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Chapter 1

LYMPHANGIOGENESIS IN HEALTH
AND DISEASE – AN OVERVIEW

Steven A. Stacker1, Marc G. Achen1, Paula Haiko2 and Kari Alitalo2

1Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville,

Victoria 3050, Australia, e-mail: Steven.Stacker@ludwig.edu.au
2Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, FI-00014 Helsinki,

Finland, e-mail: phaiko@mappi.helsinki.fi

Abstract: The blood and lymphatic vascular networks combine to facilitate

immune function and maintain tissue fluid homeostasis in the body.

Although these two systems share many common structural and molec-

ular features, recent advances in our understanding of the molecular

control of the lymphatics have identified distinct molecular pathways

responsible for the formation and function of the lymphatic network.

These advances have led to the characterisation of lymphatic-specific

markers and growth factors which control lymphatic development and

function. Insights gained from in vitro and in vivo studies over the past

decade have highlighted the importance of the lymphatic system in

human diseases such as lymphedema, inflammatory disorders and can-

cer. The lymphatic vasculature is an important route for the metastatic

spread of tumor cells, and recent studies based on animal models of

cancer indicated that lymphangiogenic growth factors, secreted by tu-

mor cells or components of the tumor stroma, can induce formation

of new lymphatic vessels in the vicinity of a primary tumor. These

studies, as well as clinicopathological data, suggest that this process

of tumor lymphangiogenesis can be associated with enhanced metas-

tastic spread – hence tumor lymphangiogenesis is being explored as a

therapeutic target for restricting the metastatic spread of cancer.

Key words: Lymphangiogenesis · Growth factors · Growth factor receptors ·

Metastasis · Cancer

The characterization of the anatomy and physiology of the lymphatic system has

been ongoing over centuries, however, advances during the past decade in identifying

molecular markers of the lymphatics have accelerated this process (see chapter by

Shields and Swartz). The lymphatic vasculature begins as blind-ended, thin-walled

S.A. Stacker, M.G. Achen (eds.), Lymphangiogenesis in Cancer Metastasis,

Cancer Metastasis – Biology and Treatment 13, DOI 10.1007/978-90-481-2247-9 1,
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2 S.A. Stacker et al.

capillaries that collect extravasated fluid and cells from tissues. The lymph fluid

then drains into pre-collecting lymphatics, located in the deep dermis, which in

turn drain into the collecting lymphatics located in the subcutaneous tissue. The

collecting lymphatics, which are invested with smooth muscle cells and pericytes,

are capable of propelling lymph fluid, are studded with lymph nodes and coalesce

into lymphatic trunks which drain lymph fluid back to the blood circulation via

intra-thoracic ducts [1, 2]. The lymphatic vasculature plays crucial roles in immune

function, tissue fluid homeostasis and the absorption of dietary fat.

The development of the lymphatic vascular system during embryogenesis be-

gins with sprouting of lymphatic endothelial precursor cells from the cardinal vein,

giving rise to the lymph sacs – lymphatic endothelial cells then sprout from these

sacs to form the primary lymphatic plexus, and further sprouting, proliferation and

migration generates the lymphatic networks of tissues and organs [3] (see chapter

by Johnson and Oliver). Differentiation of lymphatic endothelial cells to generate

the distinct types of lymphatic vessels is an important aspect of lymphatic devel-

opment. Elegant developmental studies, utilizing traditional and emerging animal

models of embryonic development (see chapter by Hogan and Schulte-Merker),

have mapped the initial events in the formation of the lymphatics, as well as of

blood vessels, showing their origins in the embryo. Some of the early markers of

the lymphatic system such as Prox-1 [4], podoplanin [5], and vascular endothelial

growth factor receptor-3 (VEGFR-3) [6, 7] are important for the development or

function of the lymphatics [8]. VEGF-C and VEGF-D are significant as they are

ligands for VEGFR-3 [9–11], which are capable of inducing lymphangiogenesis

when delivered to adult tissues [12, 13]. VEGF-C is indispensible for development

of the lymphatic vasculature during embryogenesis [14].

The metastatic spread of tumor cells from the primary tumor to establish metas-

tases at distant sites in the body is the most lethal aspect of cancer. The importance

of the lymphatic vasculature in the metastatic spread of cancer has been appreci-

ated for centuries, and the extent of lymph node metastasis is a major determinant

for prognostic assessment and planning of treatment (see chapter by Faries and

Morton). Recently, the involvement of tumor lymphangiogenesis in lymph node

metastasis has become an important focus of study, and the molecular mechanisms

underlying lymph node metastasis are being revealed (see chapter by Rinderknecht

and Detmar). The VEGF-C/VEGF-D/VEGFR-3 signalling axis is closely linked to

the formation and function of the lymphatics in cancer [15]. Initial studies showed

that over-expression of VEGF-C or VEGF-D in mouse tumor models led to for-

mation of lymphatic vessels in and/or around the primary tumor, and to increased

metastatic spread to regional lymph nodes, as well as increased tumor growth in

some cases [16–18]. Some of the underlying mechanisms are schematically shown

in Fig. 1.1. Furthermore some of these effects could be inhibited by antibodies

[18–20], soluble receptors [21, 22] or small molecule protein tyrosine kinase in-

hibitors [23] which targeted signalling via VEGF receptors. These experiments were

further substantiated by clinicopathological data showing a correlation of VEGF-C

or VEGF-D expression levels in human primary tumors with clinical parameters

and patient outcomes [24]. Significantly, these correlations were seen over a range

of different tumor types including tumors originating from the colon, lung, breast,
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1. Lymphangiogenic sprouting 3. Lymph node lymphangiogenesis

2. Dilation of collecting lymph

vessels, incompetent lymphatic

valves, increased flow

Systemic

Blocking of VEGF-C/VEGFR-3 signalling is effective

for prevention of the early steps of the metastatic process

Mechanisms of VEGF-C/D
induced lymphatic metastasis

A

B

Fig. 1.1 Schematic illustration of the various steps in lymphatic metastasis and effects of

lymphangiogenic growth factors. (A) Schematic diagram showing the potential routes of spread

of primary tumor cells via blood vessels, and via lymphatic vessels to regional lymph nodes. Tumor

cells drain to the sentinel lymph node and may then pass to other lymph nodes or potentially

to distant organs via the thoracic duct or perhaps through abnormal connection made between

lymphatic vessels and arteries or veins within the regional lymph node. Figure reproduced from

The Lymphatic Continuum Revisited, Edited by Stanely Rockson, Ann NY Acad Sci, Vol 1131,

M.G. Achen & S.A. Stacker, Molecular Control of Lymphatic Metastasis, pp. 225–234, 2008. (B)

Tumors that secrete VEGF-C or VEGF-D (VEGF-C/D) stimulate lymphatic vessels to grow and

form new sprouts. In this process, the button-type junctions between lymphatic endothelial cells

are lost and the tumor cells gain better access to the vessel lumen. Intraluminal VEGF-C/D also

stimulates growth of the lymphatic endothelial cells in the vessel wall, leading to increased lumen

size that facilitates the transit of metastatic cells via increased net flow to the lymph node, where

tumor cells first arrive in the marginal sinus. High VEGF-C/D, and apparently also VEGF levels in

lymph can further induce the process of lymph node lymphangiogenesis, whereby the sinusoidal

endothelial cells within the lymph node undergo capillary phenotypic changes and proliferate. To

what extent this last process also contributes to distant metastasis is not yet clear
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gut, pancreas, gall bladder and kidney. This data suggested that at least some of the

molecules involved in lymphatic vessel development could be clinically and biolog-

ically important markers for disease progression in cancer. Nevertheless, some re-

sults from different clinical centres regarding the role of lymphangiogenesis-related

parameters and their influence on cancer prognosis have been contradictory, so this

area requires further study (see chapter by Van der Auwera et al.).

The advancement of knowledge about molecular aspects of the lymphatic net-

work and the process of lymphangiogenesis, which occurred over the past decade,

has impacted on other diseases [25]. For example, lymphedema, which is linked to

the dysfunction of the lymphatic vasculature, is now being more readily analysed

in light of genes which predispose people to this condition [1, 26, 27]. Further,

research on the causes and treatment of lymphedema has benefited from animal

models that involve manipulation of lymphangiogenic signalling pathways [28,29].

Some of the mechanisms behind lymphedema distichiasis and Milroy’s disease, the

two commonest forms of lymphedema are illustrated in Fig. 1.2. Conditions such

as lymphangioleiomyomatosis (LAM) [30–32] (see chapter by Seyama et al.) and

Kaposi’s sarcoma [33] (see chapter by Emuss and Boshoff) have also been shown to

have links with lymphatic biology, and this has provided novel avenues for exploring

the aetiology of these diseases.

VEGF-D
VEGF-C

VEGFR-3
VEGFR-2

LEC

SMC

PDGFR-ß

PDGF-BB

Lymphangiogenesis
(proliferation, migration, etc.)

PDGF-B secretion
Recruitment of SMCs

*

*
FOXC2X

Fig. 1.2 Signaling mechanisms affected by genetic damage in lymphedema. VEGFR-3 mis-

sense point mutations, indicated as (∗) in the kinase domain of the receptor, lead to defective

receptor signaling in Milroy’s disease, resulting in hypoplastic and poorly functional lymphatic

vessels [48]. Deficiency in forkhead transcription factor FOXC2 (Indicated schematically by a “X”

through FOXC2) in lymphoedema-distichiasis (LD) leads to abnormal recruitment of mural cells,

deposition of basement membrane and lack of valves in lymphatic vessels, resulting in disturbed

lymph flow and lymphedema. Unlike the blood capillaries, the lymphatic capillaries in wild-type

mice do not normally have a covering of smooth muscle cells (SMCs), whereas FoxC2 deficiency

in LD leads to PDGF-B secretion from lymphatic capillary endothelial cells and recruitment of

PDGF receptor-ß expressing SMCs. Genetic experiments indicate that the VEGFR-3 signal trans-

duction pathway regulates FoxC2 mediated transcription [49]
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The detection of diseased tissue or cells within the lymphatic system can be of

great clinical relevance, e.g. sentinel lymph node (SLN) biopsy which assesses the

presence of tumor cells in regional lymph nodes and has become standard surgical

practice for some tumors. Therefore, advances in our ability to image the lymphatic

network, and to detect diseased tissue/cells located within or passaging through the

lymphatics by imaging technology, is a high priority. A range of new lymphatic

imaging technologies are currently being assessed that allow systemic or targeted

lymphatic imaging – these may not only improve diagnosis but also facilitate intra-

lymphatic treatment for cancer (see chapter by Turkbey et al.). Such technologies

may be relevant for other diseases involving lymphatic dysfunction, such as lym-

phedema.

The lymphangiogenic signalling pathway involving the VEGF-C/VEGF-D/

VEGFR-3 axis provides potential molecular therapeutics for stimulating lymphan-

giogenesis, and possibly the repair of damaged lymphatic vessels, which could be

beneficial for treatment of lymphedema [34]. VEGF-C and VEGF-D have been

successfully delivered in animal models via adenoviruses to promote lymphangio-

genesis [35–37], VEGF-C protein has also been used for this purpose [38], and the

optimal delivery approach for therapeutic settings is being established. Characteri-

zation of alternative lymphangiogenic signaling pathways may provide alternative

opportunities for lymphedema therapies. Both VEGF-C and VEGF-D, when prote-

olytically activated, are also capable of promoting angiogenesis [36,39], presumably

due to signalling via the angiogenic receptor VEGFR-2, although VEGFR-3 has

recently been shown to also play a role in sprouting angiogenesis [40]. The capacity

of these growth factors to promote angiogenesis, repair damaged blood vessels and

to restrict stenosis or restenosis of large blood vessels [41, 42] could lead to a range

of clinical applications.

The lymphangiogenic signalling pathways also offer the opportunity for thera-

peutic approaches designed to restrict tumor lymphangiogenesis and the metastatic

spread of cancer. Inhibitors targeting the VEGF-C/VEGF-D/VEGFR-3 signalling

axis, that have been examined in animal models of cancer, include a monoclonal

antibody (mab) to VEGFR-3, which blocks activation of this receptor by VEGF-C

and VEGF-D [43] – this mab has been reported to restrict lymphatic metastasis in

a range of tumor models, and to restrict the rate of primary tumor growth in some

models [19,20,40]. Likewise, a VEGF-D mab, that blocks the binding of this growth

factor to both VEGFR-2 and VEGFR-3 [44], restricted tumor growth and spread in a

mouse model of cancer [18]. A soluble form of the VEGFR-3 extracellular domain,

a so-called receptor-trap, has been used in a range of animal models of cancer to

prevent VEGF-C and VEGF-D from activating endogenous VEGFR-3 on lymphatic

endothelial cells – this resulted in a reduction of lymphatic metasatasis [21, 22, 45].

In addition, a range of small molecules which inhibit the tyrosine kinase activity of

both VEGFR-2 and VEGFR-3 have been developed [15, 23], although their effects

on tumor lymphangiogenesis and lymph node metastasis in animal models of can-

cer have not been well characterised. Some of these small molecule inhibitors are

already in clinical use and others are being evaluated as anti-cancer therapeutics in

clinical trials [15].
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Saharinen et al., Trends Immunol.Saharinen et al., Trends Immunol.

Fig. 1.3 Molecular characteristics of blood vascular endothelial cells (BECs) and lymphatic

endothelial cells (LECs). VEGF-C is secreted by smooth muscle cells and pericytes but also by

BECs, which can recruit LECs to the vicinity of newly formed blood vessels. Hypoxic condi-

tions in tumors induce VEGF expression, and many tumors also produce VEGF-C and VEGF-D,

resulting in recruitment of VEGFR-1 and VEGFR-3 positive macrophages (Mø). Macrophages

and inflammatory dendritic cells (DCs) secrete VEGFs and other factors that can boost the angio-

genic and lymphangiogenic responses, especially because the expression of VEGF and VEGF-C

is induced by pro-inflammatory cytokines [50, 51]. VEGFR-2, which binds VEGF, VEGF-C and

VEGF-D, is expressed mainly in BECs. VEGFR-1 is expressed in BECs but also in macrophages

and monocytes and binds VEGF-B, PlGF and VEGF. VEGFR-3 is expressed mainly in LECs,

and VEGF-C- and VEGF-D-induced VEGFR-3 signaling is one of the proximal regulators of

lymphangiogenesis. Among members of the VEGF family, VEGF is the main inducer of angio-

genesis, which is mediated by VEGFR-1 and VEGFR-2. Neuropilin-2 (NRP-2) binds VEGF-C,

whereas NRP-1 functions as a co-receptor for VEGF. BECs express the intercellular adhesion

molecule-2 (ICAM-2) and platelet endothelial cell adhesion molecule-1 (PECAM-1) that is also

weakly expressed by LECs. BECs also express Stat6 (signal transducer and activator of tran-

scription 6), whereas Prox-1, a homeodomain transcription factor (TF), and Net, an Ets family

TF, are specific for LECs. BECs secrete interleukin-6 (IL-6), IL-8 and monocyte chemoattractant

protein-1 (MCP-1), whereas LECs secrete secondary lymphoid tissue chemokine (SLC). LECs

also express the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), integrin �9 and

podoplanin, a mucin-type transmembrane protein originally characterized in kidney podocytes.

The mannose receptor C-1 (MRC-1) is highly expressed in macrophages, where it mediates the

endocytosis of glycoproteins. MRC-1 is also expressed in LECs, and in tumor associated lymphatic

vessels [52]. Abbreviation: PlGF, placental growth factor. Reproduced from Saharinen P, Tammela

T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role

in tumor metastasis and inflammation. Trends Immunol. 2004 Jul;25(7): 387–95 with permssion

of the publisher and the authors

This past decade has seen exciting developments in lymphatic biology as novel

lymphatic markers and regulators of lymphangiogenesis and lymphatic development

have been identified. Some of the characteristic proteins that differ between blood
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vascular and lymphatic endothelial cells are indicated in Fig. 1.3. Nevertheless, it

is almost certain that there are other markers and key regulatory signalling path-

ways yet to be discovered. New biological models will be required to facilitate the

rapid identification and validation of novel pathways important for lymphatic de-

velopment, growth and differentiation (see chapter by Hogan and Schulte-Merker).

Model vertebrate organisms such as the Zebrafish will be important, allowing

large-scale genetic screening for phenotypes relevant to lymphatic biology, in a

high throughput manner [46, 47]. Another promising approach is based on high-

throughput image acquisition systems allowing rapid, large-scale screening of puri-

fied lymphatic endothelial cells for various biological responses to siRNA or drug

libraries. Based on these and other technologies plus systems biology analysis,

this exiting period of discovery for lymphatic biology is set to continue for years

to come.
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Abstract: Our understanding of the genes and mechanisms controlling the for-

mation of the lymphatic vasculature during embryonic development

has improved a great deal during the last decade. The availability of

molecular markers that allow us to distinguish the lymphatic vascula-

ture from the blood vasculature and the generation of mouse models

with various degrees of lymphatic defects have been instrumental to

the progress in this field. In this chapter, we highlight some of the

key molecular players that regulate the development of the lymphatic

vasculature and some available mouse models of lymphatic disorders.
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2.1 Introduction

The lymphatic vasculature is composed of a vascular network of thin-walled cap-

illaries and larger collecting vessels that drain protein-rich interstitial fluids from

the extracellular spaces within organs. The lymphatic vasculature is composed of a

continuous single-cell layer of overlapping endothelial cells (ECs) that form loose

intercellular junctions. In addition to the lymphatic vasculature, the lymphatic sys-

tem includes lymphoid organs such as the lymph nodes, tonsils, Peyer’s patches,

spleen, and thymus, all of which play an important role in immune surveillance and

response. With the exceptions of the epidermis, cornea, and central nervous system,

the lymphatic vasculature covers all regions of the body where blood vasculature

is also present. Therefore, this extensive network is the primary conduit for tumor

metastasis to the regional lymph nodes, and malignant tumors can stimulate the

growth of lymphatic vessels (lymphangiogenesis) [56].

Congenital or acquired malfunction of the lymphatic vasculature results in lym-

phedema, a disfiguring and disabling disorder [64]. Recently, we showed that a

S.A. Stacker, M.G. Achen (eds.), Lymphangiogenesis in Cancer Metastasis,
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defective lymphatic vasculature can also promote late-onset obesity in mouse mod-

els of lymphatic dysfunction [18].

In this chapter, we will present a brief historic overview of the field, discuss early

and current models of lymphatic vasculature development in mammals, and briefly

discuss some of the clinical consequences of lymphatic vasculature malfunction.

Finally, we will discuss future perspectives.

2.2 Historic Overview

The earliest references to the lymphatic vessels can be traced back to the Greek

anatomist Herophilus in the third century B.C. (Fig. 2.1) [2]. Then, in the second

century A.D., the Greek physician Galen described the lacteals (lymphatic vessels

of the intestine) and mesenteric lymph nodes [2]; however, no comprehensive mor-

phological or functional studies were undertaken until centuries later.

During the Renaissance, the lymphatic vasculature was rediscovered. In 1563,

Bartolomeo Eustachi described for first time the thoracic duct, the main collecting

lymphatic vessel in mammals [2]. Then in 1622, Gaspar Aselli identified in dogs

a structure that he named the venae alba et lacteae, the lymphatic vessels of the

intestines, which as mentioned above are currently known as the lacteals [3]. Almost

a century later, William Hewson published a detailed morphological comparison of

the lymphatics of birds, fishes, reptiles, and mammals [20].

The first two models describing the development of the lymphatic vasculature

were proposed at the beginning of the 20th century and were conflicting. First,

Florence Sabin [49] proposed that the lymphatics have a venous origin. In an al-

ternative model, Huntington and McClure [23] proposed that the lymphatics origi-

nate in the mesenchyme independent of the veins and secondarily establish venous

connections. The lack of lymphatic-specific markers made it difficult to reliably

document the development of the lymphatic vasculature and, therefore, to settle this

Fig. 2.1 Historic highlights. Although the existence of the lymphatics was first recognized in

the III century B.C., only recently have scientists acquired the tools necessary to elucidate the

mechanisms and processes that lead to this system’s development
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controversy for more than 100 years. Only recently have the identification of molec-

ular markers specific for the lymphatic vasculature and the generation of animal

models carrying mutations in those genes enabled us to advance our understanding

of this poorly characterized process.

2.3 Lymphatic Vessels: Types and Function

The lymphatic vasculature is responsible for the removal of excessive extravasated

tissue fluid and consists of two main types of vessels, blind-ended lymphatic capil-

laries with little or no basement membrane and highly structured, larger collecting

lymphatic vessels surrounded by a basement membrane and smooth muscle. ECs

of lymphatic capillaries are linked together by loose intercellular discontinuous

button-like junctions [6], and are connected to the extracellular matrix by anchoring

filaments. As the surrounding interstitial pressure changes, the anchoring filaments

tighten and relax, causing the lymphatics to expand and fill or contract and push fluid

(lymph). Under high interstitial pressure, EC junctions open, anchoring filaments

extend, and fluid moves into the vessel (Fig. 2.2) [53]. The smaller lymphatic cap-

illaries drain into larger, secondary collecting lymphatic vessels whose ECs exhibit

continuous zipper-like junctions [6].

The large collecting lymphatic vessels are invested with smooth muscle cells

(SMCs) that fortify the vessel and provide contractile activity to assist the flow of

lymph. These larger vessels also contain loose, intraluminal, one-way valve-like

junctions that prevent fluid back flow (Fig. 2.2). Tissue fluid contained in the larger

collecting lymphatics will drain into the thoracic duct and be returned to the blood

circulation through lymphatic-vasculature connections established at the junction of

the jugular and subclavian veins.

In the digestive tract, lacteals inside the intestinal villi absorb and transport di-

etary fat and fat-soluble vitamins secreted by enterocytes in the form of chylomi-

crons and transport them to the venous circulation. Chylomicrons are small particles

composed of a single lipid membrane impregnated with the proteins apolipoprotein

A and B-48 [9]. After the chylomicrons enter the bloodstream, they are disassem-

bled, and the lipids are liberated by a lipoprotein lipase present only in the blood

vessel endothelium, cardiac or skeletal muscle, and adipose tissue [19, 39]. The

heparin-binding protein GPIHBP1 (glycosylphosphatidylinositol-anchored high-

density lipoprotein-binding protein 1) is crucial for the binding of chylomicrons

and lipoprotein lipase to the luminal side of blood vessels [7].

The lymph (or chyle) transported by these mesenteric lacteals is composed of

60–70% lipids, mostly long-chain fatty acids. It also contains approximately 25%

of the protein concentration contained in plasma [35].

In addition to the lymphatic vessels, a few other specialized lymphatic structures

have been identified in different species. For example, in mammals the cisterna

chyli, a structure that sits at the base of the vertebral column, just below the thoracic

duct was originally discovered almost simultaneously in 1653 by Jean Pequet and
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Fig. 2.2 Diagram of lymph flow. A In resting state, the interstitial pressure surrounding lymphatic

capillaries is low, allowing the anchoring filaments to remain lax and the endothelial cells to remain

in close proximity. B Once the interstitial pressure increases due to the pumping action of nearby

blood vessels or the extravasation of fluid, the anchoring filaments pull tight, allowing fluid to enter

the lymphatic vessel. One-way secondary valves within the vessel close as fluid is pushed towards

the trunk to prevent backflow

Olof Rudbeck [45, 48] and serves as a receptacle for the lymph collected by the

lacteals. In reptiles, amphibians, and some birds, interstitial fluid pressure and grav-

ity cannot drive the uptake and movement of lymph fluid; therefore, these animals

retain the more primitive lymph hearts [26]. These small sacs normally develop in

pairs along the body trunk and contain contractile tissue that enables the sacs to

pulse and generate the required contractile motion to move the fluid through the

lymphatic vasculature [21].

2.4 Development of the Lymphatic Vasculature

2.4.1 Early Models of Lymphatic Development

The origin of lymphatic endothelial cells (LECs) has been one of the most highly

contested issues related to the development of the lymphatic vasculature. One of

the first models addressing this question was put forward by Florence Sabin. On the

basis of a series of dye-injection studies in fetal pigs, she proposed the centrifugal

model of lymphatic development [49]. According to her model, lymphatic vessels
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Fig. 2.3 The venous origin

of lymphatic vessels. In

1904, Sabin’s traceable dye

studies of fetal pig veins led

her to propose the centrifugal

model of lymphatic

development. She postulated

that lymphatic cells originate

in the veins, from where they

bud off into the surrounding

tissue to form the primitive

lymph sacs. This scheme is a

representation of one of her

original drawings of a pig

embryo in which lymphatic

cells are leaving the anterior

cardinal vein (scheme was

generated by Joshua R.

Stokes)

develop secondary to blood vessels and are venous derived (Fig. 2.3). Sabin pro-

posed that isolated primitive lymph sacs originate from ECs that bud from the veins

during early embryonic development. Then from the primary lymph sacs, LECs

sprout into the surrounding tissues and organs to give rise to the entire lymphatic

network.

Sabin’s model was challenged by Huntington and McClure [23], who proposed

a centripetal model of lymphatic development. In this alternative model, the lym-

phatic network is derived from specialized mesenchymal tissue called “lymph

clefts.” Primary lymph sacs arise in the mesenchyme independent of the veins and

secondarily establish venous connections [23]. This model of lymphatic develop-

ment has been supported by recent work in chicken and frog embryos, suggesting

that in these organisms LECs arise not only from venous-derived ECs but also

from mesenchymal lymphangioblasts [41, 62]. Work in mammals has suggested

that venous-derived LECs, hematopoietic cell-derived circulating endothelial pro-

genitors, and transdifferentiating leukocytes and macrophages are putative sources

of LECs during embryonic and adult lymphangiogenesis [30, 34, 47, 51]. Although

these different sources could have a role in the formation of new LECs during adult

lymphangiogenesis and pathologic conditions, recent, detailed genetic lineage-

tracing analyses performed in mouse embryos has conclusively demonstrated that,

as suggested by Sabin, the mammalian lymphatic vasculature is exclusively venous

derived [55]. Furthermore, work in zebrafish embryos revealed that LECs of the

main thoracic duct–like vessel also arise from primitive veins [65].
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2.4.2 Current Model of Lymphatic Development in Mammals

In the last few years, a number of review articles have described recently identified

genes whose expression profile and functional activities are important during the

different stages of lymphatic vasculature development [32, 42–44, 54]. Therefore,

here we will summarize only a few key genes and processes that are ultimately

responsible for the development and maturation of the lymphatic vasculature.

The main (if not sole) source of LECs in the mammalian embryo is the veins [55],

and the initial step in the process leading to the formation of the lymphatic vascu-

lature is that venous blood endothelial cells (BECs) acquire an LEC identity (LEC

specification) [61]. In mouse embryos, this initial step is identified by the polarized

expression of the homeobox gene Prox1 in a subpopulation of BECs located on

one side of the anterior cardinal veins at around E9.5 to E10.0 (Fig. 2.4A) [60, 61].

As development of the lymphatic vasculature progresses, Prox1 expression is de-

tected in the whole lymphatic network during embryonic and postnatal stages [18].

Prox1-null embryos die at around E14.5 and are devoid of lymphatic vasculature,

because LEC specification does not take place in these mutant embryos [60]. This

work demonstrated that Prox1 activity is necessary for the specification of the LEC

fate in default venous BECs [61].

In mice, LEC progenitors start emerging from the embryonic veins after the ini-

tial LEC-specification step (at around E10.5) (Fig. 2.4C, D) to form the eight prim-

itive lymph sacs (three paired and two unpaired) [50, 61], which are scattered along

the anteroposterior axis of the mammalian embryo (Fig. 2.4E, F). This step requires

the activity of the vascular endothelial growth factor-c (Vegf-c), a protein expressed

◮

Fig. 2.4 Lymphatic vasculature development is a stepwise process. A As early as E9.5, Prox1

(green) expression starts to be detected in venous endothelial cells (stained with Pecam, red)

located on the dorsolateral side of the anterior cardinal vein. This expression is necessary and

sufficient for the specification of the LEC identity. B A schematic representation of A, with Prox1-

positive cells indicated in green. Nt-neural tube, da-dorsal aorta, cv-cardinal vein. C Around E10.5,

Prox1-expressing (blue) LEC progenitors start to exit the veins by following rather precise paths

into the surrounding mesenchyme; these emerging LECs form the primary lymph sacs. Vefg-c

signaling is required for LECs to migrate from the veins. D Schematic representation of C. E As

early as E11.5, Prox1-expressing lymph sacs start to form and can be detected along the antero-

posterior axis of the developing embryo. As the sacs form, LECs sprout from the sacs, proliferate,

and migrate along the developing embryo. During this stage, the blood and forming lymphatic

vasculatures separate. F Schematic representation of E. jls-jugular lymph sacs. G At around E14.5,

most of the lymph sacs have formed, and an extensive network of lymphatic vessels and capillaries

(blue) intermingled with the blood vasculature (red) can be detected. This image shows dermal

lymphatics. H An E15.5 Prox1+/− embryo stained with X-gal to show the entire primary dermal

lymphatic network. I During late embryogenesis and early postnatal stages, the primary lymphatic

network expands (Lyve1, green), and the forming lymphatics mature and remodel and remain

separated from the blood vasculature (SMA, red). J As lymphatic vessels in the mesentery mature,

the lymphatic valves in collecting lymphatics form (arrow). Scale bars in A, C, E, G, I, and J

represent 100 �M; that in H represents 1 mM. Some images in this panel were contributed by

Miriam Dillard and R. Sathish Srinivasan
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Fig. 2.4 (continued)
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in the mesenchyme surrounding the cardinal veins and required to promote and

guide the specified LECs to move from the veins toward the ligand source [29]. In

Vegfc-null embryos, this process is arrested, and Prox1-expressing LEC progenitor

cells remain abnormally confined around the wall of the cardinal veins [29].

As the lymph sacs form, LECs sprout from those structures to produce the pri-

mary lymphatic plexus (Fig. 2.4G, H) [61]. What promotes and guides this sprouting

is not yet known. Recent detailed lineage-tracing analyses determined that local

lymph sacs are the source of LECs that by sprouting, proliferation, and migration

give rise to the lymphatic vasculature of nearby tissues and organs [55]. Further-

more, those analyses confirmed earlier work by van der Putte [58], who showed

that the rostral lymphatics form first. The more posterior lymphatics form later from

LEC progenitors located in the posterior veins [55].

As embryonic development progresses, individual sprouting LECs proliferate,

migrate, and aggregate to form the entire network of lymphatic capillaries and ves-

sels (Fig. 2.4I). Although not much is yet known about the cellular and molecular

mechanisms regulating the sprouting of LECs from the primary lymph sacs, a few

players have been identified whose expression is initiated in LECs at around these

embryonic stages (E11.0–E13.0) and whose function appears to be necessary for

proper lymphatic network formation.

T1α/Podoplanin, a gene encoding a mucin-type transmembrane glycoprotein, is

predominantly expressed by the lymphatic endothelium. In the mouse, this protein

is detected in specified LECs emerging from the veins as early as E12.0 [10, 42,

52]. T1α/Podoplanin−/− pups die soon after birth and exhibit severe lymphedema

resulting from defects in lymphatic vascular patterning and function [52].

Neuropilin 2 (Nrp2) is a receptor for class III semaphorins; Nrp2 can also in-

teract with VEGFR2 and VEGFR3 [40, 66]. Although at around E10.0 Nrp2 is

mainly expressed in the veins, starting at E13.0, its expression becomes restricted to

LECs [66]. Functional inactivation of Nrp2 in mice reduces LEC proliferation and

results in the transient absence or severe reduction of small lymphatic vessels and

capillaries [66]. This result suggests that Nrp2 differentially controls the formation

of large- and small-caliber lymphatic networks [66].

The forkhead transcription factor Foxc2 is expressed between E12.5 and E14.5

in the jugular lymph sacs and sprouting LECs. Later, Foxc2 is expressed in the

thoracic duct, collecting lymphatics, and capillaries [11]. Foxc2 is also expressed

in the luminal valves of collecting lymphatic vessels [46]. Foxc2-null mice exhibit

abnormal specification of lymphatic capillaries versus collecting lymphatics, valve

agenesis in collecting lymphatics, abnormal accumulation of SMCs and pericytes

by lymphatic capillaries, and abnormal expression of BEC markers such as Pdgfb,

Endoglin, and Collagen IV [46]. A functionally relevant cooperation between Foxc2

and Vegfr-3 in the establishment of a pericyte-free lymphatic capillary network has

been proposed [46].

As lymphatic vessels and capillaries spread along the developing embryo, the

forming lymphatics separate from the blood vasculature. These two vascular net-

works remain separated, except at the junction between the thoracic duct and the left

subclavian vein. The blood/lymphatic separation (Fig. 2.4C, D) step is controlled
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by at least two molecules expressed mainly by circulating hematopoietic cells, the

adaptor protein Slp76 and the tyrosine kinase Syk [1]. Slp76 expression was recently

also detected in a subpopulation of circulating EC progenitors [57]. Functional

inactivation of these genes in mice results in a blood-filled lymphatic phenotype [1].

The mechanisms through which these signaling pathways mediate the blood/lym-

phatic separation remain unknown. Different degrees of defective lymphovenous

separation have also been reported in other mouse mutant models in which genes

such as Fasting-induced adipose factor (Fiaf ), ephrinB2, or Foxc2 have been inac-

tivated [5, 16, 33, 46].

During late embryogenesis and early postnatal stages, lymphatic vasculature

maturation and remodeling (Fig. 2.4I, J) take place. Expression of additional gene

products whose function appears to be required to control different aspects of

these processes starts to be detected in the forming lymphatics. The transmembrane

ligand ephrinB2 and its receptor, EphB4, are important regulators of embryonic

blood vascular morphogenesis. EphrinB2 is expressed in collecting lymphatics,

and EphB4 is expressed in collecting lymphatics and lymphatic capillaries [33].

Deletion of the cytoplasmic PDZ-interaction domain of ephrinB2 results in post-

natal lethality, i.e., although the mutant pups exhibit a normal blood vasculature,

they lack lymphatic valves, exhibit defective lymphatic remodeling, and have an

abnormal partial accumulation of SMCs in their lymphatic capillaries [33]. The

dermal lymphatic vasculature of these mutant mice fails to mature and resem-

bles a primitive capillary network [33]. This result indicates that ephrinB2 plays

a cell-autonomous role during postnatal lymphatic remodeling [33]. On the other

hand, conditional deletion of ephrinB2 from SMCs leads to early postnatal death,

and the mutant pups exhibit severe blood and lymphatic vasculature defects, ab-

normal migration of SMCs to the lymphatic vessels, and blood-filled lymphatics

[16].

The ligand for the endothelial Tie2 receptor tyrosine kinase, Angiopoietin-2

(Ang2 or Agpt2), also functions during postnatal lymphatic remodeling and matura-

tion [17]. Ang2−/− newborn mice exhibit subcutaneous edema, chylous ascites, and

leaky, abnormally organized lymphatic vessels [17]. Ang2−/− mice also lack proper

SMC coverage in the larger collecting lymphatic vessels, and Ang1 can rescue their

lymphatic defects [17].

As discussed above, to prevent retrograde flow, lymphatic vessels contain pri-

mary valves at the junctions between LECs and secondary valves (modified endothe-

lial structures) within the lymphatic lumen [53]. Although our knowledge about the

genesis and positioning of lymphatic valves is very limited, recent data suggested

that primary valves are associated with the discontinuous expression of some en-

dothelial junction markers [38]. Currently, only a few genes essential for lymphatic

valve formation and maturation have been identified: the forkhead transcription fac-

tor Foxc2, ephrin B2, and the class III ß-tubulin Tuj1 [27, 33, 46].

Finally, recent work has determined that the differentiated LEC phenotype is a

plastic, reprogrammable condition that depends on constant Prox1 activity for its

maintenance [25]. Conditional downregulation of Prox1 during embryonic, postna-

tal, or adult stages is sufficient to reprogram LECs into BECs [25].
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2.5 Diseases Associated with a Defective Lymphatic Vasculature

There are numerous diseases associated with lymphatic defects. Congenital or

acquired defects of the lymphatic vasculature can lead to lymphedema a disorder

resulting from insufficient transportation of lymph owing to hypoplasia of the lymph

vessels, impaired lymphatic function, or obstruction of lymph flow [64]. Typical

features of lymphedema include disabling swelling of the limbs, tissue fibrosis,

adipose degeneration of the connective tissue (Fig. 2.5), and susceptibility to in-

fections. Primary lymphedema has a genetic origin and can be present at birth

(Milroy disease) [37] or appear after puberty (Meige disease) [36]. In general,

both of these diseases are characterized by dilated lymphatics and accumulation

of lymph fluid. Heterozygous missense mutations in VEGFR3 have been iden-

tified in several cases of Milroy disease [12, 15, 63]. Furthermore, heterozygous

missense mutations in the Vegfr3 gene have been identified in the Chy-mutant

mice, which develop chylous ascites and lymphedematous limb swelling after

birth [28].

Mutations in FOXC2 have been identified in patients with another form of

lymphedema, lymphedema-distichiasis [13]. This autosomal-dominant disorder is

characterized by distichiasis (double row of eyelashes) at birth and bilateral lower

limb lymphedema at puberty [31]. Mutations in the transcription factor Sox18

C

A B

D

Fig. 2.5 Phenotypic consequences of lymphedema. Primary lymphedema occurs as a result of

a congenital disorder of key genes controlling lymphatic development. The symptoms include but

are not limited to A swelling of the extremities in childhood, B swelling with papillomatosis, and

C bilateral edema with D papillomatosis. The figure was reproduced with permission from [12]
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were identified in recessive and dominant forms of hypotrichosis-lymphedema-

telangiectasia [24].

Secondary lymphedema occurs when the lymphatic system is damaged by surgery,

infection (e.g., filariasis, which is caused by parasitic infection), radiation therapy

(particularly after the treatment of breast cancer), or removal of lymph nodes [64].

As a result of radiation therapy, surgery, and/or removal of lymph nodes, secondary

lymphedema develops in approximately 15–20% of women undergoing breast can-

cer treatment [59].

Another class of congenital disorder is lymphangiectasia (i.e., dilation of the

lymphatic vessels). This condition is most often seen in the lung, intestine, and

thoracic cavity [14]. Congenital pulmonary lymphangiectasia is a rare disorder of

newborns and is often fatal. These children exhibit cyanosis, labored breathing,

and often chylothorax or chylous effluence in the thoracic cavity [8]. Intestinal

lymphangiectasia is characterized by highly dilated lymphatic capillaries in the in-

testinal villi. As in most cases of lymphangiectasia, hyperdilation of the lymphatic

vessels does not permit the normal lymphatic response to interstitial pressure, and

as a result, absorption by the intestine is compromised. The levels of FOXC2 and

SOX18 transcription are significantly lower in these patients [22]. Less frequently,

lymphangiectasia can occur in the kidney, and in even more rare cases, secondary

lymphangiectasia can develop after tumor removal [4]. Treatment for these types

of diseases is extremely limited. Manual drainage, massage, and dietary modifica-

tion (i.e., limiting the consumption of long-chain fatty acids) comprise the current

standards of care.

In addition to these relatively well-recognized disorders, late-onset obesity has

recently been linked to leaky lymphatic vessels in an available mouse model of

defective lymphatic vasculature [18]. Prox1+/− mice have mispatterned lymphatics

with defective vessel integrity that allows chyle to leak from those vessels (Fig. 2.6)

Fig. 2.6 Prox1 heterozygosity leads to late-onset obesity. A Mice with Prox1 haploinsufficiency

(left) abnormally accumulate adipose tissue; wild-type littermates (right) are shown for compar-

ison. B The cause of this accumulation of fat is at least partially due to the abnormal leakage

of chyle from defective lymphatics that exhibit structural defects in their endothelial wall. The

exposure of adipose tissue to the leaking chyle promotes hypertrophy and hyperproliferation of

adipocytes
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[18]. Chyle is adipogenic, and in vitro it can trigger immature preadipocytes to

mature into lipid-accumulating adipocytes [18].

2.6 Future Perspectives

The mechanisms described above apply to developmental lymphangiogenesis. It is

not yet clear how preexisting lymphatics regrow during tissue repair and inflamma-

tion. A similar statement can be made about the genes and mechanisms controlling

lymphatic growth in and around tumors. Furthermore, the phenotypic differences

between smaller, initial lymphatic capillaries and the larger, more complex collect-

ing lymphatics suggest that at some point during their development and matura-

tion, different regulatory mechanisms establish the final identities of these unique

structures.

It is well accepted that similar to the blood vasculature, outgrowth from preexist-

ing lymphatic vessels is at least one of the mechanisms of adult lymphangiogenesis;

however, whether this process also involves other sources such the budding of LEC

precursors from preexisting veins, transdifferentiating macrophages [34], or bone

marrow-derived cells [30, 47, 51] is not yet known.

Finally, the finding that defective lymphatic vasculature can eventually lead to

some forms of late-onset obesity [18] argues that other pathologic conditions may

also be linked to a defective lymphatic vasculature. For example, individual differ-

ences in immune response could be linked to variations in the integrity and func-

tionality of the lymphatic system.
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Abstract: The discovery of new genes, genetic pathways and drug targets in-

volved in the formation of lymphatic vessels and capillaries has long

been hampered by the absence of a small model organism amenable

to large scale genetic and pharmacological screening. The recent de-

scription of functional and conserved lymphatic vascular systems in

the two small animal models Xenopus laevis (the African clawed frog)

and Danio rerio (the zebrafish) now opens up the possibility to ex-

ploit these models for the study of developmental lymphangiogenesis.

In this chapter we will describe the discovery and characterisation of

the lymphatic vasculature in both frog and fish models. We will also

describe and compare the available genetic tools for the study of lym-

phangiogenesis in these new model systems.
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3.1 Introduction

Lymphangiogenesis, the formation of lymphatic vessels from the pre-existing vas-

culature, is an important process in metabolism, immunity and pathological pro-

cesses such as cancer metastasis. It is because of these important functions that

lymphangiogenesis has received increased attention in recent years and the dra-

matic progress made in the field is described in other chapters of this book. In

furthering our understanding of lymphangiogenesis, the use of sophisticated ge-

netic analysis in mouse models has yielded much insight into the genetic control of

embryonic and adult lymphangiogenesis (for review see [2]). Coupled with genetic

analysis, cellular studies performed in both mouse and avian models have greatly

improved our understanding of the origin and early development of the lymphatic

vasculature [60, 70, 74, 84, 91, 92]. Furthermore, the molecular, morphological and

functional analysis of cultured mammalian lymphatic endothelial cells has yielded

S.A. Stacker, M.G. Achen (eds.), Lymphangiogenesis in Cancer Metastasis,

Cancer Metastasis – Biology and Treatment 13, DOI 10.1007/978-90-481-2247-9 3,
C© Springer Science+Business Media B.V. 2009

27



28 B.M. Hogan and S. Schulte-Merker

exciting new insights into both normal and pathological processes within the lym-

phatic vasculature.

As with any expanding field, new ideas are being explored and new ways to

examine the object of interest are being developed. Despite the many advances, such

as those highlighted above, a genetically tractable small animal model has not been

available for unbiased, large scale gene and drug target discovery approaches until

very recently. In this chapter we will describe the biology of lymphangiogenesis in

the two newest model organisms to enter the lymphangiogenesis scene, namely the

tadpole model from Xenopus laevis (the African clawed frog) and the larval model

from the teleost Danio rerio (the zebrafish). Furthermore, as both frogs and fish offer

a new spectrum of methodological approaches for the study of lymphangiogenesis,

we will describe the available technologies in these model organisms and compare

their amenability both to one another and to the mouse model.

3.2 Biology of Xenopus Laevis Lymphangiogenesis

It has long been held that anurans (frogs and toads), like fully terrestrial vertebrates,

have a functional lymphatic vasculature comprising lymph hearts, vessels and mea-

surable lymph flow as described in early studies, which examined the physiology

and histology of their lymphatic vasculature [3, 8, 9]. As the initial studies were

resticted to the lymphatic system of adult anurans, these organisms did not immedi-

ately present themselves as useful models for the study of lymphangiogenesis at the

molecular and cellular levels. Recently, however, analysis of the development of the

lymphatic system during the embryogenesis of Xenopus laevis tadpoles has opened

up the opportunity to exploit this organism as a small animal model for detailed

analysis of lymphatic vessel development [57].

3.2.1 Anatomical Localization of Early Lymphangiogenesis

in the Xenopus Laevis Tadpole

The initial description of lymphatic development in Xenopus laevis tadpoles by Ny

et al. [57] examined both the anatomy and the evolutionarily conserved molecular

control of embryonic lymphangiogenesis. Ny et al. [57] used in situ hybridisation

to examine the expression of the conserved lymphangiogenic transcription factor

prox1 as a marker for lymphangioblasts and lymphatic vessels. The earliest distin-

guishable structures of the lymphatic system that express prox1 during development

are the rostral lymph sac (RLS) and the lymph heart (LH), which develop from

embryonic stages 28 (RLS) and 32 (LH) onwards. The expression of prox1 was also

seen in a population of cells likely to be lymphangioblasts in the region of the ventral

caudal lymph vessel (VCLV) from stage 32 onwards. As has been observed for the

initial sites of embryonic lymphangiogenesis in mammals [90], prox1 expression in

lymphangioblasts appears to be rapidly segregated from an origin initially overlap-

ping with blood endothelial precursors derived from the lateral plate mesoderm.
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In the RLS region, expression of prox1 and msr (mesenchyme associated-

serpentine receptor; a marker of blood vessels [12]), initially overlap in the lateral

plate mesoderm adjacent to the cardiac field. However, prox1 expression becomes

progressively more lateral in localisation and eventually becomes restricted to the

sub-ectodermal region lateral to the ventral aorta and heart tube [57]. In the LH

region, prox1 expression initially labels a population of cells which express msr and

fli [7] located at the dorsal margins of the cardinal vein in the region where the vein

fuses to the common cardinal vein to drain into the heart. Later, the expression of

prox1 suggests separation of lymphatic cells to a more dorso-lateral position where

it labels the lymph hearts, from which the cephalic and lateral lymph ducts likely

form [57].

In the posterior ventral region of the trunk at embryonic stage 32, prox1 expres-

sion is observed in a region overlapping with msr expression within the develop-

ing posterior cardinal vein located immediately posterior to the rectal diverticle.

Later, the expression is observed in developing lymphatic vessels of the VCLV

found immediately ventral to the PCV [57]. Interestingly, expression of prox1 is

also observed in cells immediately dorsal to the VCLV at stage 35/36 suggesting

that a population of putative lymphangioblasts may actively migrate dorsally from

an initial location in the VCLV. Expression is also observed at later stages in the

dorsal longitudinal anastomosing vessel (DLAV), suggesting that a pool of VCLV

precursor lymphangioblasts may give rise to the trunk lymphatic vasculature of the

dorsal caudal lymphatic vessel and the ventral caudal lymphatic vessel by a process

of dynamic cell migration [57] (see Fig. 3.1).

In summary, these analyses of prox1 expression at different stages of embryoge-

nesis, although not sufficient to show the physical movement of prox1 expressing

cells, are highly suggestive of dynamic migration. It seems likely that lymphan-

gioblasts differentiate from an initial precursor pool of overlapping origin with

the blood vasculature (most likely venous as observed in mammals [74]) and then

migrate to populate defined regions of the developing tadpole. The process would

involve at least three phases: differentiation of endothelial cells from a venous ori-

gin, active migration to distinct sites in the tadpole, and terminal differentiation

including tubulogenesis to form a functional lymphatic vessel (Fig. 3.1).

In addition to the analysis of prox1 expression, Ny et al. [57] also examined

vessel morphology in detail, as well as structure and function of the trunk lym-

phatic vasculature. The VCLV fails to express Laminin indicating that it lacks a

basement membrane, the absence of which is characteristic of lymphatic vessels

(for a brief review of mammalian lymphatic vascular morphology and ultrastructure

see [67]). In contrast, the adjacent blood vasculature (PCV) expresses detectable

levels of Laminin. Examination of tadpole VCLVs using electron microscopy also

indicates a high degree of ultrastructural similarity with mammalian lymphatic ves-

sels. Tadpole VCLV cells are thin and irregular and lack well established junction

formation with adjacent lymphatic endothelial cells. These are all characteristics

observed in and typical of mammalian lymphatic endothelial cells [67]. Importantly,

the introduction of fluorescent solutions (high molecular weight rhodamine dextran)

directly into subcutaneous spaces using micro-injection, leads to the active drainage
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Fig. 3.1 Xenopus laevis em-

bryonic lymphangiogenesis.

prox1 expression (upper) in

the trunk of a stage 39

Xenopus laevis tadpole marks

a population of putatively

migrating lymphangioblasts

which will give rise to the

ventral caudal lymphatic

vessel (VCLV) and the dorsal

caudal lymphatic vessel

(DCLV). The trunk blood

vasculature (middle)

highlighted by angiogram

injection in a stage 45

Xenopus laevis tadpole. The

dorsal aorta (DA), posterior

cardinal vein (PCV) and

dorsal longitudinal vessel

(DLAV) are indicated. The

ventral caudal lymphatic

vessel (VCLV) in the trunk

(lower) of a stage 45 Xenopus

laevis tadpole as highlighted

by lymphangiogram dye

injection

of fluorescent dye into the dorsal caudal lymphatic vessel (DCLV) and VCLV. This

drainage into lymphatic vessels occurs rapidly after micro-injection and indicates

definitively that the vessels are not just morphologically similar, but the functional

equivalent of mammalian lymphatic vessels (Fig. 3.1) [57]. In contrast the injec-

tion of fluorescent dye into the blood stream leads to specific accumulation in the

blood vasculature indicating the physical separation of the two vascular systems

(Fig. 3.1) [57].

3.2.2 Molecular Regulation of Developmental

Lymphangiogenesis in Xenopus Laevis

As stated above, lymphatic vessels, lymphangioblasts and their precursors, the em-

bryonic veins, all express the key marker of mammalian lymphatic identity, Prox1.

In mammals Prox1 is both required for lymphangiogenesis and also sufficient



3 New Animal Models of Lymphangiogenesis 31

to induce lymphangiogenic developmental programs in blood endothelial cells,

identifying it as a master regulator of lymphangiogenesis [31, 91]. The exam-

ination of prox1 loss-of-function in Xenopus laevis embryos also identified an

essential role for this transcription factor in this species, thereby indicating an

evolutionarily conserved molecular program for lymphangiogenesis [57]. Animals

that were prox1 depleted by injection of antisense morpholino oligomers (see

section 4.1.1 for details) showed a reduction in the putative dorsal migration of

lymphangioblasts from the VCLV as detected by examining prox1 expression with

in situ hybridisation. In addition to altered prox1 expression, lymphatic func-

tion was reduced or absent in these animals as subcutaneously deposited tracer

dyes no longer drained into the VCLV, indicating either a complete absence of

the VCLV or severely impaired function. Morphologically, prox1 depletion re-

sulted in the development of massive edema, highly reminiscent of lymphedema in

mammals [57].

In addition to requiring Prox1, mammalian lymphangiogenesis is dependent on

signaling through Vegfr3 as initiated by binding to the ligand VegfC [35,37,44,85].

Depletion of vegfC in Xenopus laevis, again using morpholino oligomer microin-

jection, led to reduced dorsal migration of prox1 expressing putative lymphan-

gioblasts. Furthermore, the examination of lymphatic function revealed impaired

drainage from interstitial spaces [57]. This indicates a critical, conserved role for

VegfC and by extension also suggests a conserved role for Vegfr3 in Xenopus laevis

embryonic lymphangiogenesis (Table 3.1). The conserved molecular regulation of

lymphangiogenesis further highlights the utility of this model for examining the

genetic pathways involved.

3.3 Biology of Lymphangiogenesis in the Zebrafish

(Danio Rerio)

Unlike the lymphatic system in anurans, the existence of a functional lymphatic

vasculature in teleost fishes was for a long time controversial (for review, see [75]).

Although some early studies had reported the presence of ‘atypical’ vessels in adult

fish and although it was known that bloodless vessels can be found in some fish

species, teleosts were in many cases referred to as being devoid of a functional

lymphatic vasculature. The simple argument was that fish, being an aquatic organ-

ism, have a reduced physiological need to regulate their fluid homeostasis, and that

loss of water is a lesser problem for a water-borne organism. It was, therefore, not

until the simultaneous reporting of the characterization of an embryonic lymphatic

vascular system by both Küchler et al. [43] and Yaniv et al. [94] that the existence of

a lymphatic vasculature was firmly established in zebrafish. Indeed, the presence of

a functional and developmentally conserved lymphatic vascular system now opens

up the possibility to exploit the zebrafish as a model for the study of developmental

lymphangiogenesis.
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3.3.1 Anatomical Aspects of Early Zebrafish Lymphangiogenesis

The identification of lymphatic vessels in zebrafish larvae was made possible

by the production of transgenic lines expressing GFP throughout the embryonic

vasculature. The transgenic tg[fli1:GFP] line expresses GFP under the control of the

fli1 promoter, a gene expressed in all known endothelial cells in developing zebrafish

embryos, larvae and adults [48]. In the trunk of tg[fli1:GFP] animals from 3.5 days

post fertilisation (dpf) onwards an axial vessel is observable immediately ventral to

the dorsal aorta and dorsal to the posterior cardinal vein (Fig. 3.2). By 4dpf the vessel

runs the entire length of the trunk and is irregular in shape unlike the adjacent dorsal

aorta or the posterior cardinal vein. This third major axial vessel lacks blood, as de-

termined using angiogram micro-injection of fluorescent dye into the blood vascula-

ture and it is for this reason that its existence had been missed in earlier angiography-

based examinations of the zebrafish vasculature [33,43,94]. Detailed examination of

the vessel, with electron microscopy, reveals that the vessel walls are far thinner than

those of the adjacent blood vessels and that the cells display fibrous connections with

the interstitial matrix, both characteristic of mammalian lymphatic vessels [25, 94].

Using sub-cutaneous micro-injections of fluorescent dyes both Yaniv et al. [94] and

Fig. 3.2 Zebrafish embryonic lymphatic vessels.

The transgenic tg[fli1:GFP] strain expresses GFP in all endothelial cells of the embryo at 5 days

post fertilisation (dpf) (upper).

The first observable lymphatic vessel (Ly), the thoracic duct, is seen as a long irregular vessel

immediately ventral to the dorsal aorta (DA) and dorsal to the posterior cardinal vein (PCV) (Lower

left).

Sub-cutaneously delivered fluorescein dextran dyes are specifically taken up into the thoracic duct

(Ly) indicating a drainage function for the zebrafish lymphatic system (lower middle).

The blood vasculature and the lymphatic vasculature are physically separated as dye injected into

the bloodstream in an angiogram assay is omitted from the lymphatic system (Ly) (lower right).

Lower images taken of region equivalent to the boxed region in the upper panel



36 B.M. Hogan and S. Schulte-Merker

Küchler et al. [43] found that this vessel is capable of taking up particles from inter-

stitial spaces and eventually drains its contents into the blood vasculature. The vessel

can also be labeled independent of the blood vasculature by direct lymphangiogra-

phy [43,94]. This axial lymphatic vessel hence displays many of the morphological

and functional characteristics of a vertebrate thoracic duct and was the first bone

fide lymphatic vessel identified in the developing zebrafish (Fig. 3.2).

Analysis of the lymphatic vasculature with Berlin blue dye injections has shown

that in 5 week old zebrafish the anatomy of the anterior lymphatic vasculature is

far more complex than at earlier stages. Older fish (5 week old) have facial, pec-

toral, lateral and jugular draining lymphatic vessels [94] indicating the increased

branching complexity of the lymphatic vascular network in zebrafish, as is observed

in other vertebrates. In adults, bloodless vessels have also been analysed using

electron microscopy and antibody staining with an Angiopoietin2 antibody. Adult

lymphatic vessels can be observed with anti-Ang2 immunohistochemistry, suggest-

ing a conserved function for Angiopoietin/Tie2 signaling. In addition, they display

a number of ultrastructural characteristics in common with mammalian lymphatic

vessels [43]. The adult lymphatic capillaries of the skin can also be observed directly

in adult zebrafish by taking advantage of a double transgenic line. Zebrafish carry-

ing a tg[fli1:GFP] transgene as well as a tg[gata1:GFP] transgene (expressed in

erythrocytes) display networks of both thin, regular, blood filled capillaries as well

as irregular, bloodless capillaries in the skin (Fig. 3.3) (Hogan and Schulte-Merker,

unpublished observation). Taken together these later stage analyses indicate that ze-

brafish form a complex lymphatic vascular network. It is, however, important to note

that neither lymph nodes nor valves have been identified in the zebrafish, perhaps in-

Fig. 3.3 Zebrafish adult lymphatic capillaries of the skin.

A. Low power fluorescence image of the skin of a double transgenic adult zebrafish carrying trans-

genes expressing GFP in erythrocytes (tg[gata1:GFP]) and the vasculature (tg[fli1:GFP]). Beds

of capillaries are observable between the pigmented stripes of the zebrafish body. B. Capillary beds

of the skin consist of regular blood filled vessels (visualised as solid bars due the presence of GFP

in circulating erythrocytes) and irregular bloodless vessels, the putative lymphatic capillaries
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dicating a level of functional diversification of the fully developed lymphatic system

between teleosts and higher vertebrates.

3.3.2 Origin of the Zebrafish Thoracic Duct

The thoracic duct has been shown to form at discrete positions immediately ventral

to the dorsal aorta [43, 94]. Using timelapse confocal microscopy, lymphatic en-

dothelial cells are observed emerging at multiple dispersed sites in separate positions

along the ventral dorsal aorta. These cells then actively migrate anteriorly or pos-

teriorly towards the adjacent aggregates and make contact in between to form one

long continuous and irregular vessel which will subsequently lumenise to form the

thoracic duct [43, 94]. Although this analysis highlighted the morphogenesis of the

thoracic duct, it failed to determine the earlier origins of the embryonic lymphatic

endothelial cells (Fig. 3.3).

In examining the earlier development of the thoracic duct, another transgenic

line was particularly informative. The tg[fli1:NLSGFP] line expresses a nuclear

localised form of GFP in a pan-endothelial manner [64]. The origin of individual

lymphatic endothelial cells of the thoracic duct was traced using live timelapse

imaging of the developing trunk vasculature [94]. By back-tracking endothelial nu-

clei, using movies played in reverse, individual lymphatic endothelial cells could be

fate-mapped back to their original locations in the vasculature at an earlier point in

development (2dpf). Using this approach Yaniv et al. [94] were able to definitively

demonstrate that lymphatic endothelial cells of the thoracic duct originate from the

parachordal vessel (PAV) which in turn has a venous origin [33] (but see note added

in proof). This elegant demonstration of a venous origin of the thoracic duct pro-

vided direct evidence for the ‘centrifugal’ sprouting theory generated in 1902 [65],

and again seems to point towards evolutionarily conserved mechanisms of lymphan-

giogenesis. The finding of a venous origin of lymphatic endothelial cells has since

been confirmed in the mouse model using cellular fate-mapping approaches [74].

The description of the zebrafish lymphatic system coupled with these cell tracing

experiments suggests a similar developmental program for lymphangiogenesis in

zebrafish to that described in Xenopus laevis, involving a dynamic process during

which cells of venous origin are first specified to differentiate into lymphatic en-

dothelial cells, before they then become migratory and eventually undergo terminal

differentiation including tubulogenesis to form a patent lymphatic vessel.

3.3.3 Molecular Characteristics of the Zebrafish

Lymphatic Vasculature

In the original descriptions of zebrafish embryonic lymphangiogenesis, the molec-

ular control of the process was probed in order to determine whether mechanisms

underpinning embryonic lymphangiogenesis were conserved between vertebrates
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[43, 94]. As described above, Prox1 is considered a master regulator of lymphatic

cell fate in mammals. In zebrafish, the expression of prox1 is observed in the re-

gion of the thoracic duct using in situ hybridization and in the thoracic duct itself

using immunohistochemistry at 7dpf [94]. The depletion of prox1 with morpholi-

nos was associated with several phenotypes including a deformed heart associated

with decreased circulation, making the analysis of prox1 loss-of-function pheno-

types problematic [43]. However, in one study the injection of a prox1 targeting

morpholino led to a loss of the thoracic duct [94]. Likewise, the role of Vegfr3 and

VegfC signaling has been shown to be required and conserved in the zebrafish. The

depletion of VegfC with morpholinos led to a suppression of lymphangiogenesis in

embryos which appear otherwise normal [43,94]. The delivery of an mRNA encod-

ing a soluble dominant negative form of the human VEGFR3 extracellular domain

also caused a specific inhibition of lymphangiogenesis [43, 94]. These functional

assays hence indicated that the molecular control of embryonic lymphangiogenesis

is likely to be highly conserved between the zebrafish, Xenopus and other vertebrates

(Table 3.1).

Finally, in addition to these functional analyses, the analysis of expression pat-

terns conserved between fish and other vertebrates further suggests the activity of

conserved pathways in zebrafish lymphangiogenesis (Table 3.1). Expression of neu-

ropilin2a, a homologue of Neuropilin2 (which is required for normal mammalian

lymphatic development [95]) is detected in the thoracic duct in 5dpf zebrafish em-

bryos by in situ hybridization [94]. Furthermore, Angiopoietin2 is expressed in adult

lymphatics, as detected using immuno-histochemistry [43], suggesting a role for

Angiopoietin/Tie2 signaling within the lymphatic endothelium, as has been shown

previously in the mouse [23]. Although the expression of a number of classical

markers of lymphatic endothelial cells (e.g. VEGFR3, Podoplanin and LYVE-1)

has not yet been described in zebrafish, vegfr3 transcripts are observed in the early

embryonic veins, indicating conserved early expression of yet another key regulator

of lymphangiogenesis [80] (Table 3.1).

3.4 Technologies for the Study of Lymphangiogenesis

With the description of these functionally and molecularly conserved vascular sys-

tems comes the opportunity to exploit both the tadpole and zebrafish as models

to dissect the basic molecular mechanisms underpinning embryonic and possibly

pathological lymphangiogenesis. To understand how to best take advantage of these

research opportunities it is important to compare both the available technologies

and the available methodologies which have been established in these organisms

for other research purposes. Here we will outline the most useful methodologies

available in these model organisms for the study of embryonic lymphangiogenesis

and will directly compare their advantages and disadvantages with each other and

with the existing murine model.
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3.4.1 General Characteristics of the Xenopus Model

Historically, the accessibility of the large Xenopus oocyte, coupled with a large

clutch size and ease of embryonic manipulation has made Xenopus an attractive

model for the study of developmental biology. Well established embryonic fate

maps, easily accessible extra-uterine development and highly robust embryos, cou-

pled with the ability to perform cellular transplantations and ‘animal cap’ assays are

a great strength of this model organism. More recently, a great deal of attention has

been given to developing Xenopus tropicalis as a genetic model organism [6, 26],

combining the advantages of Xenopus laevis embryonic accessibility with the con-

cept of performing genetic screens. Additionally, the Xenopus model has proven an

attractive tool for pharmacological, small molecule screens to identify potentially

therapeutic small molecules [82].

3.4.1.1 The Xenopus Model for Genetic Studies

Unlike the genome of Xenopus tropicalis, Xenopus laevis experienced whole genome

duplication and tetraploidization as recently as 40 million years ago [41, 83]. This

has led to a degree of genome complexity and a level of functional redundancy that

makes the (pseudo-) tetraploid Xenopus laevis undesirable for genetic manipulation.

Consequently, the development of the diploid Xenopus tropicalis as a genetic model

organism has been a major focus for the field and should greatly improve the utility

of the frog as a model for the study of lymphangiogenesis [6].

Although mutant strains have been described in populations of wild Xenopus

laevis [42], they occur at very low frequency due to the genetic constraints faced

by tetra-ploidy. However, a recent report has described a focused forward genetic

screen (firstly identifying a phenotype and then subsequently identifying the re-

sponsible gene) in Xenopus tropicalis [26] which yielded 77 stable developmental

mutants (see Fig. 3.4 for screen overview). The identified mutants affected multiple

lineages including the cardiovascular system, proving in principle that this model

could be employed for focused forward genetic screens for lymphangiogenesis mu-

tants. However, it is important to note that none of the isolated mutants has been

genetically mapped or cloned and further development of community resources for

genetic mapping are required to make the frog a viable option when compared with

the zebrafish.

Reverse genetics (starting out with a given gene sequence and subsequently iden-

tifying the function) is the most widely used genetic approach in Xenopus laevis,

particularly employing transient methods to inhibit gene function. Unlike in the

mouse, there are no existing technologies for the creation of targeted gene knock-

outs or site directed knock-in animals. However, a large ENU induced TILLING

(targeting induced local lesions in genomes) library, such as have been developed in

plants [53,54] and zebrafish [88], has now been reported in Xenopus tropicalis [26].

The method is essentially the same as described in detail below for zebrafish [88]

and is summarized in Fig. 3.4. To date, large numbers of stable genetic lesions in
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genes of interest are yet to be described but seven mutants were isolated in the first

description of the use of TILLING in Xenopus tropicalis, and more are likely in the

future [26].

Transient genetic manipulation approaches involve the micro-injection of mor-

pholino oligomers to create loss-of-function models or, alternatively, injection of

DNA or mRNA to create loss- or gain-of-function models. Additionally, inhibiting

gene function through forced expression or ablation of given cell types, can be car-

ried out using tissue-specific promoter driven DNA constructs in a tissue of interest.

Although the injection of mRNA or DNA constructs has not yet been used in the

analysis of lymphangiogenesis in frogs, these are highly reliable methods and will

undoubtedly provide novel insights in future analyses. A description of these basic

methods can be found in [5, 45].

Morpholino oligomers are antisense oligos in which standard basic residues (A,

T, G or C) are connected by morpholine hexamer rings rather than ribose subunits.

Each of these rings is linked by uncharged phosphodiamidates. This synthetic back-

bone stabilises the oligomers and renders them resistant to intracellular enzymatic

degradation [76,77]. These highly stable oligomers can be targeted to inhibit mRNA

translation or pre-mRNA splicing by direct binding to key regulatory sequences.

Although inferior to stable genetic mutations because of possible non-specific or

off-target effects, morpholino oligomers can be used to analyse specific loss-of-

function phenotypes and protein depletion phenotypes for any given gene of interest.

It is important to note that much like RNAi technologies in mammalian cells the use

of morpholinos must be carefully controlled [19]. Typically, to indicate phenotypic

specificity, multiple morpholinos are used to target different regions of a given gene,

or a rescue of the phenotype (using exogenously introduced mRNA or DNA for the

given gene) can be used if overexpression of the gene does not in itself cause a

phenotype. When carefully controlled, morpholinos provide perhaps the most rapid

approach with which to progress analyses from gene sequence to genetic phenotype.

The analysis of Prox1 and VegfC function described above, provide two examples

demonstrating the utility of morpholinos for the study of lymphangiogenesis in

this model.

Another approach for the manipulation of protein function and the potential

identification of therapeutically relevant molecules using this model is the use of

small molecule inhibitors. The externally developing Xenopus zygote absorbs small

molecules added to the culture medium, and this approach has been used either to in-

hibit specific signaling pathways or to screen for phenotypes induced by compounds

that antagonize proteins [82] yet to be identified. This approach has already been

used successfully to screen for specific chemical inhibitors of lymphangiogenesis

(M. Detmar, personal communication).

3.4.1.2 The Xenopus Model for Cellular Studies

Standard immunohistochemistry and in situ techniques, such as the in situ hybidisa-

tion for prox1 transcripts described above [57], are well established and can be used

to examine blood and lymphatic vessels as well as lymphangioblasts directly. In
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addition, it is foreseeable that transgenic lines could also be developed to examine

lymphangioblast migration in the future. Transgenic lines have not been widely used

in either Xenopus species in the past, but there is no reason why this powerful in vivo

visualization tool could not be employed in anuran tadpoles [73].

For the specific analysis of developing lymphatic vessels in Xenopus, the size

and resilience of the embryos improve the ease of manipulation. There are two ba-

sic approaches to label lymphatic vessels: lymphangiogram and subcutaneous dye

injections. Lymphangiograms involve arraying of anaesthetised embryos on agarose

for injection and the subsequent delivery of a fluorescent dye (e.g. FITC-dextran) di-

rectly into the lymphatic vessels. This allows direct labeling of the lymphatic vessels

in isolation from the blood vasculature. The other approach used, subcutaneous dye

injections, involves the delivery of a bolus of dye immediately into the subcutaneous

spaces by micro-injection. This approach tests the functionality of the lymphatic

vessels, as functional vessels drain dye directly (for embryo alignment and injec-

tion see Fig. 3.5). In addition, the injection of dyes (e.g. rhodamine-dextran) into

the blood stream can be used to examine the blood vasculature in isolation from

Fig. 3.5 Methodologies for examining Xenopus lymphatic vessels.

A. The procedure for angiogram dye injection involves the direct microinjection of fluorescent

dye into the bloodstream in the region of the developing heart. Embryo viewed ventrally during

injection.

B. The procedure for lymphangiogram dye injection involves the microinjection of dye directly

into the trunk in the region of the developing lymphatic vessel of interest. Embryo viewed dorsally

during injection in region of dorsal caudal lymphatic vessel (DCLV).

Arrowheads indicate the injection needle. Embryos are mounted on agarose
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the developing lymphatic vessels and to examine the separation of the two systems

(see Fig. 3.5).

3.4.2 General Characteristics of the Zebrafish Model

Transparent zebrafish embryos develop externally and acquire most of their ma-

jor organs within 2–3 days post fertilization. Larvae do not need to be fed until

day 8 of development and maintain synchronous development during this period.

Zebrafish reach sexual maturity within 3 months depending on growth conditions,

and can produce large numbers of progeny (up to 200 embryos per pair per week).

This rapid external development and high fecundity coupled with a near complete

genome sequence and the active development of genomic resources has, over the

past decade, progressively increased the attractiveness of the zebrafish as a model

for developmental genetics. Since the first reports of zebrafish developmental mu-

tants, thousands of mutants have been identified [13, 18, 22, 28] and hundreds of

them cloned (www.zfin.org). Transgenic lines have been developed to selectively

label various tissues, making optimum use of the transparency of the early embryo.

Both stable [88] and transient [56] reverse genetic techniques have been established,

and small molecule screens have been successfully performed [62]. Each of these

technologies has been reported in detail elsewhere and here we will simply provide

an overview of those most useful for the study of lymphangiogenesis.

Interestingly, while zebrafish were initially introduced as a model for early em-

bryogenesis, there are increasing numbers of reports using zebrafish to study cancer

formation. Adult mutant and transgenic zebrafish models have now been described

for various leukemias [47, 50], epithelial tumours [71], ocular tumors [20], rhab-

domyosarcoma [50], malignant peripheral nerve sheath tumors [4] and

melanoma [61]. These models and future zebrafish adult cancer models may add

an extra facet to the use of zebrafish to study lymphangiogenesis once useful tools

are developed and reported for the study of adult zebrafish lymphatic vessels. While

this offers exciting prospects, we will focus here on the use of zebrafish to study

early developmental lymphangiogenesis.

3.4.2.1 The Zebrafish Model for Genetic Studies

Forward Genetics in Zebrafish

One of the key events in establishing the zebrafish as a model for the study of de-

velopmental genetics came with the first description of large scale forward genetic

screens for developmental defects performed in Tübingen (Germany) and Boston

(USA), as reported in a 1996 December edition (Vol. 123) of Development. These

initial reports proved the tractability of zebrafish for large scale detection of muta-

tions affecting developmental processes [13, 22, 28]. These screens were followed

by other screens, as well as by numerous reports of the genetic mapping and cloning

of the underlying mutations.
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In practical terms, the forward genetic approach involves (1) the mutagenesis

of the male germ line by repeated exposure to the mutagen N -ethyl-N -nitrosourea

(ENU), (2) the outcrossing of mutagenised males to create F1 individuals heterozy-

gous for the induced mutations, and (3) the incrossing of unrelated F1 individuals to

generate F2 families which can then (4) be set up for random brother-sister matings

in order to (5) homozygose the respective mutations in F3 embryos. These F3 em-

bryos are screened for mutant phenotypes (Fig. 3.4).

Large scale forward genetic screens performed over a short timeframe such as

those described above require a large amount of space (thousands of fish tanks) for

animal rearing and maintaining F2 families. Such screens can, in principle, allow

for saturation screening of the genome whereby every gene is mutated at least once.

However, it is important to note that even very large scale focused genetic screens

reported to date have probably not yet reached saturation. Many research groups per-

form what are widely known as “rolling screens” whereby a smaller amount of space

is required (for example a few hundred fish tanks) to raise F2 families. These fam-

ilies can be screened a few hundred at a time repetitively, thereby also allowing for

the screening of large numbers of genomes, but over a considerably longer period.

Once mutants are identified in forward genetic screens, the genes responsible

for the phenotypes must be identified. This involves the genetic mapping of mu-

tations to a defined region, followed by the direct identification and validation of

the gene responsible for the phenotype. Mapping involves the determination of ge-

netic distance between polymorphic molecular markers and the mutation based on

recombination frequency. A number of large scale community based projects have

developed maps of known polymorphic markers which span the entire genome at

variable density and allow the rapid identification of useful genetic mapping markers

in any given region of the genome (www.zfin.org, http://zebrafish.mgh.harvard.edu/,

http://cascad.niob.knaw.nl/snpview). The near complete genome sequence (www.

ensembl.org) allows the tethering of physical genetic maps to real genomic space

and makes it possible for researchers to identify the genes present in their region of

interest. A full description of the use of genetic mapping technologies was reviewed

by Geisler [24].

First generation screens were based on examining the morphology of live em-

bryos (for example when scoring for heart function) or examining larvae with sim-

ple dye staining (e.g. alcian blue staining for cartilage). Second generation screens

used in situ hybridization [30], antibody-based assays [72] or transgenic lines that

allowed for identification of structures in live embryos [36, 59]. With the existence

of the tg[fli1:GFP] transgenic line, such a screen could be carried out at present

for mutants which specifically lack lymphatic vessels, as it allows for relatively

easy assessment of the presence of lymphatic structures. Such unbiased screening

approaches are expected to reveal mutants with deficiencies in lymphangiogenesis,

or mutants with ectopic lymphangiogenesis, and will undoubtedly shed new light

on the molecular regulation of developmental lymphangiogenesis in vertebrates

(eg. Hogan et al., (2009) Nature Genetics, in press, see note added in proof). Similar

screens are difficult to perform in the mouse, due to the relative inaccessibility of

the embryos.
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Reverse Genetics in Zebrafish

As with the frog, technologies allowing for site directed homologous recombination

are yet to be established in the zebrafish. However, the development of TILLING

and the creation of a community resource for the identification of targeted mutants

has overcome the absence of homologous integration in allowing the creation of

stable mutant lines and true loss-of-function models [88,89]. TILLING is a mutage-

nesis based approach for the identification of mutants in any given gene of interest.

Male zebrafish are mutagenised and outcrossed to create an F1 generation carrying

large numbers of heterozygous ENU induced mutations. DNA is then extracted from

those F1 fish and used to create a DNA library representing the full complement of

mutagenised F1 genomes. Typically, a library consists of DNA from several thou-

sand fish. In order to identify mutations in a gene of interest, PCR is used to amplify

a region in which mutations are desired (e.g. critical coding exons) and either di-

rect sequencing of PCR products or heteroduplex detection against a wildtype PCR

product is performed from each individual represented in the library. This allows the

initial flagging of an individual that carries a mutation of interest. TILLING libraries

can consist of either live fish from which DNA was extracted using fin clipping, or

of cryo-preserved sperm samples from F1 males from which DNA was extracted.

Recovery of detected mutations from a TILLING library therefore involves either

direct crossing of a live fish confirmed as carrying the mutation of interest, or in

vitro fertilization from frozen sperm samples (Fig. 3.4).

In addition to creating stable genetic lesions using TILLING, transient ap-

proaches, similar to those developed in the frog model, are available in zebrafish.

As in the frog, this is made possible by the ability to directly inject nucleic acid

constructs for direct assaying of gene function. In fact, the methods used to tran-

siently manipulate zebrafish embryonic gene expression by direct microinjection

were largely adapted from techniques developed in the frog. This approach is used

for the expression of mRNA and DNA (e.g., constructs encoding dominant negative

forms of a particular protein) as well as for morpholino oligomers.

The use of morpholinos has become perhaps the most widely employed tool

for the creation of loss-of-function models in zebrafish. As described earlier in this

chapter, morpholinos provide transient inhibition of normal transcript processing

when designed against a splice donor or a splice acceptor site, or morpholinos inhibit

translation, when directed against the first translated ATG or 5′ untranslated region

of a given transcript. As described above for the frog model, in order to demonstrate

the specificity of morpholino induced phenotypes and to avoid the publication of

spurious data it is required that multiple and rigorous controls are used [19]. Hence,

morpholinos can rapidly induce phenotypes of interest but the validation and inter-

pretation of these phenotypes must be rigorous and is therefore usually the most

time consuming aspect of this approach.

A complicating aspect in the use of morpholinos for the study of lymphan-

giogenesis is the temporal limitation of this transient approach. Morpholinos are

not self replicative and after introduction their effective concentration within any

given cell is therefore diluted at every cell division. Although morpholino oligos
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are highly efficient during the first few days of development, it is clear that by

4dpf the ability of some morpholinos to reduce mRNA processing is vastly re-

duced [93]. Given that the first observable lymphatic vessel, the thoracic duct,

arises as late as 3.5dpf the use of morpholinos for lymphangiogenesis research

may be limited. It is clear that vegfC targeting morpholinos used previously are

capable of very specifically inhibiting embryonic lymphangiogenesis [43], but

this is due to VegfC signaling acting very early during zebrafish development

(Hogan et al., (2009) Nature Genetics, in press, see note added in proof), as

has been observed in mammals. These morpholinos probably induce their pheno-

typic effect much earlier than the thoracic duct is observed (perhaps in the pe-

riod of 2–3.5dpf). Hence, it is likely that whilst morpholinos will aid greatly the

study of the earliest events of lymphangiogenesis and thoracic duct formation,

they will be of limited use in dissecting later aspects such as lymphatic capil-

lary formation and guidance, tubulogenesis or lymphatic function in late larvae or

adults.

Transgenesis is an additional approach in zebrafish that can be used for cell

labeling, manipulation of gene expression or for cell ablation. Constructs containing

genomic promoter fragments fused to a coding sequence of a fluorescent protein

(e.g. GFP) can be used to label specific cellular populations [48] and similarly by

expressing cDNAs encoding dominant negative or dominant active proteins from

a specific promoter can be used to interfere with normal gene expression [27]. In

addition, approaches have been developed to express cellular toxins in a resticted

manner, which then allows for inducible ablation of a cell or tissue type of inter-

est [11]. A number of methods have been developed to optimize the efficiency of

transgenesis in zebrafish including both I-SceI mediated [79] and transposase me-

diated transgenesis (reviewed in [39]). Zebrafish transgenesis also affords a level

of inducibility through the use of either heat shock inducible promoter (hsp70)

driven transgenes [1, 68, 69] or Cre-mediated recombination driven transgenic lines

[21, 46, 50, 81].

3.4.2.2 The Zebrafish Model for Cellular Studies

In addition to its advantage as a genetic system, zebrafish offer a wonderful plat-

form to study cellular behaviour in vivo. External development, transparency and

high stress resilience inferred by experimental procedures have made this organism

a popular system to study cellular behaviour and movements during development.

Time lapse recording of larvae over extended periods allows the tracking of individ-

ual cells over time, and the combination of these features with transgenic lines that

express GFP or another fluorophore in a cell specific manner has yielded important

insights into the behavior of particular cell types in vivo. In addition to standard tech-

niques such as in situ hybridization and immunohistochemistry, approaches such

as cellular transplantation can be used for the direct labeling of cell types of inter-

est [87] and for the analysis of gene function in mosaic embryos [29]. This approach
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Fig. 3.6 Methodologies for examining zebrafish lymphatic vessels.

A. 5 day post fertilisation zebrafish larvae prepared in agarose for angiogram or lymphangiogram

assays. B. Injection of dye immediately posterior to the heart in an angiogram assay. C. Injection

of dye immediately beneath the skin in a sub-cutaneous injection to test lymphatic drainage and to

label lymphatic vessels. Arrows indicate the injection needle in B and C

has been used to demonstrate the existence of a hemangioblast in zebrafish [87], and

may also be useful in examining the ontogeny of lymphatic precursor cells in vivo.

Looking forward, the development of transgenic lines to directly label lymphatic

vessels and to test their function will greatly assist experimental and genetic ap-

proaches in this model.

For the specific examination of lymphangiogenesis, the most important approach

in this section is the use of direct dye injection to label embryonic lymphatic ves-

sels (Fig. 3.6). This method was originally used to demonstrate that the lymphatic

vasculature has a function conserved with the mammalian lymphatic vasculature,

in the drainage of interstitial fluids [43, 94]. In practice, embryos are aligned under

mild anaesthaesia in agarose and a bolus of dye (usually a large molecular weight

rhodamine dextran) is then delivered immediately under the skin by microinjec-

tion. One important note is that, given the small size of the embryos (even at one

week of age) the accurate delivery of a bolus specifically into the interstitial spaces

is challenging. An alternative approach is the direct injection into lymphatic ves-

sels. One can inject directly into the thoracic duct in the trunk or into the jugular

lymphatic vessel targeting immediately dorsal to the pectoral fin [43, 94]. As with

sub-cutaneous injections this approach is a technical challenge and the use of large

numbers of embryos followed by immediate observation post-delivery is suggested.

Direct injection of dye into the embryonic lymphatic vasculature is best used to label

lymphatic vessels in the absence of the blood vasculature, whereas subcutaneous

dye injections test the functionality of lymphatic vessels by highlighting vessels

upon drainage from subcutaneous spaces (Fig. 3.6).
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3.5 Two New Tools for the Lymphangiogenesis Toolbox

The recent discovery in frogs and fish of a functional, evolutionarily conserved

lymphatic vascular system, which develops via conserved molecular pathways

during embryogenesis, now greatly broadens the approaches that can be used

to examine lymphangiogenesis. At the moment, both models have been devel-

oped for the study of embryonic/larval lymphangiogenesis, which in itself serves

as a model of adult and tumour lymphangiogenesis. Whilst both models have

varying strengths and weaknesses, both complement the use of each other and

the mouse.

The mouse remains unassailable in terms of the model’s utility for obtaining

knock-out and knock-in animals, the creation of adult cancer models and the panels

of antibodies and molecular markers available. However, carrying out embryonic

mutant screens in the mouse has not been feasible, and as a consequence an unbi-

ased, genome-wide approach to discover genes essential for mammalian lymphan-

giogenesis has not been carried out. Rather, the identification of lymphatic gene

function had sometimes to rely on fortuitous findings. Zebrafish have an excellent

track record of identifying novel genes or novel gene functions on the basis of for-

ward genetic screens. Are screens for lymphatic phenotypes feasible in fish? Even

given the current tools they are, and all that would be required is to carry out a

mutagenesis in the tg[fli1:GFP] transgenic line that has been used to detect thoracic

duct formation in zebrafish [43, 94]. Screening a few hundred genomes would give

an indication of how many vertebrate genes are essential to govern the early steps

of lymphangiogenesis. Developing improved imaging tools (e.g. transgenic lines

that better highlight specific aspects of the lymphatic system, such as jugular lym-

phatics versus the thoracic duct) will make such screens even more informative and

rewarding.

In addition to these classical screens there are other exciting scenarios entail-

ing sensitized screening set-ups: for example, creating a vegfr3 mutant in zebrafish

via TILLING would pave the way for carrying out a genetic screen in a Vegfr3-

sensitized background. The mutagenesis would have to be done in males heterozy-

gous for a vegfr3 mutation, and F2 males [28] would need to be genotyped to

identify heterozygous carriers, but even though the latter step involves some ad-

ditional work, this concept offers the opportunity to identify factors interacting with

Vegfr3.

A variation of this scheme is the use of compounds such as MAZ51 [40], a

chemical inhibitor which preferentially inhibits VEGFR-3. Using this or other in-

hibitors at sub-critical levels would again achieve a sensitization of the Vegfr3

signaling pathway, and in a forward genetic screen or a morpholino based screen

this is an elegant way to probe for genes which on their own will not mutate to

yield a phenotype, but will show an effect in conjunction with reduced Vegfr3

signaling.

While the above mentioned screens require some time and considerable infras-

tructure, it should be clearly stated that genetic interactions and gene functions can

be analyzed very quickly in fish and frogs on a gene-by-gene basis. The equivalent of
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a “double mutant” by combining a mutant with a chemical inhibitor, or a chemical

inhibitor with a morpholino, is an extremely efficient and fast way to analyze the

interaction of different genes.

Therefore, forward genetics, the use of morpholinos, and the application of

chemicals in the zebrafish and in Xenopus can be used to identify novel players in

embryonic lymphangiogenesis and can be proceeded by analysis in mouse knockout

models, allowing for analysis of early developmental function in fish and frog as

well as physiological, pathological and biochemical functions in adult mammals.

Using the relative advantages of the respective systems in a combinatorial manner

will lead to new and exciting insights into the genetic and cellular control of lym-

phangiogenesis.

Note Added in Proof

During the proofing for publication of this chapter, we have found that, in zebrafish,

the initial budding of endothelial precursors from the posterior cardinal vein is regu-

lated by vegfc. We have also found that the cells previously thought to constitute the

“parachordal vessel” are actually lymphatic endothelial precursor cells at the level of

the horizontal myoseptum. These cells are individual, migratory cells which sprout

from the PCV, migrate along the horizontal myoseptum, and eventually migrate

ventrally to form the thoracic duct, or dorsally to contribute to other aspects of the

mature lymphatic system (Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC,

Duckers HJ and Schulte-Merker S. ccbe1 is required for embryonic lymphangio-

genesis and venous sprouting (2009) Nature genetics, in press).
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Abbreviations

RLS Rostral lymph sac

LH Lymph heart

VCLV Ventral caudal lymph vessel

DCLV Dorsal caudal lymph vessel

DLAV Dorsal longitudinal anastomosing vessel

PCV Posterior cardinal vein

DA Dorsal aorta

PAV Parachordal vessel

GFP Green flourescent protein

Tg transgenic

Dfp Days post fertilisation

NLS Nuclear localisation signal
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VEGFR3 Vascular endothelial growth factor receptor 3

VEGFC Vascular endothelial growth factor C

LYVE lymphatic vessel endothelial HA receptor

ENU N -ethyl-N -nitrosourea

TILLING targeting induced local lesions in genomes
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Abstract: Lymph node metastasis represents the first step of spread for most hu-

man cancers and serves as an important prognostic indicator. Recent

studies have revealed that tumors can actively induce the growth of

tumor-associated lymphatic vessels (lymphangiogenesis), thus promot-

ing their metastasis to draining (sentinel) lymph nodes. Several tumor

lymphangiogenesis factors have been identified, including vascular en-

dothelial growth factor (VEGF)-C, VEGF-D, VEGF-A and hepatocyte

growth factor. A large number of clinical studies have confirmed the

correlation of tumor lymphangiogenesis and metastasis of different

types of human cancers. Importantly, recent results indicate that tumors

can also induce lymphatic vessel growth in sentinel lymph nodes, even

before the onset of metastasis, and that lymph node lymphangiogenesis

further promotes cancer spread to distant lymph nodes and to distant

organs. Thus, in addition to its prognostic importance, lymphangiogen-

esis has become a new target for the prevention, treatment and imaging

of lymph node metastases.

Key words: Cancer · Lymphangiogenesis · Lymphatic metastasis · VEGF-A ·

VEGF-C · VEGFR-3

4.1 Introduction to the Lymphatic System

The lymphatic vascular system was first described in the 17th century by the Ital-

ian surgeon and anatomist Gasparo Aselli [6]. He described the lacteal lymphatic

vessels, conveying milky-white chyle, as “milky veins” in the intestine of a dog.

Later, it was found that these lacteals contain lipids and the fat-soluble vitamins A,

D, E and K that are absorbed from the intestine. In higher vertebrates, the lymphatic

system is the secondary circulatory system (for a comprehensive review see [35]).
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Unlike the cardiovascular system, where the blood is pumped in a closed circuit

by the heart, the lymphatic vascular system drains interstitial fluid in a one-way,

open-ended fashion without a central driving force. The interstitial fluid, also called

lymph, is a protein-rich exsudate from the blood capillaries. In the periphery, lymph

is passively taken up by blind-ended lymphatic capillaries, drained to larger collect-

ing lymphatic vessels and returned to the blood circulation via the thoracic duct,

which drains into the inferior vena cava. Further constituents of the lymphatic sys-

tem are the lymphoid organs including lymph nodes, tonsils, Peyer’s patches, spleen

and thymus. These structures are part of the immune system and play an important

in the immune surveillance of the body. Immune cells including lymphocytes and

antigen-presenting dendritic cells travel via the lymphatic vessels from the skin to

regional lymph nodes, where specific immune responses are mounted.

Histologically, lymphatic capillary vessels differ from blood vessels by the lack

of a basement membrane, of surrounding smooth muscle cells and of pericytes [3].

Because LECs are anchored to the extracellular matrix by elastic anchoring fila-

ments, increased hydrostatic pressure in the tissue causes lymphatic vessels to ex-

pand rather than to collapse [30]. These physiological features render the lymphatic

capillaries more permeable than blood vessels and facilitate cellular invasion by

immune and also by metastasizing cancer cells.

Over the last few years, several growth factors promoting lymphatic vessel

growth have been identified. The first lymphangiogenic factors discovered were

vascular endothelial growth factor (VEGF)-C and VEGF-D. Both growth factors act

via their receptors VEGF receptor-3 (VEGF-R3), which is specifically expressed on

LECs in normal tissues, and VEGF-R2. The role of VEGF-R2 in lymphangiogenesis

is supported by findings that VEGF-A – which binds to VEGF-R2 but not to VEGF-

R3 – promotes lymphatic endothelial cell growth in vitro and in vivo [42,46,73,88].

Hepatocyte growth factor has been found to also act as a potent lymphangiogenic

factor in vitro and in vivo, [55], and angiopoietin-1, a ligand for the endothelial

Table 4.1 Lymphatic growth factors and their receptors

Growth factor Cognate receptor on lymphatic endothelial cells Ref

VEGF-A VEGF-R2, Nrp2 [88]

VEGF-C VEGF-R3, VEGF-R2, Nrp2 [48, 57]

VEGF-D VEGF-R3, VEGF-R2, Nrp2 [57, 130]

HGF HGF-R [14, 55]

IGF1/2 IGF-1R [9]

PDGF-BB PDGFR�/� [13]

Angiopoietin-1 Tie-2 [60, 92]

Adrenomedullin CRLR/RAMP2 [25]

FGF-2 FGF-R3 [15, 112]

CRLR, calcitonin receptor-like receptor; FGF(-R), fibroblast growth factor (receptor); HGF(-

R), hepatocyte growth factor (receptor); IGF(-R), insulin-like growth factor (receptor); Nrp2,

neuropilin-2; PDGF-BB, platelet-derived growth factor-BB; PDGFR, platelet-derived growth fac-

tor receptor; RAMP2, receptor activity modifying protein 2; Tie-2, tunica internal endothelial cell

kinase; VEGF(-R), vascular endothelial growth factor (receptor)
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receptor Tie2 [21], also induces lymphangiogenesis after viral or transgenic delivery

to the skin of mice [86, 123]. In addition, fibroblast growth factor-2 [15, 72, 112],

platelet-derived growth factors [13] and insulin-like growth factors [9] have been

found to promote lymphangiogenesis, as well as adrenomedullin, acting via cal-

citonin receptor-like receptor (CRLR) and receptor activity-modifying protein-2

(RAMP2) [25]. An overview of the currently known lymphangiogenic growth fac-

tors and their respective receptors is provided in Table 4.1.

4.2 Experimental Evidence for an Active Role of Tumor

Lymphangiogenesis in Promoting Lymph Node Metastasis

For several decades, lymphatic metastasis was considered as a rather passive pro-

cess, where tissue-invading cancer cells happen upon preexisting lymphatic vessels

and are then taken up and drained to lymph nodes. However, the recent progress in

the identification of lymphatic vessel-specific markers, as well as the identification

of lymphatic growth factors, has enabled experimental studies in rodents that have

provided compelling evidence for an active role of tumor-induced lymphangio-

genesis in the promotion of lymph node metastasis. Overexpression of VEGF-C

or VEGF-D by cancer cells significantly promoted tumor lymphangiogenesis and

lymph node metastasis in mice [80, 115, 118, 132]. In a chemically induced, mul-

tistep skin cancer model, transgenic overexpression of VEGF-A or VEGF-C by

epidermal keratinocytes enhanced both tumor-associated lymphatic vessel growth

and metastasis to sentinel lymph nodes [43, 44].

Inhibition of the VEGF-C/VEGF-D/VEGF-R3 axis has now been shown in sev-

eral studies to reduce the incidence of lymph node metastasis in different cancer

models. Inhibition of VEGF-R3 signaling by systemic treatment with VEGF-R3

blocking antibodies reduced the incidence of lymph node and organ metastasis in

a mouse breast carcinoma model [104]. In an orthotopic model of gastric cancer,

therapy with VEGF-R3 blocking antibodies reduced the lymphatic vessel density

in the primary tumors and also inhibited regional lymph node metastasis [111].

Neutralizing antibodies against VEGF-D have been shown to inhibit VEGF-D in-

duced lymphatic tumor spread to lymph nodes in mice [117]. Virally delivered

soluble VEGF-R3 fusion protein (“VEGF-C/D trap”) inhibited the formation of

tumor-associated lymphatic vessels and suppressed lymph node metastasis in mouse

models of melanoma, gastric and prostate cancer [76], and overexpression of soluble

VEGF-R3 in lung cancer cells inhibited tumor lymphangiogenesis and reduced the

incidence of metastases in draining lymph nodes [39]. Moreover, soluble VEGF-R3

also inhibited VEGF-C-induced tumor lymphangiogenesis and metastatic spread in

a breast cancer xenotransplant model [56], and overexpression of soluble VEGF-R3

in a rat mammary cancer model inhibited metastasis formation in lymph nodes

and lungs [70]. Finally, in a murine mammary cancer model, inhibition of tu-

mor cell VEGF-C expression by stably transfected siRNA inhibited tumor lym-

phangiogenesis, lymph node and lung metastasis [16], and nanoparticle-delivered
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VEGF-C siRNA suppressed tumor lymphangiogenesis and lymph node metastasis

in subcutaneous xenografts of gastric cancer in mice [38]. Overall, these results

indicate that tumor lymphangiogenesis actively contributes to cancer dissemination,

that blockade of lymphatic vessel growth might inhibit tumor metastasis to lymph

nodes, and that the extent of tumor-associated lymphangiogenesis represents a prog-

nostic parameter for the metastatic risk of cancers.

4.3 The Role of Intratumoral Versus Peritumoral

Lymphangiogenesis

In several of the experimental cancer metastasis models discussed above, lymphatic

vessel growth and proliferation was not only observed at the tumor border, but also

inside of tumors. Hence, a heavily discussed topic has been the relative importance

of intratumoral versus peritumoral lymphatics for cancer metastasis to the draining

lymph nodes. In particular, it has been proposed that intratumoral lymphatic ves-

sels might be compressed and non-functional. In mouse models of orthotopically

implanted fibrosarcomas or malignant melanoma cells overexpressing VEGF-C, in-

creased tumor-associated lymphangiogenesis was observed, based on stains for the

lymphatic-specific hyaluronan receptor LYVE-1 (lymphatic vascular endothelium

receptor-1) and the blood vascular marker MECA-32 [100]. However, intratumoral

lymphatic vessels were often found to be collapsed or filled with tumor cells that

occluded the lumen, while peritumoral lymphatics apparently exhibited a more

normal morphology. Microlymphangiography with ferritin injected deeply into the

tumor did not revealed colocalization of ferritin with LYVE-1 positive structures,

suggesting that no functional intratumoral lymphatics were present. In contrast,

about 85% of ferritin staining in the tumor margin and the normal tissue colocal-

ized with LYVE-1 [100]. However, the capacity of lymphatics for fluid transport

(as measured by ferritin injection) does not necessarily correlate with their role

in transporting tumor cells. Moreover, the single use of LYVE-1 as a lymphatic

marker might possibly to an over- or underestimation of the lymphatic vessel den-

sity since tumor-associated macrophages have been shown to express LYVE-1 [109]

and since lymphatic LYVE-1 expression might be downregulated under certain con-

ditions [51]. Thus, combined stains for additional lymphatic markers such as the

mucin-type glycoprotein podoplanin [10,106,107] or the transcription factor Prox1

[96] might be beneficial for such studies. Another study in experimental prostate

cancer in mice indicated that peritumoral lymphatic vessels might play a more im-

portant role for cancer metastasis to lymph nodes than intratumoral lymphatics,

since specific inhibition of intratumoral lymphatics did not prevent lymph node

metastasis [135].

It has been suggested that differential expression levels of VEGF-C or VEGF-D

might result in differences of intra- versus peritumoral lymphangiogenesis. In hu-

man pancreatic adenocarcinomas, VEGF-C and VEGF-D protein levels as estimated

by IHC were higher at the margin (within 2 mm of the external invasive edge) than
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in the center of the tumor, and only the expression levels at the margins but not in the

tumor center correlated with lymph node metastasis [74]. Similarly, another study

in human prostate adenocarcinomas indicated that peritumoral, but not intratumoral

lymphangiogenesis correlated with lymph node metastasis, although the number of

investigated cases was rather small (n = 14) [105].

On the other hand, a number of studies have revealed proliferation of intratu-

moral lymphatics in mouse tumor models, and a significant correlation between

intratumoral lymphatic vessel density and lymph node metastasis has been found in

different types of human cancer. In head and neck squamous cell carcinomas, the

extent of intratumoral but not peritumoral lymphatics was associated with lymph

node metastasis and poor prognosis [82]. Intratumoral lymphatic vessel density was

also associated with lymph node metastasis in oropharyngeal carcinomas, but not in

oral cavity or laryngeal carcinoma [8]. In malignant melanomas of the skin, the inci-

dence of intratumoral lymphatics was significantly higher in metastatic melanomas

and correlated with poor disease-free survival [19]. One has to keep in mind that

most studies performed thus far only investigated static parameters (i.e., the number

or size of lymphatic vessels) but not the functional properties of tumor-associated

endothelium, and that activated lymphatic vessels might promote metastasis regard-

less of lymphatic hyperplasia. There is increasing evidence that lymphatic vessels

can actively recruit certain types of tumor cells. As an example, it has been shown

that lymphatic endothelium releases the chemokine CCL21 that binds to its recep-

tor CCR7 on some types of tumor cells, and that this mechanism actively pro-

motes the metastasis of CCR7-expressing melanoma cells to lymph nodes [134].

Moreover, detection of lymphovascular invasion by tumor cells on histological sec-

tions – stained for lymphatic-specific markers such as podoplanin – might rep-

resent a more sensitive parameter than the quantitation of lymphatic vessel size

and number.

4.4 Lymph Node Lymphangiogenesis: A Tumor-Induced

(Pre)Metastatic Niche Promoting Distant Cancer Metastasis

Surprisingly, we recently found – in a multistep skin carcinogenesis model in trans-

genic mice with skin-specific overexpression of VEGF-A – that metastatic tumor

cells within draining lymph nodes continued to induce lymphangiogenesis involv-

ing active proliferation of lymphatic endothelium [43]. Importantly, lymph node

lymphangiogenesis was induced in sentinel lymph nodes draining cutaneous squa-

mous cell carcinomas even before these tumors had metastasized. This was also

observed in a carcinogenesis model applied to transgenic mice with skin-specific

overexpression of VEGF-C [44]. These findings give a new twist to the seed-and-

soil hypothesis, proposed more than a century ago, which suggested that tumor cells

(the “seeds”) can only metastasize to organs that provide a fertile soil [101]. Our

recent results indicate that tumors – via release of VEGF-A and/or VEGF-C that are

drained via lymphatic vessels to the sentinel lymph node – induce lymphatic vessel
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Fig. 4.1 Proposed model of cancer metastasis to sentinel lymph nodes and beyond.

VEGF-A and/or VEGF–C secreted from the primary tumor promote the formation of peritumoral

lymphatic vessels. Drainage of VEGF-A and/or VEGF–C to the sentinel lymph node via newly

formed and preexisting lymphatic vessels around the tumor leads to lymphangiogenesis in the

sentinel lymph node. These premetastatic niches are subsequently colonized by metastatic cancer

cells from the primary tumor, which continue to secrete lymphangiogenic growth factors to induce

lymphangiogenesis in distant lymph nodes, promoting their metastatic spread to other lymph nodes

and eventually to distant organs

expansion in the draining lymph node (Fig. 4.1), thereby preparing a premetastatic

niche. Upon arrival of metastatic tumor cells in the sentinel lymph node, there is an

even more pronounced induction of lymphangiogenesis. Importantly, we recently

found that induction of lymph node lymphangiogenesis by VEGF-C secreting tu-

mor cells promoted further metastasis to distant lymph nodes and to organs [44].

Thus, expansion of the lymphatic network within lymph nodes actively contributes

to metastatic cancer spread and, therefore, represents a novel target for therapies

aimed at preventing or treating cancer metastasis.
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This concept has since then been experimentally confirmed by other groups in

mouse models of metastatic nasopharyngeal carcinoma [103] and of malignant

melanoma [37]. Moreover, we also detected the occurrence of lymph node lym-

phangiogenesis in metastatic human malignant melanomas [20]. Very recently, the

metastasis-enhancing action of lymph node lymphangiogenesis was confirmed in

breast cancer [128]. Increased sentinel lymph node lymphangiogenesis was found

to be associated with nonsentinel axillary lymph node metastasis in breast cancer

patients with a positive sentinel node. These findings further indicate that inhibition

of lymph node lymphangiogenesis might prevent lymph node metastasis and further

metastatic spread of certain types of cancer.

4.5 Correlation of Lymphangiogenic Growth Factor

Expression, Tumor Lymphangiogenesis and Metastasis

in Human Cancers

A rapidly increasing number of studies have investigated the link between lymphatic

growth factor expression, the extent of tumor lymphangiogenesis, the presence of

lymphatic vessel invasion, the presence of sentinel lymph node metastasis and the

clinical prognosis in many different types of human cancers (Table 4.2). Among

the most intensely investigated cancers are breast cancer, gastric cancer, colorectal

carcinoma and malignant melanoma. Since VEGF-C and -D were the first identified

lymphangiogenic factors, a large number of studies have investigated their possible

role in cancer lymphangiogenesis and metastasis.

In epithelial cancers, the correlation between the expression of lymphangiogenic

growth factors and lymph node metastasis has been most intensely studied for

VEGF-C. More than 70 studies have investigated the influence of VEGF-C expres-

sion on cancer metastasses, either at the mRNA level using (quantitative) RT-PCR or

RNase protection assays, or – most frequently – at the protein level using immuno-

histochemistry (IHC) or ELISA assays (Table 4.2). VEGF-C mRNA and/or protein

levels have often been found to be upregulated in tumor samples and/or serum of

cancer patients, as compared to normal controls [12, 29, 36, 77, 84, 95, 113, 122].

Over all studies and techniques used, 56 out of 73 studies (77%) found a significant

positive correlation between VEGF-C expression levels and lymph node metasta-

sis. Assessment via IHC most often detected a positive correlation (41 out of 49

studies; 83.7%), as compared with mRNA based techniques (12 out of 18 studies;

66.7%) and ELISA detection (3 out of 6 studies; 50%). Some tumors might be better

suited for prediction of lymph node metastases by measuring VEGF-C expression

levels. For instance, among the three most frequently studied cancer types, VEGF-C

expression correlated with lymph node metastasis in 14 out of 17 studies (82.3%)

on gastric carcinoma, as compared with colorectal carcinoma (9 out of 13 studies;

69.2%) and breast cancer (5/9, 55.6%).

The association of VEGF-D expression with lymph node metastasis has been in-

vestigated in a total of 32 studies; 14 of these (43.8%) reported a positive correlation
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(Table 4.2). Similar to the studies on VEGF-C, assessment by IHC found the highest

correlation (11 out of 20 studies, 55%), whereas VEGF-D mRNA expression was

correlated with lymph node metastasis in only 2 out of 10 studies (20%), and ELISA

assays detected a positive correlation in 1 of 2 studies (50%). Unlike the findings

with VEGF-C, however, VEGF-D mRNA and protein levels were sometimes found

to be decreased in tumor samples [36, 59, 69, 95] or metastatic lymph nodes [95] of

cancer patients, whereas some studies found elevated levels [113,119,139]. Interest-

ingly, two studies [69, 93] found a positive correlation between lymph node metas-

tasis and a decreased VEGF-D to VEGF-C mRNA ratio. In these cases, VEGF-C or

VEGF-D levels themselves did not correlate with lymphatic metastasis. The reasons

for these findings are at present unclear – it remains to be investigated whether de-

creased VEGF-D levels might allow more VEGF-C to be bound to VEGF-R3 and

VEGF-R2 and whether this might lead to a more potent stimulation of lymphatic

endothelium. In 8 out of 19 studies (42.1%), VEGF-A mRNA or protein expression

was positively correlated to LNM (Table 4.2). Detection by IHC was positively

correlated in 1 of 6 studies (17%), as compared to mRNA expression (4 out of 8

studies; 50%) or ELISA detection (2 out of 4 studies; 50%). It is of interest that in

a large number of studies, in particular in gastric cancer, elevated levels of VEGF-C

expression were correlated with increased detection of lymphatic vessel invasion

(LVI; Table 4.2), indicating that VEGF-C might directly influence the interaction

between tumor cells and lymphatic endothelium.

In human malignant melanomas of the skin, lymphatic vessels represent the ma-

jor route of metastatic dissemination [83], and sentinel lymph node biopsies are

performed to assess the metastatic potential of the primary melanoma, with im-

portant implications for the choice of treatment and for prognosis [68, 87]. Two

recent studies indicate that the extent of lymphangiogenesis in the primary cuta-

neous melanoma can predict the presence of sentinel lymph node metastases at the

time of surgery [20, 81]. Tumor lymphangiogenesis was the most significant inde-

pendent prognostic indicator for metastasis [20]. VEGF-C expression levels were

significantly correlated with lymphatic vessel density in primary melanomas [20]

and with lymph node metastasis [20, 108, 131]. Primary melanomas were reported

to express more VEGF-C in the vertical growth phase than in the horizontal growth

phase [32]. No correlation was found between the expression levels of VEGF-D

and the incidence of lymph node metastasis in two studies [20, 108] but VEGF-

D has been detected in melanomas and has been associated with tumorangiogen-

esis [1]. The contribution of other recently identified lymphangiogenesis factors

towards melanoma lymphangiogenesis and lymphatic metastasis remains unclear

at this time.

Overall, these studies indicate VEGF-C as the most important lymphangiogenic

factor in the majority of human cancers. The observed discrepancies between differ-

ent studies might be explained, at least in part, by the lack of standardized criteria

for the evaluation and quantification of tumor lymphangiogenesis, as well as for the

determination of expression levels of lymphangiogenic mediators.



70 M. Rinderknecht and M. Detmar

4.6 Evaluation of the Different Detection Methods Used

for Assessment of Expression Levels of Lymphangiogenic

Growth Factors in Human Cancers

It is obvious that a thorough interpretation of the studies investigating the correla-

tion between growth factor expression, tumor lymphangiogenesis and lymph node

metastasis is hampered by the lack of a direct comparability between these studies.

This is due to the use of several different, non-standardized methods for assessing

lymphatic growth factor expression and for reporting clinicopathological features.

Expression of molecules involved in lymphatic vessel growth has been measured by

(quantitative) RT-PCR, ELISA or by visual scoring of IHC stains. What is the most

appropriate technique to perform this task? What parameters need to be considered

when applying a given technique? In the following paragraphs, we intend to review

the potential advantages and drawbacks of each method.

4.6.1 mRNA vs Protein Expression

Whereas ELISA and IHC evaluate the expression of protein, (quantitative) RT-PCR

measures the expression of mRNA. Due to possible posttranscriptional and post-

translational regulation, mRNA levels do not necessarily reflect protein levels [33].

It is therefore unclear whether detection of VEGF-C mRNA levels by quantitative

RT-PCR truly reflects the levels of the respective proteins. In fact, at least two studies

failed to detect a correlation between VEGF-C mRNA and protein levels, or encoun-

tered cases where mRNA overexpression did not translate into increased VEGF-C

protein expression [59, 61]. In contrast, a significant correlation between VEGF-C

mRNA levels and mature VEGF-C protein levels was reported in cells isolated from

patients with acute myeloid leukemia [22], and mRNA and protein levels of VEGF-

D were also positively correlated in tumor samples of colorectal cancer [29]. One

also has to keep in mind that tissue preservation crucially impacts the detection of

growth factors at the mRNA and protein level. This is of particular relevance to the

large number of studies that have been performed on tissues routinely embedded

in paraffin. Moreover, the parameters for RT-PCR detection and normalization have

not been well defined in a number of studies. Overall, more studies are needed to

evaluate the best-suited approach for the quantitative measurement of lymphatic

growth factors in tissues. Based on the previously published studies, detection at the

protein level might have some advantages over mRNA-based methods, and fresh-

frozen material might be better suited than paraffin-embedded samples.

4.6.2 Sampling Area and Cellular Resolution

A major problem when using (quantitative) RT-PCR and ELISA assays of tumor

samples arises from the area from where the samples were obtained. Most often,
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biopsies are taken from some undefined part of the tumor tissue. For analysis,

tissue samples are then homogenized, which results in a loss of resolution and

a masking of focal lymphangiogenic growth factor levels. Moreover, since tumor

lymphangiogenesis predominantly occurs in the peritumoral area, samples taken

from the tumor center may not appropriately represent VEGF-C or VEGF-D lev-

els at the hot spots of lymphangiogenic activity. Indeed, several studies found

that intratumoral VEGF-C and VEGF-D levels are lower than peritumoral levels

[31, 74, 97, 113, 144].

Immunohistochemistry of whole tumor samples has the advantage of preserv-

ing the histological environment of the assessed tissue sample, thereby enabling

a more detailed picture of lymphangiogenic growth factor expression. Samples

encompassing intra- and peritumoral structures can be investigated at the same

time, and hot spots of VEGF-C/VEGF-D expression can be easily visualized.

Moreover, the cell type-specific expression can often be distinguished by IHC,

whereas RT-PCR or ELISA cannot differentiate between tumor and stromal cells.

On the other hand, a rather large number of different antibodies has been used

for IHC studies, and their relative specificity has not been comprehensively

evaluated.

4.6.3 Systemic Measurement of Lymphangiogenic

Growth Factors

In a number of studies, circulating VEGF-C [2, 24, 71, 84, 124, 131], VEGF-D

[24, 29, 58] or VEGF-A [58, 84, 124] levels were measured in the plasma or serum

of cancer patients. Whereas this method would be the preferred way of assessing

VEGF-C and other growth factor levels, due to its minimal invasiveness and the

possibility for repeat measurements of biomarkers over time, its validity remains

unclear. For instance, VEGF-C is produced locally in rather low amounts whereas

serum VEGF-C levels are typically in the range of 1–2 ng/ml with a significant

variation between individuals [124]. While local VEGF-C levels might be highly

increased at the tumor edge, an increase in systemic VEGF-C levels might be de-

layed and obscured when VEGF-C is drained via the lymphatics and the thoracic

duct into the blood circulation. Nevertheless, there are a few studies which re-

ported a significant correlation of serum VEGF-A, -C or -D levels and lymph node

metastasis [58, 71, 124, 131].

4.6.4 Quantitative vs Qualitative Assessment Methods

To determine the risk for metastasis of primary cancers, it would be advantageous

to be able to define clear thresholds for the levels of lymphangiogenic growth

factor in or around the primary tumor or in the circulation when measured with
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quantitative methods such as ELISA or qRT-PCR. Although retrospective cohort

studies found a significant increase of VEGF-C protein in patients with lymph

node metastasis [71, 124, 131], this marker might not be applicable for prospec-

tive diagnosis of lymph node metastasis in individuals, since VEGF-C serum levels

vary significantly between individual patients. High serum levels of VEGF-C in

patients with non-metastatic tumors are well within the range of VEGF-C serum

levels of patients bearing metastatic tumors [124]. Without corresponding negative

controls from the pre-disease state, circulating growth factor levels are difficult to

interpret.

By contrast, qualitative (semiquantitative) assessment of lymphangiogenic

growth factor expression by IHC allows comparison with healthy tissue from the

same patient and subsequent determination of the extent of tumor-driven lymphan-

giogenesis.

4.6.5 Choice of Antibodies for ELISA and IHC

Since VEGF-C and D undergo extensive proteolytic processing before and after

secretion, it is important to consider which isoform to detect. Antibodies against

the VEGF homology domain (VHD), which is contained in the fully processed, N-

and C-terminally cleaved forms of VEGF-C and D, appear to be suited best since

they recognize the mature and most potent protein as well as all precursor pro-

teins containing the VHD. Moreover, the completely processed forms of VEGF-C

and VEGF-D (�N�C-VEGF-C/-D) activate VEGF-R2 much more potently than

the unprocessed forms, thereby inducing enhanced vascular permeability in lym-

phatics and blood vessels [23, 52, 98], which might lead to facilitated lymphatic

vessel invasion by tumor cells. However, one of the most frequently used antibodies

for detecting VEGF-C, the rabbit polyclonal Zymed anti-VEGF-C antibody (cat.

no 18-2255) was raised against the C-terminal part of unprocessed VEGF-C and

therefore does not recognize mature VEGF-C (Table 4.3).

In conclusion, there are, at present, no established protocols for the standard-

ized assessment of lymphangiogenic growth factor expression (as well as of tumor

lymphangiogenesis) in tumors, tumor metastases and/or serum samples. Several of

the methods used are time-consuming, expensive and difficult to quantify. Thus,

because of the emerging importance of tumor (and lymph node) lymphangiogen-

esis as a prognostic marker and as a therapeutic and diagnostic target, there is

an urgent need for large, multi-center studies to comparatively evaluate the prog-

nostic/diagnostic value of growth factor expression, including some of the newly

identified lymphangiogenic factors. At present, evaluation of VEGF-A, -C and -D

expression by visual evaluation of histological samples – that include the peritu-

moral area of primary tumors or a representative area of the draining lymph nodes –

by immunohistochemistry with antibodies against the mature forms of these growth

factors might represent the most promising approach.
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Table 4.3 Overview of antibodies used for detection of VEGF-C and VEGF-D in tissue sections

Manufacturer Cat. No. Species

Peptide used for

immunization

Reactive

against Ref.

Anti-VEGF-C

Immuno-

Biological Labs

(IBL)

18415 rabbit aa 105–118 VHD M

R&D Systems AF752 goat aa 104–330 VHD M, [108, 143]

Santa Cruz SC-7133 goat aa 1–100 N-terminus M

SC-1881 goat aa 369–419 C-terminus M

SC-9047 rabbit aa 230–419 C-terminus M

Van Trappen et al. N/A rabbit aa 112–227 VHD [129]

Zhongshan∗ ZA-0266 rabbit C-terminus C-terminus M

Zymed/Invitrogen 18-2255 rabbit C-terminus C-terminus M

Anti-VEGF-D

Achen et al. N/A rabbit aa 93–201 VHD [1, 20]

Kirkin et al. Serum 4292 rabbit aa 92–218 VHD [62, 129]

R&D Systems Mab286 mouse rhVEGF-D VHD [102, 143]

AF286 goat rhVEGF-D VHD M, [127]

Mab622 mouse rhVEGF-D VHD [27]

Santa Cruz SC-7602 goat aa 301–400 C-terminus M

SC-7603 goat aa 1–89 N-terminus M

SC-13085 rabbit aa 211–354 C-terminus M

aa, amino acid; M, manufacturer; N/A, not available; VHD, VEGF homology domain; ∗, repacked

Zymed 18-2255

4.7 Perspectives

There is now compelling evidence, stemming from experimental tumor metastasis

studies in mice and from clinicopathological studies in a large number of differ-

ent human cancer types, that tumor-associated lymphangiogenesis promotes cancer

metastasis and represents a novel and powerful prognostic indicator for the risk

of metastasis. Moreover, the newly identified process of lymph node lymphangio-

genesis – induced even before cancer metastasis – indicates that lymphangiogen-

esis represents a novel target for the prevention, treatment, and early detection of

cancer metastases. While VEGF-C appears at present to be the most important tu-

mor lymphangiogenesis factors in the majority of human cancers, also VEGF-A

and VEGF-D have potent lymphangiogenic activity. Moreover, there are a number

of newly identified lymphangiogenic growth factors whose relative importance for

cancer metastasis needs to be clarified. Therapies aimed at inhibiting the VEGF-

C/VEGF-D/VEGF-R3 axis need to take into consideration that VEGF-R3 is also

expressed by several non-endothelial cell types, including cells in the bone marrow,

and that e.g. VEGF-D is also expressed in osteoblasts [99]. Thus, it remains to be

seen whether or not therapies blocking this axis will also lead to adverse effects

on the recruitment of bone marrow-derived precursor cells, hematopoiesis or bone
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growth and repair. Importantly, considerable efforts are needed to standardize the

qualitative and quantitative evaluation of tumor lymphangiogenesis and of the ex-

pression levels of lymphangiogenic growth factors in tumors and metastases.
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Abstract: Lymph nodes are the initial site of metastasis in many cancers. For pa-

tients with clinically localized tumors, the pathologic status of regional

nodes is the most important prognostic variable, and techniques to

evaluate these nodes radiographically and surgically are critical com-

ponents in management. Advances in nodal evaluation, particularly

sentinel node biopsy, have enabled more accurate nodal evaluation with

less morbidity. The therapeutic impact of lymph node dissection re-

mains a subject of controversy in several solid tumors, but growing ev-

idence suggests that early removal of microscopically involved lymph

nodes improves the long-term outcome of patients. Nodal metastasis

should remain a central focus of clinical research to build on these

recent discoveries.

Key words: Lymph nodes metastases · Prognosis · Lymph node staging · Lymph

node imaging · Lymph node dissection

Cancer cannot progress to a fatal metastatic phenotype unless it escapes its site

of origin and travels to a new anatomic site where it successfully establishes a

focus of malignant growth. Because this new site is often the regional lymph nodes,

evaluation of these nodes becomes pivotal for prognostic assessment and treatment

planning.

As might be expected, the frequency of nodal metastases at the time of presenta-

tion varies considerably among tumor types but tends to be lower when the anatomic

site or screening technique facilitates early detection. (Fig. 5.1) Perhaps more sur-

prising is the absence of a uniform correlation between frequency and prognostic

significance of nodal metastases. (Fig. 5.2) For example, only 12% of melanoma

patients present with regional metastasis, but they have a 33% absolute decrease in

survival, whereas the 34% of thyroid cancer patients with nodal involvement have

only a 2.8% decrease in survival.
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*presentation not available for prostate

Fig. 5.1 Disease distribution at presentation: Localized, Regional, Distant. Data taken

from SEER Summary Statistics. http://seer.cancer.gov/csr/1975 2004/sections.html Accessed

September 8, 2007

5.1 Clinical Evaluation of Regional Nodes:

Palpation and Imaging Techniques

Lymph nodes can be examined by palpation, ultrasonography (with or without fine

needle aspiration biopsy), computed tomography (CT), magnetic resonance imaging

(MRI), or positron emission tomography (PET). Physical examination is simplest

and least invasive; results depend on location of the nodes, size of their metastatic

foci and habitus of the patient. Although most nodal metastases detected by palpa-

tion are relatively large, smaller metastases may be palpated in thinner patients and

in superficial locations such as the neck and groin.

Ultrasonography may improve staging accuracy, depending on the skill and

experience of the examiner, the specifications of the equipment (high frequency

probes and Doppler capability) and the criteria used to identify suspicious lymph

nodes [1]. Suspicious characteristics include a rounded (as opposed to elongated)

nodal shape with a length to width ratio of less than 2, loss of the normal fatty hilus,

asymmetric cortex, increased vascular signature, and/or a hypoechoic parenchymal

focus [2–4]. The absolute size of a node appears to be relatively unimportant [5]. The

feasibility of ultrasonography depends on anatomic location, although endoscopic
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Fig. 5.2 Impact on five-year survival of lymph node metastasis (Localized → Regional).

Data taken from SEER Summary Statistics. http://seer.cancer.gov/csr/1975 2004/sections.html

Accessed September 8, 2007

probes can be used for many deep locations such as perirectal nodes. A relatively

low cost and the absence of ionizing radiation are additional advantages to the test.

CT scans often provide useful information regarding the size of lymph nodes

in the basins of interest. However, as noted above, size is often poorly correlated

with the presence of metastasis. Though benign characteristics such as a normal

fatty hilus are sometimes seen by CT, functional evaluation is not optimal. Contrast

enhancement is present in only about one third of involved nodes [6].

MRI can demonstrate the presence of lymph nodes, and in some clinical situ-

ations such as rectal cancer, it is standard for initial nodal staging. PET scanning

appears useful only for detection of lesions at least 1 cm in diameter and only for

lesions with high rates of glucose metabolism.

In general, the accuracy of all imaging techniques depends in part on the skill of

the operator and the quality of the equipment. Ultrasound is the least expensive, but

is most operator dependent. CT and MRI scans are significantly more expensive,

and quality varies with the generation of scanner used. However, they are less op-

erator dependent and can examine more anatomic sites simultaneously. In general,

palpation is a component of all initial physical examinations and imaging studies

are tailored to each clinical scenario.
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5.1.1 Breast Cancer

Palpation of axillary and supraclavicular nodal basins is essential for evaluation of

patients with breast cancer. However, because of its relatively low sensitivity and

specificity for metastasis [7], palpation generally should not be the sole basis for

treatment decisions.

The sensitivity of preoperative ultrasonography ranges from 32% to 82%

[2, 8–11]. A recent study of 726 patients found that 21% of all metastases could be

detected using ultrasonography (8% of the entire population), potentially expediting

this group’s treatment by avoiding nodal biopsy prior to a complete axillary dissec-

tion [9]. Another report of 209 patients showed ultrasonographic detection of 56%

of metastases (27% of population) [12]. Fine needle aspiration (FNA) is required

before complete axillary dissection. Ultrasound-guided core biopsies have also been

studied; in a group of 179 patients, metastases were found by ultrasound-guided core

biopsy in 55 patients (31%) [13]. Ultrasonography may be more efficient in patients

with relatively large primary tumors, probably due to the increased likelihood of

nodal involvement [14, 15].

PET has a reported sensitivity of 79–83% and specificity of 95–100% for locally

advanced tumors [16, 17]. However its sensitivity and specificity drop to 61% and

80%, respectively, in patients with smaller primary tumors [18] PET is therefore not

recommended for routine preoperative staging of breast cancer. CT scans have only

moderate sensitivity (73%) for preoperative staging of breast cancer [19].

5.1.2 Melanoma

Palpation of regional nodes is important for initial staging of melanoma and for post-

operative monitoring. Because postoperative clinical examination is often paired

with ultrasonography, the sensitivity of palpation varies widely [3, 20–25]. In this

comparative setting, even a modest improvement through imaging results in a

marked decrease in the measured sensitivity of palpation.

Ultrasonography is also used preoperatively, with reported sensitivities of 39%

to 94% [26–30]. This variability, which may reflect differences in the size of nodal

metastases and the definition of a positive test, means that ultrasound-guided nee-

dle biopsy eliminates only about 10% of sentinel node biopsies. A study from

the Sydney Melanoma Unit used lymphoscintigraphy for focused ultrasonographic

evaluation of nodal basins. Metastases as small as .45 mm were seen, but disease

was frequently not visible when tumor foci were less than 4–4.5 mm in diame-

ter [4]. The second Multicenter Selective Lymphadenectomy Trial (MSLT II) will

determine the ability of ultrasonography to detect metastases prior to sentinel node

biopsy.

As indicated above, ultrasonography appears to be significantly more sensitive

than physical examination for postoperative monitoring. Although high sensitivities

(> 90%) have been reported [31,32,52,124], these reports only consider patients at

the time of recurrence. Thus the high sensitivity indicates ultrasound is as good or
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better than other clinical staging techniques, but does not necessarily indicate a low

risk for nodal recurrence in the future. MSLT II will prospectively evaluate nodal

ultrasonography for follow-up of patients who have positive sentinel nodes but do

not undergo completion lymphadenectomy.

5.1.3 Head and Neck Cancer

With a reported sensitivity of 48–76%, palpation should not be used to avoid neck

dissection or limit the extent of dissection [32–35]. Similarly, ultrasonography can-

not reliably rule out the presence of nodal disease [36]; its sensitivity for initial

nodal staging is 48–90% in head and neck cancer [32,35,37,38] and only 20–54% in

thyroid and oral cancer [39]. However, ultrasonography is superior to palpation for

metastases smaller than 1.5 cm [40], and its sensitivity during postoperative follow-

up is 93%, as compared with 77% for palpation [41].

Either CT or MRI scanning may be part of the standard preoperative work up for

tumors of the salivary gland, oropharynx, hypopharynx, nasopharynx, and larynx.

Sensitivity ranges from 38% to 84%, with a meta-analysis finding of 83% [32–34,

37, 38, 42–44]. MRI does not appear to be superior to contrast-enhanced CT [45].

PET scanning has high sensitivity (96–100%) and has upstaged as many as

20.8% of cancers initially assessed by standard imaging techniques [42, 44, 46].

PET scanning may also be useful during follow-up [47].

5.1.4 Lung Cancer

As might be expected, palpation of lymph nodes has been less commonly studied

in lung cancer. One study reported that the mean diameter of supraclavicular nodes

detected by palpation was 25.2 mm, and palpation achieved 50% sensitivity only for

nodes at least 22.3 mm in size [48]. CT scanning is standard for initial staging [49].

Sensitivity is moderate (57–77%), and mediastinal nodes suspicious for metastasis

should be sampled by mediastinoscopy or other technique to confirm pathologic

abnormality [50–52]. In the presence of suspicious hilar lymph nodes, mediasti-

nal nodal sampling is also recommended prior to surgical resection. PET scanning

has demonstrated superior staging performance for mediastinal lymph nodes over

CT scanning alone. The utility of PET appears to be relatively high in patients

with larger tumors and remains an area of investigation in the earliest lung can-

cers [53, 211].

Both endoscopic ultrasonography (EUS) and endobronchial ultrasonography,

with or without FNA, have been used to evaluate mediastinal lymph nodes, usu-

ally after CT scanning. Sensitivity in this setting is 84–94% [51, 54–56]. Ap-

proximately 25% of patients with a normal CT scan reportedly will have ultra-

sound evidence of disease [57]. However, ultrasound cannot evaluate either the

primary tumor or non-nodal sites of metastasis and therefore cannot replace CT

scanning.
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5.1.5 Esophageal Cancer

The initial staging evaluation for patients with esophageal cancer includes CT scan-

ning, which has a relatively low sensitivity for nodal metastasis (8%) but helps de-

fine the primary tumor and indicate the possible presence of distant metastases [58].

Endoscopic ultrasound appears to be better than either CT or PET scanning for the

staging of the primary tumor and regional nodes. FNA is an important component

of the ultrasound evaluation. EUS is also operator dependent and access may be

limited in the setting of esophageal stricture [59]. PET scanning appears to add a

modest incremental improvement to CT for nodal evaluation, and is superior for

systemic staging [212]. Some centers also utilize laparoscopic staging which has

demonstrated similar accuracy to EUS [60].

5.1.6 Rectal Cancer

In addition to CT scanning, EUS or MRI with endorectal coil is standard for nodal

staging in rectal cancer, and provides additional information regarding the tumor

stage [61,62]. Accuracy of nodal staging is considerably higher with EUS than with

CT scan alone (85% vs. 45%) [63]. The ability to detect nodal metastases seems

to increase with the primary tumor’s stage. The overall staging utility of MRI is

similar to that of EUS. There may be some advantage in primary tumor staging for

EUS and nodal staging for MRI, but these technologies are both site- and operator-

dependent [62, 213].

5.1.7 Genitourinary Tumors

In vulvar cancer, clinical examination of inguinal lymph nodes has a sensitivity of

only 35% preoperatively and 72% intraoperatively. However, the sensitivity of CT

scanning also is not impressive (59%). Ultrasonography has better sensitivity (87%)

but lower specificity [64]. Because MRI has a reported sensitivity of 85.7% and a

negative predictive value of 93.9%, it may be useful to select patients who could

avoid surgical nodal evaluation [65].

In prostate cancer, nodal imaging with EUS or endorectal MRI has not been

successful; sensitivity is 60% or less [66]. Operative evaluation remains an essential

part of nodal evaluation for these patients.

5.2 Surgical Evaluation of Lymph Nodes

When results of noninvasive techniques are not definitive, nodal sampling may be

necessary to determine nodal status. Needle biopsy or excisional surgical biopsy is

practical for clinically evident nodal disease. If the regional lymph node basins are
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clinically normal, nodal assessment technique depends on the type of malignancy.

Lymph nodes proximal to primary colon cancer are usually removed en bloc with the

primary tumor. By contrast, regional nodes that drain breast cancer and melanoma

must be removed during a separate procedure. In this case, if the risk of regional

metastasis is very low, clinical nodal observation is reasonable. Most sarcomas and

certain other tumors rarely metastasize to regional lymph nodes.

If surgical evaluation of the nodes is necessary, the traditional approach was

complete dissection of the basin that drains the primary tumor. However, elective

complete lymphadenectomy of a clinically normal lymph node basin introduces the

risk of considerable morbidity and often proves to be unnecessary because most

patients will not have nodal metastasis. This dilemma led to development of a less

invasive but highly selective nodal sampling technique called sentinel node biopsy

(SNB). The sentinel node (SN) is the first lymph node on the direct drainage path-

way from a primary tumor. Because it is the first node to receive drainage from the

primary tumor, its tumor status should reflect that of the entire basin; if the SN is

tumor-free, lymphatic metastasis is highly unlikely.

5.2.1 Sentinel Node Biopsy

SNB is preceded by injection of lymphatic mapping agents at the primary tumor site.

These agents, which may be dyes or radiopharmaceuticals, drain through lymphatic

channels to the SN. The SN is identified intraoperatively by visualization of the

dye in a node and/or by measurement of radioactivity levels over the node. Each

dye-stained and/or radioactive SN is excised for pathologic evaluation. If all SNs

are free of tumor, the nodal basin should be tumor-free and the risk of distant metas-

tasis is low. Conversely, the presence of SN metastasis introduces the possibility of

metastasis to other nodes in the same basin and indicates an increased likelihood of

distant spread.

When compared to complete lymphadenectomy, SNB is significantly less morbid

[67, 68] and significantly more accurate. This is not surprising because removal of

fewer nodes decreases morbidity, while histopathologic scrutiny of a smaller but

higher-risk specimen improves detection.

The tumor status of the SN has been found to be the most important prognostic

variable in clinically localized melanoma [69] and breast cancer [70–72], although

the prognostic significance of very small breast cancer metastases is unclear (see

below). Even when en bloc resection of lymph nodes with the primary tumor elimi-

nates the potential for additional procedural morbidity, as is the case for pulmonary

and gastrointestinal malignancies, intraoperative (in vivo) or even postoperative (ex

vivo) mapping of the SN may improve staging by allowing the pathologist to focus

on a smaller number of lymph nodes.

Accurate results with SNB require experience. In the earliest reports of the

technique in melanoma, a dye-stained SN was identified in 82% of basins [73]. With

experience the success of dye-directed SN mapping increased to 95%; addition of

radioactive tracers further improved identification rates. The current identification
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rate at experienced centers is over 99% [74]. In the Multicenter Selective Lym-

phadenectomy Trial I (MSLT-I) in melanoma the rate of false-negative SNs de-

creased from 10.3% among the first 25 cases to 5.3% thereafter [67]. This suggests

that a 50-case learning curve may be necessary for optimal lymphatic mapping of

the SNs that drain primary cutaneous melanoma. In breast cancer there is more

debate about the length and even the existence of a learning curve; a minimum of

25 cases has been suggested to achieve competency [75, 76].

In summary, SNB was validated initially for melanoma and subsequently for

breast cancer; it is now standard for those diseases. SNB may prove to have

a role for staging colon, thyroid, head and neck squamous cell, genitourinary

and non-melanoma skin cancers. SNB has also been investigated for gastric and

esophageal cancers, as a staging tool and as a method of tailoring nodal dis-

section based upon lymphatic drainage patterns [77, 78]. Finally, SNB may im-

prove staging of lung cancer [79–81]. As mentioned above, it generally does not

change the operation performed, although it might reduce the extent of nodal

sampling [82].

5.3 Pathologic Evaluation of Lymph Nodes

The accuracy of nodal staging reflects not only the nature and number of nodes

removed but also the techniques for pathologic evaluation of these nodes. The

processing of complete nodal dissection specimens [83, 84] begins with palpation

to identify any enlarged nodes. After 6–8 hours of fixation, the nodes are dis-

sected free of surrounding tissue. Care should be taken to identify small nodes

(< 5 mm), which are often the only site of disease. Each node is bisected and

stained with hematoxylin and eosin (H&E). More extensive sectioning or staining

techniques are not practical for the large number of nodes removed during complete

lymphadenectomy.

Because the SNB specimen is so much smaller than a complete lymphadenec-

tomy specimen, each SN can be bivalved and then cut into further sections that are

processed for standard H&E or for immunohistochemical (IHC) staining. IHC stains

are chosen according to tumor type. Anti-cytokeratin antibodies are used to stain

adenocarcinomas; concomitant staining for E-cadherin may reduce false-positive

results [85]. Anti-S100 antibodies are the most sensitive stain for melanoma but

they also stain nevi and dendritic cells and therefore should be used with antibodies

to Mart-1, HMB45 and/or tyrosinase [83].

Focused pathologic examination of the nodes has increased identification of

nodal micrometastases (0.2 and 2 mm) and isolated tumor cells (ITC; < 0.2 mm),

but the prognostic significance of ITC is unknown in breast cancer [86–88] and not

certain in melanoma – although retrospective data indicate that ITC may adversely

affect melanoma-specific survival [89]. The prognostic significance of tumor foci

detected by molecular techniques is also unclear, probably reflecting variations in

technique. Reverse transcriptase polymerase chain reaction (RT-PCR) assays for
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nodal metastasis of breast cancer, colon cancer, melanoma, and oral/oropharyngeal

cancer have utilized different methods of tissue sampling, different tissue prepara-

tions (fresh frozen vs. fixed) and different molecular markers. In general, RT-PCR

assays based on multiple markers are more sensitive than those based on a single

marker [90], and use of formalin-fixed, paraffin-embedded specimens is preferable

to fresh frozen tissue.

As with histopathologic techniques, molecular techniques appear to have more

prognostic relevance in melanoma [91] than in breast cancer [92, 93]. In MSLT

II, a multimarker RT-PCR assay is being used to assess paraffin-embedded nodal

tissue in patients with melanoma. Results of RT-PCR assays for colon cancer are

mixed; a recent meta-analysis reported prognostic significance for RT-PCR assays

but not for IHC staining [94]. At present, the most likely advantage for RT-PCR

assessment of SNs associated with several solid tumors is its negative predictive

value; patients whose nodes are tumor-negative by both histopathologic and molec-

ular techniques are extremely unlikely to develop recurrent disease [95, 96, 214].

However, additional prospective studies will be required to fully establish its utility

in clinical practice.

5.4 Prognostic Impact of Nodal Disease

The presence of tumor in regional nodes demonstrates a tumor’s ability to exit the

primary site, traffic to another location, extravasate and survive. From a clinical

standpoint, nodal status impacts the management of many cancers. The prognostic

impact of regional metastasis is not directly related its incidence, so that the presence

of such disease may have prognostic importance even if it occurs rarely.

5.4.1 Breast Cancer

Approximately one third of breast cancers are initially diagnosed with lymph node

metastasis. The risk of nodal disease is related to the primary tumor’s size (Fig. 5.3),

grade, histology, ploidy, hormone receptor expression, lymphovascular invasion and

location in the breast; and to the patient’s age and ethnicity (Tables 5.1 and 5.2)

[97–101]. Other factors such as MIB-1 index and family history may prove to be

relevant. Unfortunately, no factor or combination of factors can reliably exclude

patients from nodal staging.

The tumor status of regional nodes is the most powerful predictor of outcome for

primary breast cancer (Table 5.3) [102]. Data from the Surveillance Epidemiology

and End Results (SEER) registries show that 5-year survival drops from 98% to

84% if nodes are involved. Because the number of tumor-involved nodes is directly

related to mortality, AJCC staging guidelines use prognostic categories of 0, 1–3,

4–9 and 10 or more tumor-involved nodes (Fig. 5.4) [103].
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Fig. 5.3 Rate of axillary

lymph node metastasis as a

function of primary tumor

diameter. From Carter CL,

Allen C, Henson D. “Relation

of tumor size, lymph node

status, and survival in 24,740

breast cancer cases.” Cancer.

63(1): 181–7, 1989
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Table 5.1 Association between Incidence of Axillary Node Metastases and 11 Clinical/Pathologic

Factors by Univariate and Multivariate Analysis. From Silverstein, Cancer 1997

Variable Category No.

% Lymph

nodes positive

Univariate

P value

Multivariate

P value

Lymph/vascular invasion Yes 116 46% <0.0001 0.0000001

No 754 19%

Tumor palpable Yes 656 28% <0.0001 0.00004

No 262 10%

Nuclear grade 1 148 9% <0.0001 0.0004

2 510 21%

3 237 33%

Tumor size T1a 92 4% <0.0001 0.01

T1b 245 17%

T1c 581 28%

5.4.2 Cervical Cancer

SEER data show a 36% rate of regional metastases at initial diagnosis of cervical

cancer. Nodal metastasis decreases 5-year survival rate from 92% to 56%. The

impact on prognosis is independent of the primary tumor’s size, grade, and histologic
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type and independent of the patient’s age [104,105]. Lymphatic or vascular invasion

by the primary tumor is associated with a 5-fold increase in nodal

metastasis [106].

Table 5.2 Variables Significantly Related to Nodal Involvement in Stepwise Logistic Regression.

From Gajdos, Ann Surg, 1999

Nodal Involvement (%)

No Yes P Value

Lymphatic Invasion

No 545 (81) 124 (19) < 0.001

Yes 89 (49) 92 (51)

Tumor Size

T1a 97 (92) 8 (8) < 0.001

T1b 233 (85) 42 (15)

T1c 304 (65) 166 (35)

Age

< 40 40 (64) 23 (37) 0.009

40–49 146 (74) 52 (26)

50–59 167 (72) 66 (28)

60–69 157 (82) 35 (18)

70+ 124 (76) 40 (24)

Table 5.3 Ranking of Prognostic Variables in Selected Multivariate Analyses.∗ From Donegan,

CA Cancer J Clin

Ranking of Prognostic Variables

References

No. of

Cases 1 2 3 4 5

Contesso et al216 612 AX nodes Grade† Tumor size

Fisher et al37 620 AX nodes Tumor size Nipple invol.

Noguchi et al217 128 AX nodes IM nodes

Axelsson et al218 220 AX nodes ER Grade†

Fisher et al219 1.531 AX nodes Grade† Age ER PR

Meyer and Province220 414 AX nodes Tumor size Log TLI Log ER

Shek and Godolphin221 859 AX nodes Stage‡ ER Necrosis

Meyer and Province222 341 AX nodes Nuclear size Tumor size

Wenger et al223 15,877 AX nodes Tumor size SPF ER PR

Pujol et al224 125 AX nodes Cathepsin-D PR

NIH Consensus225 165 AX nodes Ploidy EGFR HER-2

Duffy et al226 230 AX nodes HER-2 p53

Mansour et al227 156 AX nodes p53 ER Grade

∗Based on survival, disease-free survival, or recurrence rates. Only selected variables were included

in the studies.
†Grade = histologic or nuclear grade.
‡Stage = TNM stage.

AX = axillary; TLI = thymidine labeling index; ER = estrogen receptor;

EGFR = epidermal growth factor receptor; PR = progesterone receptor
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Fig. 5.4 Life table plots of survival according to nodal status (NSABP Protocol B–06). From

Fisher ER, Constantino J, Fisher B, Redmond C. “Pathologic findings from the National Surgical

Adjuvant Breast Project (Protocol 4). Discriminants for 15-year survival.” Cancer.71(6 Suppl):

2141–50, 1993

5.4.3 Colorectal Cancer

Depth of bowel wall invasion and lymph node status are the most powerful prog-

nostic variables in colorectal cancer. Approximately 38% of patients presenting with

colorectal cancer in the United States will have nodal involvement, which decreases

5-year survival from 90% to 78%. The current AJCC staging system distinguishes

three prognostic nodal categories: N0 (no involvement), N1 (1–3 nodes positive) and

N2 (4 or more nodes positive) (Fig. 5.5) [107]. The risk of nodal disease increases

not only with the depth of bowel wall invasion but also with decreased thymidylate

synthase and a micropapillary histologic pattern [108, 109]. Small, regular deposits

of tumor within the mesentery are considered lymph node metastases; irregular de-

posits are considered vascular invasion. Nodal micrometastasis of colorectal cancer

may be linked to increased risk of recurrence [94, 96] and may influence a decision

regarding adjuvant therapy.

5.4.4 Uterine

Approximately one in five patients presenting with uterine cancer will have nodal

metastases. The risk of nodal metastasis is higher for carcinomas than mesenchymal
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Fig. 5.5 Survival curves (observed with 95% CI) for substages based on pTpN. Data of the ER-

CRC. Substage IIIA: pT1,2 pN1 M0, n = 88. Substage IIIB: pt3,4 pN1 M0 and pT1,2 pN2 M0,

n = 425. Substage IIIC: pT3,4 pN2 M0, n = 337. Merkel S, Mansmann U, Papadopuoulos T, Wit-

tekind C, Hohenberger W, Hermanek P. “The prognostic inhomogeneity of colorectal carcinomas

Stage III: a proposal for subdivision of Stage III.” Cancer. 92(11): 2754–9, 2001

tumors, and higher for non-endometrioid tumors than endometrioid tumors [110].

Other risk factors include lymphovascular space invasion, myometrial invasion, cer-

vical invasion, and tumor diameter [111–113]. Involvement of the pelvic nodes in-

creases the risk of para-aortic metastasis, which decreases survival [114]. Five-year

survival rate is 60% with subclinical nodal metastases but only 20% with clinically

positive nodes [115].

5.4.5 Esophagus

Two-thirds of patients with esophageal cancer will have nodal or distant metastases

at diagnosis. Approximately half of those have regional node metastasis without

distant disease. Regional nodes are defined as cervical, intrathoracic esophageal, or

gastroesophageal junction according to the site of the primary tumor; metastasis to

nodes outside the corresponding field is distant disease. Nodal metastasis is associ-

ated with reduced overall 5-year survival from approximately 34% to 17%.

The primary tumor’s level of invasion and possibly its histology influence the

risk of nodal metastasis [116]. Squamous cell carcinoma has a greater risk of nodal

disease, even at very early levels of invasion, and often these metastases are farther

from the primary tumor [215].
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5.4.6 Kidney

Approximately 20% of patients presenting with kidney or renal pelvis cancers

will have nodal involvement, which decreases 5-year survival from approximately

90% to 60%. Regional metastasis to renal hilar, paracaval and aortic nodes is

categorized as N1 (a single node) or N2 (more than one node). Retroperitoneal

lymphadenopathy is associated with a worse outcome and is less likely to re-

spond to immunotherapy with interleukin-2 [117, 118]. Although primary tumor

characteristics, patient age and symptom type have been linked to nodal metasta-

sis [119, 120], nodal staging is often not performed [119]. In a review of nodal

staging, nearly 40% of patients were found to be pNx after no pathologic nodal

staging [121].

5.4.7 Laryngeal, Oral, and Pharyngeal

Although laryngeal and oral/pharyngeal cancers are separated in the SEER

database, survival rates are similar. Over 40% of Americans with laryngeal cancer

present with regional metastasis, which decreases 5-year survival rate from 81%

to 50%.

Predictors of nodal disease include tumor stage, degree of differentiation, host

inflammatory response, epidermal growth factor receptor expression [122], DNA

content [123], proliferating cell nuclear antigen, MIB-1, and E-cadherin [124, 125].

EGFR and cyclin D1 may also be predictive in oral cancer [126]. SNB is still

under evaluation for head and neck cancer and may become standard in certain

tumors [127].

Patients without clinically evident nodal disease should undergo neck dissection

for definitive nodal staging, although some have proposed close clinical observa-

tion [128]. The extent of nodal dissection remains controversial; selective neck dis-

sections (e.g. supraomohyoid dissection in oral cancer) are a potential alternative to

comprehensive dissections. More than one involved lymph node is an indication for

adjuvant radiotherapy; three or more involved nodes is predictive of distant metas-

tases [129].

5.4.8 Liver/Intrahepatic Bile Duct

The 5-year survival rate for hepatocellular carcinoma (HCC), gallbladder cancer,

and cholangiocarcinoma is 22% when disease is localized and 7% when it involves

regional sites [130]. The majority of regionally advanced cases are related to direct

local extension, but approximately 7% of patients undergoing liver transplantation

for HCC will have hilar nodal disease. These patients have a higher risk of recur-

rence and death [131, 132].



5 The Clinical Significance of Lymph-Node Metastasis 97

In gallbladder cancer, approximately 45% of patients will have regional nodal

involvement at presentation [133]. The approximately 13% rate of nodal metastasis

for T1 lesions [134] increases with tumor stage.

Many patients diagnosed with intrahepatic cholangiocarcinoma will be deter-

mined to be unresectable due to the local extent of tumor. Among those who are

deemed able to undergo resection, nodal metastasis is the most important prognostic

factor [135, 136]. There are few survivors in the setting of nodal spread, which is

associated with histologic type [137]. Nodal status is also an independent prognostic

variable in distal bile duct carcinoma [138].

5.4.9 Lung

Thirty-five percent of patients are diagnosed with regional metastases. These patients

have a 15% rate of 5-year survival, as compared with 49% for those with localized

disease. Predictors of nodal disease include histology (adenocarcinoma or large

cell), tumor location (central or right upper lobe), large tumor size, high tumor grade,

and young age [139, 140].

The prognostic significance of nodal disease is determined by the location of

involved nodes. N1 nodes are ipsilateral bronchopulmonary or hilar, N2 nodes are

ipsilateral or subcarinal mediastinal, and N3 nodes are contralateral. These N stages

determine initial treatment: surgery for N0 or N1 disease, neoadjuvant or definitive

chemoradiation for N2 disease, and chemoradiation for N3 disease. Five-year sur-

vival rate is reportedly about 43% with 1–3 involved nodes, 30% with 4–14 nodes,

and 12% with >14 nodes [141].

5.4.10 Melanoma

Nodal status is the most important prognostic factor in melanoma, and nodal metas-

tasis is identified at initial diagnosis in approximately 12% of patients in the United

States. Five-year survival is 98% without metastasis and 65% with nodal disease.

Risk factors include thick primary tumors, younger age, male sex, ulceration and a

high mitotic rate [142]. In addition, there may be an immune component to nodal

metastasis; increased infiltration of lymphocytes into primary tumors appears to de-

crease risk of metastasis, whereas tumor-induced regional immunosuppression may

favor metastasis [143, 144]. Nodal metastasis of melanomas < 1 mm thick is less

common but nodal staging may be indicated in selected patients [145].

The prognostic implications of nodal disease (AJCC stage III melanoma) are

based on the size and number of metastases (Fig. 5.6) [146]. A single positive node

is staged as N1, two or three positive nodes are N2, and four or more nodes are

N3. The presence of nodal metastasis diminishes the importance of other prognostic

factors.
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Fig. 5.6 Fifteen-year survival curves for the stage groupings of patients with regional metastatic

melanoma (Stage III). Numbers of patients from the AJCC Melanoma Staging Database are shown

in parentheses. The differences between the survival curves are highly significant (P < 0.0001).

From Balch C, et al. “An evidence-based staging system for cutaneous melanoma.” CA Cancer J

Clin. 54: 131–49, 2004

5.4.11 Ovarian Cancer

Most (72%) ovarian cancers present with distant metastases; only about 7% are

regionally limited. Regional metastasis of localized disease decreases survival by

about 21% (to 71% from 92%) at 5 years.

Staging of ovarian cancer by the FIGO (Federation Internationale de Gynecolo-

gie et d’Obstetrique) system is determined by the extent of peritoneal involvement,

the tumor status of the regional lymph nodes, and the presence of tumor at distant

sites such as the liver parenchyma or pleural cavity. Stage IIIA or IIIB indicates peri-

toneal disease up to 2 cm in size beyond the pelvis; stage IIIC is peritoneal disease

> 2 cm beyond the pelvis and/or involvement of regional lymph nodes, although

the latter is somewhat controversial [147]. However, among patients whose disease

would otherwise be stage I or II, nodal involvement has a significant impact on

survival.

Predictors of regional nodal involvement include the primary tumor’s extent and

histology [148,149]. Serous tumors are more likely to metastasize to more proximal,

para-aortic nodes, and non-serous tumors to pelvic nodes [150]. Approximately

10–20% of patients with disease clinically limited to the pelvis will have nodal
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involvement [151,152]. Among patients with larger-volume peritoneal disease, two-

thirds have nodal involvement [153, 154].

5.4.12 Pancreatic Cancer

Similar to ovarian cancer, most (61%) patients with pancreatic cancer have distant

metastatic disease at presentation. Of the remaining patients, three-fourths will have

regional involvement. Nodal status is an important prognostic variable [155] that de-

creases 5-year survival to 8%, as compared with 20% for localized disease. Median

survival after resection is approximately 24–33 months with negative nodes and

12–16 months with positive nodes [156–158].

5.4.13 Prostate Cancer

Many patients with prostate cancer do not undergo pathologic evaluation of regional

nodes. Among those who undergo nodal staging during surgical resection of clini-

cally localized disease, the rate of nodal involvement is about 4% to 25% [160,161].

The risk of nodal disease has been linked to PSA level > 10.5 ng/ml, Gleason score

< 7 and clinical T stage [161–163]. Population factors may influence the risk of

nodal disease. For example, European men reportedly have almost a ninefold higher

risk of nodal disease than North American men [164].

The prognostic impact of nodal metastasis is directly related to the volume of

disease in the node [165] and number of involved nodes [160, 166]. Nodal disease

was previously felt to be equivalent to distant spread. However, approximately 20%

of patients with positive nodes will not recur at 10 years, and 80% will not die of

prostate cancer by that time [167]. By comparison, men with distant metastases have

a 32% five-year survival.

5.4.14 Gastric Cancer

In the United States, approximately a third of gastric cancers are initially diagnosed

with metastases limited to regional lymph nodes. Their 5-year survival is only 24%,

as compared with 61% in the absence of metastasis. Both the site and the number of

involved nodes have prognostic significance [168, 169].

Due to the high incidence of gastric cancer in Japan and Korea, more screening is

performed and many patients are diagnosed with early lesions limited to the mucosa

and/or submucosa. Is nodal dissection indicated for these early gastric cancers?

Most studies concur that submucosal invasion, depth of invasion, size of primary

tumor, and tumor differentiation are associated with nodal metastasis; lymphovas-

cular invasion is possibly the strongest independent indicator [170–175]. Minimally
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invasive mucosal resection without formal gastrectomy has been proposed for small

tumors (< 2–3 cm) limited to the mucosa.

5.4.15 Thyroid

SEER-based analyses suggest that more than a third of thyroid cancers are diag-

nosed with regional disease, but more than 50% of patients with well differentiated

thyroid cancer do not undergo nodal evaluation [176]. In addition, it is not clear that

all nodal metastases identified pathologically are clinically important. For exam-

ple, Wada et al. demonstrated nodal disease in approximately 60% of patients with

papillary microcarcinoma (< 1 cm primary tumor), but the rate of nodal recurrence

among patients who did not undergo nodal evaluation was less than 1% at a mean

follow-up of 53 months [177]. Moreover, SEER data indicate that nodal metastasis

of localized disease decreases 5-year survival by less than 3%. Among patients with

well differentiated thyroid cancer, nodal metastasis plus older age tends to decrease

disease-free survival but not necessarily overall survival. The AJCC/UICC staging

system does not use nodal status for patients with well differentiated cancers if the

patient is less than 45 years old. Nodal staging is also not considered for anaplas-

tic cancers. However lymph node involvement corresponds to stage III disease in

older (≥ 45 years) patients with papillary and follicular cancers and in patients with

medullary cancers,

5.4.16 Sarcoma

Nodal metastasis is relatively uncommon in most sarcomas. Large series report

rates of less than 4% [178, 179]. The frequency of nodal metastasis is higher

for angiosarcoma (11–13%), rhabdomyosarcoma (13–19%), epithelioid sarcoma

(16–20%), clear cell sarcoma (melanoma of soft parts) (10–20%) [178–180], and

possibly synovial sarcoma [181]. Rates of nodal metastasis for osteosarcoma are

6–10% [182, 183]. By comparison, nodal metastasis is seen in less than 3% of

liposarcoma, synovial cell sarcoma, chondrosarcoma, and malignant fibrous histi-

ocytoma.

Lymph node metastasis of sarcoma is classified as stage IV disease, although

postoperative rates of survival reportedly reach 34% at 5 years or even 71% at 4

years for isolated disease in the nodes [178, 179]. Resection should be accompa-

nied by SNB when tumor histology is associated with relatively high rates of nodal

disease [184].

5.5 Therapeutic Impact of Lymphadenectomy

This is the most controversial aspect of lymph node metastasis. The therapeutic

impact of lymphadenectomy theoretically depends on whether lymph nodes repre-

sent an early site of protected tumor growth prior to systemic spread (the so-called
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incubator hypothesis) or whether nodal metastasis is merely an indicator of more

aggressive tumor biology (marker hypothesis). If the incubator hypothesis is cor-

rect, early excision of involved regional lymph nodes will improve survival; if the

marker hypothesis is correct, early excision/evaluation merely provides prognostic

information.

5.5.1 Number of Evaluated Lymph Nodes

The number of resected/evaluated lymph nodes has been linked with the clinical

outcome of patients with colorectal cancer [185,186], breast cancer [187,188], cer-

vical cancer [189], invasive bladder cancer [190], pancreatic cancer [157,191,192],

esophageal cancer [193,194], and gastric cancer [195]. In colorectal cancer, a SEER-

based study [185] suggested 15 lymph nodes as a reasonable prognostic cutoff. The

number of resected nodes also impacts recommendations for adjuvant therapy in

colon cancer; guidelines of the American Society of Clinical Oncology recommend

consideration of adjuvant chemotherapy for patients with stage II colon cancer if

fewer than 12 lymph nodes are pathologically evaluated [196]. In breast cancer,

data from early randomized multicenter trials showed a direct relationship between

number of evaluated nodes and outcome [187]. These findings have been reproduced

in numerous subsequent studies [188, 197].

Recent trends suggest an increase in the number of nodes evaluated, possibly re-

flecting an impact of recent treatment guidelines and the use of node counts as surro-

gate quality measures by third party payers. However, nodal count reflects not only

the extent of surgical resection and the thoroughness of pathologic examination,

but also intrinsic differences in lymphatic function (Fig. 5.10) and physiology.

Certain patients may have fewer lymph nodes or at least fewer identifiable lymph

nodes.

5.5.2 Randomized Trials

Among the earliest studies, Fisher et al. randomized women with breast cancer

to modified radical mastectomy, total mastectomy, or segmental mastectomy with

adjuvant radiation [198]. Although there was an increase in locoregional recur-

rence among patients who did not undergo radical mastectomy, there was no sta-

tistically significant difference in overall survival. However, more recent data in

breast cancer suggest that locoregional control is an important determinant of overall

survival [199].

In esophageal cancer, survival has been examined after two- vs. three-field nodal

dissection, and after transhiatal resection vs. transthoracic resection that includes

en bloc nodal dissection. Three-field dissection has relatively high morbidity and

is not widely used, although it might yield better survival than two-field dissec-

tion [200, 201]. There is no definitive evidence for a survival difference between

transhiatal and transthoracic esophagectomy (Fig. 5.7) [202], although the latter

technique reportedly improves survival among patients with 1 to 8 positive lymph
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Fig. 5.7 Kaplan-Meier Curves Showing Overall Survival among Patients Randomly Assigned

to Transhiatal Esophagectomy or Transthoracic Esophagectomy with Extended en Bloc Lym-

phadenectomy. Hulscher JB, et al. “Extended transthoracic resection compared with lim-

ited transhiatal resection for adenocarcinoma of the esophagus.” N Engl J Med. 347(21):

1662–9, 2002

nodes (23% vs. 64% at 5 years.) [203]. However, the transthoracic approach has

higher operative morbidity.

Japan remains at the forefront of surgical treatment for gastric cancer; nodal dis-

section tends to be more extensive. In the West, the debate has centered on D1

versus D2 nodal dissection. D1 dissection routinely removes only the perigastric

lymph nodes, whereas D2 dissection also removes nodes along the left gastric,

celiac, hepatic and splenic arteries. The Dutch Gastric Cancer Group reported that

the operative mortality of D2 dissection diminished its potential therapeutic benefit

(Fig. 5.8) [204]. However, extended dissections may be of benefit if morbidity and

mortality can be avoided.
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Fig. 5.8 Survival of patients treated with curative intent according to N stage. (A), N0; (B), N1;

(C), N2; (D), N3. D1, limited lymph node dissection group; D2, extended lymph node dissection

group. From Hartgrink HH, et al. “Extended lymph node dissection for gastric cancer: who may

benefit? Final results of the randomized Dutch gastric cancer group trial.” J Clin Oncol. 22(11):

2069–77, 2004

More extensive nodal dissection might actually impair the outcome of patients

with pancreatic cancer due to increased perioperative morbidity [205, 206].

Randomized trial data suggest that although a pylorus-preserving procedure re-

moves fewer lymph nodes it does not compromise survival [207]. The number of

lymph nodes evaluated may impact staging accuracy.

Total mesorectal excision (TME) has dramatically improved locoregional

control and overall survival of patients with rectal cancer. TME, which uses the

natural anatomic boundaries of the mesorectum to ensure complete extirpation of

regional nodes, is associated with local recurrence rates of only 4–9% and 5-year

survival rates of 62–75% [208]. It the setting of such dramatically improved local re-

currence rates, it would be difficult to ethically justify conducting a randomized trial

to prove the technique. In addition, due to the decreased blood loss and increased

ease of dissection with TME, a randomized trial seems unnecessary [209].

By contrast, the results of randomized trials are anxiously awaited to settle the

controversy regarding nodal management of clinically localized melanoma. Rou-

tine complete lymphadenectomy is not satisfactory because approximately 80% of

these patients will not have histopathologic evidence of nodal involvement. To a

certain extent, Breslow thickness of the primary melanoma can be used to identify

candidates for lymphadenectomy: patients with intermediate-thickness melanoma

are most likely to benefit; those with thin melanoma have a very low risk of

nodal metastasis, whereas those with thick lesions have a relatively high risk of
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concurrent systemic metastasis. The Intergroup Melanoma Surgical Trial random-

ized patients with melanoma 1–4 mm in thickness to elective lymphadenectomy or

nodal observation. The trial showed a trend to overall survival benefit for the entire

study (p = 0.12) and demonstrated significant benefit in several subgroups: patients

with extremity melanoma, those with non-ulcerated melanoma, those 60 years old

or younger, and those with tumors 1–2 mm in thickness [210].

The advent of SNB, as described earlier in this chapter, changed the approach

to the regional lymph nodes by allowing accurate staging with minimal morbidity.

Results of MSLT-I demonstrated a significant increase in disease-free survival, in

part by reducing regional nodal recurrences, but, as of the third interim analysis,

have not shown an overall survival benefit for the entire population of patients

whose nodes are managed by SNB instead of observation. However, among the

subgroup of patients with tumor-positive SNB specimens versus clinical evidence

of nodal recurrence during observation, the risk of death from melanoma was re-

duced almost 50% (Fig. 5.9). The trial also confirmed the prognostic impact of

sentinel node status, and SNB is now standard care for patients with intermediate-

Fig. 5.9 Melanoma-specific survival among patients with nodal metastases. Subgroup 1 com-

prised patients with a tumor-positive sentinel node; subgroup 2, the patients in subgroup 1 plus

those in subgroup 4 with a nodal recurrence after a negative result on biopsy; subgroup 3, those

with nodal recurrence during observation; and subgroup 4, those with nodal recurrence after a

negative result on biopsy. From Morton DL, et al. “Sentinel-node biopsy or nodal observation

in melanoma.” N Engl J Med. 355(13): 1307–17, 2006 copyright permission of the Massachusetts

Medical Society
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Fig. 5.10 Schematic representing reasons for association between node count and prognosis: (1)

surgical miss: Inadequate surgery leaves potentially diseased nodes behind. In this setting patients

may also be understaged. So improved outcomes related to increased node counts result may result

from a therapeutic effect of improved surgery or through stage migration. (2) Pathological miss:

surgery is adequate, but not all nodes are found pathologically. All of the improved outcome is

related to stage migration. (3) Host factor: Some patients may have fewer lymph nodes. This may

be a prognostic factor per se

thickness melanoma. Because most patients with a positive SNB specimen do

not have further (non-sentinel) nodal involvement, MSLT II is accruing patients

to determine if there is a therapeutic effect of completion lymph node dissection

in patients whose sentinel node contains histopathologic/molecular evidence of

tumor.

5.6 Conclusion

It is impossible to summarize the current diagnostic, prognostic and therapeutic

implications of lymph node metastasis in a single chapter, especially since the field

is changing so rapidly. Each improvement in technology increases the sensitivity

of detection, decreases the morbidity of assessment, and/or expands the prognos-

tic armamentarium. The only constant in this field is the unquestioned importance

of lymph node status as a predictor of outcome for most solid tumors. Removal

of metastases limited to regional lymph nodes will remain standard care in most

malignancies; the timing and extent of dissection continue to be a topic of contro-

versy and active research.
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Abstract: Novel prognostic factors are needed to enhance identification of those

patients with early-stage node-negative cancer that are at increased

risk for relapse and should be considered for adjuvant treatment. Lym-

phatic invasion, lymphatic vessel density and lymphatic growth fac-

tor expression have been proposed as reliable prognostic indicators

for several human malignancies. However, controversy concerning the

precise role of lymphangiogenesis-associated parameters in predicting

patients’ outcome still exists and this is mainly due to differences in

patient selection and applied methodology and to the lack of standard-

ization. In this chapter, we provide an overview of the current applied

techniques for evaluating tumor lymphangiogenesis in solid human tu-

mors and discuss the biological relevance of lymphangiogenesis for

progression of different human malignancies.

Key words: Lymphangiogenesis · Lymphangiogenic growth factor · Lymphatic ves-

sel density · Lymph node metastasis · Prognosis

6.1 Introduction

With a few exceptions, all cancers can metastasize. The metastatic spread of tumor

cells is the major cause of cancer mortality. Tumor dissemination represents a series

of complex processes, including: (i) local invasion into surrounding stromal tissue,

(ii) direct seeding of body cavities, (iii) systemic metastasis via tumor-associated

blood vessels to distant organs, and (iv) lymphatic metastasis via tumor-associated

lymphatic vessels to regional lymph nodes. Clinical and pathological observations

suggest that for many carcinomas, the most common route of tumor cell metastasis
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is the lymphatic route, which occurs early and frequently with patterns of spread via

afferent vessels following routes of natural drainage [180].

The extent of lymph node involvement is a major determinant for the staging

and the prognosis of many human cancers and often guides therapeutic decisions.

Accurate detection of metastasis to lymph nodes is therefore critical. Regional nodal

basins have traditionally been assessed by full nodal dissections, either in the axilla,

the groin, the pelvis or the neck, depending on the location of the primary tumor.

However, the problem with this approach is that radical lymphadenectomy is mainly

performed as a staging procedure and carries a risk of additional morbidity for pa-

tients without lymph node metastasis. In 1992, Morton et al. developed a novel tech-

nique involving intra-operative lymphatic mapping for cutaneous melanoma [135].

This technique revolutionized the assessment of regional lymph nodes and is now

known as sentinel lymph node (SLN) mapping, performed in combination with a

SLN biopsy. Morton et al. were the first to demonstrate that lymphatic drainage

from a melanoma can be mapped by injecting the skin around the tumor with blue

dye. Injected blue dye was shown to travel through lymphatic channels to the first

or ‘sentinel’ lymph node that drains the tumor. After intense histological analy-

sis of the SLN, these investigators were able to show that the pathologic status of

the SLN accurately reflects the pathologic status of the entire regional nodal basin.

Theoretically, a negative SLN in malignant tumors thus demonstrates the negative

status of other lymph nodes as well. Complete lymphadenectomy is performed only

for those patients with SLN metastases, and patients with negative SLN are con-

sequently spared the morbidity of further lymphablation surgery, which could lead

to undesirable side effects such as lymphedema. The SLN concept has become a

standard technique in the care of patients with melanoma and breast cancer and has

also been proven potentially valuable in other cancers [208].

Although lymph node evaluation is an integral part in the assessment of tumor

spread for many carcinomas, a significant proportion of lymph node-negative cancer

patients will subsequently develop recurrent disease. Thus, additional methods are

needed to enhance identification of those patients with early-stage node-negative

cancer that are at increased risk for relapse and should be included in a more in-

tensive follow-up schedule or be considered for adjuvant treatment. Lymphangio-

genesis-related parameters such as lymphatic invasion, lymphatic vessel density or

lymphatic growth factor expression are promising prognostic indicators that could

increase the efficiency of staging for early-stage cancer.

Lymphatic invasion by cancer cells may be the first stage of lymph node metas-

tasis. The presence of carcinomatous lymphatic invasion is a highly significant risk

factor for tumor recurrence and a predictor of shorter disease-free or overall survival

in several node-negative carcinomas, including melanoma, breast cancer, prostate

cancer, gastric cancer, colon cancer, non-small cell lung cancer, bladder cancer,

esophageal cancer and cervical squamous cell carcinoma. These findings support

the routine evaluation of lymphatic invasion in cancer specimens and provide the

option for its incorporation into nomograms predictive of patients’ outcome. Indeed,

peritumoral lymphatic invasion has been included as an adverse prognostic factor

in a series of guidelines and recommendations for postoperative adjuvant systemic

therapies of early-stage breast cancer, such as these developed by an International
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Consensus Panel during the St Gallen Conference in 2005 [55]. The standard

method for assessing lymphatic invasion has been light microscopic examination

of haematoxylin and eosin (H&E) stained sections, after which lymphatic invasion

is identified as the presence of tumor emboli within vascular channels distinctly

lined by a single layer of endothelial cells. Pitfalls in this technique include the

inability to discern tumor emboli that obliterate the lumen of lymphatics and to

distinguish retraction artifacts that isolate tumor aggregates due to tissue shrinkage

during fixation from true tumor emboli in lymphatic spaces. Many studies have

shown that the use of an immunohistochemical marker of lymphatic endothelium

or dual immunostaining for epithelial and endothelial cell markers increases the

accuracy of the immunohistochemical detection of lymphatic invasion compared

to conventional H&E staining [8, 18, 84, 147, 197, 209, 219]. However, no standard

method for immunohistochemical detection of lymphatic invasion has so far been

proposed and current variability in the assessment of lymphatic invasion might limit

the value of this measurement for clinical decision-making and impairs comparison

of results obtained at different institutes.

Recent developments in lymphatic biology and research, especially the discovery

of unique molecular markers with some specificity for lymphatic endothelial cells,

such as LYVE-1, podoplanin and Prox-1 have provided exciting new insights into

the mechanisms by which tumors exploit the lymphatics for metastasis. In the past

few years, it has become apparent that lymphangiogenesis, controlled by a complex

network of growth factors, cytokines and chemokines, can contribute actively to

tumor metastasis. The dimension of tumor-endothelial interface is mainly reflected

by lymphatic vessel density (the number of intratumoral or peritumoral lymphatics)

and theoretically, increased tumor-related lymphatic vessel density facilitates the

access of tumor cells to the lymphatics. An increasing number of clinicopatholog-

ical studies have shown a direct relationship between tumor expression of the vas-

cular endothelial growth factors (VEGF-C/VEGF-D) and metastatic tumor spread

in human tumors. However, the association between lymphatic vessel density and

the presence of nodal metastases and aggressive behavior in human cancer is still

inconsistent. The controversial issues about the role of lymphatic vessel density

in tumor progression are mainly due to differences in patient selection and applied

methodology and to the lack of standardization. Recently, an international consensus

report regarding the quantification of lymphangiogenesis in solid human tumors was

published [209]. This report aimed at improving standardization of lymphangiogen-

esis assessment in order to allow for meta-analyses. In the first part of this chapter,

we will provide an overview of the current techniques and describe the findings

of this consensus report in detail. Since the biological relevance of peritumoral

and intratumoral lymphangiogenesis for tumor progression can differ significantly

in tumors of different types or anatomical locations, we will discuss the associa-

tion between lymphatic vessel density or lymphangiogenic growth factor expres-

sion and clinicopathological parameters separately for each tumor type, including

breast cancer, cervical cancer, ovarian cancer, prostate cancer, bladder cancer,

renal cell cancer, melanoma, head and neck cancer, thyroid cancer, esophageal

cancer, colorectal cancer, gastric cancer, pancreatic cancer, hepatocellular cancer

and lung cancer.



122 I. Van der Auwera et al.

6.2 Methodology of Lymphangiogenesis Quantification

in Solid Human Tumors

Studies on the usefulness of lymphangiogenesis as a prognostic tumor marker have

yielded inconsistent conclusions. Discrepancies between various reports are mainly

due to differences in the methods used for scoring lymphatic vessel density (random

field versus hot spot counting), differences between patient numbers and selection

criteria and random variation in the sites of tumor formation (lymphatic-poor versus

lymphatic-rich areas) [76]. Recently, an international consensus report regarding the

quantification of lymphangiogenesis in solid human tumors was published [211].

The aim of this report was to improve the standardization of the estimation of the

ongoing lymphangiogenesis in histological tumor sections in order to allow tumor-

associated lymphangiogenesis to be applied as a prognostic indicator. The findings

of this report and currently applied technology for lymphangiogenesis assessment

are described below.

6.2.1 Lymphatic Vessel Density

The number of lymphatics in a microscopic field is the net result of previous phases

of tumor lymphangiogenesis and of lymphatic vessel remodeling or regression a

tumor went through. Quantification of tumor lymphatics for the purpose of tumor

staging has long been problematic. Although morphology can sometimes distin-

guish lymphatic vessels from blood vessels in histological sections by the frequent

absence of a basement membrane and lack of erythrocytes in lymphatics, neither is

a reliable method for routine use. However, major research efforts during the last

ten years have lead to the discovery of several markers that allow the distinction

between lymphatic and blood vessels at the capillary level, resulting in marked

advances in the study of lymphatics (Table 6.1). VEGFR-3 was one of the first

lymphatic markers to be identified in healthy tissue. However, the observation of

VEGFR-3 expression on blood vessels in tumors and wound granulation tissue has

meant that it is less appropriate for specific identification of lymphatics in these

conditions [102, 160, 207]. Other molecules that have been proposed as markers of

the lymphatic endothelium include podoplanin, a glomerular podocyte membrane

mucoprotein [24], Prox-1, a homeobox gene product involved in regulating the em-

bryonic development of the lymphatic system [228], LYVE-1, a lymphatic vascular

endothelial cell receptor for hyaluronan [16] and desmoplakin, a glycoprotein that

locates exclusively to the intracellular junctions between the endothelial cells of

lymphatic vessels [170]. However, none of these markers fulfils the criteria of an

ideal lymphatic vessel marker, which should be exclusively found on all types of

lymphatic endothelial cells in all pathological conditions.

The selection of the optimal marker of the lymphatic endothelium is clearly

a critical step in the assessment of lymphatic vessel count since false data aris-

ing from low specificity of the staining must be avoided. To date, the majority of

the experimental studies of tumor lymphatics have employed LYVE-1 antibodies.
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Table 6.1 Specific markers for the lymphatic endothelium

Markers Function Sites of expression

VEGFR-3 Transmembrane tyrosine

kinase receptor for VEGF-C

and VEGF-D

Mainly expressed on lymphatic endothelium in

adult tissue, but also reactivated in blood

vessels in pathological conditions

Podoplanin Glomerular podocyte

membrane glycoprotein

Expressed in lymphatic capillaries and in

osteoblastic cells, lung alveolar type I cells

and kidney podocytes

Prox-1 Homeobox protein required for

embryologic lymphatic

development

Expressed in lymphatic endothelial cells and in

non-endothelial cells in lens, heart, liver,

pancreas and nervous system

LYVE-1 Receptor for extracellular

matrix/lymph fluid

hyaluronan

Expressed on lymphatic endothelium and in

blood sinusoidal endothelial cells in liver and

spleen and placental syncytiotrophoblasts

Desmoplakin Associates with desmosomal

cadherins to form a cell

adhesion complex

Small lymphatic endothelium, epithelial cells

and cardiac muscle

However, the expression of LYVE-1 can be down-modulated in some tissues, for

example, in response to inflammation [80], and is absent in some tumor-associated

lymphatics [20,165,185,213]. In 2002, Kahn et al. introduced D2-40 as a new selec-

tive marker of lymphatic endothelium and reported its value in detecting lymphatic

invasion in human malignancies [83,84]. Later it became apparent that this antibody

recognizes a fixation-resistant epitope on podoplanin [168]. An increasing number

of studies have used this antibody to visualize lymphatics in tumor sections due

to its high sensitivity and specificity for the lymphatic endothelium [44]. However,

the fact that podoplanin appears to be only expressed in small lymphatics and not

in larger ones that have smooth-muscle cells [183] and is also expressed in other

cell types, such as osteoblastic cells, kidney podocytes and lung alveolar type I

cells [24, 226], underlines the importance of utilizing multiple markers to charac-

terize lymphatic vessels in comprehensive studies of lymphangiogenesis. The best

combination of markers of the lymphatic endothelium could vary on the tissue type.

Some studies have assessed absolute tumor-associated lymphatic vessel density

by counting all immunostained vessels in histological tumor sections, whereas other

studies have determined only the lymphatic vessel density of the ‘hot spots’ of lym-

phatics within or surrounding the tumor. A hot spot is an area giving the impression

at low magnification of containing numerous microvessels as defined by Weidner

et al. in 1991 [225]. The reproducibility of the assignment of these hot spots is

a critical variable in the analysis of lymphatic vessel density and the success of

finding the relevant hot spot depends on the training and experience of the investi-

gator [216]. Vascular hot spots are thought to represent localized areas of biological

importance since they potentially originate from tumor cell clones with the highest

angiogenic potential which might preferentially enter the circulation and give rise

to vascularized metastases. Localized changes in oxygen tension are indeed a strong

angiogenic drive. The methodology of counting the number of microvessel entities

in regions with an elevated vascular density has been adapted for the assessment of

lymphatic vessel density, although this is based on the assumption that a functional
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increase in lymphatic vessels occurs in hot spots. Since data on the association of

lymphangiogenesis with hypoxia are still contradictory, the relevance of counting

lymphatic vessels in hot spots, as opposed to an overall lymphatic vessel count, has

been questioned [176].

6.2.2 Computerized Image Analysis Systems

The major drawbacks of the visual lymphatic vessel counting method are its inherent

subjectivity and the difficulty of standardization between different laboratories. In

contrast, image cytometry is more objective and reproducible and moreover, many

image cytometry software packages allow additional information on vessel luminal

area and vessel luminal perimeter. However, the widespread application of image

cytometry is hampered by the need for specialized equipment to perform the anal-

yses. Another limitation of this method is the possibility of confounding signals of

non-endothelial structures in the stromal compartment. Choi et al. [29] performed a

direct comparison of visual and image cytometric lymphatic vessel density assess-

ment on podoplanin-immunostained sections of invasive breast carcinoma. An auto-

mated scanning microscope and an automated image analysis application was used

that identified stained ring-like structures based on color and morphometry in areas

marked during direct microscopic microvessel counting. Lymphatic vessel densities

determined by direct microscopy and image cytometry were significantly correlated.

However, tumor stage only correlated with image cytometric lymphangiogenesis,

while lymph node status and VEGF family gene expression only correlated with

visual data.

6.2.3 Chalkley Count

The Chalkley point overlap morphometric technique has abolished one of the highly

observer-dependent steps of measuring lymphatic vessel density, namely the fre-

quent decision an observer has to make whether two immunostained and adjacent

structures are the reflection of one single or two separate lymphatic vessels. This

technique involves the use of an eyepiece graticule containing 25 randomly po-

sitioned dots, which is rotated so that the maximum number of points is on or

within the vessels of the vascular hotspot. Thus, instead of counting the individual

microvessel, the overlaying dots are counted. The Chalkley count is a reflection of

the relative area taken by the lymphatic vasculature and offers a suitable alternative

for lymphatic vessel density assessment.

6.2.4 Lymphatic Endothelial Cell Proliferation

Both the sprouting of lymphatics and the enlargement of lymphatics are accompa-

nied by the proliferation of lymphatic endothelial cells. Lymphatic endothelial cell
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proliferation is generally assessed by a double immunostaining of tumor sections

with antibodies directed at a lymphatic endothelial cell marker and a marker of

proliferating cells (e.g. Ki-67 or PCNA). However, also a triple immunostaining

method to detect proliferating lymphatics has been developed, utilizing antibodies

against a marker of cell proliferation, antibodies against an epithelial cell marker

(cytokeratin) and antibodies against a lymphatic-specific marker [154]. This method

has the advantage of allowing the distinction between proliferating lymphatics and

proliferating carcinoma cells that are trapped within the lymphatic lumen.

6.2.5 Tumor/Circulating Levels of Lymphangiogenic

Growth Factors

The expression of lymphangiogenic factors, such as VEGF-C and VEGF-D, is

closely related to tumor-induced lymphatic dilatation or lymphangiogenesis and

thereby to lymph node metastasis [163]. For the detection of VEGF-C and VEGF-D

at the protein level antibodies for immunohistochemistry or Western blot analysis

are commercially available and have been widespread used. Other investigators have

correlated mRNA expression levels of lymphangiogenic growth factors with tumor

characteristics employing RT-PCR and Northern blot procedures. From a practical

point of view, the detection of circulating levels of lymphangiogenic growth fac-

tors in preoperative blood samples of cancer patients might be a useful prognostic

indicator. The quantitative measurement of serum protein levels can be performed

easily and frequently because of their minimal invasiveness compared with exami-

nations of surgically obtained tissue specimens and offer a more objective approach

for lymphangiogenesis assessment. Duff et al. [39] were the first to describe the

development of an indirect enzyme-linked immunosorbent (ELISA) assay for the

quantification of VEGF-C in plasma [39]. Capture of VEGF-C was achieved using a

goat anti-human VEGF-C antibody, followed by detection with a rabbit anti-human

VEGF-C antibody. The antibody combination used in the ELISA recognized both

the partially processed and the fully mature form of the protein. The sensitivity

of the assay was amplified using the biotin-avidin and enhanced chemilumines-

cence systems. The assay was highly sensitive and reproducible with a detection

range of 0.4–100 U/ml and the intra- and inter-assay variations were less than 8%.

Substitution tests demonstrated that the assay was specific for VEGF-C without

cross-reacting with VEGF-A or VEGF-D. Using plasma samples from patients with

colorectal cancer, a threefold increase of VEGF-C levels was found when compared

to normal controls. Weich et al. [224] developed a quantitative sandwich ELISA for

VEGF-C that can be used to detect and measure VEGF-C in plasma and cell and

tissue lysates [224]. Different antibodies were combined to detect processed and

partially processed VEGF-C in a specific manner. The ELISA was able to detect

human VEGF-C with a minimum detection limit of 100 pg/ml. These studies have

demonstrated that ELISA is a useful tool for investigations concerning the signifi-

cance of VEGF-C in predicting patient’s prognosis.
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Bando et al. [14] described the development of a specific indirect ELISA for

the quantification of VEGFR-3 in different human cell and tissue lysates [14].

A combination of the goat anti-VEGFR-3 antibody and the mouse monoclonal

anti-human VEGFR-3 antibody was used. The assay was highly sensitive and

reproducible with a detection range of 0.2–25 ng/ml. The assay was specific for

VEGFR-3, with no cross-reactivity to VEGFR-1 or VEGFR-2. In this report, the

level of VEGFR-3 protein detected in the ELISA correlated significantly with

the number of VEGFR-3-positive vessels observed in histochemical sections, sug-

gesting that the ELISA assay may be a reliable surrogate of measuring VEGFR-

3-positive vessel density.

6.3 Prognostic Value of Lymphangiogenesis

in Human Malignancies

In the following part of this chapter we will describe current views on the prog-

nostic impact of lymphangiogenesis-associated parameters, such as tumoral and

circulating lymphatic growth factor levels and lymphatic counts in several human

malignancies. A summary is also provided in Tables 6.2, 6.3 and 6.4.

6.3.1 Breast Cancer

Breast cancer is one of the most common malignancies among women, accounting

for nearly one in three cancers diagnosed among women in the United States [181].

Tumor spread to the lymph nodes is a frequent complication in breast cancer and

the degree of axillary lymph node involvement at the time of diagnosis remains the

most valuable prognostic factor for breast cancer survival. It is standard practice to

administer systemic therapy to all patients with lymph node-positive disease. As a

result of more widespread screening, more women are diagnosed as having breast

cancer at an early, node-negative stage. The majority of these patients are cured

with total mastectomy or breast conservative treatment. However, 20%–30% of the

patients ultimately develop disease recurrence in distant sites. In randomized clin-

ical trials, adjuvant hormonal therapy and polychemotherapy have been shown to

reduce the rate of recurrence in these patients. However, adjuvant systemic therapy

has associated risks and proper selection of patients for adjuvant therapy is thus

necessary to avoid exposing many patients with low risk of recurrence to treatments

for whom the benefit is not justified by the toxicity and the cost.

Only recently, tumor lymphangiogenesis has gained an increasing interest as a

potential prognostic indicator for patients with breast cancer. A PubMed search for

the terms ‘lymphangiogenesis’ and ‘breast cancer’ identifies 64 citations, which all

postdate 2000. However, so far the prognostic significance of lymphangiogenesis

for breast cancer metastasis has remained largely unknown, which is mainly caused

by the discrepancies between studies performed at different institutes.
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Table 6.2 Association of tumor lymphangiogenesis-associated parameters with lymph node

metastasis

Human tumor

tissues

Tumor

VEGF-C

Serum

VEGF-C

Tumor

VEGF-D

Serum

VEGF-D ILV D PLV D

Breast cancer + x + X − +

Cervical cancer + − x X − +

Ovarian cancer + x + x x x

Prostate cancer + x + x − +

Bladder cancer + x x x x x

Renal cell cancer − x − x − −

Cutaneous

melanoma

+ + − − + +

Head and neck

cancer

+ x − x + +

Papillary thyroid

cancer

+ x + x + x

Follicular thyroid

cancer

− x − x − −

Esophageal

cancer

+ + x x − −

Colorectal cancer + + +/− − + +

Gastric cancer + + + x +∗

Pancreatic

endocrine

tumors

− x − x − −

Pancreatic ductal

adenocarci-

noma

+/− x +/− x − −

Hepatocellular

cancer

+ x − x − −

Lung cancer +/− + − X − +

(ILVD = intratumoral lymphatic vessel density, PLVD = peritumoral lymphatic vessel density,

+ = association, − = no association, +/− = no consensus, x = not investigated, ∗ = no distinc-

tion made between intratumoral and peritumoral lymphatics)

Studies on lymphatic growth factor expression in human breast cancer have re-

ported that VEGF-C is located in the cytoplasm of human intraductal and inva-

sive breast cancer cells [167, 207] and that high VEGF-C expression levels are

strongly associated with tumor cell proliferation, lymphatic invasion, lymphatic ves-

sel density, lymph node metastasis, distant metastasis and an unfavorable progno-

sis [15, 60, 70, 72, 95, 104, 115, 133, 142, 145, 245]. Moreover, VEGF-C expression

correlates with c-erbB2 expression in breast carcinomas, which suggests the exis-

tence of a functional relationship and may, at least in part, explain the aggressive

phenotype associated with c-erbB2-positive breast tumors [68, 236]. In contrast, no

prognostic value for plasma VEGF-C levels in patients with breast cancer has been

reported [7]. No significant association between plasma levels of VEGF-C and age,

tumor size, tumor grade, HER2 status, ER status, PR status or disease-free and over-

all survival has been found. Not only VEGF-C, but also VEGF-D has been detected

in tumor cells and endothelium in ductal carcinoma of the breast [1]. Moreover,
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Table 6.3 Association of tumor lymphangiogenesis-associated parameters with patients’ survival

Human tumor

tissues

Tumor

VEGF-C

Serum

VEGF-C

Tumor

VEGF-D

Serum

VEGF-D ILVD PLVD

Breast cancer + x + x − +

Cervical cancer + x x x x +

Ovarian cancer + x + x − −

Prostate cancer x x x x x X

Bladder cancer + x x x x +

Renal cell cancer x x x x x X

Cutaneous

melanoma

x − x x + +

Head and neck

cancer

+ x x x + +

Papillary thyroid

cancer

x x x x x x

Follicular thyroid

cancer

x x x x x x

Esophageal

cancer

+ x x x +∗

Colorectal cancer + x + x +∗

Gastric cancer + + + x +∗

Pancreatic

endocrine

tumors

x x x x − −

Pancreatic ductal

adenocarci-

noma

+/− x + x − −

Hepatocellular

cancer

+ x x x − −

Lung cancer + x x x x +

(ILVD = intratumoral lymphatic vessel density, PLVD = peritumoral lymphatic vessel density,

+ = association, − = no association, +/− = no consensus x = not investigated, ∗= no distinction

made between intratumoral and peritumoral lymphatics

VEGF-D-positivity of breast tumor cells significantly correlates with lymph node

metastasis, high c-erbB2 expression and disease-free and overall survival of patients

with breast carcinoma [145,153]. These findings suggest that VEGF-D and VEGF-C

may be useful in the treatment of breast cancer as decision-making biomarkers for

aggressive treatment after surgery, although prospective studies in a larger popula-

tion should be carried out to demonstrate their clinical significance.

To date, there are only limited data concerning the clinicopathological signifi-

cance of VEGFR-3 expression by breast cancer cells. Gunnigham et al. [58] inves-

tigated the long and short isoforms of VEGFR-3 mRNA in normal and tumor tissue

and observed a significant loss of the long isoform in breast tumors compared with

normal breast tissue. This difference was largely accounted for by the reduction

of long VEGFR-3 in node-positive tumors. The authors therefore suggest that the

measurement of the VEGFR-3 isoform expression in breast tumors might identify a

patient group that is likely to have node-positive disease and therefore benefit form

additional treatment.
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Table 6.4 Presence of proliferating lymphatic endothelial cells in human cancer

Human tumor tissues LECP PLECP % ILECP % References

Breast cancer − [4, 214, 229]

+ 2.2% 1.83% [212]

Cervical cancer x

Ovarian cancer x

Prostate cancer x

Bladder cancer x

Renal cell cancer + 6.5% 2.6%

Cutaneous

melanoma

+ no percentages

reported

[32, 186]

Head and neck

cancer

+ no percentages

reported

Papillary thyroid

cancer

x

Follicular thyroid

cancer

x

Esophageal cancer x

Colorectal cancer + 13.3%∗

Gastric cancer x

Pancreatic endocrine

tumors

+ 0.7–3% [178]

Pancreatic ductal

adenocarcinoma

x

Hepatocellular

cancer

x

Lung cancer + 4.16% 1.3% [163]

(ILECP %= fraction of intratumoral lymphatic endothelial cell proliferation, PLECP % = fraction

of peritumoral lymphatic endothelial cell proliferation, + = presence, − = absence,+/− = no

consensus x = not investigated, ∗= no distinction made between intratumoral and peritumoral

lymphatics)

Several papers have reported that intratumoral lymphatic are sparsely present in

only a minority of early ductal breast cancers and that the density of peritumoral

lymphatics may have a greater clinical significance [4, 20, 88, 172, 214, 217]. Bono

et al. found that the presence of down-regulated LYVE-1 expressing intratumoral

lymphatics was not associated with axillary nodal status or patients’ survival, al-

though intratumoral lymphatics were more commonly present in poorly differenti-

ated ductal breast cancers than in well differentiated ones [20]. The above findings

differ from other studies in which podoplanin-positive intratumoral lymphatics were

observed within the majority of breast tumors [29,142,212]. This discrepancy could

be due to differences in methodology. In contrast to intratumoral lymphatic vessel

density, high peritumoral lymph vessel counts have been associated with a high

number of metastatic axillary lymph nodes at the time of diagnosis and with poor

distant disease-free and overall survival [20, 142, 145, 172]. However, this effect on

survival has been limited to the subgroup of axillary node-positive breast cancer.

Few of the comprehensive studies of lymphangiogenesis in breast cancer in-

vestigated the presence of proliferating lymphatic endothelial cells. Most authors
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found no evidence of proliferation [4, 214, 229], although in one study, proliferat-

ing lymphatic endothelial cells, identified using a Ki-67/D2-40 doublestain, were

observed both within breast tumors and in peritumoral areas, albeit in limited

numbers [212].

While the prognostic role of lymphangiogenesis in patients with node-negative

breast disease is still a subject of debate, it has been suggested that a high peritu-

moral lymphatic count might be a potential unfavorable prognostic factor in patients

with node-positive breast cancer. Interestingly, more lymphatics are also present in

metastatically involved lymph nodes when compared to uninvolved lymph nodes

and these show increased fractions of proliferating lymphatic endothelial cells [210].

Moreover, a higher lymphatic vessel density in the lymph node metastases is related

to a shorter survival of patients with breast cancer [214].

6.3.2 Cervical Cancer

Cervical cancer is the second most common cancer among women worldwide [198].

Fortunately, due to cytological screening, cervical cancer is frequently diagnosed at

early stages. Although most patients with stage I disease have a favorable outcome,

approximately 20% to 35% are expected to die from their disease [150]. In addition

to International Federation of Obstetrics and Gynecology (FIGO) stage and tumor

volume, lymphatic invasion and nodal metastasis are known predictors of shorter

disease-free and overall survival in carcinoma of the uterine cervix [30, 35, 201,

218]. The utility of lymphangiogenesis-related parameters for predicting patients’

outcome has been investigated in cervical cancer, which is discussed below.

Serum VEGF-C concentrations are elevated in cervical cancer when compared to

healthy controls [120, 130]. In an analysis of squamous cell carcinoma, the prether-

apeutic circulating levels of VEGF-A and VEGF-C have been shown to correlate

with advanced FIGO stage, large tumor size, disease recurrence or persistence

after treatment, but not with lymph node metastasis [130]. In the same study, both

serum VEGF-A and VEGF-C levels significantly decreased after treatment. Thus,

the serum levels of VEGF-A and VEGF-C have potential usefulness as biologic

markers of squamous cell carcinoma of the uterine cervix. VEGF-C expression is

also detected in the majority of cervical carcinoma cells, mainly at the tumor periph-

ery [56, 64, 120, 215]. Several studies have indicated that high VEGF-C expression

by tumor cells at the invasive edge induces lymphangiogenesis and contributes to

high peritumoral lymphatic vessel density, leading to increased lymphatic invasion

and pelvic lymph node metastasis [56, 64, 204]. VEGF-C has been shown to inde-

pendently affect patient’s survival in cervical carcinomas. Overall survival rates for

patients with strong VEGF-C staining tumors are lower than those for patients with

weak VEGF-C staining tumors [205]. So far, the prognostic significance of VEGF-C

expression in the subgroup of node-negative breast tumors remains unknown. The

survival data suggest that the measurement of VEGF-C expression in cervical tumor

biopsies may be useful as a tumor marker for patients’ prognosis. Furthermore, in

a subset of node-positive uterine cervical cancers, the VEGF-C level in involved
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lymph nodes is remarkably increased when compared to the primary tumor, and this

phenomenon is associated with a worse survival [49].

Few studies have investigated the association of lymphatic vessel density with

clinicopathological tumor characteristics in cervical cancer and these have yielded

inconsistent findings. One study has reported that D2-40-positive intratumoral lym-

phatics are present in cervical cancers and are unevenly distributed throughout the

tumor with a significantly higher density compared with normal cervical tissue [56].

These vessels appear to be small and flattened with a close lumen, contrasting the

widely open lymphatics in peritumoral regions. Severe dysplasia/carcinoma in situ

has also been associated with increased lymphatic vessel density and high lymphatic

growth factor expression, suggesting an essential role for lymphangiogenesis in the

progression to invasive behavior [56,215]. However, no association between intratu-

moral lymphatic vessel density and nodal metastasis or lymphatic invasion has been

observed. In contrast to the above-mentioned study, Schoppmann et al. [174] have

reported that podoplanin and LYVE-1 double-positive lymphatics are exclusively

found within the peritumoral stroma, both in non-invasive and pT1b1-stage invasive

cervical carcinomas [174, 215]. The local density of peritumoral lymphatics has

been shown to be significantly increased over normal tissues, to be correlated with

high tumor stage, lymphatic invasion, and nodal metastasis, and to be independently

predictive of poor survival and/or shorter recurrence-free survival, suggesting that

high peritumoral lymphatic vessel density may be an independent prognostic factor

in early-stage cervical cancer [56, 175, 215].

The local immunological response, evident by inflammatory stromal reaction,

has been shown to play a role in inducing lymphangiogenesis in early-stage cervi-

cal cancer [173, 174]. A strong correlation between lymphatic vessel density and

inflammatory stromal reaction and lymphatic invasion by tumor cells has been en-

countered in specimens of cervical cancer. The density of activated tumor-associated

macrophages, expressing large amounts of VEGF-C and VEGF-D, has been shown

to correlate with peritumoral inflammatory stromal reaction, lymphatic vessel den-

sity, and indirectly with peritumoral lymphatic invasion and frequency of lymph

node metastasis, suggesting an important role of these cells in peritumoral lym-

phangiogenesis and cancer dissemination [174].

6.3.3 Ovarian Cancer

Epithelial ovarian carcinomas are the most lethal gynecologic malignancies. Owing

to the paucity of symptoms and their insidious onset and the absence of any con-

vincing screening method, about two thirds of patients with ovarian cancer present

with advanced stage disease, involving sites such as the upper abdomen, pleural

space, and para-aortic lymph nodes [25]. Despite the highly lethal nature of epithe-

lial ovarian cancer, the clinical course of advanced disease can be difficult to predict

in an individual patient. A small fraction of patients will be cured with surgery

followed by chemotherapy, another group will experience relapse after a relatively

long time interval, others will relapse and succumb to this disease within months of

completing first-line therapy, and some will exhibit primary resistance to first-line
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chemotherapy. Currently available clinical and molecular prognostic factors provide

an imperfect assessment of prognosis for patients with epithelial ovarian cancer.

The prognostic impact of lymphangiogenesis has remained largely uninvesti-

gated in ovarian cancer. VEGF-C, VEGF-D and VEGFR-3 expression levels in ovar-

ian cancer correlate significantly with lymph node metastasis and peritoneal spread

in the upper abdomen [36,204,238]. Moreover, VEGF-C expression correlates well

with c-erbB2 expression, matrix metalloproteinase-2 gene expression, angiogenesis

and a low apoptotic index [69,204]. VEGF-C and VEGF-D have emerged as strong

predictors for poorer survival [204, 238], which suggests that the measurement of

lymphatic growth factors may improve prospective identification of ovarian cancer

patients with a poor prognosis.

Only one study has examined whether lymphatic vessel density has any value

or relevance with respect to predicting the disease course in ovarian carcinomas.

Immunostaining of ovarian tumors with antibodies to LYVE-1 has identified irreg-

ularly shaped, thin walled lymphatics in the capsular and intratumoral regions of

the tumor with capsular lymphatics being more frequent than intratumoral lymphat-

ics [188]. Lymphatic count has not been associated with age, residual disease, his-

tological subtype, FIGO stage or vascular count, nor has it predicted any difference

in survival curves for patients with ovarian cancer.

6.3.4 Prostate Cancer

Prostate carcinoma is the most commonly diagnosed malignancy and the second

leading cause of cancer-related mortality among men in the United States [19,126].

Despite these high death rates, prostate cancer is often an indolent disease, and

patients can remain asymptomatic for years. The introduction of serum prostate

specific antigen (PSA) testing in the late 80’s has led to a major shift towards the

diagnosis of this malignancy at much earlier stages than in previous decades with

the possibility of cure. Currently, prognostication and treatment stratification at the

time of diagnosis are based on clinical stage, biopsy Gleason grade (a measure of

tumor differentiation), and serum PSA levels. In cases treated by radical prostate-

ctomy, prognosis can be refined by using pathological stage and grade. However,

these prognostic indicators do not accurately predict clinical outcome for individual

patients. Improved markers are needed to determine which patients might benefit

from a more aggressive treatment, and which patients might be spared unnecessary

and potentially harmful interventions.

Several studies have pointed to an important role of lymphatic growth fac-

tor expression in the metastatic process of human prostate cancer. VEGF-C pro-

tein expression is lower in benign prostate epithelium than in adjacent carcinoma

[77, 235, 243]. Patients with lymph node metastasis have a significantly higher

expression of VEGF-C than patients without lymph node metastasis [37, 77, 200,

203]. The correlation of VEGF-C with lymph node status suggests a role for the

development of lymph node metastasis. VEGF-D is highly expressed and localized
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to both cancer epithelial cells and stromal cells in prostate carcinoma [89, 243].

Its expression is associated with advanced stages of prostate cancer disease [89].

VEGF-D expression levels are significantly elevated in primary tumors with lymph

node involvement when compared to those without lymph node involvement [184].

Moreover, circulating levels of VEGF-D protein are highly significantly different

in plasma from patients with advanced-stage and early-stage prostate cancer and

seem to correlate with clinical observations of widespread metastasis to bone and

lymph nodes [89]. VEGFR-3 expression is upregulated in prostate carcinomas when

compared to prostate hyperplasia and normal prostate [112, 235]. Furthermore, its

expression is correlated with pre-operative PSA, Gleason score and lymph node

metastasis [77, 112]. One study has found augmented tyrosine phosphorylation of

VEGFR-3 in advanced versus early stage (node negative) prostate cancer [89],

whereas another found upregulation of a truncated form of VEGFR-3, but not the

full-length receptor [184].

Although lymphatics are detected in prostate cancer [164, 200, 203, 243, 244],

the role of intratumoral lymphatics in mediating lymph node metastasis has been

controversial. The lymphatic vessel density in prostate adenocarcinoma regions is

significantly decreased compared to that in peritumoral and normal prostate re-

gions [164, 199, 200]. Increased peritumoral lymphatic vessel density, but not intra-

tumoral lymphatic vessel density, has been correlated with lymph node metastasis

and high Gleason score, a marker of more aggressive tumors [243, 244], suggesting

that peritumoral lymphatics might be functionally more important than intratumoral

lymphatics. In addition, tumor emboli are observed in peritumoral lymphatics and

lymphatic invasion involving either the peritumoral or the intratumoral compart-

ment is strongly associated with regional lymph node metastasis [164, 243, 244].

Lymphatic invasion has been strongly correlated with biochemical failure after rad-

ical prostatectomy in patients with node-negative prostate cancer, supporting the

routine evaluation of lymphatic invasion status in radical prostatectomy specimens

and providing the option for its incorporation into nomograms predictive of clinical

outcome [28, 116, 125, 164].

6.3.5 Bladder Cancer

Bladder cancer is the second most common cancer of the urogenital region. The

majority of newly diagnosed bladder cancers, 70% to 80%, are classified as super-

ficial disease [128]. The remaining tumors initially present as muscle-invasive or

metastatic disease. The first-line treatment of patients with bladder cancer, clini-

cally diagnosed as superficial disease, is transurethral resection, due to its relative

indolent nature and low malignant potential. Patients with superficial bladder cancer

who have a high risk of progression receive adjunctive intravesical therapy, which

has been shown to be more effective than transurethral resection alone in prevent-

ing tumor recurrence [42]. Radical cystectomy has evolved in the most common

therapeutic modality for the 20% to 30% of all patients with bladder cancer that are



134 I. Van der Auwera et al.

diagnosed with muscle-invasive tumors [108], which is an aggressive malignancy

that is widely believed to have a high propensity for distant metastasis [43]. Owing

to the variability in the clinical behavior of bladder cancer after radical cystectomy,

prognostic indicators are crucial for identifying patients who are at a high risk for

disease progression and recurrence and therefore should receive adjuvant therapies.

The clinical and pathological significance of tumor lymphangiogenesis in human

bladder cancer tissues remains to be fully investigated.

Both VEGF-D and VEGF-C expressions are associated with lymphatic vessel

density in human bladder cancer [131]. Multivariate analysis has shown that VEGF-

C expression in transitional cell cancer of the bladder is an exclusive independent

factor influencing pelvic lymph node metastasis and that patients with high VEGF-C

expression have a markedly poorer prognosis than those with no or low expres-

sion [189,247]. Therefore, examination of VEGF-C expression in biopsy specimens

might be beneficial in predicting pelvic lymph node metastasis.

There is paucity of lymphangiogenesis studies in relation to bladder cancer. In

one study, the number of D2-40-positive lymphatics in stromal tissue of human

bladder cancer was higher than in normal bladder tissue [131]. However, only in

a minority of this type of tumors intratumoral lymphatics have been detected and

almost all of these vessels had collapsed. Only peritumoral lymphatic vessel density

has been associated with tumor grade in transitional cell carcinomas of the bladder.

The 5-year metastasis-free survival rate in patients with low peritumoral lymphatic

vessel density appears to be significantly higher than that of patients with high

lymphatic vessel density. However, analysis of the independent predictive value of

lymphatic vessel density for metastasis-free survival using a multivariate analysis

model including pathological tumor stage, tumor grade, and adjuvant therapy, iden-

tified pathological tumor stage as the only independent and significant predictive

factor, whereas lymphatic vessel density was not.

Although these studies suggest that tumor lymphangiogenesis might be a use-

ful tool for the selection of postoperative management and treatment strategies in

patients with bladder cancer, the independent prognostic significance of lymphan-

giogenesis parameters should be confirmed in future large-scale and prospective

studies.

6.3.6 Renal Cell Cancer

Renal cell carcinoma preferentially extends beyond the kidney by invasion of the re-

nal sinus [21,23]. This is usually associated with invasion of renal sinus veins and is

likely responsible for subsequent development of hematogenous metastases to lung,

liver, bone and other sites. However, lymph node dissections have demonstrated that

7%–17% of patients have hilar or locoregional lymph node metastases, indicating

that lymphatic spread also occurs in these tumors [123, 129].

VEGF-C and its receptors VEGFR-2 and VEGFR-3 are detected in normal and

neoplastic kidney tissues [59]. In two studies, no upregulation of VEGF-C has been

found in tumor samples, nor has its expression been associated with tumor grade,
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patient sex, patient age or tumor size [59, 202]. However, this has recently been

contradicted in another study, where VEGF-C mRNA expression, but not VEGF-D

or VEGFR-3 expression, was higher in clear cell renal carcinoma when compared to

normal renal tissue [13]. However, increased VEGF-C expression did not correlate

with lymphatic vessel density, lymphatic endothelial cell proliferation or lymphatic

metastasis.

Studies on lymphangiogenesis in renal cell tumors are sparse and conflicting.

In two small sample sized studies, few or no lymphatics were detected in the cen-

tral area of the tumor [22, 75]. Clusters of small to medium-sized lymphatics were

mainly identified within inflamed cortex and inflamed renal sinus both outside a

pseudocapusle and intermingled with tumor cells at an invasive front [22]. On the

other hand, in another study about one third of renal tumors had D2-40-positive

intratumoral lymphatics, frequently located in inflammatory response areas [13].

However, peritumoral lymphatic vessel density was higher than intratumoral lym-

phatic vessel density. Although proliferating lymphatic endothelial cells were ob-

served in renal cell tumors, this fraction was significantly lower than in normal renal

tissue. These results do not suggest an important role for lymphangiogenesis in this

type of tumors.

6.3.7 Melanoma

Malignant melanoma of the skin is an aggressive, therapy-resistant malignancy of

melanocytes. Despite early detection, both the incidence and mortality of cutaneous

melanoma are still increasing worldwide [62], resulting in an increasing public

health problem. Initially, the primary tumor grows horizontally through the epider-

mis, but later, for reasons poorly understood, it will begin to invade vertically, with a

direct correlation between the thickness of this vertical growth phase component of

the tumor and the likelihood of metastasis [65]. Because about half of all cutaneous

melanoma patients with tumor progression first develop regional lymph node metas-

tases [127], it is thought that the tumor preferentially spreads through the lymphatic

system. The early identification of metastatic disease is important, as it determines

the requirement for adjuvant therapy and further management. Tumor thickness is

currently the most sensitive parameter for predicting the metastatic risk of cutaneous

melanoma [12]. However, the prognostic significance of tumor thickness is limited

because a considerable proportion (15%) of patients with thin tumors (<1 mm) also

go on to develop metastatic disease, whereas other patients with thick melanomas

have long-term survival period [87]. There is currently no consensus on the fre-

quency of follow-up or recommendations for surveillance testing for all patients

with melanoma, since there is no effective method to identify the small subgroup of

patients with thin but aggressive melanoma. It would be helpful, therefore, to find a

prognostic indicator to detect the high-risk patients in the group of thin melanoma.

VEGF-D expression is upregulated in human melanomas compared with melano-

cytes [2]. No association of VEGF-D expression with lymph node metastasis

has been observed [31]. Two studies have found only low-level expression of
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VEGF-C by tumor cells that is not associated with metastatic potential in human

melanomas [31, 119]. However, in other studies VEGF-C mRNA and protein levels

have been correlated with the extent of peritumoral lymphangiogenesis and lymph

node metastasis [31, 57, 169]. Moreover, tumor cell expression of bFGF has been

associated with the presence of peritumoral lymphatics and with lymphatic vessel

dilation in human melanomas [186].

At present, the relevance of tumor lymphangiogenesis in predicting prognosis of

patients with cutaneous melanoma remains unclear. The presence of high peritu-

moral and intratumoral lymphatic vessel densities has been associated with lymph

node metastasis and shorter survival, also in thin melanomas [32, 119, 176]. Hot

spots of proliferating intratumoral and peritumoral lymphatics are detected in a

large number of melanomas, suggestive for active lymphangiogenesis [32, 186].

Multivariate risk analysis has revealed that the lymphatic vascular area of primary

melanomas is the most sensitive prognostic marker for sentinel lymph node metas-

tasis, and is able to more accurately predict which tumors are metastatic to sentinel

lymph nodes than the currently used method of measuring tumor thickness [32]. A

prognostic index, calculated using lymphatic vessel density, lymphatic invasion and

tumor thickness, has been shown to clearly discriminate between those tumors that

have metastasized and those that have not done so after at least 6 years [176]. How-

ever, further work is required to refine this prognostic index and to evaluate the inci-

dence of false-negative and false-positive prediction. Counterintuitively and contra-

dictory to the above-mentioned studies, however, high numbers of LYVE-1-positive

lymphatics in peritumoral and intratumoral areas of cutaneous melanoma have been

associated with improved survival on multivariate analysis in another study [186].

An explanation for this finding might be that, for an immunogenic tumor like

melanomas, the presence of a large and functional lymphatic network might provide

an increased T-cell mediated immune response to tumor cells. Indeed, increased

lymphocytic infiltration has been associated with high lymphatic vessel densities.

Moreover, a reduction of LYVE-1-positive lymphatics has been found in thicker

tumors with a high proliferative rate [186].

6.3.8 Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of

squamous cell cancers arising from different anatomical locations in the oral cavity,

pharynx and larynx. Although potentially curable by local radiotherapy and surgical

resection, the overall 5-year survival rate is only around 50% [50], largely because

of the propensity of some HNSCC tumors to disseminate via the lymphatics [162].

Tumor metastasis to cervical nodes is the single most important prognostic factor

in patients with HNSCC. An accurate clinical assessment of lymph node status is

crucial in treatment planning. There is general agreement that neck dissection is

indicated when there are clinically detectable lymph node metastases. However,

controversies remain about the management of the clinically N0 neck. The N0 neck
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is at risk of harboring occult metastases and is often treated electively if this risk is

considered to be above 20%. However, elective neck dissections cause overtreat-

ment for the majority of these patients. The development of reliable prognostic

markers could enable more individualized treatment planning and effective therapy

for patients with HNSCC. Hence, there is urgent need to identify characteristics of

the primary tumor that might predict tumor dissemination via the lymphatics. The

significances of both lymphatic vessel density and the expressions of lymphangio-

genic growth factors in tumor cells as predictors of outcome in HNSCC have been

determined.

HNSCC cell lines and tumors produce increased levels of lymphangiogenic fac-

tors such as VEGF-C and VEGF-A when compared to normal cells [17, 26, 111].

High mRNA and protein expressions of VEGF-C are correlated with lymph node

metastasis and poorer survival in patients with HNSCC [11,26,67,107]. Multivariate

analysis has demonstrated that tumor thickness (distance from the surface of the

epithelium to the deepest invading tumour island or cell), nuclear pleomorphism,

pattern of invasion and immunohistochemical expression of VEGFR-3 and VEGF-C

are associated with delayed neck metastasis in early stage tumors with a clinically

N0 neck [223]. Analysis of lymphatic growth factor expression may therefore help

to identify patients who would benefit from a neck dissection or irradiation by pre-

dicting the likelihood of lymph node metastasis.

In HNSCC, the intratumoral localization of lymphatics is clearly strongly asso-

ciated with nodal metastasis and a higher risk for local relapse as well as with poor

disease-specific prognosis [10, 47, 67, 106, 124, 140]. In oropharyngeal carcinoma,

discrete hotspots of intratumoral small proliferating lymphatics have been observed,

and a high intratumoral lymphatic vessel density is found to be associated with

neck node metastases and an infiltrating margin of tumor invasion [17]. Double

immunostaining with LYVE-1 or podoplanin and a proliferation marker has shown

that actively proliferating intratumoral lymphatics are present in HNSCC [17, 106].

A small proportion of the intratumoral proliferating lymphatics contain cancer em-

boli [106]. In contrast, no dividing nuclei appear in lymphatics either in the normal

or VEGF-C-expressing peritumoral tissues, suggesting that the intratumoral lym-

phatics are proliferating new vessels rather than preexisting lymphatics that have

merely been surrounded and entrapped by aggressive tumor mass [17]. The intra-

tumoral lymphatic vessel density might be used as a criterion to separate patients

at higher risk of an adverse clinical outcome or as a discriminator in predicting the

outcome of patients with no nodal metastases.

Results concerning the role of peritumoral lymphatics in HNSCC dissemination

remain controversial. In one study, high peritumoral lymphatic vessel density has

offered a markedly better survival capacity for patients with HNSCC [124]. The

presence of LYVE-1-positive lymphatics in the peritumoral region was even more

favorable for the patient than a total absence of LYVE-1-positive lymphatics. The

rationale behind this would be that peritumoral lymphatics facilitate the recruitment

of antigen-presenting cells, such as dendritic cells, which then cross-prime cytotoxic

T cells in draining lymph nodes. However, other investigators have suggested a
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significant association between high peritumoral lymphatic vessel density or relative

vascular area and lymph node metastasis [47, 106].

In HNSCC, the presence of intratumoral lymphatic vessels was found to be as-

sociated with a significantly higher risk of local disease recurrence and a poorer

prognosis, but only two studies found these correlations on multivariate analy-

sis [67, 106]. However, results of the above-mentioned studies support the possi-

bility of using the determination of tumor lymphangiogenesis to identify patients

with HNSCC who are at risk of developing cervical lymph node metastasis. If a

positive correlation between lymphangiogenesis and cervical lymph node metas-

tasis is confirmed in further studies, this parameter could be useful for selecting

HNSCC patients who are more susceptible to metastatic spread via lymphatic route

to undergo elective cervical lymph node dissection.

6.3.9 Thyroid Cancer

Papillary and follicular carcinomas account for 90% of all thyroid carcinomas [41].

Most thyroid cancers are slow-growing, easily treatable tumors with an excellent

prognosis after surgical resection and targeted medical therapy. Unfortunately, a

considerable number of patients, approximately 30% have recurrent disease [187].

Distant metastases are present in about 20% of patients with recurrent cancer. It is

thus of utmost importance for clinicians to identify tumors with more aggressive

biology and treat them accordingly with more aggressive regimens. Strong inde-

pendent prognostic factors for patients with thyroid cancer include age, gender,

histological type, vascular invasion and lymph node and distant metastases [41].

Papillary and follicular carcinomas have a different propensity for lymph node

metastasis: papillary thyroid cancer tends to metastasize to regional lymph nodes,

whereas follicular thyroid cancer usually metastasizes by a hematogenous rather

than by a lymphatic route. Accordingly, papillary thyroid cancers have increased

VEGF-C expression when compared to follicular and other thyroid malignan-

cies [33,45,73,79]. High VEGF-C expression is associated with lymph node metas-

tasis and lymphatic invasion in this type of thyroid tumors [79, 114, 195, 241].

Also VEGF-D mRNA transcript levels and VEGF-D immunoreactivity correlate

with lymphatic vessel density and lymph node metastasis in papillary thyroid carci-

noma [106, 142, 144].

Numerous morphologically abnormal intratumoral lymphatics in papillary thy-

roid carcinomas have been observed [61, 237]. The development of intratumoral

lymphatics appears to be associated with multifocal disease and presence of lymph

node metastases at presentation, but is not a significant predictor of tumor recur-

rence [61,114]. In follicular thyroid carcinomas, intratumoral lymphatics are almost

non-existent [54]. It thus seems that lymphangiogenesis and lymphatic growth fac-

tor expression are particularly high in papillary thyroid cancers, tumors prone to

lymphatic metastases. The prognostic significance of tumor lymphangiogenesis in

this type of cancer remains to be determined.
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6.3.10 Esophageal Cancer

Esophageal adenocarcinoma is currently the most rapidly increasing cancer in the

United States and Western Europe [206]. This type of tumor, as well as squamous

cell carcinoma of the esophagus, are usually detected at an advanced stage and pa-

tients’ survival is low, despite improvements in surgical resection and (neo-)adjuvant

therapy. In fact, less than 20% of patients with advanced esophageal cancer bene-

fit from a neoadjuvant therapy. Moreover, a significant proportion of patients with

early-stage disease develop locally recurrent tumors or distant metastases within a

short period after curative surgery. Therefore prognostic markers are needed that

allow a proper selection of patients for chemotherapy who are at high risk for tumor

recurrence after a successful resection.

Serum VEGF-C levels are elevated in patients with esophageal squamous cell

carcinoma and are associated with lymph node involvement, especially in advanced

cancers [101]. Serum VEGF-C as a marker of lymph node involvement has been

characterized by a sensitivity of 76% and a specificity of 58%. Furthermore, VEGF-

C expression is detected in the cytoplasm of esophageal carcinoma cells and stro-

mal cells but not in normal mucosa [37, 96, 98, 132, 149, 158]. VEGF-C expres-

sion is associated with neoplastic progression in the esophageal mucosa since in-

creased expression in Barrett’s epithelium as it progresses through dysplasia to

adenocarcinoma has been observed [11]. In parallel, expression of VEGFR-3 was

also upregulated, particularly in the dysplasia and adenocarcinoma stages. Further-

more, in esophageal squamous cell carcinoma, VEGF-C-positivity is significantly

correlated with tumor stage, histological grade, lymphatic and venous invasion,

depth of tumor invasion and lymph node metastasis [37, 94, 96, 98, 117, 122, 132,

149, 158]. Moreover, lesions with VEGF-C mRNA expression have a higher mi-

crovessel density, immunohistochemically determined with an anti-CD31/-CD34

antibody, than those without VEGF-C expression [37, 96, 117]. The clinical impact

of the association between VEGF-C expression and prognosis is not fully under-

stood. Nevertheless, the prognosis for patients with VEGF-C-positive tumors is

poorer than that for patients with VEGF-C-negative tumors on univariate analy-

sis, suggesting that VEGF-C is an important predictor of biological behavior in

esophageal squamous cell carcinoma [94]. However, in patients with adenocarci-

noma of the esophagus, VEGF-C expression fails to give prognostic information,

indicating that VEGF-C might not play an important role in progression in this

type of tumors [132]. The role of VEGF-D in esophageal cancer remains to be

explored.

Reports concerning the association of lymphatic vessel density with pathological

variables in esophageal cancer are conflicting. Compared with normal lymphatic

vessel density, peritumoral and intratumoral lymphatic densities are significantly

increased in esophageal cancer [134]. In addition, peritumoral lymphatic density

seems to be higher than intratumoral lymphatic vessel density of the same tumor. In

one study, no correlations between lymphatic vessel density and any pathological

variables were found [134]. Only lymphatic invasion in the peritumoral compart-

ment, restricted at the mucosa and submucosa, was associated with lymph node
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metastasis. However, in another study, lymphatic vessel density, determined by im-

munohistochemistry for podoplanin, was higher in advanced tumors with lymphatic

invasion [146]. Moreover, the survival rate of patients with a low lymphatic vessel

density tended to be higher than that of patients with a high lymphatic vessel density.

These last results suggest that the evaluation of lymphatic vessel density might be

useful in predicting the prognosis in patients with esophageal carcinomas, although

this needs to be further investigated.

6.3.11 Colorectal Cancer

Colorectal cancer is the second leading cause of cancer death in the United States.

Approximately 75% of patients with colorectal cancer present with localized dis-

ease. Patients with colorectal cancer initially presenting with resectable tumors and

tumor-free lymph nodes are generally considered as patients at low risk for recur-

rence. Therefore, adjuvant therapy is not recommended in these cases. Despite the

low tumor stage, about 30%–40% of these patients subsequently develop recurrent

disease [34]. It is in this patient group that prognostic markers may identify a pa-

tient subgroup at high risk for disease relapse who may also benefit from adjuvant

therapy.

Circulating VEGF-C levels, but not VEGF-D levels, are higher in patients with

colorectal carcinoma than in healthy controls and are associated with the presence

of lymph node metastasis [39, 40, 53, 231]. Serum VEGF-C levels have reached a

sensitivity of 81% and a specificity of 76%, suggesting that circulating VEGF-C

levels might provide additional information for distinguishing the absence from the

presence of lymph node involvement in patients with colorectal carcinoma [231].

Also VEGF-C expression in the cytoplasm of colorectal cancer cells is significantly

increased compared to normal mucosa [5, 53, 63, 221, 230]. Both VEGF-C mRNA

and protein expressions have been reported to be associated with lymphatic and

venous invasion, lymph node status, Dukes’ stage, liver metastasis, depth of invasion

and poorer histological grade in colorectal carcinoma [5, 52, 71, 78, 90, 91, 93, 99,

118,157,182,221,232]. The survival time of patients with VEGF-C-positive tumors

is significantly shorter than of patients with VEGF-C-negative tumors [52, 71, 85,

157, 182]. However, other studies have not demonstrated a relationship between

VEGF-C levels of expression and lymph node metastasis and colorectal cancer [53,

159]. Also VEGFR-3 expression in colorectal cancer cells has been associated with

poorer overall survival [230]. The impact of VEGF-D on tumor progression and on

prognosis of colorectal cancer remains elusive. Whereas some studies have reported

only low levels of VEGF-D expression in colorectal cancer compared to normal

mucosa and no or an inverse correlation with lymph node metastasis [53, 63, 90,

91], others did find a significant relationship between the presence of high VEGF-

D expression and lymph node metastasis and disease-free and overall survival of

patients with colorectal cancer [51, 71, 157, 227].

Intratumoral lymphatics are observed in the majority of colon carcinomas

[46, 105] and the proliferating activity of lymphatics is significantly increased in
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colorectal carcinoma tissues compared with their normal counterparts [154]. Pro-

liferating lymphatics have been identified as doubly labeled with anti-podoplanin

and Ki-67 antibodies and negative for the cytokeratin-22 antibody. No significant

positive correlations between the proliferation index of lymphatics and clinical out-

come have been observed. Whether a relationship exists between lymphatic vessel

proliferation and expression of lymphangiogenic factors such as VEGFs remains to

be investigated. Intratumoral lymphatic vessel density and lymphatic vessel density

at the tumor border are higher in cases with lymph node metastasis than in cases

without metastasis [105,113,121,136,166,221]. Survival rates are also significantly

lower in patients with high lymphatic vessel density [121, 136].

6.3.12 Gastric Cancer

Gastric cancer is one of the leading causes of cancer deaths worldwide. Recent

advances have enabled the early detection of gastric carcinoma by endoscopy. En-

doscopic mucosal resection is accepted as a treatment option for cases of early gas-

tric cancer, confined to the mucosa or submucosa, where the probability of lymph

node metastasis is low [155]. However, even when the carcinoma is completely re-

sected, additional surgery is necessary when lymph node metastasis appears likely

or when cancer cells have invaded the submucosa. Preoperative staging, includ-

ing endoscopic ultrasonography, is not specific enough to identify the presence of

lymph node metastases [6]. Therefore, reliable markers for lymph node metastasis

that could be applied to endoscopic mucosal resection specimens would be very

useful. It has been shown that lymphatic vessel invasion, histological ulceration of

the tumor, and tumor diameter (> 30 mm) are independent risk factors for regional

lymph node metastasis [234].

The measurement of lymphatic growth factor expression in gastric cancer could

be of relevance with respect to predicting disease outcome. Increased expression

of VEGF-C in the primary tumor correlates with increased dissemination of tumor

cells to regional lymph nodes in gastric cancer [81, 82, 97, 156, 220, 239, 242] and

with lymphatic invasion [74,82,156,175,239]. Furthermore, a relationship has been

found between the expression of VEGF-C in tumor tissues and poor prognosis as

well as reduced survival in gastric cancers [74, 190, 220, 239]. The serum VEGF-C

levels in patients with gastric cancer are higher than in controls [220]. Serum VEGF-

C is particularly associated with poorly differentiated gastric adenocarcinomas, T3

and T4, lymph node metastasis, distant metastasis, and pathological TNM groups III

and IV. Given that serum VEGF-C is an independent factor predicting poor progno-

sis and is able to predict lymph node metastasis with high sensitivity and specificity,

serum VEGF-C might be a useful biomarker for lymph node metastasis in gastric

cancer. Also VEGF-D expression has been detected in gastric cancer [81, 175]. The

expression of VEGF-D is significantly correlated with tumor size, lymphatic and ve-

nous system invasion, lymphatic vessel counts and lymph node metastasis [81,175].

Multivariate analysis has indicated that VEGF-D expression is an independent prog-

nostic factor for both relapse-free survival and overall survival [81, 175].
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Lymphatics in gastric cancer are not restricted to the peritumoral region, but

are also present in intratumoral lesions [143]. Increased density of lymphatics of

primary tumors closely correlates with lymph node metastasis and lymphatic inva-

sion in human samples of gastric cancer and predicts poor prognosis [97, 143, 177,

220, 240, 242]. A significant correlation between lymphatic vessel density and lym-

phatic vessel invasion, detected by podoplanin immunohistochemistry, and lymph

node metastasis has also been noted in T1 early gastric cancer [143]. These result

indicate that the assessment of lymphatic vessel density may be a useful predictor

of lymph node metastasis, or may become a decision making factor for additional

surgery in T1 early gastric cancer.

6.3.13 Pancreatic Cancer

Pancreatic ductal adenocarcinoma, whose nomenclature derives from its histologi-

cal resemblance to ductal cells, is the most common pancreatic neoplasm and ac-

counts for >85% of pancreatic tumor cases [66]. It is the fourth leading cause of

cancer death in the United States with a dismal 5-years survival rate of 3%–5%. Pan-

creatic adenocarcinoma is characterized by its aggressive local invasion of adjacent

structures, perineural invasion and early lymph node and liver metastasis [141]. Its

aggressive biology and resistance to conventional and targeted therapeutic agents

leads to a typical clinical presentation of incurable disease at the time of diagno-

sis. Endocrine tumors of the pancreas are uncommon tumors, representing 1% to

2% of all pancreatic neoplasms [48]. The tumors tend to have an indolent behav-

ior and long-term survival is common. The classification of these tumors remains

controversial, and prognosis is difficult to predict using classical histopathologi-

cal malignancy criteria (size, cellular atypia, necrosis, mitotic activity and vascu-

lar invasion), but important features include metastasis and invasion of adjacent

structures.

In pancreatic adenocarcinomas, results on lymphatic growth factor expression are

conflicting. In one study, no overexpression of lymphangiogenic cytokines, such as

VEGF-C and VEGF-D, has been found [179]. However, other studies have shown

that mRNA expression levels of VEGF-C and VEGFR-3 are indeed upregulated

when compared to normal pancreatic tissue [171,196]. Immunohistochemical analy-

sis revealed VEGF-C protein expression in the cytoplasm of ductal-like cancer cells

and VEGFR-3 protein expression in pancreatic cancer stromal cells and microves-

sels [171]. The presence of VEGF-C in these tumors was associated with increased

lymph node metastasis [103, 196] and with patients’ survival [103], although this

could not be confirmed in other studies [171, 196]. In pancreatic endocrine tumors,

mainly tumor cells and some peritumoral pancreatic islets show VEGF-C expres-

sion [178]. Tumoral VEGF-C expression correlates with glucagon expression, pan-

creatic polypeptide expression and malignant phenotype. No association has been

found between VEGF-C expression and functional status, lymph vessel invasion, or

lymph node metastasis. VEGF-D mRNA expression is not observed in most pan-

creatic endocrine tumors.
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Intratumoral and peritumoral lymphatic vessel densities are slightly increased

in pancreatic adenocarcinoma compared with the normal pancreas [179]. However,

no correlation between lymphatic vessel density and any of the biological features

of pancreatic adenocarcinomas, including lymph node metastasis and patient sur-

vival, have been observed in these tumors. Also pancreatic endocrine tumors ex-

hibit higher intratumoral lymphatic vessel density values than the normal pancreas,

although the majority of the lymphatics are collapsed [165, 178]. In tumors with

high lymphatic vessel density, proliferating lymphatic endothelial cells, identified

via a double immunostaining for podoplanin and PCNA, have been observed [178].

The observations that high intratumoral lymphatic vessel density is associated with

lymphatic invasion and with angioinvasive/metastatic tumor characteristics have

indicated that intratumoral lymphangiogenesis promotes the malignant progres-

sion [165, 178]. In contrast, peritumoral lymphatic vessel density does not seem

to be of any clinicopathological significance in pancreatic endocrine tumors [178].

6.3.14 Hepatocellular Cancer

Hepatocellular carcinoma is one of the most common cancers worldwide, with the

highest incidence in regions with high prevalence of chronic viral hepatitis infection,

especially hepatitis B infection. Hepatocellular carcinoma commonly metastasizes

to lungs, lymph nodes, adrenal gland and bones, including the skull. Despite many

available treatment options, the prognosis remains poor. Surgical resection or liver

transplantation still represents the only potentially curative treatments for HCC.

VEGF-C expression is significantly stronger in poorly differentiated hepatocellu-

lar carcinomas than in well or moderately differentiated hepatocellular carcinomas

[233]. The frequency of intrahepatic recurrence tends to be higher and extrahepatic

metastasis is significantly higher in cases which have VEGF-C expression in the

tumor casts of the intrahepatic portal/hepatic vein branches than other cases without

the expression. Disease-free survival time tends to be shorter in cases with VEGF-C

expression in tumor casts of the portal/hepatic vein than in those without VEGF-C

expression. Thus, VEGF-C expression is related to the progression of hepatocellular

carcinoma and VEGF-C expression in tumor casts of the intrahepatic portal/hepatic

vein is considered to be a factor indicating recurrence/metastasis sites.

In human hepatocellular carcinoma and liver metastases, Prox-1-LYVE-1-double-

positive lymphatics are not present in the tumor parenchyma or in the intratumoral

septa of connective tissue but are restricted to the tumor margin and surrounding

liver [139]. No correlation or even a trend between lymphatic vessel density and

any tumor parameter, including lymphatic invasion, lymph node status and patient

survival has been indicated in this type of tumors.

6.3.15 Lung Cancer

Primary lung cancer is the leading cause of cancer-related death in most industri-

alized countries. Non-small cell lung cancer (NSCLC) accounts for 70%–80% of
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primary lung cancers and is well known for its ability to involve regional lymph

nodes even at the early stages of tumor growth. The tumor-node-metastasis sys-

tem is generally used in the evaluation of tumor progression and nodal involve-

ment as well as distant metastasis is the most critical factor to determine the

prognosis and to guide therapeutic decisions [137]. Patients with early-stage (I

and II) NSCLC tumors are treated by complete surgical resection with or with-

out adjuvant chemotherapy while stage III patients require combined modality ap-

proaches that may include chemotherapy, radiation and surgery. Nevertheless, the

overall 5-year survival rates of patients remain relatively poor, ranging from 70%

for stage IA patients to 25% for stage IIIA patients whose tumors are surgically

resectable [138].

The evaluation of VEGF-C in circulation has proven to give additional informa-

tion for discriminating between the absence and the presence of lymph node metas-

tasis [192–194]. NSCLC patients with lymph node metastasis have higher serum

VEGF-C concentrations than patients without lymph node metastasis and circulat-

ing VEGF-C levels have reached a sensitivity of 70% to 85% and a specificity of

68% to 77% for prediction of lymph node status [192–194]. Moreover, a combi-

nation assay of circulating VEGF-C, MMP-9 and VEGF-A has improved accuracy

in detecting lymph node metastasis [192]. This type of protein assays can be easily

and frequently be performed because of their minimal invasiveness in comparison

with examinations using surgical obtained tissue. However, its diagnostic value is

not inferior to that of PET or mediastinoscopy.

Although recent clinical studies have examined the abundance of lymphatic

growth factors in lung cancer, the results have been difficult to interpret. Some

studies have reported a significant positive correlation between tumor-VEGF-C and

lymphatic invasion and lymph node (micro-) metastasis [86, 110, 152, 246] whereas

others failed to detect a significant relationship between VEGF-C expression and

lymph node status [9, 151, 191]. Nevertheless, the status of VEGF-C in tumor cells

appears to be a significant prognostic factor in NSCLC [9, 38, 99, 110, 151, 246].

In one study, a low ratio of VEGF-D:VEGF-C in lung adenocarcinoma has been

shown to be associated with lymphatic invasion and lymph node metastasis [148].

VEGFR-3 is expressed both on tumor cells and on endothelial cells of microves-

sels in NSCLC, and there is a significant correlation between VEGFR-3-positive

endothelial cell density and VEGFR-3 expression on tumor cells [27]. The ex-

pression of VEGFR-3 is closely related with lymph node metastasis and TNM

stage [109]. Both higher VEGFR-3-positive endothelial cell density and higher tu-

mor cell-VEGFR-3 are significant and independent prognostic factors [27, 99]. In

one study, the balance of VEGF-C and VEGFR-3 expression levels in the tumor was

shown to affect lymph node metastasis [191]. The VEGF-C/VEGFR-3 ratio of the

node-positive group was significantly higher than that of the node-negative group.

Since serum VEGF-C levels of patients with lymph node metastasis are significantly

increased in NSCLC [192–194], one might speculate that when the serum VEGF-C

level is excessive, and excess VEGF-C cannot bind VEGFR-3 in the cancer cells,

it binds to VEGFR-3 in lymphatics, promoting lymphangiogenesis and lymph node

metastasis.
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In human samples of NSCLC a decrease in lymphatic vessel density from per-

itumoral lung tissue towards the tumor center can be observed [163]. In fact, in

the study by Koukourakis et al., using LYVE-1 as a marker, lymphatics were only

noted at the tumor periphery and not within the main tumor mass [100]. However,

this could be explained by the observation that LYVE-1 seems to stain only a subset

of lymphatics when compared with podoplanin [163]. The presence of lymphangio-

genesis in NSCLC has been associated with the growth pattern [163]. In destruc-

tively growing angiogenic tumors, LYVE-1+ lymphatics are detected exclusively

at the tumor periphery and in the peritumoral host tissue. In contrast, a significant

proportion of nonangiogenic NSCLCs contain lymphatics positive for LYVE-1 (and

also for podoplanin) both in the tumor center and at the tumor periphery. Moreover,

angiogenic tumors have actively sprouting lymphatics (D2-40 and Ki-67 double-

positive) in all of the investigated tumor areas, whereas nonangiogenic tumors

show no Ki67 staining intratumorally. This suggests that nonangiogenic NSCLCs

mainly co-opt host tissue lymphatics during their growth, in contrast to angiogenic

tumors, which expand with concomitant lymphangiogenesis. Other studies have

shown that the number of lymphatics (assessed using podoplanin as a marker) in

lymph node-positive NSCLC tumors is increased when compared to lymph node-

negative NSCLC tumors and is a significant and independent prognostic factor on

multivariate analysis [3, 222].

6.4 Conclusions

The lymphatic invasion of tumor cells to regional lymph nodes is an important

indicator of poor prognosis in many types of malignant tumors. The discovery of

specific markers of the lymphatic endothelium in the last decade has enabled the

study of lymphatic biology and the clinical implications of lymphangiogenesis.

Many studies have revealed that the growth of lymphatic vessels in the vicinity

of solid tumors correlates well with lymph node metastasis. VEGF-C and VEGF-D

have been identified as the main drivers of the lymphangiogenic process via bind-

ing to VEGFR-3. There is now evidence to suggest that a significant correlation

between the expression of these molecules and clinicopathological variables exists

in several human cancers. These observations suggests that the assessment of the

ongoing lymphangiogenesis might be of particular importance in improving the

prognostic stratification of patients with cancer, so that patients can receive treat-

ment at an earlier stage of the diagnosis and that unnecessary risk can be avoided to

those patients who do not need additional treatment. However, results from different

centers concerning the role of lymphangiogenesis-associated parameters having po-

tential influence on tumor behavior and patients’ prognosis are often contradictory.

A variety of problems can explain for these discrepancies, such as general method-

ological differences, differences in patients’ selection and the use of assays that

are not standardized or reproducible. An international consensus report concerning

the methodology of lymphangiogenesis quantification in solid tumors has recently

been published with the intention to initiate discussion amongst researchers on the
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standardization of lymphangiogenesis quantification methods. This is imperative to

improve the generalization of study results and for lymphangiogenesis assessment

to be adopted into clinical practice.

Abbreviations

SLN sentinel lymph node

H&E haematoxylin and eosin

VEGF vascular endothelial growth factor

RT-PCR reverse-transcriptase polymerase chain reaction

ELISA enzyme-linked immunosorbent assay

FIGO International Federation of Obstetrics and Gynecology

PSA prostate specific antigen

HNSCC head and neck squamous cell carcinoma

NSCLC non-small cell lung cancer
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Abstract: Metastatic spread of cancer is one of the major causes of cancer death.

The lymphatics contribute to metastatic spread by providing a conduit

for the spread of cancer cells. Tumors actively induce new lymphatic

formation by deploying growth factors, a process known as lymphan-

giogenesis. Systemic lymphatic imaging with conventional modalities

such as computed tomography, magnetic resonance imaging and ultra-

sound is limited to morphological evaluation for detection of enlarged

lymph nodes; on the other hand, functional lymphatic imaging ap-

proaches, including positron emission tomography, dynamic contrast-

enhanced MRI, lymphotrophic iron oxide nanoparticle enhanced-MRI

have been used to diagnose metastatic cancer in lymph nodes. Recently,

new targeted lymphatic imaging techniques including gadolinium-

conjugated dendrimer-based MRI, optical imaging using nano-sized

molecules based on fluorescence-labeled dendrimers, organic macro-

molecules, or quantum dots, have been developed. In this chapter, we

will explain principles and basic findings of conventional and func-

tional lymphatic imaging and will outline newly developed targeted

lymphatic imaging approaches.

Key words: Imaging · Lymphangiogenesis · Cancer · Metastases

7.1 Introduction

Tumor invasion and metastasis are critical steps in the development of lethal can-

cers [1]. While angiogenesis, the recruitment of new vessels to provide necessary

nutrients, has been extensively studied and is the target of numerous molecular ther-

apies, lymphangiogenesis, the process by which the tumor acquires larger and more

numerous lymphatics, is less well understood. However, angiogenesis and lymphan-

giogenesis are required for continued tumor growth. As blood flow increases to the

S.A. Stacker, M.G. Achen (eds.), Lymphangiogenesis in Cancer Metastasis,
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tumor, intratumoral pressures increase eventually preventing further perfusion of

the tumor. The lymphatics relieve this increased intratumoral pressure allowing the

tumor to grow. The lymphatics also provide a conduit for the removal of larger

molecules and inflammatory cells and may aid the tumor in evading the immune

system. Moreover, the lymphatics provide a non vascular conduit for the spread of

cancer cells.

Traditionally, lymphatics were thought to passively drain tumors via pre-existing

channels. In this model of tumor physiology, tumor cells from the primary tumor

entered the lymphatics which were located in the periphery of the primary tumor

and passively drained to the regional lymph nodes, the first of which is known as the

“sentinel node” [2]. More recently, however, it has become clear that the lymphatics

are active participants in the process of metastases. Primary tumors secrete growth

factors and cytokines that specifically target receptors on lymphatic endothelial cells

causing them to enlarge, proliferate and become more permeable resulting in the

process known as “lymphangiogenesis”. This process involves both the lymphatic

channels and the lymph nodes themselves [3, 4]. Vascular endothelial growth factor

(VEGF)-C and VEGF-D, which activate the endothelium via the VEGFR3 recep-

tor, are the best known growth factor-receptors affecting the lymphatics although

other ligand-receptor pairs have been implicated [5]. The expression of lymphatic

endothelial growth factors by primary tumor cells is associated with a worse clinical

prognosis carrying an increased risk of lymphatic metastases [6, 7].

7.2 Anatomy of Lymphatics and Lymph nodes

The lymphatic system is an extensive network of lymphoid organs which include the

thymus, bone marrow, tonsils, spleen, Peyer’s patches as well as lymphatic vessels

and lymph nodes which are present in practically all vascularized tissues except

the brain and retina [8]. A lymphatic vessel is composed of thin walled, single layer,

capillaries. Distally, the blind ending collecting sacs are highly permeable with large

gaps between the endothelial cells. Indeed, the attachments between the lymphatic

endothelium can be sparse and have been likened to the buttons on a shirt, allowing

large spaces for the absorption of extracellular fluids containing macromolecules

and cells in the gaps between the junctions. More proximally, as the lymphatic

channels drain toward the lymph nodes, the channels acquire progressively thicker

smooth muscle and pericyte layers which provide peristaltic propulsion but allow

less transmural leakage. Elastic fibers, which compromise the so-called anchoring

filaments, attach to the anti-luminal side of endothelial cells and anchor the lymphat-

ics to the tissue allowing them to expand their pore size as the interstitial pressure

increases [7, 9]. Fluid initially enters the blind permeable lymphatic sacs and is

initially propagated by pressure and then by peristaltic force to the lymph nodes [7].

A lymph node is composed of a fibrous capsule and a subcapsular sinus which

surrounds the islands of T and B cells called germinal centers. The cellular islands

can be divided into three components: cortex, which contains primary follicles



7 Lymphangiogenesis and Imaging of the Lymphatics in Cancer 161

including B cells and follicular dendritic cells, paracortex which is composed of

T and dendritic cells, and the medulla consisting of medullary cords which are

separated by medullary sinuses filled with lymph fluid. Lymph fluid, including den-

dritic cells and antigens, enters the periphery of the lymph node through afferent

lymphatic vessels [10]. The vasculature of a lymph node is provided by venules,

which enable the constant delivery of T and B cells to the lymph node to process

the antigens and develop an immune response. Once processed in the lymph node,

such cells leave the lymph node via the efferent lymphatics located in the hilum.

Lymph nodes draining tumors undergo early and extensive growth of the lymphatic

channels within the sinuses of the node, even before identification of tumor cells

within lymph node itself [11].

The first draining lymph node from a tumor is known as the sentinel lymph node

(SLN) [7, 12, 13]. The concept of the SLN was first introduced by Cabanas for

penile carcinoma in 1977, but gained momentum after Morton et al. applied SLN

techniques for malignant melanoma patients in 1992 [14, 15]. The theory behind

the SLN technique is that metastases progress in a predictable manner beginning

with the SLN rather than spreading randomly to any node in the lymphatic basin.

Detection of metastasis within an SLN will affect both the therapeutic approach and

prognosis [12]. Detection of a positive SLN usually signals a worse prognosis and

results in reclassification of the patient into a group with a higher risk of recurrence;

conversely a negative SLN usually connotes disease confined to the organ with a

commensurately better prognosis [5]. Moreover, the patient can be spared extensive

lymph node surgery. The ability of tumor cells to migrate to the lymph nodes im-

plies that they are biologically more motile than tumor cells that do not have this

ability.

7.3 Physiology and Receptors of Lymphatics

The lymphatic system is important for maintaining homeostasis because it trans-

ports excess extracellular fluid and macromolecules from tissues into the systemic

circulation, thus conserving a fluid balance in the tissues [16]. Normally, the lym-

phatics safeguard tissue from infection by draining macrophages and pathogens to

lymph nodes where immune cells reside, thus facilitating an immune response [7].

In tumors, a variety of cytokines are produced to help the tumor evade the normal

immune system. The lymphatics draining the tumor play an important role in this

immunomodulation. Damage to the lymphatics due to trauma or infection results in

edema, swelling and an attendant risk of infection [17].

The tissue surrounding tumors is often complex, containing normal cells, vascular

endothelium, inflammatory cells and extracellular matrix. Identifying lymphatic

cells can be difficult without relying on specific markers such as the transcription

factor Prox-1, which is necessary for lymphatic development, and which is up-

regulated in dividing lymphatics and which has been implicated as the

“lymphangiogenic switch” [18, 19]. Podoplanin, a mucin-type transmembrane
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glycoprotein, is another lymphatic marker which is required for lymphatic devel-

opment and endothelial cell adhesion and migration. Podoplanin is also found in the

podocytes of renal tubular cells as well as, osteoblasts, and type 1 alveolar cells [7].

However, the main advantage of podoplanin as a marker of the lymphatics is that it

is not expressed in the endothelium of vascular channels enabling the discrimination

of lymphangiogenesis from angiogenesis [7]. Lymphatic vessel hyaluronan receptor

1 (LYVE-1) is a homologue of CD44, and is another reliable marker of the lymphat-

ics. LYVE-1 has been implicated in tumor cell trafficking to lymph nodes [20, 21].

VEGFR-3 is an endothelial cell surface receptor but its use for marking the lym-

phatics is limited since it can also be found on some blood vessels [22]. Finally,

molecules such as EphrinB2 and EphrinB4 are differentially expressed in lymphatic

vessel subtypes [23]. Thus, a combination of immunohistochemical stains is avail-

able to identify the lymphatics.

7.4 Role of Lymphatics in Cancer;

Implications for Treatment and Prognosis

When cancers develop in a tissue, normal lymphatic functions are subverted to the

needs of the growing primary tumor. The lymphatics are an existing tissue infras-

tructure that permits the tumor to drain excess macromolecular fluids and shed

tumor cells with greater efficiency than is possible with the extracellular tissue

space alone [24, 25]. The increased intratumoral pressure within tumors, forces the

extracellular fluid to flow outward by convection but the “sump effect”, caused by

the drainage of the lymphatic channels, directs much of the fluid toward the lym-

phatic “drain” thus improving the drainage efficiency [26]. For larger particulates

such as cellular components or cellular clusters (e.g. tumor cells and macrophages)

lymphatic invasion is aided by peristalsis generated by the thin layer of smooth

muscle which ensure propagation of cell clusters by contraction [27]. Lymphan-

giogenesis aids these processes by developing new lymphatic channels, enlarging

the lumens of existing lymphatics and providing more lymphatic flow to the lymph

nodes [28, 29]. Tumor induced lymphangiogenesis promotes metastasis through in-

creased peri and/or intratumoral lymphatics [24]. The most well documented tumor-

lymphangiogenesis promoter system is the VEGF-C/VEGF-D/VEGFR-3 axis in

which VEGF-C and VEGF-D, activates VEGFR-3, a receptor expressed on lym-

phatic endothelium [22]. In several types of cancers, significant correlation ex-

ists between VEGF-C and/or VEGF-D expression and lymphatic metastasis and

prognosis [7]. Tumor cells are the main source of VEGF-C/D, but perivascu-

lar stromal cells such as tumor-associated macrophages can also secrete these

growth factors; platelets also contain considerable amounts of VEGF-C [30–32].

VEGF-C mediates distant lymph node and organ metastases [33]. Beside their role

in lymphangiogenesis proteolytically activated VEGF-C and VEGF-D can also act

on VEGFR-2, which is also found on the endothelium of blood vessels and is a

signal for angiogenesis [34].
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VEGF-A is also shown to play significant role in peritumoral lymphangiogen-

esis and metastases, though it is better known as a mediator of angiogenesis [35].

VEGF-A binds to VEGFR-2 that is also expressed on lymphatic vessels and it pro-

motes lymphangiogenesis [36]. Moreover, VEGF-A indirectly activates the VEGF-

C/VEGF-D/VEGFR-3 pathway through inflammatory cells which carry VEGF-C

and VEGF-D [36].

The success of Bevacizumab, a monoclonal antibody against VEGF-A in

reducing tumor angiogenesis in colorectal cancer has encouraged agents directed

against tumor lymphangiogenesis. The VEGF-C/VEGF-D/VEGFR-3 axis is a use-

ful target for treating lymphangiogenesis. Theoretically, there are three ways of

blocking VEGFR-3 dependent tumor induced lymphangiogenesis [3]: binding to

and hence, blocking the effects of VEGF-C and VEGF-D, blocking VEGFR-3

using antibodies or small molecules, sequestering VEGF-C and VEGF-D via sol-

uble dimeric fusion proteins with extracellular ligands for VEGFR-3, and small

molecules that interfere with VEGFR-3 signaling through kinase activity

blockade [28, 37–39]. Although appealing in concept, the development of agents

that block VEGF-C and VEGF-D, has been stymied by a lack of understand-

ing of the whole range of binding characteristics of these growth factors and

their possible off-target effects. Moreover, it is likely that lymphangiogenesis is

under the control of more than just the known growth factors and these alter-

nate pathways could overcome the effect of the blockade of only one growth

factor.

7.5 Role of Imaging of Lymphatics

and Lymphangiogenesis in Cancer

7.5.1 Systemic Lymphatic Imaging

Most systemic imaging of the lymphatics is limited to detection of enlarged lymph

nodes on cross sectional imaging such as CT, MRI or PET. Normal lymph nodes,

despite the large flow of lymph through them, are tightly regulated in size likely

because of their fibrous capsule. When they become infected or become a site

for the growth of metastases, they enlarge and become visible on imaging studies.

CT/MRI rely on size criteria to differentiate benign lymph nodes from metastastic

ones; this clearly limits the ability to detect early metastatic nodes, i.e. the node

must achieve a short axis diameter ≥ 1 cm to be considered malignant. The long

axis of normal nodes is typically parallel to lymphatic vessels. Characteristically,

a normal lymph node is elliptical and has a horseshoe-like shape with a hilum

containing central fat, smooth outline and homogeneous CT density [40]. Patho-

logic nodes are usually enlarged, irregular in shape with less central fat (Fig. 7.1).

However, normal sized and shaped lymph nodes can often shelter micro-metastases

which do not distort the external contour of the node [41]. While these findings

are useful in day-to-day clinical practice they are inherently non-specific. Small



164 B. Turkbey et al.

Fig. 7.1 60-year-old male

with prostate cancer. Axial

contrast enhanced computed

tomography image shows

metastatic retroperitoneal

lymphadenopathy (arrow)

nodes may contain microfoci of disease and not be enlarged or distorted in shape;

conversely, enlarged nodes may simply be caused by hyperplasia and not malig-

nancy. Thus, additional “functional” systemic imaging methods have been intro-

duced to characterize lymph nodes, including positron emission tomography (PET),

dynamic contrast-enhanced MRI (DCE-MRI), ultra-small particles of iron oxide

(USPIO)-MRI and color Doppler ultrasound (CDUS). Further developments in spa-

tial resolution, cross-sectional imaging and three-dimensional reconstructions may

allow further assessment of morphological features of the nodal cortex and sinus for

diagnosis.

7.5.2 Direct Lymphangiography

One of the early attempts to image the lymphatic system was oil-based iodinated

dyes that were injected directly into the lymphatics of the feet. The agent then

traveled through the leg lymphatics to the abdominal lymphatics whereupon direct

radiographs or CT images could be obtained. This technique, known as “Lym-

phangiography” was classically used in the assessment of nodal metastases in

lymphoma and a limited number of other malignancies until the 1980’s. Lym-

phangiography requires great skill and expertise. Initially, a blue dye is injected

intradermally into the interdigital space in order to stain and localize the deep

lymphatic vessels. Then an incision is made in the skin of the foot to locate

lymphatic vessels large enough to allow cannulation with a fine needle. Follow-

ing this an oily iodinated dye was injected over a period of 60–90 minutes into

the lymphatic vessels using a mechanical pump. The initial imaging depicted the

lymphatic vessels and follow-up scans obtained after 24 h demonstrated the lymph

nodes. However, lymphangiography, in addition to being invasive and requiring
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skilled practitioners, can cause life-threatening complications such as pulmonary

embolization, pulmonary edema and adult respiratory distress syndrome if the

oily dye inadvertently enters the veins [42, 43]. The invasiveness of this proce-

dure, its expense and inconvenience for the patient, together with risk of severe

complications, has all but eliminated lymphangiography from the modern imaging

armory.

7.6 Lymphoscintigraphy and Sentinel Lymph Node

Biopsy in Cancer Management

The basic principle for sentinel lymph node biopsy (SLNB) was described in 1907

when Jamieson demonstrated the significance of neoplastic cells spreading to the so-

called “primary gland” by which he meant the draining lymph node [44]. The term

“sentinel node”— the first lymph node in a regional lymphatic basin, which receives

flow from a primary tumor—was proposed by Gould et al. in 1960. The procedure

gained prominence only in the early nineties after Morton described the technique

in primary cutaneous melanoma using isosulfan blue dye. Intradermal injections

were performed circumferentially around the primary lesion and the blue-stained

lymphatics were followed surgically until a blue-stained lymph node was identified.

In 1993, Alex and Krag, reported the first gamma-probe localization of sentinel

lymph nodes utilizing Tc-99 m sulfur colloid. They found good correlation between

gamma-probe guided lymphoscintigraphy and the isosulfan blue dye procedure for

detecting SLNs and lymphoscintigraphy became more widely used [45]. In a study

of the same group, axillary sentinel lymph nodes were identified in 18 out of 22

patients with breast cancer [46]. In 1994, Giuliano et al. extended Morton’s tech-

nique to breast cancer, injecting isosulfan blue dye into breast masses and surround-

ing breast parenchyma [47]. In 1996, Albertini performed intraoperative lymphatic

mapping using a combination of a vital blue dye and Tc-99 m sulfur colloid for SLN

identification in a prospective study [48].

Tc-99 m sulfur colloid is approved for imaging of the liver and spleen by the

United States Food and Drug Administration and is widely used for lymphoscintig-

raphy in filtered and unfiltered forms. Unfiltered sulfur-colloid has variable range

of sizes due to aggregation and their size can range from 1–3 �m depending on the

preparation technique [49]. The smaller filtered particles are micro-filtered (pore

size 220 nm Millipore, Bedford, MA). Particle size determines the intralymphatic

kinetics [50]. Filtered particles migrate faster and have been noted to delineate

a greater number of echelon or higher order lymph nodes. Worldwide, additional

radiotracers are utilized. For example, Tc-99 m antimony trisulfide is commercially

available in Australia and Canada and Tc-99 m-HSA nanocolloid is used in Europe

and Japan [51].

Radiotracer dose, injection techniques and imaging protocols vary extensively

according to the type of tumor being investigated. For example, in patients with

melanoma, dynamic or sequential images are usually performed immediately after

the intradermal injection of radiotracer around the primary tumor and continued



166 B. Turkbey et al.

for 30–60 minutes [51]. After the images are acquired, the patient is taken directly

to the operating room. In reality, imaging during SLNB is being performed less

frequently in breast cancer but continues to be more important in melanoma SLNB.

In breast cancer, the most popular approach is to perform an intradermal injection

in the skin overlying the primary tumor or a subdermal injection in the periareolar

region [52,53] (Fig. 7.2). Dynamic or sequential images are not routinely performed

and images can be obtained, if at all, on the same day or the day before surgery [54].

For the two-day protocol, unfiltered sulfur colloid is employed and, due to the slower

kinetics of the larger particle, imaged later in the day. The patient is then operated

on the following day. Comparable results are achieved with a one day protocol using

filtered sulfur colloid in which the imaging and intraoperative localization are per-

formed on the same day. Proponents of the two-day protocol claim greater efficiency

in scheduling with less operating room time wasted in waiting for patients to arrive

from the Nuclear Medicine Department [54].

Fig. 7.2 45-year-old female

with breast cancer. Lateral (a)

and right anterior oblique (b)

planar images obtained after

the subdermal injection of

unfiltered Tc-99m

sulfur-colloid in the

periareolar region

demonstrating a sentinel

lymph node in the right axilla

(arrows). (Courtesy of

Dr. Raghuveer K. Halkar,

Emory University)
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The main disadvantage of lymphoscintigraphy is the poor spatial resolution and

lack of detailed anatomy to guide surgery team during operation. Recently, the in-

troduction of a new imaging instrumentation such as SPECT/CT, promises more ac-

curate depiction of lymphatic channels and draining lymph nodes [55]. SPECT/CT

will probably have its highest impact in tumors located in body parts with ambigu-

ous lymph node drainage.

Using the pre-operative images as a guide, the surgeon uses a small handheld

probe to detect gamma-rays emissions from the radiotracer. By placing the probe

over the region of highest counts, an incision can be made directly over the sentinel

lymph node. A SLN usually has at least 10 times the background counts, taken at

a location remote from the injection site [51]. After removal of the SLN, residual

activity and additional lymph nodes can also be detected via the probe.

In breast cancer patients, the presence of axillary lymph node metastases rep-

resents an important prognostic indicator; it has been shown that the presence of

regional metastases within the axillary basin decreases a patient’s 5-year survival

by approximately 28–40% [56, 57]. Axillary lymph nodes receive 85% of the lym-

phatic drainage from the breast; the remainder drains to the internal mammary

chain. The likelihood of axillary LN involvement is related to histologic grade of

the primary tumor and the presence of lymphatic or vascular invasion in the speci-

men [58]. Tumor size and location also play an important role. For example, there

is a 16–19% chance of axillary node metastases in very early breast cancers (T1a-b,

tumor size ≤ to 1 cm) while in T1c lesions (size 1–2 cm), this rate increases up to

30–40% [59, 60].

Axillary lymph node metastases are more common in patients where the primary

tumor is located in the outer quadrants of breast [61]. Physical examination has poor

predictive value for determination of nodal involvement. Up to one-third of women

with non-palpable axillary lymph nodes will have metastases, while one-third of

those with palpable lymph nodes will be disease free. In the past, radical axil-

lary lymph node dissection (ALND) was used for staging and prevention of loco-

regional recurrence. However, the procedure leads to considerable morbidity in the

form of lymphedema and sensory motor disturbances in the ipsilateral extremity and

its benefit is unproven. For these reasons, the use of ALND for staging purposes in

clinically low risk patients is declining with the adoption of the SLNB technique. In

a meta-analysis by Kim et al. including sixty nine trials of SLNB in patients with

early-stage breast carcinoma between 1970 and 2003, of the 8059 patients studied,

7765 patients (96%) had successfully mapped SLNs. Lymph node involvement was

found in 3132 patients (42%) and ranged from 17% to 74% across studies. The

false-negative rate (FNR) ranged from 0% to 29%, averaging 7.3%. Eleven trials

(15.9%) reported an FNR of 0.0, whereas 26 trials (37.7%) reported an FNR > 10%.

Significant inverse correlations were observed between the FNR and the number of

patients studied (r = −0.42; P < 0.01) and the proportion of patients who had

successfully mapped SLNs nodes (r = −0.32; P = 0.009) [62]. Results of SLNB in

breast cancer are clearly operator dependent and the importance of experience has

been confirmed in multicenter trials [63]. In experienced hands the false negative

rate for SLNB is 5% or less. [64].
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Metastasis to regional lymph nodes is the most important prognostic factor in

early-stage melanoma [65–67]. Before the development of SLNB, the only method

to identify regional nodal metastases and stage the nodal basin was elective complete

lymph node dissection (CLND). However, only 20% of patients with intermediate-

thickness lesions will have metastases to regional nodes [68]. Therefore, the large

majority of patients with melanoma underwent extensive surgery without benefit.

SLNB has been proposed as a minimally invasive alternative to CLND. The Amer-

ican Joint Committee on Cancer (AJCC) has incorporated the tumor status of the

sentinel node into its staging system for melanoma [65]. The Multicenter Selective

Lymphadenectomy Trial (MSLT-I) is the largest trial to address the role of lymphatic

mapping with SLNB in determining prognosis and its impact on survival [68]. Ini-

tial SLN identification rate was 95.3% overall: 99.3% for the groin, 95.3% for the

axilla, and 84.5% for the neck basins. The rate of false-negative SLNB during the

trial phase, as measured by nodal recurrence in a tumor-negative dissected SLN

basin, decreased with increasing case volume at each center: 10.3% for the first

25 cases versus 5.2% after 25 cases. There were no operative mortalities. The low

(10.1%) complication rate after SLNB rose to 37.2% if CLND was needed; CLND

also increased the severity of complications. Thus, SLNB is a safe, low-morbidity

procedure for staging the regional nodal basin in early melanoma. Even after a

30-case learning phase and 25 additional SLNB cases, the accuracy continues to

increase with a center’s experience. The authors concluded that SLNB should be-

come the standard of care for staging the regional lymph nodes of patients with

primary cutaneous melanoma (Fig. 7.3).
99 m Tc-sulfur colloid is not the only agent used for lymphoscintigraphy (LS)

[69, 70]. In addition to its many applications in oncology, lymphoscintigraphy was

studied in the localization of internal mammary lymph nodes for parasternal radi-

ation therapy [71–75] and in staging and treatment planning of patients with lym-

phoma [76]. However, it is in sentinel lymph node biopsy that the technique has

flourished.

The limitations of lymphoscintigraphy and blue dye, combined with advances in

imaging technology and contrast media development, have prompted a search for

better lymphatic imaging methods. These novel techniques are minimally invasive

and potentially offer higher spatial resolution that enables demonstration of lym-

phatic channels, higher temporal resolution, cross-sectional imaging capabilities,

and three-dimensional image reconstruction. Nanoparticle sized contrast agents can

access the lymphatic system by three different routes of administration: intravenous,

intra-lymphatic (direct lymphatic injection) or interstitial. Contrast agents for direct

intra-lymphatic injection are not being developed due to the inherent difficulties

in finding and cannulating the lymphatic vessels; thus the newer contrast agents

tend to use the other two routes. Contrast agents further increase the potential

to provide functional imaging- a particular advantage for cancer imaging, where

anatomical demonstration not alone provides sufficient information about disease

status any more.
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Fig. 7.3 40-year-old male

with cutaneous malignant

melanoma. Images obtained

after the intra-dermal

injection of microfiltered

Tc-99 m sulfur-colloid in the

right distal thigh demonstrate

intense radiotracer activity at

the injection site (a). Anterior

(b) and right lateral (c)

images of the pelvis

demonstrate a sentinel lymph

node in the right groin

(arrows). (Courtesy of

Dr. Raghuveer K. Halkar,

Emory University)
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7.7 Novel imaging Techniques

Lymphatic imaging across a number of modalities, including CT, PET, US, MRI

and optical imaging are minimally invasive and are becoming more available. They

potentially offer higher spatial and temporal resolution, three-dimensional image

reconstruction and sensitivity/specificity.

7.7.1 Ultrasound

Ultrasound (US) has long been used to investigate lymphadenopathy [77]. Spe-

cific features supporting nodal metastases include loss of central hilum, hypo-

echogenicity, irregular borders, and enlargement [78]. The main disadvantages of

US are the poor spatial resolution, its limited use in the thorax and deep retroperi-

toneum, and the fact that interpretation is highly operator dependent. Doppler US

can offer functional imaging of the lymph node and may aid diagnosis but relies on

lymph node angiogenesis. Color Doppler ultrasound (CDUS) studies can demon-

strate differences in vascularity and, as such, may be able to classify node as being

reactive, metastatic or neoplastic but there is an overlap among these (Fig. 7.4).

Ultrasound (US) using microbubbles, which are gas filled liposomes 2–10 �m in

diameter, have been adapted for sentinel lymph node imaging. Choi et al., injected

different microbubble agents subcutaneously into rabbits [79]. The agents, such as

‘AF0150’ were small enough in diameter to enter the lymphatic system, presumably

via gaps between the lymphatic endothelial cells. All agents rapidly and markedly

enhanced the popliteal lymph node following foot pad injection and hind limb

massage. In addition, the lymphatic ducts were visible after interstitial injection of

the microbubbles.

7.7.2 Computed Tomography (CT)

Recently, multi-slice computed tomography has been attempted for sentinel node

imaging using a low molecular weight iodinated contrast agent (iopamidol) injected

interstitially. Suga et al., described seventeen patients with breast cancer who under-

went thin-section, three-dimentional CT after subcutaneous injection of iopamidol

in the peri-tumoral and peri-areolar areas [80]. Peri-operative blue-dye injection was

performed for comparison. CT imaging allowed localization of SLNs in all patients

by opacifying the lymphatic vessel draining the injection site and an SLN. Minato

et al. were also able to predict SLNs in 13/15 patients with breast cancer, either

by enhancement of the lymphatic vessels draining into the SLN, or enhancement

in the SLN itself, correlating well with blue-dye detection [81]. The problem with

iopamidol-based sentinel lymph node imaging is that the low molecular weight of

the agent leads to rapid enhancement and early wash out from the nodes, therefore

only a small temporal window remains for imaging. Other disadvantages of CT are



7 Lymphangiogenesis and Imaging of the Lymphatics in Cancer 171

Fig. 7.4 63-year-old male

with lymphoma. Gray scale

abdominal ultrasound image

(a) depicts a round

hypoechoic lesion consistent

with malignant

lymphadenopathy (arrow)

anterior to inferior vena cava

(v) and aorta (asterix); color

Doppler image (b) shows

diminished vascularity within

the involved lymph node

(arrow)

the exposure to ionizing radiation and lack of real time guidance to the operating

surgeon during identification and resection of the sentinel node.

7.7.3 Magnetic Resonance (MR) Imaging

MRI, which has been used in a similar manner to CT for lymph node imag-

ing, offers good spatial resolution, functional information, and a range of new

contrast media, without exposure to ionizing radiation (Fig. 7.5). A number of

different contrast agents including gadolinium-diethynetriamine pentaacetic acid

(Gd-DTPA), iron oxide particles and Gd (III)-containing macromolecular agents (li-

posomes, dendrimers) have been specifically developed for and applied to imaging
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Fig. 7.5 74-year-old male

with prostate cancer.

Gadolinum enhanced axial

T1-weighted magnetic

resonance image (a) shows

malignant

lymphadenopathies with

slight enhancement (arrow);

coronal T1-weighted image

(b) shows conglomerated

metastatic nodes

(arrowheads) along the

course of abdominal aorta

of the lymphatic system. Un-enhanced MRI is equivalent to CT since it relies pre-

dominantly on nodal size in order to distinguish benign from malignant lymph

nodes; whereas, dynamic contrast-enhanced MR imaging is a new functional tool

that is readily available in the clinical setting. DCE-MRI acquires serial images

following intravenous injection of a low-molecular weight Gd-DTPA including con-

trast agent. Wash-in and wash-out curves can be derived from designated regions of

interest (ROIs) for direct comparison; moreover, pharmacokinetic models can be ap-

plied in order to derive permeability parameters. Resulting parameters reflect differ-

ences of microvascularity in terms of blood flow and permeability which have been

shown to correlate with the degree of angiogenesis within tumors [82] (Fig. 7.6).
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Lymphotrophic nanoparticle enhanced MRI has emerged as a useful imaging

modality for lymph node characterization. Superparamagnetic iron oxide (SPIO)

and ultra-small SPIO (USPIO) nanoparticles used as lymphotrophic nanoparticle

MRI contrast agents have the potential to evaluate the reticuloendothelial system

(liver, spleen, bone marrow, lymph nodes) with unique relaxation mechanisms and

physiologic distribution [83]. SPIO nanoparticles slowly move to the interstitial

space where they are transported to lymph nodes through lymph vessels. In lymph

nodes they are captured by macrophages and this uptake results in loss of signal

within normal nodes. Due to the strong magnetic susceptibility effect as well as

T2 shortening effect, normal uptake is seen as a loss of signal whereas metastases

are seen as residual signal. SPIO enhanced MRI contains two sessions; the initial

one in which patient is scanned just before contrast injection and a 24–36 hours

post-contrast follow-up scan which is important to ensure sufficient accumulation

of nanoparticle within lymph nodes. A report by Saokar et al. on overall perfor-

mance of lymphotrophic nanoparticle enhanced MRI in differentiation of benign

Fig. 7.6 (continued)



174 B. Turkbey et al.

Fig. 7.6 72-year-old male

with prostate cancer. Axial

contrast enhanced

T1-weighted magnetic

resonance images before (a)

and one-month after (b)

experimental anti-angiogenic

therapy show retroperitoneal

lymphadenopathy with

minimal change in size after

therapy (arrow); Ktrans, a

vascular leakage parameter,

reductions consistent with

response to anti-angiogenic

therapy are seen on the Ktrans

maps (arrowheads) before (c)

and one-month after

therapy (d)

lymph nodes from metastatic ones reveals sensitivity and specificity values vary-

ing between 33–100% and 37.5–100%, respectively [84]. Though the utility of

SPIO-enhanced MRI in the detection of nodal metastases varies for different regions

of the body, it is most accurate in identifying metastases to normal sized lymph

nodes (Fig. 7.7).
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Fig. 7.7 USPIO

lymphography of a mouse

24 hrs after intravenous

injection from the tail vein

(a) and 10 min after

subcutaneous injection

through the finger (b). All LN

are seen in black after

intravenous injection

(arrows) (a and b); lymph

node on right (arrowhead) is

not enhanced since injection

was made from left

subcutaneously, whereas both

draining lymph nodes (short

arrows) and lymphatic

vessels (long arrow) are

demonstrated after

subcutaneous injection from

left side (b)

b

The use of macromolecular agents employing Gadolinium labeling is at a rel-

atively early stage of research. Some groups have demonstrated the feasibility of

magnetic resonance lymphography (MRL) with Gd-containing liposomes in animal

models [85, 86]. Good uptake was demonstrated in regional lymph nodes follow-

ing subcutaneous injection, which is likely related to trapping of the liposomes by

macrophages. Misselwitz et al. used the macromolecular contrast medium Gadomer-

17 to image the inguinal and iliac nodes in dogs following hind limb injection [87].



176 B. Turkbey et al.

Enhancement was seen as early as 15 min post-injection, but was maximal 60–

90 min after injection, with signal enhancement increasing by as much as 450–

960%, depending on the initial dose.

It is also possible to use MRI to image in vivo lymphatic-convective transport.

Pathak et al. selected two murine breast cell lines, known to have differences in

invasiveness [88]. Using albumin-Gd-DTPA as a contrast agent they were able to

classify ROIs as “pooling” if the macromolecular contrast media (MMCM) con-

centration increased over time, or “draining” if it decreased relative to early phase

images. The more invasive tumor line had a significantly higher MRI-detected num-

ber of ‘draining’ voxels. Thus, the lymphatic drainage pattern correlates with the

metastasis rate and lymphangiogenesis. Drainage may be dependent on both the

‘invasiveness’ of the tumor and the extracellular matrix integrity which, if reduced,

can facilitate passage of tumor cells, along with extracellular fluid.

Dendrimers are monodispersed synthetically produced organic polymers. They

can be produced at precise but, chemically identical sizes. Two forms of dendrimers

are commercially available: polyamidoamine (PAMAM) and diaminobutane core

polypropylimine (DAB or PPI). Different generations (sizes) of dendrimers have

been investigated as MRL macromolecular contrast agents. Kobayashi et al. used

interstitially injected generation-6 (G6) PAMAM dendrimers loaded with Gadolin-

ium chelates (Gd) to image the lymphatic system and the sentinel nodes of normal

mice and mice with xenografted breast tumors [89]. Gd-G6 dendrimer was injected

directly into the mammary gland or peri-tumorally, imaged by T1 weighted MRI

and 3D reconstruction was used to aid anatomical localization. They were able to

differentiate normal and abnormal lymphatics and distinguish intralymphatic from

extralymphatic disease in a mouse lymphoma model [90]. Kobayashi et al. also

compared MRL with either Gd-PAMAM dendrimers of different generations, or the

less hydrophilic Gd-DAB generations in murine models [91]. Gd-PAMAM-G8 was

retained in the fine lymphatic vessels without major leakage, resulting in excellent

imaging of the lymphatic channels. However, Gd-PAMAM-G4 provided better lo-

calization of lymph nodes that were close to the liver, due to a reduced background

signal (Fig. 7.8).

Another interesting advance in lymph node imaging is the use of dual-modality

contrast agents. Talanov et al. synthesized a PAMAM G6 dendrimer conjugated

to Gadolinium for MR lymphography and Cy5.5, a near infrared dye for optical

imaging [92]. The agent was injected into the mammary fat pad of mice and sen-

tinel lymph nodes were successfully imaged on MRI, followed by optical imaging.

MR has a number of advantages, including good spatial resolution and lack of ion-

izing radiation exposure while optical imaging offers portability to the operating

theatre and real time imaging. Further advances in contrast agent development may

eventually lead to substantial progress in this field. One concern that places the

future in some doubt is the possibility of gadolinium leaching from interstitially

injected macromolecules and dissociating in the interstitial tissues. A new syn-

drome, found mainly in patients with renal failure who have received intravenous

injections of Gadolinium-chelates, produces severe interstitial fibrosis and is known

as Nephrogenic sclerosing fibrosis (NSF) [93, 94]. Its origins have been traced to
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Fig. 7.8 12 min

post-injection gadolinum-G6

dendrimer enhanced

magnetic resonance

lymphangiography image of a

mouse with breast cancer

demonstrates tumor tissue

(black asterix), sentinel

lymph nodes in superficial

cervical, lateral thoracic and

axillary regions from the top

in order (arrows) and

lymphatic vessels (broken

arrow)

free Gadolinium in the interstitial tissues due to the slow clearance of the chelate

in patients with renal failure undergoing dialysis. The exact pathogenesis of NSF

remains obscure; however, its recognition has had a chilling effect on the develop-

ment of new Gadolinium containing compounds, particularly those that are to be

injected interstitially. Certainly, there is the theoretical risk of Gadolinium leaching

from interstitially injected macromolecules with the potential for unknown toxic

events. For this reason, the field is currently progressing cautiously and potential

side effects are being evaluated in animal trials.

7.7.4 Optical Imaging

Optical imaging is a rapidly advancing branch of medical imaging that does not

require ionizing radiation exposure and utilizes relatively low cost and portable

equipment. It can be easily incorporated into the operating theatre for SLN biopsies.

The near infra-red (NIR) spectrum is often used for in vivo imaging because
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hemoglobin, muscle and fat are least absorbent in this light range, allowing light

arising from deeper tissue planes to be imaged. [95]. Fluorescent probes are safe

and can be bound to various macromolecules, including antibodies. The main disad-

vantage remains the poor depth sensitivity of the technique, and penetration beyond

1–2 cm is currently unrealistic, however, in many cases this may be adequate for

clinical use, especially in the context of identifying superficial SLNs in melanoma

surgery (e.g. sentinel node imaging).

A special kind of optical fluorophore is known as a quantum dot. Quantum dots

(Qdots) are semiconductor crystals in the nanometer size ranging between 5–20 nm

in diameter. They have high quantum yield and thus are very bright. The wavelength

of emitted energy of Qdots can be controlled by changing their size and shape;

therefore they can emit light in the near infrared spectrum [82]. In addition to their

high light output, Qdots can be excited with broadband light below the emission

wavelength. Moreover, due to their narrow emission bandwidth, multiple Qdots can

be used simultaneously with the same excitation light. In comparison, organic flu-

orophores usually require specific excitation light near to the emission wavelength

limiting the number of dyes that can be simulantenously excited and detected [96].

On the other hand, the main disadvantage of Qdots is their potential toxicity related

to their cadmium-selenium or cadmium-tellurium core [97]. Additionally, Qdots

may induce cell death by formation of reactive oxygen species since in some cases

Qdots can transfer absorbed optical energy to oxygen radicals which may cause

DNA damage, potentially resulting in apoptosis and necrosis [98]. However, their

clinical feasibility is still to be determined since the necessary dose is extremely low

and Qdots can be designed to avoid the creation of reactive oxygen species.

The range of maximum fluorescence of Qdots is determined by their elemen-

tal composition extending over the whole visible and near infrared spectrum [98].

Their size makes them ideal agents for lymphatic imaging via interstitial injection.

In order to make Qdots suitable for lymphatic imaging, their surfaces have to be

modified [98].

Kim et al. reported successful in vivo imaging of the lymphatics using a near in-

frared Qdots in order to detect sentinel lymph nodes arising from breast tissue [99].

Retention of Qdots in lymph nodes was shown by several studies in animal mod-

els [100–102]. Parungo et al. reported use of Qdots in the detection of lymphatic

drainage of peritoneal and pleural spaces in animal models [103, 104]. Knapp et al.

used near infrared Qdots to demonstrate sentinel lymph nodes in invasive urinary

bladder cancer in animal models [105]. Additionally, utility of using Qdots in sen-

tinel lymph node mapping of gastrointestinal tract and lung was reported by Soltesz

et al. [106, 107].

Hama et al. have shown utility of fluorescence lymphangiography using two near

infrared Qdots with different emission spectra to simultaneously detect two lym-

phatic basins [108]. Recently, Kobayashi et al. demonstrated simultaneous multi-

color fluorescence imaging of five different lymphatic basins using five near infrared

Qdots [109] (Fig. 7.9). This is only possible with Qdots because of their nar-

row emission wavelengths and broad excitation tolerance. Fluorescence imaging

enables improved sensitivity for those lymph nodes close enough to surface to be
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Fig. 7.9 Simultaneous 5-color (blue, green, yellow, magenta and red) lymphatic drainage imaging

of the head and neck region using 5 quantum dots (Qdots 605, 805, 565, 655 and 705) injected

intracutaneously from 5 different parts of the body in a mouse

imaged; moreover the combination of Qdots fluorescence imaging with other imag-

ing modalities such as magnetic resonance imaging, computed tomography, scintig-

raphy and positron emission tomography may allow mapping of deeper lymph

nodes, [99].

7.8 Summary and Outlook

Metastatic spread of cancer is the major cause of cancer related death. The lymphat-

ics contribute to metastatic spread by allowing the primary tumor to grow larger and

by providing a conduit for the spread of shed cancer cells. Evidence is accumulating

from clinical and experimental studies that inhibition of the VEGF-C/VEGF-D/

VEGFR-3 axis and other growth factors (VEGF-A, PDGF-BB, angiopoetins, FGF,

HGF, IGF), which promote lymphatic spread of tumors through lymphangiogen-

esis, could lead to improvements in prognosis and survival. Systemic lymphatic

imaging with computed tomography, magnetic resonance imaging and ultrasound

is limited to the detection of enlarged lymph nodes; on the other hand, functional

systemic lymphatic imaging methods, including positron emission tomography,

dynamic contrast-enhanced MRI, lymphotrophic nanoparticle enhanced-MRI have
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been introduced to differentiate benign lymph nodes from malignant ones. The

concept of sentinel lymph node biopsy under imaging guidance of Tc-99 m sulfur

colloid lymphoscintigraphy and isosulfan blue dye procedure has had a profound

influence on cancer management. Moreover, new targeted lymphatic imaging tech-

niques including dendrimer conjugated gadolinium-MRI, quantum dot-fluorescence

lymphangiography and macromolecule labeled optical imaging have been intensely

studied in several trials. Advances in both systemic and targeted lymphatic imaging

techniques may open up the possibility of delivery of intralymphatic treatment to

tumor burden in addition to diagnostic imaging.
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Abstract: Lymphangioleiomyomatosis (LAM) is a rare, neoplastic disease in

which abnormal smooth muscle-like cells (LAM cells) proliferate in

the lungs and along the axial lymphatic systems including the lymph

nodes and thoracic ducts. LAM cells are transformed cells due to loss-

of-function type mutations of either the TSC1 or TSC2 gene, which are

tumor suppressor genes originally identified to be the genetic cause for

tuberous sclerosis complex. LAM shows an extreme gender predilec-

tion and it usually occurs in women of reproductive age. Its patholog-

ical findings are characterized by the existence of abundant lymphatic

vessels resulting from LAM-associated lymphangiogenesis since LAM

cells produce potent lymphangiogenic growth factors, VEGF-C and

VEGF-D. Consequently its clinical manifestations include the symp-

toms and signs related with abnormalities in the lymphatic system,

such as lymphangioleiomyomas, chylous leaks into body cavities and

urine, from the airways or even the vagina, or lymphedema of the lower

extremities as well as a progressive cystic destruction of the lungs,

thus resulting in respiratory failure. The extent of LAM-associated

lymphangiogenesis correlates with the histologic severity of LAM.

The mechanism for the progression of LAM is now hypothesized to

be a unique invasion-independent mechanism mediated with LAM-

associated lymphangiogenesis. LAM cells are considered to dissem-

inate and form a metastatic lesion in the lungs and axial lymphatic sys-

tems through the lymphangiogenesis-mediated fragmentation of LAM

foci and followed by the subsequent shedding of LAM cell clusters into

the lymphatic circulation.
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complex · VEGF-C · VEGF-D
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8.1 Introduction

Lymphangioleiomyomatosis (LAM) is a rare, neoplastic disease in which abnormal

smooth muscle-like cells (LAM cells) proliferate in the lungs and along axial lym-

phatic systems, including the lymph nodes and thoracic ducts. LAM is a disease

showing an extreme gender predilection for women. LAM usually occurs in women

of reproductive age, but some occurrences in post-menopausal women have also

been reported. LAM can be grouped into patients with a sporadic occurrence of

LAM (sporadic LAM) or those associated with tuberous sclerosis complex (TSC)

(TSC-LAM). TSC is an autosomal-dominant neurocutaneous syndrome resulting

from the mutations of either the TSC1 or TSC2 gene. TSC-LAM is rarely seen

in men [1, 2].

In the literature, the first description of the cases with LAM seems to be back

in 1937, when patients with chylous pleural effusion, a proliferation of abnormal

smooth muscle cells in the lymph node, and honeycomb lungs were reported un-

der the diagnosis of leiomyosarcoma [3] or muscular cirrohosis of the lungs [4].

Subsequently, Frack et al. used the term, “the lymphangiomyomatosis syndrome”,

for the first time to describe a case with progressive dyspnea culminating in pneu-

mothrax, chylothorax, chylous ascites, chyluria, and lymphedema of the left lower

extremity [5]. A comprehensive evaluation of this disease from the viewpoints of

physiologic, pathologic and radiologic aspects, was reported in 1975 under the name

of “pulmonary lymphangioleiomyomatosis” [6], and the name of lymphangiomy-

omatosis or lymphangioleiomyomatosis thereafter became widely used. It was gen-

erally considered that the lungs were involved in lymphangioleiomyomatosis as the

term “pulmonary” was added as an adjective, for example in such term as, “pul-

monary lymphangioleiomyomatosis” and the patients with this disease tended to

die of respiratory failure approximately 10 years after being diagnosed with this

disease [7]. However, extrapulmonary involvement of lymph nodes in the retroperi-

toneum or pelvic cavity was thereafter recognized as a part of the clinical picture

of lymphangioleiomyomatosis and renal angiomyolipoma in which the identical

genetic abnormalities were demonstrated to frequently coexist with lymphangi-

oleiomyomatosis [8, 9], the disease is now recognized to be a systemic disease

affecting the lungs and axial lymphatic system and, as a result, it has since that

time been simply called either as lymphangioleiomyomatosis or its abbreviation,

LAM. Significant advances in the understanding of its clinical features and molec-

ular mechanisms have been obtained over the past 10 years and to date LAM

is still considered to be somewhat peculiar in terms of its gender predilection,

the heterogeneity of the clinical manifestations and disease course, and also in

regard to its intimate association with lymphatic systems which are considered to

play a significant role in both its clinical manifestations and the progression of

the disease.
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8.2 Clinical Features

8.2.1 Epidemiology

True incidence and prevalence of LAM are not known. There reported to be approxi-

mately 400 known patients with LAM in North America [10]. A nation-wide survey

recently performed in Japan reported and estimated prevalence of 1.2–2.3 cases per

million in the Japanese population [11] which was quite similar to the reported

prevalence of 0.9 cases in per million in the population of United Kingdom [12],

1.3 cases per million in the population of France [13]. These figures suggest that

there is no apparent racial difference in the prevalence of LAM. However, the LAM

Foundation, a patient organization of LAM in the United States, has identified over

1,000 patients with LAM in the United States and approximately 1,200 patients

with LAM in other countries, suggesting a minimum prevalence of 2–6 per million

women [14].

8.2.2 Symptoms and Signs

Several retrospective clinical studies and epidemiological studies including a suffi-

cient number of patients with LAM have been published from different countries

and there appear to be no significant racial differences in the clinical manifesta-

tions of LAM [11–14]. For convenience sake, the numbers in parentheses refer to

the frequency of symptoms at the time of LAM diagnosis according to Hayashida

et al. [11] in the following description.

LAM can be asymptomatic in its early stages. Due to advances in modern imag-

ing techniques and the popularity of regular health checkups based on concerns

or an increased awareness of heath promotion, a certain number of patients have

been identified as individuals suspected of having abnormalities on chest X-ray ex-

amination and thereafter have been eventually been found to have LAM without

pulmonary symptoms. However, LAM often demonstrates such respiratory symp-

toms as exertional dyspnea (74%), chest pain accompanying pneumothorax (53%),

cough (32%), sputum (usually small in amount) (21%), or hemosputum (8%). The

most common symptoms and signs at presentation are insidiously progressive dys-

pnea on exertion or pneumothrax. LAM is an important cause of the underlying

diseases of women with pneumothrax. Pneumothorax frequently recurs and it rarely

occurs concurrently in both lungs. Cough, sputum, and hemosputum are less fre-

quent. However, hemosputum is a peculiar symptom and LAM is listed as one of

underlying diseases of pulmonary hemorrhage, but in general massive hemoptysis

is rare.

LAM occasionally occurs with extrathoracic symptoms. Symptoms and signs

due to extrathoracic LAM lesions include the feeling of abdominal distension,
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abdominal discomfort, or pain which may be attributable to lymphangioleiomyomas

in the retroperitoneum and the pelvic cavity or renal angiomyolipomas (AMLs).

Severe abdominal pain or hematuria due to intratumoral hemorrhage of renal AMLs

may be an episode leading to disclose the existence of LAM. Lymphatic edema

of lower extremities may be the occasion of seeking medical attention and subse-

quently explored to have LAM in the pelvic cavity, although it is rare.

The most peculiar complication frequently seen in LAM is the chyle leakage

into body cavities such as pleural, abdominal, or pericardial spaces, into urine

(chylouria), or from the vagina, and the expectoration of chyle (chylous sputum).

Chylous pleural effusion (7%) or chylous ascites (5%) are the most common types

among LAM-associated chyle leakage. Some patients have chyle leakage into sev-

eral body cavities concurrently. For example, some are complicated with both chy-

lous ascites and pleural effusion, and even with chyle leakage from the vagina.

8.2.3 Radiographic and Physiological Findings

The plain chest radiographs may demonstrate increased bilateral reticulonodular

interstitial markings with a normal or increased lung volume. Pneumothorax or

pleural effusion may also be demonstrated. In patients with severe disease or at

an advanced stage, cysts and bullae may also be visualized. However, chest X-rays

are often normal and generally less sensitive for the identification of LAM than

computed tomography (CT) of the chest since parenchymal involvement is mild in

many patients at presentation.

High resolution CT of the chest, the images obtained at the slice thickness of

1–2 mm, is the most sensitive to identify LAM and hence the modality of choice for

patients with LAM or those who are suspected of having LAM. Thin-walled cysts

scattered evenly over all normal lung fields (Fig. 8.1). The cysts measure mostly

between a few mm and 1 cm in diameter, have thin walls with clear borders from the

underlying normal parenchymal image. As LAM gradually progresses, the number

of cysts tends to increase over the time (Fig. 8.1) with an insidious deterioration of

the pulmonary function. In some patients, especially in patients with TSC-LAM,

small nodular shadows with hazy edges consistent with multifocal micronodular

pneumocyte hyperplasia (MMPH) may be seen [16, 17]. The enlargement of medi-

astinal lymph nodes or the dilatation of the thoracic duct may also rarely be seen. CT

of the abdominopelvic cavity may demonstrate the existence of lymphangioleiomy-

omas, renal AMLs, or chylous ascites (Fig. 8.2). The frequency of AML may differ

according to race or ethnicity, with a reported frequency of 37.8% in the study of a

NIH cohort [15] but 27% in a study based on a Japanese population [11].

Cystic destruction of lung parenchyma has devastating physiological conse-

quences, including the progressive impairment of pulmonary function. The rep-

resentative abnormalities found in LAM is the impairment in gas transfer and

airflow (Fig. 8.3). The lowered diffusing capacity (DLco) is the most characteristic

abnormality found in LAM and it is often demonstrated at an early stage of disease

when no airflow limitation is recognized [11–13, 15, 18]. An insidious decline of

DLco may also be demonstrated while the forced expiratory volume in 1 s (FEV1)
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BA

Fig. 8.1 Progression of pulmonary LAM on HRCT images of the chest. The HRCT images of

the chest was obtained when the patient was at 26 (A) and 29 year olds (B), respectively, thus

demonstrating an increasing number of cysts in right lower lung field during the following 3 years.

This case presented with pneumothorax and was subsequently diagnosed to have LAM. Clearly

demarcated thin-wall-cysts are recognized

A B

C

Fig. 8.2 The CT images of the extrapulmonary LAM and renal angiomyolipoma. Lymphangi-

oleiomyomas, the cystic dilatation of lymph nodes involved by LAM, are demonstrated in the

retroperitoneum (A) and the pelvic cavity (B) (indicated by arrowheads). Some patients with LAM

are complicated with renal angiomyolipoma (AML) (C). Contrast-enhanced CT clearly delineates

the AML composing of solid and fat density in both kidneys (white arrowheads in the right and an

arrow in the left kidney, respectively). Normal right kidney tissue is compressed by huge AML as

a crescent shape (black arrowheads)
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at the diagnosis 2 years later 4 years later

6 years later 8 years later 10 years later

Fig. 8.3 Representative serial changes of pulmonary function demonstrated in a case with spo-

radic LAM. As a consequence of the progressive increase of cysts in the lung parenchyma, the

pulmonary function gradually becomes impaired over time in LAM patients. This figure shows the

serial change in the flow-volume curve obtained from a 31-year-old woman who presented with

abdominal discomfort related to lymphangioleiomyomas in the pelvic cavity. At the diagnosis of

a sporadic LAM made by surgical resection of lymphangioleiomyomas in the pelvic cavity, there

was no airflow limitation but moderately impaired diffusing capacity was demonstrated. However,

the gradual progression of airflow limitation, indicated by scooping of the forced expiratory flow-

volume curve, was revealed during her 10-year course, together with consistent decline of the

diffusing capacity

tend to remain stable [18]. The obstructive ventilatory impairment, as demonstrated

with lowered FEV1 and FEV1/forced vital capacity (FVC) ratio, usually accompa-

nies an increased residual volume (RV), total lung capacity (TLC) and RV/TLC ra-

tio, thus indicating the hyperinflation of the lungs due to gas trapping [11–13,15,18].

8.2.4 Pathological Findings

The characteristic microscopic finding in LAM is the proliferation of smooth

muscle-like cells (LAM cells) (Fig. 8.4A). The proliferation of LAM cells can be

demonstrated in the lungs (cyst wall, pleura, bronchioles, and peripheral vessels,
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Fig. 8.4 Histopathological findings of LAM-affected lung tissues. The nodular proliferation of

smooth muscle-like cells (LAM cells) (arrows) was demonstrated in the lungs (A, HE stain, origi-

nal magnification ×50). Most LAM cells are immunopositive for �-smooth muscle actin (�-SMA)

(B, indicated by brown, original magnification ×50) and some of them are immunopositive for

one of melanoma-related antigens, HMB45 (C, indicated by brown, original magnification ×100).

Within LAM cell nodules, slit-like or dilated spaces were frequently recognized (A). They are

lymphatic vessels since they are lined with lymphatic endothelial cells (LEC), as clearly demon-

strated by the immnuopositivity for VEGFR-3, a specific marker for LEC (D, indicated by red,

original magnification ×100). Note that LAM cell cluster (LCC) (arrow), tightly packed LAM

cells enveloped with LEC, is floating within LAM-associated lymphatic vessel (D)

etc.), and axial lymph nodes (supraclavicular region, pulmonary hilum and medi-

astinum, and, retroperitoneum, pelvic cavity, etc.). In the lung specimens stained

with ordinary hematoxylin-esoin (HE stain), LAM cells proliferate in clusters and

form distinct nodules or foci in lung parenchyma (Fig. 8.4A). LAM cells vary in

form from spindle-shaped to epithelioid, and their nuclei are oval to spindle-shaped,

with either no nucleolus or only one nucleolus and very fine chromatin. Their cy-

toplasm is eosinophilic or foamy. Immunohistochemical examinations are useful to

confirm the proliferation of LAM cells and to also disclose their cellular features.

Most LAM cells are immunopositive for muscular antigens such as �-smooth mus-

cle actin (�-SMA) (Fig. 8.4B) and desmin. Some LAM cells react with anti-HMB45

antibodies (granular staining pattern in the cytoplasm surrounding the nucleus) that

is a monoclonal antibody recognizing gp100, a premelanosomal protein presenting

in certain melanoma cells (Fig. 8.4C). Although HMB45 is considered to be a spe-

cific marker for LAM cells [19], the positive staining rate for anti-HMB45 antibody

is low in LAM cells, and sometimes no HMB45-positive LAM cells can be detected.

Some LAM cells show positive staining for sex steroid hormone receptors, estrogen

receptor and progesterone receptor [20, 21].



192 K. Seyama et al.

Another peculiar pathologic feature is the existence of abundant lymphatic ves-

sels in LAM-affected tissues (Fig. 8.4D). Classic studies have characteristically

described the histopathological features consisting of an anastomosing meshwork

of cellular trabeculae enclosing endothelial-lined channels, in which some contain

proteinaceous material [5, 6, 22, 23]. Alternatively, abundant slit-like spaces lined

by endothelial cells or dilated lymphatic vessels have also been recognized. Lym-

phangioleiomyomas, usually demonstrated along axial lymphatic system, are cystic,

soft lymph nodes with spongy texture, involved by the proliferation of LAM cells.

The cut surface of lymphangioleiomyomas shows a shredded appearance [5]. They

contain chylous or bloody chylous fluid and numerous particles which are composed

of proliferating LAM cells trabeculated by lymphatic endothelial cells (LEC) and

lymphatic channels [24].

LAM cells not only proliferate in the lung parenchyma but also invade the air-

ways, pulmonary artery, diaphragm, aorta and retroperitoneal fat tissue [24, 25]

(Fig. 8.5). We have previously examined the explanted lungs from 7 sporadic LAM

patients who underwent lung transplantation with special reference to the airway

involvement by LAM cells. When the airways in LAM-affected lung were ana-

lyzed from the central to peripheral direction by preparing tissue block every 10 mm

along lower lobe bronchus and B9 bronchus, it was demonstrated that LAM cells

invaded into the mucosal tissues in 5 of 7 patients with LAM (Fig. 8.5A and B).

Abundant dilated lymphatic vessels existed with proliferating LAM cells (Fig. 8.5A

and B). In the lower lobe bronchus or segmental bronchus, airway cartilages was

often destroyed by proliferating LAM cells (Fig. 8.5C). Pulmonary arterioles can

also be invaded by LAM cells. Pulmonary arterioles may be totally occluded by

LAM cells or the wall of arterioles may be destroyed (Fig. 8.5D and E), thus sug-

gesting that such these direct destruction of pulmonary arteries is likely to be the

cause of pulmonary hemorrhage, hemosputum, or hemoptysis that are symptoms

frequently seen in patients with LAM. In some patients, especially in those with

chylous effusion, the nodular proliferation of LAM cells has been demonstrated in

the diaphragm [24] (Fig. 8.5F). The transmural involvement by LAM cells with

abundant lymphatic vessels may also be observed [24].

8.2.5 Molecular Pathogenesis of LAM

A similarity in the pulmonary lesions between sporadic LAM and TSC-LAM has

been recognized since the early phase in the investigation of LAM [22, 26]. This

led to the hypothesis that sporadic LAM might have some genetic abnormalities in

common with TSC. TSC is an autosomal dominant neurocutaneous syndrome char-

acterized with the development of hamartomas in multiple organ including central

nervous system, skin, eye, heart, kidney, and lung. The two causative genes for TSC

have been identified. The TSC2 gene was identified on chromosome 16p13.3 in

1993 [27] followed by the identification of the TSC1 gene on chromosome 9q34 in

1997 [28]. Since the loss of heterozygosity (LOH) for either TSC1 or TSC2 has been
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Fig. 8.5 LAM cells invade into airways, pulmonary arteries, and diaphragm. The proliferation of

LAM cells with eosinophilic cytoplasm were identified in the bronchial wall (A and B, arrows)

where abundant dilated lymphatic vessels (∗) were also demonstrated (A and B, HE stain of the

bronchial wall of explanted lung tissues, original magnification ×100). In Fig. 8.5A, bronchial

cartilage was demonstrated on the left side. A part of bronchial cartilage was destroyed by prolif-

erating LAM cells, which was clearly demonstrated in magnified view (C, HE stain of explanted

lung tissues, original magnification ×100: arrowheads indicate LAM cells with eosinophilic cy-

toplasm). Pulmonary arterioles may be affected by proliferating LAM cells. Arterioles may be

totally occluded by LAM cells (D, Masson-Trichrome stain of lung tissue specimens from an

autopsy case, original magnification ×25: arrowheads, an arteriole occluded by LAM cells and

Br, bronchiole). Proliferating LAM cells may encompass and directly invade into the arterio-

lar wall (E, Masson-Trichrome stain of lung tissue specimens from an autopsy case, original

magnification ×25: arrowheads indicate the disruption and lacking of elastic fibers of arterio-

lar wall by LAM cells). Nodular proliferation of LAM cells (arrowheads) with cleft-like lym-

phatic spaces was identified in the fibrous stroma of the diaphragm (top, thoracic side; bottom,

abdominal side) (F, HE staining of the diaphragm obtained by a surgical resection, original

magnification ×35)
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demonstrated in TSC-associated hamartomas [29, 30], both genes are considered

to function as a tumor suppressor gene and a classic two-hit model proposed by

Knudson [31] can be applied for the development of TSC-associated tumors.

The first evidence for the involvement of the TSC2 gene in LAM was provided by

the identification of TSC2 LOH in renal AMLs or lymph nodes from patients with

sporadic LAM [9]. No TSC1 LOH was demonstrated in their study. In addition,

none of these patients had clinical manifestations of TSC. In addition, no TSC2

germline mutation was found in 41 patients with sporadic LAM [32]. Subseqeuntly,

TSC2 mutations were demonstrated in 5 AML tissue specimens obtained from 7

patients with sporadic LAM who concurrently had renal AML [8]. In addition,

LAM-affected lung tissue specimens were available in 4 of 5 sporadic LAM pa-

tients for a TSC2 mutation analysis and the identical TSC2 mutations with renal

AMLs have been demonstrated in all patients [8]. Based on these findings, it has

been demonstrated that LAM cells are transformed, neoplastic cells due to TSC2

mutations and might spread from renal AML via metastatic mechanisms [33]. We

also confirmed the same findings from a mutation analysis of the TSC1 or TSC2 gene

in 6 Japanese patients with TSC-LAM and 22 with sporadic LAM [34]. In addition

to the mutation analysis, we demonstrated the clonal proliferation of transformed

Lt Rt Uterus Mediastinal

Lymph Node

Normal Lt Upper

Lobe

Rt Lower 

Lobe

Lung

Kidney

Fig. 8.6 LAM cells at different anatomical sites had the identical genetic abnormality. From an

autopsy case with TSC-LAM who had a TSC1 germline mutation, LAM cells were microdissected

at different anatomical locations including left (lt) upper lobe or right (rt) lower lobe lung tissues,

left (lt) or right (rt) kidney, uterus, and mediastinal lymph node, and then LOH was analyzed using

D9S149, a commonly used microsatellite marker for the TSC1 gene. The two alleles of D9S149

are indicated with lines and the lost allele is indicated with an arrow. As compared with two

alleles of the marker D9S149 detected in the normal lung tissues, the identical pattern of TSC1

LOH (loss of the lower allele) was demonstrated in all LAM cells obtained from various locations.

As compared with two alleles detected in the normal lung tissues, the identical pattern of TSC1

LOH was demonstrated in all LAM cells obtained from various locations. (Modified from Sato

et al. [34]. By copyright permission of The Japan Society of Human Genetics and Springer Japan)
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LAM cells carrying the identical LOH or TSC2 mutations by microdissecting LAM

cells from more than one anatomical location (Fig. 8.6), thus suggesting a metastatic

spread of LAM cells [34]. Interestingly, the hypothesis has been raised with an early

insightful observation that cells with a smooth muscle phenotype in LAM lesion

may represent a clonal population despite the lack of any malignant features [22].

8.3 LAM-Associated Lymphangiogenesis

How do LAM cells metastasize and cause a progressive cystic destruction of the

lungs? Do LAM cells truly metastasize even though LAM cells lack the morpho-

logical features of malignancy seen in most cancers? Do LAM cells invade blood

vessels in a manner similar to that of cancer cells and perform a complex biological

process comprised of multiple steps, such as intravasation, transport via the blood,

extravasation, and secondary growth in the target organ?

Obviously, angiogenesis is an important process for tumor growth and blood

borne- metastasis in cancers. The TSC gene products, hamartin for TSC1 and tuberin

for TSC2, have been demonstrated to be associated together in cytoplasm and they

function as a negative regulator of mTOR signaling pathway, which control protein

synthesis, cell size and cell growth [35]. Several studies have reported that mutations

of the TSC genes may be associated with angiogenesis in TSC-associated tumors of

the brain, kidney and skins [36, 37]. However, LAM-affected lesions are abundant

with lymphatic vessels and LAM cells appear to have intimate association with LEC

(Figs. 8.4 and 8.5).

8.3.1 Lymphatic Vessels in LAM-Affected Tissues

As the name of disease, “lymphangioleiomyomatosis” is self-explanatory regard-

ing its important pathological features, the proliferation of LAM cells (abnormal

smooth muscle-like cells) and the involvement of abundant lymphatic vessels in

LAM-affected tissues. In addition, peculiar complications of chyle leakage into var-

ious body cavities, urine, and from vagina or intestine (manifested as protein-loosing

enteropathy) [38] as well as lymphedema of lower extrimeties [39, 40], clearly re-

mind us that LAM is a disease involving the lymphatic system.

Recent advances in lymphatic research identified several markers for LEC in-

cluding LYVE-1, VEGFR-3, podoplanin (D2-40), and prox-1 [41], while also pro-

viding an opportunity to re-evaluate the pathology of LAM and for opening up a new

field in regard to LAM research. With immunohistochemical examinations using

CD31 as a marker for vascular endothelial cells and VEGFR-3 as a marker for LEC,

the existence of abundant lymphatic vessels in LAM lesions were clearly demon-

strated while a few CD31-positive blood vessels have been identified [25]. LAM-

affected tissue specimen including the lungs (14 cases), lymph nodes (4 cases),

uterus (2 cases), and ovary (a single case) were obtained from a total of 15 cases with
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Fig. 8.7 LAM-associated lymphangiogenesis. Immunohistochemistry for VEGFR-3 demonstrates

that slit-like or dilated space surrounded by LAM cells are lymphatic vessels with VEGFR-3-

immunopositive LEC lining (A, original magnification ×100). Note that LEC was identified within

the foci of proliferating LAM cells and LEC appear to demarcate the nodular proliferation of LAM

cells and fragment it into LAM cell cluster. In the whole-mount lung tissue, lymphatic vessels

(indicated by arrows) in LAM lesion were demonstrated by immunohistochemistry for VEGFR-3

(B, original magnification ×50). Immunofluorescent labeling of VEGFR-3 delineated a fine lym-

phatic network lined with LEC in a tissue specimen obtained from the inner marginal tissues of

retroperitoneal lymphangioleiomyoma (C, smear preparation, original magnification ×100). Lym-

phatic vessels associated with the proliferation of LAM cells were seen in the wall of the large

vessels in the lung. Lymphangiogenesis associated with proliferating LAM cells was demonstrated

even in the wall of the large pulmonary artery (indicated with PA) by immunohistochemistry

for podoplanin (D, original magnification ×100). In contrast, double Immunostaining for CD31

(brown, VEC, indicated by arrowheads) and VEGFR-3 (red, LEC) clearly revealed that blood

vessels were much less abundant than lymphatic vessels in LAM foci (E, original magnification

×100). Double immunostaining for podoplanin (brown, LEC) and MIB-1 (green color, a cell cycle

marker) revealed many LEC to proliferate in the dilated LAM-associated lymphatic vessels (∗) of

which nuclei were immunopositive for MIB-1 (black, double positive for podoplanin and MIB-1,

indicated by arrowheads in the inset) (F, original magnification ×25; Inset, ×400). Note that

anti-MIB-1 antibody (Ki67) has cross-reactivity for alveolar epithelial cells
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LAM (6 autopsy cases, a single lung transplant case, and 8 surgical cases) to exam-

ine both vascular endothelial cells (VEC) and LEC. Immunostaining with VEGFR-3

clearly demonstrated that lymphatics were extremely abundant in both pulmonary

and extrapulmonary LAM lesions (Fig. 8.7A and B). LEC not only outlined the

inside of slit-like or dilated spaces within or adjacent LAM foci but also infiltrated

within LAM foci. In lymphangioleiomyomas, the lymph nodes involved in the pro-

liferation of LAM cells, a fine lymphatic network immunopositive for VEGFR-3

developed well to separate LAM foci into clusters were clearly delineated (Fig. 8.7C

and E). LAM-associated lymphangiogenesis has even been demonstrated within the

vascular wall and its adjacent interstitium where LAM cells proliferate (Fig. 8.7D).

In contrast, immunostaining with CD31 confirmed that VEC were scanty in the

LAM foci (Fig. 8.7E). Are these LAM-associated lymphatic vessels the ones that

have already existed in the lungs and lymph nodes and have LAM cells simply

proliferated and migrated along the pre-existing lymphatic vessels as considered in

an early observation? [6, 22]. This would not be the case since the normal lungs or

lymph nodes do not have as many lymphatic vessels as LAM-affected tissues. Some

LEC in the LAM foci showed immunopositivity for Ki67 (Fig. 8.7F), a protein

related to cell proliferation and expressed in cell nuclei throughout the entire cell

cycle except for the G0 phase, thus indicating LAM-associated lymphangiogenesis

rather the pre-existing lymphatic vessels.

8.3.2 LAM Cell Clusters

In the pathologic examination of LAM-affected tissue, a part of the LAM foci were

observed to apparently protrude into the lymphatic lumen (Fig. 8.7A) and thereafter

fragment into cell clusters. Immunostaining for VEGFR-3 revealed that cell clusters

were enveloped by a monolayer of VEGFR-3-positive LEC and were confirmed to

be free in the lymphatic lumen as examined with based on serial sections. These

cell clusters could be demonstrated in intra-LAM foci lymphatic lumen of the lungs

(Figs. 8.4A and 8.7A) or in the lymphatic lumen of lymph nodes. Chyle leakage

such as chylous pleural effusion and ascites are the peculiar complications of pa-

tients with LAM, which approximately 10% of all such patients are reported to

have [11–13,15]. If these cell clusters are floating in the lymphatic stream, then they

would be detected in LAM-associated chylous fluids. This is truly the case and so far

these cell clusters have been successfully demonstrated in all LAM-associated chy-

lous fluid specimens that we have so far examined. A total of 17 sample of chylous

fluids of body cavities, including 9 of pleural effusion, seven of ascites and one of

pericardial effusion, were collected from 13 patients with LAM. Using microscopy,

cell clusters were able to be easily recognized as a sphere of three-dimensional

structure and to have cellular overlapping with an apparent cellular border with a

spool-like appearance. In a Papanicolaou stain, LAM cells in LCC had light green-

stained cytoplasm and oval and/or elliptic nuclei with fine-granular hyperchromatin

(Fig. 8.8A). The cell cluster always consisted of two distinct cell components, a
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Fig. 8.8 Representative cytological and immunocytological features of LCC in LAM-associated

chylous effusion. Five LCC are loosely connected with slit-like lymphatic vessels intervening

among LCC (A, Papanicolaou stain, original magnification ×400). LCC has spherically-shaped,

whorled, and well-demarcated structure, in which spindle-shaped cells are tightly packed and its

surface is covered by flat cells with small nucleus. LAM cells had oval nuclei with moderate

hyperchromatism (Papanicolaou stain, original magnification ×400). The inner cells of LCC were

strongly immunopositive for �-SMA (B, smear, original magnification ×150). The perinuclear area

in the cytoplasm of the inner cells was granularly immunopositive for the melanoma-associated

antigens, HMB45 (C, smear, original magnification ×150). Podoplanin was expressed on the flat

cells enveloping LCC (D, smear, original magnification like ×400)

superficial monolayer of LEC and tightly packed LAM cells inside, and accordingly

were named LAM cell clusters (LCC) [24]. Immunocytochemistry demonstrated

the cells inside to consist of LAM cells immunopositive for �-SMA (Fig. 8.8B)

and HMB45 (Fig. 8.8C) and they were enveloped by a monolayer of flattened lym-

phatic endothelial cells immunopositive for VEGFR-3 or podoplanin (Fig. 8.8D).

On smear preparation, LCC measure from approximately 25 to 125 �m in diameter.

When LAM-associated chylous effusion contained many LCC, a concatenation of

LCC, loosely connecting to the slit-like space, was often demonstrated (Fig. 8.8A).

The background in smear preparation showed many lymphocytes and macrophages.

However, neither tumor diathesis nor solitary LAM cell can be detected in contrast

to the smear of cancer-associated effusions such as breast adenocarcinomas and

malignant mesotheliomas in which tumor cell clusters are sometimes observed. The

number of LCC appears to vary significantly from case to case and differ in the

source of LAM-associated chylous effusion even in the same case with effusion in

several body cavities concurrently. Although we could not evaluate the number of

LCC quantitatively in all samples of chylous effusion, ascites tended to have more

LCC than pleural effusion.
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The detection of globular LAM cell nests of which surface was covered by a

monolayer of endothelial cells has already been demonstrated and suggested to

demonstrate diagnostic significance for LAM [42, 43]. Solid and globular cell clus-

ters were recognized to be pathognomonic for LAM in two reports although the

nature of endothelial cells was not identified as LEC [42, 43]. We have recently

reported a case whose diagnosis of LAM was made based on the demonstration of

TSC2 LOH in cultured cells derived from LCC as well as the detection of LCC

with these cytological and immunocytochemical features described above [44].

Accordingly, the cytological and immunocytochemical confirmations that the sur-

face of cell cluster is LEC and the inside is LAM cells together with characteristic

clinical settings, thus allow us to avoid the need to perform invasive diagnostic ex-

aminations such as the biopsy of the lungs or lymphangioleiomyomas.

8.3.3 Expression of VEGF-C and VEGF-D by LAM Cells

There are several growth factors regulating lymphangiogenesis, such as VEGF-C

and VEGF-D, both of which bind to their cognate receptor VEGFR-3 on LEC

[41]. The VEGF-C/-D and VEGFR-3 signaling system seems to be very impor-

tant for tumor-associated lymphangiogenesis and metastasis since both VEGF-C-

transduced and VEGF-D-transduced tumor cells promote tumor-associated lym-

phangiogenesis in both peri- and intra-tumoral area when explanted to an experi-

mental animal [45, 46]. From the points of view that LAM cells are transformed,

thus neoplastic cells through mutations of the TSC genes, lymphatic vessels in the

LAM lesion may be a form of tumor-associated lymphangiogenesis if LAM cells

produce lymphangiogenic growth factors.

Immunostaining with anti-VEGF-C and ant-VEGF-D antibodies demonstrated

that LAM cells did express both VEGF-C and VEGF-D at varying intensities

[25, 47] (Fig. 8.9). When the VEGF-C expression was examined in LAM-affected

tissue specimens including the lungs (14 cases), lymph nodes (4 cases), uterus (2

cases), and ovary (a single case), the immunoreactivity for VEGF-C was detected in

the cytoplasm of LAM cells with high reactivity in 11 (6 in lung, 3 in lymph node,

BA

Fig. 8.9 Expression of VEGF-C and VEGF-D by LAM cells. The representative results of im-

munohistochemistry of LAM cells for VEGF-C (A) and VEGF-D (B) were presented (both, origi-

nal magnification ×100)
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1 each in uterus and ovary), moderate in 1 (lung), and weak in 9 (7 in lung and 1

each in lymph node and uterus) [25]. Based on the semi-quantification of VEGF-C

expression and lymphangiogenesis in LAM-affected lung tissues, a statistically sig-

nificant correlation (p<0.001) was noted among the degree of lymphangiogenesis,

the VEGF-C expression by LAM cells, and the histologic score representing the

histologic severity of LAM [25, 48]. On the other hand, the VEGF-D expression

by LAM cells was examined in 7 LAM-affected lung tissues. Similar to VEGF-C

expression, VEGF-D immunoreactivity was demonstrated in the cytoplasm of LAM

cells at varying intensities, including a high level in 2, a moderate level in 4, and a

weak level in 1 [47].

VEGF-D appears to play a greater role in LAM-associated lymphangiogenesis

than VEGF-C. When VEGF-A, VEGF-C, and VEGF-D were measured in the serum

of 44 patients with LAM and 24 age-matched control women, only VEGF-D was

demonstrated to increase in the serum of patients with LAM {LAM vs. control,

geometric mean (95% confidence interval); 1,069.3 pg/ml (809.4 ∼ 1,412.6) vs.

295.9 pg/ml (262.6 ∼ 333.5)} (Fig. 8.10) [47]. The serum VEGF-D level thus ap-

pears to be higher in severe cases than in mild cases since a cross-sectional analysis

found a statistically significant negative correlation between the serum VEGF-D

level and an impairment in the pulmonary function [47]. The higher the serum

VEGF-D level is, the lower the FEV1/FVC (r = −0.365, p<0.05) and %DLCO/VA

(r = −0.560, p<0.01) are demonstrated to be although the correlation of air-

flow obstruction with serum VEGF-D is not as compelling as that of %DLCO/VA

(Fig. 8.11). Accordingly, both LAM-associated lymphangiogenesis and an increased

Fig. 8.10 The VEGF-D level

is increased in the serum of

patients with LAM. Data are

plotted on a logarithmic scale

with geometric mean ± 95%

confidence interval. (Data

from Seyama et al. [47]. By

copyright permission of

Lymphatic Research and

Biology)
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Fig. 8.11 Serum VEGF-D level negatively correlated with the pulmonary function. The serum

VEGF-D level is plotted on the abscissa with a logarithmic scale and the correlation with

FEV1/FVC (left panel, n = 38) or %DLco/VA (right panel, n = 37), respectively, on the ordinate

was evaluated. (Data from Seyama et al. [47]. By copyright permission of Lymphatic Research and

Biology)

VEGF-D level in the serum seem to be implicated in the progression and disease

severity of LAM. On the other hand, VEGF-A and VEGF-C were not elevated in

LAM [47]. However, the platelet granules contain both VEGF-A and VEGF-C and

which are then released upon platelet activation [49]. Accordingly, the determining

the serum concentration may therefore be inappropriate to precisely evaluate their

role in LAM and further analysis on this subject is thus called for.

8.3.4 Lymphangiogenesis and mTOR Signaling

Some of TSC-associated lesions, including renal anigomyolipoma, skin tumors

(facial angiofibroma and subungual fibroma) and subependimal giant cell astro-

cytoma, are angiogenic and characterized by abundant vascular vessels [36, 37].

There have been many studies reported that loss of TSC1 or TSC2 function induce

VEGF-A through mTOR-dependent pathways (induction of hypoxia-inducible fac-

tor 1a) and mTOR-independent pathway involving chromatic remodeling [50–52].

Why lymphangiogenesis dominates angiogenesis in LAM? It was recently reported

that mTOR regulated the production of not only VEGF-A but also VEGF-C in a

lymphatic metastasis-prone rat pancreatic tumor cell line and rapamycin inhibited

VEGF-C expression [53]. In contrast, no study regarding mTOR signaling pathway

and VEGF-D production is available in the literature. Both VEGF-C and VEGF-

D are important lymphangiogenic growth factors and can transduce growth signal

into lymphatic endothelial cells through VEGFR-3, but there seems to exist func-

tional differences between VEGF-C and VEGF-D [54]. In the transgenic mouse

model of pancreatic �-cell carcinogenesis, VEGF-D-expressing �-cells resulted in

the formation of peri-insular lymphatic lacunae, often with blood-lymphatic vessel



202 K. Seyama et al.

shunts, and the frequent development of lymph node and lung metastasis during

the tumorigenesis of �-cells while a comparable transgenic expression of VEGF-C

also provoked lymphangiogenesis, but without apparent blood-lymphatic shunts,

and promoted lymph node metastasis in the absence of lung metastasis. Interest-

ingly, angiogenesis was suppressed in VEGF-D-transgenic system but not in showed

VEGF-C-transgenic system while lymphangiogenesis was induced similarly, sug-

gesting that VEGF-D has distinct roles in lymphangiogenesis and metastasis from

VEGF-C [54]. Some similarities between clinical manifestations of LAM and these

experimental results may be realized. Chylous pleural effusion or ascites, a pe-

culiar complication of LAM patients, are often body and contaminated with red

blood cells, suggesting the presence of blood-lymphatic vessel shunts. Abundant

lymphatic vessels with few blood vessels in LAM lesions may indicate that VEGF-

D-mediated lymphangiogensis suppress angiogenesis in LAM lesions.

8.3.5 Lymphangiogenesis-Mediated Shedding of LCC

as a Mechanism for the Metastasis and the Progression

of LAM

The existence of tumor cell clusters enveloped by endothelial cells of sinusoidal

vasculature, similar to LCC in which lymphatic rather than vascular endothelial

cells envelop cell clusters, have been reported and their role in the mechanism for

invasion-independent metastasis in multiple human cancers has been thus demon-

strated [55, 56]. LCC were able to decompose into LAM cells and LEC and LAM

cells proliferate thereafter once LCC were cultured in vitro on collagen-coated

dishes [24]. Since LCC were detected in all samples of the LAM-associated chylous

effusion that we have so far examined, these findings suggest that the generation

of LCC is one of common pathophysiologic mechanisms in LAM and this phe-

nomenon is also implicated in the metastasis of LAM cells such as in the case of

vascular endothelial cell-coated tumor cells.

When the axial lymphatic system was retrospectively analyzed in the archived

samples of 5 autopsy cases with LAM according to the notion mentioned above,

the dissemination of LAM lesions was identified along the thoracic duct and axial

lymph nodes in various regions [24]. The walls of the thoracic ducts in all cases were

involved with LAM lesions and in some cases, not only the wall of thoracic ducts

but also area of adjacent fat tissue had LAM lesions (Fig. 8.12). LAM lesions were

demonstrated along the axial lymphatic system from the distal (pelvic region) to the

proximal regions, finally at the left jugulosubclavian angle where the thoracic dust

drains into the venous blood circulation (Fig. 8.12). The region most frequently and

extensively affected by LAM was both the retroperitoneal and left supraclavicular

region. Moreover, the conglomerated lymph nodes due to the extension of LAM

lesion to adjacent fat tissues were frequently found in the retroperitoneal region. In

contrast, no LAM lesion was demonstrated in the tributary lymphatic regions such

as the mesenteric, axillary, or cervical region.
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Fig. 8.12 Summary of the histopathological examinations of the lymphatic system and the detec-

tion of LAM lesions. Five autopsy cases with LAM were retrospectively analyzed to detect LAM

lesions in the lymphatic system. The thoracic duct was cut at 5-mm intervals to prepare tissue block

and then examined. The circle indicates the detection rate of LAM lesions among the total number

of lymph node examined at mesenteric, retroperitoneal, mediastinal, axillary, supraclavicular, and

cervical regions. The square indicates the detection rate on an individual basis

Based on in-depth pathologic analyses of LAM lesion, while paying special at-

tention to LAM-associated lymphangiogenesis as well as the analysis of lymphan-

giogenic growth factors, a hypothesis regarding the mechanism for the metastasis

of LAM cells and the progression of LAM has thus emerged (Fig. 8.13) [24]. At

the site where LAM cells proliferate, LAM cells produce lymphangiogenic factors

VEGF-C and VEGF-D and induce LAM-associated lymphangiogenesis which thus

demarcate the LAM foci to form LCC. LCC can then become implanted inside

the lymphatic vessels from where LCC expose to the extracellular matrix through

the LEC–LEC interaction between LEC of lymphatic vessel and of LCC. Once

LAM cells form a new lesion, then both LAM-associated lymphangiogenesis and

lymphangiogenesis-mediated shedding of LCC into lymphatic circulation occur.

Due to an anatomic connection with the venous circulation system at the jugulosub-

clavian angle, LCC are then delivered to the pulmonary circulation, thus resulting

in the development of a new LAM lesion in the lung. A continuous series of events

consisting of the proliferation of LAM cells, LAM-associated lymphangiogenesis,

and the resultant shedding of LCC into the lymphatic circulation will enable LAM

cells to communicate between pulmonary lymphatic and venous circulations, and

thus resulting in progressive cystic formation in the lungs (Fig. 8.14). Although it

still unknown where LAM cells originally occur within the body, this hypothesis

may help to explain the progressive development of cysts and the deterioration of

the lung function even in LAM cases who do not have renal AML. Other group has

postulated that renal AML was the source for the dissemination and progression of
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B. LCC proliferate to form a new lesion and then induce lymphangiogenesis there. 

A. LAM cells proliferate and induce lymphangiogenesis, and LCC are generated.

lymphatic endothelial cells

LAM nodule LCC

Fig. 8.13 Schematic illustration of a postulated lymphangiogenesis-mediated fragmentation of

LAM lesion, shedding of LCC into lymphatic circulation, and the subsequent formation of a new

LAM lesion at the site where LCC implanted. (Modified from Kumasaka et al. [24]. By copyright

permission of Lippincott Williams & Wilkins)

Lymphangiogenesis

LAM cell cluster

(LCC)

LAM cell 

proliferation

Fig. 8.14 Hypothesis regarding the mechanism for the progression and metastasis of LAM. Once

transformed LAM cells are generated somewhere within the body, then such LAM cells proliferate

and induce lymphangiogenesis. LAM-associated lymphangiogenesis demarcates LAM foci and

LCC are then eventually shed into the lymphatic circulation. As a consequence, a new LAM lesion

is formed along the axial lymphatic system and these series of events continue to occur. As a

consequence, LAM cells disseminate along axial lymphatic system and also into the lungs. Once

LAM cells form a pulmonary lesion, then LAM cells travel back and forth between the pulmonary

lymphatic circulation and the pulmonary blood circulation via LAM-associated lymphangiogenesis

and the shedding of LCC, thus eventually destroying the lungs by generating multiple cysts
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LAM [33] because approximately 50% of all LAM patients have been reported to be

complicated with renal AML [57]. Supporting this hypothesis, it has been demon-

strated that LAM cells and AML shared the common TSC2 mutations [8,34] and that

TSC mutation caused a dysfunction of cytoskeletons, thus leading to aberrant cell

migration [33, 58, 59]. However, this hypothesis is not pertinent to the patients with

LAM who have no renal AML. Indeed, sporadic LAM patients have been reported

in the literature who had no renal AML but who did experience metastatic LAM

lesions in the donor lung after unilateral lung transplantation [60]. In addition, in our

5 autopsy cases who showed the extensive involvement of axial lymphatic system

with the proliferation of LAM cells and LAM-associated lymphangiogenesis, no

AML was demonstrated in the kidneys or other organs [24].

Why do LAM cells generate a metastatic new lesion only in the lungs and

along the axial lymphatic systems? How do LCC implant themselves into the lung

parenchyma and thus form metastatic lesions after draining into pulmonary venous

circulation from the lymphatic circulation? Although we carefully examined lung

specimens, we have never identified the occlusion of pulmonary vasculature with

LCC. The existence of a solitary LAM cells circulating in the systemic blood cir-

culation has been reported using the density gradient method and a subsequent cell

sorting analysis [61]. Are these circulating LAM cells derived from LCC or are they

due to the direct invasion into the vasculature and subsequent extravasation from

the site of proliferation of LAM cells? Further studies on the interaction between

LAM cells and LEC will thus be needed to verify the pathophysiologic significance

of LAM-associated lymphangiogenesis in LAM.

8.4 Future Directions

LAM-associated lymphangiogenesis is likely to be a potential therapeutic target in

LAM since it apparently associated with disease progression and appears to be the

basis on metastatic spread [24,25]. Several experimental systems targeting lymphan-

giogenesis have been established [62, 63]. Adenovirus-medicated transduction and

expression of the fusion protein consisting of extracellular domain of VEGFR-3

and Fc fragment of immunoglobulin (VEGFR-3-Ig) was reported to abolish lym-

phangiogenesis very efficiently [62]. VEGF-Ig induced apoptosis of proliferating

lymphatic endothelial cells and regression of pre-formed lymphatic vessels in the

embryonic skin and inhibited tumor-related lymphangiogenesis and regional lymph

node metastasis. Neutralizing antibody against VEGF-C and VEG-D were reported

to successfully block VEGFR-3 signaling pathway [63]. VEGFR-3-Ig may have an

advantage since it can trap both VEGF-C and VEGF-D.

Rapamycin is the most attractive drug in terms of theoretical consideration

since constitutively activated mTOR due to the loss of TSC1/TSC2 function is

the pathogenic basis of the disease. Recently the result of the Cincinnati An-

giomyolipoma Sirolimus Trial (CAST) was published that sirolimus treatment

shrunk renal AML and improved pulmonary function in patients with LAM [64].
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Accordingly, the Multicenter International Lymphangioleiomyomatosis Efficacy of

Sirolimus (MILES) Trial was designed to determine if sirolimus truly improves pul-

monary function in patients with LAM and is currently underway in the United

States, Canada, and Japan. Interestingly, rapamycin inhibited VEGF-C-mediated

proliferation and migration of human LECs and impedes lymphangiogenesis [65].

Rapamycin also decreased tumor-associated lymphangiogenesis and lymph node

metastasis in tumor xenograft experiment [53]. Further studies are needed to inves-

tigate precise mechanism for LAM-associated lymphangiogenesis through elucidat-

ing the interaction between LAM cells and LECs. In addition, the establishment of

a mouse model of LAM is needed to promote the development of a new treatment.
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Abstract: Kaposi’s sarcoma herpesvirus (KSHV) is the etiological agent of Ka-

posi’s sarcoma (KS). KS presents as multifocal, angiogenic lesions in-

volving an inflammatory infiltrate and KSHV-infected spindle cells dis-

play characteristic markers of lymphatic endothelia. The precise origin

of the spindle cell component of KS lesions is uncertain and may de-

rive from the reprogramming of the transcriptome of endothelial cells

or their precursors to adopt a lymphatic-like gene expression profile.

The lymphotrophic nature of KSHV corresponds to its pathological

association with two further AIDS-related malignancies: primary ef-

fusion lymphomas (PEL) and a plasmablastic variant of multicentric

Castleman’s disease (MCD). KSHV infection of B-cells in lymph node

follicles creates a reservoir for the persistence of KSHV infection that

may influence the characteristics of the associated lymphomas.

Here we discuss the mechanisms of KSHV infection in the context

of KS and KSHV-associated lymphomas and examine the potential

for KSHV to determine the fate of cells associated with the lymphatic

system.

Key words: Endothelial cells · KSHV · Kaposi’s sarcoma · Lymphangiogenesis ·

Spindle cells

Up to 20% of global incidents of cancer can be attributed to infectious agents,

primarily viruses, which influence the genesis of malignancies through a variety

of mechanisms. Papillomaviruses (HPV) of types 11, 16 and 32, the human her-

pesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV, or

HHV8), polyomaviruses, hepatitis viruses B and C, human T-cell leukaemia virus-

1 and the bacterium Helicobacter pylori are causally associated with a variety of

malignancies (reviewed in [52, 59, 66]).
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The majority of tumour-associated viruses establish a latent infection in the

host cell following primary infection. This leads to the persistence of the vi-

ral genome in the host tissue with infected cells expressing a subset of viral

genes. Transformation may result from direct disruption of cell growth and pro-

liferation through dysregulation of host signalling pathways or the induction of

growth factors (e.g. EBV and HPV). Alternatively, the infectious agent may not

be inherently oncogenic and transformation is achieved through indirect mech-

anisms (e.g. Hepatitis B and C). Commensurate with the multi-factorial nature

of cancer, additional factors may participate in establishing the transformed phe-

notype in infected cells. Such factors include host immunosuppression, carcino-

genic exposure and genetic predisposition or additional somatic mutation. The

presence or absence of the infectious agent may serve to define subsets of a

given tumour or determine the progression of the disease (reviewed in [33,

52, 59]).

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a �2-herpesvirus

(See Box 1) whose global seroprevalence varies from less than 1% in Japan, to

over 50% in much of sub-Saharan Africa where KSHV infection is endemic [77].

KSHV has been recognised by the International Agency for Research Against Can-

cer (IARC) as a class I carcinogen [IARC, 1] and is considered the causative agent

of Kaposi’s sarcoma (KS) according to the Hill criteria [70]. The global incidence

of KS also correlates with the seroprevalence of KSHV in different countries (for

review see [3]).

Box 1–Biology of KSHV

Virus Evolution

KSHV was discovered in 1994 following PCR-based Representational Dif-

ference Analysis, which identified unique DNA sequences in AIDS-KS that

were absent in adjacent skin [18]. KSHV is a double-stranded DNA virus that

belongs to the Rhadinovirus (�2) genus of the �-herpesviridae subfamily of

herpesviruses. The structure of the KSHV capsid purified from BCBL-1 cells

induced with TPA is shown in Figure a (the image was kindly provided by

Z. Hong Zhou. Data were taken from [88]). It is the eighth and most recently

identified human herpesvirus (thereby designated HHV-8). Close homologues

of KSHV have been identified in chimpanzees, gorillas and rhesus macaques

and phylogenetic analysis has indicated that it shares substantial genetic ho-

mology with the Rhadinovirus Herpesvirus Saimiri (HVS), found in Saimiri

sciureus [43, 70, 73]. The closest human relative of KSHV is the gammaher-

pesvirus Epstein-Barr Virus (EBV), genus Lymphocryptovirus (�1) [55].
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According to consensus PCR of �2-herpesvirus-like sequences, two

lineages of rhadinovirus (RV1 and RV2) have been identified in primate

species from the Old World and higher primates. Only the RV1 lineage, of

which KSHV is part, has been found in man. KSHV has further evolved into

five main phylogenetic branches (clades A-E) that demonstrate co-evolution

with different human populations [36]. Sequence variation of the viral genome

between different clades is less than 3% in most regions except in hyper-

variable regions of the K1 gene that result in up to 40% sequence divergence

between clades. This hypervariability has been attributed to selection pressure

for different protein sequences by host immune responses; genetic variability

may also result from recombination of viral genomes during KSHV evolution

[38, 67].

The Viral Genome

The KSHV genome was mapped with cosmid and phage libraries from the

BC-1 PEL cell line. It consists of about 140 kb of unique coding sequence

flanked by multiple GC-rich terminal repeats (TRs) of approximately 800 bp

to give a total size of 170 kb [72]. The unique region has five internal repeat

regions and encodes at least 81 ORFs, of which 66 are homologous to

HVS (Fig. b, adapted from [78]). ORFs originally thought to be unique

to KSHV are designated K1 to K15, although subsequent studies have

identified homologues to K8 and K13 and additional unique ORFs have been

included [72]. Functions have been assigned to many of the KSHV genes

according to their sequence similarity to other herpesviral gene products or

according to their cellular homologues [For a detailed review of the genes

encoded by the KSHV genome see Jenner and Boshoff 2002, reference 43].

Piracy of host genes is characteristic of the rhadinoviruses and the KSHV

genome encodes a number of genes that are homologous to host genes.

Other herpesviruses, including EBV, induce host cellular genes, rather than

pirating them, such as cyclin D2 [57]. These viral genes are associated with

modulation of immune responses, nucleotide metabolism, anti-apoptotic

pathways, and cytokines and can therefore contribute to the regulation

of cell growth and transformation [for a detailed review see 19]. Unique

to KSHV are several cellular homologues which are not shared with other

rhadinoviruses and include viral genes encoding homologues of interleukin-6,

three chemokines, interferon response factors and a transmembrane

protein [57]. The acquisition of host genes is hypothesised to permit KSHV

to utilise host signalling pathways and avoid anti-viral host responses

[42, 57].

KSHV Lifecycle

Characteristic of all herpesviruses, KSHV demonstrates two alternative

genetic programs of infection: latent and lytic. During latent infection, most

of the KSHV genome remains silent, likely due to methylation of promoter
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sequences, no infectious progeny are produced and the viral genome exists

in the host cell as a circular episome [71]. During mitosis, viral DNA is

tethered to the host histone H1 protein through its TR sequences via the

KSHV latent nuclear antigen (LANA1), encoded by ORF73. The majority of

KSHV-infected cells are latently infected and, through this mechanism, the

viral genome is copied by the host cell DNA replication machinery, allowing

the viral DNA to be propagated within the host following initial infection [71].

The restricted pattern of KSHV gene expression is characteristic of latent

infection and is intended to minimise the number of epitopes presented

by infected cells and therefore provides a means of escaping host immune

responses [71]. The expression of latency-associated genes has been shown

to be associated with the oncogenic properties of EBV [60] and it is

likely that the latent KSHV genes are implicated in its pathogenesis. All

KSHV-infected cells have been shown to express LANA, viral cyclin

(v-cyclin, encoded by ORF72) and viral Fas-associated death domain

(FADD) interleukin-1�-converting enzyme (FLICE) inhibitory protein

(v-FLIP, encoded by ORF71). These three genes are adjacent in the viral

genome and form the KSHV latency-associated transcript; they can be

co-transcribed on two polycistronic mRNAs: LT1 (LANA/v-cyclin/v-FLIP)

and LT2 (v-cyclin/v-FLIP) [22, 74, 83].

Latent KSHV can reactivate and enter lytic replication, during which most

viral genes are expressed, viral DNA is amplified, and infectious virions are

released following lysis of the infected cell [71]. The RTA gene product,

encoded by ORF50, is necessary and sufficient to induce lytic replication and

can activate its own promoter to generate an autocatalytic rise in RTA expres-

sion. The ORF50 promoter is heavily methylated in latently infected cells

and lytic replication can be induced by TPA, sodium butyrate and ionomycin

in vitro and humoral factors including interferon-� and other cytokines,

which stimulate demethylation [17, 69]. KSHV lytic genes are expressed in

a temporal and sequential order and termed immediate-early, delayed-early

or late genes. Immediate-early genes are expressed independently of de novo

protein synthesis and encode regulators of viral gene expression; delayed-

early genes are expressed slightly later, and encode products that function

to replicate viral DNA. Late genes are expressed after viral DNA synthesis

and encode structural proteins and those involved in virus maturation

[reviewed in 25].

The original description of KS was made in 1872 by Moritz Kaposi follow-

ing the observation of nodular skin lesions on five elderly men [46]. KS

is now the most frequently diagnosed tumour in certain regions of Africa and

was estimated to account for approximately 1% of globally diagnosed cancers in

2002 [61].
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9.1 Kaposi’s Sarcoma

KS was originally described as a multiple, pigmented, haemorrhagic sarcoma of

the skin; it is an angioproliferative disease that gives rise to highly vascularised

tumours [46, 47]. Initial presentation of KS is typically as a skin lesion (Fig. 9.1a

and b) but this may be preceded by oral, visceral or nodal involvement; as the disease

progresses, it can disseminate to lymphatic and visceral organs [47, 49].

Four distinct clinical and epidemiological forms of KS have been identified:

Classic KS, African/endemic KS, iatrogenic (or post-transplant) KS and AIDS

KS [25]. Classic KS is a rare, indolent form of the disease that occurs in older

men of primarily Mediterranean or Eastern European Jewish origin; lesions usu-

ally affect the lower extremities and their genesis is not thought to be influenced

by any environmental cofactor. African or endemic KS affects individuals from

sub-equatorial Africa; this aggressive form of the disease involves the lymphatic

and/or visceral organs of sufferers [25]. Iatrogenic KS affects patients subjected to

immunosuppressive therapy, for example after an organ transplant. AIDS KS affects

HIV-1-infected individuals and is the most aggressive form of the disease with le-

sions observed on the skin, oral cavity, gastrointestinal tract and visceral organs. The

a b

c

Fig. 9.1 KS lesions and histology. a, Patch stage KS lesion. b, Plaque stage KS lesion. c, LANA-1

staining of KS spindle cells in a nodular KS lesion. All pictures and staining are taken from Duprez

et al. [29]
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immunosuppression associated with HIV-1 infection is thought to result in KSHV

reactivation and increased viral load, resulting in KS development. However, HIV-1

itself might also act as a contributory factor to KS progression through the actions

of the HIV-Tat protein (discussed in Box 2) [4, 30, and reviewed in 34].

Box 2–Endothelial cell reprogramming by KSHV

The establishment of a spindle cell compartment and the progression of KS

lesions occurs following KSHV infection of endothelial cells (Step 1 in the

figure above, KSHV virions are represented as purple stars). KSHV can infect

both LEC (blue) and BEC (red) in vivo and reprogramme the cells to form

a cell with a hybrid genotype (purple) whereby mainly LEC, but also BEC,

markers are expressed (2). LEC are likely to be the preferred cellular target

of KSHV infection as discussed in the main text. Alternatively, endothelial

precursor cells (grey) could be the in vivo targets of KSHV infection. These

cells have the potential to differentiate into either LEC or BEC, but KSHV

infection drives their differentiation towards a LEC-type cell. This hypothesis

still needs investigation [40, 86].
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Following KSHV infection and the establishment of the initial inflamma-

tory KS lesion, spindle cells arise from the latently infected endothelial cells

(3). Early stage KS is characterised by a polyclonal proliferation of spin-

dle cells (4) in which the majority of cells are latently infected, but a small

number of lytically infected cells produce new KSHV virions that can attract

and infect surrounding cells (5) [reviewed in 43]. Loss of viral infection may

contribute to KS regression (6). Inflammatory cytokines, angiogenic factors

and chemokines secreted from surrounding macrophages, monocytes and in-

filtrating lymphocytes contribute to establishing the spindle cell compartment

(7, indicated by yellow circles) [reviewed in 31]. In AIDS-KS, the HIV Tat

protein could also enhance KSHV infection of endothelial cells and, following

its secretion from acutely infected T-lymphocytes (purple circles), influences

the effects of other secreted factors on endothelial cells leading to dysregula-

tion of adhesion, and cell growth [4, 30, and reviewed in 34]. In addition,

factors secreted by spindle cells following KSHV infection may act in an

autocrine or paracrine manner to contribute to the formation of KS (8) [35].

Late stage, nodular KS lesions are characterised by oligoclonal prolifer-

ation of KSHV-infected spindle cells (9), which are influenced by secreted

factors in a similar manner to lesions at earlier stages of KS [35, 43].

9.1.1 KS Pathology

The histology of dermal lesions associated with all four forms of KS is similar

and is associated with neoangiogenesis to form slit-like vascular spaces containing

erythrocytes, and inflammatory cell infiltrates leading to oedema. Activation of en-

dothelial cells and the formation of a spindle cell component is also observed [49].

Early stage KS begins as patches of normal blood vessels surrounded by small,

irregular endothelial-lined spaces accompanied by an inflammatory infiltrate. Patch

lesions evolve to form plaques (plaque stage) through the expansion of spindle-

celled vascular processes that form vascular channels through the dermis. Late stage

lesions form nodules that can coalesce and are composed of sheets of spindle cells

and slit-like vascular spaces [6, and reviewed in 31, 43]. KS spindle cells are so-

called because of their characteristic morphology, observed as an elongated cyto-

plasm and nucleus and the presence of hyaline inclusions and hemosiderin [35]. In

situ hybridization showed that KSHV is present in all spindle cells in KS lesions

(9, 74). However, PCR against KSHV ORF 26 (encoding the minor capsid protein)

have also detected KSHV in endothelial cells surrounding the vascular spaces in KS

lesions [8]. The presence of KSHV in the spindle cells of nodular lesions has been

confirmed by detecting the latency-associated nuclear antigen (LANA-1 protein) by

immunohistochemistry (Fig. 9.1c and [29]). The spindle cells are widely considered

the KS tumour cells and, although their origin is unclear, are considered to have

features of endothelial cells that have been infected by KSHV (discussed below).
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The underlying feature of all forms of KS is infection with KSHV (Box 1),

suggesting a common aetiological agent and mechanism of development [31]. Le-

sions at all three histopathologic stages of the disease are positive for LANA-1 [28].

Staining is observed in the spindle cells of the lesions with the percentage of cell in-

fected increasing from 10% in early stage lesions to 90% in late stage nodules [28].

Low levels of initial infection suggest that paracrine mechanisms influence dis-

ease progression and that the virus may provide a growth advantage to infected

cells [8, 28, 81, 82].

Unlike other soft tissue sarcomas, KS is a stationary tumour that, at least at the

early stages, does not proceed to metastasis after local growth but generates multi-

ple, independent lesions that may appear simultaneously at sites in the body accord-

ing to dermatomes or symmetry [49]. In addition, particular to KS is the observation

that lesions can regress, in the case of iatrogenic KS, in response to the withdrawal

of immunosuppressive therapy. The risk of developing KSHV-associated disease is

significantly higher in the context of host immune suppression and, concurrent with

this, reduction in HIV burden through effective antiretroviral therapy has reduced

KS incidents [reviewed in 31, 34]. The establishment of KS also appears to rely

on inflammatory cytokines originating from the infiltrating and infected cells, as

well as on immune dysregulation (Fig. 9.2) [32]. Taken together, these observations

suggest that early stage KS is a reactive hyperplasia, rather than a true malignancy

and is subject to a decline in the immune status of its host for disease progression.

The majority of human cancers are clonal neoplasms, indicating the origin of

the tumour to be a transformed somatic cell that has acquired a selective advantage.

This advantage is characterised by markers that persist in the population of cells

making up the tumour [37]. Progression of KS to a malignant phenotype during

nodular stages of the disease is associated with deregulation of host oncogenes and

tumour suppressors, such as c-myc and p53, coincident with persistent expression

of KSHV latency genes in all spindle cells [reviewed in 31]. Chromosomal abnor-

malities such as aneuploidy and microsatellite instability have also been detected in

KS lesions [7]. Analyses of the terminal repeat sequences of KSHV DNA suggest

that established lesions are monoclonal expansions of KSHV-infected cells and that

advanced lesions are oligoclonal, rather than monoclonal proliferations [29, 45].

9.2 KSHV-Associated Lymphomas

KSHV is closely related to the �2-herpesvirus herpesvirus saimiri (HVS) and the

�1-herpesvirus EBV [55]. These phylogenetic relationships are indicative of a

shared pathology between the gamma-herpesviruses in the development of lym-

phoproliferative disorders and cancer. EBV is causally linked to Burkitt’s lym-

phoma, post-transplant lymphomas and X-linked lymphoproliferative disease and

HVS can induce malignant lymphomas in animal models [reviewed in 70]. As a

lymphotropic virus, KSHV is also pathogenically linked to lymphoproliferative dis-

orders, often coincident with HIV infection. Specific manifestations of AIDS KS are

termed nodal KS and are characterised by massive lymph node enlargement and/or
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Fig. 9.2 (continued)

replacement with KS lesions [49, 58, 79]. Nodal KS has also been reported in the

absence of HIV co-infection [21].

KSHV is associated with primary effusion lymphomas (PEL) [13] and mul-

ticentric Castleman’s disease (MCD) [80]. In addition, KSHV has been associ-

ated with cases of angioimmunoblastic lymphadenopathy and germinal-centre hy-

perplasia [26, 53] as well as a subset of AIDS-related lymphomas without body

cavity involvement and plasmablastic lymphoma of the oral cavity [20, 41]. In

short, KSHV is present in cells belonging to the endothelial lineage in KS, in

immunoblastic (or plasmablastic) cells belonging to the B-cell lineage in MCD,

and in CD30-positive epithelial membrane antigen-positive lymphoma cells in

PEL [28].
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Fig. 9.2 a. The Kaposi’s sarcoma expression signature. Heatmap illustrating 1,482 genes whose

expression at the mRNA level significantly differentiates between biopsies of nodular KS and nor-

mal skin (q ≤ 0.05). Genes that are down regulated in KS are shown in blue and up regulated genes

are shown in red; the colour scale indicates units of standard deviation from the mean expression of

each gene. Selected genes are listed and cytokines and chemokines and their receptors are under-

lined. The map was generated following the removal of genes from the global expression profile

that were expressed at similar levels in KS and normal dermis or epidermis. This removed com-

mon tissue background present in normal skin samples to generate the KS expression signature.

b. Two-dimensional multi-dimensional scaling (MDS) plot of infected and uninfected LEC

and BEC. Within the KS expression signature, 114 genes differentiate between LEC and BEC to

form a LEC-BEC discriminatory signature. Comparison of the expression levels of these genes

in LEC and BEC before and after KSHV infection indicates that the gene expression profile of

KSHV-infected LEC (kLEC) is closer to that of BEC than the genes expression profile of unin-

fected LEC; similarly, the gene expression profile of kBEC is closer to that of LEC. Each data

point represents a single sample and the infected LEC and BEC samples appear to move towards

each other, away from the uninfected populations. Both Fig. 9.2a and b are taken from Wang et al.,

and were generated by M Trotter [86]

9.2.1 Primary Effusion Lymphoma (PEL)

PEL is a rare malignant lymphoma thought to originate from post-germinal centre

B-cells that typically develops in body cavities as pleural, peritoneal and pericardial

effusions [13]. All cases of PEL are associated with KSHV infection although the

global incidence of PEL is low, even in regions with a high prevalence of KSHV.

This suggests the requirement of an additional cofactor for disease progression and,

in agreement with this observation, the majority of cases of PEL occur coincident

with HIV-1 and/or EBV infection [13,14,16,43,76]. PEL is discriminated from other

AIDS-associated non-Hodgkin lymphomas by evidence of KSHV infection in neo-

plastic cells (LANA staining or DNA sequence analysis) and incidences of PEL have

been described in the absence of HIV [15]. In addition, the incomplete expression

of the full complement of EBV latent genes in PEL patients suggests that KSHV

is the primary causative agent of this lymphoproliferative disease [reviewed in 10,
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14]. Cases of PEL have been described that present with solid tissue involvement

accompanied by serous effusions, either proceeding PEL development or following

disease resolution [reviewed in 14]. Extracavity tumours have been reported with a

tendency to localise at the lymph node [16]. Gene expression microarray analysis

comparing gene expression patterns of PEL to B cell lines representative of different

B cell malignancies indicates that PEL has a gene expression profile comparable to

transformed plasma cells [44]. This finding suggests that KSHV may direct B cells

towards a plasma cell fate through the piracy of host cellular genes [44].

9.2.2 Multicentric Castleman’s Disease (MCD)

MCD is a lymphoproliferative disorder that is observed in two forms: the hyaline

vascular form is a benign localised profusion of lymphoid tissue [12], the plas-

mablastic variant is a systemic lymphoproliferative disorder characterised by sheets

of plasma cells in the lymph node interfollicular region [48]. KSHV infection is

associated with nearly all incidents of MCD in HIV positive patients and approxi-

mately 50% of MCD in HIV negative patients; the specific association of KSHV in-

fection with these incidents of MCD is a defining characteristic of the plasmablastic

variant [27, 63, 80]. Plasmablastic MCD is a polyclonal tumour that originates from

naı̈ve B-cells, it is associated with lymphadenopathy and characterised by vascular

proliferation of the lymph node germinal centres [14, 43]. The association between

KSHV and MCD increases the susceptibility of patients to secondary tumours, such

as KS, and a range of lymphoproliferative lesions including micro lymphoma and

plasmablastic lymphoma [27]. It is thought that KSHV-MCD can progress from a

polyclonal to a monoclonal plasmablastic lymphoma.

9.2.3 Lymph nodes as Reservoirs of KSHV Infection

KSHV has the genetic machinery of an oncogenic virus and encodes proteins re-

quired to modulate signal transduction pathways and cell cycle processes of the

host cell (see [42] and Box 1). The infection of B-cells in lymph node follicles

creates a reservoir for the persistence of KSHV infection that may influence the

characteristics of the associated lymphomas [9, 50, 84]. Lymph node infection by

KSHV has been implicated in the establishment of a case of PEL [5] and has been

observed in multiple cases of KS where the lymph tumour is identical to skin le-

sions in appearance [58]. In addition, KSHV infection of the lymph nodes has been

associated with lymphoma in HIV negative individuals in the absence of serous

effusions [9].

In KS, the majority of tumour cells are latently infected with KSHV (see Box 1

and above). A small percentage of cells in KS, PEL and PEL cell lines express

genes associated with the lytic life cycle of KSHV; in contrast, a greater percent-

age of MCD cells express lytic transcripts [54, 62]. Lytic replication can propagate
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viral infection by releasing new virions to further the spread of virus through host

tissues [71]. These observations suggest a role for lytic infection in the pathogenesis

of KSHV-related neoplasms. Early KS hyperplasia could also be promoted through

paracrine mechanisms following the expression of lytic gene products that con-

tribute to KS initiation and progression [28].

9.3 A Lymphatic Origin for KS? KSHV-Directed

Reprogramming of Endothelial Cells

In isolation, the ultrastructural features of KS spindle cells, as observed by light

microscopy, are not sufficient to categorize these cells as having derived from a spe-

cific lineage [35]. Cytogenetic studies, immunohistochemical profiles, DNA, RNA

and protein analysis have indicated that KS spindle cells express endothelial cell

markers, but the precise cellular origin is poorly defined [6, 40, 68, 86]. KSHV has

been shown to infect endothelial cells in culture and in KS biopsies [11, 28].

The blood vascular phenotype is the default differentiation pathway for endothe-

lial cells such that the lymphatic system originates from embryonic veins [reviewed

in 40]. Blood vessel endothelial cells (BEC) and lymphatic endothelial cells (LEC)

exhibit different functional properties and express specific genes, receptors and cy-

tochemical markers leading to cell-specific responses to some cytokines and growth

factors [39, 87]. The homeobox gene, PROX1 is necessary and sufficient to drive

lymphatic differentiation and its ectopic expression down-regulates genes associ-

ated with blood vascular endothelial cell differentiation and up regulates markers

associated with the lymphatic lineage [40]. cDNA microarrays have been used to

examine the global changes in gene expression induced by KSHV infection of en-

dothelial cells [11, 40, 86] and a subset of genes have been identified as describing

a “KS expression signature” that characterises the gene expression pattern in KS

lesions [86] (Fig. 9.2a)

The expression of LEC markers like VEGFR3, podoplanin, CAECAM1 and

LYVE-1 are induced in TIME cells, a BEC-derived cell line, following KSHV in-

fection. This indicates that KSHV can infect BEC and drive them to differentiate to-

wards a LEC genotype. The differentiation of TIME cells from blood endothelium to

lymphatic following KSHV infection is accompanied by a decrease in levels of the

chemokine IL-8 [11]. Importantly, the gene expression profile induced by KSHV in-

fection is distinct from that induced by over-expression of PROX1 in BEC, therefore

suggesting that KSHV infection results in additional phenotypic (and genotypic)

changes to those induced by PROX1 [11, 65]. For example, VEGFR1 is typically

up-regulated in BEC compared to LEC, but is found to be greatly induced by KSHV

infection [11], indicating that the virus has broad-ranging effects in terms of eliciting

vasculogenic responses that are not limited to lymphatic reprogramming. VEGFR3,

the receptor for VEGF-C and VEGF-D, both of which are involved in lymphangio-

genesis, is up regulated in BEC after KSHV infection. The levels of VEGF-C are

also increased, indicative of autocrine cellular activation mechanisms accompanying

lymphatic reprogramming, and an additional KSHV-specific effect [11].
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Gene expression array analysis comparing nodular KS to normal skin and various

cell lines indicates that KS tumour cells are closely associated with endothelial cell

lines. Furthermore, the expression profile of KS is closer to that of LEC, compared

to BEC [86]. One study showed that KSHV infection induces PROX1 expression

in BEC, this could explain in part the mechanism by which KSHV induces lym-

phatic reprogramming in BEC [40]. However, this was not confirmed in a related

study [86].

Immunohistochemical staining of KS tumours for LEC and BEC markers also

showed that KS tumour cells more closely resemble lymphatic endothelium than

blood vessel endothelium [6, 24]. These observations are summarised in Tables 9.1

and 9.2. More recently, it was shown that spindle cells staining positive for LANA,

and therefore latently infected with KSHV, showed increased expression of lymphatic

markers in early and late stage KS lesions [68]. These findings included positive

staining with the monoclonal antibody D2-40 against the lymphatic glycoprotein

M2A, but also indicated an upregulation of CD34 in a significant percentage of KS

spindle cells, a marker of BEC-derived cells [68]. While a percentage of spindle

cells were CD34 negative, the identification of a spindle cell population in early

lesions expressing both BEC and LEC markers suggests a hybrid phenotype in these

Table 9.1 Lymphatic-related genes up regulated by KSHV. Molecules listed in bold are lymph-

specific markers up regulated by KSHV infection in tumour biopsies and cells. Data are taken from

references cited in the text and [2]

Factor Function

CC-chemokine

ligand 21

(CCL21)

Chemokine that inhibits haemopoiesis and stimulates chemotaxis, may also

play a role in mediating homing of lymphocytes to secondary lymphoid

organs. It is a high affinity functional ligand for chemokine receptor 7

(CCR7) whose expression is unchanged by KSHV.

Lymphatic

endothelial

hyaluronan

receptor-1

(LYVE1)

Transmembrane receptor expressed on all embryonic LEC but is postnatally

limited to the lymphatic capillaries. Binds to the glycosaminoglycan

hyaluran but its exact function is unclear. First marker of lymphatic

endothelial competence and expression remains high in lymphatic

capillaries in the adult.

Podoplanin (PDPN) Transmembrane glycoprotein that promotes LEC adhesion, tube formation

and migration in vitro by promoting rearrangement of the actin

cytoskeleton. Recognised by the D2-40 antibody implicated in tumour

progression.

Prospero- related

homeobox-1

(PROX1)

Transcription factor that induces LEC-specific gene expression and is

considered the most specific marker of lymphatic endothelium. Necessary

and sufficient to determine progenitor-cell fate and mitosis in liver,

pancreas, and lens retina.

Vascular

endothelial

growth factor

(VEGF)

receptor-3

(VEGFR3)

Receptor tyrosine kinase that specifically binds VEGFC/VEGFD.

Expression is largely restricted to the lymphatic endothelium in the adult,

and is observed in both the developing venous and presumptive lymphatic

endothelia in the embryo. A specific marker of lymphatic endothelia

when co expressed with LYVE1 during development. Also called FLT4.
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Table 9.2 Lymphatic-related genes up regulated by KSHV. The remaining are selected lym-

phangiogenic factors found to be upregulated in KS compared to normal skin. Data are taken from

references cited in the text and [2]

Factor Function

Angiopoietin 2

(Ang2)

Secreted factor that destabilises blood vessels and is antagonistic in action

to Ang1. Binds to the Tie2 receptor, whose expression is unchanged by

KSHV but is consistently expressed on endothelial cells.

CC-chemokine

ligand 5 (CCL5)

Cytokine that functions as a chemoattractant for blood monocytes,

memory T helper cells and eosinophils. Produced CD8+ cells as a

major HIV-suppressive factor. A natural ligand for the CCR5 receptor

whose expression is elevated by KSHV infection.

Mannose receptor, C

type 1 (MRC1)

Type I membrane protein expressed on a number of cell types including

LEC. Mediates the endocytosis of glycoproteins by macrophages,

thereby contributing to innate and acquired immunity. Also known as

CD206.

CXCL10 Chemokine that binds to CXCR3 whose expression is unchanged in KS.

Receptor-ligand interaction results in monocyte stimulation, migration

of natural killer and T-cells and modulation of adhesion molecule

expression.

Insulin-like growth

factor 1 (IGF-1)

Induces lymphangiogenesis in vitro and in vivo. Binds to the IGF-1R

receptor, whose expression is unchanged by KSHV but is consistently

expressed on endothelial cells.

PDGFA/PDGFB Function as homo- or heterodimers. PDGF-BB and PDGF-AB are potent

lymphangiogenic factors, PDGF-AA is weaker. PDGF-BB may act as a

survival factor for newly formed lymphatics. They function through the

receptor PDGFR�, whose expression is up regulated in KS.

TGF�1/TGF�3 TGF� is a multifunctional peptide that functions synergistically with

TGFA to induce transformation. Both bind to the receptor TGF � R2,

whose expression is up regulated in KS.

cells [68]. More advanced lesions indicate that this mixed phenotype is expressed

by the majority of KS spindle cells. This concurs with our hypothesis that KSHV in-

fects endothelial cell precursors, and drive their differentiation towards more mature

lymphatic endothelial cells, or that KSHV preferentially infects LEC, and induces

reprogramming to express markers associated also with BEC (described in Box 2).

Whether this hypothesis proves correct or not, it is clear that KSHV infection can

drive the gene expression profiles of LEC and BEC closer to each other, generating

a hybrid genotype in the spindle cell compartment, where markers from both lin-

eages are expressed [86]. KSHV can therefore be considered to reprogramme the

transcriptomes of endothelial cells [68, 86] (Fig. 9.2b).

The significant population of CD34 negative KS spindle cells observed in early

lesions supports the observation that host LEC are subject to primary infection by

KSHV [68]; LEC also appear to be more permissive to KSHV infection and acquire

a higher KSHV copy number [86]. KS occurs most frequently at sites in which

LEC are abundant (skin, lymph nodes), but not in tissues lacking lymphatic vessels,

such as the brain; in addition, the blood vessels of KS lesions are not infected with
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KSHV despite production of virions through lytic infection in these lesions [28].

These observations also support LEC as the cell of origin for this tumour.

KSHV infection can also influence B-cell fate, as latent or lytic infection of reac-

tive lymph node B cells by KSHV influences pathways of B cell maturation [44,50]

and may act to direct B cells towards a plasma cell fate [44]. Latent infection of

naı̈ve B cells and expression of the associated KSHV genes drives them to become

resting memory B cells via the germinal center reaction [50]. Conversely, expression

of KSHV lytic genes such as vIL6 (see Box 1) in naı̈ve B cells directs their differen-

tiation to plasmablasts without undergoing the germinal center reaction [50]. By this

mechanism, the heterogeneity of KSHV-associated lymphomas can be influenced by

viral infection of reactive B cells and contribute to the morphological, phenotypic,

and clinical characteristics of these diseases.

Two mouse models of KSHV infection using NOD/SCID mice engrafted with

human haematopoietic tissue have been reported [23, 64]. These mice are homozy-

gous for the SCID mutation (severe combined immunodeficiency) on the NOD

background (non-obese diabetic) and display impaired B- and T- lymphocyte func-

tion [reviewed in 51]. However, these models do not develop KS-like lesions. In

2007, the only mouse model of KS-like disease was reported showed that trans-

fection of a KSHV Bacterial Artificial Chromosome (KSHVBac36) into a mouse

bone marrow preparation enriched for endothelial-lineage cells generates a cell

(mECK36) that forms KS-like tumours in immunodeficient (nude) mice [56]. These

tumours are vascularised, spindle cell sarcomas that express a number of LEC-

associated markers including VEGFR3 and podoplanin [56]. Furthermore, these

mouse tumours highly express Angiopoeitin-2 (Ang2). Ang2 is expressed in human

KS lesions, and in the sera of individuals with AIDS-KS [85, 86] and is a molecule

linked to lymphangiogenesis [75].

9.4 Conclusions

KSHV infects endothelial cells and drives their differentiation to a lymphatic phe-

notype. In addition, a hypothesis currently being addressed is the possibility that

KSHV interacts with circulating endothelial precursors to direct them towards a

lymphatic phenotype; the mechanism by which this occurs is the subject of ongoing

research. The functional implications of lymphatic differentiation in terms of the

propagation of KSHV infection are poorly understood. The lymphatic phenotype

may generate cells more suited to supporting viral latent infection and the upregula-

tion of complementary factors such as VEGFR3 and VEGF-C may drive endothe-

lial cell activation by autocrine mechanisms leading to propagation of the spindle

compartment and development of the KS lesion. Lymphatically differentiated cells

may also be more suited to later dissemination via the lymphatic system resulting in

spread of the tumour during later stages of KS development.

Understanding the mechanisms by which KSHV influences cells following pri-

mary infection may influence treatment options available to sufferers of KS. Despite
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the prominence of angiogenic mechanisms in the development of KS lesions, tar-

geting of angiogenic markers such as VEGF with inhibitors can have damaging

effects on normal tissue through lack of specificity to the lesion. The identifica-

tion of KS-specific markers may result in increasingly selective therapies with a

reduction in cytotoxic effects. The propensity of LEC to be infected by KSHV also

suggests that antilymphangiogenic therapies may be feasible treatment modalities

for the management of KS and KSHV-related disease.
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Abstract: The lymphatic system is the primary route of metastasis for many can-

cers, and it is this spread through the lymphatic vessels to lymph nodes

and on to distant organs that is responsible for the majority of cancer-

related deaths. Lymphatics, moreso than blood vessels, are thought to

provide an overall favorable route for the survival and dissemination of

tumor cells due to their anatomical features and low shear stress envi-

ronment, but the mechanisms and physiological parameters governing

lymphatic metastasis are only beginning to be understood. How cancer

cells affect and gain access to local lymphatic vessels, travel within the

vessels, and enter into the lymph nodes are all topics of recent research

efforts, alongside questions of how tumor cells might mimic immune

cells and escape the host adaptive immune response. In this chapter we

cover the basic anatomy and physiology of the lymphatic system and

how it relates to cancer metastasis through the lymphatics.

Key words: Flow · Lymph node · VEGF-C · Interstitium · Lymphangion ·

Capillary · Cell trafficking

10.1 Anatomy and Physiology of Lymphatic Drainage

The lymphatic system complements the venous branch of the circulation by draining

excess fluid and solutes from the interstitial space and returning them to the blood

(Fig. 10.1). This causes slow interstitial flow through the space between blood ves-

sels and lymphatics that contains cells and extracellular matrix, referred to as the

interstitium. Without this interstitial flow, transport of proteins and other macro-

molecules would occur by diffusion alone, which can be exceedingly slow (diffusion

coefficients are on the order of 10−6−10−8 cm2/s for most proteins).
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Fig. 10.1 There are 400–600 lymph nodes in the human, mostly situated in the trunk and neck,

draining almost all tissues of the body. Lymph flows from periphery towards the heart, converging

and draining into the thoracic duct and into the vena cava

The lymphatic system is comprised of lymphatic capillaries, collecting vessels,

lymph nodes, and lymphatic ducts (Fig. 10.2). Fluid is absorbed into the capillaries

or initial lymphatics from the interstitium, drains to collecting vessels that have

smooth muscle to propel lymph always in the proximal direction (toward the heart) –

passing through lymph nodes on the way – then draining to ducts and the thoracic

duct, which eventually empties into the great veins of the neck, thus returning lymph
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Fig. 10.2 Flow in the lymphatic system. Interconnecting lymphatic capillary networks drain via

pre-collecting vessels to collecting vessels and then onto lymph nodes. A Lymphatic capillary

morphology, where adjacent endothelial cells overlap to form a primary valve system that allows

fluid drainage into the vessel when external pressure is higher but prevents backflow as the capillary

fills. Endothelial cells are connected intimately to the surrounding matrix via anchoring filaments.

B In collecting lymphatics, fluid is pumped along through individual lymphangions in sequential

manner. These vessels are separated by valves and surrounded by highly contractile smooth muscle

cells (SMCs), which squeeze each lymphangion sequentially. In this way, when one lymphangion

contracts, the valve opens and fluid is propelled into the next lymphangion; as this second lym-

phangion fills, the valve closes and stretch activates local smooth muscle to contract and propel

fluid into the next, etc. Lymph flows into the lymph node via afferent lymphatic vessels (ALV) and

leaves via efferent lymphatic vessel (ELV), flowing around the node in the subcapsular sinus (SCS)

and into the node along reticular fibers (RF)

to the blood circulation. On average, the lymphatic system returns 3 L of fluid per

day to the blood, which is primarily composed of plasma proteins collected from

the interstitial space. In the steady state, fluid collected in lymphatic capillaries

(lymph formation) equals that produced by microvascular filtration. Disturbances

to this balance result in the rapid onset of fluid accumulation in the interstitial

space and the onset of edema. Under normal circumstances, it has traditionally

been assumed that approximately 20 L/day of proteinaceous fluid is exuded from

blood into tissue at the arterial capillary level, where pressure is high. According to

the Starling principle of fluid balance where exuded fluid is constantly reabsorbed

by downstream, lower pressure venous microvessels, this would leave only a small

fraction of capillary filtrate (∼15%) in the interstitium to enter the lymphatic system.

However, the classical take on the Starling principle has recently been challenged.

There is growing evidence to suggest that in contrast to the traditional hypothesis,

the glycocalyx provides an additional buffer for osmotic pressure and that active

protein transport by the endothelium into the subglycocalyx space helps reduce the
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driving forces for transendothelial flux [1, 34, 36]. This implies that much less fluid

is reabsorbed into the post-capillary venules than previously thought, and that the

lymphatics play a greater role in the starling balance.

Importantly, lymphatics are also a major route for cell transport, since lymphatic

capillaries drain to collecting vessels and drain through lymph nodes before emp-

tying into the blood via lymphatic ducts. Indeed, lymph nodes (along with other

lymphoid organs such as the spleen) are critical sites for immune cells to exchange

information, reside, expand, and initiate adaptive immune responses. By draining

interstitial fluid and carrying any potential antigens to lymph nodes, the lymphatic

system optimizes the immune response because it continuously delivers samples of

interstitial fluid to the lymph nodes so that immune cells can sense and respond to

inflammatory cytokines and antigens from peripheral sites directly drained into the

node. This also has important implications for cancer, as will be explained later.

10.1.1 Lymph Formation

Lymph forms when fluid is drained from the interstitial space into lymphatic cap-

illaries, also sometimes referred to as terminal lymphatics or initial lymphatics

(although the term “terminal lymphatics” is also used sometimes to describe the

lymphatic-like channels entering into lymph node from the subcapsular sinus). In

the gut, these lymphatics are highly specialized for fat absorption and are called

lacteals. The lymphatic capillaries are generally thought to “start” (from the perspec-

tive of interstitial fluid that becomes lymph as it enters the capillaries) as blind-ended

bulb-like structures, but this may only be the case in the gut lacteals, while in tissues

like skin they may simply exist as an interconnected network.

Lymphatic capillaries are optimally designed for maximal drainage and sampling

of the interstitial milieu (Fig. 10.3): they are extremely thin-walled, usually encir-

cled by a single lymphatic endothelial cell (LEC), and they have a discontinuous

basement membrane and weak cell–cell junctions, making them highly permeable

to fluid and high molecular weight solutes such as proteins and even nanoscale col-

loidal particles [53,63]. The wall of the lymphatic vessel is so thin (50–100 nm) that

in traditional histology they often can be identified by only their nucleus protruding

into the lumen.

Lymphatic capillaries vary in size and are not circular in cross-section, and their

diameters range from 10 to 80 microns [16,33,61]. They drain fluid by virtue of their

anchoring filaments, which pull the lymphatic lumen open during slight changes in

tissue hydration, causing a subsequent pressure drop that drives fluid flow into the

lymphatic lumen [53]. The adhesions in the overlapping cell–cell junctions of lym-

phatic capillaries are intermittent and comprised of focal collections of VE cadherin

and tight junction-associated proteins including occludin; this is unlike cell–cell

adhesions in blood endothelium, which are continuous. The periodic anchorages

in lymphatics have recently been termed “buttons” [6] and are likely to function to

maintain vessel integrity while allowing fluid flow through the overlapping endothe-

lial cells into the vessel. Furthermore, the overlapping cell–cell junctions themselves
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Fig. 10.3 Mechanism of lymph formation. Lymphatic capillaries consist of highly attenuated,

overlapping endothelial cells (typically a single cell in diameter) with a flattened, irregular lu-

men. The endothelium has discontinuous basement membrane and is attached to collagen fibers by

anchoring filaments, which can extend deeply into the matrix. Tissue strain caused by increased

fluid pressure pulls the capillary and expands the luminal cross-sectional area, creating a pressure

drop that drives fluid from the interstitium into the capillary. This is facilitated by intermittent

cell–cell junctions that keep endothelial cells attached but permit fluid flow around the junctions.

As the capillary fills, the valve (overlapping cell–cell junction) closes, preventing backflow; fluid

then drains to collecting vessels which propel fluid by action of smooth muscle cells.

can act as valves to prevent lymph leakage from the vessel [32, 33, 65]: as the

lymphatic capillary fills, they close and prevent backflow. Thus, lymphatic function

causes interstitial fluid flow that is always directed towards the draining lymphatic

capillary. Some differences between lymphatic and blood capillaries are summa-

rized in Table 10.1.

10.1.2 Lymph Propulsion

Since the lymphatics are so highly permeable, lymph is essentially equal in concen-

tration to interstitial fluid. Once lymph is formed into the initial draining lymphatic

capillaries, it flows to slightly larger ducts (100–220 �m) referred to as pre-collecting

vessels that drain to deeper collecting lymphatic vessels (Fig. 10.3). These collecting

vessels are segmented into bulb-like structures, referred to as lymphangions, that are

separated by valves to facilitate unidirectional flow of lymph. The lymphangions

are surrounded by innervated smooth muscle cells that have intrinsic contractil-

ity on par with that of cardiac muscle. As with lymphatic capillaries, junctions
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Table 10.1 Some differences between blood and lymphatic capillaries.

Blood Lymphatic

Capillary structure –

Continuous basement membrane Discontinuous basement membrane

Small, circular lumen (5–20 �m) Irregular, flattened lumen (40–80 �m)

Contiguous EC junctions throughout Overlapping cell–cell junctions

Encircled by pericytes/smooth muscle No pericytes

Wall thickness 3.5–5 �m Wall thickness 50–100 nm

(except at nuclear region)

Function –

Highly controlled, low permeability Loosely controlled, high permeability

Hydrostatic pressure difference:

Pblood ≫ Pinterstitium

Pinterstitium ≥ Plymphatic

Osmotic pressure difference:

�blood ≫ �interstitium

�interstitium ≃ �lymphatic

Attached to basement membrane filaments Attached to ECM fibers via anchoring

Lumen diameter is controlled by pericytes Lumen diameter is controlled by ECM strain

Abundant tight and adherins junctions Less abundant tight and adherins junctions

(continuous across cell boundary) (focal points of adhesion)

– “Button” junctions: VE cadherin and tight

junction proteins

Molecular expression –

– Prox1

– Podoplanin

– LYVE-1

VEGFR-3 on tumor associated and

fenestrated vasculature∗

VEGFR-3

Neuropilin 2 in some veins† Neuropilin 2

Neuropilin 1 –

– Macrophage mannose receptor 1

– Desmoplakin

– Plakoglobin

– �-Chemokine receptor D6

– Integrin �9

Endoglin –

CD34 CD34 on tumor associated lymphatics‡

N cadherin –

PAL-E –

Collagen type XVIII –

Collagen type IV –

Laminin –

CD31 CD31

VE cadherin VE cadherin

JAM-C JAM-C

– CLEVER-1

∗ [44, 45, 52].
† [69].
‡ [15].
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between collecting lymphatics are also composed of VE cadherin and the same tight

junctional proteins, but unlike the “button” structures seen in lymphatic capillaries,

these proteins are arranged in a continous “zipper-like” fashion between adjacent

endothelial cells [6]; this is consistent with the main function of collecting vessels

being lymph propulsion rather than drainage, which requires the vessel wall to be

relatively impermeable. The behavior of the lymphangions depends on both pressure

and flow conditions [48, 67]. When they transport lymph up a pressure gradient,

they do so by contracting and pumping fluid from one lymphangion to the next by

propagation of a contractile wave in a manner that is coordinated by gap junctional

communication [70]. When they transport lymph down a pressure gradient (i.e.,

under conditions of high load), they can act as conduits with decreased contraction

amplitude, modulating tone and regulating flow resistance. These prenodal collect-

ing vessels are referred to as afferent lymphatic vessels and serve to direct fluid and

activated dendritic cells to the lymph node, where molecules in the lymph may be

sampled by immune cells resident within the node. In the human, there are roughly

400–600 lymph nodes (∼22 in the mouse) and they are generally 1–2 cm in diame-

ter (0.5–2 mm in mouse). After passing through several lymph nodes, the lymph is

returned to the blood (from which it left via the blood capillaries) primarily through

the thoracic duct.

Lymphatic vessels appear to be absent within adipose tissue – although the latter

can surround lymphatic vessels, especially near lymph nodes, they do not appear

to be drained by lymphatic capillaries within the tissue. Lymphatics are also absent

within cartilage, cornea, epidermis, and eye lens, as well as in the central nervous

system. Regarding the latter, the brain is immune privileged and the blood-brain

barrier limits immune cell trafficking; that, coupled with the lack of lymphatic ves-

sels, led to the well-accepted notion that the brain does not contain a functional

lymphatic system. However, studies showed that solute injected into the brain ended

up in cervical lymphatics, and a humoral immune response could be elicited to anti-

gen injected into the brain, with antibody production in cervical lymph nodes [12].

Thus, new research suggests that fluid channels in the brain may drain directly into

lymphatics, making them part of the lymphatic system.

10.2 Lymph Node Physiology

The lymph node functions in a manner to provide optimal immune cell communi-

cation and interactions, exposing antigen-presenting cells in the lymph node to any

antigens or pathogenic material collected by the lymph from the peripheral tissues

and additionally trafficking immune cells to the node so that antigen-specific T cells

can find their cognate antigen-presenting dendritic cells (Fig. 10.2). Lymph flows

through the afferent vessels into the subcapsular sinus, through capsular sinusoids

and into the medullary sinusoids before leaving the lymph node via efferent vessels,

as well as through fine reticular fibers consisting of collagen fibers, basement mem-

brane components and reticular fibroblastic cells [30]. These fine reticular fibers ex-

tend into the T cell regions [4,30] and guide lymph flow and T cell-DC interactions
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there [4]. Within the lymph nodes, blood flows through the high endothelial venules

(HEVs), which have loose cell–cell junctions and contain adhesion receptors like

ICAM-1 and L-selectin, providing a mechanism for antigen-specific lymphocytes

to exit the blood into the lymph node to search for cognate antigen. Additionally,

activated DCs migrate within the lymph node in the local neighborhood of the

HEVs, there to present their antigens to enhance the probability of contact with

their antigen-specific naı̈ve T cell partners, which are few in number.

An increase in vascular permeability during inflammation plays an important

role in enhancing the rate of antigen delivery to the lymph node from the periphery;

under inflammatory conditions, tissue fluid drainage can be increased 10-fold or

more [7, 14, 16]. Furthermore, cytokines that are produced in the inflamed site are

carried to the draining lymph node, where they can induce changes in the lymph

node that enable and enhance immune cell trafficking there, including increasing

blood flow through the affected node and thus enhancing lymphocyte trafficking

there via the HEVs. For example, the inflammatory cytokines IL-6 and IL-8 can

increase the expression of lymphocyte receptors like ICAM-1 and the homing

chemokine CCL21 by HEVs [5]. Although this behavior presumably evolved as

an immunological mechanism, it also plays an important role in cancer: interstitial

fluid pressure is increased in tumors, causing increased lymphatic drainage from the

tumor periphery [27], and moreover many tumors express and secrete cytokines and

attract immune cells. Tumor cells can also escape an initial immune response from

the host, although the process by which this occurs remains unclear.

Inflammation also apparently can induce expansion of the lymphatic network or

enlargement of lymphatic sinuses in the lymph node [3], which may help recruit

more DCs from the periphery into the lymph node or enhance T cell trafficking out

of the node. This has also been shown in cancer: lymph nodes draining a tumor

demonstrate enlarged lymphatic sinuses [21,24,47,51,66], but it is unclear how this

affects metastasis mechanistically.

When lymphatic vessels are blocked or compromised in their capacity to drain

fluid, lymphedema can occur. This is associated with tissue fluid stagnation, enlarge-

ment of the limb, accumulation of lipids, and impaired immune function [50]. This

also occurs frequently in the arms of breast cancer patients who have had lymph

nodes removed during surgical resection of the tumor. There are currently very few

potential treatments for lymphedema other than manual fluid drainage (massage)

and compression bandages.

10.3 Local Effects of Tumor Tissue on Lymphatic Physiology

The current paradigm established in the field of lymphatic research in cancer is that

tumors secrete many growth factors and cytokines that influence the behavior of

blood and lymphatic vessels. Of primary interest to this field is the production and

secretion of lymphatic growth factors, most notably vascular endothelial growth

factor (VEGF)-C and -D, by tumor cells. In 2001 it was first shown that tumor

cells engineered to overproduce VEGF-C and VEGF-D were capable of inducing
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growth of new lymphatic vessels (lymphangiogenesis) into xenografted tumors and

that these lymphangiogenic tumors were more likely to metastasize in mice. Since

these first murine experiments, there has been much interest in the role of lymphatic

vessels in lymphatic metastasis in human cancers [23]; this is the subject of other

chapters in this book.

Thanks to the identification of lymphatic-specific antigens and subsequent de-

velopment of antibodies to these markers, investigations into the role of lymphatics

in human cancer were given a much-needed helping hand. High lymphatic ves-

sel density inside and around invasive tumors has been observed in many human

cancers that metastasize via lymph nodes but not in non-invasive benign tumors

[13, 28, 39, 57]. This has been attributed to the formation new lymphatic vessels

following secretion of lymphangiogenic growth factors by tumor cells [29, 60, 62],

stromal cells [31] and recruited macrophage subsets [40, 54], which induce peri-

tumoral lymphangiogenesis. However, very few clinical studies of human cancers

were able to successfully show proliferating, growing lymphatic vessels within the

tumor, and as there are currently no known markers to distinguish immature versus

mature lymphatic endothelial cells, the theories pertaining to the origin of these

vessels (whether new or co-opted existing vessels) and the theories on mechanisms

of lymphatic spread have begun to diverge. Indeed, the functionality, necessity, and

even the presence of new lymphatic vessels is a further source of some contro-

versy. Lymphatic structures that have been observed within tumors are frequently

collapsed, most probably by virtue of their anatomy (lack of mural cells to pro-

vide structural support) and the pressures created by an expanding mass of tumor

cells [43]. These “vessels” may not be functional but the mere presence of such

entities may be sufficient to provide an escape route for aggressive tumor cells.

Alternative to lymphangiogenesis, VEGF-C and -D may act on peritumoral lym-

phatic vessels to induce lymphatic endothelial cell proliferation and hyperplasia in

the absence of directed growth into a tumor mass [17]. Actively growing tumors

are highly angiogenic, containing newly formed immature and structurally disor-

ganized capillaries that lack substantial basement membrane or mural cells [27].

These vessels are “leaky”, creating high interstitial fluid pressure within the mass.

This fluid exudes from the tumor into surrounding tissues where it is collected by

functional, draining peritumoral lymphatic vessels. There is evidence to suggest

that tumor cells are shed, following loss of or changes in characteristic cell–cell

adhesion molecules [11], and potentially carried from the tumor by exiting fluid and

into surrounding lymphatic vessels. In fact, early studies suggested that as many as

3–4×106 cells per gram of tumor could be shed per day into the bloodstream [8,35],

although most may be apoptotic [64]. However, a feasible mechanism for passive

tumor entry into lymphatic vessels remains to be elucidated, because although the

lymphatic endothelium is extremely permeable to macromolecules and have loose

overlapping cell–cell junctions, these are still far too small for a cell to passively fit

through and therefore a tumor cell must still actively intravasate into the lymphatic

vessel unless the endothelial integrity is destroyed by the tumor cell.

Although the primary lymphatic growth factors implicated in cancer metastasis

are VEGF-C and VEGF-D, there is a growing list of further potential regulators of
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lymphatic function, and hence changes to expression of any of these may also affect

lymphatic physiology in such a way as to render vessels more susceptible to tumor

cell infiltration. These include Notch signaling with VEGFR-3 [56], neural cell ad-

hesion modecule (NCAM) [11], and many others as addressed in other chapters in

this book.

10.4 Lymphatic Effects on Tumors: Is Lymphangiogenesis

Necessary for Metastasis?

Although most research relating to the pathophysiological role of lymphatic vessels

in cancer metastasis has focused on the phenomenon of tumor-induced lymphan-

giogenesis and the potential route provided by this neo-vessel formation, there is

still a remaining controversy as to the necessity of lymphangiogenesis. A growing

body of evidence suggests that tumors are able to metastasize to regional lymph

nodes in the absence of lymphangiogenesis [9, 58, 68]. Wong et al. used techniques

including RNA interference and the use of soluble VEGFR-3 to demonstrate that

while VEGF-C was required for tumor-derived lymphangiogenesis, tumor lymphan-

giogenesis was not required for metastasis. When prostate tumor cells in which

VEGF-C expression was silenced by RNAi were implanted into mice, a significantly

reduced intratumoral lymphatic vessel density was observed, but the vessels around

implanted tumors were unchanged; the incidence of lymph node metastasis was

not significantly reduced in the absence of intratumoral vessels indicating that the

surrounding, and potentially pre-existing, vessels were sufficient for metastasis to

occur [68]. So if this was the case, what possible roles could tumor-derived factors

be playing? How could they change lymphatic physiology to promote lymphatic

metastasis without the need for new vessel formation?

First, some functional studies have suggested that lymphatic vessels found within

growing tumors are not functional. Due to the anatomical features of lymphatic

vessels (discussed earlier), as well as the lack of extracellular matrix integrity in-

side a tumor, most lymphatic vessels observed within tumors appear collapsed (not

attached to the extracellular matrix) and may therefore be unable to function nor-

mally (i.e., drain fluid by virtue of subtle extracellular matrix swelling). Padera et al.

demonstrated that injected ferritin failed to co-localize with such intra-tumoral ves-

sels and instead was carried by non-endothelial-lined channels towards surrounding

peritumoral vessels [42]. Furthermore, the high cell density within a tumor com-

bined with poor extracellular matrix integrity would make it physiologically dif-

ficult for lymphatic capillaries to establish themselves within a tumor, and hence

it is likely that peritumoral vessels alone, whether pre-existing, co-opted or newly

formed, are sufficient for the promotion of lymph node metastasis. These newly

formed peritumoral lymphatics may be functional, albeit abnormal compared with

existing, mature vessels [26]. This provides evidence to further suggest, in addition

to those effects described in the earlier section “Local effects of tumor tissue on

lymphatic physiology”, that tumor-derived factors, namely VEGF-C, are not neces-

sarily acting to directly induce new lymphatic vessel growth into a tumor but instead
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may exert its effects indirectly by changing lymphatic functionality or by acting on

other extra-tumoral structures or cells types.

Alternate mechanisms for tumor entry into lymphatics have been suggested. For

example, there is a natural variation in lymphatic capillary density, and tumor in-

vasion may simply occur in areas where lymphatic density is highest [57]. Also,

tumors can respond to normal constitutive lymphatic signals and actively grow or

migrate towards the conduits that provide them with their escape route and pro-

vide continued survival. It has been shown both in vitro and in vivo that melanoma

cells are capable of actively migrating towards lymphatic, but not blood, endothelial

cells, and that migration could be prevented when the lymphatic homing chemokine

CCL21 was blocked [58]; CCL21 is a ligand for CCR7, a lymphocyte receptor

whose signaling is required for homing to lymphatics. Such a mechanism is con-

sistent with numerous clinical observations that patients with chemokine receptor-

positive tumors have poor prognosis [37, 49]. Finally, tumor cells may exploit nor-

mal lymphatic physiology along with their biophysical microenvironment to access

peritumoral lymphatics. Tumors display high interstitial fluid pressure created from

newly formed capillaries that are immature and disorganized lacking any substantial

basement membrane or mural cells and result in “leaky” vessels [22,27]. Fluid from

such abnormal blood capillary exudates is collected by functional, draining peritu-

moral lymphatic vessels. Consequently, unidirectional flow exists always from the

tumor towards functional draining lymphatics. While lymphatic vessels secrete the

chemokine CCL21, its broadcast distance via diffusion away from the vessel should

be limited by convective forces (fluid drainage) into the vessel. To help guide them

towards functional lymphatic vessels, tumor cells may also sense interstitial fluid

flow by virtue of autologous chemokine signaling, as was recently shown [59]. This

mechanism of “autologous chemotaxis” involves the tumor cell secreting its own

directional cue (the chemokine), which becomes skewed in the direction of slow

interstitial flow; thus by chemotacting up this autologously produced gradient, the

tumor cell moves in the direction of flow, which leads it to the draining lymphatic

vessel. These and other mechanisms may all contribute to tumor cell metastasis in

addition to lymphangiogenesis.

10.5 Tumor Effects and Interactions with the Lymph Node

Recently, there has been focused interest in how the tumor affects the draining

lymph node, particularly with respect to the role of newly formed or expanded

lymphatics around or within the lymph node [18, 19, 24, 66]. The potential exists

for tumor-secreted growth factors (especially VEGF and VEGF-C) to drain into

lymphatics and be carried to the lymph node, where they may stimulate expansion

of lymphatic vessels there. This has been demonstrated in mice inoculated with

melanoma cells; nodes downstream from the primary tumor contained increased

numbers of lymphatic sinuses throughout both the nodal cortex and medulla com-

pared to normal nodes, in which only sparse sinuses within the cortex could be

observed [21, 51].
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Significantly, lymph node lymphangiogenesis has been reported to precede tu-

mor cell dissemination and therefore may act as a preparatory signal to prepare

the lymph nodes for the pending invasion of tumor cells [21, 24]. Indeed, in ani-

mal models where lymph nodes displayed both lymphangiogenesis and high levels

of VEGF or VEGF-C were more prone to tumor progression and development of

further metastatic lesions [19, 24, 25]. Increased lymphatic vessel densities within

lymph nodes that drain tumors has been postulated to incite increases to lymph

flow as compared to non-tumor draining nodes [21] and therefore would support

the hypothesis that normal lymphatic function in combination with tumor-secreted

growth factor enhancement of lymph nodes may facilitate tumor cell dissemination

to lymph nodes and subsequent metastasis.

The structure of lymph node is such that tumor cells must enter via afferent vessel

into the marginal sinuses, where cells may remain and proliferate or continue to exit

the node and move to distant sites. Hence, it is probable that the marginal sinues act

as an essential mechanical filter to prevent establishment of tumors within the deeper

medullary regions [10, 38]. It is only after tumor cells have filled these superficial

regions before deeper metastases in the pulp can be observed [38]. However, the

signals and mechanisms used by the tumor to cross into the medullary regions to

establish secondary tumors within a node rather than disseminate to distant nodes

and organs is still not known.

10.6 Summary

In recent years, our comprehension of lymphatic physiology and pathophysiology in

diseases such as cancer has dramatically improved, but basic mechanistic questions

remain such as how tumor cells gain access to lymphatic vessels, how lymphatics

actively regulate tumor cell entry, and how tumors survive and grow in the lymph

node. In this chapter we discussed how lymphatic function is intimately involved

in immune cell homing to lymph nodes, and similarly how many tumors use the

lymphatics to escape and establish metastases in the lymph nodes. Recent advances

in the field have indicated that further to the growth and/or remodeling of local

lymphatics, the biophysical microenvironment surrounding a tumor is also critical

for its progression [2, 20, 46, 55]. Such fundamental studies have hinted that tumor

cells may exploit key mechanistic components of normal immune trafficking and

lymphatic function to further their survival. These findings raise many new ques-

tions as to the role of the microenvironment in lymphatic metastasis such as: do

inflammatory infiltrates from tumors help or hinder their ability to metastasize via

lymphatics? Do lymphatic signals help recruit immune cells to the tumor? How do

tumor cells survive in lymph nodes? Do tumors or tumor-associated cells modify

their environment to promote migration to lymphatics? Development of such mod-

els that more accurately recapitulate the tumor-lymphatic microenvironment will

undoubtedly assist the rapidly growing field of lymphatic research in the quest to

unravel the complexities of lymphatic metastasis.
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