)

with gt := ∂Et

∂w , as an approximation for the second derivative. Our simulations
showed that this equivalence holds for a 95% level.

In the second step, the re-creation of inactive weights, we use the following
test:

testw(w = 0) ∼ 1
T

∣∣∣∣∣∑
t

gt

∣∣∣∣∣ . (8.42)

We reactivate the weights w with the highest test values. This implies that we
recover weights whose average of the absolute gradient information is high and
which are therefore considered important for the identification of the dynamics.
Note that we always re-create the same amount of weights we pruned in the first
step to keep the sparseness level of the transition matrix A constant.

Our experiments showed that we can even prune and re-create weights simul-
taneously without losing modeling ability.

8.5.4 Information Flow in Sparse Recurrent Networks

In small networks with a full transition matrix A the information of a state neuron
can reach every other one within one time step. This is different in (large) sparse
networks, where state neurons have a longer path length on average.

As matrix A is sparse there is in most cases no direct connection between
different state neurons. Hence, it can take several state transitions to transport
information from one state neuron to another. As information might not reach a
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desired neuron in a limited number of time steps, this can be disadvantageous for
the modeling ability of the network. The resulting question is, how we can speed
up the information flow, i.e., shorten the path length?

In a simple recurrent network (e.g., eq. 8.9) the transition matrix A is appliedundershooting
once in every state transition. The idea is now to reduce the average path length
with at least one additional undershooting step (Zimmermann and Neuneier, 2001).
Undershooting means that we implement intermediate states sτ± 1

2
which improve

the computation of the network (fig. 8.20). These intermediate states have no
external inputs. Like future unfolding time steps, they are only responsible for
the development of the dynamics and therefore also improve numerical stability.
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Figure 8.20 Undershooting improves the computation of a sparse matrix A and
the numerical stability of the model.

The following formula gives a rough approximation of how many undershooting
steps k are needed (eq. 8.43). As the state transition matrix A in the inflated
network has, per definition (eq. 8.36), a sparseness of 1/m, in each time step every
state neuron only gets the information of approximately 1/m others. The equation
now determines the number of undershooting steps which are needed to achieve a
desired average path length (information flow) between all state neurons. The kth
power of the product of the sparseness factor 1/m and the dimension of the state
vector dim(s) must be higher than the number of state neurons (=̂ dim(s)):(

1
m

dim(s)
)k

≥ dim(s)

⇒ k ≥ 1

1 − log(m)
log(dim(s))

⇒ k ≥ 1 +
log(m)

log(dim(s))
.

(8.43)

Let us reconsider the equations of the DCNN with partially known observablesundershooting
with DCNN
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(eq. 8.23):

sτ = CE tanh (A · C · sτ−1 + c) +

⎡⎢⎢⎣
0

0

Id

⎤⎥⎥⎦ yE
τ

yτ = [Id 0 0]sτ ,
∑
t,τ

(yτ − yd
τ )2 → min

A,c
.

(8.44)

Following the principle of undershooting, we add a state sτ− 1
2

between the
states sτ−1 and sτ (fig. 8.21). Consequently, the matrix A is now applied twice
between two consecutive time steps, which implies that the information flow is
doubled. The consistency matrix CE handles the lack of external inputs, such that
the network stays dynamical consistent.
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Figure 8.21 Undershooting doubles the information flow between two successive
states by applying the transition matrix twice.

It is important to note that the solution is different from just decreasing the
sparseness of the matrix A. The latter would not only cause numerical problems in
the backpropagation algorithm but also disturb the balance between memory and
computation.

8.6 Conclusion

In this chapter we focused on dynamical consistent neural networks (DCNN) for the
modeling of open dynamical systems. After a short description of small recurrent
networks, including error correction neural networks, we presented a new kind of
dynamical consistent neural networks. These networks allow an integrated view on
particular modeling problems and consequently show better generalization abilities.
We concentrated the modeling of the dynamics on one single-transition matrix and
also enhanced the model from a simple statistical to a dynamical consistent handling
of missing input information in the future part. The networks are now able to map
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integrated system dynamics (e.g., financial markets) instead of only a small set of
time series. The final DCNN combines the advantages of the former RNN and the
ECNN.

Besides the new, more powerful architectures, the modeling involves a paradigm
shift in the analysis of open systems (see fig. 8.1). In the beginning we looked at
the description of a dynamical system from an exterior point of view. This means
that we observed the information flow into and out of an open system and tried to
reconstruct the interior. The long-term predictability of the model finally depended
on the quality of the extracted autonomous subsystem.

In our new approach we describe dynamical systems from an interior view-world model
point. Conceptually we start with a world model (fig. 8.22). Without loss of gen-
eralization, we assume that our variables of interest are all organized as the first
elements in a large state vector. Identifying this first section of the state vector
as our observables (yt), we can reconstruct some more unobservable states (ht)
by their indirect influence on the observables. Nevertheless, there are an infinite
number of variables which are unobservable and even unidentifiable. Their nearly
infinite influence can be shrunk to a finite dimensional section in the state vector:
the error correction part (et). If the error correction is equal to zero, knowledge
about the unidentifiable variables is not necessary. Otherwise, it dispenses us from
having to know the details of the unknown part of the world.

Clearly, the concept of a world model is a closed one from the beginning. As
a consequence of dynamical consistency the closure concept even holds for finite-
dimensional subsections of it. Therefore it models the dynamics as a closed system
and is still able to keep model evolution exactly on the observed state trajectory
(see DCNN2, eq. 8.22).

t

et
hty

Figure 8.22 Variable space of the world model. yt stands for the observables, ht

for the hidden variables which can be explained by the observables, and et for the
error corrections, which close the gap between the observable and the unobservable
part of the system.
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We augmented the model-building process by incorporating prior knowledge.
Learning from data is only one part of this process. The recurrent ECNN and the
DCNN are two examples of this model-building philosophy. Remarkably, such a
joint model-building framework does not only provide superior forecasts, but also
a deeper understanding of the underlying dynamical system. On this basis it is
also possible to analyze and to quantify the uncertainty of the predictions. This is
especially important for the development of decision support systems.

Currently we test our models in several industrial applications. Further research
is conducted concerning the optimal sparseness of the transition matrix A as well
as the optimal initialization method for the state vector.
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9 Diversity in Communication: From Source
Coding to Wireless Networks

Suhas Diggavi

Randomness is an inherent part of network communications. We broadly define
diversity as creating multiple independent instantiations (conduits) of randomness
for conveying information. In the past few years a trend is emerging in several
areas of communications, where diversity is utilized for reliable transmission and
efficiency. In this chapter, we give examples from three topics where diversity is
beginning to play an important role.

9.1 Introduction

One of the main characteristics of network communication is the uncertainty (ran-
domness): randomness in users’ wireless transmission channels, randomness in users’
geographical locations in a wireless network, and randomness in route failures and
packet losses in networks. The randomness we study in this chapter can have
timescales of variation that are comparable to the communication transmission
times. This can result in complete failures in communication and therefore affect
reliability. Such “nonergodic” losses can be combated if we somehow create indepen-
dent instantiations of the randomness. We broadly define diversity as the method
of conveying information through such multiple independent instantiations. The
overarching theme of this chapter is how to create diversity and how we can use it
as a tool to enhance performance. We study this idea through diversity in multiple

antennas, multiple users, and multiple routes.
The functional modularities and abstractions of the network protocol known

as stack layering (Keshav, 1997) contributed significantly to the success of the
wired Internet infrastructure. The layering achieves a form of information hiding,
providing only interface information to higher layers, and not the details of the
implementation. The physical layer is dedicated to signal transmission, while the
data-link layer implements functionalities of data framing, arbitrating access to
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transmission medium and some error control. The network layer abstracts the
physical and data-link layers from the upper layers by providing an interface for
end-to-end links. Hence, the task of routing and framing details of the link layer
are hidden from the higher layers (transport and application layers). However, as
we will see, the use of diversity necessarily causes cross-layer interactions. These
cross-layer interactions form a subtext to the theme of this chapter.

Wireless communication hinges on transmitting information riding on radio
(electromagnetic) waves, and hence the information undergoes attenuation effects
(fading) of radio waves (see section 9.2 for more details). Such multipath fading
is a source of randomness. Here diversity arises by utilizing independent realiza-
tions of fading in several domains, time (mobility), frequency (delay spread), and
space (multiple antennas). Over the past decade research results have shown that
multiple-antenna spatial diversity (space-time) communication can not only pro-
vide robustness, but also dramatically improve reliable data rates. These ideas are
having a huge impact on the design of physical layer transmission techniques in
next-generation wireless systems. Multiple-antenna diversity is the focus of section
9.3.

The wireless communication medium is naturally shared by several users using
the same resources. Since the users’ locations (and therefore their transmission
conditions) are roughly independent, they experience independent randomness in
local channel and interference conditions. Diversity in this case arises by utilizing
the independent transmission conditions of the different users as conduits for
transmitting information i.e., multi-user diversity. This can be utilized in two ways.
One by allowing users access to resources when it is most advantageous to the overall
network. This is a form of opportunistic scheduling and is examined in section 9.4.1.
The other by using the users themselves as relays to transmit information from
source to destination. This is a form of opportunistic relaying, and is studied in
section 9.4.2. These multi-user diversity methods are the focus of section 9.4.

In transmission over networks, random route failures and packet losses degrade
performance. Diversity here would be achieved by creating conduits with indepen-
dent probability of route failures. For example, this can be done by transmission
over multiple routes with no overlapping links. A fundamental question that arises is
how we can best utilize the presence of such route diversity. In order to utilize these
conduits, multiple description source coding generates multiple codeword streams
to describe a source (such as images, voice, video, etc.). The design goal is to have
a graceful degradation in performance (in terms of distortion) when only subsets of
the transmitted streams are received. In section 9.5 we study fundamental bounds
and design ideas for multiple description source coding.

Therefore, diversity not only plays a role in robustness, it can also result in
remarkable gains in achievable performance over several disparate applications. The
details of how diversity enhances performance are discussed in the sequel.
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Figure 9.1 Radio propagation environment.

9.2 Transmission Models

Since a considerable part of this chapter is about wireless communication, it is
essential to understand some of the rudiments of wireless channel characteristics.
In this section, we focus on models for point-to-point wireless channels and also
introduce some of the basic characteristics of transmission over (wireless) networks.

Wireless communication transmits information by riding (modulation) on
electromagnetic (radio) waves with a carrier frequency varying from a few hundred
megahertz to several gigahertz. Therefore, the behavior of the wireless channel is a
function of the radio propagation effects of the environment.

A typical outdoor wireless propagation environment is illustrated in fig. 9.1,
where the mobile wireless node is communicating with a wireless access point
(base station). The signal transmitted from the mobile may reach the access point
directly (line-of-sight) or through multiple reflections on local scatterers (buildings,
mountains, etc.). As a result, the received signal is affected by multiple random
attenuations and delays. Moreover, the mobility of either the nodes or the scattering
environment may cause these random fluctuations to vary with time. Time variation
results in the random waxing and waning of the transmitted signal strength
over time. Finally, a shared wireless environment may incur interference (due to
concurrent transmissions from other mobile nodes) to the transmitted signal.

The attenuation incurred by wireless propagation can be decomposed in three
main factors: a signal attenuation due to the distance between communicating nodes
(path loss), attenuation effects due to absorption in local structures such as buildings
(shadowing loss), and rapid signal fluctuations due to constructive and destructive
interference of multiple reflected radio wave paths (fading loss). Typically the path
loss attenuation behaves as 1/dα as a function of distance d, with α ∈ [2, 6]. More
detailed models of wireless channels can be found in Jakes (1974) and Rappaport
(1996).
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9.2.1 Point-to-Point Model

For the purposes of this chapter we start with the following model:

yc(t) =
∫

hc(t; τ)s(t − τ)dτ + z(t) , (9.1)

where the transmitted signal s(t) = g(t)∗x(t) is the convolution of the information-
bearing signal x(t) with g(t), the transmission shaping filter, yc(t) is the continuous
time received signal, hc(t; τ) is the response at time t of the time-varying channel if
an impulse is sent at time t−τ , and z(t) is the additive Gaussian noise. The channel
impulse response (CIR) depends on the combination of all three propagation effects
and in addition contains the delay induced by the reflections.

To collect discrete-time sufficient statistics1 of the information signal x(t) we
need to sample (9.1) faster than the Nyquist rate2. Therefore we focus on the
following discrete-time model:

y(k) = yc(kTs) =
ν∑

l=0

h(k; l)x(k − l) + z(k) , (9.2)

where y(k), x(k), and z(k) are the output, input, and noise samples at sampling
instant k, respectively, and h(k; l) represents the sampled time-varying channel
impulse response of finite length ν. Modeling the channel as having a finite duration
can be made arbitrarily accurate by appropriately choosing the channel memory ν.

Though the channel response {h(k; l)} depends on all three radio propagation
attenuation factors, in the timescales of interest the main variations come from the
small-scale fading which is well modeled as a complex Gaussian random process.

Since we are interested in studying multiple-antenna diversity, we need to
extend the model given in equation 9.2 to the multiple transmit (Mt) and receive
(Mr) antenna case. The multi-input multi-output (MIMO) model is given by

y(k) =
ν∑

l=0

H(k; l)x(k − l) + z(k) , (9.3)
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where the Mr × Mt complex3 matrix H(k; l) represents the lth tap of the channel
matrix response with x ∈ CMt as the input and y ∈ CMr as the output (see fig. 9.2).
The variations of the channel response between antennas arises due to variations
in arrival directions of the reflected radio waves (Raleigh et al., 1994). The input
vector may have independent entries to achieve high throughput (e.g., through
spatial multiplexing) or correlated entries through coding or filtering to achieve high
reliability (better distance properties, higher diversity, spectral shaping, or desirable
spatial profile; see section 9.3). Throughout this chapter, the input is assumed to
be zero mean and to satisfy an average power constraint, i.e., E[||x(k)||2] ≤ P . The
vector z ∈ CMr models the effects of noise and is assumed to be independent of the
input and is modeled as a complex additive circularly symmetric Gaussian vector
with z ∼ CN (0,Rz), i.e., a complex Gaussian vector with mean 0 and covariance
Rz. In many cases we assume white noise, i.e., Rz = σ2I.

Finally, the basic point-to-point model given in equation 9.3 can be modified
for an important special case. Many of the insights can be gained for the flat fading

channel where we have ν = 0 in equation 9.3. Unless otherwise mentioned, we
will use this special case for illustration throughout this chapter. Also we examine
the case where we transmit a block or frame of information. Here we encounter
another important modeling assumption. If the transmission block is small enough
so that the channel time variation within a transmission block can be neglected, we
have a block time-invariant model. Such models are quite realistic for transmission
blocks of lengths less than a millisecond and typical channel variation bandwidths.
However, this does not imply that the channel remains constant during the entire
transmission. Transmission blocks sent at various periods of time can experience
different (independent) channel instantiations (see fig. 9.3). This can be utilized
by coding across these different channel instantiations, as will be seen in section
9.3. Therefore, if the transmission block is of length T , for the flat-fading case, the
specialization of equation 9.3 yields

Y(b) = H(b)X(b) + Z(b), (9.4)

where Y(b) = [y(b)(0), . . . ,y(b)(T − 1)] ∈ CMr×T is the received sequence, H(b) ∈
CMr×Mt is the block time-invariant channel fading matrix for transmission block
b, X(b) = [x(b)(0), . . . ,x(b)(T − 1)] ∈ CMt×T is the “space-time” information
transmission sequence, and Z(b) = [z(b)(0), . . . , z(b)(T − 1)] ∈ CMr×T .
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Figure 9.4 General multi-user wireless communication network.

9.2.2 Network Models

The wireless medium is inherently shared, and this directly motivates a study of
multi-user communication techniques. Moreover, since we are also interested in
multi-user diversity, we need to extend our model from the point-to-point scenario
(eq. 9.2) to the network case. The general communication network (illustrated in
fig. 9.4) consists of n nodes trying to communicate with each other. In the scalar
flat-fading wireless channel, the received symbol Yi(t) at the ith node is given by

Yi(t) =
n∑

j=1
j �=i

hi,jXj(t) + Zi(t), (9.5)

where hi,j is determined by the channel attenuation between nodes i and j.
Given this general model, one way of abstracting the multi-user communication
problem is through embedding it in an underlying communication graph GC where
the n nodes are vertices of the graph and the edges of the graph represent a
channel connecting the two nodes along with the interference from other nodes.
The graph could be directed with constraints and channel transition probability
depending on the directed graph. A general multi-user network is therefore a fully
connected graph with the received symbol at each node described as a conditional
distribution dependent on the messages transmitted by all other nodes. Such a
graph is illustrated in fig. 9.5. We examine different communication topologies in
section 9.4 and study the role of diversity in networks.

9.3 Multiple-Antenna Diversity

The first form of diversity that we examine in some detail is that of multiple-antenna
diversity. A major development over the past decade has been the emergence of
space-time (multiple-antenna) techniques that enable high-rate, reliable commu-
nication over fading wireless channels. In this section we highlight some of the
theoretical underpinnings of this topic. More details about practical code construc-
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tions can be found in Tarokh et al. (1998), Diggavi et al. (2004b), and references
therein.

Reliable information transmission over fading channels has a long and rich
history; see Ozarow et al. (1994) and references therein. The importance of multiple
antenna diversity was recognized early; see, for example, Brennan (1959). However,
most of the focus until the mid-1990s was on receive diversity, where multiple
“looks” of the transmitted signal were obtained using many receive antennas (see
equation 9.3 using Mt = 1). The use of multiple transmit antennas was restricted
to sending the same signal over each antenna, which is a form of repetition coding
(Wornell and Trott, 1997).

During the mid-1990s several researchers started to investigate the idea of
coding across transmit antennas to obtain higher rate and reliability (Foschini,
1996; Tarokh et al., 1998; Telatar, 1999). One focus was on maximizing the reliable
transmission rate, i.e., channel capacity, without requiring a bound on the rate at
which error probability diminishes (Foschini, 1996; Telatar, 1999). However another
point of view was explored where nondegenerate correlation was introduced between
the information streams across the multiple transmit antennas in order to guarantee
a certain bound on the rate at which the error probability diminishes (Tarokh et al.,
1998). These approaches have led to the broad area of space-time codes, which is
still an active research topic.

In section 9.3.1 we first start with an understanding of reliable transmission
rate over multiple-antenna channels. In particular we examine the rate advantages
of multiple transmit and receive antennas. Then in section 9.3.2 we introduce the
notion of diversity order, which captures transmission reliability (error probability)
in the high signal-to-noise ratio (SNR) regime. This allows us to develop criteria
for space-time codes which guarantee a given reliability. section 9.3.3 examines the
fundamental trade-off between maximizing rate and reliability.

9.3.1 Capacity of Multiple-Antenna Channels

The concept of capacity was first introduced by Shannon (1948), where it was shown
that even in noisy channels, one can transmit information at positive rates with the
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error probability going to zero asymptotically in the coding block size. The seminal
result was that for a noisy channel whose input at time k is {Xk} and output is
{Yk}, there exists a number C such that

C = lim
T→∞

[
1
T

sup
p(xT )

I(XT ; Y T )

]
, (9.6)

where the mutual information is given by I(XT ;Y T ) = EXT ,Y T [log( p(xT ,yT )
p(xT )p(yT ) )],

p(·) is the probability density function, and for convenience we have denoted
XT = {X1, . . . , XT } and similarly for Y T (Cover and Thomas, 1991). In Shannon
(1948) it was shown that asymptotically in block length T , there exist codes which
can transmit information at all rates below C with arbitrarily small probability of
error over the noisy channel. Perhaps the most famous illustration of this idea was
the formula derived in Shannon (1948) for the capacity C of the additive white
Gaussian noise channel with noise variance σ2 and input power constraint P :

C =
1
2

log(1 +
P

σ2 ). (9.7)

In this section we will focus mostly on the flat-fading channels where, in
equation 9.3, we have ν = 0. The generalizations of these ideas for frequency-

selective channels (i.e., ν > 0) can be easily carried out (see Biglieri et al., 1998;
Diggavi et al., 2004b, and references therein). We begin with the case where we are
allowed to develop transmit schemes which code across multiple (B) realizations
of the channel matrix {H(b)}B

b=1 (see fig. 9.3). In such a case, we can again define
a notion of reliable transmission rate, where the error probability decays to zero
when we develop codes across asymptotically large numbers of transmit blocks (i.e.,
B → ∞). We examine this for a coherent receiver, where the receiver uses perfect
channel state information {H(b)} for each transmission block. But the transmitter
is assumed not to have access to the channel realizations. To gain some intuition,
consider first the case when each transmission block is large, i.e., T → ∞. If we have
one transmit antenna (Mt = 1), the channel vector response is a vector h(b) ∈ CMr

(see equation 9.4 in section 9.2). Therefore the reliable transmission rate for any

particular block can be generalized4 {h(k)} from (9.7) as log(1 + ||h(b)||2P
σ2 ). Note

that when we are dealing with complex channels (as is usual in communication with
in-phase and quadrature-phase transmissions), the factor of 1/2 disappears (Neeser
and Massey, 1993) when we adapt the expression from equation 9.7. Now, if one
codes across a large number of transmission blocks (B → ∞), for a stationary and
ergodic sequence of {h(b)} we would expect to get a reliable transmission rate that
is the average of this quantity. This intuition has been made precise in Ozarow
et al. (1994), and references therein, for flat-fading channels (ν = 0), even when we
do not have T → ∞, but we have B → ∞. Therefore when we have only receive
diversity, i.e., Mt = 1, for a given Mr, it is shown (Ozarow et al., 1994) that the



9.3 Multiple-Antenna Diversity 251

capacity is given by

C = E
[
log(1 +

||h||2P
σ2 )

]
, (9.8)

where the expectation is taken over the fading channel {h(b)} and the channel se-
quence is assumed to be stationary and ergodic. This is called the ergodic channel

capacity (Ozarow et al., 1994). This is the rate at which information can be trans-
mitted if there is no feedback of the channel state ({h(b)}) from the receiver to
the transmitter. If there is feedback available about the channel state, one can do
slightly better through optimizing the allocation of transmitted power by “waterfill-
ing” over the fading channel states. The problem of studying the capacity of chan-
nels with causal transmitter-side information was introduced in Shannon (1958a),
where a coding theorem for this problem was proved. Using ideas from there and
perfect transmitter channel state information, capacity expressions that generalize
equation 9.8 have been developed (Goldsmith and Varaiya, 1997). However, for
fast time-varying channels the instantaneous feedback could be difficult, resulting
in an outdated estimate of the channel being sent back (Caire and Shamai, 1999;
Viswanathan, 1999). However, the basic question of impact of feedback on capacity
of time-varying channels is still not completely understood, and for developing the
basic ideas in this chapter, we will deal with the case where the transmitter does
not have access to the channel state information. We refer the interested reader to
Biglieri et al. (1998) for a more complete overview of such topics.

Now let us focus our attention on the multiple transmit and receive antenna
channel where again as before we consider the coherent case, i.e., the receiver has
perfect channel state information (CSI) H(b). In the flat-fading case where ν = 0,
when we code across B transmission blocks, the mutual information for this case is

R(B) =
1

BT
I({X(b)}B

b=1; {Y(b)}B
b=1, {H(b)}B

b=1),

since we assume that the receiver has access to CSI. Using the chain rule of mutual
information (Cover and Thomas, 1991), this can be written as

R(B) =
1

BT

[
I({X(b)}B

b=1; {H(b)}B
b=1) + I({X(b)}B

b=1; {Y(b)}B
b=1|{H(b)}B

b=1)
]
. (9.9)

Using the the assumption that the input {x(k)} is independent of the fading process
(as the transmitter does not have CSI), equation 9.9 is equal to

R(B) =
1

BT
EH

[
I
(
{X(b)}B

b=1; {Y(b)}B
b=1|H(B) = {H(b)}B

b=1

)]
. (9.10)

Now, if we use the memoryless property of the vector Gaussian channel obtained
by conditioning on H(b) and also due to the assumption5 that {H(b)} is i.i.d. over
b, for when B → ∞ we get that

lim
B→∞

1
BT

I({X(b)}B
b=1; {Y(b)}B

b=1, {H(b)}B
b=1) = EH[log(

|Rz + HRxH
∗|

|Rz|
)], (9.11)
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where the expectation6 is taken over the random channel realizations {H(b)}. An
operational meaning to this expression can be given by showing that there exist
codes which can transmit information at this rate with arbitrarily small probability
of error (Telatar, 1999).

In general, it is difficult to evaluate equation 9.11 except for some special cases.
If the random matrix H(b) consists of zero-mean i.i.d. Gaussian elements, Telatar
(1999) showed that

C = EH[log(|I +
P

Mtσ2 HH∗|)] (9.12)

is the capacity of the fading matrix channel.7 Therefore in this case, to achieve
capacity the optimal codebook is generated from an i.i.d. Gaussian input {x(b)}
with Rx = E[xx∗] = P

Mt
I.

The expression in equation 9.12 shows that the capacity is dependent on the
eigenvalue distribution of the random matrix H with Gaussian i.i.d. components.
This important connection between capacity of multiple-antenna channels and the
mathematics related to eigenvalues of random matrices (Edelman, 1989) was noticed
in Telatar (1999), where it was shown that the capacity could be numerically
computed using Laguerre polynomials (Edelman, 1989; Muirhead, 1982; Telatar,
1999).

Theorem 9.1
(Telatar, 1999) The capacity C of the channel with Mt transmitters and Mr

receivers and average power constraint P is given by

C =
∫ ∞

0
log(1 +

Pλ

σ2Mt
)

Tmin−1∑
k=0

λTmax−Tmin [LTmax−Tmin

k (λ)]2
k!

k + Tmax − Tmin
e−λdλ ,

where Tmax = max(Mt, Mr), Tmin = min(Mt, Mr), and Lm
k (·) is the generalized

Laguerre polynomial of order k with parameter m (Gradshteyn and Ryzhik, 1994).

In Foschini (1996) it was observed that when Mt = Mr = M the capacity C

grows linearly in M as M → ∞.

Theorem 9.2
(Foschini, 1996) For Mt = Mr = M the capacity C given by (9.12) grows
asymptotically linearly in M , i.e.,

lim
M→∞

C

M
= c∗(SNR) , (9.13)

where c∗(SNR) is a constant depending on SNR.

This quantifies the advantage of using multiple transmit and receive antennas
and shows the promise of such architectures for high-rate reliable wireless commu-
nication.
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To achieve the capacity given in equation 9.12, we require joint optimal
(maximum-likelihood) decoding of all the receiver elements which could have large
computational complexity. The channel model in equation 9.3 resembles a multi-
user channel (Verdu, 1998) with user cooperation. A natural question to ask is
whether the simpler decoding schemes proposed in multi-user detection would yield
good performance on this channel. A motivation for this is seen by observing that
for i.i.d. elements of the channel response matrix (flat-fading) the normalized cross-

correlation matrix decouples (i.e., lim
Mr→∞

1
Mr

H∗H → IMt
). Therefore, since nature

provides some decoupling, a simple “matched filter” receiver (Verdu, 1998) might
perform quite well. In this context a matched filter for the flat-fading channel in
equation 9.3 is given by ỹ(k) = H∗(k)y(k). Therefore, component-wise this means
that

ỹi(k) = ||hi(k)||2xi(k) +
Mt∑
j=1
j �=i

h∗
i (k)hj(k)xj(k) + z̃i(k), i = 1, . . . , Mt. (9.14)

By ignoring the cross-coupling between the channels we decode x̂i by including the
“interference” from {xj}j �=i as part of the noise. However, a tension arises between
the decoupling of the channels and the added “interference”

∑Mt
j=1
j �=i

h∗
i (k)hj(k)xj(k)

from the other antennas, which clearly grows with the number of antennas. It is
shown in Diggavi (2001), that the two effects exactly cancel each other.

Proposition 9.1
If H(k) = [h1(k), . . . ,hMt

(k)] ∈ CMr×Mt and hl(k) ∼ CN (0, IMr
), l = 1, . . . , Mt,

are i.i.d., then

lim
Mr→∞

Mt=�αMr�

Mt∑
j=1
j �=i

|h
∗
i (k)hj(k)

Mr
|2 = α almost surely.

Therefore, using this result it can be shown that the simple detector still retains
the linear growth rate of the optimal decoding scheme (Diggavi, 2001). However, in
the rate RI achievable for this simple decoding scheme, we do pay a price in terms
of rate growth with SNR.

Theorem 9.3
If Hi,j ∼ CN (0, 1), with i.i.d. elements, then

lim
Mt→∞

Mt=�αMr�

1
Mt

I(Y,H;X) ≥ lim
Mt→∞

Mt=�αMr�
RI/Mt = log(1 +

P
σ2α

1 + P
σ2

).

Multi-user detection (Verdu, 1998) is a good analogy to understand receiver
structures in MIMO systems. The main difference is that unlike multiple access
channels, the space-time encoder allows for cooperation between “users.” Therefore,
the encoder could introduce correlations that can simplify the job of the decoder.
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Such encoding structures using space-time block codes are discussed further in
Diggavi et al. (2004b), and references therein. An example of using the multi-user
detection approach is the result in theorem 9.3 where a simple matched filter receiver
is applied. Using more sophisticated linear detectors, such as the decorrelating
receiver and the MMSE receiver (Verdu, 1998), one can improve performance
while still maintaining the linear growth rate. The decision feedback structures
also known as successive interference cancellation, or onion peeling (Cover, 1975;
Patel and Holtzman, 1994; Wyner, 1974) can be shown to be optimal, i.e., to achieve
the capacity, when an MMSE multi-user interference suppression is employed and
the layers are peeled off (Cioffi et al., 1995; Varanasi and Guess, 1997). However,
decision feedback structures inherently suffer from error propagation (which is
not taken into account in the theoretical results) and could therefore have poor
performance in practice, especially at low SNR. Thus, examining nondecision
feedback structures is important in practice.

All of the above results illustrate that significant gains in information rate
(capacity) are possible using multiple transmit and receive antennas. The intuition
for the gains with multiple transmit and receive antennas is that there are a larger
number of communication modes over which the information can be transmitted.
This is formalized by the observation (Diggavi, 2001; Zheng and Tse, 2002) that
the capacity as a function of SNR, C(SNR), grows linearly in min(Mr, Mt), even
for a finite number of antennas, asymptotically in the SNR.

Theorem 9.4

lim
SNR→∞

C(SNR)
log(SNR)

= min(Mr, Mt). (9.15)

In the results above, the fundamental assumption was that the receiver had
access to perfect channel state information, obtained through training or other meth-
ods. When the channel is slowly varying, the estimation error could be small since
we can track the channel variations and one can quantify the effect of such estima-
tion errors. As a rule of thumb, it is shown by Lapidoth and Shamai (2002) that if
the estimation error is small compared to 1

SNR , these results would hold. Another
line of work assumes that the receiver does not have any channel state informa-
tion. The question of the information rate that can be reliably transmitted over
the multiple-antenna channel without channel state information was introduced
in Hochwald and Marzetta (1999) and has also been examined in Zheng and Tse
(2002). The main result from this line of work shows that the capacity growth is
again (almost) linear in the number of transmit and receive antennas, as stated
formally next.
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Theorem 9.5
If the channel is block fading with block length T and we denote K = min(Mt, Mr),
then for T > K + Mt, as SNR → ∞, the capacity is8

C(SNR) = K

(
1 − K

T

)
log(SNR) + c + o(1) ,

where c is a constant depending only on Mr, Mt, T .

In fact, Zheng and Tse (2002) go on to show that the rate achievable by using
a training-based technique is only a constant factor away from the optimal, i.e., it
attains the same capacity-SNR slope as in theorem 9.5. Further results on this topic
can be found in Hassibi and Marzetta (2002). Therefore, even in the noncoherent
block-fading case, there are significant advantages in using multiple antennas.

Most of the discussion above was for the flat-fading case where ν = 0 in
equation 9.3. However, these ideas can be easily extended for the block time-
invariant frequency-selective channels where again the advantages of multiple-
antenna channels can be established (Diggavi, 2001). However, when the channels
are not block time-invariant, the characterization of the capacity of frequency-
selective channels is an open question.

Outage In all of the above results, the error probability goes to zero asymp-outage
totically in the number of coding blocks i.e., B → ∞. Therefore, coding is assumed
to take place across fading blocks, and hence it inherently uses the ergodicity of the
channel variations. This approach would clearly entail large delays, and therefore
Ozarow et al. (1994) introduced a notion of outage, where the coding is done (in
the extreme case) just across one fading block, i.e., B = 1. Here the transmitter
sees only one block of channel coefficients, and therefore the channel is nonergodic,
and the strict Shannon-sense capacity is zero. However, one can define an outage
probability that is the probability with which a certain rate R is possible. There-
fore, for a block time-invariant channel with a single channel realization H(b) = H

the outage probability can be defined as follows.

Definition 9.1
The outage probability for a transmission rate of R and a given transmission
strategy p(X) is defined as

Poutage(R, p(X)) = P
{
H : I(X;Y|H(b) = H) < R

}
. (9.16)

Therefore, if one uses a white Gaussian codebook (Rx = P
Mt

I) then (abusing
notation by dropping the dependence on p(X)) we can write the outage probability
at rate R as

Poutage(R) = P
{

log(|I +
P

Mtσ2 HH∗|) < R

}
. (9.17)
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It has been shown (Zheng and Tse, 2003) that at high SNR the outage probability is
the same as the frame-error probability in terms of the SNR exponent. Therefore, to
evaluate the optimality of practical coding techniques, one can compare, for a given
rate, how far the performance of the technique is from that predicted through an
outage analysis. Moreover, the frame-error rates and outage capacity comparisons
in Tarokh et al. (1998) can also be formally justified through this argument.

9.3.2 Diversity Order

In section 9.3.1 the focus was on achievable transmission rate. A more practical
performance criterion is probability of error. This is particularly important when
we are coding over a small number of blocks (low delay) where the Shannon capacity
is zero (Ozarow et al., 1994) and we are in the outage regime as was seen above.
By characterizing the error probability, we can also formulate design criteria for
space-time codes.

Since we are allowed to transmit a coded sequence, we are interested in the
probability that an erroneous codeword9 e is mistaken for the transmitted codeword
x. This is called the pairwise error probability (PEP) and is used to bound the
error probability. This analysis relies on the condition that the receiver has perfect
channel state information. However, a similar analysis can be done when the receiver
does not know the channel state information, but has statistical knowledge of the
channel (Hochwald and Marzetta, 2000).

For simplicity, we shall again focus on a flat-fading channel (where ν = 0)
and when the channel matrix contains i.i.d. zero-mean Gaussian elements, i.e.,
Hi,j ∼ CN (0, 1). Many of these results can be easily generalized for ν > 0 as
well as for correlated fading and other fading distributions. Consider a codeword
sequence X = [xt(0), . . . ,xt(T −1)]t, where x(k) = [x1(k), . . . ,xMt

(k)]t (defined in
eq. 9.4). In the case when the receiver has perfect channel state information, we can
bound the PEP between two codeword sequences x and e (denoted by P (x → e))
as follows (Guey et al., 1999; Tarokh et al., 1998):

P (x → e) ≤
[

1∏Mt

n=1(1 + Es

4N0
λn)

]Mr

. (9.18)

Es = P
Mt

is the power per transmitted symbol, λn are the eigenvalues of the matrix
A(x, e) = B∗(x, e)B(x, e), and

B(x, e) =

⎛⎜⎜⎝
x1(0) − e1(0) . . . xMt(0) − eMt(0)

...
...

...

x1(N − 1) − e1(N − 1) . . . xMt
(N − 1) − eMt

(N − 1)

⎞⎟⎟⎠ . (9.19)
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If q denotes the rank of A(x, e), (i.e., the number of nonzero eigenvalues) then
we can bound equation 9.18 as

P (x → e) ≤
[

q∏
n=1

λn

]−Mr (
Es

4N0

)−qMr

. (9.20)

We define the notion of diversity order as follows.

Definition 9.2
A coding scheme which has an average error probability P̄e(SNR) that behaves as

lim
SNR→∞

log(P̄e(SNR))
log(SNR)

= −d (9.21)

as a function of SNR is said to have a diversity order of d.

In words, a scheme with diversity order d has an error probability at high
SNR behaving as P̄e(SNR) ≈ SNR−d (see fig. 9.6). One reason to focus on such a
behavior for the error probability can be seen from the following intuitive argument
for a simple scalar fading channel (Mt = 1 = Mr). It is well known that for
particular frame b, the error probability for binary transmission, conditioned on the
channel realization h(b), is given by Pe(h(b)) = Q

(√
2SNR |h(b)|

)
(Proakis, 1995).

Hence if |h(b)|
√

2SNR " 1, then Pe(h(b)) ≈ 0, and if |h(b)|
√

2SNR � 1, then
Pe(h(b)) ≈ 1

2 . Therefore a frame is in error with high probability when the channel
gain |h(b)|2 � 1

SNR , i.e., when the channel is in a “deep fade.” Therefore the average
error probability is well approximated by the probability that |h(b)|2 � 1

SNR . For
high SNR we can show that, for h ∼ CN (0, 1), P

{
|h|2 < 1

SNR

}
≈ 1

SNR , and this
explains the behavior of the average error probability. Although this is a crude
analysis, it brings out the most important difference between the additive white
Gaussian noise (AWGN) channel and the fading channel. The typical way in which
an error occurs in a fading channel is due to channel failure, i.e., when the channel
gain |h| is very small, less than 1

SNR . On the other hand, in an AWGN channel
errors occur when the noise is large, and since the noise is Gaussian it has an
exponential tail, causing this to be very unlikely at high SNR.

Given the definition 9.2 of diversity order, we see that the diversity order in
equation 9.20 is at most qMr. Moreover, in inequlaity 9.20 we notice that we also
obtain a coding gain of (

∏q
n=1 λn)1/q.

Note that in order to obtain the average error probability, one can calculate
a naive union bound using the pairwise error probability given in equation 9.20
but this may not be tight. A more careful upper bound for the error probability
can be derived (Zheng and Tse, 2003). However, if we ensure that every pair of
codewords satisfies the diversity order in equation 9.20, then clearly the average
error probability satisfies it as well. This is true when the transmission rate is held
constant with respect to SNR, i.e., a fixed-rate code. Therefore, in the case of fixed
rate code design the simple pairwise error probability given in equation 9.20 is
sufficient to obtain the correct diversity order.
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Figure 9.6 Relationship between error probability and diversity order.

In order to design practical codes that achieve a performance target we need
to glean insights from the analysis to state design criteria. For example, in the
flat-fading case of equation 9.20 we can state the following rank and determinant
design criteria.

Design criteria for space-time codes over flat-fading channels (Tarokh
et al., 1998):

Rank criterion: In order to achieve maximum diversity MtMr, the matrix B(x, e)
from equation 9.19 has to be full rank for any codewords x, e. If the minimum rank
of B(x, e) over all pairs of distinct codewords is q, then a diversity order of qMr is
achieved.

Determinant criterion: For a given diversity order target of q, maximize (
∏q

n=1 λn)1/q

over all pairs of distinct codewords.

Over the past few years, there have been significant developments in designing
codes which can guarantee a given reliability (error probability). An exhaustive
listing of all these developments is beyond the scope of this chapter, but we give
a glimpse of the recent developments. The interested reader is referred to Diggavi
et al. (2004b), and references therein.

Pioneering work on trellis codes for Gaussian channels was done in Ungerboeck
(1982). In Tarokh et al. (1998), the first space-time trellis code constructions were
presented. In this seminal work, trellis codes were carefully designed to meet the
design criteria for minimizing error probability. In parallel a very simple coding idea
for Mt = 2 was developed in Alamouti (1998). This code achieved maximal diversity
order of 2Mr and had a very simple decoder associated with it. The elegance and
simplicity of the Alamouti code has made it a candidate for next generation of
wireless systems which are slated to utilize space-time codes. The basic idea of
the Alamouti code was extended to orthogonal designs in Tarokh et al. (1999).
The publication of Tarokh et al. (1998) and Alamouti (1998), created a significant
community of researchers working on space-time code constructions. Over the past
few years, there has been significant progress in the construction of space-time codes
for coherent channels. The design of codes that are linear in the complex field was
proposed in Hassibi and Hochwald (2002), and efficient decoders for such codes
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were given in Damen et al. (2000). Codes based on algebraic rotations and number-
theoretic tools are developed in El-Gamal and Damen (2003) and Sethuraman
et al. (2003). A common assumption in all these designs was that the receiver
had perfect knowledge of the channel. Techniques based on channel estimation and
the evaluation of the degradation in performance for space-time trellis codes was
examined in Naguib et al. (1998). In another line of work, non-coherent space-time
codes were proposed in Hochwald and Marzetta (2000). This also led to the design
and analysis of differential space-time codes for flat fading channels (Hochwald
and Sweldens, 2000; Hughes, 2000; Tarokh and Jafarkhani, 2000). This was also
examined for frequency selective channels in Diggavi et al. (2002a).

As can be seen, the topic of space-time codes is still evolving and we just have
a snapshot of the recent developments.

9.3.3 Rate-Diversity Tradeoff

A natural question that arises is how many codewords can we have which allow us
to attain a certain diversity order. For a flat Rayleigh fading channel, this has been
examined (Lu and Kumar, 2003; Tarokh et al., 1998) and the following result was
obtained.10

Theorem 9.6
If we use a transmit signal with constellation of size |S| and the diversity order of
the system is qMr, then the rate R that can be achieved is bounded as

R ≤ (Mt − q + 1) log2 |S| (9.22)

in bits per transmission.

One consequence of this result is that for maximum (MtMr) diversity order we
can transmit at most log2 |S| bits/sec/Hz. Note that the trade-off in theorem 9.6
is established with a constraint on the alphabet size of the transmit signal, which
may not be fundamental from an information-theoretic point of view. An alternate
viewpoint of the rate-diversity trade-off has been explored in Zheng and Tse (2003)
from a Shannon-theoretic point of view. In that work the authors are interested in
the multiplexing rate of a transmission scheme.

Definition 9.3
A coding scheme which has a transmission rate of R(SNR) as a function of SNR

is said to have a multiplexing rate r if

lim
SNR→∞

R(SNR)
log(SNR)

= r. (9.23)

Therefore, the system has a rate of r log(SNR) at high SNR. One way to contrast
this with the statement in theorem 9.6 is to note that the constellation size is
also allowed to become larger with SNR. The naive union bound of the pairwise
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Figure 9.7 Rate-diversity trade-off curve.

error probability (eq. 9.18) has to be used with care if the constellation size is
also increasing with SNR. There is a trade-off between the achievable diversity and
the multiplexing gain, and d∗(r) is defined as the supremum of the diversity gain
achievable by any scheme with multiplexing gain r. The main result in Zheng and
Tse (2003) states the following.

Theorem 9.7
For T > Mt + Mr − 1, and K = min(Mt, Mr), the optimal trade-off curve d∗(r) is
given by the piecewise linear function connecting points in (k, d∗(k)), k = 0, . . . , K

where

d∗(k) = (Mr − k)(Mt − k). (9.24)

If r = k is an integer, the result can be notionally interpreted as using Mr − k

receive antennas and Mt − k transmit antennas to provide diversity while using
k antennas to provide the multiplexing gain. However, this interpretation is not
physical but really an intuitive explanation of the result in theorem 9.7. Clearly
this result means that one can get large rates which grow with SNR if we reduce
the diversity order from the maximum achievable. This diversity-multiplexing trade-
off implies that a high multiplexing gain comes at the price of decreased diversity
gain and is a manifestation of a corresponding trade-off between error probability
and rate. This trade-off is depicted in fig. 9.7. Therefore, as illustrated in Theorems
9.6 and 9.7, the trade-off between diversity and rate is an important consideration
both in terms of coding techniques (theorem 9.6) and in terms of Shannon theory
(theorem 9.7).

A different question was proposed in Diggavi et al. (2003, 2004a), where it
was asked whether there exists a strategy that combines high-rate communications
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with high reliability (diversity). Clearly the overall code will still be governed by the
rate-diversity trade-off, but the idea is to ensure the reliability (diversity) of at least
part of the total information. This allows a form of communication where the high-
rate code opportunistically takes advantage of good channel realizations whereas
the embedded high-diversity code ensures that at least part of the information is
received reliably. In this case, the interest was not in a single pair of multiplexing
rate and diversity order (r, d), but in a tuple (ra, da, rb, db) where rate ra and
diversity order da was ensured for part of the information with rate-diversity pair
(rb, db) guaranteed for the other part. A class of space-time codes with such desired
characteristics have been constructed in Diggavi et al. (2003, 2004a).

From an information-theoretic point of view, Diggavi and Tse (2004) focused
on the case when there is one degree of freedom (i.e., min(Mt, Mr) = 1). In that
case if we consider da ≥ db without loss of generality, the following result was
established (Diggavi and Tse, 2004):

Theorem 9.8
When min(Mt, Mr) = 1, then the diversity-multiplexing trade-off curve is succes-
sively refinable, i.e., for any multiplexing gains ra and rb such that ra + rb ≤ 1, the
diversity orders da ≥ db,

da = d∗(ra), db = d∗(ra + rb), (9.25)

are achievable, where d∗(r) is the optimal diversity order given in theorem 9.7.

Since the overall code has to still be governed by the rate-diversity trade-off
given in theorem 9.7, it is clear that the trivial outer bound to the problem is that
da ≤ d∗(ra) and db ≤ d∗(ra + rb). Hence theorem 9.3 shows that the best possible
performance can be achieved. This means that for min(Mt, Mr) = 1, we can design
ideal opportunistic codes. This new direction of enquiry is being currently explored.

9.4 Multi-user Diversity

In section 9.3, we explored the importance of using many fading realizations through
multiple antennas for reliable, high-rate, single-user wireless communication. In this
section we explore another form of diversity where we can view different users as a
form of multi-user diversity. This is because each user potentially has independent
channel conditions and local interference environment. This implies that in fig. 9.5,
the fading links between users are random and independent of each other. Therefore,
this diversity in channel and interference conditions can be exploited by treating
the independent links from different users as conduits for information transfer.

In order to explore this idea further we first digress to discuss communication
topologies. As seen in section 9.2 (see fig. 9.5), we can view the n-user commu-
nication network through the underlying graph GC . One topology which is very
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commonly seen in practice is obtained by giving special status to one of the nodes
as the base-station or access point. The other nodes can only communicate to the
base station. We call such a topology the hierarchical communication topology (see
fig. 9.5). An alternate topology that has emerged more recently is when the nodes
organize themselves without a centralized base station. Such a topology is called
an ad hoc communication topology, where the nodes relay information from source
to destination, typically through multiple “nearest neighbor” communication hops
(see also fig. 9.8). In both these topologies there is potential to utilize multi-user di-
versity, but the methods to do so are distinct. Therefore we explore them separately
in Sections 9.4.1 and 9.4.2.

9.4.1 Opportunistic Scheduling

In the hierarchical topology, we distinguish between two types of problems; the
first is the uplink channel where the nodes communicate to the access point (many-
to-one communication or the multiple access channel), and the second is the
downlink channel where the access point communicates to the nodes (one-to-many
communication or the broadcast channel).

The idea of multi-user diversity can be further motivated by looking at the
scalar fading multiple access channel. If the users are distributed across geograph-
ical areas, their channel responses will be different depending on their local envi-
ronments. This is modeled by choosing the users’ channels to vary according to
channel distributions that are chosen to be independent and identical across users.
The rate region for the uplink channel for this case was characterized in Knopp and
Humblet (1995) where it was shown that in order to maximize the total information
capacity (the sum rate), it is optimal to transmit only to the user with the best
channel. For the scalar channel, the channel gain determines the best channel. The
result (in Knopp and Humblet, 1995) when translated to rapidly fading channels
results in a form of time-division multiple access (TDMA), where the users are
not preassigned time slots, but are scheduled according to their respective channel
conditions. Even if a particular user at the current time might be in a deep fade,
there could be another user who has good channel conditions. Hence this strategy
is a form of multi-user diversity where the diversity is viewed across users. Here the
multi-user diversity (which arises through independent channel realizations across
users) can be harnessed using an appropriate scheduling strategy. If the channels
vary rapidly in time, the idea is to schedule users when their channel state is close
to the peak rate that it can support. A similar result also holds for the scalar fad-
ing broadcast channel (Li and Goldsmith, 2001; Tse, 1997). Note that this requires
feedback from the users to the base station about the channel conditions. The feed-
back could be just the received SNR. These results are proved on the basis of two
assumptions. One is that all the users have identically distributed (i.e., symmetric)
channels and the other is that we are interested in long-term rates. We focus on
the first assumption, and later briefly return to the question about delay.

In wireless networks, the users’ channel is almost never symmetric. Nodes that
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are closer to the base station experience much better channels on the average than
nodes that are further away (due to path loss, see section 9.2). Therefore, using a
TDMA technique that allows exclusive use of the channel to the best user would
be inherently unfair to users who are further away. Suppose the long-term average
rate {Tk} is to be provided to the users. The criterion used in the result in Knopp
and Humblet (1995) was the sum throughput of all the users, i.e., max

∑
k Tk. This

criterion can be maximized by only scheduling the nodes with strong channels, and
this could be an unfair allocation of resources across users. In order to translate
the intuition about multi-user diversity into practice, one would need to ensure
fairness among users. The idea in Bender et al. (2000); Jalali et al. (2000) and
Chaponniere et al., is to use a proportionally fair criterion for scheduling which
maximizes

∑K
k=1 log(Tk). This idea is inherently used in the downlink scheduling

algorithm used in IS-856 (Bender et al., 2000; Chaponniere et al.; Jalali et al., 2000)
(also known as the high data rate—HDR 1xEV-DO system).

The scheduling algorithm implemented in the 1xEV-DO system keeps track
of the average throughput Tk(t) of user k in a past window of length tc. Let the
rate that can be supported to user k at time t be denoted by Rk(t). At time t, the
scheduling algorithm transmits to the user with the largest Rk(t)

Tk(t) among the active
users. The average throughputs are then updated given the current allocation. Since
this idea ensures fairness while utilizing multi-user diversity, it is an instantiation
of an opportunistic scheduler.

This scheduling algorithm described above relies on the rates supported by
the users to vary rapidly in time. But this assumption can be violated when the
channels are constant or are very slowly time-varying. In order to artificially induce
time variations, Viswanath et al., 2002) propose to use multiple transmit antennas
and introduce random phase rotations between the antennas to simulate fast
fading. This idea of phase-sweeping for multiple antennas has been also proposed in
Weerackody (1993) and Hiroike et al. (1992) in the context of creating time diversity
in single-user systems. With such artificially induced fast channel variations, the
same scheduling algorithm used in IS-856 (outlined above) inherently captures the
multi-user spatial diversity of the network. In Viswanath et al. (2002), this technique
is shown to achieve the maximal diversity order (see section 9.3.2) for each user,
asymptotically in number of (uniformly distributed) users.

In a heavily loaded system (large number of users) and where there is a uniform
distribution of users, the technique proposed in Viswanath et al. (2002) is attractive.
However, for lightly loaded systems, or when delay is an important QoS criterion,
its desirability is less clear. Given that the technique proposed in Viswanath et al.
(2002) is based on a rate-based QoS criterion, it cannot provide delay guarantees for
the jobs of different users. This motivates the discussion of scheduling algorithms
for job-based QoS criteria.

In job-based criteria, the requests are assumed to come in at certain arrival
times ai, and we have information about the size si (say in bytes). Response time

is defined to be ci − ai where ci is the time when a request was fully serviced and
ai is the arrival time of the request. This is a standard QoS criterion for a request.
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Relative response is defined as ci−ai

si
(Bender et al., 1998). Relative response was

proposed in the context of heterogeneous workloads, such as the Web, i.e., requests
for data of different sizes (thus, different si). The above criteria relate to guarantees
per request; we could also give guarantees only over all requests. For example,
the overall performance criterion for a set of jobs could be the l∞ norm, namely,
maxi(ci − ai) (i.e., max response time) or maxi

ci−ai

si
(i.e., max relative response).

Other criteria based on average instead of maximum are also studied.
The new generation of wireless networks can support multiple transmission

rates depending on the channel conditions. Assuming an accurate communication-
theoretic model for the physical layer achievable rates (as described in section 9.3),
job-scheduling algorithms are proposed and analyzed for various QoS criteria in
Becchetti et al. (2002). These algorithms utilize diverse job requirements of the
users to provide provable guarantees in terms of the job-scheduling criteria.

These discussions just illustrate how multi-user diversity can be utilized in
hierarchical networks. This form of opportunistic scheduling is an important part
of the new generation of wireless data networks.

9.4.2 Mobile Ad Hoc Networks

In an ad hoc communication topology (network), one need not transmit information
directly from source to destination, but instead can use other users which act
as relays to help communication of information to its ultimate destination. Such
multihop wireless networks have rich history (see, for example, Hou and Li, 1986,
and references therein).

In an important step toward systematically understanding the capacity of
wireless networks, Gupta and Kumar (2000) explored the behavior of wireless
networks asymptotically in the number of users. In their setup, n nodes were
placed independently and randomly at locations {Si} in a finite geographical area
(a scaled unit disk). Also m = Θ(n) source and destination (S-D) pairs {(Si, Ti)}
are randomly chosen as shown in fig. 9.8.11 The model assumes that each source Si

has an infinite stream of (information) packets to send to its respective destination
Ti. The nodes are allowed to use any scheduling and relaying strategy through other
nodes to send the packets from the sources to the destinations (see fig. 9.8). The goal
is to analyze the best possible long-term throughput per S-D pair asymptotically
in the number of nodes n.

In Gupta and Kumar (2000), a single-user communication model was used
where each node transmitted information to its intended receiver (relay or des-
tination node), and the receiver considered the interference from other nodes as
part of the noise. Therefore in the communication model, a successful transmis-
sion of rate R occurred when the signal-to-interference-plus-noise ratio (SINR) was
above a certain threshold β. Clearly, such a communication model can be improved
by attempting to decode the “interference” from other nodes using sophisticated
multi-user decoding (Verdu, 1998). But such a decoding strategy was not consid-
ered by Gupta and Kumar (2000) and therefore this need not be an information-
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Figure 9.8 Routes from sources {Si} denoted by filled circles to destinations {Ti}
denoted by shaded circles.

theoretically optimal strategy. In order to represent wireless signal transmission,
the signal strength variation was modeled only through path loss (see section 9.2)
with exponent α. Therefore, if {Pi} are the powers at which the various nodes
transmitted, then the SINR from node i to node j is defined as

SINR =
Pi

|Si−Sj |α

σ2 +
∑

k∈I
k �=i

Pk

|Sk−Sj |α
, (9.26)

where I is the subset of users simultaneously transmitting at some time instant.
Next, we need to define the notion of throughput per S-D pair more precisely.

Definition 9.4
For a scheduling and relay policy π, let Mπ

i (t) be the number of packets from
source node Si to its destination node Ti successfully delivered at time t. A long-
term throughput λ̃(n) is feasible if there exists a policy π such that for every

source-destination pair

lim inf
T→∞

1
T

T∑
t=1

Mπ
i (t) ≥ λ̃(n) . (9.27)

We define the throughput λ(n) as the highest achievable λ̃(n).

Note that λ(n) is a random quantity which depends on the node locations of
the users. Our interest is in the scaling law governing λ(n), i.e., the behavior of
λ(n) asymptotically in n. One of the main results of Gupta and Kumar (2000) was
the following.

Theorem 9.9
There exist constants c1 and c2 such that

lim
n→∞ P

{
λ(n) =

c1R√
n log n

is feasible
}

= 1, lim
n→∞ P

{
λ(n) =

c2R√
n

is feasible
}

= 0 .
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Therefore, the long-term per-user throughput decays as O( 1√
n
), showing that

high per-user throughput may be difficult to attain in large-scale (fixed) wireless
networks. This result has been recently strengthened: it was shown by Franceschetti
et al. (2004) that λ(n) = Θ( 1√

n
).

One way to interpret this result is the following. If n nodes are randomly
placed in a unit disk, nearest neighbors (with high probability) are at a distance
O( 1√

n
) apart. Gupta and Kumar (2000) show that it is important to schedule a

large number of simultaneous short transmissions, i.e., between nearest-neighbors.
If randomly chosen source-destination pairs are O(1) distance apart and we can only
schedule nearest neighbor transmissions, information has to travel O(

√
n) hops to

reach its destination. Since there can be at most O(n) simultaneous transmissions
at a given time instant, this imposes a O( 1√

n
) upper bound on such a strategy. This

is an intuitive argument, and a rigorous proof of theorem 9.9 is given in Gupta and
Kumar (2000) among other interesting results.

Note that the coding strategy in theorem 9.9 was simple and the interference
was treated as part of the noise. An open question concerns the throughput when
we use sophisticated multi-user codes and decoding is used. Therefore, for such an
information-theoretic characterization, understanding the rate region of the relay
channel is an important component (Cover and Thomas, 1991). The relay channel
was introduced in van der Meulen (1977), and the rate region for special cases was
presented in Cover and El Gamal (1979). Recently Leveque and Telatar (2005);
Xie and Kumar (2004), and Gupta and Kumar (2003) have established that even
with network information-theoretic coding strategies, the per S-D pair throughput
scaling law decays with the number of users n.

A natural question that arises is whether there is any mechanism by which one
can improve the scaling law for throughput in wireless networks. Mobility was one
such mechanism examined in Grossglauser and Tse (2002). In the model studied,
random node mobility was allowed and the locations {Si(t)} vary in a uniform,
stationary, and ergodic manner over the entire disk (see fig. 9.9).

In the presence of such symmetric (among users) and “space-filling” mobility
patterns, the following surprising result was established in (Grossglauser and Tse,
2002).

Theorem 9.10
There exists a scheduling and relaying policy π and a constant c > 0 such that

lim
n→∞ P {λ(n) = cR is feasible} = 1 . (9.28)

Therefore, node mobility allows us to achieve a per-user throughput of Θ(1).
The main reason this was attainable was that packets are relayed only through a
finite number of hops by utilizing node mobility. Thus, a node carries packets over
O(1) distance before relaying it, and therefore Grossglauser and Tse (2002) shows
that, with high probability, if the mobility patterns are space-filling, the number of
hops needed from source to destination is bounded instead of growing as O(

√
n) in
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Figure 9.9 Mobility in ad hoc networks. The figure on the left shows a space-
filling mobility model where the nodes uniformly cover the region. The figure on
the right shows a limited one-dimensional mobility model where nodes move along
fixed line segments.

the case of fixed (nonmobile) wireless networks (Gupta and Kumar, 2000). However,
the above mobility model is a generous one, since (1) it is homogeneous, i.e., every
node has the same mobility process, and (2) the sample path of each node “fills
the space over time.” This means that there is a nonzero probability that the node
visits every part of the geographical region or area. A natural question is whether
the throughput result in Grossglauser and Tse (2002) strongly depends on these
two features of the mobility model.

In Diggavi et al. (2002b), a different mobility model is introduced which
embodies two salient features that many real mobility processes seem to possess
(e.g., cars traveling on roads, people walking in buildings or cities, trains, satellites
circling earth), which are not captured by the model in Grossglauser and Tse (2002).
First, an individual node typically visits only a small portion of the entire space,
and rarely leaves this preferred region. Second, the nodes do move frequently within
their preferred regions, and an individual region often covers a large distance. As
an extreme abstraction of such mobility processes, Diggavi et al. (2002b) studied
mobility patterns where nodes move along a given set of one-dimensional paths
(see fig. 9.9). In particular, the mobility patterns were restricted to random line
segments and once chosen, the configuration of line segments are fixed for all time.
Therefore, given the configuration, the only randomness arose through user mobility
along these line segments. In order to isolate the effects of one-dimensional mobility
from edge effects, Diggavi et al. (2002b) studied a model in which the nodes are on
a unit sphere but each node is constrained to move on a single-dimensional great
circle. Therefore, a configuration in this case was a set of line segments (great circles)
which were fixed throughout the communication period, and the nodes moved in
randomly only on these one-dimensional paths. Thus, the homogeneity assumption
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in Grossglauser and Tse (2002) is now relaxed. In particular, there can be pairs of
nodes that are far more likely to be in close proximity to each other than other
pairs. For example, if two one-dimensional paths nearly overlap, the probability of
close encounter between the nodes is significantly larger than for two paths that are
“far apart.” This lack of homogeneity implies, as shown in Diggavi et al. (2002b),
that there are configurations where constant throughput is unattainable even with
mobility.

Since the capacity of such a mobile ad hoc network then depends on the con-
stellation of one-dimensional paths, the question becomes one of scaling laws for
a random configuration. Therefore, the configurations themselves are chosen ran-
domly with each one-dimensional path (great circle) chosen independently and with
an identical uniform distribution. Given such a random configuration, the question
then becomes whether “bad” configurations (where the per S-D pair throughput
is not Θ(1)) occur often. One of the key ideas in Diggavi et al. (2002b) was the
identification and proof of typical (“good”) configurations, on which the average
long-term throughput per node is Θ(1). Intuitively the typical configurations de-
fined in Diggavi et al. (2002b) are those where the fraction of one-dimensional
paths intersecting any given area is uniformly close to its expected number. That
is, the empirical probability counts are uniformly close to the underlying probabil-
ity of a random one-dimensional path intersecting that area. Therefore, even for a
particular deterministically chosen configuration which satisfies the typicality con-
dition, the per S-D pair throughput is Θ(1). One of the main results in Diggavi
et al. (2002b) is that if the one-dimensional paths are chosen (uniformly) randomly
and independently, then for almost all constellations of such paths, the through-
put per S-D pair is Θ(1). Therefore, for random configurations the probability of
an atypical configuration is shown to go to zero asymptotically in network size n.
Thus, although each node is restricted to move in a one-dimensional space, the
same asymptotic performance is achieved as in the case when they can move in the
entire two-dimensional region.

Theorem 9.11
Given a configuration C, there exists a scheduling and relaying policy π and a
constant c > 0 such that

lim
n→∞ P {λ(n) = cR is feasible |C} = 1 (9.29)

for almost all configurations C as n → ∞, i.e., the probability of the set of
configurations for which the policy achieves a throughput of λ goes to 1 as n → ∞.

Next we give a flavor of the proof techniques used to prove theorem 9.11.
First, we examine a relaying strategy where at each time, every node carries
source packets, which originate from that node, and relay packets, which originated
from other nodes and are to be forwarded to their final destinations. In phase
I, each sender attempts to transmit a source packet to its nearest receiver, who
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Figure 9.10 The relaying strategy for mobile nodes. In phase I, the source
attempts to transfer packets to relays. During phase II, the relays attempt to
transfer packets to the destination.

will serve as a relay for that packet. In phase II, each sender identifies its nearest
receiver and attempts to transmit a relay packet destined for it, if the sender
has one (see fig. 9.10). As in equation 9.26, a successful transmission of rate R

occurs when the signal-to-interference-plus-noise ratio (SINR) is above a certain
threshold β. Note that it can be shown that if the source nodes attempt to “wait”
till it encounters its destination, the per S-D pair throughput cannot be Θ(1).
Therefore every source spreads its traffic to random intermediate nodes depending
on the mobility. Moreover, each packet is forwarded successfully to only one relay,
i.e., there is no duplication. Mobility allows source-destination pairs to be able
to relay information through several independent relay paths, since nodes have
changing nearest neighbors due to mobility. This method of relaying information
through independent attenuation links which vary over time is also a form of multi-

user diversity. One can see this by observing that the transmission occurs over
several realizations of the communication graph GC . The relaying strategy which
utilizes mobility schedules transmissions over appropriate realizations of the graph.
Conceptually, this use of independent relays to transmit information from source
to destination is illustrated in fig. 9.11, where the strategy of Theorems 9.10 and
9.11 is used.

Intuitively, if the source is able to uniformly spread its traffic through each of
its relays (see fig. 9.11) then we can expect to obtain Θ(1) throughput per S-D pair.
In order for this to occur, we need to show two properties:

1. Every node spends the same order of time as the nearest neighbor to Θ(n) other
nodes. This ensures that each source can spread its packets uniformly across Θ(n)
other nodes, all acting as relays, and these packets can in turn be merged back into
their respective final destinations.
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2. When communicating with the nearest neighbor receiver, the capture probability
is not vanishingly small even in a large system, even though there are Θ(n)
interfering nodes transmitting simultaneously.

However, with one-dimensional mobility, it is shown in Diggavi et al. (2002b)
that there exist configurations where these properties cannot be satisfied. This is
where the identification of typical configurations becomes important. For typical
configurations through a detailed technical argument it is shown in Diggavi et al.
(2002b) that these properties hold. Moreover, for randomly chosen configurations,
it is shown that such typical configurations occur with probability going to 1
asymptotically in n. Therefore, using these components, the proof of theorem 9.11
is completed.

There is a dramatic gain in the per S-D pair throughput in theorems 9.10 andthroughput-delay
trade-off 9.11 over theorem 9.9 from O( 1√

n
) to Θ(1). A natural question to ask is whether

there is a cost to this improvement. The results in theorems 9.10 and 9.11 utilized
node mobility to deliver the information from source to destination. Therefore,
the timescale over which this is effective is dependent on the velocity of the nodes,
which determines the rate of change of the topology. Hence we can expect there to be
significantly larger packet delays for this scheme as compared to the fixed network.
In some sense, the Gupta-Kumar result in theorem 9.9 has a smaller throughput,
but also has a smaller packet delay, since the delays depend on successful packet
transmissions over the route and not the change in node topology. Hence a natural
question to ask is whether there exists a fundamental trade-off between delay and
throughput in ad hoc networks. This question was recently studied in El Gamal
et al. (2004), where the authors quantified this trade-off.

In order to quantify the trade-off there needs to be a formal definition of delay.
In El Gamal et al. (2004) delay D(n) is defined as the sum of the times spent in
every relay node. This definition does not include the queueing delay at the nodes,
just the delay incurred in successful transmission of the packet on each single hop
of the route. Given this definition of delay, El Gamal et al. (2004) established
that for a fixed random network of n nodes, the delay-throughput trade-off for
λ(n) = O(1/

√
n log(n)) is D(n) = Θ(nλ(n)). For a mobile ad hoc network, when

λ(n) = Θ(1), El Gamal et al. (2004) showed that D(n) = Θ(
√

n
v(n) ), where v(n)

is the velocity of the mobile nodes. Therefore, this quantifies the cost of higher
throughput in mobile networks.

The theoretical developments in sections 9.4.1 and 9.4.2 indicate the strong
interactions between the physical layer coding schemes and channel conditions
and the networking issues of resource allocation and application design. This is an
important insight we can draw for the design of wireless networks. Therefore, several
problems which are traditionally considered as networking issues and are typically
designed independent of the transmission techniques need to be reexamined in the
context of wireless networks. As illustrated, diversity needs to be taken into account
while solving these problems. Such an integrated approach is a major lesson learned
from the theoretical considerations, and we develop another aspect of this through
the study of source coding using route diversity in section 9.5.
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Figure 9.11 Multi-user diversity through relays.

9.5 Route Diversity

The interest in section 9.4.2 was the characterization of long-term throughput from
source to destination. However, in applications such as sensor networks (see, for
example, Pottie and Kaiser, 2000; Pradhan et al., 2002, and references therein),
there could be node failures which lead to routes being disconnected through a
transmission period. This might become particularly crucial when there are strong
delay constraints, such as those in real-time data delivery. Such route failures can
also occur in ad hoc networks (discussed in section 9.4.2) as well as in wired
networks. In multihop relay strategies, we could utilize the existence of multiple
routes from source to destination in order to increase the probability of successfully
receiving the information at the destination within delay constraints despite route
(path) failures. This is a form of route diversity (see fig. 9.12) and was first suggested
by Maxemchuk (1975) in the context of wired networks. Note that in a broad
sense, the multi-user diversity studied in mobile ad hoc networks in section 9.4.2
also utilizes the presence of multiple routes from source to destination. However,
in that case the multiple routes were utilized to increase the long-term per S-D
pair throughput. In the topic of this section we will utilize the multiple routes for
low-delay applications.

We will examine this problem in the context of delivering a real-time source
(like speech, images, video, etc.) with tight delay constraints. If the same informa-
tion about the source is transmitted over both routes, then this is a form of rep-
etition coding. However, when both routes are successful, there is no performance
advantage. Perhaps a more sophisticated technique would be to send correlated de-
scriptions of the source in the two routes such that each description is individually
good, but they are different from one another so that if both routes are successful
one gets a better approximation of the source. This is the basic idea behind multiple

description (MD) source coding (El Gamal and Cover, 1982). This notion can be
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Figure 9.12 Route diversity.

extended to more than two descriptions as well, but in this section we will focus on
the two-description case for simplicity. The idea is that the source is coded through
several descriptions, where we require that performance (distortion) guarantees can
be given to any subset of the descriptions and the descriptions mutually refine each
other. This is the topic discussed in sections 9.5.1 and 9.5.2.

In a packet-based network such as the Internet, packet losses are inevitable
due to congestion or transmission errors. If the data does not have stringent delay
constraints, error recovery methods typically ensure reliability either through a
repeat request protocol or through forward error correction (Keshav, 1997). Another
technique is through scalable (or layered) coding techniques which send a lower-rate
base layer or coarser description of the source and send refinement layers to enhance
the description. Such a technique is again dependent on reliable delivery of the
base layer, and if the base layer is lost, the enhancement layers are of no use to the
receiver. Therefore, such layered techniques are again inherently susceptible to route
failures. These arguments reemphasize the need to develop multiple description
(MD) source coding schemes. Note that the layered coding schemes form a special
case of such as MD coding scheme, where guarantees of performance are not given
for individual layers, but the layers refine the coarser description of the source.

An important application for future wireless networks could be real-time
video. There has been significant research into robust video coding in the presence
of packet errors (Reibman and Sun, 2000). The main problem that arises in
video is that the compression schemes typically have motion compensation, which
introduces memory into the coded stream. Therefore, decoding the current video
frame requires the availability of previous video frames. If previous frames are
corrupted or lost, the decoder is required to develop methods to conceal such
errors. This is an active research topic especially in the context of wireless channels
(Girod and Farber, 2000). However, an appealing approach to this problem might
be through route diversity and MD coding, and this is briefly discussed in section
9.5.1.
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9.5.1 Multiple Description (MD) Source Coding

In order to formalize the requirement of the MD source coder, we study the setup
shown in fig. 9.13. As mentioned earlier, we will illustrate the ideas using only the
two-description MD problem. Given a source sequence {X(k)}, we want to design
an encoder that sends two descriptions at rate R1 and R2 over the two routes such
that we get guaranteed approximations of the source when either route fails, or
when both succeed. In section 9.5.2 we develop techniques that achieve such an
objective. In order to understand the fundamental bounds on the performance of
such techniques, we need to examine the problem from an information-theoretic
point of view. The main tool to do this is given in rate-distortion theory (Cover and
Thomas, 1991). This theory describes fundamental limits of the trade-off between
the rate of the representation of a source and the quality of the approximation. Not
surprisingly, the origins of this theory are in Shannon (1948, 1958b). In order to
give some of the basic ideas, we first make a short digression on the rudiments of
this theory.

Given a source sequence XT = {X(1), . . . , X(T )} from a given alphabet
X , the source encoder needs to describe it using R bits per source sample (i.e.,
with a total of RT bits for the sequence). Equivalently we map the source to therate-distortion

function index set J = {1, . . . , 2RT }. The goal is that given this description a decoder
is able to approximately reconstruct the source sequence by the sequence X̂T =
{X̂(1), . . . , X̂(T )}. This is accomplished by constructing a function f : J → X̂ T ,
and X̂ is the alphabet over which the reconstruction is done. Common examples
for the alphabet are X = R = X̂ , or the binary field. The distortion measure

d̃(XT , X̂T ) quantifies the quality of the approximation between the reconstructed
and original source sequence. Typically, the distortion measure is a single-letter
function constructed as

d̃(XT , X̂T ) =
1
T

T∑
i=1

d(X(i), X̂(i)), (9.30)

where d(X, X̂) denotes the quality of the approximation for each sample. Common
examples are d(X, X̂) = |X − X̂|2 and Hamming distance (Cover and Thomas,
1991).

The simplest framework to give performance bounds is to analyze the perfor-
mance of a source encoder for an independent and identically distributed random
source sequence. Typically, the interest is in the average distortion over the set of
input sequences, for the given probability distribution associated with the source
sequence. Therefore, the average distortion is E[d̃(XT , X̂T )], and the problem be-
comes one of quantifying the smallest rate R that be used to describe the source
with average fidelity D, asymptotically in the block length T . This is called the
rate-distortion function R(D) and can be given an operational meaning by proving
that there exist source codes that can achieve this fundamental bound (Cover and
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Thomas, 1991). The central result in single source rate-distortion theory is that
R(D) is characterized as

R(D) = min
p(x̂|x):E[d(x,x̂)]≤D

I(X; X̂), (9.31)

where, as before, I(X; X̂) represents the mutual information between X and X̂

(Cover and Thomas, 1991). A simple instantiation of this result is the special case
where we want D = 0, i.e., the lossless case. In this case, one can see that R(0) =
H(X), where H(X) is the entropy of the source. Another important special case is
when the source sequence comes from a Gaussian distribution, X ∼ N (0, σ2

x), and
we are interested in the squared error distortion metric, i.e., d(X, X̂) = |X − X̂|2.
In this case, equation 9.31 evaluates to R(D) = 1

2 log σ2
x

D for D ≤ σ2
x and zero

otherwise. Another way of writing this is in terms of the distortion-rate function
D(R), which characterizes the smallest distortion achievable for a given rate. In the
Gaussian case we see that D(R) = σ2

x2−2R. We will interchangeably consider these
two quantities.

The result in equation 9.31 guarantees only that the average distortion does not
exceed D. However, under some regularity conditions, the rate-distortion function
remains the same even when we require that the probability of the distortion
d̃(XT , X̂T ) exceeding D to go to zero (Berger, 1977; Cover and Thomas, 1991).
The characterization of the rate-distortion function given in equation 9.31 has also
been extended in many other ways including sources with memory (Cover and
Thomas, 1991).

Armed with this background, we can now formulate the question on the
fundamental rate-distortion bounds on multiple description (MD) source coding.
The multiple description source encoder needs to produce two descriptions of the
source using R1, R2 bits per source sample respectively. We can formally describe
the problem by requiring that the reconstructions {X̂1(k)}, {X̂2(k)}, {X̂12(k)} use
these descriptions to approximately reconstruct the source (see fig. 9.13). As in the
“single description” case, we accomplish this by constructing functions

f1 : J1 → X̂ T , f2 : J2 → X̂ T , f12 : J1 × J2 −→ X̂ T , (9.32)

where Ji = {1, . . . , 2RiT }, i = 1, 2, and X̂ is the alphabet over which the recon-
struction is done. We want the approximations to give average fidelity guarantees
of

E[d̃(XT , X̂T
1 )] ≤ D1, E[d̃(XT , X̂T

2 )] ≤ D2, E[d̃(XT , X̂T
12)] ≤ D12. (9.33)

The rate-distortion question in this context is to characterize the bounds on
the tuple (R1, D1, R2, D2, D12). Therefore, we are interested in characterizing the
achievable rate-distortion region described by the tuple (R1, D1, R2, D2, D12). As
can be seen, this seems like a much more difficult question than the single-
description problem for which there is a complete characterization. As a matter of
fact, the complete characterization of the MD rate region is still an open question.

This problem was formalized in 1979, and in El Gamal and Cover (1982), a
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Figure 9.13 Multiple description (MD) source coding.

theorem was proved which demonstrated a region of the tuple (R1, D1, R2, D2, D12)
for which MD source codes exist.

Theorem 9.12
(El Gamal and Cover, 1982) Let X(1), X(2), . . . be a sequence of i.i.d. finite
alphabet random variables drawn according to a probability mass function p(x). If
the distortion measures are dm(x, x̂m), m = 1, 2, 12 then an achievable rate region
for tuples (R1, R2, D1, D2, D12) is given by the convex hull of the following.

R1 ≥ I(X; X̂1), R2 ≥ I(X; X̂2), R1 + R2 ≥ I(X; X̂12, X̂1, X̂2) + I(X̂1; X̂2) (9.34)

for some probability mass function p(x, x̂1, x̂2, x̂12) such that E[dt(X, X̂t)] ≤
Dt, t = 1, 2, 12.

This region was further improved in Zhang and Berger (1987) to a larger
region for which MD source codes exist. However, what is unknown is whether
these characterizations completely exhaust the set of tuples that can be achieved,
i.e., a converse for the MD rate-distortion region. There are some special cases for
which there are further results (Ahlswede, 1985; Fu and Yeung, 2002, and references
therein). There has also been recent work on achievable rate-regions for more than
two descriptions (Pradhan et al., 2004; Venkataramani et al., 2003). However, in
these cases as well the complete characterization is unknown.

The only case for which the MD region is completely characterized is that for
memoryless Gaussian sources with squared error distortion measures and specifi-
cally for two descriptions.12 In Ozarow (1980), it was shown that the two-description
MD region given in El Gamal and Cover (1982) was also applicable to the Gaus-
sian case with squared error distortion where the alphabet is not finite. More-
over it was shown that the region in theorem 9.12 was in fact the complete
characterization by proving a converse (outer bound) to the rate region. In this
context the source was modeled as a sequence of i.i.d. Gaussian random vari-
ables X ∼ N (0, σ2

x) and the squared error distortion measure was chosen, i.e.,
dm(x, x̂m) = |x − x̂m|2, m = 1, 2, 12. Therefore, specializing the result in theorem
9.12 to the Gaussian case yields the following complete characterization of the set
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of all achievable tuples (R1, R2, D1, D2, D12) (El Gamal and Cover, 1982; Ozarow,
1980):

D1 ≥ σ2
xe−2R1 , D2 ≥ σ2

xe−2R2 , (9.35)

D12 ≥ σ2
xe−2(R1+R2)

1 −
[√(

1 − D1
σ2

x

)(
1 − D2

σ2
x

)
−
√(

D1
σ2

x

)(
D2
σ2

x

)
− e−2(R1+R2)

]2 .

In order to interpret this result, consider the following. As seen before, for a
single-description Gaussian problem, the minimum distortion for a given rate is
D(R) = σ2

x2−2R. Therefore, the distortions D1, D2 clearly need to be governed by
the single-description bound, and this explains the first two inequalities in equation
9.35. However, in the MD problem we also need to bound the distortion D12 when
both descriptions are available. From the single-description bound it is clear that
we would have D12 ≥ D(R1 + R2) = σ2

x2−2(R1+R2). Therefore, a natural question
is whether this bound on D12 can be achieved with equality. However, the result
in theorem 9.12 shows that this is not possible unless D1 = σ2

x or D2 = σ2
x. Here

is where the tension between the two descriptions manifests itself. We examine
the tension in the symmetric case, when we have D1 = D2 = D, R1 = R2 = R

and specialize it for the unit variance source σ2
x = 1. If we want the individual

descriptions to be as efficient as possible (i.e., D = e−2R), then we see that
D12 ≥ D

2−D , which is far larger than D(R1 + R2) = e−2(R1+R2) = D2. For small D,
we see that D12 is approximately D

2 , which is much larger than D2. Therefore, if we
ask that the individual descriptions be close to optimal themselves, then they do
not mutually refine each other very well. This reveals the tension between getting
small the distortions D1, D2 of individual descriptions and a small D12. We need
to make the individual descriptions coarser in order to get more mutual refinement
in D12.

One important real-time application is that of video coding. This can be
viewed as a sequence of individual frames which are correlated to each other. The
traditional way of encoding video is by describing the “current” frame differentially
with respect to the previous frame. This is done through a block-matching technique
where the “closest” (in terms of squared distance) blocks from the previous frame
are matched to blocks in the current frame, and then only the differences are
transmitted. The rationale behind this idea is that blocks are only relatively
displaced due to motion of objects in the video and hence this mechanism is called
motion compensation in the literature (Reibman and Sun, 2000). Note that in this
scheme, the encoder explicitly uses the knowledge of the previous frame. Clearly,
when there are packet/route errors and the previous frame is not received at the
destination, the reconstruction is difficult since the previous reference frame is not
available. Therefore, several fixes to this problem have been developed over the past
two decades (see Girod and Farber, 2000, and references therein).

In a more abstract framework, we can think of the video as a sequence
of correlated random variables which we are trying to describe efficiently. In
Witsenhausen and Wyner an alternate approach was taken by considering the video
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coding problem as a source coding problem with side information. In this setting,
after encoding and transmitting the “previous” frame, the “current” frame develops
an encoder which does not explicitly depend on the knowledge of the previous frame.
The basic idea of this scheme arises from encoding schemes and decoding described
in Slepian and Wolf (1973) and Wyner and Ziv (1976). Since the encoder does not
explicitly use the side-information (previous frame) it can be designed such that
the computational complexity is shifted from the encoder to the decoder. Such an
architecture is attractive for applications where the encoder needs to be simple but
the decoder can be more complex. This idea has been developed comprehensively
in Puri and Ramchandran (2003), where practical coding techniques are developed
with such applications in mind.

Decoder 2

Decoder 12ENCODER

Route 1

Route 2

Source

Side information (SI)

Decoder 1

Switch for encoder SI

X̂1(k)

X̂12(k)

X̂2(k)
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i(1) ∈ I(1)

Figure 9.14 Multiple description source coding with side information.

However, even with this idea the robustness to route failures which is inherent
to MD coding is not captured. Motivated by this, Diggavi and Vaishampayan (2004)
considered the MD problem with side information (see fig. 9.14). In this abstract
setting, we want to encode a source {X(k)} when the decoder has knowledge of
a correlated process {S(k)} as side-information. For example, in the setting of
Witsenhausen and Wyner and Puri and Ramchandran (2003), the side information
could be the previous frame. In order to describe the source in the presence of route
diversity, we can pose an MD problem, but now with side information as shown in
fig. 9.14. Clearly this is a generalization of the MD problem and an achievable rate
region was established for this problem in Diggavi and Vaishampayan (2004).

Theorem 9.13
Let (X(1), S(1)), (X(2), S(2)) . . . be drawn i.i.d. ∼ Q(x, s). If only the decoder
has access to the side information {S(k)}, then (R1, R2, D1, D2, D12) is achiev-
able if there exist random variables (W1, W2, W12) with probability mass function
p(x, s, w1, w2, w12) = Q(x, s)p(w1, w2, w12|x), that is, S ↔ X ↔ (W1, W2, W12)
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form a Markov chain, such that

R1 > I(X;W1|S), R2 > I(X;W2|S) (9.36)

R1 + R2 > I(X;W12, W1, W2|S) + I(W1;W2|S)

and there exist reconstruction functions f1, f2, f12 which satisfy

D1 ≥ E[d1(X, f1(S, W1))], D2 ≥ E[d2(X, f2(S, W2))] (9.37)

D12 ≥ E[d12(X, f12(S, W12, W1, W2))].

This result gives an achievable rate region, but the complete characterization
for this problem is open. A slightly improved region to theorem 9.13 is also found
in Diggavi and Vaishampayan (2004). However, it is unknown whether this region
exhausts the achievable rate region. But for the case when both the source and the
side information are jointly Gaussian, and we are interested in the squared error
distortion, a complete characterization of the rate-distortion region was obtained
in Diggavi and Vaishampayan (2004).

In more detail, the result was the following. Let (X(1), S(1)), (X(2), S(2)) . . .

be a sequence of i.i.d. jointly Gaussian random variables. With no loss of generality
this can be represented by

S(k) = α [X(k) + U(k)] , (9.38)

where α > 0 and {X(k)}, {U(k)} are independent Gaussian random variables with
E[X] = 0 = E[U ], E[X2] = σ2

X , E[U2] = σ2
U . As considered in theorem 9.13, only

the decoder has access to the side information {S(k)}. If the distortion measures are
dm(x, x̂m) = ||x− x̂m||2, m = 1, 2, 12 then it is shown in Diggavi and Vaishampayan
(2004) that the set of all achievable tuples (R1, R2, D1, D2, D12) are given by

D1 > σ2
Fe−2R1 , D2 > σ2

Fe−2R2 , D12 >
σ2

Fe−2(R1+R2)

1 − (
√

Π̃ −
√

Δ̃)2
, (9.39)

where σ2
F = σ2

Xσ2
U

σ2
X+σ2

U
and Π̃, Δ̃ are given by

Π̃ =
(

1 − D1

σ2
F

)(
1 − D2

σ2
F

)
, Δ̃ =

(
D1

σ2
F

)(
D2

σ2
F

)
− e−2(R1+R2). (9.40)

The result in equation 9.39 also shows that the rate-distortion region in this
case is the same as that achieved when both encoder and decoder have access to
the side information. That is, in the Gaussian case, the rates that can be achieved
are the same whether the switch in fig. 9.14 is open or closed. In Wyner and Ziv
(1976) it was shown that in the single-description Gaussian case, the decoder-only
side information rate-distortion function coincided with that when both encoder
and decoder were informed of the side information. The result (eq. 9.39) establishes
that this is also true in the Gaussian two-description problem with decoder side
information. However, the encoding and decoding techniques to achieve these rate
tuples are very different when the encoder has access to the side information than
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when it does not. This shows that there might be efficient mechanisms to construct
MD video coders which are robust to route failures. Some of the code constructions
that bring this idea to fruition are discussed in section 9.5.2.

9.5.2 Quantizers for Route Diversity

The results given in section 9.5.1 show the existence of codes that can achieve the
rate tuples given in theorems 9.12 and 9.13, but there are no explicit constructions.
In this section we explore explicit coding schemes which utilize the presence of route
diversity.

As seen in section 9.5.1, the single-description rate-distortion function quanti-
fies the fundamental limits of the trade-off between the rate of the representation
of a source and its average fidelity. The result in equation 9.30 showed the ex-
istence of such codes. Explicit constructions of these codes are called quantizers

(Gersho and Gray, 1992; Gray and Neuhoff, 1998). More formally, quantizers map
a sequence {X(1), . . . , X(T )} of source samples into a “representative” reconstruc-
tion {X̂(1), . . . , X̂(T )} through an explicit mapping which is typically computa-
tionally efficient. Scalar quantizers operate on a single source sample X(k) at a
time. Most current systems use scalar quantizers (Jayant and Noll, 1984). However,
rate-distortion theory tells us that using sequences is important, and hence vector

quantizers use sequences of source samples, i.e., T > 1 for quantization. Quantiza-
tion techniques for single description have been quite well studied and understood
(Gersho and Gray, 1992; Gray and Neuhoff, 1998; Jayant and Noll, 1984).

The rudiments of the MD coding ideas arose in the 1970s at Bell Laboratories.
Jayant (1981) proposed and analyzed a very simple idea of channel splitting.
The basic idea was to oversample a speech signal and send the odd samples
through one channel and the even ones through another. However, this technique is
not very efficient in terms of rate. Many of such simple coding techniques were
being considered at Bell laboratories, but the ideas were not archived. These
questions actually motivated the information-theoretic formulation of the MD
problem described in section 9.5.1. The systematic study of coding for multiple
descriptions was initiated in Vaishampayan (1993). Its publication resulted in a
spurt of recent activity on the topic (see, for example, Diggavi et al., 2002c; Goyal
and Kovacevic, 2001; Ingle and Vaishampayan, 1995; Vaishampayan et al., 2001,
and references therein). More recently the utility of MD coding in conjunction
with route diversity has also created interest in the networking community (see
Apostolopoulos and Trott, 2004, and references therein).

The basic idea introduced in Vaishampayan (1993) constructed scalar quantiz-
ers for the MD problem. This was done specifically for the symmetric case, where
D1 = D2 and R1 = R2. This symmetric construction was extended to structured
(lattice) vector quantizers in Vaishampayan et al. (2001). The symmetric case has
been further explored by several other researchers (Goyal and Kovacevic, 2001; In-
gle and Vaishampayan, 1995). The importance of structured quantizers is in the
computational complexity of the source encoder. For example, just as in channel
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coding, trellis-based structures are also important in source coding. Such structures
have also been proposed for the symmetric MD problem (Buzi, 1994; Jafarkhani
and Tarokh, 1999). In general, unstructured quantizers based on training on some
source samples can also be constructed, but the computational complexity of such
techniques is much higher than structured (lattice) quantizers and therefore they
are less attractive in practice. Such unstructured quantizers have been considered
in the literature (Fleming et al., 2004). Our focus in this chapter will be on struc-
tured quantizers for which we have computationally efficient encoders as well as
techniques to analyze their performance.

In general we would like to design MD quantizers that can attain an arbitrary
rate-distortion tuple, and not just the symmetric case. This is motivated by ap-
plications where the multiple routes have disparate capacities (and therefore rate
requirements) as well as different probabilities of route failures. In these cases, we
need to design asymmetric MD quantizers which give graceful degradation in per-
formance with route failures. Such a structure was studied in Diggavi et al. (2002c),
and is depicted in fig. 9.15.

We illustrate the ideas of MD quantizer design from Diggavi et al. (2002c),
using a scalar example. In fig. 9.16, the first line represents a uniform scalar
quantizer. If we take a single source sample X(k) ∈ R , then the uniform quantizer
maps this sample to the closest “representative” point X̂ on the one-dimensional
(scaled integer) lattice Λ. Loosely, a T -dimensional lattice is a set of regularly
spaced points in RT for which any point can be chosen as the origin and the set
of points would be the same. A more precise notion is based on the set of points
forming an additive group (Conway and Sloane, 1999). Each of the representative
points is given a unique label λ and this label is transmitted to the receiver. The
transmission rate depends on the number of labels. Typically a finite set of points
2M is used to represent the labels. In a straightforward manner, this translates to
a rate of log(2M) bits per source sample. If the source either has finite extent or a
finite second-order moment, such a quantizer would have a bounded squared error
distortion. If the representative points are separated by a distance of Δ, then the
worst-case squared error distortion between a source sample and the representative
is Δ2

4 for source samples X(k) ∈ [− (M+1)Δ
2 , (M+1)Δ

2 ]. For a uniform distribution of
the source in the region X(k) ∈ [− (M+1)Δ

2 , (M+1)Δ
2 ], the average distortion is Δ2

12
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Figure 9.16 Scalar quantizer labeling example. The top line is a uniform scalar
quantizer that maps source points X(k) to a set of discrete representatives X̂. The
second and third lines show coarser uniform scalar quantizers. The last line puts
together the combination of the coarser quantizers to give an ordered pair (λ1, λ2)
as a label to every lattice point λ in the fine quantizer.

(Gersho and Gray, 1992).
The mapping described above is a single-description uniform scalar quantizer.

The MD scalar quantizer needs to map every source sample to an ordered pair of
representation points (X̂1, X̂2). The labels (λ1, λ2) of this pair are used to send
information over the two routes. For example, we could send the label λ1 over the
first route and label λ2 over the second route. Now, in fig. 9.16 we have illustrated
this by choosing coarser scalar quantizers in the second and third lines for the
representations X̂1 and X̂2 respectively. These quantizers are also one-dimensional
lattices Λ1 and Λ2 respectively. These representations X̂1, X̂2 in themselves give
coarser information about the source sample, i.e., have a larger distortion than the
“finer” quantizer Λ shown in the first line. Now, we need to represent the source
sample X(k) by a pair of representation points from Λ1 and Λ2. We want to choose
this pair in such a way that if either of the labels is lost due to route failure, then
we are still guaranteed a certain distortion. However, if both labels are received,
i.e., both routes are successful, then we need to get a smaller distortion. This means
that the label pair have to mutually refine each other’s representations.

One such labeling technique is illustrated in fig. 9.16. Each point in the coarser
lattices X̂1 in Λ1 and X̂2 in Λ1 is given a label λ1 and λ2 respectively. The idea
is then to give a pair of labels (λ1, λ2) to each of the points on the fine lattice Λ.
Every lattice point in Λ gets a unique label pair (λ1, λ2). Once this labeling function

is constructed, then we can form the multiple description (MD) scalar quantizer by
doing the following two steps. First, reduce the source sample X(k) ∈ R to its
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closest representative in Λ, X̂ with label λ, i.e., apply a uniform scalar quantizer
to X(k). Given this X̂, and the labeling function, we know the pair (λ1, λ2) that
represents X̂. The second step is to associate X̂1 with the reconstruction given by
the label λ1 in the first coarse quantizer Λ1, and similarly for X̂2 in Λ2. These
operations are what the structure in fig. 9.15 represents. Therefore, in this design,
the main task is to construct the labeling function for each point in Λ. Given the
label pair (λ1, λ2), the encoder sends the index associated with λ1 on route 1 and
the index for λ2 on route 2.

Before describing the labeling function, we examine the decoder structure in
the MD scalar quantizer described above. First recall that the labeling function is
designed so that any particular pair (λ1, λ2) is uniquely associated with a particular
λ. Therefore, if both routes succeed, then the receiver is able to reconstruct λ and as
a consequence X̂. This means that the distortion in this case is that associated with
the fine quantizer Λ, i.e., the average fidelity is Δ2

12 . Now suppose route 1 succeeds
and route 2 fails, then the receiver has only λ1 and does not know λ2. For example,
suppose in fig. 9.16, the label pair (−1, 0) was chosen at the source encoder, i.e.,
λ1 = −1, λ2 = 0. Now, the receiver knows that the encoder was trying to send one
of the two points (−1, 0) or (−1,−1) and since route two failed it does not know
which. More generally, in this situation, the receiver knows that λ belongs to the
set of points in Λ which have the same first label λ1 but have different second label
λ2. Now, assume that the decoder uses the reconstruction X̂1 associated with label
λ1 = −1 in Λ1 (see second line in fig. 9.16). Therefore, for this particular example,
the worst-case error due to this choice is 9

4Δ2. This example also shows that the
labeling function directly affects the decoder distortion. The design of the labeling
function is the central part of the MD quantizer. The reconstruction X̂1 can use
the mean of the set of all points in Λ associated with the same first label λ1, which
may improve the distortion. Note that in general this might not coincide with the
reconstruction associated with λ1. For design simplicity this reconstruction need
not be taken into account in designing the labeling function, but rather can be
used only at the decoder to improve the final distortion.

In general, we would need to construct a labeling function for all the points
in Λ. However, we describe a particular design which solves a smaller problem and
then expands its solution to Λ (Diggavi et al., 2002c; Vaishampayan et al., 2001).
We will illustrate this idea using the example shown in fig. 9.16.

In the last line of fig. 9.16, we have depicted the overlay of the two coarse one-
dimensional lattices Λ1,Λ2 along with Λ. We see that there is a repetitive pattern
after every six points in Λ. This is not a coincidence, because Λ1 was formed by
taking every second point in Λ and Λ2 by taking every third. The least common
multiple is 6 and therefore we would expect the pattern to repeat. The basic idea is
to just form a labeling function for these six points and then “shift” these labels to
tile the entire lattice Λ. For example, in fig. 9.16, consider the point which we have
labeled as (2, 2) on the last line. This was done in the following manner. Notice that
the repeating pattern of six points can be anchored by the points where both the
Λ1 and Λ2 points coincide. In fig. 9.16, these are the points which have overlapped
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circles on the last line. We can think of all points in Λ with respect to these anchor
points. For example, the point labeled (2, 2) is one point to the left of such an
overlap point and is “equivalent” to the point labeled (−1, 0). More precisely, it is
in the same coset as the other point with respect to the “intersection” lattice Λs,
which is formed by the anchor points. Therefore, we get the label by shifting the
label of (−1, 0) with respect to its cosets. In this case, note that λ1 = −1 in Λ1 is
two points to the left of the anchor point (0, 0). Therefore, the corresponding point
with respect to the anchor point (3, 2) is λ1 = 2 and hence the first label for the
point of interest is λ1 = 2. Next, the corresponding point of the label λ2 = 0 in
Λ2 with respect to the anchor point (3, 2) is λ2 = 2. This gives us the label (2, 2)
which is shown in the fig. 9.16. In a similar manner, given the labeling for the six
points, we can construct the labeling for all points in Λ by the shifting technique
described above. Actually, the six points correspond to the discrete Voronoi region
of the point (0, 0) of the intersection lattice of the anchor points. Therefore, we can
focus on constructing labels for the points in the Voronoi region of the intersection
lattice. Note that in the example of fig. 9.16, the intersection lattice had an index
of six which is exactly the least common multiple of the indices of lattices Λ1,Λ2 in
Λ. This is also true when the indices of Λ1,Λ2 in Λ are not coprime (Diggavi et al.,
2002c).

Let VΛs:Λ(0) be defined as the Voronoi region of the intersection lattice. Our
problem is to develop the labeling function for the points in VΛs:Λ(0) in order to
satisfy the individual distortion constraints D1, D2. This is accomplished by using
a Lagrangian formulation in Diggavi et al. (2002c). This formulation reduces to
finding the labeling scheme α(λ) = (α1(λ), α2(λ)) so as to minimize,∑

λ∈VΛs:Λ(0)

[
γ1‖λ − α1(λ)‖2 + γ2‖λ − α2(λ)‖2] . (9.41)

For this minimization problem we need to choose the appropriate labels (α1(λ), α2(λ)) =
(λ1, λ2). This is done by observing the following identity.

γ1‖λ − λ1‖2 + γ2‖λ − λ2‖2 =
γ1γ2

γ1 + γ2
‖λ2 − λ1‖2 + (γ1 + γ2)‖λ − γ1λ1 + γ2λ2

γ1 + γ2
‖2.

This results in the following design guideline. The labeling problem is split into
two parts: (1) Choose |VΛs:Λ(0)| “shortest” pairs (λ1, λ2) (not all pairs of (λ1, λ2)
are used). (2) Assign these pairs to lattice points λ ∈ VΛs:Λ(0). The second design
can be solved very efficiently using linear programming methods. The solution of
this labeling problem illustrates an important feature of the MD quantizer design
that is quite distinct from the single-description case. It can happen that particular
labels of each description can be noncontiguous, i.e., not all points λ which get
the same label—say, λ1—need to occur contiguously. This is quite different from
the single-description case, where the labels are assigned to contiguous intervals.
Also, the labels generated in this systematic manner are nontrivial and difficult to
handcraft.
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Figure 9.17 Labels for a two-dimensional integer lattice example.

The labeling scheme described for the scalar quantizer actually illustrates a
more general principle which is applicable to MD vector quantizers (Diggavi et al.,
2002c). We use a chain of lattices as illustrated in fig. 9.15, i.e., we use a fine lattice
Λ and two coarser sublattices Λ1, Λ2. These lattices have an intersection lattice Λlcm

one of whose Voronoi regions is what we label. The idea of using sublattice shifts
as done above to generate the labels using only the labels of this Voronoi region
can also be generalized (Diggavi et al., 2002c). One such example of the labels of
the Voronoi region for a two-dimensional lattice is shown in fig. 9.17. Therefore, the
vector quantizer proceeds as follows. We first reduce point XT ∈ RT using a fine
lattice Λ, and then using the labeling function we find (λ1, λ2). Then as before λ1

is sent over the first route and λ2 is sent over the second route. The decoder also
proceeds in a manner similar to the scalar quantizer described above.

As seen above, the crux of the MD quantizer design problem is to construct
the appropriate labeling function. In Diggavi et al. (2002c), it is shown that an
appropriate labeling function, along the lines described for the scalar quantizer,
can be constructed very efficiently using a linear program. In fact, Diggavi et al.
(2002c) shows that such a labeling scheme is very close to being optimal in terms
of the rate distortion result given in theorem 9.12 in the high-rate regime.
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9.5.3 Network Protocols for Route Diversity

In order to utilize route diversity in a network, one of the most important compo-
nents is clearly the design of MD source coding techniques studied in section 9.5.2.
However, an equally important question is the design of routing techniques that
can enable the use of MD source coding. In this section we briefly examine these
issues from a networking point of view.

In order to create route diversity, we need to have multiple routes which are
disjoint, in that they do not share common links. This can be done through IP
source routing (Keshav, 1997). Source routing is a technique whereby the sender
of a packet can specify the route that a packet should take through the network.
In the typical IP routing protocol, each router will choose the next hop to forward
the packet by examining the destination IP address. However, in source routing,
the “source” (i.e., the sender) makes some or all of these decisions. In strict source
routing (which is virtually never used), the sender specifies the exact route the
packet must take. The more common form is loose source record route (LSRR), in
which the sender gives one or more hops that the packet must go through. Therefore,
the sender can take an MD code and send each of the descriptions using different
routes by explicitly specifying them the IP source routing protocol. An alternate
technique might be to use an overlay network where there is an application that
collects the different descriptions and sends them through different relay nodes in
order to create route diversity. This discussion shows that creating route diversity is
architecturally not difficult even using the provisions within the IP (Keshav, 1997).

This discussion from a networking point of view also exposes the inherent
interactions required between the routing and application layers of the networking
protocol stack. Such “interlayer” interactions become particularly important in
wireless networks, where route failures could occur more frequently than in wired
networks. Therefore, in this case diversity, albeit at a much higher layer in the IP
stack, again becomes quite important.

9.6 Discussion

In this chapter we studied the emerging role of diversity with respect to three
disparate topics. The idea of using multiple instantiations of randomness attempts
to turn the presence of randomness to an advantage. For example, in multiple-
antenna diversity, the degrees of freedom provided by the space diversity is utilized
for increased rate or reliability. In mobile ad hoc networks, the random mobility is
utilized to route information from source to destination.

To realize the benefits promised by the use of diversity, we need to have
interactions across networking layers. For example, in opportunistic scheduling
(studied in section 9.4.1) the transmission rates that can be supported by the
physical layer interact with the resource allocation (scheduling), which is normally
only a functionality of the data-link layer. In the multi-user diversity studied in
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mobile ad hoc networks (see section 9.4.2) the routing of the packets interacted with
the physical layer transmission. Finally, the MD source coding studied in section 9.5
necessitated an interaction between source coding (application-layer functionality)
and routing.

These examples of cross-layer protocols are increasingly becoming important in
reliable network communication. Diversity is the common thread among several of
these cross-layer protocols. The advantages of using diversity in these contexts are
just beginning to be realized in practice. There might be many more areas where
the ideas of using diversity could have an impact, and this is a topic of ongoing
research.

Notes
1The term sufficient statistics refers to a function (perhaps many-to-one) which does not cause

loss of information about the random quantity of interest.
2To be precise, we need to sample equation 9.1 at a rate larger than 2(WI + Ws), where WI is

the input bandwidth and Ws is the bandwidth of the channel time variation (Kailath, 1961).
3In passband communication, a complex signal arises due to in-phase and quadrature phase

modulation of the carrier signal, see Proakis (1995).
4This can be seen by noticing that for Mt = 1, a sufficient statistics is an equivalent scalar

channel, ỹ(b) = h(b)∗y(b) = ||h(b)||2x(b) + h(b)∗z(b). In this chapter, |h|2 = h̄h, where h̄ denotes
complex conjugation, and for a vector h we denote its 2-norm by ||h||2 = h∗h, where h∗ denotes
the Hermitian transpose and ht denotes ordinary transpose.

5The assumption that {H(b)} is i.i.d. is not crucial. This result is (asymptotically) correct even
when the sequence {H(b)} is a mean ergodic sequence (Ozarow et al., 1994). We use the notation
H to denote the channel matrix H(b) for a generic block b.

6For a matrix A, we denote its determinant as det(A) and |A|, interchangeably.
7In Foschini (1996), a similar expression was derived without illustrating the converse to

establish that the expression was indeed the capacity.
8Here the notation o(1) indicates a term that goes to zero when SNR → ∞.
9For an information rate of R bits per transmission and a block length of T , we define the

codebook as the set of 2TR codeword sequences of length T .
10A constellation size refers to the alphabet size of each transmitted symbol. For example, a

QPSK modulated transmission has constellation size of 4.
11We use the notation f(n) = Θ(g(n)) to denote f(n) = O(g(n)) as well as g(n) = O(f(n)).

Here f(n) = O(g(n)) means lim supn→∞| f(n)
g(n) | < ∞.

12Interestingly, this result is specifically for two descriptions and does not immediately extend
to the general case.



10 Designing Patterns for Easy Recognition:
Information Transmission with
Low-Density Parity-Check Codes

Frank R. Kschischang and Masoud Ardakani

10.1 Introduction

Coding for information transmission over a communication channel may be defined
as the art of designing a (large) set of codewords such that (i) any codeword can
be selected for transmission over the channel, and (ii) the corresponding channel
output with very high probability identifies the transmitted codeword. Low-density
parity-check codes represent the current state-of-the-art in channel coding. They
are a family of codes with flexible code parameters, and a code structure that can
be fine-tuned so that decoding can occur at transmission rates approaching the
information-theoretical limits established by Claude Shannon, yet with “practical”
decoding complexity. In this chapter—which is aimed at the non-expert—we show
that these codes are easy to describe using probabilistic graphical models, and
that their simplest decoding algorithms (the “sum-product” or “belief-propagation”
algorithm, and variations thereof) can be understood as message-passing in the
graphical model. We show that a simple Gaussian approximation of the messages
passed in the decoder leads to a tractable code-optimization problem, and that
solving this optimization problem results in codes whose performance appears to
approach the Shannon limit, at least for some channels.

Communication channels are typically modeled (with no essential loss of gener-
ality) in discrete time. At each unit of time a channel accepts (from the transmitter)
a “channel input symbol” and produces (for the receiver) a corresponding “chan-
nel output symbol” according to some probabilistic channel model. Information is
usually transmitted by using the channel many times, i.e., by transmitting many
channel input symbols. In so-called “block coding,” messages are mapped to se-
quences (x1, . . . , xn) of channel inputs of a fixed block-length n. A code is a set
of “valid codewords” agreed upon by the transmitter and receiver prior to commu-
nication. A code is typically a (carefully selected) subset of the set of all possible
channel inputs of length n. Transmission of a codeword gives rise (at the receiver)
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to a “received word,” an n-tuple (y1, . . . , yn) of channel output symbols. The task
of the receiver is to infer from the received word, which codeword—and hence which
message—was (ideally, most likely) transmitted. Alternatively, if the message con-
sists of many symbols, the receiver may wish to infer the most likely value of each
message symbol.

By attempting to determine which codeword was most likely transmitted, a
decoding algorithm attempts to solve a noisy pattern recognition problem. There
are, therefore, some similarities between the fields of coding theory and pattern
recognition. However, a key difference that makes the two fields quite distinct is
the fact that the set of valid codewords is under the control of the system designer
in the former case, but not (usually) in the latter case. In other words, in coding
theory the system designer is given the luxury of choosing the set of patterns to be
recognized by the decoding algorithm. A major theme in coding theory research is,
therefore, to optimize or fine-tune the structure of the code for effective recognition
(decoding) by some particular class of decoding algorithms.

Another major difference between coding theory and typical pattern-recognition
problems is the sheer number of patterns to be recognized by the decoding algo-
rithm. In many pattern-recognition problems, the number of different patterns
(or pattern classes) is relatively small. In coding theory, the numbers can be ex-
traordinarily large. The transmission of k bits corresponds to the selection, by the
transmitter, of one codeword from a code of 2k possible codewords. Thus, trans-
mission of single bit requires a code of just two codewords; transmission of two bits
requires a code of four codewords, and so on. Typical values of k for codes used in
practice range from less than a dozen bits to tens of thousands of bits, and hence
the number of different codewords to be “recognized” can be as large as 210,000

or more! Despite these huge numbers, decoding algorithms routinely make rapid
decoding decisions, reliably producing decoded information at many megabits per
second.

A key parameter of a code is its rate. A code of 2k codewords, each having
block-length n, is said to have a rate of R = k/n bits/symbol (or bits per channel-
use). Clearly the rate of a code is a measure of the “speed” at which information is
transmitted, normalized per channel-use. To convert from bits per symbol to bits
per second, one needs to know the number of symbols that may be transmitted
per second, a value that typically scales linearly with the “channel bandwidth.”
Channel bandwidths can vary greatly, depending on the application; thus, from the
point of view of code design, it is more appropriate to focus on code rate measured
in bits/symbol (rather than bits/s).

Given a particular channel, one would clearly like to make the code rate as
large as possible. On the other hand, one also desires to make reliable decoding
decisions, i.e., decisions for which the probability of error approaches zero. At first
glance, it may seem that there should be a trade-off between transmission rate and
reliability, i.e., for a fixed k, intuition would suggest that for some sufficiently large
n it should be possible to design a code so that the probability of decoding error
can be made smaller than any chosen ε > 0.



10.2 A Brief Introduction to Coding Theory 289

This would certainly be true for the transmission of k = 1 bit over a binary
symmetric channel with “crossover probability” p < 1/2. Such a channel accepts
xi ∈ {0, 1} at its input and produces a corresponding yi ∈ {0, 1} at its output.
Each transmitted symbol is independently “flipped” with probability p, i.e., with
probability p we have yi �= xi. A single bit can be transmitted with a repetition
code of two codewords {000 · · · 0, 111 · · · 1}, where both codewords have the same
length n. This code can be decoded according to a “majority rule:” if the majority
of the symbols in the received word are zero, then decode to the all-zero codeword;
otherwise decode to the all-one codeword. It is easy to see that if n is made
sufficiently large, then the probability of error under the majority rule can be made
arbitrarily small for any p < 1/2. In this example, there is a smooth trade-off
between rate and reliability; as the rate decreases, the reliability increases, and one
might be inclined to believe that such is the trade-off in general.

In fact, although there is a fundamental trade-off between code rate and
reliability, the trade-off is abrupt (like a step-function), not smooth. In his seminal
1948 paper (Shannon, 1948), Claude E. Shannon established the remarkable fact
that typical communication channels are characterized by a so-called channel

capacity, C, with the property that reliable communication (i.e., communication
with probability of error approaching zero) is possible for every R < C. More
precisely, Shannon showed that for every R < C and every ε > 0, by choosing a
sufficiently large block-length n, there exists a block code of length n with at least
2nR codewords and a decoding algorithm for this code that yields a probability of
decoding error smaller than ε. Conversely, one may also show that if R > C, then,
even using an algorithm that minimizes error probability, it is impossible to achieve
arbitrarily small probability of error. Thus, to achieve arbitrarily good reliability,
it is not necessary to have R → 0, but rather only to have R < C.

Information theory allows us to refine our stated goal of coding for information
transmission over a communication channel with capacity C. The goal is to design
a code such that (i) any codeword can be selected for transmission over the
channel, (ii) the corresponding channel output can be processed by an algorithm
of “practical” complexity to identify (with very high probability) the transmitted
codeword, and (iii) the rate of the code is “close” to C. In the remainder of this
chapter, we will show how low-density parity-check (LDPC) codes achieve this goal.

10.2 A Brief Introduction to Coding Theory

Low-density parity-check codes are binary linear block codes (though it is possible
to define non-binary versions as well). Accordingly, we begin by defining what this
means.

Let F2 denote the finite field of two elements {0, 1}, closed under modulo-two
integer addition and multiplication. This field has the simplest possible arithmetic:
for all x ∈ F2, under addition we have 0+x = x and 1+x = x̄, where x̄ denotes the
complement of x (thus a two-input F2-adder is an exclusive-OR gate), and under
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multiplication we have 0 · x = 0 and 1 · x = x (thus a two-input F2-multiplier is
an AND gate). For every positive integer n, we let Fn

2 denote the set of n-tuples
with components from F2, which forms a vector space over F2 equipped with the
usual component-wise vector addition and with multiplication by scalars from F2.
As is the convention in coding theory, we will always think of such vectors as row

vectors.
By definition, a binary linear block code of block-length n and dimension k is

a k-dimensional subspace of Fn
2 . It follows that a binary linear block code is itself

closed under vector addition and multiplication by scalars; in particular, the sum of
two codewords is another codeword, and the code certainly always contains the all-
zero vector (0, 0, . . . , 0). (Although it is certainly possible to define nonlinear codes,
i.e., codes that are general subsets of Fn

2 , not necessarily subspaces, most codes used
in practice are linear codes.) A binary linear code of length n and dimension k will
be denoted as an [n, k] code. Such a code has 2k codewords, and hence has rate
R = k/n. We will only ever consider such codes with k > 0. From now on, when
we write “code,” we mean binary linear block code.

How can an [n, k] code be specified? One way is to observe that such a code C is
a k-dimensional vector space, and hence it has a basis (in general, many bases), i.e.,
a set {v1,v2, . . . ,vk} of linearly independent vectors that span C. These vectors
can be collected together as the rows of a k×n matrix G, called a generator matrix

for C, with the evident property that C is the row space of G. For every distinct
u ∈ F k

2 we obtain a distinct codeword v = uG ∈ C. Hence, a generator matrix
yields a way to implement an encoder for C, by simply mapping a message u ∈ F k

2
under matrix multiplication by G to the codeword v = uG ∈ C. Thus a code C may
be specified by providing a generator matrix for C.

Another way to specify an [n, k] code C—and the one we will use to define low-
density parity-check codes—is to view C as the solution space of some homogeneous
system of linear equations in n variables X1, X2, . . . , Xn. Since, in F2, there are only
two possible scalars, the structure of any one such equation is exceedingly simple:
it is always of the form

Xi1 + Xi2 + · · · + Xim
= 0, (10.1)

where {i1, i2, . . . , im} is some subset of {1, 2, . . . , n}. Such an equation is sometimes
referred to as a parity check, since it specifies that the “parity” (the number
of ones) in the subset of the variables indexed by {i1, . . . , im} should be even,
i.e., (10.1) is satisfied if and only if an even number of Xi1 , Xi2 , . . . Xim

take
value one. If we define the n-tuple h as the vector with value one in components
i1, i2, . . . , im, and value zero in all other components, then (10.1) may also be
written as (X1, . . . , Xn)hT = 0, where hT denotes the “transpose” of h.

Given a system of (n − k) parity-check equations, we may collect the corre-
sponding h-vectors to form the rows of an (n−k)×n matrix H, called a parity-check

matrix. The set

C = {x : xHT = 0}
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of all possible solutions to this system of equations, i.e., the set of vectors that
satisfy all parity checks, is then a code of length n and dimension at least k (and
possibly more, if the rows of H are not linearly independent). Thus a code C may
be specified by providing a parity-check matrix for C.

Note that, whereas a generator matrix for C gives us a convenient encoder, a
parity-check matrix H for C gives us a convenient means of testing a vector for
membership in the code, since a given vector r ∈ Fn

2 is a codeword if and only if
rHT = 0. More generally, parity-check matrices are useful for decoding since, if r is
a non-codeword, it is the structure of parity-check failures in the so-called syndrome

rHT that provides evidence about which bits of r need to be changed in order to
recover a valid codeword.

Low-density parity-check (LDPC) codes have the special property that they
are defined via a parity-check matrix that is sparse, i.e., by an H matrix that has
only a small number of nonzero entries. If the H matrix has a fixed number of one in
each row and a fixed number of ones in each column, then the corresponding code is
called a regular LDPC code; otherwise, the code is an irregular code. As an example,
one of the earliest families of LDPC codes—the so-called (3,6)-regular LDPC codes,
defined by R. G. Gallager at MIT in the early 1960s (Gallager, 1963)—have an H

matrix with exactly 6 ones in each row and 3 ones in each column. If we take n

reasonably large, say n = 2000, the matrix contains just 3n = 6, 000 ones, whereas
a binary matrix of the same size generated by flipping a fair coin for each matrix
entry, would on average contain one million ones. Thus we see that the H matrix
is very sparse indeed.

Why is sparseness important? The answer lies in the nature of the decoding
algorithm, which we describe next.

10.3 Message-Passing Decoding of LDPC Codes

10.3.1 From Codes to Graphs

The relationship between variables and equations can be visualized using a graph,
such as the one shown in Figure 10.1. This graph (called a Forney-style factor
graph (Forney, 2001; Loeliger, 2004)) consists of various vertices and edges (as
is conventional in graph theory), and (somewhat unconventionally) also includes
a number of “half-edges,” which are edges incident on a single vertex only. The
half-edges are denoted as ‘⊥’ in Figure 10.1.

Edges and half-edges represent binary variables. A “configuration” is an as-
signment of a binary value to each edge and half-edge. Certain configurations will
be regarded as “valid configurations,” and all others as invalid. Vertices in the
graph represent “local constraints” that the variables must satisfy in order to form
a valid configuration. So-called “equality constraints” (or “equality vertices”), de-
noted with ‘=’ in Figure 10.1, constrain all neighboring variables (i.e., all incident
edges) to take on the same value in every valid configuration, whereas so-called
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Figure 10.1 A factor graph for a (very small) (3,6)-regular LDPC code. Each
edge (and half-edge) represents a binary variable. The boxes labeled = are equality
constraints that enforce the rule that all incident edges are to have the same value
in every valid configuration. The boxes labeled + are parity-check constraints that
enforce the rule that all incident edges are to have even parity (zero-sum, modulo
two).

“parity-check constraints” (or “check vertices”), denoted with ‘+’ in Figure 10.1,
constrain the neighboring variables to form a configuration having an even number
of ones, i.e., a modulo-two sum of zero. The valid configurations are precisely those
that satisfy all local constraints.

The half-edges represent the codeword symbols v1, v2, . . . , v18. Half-edges
can be viewed as the “interface” (or “read-out”) between the configuration space
induced by the internal structure of the graph, and the desired “external” behavior.
Equivalently, the full edges in the graph may be regarded as hidden (or “auxiliary”
or “state”) variables, and the half-edges as observed or primary variables. The
equality constraints essentially serve to “copy” the value of each codeword symbol
in a valid configuration to the neighboring (full) edges. Each of the parity-check
constraints implements a single parity-check equation; for example, the highlighted
parity-check constraint in Figure 10.1 essentially implements the equation

v3 + v6 + v9 + v12 + v15 + v18 = 0;

however, instead of involving the variables v3, v6, etc., directly, the highlighted
parity-check constraint vertex involves copies of these variables.

It should now be clear that the set of valid configurations projected on the half-
edges in Figure 10.1 form a binary linear code satisfying the 9 different parity-check
equations implemented by the check vertices. Indeed, as the reader may verify by
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tracing edges, this code is defined by the parity-check matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is clear that H encodes the incidence structure of the graph, with an edge
corresponding to each nonzero entry of H. If a nonzero entry occurs in row i and
column j, then the edge connects the ith check vertex with the jth equality vertex.
Because of the correspondence between H and the factor graph, sparseness of H

implies sparseness of the graph and vice versa.

10.3.2 Channel Models

As noted above, communication channels are typically modeled in discrete time: a
channel accepts a channel input xi and produces a corresponding channel output
yi, according to some probabilistic model.

For example, the binary symmetric channel described earlier accepts, at time
i, a binary digit xi ∈ {0, 1} at its input, and produces a binary digit yi ∈ {0, 1}
at its output, with the property that yi = xi with probability 1 − p (and therefore
yi �= xi with probability p). The parameter p is called the cross-over probability
of the channel. The binary symmetric channel is assumed to be memoryless, which
means that, given the ith channel input xi, the channel output yi is independent of
all other channel inputs and outputs, i.e., (assuming n channel inputs and outputs
in total)

p(yi|x1, . . . , xn, y1, . . . , yi−1, yi+1, . . . , yn) = p(yi|xi).

The capacity C(p) of the binary symmetric channel with crossover probability
p is given by (Shannon, 1948)

C(p) = 1 −H(p) bits/symbol

where H(p) denotes the binary entropy function

H(p) = −p log2 p − (1 − p) log2(1 − p).

The capacity is plotted in Figure 10.2(a).
We will also consider the binary-input additive white Gaussian noise (AWGN)

channel, which at time i accepts a channel input xi ∈ {−1, 1}, and produces the
(real-valued) output yi = xi+ni, where ni is a zero-mean Gaussian random variable
with variance σ2. This channel is also assumed to be memoryless, and serves as a
model of the widely implemented continuous-time transmission schemes known as
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binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK).
The capacity C(σ) of the binary-input additive white Gaussian noise channel

with noise variance σ2 is given by

C(σ) = 1 − 1√
2π

∫ ∞

−∞
exp(−u2/2) log2(1 + exp(−2(σu + 1)/σ2))du bits/symbol.

This function is plotted in Figure 10.2(b). Also plotted is the function

1
2

log2(1 + 1/σ2),

which represents the capacity of an additive white Gaussian noise channel in which
the channel input is constrained to have unit second moment, but is unconstrained
in value.

Instead of using the noise variance σ as a parameter of an AWGN channel, one
often encounters the so-called “bit-energy to noise-density ratio,” denoted Eb/N0.
This terminology arises in the context of continuous-time AWGN channels, in which

(a)

(b)

Figure 10.2 Capacity as a function of channel parameter: (a) the binary sym-
metric channel with crossover probability p; (b) the binary-input additive white
Gaussian noise channel with noise variance σ2.
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the one-sided noise power spectral density is typically parameterized by the value
N0. For a code of rate R and a noise variance of σ2, we have

Eb

N0
=

1
2Rσ2 .

Often the value of Eb/N0 is quoted as a value in decibels (dB), i.e., the value
quoted is 10 log10(Eb/N0). Thus, for example, a code of rate R operating in an
AWGN channel with an Eb/N0 of x dB is operating in a channel of noise variance

σ2 =
10−x/10

2R
.

In the coding literature one also often encounters the term “Shannon limit.”
The Shannon limit for a code of rate R is the value of the channel parameter
corresponding to the worst channel that (in principle) could be used with a code
of that rate, i.e., the channel parameter for which the capacity of the channel is R.
In the case of AWGN channel, the performance of a coding scheme is often quoted
in terms of a distance (in dB) from the Shannon limit. Thus, if the code achieves
acceptable performance at a noise variance σ2, but the corresponding Shannon limit
is σ2

0 > σ2, then the distance to the Shannon limit is given as 10 log10(σ2
0/σ2) dB.

10.3.3 From Graphs to Decoding Algorithms

Most decoding algorithms for low-density parity-check codes operate by passing
“messages” along the edges of the graph describing the code. We will begin by
providing an intuitive description of this process.

Initially, messages are derived from the channel outputs. The channel outputs
are translated into a a “belief” about the value of the corresponding codeword
symbol, where a “belief” is a guess about the value (zero or one) along with a
measure of confidence in that guess. Unfortunately, due to channel noise, some of
these beliefs are, in fact, erroneous. Beliefs about each codeword symbol are com-
municated to the check vertices. By enforcing the rule that in a valid configuration
the modulo-two sum of the bit values is zero, the checks can update the beliefs. For
example, if the beliefs received at a check form a configuration that does not satisfy
the zero-sum rule, then the bit with the least confidence could be informed that
it should probably alter its belief. The process of sending messages from equality
vertices to check vertices and back again is called an “iteration,” and after several
iterations (depending on the code and the noise in the channel), the beliefs about
the symbols, with high probability, reflect the transmitted configuration.

Now it becomes clear why sparseness in the graph is important. Firstly, the
total amount of computation required per iteration is proportional to the number
of edges in the decoding graph, and this number is exactly equal to the number
of nonzero entries in the H matrix. Thus, the more sparse the graph, the smaller
the decoding complexity. Secondly, sparseness helps to make it difficult for short
cycles in the graph (which can sometimes cause reinforcement of erroneous beliefs)
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to influence the decoder unduly.
We also notice that this decoding algorithm naturally supports parallelism,

as the message transfer between checks and variables can, in principle, all occur
simultaneously. This observation is the foundation for a number of hardware
implementations for LDPC decoders, in which processing nodes correspond directly
to factor-graph vertices, and wires connecting these nodes correspond directly to
factor-graph edges.

We will now give a more precise description of message-passing decoding,
starting with the so-called sum-product algorithm. See (Kschischang et al., 2001)
for more details.

Messages passed on an edge during decoding are probability mass functions for
the corresponding binary variable. A probability mass function p(x) for a binary
variable X can be encoded with just a single parameter (e.g., p(0), p(1), p(0)−p(1),
p(0)/p(1), etc.), and hence messages are real-valued scalars. A very commonly used
parametrization, is the log-likelihood ratio (LLR), defined as ln(p(0)/p(1)). Note
that the sign of an LLR value indicates which symbol-value (0 or 1) is more likely,
and so can be used to make a decision on the value of that symbol. The magnitude
of the LLR can be interpreted as a measure of confidence in the decision; a large
magnitude indicates a large disparity between p(0) and p(1), and hence a greater
confidence in the truth of the decision. The “neutral message” corresponding to the
uniform distribution will be denoted as μ0. If an LLR representation is used, then
μ0 = 0.

Messages are always directed (along an edge or half-edge) in the graph. A
message on a half edge directed to a vertex v will be denoted as μ→v, and a message
on a full edge directed from a vertex v1 to a vertex v2 will be denoted as μv1→v2 .
We will denote the set of neighbors of a vertex v1 as N(v1). If v2 ∈ N(v1), then
N(v1) \ {v2} is the set of neighbors of v1 excluding v2.

Initialization: The decoding algorithm is initialized by sending neutral mes-
sages on all edges, i.e., μv1→v2 = μv2→v1 = μ0 for every pair of vertices v1, v2

connected by an edge. The half-edges are initialized with so-called “intrinsic” or
“channel” messages, corresponding to the received channel output. In particular,
for a binary symmetric channel with crossover probability p, the LLR associated
with channel output y ∈ {0, 1} is given by

λ(y) = (−1)y ln
(

1
p
− 1

)
,

and this is the initial message sent toward the corresponding equality vertex in the
graph. Similarly, for the binary-input AWGN channel with noise variance σ2, the
LLR associated with channel output y ∈ R is given by

λ(y) = 2y/σ2,
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assuming that transmission of a zero corresponds to the +1 channel input, and
transmission of a one corresponds to the −1 channel input.

Local Updates: Messages are updated at the vertices according to the
principle that the message μv1→v2 sent from vertex v1 to its neighbor v2 is a function
of the messages directed toward v1 on all edges other than the edge {v1, v2}. This
principle is one of the pillars that leads to an analysis of the decoder; furthermore,
this principle leads to optimum decoding in a cycle-free graph (see Kschischang
et al., 2001).

Assuming that messages are represented as LLR values, then the message sent
by the sum-product algorithm from an equality vertex v1 to a neighboring check
vertex v2 is given as

μv1→v2 = μ→v1 +
∑

v′∈N(v1)\{v2}
μv′→v1 , (10.2)

where μ→v1 denotes the channel message received along the half-edge connected
to v1. Similarly, the message sent from a check vertex v2 to a neighboring equality
vertex v1 is given as

μv2→v1 = 2 tanh−1

⎛⎝ ∏
v′∈N(v2)\{v1}

tanh(μv′→v2/2)

⎞⎠ . (10.3)

The hyperbolic tangent functions involved in this update rule are actually perform-
ing a change of message representation: if λ is the LLR value ln(p(0)/p(1)), then
tanh(λ/2) = p(0)−p(1), the probability difference. The product of tanh(·) functions
in (10.3) actually implements a product of probability differences, which can itself
be seen as the difference in probabilities of local configurations having even parity
with those having odd parity.

Messages received on full edges at an equality vertex are referred to as “extrin-
sic” messages. Extrinsic messages, unlike the “intrinsic” channel message reflect
the structure of the code and change from iteration to iteration; when decoding
is successful, the quality (magnitude in an LLR implementation) of the extrinsic
messages improves from iteration to iteration. In this way, the extrinsic messages
can “overwhelm” erroneous channel messages, leading to successful decoding.

Update Schedule: The order in which messages are updated is referred to as
the “update schedule.” A commonly used schedule is to send messages from each
equality vertex toward the neighboring check vertices (in any order), and then to
send messages in the opposite direction (in any order). One complete such update
is referred to as an “iteration,” and usually many iterations are performed before a
decoding decision is reached. Other update schedules can lead to faster convergence
(Sharon et al., 2004; Xiao and Banihashemi, 2004), but we will not consider these
here.
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Termination: Decoding decisions are based on all of the messages (both
intrinsic and extrinsic) directed toward each equality vertex v. Decisions are made
on a symbol-by-symbol basis. With LLR messages, the decision statistic is given as

μ = μ→v +
∑

v′∈N(v)

μv′→v.

If μ > 0, then the corresponding codeword symbol value is chosen to be 0; otherwise
it is chosen to be 1. Usually iterations are performed until these decisions yield a
valid codeword, or until the number of iterations reaches some allowed maximum.

Note that the total computational complexity (assuming a fixed maximum
number of iterations, and a fixed distribution of vertex degrees) scales linearly with
the block length of the code.

In addition to the sum-product algorithm, a number of other (often simpler)
message-passing algorithms have been studied. These include the “min-sum” algo-
rithm and Gallager’s “decoding algorithm B,” which are described next.

Min-sum algorithm: In the min-sum algorithm, the update rule at an
equality vertex is the same as the sum-product algorithm (10.2), but the update
rule at a check vertex v2 is simplified to

μv2→v1 = min
v′∈N(v2)\{v1}

|μv′→v2 | ·
∏

v′∈N(v2)\{v1}
sign(μv′→v2). (10.4)

Notice that the tanh−1 of the product of tanh’s is approximated as the minimum
of the absolute values times the product of the signs. This approximation becomes
more accurate as the magnitude of the messages is increased.

Gallager’s decoding algorithm B: In this algorithm, introduced by Gal-
lager (1963), the message alphabet is {0, 1}. In other words, the messages commu-
nicate “decisions” only, without an associated reliability.

The update rule at a check vertex v2 is

μv2→v1 =
⊕

v′∈N(v2)\{v1}
μv′→v2 , (10.5)

where ⊕ represents the modulo-two sum of binary messages.
At an equality vertex v1 of degree dv + 1, the outgoing message μv1→v2 is

μv1→v2 =

{
μ→v1 if ∃v′

1, v
′
2, . . . , v′

b ∈ N(v1) \ {v2} : μv′
1→v1 = · · · = μv′

b→v1 = μ→v1

μ→v1 otherwise
,

(10.6)

where b is an integer in the range &dv−1
2 ' < b < dv. Here, the outgoing message of an

equality vertex is the same as the intrinsic message, unless at least b of the extrinsic
messages disagree. The value of b may change from one iteration to another. The
optimum value of b for a (dv, dc)-regular LDPC code (i.e., a code with an H-matrix
having dc ones in every row and dv ones in every column) was computed by Gallager
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(1963) and is the smallest integer b for which

1 − p

p
≤
[
1 + (1 − 2pe)dc−1

1 − (1 − 2pe)dc−1

]2b−dv+1

, (10.7)

where p and pe are channel crossover probability (intrinsic message error rate) and
extrinsic message error rate, respectively. It can be proved that Algorithm B is the
best possible binary message-passing algorithm for regular LDPC codes.

10.4 LDPC Decoder Analysis

10.4.1 Decoding Threshold

For a binary symmetric channel with parameter p < 1/2 and an AWGN channel
with parameter σ, the performance of an iterative decoder degrades with increasing
channel parameter. Richardson and Urbanke (2001) studied the performance of
families of low-density parity-check codes with a fixed proportion of check and
equality vertices of certain degree. In the limit as the block length goes to infinity (so
that the neighbors, next-neighbors, next-next-neighbors, etc., of each vertex, taken
to a particular depth, can be assumed to form a tree), they show that the family
exhibits a threshold phenomenon: there is a “worst-channel” for which (almost all)
members of the family have a vanishing error probability as the block length and
number of iterations go to infinity. This channel condition is called the threshold of
the code family.

For example, the threshold of the family of (3,6)-regular codes on the AWGN
channel under sum-product decoding is 1.1015 dB, which means that if an infinitely
long (3,6)-regular code were used on an AWGN channel, convergence to zero error
rate is almost surely guaranteed whenever Eb/N0 is greater than 1.1015 dB. If the
channel condition is worse than the threshold, a non-zero error rate is assured.

In practice, when finite-length codes are used, there is a gap between the Eb/N0

required to achieve a certain (small) target error probability and the threshold
associated with the given family, but this gap shrinks as the code length increases.
The main aim in the asymptotic analysis of families of LDPC codes is to determine
the threshold associated with the family, and one of the aims of code design is to
choose the parameters of the family so that the threshold can be made to approach
channel capacity.

10.4.2 Extrinsic Information Transfer (EXIT) Charts

An iterative decoder can be thought of as a “black box” that at each iteration
takes two sources of knowledge about the transmitted codeword—the intrinsic
information and the extrinsic information—and attempts to obtain an “improved”
knowledge about the transmitted codeword. The “improved” knowledge is then used
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as the extrinsic information for the next iteration. When decoding is successful, the
extrinsic information gets better and better as the decoder iterates. Therefore, in
all methods of analysis of iterative decoders, statistics of the extrinsic messages at
each iteration are studied.

For example, one might study the evolution of the entire probability density
function (pdf) of the extrinsic messages from iteration to iteration. This is the most
complete (and probably most complex) analysis, and is known as density evolution
(Richardson and Urbanke, 2001). However, as an approximate analysis, one may
study the evolution of a representative or an approximate parametrization of the
true density.

An example of this approach is to use so-called “extrinsic information transfer”
(EXIT) charts (Divsalar et al., 2000; El Gamal and Hammons, 2001; ten Brink,
2000, 2001). In EXIT-chart analysis, instead of tracking the density of messages,
one tracks the evolution of a single parameter—a measure of the decoder’s success—
iteration by iteration. For example one might track the “signal-to-noise ratio” of the
extrinsic messages (Divsalar et al., 2000; El Gamal and Hammons, 2001), their error
probability (Ardakani and Kschischang, 2004) or the mutual information between
messages and decoded bits (ten Brink, 2000). Initially, the term “EXIT chart”
was used when tracking mutual information; however, the use of this term was
generalized in (Ardakani and Kschischang, 2004) to the tracking of other parameters
as well.

Let s denote the message-parameter being tracked, and let s0 denote the
parameter associated with the channel messages. If si denotes the parameter
associated with the extrinsic messages at the input of the ith iteration, then an
EXIT chart is the function f(si, s0) that gives the value of the message parameter
si+1 at the output of the ith iteration, i.e., we have

si+1 = f(si, s0).

In the remainder of this chapter, we use EXIT charts based on tracking the
message error rate, as we find them most useful for our applications. Thus we
track the proportion of messages that give the “wrong” value for the corresponding
symbol. If pin denotes this proportion at the input of an iteration, and pout denotes
this proportion at the output of an iteration, then we have

pout = f(pin, p0),

where p0 denotes the proportion of “wrong” channel messages.
For a fixed p0 this function can be plotted using pin-pout coordinates. Usually

EXIT charts are presented by plotting both f and its inverse f−1, as this makes the
visualization of the decoder easier. Figure 10.3 shows the concept. As can be seen
from the figure, decoder progress can be visualized as a series of steps, shuttling
between f and f−1 (as pout of one iteration becomes pin of the next). It can be
seen that using EXIT charts, one can study how many iterations are required to
achieve a target message error rate.
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Figure 10.3 An EXIT chart based on message error rate. Simulation results are
for a randomly generated (3,6)-regular code of block length 200,000 on an AWGN
with Eb/N0 = 1.75 dB.

The region of the graph between f and f−1 is referred to as the “decoding
tunnel.” If the “decoding tunnel” of an EXIT chart is closed, i.e., if f and f−1

cross at some large pin, so that for some pin we have pout > pin, successful decoding
to a small error probability does not occur. In such cases we say that the EXIT
chart is closed (otherwise, it is open). An open EXIT chart always lies below the
45-degree line pout = pin. As p0 gets worse (i.e., as the channel degrades), the
decoding tunnel becomes tighter and tighter, and hence the decoder requires more
and more iterations to converge to a target error probability. Eventually, when p0

is bad enough, the tunnel closes completely. This condition gives an estimate of
the code threshold. i.e., we may estimate the threshold p∗

0 as the worst channel
condition for which the tunnel is open by defining p∗

0 as

p∗
0 = arg sup

p0

{f(pin, p0) < pin, for all 0 < pin ≤ p0}.

EXIT chart analysis is not as accurate as density evolution, because it tracks
just a single parameter as the representative of a pdf. For many applications,
however, EXIT charts are very accurate. For instance in (ten Brink, 2000, 2001),
EXIT charts are used to approximate the behavior of iterative turbo decoders on a
Gaussian channel very accurately. In (Ardakani and Kschischang, 2004) it is shown
that, using EXIT charts, the threshold of convergence for LDPC codes on AWGN
channel can be approximated within a few thousandths of a dB of the actual value.



302 Designing Patterns for Easy Recognition

In next section we show that EXIT charts can be used to design irregular LDPC
codes which perform not more than a few hundredths of a dB worse than those
designed by density evolution. One should also notice that when the pdf of messages
can truly be described by a single parameter, e.g., in the so-called “binary erasure
channel,” EXIT chart analysis is equivalent to density evolution.

10.4.3 Gaussian Approximations

There have been a number of approaches to one-dimensional analysis of sum-
product decoding of LDPC codes on the AWGN channel (Ardakani and Kschis-
chang, 2004; Chung et al., 2001; Divsalar et al., 2000; Lehmann and Maggio, 2002;
ten Brink and Kramer, 2003; ten Brink et al., 2004), all of them based on the obser-
vation that the pdf of the decoder’s LLR messages is approximately Gaussian. This
approximation is quite accurate for messages sent from equality vertices, but less
so for messages sent from check vertices. In this subsection we describe an accurate
one-dimensional analysis for LDPC codes based on a Gaussian assumption only for
the messages sent from the equality vertices.

Because AWGN channels and binary symmetric channels treat 0’s and 1’s
symmetrically, and because LDPC codes are binary linear codes, the behavior
of a sum-product decoder is independent of which codeword was transmitted
(Richardson and Urbanke, 2001). In the analysis of a decoder, we may therefore
assume that the all-zero codeword (equivalent to the all-{+1} channel word) is
transmitted.

A probability density function f(x) is called symmetric if f(x) = exf(−x).
In (Richardson and Urbanke, 2001) it has been shown that if the LLR of the
channel messages is symmetric, then all messages sent in sum-product decoding
are symmetric. A Gaussian pdf with mean m and variance σ2 is symmetric if and
only if σ2 = 2m. As a result, a symmetric Gaussian density can be expressed by a
single parameter.

Under the assumption that the all-zero codeword was transmitted over an
AWGN channel, it turns out that the intrinsic LLR messages have a symmetric
Gaussian density with a mean of 2/σ2 and a variance of 4/σ2, where σ2 is the
variance of the Gaussian channel noise. It follows that under sum-product decoding,
all messages remain symmetric. In addition, since the update rule at the equality
vertices is the summation of incoming messages, according to the central limit

theorem, the density of the messages at the output of equality vertices tends to be
Gaussian, so it seems sensible to approximate them with a symmetric Gaussian.

To avoid a Gaussian assumption on the output of check vertices, we consider
one whole iteration at once. That is to say, we study the input-output behavior of
the decoder from the input of the iteration (messages from equality vertices to check
vertices) to the output of that iteration (messages from equality vertices to check
vertices). Figure 10.4 illustrates the idea. In every iteration we assume that the
input and the output messages shown in Figure 10.4, which are outputs of equality
vertices, are symmetric Gaussian. We start with Gaussian distributed messages at
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Figure 10.4 A depth-one tree for a (3,6)-regular LDPC code.

the input of the iteration and compute the pdf of messages at the output. This can
be done by “one-step” density evolution. Then we approximate the actual output
pdf with a symmetric Gaussian. Since we assume that the all-zero codeword is
transmitted, the negative tail of this density reflects the message error rate. As a
result, we can track the evolution of message error rate and represent it in an EXIT
chart. This technique led to the results shown in Figure 10.3, showing the close
agreement between simulation results and the decoding behavior predicted by the
EXIT-chart analysis.

We refer to the method of approximating only the output of equality vertices
with a Gaussian (but not the output of the check vertices) as the “semi-Gaussian”
approximation.

10.4.4 Analysis of Irregular LDPC Codes

A single depth-one tree cannot be defined for irregular codes, since not all vertices
(even of the same type) have the same degree. If the check degree distribution is
fixed, each equality vertex of a fixed degree gives rise to its own depth-one tree.
Irregularity in the check vertices is taken into account in these depth-one trees. For
any fixed check degree distribution, we refer to the depth-one tree associated with
a degree i equality vertex as the “degree i depth-one tree.”

For reasons similar to the case of regular codes, we assume that at the output of
any depth-one tree, the pdf of LLR messages is well-approximated by a symmetric
Gaussian. As a result, the pdf of LLR messages at the input of check vertices can
be approximated as a mixture of symmetric Gaussian densities. The weights of
this mixture are determined by the proportion of equality vertices of each degree.
Nevertheless, at the output of a given equality vertex, the distribution is still close
to Gaussian and so the semi-Gaussian method can be used to find the EXIT charts
corresponding to the equality vertices of different degrees. In other words, for any i,
using the “degree i depth-one tree,” an EXIT chart associated with equality vertices
of degree i can be found. We call such EXIT charts elementary EXIT charts. We
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have

pout,i = fi(pin, p0),

where pout,i is the message error rate at the output of degree i equality vertices.
Now, using Bayes’ rule, pout for the mixture of all equality vertices can be

computed as

pout =
∑
i≥2

Pr(degree = i)Pr(error|degree = i)

=
∑
i≥2

λifi(pin, p0), (10.8)

where λi denotes the proportion of edges incident on equality vertices of degree i.
Thus we obtain the important result that the overall EXIT chart can be

obtained as a weighted linear combination of elementary EXIT charts. A similar
formulation can be used when the mean of the messages is the parameter tracked by
the EXIT chart (Chung et al., 2001). It has been shown in (Tuechler and Hagenauer,
2002) that when the messages have a symmetric pdf, mutual-information also
combines linearly to form the overall mutual-information.

10.5 Design of Irregular LDPC Codes

We now describe how this EXIT-chart framework may be used to design irregular
LDPC codes. In this framework, the design problem can be simplified to a linear
program. Let λi denote the proportion of factor graph edges incident on an equality
vertex of degree i, and let ρj denote the proportion of edges incident on a check
vertex of degree j.

We formulate the design problem for an irregular LDPC code as that of shaping
an EXIT chart from a group of elementary EXIT charts (according to (10.8)) so
that the rate of the code is maximized, but subject to the constraint that the
resulting EXIT chart remains open, i.e., so that f(x) < x for all x ∈ (0, p0], where
p0 is the initial message error rate at the decoder.

It can be shown that the rate of an LDPC code is at least 1−
∑

ρj/j∑
λi/i and hence,

for a fixed check degree distribution, the design problem can be formulated as the
following linear program:

maximize:
∑

i≥2 λi/i

subject to: λi ≥ 0,∑
i≥2 λi = 1 and

∀pin ∈ (0, p0]
(∑

i≥2 λifi(pin, p0) < pin

)
.

In the above formulation, we have assumed that the elementary EXIT charts
are given. In practice, to find these curves we need to know the degree distribution
of the code. We need the degree distribution to associate every input pin to its
equivalent input pdf, which is in general assumed to be a Gaussian mixture. In
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Table 10.1 A List of Irregular Codes Designed for the AWGN Channel by the
Semi-Gaussian Method

Degree Code 1 Code 2 Code 3 Code 4 Code 5 Code 6
sequence

dv1 , λdv1
2, .1786 2, .1530 2, .1439 2, .1890 2, .2444 2, .3000

dv2 , λdv2
3, .3046 3, .2438 3, .1602 3, .1158 3, .1687 3, .1937

dv3 , λdv3
5, .0414 7, .1063 5, .1277 4, .1153 4, .0130 4, .0192

dv4 , λdv4
6, .0531 10, .2262 6, .0219 6, .0519 5, .1088 7, .2378

dv5 , λdv5
7, .0007 14, .0305 7, .0279 7, .0875 7, .1120 14, .0158

dv6 , λdv6
10, .4216 19, .0001 8, .0103 14, .0823 14, .1130 15, .0114

dv7 , λdv7
— 23, .1293 12, .1551 15, .0007 15, .0577 20, .0910

dv8 , λdv8
— 32, .0736 30, .0004 16, .0001 25, .0063 25, .0002

dv9 , λdv9
— 38, .0372 37, .3525 39, .3573 25, .0109 30, .0232

dv10 , λdv10
— — 40, .0001 40, .0001 40, .1652 40, .1077

dc 40 24 22 10 7 5

Threshold σ 0.5072 0.6208 0.6719 0.9700 1.1422 1.5476
Rate 0.9001 0.7984 0.7506 0.4954 0.3949 0.2403

Gap to Shannon 0.1308 0.0630 0.0666 0.1331 0.1255 0.2160
limit (dB)

other words, prior to the design, the degree distribution is not known and as a
result, we cannot find the elementary EXIT charts to solve the linear program
above.

To solve this problem, we suggest a recursive solution. At first we assume that
the input message to the iteration has a single symmetric Gaussian density instead
of a Gaussian mixture. Using this assumption, we can map every message error rate
at the input of the iteration to a unique input pdf and so find fi curves for different
i. (It is interesting that even with this assumption the error in approximating the
threshold of convergence, based on our observations, is less than 0.3 dB and the
codes which are designed have a convergence threshold of at most 0.4 dB worse
than those designed by density evolution. One reason for this is that when the
input of a check vertex is mixture of symmetric Gaussians, due to the computation
at the check vertex, its output is dominated by the Gaussian in the mixture having
smallest mean.)

After finding the appropriate degree distribution based on the single Gaussian
assumption we use this degree distribution to find the correct elementary EXIT
charts based on a Gaussian mixture. Now we use the corrected curves to design
an irregular code. In this level of design, the designed degree distribution is close
to the degree distribution used in finding the elementary EXIT charts. Therefore,
analyzing this code with its actual degree distribution shows minor error. One can
continue these recursions for higher accuracy. However, in our examples after one
iteration of design the designed threshold and the exact threshold differed less than
0.01 dB.
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We have designed a number of irregular codes with a variety of rates using this
Gaussian approximation. The results are presented in Table 10.1. In the design of
the presented codes, we have avoided any equality vertices or check vertices with
degrees higher than 40. Table 10.1 suggests that for code rates more than 0.25, the
method is quite successful. For rates greater than 0.85, getting close to capacity
requires high-degree check vertices. To show that our method can actually handle
high-rate codes, we designed a rate 0.9497 code, which uses check vertices of degree
120 but no equality vertices of degree greater than 40. The degree sequence for this
code is λ = {λ2 = 0.1029, λ3 = 0.1823, λ6 = 0.1697, λ7 = 0.0008, λ9 = 0.1094, λ15 =
0.0240, λ35 = 0.2576, λ40 = 0.1533}. The threshold of this code is at σ = 0.4462,
which means it has a gap of only 0.0340 dB from the Shannon limit.

10.6 Conclusions and Future Prospects

Low-density parity-check (LDPC) codes are a flexible family of codes with a simple
decoding algorithm. As we have shown in this chapter, the structure of the codes
can be fine-tuned to allow for decoding even at channel parameters that approach
the Shannon limit. Because of their excellent properties, LDPC codes have attracted
an enormous research interest, and there is now a large body of literature which we
have not attempted to survey in this chapter.

Low-density parity-check codes are now beginning to emerge in a variety of
communication standards, including, e.g., the DVB-S2 standard for digital video
broadcasting by satellite (Eroa et al., 2004). An important research direction is that
of finding LDPC codes with relatively short block lengths (a few thousand bits, say),
but which still have excellent iterative decoding performance. For further reading
in the area of LDPC codes, we recommend the books of Lin and Costello (2004)
and MacKay (2003) and the survey article of (Richardson and Urbanke, 2003) as
excellent starting points.



11 Turbo Processing

Claude Berrou, Charlotte Langlais, and Fabrice Seguin

Turbo processing is the way to process data in communication receivers so that
no information stemming from the channel is wasted. The first application of the
turbo principle was in error correction coding, which is an essential function in
modern telecommunications systems. A novel structure of concatenated codes,
nicknamed turbo codes, was devised in the early 1990s in order to benefit from
the turbo principle. Turbo codes, which have near-optimal performance according
to the theoretical limits calculated by Shannon, have since been adopted in several
telecommunications standards.

The turbo principle, also called the message-passing principle or belief propaga-
tion, is exploitable in signal processing other than error correction, such as detection
and equalization. More generally, every time separate processors work on data sets
that have some link together, the turbo principle may improve the result of the
global processing. In digital circuits, the turbo technique is based on an iterative
procedure, with multiple repeated operations in all the processors considered. An-
other more natural possibility is the use of analog circuits, in which the exchange
of information between the different processors is continuous.

11.1 Introduction

Error correction coding, also known as channel coding, is a fundamental function
in modern telecommunications systems. Its purpose is to make these systems work
even in tough physical conditions, due for instance to a low received signal level,
interference, or fading. Another important field of application for error correction
coding is mass storage (computer hard disk, CD and DVD-ROM, etc.), where the
ever-continuing miniaturization of the elementary storage pattern makes reading
the information more and more tricky.

Error correction is a digital technique, that is, the information message to
protect is composed of a certain number of digits drawn from a finite alphabet.
Most often, this alphabet is binary, with logical elements or bits 0 or 1. Then, error
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correction coding, in the so-called systematic way, involves adding some number
of redundant logical elements to the original message, the whole being called a
codeword. The mathematical law that is used to calculate the redundant part of
the codeword is specific to a given code. Besides this mathematical law, the main
parameters of a code are as follows.

The code rate: the ratio between the number of bits in the original message and
in the codeword. Depending on the application, the code rate may be as low as 1/6
or as high as 9/10.

The minimum Hamming distance (MHD): the minimum number of bits that
differ from one codeword to any other. The higher the MHD, the more robust the
associated decoder confronted with multiple errors.

The ability of the decoder to exploit soft (analog) values from the demodulator,
instead of hard (binary) values. A soft value (that is, the sign and the magnitude)
carries more information than a hard value (only the sign).

The complexity and the latency of the decoder.

Since the seminal work by Shannon on the potential of channel coding (Shan-
non, 1948), many codes have been devised and used in practical systems. The state
of the art, in the early 1990s, was the coding construction depicted in fig. 11.1.
This is called “standard concatenation” and is made up of a serial combination of
a Reed-Solomon (RS) encoder, a symbol interleaver, and a convolutional encoder.
The corresponding decoder (fig. 11.1) is composed of a Viterbi decoder, a symbol
de-interleaver, and an RS decoder. This concatenated scheme works nicely because
the Viterbi decoder can easily benefit from soft samples coming from the demod-
ulator, while the RS decoder can withstand residual bursty errors that may come
from the Viterbi decoder. Nevertheless, although the MHD of the concatenated
code is very large, the decoder does not provide optimal error correction. Roughly,
the performance is 3 or 4 dB from the theoretical limit. Where does this loss come
from?

Channel

data to
encode

decoded
data

Reed-Solomon
     encoder

Interleaver

Reed-Solomon
     decoder

De-interleaver

Convolutional
     encoder

Convolutional
    (Viterbi)
     decoder

(a)

(b)

Figure 11.1 Standard concatenation of a Reed-Solomon encoder and a convolu-
tional encoder, and the associated decoder.
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The inner Viterbi decoder, processing analog-like input samples, is locally op-
timum, that is, it derives the maximum benefit from the redundancy added by the
convolutional encoder. The outer RS decoder, which is also locally optimum, bene-
fits from the work of the inner decoder and from the redundancy added by the RS
encoder. Both decoders are optimum, each of them separately, but their associa-
tion is not optimal: the Viterbi decoder does not exploit the redundancy offered by
the RS codeword. A global decoder, which would use the whole redundancy in one
processing step, would be extremely complex and is not realistic.

The way to contemplate near-optimal decoding of the standard concatenated
scheme is to enable the inner decoder to benefit from the work done by the outer
decoder, using a kind of feedback. This observation is at the root of turbo processing,
“turbo” being used to refer to the way the power of a turbo engine is increased by
the reuse of its exhaust gases. This being said, the concatenated decoding scheme of
figure 11.1 does not easily lend itself to such a feedback principle. The code has to
be devised in order to enable bidirectional exchanges between the two component
decoders.

11.2 Random Coding and Recursive Systematic Convolutional (RSC) Codes

The theoretical limits were calculated by Shannon on the basis of random coding,
which has since remained the reference in the matter of error correction. The
systematic random encoding of a message having k information bits and producing
a codeword with n bits may be achieved in the following way.

As a first step, once and for all, k binary words with n − k bits are drawn
at random and memorized. These k words will constitute the basis of a vector
space, the ith random word (1 ≤ i ≤ k) being associated with the information
message containing only zeros (the “all-zero” message) except in the ith place. The
redundant part of any codeword is obtained by calculating the sum modulo two of
random words whose address i is such that the ith bit of the original message is
one. The coding rate is R = k/n.

This very simple construction leads to a very large MHD. Because two code-
words differ at least by one information bit, and thanks to the random feature of
the redundant part, the mean distance is 1 + n−k

2 . Nevertheless, the MHD of the
code being a random value, its different realizations may be less than this mean
value. A realistic approximation of the actual MHD is n−k

4 . Such large values, for
instance 100 for n = 2k =800, are unreachable when using practical codes. Fortu-
nately, these large MHDs are not necessary for common communications systems
(Berrou et al., 2003).

The device depicted in fig. 11.2 is called a recursive systematic convolutional
(RSC) code, whose length, the number of memory elements, is denoted ν. This
encoder is based on the principle and the random features of the linear feedback
register (LFR), also called a pseudo-random generator. When choosing an appro-
priate set for the feedback taps, the period P of the LFR is maximum and equal
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to P = 2ν − 1. For sufficiently large values of ν, P can be much higher than any
length of messages to process, by several orders of magnitude. Therefore, the RSC
code could then be assimilated to a quasi-perfect random code. Values of ν larger
than 30 or 40 would be sufficient to make the RSC code equivalent to a random
code.

The message d = {d0, . . . di, . . . , dk−1} to be encoded feeds the LFR input and
is transmitted as symbols X, as the systematic part of the codeword. The redundant
or parity part is provided by the summation modulo two of certain binary values
from the register. Using the D (delay) formalism, the redundant symbols Y are
expressed as

Y (D) =
G2(D)
G1(D)

d(D), (11.1)

where

G1(D) = 1 +
ν−1∑
j=1

G
(j)
1 Dj + Dν and

G2(D) = 1 +
ν−1∑
j=1

G
(j)
2 Dj + Dν

, (11.2)

are the polynomials defining the taps for recursivity and parity construction. G
(j)
1

(resp. G
(j)
2 ) is equal to 1 if the register tap at level j (1 ≤ j ≤ ν − 1) is used in

the construction of recursivity (resp. parity), and 0 otherwise. G1(D) and G2(D)
are generally defined in octal forms. For instance, 1 + D3 + D4 is referred to as
polynomial 23.

Convolutional encoding exhibits a side effect at the end of the coding process,
which may be detrimental to decoding performance regarding the last bits of the
message. In order to take its decision, the decoder uses information carried by
current, past, and subsequent symbols, and the subsequent symbols do not exist
at the end of the block. This point is known as the termination problem. Among
several solutions to cope with this problem, the classical one consists in adding
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Figure 11.2 Recursive systematic convolutional (RSC) encoder, with length ν.
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dummy information bits, called tail bits, to make the encoder return to the “all-
zero” state. Another more elegant technique is tail-biting, also called circular,
termination (Weiss et al., 2001). This involves allowing any state as the initial
state and encoding the sequence, containing k information bits, so that the final
state of the encoder register will be equal to the initial state. The trellis of the
code (the temporal representation of the possible states of the encoder, from time
i = 0 to i = k − 1) can then be regarded as a circle. In what follows, we will refer
to circular recursive systematic convolutional (CRSC) codes, the circular version
of RSC codes. Thus, without having to pay for any additional information, and
therefore without impairing spectral efficiency, the convolutional code has become
a real block code, in which, for each time i, the past is also the future, and vice
versa.

RSC or CRSC codes, like classical nonrecursive convolutional codes, are linear
codes. Thanks to the linearity property, the code characteristics are expressed
with respect to the all-zero sequence. In this case, any nonzero sequence d(D),
accompanied by redundancy Y (D), will represent a possible error pattern for the
coding/decoding system, one meaning a binary error. Equation 11.1 indicates that
only a fraction of sequences d(D), which are multiples of G1(D), lead to short length
redundancy. We call these particular sequences return-to-zero (RTZ) sequences
(Podemski et al., 1995), because they force the encoder, if initialized in state 0, to
retrieve this state after the encoding of d(D). In what follows, we will be interested
only in RTZ patterns, assuming that the decoder will never decide in favor of a
sequence whose distance from the all-zero sequence is very large. The fraction of
sequences d(D) that are RTZ is exactly

p(RTZ) = 2−ν , (11.3)

because the encoder has 2ν possible states and an RTZ sequence finishes systemat-
ically at state 0.

The shortest RTZ sequence is G1(D) or its shifted version. Any RTZ sequence,
in the block of k bits with circular termination, may be expressed as

RTZ(D) = G1(D)
k−1∑
i=0

aiD
i mod (1 + Dk), (11.4)

where ai takes value 0 or 1. Operation modulo (1+Dk) transforms all Dx monomials
in the resulting product into Dx mod k, for any integer x, so that all exponents are
between 0 and k − 1.

The minimum number of 1’s belonging to an RTZ sequence is two. This is
because G1(D) is a polynomial with at least two nonzero terms, and equation 11.4
then guarantees that RTZ(D) also has at least two nonzero terms. The number of
1’s in a particular RTZ sequence is called the input weight and is denoted w. We
then have wmin = 2 for RSC codes, and the RTZ sequences with weight 2 are of



312 Turbo Processing

the general form

RTZw=2(D) = Dτ (1 + DpP

) mod (1 + Dk), (11.5)

where τ is the starting time, p any positive integer, and P the period of the encoder,
as previously introduced.

RTZ sequences with odd weight may either exist or not, depending on the
expression of G1(D). RTZ sequences with even weight always exist, especially of
the form

RTZw=2l(D) =
l−1∑
j=1

Dτj (1 + DpP
j ) mod (1 + Dk), (11.6)

that is, as a combination of l any weight-2 RTZ sequences, with τj and pj as
any positive integers. This sort of composite RTZ sequence has to be considered
closely when trying to design good permutations for turbo codes, as explained in
section 11.5.

What we are searching for is a very long RSC code, having a large period P , in
order to take advantage of quasi-perfect random properties. But such codes cannot
be decoded, due to the too-large number of states to consider and to process. That
is why other forms of random-like codes, a little more sophisticated, have to be
devised.

11.3 Turbo Codes

In the previous section, we saw that the probability that any given sequence is an
RTZ sequence for a CRSC encoder is 1/2ν . Now, if we encode this sequence N

times (fig. 11.3 with ν = 3), each time in a different order and drawn at random
by permutation Πj (1 ≤ j ≤ N) (the first order may be the natural order), the
probability that the sequence remains RTZ for all encoders is lowered to 1/2Nν . For
example, with ν = 3 and N = 7, this probability is less than 10−6. This technique
is known as a multiple parallel concatenation of CRSC codes (Berrou et al., 1999).
Of course, to deal with realistic coding rates (around 1/2), some puncturing has
to be performed, that is, not all the redundant symbols Yj are used to form the
codeword. For instance, if R = 1/2, each component encoder provides only k/N

parity bits. If the message is not RTZ, after permutation Πj , the average weight of
sequence {Yj} is k

2N (assuming that every other bit in {Yj} is 1, statistically). This
guarantees a large distance when one permuted sequence, at least, is not RTZ.

Fortunately, it is possible to obtain quasi-optimum performance with only two
encodings (fig. 11.3), and this is a classical turbo code (Berrou et al., 1993). For bit
error rates (BERs) higher than around 10−5, the permutation may still be drawn
at random but, for lower rates, a particular effort has to be made in its design. The
way the permutation is devised fixes the MHD dmin of the turbo code, and therefore
the achievable asymptotic gain Ga offered by the coding scheme, according to the
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Figure 11.3 (a) In this multiple parallel concatenation of circular recursive sys-
tematic convolutional (CRSC) codes, the block containing k information bits is
encoded N times. The probability that the sequence remains of the return-to-zero
(RTZ) type after the N permutations, drawn at random (except the first one), is
very low. The properties of this multiconcatenated code are very close to those of
random codes. (b) The number of encodings can be limited to two, provided that
permutation Π is judiciously devised. This is a classical turbo code.

well-known approximation

Ga ≈ 10 log(Rdmin) (11.7)

The natural coding rate of a turbo code is R = 1/3. In order to obtain higher
rates, certain redundant symbols are punctured. For instance, Y1 and Y2 symbols
are transmitted alternately to achieve R = 1/2.

A particular turbo code is defined by the following parameters.

m, the number of bits in the input words. Applications known so far consider
binary (m = 1) and double-binary (m = 2) input words (see section 11.6).

The component codes C1 and C2 (code memory ν, recursivity and redundancy
polynomials). The values of ν are 3 or 4 in practice and the polynomials are generally
those that are recognized as the best for simple unidimensional convolutional
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coding, that is, (15,13) for ν = 3 and (23,35) for ν = 4, or their symmetric forms.

The permutation function, which plays a decisive role when the target BER is
lower than about 10−5. Above this value, the permutation may follow any law,
provided of course that it respects at least the scattering property (the permutation
may be the regular one, for instance).

The puncturing pattern. This has to be as regular as possible, like for simple
convolutional codes. In addition to this rule, the puncturing pattern is defined in
close relationship with the permutation function when very low errors rates are
sought for.

11.4 Turbo Decoding

Decoding a composite code by a global single process is not possible in practice,
because of the tremendous number of states to consider. A joint probabilistic process
by the decoders of C1 and C2 has to be elaborated, following a kind of divide-and-
conquer strategy. Because of local latency constraints, this joint process is worked
out in an iterative manner in a digital circuit. Analog versions of the turbo decoder
are also considered, offering several advantages, as explained in section 11.7.

Turbo decoding relies on the following fundamental criterion, which is appli-
cable to all so-called message-passing or belief-propagation algorithms (McEliece
et al., 1998):
When having several probabilistic machines work together on the estimation of a

common set of symbols, all the machines have to give the same decision, with the

same probability, about each symbol, as a single (global) decoder would.

To make the composite decoder satisfy this criterion, the structure of fig. 11.4
is adopted. The double loop enables both component decoders to benefit from the
whole redundancy.

The components are soft-in-soft-out (SISO) decoders, permutation Π and in-
verse permutation Π−1 memories. The node variables of the decoder are logarithms
of likelihood ratios (LLRs), also simply called log-likelihood ratios. An LLR related
to a particular binary datum di (0 ≤ i ≤ k−1) is defined, apart from a multiplying
factor, as

LLR(di) = ln
(

Pr(di = 1)
Pr(di = 0)

)
. (11.8)

The role of a SISO decoder is to process an input LLR and, thanks to local
redundancy (i.e., y1 for DEC1, y2 for DEC2), to try to improve it. The output
LLR of a SISO decoder, for a binary datum, may be simply written as

LLRout(di) = LLRin(di) + z(di), (11.9)

where z(di) is the extrinsic information about di, provided by the decoder. If this
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Figure 11.4 An 8-state turbo code (a) and its associated decoder (b), with a basic
structure assuming no delay processing.

works properly, z(di) is most of the time negative if di = 0, and positive if di = 1.
The composite decoder is constructed in such a way that only extrinsic terms

are passed by one component decoder to the other. The input LLR to a particular
decoder is composed of the sum of two terms: the information symbols (x) stemming
from the channel, also called the intrinsic values, and the extrinsic terms (z)
provided by the other decoder, which serve as a priori pieces of information. The
intrinsic symbols are inputs common to both decoders, which is why extrinsic
information does not contain them. In addition, the outgoing extrinsic information
does not include the incoming extrinsic information, in order to minimize correlation
effects in the loop. The subtractors in fig. 11.4 are used to remove intrinsic and
extrinsic information from the feedback loops. Nevertheless, because the blocks
have finite length, correlation effects between extrinsic and intrinsic values may
exist and degrade the decoding performance.

The practical course of operation is:
Step 1: process the data peculiar to one code, say C2 (x and y2), by decoder DEC2,
and store the extrinsic pieces of information (z2) resulting from the decoding in a
memory. If data are missing because of puncturing, the corresponding values are
set to analog 0 (neutral value).
Step 2: process the data specific to C1 (x, deinterleaved z2 and y1) by decoder
DEC1, and store the extrinsic pieces of information (z1) in a memory. By properly
organizing the read/write instructions, the same memory can be used for storing
both z1 and z2.
Steps 1 and 2 make up the first iteration.
Step 3: process C2 again, now taking interleaved z1 into account, and store the
updated values of z2.
And so on.
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The process ends after a preestablished number of iterations, or after the
decoded block has been estimated as correct, according to some stop criterion (see
Matache et al., 2000, for possible stopping rules). The typical number of iterations
for the decoding of convolutional turbo codes is four to ten, depending on the
constraints relating to complexity, power consumption, and latency.

According to the structure of the decoder, after p iterations, the output of
DEC1 is

LLRout1,p(di) = (x + z2,p−1(di)) + z1,p(di),

where zu,p(di) is the extrinsic piece of information about di, yielded by decoder u

after iteration p, and the output of DEC2 is

LLRout2,p(di) = (x + z1,p−1(di)) + z2,p(di).

If the iterative process converges toward fixed points, z1,p(di) − z1,p−1(di) and
z2,p(di) − z2,p−1(di) both tend to zero when p goes to infinity. Therefore, from the
equations above, both LLRs become equal, which fulfills the fundamental condition
of equal probabilities provided by the component decoders for each datum di. As
for the proof of convergence itself, one can refer to various papers dealing with the
theoretical aspects of the subject, such as Weiss and Freeman (2001) and Duan
and Rimoldi (2001). An important tool for the analysis of convergence is the EXIT
chart (ten Brink, 2001). EXIT, which stands for extrinsic information transfer,
considers both SISOs decoders in the turbo decoder as nonlinear transfer functions
of extrinsic information, in a statistical way.

Turbo decoding is not optimal. This is because, during the first half-iteration,
an iterative process has obviously to begin with only a part of the redundant
information available (either y1 or y2). Furthermore, correlation effects between
noises affecting intrinsic and extrinsic terms may be detrimental. Fortunately, loss
due to suboptimality is small, about some tenths of one dB.

There are two families of SISO algorithms, those based on the Viterbi algo-
rithm (Battail, 1987; Hagenauer and Hoeher, 1989), which can be used for high-
throughput continuous-stream applications; the others based on the APP (a pos-
teriori probability, also called MAP or BCJR) algorithm (Bahl et al., 1974) or
its simplified derived versions (Robertson et al., 1997) for block decoding. If the
full APP algorithm is chosen, it is better for extrinsic information to be expressed
by probabilities instead of LLRs, which avoids calculating a useless variance for
extrinsic terms.

In practice, depending on the kind of SISO algorithm chosen, some tuning
operations (multiplying, limiting) on extrinsic information are added to the basic
structure to ensure stability and convergence within a small number of iterations.
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11.5 Permutation

In a turbo code, permutation plays a double role:

1. It must ensure maximal scattering or spreading of adjacent bits, in order to
minimize the correlation effects in the message passing between the two component
decoders.

2. It contributes greatly to the value of the MHD. Between a badly designed and
a well-designed permutation, the MHD may differ by a factor of 2 or 3.

Let us consider the binary turbo code represented in fig. 11.4, with permutation
falling on k bits. The worst permutation we can imagine is permutation identity,
which minimizes the coding diversity (i.e., Y1 = Y2). On the other hand, the best
permutation that could be used, but which probably does not exist (Svirid, 1995),
could allow the concatenated code to be equivalent to a sequential machine whose
irreducible number of states would be 2k+6. There are actually k+6 binary storage
elements in the structure, k in the permutation memory and 6 in the encoders.
Assimilating this machine to a convolutional code would give a very long code and
very large minimum distances, for usual values of k. From the worst to the best of
permutations, there is great choice between the k! possible combinations, and we
still lack a sound theory about this. Nevertheless, good permutations have already
been designed to elaborate normalized turbo codes using pragmatic approaches.

11.5.1 Regular Permutation

Maximum spreading (criterion 1 above) is achieved by regular permutation. For a
long time, regular permutation was almost exclusively seen as rectangular (linewise
writing and columnwise reading in an ad hoc memory, fig. 11.5). When using CRSC
codes as the component codes of a turbo code, circular permutation, based on
congruence properties, is more appropriate. Circular permutation, for blocks having
k information bits (fig. 11.5), is devised as follows. After writing the data in a linear
memory, with address i (0 ≤ i ≤ k − 1), the block is likened to a circle, both
extremities of the block (i = 0 and i = k − 1) then being contiguous. The data are
read out such that the jth datum read was written at the position i given by

i = Π(j) = Pj mod k,

where the skip value P is an integer, relatively prime with k.
We define the total spatial distance (or span) S(j1,j2) as the sum of the two

spatial distances, before and after permutation, for a given pair of positions j1 and
j2:

S(j1, j2) = f(j1, j2) + f(Π(j1),Π(j2)), (11.10)
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Figure 11.5 Rectangular (a) and circular (b) permutation.

where

f(u, v) = min{|u − v|, k − |u − v|}. (11.11)

Finally, we denote Smin the minimum value of S(j1,j2) for all possible pairs j1 and
j2:

Smin = min
j1,j2

{S(j1, j2)}. (11.12)

With regular permutation, the value of P that maximizes Smin (Boutillon and
Gnaedig, 2005) is

P0 =
√

2k, (11.13)

with the condition:

k =
P0

2
mod P0, (11.14)

which gives:

Smin = P0 =
√

2k. (11.15)

In practice, to comply as far as possible with the criterion of maximum total spatial
distance, P is chosen as an integer close to P0, and prime with k.

11.5.2 Real Permutations

Let us recall that a decoder of an RSC code is only sensitive to error sequences of
the RTZ type, as introduced in section 11.2. Then, real permutations have to best
satisfy the following ideal rule:
If a sequence is RTZ before permutation, then it is not RTZ after permutation,

and vice versa.
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In this case, at least one of the component decoders in fig. 11.4 is able to recover
from the errors. But the previous rule is impossible to comply with, and a more
realistic target is this one:
If a sequence is short RTZ before permutation, then either it is not RTZ or it is

long RTZ after permutation, and vice-versa.

The dilemma in the design of a good permutation lies in the need to satisfy
this practical rule for two distinct classes of codewords, which require conflicting
treatment. The first class contains all nonzero codewords (again with reference to
the “all zero” codeword) that are not combinations of simple RTZ sequences, and
a good permutation for this class is as regular as possible, which ensures maximum
spreading. This type of sequence has low input weight (w ≤ 3).

M
rows

N columns

00...001000000100...00

1101

1101
0000
0000
0000
0000
0000
0000
1101

1101
1101
0000
1101

(a)

(c)

(b)

X

Y1

Y2

data

    regular
permutation
       on
k = M.N bits

C1

C2

0 0

0 0

0 00

Figure 11.6 Some possible RTZ (return to zero) sequences for both encoders C1

and C2, with G1(D) = 1 + D + D3 (period L = 7). (a) With input weight w = 2; (b)
with w = 3, (c) with w = 6 or 9.

The second class encompasses all codewords that are combinations of simple
RTZ sequences, and nonuniformity (controlled disorder) has to be introduced
into the permutation function to obtain a large MHD. Figure 11.6 illustrates the
situation, showing the example of a 1/3 rate turbo code, using component binary
encoders with code memory ν = 3 and periodicity L = 2ν − 1 = 7. For the sake
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of simplicity, the block of k bits is organized as a rectangle with M rows and N

columns (M ≈ N ≈
√

k). Regular permutation is used, that is, data are written
linewise and read columnwise.

Figure 11.6a depicts a situation where encoder C1 (the horizontal one) is fed
by an RTZ sequence with input weight w = 2. Redundancy Y1 delivered by this
encoder is poor, but redundancy Y2 produced by encoder C2 (the vertical one) is
very informative for this pattern, which is also an RTZ sequence but whose span is
7M instead of 7. The associated MHD would be around 7M

2 , which is a large value
for typical sizes k. With respect to this w = 2 case, the code is said to be “good”
because dmin tends to infinity when k tends to infinity.

Figure 11.6b deals with a weight-3 RTZ sequence. Again, whereas the contri-
bution of redundancy Y1 is not high for this pattern, redundancy Y2 gives relevant
information over a large span, of length 3M . The conclusions are the same as for
the above case.

Figure 11.6c shows two examples of sequences with weights w = 6 and w =
9, which are RTZ sequences for encoder C1 as well as for encoder C2. They are
obtained by a combination of two or three minimal-length RTZ sequences. The
weight of redundant bits is limited and depends neither on M nor on N . These
patterns are typical of codewords that limit the MHD of a turbo code when using
a regular permutation.

In order to “break” rectangular patterns, some disorder has to be introduced
into the permutation rule while ensuring that the good properties of regular permu-
tation, with respect to low weights, are not lost. This is the crucial problem in the
search for good permutation, which has not yet found a definitive answer. Never-
theless, some good permutations have already been devised for recent applications,
e.g., Technical Specification Groups, IMT-2000 (3GPP, 1999; TIA/EIA/IS, 1999),
and DVB (, DVB,D)). Further details about non-regular permutations can be found
in Crozier and Guinand (2003) and Berrou et al. (2004).

11.6 Applications of Turbo Codes

Depending on the constraints imposed by the application (performance, through-
put, latency, complexity, etc.), error correction codes can be divided into many
families. We will consider here three domains, related to error rates:

Medium error rates (corresponding roughly to 10−2 > BER > 10−6 or 1 > FER >

10−4):
This is typically the domain of automatic repetition request (ARQ) systems and is
also the more favorable level of error rates for turbo codes. To achieve near-optimum
performance, eight-state component codes are sufficient. Figure 11.7 depicts the
practical binary turbo code used for these applications and coding rates equal
to or lower than 1/2. For higher rates, the double-binary turbo code of figure
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Figure 11.7 The four turbo codes used in practice. (a) 8-state binary, (b) 8-state
double-binary, both with polynomials 15, 13 (or their symmetric form 13, 15), (c)
16-state binary, (d) 16-state double-binary, both with polynomials 23, 35 (or their
symmetric form 31, 27). Binary codes are suitable for rates lower than 1/2, double-
binary codes for rates higher than 1/2.

11.7 is preferable (Berrou and Jézéquel, 1999). For each of them, one example
of performance, in frame error rate (FER) as a function of signal-to-noise ratio
Eb/N0, is given in fig. 11.8 (UMTS: R = 1/3, k = 640 and DVB-RCS: R = 2/3, k

= 1504).

Low error rates (10−6 > BER > 10−11 or 10−4 > FER > 10−9):
sixteen-state turbo codes perform better than eight-state ones, by about 1 dB, for
an FER of 10−7 (see fig. 11.8). Depending on the sought-for compromise between
performance and decoding complexity, one can choose either one or the other.
Figures 11.7d and 11.7d depict the 16-state turbo codes that can be used, the
binary one for low rates, the double-binary one for high rates. In order to obtain
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Eb/N0 (dB)
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10-7

10-1

10-2

1 2 3 4 5

8-PSK, 16-state double-binary,
R = 2/3, 1504 bits,
pragmatic coded modulation

QPSK, 16-state double-binary,
R = 2/3, 1504 bits

QPSK, 8-state double-binary,
R = 2/3, 1504 bits

QPSK, 8-state binary,
R = 1/3, 640 bits

Figure 11.8 Some examples of performance, expressed in FER, achievable with
turbo codes on Gaussian channels. In all cases: decoding using the Max-Log-APP
algorithm with 8 iterations and 4-bit input quantization.

good results at low error rates, the permutation function must be very carefully
devised.
An example of performance, provided by the association of 8-PSK (phase-shift-
keying) modulation and the turbo code of fig. 11.7d, is also plotted in fig. 11.8, for
k = 1, 054 and a spectral efficiency of 2 bit/s/Hz. This association is made according
to the pragmatic approach, that is, the codec is the same as the one used for binary
modulation. It just requires binary-to-octary conversion, at the transmitter side,
and the converse at the receiver side.

Very low error rates (10−11 > BER or 10−9 > FER):
The largest minimum distances that can be obtained from turbo codes, for the
time being, are not sufficient to prevent a slope change in the BER(Eb/N0) or
FER(Eb/N0) curves, at very low error rates. Compared to what is possible today,
an increase of MHDs by roughly 25% would be necessary to make turbo codes
attractive for this type of application, such as optical transmission or mass storage
error protection.

Table 11.1 summarizes the normalized applications of convolutional turbo
codes, known to date. The first three codes of fig. 11.8 have been chosen for these
various systems.
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Table 11.1 Current Known Applications of (Convolutional) Turbo Codes

Application Turbo Code Termination Polynomials Rates

CCSDS
(deep space)

binary,
16-state

tail bits 23, 33, 25, 37 1/6, 1/4,
1/3, 1/2

UMTS, CDMA2000
(3G mobile)

binary,
8-state

tail bits 13, 15, 17 1/4, 1/3,
1/2

DVB-RCS
(Return channel over
satellite)

double-binary,
8-state

circular 15, 13 1/3 up to
6/7

DVB-RCT
(Return channel over
terrestrial)

double-binary,
8-state

circular 15, 13 1/2, 3/4

Inmarsat (M4) binary,
16-state

no 23, 35 1/2

Eutelsat (Skyplex) double-binary,
8-state

circular 15, 13 4/5, 6/7

IEEE 802.16
(WiMAX)

double-binary,
8-state

circular 15, 13 1/2 up to
7/8

11.7 Analog Turbo Processing

The ever-improving performance of A/D and D/A data converters coupled with
the achievements of the Moore’s law have resulted today in fully digital processing.
Thus, digital signal processors and other digital programmable devices have super-
seded the analog circuits traditionally used in telecommunications transceivers. The
only blocks that have not yet been totally replaced by digital counterparts are the
front-end blocks such as amplifiers and oscillators. One may ask if this tendency is
the most adapted to the design of some receiver functions, in particular error cor-
rection having to cope with spurious analog signal. From fig. 11.9, which represents
a generic digital transceiver, the following comments about the nature of the signal
through the chain can be made. First the data to send are processed by the channel
encoder, which adds redundant bits in order to make these data more resilient to
channel noise. The resulting digital signal is next modulated and up-converted using
a high-frequency carrier. This results in an analog signal that is transmitted over
the channel. As the signal propagates through the channel, it is altered by various
noise sources which are themselves analog (for example weather or electromagnetic
conditions, interference). On the receiver side the corrupted data are amplified and
down-converted in baseband. This is again analog processing. A crucial choice has
now to be made. Should the signal be digitized or should it remain analog? Should
it take a hard decision or a soft one? The loss of information due to the quantization
does not plead in favor of a digital solution. This explains the motivation of some
laboratories that propose the implementation of channel decoders in analog form
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(Hagenauer, 1997a; Lustenberger et al., 1999; Moerz et al., 2000). These studies
have not only proved the validity of the concepts but have also shown significant
gains in terms of speed, power consumption, and silicon area over digital solutions
(Gaudet and Gulak, 2003; Moerz et al., 2000).

Channel
Coding

Modulator

Power Amplifier

Low Noise Amplifier

Channel
Decoding

Demodulator
Down

Converter

Carrier

...0110110... Digital

Digital
or

Analog

Analog

AnalogAnalog...0110110...

Noisy Channel

Figure 11.9 Generic digital transceiver.

Historically, the analog implementation of error correction algorithms began
with some research on the soft-output Viterbi algorithm (SOVA) (Battail, 1987;
Hagenauer and Hoeher, 1989). Nevertheless the Viterbi algorithm does not easily
lend itself to analog implementation, for which the APP algorithm (Anderson and
Hladick, 1998; Bahl et al., 1974) is preferred. It uses only sum/product operators
and logarithm/exponential functions. The latter is necessary to convert probabilities
into log-likelihood ratios (LLR), as introduced in section 11.4, and vice versa. LLRs
are available at the output of a soft demodulator such as that described in Seguin
et al. (2004). If X is a binary random variable and x its observation, the LLR is
defined by

LLR(X) = ln
(

Pr(X = 1|x)
Pr(X = 0|x)

)
. (11.16)

The exponential and natural logarithm functions are readily available from a bipolar
junction transistor (BJT) biased in the forward active region. The collector current
IC depends on base-emitter voltage VBE according to the well-known relation:

IC ≈ IS exp
(

VBE

UT

)
, (11.17)

where IS is the saturation current and UT the thermal voltage. When connected
as a diode (fig. 11.10a), the transistor produces a voltage V between collector and
emitter that depends on current I as

V ≈ UT ln
(

I

Is

)
. (11.18)

Associating a current with a probability, and a voltage with an LLR, it is thus
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Figure 11.10 Basic structures for analog decoders. (a) Diode connected bipolar
transistor; (b) Gilbert cell.

possible to convert LLRs into probabilities and probabilities into LLRs, by using
differential structures with transistors and diodes. Currents can also be easily added
or multiplied in order to satisfy the APP operations. The basic computing block
of the decoder is the well-known analog multiplier (fig. 11.10b) called the Gilbert

cell (Gilbert, 1968). This cell can convert LLRs into probabilities and multiply
them by each other at the same time. The collector currents of transistors Q3, Q4,
Q5, Q6 which represent information can also be summed at a certain node of the
circuit. When adding a diode to the collector of each transistor, information can be
reconverted into LLR form. Thus the APP algorithm can be implemented using a
BJT-based network that directly maps the code trellis.

11.7.1 Implementation of the APP Algorithm

The encoder, at time i (0 ≤ i ≤ k − 1), and the trellis section of an R = 1/2
four-state recursive systematic convolutional (RSC) code are depicted in fig. 11.11.
This trellis is assumed to be circular, that is, the states at the beginning and at the
end of the encoding are equal.

After receiving the LLRs stemming from the channel, the frame containing
n = 2k symbols is decoded by feeding the decoder inputs in parallel and by letting
the analog network converge toward a stable state. The topology of the circular
decoder is given in fig. 11.12. The on-chip network is the direct translation of the
APP algorithm (Anderson and Hladick, 1998). It is divided into as many sections
as the k information bits to decode. Each section is built from several modules:

a Γ module to compute the branch metrics,
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Figure 11.11 A 4-state RSC encoder with code rate R = 1/2. The input informa-
tion symbol X is transmitted together with the redundant symbol (parity bit) Y. A
trellis section is also shown, whose branches are labeled with the encoded symbols.

an A module to compute the forward metrics,

a B module to compute the backward metrics,

and a Dec module that takes a final hard decision on the value of the information
bit.

The input samples LLR(Xi) and LLR(Yi) are associated with the ith couple of
transmitted symbols Xi and Yi. The forward and backward metrics αi and βi+1 are
yielded, for each branch of the trellis, by the adjacent trellis sections. The outputs
of the section are the metrics αi+1 and βi, which are used as inputs to the adjacent
sections, as well as the hard decision d̂i. Moreover, in order to implement a turbo
decoder, an additional module—Extr—module is required to compute extrinsic
information LLRext(Xi). These values are then used as inputs for the Γ module of
another APP decoder.

As examples, the Γ and A modules of the four-state decoder are illustrated in
fig. 11.13. The branch metrics γ are directly obtained by using the outputs of the
Gilbert cell fed with the LLRs. Let αi(s) be the forward metric associated with the
state s of the ith section. Let γi(s′, s) be the branch metric between any state s′

of the ith section and one linked state s of the (i + 1)st section. Then the four
forward metrics of each section i between 0 and k − 1 are recursively computed as
follows:

αi+1(s) =
3∑

s′=0

αi(s′)γ(s′, s). (11.19)

Therefore, the Gilbert cell has to be extended to perform the four multiplications
and additions, as shown in fig. 11.13.

Note that the structures presented require relatively few transistors. This leads
to low silicon area and low power consumption, and opens up the way to fully
parallel processing. This later property is essential for the design of high-speed
decoders.
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Figure 11.12 Analog circular APP decoder. There are as many sections as in-
formation bits to decode. Each section is made up of modules related to the APP
algorithm operations.

11.7.2 The Next Step: The Analog Turbo Decoder

As a stand-alone decoder of a simple convolutional code, the APP algorithm does
not offer outstanding performance. However, once used in a turbo architecture
(Berrou et al., 1993), the APP algorithm reaches its full potential. As shown in
fig. 11.14, the two APP decoders exchange information (the so-called extrinsic in-
formation), through interleavers, on the reliability of the received data. In a digital
version of the turbo decoder, these exchanges are clocked, and the decoding process
is repeated as many times as necessary to reach a solution. The complexity and the
latency of the decoding process are proportional to the number of iterations, which
could be drawbacks for some applications. As can be easily seen, the turbo archi-
tecture is well suited for analog implementation since it is a simple feedback system
that does not require any internal clocking. In the analog version, the exchanges
of extrinsic information are continuous in time. This property, associated with the
high degree of parallelism mentioned previously, leads to potential throughput of
several Gbit/s, together with low complexity and latency.

To give an example, the architecture of a complete DVB-RCS turbo decoder (,
DVB) was simulated using behavioral models. The decoding of the smallest frame
of this standard (48 double-binary symbols and rate 1/2) confirms the high capacity
of the analog turbo decoder (Arzel et al., 2004). Besides the gains in throughput,
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Figure 11.13 Transistor-level design of Γ and A modules.
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Figure 11.14 The analog turbo decoder.
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complexity, and latency, fig. 11.15 illustrates that analog decoding also yields a gain
in performance (about 0.1 dB for a BER of 10−4) compared to the digital version.
The equivalent digital circuit uses floating-point number representation and runs for
15 iterations, which provides maximum iterative performance. The analog decoder
performs better because it benefits from continuous time: there is no iteration but
continuous sharing of extrinsic information.
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Figure 11.15 Bit and frame error rate curves for the DVB-RCS double-binary
turbo code. Frames with k = 96 information bits and R = 1/2. Analog and digital
decoding simulation results are compared.

In conclusion, the ability of the analog decoder to use soft time, in addition to
soft input samples, enhances the error correction of turbo codes while increasing
data rates and reducing complexity and latency.

11.8 Other Applications of the Turbo Principle

For the sake of clarity we assume a point-to-point transmission with only one trans-
mitter and one receiver. However, this discussion can be extended to more complex
situations such as wireless broadcast transmission with a point-to-multipoint trans-
mission. This communication system involves different tasks. The aim of each task
can be different and sometimes contradictory but the system must globally address
the following problem: Transmit digital information over the propagation channel
with maximum rate and minimum error probability. Actually, the heart of this
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problem is the propagation channel because its physical nature always leads to a
limited available frequency bandwidth and a non-ideal frequency response. Con-
sequently, the channel corrupts the transmitted signal by introducing distortion,
noise disturbances, and other interference.

The general block diagram shown in fig. 11.16 depicts the basic elements of a
digital communications system. The source encoder converts the original message
into a sequence with as few binary bits as possible in order to save bandwidth and
to optimize the transmission rate. Unlike the source encoder, the channel encoder
adds redundancy to the compressed message to form codewords. As detailed in the
previous sections, the purpose of this function is to increase the reliability of the
transmitted data that will be distorted and impaired by the channel. Finally the
digital modulator converts the codewords into waveforms that are compatible with
the channel. At the receiver part the demodulator performs a conversion of the
waveforms into an analog-like sequence. This sequence is then fed to the decoder,
which attempts to reconstruct the compressed message from the constraints of
the code. Finally, the source decoder reconstructs the original message from the
knowledge of the source encoding algorithm.

The above description is in fact a simplified version of a digital communica-
tion system, and several other functions have been omitted. The functions in a
receiver can be classified into three categories: estimation, detection, and decoding
(fig. 11.17).

By estimation, we mean the estimation of certain channel parameters. Carrier

 Source
encoder

Channel
encoder

Modulator

Demodulator
 Source
decoder

Channel
decoder

Channel

Transmitted
   message

Received
message

Figure 11.16 Basic representation of a digital communications system.
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 Source
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Channel
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Demodulator
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Figure 11.17 A more detailed receiver.
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phase recovery, frequency offset estimation, timing recovery, and channel impulse
response estimation belong to this category. Detection involves all processing of
interference introduced by the channel such as intersymbol interference, multiple
access interference, cochannel interference, and multi-user interference. Whatever
the type of interference, the same mathematical models can be exploited and
algorithms based on identical structures and criteria can be derived. The data are
finally recovered by channel decoding.

In this conventional representation, each processing step is performed sepa-
rately. Detection and estimation modules ignore channel and source coding and
work as if the received symbols were mutually independent.

Information theory informs us that the maximum likelihood (ML) criterion
should be globally applied over the whole receiver in order to minimize the er-
ror probability, which is the final target. Unfortunately, with so many factors to
take into account, the complexity becomes prohibitive and the problem totally in-
tractable. Consequently, the optimal ML approach is never implemented in practice
and system engineers prefer the conventional receiver of fig. 11.17 despite its subop-
timality. Nevertheless, the loss of performance due to this suboptimality is kept as
low as possible thanks to the use of soft information. As already mentioned at the
beginning of this chapter, the process of making hard decisions discards a part (i.e.,
the magnitude, as an image of the reliability) of the inherent information present
in the received data. For instance, instead of making hard decisions, it is better for
the detector to deliver soft information to the decoder.

11.8.1 Feedback Process: The Answer to Suboptimality

Using soft information in the conventional receiver is not sufficient to reach the
same performance as that of the optimal ML receiver. The loss of performance
essentially comes from the fact that the tasks at the front of the receiver, typically
detection and estimation, do not benefit from the work of the channel decoder.

In a turbo decoder, this problem has been solved by introducing a feedback loop
between the component decoders. This loop enables a bidirectional exchange of soft
information between these decoders. Each decoder benefits from the work done by
the other. The turbo principle can also be applied to solve the suboptimality issue
of the conventional receiver. This approach was originally proposed by Douillard
et al. (1995) to jointly process equalization and decoding.

In a turbo receiver, an iterative process replaces the sequential process of the
conventional receiver of fig. 11.17. The received data are now processed several
times by the detector, the estimator, and the decoder. Each pass through the
estimation/detection/decoding scheme is called an iteration as in a turbo decoder.
The iterative receiver is illustrated in fig. 11.18. At the first iteration, the detection
and the estimation functions do not benefit from any a priori information about
the transmitted data. The soft information provided to the decoder is then the
same as in the conventional sequential receiver. In turn, the decoder provides
its own soft information for estimation/detection, creating a feedback loop. From
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the second iteration, this feedback information acts as a priori information for
estimation/detection that improves their results. Figure 11.18 also indicates a turbo
process between the channel decoder and the source decoder. In this situation,
constraints inherent to the source encoder may help the channel decoder work.

Detection
 Source
decoder

Channel
decoder

Received
message

Demodulator

Estimation

Channel  information

Figure 11.18 Illustration of a simplified turbo receiver. The permutation functions
are not represented.

Thus a turbo receiver involves the repetition of information exchanges a
number of times, the channel decoder playing a central role thanks to the amount
of redundancy it benefits from. If the SNR is not too bad, the turbo receiver
produces new and better estimates at each iteration. Nevertheless, this performance
improvement is bounded by the ML performance, which is impassable.

In section 11.5, the role and the importance of the permutation function were
emphasized. In the turbo receiver, permutations (which are not represented in
fig. 11.18) also play a crucial role by minimizing the correlation effects in consecutive
pieces of information exchanged by the different processors. In particular, an
appropriate permutation located after the decoder avoids the consequences of
possible residual error bursts.

The implementation of the turbo receiver assumes that all functions are able
to accept and deliver soft extrinsic information. In particular, the APP algorithm
is particularly well suited to the decoder, especially if it is a turbo decoder.

11.8.2 Probabilistic Detection and Estimation Algorithms

Actually, before the invention of turbo coding and decoding, probabilistic algo-
rithms with a priori probabilities for conventional detection or estimation tasks
were not needed and so, they were not known! Consequently, before implementing
an iterative process between estimation/detection and decoding tasks, probabilistic
algorithms for estimation and detection have to be elaborated. In fact, the APP al-
gorithm suits the problem of detection well, whereas the expectation maximization
(EM) algorithm (Moon, 1996), also a probabilistic algorithm, is more adapted to
the problem of estimation. Lots of iterative digital receivers are based on these two
algorithms, whose major advantage is optimality. Furthermore, iterative exchanges
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between detection, or estimation, and decoding can be implemented directly thanks
to a priori probabilities. However, these algorithms are computationally demand-
ing, and the resulting complexity of the receiver may become prohibitive. In this
situation, suboptimal alternatives are needed.

11.8.3 Suboptimal Algorithms

The principles of these alternatives were already known for conventional detection
and estimation. They are suboptimal because they are based on criteria other than
minimizing the error probability, such as minimizing the mean square error (min-
imum mean square error, MMSE) or maximizing the SNR. But these suboptimal
algorithms also lead to less complex implementations, often in the form of filter-
based structures. As these structures were traditionally used in the conventional
receiver of fig. 11.17, no a priori input was required. In order to exchange informa-
tion with the channel decoder, detection and estimation algorithms have to take
into account a priori probabilities and also deliver probabilities.

Two solutions have been considered in the literature to implement soft-in/soft-
out detectors and estimators. The first one involves modifying or adapting preex-
isting techniques. The second one is to derive totally new architectures.

Let us consider the first approach. The problem can be formulated as: How can
the a priori input sequence be utilized in a conventional estimation/detection algo-
rithm, whereas so far they only involved the processing of the received data? In fact,
several estimation or detection algorithms already use feedback of estimated data,
for example, the DFE (decision feedback equalizer) for combating intersymbol inter-
ference (Proakis, 2000) and the SIC (successive interference cancellation) receiver
for multi-user transmission (see Dai and Poor, 2002, for instance). An illustration
of these locked-up schemes is given in fig. 11.19. The loop generally involves hard
decisions on symbols, provided by a hard slicer, that are utilized to improve the esti-
mation/detection result. The derivation of the algorithms is generally based on the
assumption that the hard decisions fed back to the detection/estimation algorithm
correspond exactly to the transmitted symbols. In a turbo process, the decoder

Detection

Estimation

Channel
information

   Hard
decision

  From the
demodulator

Figure 11.19 Illustration of a conventional locked-up estimation/detection
scheme.
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can replace the hard slicer and now provide improved feedback information. The
detection or estimation algorithms are not modified and are still based on the as-
sumption of perfect feedback. As the channel decoder provides probabilities and the
detection/estimation algorithms symbol estimates, a mapper is needed between the
channel decoder and the estimation/detection algorithms. This mapper generates
an estimate of transmitted symbols from the a posteriori or extrinsic probabilities
provided by the decoder. This estimation is then directly used as feedback into the
suboptimal detection and estimation algorithms, as explained previously.

However, more potential gain is available if the assumption of perfect feedback
is dropped in the derivation of the algorithms. Indeed, the assumption of perfect
feedback in a turbo process is not valid since the data estimates are improved
iteration after iteration. Perfect feedback is achieved only when the convergence
of the turbo process is attained. Consequently, retaining the assumption of perfect
feedback in the derivation of the detection/estimation algorithms, as in the first
approach, generally leads to nonoptimal solution. A new derivation of the algorithm
becomes necessary. The derivation is still based on the initial suboptimal criteria,
MMSE for example. But, in addition, feedback decoder probabilities, replacing
the perfect feedback assumption, are introduced into the derivation. Very powerful
algorithms are thus derived, generally different from conventional algorithms and
often based on an interference canceller structure. Furthermore, they offer very
significant complexity advantages over probabilistic algorithms.

Iterative schemes based on well-designed suboptimal algorithms achieve very
good performance and can potentially lead to exactly the same performance bound
as iterative schemes based on probabilistic algorithms. The major difference is
the convergence speed. More iterations are sometimes necessary to achieve the
performance bound.

In conclusion, the turbo principle has found numerous applications in commu-
nication receivers. It has proved its capacity to achieve performance very close to
that of the ML receiver, while requiring significantly reduced complexity.

11.8.4 Further References

Because the literature in the domain of turbo receivers is huge, we will restrict
references to pioneering papers or overview papers.

As already mentioned, the turbo principle was extended for the first time to
the problem of joint equalization and decoding in 1995 (Douillard et al., 1995).
This new turbo receiver, called a turbo detector, was based on an APP equalizer
and an APP channel decoder, and demonstrated quasi-optimal performance. The
second successful attempt concerned coded modulation. Robertson and Wörz (1996)
introduced an efficient coding scheme for high-order modulations based on the
parallel concatenation of Ungerboeck codes (Ungerboeck, 1982). This technique,
named turbo trellis coded modulation (TTCM), provides good performance on
AWGN channels.
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Later, Glavieux et al. (1997) proposed a low complexity version of a turbo
equalizer based on adaptive MMSE filters . For the first time, a nonprobabilistic
algorithm was introduced into a turbo receiver. Here, a priori information is taken
into account in the filter coefficient computation thanks to an adaptive algorithm
such as the least mean square (LMS) algorithm. At the same time, Hagenauer
introduced the “turbo” principle, extending this concept to several tasks in a
communication system: joint source and channel decoding, coded modulation, and
multi-user detection (Hagenauer, 1997b).

Following these pioneering works, a huge number of papers was then devoted
to the turbo principle. For instance, a bit-interleaved coded modulation (BICM)
turbo decoder for ergodic channels has been proposed by ten Brink et al. (1998)
and Chindapol et al. (1999) independently. This technique, called iterative demap-
ping or BICM-ID (iterative decoder), is based on a feedback loop between the
demapper, which computes LLRs, and the channel decoder. The a priori informa-
tion provided by the decoder is used in the soft demapper to remove the assumption
of independent and identically distributed coded bits. This technique needs non-
Gray mapping in order to provide performance gains.

In the domain of synchronization, Langlais and Hélard (2000) have addressed
the problem of carrier phase recovery for turbo decoding at low SNRs, by using
tentative decisions from the first component decoder in the carrier phase recovery
loop. As this system does not exploit the iterative structure of the turbo decoder,
Lottici and Luise (2002) then developed a carrier phase recovery embedded in turbo
decoding. Recently, Barry et al. (2004) have proposed an overview of methods for
implementing timing recovery with turbo decoding.

In the past few years many significant developments have arisen in the field of
iterative multi-user detection. A number of references can be found in the paper by
Poor (2004). Finally, the turbo principle can also be applied to multiple-antenna
detection as in MIMO (multi-input multi-output) systems. The famous BLAST
system from Bell Labs has thus been transposed in a turbo receiver, in which the
multi-antenna detector exchanges information with the channel decoder (Haykin
et al., 2004). Optimal and suboptimal multiple-antenna detectors are also presented,
leading to various implementation complexities.





12 Blind Signal Processing Based on Data
Geometric Properties

Konstantinos Diamantaras

12.1 Introduction

Blind signal processing deals with the outputs of unknown systems excited by
unknown inputs. At first sight the problem seems intractable, but a closer look
reveals that certain signal properties allow us to extract the inputs or to identify
the system up to some, usually not important, ambiguities. Linear systems are
mathematically most tractable and, naturally, they have attracted most of the
attention. Depending on the type of the linear system, blind problems arise in a wide
variety of applications, for example, in digital communications (Diamantaras and
Papadimitriou, 2004a,b; Diamantaras et al., 2000; Godard; Papadias and Paulraj,
1997; Paulraj and Papadias, 1997; Shalvi and Weinstein, 1990; Talwar et al., 1994;
Tong et al., 1994; Torlak and Xu, 1997; Treichler and Agee, 1983; Tsatsanis and
Giannakis, 1997; van der Veen and Paulraj, 1996; van der Veen et al., 1995; Yellin
and Weinstein, 1996), in biomedical signal processing (Choi et al., 2000; Cichocki
et al., 1999; Jung et al., 1998; Makeig et al., 1995, 1997; McKeown et al., 1998;
Vigário et al., 2000), in acoustics and speech processing (Douglas and Sun, 2003;
Parra and Spence, 2000; Parra and Alvino, 2002; Shamsunder and Giannakis,
1997), etc. Many recent books on the subject (Cichocki and Amari, 2002; Haykin,
2001a,b; Hyvärinen et al., 2001) provide extensive discussion on related problems
and methods.

The most general finite, linear, time invariant (LTI) system is expressed by
a multichannel convolution of length L, operating on a discrete vector signal
s(k) = [s1(k), · · · , sn(k)]T ,

x(k) =
L−1∑
i=0

Hi s(k − i). (12.1)

The FIR filter taps Hi are complex matrices, in general, of size m×n, m ≥ 1. Thus
the output is an m-dimensional complex vector x(k). For n, m > 1, equation 12.1
describes a linear, discrete, multi-input multi-output (MIMO) system.
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12.1.1 Types of Mixing Systems

We shall study two special cases of system 12.1 sharing many similarities but also
having some special characteristics as described below:

Instantaneous Mixtures: In this case we have more than one source and more than
one observation, i.e., m, n > 1, but there is no convolution involved, so L = 1. The
output vector is produced by a linear, instantaneous transformation:

x(k) = Hs(k). (12.2)

This type of system is also called memoryless.

Single-Input Single-Output (SISO) Convolution: In this case we have exactly
one source and one observation, so m, n = 1, but the convolution is nontrivial,
i.e., L > 1.

x(k) =
L−1∑
i=0

hi s(k − i). (12.3)

equation 12.3 describes a linear, SISO FIR filter.

12.1.2 Types of Blind Problems

Regardless of the specific system type, there are two kinds of blind problems which
are of interest here, depending on whether we desire to extract the input signals or
the system parameters.

Blind Source Extraction: In this type of problem our goal is to recover the source(s)
given the observation signal x(k) or x(k). If there are more than one source the
problem is called blind source separation (BSS). In the case of BSS the linear system
may be either instantaneous or convolutive (general MIMO). In the case of blind

deconvolution (BD) we want to invert a linear filter which, of course, operates on its
input via the convolution operator, hence the name deconvolution attributed to this
problem. The problem is very important, for example, in wireless communications,
where n transmitted signals corrupted by intersymbol interference (ISI), multi-user
interference (MUI), and noise are received at m antennas.
The source separation/extraction problem has an inherent ambiguity in the order
and the scale of the sources: the original signals can not be retrieved in their original
order or scale unless some further information is available. For example, if the
source samples (symbols) are drawn from a known finite alphabet then there is no
ambiguity in the scale. If however, the alphabet is symmetric with respect to zero,
then there exists a sign ambiguity since both signals s(k) and −s(k) are plausible.
Furthermore, the ordering ambiguity is always present if the problem involves more
than one source.
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Blind System Identification: In this type of problem our goal is to obtain the system
parameters rather than recovering the source signals. If the system is memoryless
then our goal is to recover the mixing matrix H. If the system involves nontrivial
convolution then the goal is to extract the filter taps h0, . . . , hL−1, or H0, . . . ,HL−1.

12.1.3 Approaches to Blind Signal Processing

Typically, blind problems are approached either using statistical properties of the
signals involved, or exploiting the geometric structure of the data constellation, as
described next.

Higher-Order Methods: According to the central limit theorem, the system
output—which is the sum of many input samples—will approach the Gaussian
distribution, irrespective of the input distribution. A characteristic property of the
Gaussian distribution is that all higher-order cumulants (for instance, the kurtosis)
are zero. If the inputs are not normally distributed, their higher-order cumulants
will be nonzero, for example positive, and so equation 12.1 will work as a “cumu-
lant reducer.” Clearly, the blind system inversion—the linear transform that will
recover the sources from the output—should function as a “cumulant increaser,”
i.e., it should maximize the absolute cumulant value for a given signal power. In
fact, this is the basic idea behind all higher-order methods.

1. Second-Order Methods: Alternatively, second-order methods can be applied when
the sources have colored spectra, regardless of their distribution. If the source
colors are not identical then the time-delayed covariance matrices have a certain
eigenvalue structure which reveals the mixing operator, in the memoryless case.
This information can be used for recovering the sources as well. In the dynamic
case, things are more complicated, although, again, second-order methods have
been proposed based on the statistics of either the frequency or the time domain.

2. A Third Approach: Exploiting The Signal Geometry: Neither higher-order nor
second-order methods exploit the cluster structure or shape of the input data when
such a structure or shape exists. Consider for example a source signal s(k) whose
samples are drawn from a finite alphabet AM = {±1, · · · ± (M/2)} (M= even).
Let the SISO FIR filter described in equation 12.3 be excited by s(k). Writing N

equations (N ≥ L) of the form (in equation 12.3) for N consecutive values of k, we
obtain the following matrix equation:⎡⎢⎢⎢⎢⎢⎣

x(k)

x(k + 1)
...

x(k + N − 1)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
s(k) s(k − 1) · · · s(k + 1 − L)

s(k + 1) s(k) s(k + 2 − L)
...

...
...

s(k + N − 1) s(k + N − 2) · · · s(k + N − L)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
h0

h1
...

hL−1

⎤⎥⎥⎥⎥⎥⎦
(12.4)

x = Sh (12.5)
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where the N × L Toeplitz matrix S involves (N + L − 1) unknown input symbols.
It is possible, in principle, to identify h in a deterministic way by an exhaustive
search over all MN+L−1 possible S’s such that minh ‖x − Sh‖2 = 0. Although it
is highly impractical, this observation tells us that there is more to blind signal
processing than statistical processing. If the sources, for example, have a certain
structure which produces clusters in the data cloud, or the input distribution is
bounded (e.g., uniform), then one can exploit the geometric properties of the output
constellation and derive fast and efficient deterministic algorithms for blind signal
processing. These methods are treated in this chapter. In particular, section 12.2
discusses blind methods for systems with finite alphabet sources. The discussion
covers both the instantaneous and the convolutive mixtures and it is based on the
geometric properties of the data cloud. Section 12.3 discusses the case of continuous-
valued sources that are either sparse or have a specific input distribution, for
example, uniform. Our discussion on continuous sources covers only the case of
instantaneous systems. Certainly there is a lot of room for innovation along this
line of research since many issues, today, remain open.

12.2 Finite Alphabet Sources

Blind problems involving sources with finite alphabets (FA) have drawn a lot of at-
tention, because such types of signals are common in digital communications. Pop-
ular modulation schemes, for instance, quadrature amplitude modulation QAM),
pulse amplitude modulation (PAM) and binary phase-shift keying (BPSK), pro-
duce signals with limited numbers of symbols. A large body of literature exists on
the instantaneous mixture problem, not only because it is the simplest one but also
because most methods dealing with the more realistic convolutive mixture prob-
lem lead to the solution of an instantaneous problem. In Anand et al. (1995), the
blind separation of binary sources from instantaneous mixtures is approached using
separate clustering and bit-assignment algorithms. An extension of this method is
presented in Kannan and Reddy (1997), where a maximum likelihood (ML) estimate
of the cluster centers is provided. Talwar et al. (1996) presented two iterative least-
squares methods: ILSP (iterative least squares with projection) and ILSE (iterative
least squares with enumeration) for the BSS of binary sources. The same problem
is treated in van der Veen (1997), where the real analytical constant modulus algo-
rithm (RACMA) is introduced based on the singular value decomposition (SVD) of
the observation matrix. In Pajunen (1997), an iterative algorithm is proposed for
the blind separation of more binary sources than sensors. Finite alphabet sources
and instantaneous mixtures are discussed in Belouchrani and Cardoso (1994) where
a ML approach is proposed using the EM algorithm. Grellier and Comon (1998)
introduce a polynomial criterion and a related minimization algorithm to separate
FA sources. In all the above methods the geometric properties of the data cloud
are not explicitly used. Geometrical concepts, such as the relative distances be-
tween the cluster centers, were introduced in Diamantaras (2000) and Diamantaras
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and Chassioti (2000). It turns out that just one observation signal is sufficient for
blindly separating n binary sources, in the noise-free case, under mild assumptions.
A similar algorithm based on geometric concepts was later proposed in Li et al.
(2003).

In this section we shall study the geometric structure of data constellations
generated from linear systems operating on signals with finite alphabets. We’ll find
that the geometry of the obtained data cloud contains information pertaining to
the generating linear operator. This information can be exploited either for the
blind extraction of the system parameters or for the blind retrieval of the original
sources.

12.2.1 Instantaneous Mixtures Of Binary Sources

The simplest alphabet is the two-element set, or binary alphabet Aa = {−1, 1}. We
shall assume that the samples of some source signals are drawn from Aa, and the
signals will be called binary antipodal or, simply, binary. In digital communications
the carrier modulation scheme using symbols from Aa is called binary phase-shift
keying (BPSK). The reader is encouraged to verify that our results can be easily
generalized to any type of binary alphabet, for example, the nonsymmetric set
Ab = {0, 1}.

In this subsection we shall concentrate on problem type 1, i.e., on linear
memoryless mixtures of many sources, n > 1. Depending on the number of output
signals (observations) m, we treat three distinct cases: m = 1; m = 2; and m > 2.

12.2.1.1 A Single Mixture

The instantaneous mixture of n sources linearly combined into a single observation
is described by the following equation:

x(k) =
n∑

i=1

hi si(k) = hT s(k), (12.6)

h = [h1 · · ·hn]T , s(k) = [s1(k) · · · sn(k)]T .

We assume that the mixing coefficients hi are real and that si(k) ∈ Aa. If the
coefficients are complex, then the problem corresponds to the case m = 2, which is
treated later. We start by studying the noise-free system since our primary interest
is to investigate the structural properties of the signals and not to develop methods
to combat the noise. Of course, eventually, the development of a viable algorithm
will have to deal with the noise issue.
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Equation 12.6 can be seen as the projection x̃(k) of s(k) along the direction of
the normal vector h̃, scaled by ‖h‖:

x(k) = ‖h‖ x̃(k), (12.7)

x̃(k) = h̃T s(k), (12.8)

h̃ = h/‖h‖. (12.9)

The set of values of x(k) will be called the constellation of x(k) and it will be
denoted by X . It is a set of (at most) 2n points in 1-D space, R.

In order to facilitate our understanding of the geometric structure of X ,
let us start by assuming that there are only n = 2 sources. Thus, there existtwo sources
four possible realizations of the vector s(k), which form the source constellation
S = {s−−, s−+, s+−, s++}, where

s−− = [−1,−1]T , s−+ = [−1, 1]T , s+− = [1,−1]T , and s++ = [1, 1]T .

Consequently, the output constellation X also consists of four distinct values:

x−− = ‖h‖ x̃−− = hT s−−,

x−+ = ‖h‖ x̃−+ = hT s−+,

x+− = ‖h‖ x̃+− = hT s+−,

x++ = ‖h‖ x̃++ = hT s++.

Figure 12.1 shows the projections x̃−−, x̃−+, x̃+−, x̃++, of the source constellation
S for four different normal mixing vectors h̃. It is obvious that the relative distance
between the points on the projection line is a function of the angle θ between the
projection line and the horizontal axis. Apparently, the problem involves a lot of
symmetry. In particular, it is straightforward to verify that we obtain the same
output constellation X for the angles ±θ, ±(π/2 − θ), ±(π − θ), and ±(3π/2 − θ),
(any θ). This multiple symmetry is the result of the interchangeability of the two
sources, s1 and s2, as well as the invariance of the source constellation to sign
changes. These ambiguities are, however, acceptable, since it is not possible to
recover the original source order or the original source signs. Both the source order
and the sign are unobservable as it is eminent from the following relations:

x(k) = [±h1,±h2] [±s1(k),±s2(k)]T ,

= [±h2,±h1] [±s2(k),±s1(k)]T .

Therefore, let us assume, without loss of generality, that the mixing vector h

satisfies the following constraint

h1 > h2 > 0. (12.10)

Under this assumption, the elements of X are ordered:

x−− = −h1 − h2 < x−+ = −h1 + h2 < x+− = +h1 − h2 < x++ = +h1 + h2.

(12.11)
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Figure 12.1 The source constellation (circles) of two independent binary sources
is projected on four different directions. The relative distances of the projection
points (marked by squares) is clearly a function of the slope of the projection line.

Indeed, the first and third inequalities in 12.11 are obvious since the mixing
coefficients are positive. The second inequality is also true since x+− − x−+ =
2(h1 − h2) > 0.

Thus, by clustering the (observable) output sequence {x(1), x(2), x(3), · · · } we
obtain four cluster points c1, c2, c3, c4, which can be arranged in increasing order
and set into one-to-one correspondence with the elements of X .

c1 = x−− < c2 = x−+ < c3 = x+− < c4 = x++ (12.12)

c1 = −c4; c2 = −c3 .

Then using equation 12.11 we can recover the mixing parameters:

h1 = (c3 − c1)/2, (12.13)

h2 = (c2 − c1)/2. (12.14)
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Example 12.1
Figure 12.2 shows the position of the cluster points c1, . . . , c4, for the random mixing
vector h = [0.9659, 0.2588]T . According to equations 12.11 and 12.12, these cluster
points are

c1 = x−− = −1.2247

c2 = x−+ = −0.7071

c3 = x+− = 0.7071

c4 = x++ = 1.2247

.

By computing the distances between the pairs (c3, c1) and (c2, c1), we obtain directly
the unknown mixing parameters:

(c3 − c1)/2 = 0.9659 = h1

(c2 − c1)/2 = 0.2588 = h2
.
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Figure 12.2 The distances c3–c1 and c2–c1 between the cluster points are equal to
twice the size of the unknown mixing parameters.

If our aim is to identify the mixing parameters h1, h2, then equations 12.13 and
12.14 have achieved our goal. If, in addition, we want to extract the hidden sources
then we may estimate each input sample s(k), separately, by finding the binary
vector b = [b1, b2]T ∈ A2

a, so that hT b best approximates x(k). This corresponds
to the following binary optimization problem,

ŝ(k) = arg min
b∈A2

a

|x(k) − hT b|, for all k. (12.15)

Luckily the above optimization problems are decoupled, for different k, and there-
fore the solution is trivial.
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The whole idea can be extended to more than two sources using recursivemore than 2
sources system deflation. This process iteratively identifies and removes the two smallest

mixing parameters, thus eventually reducing the problem to either the two-input
case, which is solved as above; or the single-input case, which is trivial. Our linear
mixture model is again the one described in 12.6 with n > 2 and some real mixing
vector h = [h1, · · · , hn]T .

As before, without loss of generality, we shall assume that the mixing param-
eters are positive and arranged in decreasing order:

h1 > h2 > · · · > hn > 0. (12.16)

We have already shown that for n = 2 the centers ci are arranged in increasing
order. For n > 2 things are a bit more complicated. Let us define B(n) to be the
2n × n matrix whose ith row b

(n)
i

T
, is the binary representation of the number

(i − 1) ∈ {0, · · · , 2n − 1}:

B(n) �
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 · · · −1 −1

−1 −1 · · · −1 1

−1 −1 · · · 1 −1
...

...
...

...

1 1 · · · −1 1

1 1 · · · 1 −1

1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.17)

Although the sequence {c1, · · · , c2n}, of the centers

ci = b
(n)
i

T
h =

n∑
j=1

b
(n)
ij hj , i = 1, · · · , 2n (12.18)

is not exactly arranged in increasing (or decreasing) order, there is a lot of structure
in the sequence as summarized by the following facts (Diamantaras and Chassioti,
2000):

The first three centers c1 < c2 < c3 are the three smallest values in the sequence
ci. Similarly, the last three centers c2n−2 < c2n−1 < c2n are the three largest values
in the sequence {ci}.

The sequence c1, . . . , c2n , defined by 12.18 consists of consecutive quadruples,
each arranged in increasing order:

c4i+1 < c4i+2 < c4i+3 < c4i+4, i = 0, · · · , 2n−2 − 1

The smallest element of the ith quadruple is

c4i+1 = [
n−2∑
j=1

b
(n)
4i+1,j hj ] − hn−1 − hn. (12.19)
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The differences

δ1 = c4i+2 − c4i+1 = 2hn (12.20)

δ2 = c4i+3 − c4i+1 = 2hn−1 (12.21)

δ3 = c4i+4 − c4i+1 = 2(hn−1 + hn) (12.22)

between the members of the ith quadruple are independent of i.

Since

c2 = c1 + 2hn, and

c3 = c1 + 2hn−1

the two smallest mixing parameters hn−1, hn can be retrieved using the values of
the three smallest centers c1, c2, and c3:

hn = (c2 − c1)/2 , (12.23)

hn−1 = (c3 − c1)/2 . (12.24)

Once we have obtained hn−1 and hn we can define a new sequence {c′
i} by

picking the first elements of each quadruple shifted by the sum (hn−1 + hn), thus
obtaining

c′
i = c4(i−1)+1 + hn−1 + hn =

n−2∑
j=1

b
(n)
4(i−1)+1,j hj , i = 1, · · · , 2n−2. (12.25)

Notice however, that the first n − 2 bits of the [4(i − 1) + 1]-th row of B(n) are all
the bits of the ith row of B(n−2). In other words,

b
(n)
4(i−1)+1,j = b

(n−2)
ij , j = 1, · · · , n − 2

therefore,

c′
i = b

(n−2)
i

T
h =

n−2∑
j=1

b
(n−2)
ij hj , i = 1, · · · , 2n−2. (12.26)

Using these facts the following recursive algorithm is constructed:

Algorithm 12.1 : n binary sources, one observation

Step 1: Compute the centers ci and sort them in increasing order.
Step 2: Compute hn, hn−1, from equations 12.23 and 12.24.
Step 3: Compute the differences δi, using equations 12.20, 12.21, and 12.22.
Step 4: Remove the set {c1, c2, c3, c1 + δ3} from the sequence {ci}. Set c′

1 =
c1 + hn + hn−1 as the first element of a new sequence {c′

i}.
Step 5: Repeat until all elements have been removed:

Find the smallest element cj of the remaining sequence {ci};
Remove the set {cj , cj + δ1, cj + δ2, cj + δ3} from {ci};
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Keep cj + hn + hn−1 as the next element of the sequence {c′
i}.

At the end, the new sequence {c′
i} will be four times shorter than the original {ci}.

Step 6: Recursively repeat the algorithm for the new sequence {c′
i} and for a new

n′ = n − 2 to obtain hn′ = hn−2, hn′−1 = hn−3. Eventually, n′ = 2 or n′ = 1.

Steps 4 and 5 are the basic recursion which reduces the problem size from n to
n−2 by replacing the sequence ci by c′

i. At step 6, we will iteratively obtain the pairs
(hn, hn−1), (hn−2, hn−3), . . . , until we reach the case where n′ = 2 or n′ = 1. The
case for n′ = 2 sources was treated in the previous subsection. The case for n′ = 1
is trivial since it involves only one source. In this case, the observation is simply a
scaled version of the input, x(k) = h1s1(k), thus, the estimation of h1 and s(k) is
easy: we have h1 = |x(k)| (since |s(k) = 1| and h1 > 0) and so s(k) = x(k)/h1.

Example 12.2
Consider the following system with four sources and one observation:

x(k) = −0.4326s1(k) + 1.2656s2(k) + 0.1553s3(k) − 0.2877s4(k).

The mixing vector h = [−0.4326, 1.2656, 0.1553,−0.2877] does not satisfy equation
12.16. The algorithm will recover the vector ĥ = [1.2656, 0.4326, 0.2877, 0.1553],
which does satisfy equation 12.16, and it is identical to h except for the permutation
and sign changes of its elements.
Step 1: The sorted sequence of centers is

c = { −2.1412,−1.8306,−1.5658,−1.2760,−1.2552,−0.9654,−0.7006,−0.3900,

0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412 }

Step 2: Using equations 12.23 and 12.24 we compute ĥ3 = 0.2877, ĥ4 = 0.1553.
Step 3: Using equations 12.20, 12.21, and 12.22, we obtain δ1 = 0.3106, δ2 = 0.5754,
δ3 = 0.8860.
Step 4: Remove {c1, c2, c3, c1 + δ3} = {−2.1412,−1.8306,−1.5658,−1.2552} from
c. Set c′

1 = −1.6982. New sorted sequence:

c = { −1.2760,−0.9654,−0.7006,−0.3900,

0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412 }.

Step 5: Remove {c1, c1+δ1, c1+δ2, c1+δ3} = {−1.2760,−0.9654,−0.7006,−0.3900}
from c. Set c′

2 = −0.8330. New sorted sequence:

c = {0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412}.

Step 6: Remove {c1, c1 + δ1, c1 + δ2, c1 + δ3} = {0.3900, 0.7006, 0.9654, 1.2760}. Set
c′
3 = 0.8330. New sorted sequence:

c = {1.2552, 1.5658, 1.8306, 2.1412}.
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Step 6: Remove {c1, c1 + δ1, c1 + δ2, c1 + δ3} = {1.2552, 1.5658, 1.8306, 2.1412}. Set
c′
4 = 1.6982. New sorted sequence:

c = ∅.

The new sequence c′ = {−1.6982,−0.8330, 0.8330, 1.6982} yields the estimates
of the remaining mixing parameters ĥ1 = 1.2656, ĥ2 = 0.4326.

12.2.1.2 Two Mixtures

In the case of m = 2 mixtures the observed data x(k) lie in the two-dimensional
space R2. Although it is possible to see each mixture separately as a single-mixture–
multiple-sources problem, as the one treated in the previous subsection, this is not
the most efficient approach to the problem. It turns out that the 2D structure
of the output constellation reveals the mixing operator H in a very elegant and
straightforward way. To see that, let us start by considering the data constellation of
a binary antipodal signal s1(k) (fig. 12.3a). The constellation actually consists of two
points on the real axis: s− = −1 and s+ = 1. Next, consider a linear transformation
from R1 to R2 which maps s1(k) to a vector signal x(1)(k) = [x(1)

1 (k), x(1)
2 (k)]T :

x(1)(k) = h1s1(k). (12.27)

The linear operator h1 = [h11, h12]T is a two-dimensional vector shown in fig. 12.3b.
The constellation of x(k) is shown in fig. 12.3c, and it also consists of two points
x− = −h1 = s−h1 and x+ = h1 = s+h1.

Now let us look at shape of the data cloud corresponding to the linear
combination of several binary antipodal sources s1(k), . . . , sn(k). It is instructive
to study the shape of this cloud as n increases gradually from n = 2 and upward.
The linear mixture of n = 2 sources

x(2)(k) = h1s1(k) + h2s2(k) (12.28)

has the geometric structure shown in fig. 12.4b, for the mixing vectors h1, h2,
shown in fig. 12.4a. The data cluster contains four points: x++ = s+h1 + s+h2,
x+− = s+h1 + s−h2, x−+ = s−h1 + s+h2, and x−− = s−h1 + s−h2.

Adding a third source s3(k) with the mixing vector h3, the data mixture

x(3)(k) = h1s1(k) + h2s2(k) + h3s3(k) (12.29)

has the constellation shown in fig. 12.5. Now the data cluster contains eight
points: x+++ = s+h1 + s+h2 + s+h3, x++− = s+h1 + s+h2 + s−h3, x+−+ =
s+h1 + s−h2 + s+h3, x+−− = s+h1 + s−h2 + s−h3, x−++ = s−h1 + s+h2 + s+h3,
x−+− = s−h1 + s+h2 + s−h3, x−−+ = s−h1 + s−h2 + s+h3, and x−−− =
s−h1 + s−h2 + s−h3.

By simple inspection of figures 12.3, 12.4, and 12.5, one can make the following
useful observations:
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Figure 12.3 (a) Data constellation of a binary antipodal signal s1(k). (b) Linear
transformation vector h1. (c) Data constellation of the transformed signal x(1)(k) =
h1s1(k).

1. The number of cluster points is 2n, where n is the number of binary sources.

2. The data constellation is a symmetric, self-repetitive figure. While the symmetry
is obvious, the self-repetitive structure can be seen by comparing, for example,
fig. 12.5b against fig. 12.4b. The first consists of two copies of the latter shifted by
the vectors −h3 and h3. The same is true for figs. 12.4b and 12.3c except that the
shift is by the vectors −h2 and h2.

3. For every cluster point there exist n copies at the directions h1 or −h1, and h2

or −h2, . . . , and hn or −hn.

It is even more interesting and, in fact, very useful to study the properties of
the convex hull of the data constellation set. By definition, the convex hull of a set
of points in 2D space is the smallest polygon that contains them or, in other words,
the bounding polygon for these points. Figures 12.6a–c show the convex hulls H1,
H2, and H3 for the data constellations corresponding to the mixtures x(1), x(2),
and x(3), respectively. Let d be the distance between the two alphabet symbols.
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Figure 12.4 (a) Mixing vectors h1, h2. (b) Data cluster for the mixture x(2)(k) =
h1s1(k) + h2s2(k) of two binary antipodal sources.
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Figure 12.5 (a) Mixing vectors h1, h2, h3. (b) Data cluster for the mixture
x(3)(k) = h1s1(k) + h2s2(k) + h3s3(k) of three binary antipodal sources.

It can be shown that any convex hull H satisfies the following properties (for the
proof, see Diamantaras, 2002):

1. Every edge e of H is parallel to some mixing vector hi, i ∈ {0, 1, · · · , n}. Also,
e has length d‖hi‖. For the binary antipodal alphabet Aa, we have d = 2.

2. Every vector hi corresponds to a pair of edges, i.e., it is parallel to two edges ei

and e′
i of equal length d‖hi‖. It follows that H has 2n edges.

3. H is symmetric. If the alphabet is symmetric around 0 (e.g., Aa) then the center
of symmetry is the point xO = 0. Otherwise, the center of symmetry is a nonzero
point x′

O ∈ Rm.
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Figure 12.6 Convex hulls for data constellations of mixtures of n binary sources.
(a) n = 1, (b) n = 2, (c) n = 3.
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These important results show that there is a two-to-one correspondence be-
tween the edges of the convex hull and the unknown mixing vectors: there is a pair
of edges parallel to each mixing vector, and furthermore, the edges have length
equal to d times the length of their corresponding mixing vectors. Thus we easily
come to the following procedure for the identifying the hi’s:

Algorithm 12.2 : n binary sources, two observations

Step 1: Find the constellation set X of the 2D mixture x(k).
Step 2: Compute the convex hull H of X .
Step 3: H consists of 2n edge pairs {ei, e

′
i}, ei‖e′

i, i = 1, · · · , n. The number of
sources is n.
Step 4: The mixing vectors are: hi = ei/d, up to an unknown ordering and sign.

Of course, the original order and sign of the vectors are irretrievable. As we
have seen, this is a general, problem-inherent limitation and it is not specific to
this (or any other) particular method. In fact, the limitation cannot be overcome
without additional information regarding the sources or the mixing operators.

12.2.1.3 More Than Two Mixtures

It is not difficult to see that the whole convex hull idea can be extended to the
case where m ≥ 3. Again, the edges of the convex hull will be parallel to the
mixing vectors hi except that, now, the convex hull lies in Rm. The algorithms for
computing the convex hull in m-dimensional spaces are not as simple as the ones
for the 2D case. For a comprehensive discussion of this topic see Preparata and
Shamos (1985).

12.2.2 Instantaneous Mixtures of M-ary Alphabet Sources

The results of section 12.2.1 can be easily extended to M -ary signals, i.e., signals
whose alphabet contains M discrete and equally distributed values. For example,
the alphabet A5 = {−1,−1/2, 0, 1/2, 1} contains M = 5 symbols symmetrically
distributed around 0. Similar results, as in the binary case, hold here as well. Again,
the convex hull directly connects the constellation geometry with the unknown
mixing vectors. Let d be the distance between the maximum and minimum symbols
in the M -ary alphabet AM

d = max{AM} − min{AM}.

Also let H be the convex hull of the constellation X of the mixture x(k) =
h1s1(k) + · · · + hnsn(k). The the following statements are true (see fig. 12.7):

1. The number of cluster points is Mn, where n is the number of M -ary sources.

2. The data constellation is a symmetric, self-repetitive figure.
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3. Every edge e of H is parallel to some mixing vector hi, i ∈ {0, 1, · · · , n}, and e

has length d‖hi‖.
4. Every vector hi corresponds to a pair of edges, i.e., it is parallel to two edges ei

and e′
i of equal length d‖hi‖. It follows that H has 2n edges.

5. H is symmetric. For alphabets symmetric around zero the center of symmetry
is xO = 0.

We may use algorithm 12.2 without modifications for the solution of the M -ary
case as well.

12.2.3 Noisy Data

The analysis of the previous subsections pertains to systems with noiseless outputs.
In most applications however, the observation is burdened with noise, either because
the system itself is noisy or the receiving device introduces errors in the measure-
ments. The additive noise model is commonly used for describing the observation
error:

x(k) = Hs(k) + v(k). (12.30)

Without loss of generality, and for the sake of visualization, we shall focus on
the two-output case. An entirely similar discussion holds for the cases n = 1 or
n > 2. The vector signal v(k) = [v1(k), · · · , vn(k)]T , contains the noise components
vi(k) for each observed output signal i = 1, · · · , n. The constellation of x is now
less crisp since the true centers are surrounded by a cloud of points (fig. 12.8a).
The methods presented in sections 12.2.1 and 12.2.2 can still be applied preceded
by a clustering process that will estimate the actual centers from the noisy data
cloud. Such clustering methods include the ISODATA or K-means algorithm (Duda
et al., 2001; Lloyd, 1982; MacQueen, 1967), the EM algorithm (Dempster et al.,
1977), the neural gas algorithm (Martinetz et al., 1993), Kohonen’s self-organizing
feature maps (SOM) (Kohonen, 1989), RBF neural networks (Moody and Darken,
1989), and many others. For a detailed treatment of clustering methods refer to
Theodoridis and Koutroubas (1998). Figure 12.8b shows the estimation of the true
centers using the K-means algorithm in a system with three binary inputs and two
linear output mixtures with noise power at 15dB. Notice that the estimation errors
inside the convex hull do not affect the results. It is only the errors at the boundary
that are significant. We apply the blind identification method discussed earlier in
this section using the estimated centers provided by K-means, obtaining the results
shown in table 12.1.

12.2.4 Convolutive Mixtures of Binary Sources

The convolutive mixtures of binary sources are described by the output of the
MIMO FIR system (eq. 12.1). The blind problems related to such systems are con-
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Figure 12.7 Convex hulls of mixture constellations from n M-ary sources (M = 5).
The source symbols are drawn from the alphabet {−1, −0.5, 0, 0.5, 1}, with maximum
distance d = 2. (a) n = 1, (b) n = 2, (c) n = 3.



12.2 Finite Alphabet Sources 355

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

Figure 12.8 (a) Data constellation for a noisy memoryless linear system with 3
binary inputs and 2 outputs (mixtures). The noise level is 15 dB. Superimposed are
the true cluster centers marked with “o”. (b) True cluster centers (o) and estimated
cluster centers (x) using the K-means algorithm. Also shown is the true convex hull
(solid line) and the estimated convex hull (dashed line).

Table 12.1 True and Estimated Mixing Vectors

h1 ĥ1 h2 ĥ2 h3 ĥ3

0.3000 0.3017 − 0.1000 −0.0960 − 0.4000 0.3917
0.5000 0.4902 0.6000 0.6089 −0.1000 0.1009

siderably more difficult than the corresponding instantaneous mixture problems,
but at the same time, they are much more important. Convolutive mixing models,
for example, can describe multipath and crosstalk phenomena in wireless commu-
nications, being in that sense much more realistic than instantaneous models. In
this section we shall approach the blind source separation and blind system identi-
fication problems of MIMO FIR models using the geometric properties of the data
constellation. We shall treat, first, the simpler single-input single-output (SISO)
problem and then continue on to the multi-input single-output (MISO) case. The
proper MIMO problem is not explicitly discussed since it can be seen as a multitude
of m decoupled MISO problems.

12.2.4.1 Blind SISO Deconvolution as Instantaneous Blind Source
Separation

In this subsection we shall use the results of the previous sections to solve the blind
SISO identification and deconvolution problems. Our approach is to relate any
given SISO system with an overdetermined instantaneous mixtures model, hence
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the same methods can be applied as in sections 12.2.1. Let us consider a linear,
FIR, single-input single-output (SISO) system with a binary antipodal input s(k),

x(k) =
L−1∑
i=0

his(k − i) (12.31)

We shall assume that the impulse response hi, i = 0, · · · , L−1, is real. Let us create
a vector sequence x(k) using time-windowing of length m on the output sequence
x(k)

x(k) = [x(k), · · · , x(k − m + 1)]T . (12.32)

Then using the system 12.31 we have

x(k) = Hs(k), (12.33)

where H is the Toeplitz system matrix

H =

⎡⎢⎢⎢⎢⎢⎣
h0 h1 · · · hL−1 0 · · · 0

0 h0 · · · hL−2 hL−1 0 0
. . . . . .

0 · · · 0 h0 · · · hL−2 hL−1

⎤⎥⎥⎥⎥⎥⎦ (12.34)

and

s(k) = [s(k), s(k − 1), · · · , s(k − m − L + 2)]T . (12.35)

Now, equation 12.33 describes m linear instantaneous mixtures x′
i(k) = x(k − i),

i = 0, · · · , m − 1, of n sources s′
j(k) defined as follows:

s′
j(k) = s(k − j + 1), j = 1, 2, · · · , n = m + L − 1.

Thus, we have successfully transformed the problem into the same form treated in
section 12.2.1:

x′
i(k) =

n∑
j=1

hijs
′
j(k), (12.36)

where hij is the (i, j)th element of H. Equivalently, we can write

x(k) =
n∑

j=1

hjs
′
j(k), (12.37)

where the mixing vectors h1, . . . ,hn are the columns of H. Given the above
formulation, the results of Section 12.2.1 apply directly to this problem. There
are, however, some special points to be noted:

1. For any nontrivial FIR filter of length L > 1, the number of observations x′
1, ...,

x′
m is necessarily less than the number of sources s′

1, . . . , s
′
n, since n = m+L−1 > m.
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2. The mixing vectors have no arbitrary form. For example, h1 has the form
[×, 0, · · · , 0]T and hn has the form [0, · · · , 0,×]T .

3. The sources are not independent. In fact, any one is a shifted version of any
other.

Next, we shall give examples for two cases: m = 1; and m = 2.

Example 12.3 Time Window of Length m = 1
Suppose that we observe the output x(k) of a SISO filter h = [−0.4937, −1.1330,

0.7632, 0.1604]T excited by the binary input s(k). Using algorithm 12.1 we shall
identify the filter with the necessary permutation and sign changes so that the
estimated taps will be positive and arranged in decreasing order. Thus we shall
obtain ĥ = [1.1330, 0.7632, 0.4937, 0.1604]T and so

x(k) = ĥ1ŝ
′
1(k) + ĥ2ŝ

′
2(k) + ĥ3ŝ

′
3(k) + ĥ4ŝ

′
4(k)

= (−h2)(−s′
2(k)) + h3s

′
3(k) + (−h1)(−s′

1(k)) + h4s
′
4(k).

Obviously, the estimated sources ŝ′
i correspond to the true “sources” s′

i as follows:

ŝ′
1(k) = −s′

2(k) = −s(k − 1),

ŝ′
2(k) = s′

3(k) = s(k − 2),

ŝ′
3(k) = −s′

1(k) = −s(k),

ŝ′
4(k) = s′

4(k) = s(k − 3).

Since the signals ŝ′
i are shifted versions of the original source, s(k), it is easy to

recover their correct order and relative sign changes by computing for each signal,
the time shift with maximum correlation to an arbitrary reference, for example, ŝ′

1.
Applying the same ordering and sign changes to ĥ, we obtain ±h.

Example 12.4 Time Window of Length m = 2
Consider the same SISO filter as before and let us use time-windowing of length
m = 2 to obtain the vector sequence x(k):

x(k) =

[
x(k)

x(k − 1)

]

=

[
−0.4937 −1.1330 0.7632 0.1604 0

0 −0.4937 −1.1330 0.7632 0.1604

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

s(k)

s(k − 1)

s(k − 2)

s(k − 3)

s(k − 4)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Using algorithm 12.2 we estimate the original mixing vectors h1 = [−0.4937, 0]T ,
h2 = [−1.1330, −0.4937]T , h3 = [0.7632, −1.1330]T , h4 = [0.1604, 0.7632]T , h5 =
[0, 0.1604]T , but with an arbitrary order and sign change. The estimated mixing
vectors can be put in the correct order by observing that the true system parameters



358 Blind Signal Processing Based on Data Geometric Properties

satisfy the following:

h1,1 = h2,2 = −0.4937,

h2,1 = h3,2 = −1.1330,

h3,1 = h4,2 = 0.7632,

h4,1 = h5,2 = 0.1604,

h5,1 = h1,2 = 0 .

Since the sign of each estimated vector is arbitrary, we compare the absolute val-
ues, |ĥi,1| against |ĥj,2|, and we change the signs of either ĥi or ĥj , as necessary,
so that ĥi,1 = ĥj,2. Once the correct order of the mixing vectors is retrieved we au-
tomatically obtain the correct filter impulse response (up to a sign). Subsequently,
the system input, s(k), is retrieved using standard (nonblind) deconvolution meth-
ods.

12.2.4.2 Blind SISO Identification

An alternative approach for identifying the impulse response h = [h0, · · · , hL−1]T

of a general SISO system (eq. 12.31) has been proposed by Yellin and Porat (1993).
The method is not based on constellation geometry but rather on the properties of
the successor values of “equivalent” observations. The source symbols s(k) may be
drawn from an M -ary alphabet AM = {±1, · · · ,±(M/2)} (M is even). Before we
proceed we need to introduce the concept of equivalence between two observations:

Definition 12.1 Observation Equivalence
Two observations x(k) and x(l) are said to be equivalent if the input values
that produce them according to 12.31 are identical: s(k − i) = s(l − i), for all
i = 0, · · · , L − 1.

Note that two equivalent observations are necessarily equal, but the converse may
not be true. Indeed, it is possible that two equal observations x(k) = x(l), are
produced by two different strings of input symbols [s(k), · · · , s(k − L + 1)] �=
[s(l), · · · , s(l − L + 1)].

Consider four sets of (N + 1) consecutive observations from equation 12.31:
Xj = {x(j), x(j + 1), · · · , x(j + N)}, Xk = {x(k), x(k + 1), · · · , x(k + N)}, Xl =
{x(l), x(l+1), · · · , x(l+N)}, Xm = {x(m), x(m+1), · · · , x(m+N)}. Further assume
that the pairs {x(j), x(k)} and {x(l), x(m)} are equivalent. Define

σjki = [s(j + i) − s(k + i)]/2,

σlmi = [s(l + i) − s(m + i)]/2; i = 1, · · · , N
(12.38)

and note that σjki, σlmi ∈ A0
M = AM ∪ 0. Let the following conditions be true:
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1. σjk1, σlm1 are nonzero and coprime, i.e., their greatest common divisor is 1;

2. for all α, β ∈ AM ∣∣∣∣ σjk1

σlm1

∣∣∣∣ =
∣∣∣∣αβ
∣∣∣∣⇒ |α| = |σjk1|, |β| = |σlm1|;

3. for all α, β ∈ A0
M ,

σjk1

σlm1
�= σjki − α

σlmi − β
, for all i = 2, · · · , N.

The method starts by identifying the first filter tap h0 up to a sign, and continues by
recursively identifying the remaining taps given the previous ones. Begin with the
remark that x(j) and x(k) are equivalent, so [s(j), · · · , s(j−L+1)] = [s(k), · · · , s(k−
L + 1)]. Then, the successor values of x(j), x(k), can be written as

x(j + 1) = h0s(j + 1) +
L−1∑
i=1

his(j + 1 − i),

x(k + 1) = h0s(k + 1) +
L−1∑
i=1

his(k + 1 − i),

so,

x(j + 1) − x(k + 1)
2

= σjk1h0. (12.39)

Similarly, for x(l + 1), x(m + 1):

x(l + 1) − x(m + 1)
2

= σlm1h0, (12.40)

and so,

x(j + 1) − x(k + 1)
x(l + 1) − x(m + 1)

=
σjk1

σlm1
. (12.41)

By condition 2, the ratio |σjk1/σlm1| is produced by a unique enumerator-
denominator pair in AM . Thus both values σjk1 and σlm1 can be uniquely identified,
up to a sign, leading to the magnitude estimation of h0 by:

|h0| =
|x(j + 1) − x(k + 1)|

2|σjk1|
=

|x(l + 1) − x(m + 1)|
2|σlm1|

. (12.42)

Without loss of generality, we may assume that h0 > 0, and proceed to the
estimation of h1 as follows: Write the second successors of x(l), x(k), as

x(j + 2) = h0s(j + 2) + h1s(j + 1) +
L−1∑
i=2

his(j + 1 − i),
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x(k + 2) = h0s(k + 2) + h1s(k + 1) +
L−1∑
i=2

his(k + 1 − i),

hence,

x(j + 2) − x(k + 2)
2

= σjk2h0 + σjk1h1. (12.43)

Similarly,

x(l + 2) − x(m + 2)
2

= σlm2h0 + σlm1h1. (12.44)

The pair of equations 12.43 and 12.44 involve three unknowns: σjk2, σlm2, h1.
However, it turns out that since the first two unknowns come from the discrete set
A0

M and condition 3 is true, the solution is unique. Indeed, assume there existed
two different solutions {σ(1)

jk2, σ
(1)
lm2, h

(1)
1 }, {σ(2)

jk2, σ
(2)
lm2, h

(2)
1 }. Then by equations 12.43

and 12.44 we have

(σ(2)
jk2 − σ

(1)
jk2)h0 = (h(2)

1 − h
(1)
1 )σjk1, (12.45)

(σ(2)
lm2 − σ

(1)
lm2)h0 = (h(2)

1 − h
(1)
1 )σlm1. (12.46)

Thus,

σjk1

σlm1
=

σ
(2)
jk2 − σ

(1)
jk2

σ
(2)
lm2 − σ

(1)
lm2

,

which is impossible, according to condition 3. Therefore, there exists a unique
solution to equations 12.43 and 12.44. From these equations it follows that

h1 =
(x(j + 2) − x(k + 2)

2
− σjk2h0

)
/σjk1 =

(x(l + 2) − x(m + 2)
2

− σlm2h0

)
/σlm1,

so the unique h1 can be obtained by finding the intersection between the sets

F1 =
{

x(j+2)−x(k+2)
2σjk1

+ αh0
σjk1

; α ∈ A0
M

}
F2 =

{
x(l+2)−x(m+2)

2σlm1
+ βh0

σlm1
; β ∈ A0

M

} .

This is computationally trivial since the two sets are finite with few elements.
Inductively, for hi, i > 2, and given the values for h0, . . . , hi−1, we form the
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“deflated” successors

x̄(j + i + 1) = x(j + i + 1) −
i−1∑
p=1

σjk(p+1)hi+p (12.47)

x̄(k + i + 1) = x(k + i + 1) −
i−1∑
p=1

σjk(p+1)hi+p (12.48)

x̄(l + i + 1) = x(l + i + 1) −
i−1∑
p=1

σlm(p+1)hi+p (12.49)

x̄(m + i + 1) = x(m + i + 1) −
i−1∑
p=1

σlm(p+1)hi+p (12.50)

and we obtain a set of two equations similar to 12.43 and 12.44:

x̄(j + i + 1) − x̄(k + i + 1)
2

= σjk(i+1)h0 + σjk1hi, (12.51)

x̄(l + i + 1) − x̄(m + i + 1)
2

= σlm(i+1)h0 + σlm1hi. (12.52)

which are solved in a similar fashion, producing the unknown tap hi. Thus, the
whole approach is summarized in the following algorithm

Algorithm 12.3 Yellin and Porat

Step 1: Collect T observation measurements.
Step 2: Find pairs of equivalent measurements. Estimate h0 according to equation
12.42.
Step 3: Estimate h1 using h0 and the pairs of equivalent observations.
Step 4: Continue with the estimation of h2, . . . , hn given the previous estimates.
Step 5: Use the estimated impulse response to deconvolve the observation sequence
and obtain the system input.

Remark

The choice of pairs of equivalent observations (step 2 in algorithm 12.3) is far
from trivial. The indices j, k, l, m, must satisfy various constraints so that the
assumptions of the method are met. First, according to condition A, we must have
σjk1, σlm1 �= 0, implying that x(j + 1) �= x(k + 1), x(l + 1) �= x(m + 1). Second,
according to condition C, for all i = 2, · · · , N the ratios σjki/σlmi should not be
equal to σjk1/σlm1. A thorough discussion on the implementation details is in the
original paper (Yellin and Porat, 1993).

The method can be easily extended to handle complex input constellations (such
as QAM) and/or complex filter taps.

For the special case of i.i.d. input signals it is estimated that a sufficient batch size
that guarantees E > 2 equivalent pairs of measurements is T = 2.44E0.61NMN/2.



362 Blind Signal Processing Based on Data Geometric Properties

It is difficult to satisfy condition C if the source alphabet is binary (AM = Aa),
because there is a limited choice for the values of σjki, σlmi, which belong to the
set A0

a = {−1, 0, 1}.

12.2.4.3 MISO Systems: Direct Source Extraction

The blind source extraction directly from the output of a multi-input single-output
(MISO) system is treated in Diamantaras and Papadimitriou (2005). This work is
an extension of earlier work on SISO systems (Diamantaras and Papadimitriou,
2004a). The key to the approach in both cases is the structure of the successor
values of equivalent observations induced by the fact that the sources are binary.
Subsequently, we shall present the results for the more general MISO case. Let
us consider a multi-input single-output (MISO) model described by the following
equation:

x(k) =
L−1∑
i=0

hT
i s(k − i), (12.53)

where hi for i = 0, . . . , L−1, are a set of unknown real n-dimensional mixing vectors
or filter taps. The source vector signal s(k) = [s1(k), . . . , sn(k)]T is composed of n

independent binary antipodal signals: si(k) ∈ Aa. The observations of the mixtures
are real-valued scalars. For each k, the vector s(k) can take one of 2n values denoted

by b
(n)
i , i = 1, . . . , 2n. The vector b

(n)
i

T
is the ith row of the matrix B(n) defined

in equation 12.17.
Let us extend the concept of observation equivalence, defined before for SISO

systems, to MISO systems by simply replacing the scalar inputs with vector inputs.
Each observation x(k) is generated by the linear combination of L n-dimensional
source vectors, therefore, the observation space X ( x(k) is a discrete set consisting
of, at most, 2M elements, M = nL. The cardinality |X | will be less than 2M if and
only if there exist two different L-tuples {b(n)

j0
, · · · ,b

(n)
jL−1

} and {b(n)
l0

, · · · ,b
(n)
lL−1

},
of binary vectors such that

∑L−1
i=0 hT

i b
(n)
ji

=
∑L−1

i=0 hT
i b

(n)
li

. The following avoids
this situation:
Assumption 12.1 Two observations x(k), x(l), are equivalent if and only if they
are equal.

Hence, |X | = 2M . In other words, to every observation value r ∈ X corresponds
a unique L-tuple {b̄0(r), · · · , b̄L−1(r)} of consecutive source vectors that generates
this observation. No other observation value r′ ∈ X corresponds to the same L-tuple
of binary vectors. For any x(k) = r, we have

x(k) =
L−1∑
i=0

hT
i b̄i(r), (12.54)

since, by definition,

b̄i(r) = s(k − i), for i = 0, · · · , L − 1.
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Now the successor observation, x(k + 1), can be written as

x(k + 1) = hT
0 s(k + 1) +

L−1∑
i=1

hT
i s(k − (i − 1))

= hT
0 s(k + 1) +

L−1∑
i=1

hT
i b̄i−1(r). (12.55)

Since s(k + 1) is an n-dimensional binary antipodal vector, x(k + 1) can take one
of the following 2n possible values:

yp(r) = hT
0 b(n)

p +
L−1∑
i=1

hT
i b̄i−1(r), p = 1, · · · , 2n. (12.56)

Note that the successor values yp(r) do not depend on the specific time index k but
only on the observation value r. Therefore, each observation value r creates a class of
successors Y(r) with cardinality |Y(r)| = 2n. Furthermore, we have

∑2n

p=1 b
(n)
p = 0,

so the mean ȳ(r) of the members of Y(r) is

ȳ(r) =
1
2n

2n∑
p=1

yp(r)

=
1
2n

(
hT

0

2n∑
p=1

b(n)
p + 2n

L−1∑
i=1

hT
i b̄i−1(r)

)

=
L−1∑
i=1

hT
i b̄i−1(r). (12.57)

Now, let us replace every x(k) = r with the mean ȳ(r) to obtain a new sequence

x(2)(k) =
L−1∑
i=1

hT
i b̄i−1(r)

x(2)(k) =
L−1∑
i=1

hT
i s(k − i + 1). (12.58)

The new MISO system 12.58 has the same taps as the original system 12.53 except
that it is shorter since h0 is missing. We will say that the system has been deflated.
An additional but trivial difference is that the source sequence is time-shifted. Based
on the discussion above, the whole filter- or system-deflation method, is summarized
as follows:

Algorithm 12.4 System Deflation

Step 1: For every r ∈ X locate the set of time instances K(r) = {k : x(k) = r}.
Step 2: Find the successor set Y(r) = {x(k +1) : k ∈ K(r)}. This set must contain
2n distinct values y1(r), . . . , y2n(r).
Step 3: Compute the mean ȳ(r) = 1/2n

∑2n

i=1 yi(r).
Step 4: Replace x(k) by ȳ(r), for all k ∈ K(r).
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Clearly, for this method it is essential that all observation-successor pairs
[r, yi(r)], i = 1, · · · , 2n will appear, at least once, in the output sequence x. Applying
the deflation method L−1 times, the system will be eventually reduced to an multi-
input single-output instantaneous problem:

x(L)(k) = hT
L−1s(k − L + 1). (12.59)

The BSS problem of the type in 12.59 has been treated in section 12.2.1.
The main disadvantage of this method stems from the assumption that the

data set must contain every possible observation-successor pair. As the size of the
MISO system increases this assumption requires exponentially larger observation
data sets. An alternative approach starts by observing that for any r ∈ X the
centered successors,

ci = yi(r) − ȳ(r) = hT
0 b

(n)
i i = 1, · · · , 2n, (12.60)

are independent of r. Thus every observation has the same set of centered successors.
We shall refer to the set C = {ci; i = 1, · · · , 2n} as the centered successor

constellation set of system 12.53. C can be easily computed by first obtaining Y(r),
for any r, and then subtracting the mean ȳ(r) from each element yi(r) ∈ Y(r). Note
that C is symmetric in the sense that c ∈ C ⇔ −c ∈ C.

Now, for every observation value r = x(k) ∈ X we have

x(k) = hT
0 s(k) +

L−1∑
l=1

hT
l s(k − l) (12.61)

r = hT
0 b

(n)
i +

L−1∑
l=1

hT
l b̄l(r), some i (12.62)

= ci +
L−1∑
l=1

hT
l b̄l(r), some i (12.63)

Furthermore, due to the symmetry of the constellation set, there exists a “dual”
observation value rd ∈ X such that

rd = −ci +
L−1∑
l=1

hT
l b̄l(r) (12.64)

rd = r − 2ci. (12.65)

Assume that for every observation r ∈ X , there exists a unique index j ∈
{1, · · · , 2n} such that r − 2cj ∈ X . Then the dual value rd can be identified by
testing all r − 2cj , j = 1, · · · , 2n, for membership in the observation space X . Let
us now replace x(k) by the average of r, rd, to obtain

x̃(2)(k) = (r + rd)/2 = r − cj =
L−1∑
l=1

hT
l b̄l(r). (12.66)
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Note that bl(r) = s(k − l), so

x̃(2)(k) =
L−1∑
l=1

hT
l s(k − l). (12.67)

Equation 12.67 describes a new, shortened MISO system,
Assumption 12.2 For only one r0 ∈ X , there exist at least 2n ki, i = 1, · · · , 2n

∈ {1, 2, · · · , K} such that x(ki) = r0, x(ki + 1) = σi(r0), i = 1, · · · , 2n. In addition
to that, every possible value of X exists at least once in the data set.

Summarizing the above results, our second method for obtaining the deflated
system 12.67 is described below:

Algorithm 12.5 System Deflation 2

Step 1: Locate an observation value r0 for which 2n distinct successors σi(r0),
i = 1, · · · , 2n, exist in the data set.
Step 2: Compute the successor constellation set C according to equation 12.60.
Step 3: For every observation r = x(k) find the (unique) value j for which
r − 2cj ∈ X .
Step 4: Replace x(k) by r − cj .

Again, the L− 1 times repetition of this algorithm will reduce the system into
a memoryless one,

x̃(L)(k) = hT
L−1s(k), (12.68)

which can be treated as described in the previous section on MIMO systems.

Example 12.5 MISO System Identification and Source Separation
We shall demonstrate the application of the second method via a specific ex-
ample. Assume that we observe the output x(k) of a two-input one-output sys-
tem (fig. 12.9a). The system has two binary inputs s1, s2, convolution length
L = 3, and filter taps h1 = [−0.9024, 1.5464]T , h2 = [−0.6131, 0.7166]T , h3 =
[−0.4131,−0.1621]T . The output constellation contains 2nL = 64 clusters: X =
{±4.3537,±4.0295,±3.5275, · · · }. Already, the first value r = −4.3537 has 2n = 4
distinct successors in the output sequence x(k). From those successor values the
centered successor constellation set is easily computed to be

C = {−2.4488,−0.6440, 0.6440, 2.4488}.

After the deflation steps 2 and 3 we obtain a new sequence x(2)(k) (fig. 12.9b). Now
the output constellation contains 2n(L−1) = 16 clusters: X (2) = {±1.9049, ±1.5807,

±1.0787, · · · } and the centered successor constellation set is

C(2) = {−1.3297,−0.1035, 0.1035, 1.3297}.

We use this set to obtain a second deflated signal x(3)(k) (fig. 12.9c). This signal
actually corresponds to an instantaneous mixture of the two sources. The output
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Figure 12.9 (Top) Output signal from a two-input-one-output FIR system of
length L = 3. The output constellation contains 2nL = 64 distinct clusters. (Middle)
First deflated signal with 2n(L−1) = 16 clusters. (Bottom) Second deflated signal
with 2n(L−2) = 4 clusters. The last signal corresponds to an instantaneous mixture
of the two sources.

constellation has only four clusters:

X (3) = {−0.5752,−0.2510, 0.2510, 0.5752}.

We may apply algorithm 12.1 to obtain an estimate of the mixing parameters and of
the input signals as well. We obtain ĥ3,1 = 0.4131 = −h3,1, ĥ3,2 = 0.1621 = −h3,2.
Subsequently performing the optimization (eq. 12.15) for the estimation of the
sources we get perfect reconstruction (except for the sign):

ŝ1(k) = −s1(k),

ŝ2(k) = −s2(k).

12.3 Continuous Sources

In section 12.2 we exploited the constellation structure of signals generated by linear
systems with finite alphabet inputs. In many applications, however, the range of
values of the source data is continuous. In this case the geometrical properties of
the signals can still be exploited to derive efficient deterministic blind separation
methods provided that the sources are sparse, or the input distribution is bounded,
or the number of observations is m = 2.
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12.3.1 Early Approaches: Two Mixtures, Two Sources

It is possible to generalize the geometric properties of binary signals described in
section 12.2.1, when the sources symbols are bounded. We start with the simplest
case of two instantaneous mixtures x1, x2, and two sources s1, s2, (m = n = 2):

x(k) = [x1(k), x2(k)]T = h1s1(k) + h2s2(k) (12.69)

We shall describe two of the earliest and most characteristic methods by Puntonet
et al. (1995) and Mansour et al. (2001).

The Method of Puntonet et al. (1995) The geometry of mixtures of binary
signals bears similarity to the geometry of mixtures of bounded sources. Consider
the mixing model 12.69 and let s1(k), s2(k) ∈ [−B, B]. The linear operation of
equation 12.69 transforms the original square source constellation (fig. 12.10a) into
a parallelogram-shaped constellation with edges parallel to the vectors h1 and h2

(fig. 12.10b).
The blind identification task is then equivalent to finding the edges of the

convex hull of the output constellation. Puntonet et al. (1995) proposed a simple
procedure for doing that. This procedure is composed of two steps:

Step 1: Locate the outmost corner xO of the parallelogram by finding the obser-
vation with the maximum norm: xO = x(k0), k0 = arg maxk{‖x(k)‖2}.
Step 2: Translate the observations x′(k) = x(k)−x(k0) such that xO becomes the

origin, and compute the slopes of the parallelogram by computing the minimum and
maximum ratios: rmin = mink(x′

2(k)/x′
1(k)), rmax = maxk(x′

2(k)/x′
1(k)). These are

the ratios h12/h11, h22/h21, not necessarily in that order.

Once the slopes of the edges are determined, the mixing matrix is estimated by

Ĥ =

[
1 1/rmin

rmax 1
.

]
(12.70)

Since (rmin, rmax) = (h12/h11) or (h22/h21) we have,

Ĥ =

[
1 h21/h22

h12/h11 1

]
or

[
1 h11/h12

h22/h21 1
.

]
(12.71)

Remember now that

H = [h1, h2] =

[
h11 h21

h12 h22

]
,
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Figure 12.10 (a) Source constellation for two independent sources uniformly dis-
tributed between −1 and 1. (b) Output constellation after a 2×2 linear, memoryless
transformation of the sources in panel a.

so,

Ĥ = H

[
1/h11 0

0 1/h22

]
or Ĥ = H

[
0 1/h12

1/h21 0

]
.

In either case, the source estimate ŝ(k) = Ĥ−1x(k) will be

ŝ(k) = [h11s1(k), h22s2(k)]T or ŝ(k) = [h12s2(k), h21s1(k)]T . (12.72)

Thus, the estimated sources will be equal to the true ones except for the usual
unspecified scale and order.

Note that the method works even if the source pdf is semibounded, for example,
bounded only from below. In that case the parallelogram is open-ended but the
visible corner is sufficient for identifying the two slopes. The main drawbacks of
this approach are two: it cannot generalize to more sources or observations, and
it will not work if the source pdf is not bounded (for example, Gaussian, Laplace,
etc).

The Method of Mansour et al. (2001) Another simple procedure for the
solution of the 2 × 2 instantaneous BSS problem has been proposed by Mansour
et al. (2001). The transformation s �→ x described by equation 12.69 represents a
skew, rotation, and scaling of the original axes in 2 dimensions. The first step of
the procedure is to remove the skew by prewhitening x using the covariance matrix
Rx = E{x(k)x(k)T }. If Rx = LxL

T
x is the Cholesky factorization of Rx, let

z(k) = L−1
x x(k). (12.73)
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The mapping x �→ z is called prewhitening transformation because the output
vector z(k) is white: Rz = {z(k)z(k)T } = L−1

x RxL
−T
x = I. The prewhitening

transformation (eq. 12.73) makes the axes become orthogonal again, but the
rotation and the scaling remains. The next step is to compensate for the rotation
by computing the angle θ of the furthermost point of the constellation of z from
the origin. We consider two cases:

The sources are uniformly distributed, say, between −1 and 1 (fig. 12.11a). The
source constellation is a square and the angle θ corresponds to a corner of the
square. Therefore, in order to compensate for θ, the corner should return to its
original position at π

4 . This is achieved by the following orthogonal transformation:

y(k) =

[
cos(π

4 − θ) − sin(π
4 − θ)

sin(π
4 − θ) cos(π

4 − θ)

]
z(k). (12.74)

The sources are super-Gaussian, i.e., kurt(si) = E[s4
i ] − 3(E[s2

i ])
2 > 0, i = 1, 2

(fig. 12.11b). The constellation of s in this case is “pointy” along the directions
[±1, 0] and [0,±1]. The angle θ corresponds to one of the “hands” of the X-shaped
constellation for x. Clearly, θ should be reduced to 0. This is done by the following
rotation transformation:

y(k) =

[
cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

]
z(k). (12.75)

In both cases there remains an unknown scaling of the sources which cannot
be removed since it is unobservable in all BSS problems.

12.3.2 Sparse Sources, Two Mixtures

Another special case of continuous sources that can be successfully treated using
geometric methods is the case of sparse sources. A signal si(k) is sparse if it is equal
to zero most of the time. The sparseness of the si is measured by the sparseness

probability

pS(si) = Pr{si(k) = 0}.

Values of pS closer to 1 correspond to more sparse data, whereas values closer to 0
represent dense data. Consider now the typical instantaneous mixing model:

x(k) = Hs(k), (12.76)

assuming that all the sources are sparse. Then it is highly likely that there exist
some time instances such that only one source is active at that instance. If, for
example, only si is nonzero at time k, then x(k) is proportional to hi, the ith
column of H. The number of outputs m is not important, as long as m ≥ 2. In fact,
the number of outputs may even be less than the number of sources (m < n). In
the subsequent discussion we shall use the convenient value m = 2 because it will
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Figure 12.11 The linear, instantaneous transformation s 	→ x introduces skew,
rotation, and scaling on the original axes. The whitening transform x 	→ z removes
the skew, making the axes orthogonal again. Then the rotation can be removed by
an orthogonal transformation z 	→ y. (a) If the source distribution is uniform we
must rotate so that θ becomes π/4. (b) If the source distribution is super-Gaussian
then we must rotate so that θ becomes 0.
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Figure 12.12 Output constellation for m = 2 outputs and n = 4 sparse sources.
The top three plots correspond to different sparseness probabilities (a) pS = 0.6,
pS = 0.7, (c) pS = 0.8. The solid lines are the directions of the four vector-columns of
H. The three bottom figures d, e, and f are polar plots of the data density (potential)
function with spreading parameter σ = 8 corresponding to the constellations a, b,
and c, respectively.

help us visualize the results. Bofill and Zibulevsky (2001) observed that the data
are clustered along the directions of the mixing vectors hi, i.e., the columns of H.
Figure 12.12 shows the output constellation for the memoryless system (eq. 12.76)
with m = 2 outputs, n = 4 sparse inputs, and different sparseness levels. As the
sparseness of the inputs increases, the four clustering directions become more easily
identifiable (see figures 12.12a,b,c).

Thus blind system identification is achieved by identifying the directions of
maximum data density. Assuming that the sources are zero mean, so they can
take both positive and negative values, the clustering will extend to the negative
directions −hi as well. Since, for each i, both opposing directions hi and −hi

are equally probable, it is not possible to identify the “true” vector. This is a
manifestation of the sign ambiguity which is inherent to the BSS problem. Not
surprisingly, the ordering ambiguity is also present in the sense that there is no
predefined order on the directions of maximum data density.
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For m = 2, a practical algorithm has been proposed by Bofill and Zibulevsky
(2001). For any two-dimensional vector x = [x1, x2]T �= 0 let us define the angle of
x,

θ(x) = arctan(x2/x1). (12.77)

The directions θ where the random variable θk = θ(x(k)) has the highest density
are the directions of the mixing vectors. The density is estimated by the use of a
potential function U(θ) :

U(θ) =
∑

k

w(k) t(θ − θk; σ) (12.78)

t(α; σ) =

{
1 − α

π/(4σ) , for |α| < π
4σ ;

0, otherwise.
(12.79)

where w(k) = ‖x(k)‖ is a weight putting more emphasis on more reliable data, t is
a triangular function, and σ adjusts the angular width, i.e., the spread of each local
contribution to the potential function (see figures 12.12d,e,f). The directions of the
mixing vectors are identified as the peaks of the potential function. The number of
sources need not be known in advance since it can be identified by the number of
peaks.

Following the mixing matrix identification step, the sources can be estimated
in a second step, using the N observation samples x1, . . . ,x(N). In the presence of
noise the samples s(1), . . . , s(N), can be estimated by solving N small minimization
problems:

min
s(k)

1
σ2 ‖Hs(k) − x(k)‖2 + λ

n∑
j=1

|sj(k)|, for k = 1, · · · , N. (12.80)

The first term minimizes the square error (σ is the noise variance), while the second
term is a penalty for nonsparsity. In the absence of noise, the optimization problem
is formulated in a slightly different fashion:

min
s(k)

n∑
j=1

|sj(k)|, subject to x(k) = Hs(k). (12.81)

Example 12.6 Separation of Full Ensemble Music
Bofill and Zibulevsky report a number of experiments with real data including
mixtures of speech (four voices), music (five songs), single musical tones (six flutes),
and simple melodies from a single musical instrument (six flute melodies). The
results of these experiments are published online by Bofill. Here we shall present
the separation experiment of five songs from two mixtures. The source data were 5-
seconds-long excerpts from five full-ensemble music pieces extracted from standard
CDs. The data were downsampled to 11,025 Hz monophonic and were preprocessed
as follows:
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Mixtures

Sources
Recovered Sources

Figure 12.13 Blind separation of five full-ensemble music pieces from two linear
mixtures.

All sources were normalized to unit energy.

Two mixtures were generated using a 2 × 5 mixing matrix H. The five mixing
vectors (the columns of H) were formed with equally spaced angles.

The mixtures were rescaled between −1 and 1 and processed in frames of length
T with a hop distance d between starting points of successive frames.

Each frame was transformed with FFT of length T and only the coefficients of
the positive half spectrum were kept. All FFT segments were concatenated in a
single vector which was the input to the separation algorithm.

In this particular experiment the frame parameters were T = 4, 096 and d = 1, 228
samples. The five sources, the two mixtures, and the five reconstructed signals are
shown in fig. 12.13. The signal to reconstruction-error ratio, for a wide range of
values of the smoothness parameter σ, was around 15 dB.

12.3.3 Dense Sources, Two Mixtures: Geometric ICA

The data-density concepts for sparse or bounded sources cannot be directly ex-
tended to non-sparse sources. However, Theis et al. (2003a,b) and Jung et al. (2001)
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have developed a theory relating the data densities in the polar coordinates with
the mixing vectors hi, i = 1, · · · , n, when the sources are nonsparse, provided that
their pdf is symmetric, non-Gaussian, and unimodal (i.e., has only one peak). This
theory applies to memoryless systems of the type in equation 12.76 with m = 2
outputs and n ≥ 2 inputs. Extensions for m > 3 are possible but impractical due
to the high computational cost and the extremely large required data sets.

In an analogous way to the sparse case, the method is based on the properties
of the density (pdf) ρΘ̄ of the random variable

θ̄ = θ(x) mod π,

where θ(x) is the angle of x defined in equation 12.77. Here, however, the peaks
of the density may not have a one-to-one correspondence with the mixing vectors,
especially when the number of sources is greater than the number of observations
(n > m). The basic result is that the angles

θi = θ(hi), i = 1, · · · , n (12.82)

of the mixing vectors hi satisfy the geometric convergence condition (GCC) defined
below:

Definition 12.2 Geometric Convergence Condition
The set of angles {θ1, . . . , θn}, θi ∈ [0, π), satisfies the GCC if, for each i, θi is the
median of ρY restricted to the receptive field Φ(θi).

Definition 12.3 Receptive Field
For a set of angles {θ1, . . . , θn}, θi ∈ [0, π), the receptive field Φ(θi) is the set
consisting of the angles θ closest to θi:

Φ(θi) = {θ ∈ [0, π) : |θ − θi| ≤ |θ − θj | for all j �= i}.

Since the angles of the true mixing vectors satisfy the GCC we hope that we
can find them by devising an algorithm which converges when the GCC is satisfied.
This is exactly the aim of the geometric ICA algorithm (Theis et al., 2003a,b). This
iterative algorithm works with a set of n unit-length vectors (and their opposites)
and terminates only when the angles of these vectors are the medians of their
corresponding receptive fields. It is conjectured that the only stable points of this
algorithm are the true mixing vectors.

The algorithm starts by picking n random pairs of opposing vectors: {wi(0),
w′

i(0) = −wi(0)}, i = 1, · · · , n. For each iteration k, a new observation vector x(k)
is projected onto the unit circle:

z(k) =
x(k)
‖x(k)‖ .

Then we locate the vector wj(k) closest to z(k) and we update the pair wj(k),
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w′
j(k), as follows:

wtemp
j = wj(k) + η(k) z(k)−wj(k)

‖z(k)−wj(k)‖ ,

wj(k + 1) = wtemp
j /‖wtemp

j ‖,
w′

j(k + 1) = −wj(k + 1).

(12.83)

The other w’s are not updated in this iteration. It can be shown that the set
W = {w1(∞), . . . , wn(∞)} is a fixed point of this algorithm if and only if
the angles θ(w1(∞)), . . . , θ(wn(∞)) satisfy the GCC. We already know that
the set A = {θ(h1), . . . , θ(hn)} satisfies the GCC, therefore, we hope that, at
convergence, {θ(w1(∞)), . . . , θ(wn(∞))} = A. If this is true then the vectors
w1(∞), . . . , wn(∞) are parallel to the mixing vectors h1, . . . , hn, although not
necessarily in that order. Since the order and scale are insignificant, this is not
a problem. If m = n, then the estimated matrix Ĥ−1 = [w1(∞), . . . , wn(∞)]−1

solves the BSS problem. In the overdetermined case (m > n) the general algorithm
for the source recovery is the maximization of P (s) under the constraint x = Hs.
This linear optimization problem can be approached using various methods, such
as, for example, the one described in section 12.3.2.

The FastGEO Algorithm An alternative way to find the mixing vectors is to
design a function which is zero exactly when its arguments satisfy the GCC. Then
we simply have to compute the zeros of this function, for example, by exhaustive
search. This approach describes the so-called FastGEO algorithm (Jung et al., 2001;
Theis et al., 2003a). Let us separate the interval [0, π) into n subintervals with
separating boundaries φ1, . . . , φn, and let θi be the median of θ̄ in the subinterval
[φi, φi+1],

θi = F−1
Θ̄

(
FΘ̄(φi) + FΘ̄(φi+1)

2

)
, i = 1, · · · , n, (12.84)

where FΘ̄ is the cumulative distribution function of θ̄, F−1
Θ̄ is the inverse function

of FΘ̄ (we assume it exists), and φn+1 = φ1 + π (see fig. 12.14). Then the function

μ(n)(φ1, · · · , φn−1) =
[
θ1 + θ2

2
− φ2, · · · ,

θn−1 + θn

2
− φn

]T

(12.85)

is zero if and only if

θi + θi+1

2
= φi+1, i = 1, · · · , n − 1

for all i, and so by definition the receptive field Φ(θi) is exactly the subinterval
[φi, φi+1] and θi is the median of its receptive field; in other words, the set
{θi, . . . , θn} satisfies the GCC. For each set of separating boundaries {φ1, . . . , φn−1}
we compute the medians θ1, . . . , θn by equation 12.84 and then the function
μ(n)(φ1, · · · , φn−1) by equation 12.85. The FastGEO algorithm is the exhaustive
search for the zeros of μ(n).
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Figure 12.14 The angles θi of the mixing vectors hi satisfy the geometric con-
vergence condition if they are the median of the random variable θ(x) within the
interval Φ(θi) = [φi, φi+1]. Φ(θi) is called the receptive field of θi and it is the set
consisting of the angles θ closest to θi.

Especially for n = 2 we let φ1 = φ and we have φ2 = φ + π/2, so

μ(2)(φ) =
θ1 + θ2

2
− (φ + π/2).

Example 12.7
Let x1, x2 be two instantaneous mixtures of two uniform sources s1, s2. The
mixtures were generated by the following mixing operator

H =

[
0.0735 0.2913

−0.3391 0.3725

]
.

The distribution of the angle y = φ(x) is shown in fig. 12.15. The same figure
shows the receptive field boundaries {φ1, φ2, φ3} = {77.0998, 167.0998, 257.0998}
(in degrees), corresponding to the angles {θ1, θ2} = {51.9759, 102.2237} of the
mixing vectors h1 = [0.0735,−0.3391]T , h2 = [0.2913, 0.3725]T . The angles θ2 and
θ1 + 180 are the medians of the angle distribution in the corresponding receptive
fields.

12.4 Conclusions

Blind signal processing (BSP) refers to a wide variety of problems where the output
of a system is observable but neither the system nor the input is known. The large
family of BSP problems includes blind signal separation (BSS), blind system or
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Figure 12.15 The distribution of the angle θ(x) for two instantaneous mixtures
of two uniformly distributed sources. The receptive field boundaries are defined by
the angles φi. The angles θi of the mixing vectors are the medians of each receptive
field.

channel identification (BSI or BCI), and blind deconvolution (BD). Traditional
approaches exploit statistical properties of second or higher order. Recently a
third approach has emerged using the geometric properties of the data cloud. This
approach exploits the finite alphabet property of the input data or the shape of
the constellation depending on the probability density of the sources. In such an
approach our basic tools are methods for data clustering and shape description such
as the convex hull. The advantage of the geometric approach is the finite nature
of the methodology following the clustering step. Typically, this methodology is
fast for small problem sizes, i.e., for few sources or short channels. The main
disadvantage is the combinatorial explosion which is incurred when the problem
size grows large. To combat this drawback, channel-shortening methods may come
to our assistance. The problem, however, is far from solved and many issues remain
open. In this chapter we presented the main geometric principles used in blind signal
processing. We presented a comprehensive literature survey of geometric methods
and we outlined the basic methods for blind source separation, blind deconvolution,
and blind channel identification.





13 Game-Theoretic Learning

Geoffrey J. Gordon

Whatever games are played with us, we must play no games with ourselves.

—Ralph Waldo Emerson

A game is a description of an environment where multiple decision makers can
interact with one another. Each of the decision makers, called a player, may have
its own goals; these goals may align with the goals of other players, conflict with
them, or some combination of the two.

Some traditional examples of games are bridge, blackjack, chess, roulette, and
poker. Less traditional examples include auctions, marketing campaigns, decisions
about where to build a new factory, and various types of social interactions such as
applying for a job. Finally, many popular games mix components of perception and
physical skill with the problem of making good decisions; examples include football,
freeze tag, paintball, and driving in traffic.

This chapter is about how to learn to play a game. We will discuss how
a player can, by repeated interaction with its environment and with the other
players, discover how to make decisions which achieve its goals as reliably as
possible. Playing a real-life game such as football is far beyond the capability of any
current artificial learning system, but we will at least begin to address the issues of
exploration and generalization which arise in such a problem.

The difficulty of making good decisions in a game can range from trivial to
nearly impossible. We can classify games according to several dimensions; each of
these classifications affects the type of solution we can seek, the algorithms we can
use, and the difficulty of finding a good plan of action.

In one-step games each player decides on its strategy all at once. In sequentialone-step vs.
sequential games a player commits to its actions in several steps, and after each step it may

find out something about the other players’ choices. Of course, to learn about any
game the players will usually need to play it several times; so, we can speak of a
repeated game, either one-step or sequential.

In perfect information games, each player knows all the choices that the other(im)perfect
information players have already made. In games with imperfect information, the players know



380 Game-Theoretic Learning

only some of the past choices of other players. For example, if an auction house is
selling several copies of the same item one after another via sealed bids, the bidders
will know the sale prices of the previous items but will not know the details of the
previous bids.

In complete information games the players know all the details of the game(in)complete
information they are playing: they know the structure of the game, the outcomes of all past

external events that are relevant to their future payoffs, and what the payoffs are
in any situation for themselves and for the other players. In incomplete information

games some of the players are missing some of this information; for example, in
bridge or poker the players don’t see each other’s cards.

In this chapter we will discuss all of these different types of games in turn. Each
one presents different difficulties, so we will discuss various algorithms for learning
to play them. Each of the algorithms provides different performance guarantees, so
we will describe and compare the types of guarantees that are available.

We will start with one-step games. The standard representation of one-step
games is the normal form, described in section 13.1. Given the normal form, classical
game theory looks for distributions of play from which no player can alter its actions
to improve its payoffs; such distributions are called equilibria, and we will discuss
them in section 13.2. Equilibria are possible outcomes of learning, since learning
players will not be satisfied as long as they think they can improve their reward.
So, in section 13.3, we will review learning algorithms for one-step games and use
the different types of equilibria to describe what happens when various learning
algorithms play against one another.

From one-step games we will move to sequential games. In sequential games we
can define additional types of equilibria, and we need to move to more complicated
learning algorithms. Sections 13.4 and 13.5 cover these new equilibria and learning
algorithms. Finally, we will conclude in section 13.6 with some examples of how
game-theoretic learning algorithms have been applied to solve real-world problems.
These problems range from poker to robotic soccer.

13.1 Normal-Form Games

Any game can in principle be described with the following information:

A list of the players. We will assume that there are only finitely many of them.Normal form
representation For each player, a list of the actions (also called plays or pure strategies) that

it may choose. We will assume that there are finitely many pure strategies. Any
probability distribution over pure strategies is called a mixed strategy.

Given a strategy profile (that is, a pure strategy for every player), the utility or
payoff which each player assigns to the resulting outcome. If there are external
random events which affect utility, we only need to know the expected utility of
each strategy profile.
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This representation is called the normal form of the game. As with any general
representation, the normal form may be nowhere near the most concise way to
describe a game. Still, it does allow us to discuss many different games and
algorithms in a general way.

We can represent a normal-form game with a table: there is one entry in the
table for each strategy profile, and the entry is a vector which lists the utility of
the resulting outcome for each player. For example, the following table represents
the children’s game rock-paper-scissors:

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

The first entry on the second row of this table says that, if the row player chooses P

(for “paper”) while the column player chooses R (for “rock”), then the row player
gets a payoff of 1 while the column player gets a payoff of −1. The payoffs can in
general be random variables, but we are only interested in their expected values,
so we will not bother to write out any other properties of their distributions.

The payoff table is assumed to be common knowledge. That is, every playercommon
knowledge knows it, every player knows that every player knows it, and so forth. If the payoff

table is not common knowledge (that is, if some players have information about
it that others don’t), the game is called a Bayesian game; section 13.4.1 covers
Bayesian games in more detail.

The simplest type of game to reason about is a two-player constant-sum game.
Constant sum means that, for each strategy profile (i.e., for each entry in the table),
the sum of the payoffs to the two players is constant. For example, rock-paper-
scissors is a constant-sum game, since each utility vector sums to zero. Constant-
sum normal-form games are one of the few types of game with a universally accepted
and easy to compute solution concept (the minimax equilibrium; see section 13.2.1).

If the payoffs do not sum to a constant, or if there are more than two players,
the game is called general sum. By convention a game with three or more players is
always called general sum, even if the payoffs do sum to a constant, since minimax
equilibrium doesn’t make sense for multiplayer games.

Environments in which all players have the same payoffs are called cooperative

or team games. Team games may appear easy, but they can be difficult to solve
because of imperfect or incomplete information: while a player may believe that a
particular strategy profile is best, it may not be able to trust the other players to
agree. So, it may have to choose an action which appears suboptimal in order to
try to reach a different but safer outcome.
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13.2 Equilibrium

An equilibrium of a game is a self-reinforcing distribution over strategy profiles.
That is, if it is common knowledge that all players are acting according to a given
equilibrium, no one player wants to change how it plays. There are many different
types of equilibrium, which differ in how they formalize the above definition.

Classical game theory takes the view that the best way to analyze a game is
to determine what its equilibria are. We can justify this view if we assume that the
game is common knowledge among the players, and that the players have common
knowledge of each other’s rationality. However, equilibria don’t tell us everything ifcommon

knowledge of
rationality

the players have limited computation (often called bounded rationality) or if some
players disagree about the rules of the game. Also, a single game may have many
equilibria, and it may not be clear how the players should (or can) select one.

In this chapter we take a slightly different view: we are more concerned with
how a player may adapt its actions based on information about what the other
players are doing. So, we will write down learning algorithms and analyze what
happens when the players use these algorithms in different types of games. Still,
the various ideas of equilibrium are important: for example, under appropriate
circumstances some of the learning algorithms we describe below will converge
toward various types of equilibrium play.

We have already mentioned one type of equilibrium, the minimax or vontypes of
equilibrium Neumann equilibrium for constant-sum matrix games. For general-sum games,

there are at least two important types of equilibrium: the Nash equilibrium and
the correlated equilibrium. And we will see even more types of equilibrium when we
discuss sequential decision making in section 13.4 below.

In addition to the Nash and correlated equilibria, it is sometimes helpful to
know the safety value of each player in the game. A player’s safety value is thesafety value
best payoff that it can guarantee itself no matter what the other players do. That
is, even if the other players irrationally ignore their own payoffs, they cannot force
the first player to accept less than its safety value. In any equilibrium, each player
must have a payoff at least as high as its safety value: if it did not, it would switch
to its safety strategy.

13.2.1 Minimax Equilibrium

In a minimax equilibrium the players are required to choose independent probability
distributions over their strategies, say x for the row player and y for the column
player. If the payoff to the row player is r(x, y), then the minimax value of the game
for the row player is

min
y

max
x

r(x, y) (13.1)

and a minimax strategy for the row player is any value of x which achieves the
maximum in 13.1. Neither player will wish to deviate from its set of minimax
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strategies, since any deviation will give the other player a strategy which gets strictly
better than the minimax payoff. Any constant-sum matrix game has at least one
minimax equilibrium. The set of these minimax equilibria is convex, all minimax
equilibria have the same value, and miny maxx r(x, y) = maxx miny r(x, y).

In the game of rock-paper-scissors described above, there is exactly one mini-
max equilibrium: both players play R, P , and S with equal probability. By taking
the expectation over the different possible outcomes (each of the nine profiles RR,
RP , RS, . . . has probability 1/9) we can see that the average payoff is zero for both
players. On the other hand, if one of the players deviates from the equilibrium, the
other player has a response that nets better payoff: for example, if the row player
picks R with probability 1/2 and P and S with probability 1/4 each, then the col-
umn player can choose P all the time. The column player will then get an expected
payoff of

(1/2)1 + (1/4)0 + (1/4)(−1) = 1/4 > 0.

13.2.2 Nash equilibrium

In general-sum games the idea of minimax equilibrium no longer makes sense, so
we must seek alternative types of equilibrium. Perhaps the best-known type of
equilibrium for general-sum games is the Nash equilibrium.

In a Nash equilibrium we require the players to choose independent distribu-
tions over strategies. So, a Nash equilibrium is a profile of strategy distributions
such that, if we hold the distributions fixed for every player except one, the remain-
ing player can get no benefit by changing its play. There is always at least one Nash
equilibrium for every game, and there may be many.

In a constant-sum game, Nash equilibria are the same as minimax equilibria.
But in a general-sum game, a player’s payoff may differ greatly from one Nash
equilibrium to another, and the set of Nash equilibria may be nonconvex and
difficult to compute.

To illustrate Nash equilibria, consider the game of “Battle of the Sexes”. In
this game, a husband and wife want to decide whether to go to the opera (O) or
the football game (F). One of them (the row player) prefers opera, while the other
(the column player) prefers football. But, they also prefer to be together; so, they
have the following payoffs:

O F

O 4, 3 0, 0

F 0, 0 3, 4

.

This game has three Nash equilibria. Two of them are deterministic: both players
go to the opera, or both go to football. The last one is mixed: the row player
picks opera 3/7 of the time, while the column player picks opera 4/7 of the time.



384 Game-Theoretic Learning

(In this mixed strategy, each player’s distribution makes the other player perfectly
indifferent about whether to pick opera or football.)

13.2.3 Correlated Equilibrium

In real life many people would solve the Battle of the Sexes by flipping a coin to
decide which event to go to. This strategy is not a Nash equilibrium: in a Nash
equilibrium the players are not allowed to communicate before the game, so they
cannot both see the same coin flip. Instead it is a correlated equilibrium, which
is like a Nash equilibrium except that we drop the requirement of independence
between the players’ distributions over strategies.

More formally, consider a distribution P over the set of strategy profiles; P may
contain arbitrary correlations between the strategies of the different players. Some
external mechanism, which we will call the moderator, selects a strategy profile x

according to P and reports to player i the action xi that it is supposed to follow. P

is a correlated equilibrium if player i has no incentive to play anything other than
xi (even after finding out that xi was recommended, which may tell it something
about the other players’ strategies).

The coin-flip strategy is a correlated equilibrium in which the distribution P

places weight 1/2 on each of the profiles OO and FF . Another everyday example of
a correlated equilibrium is a traffic light: we can model the light as being randomly
red or green as we approach it.1 Red is the moderator’s recommendation to stop,
while green means to go through the intersection without stopping. Given a red
light it is not worth going through the intersection and risking a crash, while with
a green light we can assume that the traffic on the cross street will stop and our
best strategy is to maintain speed.

13.2.4 Equilibria in Battle of the Sexes

To gain more intuition for Nash and correlated equilibria we will illustrate how to
compute them for the Battle of the Sexes. We will start by computing the correlated
equilibria, which satisfy a set of linear equality and inequality constraints; we will
then obtain the Nash equilibria by adding in some nonlinear constraints.

We can describe a correlated equilibrium in Battle of the Sexes with numbers
a, b, c, and d representing the probability of the four strategy profiles OO, OF ,
FO, and FF :

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that the
column player will play O and F with probabilities a

a+b and b
a+b . (The denominator

is nonzero since the row player has received the recommendation O.) The definition
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OO

FF

OF

FO

Figure 13.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF , FO, and FF ; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

of correlated equilibrium states that in this situation the row player’s payoff for
playing O must be at least as large as its payoff for playing F .

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0.

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (13.2)

(We have discarded the qualification a+b > 0 since inequality 13.2 is always true in
this case.) On the other hand, by examining the case where the row player receives
the recommendation F , we can show that

0c + 3d ≥ 4c + 0d. (13.3)

Similarly, the column player’s two possible recommendations tell us that

3a + 0c ≥ 0a + 4c (13.4)

and

0b + 4d ≥ 3b + 0d. (13.5)
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Intersecting the four constraints (13.2–13.5), together with the simplex constraints

a + b + c + d = 1.

and

a, b, c, d ≥ 0

yields the set of correlated equilibria. The set of correlated equilibria is shown as
the six-sided shaded polyhedron in fig. 13.1. (Figure 13.1 is adapted from Nau et al.
(2004).)

For a game with multiple players and multiple strategies we will have more
variables and constraints: one nonnegative variable per strategy profile, one equality
constraint which ensures that the variables represent a probability distribution, and
one inequality constraint for each ordered pair of distinct strategies of each player.
(A typical example of the last type of constraint is “given that the moderator
tells player i to play strategy j, player i doesn’t want to play k instead.”) All
of these constraints together describe a convex polyhedron. The number of faces
of this polyhedron is no larger than the number of inequality and nonnegativity
constraints given above, but the number of vertices can be much larger.

The Nash equilibria for Battle of the Sexes are a subset of the correlated
equilibria. The large tetrahedron in fig. 13.1 represents the set of probability
distributions over strategy profiles. In most of these probability distributions the
players’ action choices are correlated. If we constrain the players to pick their actions
independently, we are restricting the allowable distributions. The set of distributions
which factor into independent row and column strategy choices is shown as a
hyperbola in fig. 13.1. The constraints which define an equilibrium remain the same,
so the Nash equilibria are the places where the hyperbola intersects the six-sided
polyhedron.

13.3 Learning in One-Step Games

In normal-form games we have assumed that the description of the game is common
knowledge: everyone knows all of the rules of the game and the motivations of the
other players. In these types of games, learning may have several roles:

To select a single equilibrium from the set of possible equilibria. Without prior
communication the players have no way to decide which equilibrium to play, and
the results of miscoordination can be disastrous.

To accelerate computation. An agent with limited brainpower may decide to run
a learning algorithm because the agent gets good payoffs faster by learning than it
would by directly computing an equilibrium.

To model limited players. While the other players may have known motivations,
they may not be completely rational in pursuing these motivations; so, a learning
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algorithm may be able to take advantage of their bounded rationality.

In addition, if the description of the game is not common knowledge (see sec-
tion 13.3.4), we can add two more reasons for learning:

To discover the other players’ motivations.

To learn about our own payoffs or the distributions of random events.

We will start with the problem of identifying sets of equilibria, then move to various
types of learning algorithms that can be used to find equilibria.

13.3.1 Computing Equilibria

The simplest equilibria to find are in two-player constant-sum games. In these
games, minimax equilibria are the same as Nash equilibria. (Correlated equilibria
are slightly more complicated but still easy to find; see Forges (1990) for more
detail.)

The problem of finding the minimax value of a game is a linear program: write
y for the strategy distribution of the column player and z for the value of the game
to the row player. Write M for the matrix of payoffs to the row player, with one
entry for each pair of strategies. Then the entries of the vector My are the payoffs
to the row player for each of its strategies. To keep the row player from wanting
to change strategies, these payoffs must all be less than or equal to z. Subject to
these constraints, the column player wants to select its mixed strategy y to make z

as small as possible:

minimize z

subject to My ≤ 1z

1�y = 1

y ≥ 0.

(13.6)

Here 1 denotes the vector (1, 1, . . . , 1)�, so the last two lines ensure that y is a
probability distribution.

A solution to the linear program 13.6 tells us a strategy for the column player
that achieves the minimax value. (In fact, the optimal solutions to program 13.6
are the same as the optimal strategies for the column player; this fact constitutes
a proof that the set of minimax strategies is convex.) If we want a strategy for the
row player as well we can swap the roles of row and column players in program 13.6;
or, we can simply look at the optimal dual variables for the constraint My ≤ 1z,
which many linear program solvers will supply at almost no additional cost.

The next simplest equilibria are the correlated equilibria in general-sum games.
As shown in section 13.2, the set of correlated equilibria of a given game is
convex; so, we can solve a linear program to find (say) a correlated equilibrium
that maximizes the payoff to the first player, or one that maximizes the sum of
payoffs to all players. (The latter criterion is called social welfare.) The linear
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program for finding correlated equilibria is bigger than the one for finding minimax
equilibria: the former has a number of variables proportional to ap for a game with
a actions and p players, while the latter needs only about a variables. But both
linear programs are polynomial in the size of the game, since we need to list pap

numbers to specify the payoffs.
The complexity of finding Nash equilibria in general-sum games is an important

open problem in the theory of algorithms. We know exponential-time algorithms
to solve the problem, and we do not know any polynomial-time algorithms, but no
one has proved that the problem is NP -complete. Simple questions related to Nash
equilibria are known to be hard, however; for example, Conitzer and Sandholm
(2003) show that counting the number of Nash equilibria is #P -complete, and
that it is NP -complete to test whether there exists a Nash equilibrium with social
welfare at least k.

Finding the Nash equilibria of a two-player general-sum game can be cast as a
linear complementarity problem, that is, as a linear program with the addition of
complementarity constraints of the form pq = 0, p ≥ 0, q ≥ 0. To get an intuition for
why, consider any Nash equilibrium distributions x and y for the row and column
players, and write z for the value of the game to the row player. If M is the matrix
of row player payoffs, then

x�(z1 − My) = 0. (13.7)

Both factors in equation 13.7 are always positive: x is a probability distribution,
and each entry of (z1 − My) is the difference between the value of the game and
the value of a single action. So, equation 13.7 means that the row player will not
put positive probability on any strategy which achieves less than the value of the
game. Equation 13.7 is related to the linear program 13.6, in which the optimal
primal and dual variables satisfy a similar complementarity constraint.

The classical algorithm for solving linear complementarity problems is the
Lemke-Howson algorithm (Lemke, 1965). More recently, researchers have developed
interior point methods for LCPs (Kojima et al., 1991), but no one has found an
algorithm which has been proved to run in polynomial time.

For multiplayer general-sum games the complementarity problem becomes
nonlinear and therefore even harder to solve, so people often turn to algorithms
that are not based on complementarity problems. One such algorithm is simplicial

subdivision. Suppose that we are given a continuous update rule which takes in
a profile of mixed strategies and produces as output another profile of mixed
strategies. By Brouwer’s fixed point theorem, such an update rule must have at
least one fixed point.

It is relatively easy to design update rules whose fixed points are exactly the
Nash equilibria; see equation 13.9 and fig. 13.2 below for an example. Given such
an update rule, one way to find Nash equilibria is to divide the set of profiles of
mixed strategies into a mesh and search for a mesh cell whose center is near a fixed
point. By searching a sequence of finer and finer meshes we can locate all of the
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Nash equilibria to any desired level of accuracy; see McKelvey and McLennan for
more details.

13.3.2 Hill-Climbing Algorithms

Let ri(a1, a2, . . . ) be the payoff to player i when the players choose the actions
a1, a2, . . . in a normal-form game. For convenience of notation we will write
ri(a1, a2, . . . ) = ri(ai, a¬i), where a¬i stands for the action profile of all players
except for i. Also for convenience we will write ri(xi, a¬i) for the expected reward
when player i follows the mixed strategy xi.

It is easy to see that ri is a linear function of xi when we hold a¬i fixed, and
that its gradient is

gi =
d

dxi
ri(xi, a¬i) =

⎛⎜⎜⎝
ri(1, a¬i)

ri(2, a¬i)
...

⎞⎟⎟⎠ , (13.8)

where ri(j, . . . ) represents the payoff for the jth pure strategy. Many researchers
have designed learning algorithms which observe a¬i and alter xi in the direction
of gi to attempt to improve performance. These algorithms have an informational
advantage when compared to algorithms like linear programming: instead of needing
to know all of the payoffs of the game, they just need to know gi.

The simplest gradient-based algorithm is best response. Suppose we are playing
the same game repeatedly, and that on the tth trial the ith player observes the
gradient vector g

(t)
i . Then on the (t + 1)st trial, player i will play a strategy

x
(t+1)
i ∈ arg max

x∈Δ
x · g(t)

i ,

where Δ is the simplex of probability distributions.
Unfortunately the best-response algorithm is not a very good one: imagine

playing the zero-sum game “Matching Pennies,” in which two players each choose
heads (H) or tails (T) and the row player gets a point when the choices match. The
payoff matrix for Matching Pennies is

H T

H 1,−1 −1, 1

T −1, 1 1,−1

If the row player runs best response, starting with a prediction of T on the first
trial, and if the column player plays the sequence HTHTHTHTHT . . . , then the
row player will lose on every trial.
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A slightly smarter algorithm is fictitious play (Brown, 1951; Fudenberg and
Levine, 1998). On the (t + 1)st trial, fictitious play chooses

x
(t+1)
i ∈ arg max

x∈Δ
x ·

t∑
k=1

g
(k)
i ,

where Δ is the simplex of probability distributions. That is, it plays a best response
to the average of all previous strategy profiles rather than to the most recent
strategy profile.

Fictitious play has a very weak convergence property: in a constant-sum game,
if two fictitious players play against each other, the average action 1

t

∑t
k=1 x

(k)
i of

either player converges to a minimax equilibrium. Unfortunately a player who runs
fictitious play is not guaranteed to achieve the minimax payoff even when the other
players are also running fictitious play: it may play the right mixture of actions but
always at the wrong time. For example, two fictitious players learning the game of
Matching Pennies can play HTHTHT . . . and THTHTH . . . ; these sequences have
the proper 50-50 mix of H and T, but give a payoff of −1 per trial to the row player
instead of the minimax value of 0.

The flaw with both best response and fictitious play is that their strategy
choice is deterministic (except possibly when there are exact ties between actions).
Playing a deterministic strategy is often a bad idea: anyone who can predict your
actions can take advantage of you. Even if the environment is not intentionally
hostile, a deterministic strategy can result in poor performance, as in the example
of two fictitious players playing Matching Pennies.

To get around this limitation, researchers have proposed a number of algo-
rithms which are capable of learning to play mixed strategies. One of the simplest
such algorithms is gradient ascent.

Suppose player i plays the mixed strategy x
(t)
i at time t. Recall that player i’s

gradient at time t is g
(t)
i . At time t+1, gradient ascent computes the unnormalized

strategy

x̄
(t+1)
i = (1 − α(t))x(t)

i + α(t)g
(t)
i

and then plays

x
(t+1)
i = PΔ(x̄(t+1)

i ), (13.9)

where α(t) is a learning rate. The projection operator PΔ(x̄) ensures that the rec-
ommended play is a legal probability distribution: it projects x̄ onto the probability
simplex Δ by minimum Euclidean distance.

Gradient ascent has much stronger performance guarantees than fictitious play
and the other gradient-based algorithms described above. If we decrease the learning
rate according to a schedule like α(t) = 1/

√
t, then a player which runs gradient

ascent is guaranteed in the long run to achieve an average payoff at least as high
as its safety value (Zinkevich, 2003). (See section 13.3.4 for additional algorithms
with similar guarantees.) In a two-player two-action game the guarantee is even
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Figure 13.2 The gradient dynamics of the Battle of the Sexes. If we initialize
the players’ strategy profile at one of the small dots, the gradient ascent update
(eq. 13.9) will move it along the corresponding line. The fixed points of the gradient
dynamics are the Nash equilibria (0, 0), (1, 1), and (4/7, 3/7) (marked with circles);
the first two are stable fixed points while the last is an unstable fixed point.

stronger: Singh et al. (2000) proved that two gradient-ascent learners will achieve
many properties of a Nash equilibrium in the limit, including the average payoffs
and the average strategy.

The most current strategy x
(t)
i may not converge when two gradient-ascent

players learn simultaneously: Singh et al. (2000) showed that the joint strategies
can enter a limit cycle, even in a two-player two-action game. If the strategies do
converge, though, their limit must be a Nash equilibrium: the projected gradient
PΔ(xi + gi) − xi is zero exactly when player i can get no benefit by changing its
strategy. In other words, the Nash equilibria are exactly the fixed points of the
update in equation 13.9; see fig. 13.2 for an example.

Since Nash equilibria can be difficult to find, it is interesting to look for
modifications to the gradient ascent algorithm which make it converge more often.
Bowling (2003); Bowling designed a family of algorithms called WoLF (for Win or
Learn Fast) which adjust the learning rate α(t) to encourage convergence. He proved
convergence to Nash in self-play for two-player two-action games, and empirically
observed convergence in larger games.

13.3.3 Types of Performance Guarantees

In section 13.3.2 we mentioned three types of performance guarantees for hill-
climbing algorithms: bounds on their reward in arbitrary environments, convergence
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of their reward in self-play, and convergence of their strategy in self-play. When
playing in an arbitrary environment the best guarantee we can hope for is to achieve
our safety value, since the environment could be designed to thwart us at every turn.
(Convergence in an arbitrary environment is not desirable, since the environment
itself could be nonstationary.)

On the other hand, guarantees about what happen in self-play are not by
themselves completely satisfying since we often don’t have control over the learning
algorithms that the other players are running. So, we might want to analyze the
behavior of our algorithms when the other players use various classes of learning
algorithms. For example, we might want to prove that we achieve our safety value
in an arbitrary environment, but that we achieve the payoff of some equilibrium
when the other players are in some sense rational.

Below we will describe two rationality properties called no external regret and
no internal regret. No internal regret is the stronger property; that is, players which
have the no-internal-regret property will also have no external regret.

We will demonstrate that we can achieve both of these no-regret properties by
presenting learning algorithms which do so. If we achieve no regret, our payoffs will
be at least as high as our safety value. If all players achieve no external regret (using
whatever learning algorithms they choose), then (1) in a constant-sum game, their
average strategies will converge to minimax strategies, and (2) in a general-sum
game, if their average strategies converge, the result will be a Nash equilibrium. On
the other hand, if all players achieve no internal regret (no matter what learning
algorithms they use to do so) then their payoffs and their average strategy profile
will converge to a correlated equilibrium.

While the performance guarantees for no-regret algorithms are strong, perhaps
the strongest for any class of learning algorithms in games, there are still other
performance criteria which we do not know how to achieve. For example, here are
some open problems:

1. While the payoffs of the no-internal-regret algorithms will converge to correlated
equilibrium payoffs, we do not know how to achieve convergence of the strategies
themselves except in two-player two-action games.

2. Instead of a correlated equilibrium, we might like the stronger guarantee of
convergence to the payoffs or strategies of a Nash equilibrium.

3. Instead of a Nash equilibrium, we might prefer some other subclass of correlated
equilibria. For example, we might look for a correlated equilibrium which maximizes
social welfare, or one which maximizes payoff to the first player.

The first of these problems is mostly cosmetic: with no-internal-regret algorithms
our average strategy profile will be a correlated equilibrium even if none of the
learning algorithms explicitly represents this average profile. Solving either of
the latter two problems with an efficient algorithm, on the other hand, would
require significant advances in our understanding: a learning algorithm which
converges sufficiently rapidly to a Nash equilibrium would allow us to find a



13.3 Learning in One-Step Games 393

Nash equilibrium in polynomial time, an important open question in complexity
theory (see section 13.2). And, a learner which converges sufficiently rapidly to the
correlated equilibrium that maximizes social welfare would prove P = NP , an even
more important open question (Forges and von Stengel, 2002).

13.3.4 Regret

Let P (ai, a¬i) be a distribution over strategy profiles. We will say that player i’s
external regret for not having played pure strategy j is

ρP
ij = Ea∼P (ri(j, a¬i) − ri(ai, a¬i)).

That is, the external regret is the difference in the payoff that i would receive if
it were to play action j instead of playing according to P . Also define the overall

external regret to be the external regret versus the best strategy j:

ρP
i = max

j
ρP

ij .

External regret is an interesting quantity because it is related to Nash equilibrium.
Consider a distribution P which factors into an independent strategy choice for
each of the players. Then P is a Nash equilibrium if and only if the players all have
ρP

i ≤ 0: having ρP
ij ≤ 0 is equivalent to saying that player i has no incentive to

switch to strategy j.
Now define the internal regret for a pair of strategies j and k to be

ρ̄P
ijk = Ea∼(P |ai=j)(ri(k, a¬i) − ri(j, a¬i)),

where (P | ai = j) is the distribution we get by conditioning P (a) on the event
ai = j. That is, the internal regret is the benefit that player i would get by switching
all of its plays of action j to action k instead. We can also define the overall internal

regret to be the internal regret for the best strategy switch:

ρ̄P
i = max

ij
ρ̄P

ijk.

Internal regret is an interesting quantity because P is a correlated equilibrium if
and only if all players have ρ̄P

i ≤ 0: saying ρP
ijk ≤ 0 is equivalent to saying that

player i has no incentive to play k when recommended j.
Researchers have designed a variety of learning algorithms which attempt to

achieve low internal or external regret. More precisely, if we look at the distribution
Pt of joint plays after t time steps, these algorithms will attempt to make the
average regret ρPt

i or ρ̄Pt
i approach zero. Algorithms which achieve these properties

are called (respectively) no external regret or no internal regret algorithms, or
when it won’t cause confusion, just no regret algorithms. In this section we will
describe several no-external-regret algorithms; for an example of a no-internal-regret
algorithm see Greenwald and Jafari (2003).

We have already seen our first no regret algorithm: the gradient ascent al-
gorithm described in section 13.3.2 is no external regret. Our second no-regret
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algorithm is equally simple: it is called follow the perturbed leader or FPL. It was
originally due to Hannan, and is described in detail and extended in Kalai and
Vempala (2002).

FPL is a smarter version of the fictitious play algorithm described in sec-
tion 13.3.2. Define the expected gradient

gi(P ) = Ea∼P

⎛⎜⎜⎝
ri(1, a¬i)

ri(2, a¬i)
...

⎞⎟⎟⎠ . (13.10)

Equation 13.10 is a natural generalization of equation 13.8.
With this notation, fictitious play chooses the best action based on the average

gradient so far:

x
(t)
i = arg max

x∈Δ
x · gi(Pt).

Recall that the problem with fictitious play is that it is too predictable: for example,
in Matching Pennies, a smart opponent can cause a fictitious player to guess wrong
on every trial. To make fictitious play less predictable, we can add a little bit of
noise. Pick a constant ε and let

δ
(t)
j ∼ uniform(0, ε/

√
t)

be a set of independent, uniformly distributed random variables for all actions j

and trials t. Then FPL chooses

x
(t)
i = arg max

x∈Δ
x · (gi(Pt) + δ(t)).

That is, FPL finds the average payoff against Pt for each of its actions, adds some
noise, and picks the action with the highest perturbed payoff.

If we add too little noise we will be predictable, but if we add too much noise
we will play completely randomly. To strike a balance between these two extremes,
as the number of trials t increases FPL adds less and less noise. FPL is a no-
external-regret algorithm: if player i runs FPL, then ρPt

i = O(1/
√

t), so ρPt
i → 0 as

t → ∞.
Our next no-regret algorithm is called weighted majority. It is due to Littlestone

and Warmuth (1992), and was applied to games by Freund and Schapire (1996).
Like FPL and fictitious play it is based on the average gradient so far: it chooses

x
(t)
i = (1/Z)eβtgi(Pt),

where Z is a normalizing constant, β is a learning rate, and eg for a vector g means
the vector whose ith component is the exponential of the ith component of g.2

With a fixed learning rate β, weighted majority’s regret is ρPt
i = O(1), not low

enough for the no-regret property. But if we know the number of trials t ahead of
time, and if we set β in proportion to 1/

√
t, then weighted majority achieves regret
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Figure 13.3 Part of the game tree for chess. Each node encodes a board position
(including the identity of the player who is about to move) and each edge encodes
an action. There can be a payoff at each edge for each player, although this payoff
is not shown. A typical sequence of moves is Pk4, Pq4, PxP.

O(1/
√

t) and is therefore a no-external-regret algorithm.
Our final no-external-regret algorithm is called regret matching (Hart and Mas-

Colell, 2001). Regret matching bases its plays directly on the current regrets. Define
[x]+ = max{x, 0}; regret matching plays

x
(t)
i = (1/Z)

[
ρPt

i

]
+

,

where Z is a normalizing constant. (If ρPt
i ≤ 0 then regret matching plays arbitrar-

ily.) Regret matching has no parameters to tune, and achieves regret ρPt
i = O(1/

√
t)

after t trials.

13.4 Sequential Decisions

So far in this chapter we have considered only one-step games, that is, games where
the players make a single simultaneous choice of action. In general, though, the
players can have a sequence of interleaved choice points. We can analyze these
sequential games by converting them to normal form, but as we will see below
in section 13.4.2 there are some disadvantages to this approach: the normal-form
representation can be very large, and the solutions we find will not take into account
all the consequences of the sequential nature of the game.

The simplest type of sequential game is one with alternating moves and perfect
information. Chess, checkers, and backgammon are examples of such games. We can
solve perfect-information sequential games by dynamic programming. That is, we
can build a game tree which encodes all possible sequences of play (see fig. 13.3),
and work our way backward from the leaves of the tree to the root.

A leaf represents a position where there are no more moves available (for
example, because one of the players has already won). It is easy to assign a value
to a leaf, since the rules of the game tell us the payoffs to each player. Once we
have assigned values to all the leaves there will be some positions where, no matter
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root

deal AK, AA
deal AK, QJ

deal J7, QJ

$0 $1 $0 $1 $0 $1

.  .  .

Figure 13.4 Part of the game tree for Texas Hold’em poker. Ovals indicate
indistinguishable pairs of positions.

what move the player takes, the next position will be a leaf.3 We can assign a value
to such level-1 positions by picking the move which is most advantageous to the
player whose turn it is. Once we have assigned values to all the level-1 positions,
there will be some level-2 positions (i.e., positions where no matter what move the
player takes, the next position will be either a leaf or a level-1 position). We can
assign a value to the level-2 positions by considering all of their possible moves, and
so on for level-3 and higher board positions.

If different players have different knowledge about the world, the result is an
imperfect-information game like bridge or poker. We can write down game trees
for imperfect-information games too; see fig. 13.4 for an example. The difference
between an imperfect-information game tree and a tree for a game like chess is the
use of information sets to encode what each player knows and when. An informationinformation sets
set is a collection of nodes where it is some player’s turn to move, and which that
player cannot distinguish from one another.

For example, in Texas Hold’em, the dealer gives each player two face-down
cards before the first round of betting. The first player might see that its cards are
AK; in this situation, the second player might hold a pair of aces, a QJ, or any other
possible hand, and the first player cannot tell which. Similarly, once the first player
has bet and it is the second player’s turn to move, the second player can look at its
QJ but will not know whether the first player holds AK or J7. (Of course, the second
player can tell something about which hand the first player holds by reasoning that
the first player will bet more aggressively on AK than on J7; this sort of reasoning
is one of the challenges which makes learning in sequential games difficult.)

Dynamic programming no longer works for imperfect-information games: the
best move at one position in the game tree can be influenced by action choices at
other positions. One well-known example of this fact is bluffing in poker. A good
poker strategy will bet strongly on some low-value hands, even though it knows
it may get called and lose money; the reason it bluffs on low hands is so that the
opponents won’t immediately know to fold when it starts betting on a high-value
hand. Changing the number and type of bluffs would require changing betting
strategy on many other hands as well.
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We will consider two main types of imperfect-information games. In extensiveextensive form
games form games the information sets satisfy perfect recall: consider two nodes A and B

where player i is about to move, and call the descendants of A where i is about to
move the i-descendants of A. If A and B are in different information sets, then all of
the i-descendants of A are in different information sets from all of the i-descendants
of B. And, if a and b are two different actions, then the i-descendants of A which
we can reach by playing a are in different information sets than the i-descendants
of A which we can reach by playing b.

Perfect recall means that a player never forgets any of its actions or observations.stochastic games
In stochastic games, on the other hand, the information sets encode a Markov prop-
erty: the players forget their specific actions and observations and remember only a
sufficient statistic of their history. Typically a stochastic game is represented with a
set of S states; each player observes the state and all players simultaneously choose
their actions. Based on the current state and all the actions, the world transitions
to a new state and the process repeats.

In our previous notation, if there are k players, player i will play at steps
i, i+ k, i+2k, · · · . At all steps there are exactly S information sets. For each group
of k steps the information set remains equivalent—any information available to one
player is available to all players. And, given the information set at time tk + 1, the
information set at step (tk +1)+ k depends only on the actions of the players from
times tk + 1 to (t + 1)k.

For both extensive-form games and stochastic games, we will assume that there
is a fixed time horizon T before which the game is guaranteed to end. Without an
assumption like this, the players could receive infinite expected total payoff, and
they could delay bad outcomes indefinitely. It is possible to relax this finite horizon

assumption, but we will not do so in this chapter.

13.4.1 Uncertainty

An important special case of extensive-form game is the Bayesian game. BayesianBayesian games
games are normal-form games with incomplete information. In a Bayesian game
the entries of the payoff matrix are uncertain, and each player has its own private
information about the payoffs.

For example, recall that in the Battle of the Sexes the row player prefers opera
over football. But suppose that the opera might be either Verdi (V ), which the row
player likes, or Wagner (W ), which the row player dislikes. The row and column
players both have some information about which opera is playing: the column player
knows for sure whether it’s V or W , while the row player only knows with 80%
certainty. We can represent this game, which we will call the “Return of the Battle
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of the Sexes”, with three tables:

Types

V W

V 0.4 0.1

W 0.1 0.4

V, V or W, V

O F

O 4, 3 0, 0

F 0, 0 3, 4

V, W or W, W

O F

O 2, 2 0, 0

F 0, 0 3, 4

The first table describes the private information which might be available to each
player. A player’s private information is called its type, and the vector of all types
is called the type profile. The table shows the prior probability of each type profile.
For example, profile V, W has probability 0.1.

The actual payoffs of the game depend on the type profile. In this case we have
assumed that the column player knows which opera is playing, so the payoffs are
the same for V, V and W, V (and similarly for V, W and W, W ). The payoffs when
Verdi is playing are the same as for the original Battle of the Sexes; if Wagner is
playing then the payoff for the play O, O is reduced to 2 for both players because
of their frustration at going to the wrong opera.

All three of the tables are assumed to be common knowledge. The only private
knowledge that each player has is its signal about which opera is playing.

A pure strategy in a Bayesian game is a function from a player’s type to its
action. For example, a strategy for the row player might be “if I think Verdi is
playing then I will go to the opera, otherwise I will go to the football game.” In
the Return of the Battle of the Sexes, each player has 22 = 4 pure strategies; in
general, with t types and a actions there are at strategies.

Given a pure strategy profile we can compute the expected payoff to each player
when they play according to that profile. So, we can convert a Bayesian game into
its normal-form representation by evaluating all profiles of strategies. If there are p

players then there will be atp entries in the normal-form matrix. The normal form
for the Return of the Battle of the Sexes is

OO OF FO FF

OO 3, 2.5 1.8, 1.4 1.2, 1.1 0, 0

OF 2, 1.5 2.8, 2.8 0.7, 0.7 1.5, 2

FO 1, 1 0.5, 0.6 2, 2.4 1.5, 2

FF 0, 0 1.5, 2 1.5, 2 3, 4

.

The row and column labels are pure strategies; for example, the label OF means
to play O on seeing V and F on seeing W . The top-left entry in the table tells us
that, if both players always go to the opera no matter what their types are, the
expected payoff for the row player is 3 and for the column player it is 2.5. These
numbers are the averages of the payoffs for the play O, O in the two payoff tables,
since both payoff tables occur with equal probability.

A Nash equilibrium in the normal-form game is called a Bayes-Nash equilibriumBayes-Nash
equilibrium of the original Bayesian game (Harsanyi, 1967). In a Bayes-Nash equilibrium, no
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T B

L R

0,2 10,3

1,5 *

Figure 13.5 Subgame-perfect equilibrium. The Nash equilibrium T,L with payoffs
1, 5 is not subgame perfect, while the equilibrium B,R with payoffs 10, 3 is.

player has an expected incentive to deviate. That is, conditioned on its own type, a
player can compute a posterior distribution over the other players’ types. From this
posterior along with the other players’ distributions over their mappings from types
to actions, the player can compute how often each other player will choose each of
its actions. From these action distributions, in turn, it can compute an expected
payoff for each of its own actions. In a Bayes-Nash equilibrium, the expected payoff
for the recommended action is at least as high as the expected payoff for any other
distribution over actions.

The translation from a correlated equilibrium in the normal-form game to an
equilibrium in the Bayesian game is more subtle. The issues are the same as for
general extensive-form games, so we will put off discussing them until section 13.4.2.

13.4.2 Equilibrium in Extensive Form Games

Just as for Bayesian games, we could try to compute equilibria in a general
extensive-form game by converting it to normal form. Converting it to normal form
means listing and evaluating all possible pure strategy profiles; a pure strategy for
an extensive-form game is a deterministic function from information sets to actions.

There are two problems with this approach. The first is that the game might
get very big: for example, the game of one-card poker mentioned in section 13.6.2
has only 26 information sets per player (if we use a deck with 13 different ranks)
and 2 actions at each information set, but each player has approximately 67 million
pure strategies. That means that the normal-form matrix has about (67 million)2

entries in it.
The second problem is more subtle: neither Nash equilibria nor correlated

equilibria translate exactly from normal-form to extensive-form games. The normal-
form equilibria assume that there is only one choice point. In these equilibria
we pick our strategy before the start of the game and prove that there is no
incentive to deviate. But as we play out the game we gain more information. So,
even if there was initially no incentive to deviate, an incentive may arise later. To
handle the increased complexity of sequential decisions we will introduce two new
types of equilibrium: the subgame perfect Nash equilibrium and the extensive-form
correlated equilibrium.
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study don’t study

yes no yes’ no’

lo hi lo hilo hi lo hi

Figure 13.6 The Job Market game. The student wants to prove to the employer
that s/he has studied in college by correctly answering a difficult question at the
job interview.

To illustrate the need for subgame-perfect equilibria, consider the game of
fig. 13.5. In this game the pure strategies for the first player are T and B, while
those for the second player are L and R. The pair T,L is a Nash equilibrium in the
normal form of this game: changing T to B lowers the first player’s payoff from 1
to 0, while changing L to R doesn’t affect payoffs since the second player’s choice
is irrelevant when the first player plays T.

There is something unsatisfying about the T,L equilibrium, though: if we have
reached the node marked ∗, the second player will not want to play L since its
payoff for R is higher (3 instead of 2). This situation is called an incredible threat:
the second player threatens to play L to keep the first player from playing B, but
the first player should have no reason to believe this threat.

To remove the possibility of incredible threats, we define a Nash equilibrium to
be subgame perfect if no player has an incentive to deviate in any subgame, whethersubgame-perfect

equilibrium or not that subgame is reachable under the equilibrium strategies. A subgame is
a subtree of the game tree which doesn’t break up information sets; that is, no
information set has some members inside the subgame and other members outside
of it. (Every game has at least the trivial subgame which contains the whole tree;
some games have many more subgames as well, but other games don’t have any
proper subgames.)

One way to look for subgame-perfect equilibria is to modify the game so that
all information sets are reachable under any strategy. For example, we could say
that the game begins at a uniform random information set with probability ε; or we
could say that a player’s desired action is replaced with a uniform random action
with probability ε at each step. (The latter modification is called trembling hands.)
In either case for sufficiently small ε the payoff of any profile of mixed strategies
will be arbitrarily close to its original payoff, but as long as ε > 0 any equilibrium
in the normal form of the modified game will be subgame perfect.

Just as for Nash equilibria, we can require subgame perfection for correlated
equilibria. But when we generalize correlated equilibria to extensive-form games we
need to consider the problem of hiding excess information as well. In a normal-form
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correlated equilibrium a moderator tells each player which pure strategy to follow.
If we translate such an equilibrium to an extensive-form game, the moderator is
required to tell each player its entire policy at the beginning of the game; this may
be too much information too soon.

For example, in the “Job Market” game (due to (due to Forges and von Stengel,
2002, and pictured in fig. 13.6), a student first decides whether to study or goof
off in college. Then, on a job interview, the employer asks a difficult question; the
student must answer yes or no. Finally, the employer decides whether to offer a
low or a high salary. The employer is willing to offer the high salary to a student
who has studied, but not to a student who hasn’t. The payoffs are such that the
employer must be fairly certain that the student has studied before offering the
high salary, while the student is only willing to study if it offers a good chance of
getting the high salary.

This game has a single Nash equilibrium: since the employer can’t observe
whether the student has studied, it always offers a low salary, and so the student has
no incentive to study. This Nash equilibrium is also the only correlated equilibrium
in the normal form of this game. We might hope that we could design an equilibrium
in which the student’s yes or no answer (which the employer can perceive) is
correlated with its decision of whether to study (which the employer cannot
perceive). Unfortunately, in a correlated equilibrium which comes from the normal-
form representation, the student gets both recommendations from the moderator
at the same time: given a recommendation to study and answer yes, yes’, a better
play is don’t study, yes, yes’.

To achieve an equilibrium in which the answer to the question is correlated
with the study or don’t study decision, the student must not find out whether to say
yes until after it has chosen to study. In an extensive-form correlated equilibrium

(EFCE), the moderator computes a recommended action for every information set,
but only informs the player what action to take if the player reaches the appropriate
information set.

There is an EFCE in the Job Market game in which the players follow the
following four strategy profiles with equal probability:

study,yes,yes’ hi on yes, lo on no

study,yes,no’ hi on yes, lo on no

study,no,yes’ lo on yes, hi on no

study,no,no’ lo on yes, hi on no

In this equilibrium the correct answer is equally likely to be yes or no. The
recommended answer if the student chooses study is perfectly correlated with the
correct answer, while choosing don’t study results in a random recommendation.
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13.5 Learning for Sequential Decisions

Learning in sequential decision problems is much harder than learning in one-step
games, so the available algorithms for sequential games are not as mature as their
one-step counterparts are. We will start with algorithms for computing equilibria in
extensive-form games. Then we will examine a generalization of no-external-regret
learning to extensive-form games. Finally, we will turn to learning in stochastic
games, where we will describe two classes of algorithm: policy gradient learning and
temporal difference learning. (Policy gradient and temporal difference algorithms
will work for extensive-form games as well, but for simplicity we will describe them
as they apply to stochastic games.)

13.5.1 Sequence Weights

The most efficient algorithms for computing equilibria or for learning to play in
extensive-form games are based on the sequence form representation of mixed
strategies. The sequence form specifies distributions over a player’s pure strategies
via a set of sequence weights. Player i has one sequence weight for every pair (s, a),
where s is one of i’s information sets and a is an action available from s.

Sequence weights cannot represent every possible mixed strategy, but they can
represent an important subset called behavior strategies. A behavior strategy is a
function which maps an information set to a probability distribution over actions
to take at that information set. The behavior strategies are rich enough that, if
P is a distribution over i’s pure strategies which achieves reward r (against some
distribution over the strategy profiles of the other players), there will be a behavior
strategy which achieves reward at least r.

Sequence weights are important for three reasons. First, they are a compact
representation for strategies: if a player has n information sets and m actions,
then the set of sequence weights and the set of behavior strategies will each have
(about) mn dimensions, while the mixed strategies will be (about) mn-dimensional.
Second, sequence weights allow us to compute payoffs easily: if we hold the other
players’ strategies fixed, player i’s payoff is a linear function of its sequence weights.
Finally, the set of valid sequence weights for a given player is a convex polyhedron,
so optimizing a linear function over the set of sequence weights is a linear program.

Given a distribution P over i’s pure strategies, we will define the corresponding
sequence weights as follows. Pick an information state s and an action a. Write
P (a | s) for the probability under P of selecting action a given that we have
reached s. Let anci(s, a) be the set of ancestors of (s, a): that is, (s′, a′) ∈ anci(s, a)
if and only if we must reach s′ and have player i take action a′ in order to reach
(s, a). By convention, (s, a) ∈ anci(s, a). Given this notation, the sequence weights
are

φi
s,a =

∏
(s′,a′)∈anci(s,a)

P (a′ | s′).
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With the above definition, we can verify that sequence weights satisfy the three
properties that we have claimed for them. First, they are a compact representation
of behavior strategies: we can easily recover the behavior strategy which corresponds
to a vector of sequence weights, since

P (a | s) =
φi

s,a

φi
s′,a′

=
φi

s,a∑
b φi

s,b

, (13.11)

where (s′, a′) is the parent of s, that is, the last information set and action which
player i visited before reaching s. (If the denominator in equation 13.11 is zero, we
can set P (a | s) arbitrarily, since there is no possibility of reaching information set
s.)

Next, we can verify that the payoffs are a linear function of the sequence
weights. Let l be a leaf of the game tree, and let (si(l), ai(l)) be the last state and
action which player i visited on the way to l. The probability of reaching leaf l is
the product of the probabilities for all of the players’ action choices along the path
from the root to l. Since the product of i’s action choice probabilities is φi

si(l),ai(l),
the overall probability of reaching l is

P (l) =
∏

players j

φj
sj(l),aj(l). (13.12)

(For convenience of notation, in equation 13.12 we are considering Nature to be an
additional player who always plays the same behavior strategy.) Note that P (l) in
equation 13.12 is a linear function of φi if we hold φj fixed for j �= i. Now, the total
payoff to player i is ∑

leaves l

P (l)ri(l), (13.13)

where ri(l) is i’s expected payoff conditional on reaching l. Since ri(l) is a constant,
and since a sum of linear functions is linear, equation 13.13 means that i’s expected
payoff is a linear function of φi, as claimed.

Finally, we can check that the set of valid sequence weights is convex. This last
fact is easy to verify: we can just list the linear constraints which bound the set.
First, sequence weights are all positive:

φi
s,a ≥ 0 ∀s, a. (13.14)

Second, if s is an initial information set for i (that is, if it is i’s turn to play in s

and i didn’t have a turn prior to reaching s) then the weights of actions leaving s

must sum to 1: ∑
a

φi
s,a = 1 s is initial. (13.15)

Equation (13.15) holds because φi
s,a = P (a | s), and the probabilities of all the

actions must sum to 1. Finally, if s has parent (s′, a′), then the weights of actions
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Figure 13.7 Sequences for the first player in the game of one-card poker with a
three-card deck. Solid lines denote actions, while dashed lines denote observations.
Small numbers refer to columns in fig. 13.8.

leaving s must sum to the weight of (s′, a′):∑
a

φi
s,a = φi

s′,a′ (s′, a′) parent of s. (13.16)

Equation 13.16 holds because φi
s,a = φi

s′,a′P (a | s), and the probabilities of all
the actions must sum to 1. Any vector φi satisfying equations 13.14–13.16 can be
translated into a behavior strategy via equation 13.11, so these constraints specify
all and only the valid sequence weights.

13.5.2 Computing Equilibria

Using the sequence-form representation of strategies, we can generalize the algo-
rithms for finding minimax, Nash, or correlated equilibria in one-step games. We
can find a minimax equilibrium in an extensive-form game by solving a linear pro-
gram. We can find a Nash equilibrium in a two-player game by solving a linear
complementarity problem, or in a multiplayer game by solving a nonlinear com-
plementarity problem. (The resulting Nash equilibria are not necessarily subgame
perfect, but we can use the tricks described in section 13.4.2 to find subgame perfect
equilibria.) Finally, we can find extensive-form correlated equilibria in a two-player
game by solving a linear program.

In this section we will describe the algorithm for finding minimax equilibria in
two-player constant-sum games. For Nash equilibria, see Koller et al. (1996). For
correlated equilibria, see Forges and von Stengel (2002).

We have already shown that the payoff for each player is a linear function of
its sequence weights, when we hold the other players’ strategies fixed. In a two-
player game, that means that we can write the payoff for either player as a bilinear
function of the sequence weight vectors. If we write φ for the vector of sequence
weights for the first player and ψ for the vector of sequence weights for the second
player, then we can define matrices M and N such that ψ�Mφ is the first player’s
payoff while φ�Nψ is the second player’s payoff.
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Figure 13.8 Sequence weight constraints Aφ = a for the first player in one-card
poker. The first row tells us that sequence weights φ1 and φ4 must add to 1; that
is, after seeing Q, player 1 must either bet $0 or bet $1.

Now consider a zero-sum game such as one-card poker. (In a zero-sum game,
N = −M�.) The first player’s sequences for one-card poker are shown in fig. 13.7:
the player first observes its card, either Q, K, or A. Then it decides whether to bet
or pass. If it passes, the second player may raise, in which case the first player has
the opportunity to fold (bet nothing) or call (match the bet).

The small numbers in fig. 13.7 mark the 12 different sequences for player 1. For
example, the number 7 marks the sequence where player 1 was dealt a Q, bet $0,
saw that player 2 bet $1, and folded. Figure 13.8 shows the consistency constraints
Aφ = a on player 1’s sequence weights φ. (In addition to the consistency constraints,
we must also have nonnegativity: φ ≥ 0.)

If we write Bψ = b and ψ ≥ 0 for the constraints on player 2’s sequence
weights, then the problem of finding a minimax equilibrium is

maxφ minψ ψ�Mφ

Aφ = a

Bψ = b

φ, ψ ≥ 0

. (13.17)

We can turn program 13.17 into a linear program by introducing Lagrange mul-
tipliers for some of the constraints and solving for some of the variables. Start by
adding Lagrange multipliers z and λ ≥ 0 for the constraints Bψ = b and ψ ≥ 0,
respectively:

maxφ,z,λ minψ ψ�Mφ + z�(Bψ − b) − λ�ψ

Aφ = a

φ, λ ≥ 0.

(13.18)

We can now optimize over ψ by setting the derivative of the objective to zero:

0 =
d

dψ

(
ψ�Mφ + z�(Bψ − b) − λ�ψ

)
= Mφ + B�z − λ.
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Figure 13.9 A minimax behavior strategy for the first player in one-card poker.
Solid line: probability of betting after initial deal. Dashed line: probability of betting
given a pass on the first round and a raise by the opponent.

Substituting in the above constraint, we have

maxφ,z,λ −z�b

Aφ = a

Mφ + B�z − λ = 0

φ, λ ≥ 0

(13.19)

or equivalently

minφ,z z�b

Aφ = a

Mφ + B�z ≥ 0

φ ≥ 0.

(13.20)

Any optimal vector φ for the linear program 13.20 tells us the sequence weights for a
minimax strategy for player 1; see fig. 13.9. For ease of interpretation, fig. 13.9 shows
a behavior strategy rather than the corresponding sequence weights; for example,
the leftmost point on the solid line is φ4, while the leftmost point on the dashed line
is φ10/φ1. Notice that the strategy includes “bluffing” (the probability of betting on
being dealt a Q is higher than the probability of betting on K) and “slow-playing”
(the probability of betting when dealt an A is only a bit over 50%, even though
player 1 is guaranteed to win in this situation).

13.5.3 Extensive-Form No Regret

We can generalize the definition of external regret to apply to extensive-form games:
let P (s1, s2, . . . ) be a distribution over profiles of extensive-form pure strategies.
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Then our regret for not having played the extensive-form pure strategy j is

ρP
ij = Es∼P (ri(j, s¬i) − ri(si, s¬i)).

That is, ρP
ij is the difference in payoffs that player i would achieve by switching

from its part of P to j.
The only problem with this extended definition of external regret is that there

can be a very large number of extensive-form pure strategies, and we do not want
to compare our performance explicitly against each one of them. Fortunately, our
rewards for these pure strategies are not independent. If we hold the other players’
strategies fixed, and if we represent each of our pure strategies by its sequence
weights, then our reward for each strategy (and therefore our regret compared to
it) will be a linear function of its weights.

To take advantage of this dependence among rewards, write φ for a vector
of sequence weights for player i, satisfying φ ≥ 0 and Aφ = a as in section 13.5.1.
Write ri(φ, s¬i) for the expected reward of the behavior strategy which corresponds
to φ when played against a fixed strategy s¬i for the other players.

Now we can define the external regret vector, ρ(P ), to be any vector such that

ρ(P ) · φ = Es∼P (ri(φ, s¬i) − ri(si, s¬i)). (13.21)

That is, ρ(P )·φ is our regret for not having played φ. (For details of how to construct
a vector ρ(P ) satisfying equation 13.21, see Gordon (2005); we know such a vector
exists because the regret is a linear function of φ.4)

Just as before, our overall regret ρP is the maximum of our regrets against all
pure strategies. Equivalently, since the set of valid sequence weights is convex and
its corners represent the pure strategies, we can maximize over all valid sequence
weights instead:

ρP = max
φ∈H

ρ(P ) · φ,

where

H = {φ | Aφ = a, φ ≥ 0}.

And just as before, if we write Pt for the empirical distribution of strategy profiles
after t repetitions of the game, we will say that we have no external regret if ρPt → 0
as t → ∞.

The condition that the empirical average regret approaches zero is equivalent
to a condition on the regret vector: if we define the safe set to be

S = {ρ | ρ · φ ≤ 0 ∀φ ∈ H},

then the condition ρPt → 0 is equivalent to ρ(Pt) → S.
Figure 13.10 shows two examples of sequence weight sets H and safe sets S.

On the left is a normal-form game, Battle of the Sexes. Normal-form games have
one sequence for each action, and the sequence weights must form a probability



408 Game-Theoretic Learning

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 13.10 Sequence weight sets and safe sets. Left: Battle of the Sexes. Right:
Return of the Battle of the Sexes.

distribution. So, the sequence weight set for Battle of the Sexes is the dark line
segment φO + φF = 1, φ ≥ 0. The safe set is the negative orthant (shown shaded):
if any component of ρ is positive, then there is some φ ∈ H which has a positive
dot product with ρ. The boundary rays of S are (0,−1) and (−1, 0); each of these
rays is normal to an edge of the set H̄, which is defined as the union of λH for all
λ ≥ 0. (For normal-form games, H̄ is the positive orthant.)

On the right is a Bayesian game, Return of the Battle of the Sexes. Bayesian
games have one sequence for each pair of a type and an action, and the weights for
each type must form a probability distribution. So, Return of the Battle of the Sexes
has four sequences, V O, V F , WO, and WF ; the weights for V O and V F must sum
to 1, as must the weights for WO and WF . To avoid plotting in four dimensions,
we will use the three-dimensional reduced representation of sequence weight vectors
(φV F , φWF , φV O +φV F ).5 In the plot, the dotted lines are the coordinate axes. The
feasible sequence weights are the square in the first octant. We have connected each
corner of the square to the origin with a heavy line; these lines are the boundary
rays of H̄. The remaining heavy lines are the boundary rays of the set S: they are⎛⎜⎜⎝
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Each one of these boundary rays is orthogonal to one face of the set H̄.
As with normal-form games, there are several different algorithms which

achieve no external regret in extensive-form games. An example of such an algorithm
is extensive-form regret matching: take the vector ρ(Pt), project it onto H̄ by
minimum Euclidean distance, and normalize to get a valid sequence weight vector.
(The projection requires solving a convex quadratic program, and so can be done
in polynomial time. There is a possibility that the closest point to ρ(Pt) in H̄ is
the origin, which can’t be normalized; in this case the algorithm selects its strategy
arbitrarily.)
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Extensive-form regret matching achieves average regret O(1/
√

t) after t trials
(with constants that depend on the size of the largest sequence weight vector in H).
If we apply extensive-form regret matching to a normal-form game such as Battle of
the Sexes, it is identical to the original regret matching algorithm: H̄ is the positive
orthant, so the projection operation just zeros out the negative coordinates of ρ(Pt).

Some additional no-regret algorithms are described in Gordon (2005). And, the
FPL algorithm of Kalai and Vempala can be used in conjunction with the analysis
of the current section to produce another no-regret algorithm for extensive-form
games.

As is the case for normal-form games, playing two no-external-regret algorithms
against each other in a constant-sum extensive-form game will lead to minimax
equilibrium payoffs. The algorithms’ strategies may not converge, but their average
strategies over time will converge to their respective sets of minimax strategies.

13.5.4 Learning in Stochastic Games

If we are learning in a stochastic game, our output is a policy π which maps
information sets (also called states) to distributions over actions. We can represent
π directly as a parameterized function, π(s; θ), with adjustable parameters θ. Or,
as described below, we can represent π indirectly through an evaluation function.

If we represent π directly then it turns out that we can compute the gradient

gi(θ) =
d

dθ
E(ri | π(·; θ))

by observing sequences of play under policy π(·; θ). (For details see, for example,
Sutton et al., 2000, .) Using this gradient we can easily implement a gradient ascent
algorithm:

θ(t+1) = θ(t) + α(t)gi(θ(t)).

This gradient ascent algorithm is called policy gradient.
Policy gradient generalizes gradient ascent in one-step games, since we can

always take θ to be a probability distribution over pure strategies. As such, policy
gradient inherits many of the properties of regular gradient ascent: for example,
with a fixed learning rate two policy-gradient players can cycle forever around an
equilibrium.

In addition, because of the more general policy representation, policy gradient
has the problem of local optima: even if our current gradient is zero (or more
generally normal to any active constraints on θ), there may be other representable
policies which achieve better reward.

Despite the problem of local optima, policy gradient algorithms have been
applied with some success to large-scale learning problems. One of the reasons for
their success is their low requirements for information: they merely need to observe
sequences of states and rewards generated from the current policy. In particular,
they do not need to see the reward for any state-action pairs which the player did
not experience.
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Instead of representing its policy directly, a learner could represent an evalu-

ation function instead. An evaluation function (also called a value function) maps
information sets to estimates of the player’s future payoffs.

If we were given a perfect value function (i.e., if we knew the player’s expected
payoff from any of its information sets) then the sequential learning problem would
be decoupled into multiple one-step learning problems, one for each information set:
by adding the player’s immediate payoff to its expected future payoff (as reported
by the value function), we can compute the total expected future payoff if the player
chooses any particular action.

A simple algorithm for learning a value function is the method of temporal
differences, also called TD(0). In TD(0) we are given a compact representation
of the value function with adjustable parameters θ, say V (s; θ) for state s. If we
observe a transition from state s to state s′ with payoff r, we compute the temporal
difference error

d = V (s; θ) − [r + V (s′; θ)]

and the gradient

g =
d

dθ
V (s; θ),

and then update

θ ← θ + αgd.

The temporal difference error measures how far our prediction of total payoff at
state s was from the (presumably more accurate) prediction which is available one
step later at s′.

We can generalize TD(0) so that it uses information from multiple time steps to
compute its update. The resulting algorithm, TD(λ), uses the parameter λ ∈ [0, 1]
to specify how to weight the different time steps: λ = 0 puts weight only on the
current time step, while λ = 1 puts equal weights on all future time steps. TD(λ)
for 0 < λ < 1 can have lower variance in its updates than TD(0). (It is not obvious
that this is true, because TD errors at adjacent time steps are not independent, but
the lower variance has been observed experimentally.) For more information about
TD(λ), see Sutton and Barto (1998).

Temporal difference learning has been proved to converge in some circum-
stances. For example, if we represent our value function using a linear combination
of fixed basis functions, and if we train our TD learner on sequences of states and
rewards sampled using a fixed vector of policies for all players, and if we decrease
our learning rate over time, our value function will converge and have bounded
error. In general, though, TD learning is often used in situations where its conver-
gence guarantees don’t apply. The most important determiner of success appears
to be the use of sequences of states and rewards sampled using a fixed or slowly
changing policy for each learner.
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Basic TD learning doesn’t attempt to model the other players directly. We can
define a version of TD learning which assumes known motivations for the other
players. For example, if we know that the other players are out to get us, we can
construct a zero-sum game at each time step using our current value function and
solve it to get an update for our parameters. The resulting algorithm is called
minimax Q-learning; for details, see Littman (2001). That paper also describes a
generalization of minimax Q learning called friend-or-foe Q-learning, in which each
player is treated either as an enemy or an ally.

13.6 Examples

So far in this chapter we have discussed algorithms that learn in “small” games.
(By “small” we mean games that can easily fit into the memory of our computer
when represented in the format needed for our learning algorithm.) Most real-world
games, of course, are not small.

In real games we need to deal with several new issues, all of which are poorly
understood. First, we need to worry about approximation: we will not be able
to represent every possible policy or every possible value function, so we need to
design approximate representations. In addition to being able to represent good
policies or value functions in our games, our representations must be compatible
with whatever learning algorithm we use: if we naively mix a learning algorithm
with an approximate representation, the combination can fail in unexpected ways.

Second, the problem of exploration becomes a pressing issue. In large games
a clever opponent can hide whole regions of the state space from us while we are
learning.

Finally, there is the question of negotiation. If we try to learn, there is always
the risk that one of the other players will try to teach us. For example, in the Battle
of the Sexes, if the opera-loving player always goes to the opera, then most learning
algorithms will end up picking the opera as well. In more complicated games, groups
of players may cooperate to guide other players toward desired strategies; it can be
difficult for a player even to pick which coalition to join, much less to figure out
how to convince the other players to pick the right strategies.

Clearly there are a lot of problems which game theorists don’t yet know how
to solve. But, game-theoretic learning algorithms can still be helpful as part of
a larger intelligent system. In this section we will examine some case studies of
game-theoretic learning algorithms in real-world learning problems.

13.6.1 Board Games

Two of the most famous examples of learning in games are Samuels’s checker
player Sutton and Barto (1998) and Tesauro’s TD-Gammon (Tesauro, 1994). More
recently, Baxter et al. (1997) described a system called KnightCap which learns to
play chess.
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All three of these systems learn by some variation of the method of temporal
differences (section 13.5.4). That is, they maintain an evaluation function which es-
timates how likely they are to win the game starting from different board positions;
based on experience from repeated play of the game, they adjust the evaluation
function so that it more accurately predicts their actual winning percentage.

Both the checker and backgammon learners use straightforward TD(λ) in self-
play to update their evaluation functions. That is, suppose we write V (x; θ) for
the evaluation function on board x with adjustable parameters θ. Then if we
observe sequence of positions x1, x2, x3, · · · , the learners will update θ to try to
bring V (x1; θ) closer to

(1 − λ)(V (x2) + λV (x3) + λ2V (x4) + . . . ). (13.22)

Samuels’s program represented V with a linear combination of 31 human-designed
features, and reportedly learned to play a decent amateur game of checkers.
Tesauro’s program represented V with a single-hidden-layer neural network, and
learned to play expert-level backgammon. In fact, a version which added a few ply
of look-ahead on top of the learned value function was able to compete at the level
of the top human backgammon players in the world.

Encouraged by the success at backgammon, several people tried applying
temporal difference learning to other games such as chess and go. Initial attempts
were not successful; apparently backgammon has properties which make it more
amenable to temporal difference learning than other games. It is not clear exactly
what these properties are, but one possibility is backgammon’s randomness: human
players can’t follow lines of play very many moves into the future because they
can’t consider all possible combinations of rolls of the dice. If this is true, then
backgammon players have to rely more on pattern recognition than on deep search,
making the learning problem easier.

In contrast to previous programs, the chess learning program KnightCap was
able to improve its rating on Internet chess servers from 1650 to 2100 by learning
from three days worth of experience. Further learning and optimizations such as
an opening book brought its rating to 2500. The Internet ratings are not directly
comparable to FIDE ratings, but they do correspond to very strong human-level
play.

KnightCap’s success can be attributed to three main differences from previous
experiments. The first difference is its learning algorithm, called TD-Leaf(λ), which
combines TD(λ) with minimax look-ahead search. Suppose that our current position
is x1. Suppose we have searched forward some number of moves and found that the
best sequence of play (the so-called principal variation) leads to the board position
xleaf

1 at the fringe of the search tree. Similarly, suppose that the next position is x2,
and searching from x2 leads to xleaf

2 . Then instead of updating θ to move V (x1; θ)
closer to an average of future values as in equation 13.22, TD-Leaf(λ) updates
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V (xleaf
1 ; θ) to be closer to

(1 − λ)(V (xleaf
2 ) + λV (xleaf

3 ) + λ2V (xleaf
4 ) + . . . ). (13.23)

The second difference from previous experiments is that KnightCap was built
on top of a fairly sophisticated chess-playing program. This program had a cleverly
designed board representation from which it was able to calculate informative
features; and its search algorithm, even before learning, was able to expand relevant
portions of the game tree. The initial 1650 rating corresponded to a version of the
program whose evaluation function depended only on material value, i.e., on how
many pieces of each type were on the board.

The last difference is that, unlike previous programs, KnightCap did not learn
by self-play. Instead it played human opponents who connected to the chess servers.
This difference helped KnightCap explore better. Unlike backgammon, chess is
deterministic. So, programs which learn by self-play can get stuck playing the same
game over and over. Unpredictable human opponents help to jolt the learner out of
local optima. Also, human players tend to select opponents near their own level of
play, so as KnightCap improved it attracted more skilled opponents. This sequence
of better and better opponents helped to shape KnightCap’s learning: if it had
played against the better opponents from the start, it might not have been able to
understand why it was losing.

13.6.2 Poker

In contrast to board games like chess and backgammon, card games like poker
and bridge require learners to reason about hidden information. It has been only
recently that computers have been able to learn to play these sorts of games well;
in this section we will look at a program which learns to play the game of poker.

Perhaps the best current artificial poker player is SparBot, developed by the
University of Alberta games group (see Billings et al., 2003, which describes a
family of prototypes for SparBot called PsOpti). SparBot plays Texas Hold’em, a
popular and strategically interesting poker variant in which players combine hidden
private cards with face-up common cards to form the best possible hand. SparBot
plays the two-player version, which places a strong emphasis on deception and
bluffing, but which is simpler than multiplayer poker because it is zero-sum. SparBot
computes its strategy in advance and does not adapt its play online, but many of
the techniques in SparBot are relevant to the question of learning while playing (and
in fact the authors of SparBot are working on an adaptive cousin called VexBot).

Reduced versions of poker can be solved exactly. For example, the game of one-
card poker (in which players are dealt a single card and bet on who holds the highest
one) has 4k sequences per player with a k-card deck. No-regret learning algorithms
such as the ones in section 13.5.3 are easily able to learn minimax strategies in
self-play (Gordon, 2005). These strategies exhibit many of the same features as do
strategies in full-size poker variants, such as bluffing and slow-playing; see fig. 13.9.
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Slightly larger variants such as “Rhode Island Hold’em” (Shi and Littman, 2001)
can be approximately solved with tricks like grouping together sets of similar hands
and learning a single strategy for all of them.

To find an approximate minimax equilibrium for the full game of Texas
Hold’em, SparBot uses several tricks. The first is grouping: at each stage of the
game it evaluates the strength and the potential of its hand, divides all hands into
a manageable number of groups based on these evaluations, and plays the same
mixture of actions for all hands in the same group. (Hand strength measures the
probability of winning with the current cards, while hand potential measures how
much hand strength is likely to increase with future cards. For example, a full house
is a strong hand, while a hand with four hearts and a spade may be weak but has
good potential since another heart will produce a flush.)

The second trick is reducing the number of bets in a round of betting. The
full game of Hold’em allows up to four bets per player per betting round, but
restricting to three bets per player reduces the branching factor of the game tree
without changing strategy too much.

The last trick is to split the game into temporally overlapping subgames. We
can imagine a version of Hold’em in which the players give up control after the
second-to-last round of betting: after this round is complete, we turn up the last
card and have the players follow a predetermined strategy in the last betting round.
The strategy for this reduced game will be similar in the early rounds to the strategy
for the full game, but will start to diverge toward the end of the game. If we now fix
the initial part of the strategy for this game, we arrive at another reduced version
of Hold’em, in which the players gain control after the first round of betting and
play all the way to the end.

By combining these tricks, SparBot reduces the size of the games it must solve
from about 1018 to about 107 information sets. This size is small enough that the
techniques of section 13.5 are able to find minimax equilibria in a reasonable amount
of time. SparBot has played against a number of experienced and master human
poker players, and is generally able to hold its own against them.

13.6.3 Robotics

Recently, robotic games such as RoboCup soccer have become popular. While the
role of learning in most RoboCup teams is still small, researchers have examined
various learning problems in robot soccer. For example, Stone et al. looked at the
problem of deciding whether to try to shoot a goal or pass to a teammate (Stone
and Veloso, 1996), and at the problem of playing keep-away (Stone et al., 2005).
And, the University of Maryland developed a team whose entire high-level strategy
was learned through self-play (Luke, 1998).

Bowling and Veloso (2003) looked at another interesting subproblem of
RoboCup: maneuvering to keep an opponent away from a particular spot on the
field. They set up two robots as shown in figures 13.11 and 13.12; robot A scores a
point if it enters the dotted circle, while robot B scores a point if it keeps robot A
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x

robot A

robot B

target region

Figure 13.11 The keep-out game. Robot A tries to get to the target region, while
robot B tries to block robot A. State is x, y, ẋ, ẏ for each robot, minus one degree
of freedom for rotational symmetry.

Figure 13.12 Robots playing the keep-out game. Reprinted with permission from
Michael Bowling.

out of the circle for a preset length of time.
Representing an evaluation function for this game would be complex but not

impossible. The state is described by seven continuous variables: the x and y

positions and the x and y velocities of the two robots make eight degrees of freedom,
but we lose one degree of freedom because the world is rotationally symmetric.

Instead of learning an evaluation function, though, the robots learned their
policies directly. They picked from seven actions (defined by seven carefully selected
target points which depended on the locations of the robots) ten times a second,
according to a randomized policy with about 70,000 adjustable parameters. By
observing the states and rewards encountered in practice games, they estimated the
gradient of their payoffs with respect to the policy parameters, and adjusted the
parameters according to a gradient ascent algorithm like the ones in section 13.3.2.
While the convergence guarantees of section 13.3.2 do not hold in this more
complicated situation, the robots were able to improve their performance both
in simulation and in physical game-play.
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13.7 Discussion

This chapter has examined the problem of learning in games. We divided games
into one-step vs. sequential, and into constant-sum vs. general sum. Both of these
divisions separate easier from more difficult learning problems: constant-sum one-
step games are relatively well understood, while general-sum sequential games are
an active research area.

For one-step games, we defined minimax equilibrium, Nash equilibrium, and
correlated equilibrium. These different equilibria represent possible or desirable out-
comes when several learning players play against one another. We described off-line
algorithms which can compute these various equilibria from the description of a
game. We also described learning algorithms, with varying information require-
ments, which can learn to beat fixed opponents, find various sorts of equilibria
under various circumstances, or guarantee minimum performance levels against ar-
bitrary opponents.

For sequential games, we defined subgame-perfect Nash equilibrium and
extensive-form correlated equilibrium. We again described off-line algorithms which
can compute equilibria, and learning algorithms with various types of guarantees,
but in general the guarantees for learning sequential games are weaker than the
corresponding guarantees for one-step games.

Finally, we examined several case studies of learning algorithms applied to
real-world-sized games. By combining and extending the algorithms described in
this chapter, these learners have been able to achieve human-level play in difficult
learning environments.

In conclusion, for the simplest games, there are many successful learning
algorithms with appealing performance guarantees. For more complicated games it
is not even completely clear what representations we can use or what performance
guarantees we would like to prove; still, there are successful practical learning
algorithms for these games, as well as the beginnings of a theoretical analysis.

Notes
1Despite the apparently deterministic always-red-in-my-direction behavior of the traffic lights

where I live.
2As originally defined, the weighted majority algorithm bases its plays on the rewards for the

pure strategies rather than the regrets, but the two definitions are equivalent.
3Since we have assumed that the game tree is finite. Infinite game trees are also possible, but

we will not discuss them here.
4We do not need to include a separate constant term since the constraints Aφ = a are not

trivial (they always include at least one constraint saying that the weights of the actions leaving
some initial state sum to 1).

5We are also using the dot product which corresponds to this reduced representation, so lines
which appear orthogonal in the figure are actually orthogonal.



14 Learning Observable Operator Models via
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Hidden Markov models (HMMs) today are the method of choice for black-box mod-
eling of symbolic, stochastic time series with memory. HMMs are usually trained
using the expectation-maximization (EM) algorithm. This learning algorithm is not
entirely satisfactory due to slow convergence and the presence of many globally sub-
optimal solutions. Observable operator models (OOMs) present an alternative. At
the surface OOMs appear almost like HMMs: both can be expressed in structurally
identical matrix formalisms. However, the matrices and state vectors of OOMs may
contain negative components, whereas the corresponding components in the world
of HMMs are nonnegative probabilities. This freedom in sign gives OOMs algebraic
properties that radically differ from those of HMMs, and leads to novel learning
algorithms that are fast and yield asymptotically correct model estimates. Unfor-
tunately, the basic versions of these algorithms are statistically inefficient, which
has so far precluded a widespread use of OOMs. This chapter, first, gives a tu-
torial introduction to OOMs, and second, introduces a novel approach to OOM
estimation called efficiency sharpening (ES). The ES method is iterative. In each
iteration, the model estimated in the previous round is used to construct an esti-
mator with a better statistical efficiency than the previous one. The computational
load per iteration is comparable to one EM iteration, but only two to five iterations
are typically needed. The chapter gives an analytical derivation of the ES principle
and describes two learning algorithms that build on this principle, a simple “poor
man’s” version and a more complicated but superior version which is based on a
suffix-tree representation of the training string. The quality of the latter algorithm
is demonstrated on a task of learning a model of a long belletristic text, where OOM
models markedly outperform HMM models in quality, requiring only a fraction of
learning time.

The algorithms described in this chapter are available in a free Matlab imple-
mentation at http://www.faculty.iu-bremen.de/hjaeger/oom research.html.
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14.1 Introduction

Observable operator models (OOMs) are mathematical models of stochastic pro-
cesses. In their basic version, they describe stationary, finite-valued, discrete-time
processes—in other words, symbol sequences. We will restrict ourselves to this basic
type of processes in this chapter.

A number of models for stochastic symbol sequences are widely used. Listed in
order of increasing expressiveness, the most common are elementary Markov chains,
higher-order Markov chains, and hidden Markov models (HMMs) (Bengio, 1999;
Rabiner, 1990). Well-understood learning algorithms to estimate such models from
data exist. Specifically, HMMs are usually trained by versions of the expectation-
minimization (EM) algorithm (Dempster et al., 1977). HMMs currently mark the
practical limit of analytical and algorithmic tractability, which has earned them
a leading role in application areas such as speech recognition (Jelinek, 1998),
biosequence analysis (Durbin et al., 1998) and control engineering (Elliott et al.,
1995).

In this chapter we wish to establish OOMs as a viable alternative to HMMs—
albeit as yet only for the case of modeling stationary symbol processes. We see three
main advantages of OOMs over HMMs:

The mathematical theory of OOMs is expressed purely in terms of linear algebra
and admits a rigorous, transparent semantic interpretation.

OOMs properly generalize HMMs, that is, the class of processes that have
finite-dimensional OOM properly includes the processes characterized by finite-
dimensional HMMs.

New learning algorithms for OOMs, derived from a novel principle which we
would like to call efficiency sharpening (ES), yields model estimates in a fraction
of the computation time that EM-based algorithms require for HMM estimation.
Furthermore, on most data sets that have been investigated so far, the OOM models
obtained via ES are markedly more accurate than HMM models.

However, at the current early state of research there remain also painful shortcom-
ings of OOMs. Firstly, the OOMs learned from data are prone to predict negative
“probabilities” for some (rare) sequences, instead of small nonnegative values. Cur-
rently only heuristic methods to master this problem are available. Secondly, our
OOM learning algorithms tend to become instable for large model dimensions.
Again, heuristic coping strategies exist, which are detailed out in this chapter.

This chapter has two main parts. The first part (sections 14.2 through 14.9)
contains a tutorial introduction to the basic theory of OOMs, including the basic
version of the learning algorithm. This material has been published before (Jaeger,
2000) but has been almost completely rewritten with a more transparent notation
and a new didactic approach. We hope that this tutorial part becomes the standard
introductory text on OOMs. The second part (sections 14.10 through 14.15), as an
original contribution, establishes the ES principle and two learning algorithms are
derived from it. Two case studies round off the presentation.
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14.2 The Basic Ideas behind Observable Operator Models

In this section we first describe the essence of OOMs in informal terms and then
condense these intuitions into a mathematical formalism.

Envision a soccer-playing robot1 engaged in a soccer game. In order to play
well, the robot should make predictions about possible consequences of its actions.
These consequences are highly uncertain, so in one way or the other they must
be internally represented to the robot as a distribution of future trajectories
(fig. 14.1a).

... n nn+1 + 2 ...

observation
a

n

observation
a

n+1

(a)

(b) (c)

�

ta

Figure 14.1 (a) A robot’s future depicted as a “spaghetti bundle” of expected pos-
sible future trajectories. (b) The robot’s expected futures change due to incoming
observations an of information. (c) An operator τa associated with an observation
a yields an update operation on the vector space of future distributions.

Soccer is a dynamic game, and the robot has to update its expectations about
the future in an update cycle from time n to n+1, assuming a unit cycle time. OOMs
are a mathematical model of this kind of update operation. Clearly the update is
steered by the information that the robot collects during an update interval. This
comprises incoming sensory information, communications from other robots, but
also the robot’s own issued motor commands or even results from some planning
algorithms that run on it—in short, everything that is of some informational value
for the expected future. We comprise all of these bits of information under the term
of an observation. At the root of OOMs lies the assumption that nothing but the
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observation an between n and n+1 controls the update of future expectations, and
that such update operations can be identified with observations (fig. 14.1b). Thus,
in OOMs we have for every possible observation one operator that can be used to
update expected futures. This identification of observations with update operators
has given OOMs their name, observable operator models.

Mathematically, a future of a stochastic process is a probability distribution on
the set of potential future trajectories after the current time n. Such distributions
can be specified by a real-valued function f in various ways. For instance, f may be a
probability density funciton, or one may use a function f which assigns probabilities
to finite-length future sequences, that is, a function on words over the observation
alphabet. At this point we do not care about the particular format of f , we only
assume that some real-valued function can describe a future’s distribution (for
general abstract treatment see Jaeger, 1999)).

The real-valued functions f over some set can be added and multiplied with
scalars and hence span a vector space F . Identifying observations with update
operators on futures, and identifying futures with functions f which are vectors in
F , we find that observations can be seen as operators on F . In the OOM perspective,
each possible observation a is identified with an operator ta on F (fig. 14.1c).

The key to OOMs is the observation that these observable operators are linear.
We now give a formal treatment of the case where the stochastic process is of
a particular simple kind, namely, discrete-time, finite-valued, and stationary. Let
(Xn)n∈N, or for short, (Xn), be a stationary, discrete-time stochastic process with
values in a finite alphabet O = {a1, . . . , aα} of possible observations.

We shall use the following shorthand. For P (Xn = a0, . . . , Xn+r = ar) we
write P (a0 . . . ar) or more briefly P (ā). For conditional probabilities P (Xn =
b0, . . . , Xn+r = br |Xn−s = a0, . . . , Xn−1 = a−1) we write P (b0 . . . br | a0 . . . as−1)
or P (b̄ | ā). Unconditional probabilities P (ā) can be seen as conditional probabilities
conditioned by the empty sequence ε, that is, P (b̄) = P (b̄ |ε).

The distribution of (Xn) is uniquely characterized by the probabilities of finite
substrings, i.e., by all probabilities of the kind P (b̄), where b̄ ∈ O∗ (O∗ denotes the
set of all finite strings over O including the empty string).

For every ā ∈ O∗, we define a real-valued function

fā : O∗ → R, (14.1)

b̄ �→
{

P (b̄ | ā), if P (ā) �= 0,

0, if P (ā) = 0,

with the understanding that fā(ε) = 1 if P (ā) > 0, else it is 0.
A function fā describes the future distribution of the process after an initial re-

alization ā. In our robot illustration in fig. 14.1, ā would correspond to the past that
the robot has in its short-term memory (symbolized by the blue trajectory), and
fā would correspond to the “spaghetti bundle” of future trajectores, as anticipated
at that moment. We call these fā the prediction functions of the process.

Let F be the functional vector space spanned by the prediction functions.
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Thus F can be seen as the (linear closure of the) space of future distributions of
the process (Xt).

We now define the observable operators. In order to specify a linear operator
on a vector space, it suffices to specify the values the operator takes on a basis of
the vector space. Choose a set (fāi

)i∈I of prediction functions that is a basis of F .
Define, for every a ∈ O, a linear observable operator ta : F → F by putting

ta(fāi
) = P (a | ā)fāia (14.2)

for all i ∈ I (āa denotes the concatenation of the sequence ā with a). It is easy to
verify (Jaeger, 2000) that equation 14.2 carries over from basis elements fāi to all
ā ∈ O∗:

Proposition 14.1
For all ā ∈ O∗, a ∈ O, the linear operator ta satisfies the condition

ta(fā) = P (a | ā)fāa. (14.3)

Furthermore, the definition of observable operators does not depend on the choice
of basis of F .

Intuitively, the observable operator ta describes the change of knowledge about
a process’s future due to an incoming observation of a—which is just the idea
of our update operators. A new ingredient that we find here is that the updated
future distribution fāa becomes weighted by P (a | ā). This circumstance can be
used to express the probability of a sequence P (a0 . . . ar) in terms of the operators
ta0 , . . . , tar

. Let σ : F → R be the linear function that returns 1 on all basis vectors
fāi . Then the following proposition holds (proof in Jaeger, 2000).

Proposition 14.2
For all a0 . . . ar ∈ O∗,

P (a0 . . . ar) = σ tar
· · · ta0 fε. (14.4)

Note that equations 14.3 and 14.4 are valid for any choice of basis vectors fāi .
Equation 14.4 is the fundamental equation of OOM theory. It reveals how the dis-
tribution of any stationary symbol process can be expressed purely by means of
linear algebra. Furthermore, the observable operators and fε are uniquely deter-
mined by the the distribution of (Xt). This leads to the following definition:

Definition 14.1
Let (Xn)n∈N be a stationary stochastic process with values in a finite set O. The
structure (F, (ta)a∈O, fε) is called the observable operator model of the process. The
vectors fā are called states of the process; the state fε is called the initial state.
The vector space dimension of F is called the dimension of the process.
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We will soon introduce matrix representations of OOMs. If we wish to distinguish
the abstract OOMs introduced above from matrix representations, we will speak of
“functional” vs. “matrix” OOMs, respectively.

We have treated only the discrete-time, discrete-value, stationary case here.
However, OOMs can be defined in a similar way also for nonstationary, continuous-
time, arbitrary-valued processes (Jaeger, 1999). It turns out that in those cases the
resulting observable operators are linear too. In the sense of updating prediction
functions, the change of knowledge about a process due to incoming observations
is a linear phenomenon.

14.3 From HMMs to OOMs: Matrix Representations of OOMs

If one wishes to carry out concrete computations, one has to work with finite-
dimensional matrix representations of OOMs. Instead of deriving them from the
abstract definition 14.1, we will introduce matrix representations of OOMs in a
very different way, by showing how they can be obtained as a generalization of
HMMs.

A basic HMM specifies the distribution of a discrete-time, discrete-value
stochastic process (Yn)n∈N, where the random variables Yn have outcomes in an
alphabet O = {a1, . . . , aα}. To specify (Yn)n∈N, first a Markov chain (Xn)n∈N is
considered that produces sequences of hidden states from a state set {s1, . . . , sm}.
Second, when the Markov chain is in state sj at time n, it “emits” an observable
outcome ai with a time-invariant probability P (Yn = ai |Xn = sj).

We now represent a HMM in a matrix formalism that is a bit different from
the one customarily found in the literature. The Markov chain state transition
probabilities are collected in an m×m stochastic matrix M which at position (i, j)
contains the transition probability from state si to sj . For every a ∈ O, we collect
the emission probabilities P (Y = a |X = sj) in the diagonal of an m × m matrix
Oa that is otherwise zero.

In order to fully characterize a HMM, one must supply an initial distribution
w0 = (P (X0 = s1), . . . , P (X0 = sm))� (superscript � denotes transpose of vectors
and matrices). The process described by the HMM is stationary if w0 is an invariant
distribution of the Markov chain (Doob, 1953), namely, if it satisfies

M�w0 = w0. (14.5)

We consider only stationary processes here. The matrices M , Oa and and the vector
w0 can be used to compute the probability of finite observation sequences. Let
1 = (1, . . . , 1) denote the m-dimensional row vector of units, and let Ta := M�Oa.
Then the probability to observe the sequence a0 . . . ar among all possible sequences
of length r + 1 is obtained by

P (a0 . . . ar) = 1Tar
· · ·Ta0w0. (14.6)
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Equation 14.6 is a matrix notation of the well-known forward algorithm for deter-
mining probabilities of observation sequences in HMMs. Proofs may be found in
(Ito et al., 1992) and (Ito, 1992).

Matrix M can be recovered from the operators Ta by observing that

M� = M� · id = M�(Oa1 + · · · + Oaα) = Ta1 + · · · + Taα , (14.7)

where id denotes the identity matrix. Equation (14.6) shows that the distribution
of the process (Yt) is specified by the operators Ta and the vector w0. Thus, the
matrices Ta and w0 contain the same information as the original HMM specification
in terms of M, Oa, and w0. Namely, one can rewrite a HMM as a structure
(Rm, (Ta)a∈O, w0), where Rm is the domain of the operators Ta.

From here one arrives at the definition of a finite-dimensional OOM in matrix
representation by (i) relaxing the requirement that M� be the transpose of a
stochastic matrix, to the weaker requirement that the columns of MT each sum
to 1, and by (ii) requiring from w0 merely that it have a component sum of 1. That
is, negative entries are now allowed in matrices and vectors, which are forbidden
in the stochastic matrices and probability vectors of HMMs. Using the symbol τ

in OOMs in places where T appears in HMMs, and introducing μ =
∑

a∈O τa in
analogy to equation 14.7 we get the following definition.

Definition 14.2
An m-dimensional (matrix) OOM is a triple A = (Rm, (τa)a∈O, w0), where w0 ∈ Rm

and τa : Rm → Rm are linear maps represented by matrices, satisfying three
conditions:

1. 1w0 = 1;

2. μ =
∑

a∈O τa has column sums equal to 1;

3. for all sequences a0 . . . ar it holds that 1τar · · · τa0w0 ≥ 0.

Conditions 1 and 2 reflect the relaxations (i) and (ii) mentioned previously, while
condition 3 ensures that one obtains nonnegative values when the OOM is used
to calculate probabilities. While the nonnegativity of matrix entries in HMMs
guarantees nonnegativity of values obtained from the right-hand side (rhs) of 14.6,
nonnegativity must be expressedly assured for OOMs. Unfortunately, for given
operators (τa)a∈O there exists no known way to decide whether condition 3 holds.
This is our first encounter with the central unresolved issue in OOM theory, and
we will soon hear more about (and suffer from) it.

Since concatenations of operators like τar
· · · τa0 will be much used in the sequel,

we introduce a shorthand notation: for τar · · · τa0 we also write τa0···ar (be aware of
the reversal of indices) or even τā.

A matrix-based OOM specifies a stochastic process as in equation 14.4:

Proposition 14.3
Let A = (Rm, (τa)a∈O, w0) be an OOM according to the previous definition. Let
Ω = O∞ be the set of all right-infinite sequences over O, and A be the σ-algebra
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generated by all finite-length initial sequences on Ω. Then, if one computes the
probabilities of finite-length sequences by

P0(ā) = 1τāw0, (14.8)

where the numerical function P0 can be uniquely extended to a probability mea-
sure P on (Ω,A), giving rise to a stochastic process (Ω, A, P, (Xn)n∈N), where
Xn(a1a2 . . . ) = an. If w0 is an invariant vector of μ, i.e., if μw0 = w0, the pro-
cess is stationary.

A proof can be found in Jaeger (2000). Since we introduce matrix OOMs here
by generalizing away from HMMs, it is clear that every process that can be
characterized by a finite-dimensional HMM can also be described by a matrix OOM
of dimension at most the number of HMM hidden states.

Conversely, there exist processes that can be described by a matrix OOM, but
that cannot be characterized by a finite-dimensional HMM. One way to construct
examples of such processes is to design one of the operators τa to be a rotation of Rm

by a nonrational angle φ. Such a rotation gives rise to a “probability oscillation,”
that is, the sequence P (a |an)n≥0 converges to an oscillation with angular velocity
φ (radian per unit time step). Intuitively, the reason why such a process cannot be
modeled by an HMM is that a matrix describing a rotation needs to contain some
negative entries. If a HMM for such a process would exist, reinterpreting it as an
OOM according to the construction Ta = M�Oa would yield a purely nonnegative
matrix for the rotating operator, which is impossible. A concrete example of such a
process (dubbed the “probability clock”) and a proof that it is not a hidden Markov
process was given in Jaeger (2000).

In section 14.2 we introduced abstract OOMs in a top-down fashion, by starting
from a stochastic process and transforming it into its OOM. In this section we
introduced matrix OOMs in a bottom-up fashion by abstracting away from HMMs.
These two are related as follows (for proofs, see Jaeger, 2000, 1997a):

A matrix OOM of matrix dimension m specifies a stochastic process of process
dimension m′ ≤ m.

A process of finite dimension m has matrix OOMs of matrix dimension m.

A process of finite dimension m has no matrix OOMs of smaller matrix dimension.

When we refer to OOMs in the remainder of this chapter we mean matrix OOMs.

14.4 OOMs as Generators and Predictors

In this section we describe how an OOM can be used to generate a random sequence,
and to compute the probabilities of possible continuations of a given initial sequence.

Concretely, assume that an OOM A = (Rm, (τa)a∈O, w0) describes a process
(Xn)n≥0, where O = {a1, . . . , aα}. Then, the task is to use A to produce at
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times n = 0, 1, 2, . . . observations a0, a1, a2, . . . , such that (1) at time n = 0, the
probability of producing a is equal to P (X0 = a), and (2) at every time step n > 0,
the probability of producing a (after a0, . . . , an−1 have already been produced) is
equal to P (Xn = a |X0 = a0, . . . , Xn−1 = an−1). We address conditions 1 and 2 in
turn.

1. For generating the first symbol we need the probability vector p0 = (P (X0 =
a1) · · ·P (X0 = aα))�. This could be done by calculating P (X0 = a) = 1τaw0 for
all a ∈ O. A faster way is to precalculate the row vectors 1τa for all a, and assemble
them in a matrix

Σ =

⎡⎢⎢⎣
1τa1

...

1τaα

⎤⎥⎥⎦ , (14.9)

and directly obtain

p0 = Σ w0. (14.10)

This probability vector is then used to randomly generate the symbol a0 with the
correct distribution.

2. In order to obtain P (Xn = a |X0 = a0, . . . , Xn−1 = an−1) we make use of 14.8:

P (Xn = a |X0 = a0, . . . , Xn−1 = an−1)

= 1τaτan−1 · · · τa0w0 / 1τan−1 · · · τa0w0

= 1τa(
τan−1 · · · τa0w0

1τan−1 · · · τa0w0
). (14.11)

Introducing the notation

wa0...an−1 =
τan−1 · · · τa0w0

1τan−1 · · · τa0w0
, (14.12)

equation 14.11 can be more concisely written as P (Xn = a |X0 = a0, . . . , Xn−1 =
an−1) = 1τawa0...an−1 . A vector wā of the kind (eq. 14.12) that arises after a
sequence ā has been observed is called a state vector of an OOM. Note that
state vectors have unit component sum. Again we can use Σ to obtain all of the
probabilities P (ai | ā) in a single operation:

pn = (P (a1 | ā) · · ·P (aα | ā))� = Σ wā. (14.13)

Observing that the next state vector can be obtained from the previous one by

wāa = τawā / 1τawā, (14.14)

the entire generation procedure can be neatly executed as follows:

Step 1: State vector initialization: put w = w0.

Step 2: Assume that at time n a state vector wn has been computed, then
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determine the probability vector p of the (n+1)-st symbol as Σ wn, and choose
an according to that vector.

Step 3: Update the state vector by wn+1 = τan
wn / 1τan

wn and resume at
step 2.

Now we consider the task of predicting the probability P (b̄ | ā) of a continuation b̄

of an initial sequence ā that has already been observed. It is easy to see that an
iterated application of 14.11 yields

P (Xn+1 = bn+1, . . . , Xn+r = bn+r |X0 = a0, . . . , Xn−1 = an−1)

= 1τbn+r
· · · τbn+1 wa0···an

, (14.15)

which in our shorthand notation becomes P (b̄ | ā) = 1τb̄ wā. If one is interested in
repeated predictions of the probability of a particular continuation b̄ (for instance,
an English word), then it pays to precalculate the row vector σb̄ = 1τb̄ and obtain
P (b̄ | ā) = σb̄ wā by a single inner product computation.

14.5 Understanding Matrix OOMs by Mapping Them to Functional OOMs

OOM states are conceptually quite different from HMM states. This conceptual
issue is complicated by the circumstance that the term state is used in two different
ways for HMMs. First, it may denote the finite set of physical states that the target
system is assumed to take. Second, it is used for the current probability distribution
over these physical states that can be inferred from a previous observation sequence.
In both cases, the notion is connected to the assumed physical states of the
target system. By contrast, OOM states represent the expectation about the
system’s future and outwardly observable development given an observed past. In
no way do OOM states refer to any assumed physical state structure of the target
system—they are purely epistemic, one might say. Incidentally, this agrees with
the perspective of modern physics and abstract systems theory: “. . . a state of a
system at any given time is the information needed to determine the behaviour of
the system from that time on” (Zadeh, 1969). This perspective was constitutional
for the construction of functional OOMs in section 14.2. We will now add further
substance to this view by showing how matrix OOMs map to functional OOMs,
and thereby how the finite state vectors of matrix OOMs represent the process’s
future. As by-products our investigation will yield a construction for minimizing
the dimension of a matrix OOM, and an algebraic characterization of matrix OOM
equivalence.

Definition 14.3
Let A = (Rl, (τa)a∈O, w0) be a matrix OOM of the process (Xn)n≥0. Let F =
(F, (ta)a∈O, fε) be the functional OOM of the same process. Let W be the linear
subspace of Rl spanned by the state vectors {wā | ā ∈ O∗}. Let {wā1 , . . . , wād

} be
a basis of W . Define a linear mapping π : w → F through π(wāi) = fāi (i =
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1, . . . , d). This mapping is called the canonical projection of A.

This definition is independent of the choice of basis, and the canonical projection
has the following properties:

Proposition 14.4
1. ∀ ā ∈ O∗ π(wā) = fā.

2. π is surjective.

3. ∀ w ∈ W σπ(w) = 1w.

4. ∀ ā ∈ O∗, w ∈ W π(τāw) = tā π(w).

The proof of properties 1–3 is given in Jaeger (1997a), the proof of property 4 is in
the appendix A. Note that property 2 implies that the matrix dimension l of A is
at least as great as the process dimension m.

Our goal is now to distill from the l-dimensional state vectors of the matrix
OOM those parts which are relevant for representing the process’s future. Intu-
itively, if the process dimension is m, only projections of the matrix OOM states
on some m-dimensional subspace of Rl contain relevant information.

First observe that a basis {wā1 , . . . , wād
} of the linear subspace W can be

effectively constructed from A, as follows. Construct a sequence of sets (Sj)j=0,1,... ,r

of states as follows:

Step 1: Let S0 = {w0}.
Step 2: Obtain Sj+1 from Sj by first adding to Sj all states from the set

{τaw / 1τaw | a ∈ O, w ∈ Sj}, and then deleting from the obtained set as many
states as necessary to get a maximal set of linearly independent states.

Step 3: When the size of Sj+1 is equal to the size of Sj , stop and put r = j; else
resume at step 2.

It is clear that the size of the sets (Sj)j=0,1,... ,r properly grows throughout the
sequence, and that the vectors contained in Sr yield the desired basis for W .

To determine the “prediction relevant” portions in the states w, we investigate
the kernel, denoted as ker π, of the canonical projection.

Proposition 14.5

∀x ∈ W :
(
x ∈ ker π ↔ ∀ā ∈ O∗ 1τāx = 0

)
. (14.16)

The proof is in the appendix B. As a special case we get 1x = 0 for all x ∈ ker π.
Using this insight, a basis for ker π can be constructed from A as follows. Again
build a sequence (Sj)j=0,1,... ,s of sets of (row) vectors:

Step 1: Let S0 = {1}.
Step 2: Obtain Sj+1 from Sj by first adding to Sj all vectors from the set

{uτa | a ∈ O, u ∈ Sj}, and then delete from the obtained set as many vectors
as necessary to get a maximal set of linearly independent vectors.
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Step 3: When the size of Sj+1 is equal to the size of Sj , stop and put s = j; else
resume at Step 2.

It follows from proposition 14.5 that

ker π = {x ∈ W |∀u ∈ Ss x ⊥ u�}, (14.17)

from which some orthonormal basis for ker π is readily constructed. Since π is
surjective we have dim ker π = d−m. Let {x1, . . . , xd−m} be such a basis. Consider
the orthogonal complement of the kernel:

V = {v ∈ W |v ⊥ ker π}, (14.18)

where V is a linear subspace of W and has a dimensionality of m. It is an easy
exercise to obtain a concrete representation of V through creating an orthonormal
basis for V .

For w ∈ W , let w̃ denote the orthogonal projection of w on V . From linearity
of orthogonal projections and proposition 14.5 we obtain that

1w̃ = 1w (14.19)

for all w ∈ W . Let π0 be the restriction of π on V . In light of equation 14.19 and
proposition 14.4, property 3, π0 preserves our probability measuring functionals 1

(in A) and σ (in F) in the sense that 1v = σπ0(v) for all v ∈ V .
Furthermore, define restrictions τ̃a of the observable operators τa by

τ̃av = τ̃av (14.20)

for all v ∈ V . It is easy to see that τ̃a is linear, and a matrix representation for τ̃a

is readily obtained from the bases of V and ker π. The projection π0 maps τ̃a on
ta by virtue of

∀ v ∈ V π0(τ̃av) = π0(τ̃av) = π(τav) = taπ(v), (14.21)

where the last equality follows from proposition 14.4, property 4. Assembling our
findings we see that

π0 : (V, (τ̃a)a∈O, w̃0) ∼= (F, (ta)a∈O, fε) (14.22)

induces an isomorphism of vector spaces and operators which maps 1 on σ. This is
just another way of saying that (V, (τ̃a)a∈O, w̃0) is an OOM for our process. Note
that V is represented here as a linear subspace of Rl and the matrices τ̃a have
a size of l × l. A little more elementary linear algebra would finally transform
(V, (τ̃a)a∈O, w̃0) into an m-dimensional (and thus minimal-dimensional) matrix
OOM.

We are now prepared to provide a simple answer to the question of when two
matrix OOMs A and A′ are equivalent in the sense of yielding identical probabilities
for finite sequences. To decide the equivalence between A and A′, we first transform
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them into minimal-dimensional OOMs of dimension m (if their minimal dimensions
turn out not to be identical, they are not equivalent). We then apply the following
proposition.

Proposition 14.6
Two minimal-dimensional OOMs A = (Rm, (τa)a∈O, w0) and A′ = (Rm, (τ ′

a)a∈O, w′
0)

are equivalent if and only if there exists a bijective linear map � : Rm → Rm satis-
fying the following conditions:

1. �(w0) = w′
0,

2. τ ′
a = �τa�−1 for all a ∈ O,

3. 1w = 1�w for all w ∈ Rm.

Sketch of Proof (for detailed proof see Jaeger, 1997a)). The “if” direction is a
mechanical verification. The interesting direction is to show that if A and A′ are
equivalent then a map � exists. First observe that for minimal-dimensional OOMs,
the canonical projection π coincides with π0 and is an isomorphism of the matrix
OOM with the functional OOM. Let π, π′ be the canonical projections A and A′,
respectively, then � = π′−1 π satisfies the conditions of the proposition.

A matrix � satisfies condition 3 of proposition 14.6 from the proposition if and only
if each column of � sums to unity. Thus, if we have one minimal-dimensional OOM
A, we get all the other equivalent ones by applying any transformation matrix �

with unit column sum.

14.6 Characterizing OOMs via Convex Cones

The problematic nonnegativity condition3 from definition 14.2 can be equivalently
stated in terms of convex cones. This sheds much light on the relationship between
OOMs and HMMs, and also allows one to appreciate the difficulty of the issue. I
first introduce some cone-theoretic concepts, following the notation of a standard
textbook (Berman and Plemmons, 1979).

With a set S ⊆ Rn we associate the set SG, the set generated by S, which
consists of all finite nonnegative linear combinations of elements of S. A set K ⊆ Rn

is defined to be a convex cone if K = KG. A convex cone KG is called n-polyhedral

if K has n elements. A cone K is pointed if for every nonzero w ∈ K, the vector
−w is not in K.

Using these concepts, the following proposition gives a condition which is
equivalent to condition 3 from definition 14.2, and clarifies the relationship between
OOMs and HMMs.

Proposition 14.7
1. Let A = (Rm, (τa)a∈O, w0) be a structure satisfying the first two conditions from
definition 14.2, i.e., 1w0 = 1 and μ =

∑
a∈O τa has unit column sums. Then A is
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an OOM if and only if there exists a pointed convex cone K ⊂ Rm satisfying the
following conditions:

1w ≥ 0 for all w ∈ K,

w0 ∈ K,

∀a ∈ O : τaK ⊆ K.

2. Assume that A is an OOM, then there exists a HMM equivalent to A if and
only if a pointed convex cone K according to part 1 exists which is n-polyhedral
for some n, where n can be selected such that it is not greater than the minimal
state number for HMMs equivalent to A.

Part 1 can be proven by reformulating a similar claim (Jaeger, 2000) that goes
back to Heller (1965) and has been renewed in Ito (1992)2. Part 2 was shown in
Ito (1992). These authors considered a class of stochastic processes called linearly

dependent processes that is identical to what we introduced as processes with finite
dimension m; they did not use observable operators to characterize the processes.

Part 2 has the following interesting implications:

Every two-dimensional OOM is equivalent to some HMM, because all cones
in R2 are 2-polyhedral. A nice exercise left to the reader is to construct a two-
dimensional OOM whose smallest equivalent HMM has four states (hint: derive
a two-dimensional OOM from a HMM defined not by emitting observations from
states but from state transitions).

If an OOM contains an operator τa that rotates Rm by a nonrational multiple of
π, then this OOM has no equivalent HMM because τa leaves no polyhedral cone
invariant.

Three-dimensional OOMs can be constructed whose equivalent minimal-size
HMMs have at least p states (for any prime p ≥ 3), by equipping the OOM with
an operator that rotates R3 by 2π/p. This is so because any polyhedral cone left
invariant by such an operator is at least p-polyhedral.

Proposition 14.7 is useful to design interesting OOMs, starting with a cone K and
constructing observable operators satisfying τaK ⊆ K. Unfortunately it provides
no means to decide, for a given structure A, whether A is a valid OOM, since the
proposition is nonconstructive with respect to K.

If one would have effective algebraic methods to decide, for a set of k linear
operators on Rm, whether they leave a common cone invariant, then one could
decide whether a candidate structure (Rm, (τa)a∈O, w0) is a valid OOM. However,
this is a difficult and unsolved problem of linear algebra. For a long time, only the
case of a single operator (k = 1) was understood (Berman and Plemmons, 1979).
Recently however there was substantial progress in this matter. In Edwards et al.
(2005) interesting subcases of k = 2 were solved, namely, the subcases of m = 2
and of polyhedral cones.
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14.7 Interpretable OOMs

OOM states represent future distributions, but the previous section might have left
the impression that this representation is somewhat abstract. We will now see that
within the equivalence class of a given minimal-dimensional OOM, there are some
members whose states can be interpreted immediately as future distributions—
interpretable OOMs. Interpretable OOMs are pivotal for OOM learning algorithms.

Because this concept is so important for OOM theory we will first illustrate it
with an informal example. Assume we have a 26-dimensional OOM A over the
English alphabet O = {a, . . . , z}—the OOM dimension and the alphabet size
accidentally coincide. Assume that A models the distribution of letter sequences
in English texts. Utilizing the generation procedure from section 14.4, A can be
run to generate strings of pseudo-English. Remember that at time n, the state wn

is used to compute a 26-dimensional probability vector pn+1 of the nth occurring
letter via pn = Σ wn, where Σ’s rows are made from the column sums of the 26
observable operators (14.13).

Wouldn’t it be convenient if we had pn+1 = wn and Σ = id (where id denotes
the identity matrix)? Then we could immediately take the next letter probabilities
from the current state vector, spare ourselves the computation of Σwn, and directly
“see” the development of very interesting probabilities in the state evolution.

We will now see that such an interpretable OOM can be constructed from A.
The definition of interpretable OOMs is more general than this example suggests in
that it admits a more comprehensive notion of the future events whose probabilities
become the state vector’s entries. In our example, these events—which we will
call characteristic events—were just the singletons a, . . . , z. Here is the general
definition of such events:

Definition 14.4
Let (Xn)n≥0 be an m-dimensional stationary process with observables from O. Let,
for some sufficiently large l, Ol = B1 ∪ · · · ∪Bm be a partition of the set of strings
of length l into m disjoint, nonempty sets Bi. Then this partition is called a set
of characteristic events Bi (i = 1, . . . , m), if some sequences ā1, . . . , ām exist such
that the matrix (P (Bi | āj))1≤i,j≤m is nonsingular.

Here by P (Bi | āj) we mean
∑

b̄∈Bi
P (b̄ | āj). We introduce some further notational

commodities. For a state vector w of an OOM A of (Xn)n≥0 and a sequence b̄ let
P (b̄ |w) = 1τb̄w denote the probability that the OOM will produce b̄ when started
in state w. Furthermore, let P (Bi |w) =

∑
b̄∈Bi

P (b̄ |w). Now we are equipped to
define interpretable OOMs.

Definition 14.5
Let B1, . . . , Bm be characteristic events for an m-dimensional process with observ-
ables O, and let A = (Rm, (τa)a∈O, w0) be an OOM for that process. Then A is
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interpretable with respect to B1, . . . , Bm if the states w of A have the property

w = (P (B1 |w) · · ·P (Bm |w))�. (14.23)

Here is a method to transform a given OOM A = (Rm, (τa)a∈O, w0) for (Xn)n≥0

into an OOM that is interpretable with respect to characteristic events B1, . . . , Bm.
Define τBi :=

∑
b̄∈Bi

τb̄. Define a mapping � : Rm → Rm by

�(x) := (1τB1x · · ·1τBm
x)�. (14.24)

The mapping � is obviously linear. It is also bijective, since according to the defini-
tion of characteristic events, sequences āj exist such that the matrix (P (Bi | āj)) =
(1τBi

xj), where xj = τāj
w0/1τāj w0, is nonsingular. Furthermore, � preserves com-

ponent sums of vectors, since for j = 1, . . . , m it holds that

1xj = 1 = 1(P (B1 |xj) · · ·P (Bm |xj))� = 1(1τB1xj · · ·1τBm
xj)� = 1�(xj),

namely, a linear map preserves component sums if it preserves component sums
of basis vectors. Hence � satisfies the conditions of proposition 14.6. We therefore
obtain an OOM equivalent to A by

A′ = (Rm, (�τa�−1)a∈O, �w0) = (Rm, (τ ′
a)a∈O, w′

0). (14.25)

Equation 14.23 holds in A′. To see this, let w′
n be a state vector obtained in a

generation run of A′ at time n, and wn the state obtained in A after the same
sequence has been generated. Then it concludes that

w′
n = ��−1w′

n

= (1τB1(�
−1w′

n) · · ·1τBm(�−1w′
n))�

= (1τB1wn · · ·1τBmwn)�

= (P (B1 |wn) · · ·P (Bm |wn))�

= (P (B1 |w′
n) · · ·P (Bm |w′

n))�,

where the last equality follows from the equivalence of A and A′.
We will sometimes denote A′ by �A. The m × m matrix corresponding to �

can be obtained from the original OOM A by observing that

� = (1τBi
ej), (14.26)

where ei is the ith unit vector.
The following fact lies at the heart of the learning algorithm presented in the

next section.

Proposition 14.8
In an OOM that is interpretable with respect to B1, . . . , Bm it holds that

1. w0 = (P (B1) · · ·P (Bm))�,

2. τāw0 = (P (āB1) · · ·P (āBm))�,
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where P (āB) denotes
∑

b̄∈B P (āb̄). The proof is trivial.
Interpretable OOMs are most often used in a context when they are minimal-

dimensional, but sometimes it is useful to generalize the notion by dropping
the requirement of minimal dimensionality. An n-dimensional OOM of an m-
dimensional process is called interpretable with respect to B1, . . . , Bn if the analog
of 14.23 holds. An n-dimensional OOM with operators τa can be made interpretable
by putting τ ′

a = � τa�†, where again � = (1τBi
ej) and �† is the pseudo-inverse of �.

A special case that we will need to consider later on is obtained when the Bi are
all singletons. We introduce some special concepts for this case.

Definition 14.6
Let (Xn) be an m-dimensional process over an observation alphabet O. Fix some
k ∈ N, k > 0, put κ = |O|k, and let b̄1, . . . , b̄κ be the alphabetical enumeration
of Ok. Then these sequences b̄i are the characteristic sequences of length k for
(Xn) if m “indicative” sequences ā1, . . . , ām exist that make the κ × m matrix
V = (P (b̄i|āj)) have rank m. The minimal k for which such sequences ā1, . . . , ām

exist is the characterizing length of (Xn).

We list three properties of characteristic sequences (the simple proof is left to the
reader).

Proposition 14.9
Let b̄i be characteristic sequences of (Xn)n≥0 of length k and let κ = |O|k.

1. If A = (Rn, (τa)a∈O, w0) is some (not necessarily minimal-dimensional) OOM
for (Xn)n≥0, then the κ× n matrix πA that has as its i-th row 1τb̄i

maps states w

of A to πAw = (P (b̄1|w) · · ·P (b̄κ|w))�.

2. The characterizing length k0 of (Xn) is the minimal length of characteristic
events for (Xn).

3. The characterizing length k0 is at most m − 1.

Here are some observations concerning interpretable OOMs:

If an m-dimensional OOM A has been learned from empirical data, and one
chooses disjoint events B1, . . . , Bm at random, it is generically the case that some
sequences ā1, . . . , ām exist such that the matrix (P (Bi | āj))1≤i,j≤m is nonsingular.
The reason is that the matrix composed from rows (1τBi) is a random matrix and as
such generically nonsingular. Generally speaking, for arbitrary events B1, . . . , Bm

being characteristic is the rule, not an exceptional circumstance.

A given OOM can be transformed into many different equivalent, interpretable
OOMs depending on the choice of characteristic events.

Interpretability yields a very useful way to visualize the state dynamics of
an OOM. To see how, first consider the case where the OOM dimension is 3.
Interpretable states, being probability vectors, are nonnegative and thus lie in the
intersection of the positive orthant of R3 with the hyperplane H = {x ∈ R3 |1x =
1}. This intersection is a triangular surface. Its corners mark the three unit vectors
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Figure 14.2 State dynamics “fingerprints” of three related interpretable OOMs.

of R3. This triangle can be conveniently used as a plotting canvas. Figure 14.2 shows
three “fingerprint” plots of states obtained from generating runs of three different
synthetic three-dimensional OOMs (see appendix C for details) over an observation
alphabet of size 3, which were made interpretable with respect to the the same
three characteristic events. The states are colored with three colors depending on
which of the three operators was used to produce each state. A similar graphical
representation of states was first introduced in Smallwood and Sondik (1973) for
HMMs. When one wishes to plot states of interpretable OOMs with dimension
m > 3, one can join some of the characteristic events, until three merged events are
left, and create plots as explained above.

If one has several nonequivalent OOMs over the same alphabet O, making them
interpretable with respect to to a common set of characteristic events is useful for
comparing them in a meaningful way. This has been done for the three OOMs
plotted in fig. 14.2. Their observable operators depended on a control parameter α,
which was slightly changed over the three OOMs.

14.8 The Basic Learning Algorithm

We shall address the following learning task. Assume that a realization S =
a0a1 · · · aN of a stationary, m-dimensional process (Xn) is given; that is, S is
generated by some OOM A of (minimal) dimension m. We assume that m is known
but otherwise A is unknown. We wish to induce from S an estimate Â of A in
the sense that the distribution characterized by Â comes close to the distribution
characterized by A (the hat ·̂ will be used throughout this chapter for denoting
estimates).

We first collect some observations concerning the unknown generator A.
We may assume that A is interpretable with respect to characteristic events
B1, . . . , Bm. Then the principle of learning OOMs emerges from the following ob-
servations:

Proposition 14.8, property can be used to procure argument-value pairs for the
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operator τa (a ∈ O) by exploiting

τa((P (āB1) · · ·P (āBm))�) = τa(τāw0)

= τāaw0

= (P (āaB1) · · ·P (āaBm))�. (14.27)

Such argument-value pairs are vectors that are made from probability values.

A linear operator on Rm is determined by any m argument-value pairs provided
the arguments are linearly independent.

Probabilities of the kind P (āBi) that make up the argument-value pairs in
equation 14.27 can be estimated from the training string S through the relative
frequencies P̂S of the event āBi:

P̂S(āBi) =
number of ocurrences of words āb̄ (where b̄ ∈ Bi) within S

N− | āBi | +1
, (14.28)

where | āBi | denotes the length of ā plus the length of the sequences in Bi.

Thus the blueprint for estimating an OOM Â from S is clear:

Step 1: Choose characteristic events B1, . . . , Bm and indicative sequences ā1, . . . , ām

such that the matrix V̂ =
(
P̂S(ājBi)

)
i,j=1,... ,m

is non-singular (this matrix contains
in its columns m linearly independent argument vectors for the operators τa).

Step 2: For each a ∈ O, collect the corresponding value vectors in a matrix
Ŵa =

(
P̂S(ājaBi)

)
i,j=1,... ,m

.

Step 3: Obtain an estimate for τa by

τ̂a = Ŵa V̂ −1. (14.29)

If the process (Xn) is ergodic, the estimates P̂S(ājBi), P̂S(ājaBi) converge with
probability 1 to the correct probabilities as the sample size N grows to infinity.
This implies that the estimated τ̂a will converge to the operators of the true data
generator A, assuming that A is interpretable with respect to the characteristic
events B1, . . . , Bm used in the learning procedure. In other words, the learning
algorithm is asymptotically correct.

The statistical efficiency of the algorithm can be improved if instead of
using indicative sequences āj one uses indicative events Aj that partition Ol

into m nonempty, disjoint subsets. Then V̂ =
(
P̂S(AjBi)

)
i,j=1,... ,m

and Ŵa =(
P̂S(AjaBi)

)
i,j=1,... ,m

. If this is done, counting information from every subword of
S of length |AjBi| enters the model estimation, whereas when indicative sequences
are used, only those subwords beginning with an indicative sequence are exploited.

A computational simplification of this basic algorithm is obtained if one uses
in (14.29) the raw counting matrices

V raw =
(
count no. of event AjBi in Sshort = a0 . . . aN−1

)
i,j=1,... ,m

,

W raw
a =

(
count no. of event AjaBi in S

)
i,j=1,... ,m

. (14.30)
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It is easy to see that W raw
a (V raw)−1 = Ŵa V̂ −1.

The counting matrices can be gleaned in a single sweep of a window of length
| AjBi | across S, and the computation of equation 14.29 incurs O(m3) flops. This
makes the overall computational cost of the algorithm O(N + m3).

Note that while the obtained models Â converge to an interpretable OOM
with increasing sample size, it is not the case that a model obtained from a finite
training sample is interpretable with respect to the characteristic events chosen for
learning.

The statistical efficiency (model variance) of this basic algorithm depends
crucially on the choice of characteristic and indicative events. This can be seen
immediately from the basic learning equation 14.29. Depending on the choice of
these events, the matrix V̂ will have a high or low condition number, that is, its
inversion will magnify estimation errors of V̂ to a high or low extent, which in turn
means a high or low model variance. Several methods of determining characteristic
and indicative events that lead to a low condition number of V̂ have been devised.
The first of these methods is documented in Kretzschmar (2003); another will be
presented later in this chapter (it is documented in appendix H).

We assumed here that the correct model dimension m is known beforehand.
Finding the correct model dimension is, however, an academic question. Real-
life processes will hardly ever have a finite dimension. The problem in practical
applications is instead to find a model dimension that gives a good compromise
in the bias-variance dilemma. The model dimension m should be chosen (1) large
enough to enable the model to capture all the properties of the distribution that
are statistically revealed in S, and in the meantime (2) small enough to prevent
overfitting.

Negotiating this compromise can be effected by the standard techniques of
machine learning, for instance cross-validation. But OOM theory suggests a purely
algebraic approach to this problem. The key is the matrix V̂ . Roughly speaking, if
it has a low condition number and can thus be stably inverted, model variance will
be low and overfitting is avoided. Quantitative bounds on model variance, as well
as an algebraic method for finding good characteristic events (of a more general
kind than introduced here) that minimize the condition number of V̂ for a given
model dimension can be found in Kretzschmar (2003).

While the basic learning algorithm is conceptually transparent and computa-
tionally cheap, it has two drawbacks that make it ill suited for applications:

1. Even with good characteristic and indicative events for a small condition number
of V̂ , the statistical efficiency of the basic algorithm has turned out to be inferior to
that of HMMs estimated via the EM algorithm. The reason is that the EM algorithm
implicitly exploits the statistics of arbitrarily long substrings in S, whereas our
OOM learning algorithm solely exploits the statistics of substrings of length |AjBi|.
2. The models returned by this learning method need not be valid OOMs. The
nonnegativity condition 3 of definition 14.2 is often violated by the “OOMs”
computed via this method.
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In sections 14.10 to 14.13 of this chapter, the first of these problems will be
completely solved. The second problem will remain unsolved, but practical working
solutions will be presented.

14.9 History, Related Work, and Ramifications

Hidden Markov models (HMMs) (Bengio, 1999) of stochastic processes have been
investigated in mathematics under the name “functions of Markov chains” long
before they became a popular tool in speech processing and engineering. A basic
mathematical question was to decide when two HMMs are equivalent, i.e., describe
the same distribution (Gilbert, 1959). This problem was tackled by framing HMMs
within a more general class of stochastic processes, nowadays termed linearly depen-

dent processes (LDPs). Deciding the equivalence of HMMs amounts to character-
izing HMM-describable processes as LDPs. This strand of research (Blackwell and
Koopmans, 1957; Dharmadhikari, 1963a,b, 1965; Fox and Rubin, 1968, 1969, 1970;
Heller, 1965) came to a successful conclusion in the work of Ito et al. (1992), where
equivalence of HMMs was characterized algebraically, and a decision algorithm was
provided. That article also gives an overview of the work done in this area up to
the time of its writing.

The results from Ito et al. (1992) were further elaborated in Balasubramanian
(1993), where for the first time matrix representations with negative entries ap-
peared, called “generalized hidden Markov models.” The algebraic characterization
of HMM equivalence could be expressed more concisely than in the original paper
(Ito et al., 1992).

All of this work on HMMs and LDPs was mathematically oriented and did not
bear on the practical question of learning models from data.

In 1997, the concept of OOMs was introduced by Jaeger (1997a), including the
basic learning algorithm (Jaeger, 1997b). Independently a theory almost identical to
the OOM theory presented here was developed by Upper (1997). The only difference
is that in that work characteristic sequences were utilized for learning instead of
characteristic events, which renders the algorithm a bit more complicated.

Unconnected to all of these developments, the idea of describing the observables
of a stochastic process as update operators was carried out by Iosifescu and
Theodorescu (1969) within a very general mathematical framework. However, it
was not perceived that these operators can be assumed to be linear.

Recently we have witnessed a growing interest in observable operator models in
the field of optimal decision making/action selection for autonomous agents. Under
the name of predictive state representations (PSRs) and with explicit connections
made to OOMs, a generalization of partially observable Markov decision processes
(POMDPs), (see, e.g., Kaelbling et al., 1998) is being explored (see, e.g., James and
Singh, 2004; Littman et al., 2001, and try Google on “predictive state representa-
tion” to find more). PSRs can be seen as a version of OOMs that models systems
with input. Such input-output OOMs (including a variant of the basic learning
algorithm) were first described by Jaeger (1998b).
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Since their discovery, OOMs have been investigated by the group led by
this chapter’s first author. The most notable results are (1) matrix OOMs for
continuous-valued processes, including a version of the basic learning algorithm
(Jaeger, 1998a); (2) a general OOM theory for stochastic processes (nonstationary,
continuous time, with arbitrary observation sets) including an algebraic characteri-
zation of general processes which reveals fascinating structural similarities between
the formalism of quantum mechanics and OOMs; (3) a first solution to the prob-
lem of finding characteristic events that optimize statistical efficiency, including
bounds on model variance (Kretzschmar, 2003); and (4) the introduction of suffix
tree representations for the training string as a tool to improve statistical efficiency
(Oberstein, 2002, more about this later). Much effort was spent and wasted on
the nonnegativity problem; for the time being we put this to rest. Hopefully, new
developments in linear algebra will ultimately help to resolve this issue (Edwards
et al., 2005).

Ongoing work in our group focuses on online learning algorithms, heuristics for
ascertaining nonnegativity of model-predicted probabilities (more in later sections),
and the investigation of quadratic OOMs, which arise from replacing the basic
equation (14.8) by P (ā) = (στāw0)2. Non-negativity is clearly a non-issue in
quadratic OOMs—this is the prime motivation for considering them—and the basic
learning algorithm is easily carried over; however, it is currently not clear which
processes can be characterized by quadratic OOMs.

14.10 Overview of the Efficiency Sharpening Algorithm

We have seen that the basic OOM learning algorithm has limited statistical effi-
ciency

1. because only the statistics of substrings of some (small) fixed length are entered
in the estimation algorithm, thus much information contained in the training data
is ignored, and

2. because it is unclear how to choose the characteristic/indicative events optimally,
thus the information that enters the algorithm becomes further degraded when it
is agglomerated into (possibly badly adapted) collective events.

Both obstacles can be overcome:

1. Using a suffix tree representation of the training sequence, one can exploit
characteristic/indicative sequences of all possible lengths simultaneously. Instead
of exploiting a mere m argument-value pairs, the number of used argument-value
pairs is in the order of the training data size.

2. We can get rid of characteristic and indicative events altogether. They will
only be used for the estimation of an initial model Â(0), from which a sequence
Â(1), Â(2), . . . of better models is iteratively obtained without using such events at
all. The model improvement is driven by a novel learning principle whose main idea
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is to use the model Â(n) for improving the statistical efficiency of the estimation
procedure that yields Â(n+1). We call this the principle of efficiency sharpening

(ES).

14.11 The Efficiency Sharpening Principle: Main Idea and a Poor Man’s ES

Learning Algorithm

This is the main section of this chapter. We derive the underlying ideas behind the
ES principle, present an elementary instance of an ES-based learning algorithm,
and finish with a little simulation study.

The core of the ES principle is to use in each iteration a new set of characteristic
events that yields an estimator with a better statistical efficiency. However, a very
much generalized version of such events is used:

Definition 14.7
Let A = (Rn, (τa)a∈O, w0) be a (not necessarily minimal-dimensional) OOM of an
m-dimensional process (Xn). Let k ∈ N. A function c : Ok → {r ∈ Rn |1r = 1} is
a characterizer of A (of length k) if

∀ā ∈ O∗ : wā =
∑

b̄∈Ok

P (b̄ | ā) c(b̄), (14.31)

If convenient, we will identify c with the matrix C = [c(b̄1) · · · c(b̄κ)], where
b̄1, . . . , b̄κ is the alphabetical enumeration of Ok.

It is clear that C is a characterizer for A if and only if every state wā of A can
be written as

wā = C (P (b̄1|ā) · · ·P (b̄κ|ā))�. (14.32)

The characteristic events introduced in section 14.7 can be regarded as a special
characterizer: if A is interpretable with respect to characteristic events B1, . . . , Bn

of length k, and if b̄ ∈ Bi, then define c(b̄) as the binary vector of dimension n that is
zero everywhere except at position i. The two conditions from the above definition
are easily checked. In matrix form, this gives the characteristic event characterizer

(apologies for the loopy terminology)

CB1,... ,Bm = (cij) i=1,... ,m
j=1,... ,κ

where (14.33)

cij =

{
1, if b̄j ∈ Bi

0, else.

We proceed by investigating other characterizers.
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Proposition 14.10
Let κ and b̄1, . . . , b̄κ be as in definition 14.7. Given an m-dimensional process (Xn),
then an n × κ matrix C whose columns sum to 1 is a characterizer of some n-
dimensional OOM for (Xn) if and only if there exist m sequences āj such that the
n × m product matrix W = CV of C and the κ × m matrix V = (P (b̄i | āj)) has
rank m.

The proof is in appendix D. Now consider two equivalent, minimal-dimensional
OOMs A, A′ which are related by τ ′

a = �τa�−1 (see 14.25). Then the following
holds.

Proposition 14.11
If C is a characterizer of A, then � ◦ C is a characterizer of A′.

The reason is that the states w′
ā of A′ are equal to the transforms �wā of the

respective states of A. A given minimal-dimensional OOM (of dimension m) has
many characterizers of length k if κ > m; if κ = m then the characterizer is unique.
This is detailed in the following corollary to proposition 14.10 (proof in appendix
E).

Proposition 14.12
Let C0 be a characterizer of length k of a minimal-dimensional OOM A. Let κ and
V be as in proposition 14.10. Then C is another characterizer of length k of A if
and only if it can be written as C = C0 + G, where

G = [g1, · · · , gm−1,−Σi=1,... ,m−1gi]�, (14.34)

where the gi are any vectors from ker V �.

An important type of characterizers is obtained from the states of reverse OOMs,
that is, OOMs for the time-reversed process. We now describe in more detail the
time reversal of OOMs. Given an OOM A = (Rm, (τa)a∈O, w0) with an induced
probability distribution PA, its reverse OOM Ar is characterized by a probability
distribution PAr satisfying

∀ a0 · · · an ∈ O∗ : PA(a0 · · · an) = PAr (an · · · a0). (14.35)

The reverse OOM can be computed from the forward OOM observing the following
fact, whose proof is in appendix F.

Proposition 14.13
If A = (Rm, (τa)a∈O, w0) is an OOM for a stationary process, and w0 has no
zero entry, then Ar = (Rm, (Dτ�

a D−1)a∈O, w0) is a reverse OOM to A, where
D = diag(w0) is a diagonal matrix with w0 on its diagonal.

Because from an m-dimensional matrix OOM for the “forward” process an m-
dimensional matrix OOM for the reverse process can be constructed and vice versa,
it follows that the process dimension of the forward process equals the process
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dimension of the reverse process.
When discussing “forward” and reverse OOMs of a process at the same time,

using shorthand notations of the kind P (b̄i | āj) easily leads to confusion. We fix
the following conventions:

1. The character b and string shorthands b̄ always denote symbols/substrings that
follow after symbols/substrings denoted by character a and string shorthands ā—
“after” with respect to the forward time direction.

2. We use P to denote probabilities for the forward process and P r for the reverse
process.

3. When using indices i, j for alphabetical enumerations for words b̄i, āj , the
enumeration is carried out in the forward direction, even if we denote reverse
probabilities. For example, if O = {0, 1, 2}, and if āj , b̄j are each the alphabetical
enumerations of O2, and if τa, τ r

a are the observable operators for a forward and
a reverse OOM of a process, then ā6 = 12, b̄2 = 01, and 1τ1τ0τ2τ1w0/1τ2τ1w0 =
P (b̄2 | ā6) = P (X2 = 0, X3 = 1 | X0 = 1, X1 = 2) = P r(Xr

1 = 0, Xr
0 = 1 | Xr

3 =
1, Xr

2 = 2) = P r(b̄2 | ā6) = 1τ r
1 τ r

2 τ r
0 τ r

1 wr
0/1τ r

1 τ r
2 wr

0.

4. Likewise, when using ā as an index to denote a concatenation of operators, the
forward direction is always implied for interpreting ā. For example, τ01 = τ1τ0 and
τ r
01 = τ r

0 τ r
1 .

The states of a reverse OOM obtained after sufficiently long reverse words make a
characterizer of a forward OOM, as follows.

Proposition 14.14
Let the dimension of (Xn) be m and let Ar = (Rm, (τ r

a )a∈O, w0) be a reverse
OOM for (Xn) that was derived from a forward OOM A = (Rm, (τa)a∈O, w0) as in
proposition 14.13. Let k0 be the characterizing length of (Xn), let k ≥ k0, and let
κ = |Ok|. Then the following two statements hold:

1. C = [wr
b̄1
· · ·wr

b̄κ
] is a characterizer of an OOM A′ for (Xn).

2. The states w′
ā of A′ are related to the states wā of A by the transformation

w′
ā = �wā, where � = CπA. If in addition w0 = (1/m · · · 1/m)�, then furthermore

� = R�R. The matrices πA and R are

πA =

⎛⎜⎜⎝
1τb̄1

...

1τb̄κ

⎞⎟⎟⎠ , R = πA diag ((m P (b̄1))−1/2 · · · (m P (b̄κ))−1/2). (14.36)

The proof can be found in appendix G. The proposition implies that �−1C =
(CπA)−1C =: Cr

A is a characterizer for the original forward OOM A. Cr
A =

[�−1wr
b̄1
· · · �−1wr

b̄κ
] is the characterizer obtained from the reverse OOM �−1Ar =

(Rm, (�−1τ r
a�)a∈O, w0), so we may note for later use that every OOM A has a

reverse characterizer Cr
A that is made from the states of a suitable reverse OOM.

Among all characterizers of OOMs A for (Xn), the reverse characterizers
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minimize a certain measure of variance, an observation which is the key to the
ES learning principle. We begin the presentation of this core finding by describing
some variants of the basic learning algorithm from section 14.8.

In the basic learning algorithm from 14.29, an estimate τ̂a of an m-dimensional
OOM was determined from m estimated argument-value pairs for τa, which were
sorted in the columns of an m×m matrix V̂ = (P̂ (ājBi)) (containing the argument
vectors) and another m × m matrix Ŵa = (P̂ (ājaBi)) (containing the values), by
τ̂a = ŴaV̂ −1. It is clear that this is equivalent to

τ̂a =
(
P̂ (aBi|āj)

)
i,j=1,... ,m

(
P̂ (Bi|āj)

)−1

i,j=1,... ,m
. (14.37)

The choice of m indicative sequences āj is arbitrary and has the additional draw-
back that in estimating the argument-value matrices from a training string, only a
fraction of the data enters the model estimation—namely, only the counting statis-
tics of substrings beginning with one of the m chosen indicative sequences. The
information contained in the data is better exploited if we use all indicative se-
quences ā1, . . . , āκ ∈ Ok, which yields two m×κ matrices containing the argument
and the value vectors, requires the use of the pseudoinverse † instead of the matrix
inverse, and turns equation 14.37 into

τ̂a =
(
P̂ (aBi|āj)

)
i=1,... ,m
j=1,... ,κ

(
P̂ (aBi|āj)

)†
i=1,... ,m
j=1,... ,κ

. (14.38)

Let V =
(
P (b̄i|āj)

)
i,j=1,... ,κ

be the matrix of all conditional probabilities of
length k sequences b̄ given length k sequences ā, where i, j index the alphabetical
enumeration of Ok (we will always use underlined symbols like V to denote
“big” matrices of size κ × κ), and let V̂ be the estimate of V obtained from
the training string through the obvious counting procedure. Likewise, let W a =(
P (ab̄i|āj)

)
i,j=1,... ,κ

and Ŵ a its estimate. Then equation 14.38 is easily seen to be
equivalent to

τ̂a = CB1,... ,BmŴ a (CB1,... ,Bm V̂ )†. (14.39)

Instead of the characteristic event characterizer CB1,... ,Bm one may use any char-
acterizer C, which gives us the following learning equation:

τ̂a = CŴ a (CV̂ )† for any characterizer C. (14.40)

It follows from proposition 14.12 that all characterizers C + G, where G is any
m × κ matrix with zero column sums and GV = 0 yield the same state vectors as
C, which entails
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τa = CW a CV † = (C + G)W a ((C + G)V )† (14.41)

for any such G. Finally, we observe that if � is an OOM transformation as in
proposition 14.6, and if C is a characterizer for some OOM A and �C a characterizer
for A′ (cf. proposition 14.11), then it is irrelevant whether we use C or �C in the
learning equation 14.40, because the estimated OOMs will be equivalent via �:

If τ̂a = CŴ a (CV̂ )† and τ̂ ′
a = �CŴ a (�CV̂ )†

then�τ̂a�−1 = τ̂ ′
a. (14.42)

After proposition 14.14 we remarked that every OOM A has a reverse characterizer
Cr

A, and proposition 14.11 informs us how transforming OOMs via transformations
� is reflected in transforming their characterizers with �. Together with proposi-
tion 14.12 and 14.41 we can draw the following overall picture:

Call two characterizers equivalent if they characterize the same OOM. Then the
equivalence class of all characterizers of an OOM A can be written as Cr

A + G,
where G is any matrix as described above.

We know empirically that different choices of characteristic events (and hence,
different characterizers) yield models of different quality when used in the learning
equation 14.40. In order to study such sensitivity of learning with respect to choice
of characterizers, equation 14.42 informs us that we may restrict the search for
“good” characterizers to a single equivalence class.

Concretely, we should analyze the quality of model estimates when G is varied in

τ̂a = (Cr + G)Ŵ a ((Cr + G)V̂ )† (14.43)

for some reverse characterizer Cr whose choice (and hence, choice of equivalence
class) is irrelevant.

In order to explain the ES principle, we concentrate of the role of (Cr + G)V̂ in
this learning equation. We can make the following two observations:

The variance of models estimated via equation 14.43 is determined by the variance
of (Cr + G)V̂ across different training sequences. We may ignore the role of
variance in (Cr + G)Ŵ a because either the condition of (Cr + G)V̂ is significantly
larger than one, in which case variance in this matrix becomes magnified through
the pseudoinverse operation in 14.43 and the overall variance of 14.43 becomes
dominated by the variance of (Cr + G)V̂ . Or, the condition of this matrix is close
to one, in which case the variance of both ((Cr + G)V̂ )† and (Cr + G)Ŵ a will be
approximately the same due to the similar makeup of V̂ and Ŵ a, and again we may
focus on (Cr +G)V̂ alone. (For a detailed analysis of these issues see Kretzschmar,
2003).
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The jth column in the matrix (Cr+G)V is the state wāj
of an OOM characterized

by (Cr + G). This is also the expectation of the j-th column v̂j in estimates
(Cr +G)V̂ . This column v̂j can be computed from the training string S as follows:

Step 1: Initialize v̂j = 0.

Step 2: Sweep an observation window of length 2k across S. Whenever
the windowed substring begins with āj , showing āj b̄i, add the ith column
(Cr + G)(:, i) of (Cr + G) to v̂j .

Step 3: When the sweep is finished, normalize v̂j to unit component sum.

We can interpret each additive update of v̂j in step 2 as adding a stochastic
approximation (Cr + G)(:, i) of wāj

to v̂j . The variance of v̂j will thus grow
monotonically with the mean stochastic approximation error. Considering the entire
matrix (Cr + G)V̂ with all its columns, we see that its variance is monotonically
tied to the expected stochastic approximation error

ξG =
κ∑

i,j=1

P (āib̄j) ‖wāi − (Cr + G)(:, j)‖2. (14.44)

Looking for statistically efficent model estimations via equation 14.43 we thus must
ask which choice of G makes ξD minimal. Here is the main result of this chapter.

Proposition 14.15

arg min
G

ξG = 0. (14.45)

That is, the reverse characterizer Cr itself minimizes, within its equivalence
class, the variance of the argument matrix (Cr + G)V̂ . The proof (by M. Zhao)
is in appendix H. We would like to point out again that it is irrelevant which

reverse characterizer (and hence, which equivalence class of characterizers) is used;
all reverse characterizers yield equivalent models.

The normalizing step 3. is in fact redundant. Just as in the original learning
method (cf. eq 14.30) we may just as well use the “raw” counting matrices V raw =
(#āj b̄i) and W raw

a = (#āj a b̄i) in place of the normalized matrices V̂ and Ŵ a in
equation 14.43, saving one normalization operation. Here we use # to denote the
count operator, “number of occurrences in training data.”

This finding suggests an iterative learning procedure, with the goal of develop-
ing a sequence of characterizers that approaches a reverse characterizer, as follows:

Learning task: Given: a training sequence S of length N over an observation
alphabet O of size α, and a desired OOM model dimension m.

Setup: Choose a characterizing length k (we found that the smallest k satisfying
κ = αk ≥ m often works best). Construct the κ × κ counting matrices V raw =
(#āj b̄i) and W raw

a = (#āj a b̄i).

Initial model estimation: To get started, use the basic learning algorithm from
section 14.8 once. Choose characteristic events B1, . . . , Bm and code them in the
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characteristic event characterizer CB1,... ,Bm
(eq. 14.33). The characteristic events

should be chosen such that CB1,... ,BmV raw has a good condition number. A greedy
heuristic algorithm for this purpose, which works very well, is detailed in appendix
I. Compute an initial model Â(0) through τ̂

(0)
a = CB1,... ,BmW raw

a (CB1,... ,BmV raw)†.
The starting state ŵ

(0)
0 can either be computed as the eigenvector to the eigenvalue

1 of the matrix μ̂(0) =
∑

a∈O τ̂
(0)
a , or equivalently as the vector of row sums of

CB1,... ,Bm
V raw, normalized to unit component sum.

ES iteration: Assume that Â(n) is given. Compute its reverse Âr (n) and the reverse
characterizer Ĉ(n+1) =

(
ŵ

r (n)
b̄1

· · · ŵr (n)
b̄κ

)
. Compute a new model Â(n+1) through

τ̂
(n+1)
a = Ĉ(n+1)W raw

a (Ĉ(n+1)V raw)†. The starting state ŵ
r (n+1)
0 can again be

computed as the normalized row sum vector of Ĉ(n+1)V raw or from μ̂(n+1).

Termination: A standard termination criterium would be to calculate the log-
likelihood of each model Â(n) on S and stop when this appears to settle on a
plateau, which is typically the case after two to five iterations.

The rationale behind the iteration step is that if some model Â(n+1) comes closer
to the true model than the previous one, then the resulting estimated reverse
characterizer Ĉ(n+1) will come closer to a version of the true reverse characterizer,
thereby yielding an estimator with lower variance, which in turn on average will
yield an even better model, etc. This idea motivated calling the entire approach
“efficiency sharpening” (ES). We like to call this particular algorithmic instantiation
of the ES principle the “poor man’s” ES algorithm because it is simple, cheap, and
suboptimal—the latter because it exploits only the statistics of substrings of length
2k. We will soon see how one can do better in this respect. Here are two optional
embellishments of the poor man’s algorithm:

In each iteration, the model Â(n) can be transformed into an equivalent one that
is interpretable with respect to the characteristic events used for the initial model
estimation, before it is used in the iteration. This has, in principle, no effect on the
procedure: a sequence of models each equivalent to the corresponding member in
the original sequence of models will be obtained. The benefit of having interpretable
models is cosmetic and diagnostic: one can produce state plots for each model which
are visually comparable.

The computational cost per iteration is dominated by computing the pseudoin-
verse of Ĉ(n+1)V̂ (0). If this matrix is not too ill conditioned (rule of thumb: with
a condition number below 1e10 one is on the safe side when using double preci-
sion arithmetics), one may employ the well-known (e.g., Farhang-Boroujeny, 1998),
computationally much cheaper Wiener-Hopf equation to compute the desired least-
square solution τ̂

(n+1)
a to (Ĉ(n+1)V raw)�X� = (Ĉ(n+1)W raw

a )�.

A technical point not directly related to the ES principle: If one uses W raw
a , V raw as

suggested here, the pseudoinverse (which minimizes MSE of the obtained argument-
value mapping) leads to a solution that disproportionally emphasizes the influence
of argument-value pairs that represent a relatively small “mass of evidence” in the
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sense that the corresponding argument-value pairs in V raw and W raw
a have a small

mass. If the jth column of these raw matrices is normalized through dividing by the
square root of the total weight of the jth column of V raw (instead of division by the
raw total weight), one obtains Ŵ

(0)
a , V̂ (0), which under the τ̂a = ŴaV̂ † operation be-

have as if the argument-value pair (P̂ (b̄1|āj) · · · P̂ (b̄κ|āj)), (P̂ (ab̄1|āj) · · · P̂ (ab̄κ|āj))
would occur in Ŵ

(0)
a , V̂

(0)
multiple times with a multiplicity proportional to P̂ (āj).

This more properly reflects the “mass of evidence” represented in each argument-
value pair and should be preferred. We omitted this reweighting above for expository
reasons.

We conclude this section with a little demonstration of the poor man’s al-
gorithm at work. The training sequences were obtained from running a randomly
created HMM with four states and three output symbols for 1,000 steps; test se-
quences were 10,000 steps long. The random creation of Markov transition and
emission probabilities was biased toward a few high probabilities and many low
ones. The reason for doing so is that if the HMM probabilities were created from a
uniform distribution, the resulting processes would typically be close to i.i.d.—only
Markov transition and emission matrices with relatively many low and a few high
probabilities have enough structure to give “interesting” processes. One hundred
train-test sequence pairs from different HMM generators were used to train and test
100 OOMs of dimension 3 with the poor man’s algorithm, employing two versions
where the raw counting matrices were normalized through division with the column
sums (variant A, corresponding to eq. 14.43) and through division with the square
root of the column sums (variant B).

For comparison, HMMs with three states were trained with the Baum-
Welch algorithm. For HMM training we used a public-domain implementation
of Baum-Welch written by K. P. Murphy (http://www.cs.ubc.ca/∼murphyk/Soft-
ware/HMM/hmm.html). The Baum-Welch algorithm was run for at most 100 iter-
ations and stopped earlier when the ratio of two successive training log-likelihoods
dropped below 5e-5. Only a single Baum-Welch run was executed per data set
with the HMM initialization offered by Murphy’s software package. On average
Baum-Welch used 40.8 iterations.

Our findings are collected in fig. 14.3. Here is a summary of observations of
interest:

On average, we see a rapid development of training and testing log-likelihoods to
a plateau, with the first iteration contributing the bulk of model improvement. A
closer inspection of the individual learning runs (not shown here), however, reveals
a large variability.

Interesting things happen to the condition number of the argument matrices CV̂

(or their square-root-normalized correlates in version B). The first iteration on
average leads to a significant decrease of it, steering the learning process into a
region where the matrix inversion magnifies estimation error to a lesser degree and
thus improves statistical efficiency by an additional mechanism different from the
ES mechanism proper. We must concede that all phenomena around this important
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condition number are not well understood.

The initial model estimates with the basic learning algorithm are, on average, al-
ready quite satisfactory (for variant B, they match the final Baum-Welch outcome).
This is due to the heuristic algorithm for finding characteristic events, which not
only in this suite of experiments worked to our complete satisfaction.

Compared to the Baum-Welch trained HMMs, the training log-likelihood of
OOMs is higher by about 1%, reflecting the greater expressiveness of OOMs and/or
the fact that our learning algorithm cannot be trapped in the local optima. In
contrast, the OOM test log-likelihood is significantly lower. This reflects the fact
that for this particular kind of data, HMMs possess a built-in bias which prevents
these models from overfitting.

Variant B leads to better training log-likelihoods than variant A. Especially the
initial models are superior.

Even the averaged curves exhibit a nonmonotonic development of likelihoods.
Inspection of the individual runs would reveal that sometimes the likelihood de-
velopment is quite bumpy in the first three steps. This point is worth some extra
consideration. The ES principle does not root in a concept of iteratively minimizing
training error, as Baum-Welch does (and as most other machine learning algorithms
do). In fact, the ES principle comes with no guaranteed mechanism of convergence
whatsoever. The ES algorithm only “tries” to find an estimator of better statistical
efficiency in each iteration, but there is no guarantee that on a given data set, an
estimator of higher efficiency will produce a model with higher likelihood.

The state fingerprints plotted in fig. 14.3 have been derived from models that
were interpretable with respect to the characteristic events used in the initial model
computation. The plots exhibit some states which fall outside the triangular region
which marks the nonnegative orthant of R3. Whenever we witness states outside
this area in an interpretable OOM, we see an invalid OOM at work, that is, the non-
negativity condition 3 from definition 14.2 is violated. It is unfortunately the rule
rather than the exception that trained OOMs are invalid. This is cumbersome in at
least two respects. First, if one uses such pseudo-OOMs for computing probabilities
of sequences, one may get negative values. Second, and even more critically in our
view, invalid OOMs are inherently instable (this idea is not detailed here), that is,
if they are used for generating sequences, the states may explode. A fundamental
solution to this problem is not in sight (cf. the concluding remarks in section 14.6).
We can offer only a heuristic stabilizing mechanism that affords nonexploding states
and nonnegative probabilities when an invalid OOM is run, at the expense of slightly
“blurred” probabilities computed by such stabilized OOMs. This mechanism is
described in appendix J. We used it in this suite of learning experiments for
determining the training and testing log-likelihoods of learned OMMs.
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Figure 14.3 (a) Training and testing log-likelihoods (scale on left y-axis) of variant
A trained OOMs plotted against the iteration number. The test log-likelihoods
were divided by 10 because test strings were longer by this factor, to render
them directly comparable with training log-likelihoods. The plot shows the average
over 100 training experiments. For comparison, the final train/test log-likelihoods
of Baum-Welch trained HMMs is shown by straight horizontal lines. Iteration 0
corresponds to the initial model estimation. In addition, the average of log10 of
condition numbers of the matrices CV̂ are shown (scale on the right y-axis). (b) A
similar plot for variant B. (c) “Fingerprints” of the OOM models obtained in the
successive iterations in one of the learning runs.

14.12 Essentials of Suffix Trees

We now proceed to describe an improved instantiation of the ES learning principle,
using suffix trees to represent state sequences. In this section we recapitulate the
basic concepts of suffix trees.

The suffix tree T (Weiner, 1973) for a given string S provides a compact
representation of all substrings of S while exposing the internal structure of S in
an efficient data structure. Moreover, a (compact) suffix tree T can be constructed
in linear time O(| S |). While the suffix tree is a simple enough data structure,
linear-time construction algorithms are quite involved (Giegerich and Kurtz, 1997).

Formally, a suffix tree is a trie with additional properties. A trie T (Fredkin,
1960)—the name being derived from retrieval—is an ordered tree where edges are
labeled with strings over an alphabet O such that no two edges from some node k of
T to its children have labels beginning with the same symbol a ∈ O. Thus we may
speak of the path to a node k of T , defined as the concatenation of all edge labels
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encountered when traveling from the root to k, and we may identify the node k

with path(k) ∈ O∗. The set of words words(T ) ⊂ O∗ represented by a tree is defined
by

ā ∈ words(T ) ⇐⇒ ∃k ∈ T : ā = path(k)b̄, (14.46)

where b̄ is a prefix of an outgoing edge of k. Then, a suffix tree TS of a string S is
a trie that contains all substrings of S:

words(TS) = {ā ∈ O∗ : ā is a substring of S}. (14.47)

In general there will be more than one trie satisfying the above condition. However
if we additionally require that all nodes in TS are either leaves or have at least two
children, the suffix tree of S is uniquely determined (up to ordering). It is called
the compact suffix tree of S. Compact tries were introduced historically under the
name Patricia trees (Morrison, 1968). Figure 14.4 illustrates the concept with a
compact suffix tree for the string cocoa.

c

o

c

o

a
a

o

c

o

a a

a

Figure 14.4 The compact suffix tree for cocoa. Note that a sentinel is not required
because the symbol a appears in the string only at the terminal position and thus
acts as a sentinel.

Sometimes it is desirable to have every suffix of S represented by a leaf. This
can be enforced by appending a sentinel symbol $ /∈ O at the end of S. Then the
compact suffix tree for the extended string S$ represents every suffix of S$ and only
the suffixes of S$ as leaves. Finally, note that a compact suffix tree of a sequence
of length N has at most 2N nodes.

14.13 A Suffix-Tree-Based Version of Efficiency Sharpening

An obvious weakness of the poor man’s ES algorithm is that the family of indicative
sequences (āi)1≤κ = Ok is not adapted to the training sequence S. Some of the
āi might not occur in S at all, entailing a useless computational overhead. Some
others may occur only once or twice, yielding very poor estimates of probabilities
through relative frequencies. On the other side of the spectrum, if some sequence āi
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occurs very frequently, learning would clearly benefit from splitting it into α longer
sequences by āi �→ {aāi|a ∈ O}. In this section we show how a compact suffix tree
(ST) representation of S can be used to support a choice of indicative sequences
which is matched to S. (We will henceforth drop the qualifier “compact”, it is
tacitly assumed throughout). The idea of representing variable-length “context” for
prediction purposes in a suffix tree is known in the literature under various names,
e.g., prediction suffix trees or variable-order Markov chains (a concise overview in
Dekel et al., 2004).

Implementing suffix trees involves some tedious “indexery witchcraft.” We
therefore do not attempt a detailed documentation of our suffix-tree-based EM
implementation but instead outline the basic ideas, which are quite straightforward.

Let $ be a sentinel symbol not in O, and let $S be S prepended by $. We will
still speak of $S as the training sequence. Suffix trees are brought into the learning
game by observing that, first, the words of the ST T($S)r = TSr$ of the reverse

training sequence ($S)r = Sr$ are the reverse substrings of $S (this is clear by
definition of a ST). But second and more interestingly, it moreover holds that if

k1 is a node in TSr$ and k2 is a child node of node k1,

c̄1 = path(k1) is the path to k1 and c̄1c̄2 the path to k2,

ā1 = c̄r
1, ā2 = c̄r

2, ā2ā1 = (c̄1c̄2)r are the associated forward words, and

ā2 = ā21ā22 is some split of ā2,

then wherever ā22ā1 occurs in $S, it occurs after ā21.
This can be rephrased as follows. Let, for some word ā, pos(ā) denote the

set of all the position indices n in S such that the sequence from the beginning
of S up to position n ends with ā. Furthermore, for some node k of TSr$, let
pos(k) = pos((path(k))r) be the set of positions in the forward sequence $S
associated with the reverse path of k. Then, if we reuse the notations from the
above bullet list, and if ā2 = a1 · · · al, then

pos(a1a2 · · · al ā1) = pos(a2a3 · · · al ā1)

· · ·
= pos(al ā1)
⊂
�= pos(ā1). (14.48)

Now think of reverse versions ā of words c̄ from TSr$ as candidates for indicative
sequences. If pos(ā) = pos(ā′), then clearly it makes no sense to collect continuation
statistics of the type #āb̄ both for ā and ā′, because they are identical. Therefore, the
nodes of TSr$ correspond to potential indicative sequences that are distinguishable
within S with respect to their continuations in S, and we may ignore all words ā

whose reverse does not end in a node of TSr$. This is the basic idea of suffix-tree-
based ES: use as indicative sequences all the words whose reverses correspond to
nodes in TSr$.
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We now turn to reverse characterizers. An analysis of the poor man’s algorithm
reveals that, given a reverse OOM with states wr

b̄
, we constructed estimates of wā

through

ŵā =

∑
b̄∈Ok wr

b̄
∗ (number of occurences of āb̄ in S)

number of occurences of ā in S
. (14.49)

If we were to copy this idea identically for use with suffix-tree-managed indicative
sequences ā, we would have to collect statistics for continuations by all b̄ ∈ Ok, for
all our indicative sequences ā. Furthermore, in doing so we would of course have
to fix k and thus ignore information provided in S by continuations longer than k.
A stronger idea suggests itself here. Let S = a1 . . . aN . Instead of precalculating
all wr

b̄
and collecting the necessary continuation statistics, we simply run the

reverse OOM on the reverse training sequence once, obtaining a state sequence
wr

ε , w
r
aN

, wr
aN−1aN

, . . . , wr
S . Reversing in time and renaming yields a state sequence

that is more convenient for our purposes, by putting

(c0, c1, . . . , cN ) := (wr
S , . . . , wr

aN−1aN
, wr

aN
, wr

ε). (14.50)

We interpret cn as a stochastic approximation to wān
, in the following sense.

Consider the limit case of N → ∞. Assume that for a right-infinite sequence
b̄∞ = b1b2 . . . the limit cb̄∞ = liml→∞ wr

b1···bl
exists almost surely (we conjecture

that for reverse ergodic processes this always holds). Let Pān
be the conditional

probability distribution over the set of right-infinite continuations b̄∞ of ān. Then
the family (cb̄∞)b̄∞∈O∞ can be regarded as an (infinite) characterizer by setting

wā =
∫

cb̄∞dPā (14.51)

for all ā ∈ O∗. Because S is finite, interpreting cn as a stochastic approximation to
wān

via equation 14.51 will incur some inaccuracy, which however will be negligible
for all n that are not very close to the right end of S. All of this entitles us to
change the poor man’s strategy (eq. 14.49) to this rich woman’s version:

ŵā =
1

|pos(ā)|
∑

n∈pos(ā)

cn. (14.52)

Finally, observe that TSr$ has N +1 leaf nodes, each corresponding uniquely to one
position in $S. That is, for a leaf node k, pos(k) = {n}, where n is the position
within $S where the reverse path of k ends, started from the beginning of $S. For
an internal node k with children k1, . . . , kx it holds that pos(k) =

⋃
i=1,... ,x pos(ki).

Now everything is in place for describing the suffix-tree-based ES algorithm.

Task. Given: a training sequence S of length N and a model dimension m.
Wanted: an m-dimensional OOM.

Initialization.

Learn initial model: Learn an m-dimensional OOM Â(0) using the basic learn-
ing algorithm, as in the poor man’s algorithm.
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Construct TSr$

Procure argument-value pair mapping: Let kall be the leaf that corresponds to
the entire sequence. Allocate a map f : TSr$ − {kall} × O → TSr$ ∪ {0} and
initialize it by all zero values. For each node k except kall, where the reverse
path of k is ā, and for each a ∈ O, determine the highest node k′ such that
(āa)r is a prefix of the path of k′ (then pos(k′) = pos(āa)). Set f(k, a) = k′.

ES Iteration. Input: Â(n), TSr$. Output: Â(n+1).

Procure ŵā’s: (i) Compute the reverse OOM Âr (n). (ii) Run it on the re-
verse training sequence to obtain (c0, c1, . . . , cN ) (use the “blurred” stabilizing
method for running potentially invalid OOMs that is detailed out in appendix
J). (iii) Sort these N + 1 states into the leaf nodes of TSr$, where cn goes to
the leaf node with pos(k) = {n}. Formally, for leaves k set C(k) = cpos(k). (iv)
From the leaves upward, for some internal node k for whose children k′ C(k′)
has already been determined, set C(k) =

∑
k′is a child ofk C(k′). Do this until

all nodes have been covered. Then for all nodes k it holds that

C(k) = |pos(ā)| ŵā =
∑

n∈pos(ā)

cn. (14.53)

where ā is the reverse path of the node.

Procure argument-value matrices V̂ and Ŵa: To obtain matrices V̂ and Ŵa

(each of size m × |TSr$| − 1) that play a similar role as we are accustomed
to, go through all nodes k of the tree (except kall), write C(k) into the kth
column of V̂ and C(f(k, a)) into the kth column of Ŵa.

Reweigh: In analogy to the reweighing scheme described for the poor man’s
algorithm, divide each column k in V̂ and all Ŵa by the square root of the
k-th column sum of V̂ .

Compute new model: Set τ̂
(n+1)
a = WaV̂ † and ŵ

(n+1)
0 as the eigenvector to the

eigenvalue 1 of μ̂ =
∑

a∈O τ̂
(n+1)
a (normalized of course to unit component

sum), obtaining Â(n+1).

Termination. Stop after a predetermined number of iterations or when training
log-likelihood seems to saturate.

Optional tuning. One may augment this algorithm in several ways:

Make models interpretable: Transform each Â(n+1) to an interpretable OOM
before further use, using the characteristic events employed in the initial
model estimation. This gives comparable “fingerprint” plots that are helpful
in monitoring the algorithm’s progress. More importantly, we found that such
renormalization sometimes renders the algorithm more robust when otherwise
the condition of V deteriorated over iterations.

Use subsets of tree: When constructing V̂ and Ŵa, we may restrict ourselves to
using only ST nodes that represent some minimal number of positions, guided
by the intuition that nodes representing only very few string positions contain
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too unreliable stochastic approximations of forward states.

A nasty trick to improve stability: The algorithm depends on a matrix inver-
sion (more correctly, a pseudoinverse computation). We sometimes experienced
that the matrix V̂ becomes increasingly ill conditioned as iterations progress,
completely disrupting the learning process when the ill-conditioning explodes.
A powerful but brutal and poorly understood remedy is to transform the re-
verse OOM Âr (n) (before using it) into a surely valid OOM by making its
operator matrices all-nonnegative. Concretely, set all negative entries in the
operator matrices of Âr (n) to zero and renormalize columns by dividing them
through the corresponding column sum of their sum matrix. To our surprise,
often the model quality suffered only little from this dramatic operation. Purely
intuitively speaking, we might say that the learning process is forced to find
a solution that is close to a HMM (where forward and reverse matrices are
nonnegative).

All ST-related computations involved in this procedure can be effected in time
linear of the ST size, which is at most 2N . The main cost factors in a suffix-tree
ES iteration are the computation of the reverse state sequence, which is O(Nm2),
and the computation of the pseudoinverse. To speed up the computation in cases
where V̂ is not too ill conditioned, one may use the Wiener-Hopf solution instead,
as described for the poor man’s version of ES. Then the cost of calculating the
operators from V̂ and the Ŵa’s is O(αm2N), which dominates the cost for obtaining
the reverse state sequence. In practice we found runtimes per iteration that are
somewhat shorter than a Baum-Welch iteration in the same task. However, for the
total time of the algorithm we must add the time for the initial model estimation
and the computation of the suffix tree. The latter in our implementation takes
about one to two times the time of an ES iteration.

14.14 A Case Study: Modeling One Million Pounds

The most demanding task that we have tried so far was to train models on Mark
Twain’s short story “The £1,000,000 Bank-Note” (e.g., www.eastoftheweb.com/short-
stories/UBooks/MilPou.shtml). We preprocessed the text string by deleting all
special characters except the blank, changing capital letters to small caps, and
coding letters by integers. This gave us 27 symbols: 1 (codes a), ..., 26 (z), 27 ( ).
The resulting string was sorted sentence-wise into two substrings of roughly equal
length (21,042 and 20,569 symbols, respectively) that were used as training and
test sequences.

The suffix-tree based learning algorithm was used with the “brutal” stabilizing
method mentioned above, which was necessary for larger model dimensions. Five
ES iterations besides the 0th step of estimating an initial model were run for
model dimensions 5, 10, 15, . . . , 50, 60, . . . , 100, 120, 150. More details can be found
in appendix K.
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Figure 14.5 (a) Training and test log-likelihoods (scale on left y-axis) of ES-
trained OOMs and EM-trained HMMs plotted against model dimension. In ad-
dition, the CPU time (in seconds, scale on right y-axis) for both is shown. (b)
A close-up on the development of training log-likelihood for the learning of a 50-
dimensional OOM and HMM. The EM algorithm here met its termination criterion
in the 90th iteration.

For comparison, HMMs of the same dimensions were again trained with K.
Murphy’s Matlab implementation of Baum-Welch. HMMs were initialized using
the default initialization offered by this implementation. Iterations were stopped
after 100 iterations or when the ratio of two subsequent training log-likelihoods
was smaller than 1e-5, whichever occurred first (almost always 100 iterations were
reached). Only a single run per model dimension was carried out; no overhead
search methods for finding good local optima were invoked. Thus it remains
unclear whether with more search effort, the HMM performance could have been
significantly improved. In the light of the fact that across the different model
dimension trials the HMM performance develops quite smoothly, this appears
unlikely: if significantly better HMMs would exist and could be found by random
search, then we would expect that due to the random HMM initialization the
performance curve would look much more rugged.

Figure 14.5 shows the obtain results. Computations were done on a notebook
PC with a Pentium 330 MHz processor in Matlab.

14.15 Discussion

The findings about the ES algorithm reported in this chapter are not older than
three months at the time of writing and far from mature. We could not yet
extensively survey the performance of the ES algorithm except for ad hoc tests
with some synthetic data (discretized chaotic maps, outputs of FIR filters driven by
white-noise input, outputs of random recurrent neural networks, HMM-generated
sequences) and a few standard benchmark data sets (sunspot data, Melbourne
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meteorological data). In all cases, the behavior of ES was similar to the HMM
and 1 Million Pound data sets reported here: a rapid development of models
toward plateau training log-likelihoods (in 1 to 10 iterations, typically 3), followed
by a jittery “hovering” at that plateau. Both training and testing likelihoods at
the plateau level were superior to HMM performance (however, these were not
optimized) except for HMM-generated data, where HMM models can play out their
natural bias for these data. Thus it is fair to say that learning algorithms based on
suffix-tree ES clearly have the potential to yield more accurate models of stationary
symbol processes, and in a much shorter runtime, than HMMs.

Although it might be tempting, it is misleading to see the ES algorithm as a
variant of the EM algorithm. Both algorithms execute an iterative interplay between
model reestimation and state generation, but there are two fundamental differences
between them:

The estimator instantiated by each ES step, including the initial model estimator,
is asymptotically correct. That is, if the process is in fact m-dimensional and m-
dimensional models are trained, the modeling error would go to zero with increasing
length of training data almost surely, right from the 0th iteration. This is not the
case with the EM algorithm.

The training log-likelihood does not necessarily grow monotonically under ES,
but this behavior is constitutional for EM. The ES principle is not designed to
monotonically improve any target quantity.

Contemplating the task of improving an asymptotically correct estimator, the
natural target for improvement—actually the only one that we can easily think of—
is the statistical efficiency of the estimator. This was the guiding idea that led us to
the discovery of the learning methods described in this chapter, and it is borne out
by the mathematical analysis presented in section 14.11. However, we are not sure
whether this is already the complete explanation of why and how our algorithms
work. First, the role of the condition of the V̂ matrix has to be clarified—if it is
not well conditioned, inverting V̂ will magnify estimation errors contained in it and
potentially invalidate the reasoning of section 14.11. Interestingly, even when the
condition of V̂ deteriorates through ES iterations, we mostly find that the model
quality increases nonetheless, up to a point where V̂ becomes so ill conditioned
that numerical errors explode. We confess that this is hard to understand. Second,
we have only provided an argument that the reverse characterizer obtained from
the correct model yields a maximally efficient estimator. But it remains to be
investigated in what sense the sequence of reverse characterizers constructed in
ES moves toward this correct model; in other words, how the sequence of reverse
characterizers is related to the gradient of ξ at points away from the minimum.

The main problem of current ES implementations is that learning runs some-
times become instable (condition of V̂ explodes). This is related to the model di-
mension: while small dimensions never present difficulties in this respect, learning
larger models becomes increasingly prone to instability problems. We currently
perceive two sources for instability:
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Data-inherent ill-conditioning: If the generating process has a lower dimension than
the models one wants to learn, the matrix V̂ must become ill conditioned with
increasing training data size. Now, real-life data sets will hardly come from any
low-dimensional generator. But if we would investigate their limiting singular value
spectrum (that is, the singular value spectrum of the matrices Vk = (P (b̄i|āj))ā,b̄∈Ok

in the limit of k → ∞) and find a rapidly thinning tail, then for all practical learn-
ing purposes such generators behave like low-dimensional generators, intrinsically
leading to matrices V of low numerical rank.

Invalid OOMs: Running invalid reverse OOMs to create reverse characterizers is
prone to sprinkle the obtained state sequence with outliers, which are hard to
detect. Using such contaminated reverse characterizers to feed the input to the
linear regression task will even deteriorate the situation because the minimization
of MSE will further magnify the impact of outliers—a familiar problem. This clearly
happened in some of our more problematic (high model dimension) test runs.

HMM/EM learning does not rely on any matrix (pseudo)inversion and does not
suffer from the ensuing stability problems. Although we are fascinated by the
promises of ES, for the time being we would prefer HMM/EM over OOM/ES in
any safety-critical application. But we hope that the rich repertoire of numerical
linear algebra will equip us with the right tools for resolving the stability issue. The
rewards should be worth the effort.

Appendix A: Proof of Proposition 14.4, Property 4

We first show ∀ a ∈ O, w ∈ W π(τaw) = ta π(w). Let w =
∑

i=1,... ,d αiwāi . Then

π(τaw) = π
( ∑

i=1,... ,d

αiτawāi

)
= π

( ∑
i=1,... ,d

αi 1τawāi

τawāi

1τawāi

)
=

∑
i=1,... ,d

αi P (a | āi)fāia

=
∑

i=1,... ,d

αi ta fāi = ta
∑

i=1,... ,d

αifāi

= ta π(w).

An iterated application of this finding yields the statement of the proposition.
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Appendix B: Proof of Proposition 14.5

“⇒”: Let x ∈ kerπ, ā ∈ O∗. Then 1τāx = σπ(τāx) = σtāπ(x) = 0 by proposition
14.4, properties 3 and 4.
“⇐”:

∀ā ∈ O∗ 1τāx = 0

→ ∀ā ∈ O∗ σtāπ(x) = 0

→ ∀ā ∈ O∗ (π(x))(ā) = 0

→ π(x) = 0.

Appendix C: The Three OOMs from Figure 14.2

The plotted OOMs were obtained from HMMs over the alphabet O = {a, b, c} as
described in section 14.3. The Markov transition matrix was

M =

⎛⎜⎜⎝
1 − 2α α α

α 0 1 − α

0 1 − α α

⎞⎟⎟⎠ ,

where α was set to 0.1, 0.2, and 0.3 respectively for the three plotted OOMs. The
symbol emission matrices Oa were

Oa = diag(0.8 0.1 0.1), Ob = diag(0.1 0.8 0.3), Oc = diag(0.1 0.1 0.6)

for all HMMs. From these HMMs, OOMs were created that were interpretable with
respect to the singleton characteristic events A1 = {a}, A2 = {b}, A3 = {c}.

Appendix D: Proof of Proposition 14.10

To see the “if” direction, consider an n-dimensional OOM A for (Xn) whose
states wāj (j = 1, . . . , m) are the columns of W and whose other states wā are
linear combinations of the wāj

(whereby A is uniquely determined according to the
insights from section 14.5—the column vectors of W span the “prediction-relevant”
subspace V from 14.18). It is a mechanical exercise to show that condition 14.31
holds. For the “only if” direction choose any m sequences āj such that V has rank
m. Then by the definition of a characterizer, W has the states wāj of the OOM
characterized by c as its columns, which must be linearly independent because V

has rank m.
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Appendix E: Proof of Proposition 14.12

According to proposition 14.10, every characterizer C of A must satisfy V �C� =
W�. It is straightforward to derive that conversely, any C with unit column sums
satisfying V �C� = W� is a characterizer. Now any m × κ matrix C satisfies
V �C� = W� if and only if C = C0 + D, where the rows of D are in ker V �. The
additional requirement that the column sums of C must sum to unity is warranted
by making the last row of D equal to the negative sum of the other rows.

Appendix F: Proof of Proposition 14.13

Recalling that D is a diagonal matrix with w0 on its diagonal, the following
transformations yield the claim:

PA(a0 · · · an) = 1τan
· · · τa0w0

= w�
0 τ�

a0
· · · τ�

an
1�

= w�
0 D−1Dτ�

a0
D−1 · · ·Dτ�

an
D−1D1�

= 1Dτ�
a0

D−1 · · ·Dτ�
an

D−1w0

= PAr (an · · · a0).

Appendix G: Proof of Proposition 14.14

We first assume that C is a characterizer and show statement 2. According to
14.32 we have w′

ā = C (P (b̄1|ā) · · ·P (b̄κ|ā))�, which is equal to C πA wā by
proposition 14.9, property 1. To show that � = R�R (assuming now w0 =
(1/m · · · 1/m)�), we consider for some b̄ = b1 · · · bk a column c = τ r

b̄
w0 /1τ r

b̄
w0 =

τ r
b̄
w0/P (b̄) of C. Using the terminology from proposition 14.13 and noting that

D = (1/m · · · 1/m)�, it can be rewritten as follows:

P (b̄)c = τ r
b1 · · · τ

r
bk

w0

= Dτ�
b1 · · · τ

�
bk

D−1 w0

= 1/m τ�
b1 · · · τ

�
bk

1�

= 1/m
(
1τbk

· · · τb1

)� = 1/m (1τb̄)
�.

Thus the ith column of C equals the transpose of the ith row of πA up to a
factor of (mP (b̄i))−1. Splitting this factor into (mP (b̄i))−1/2 (mP (b̄i))−1/2 and
redistributing the splits over C and πA yields the statement � = R�R.

To show the first claim, first notice that C is a characterizer for A′ if and only
if �̃C is a characterizer for �A′ for some equivalence transformation �̃ according to
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propositions 14.6 and 14.11. Because a transformation �̃ can always be found that
maps w0 on (1/m · · · 1/m)� (exercise), we may assume, without loss of generality,
that w0 = (1/m · · · 1/m)�. Let

R =
(
(mP (b̄1))−1/2(1τb̄1)

� · · · (mP (b̄κ))−1/2(1τb̄κ
)�)�

as above. Define vectors vā = CπAwā = R� R wā. We want to show that the
transformation CπA = R� R is an OOM equivalence transformation according
to proposition 14.6. It is easily checked that CπA has the property 3 listed in
proposition 14.6. The critical issue is to show that CπA = R� R is bijective, i.e.,
has rank m. We use that for any matrix A it holds that rank(A) = rank(A�A).
We see that rank(R�R) = rank(R) = rank((1τb̄1)

� · · · (1τb̄κ
)�) = m, where

the last equality is due to the fact that the b̄i are characterizing sequences. Thus,
CπA = R� R is an OOM equivalence transformation, and the vectors vā = CπAwā

are the states of an OOM equivalent to A. But considering 14.32, this is just another
way of saying that C is a characterizer.

Appendix H: Proof of Proposition 14.15

We first derive some conditions that the matrix G should satisfy. It follows from
proposition 14.12 that 1mG = 0 and GV = 0. As before, here we use 1 to denote the
row vector of units, but with a subscript specifying its dimension. By the definition
of V and πA (see eq. 14.36), we have V = πAW , where W = [wā1 · · ·wāκ

]. Because
rankW = m, it is clear that GV = 0 if and only if GπA = 0. Thus, it suffices to
show that G = 0 is a minimizer of the following optimization problem:

min
G

J(G) =
1
2

κ∑
i,j=1

P (āib̄j)‖wāi
− (Cr + G)(:, j)‖2 ,

s.t. 1mG = 0 , GπA = 0. (14.54)

The target function J(G) can be rewritten as

J(G) =
1
2

κ∑
i,j=1

P (āib̄j)
(
‖wāi‖2 + ‖(Cr + G)(:, j)‖2)

−
κ∑

i,j=1

P (āib̄j)
〈
wāi

, (Cr + G)(:, j)
〉
, (14.55)

where the pair 〈x, y〉 denotes the inner product of x and y. The second item on the
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right-hand side of the above equality can be further simplified, as follows:
κ∑

i,j=1

P (āib̄j)
〈
wāi , (C

r + G)(:, j)
〉

=
κ∑

i=1

〈
wāi

,

κ∑
j=1

P (āib̄j)(Cr + G)(:, j)

〉

=
κ∑

i=1

〈
wāi

, P (āi)
κ∑

j=1

P (b̄j |āi)(Cr + G)(:, j)

〉

=
κ∑

i=1

〈
wāi

, P (āi)(Cr + G)V (:, i)
〉

=
κ∑

i=1

〈
wāi

, P (āi)wāi

〉
=

κ∑
i=1

P (āi)‖wāi
‖2 ,

Assuming that the process is stationary, and substituting the above equality into
equation 14.55, we get

J(G) =
1
2

κ∑
j=1

P (b̄j)‖(Cr + G)(:, j)‖2 − 1
2

κ∑
i=1

P (āi)‖wāi‖2. (14.56)

Since the second item of equation 14.56 is irrelevant to G, minimizing J(G) under
the constraints of equation 14.54 is a convex quadratic programming problem. So
G = 0 is a minimizer of J(G) if and only if it satisfies the following KKT system:

∂J

∂G
= (Cr + G)Dp = 1�

mμ� + λπ�
A , (14.57)

1mG = 0 , (14.58)

GπA = 0 , (14.59)

where Dp = diag(P (b̄1), P (b̄2), · · · , P (b̄κ)); μ ∈ Rκ and λ ∈ Rm×m are Lagrange
multipliers. By the definition of Cr (see the paragraph after proposition 14.14), we
have

CrDp = �−1[P (b̄1)wr
b̄1

, · · · , P (b̄κ)wr
b̄κ

]

= �−1[τ r
b̄1

w0, · · · , τ r
b̄κ

w0]

= �−1[Dτ �̄
b1

D−1w0, · · · , Dτ �̄
bκ

D−1w0]

(see proposition 14.13 and item 4 of the list thereafter)

= �−1D[τ �̄
b1

1�
m, · · · , τ �̄

bκ
1�

m]

= �−1Dπ�
A, (14.60)

where D = diag(w0) (see proposition 14.13) and � = CπA (see proposition 14.14).
And it follows that (G, μ, λ) = (0,0, �−1D) is a solver of the KKT system 14.57–
14.59.
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By the above discussion, we conclude that G = 0 is a (global) minimizer of the
target function J(G); and is the unique minimizer if P (b̄j) > 0 (j = 1, · · · , κ).

Appendix I: Finding Good Characteristic Events

Given a training sequence S = a0 . . . aN over an alphabet O of size α, and
given a desired length k of characteristic events and model dimension m, we
use the following heuristic brute-force strategy to construct characteristic events
B1, . . . , Bm that in all our learning experiments rendered the matrix V̂ or V raw

(see eq. 14.30) reasonably well behaved with respect to inversion, which is the prime
requirement for success with the basic learning algorithm.

Let #ā denote the number of occurrences of some word ā in S, let κ = αk and
let (āj)1≤j≤κ and (b̄i)1≤i≤κ both be the alphabetical enumeration of Ok. Start by
constructing a κ × κ (often sparse) matrix V raw

0 = (#āj b̄i). Then it is clear that
the matrix V raw is obtained from V raw

0 by additively joining rows (to agglomerate
characteristic sequences b̄ into characteristic events B) and columns (to assemble
indicative sequences ā into indicative events A). We treat only the row-joining
operations here; the column joining can be done simultaneously or separately in a
similar fashion. So we consider a matrix sequence V raw

0 , V raw
1 , . . . , V raw

κ−m−1, where
each matrix in the sequence is obtained from the previous by joining two rows. The
last matrix V raw

κ−m−1 then has size m×κ; the characteristic sequences of the original
rows from V raw

0 that are then collected in the ith row of V raw
κ−m−1 yield the desired

characteristic events.
The intuitive strategy is to choose from V raw

n for joining that pair of rows
rx, ry that have the highest pairwise correlation rx/‖rx‖(ry/‖ry‖)� among all pairs
of rows in V raw

n . This greedy strategy will (hopefully) result in characteristic events
B that each comprise characteristic sequences b̄, b̄′ which are “prediction similar”
in the sense that P (b̄|ā) ≈ P (b̄′|ā) for all or most ā—that is, joining b̄, b̄′ in B

incurs a small loss of to-be-predicted distribution information. In addition we take
care that the final characteristic events Bi are reasonably weight-balanced in the
sense that P (Bi) ≈ P (Bi′) ≈ 1/m, in order to ensure that the estimation accuracy
P̂S(AjBi) is roughly similar for all entries of V̂ . Spelled out in more detail, we get
the following joining algorithm:

Step 1. Initialization: Construct V raw
0 and a normalized version V norm

0 thereof
whose rows are either all zero (if the corresponding row in V raw

0 is zero) or have
unit norm. For all rows of V raw

0 whose weight (sum of row entries) already exceeds
N/m, put the corresponding row in V norm

0 to zero. These finished rows will thereby
automatically become excluded from further joining. Set f to the number of finished
rows. Furthermore, set the remaining mass Q of rows still open for joining to N

minus the total entry sum of finished rows.

Step 2. Iteration: V raw
n , V norm

n , and f are given. If f = m−1, jump to termination
by joining all remaining unfinished rows. Else, compute the row correlation matrix
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R = V norm
n (V norm

n )� and choose the index (x, y) (where y > x) of the maximal
off-diagonal entry in R for joining rows rx, ry by adding in V raw

n the yth row to the
xth and deleting the yth row, obtaining V raw

n+1 . Normalize the summed row, replace
the xth row in V norm

n by it, and zero the yth row in V norm
n . If the entry sum of row

x in V raw
n+1 exceeds Q/(m − f), or if m − f = κ − m − 1 − n, increment f by one,

zero the row x in V norm
n , and decrement Q by the component sum of the x-th row

in V raw
n+1 . The result of these operations on V norm

n yields V norm
n+1 .

The computationally most expensive operation is R = V norm
n (V norm

n )�. It can
be effected by reusing the R from the previous step with O(κ2) floating-point
operations (the recursion will be easily found). All in all the theoretical cost of
this algorithm is O(κ3) = O(α3k), but for κ/N > 1 the concerned matrices quickly
become sparse, which could be exploited to greatly reduce the computational load.
However, k should be chosen, if possible, such that κ/N ≤ 1. The condition number
of matrices V̂ that we obtained in numerous experiments with natural and artificial
data typically ranges between 2 and 50, which makes the algorithm very useful in
practice for an initial model estimation with the basic OOM learning algorithm.
Unfortunately it is theoretically not clarified what would be the best possible
condition number among all choices of characteristic and indicative events; it may
well be the case that the observed condition numbers are close to the optimum (or
quite far away from it).

Appendix J: Running Invalid OOMs as Sequence Generators

Here is a modification of the sequence-generation procedure described in sec-
tion 14.4, which allows us to use invalid OOMs and yet avoid negative probabilities.
Notation from that section is reused here without reintroduction. The basic idea is
to check, at each generation step, whether the probability vector p contains negative
entries, and if so, reset them to a predetermined, small positive margin (standard
range: 0.001 ∼ 0.01), which is one of the three tuning parameters of this method.
Furthermore, if the sum of negative entries in p falls below a significant setbackMar-
gin (standard range: −0.1 ∼ −0.5), indicating that the generation run is about to
become instable, the generation is restarted setbackLength (typical setting: 2 or 3)
steps earlier with the starting state w0. Some care has to be taken that the resetting
to margin leads to probability computations where the summed probability for all
sequences of some length k is equal to 1. The method comes in two variants, one
for generating random sequences, and the other for computing the probability of a
given sequence S. The former has an additional step 3a in the description below.
Detailed out, the nth step using this method works as follows.

Input: Fixed parameters: margin, setbackMargin, setbackLength, size α of alphabet,
observable operators τa, starting state w0. Variables: the state wn−1, and (if n ≥
setbackLength) the word s = an− setbackMargin · · · an−1 of previously processed
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symbols, and index ian
of current symbol an [only if used in probability computation

mode].

Output: State wn, log-probability L = log(P (an|wn−1)), and new symbol an [only

if used in generation mode] .

Step 1: Compute p = Σ wn−1.

Step 2: Compute δ =
∑

i∈{1,...,α},p(i)≤0(margin − p(i));
p+ =

∑
i∈{1,...,α},p(i)>0 p(i); p− = p+ − δ and ν = p−/p+.

Step 3: [Check for potentially instable state, and act if necessary.]
If δ < setbackMargin and n ≤ setbackLength + 1 [we encounter a problematic

state early in the process], put wn−1 = w0, recompute p = Σ wn−1 and
δ, p+, p−, ν as in step 2.
Else, if δ < setbackMargin [we encounter a problematic state later in the process

and restart the generation a few steps earlier],
set w = w0;
for i = 1 to setbackLength: w = τs(i)w; w = w/1w [we recompute the last few

states from w0];
set wn−1 = w;
recompute p = Σ wn−1, and recompute δ, p+, p−, ν as in step 2.

Step 3a [only executed in the generation variant]: Randomly choose an

according to the probability vector p; set ian
to its index in the alphabet.

Step 4 [update state and compute “blurred” probability of current symbol]:

If p(ian
) ≤ 0 [current symbol would be assigned a negative probability], set

L = log(margin) and w = τan
wn−1; wn = w/1w.

Else [current symbol is OK but its probability has to be reduced to account for

the added probability mass that might have been assigned to other symbols in

this step] set L = log(νp(ian)) and w = τanwn−1; wn = w/1w.

Appendix K: Details of the One Million Pound Learning Experiment

All OOMs computed during the ES iterations were invalid, so we employed the
stabilizing method described in appendix I for computing the requisite reverse
state sequences. The same method was used to determine the log-likelihoods on
the training and testing sequences. The settings (see appendix I) that we used
were margin = 0.001, setbackMargin = 0.3, setbackLength = 2. These settings were
optimized by hand in preliminary tests.

Only such indicative sequences ā were gleaned from the suffix tree that occurred
at least 10 times in the training sequence.

This little study was carried out before the algorithm for finding good char-
acteristic events described in appendix H was available. Thus we used an inferior
method for initial model estimation that we need not detail here. Using the better
method for initial model estimation would very likely have resulted in an improved
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overall performance (the high initial jump in model quality from the initial model
to the first ES-estimated model that appears in fig. 14.5b would disappear).
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des Télécommunications, 42:31–38, January 1987.

J. Baxter, A. Tridgell, and L. Weaver. KnightCap: A chess program that learns by



REFERENCES 467

combining TD(λ) with minimax search. Technical report, Department of Systems
Engineering, Australian National University, 1997.

R. J. Baxter, editor. Exactly Solved Models in Statistical Mechanics. Academic
Press, New York, 1982.

L. Becchetti, S. Diggavi, S. Leonardi, A. Marchetti-Spaccamela, S. Muthukrishnan,
T. Nandagopal, and A. Vitaletti. Parallel scheduling problems in next generation
wireless networks. In Proc. of ACM Symposium on Parallel Algorithms and

Architectures, pages 238–247, 2002.

S. Becker. A computational principle for hippocampal learning and neurogenesis.
Hippocampus, 15(6):722–738, 2005.

S. Becker. Mutual information maximization: Models of cortical self-organization.
Network: Computation in Neural Systems, 7:7–31, 1996.

S. Becker. Implicit learning in 3D object recognition: the importance of temporal
context. Neural Computation, 10:347–374, 1999.

S. Becker and G. E. Hinton. A self-organizing neural network that discovers surfaces
in random-dot stereograms. Nature, 355:161–163, 1992.

S. Becker and J. Lim. A computational model of prefrontal control in free recall:
strategic memory use in the California verbal learning task. Journal of Cognitive

Neuroscience, 15(6):1–12, 2003.

A. Bell and T. J. Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

A. J. Bell and T. J. Sejnowski. The independent components of natural scenes are
edge filters. Vision Research, 37:3327–3338, 1997.

R. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton Univer-
sity Press, Princeton, NJ, 1962.

A. Belouchrani and J.-F. Cardoso. Maximum likelihood source separation for
discrete sources. In Proc. EUSIPCO, pages 768–771, Edinburgh, Scotland, 1994.

M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics
for scheduling continuous job streams. In Proc. of the Annual Symposium on

Discrete Algorithms, pages 270–279, 1998.

P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi.
CDMA/HDR: A bandwith-efficient high-speed wireless data service for nomadic
users. IEEE Communications Magazine, 38(7):70–77, July 2000.

J. Benesty. Adaptive eigenvalue decomposition algorithm for passive acoustic source
localization. Journal of the Acoustical Society of America, 107(1):384–391, 2000.

Y. Bengio. Markovian models for sequential data. Neural Computing Surveys, 2:
129–162, 1999.

T. Berger. Multiterminal source coding. In G. Longo, editor, The Information

Theory Approach to Communications, pages 172–231. Springer, Berlin, 1977.



468 REFERENCES

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical

Sciences. Academic Press, New York, 1979.
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N. Bertschinger and T. Natschläger. Real-time computation at the edge of chaos
in recurrent neural networks. Neural Computation, 16(7):1413–1436, 2004.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume I,II. Athena
Scientific, Belmont, MA, 1995a.

D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995b.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

D. P. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, Belmont, MA, 1997.

J. Besag and P. J. Green. Spatial statistics and Bayesian computation. Journal of

the Royal Statistical Society, B, 55(1):25–37, 1993.

P. J. Bickel, Y. Ritov, and T. Rydén. Asymptotic normality of the maximum-
likelihood estimator for general hidden Markov models. Annals of Statistics, 26:
1614–1635, 1998.

E. Bienenstock, S. Geman, and D. Potter. Compositionality, MDL priors and object
recognition. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in

Neural Information Processing Systems, 9. MIT Press, Cambridge, MA, 1998.

E. Biglieri, J. Proakis, and S. Shamai. Fading channels: Information-theoretic
and communications aspects. IEEE Transactions on Information Theory, 44
(6):2619–2692, October 1998.

D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and
D. Szafron. Approximating game-theoretic optimal strategies for full-scale poker.



REFERENCES 469

In Proceedings of the International Joint Conference on Artificial Intelligence,
2003.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
New York, 1995.

D. Blackwell and L. Koopmans. On the identifiability problem for functions of finite
Markov chains. Annals of Mathematical Statistics, 38:1011–1015, 1957.

A. Blake and A. Yuille, editors. Active Vision. MIT Press, Cambridge, MA, 1992.

A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA,
1987.

J. Blauert. Spatial Hearing: The Psychophysics of Human Sound Localization. MIT
Press, Cambridge, MA, 1983.

D. M. Blei and M. I. Jordan. Variational methods for the Dirichlet process. In
Proc. International Conference on Machine Learning. ACM Press, New York,
NY, 2004.

P. Bofill. Sound examples, at http://people.ac.upc.es/pau/shpica/instant.html.

P. Bofill and M. Zibulevsky. Underdetermined blind source separation using sparse
representations. Signal Processing, 81:2353–2362, 2001.
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adaptive Brownian dynamics simulation,
79, 113, 115, 116

Brownian dynamics simulation, 79, 95,
96, 102, 107, 108

cleaning noise, 225, 228
cleaning noise: local, 226, 229
continuum hypothesis of electrostatics,

94, 96

DCNN, see dynamical consistent neural
network

discrete stochastic approximation, 83–86
attraction property, 83, 86
consistency, 83

dynamical consistent neural network,
227

dynamical consistent neural network,
220, 238, 239

with partially known observables,
223

dynamical system, 204, 206

ECNN, see error correction neural net-
work

error backpropagation algorithm, 235
through time, 208

error correction neural network, 210
dynamical consistent, 222
dynamical consistent, 219, 220

feedforward neural networks, 204, 207,
208

finite unfolding in time, 226
finite unfolding in time, 207, 211
Fokker-Planckequation, 104

hidden Markov model, 79–81
maximum likelihood estimate, 81
state filter, 92

hidden Markov models, 418
HMM, 418

see hidden Markov model, 79

ion channel, 77
current, 78–82, 88, 89
gating problem, 78, 79
mesoscopic scale, 78
patch clamp, 78, 80, 86, 112
patch clamp on a chip, 88, 94
permeation problem, 78

Langevin equation, 95, 96, 98

memory, 230

nanotube, 77, 96
Nernst potential, 78, 81–86
noise, 225, 227, 228

observable operator, 420
observable operator model

see OOM, 418
OOM, 418

comparison with hidden Markov
models, 424

definition, 423
equivalence theorem, 428
process generated by, 423
reverse OOM, 440
sequence generation with, 424
statistical efficiency, 439
basic learning algorithm, 434
characterization by convex cones,

429
characterizer, 439
history, 437
interpretable, 431
observable operator, 420
plotting fingerprints, 433
poor man’s learning algorithm, 439
stability, 455
statistical efficiency, 436
time series prediction with, 420

optimal brain damage, 237
overfitting, 212
overshooting, 209, 211

partially observed Markov decision pro-
cess, 92

infinite-horizon cost, 92, 93
information state, 92
multiarmed bandit, 92–94

PMF
see potential of mean force, 95

POMDP
see partially observed Markov deci-

sion process, 92
potential of mean force, 95, 99, 100, 109,

111–115
prediction of a stochastic process, 420

recurrent neural network
dynamical consistent, 220
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normalized, 213
recurrent neural network, 203, 207, 226,

232, 238
dynamical consistent, 216, 222

RNN, see recurrent neural network

sensor adaptive signal processing, 79, 87,
116

sparseness, 231, 232, 234, 237
stochastic gradient algorithm, 114

Kiefer Wolfowitz, 114
least mean squares algorithm, 85,

86, 117
simultaneous perturbation stochas-

tic approximation (SPSA), 115
suffix tree, 448

trie, 448

uncertainty, 224
undershooting, 238

vario-eta learning rule, 232, 233
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