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 The immune system evolves as a defense mechanism against foreign particles and cancer 
cells in an organism. It interacts with self and foreign components and mounts adequate 
responses against pathogenic foreign and mutated self. At the same time, it should tolerate 
self and most of the other environmental particles so that an organism can maintain a 
healthy state. Immunology, a branch of biomedical science, deals with the structural and 
functional studies of all aspects of immune systems and their components. It includes physi-
ological studies of the immune system in both healthy and diseased states as well as in 
immunological disorders. Immunology is a combinatorial science due to the diverse range 
of interactions involving immune system components and their targets. The combinatorial-
ity also lies in the arrangements of immunoglobulins (Ig) in an individual, where the num-
ber of such arrangements is more than 10 9 . The dynamic behavior of these interactions 
makes the systems even more complex. 

 In recent years, traditional approaches in science, due to the advent of high-throughput 
technology, have been complemented by computer-aided research.  In silico  analyses of the 
biological problems aid experimental research to reduce time and cost. Increasing amount 
of genomic sequence and functional annotation data are fuelling immunological research. 
There is also an abundance of large-scale projects for investigating host-pathogen and host- 
antigen interactions. Immunology, as in the case of molecular biology, has now moved from 
being a traditional qualitative science to more quantitative one. The requirement of storing, 
managing, and analyzing continuously growing experimental, clinical, and epidemiologic 
data has led to form a new research discipline known as “immunoinformatics.” Due to the 
combinatorial nature of immunological data, effi cient immunoinformatic databases and 
tools are required. The discipline “immunoinformatics,” like bioinformatics, lies at the 
intersection of experimental and computational sciences.  In silico  models are increasingly 
being used to simulate immune system behavior as well as for analysis of host and pathogen 
genomes and their interactions. Simulating immune systemic models has certain applica-
tions, e.g., fi nding the course of infection and optimization of clinical protocols. 
Immunoinformatics is at the heart of the research areas of immunogenomics, immunopro-
teomics, and computational vaccinology. The most important task of immunoinformatics is 
to analyze immunological data using computational tools to generate biologically signifi -
cant and rational interpretations. 

 Immunomics, in which we combine traditional immunology with computer science, 
mathematics, statistics, chemistry, biochemistry, genomics, and proteomics, offers large- 
scale analysis of immune system for further translation of basic immunology research into 
clinical practices. Although immunoinformatics is still in an evolving stage, it clearly has the 
potential to accelerate immunology research. Computational models also help in selecting 
appropriate laboratory experiments and formulating novel and testable hypotheses that 
could not be achieved using traditional approaches alone earlier. High complexity of immu-
nological processes may lead to imprecise biochemical measurements and the inherent scientifi c 
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biases and misconceptions. Therefore, care should be taken while developing computational 
tools for investigating and modeling underlying immunological processes. Otherwise, 
biases and misconceptions encoded in computational tools might result in the wrong bio-
logical interpretations. 

    Content and General Outline of the Book 

 We have tried to make this edition of the book self-contained. In principle, it aims at stu-
dents and researchers from diverse background and levels interested in working with immu-
nological problems. It provides biological insights into a certain extent as well as a simpler 
way to implement approaches and algorithms in the immunoinformatics research domain. 
There are 30 chapters distributed in fi ve sections that cover various aspects of basic immu-
nology to immunoinformatics. 

 Part I is dedicated to describing the transition from basic and traditional immunology 
to immunoinformatics. It includes three chapters that introduce a basic immune system, its 
interaction with metabolic machinery, and informatics related to immune system. Part II 
contains comprehensive detail on most of the existing databases related to an immune sys-
tem and its components. Similarly, most of the possible approaches/tools/algorithms for 
the prediction of T/B-cell epitopes, allergenic proteins, and virulence factors are described 
in Part III. In Part IV, systems biology approaches in the immunoinformatics domain have 
been explained, particularly for infl ammation and personalized medicine. Part V deals with 
some applications of immunoinformatics research. In this section, we have provided appli-
cations of immunoinformatics in cancer diagnosis and therapy, HIV pathogenesis, and 
methods to investigate the mechanisms of host-pathogen interactions. Part V also includes 
the description of the role of structure-based clustering of MHC molecules as well as small 
RNA in vaccine designing. 

 Chapter   1     introduces the basic immune system to the readers. It describes two distinct 
yet interrelated branches of an immune system, which gets activated at the time of antigen 
attack upon host system. 

 Chapter   2     depicts various investigations related to the behaviors of lymphocytes and other 
leukocytes regulated by metabolic activities of cells at different levels. Investigations on the 
molecular aspects of immunological-metabolic cross talk have become an interesting research 
topic. The role of glucose in an immune system and metabolic dependency in lymphocyte 
activation is explained in this chapter, along with the description of the role of nutrient sensors, 
adipose tissue, and toll-like receptors in maintaining immune-metabolic interactions. 

 Chapter   3     shows the need to handle the large accumulation of high-throughput data 
that has given rise to the fi eld known as immunoinformatics. Thus this chapter reviews clas-
sical immunology, different databases, and prediction tools. Further, it briefl y describes 
applications of immunoinformatics in reverse vaccinology, immune system modeling, can-
cer diagnosis, and therapy. 

 Chapter   4     provides details on the IMGT ®  system that was fi rst developed in 1989. 
Since its development, it has been considered an interface between immunogenetics and 
immunoinformatics. This chapter reviews IMGT ®  defi nitive system for V, C, and G domains 
based on the IMGT-ONTOLOGY concepts. The web resource of IMGT provides data for 
nucleotide and protein sequences, genetic polymorphisms, as well as tools for analyzing 
immunoglobulins, T-cell receptors (TCR), major histocompatibility complex (MHC), and 
related components of an immune system. 
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 Chapter   5     explains that Immuno Polymorphism Database (IPD) is based on the IMGT ®  
model, which includes databases related to the study of polymorphic genes in an immune 
system. IPD currently consists of four databases: IPD-KIR, IPD-MHC, IPD-HPA, and 
IPD-ESTDAB. 

 Chapter   6     overviews publicly available databases of T-cell epitopes, including general 
databases, pathogen- and tumor-specifi c databases, and 3D structure databases. These data-
bases include sequences, alleles, source organisms, structures, and diseases. Thus they are 
important data sources helping in the analysis of immune system components, functional-
ities, and development of prediction methods. 

 In Chap.   7    , an overview of important databases for B-cell epitopes is provided, which 
also demonstrates the way to compile datasets for development of B-cell epitope prediction 
tools. Identifi cation and characterization of B-cell epitopes in antigens are important in 
epitope-driven vaccine design, immunodiagnostic tests, and antibody production. 

 Chapter   8     describes a database, called AgAbDb, which includes an account of antigen- 
antibody interactions, a type of protein-protein interaction. These interactions are character-
ized by high affi nity and specifi city of antibodies towards their antigens. The chapter identifi es 
and lists residues of binding sites of antigens and antibodies. It also compiles, curates, and 
analyzes determinants of interactions between the respective antigen-antibody molecules. 

 Chapter   9     deals with some allergen databases that can be classifi ed into two types: biologi-
cal and molecular databases. In this chapter, fi ve popular allergen databases have been described. 
Among them, one is a biological database and the remaining four are molecular databases. 

 Chapter   10     introduces an ensemble learning-based method using antigenic sequences, 
which can predict the conformational B-cell epitopes. It also describes the properties of 
some existing data resources and computational methods for the same. 

 Chapter   11     provides a comprehensive set of 13 recent approaches for predicting linear 
B-cell epitopes and 4 methods for predicting conformational B-cell epitopes from the anti-
gen sequences. It also provides some practical insights towards the use of these B-cell epit-
ope predictors. 

 Chapter   12     narrates some fundamental of B-cell epitopes and use of SVM techniques 
for their prediction. It provides an example of linear B-cell prediction system based on 
physicochemical features and amino acid combinations. 

 Chapter   13     introduces mimotopes, the peptides that mimic epitopes on the corre-
sponding antigen and can be obtained via panning the phage-display peptide library against 
the corresponding monoclonal antibody. This chapter describes mimotope-based predic-
tion of B-cell epitopes under three conditions. It also provides details on protocols for 
retrieving and decoding the data obtained using phage-display technology. 

 Chapter   14     emphasizes on key physicochemical and biological considerations for B-cell 
epitope prediction that are relevant from an application perspective. It helps researchers in 
implementing computational tools for more practical purposes. 

 Chapter   15     shows a way to build a hybrid classifi er for improved prediction of linear 
B-cell epitopes. It is further mentioned in the same chapter that this method can easily be 
applied for predicting conformational epitopes. 

 Chapter   16     contains the information regarding the B-cell epitope mapping and its wide 
usage to determine antibody-binding sites, diagnostic peptide development, and vaccine 
design. Three methods are described in this chapter, which are characterized by the simul-
taneous analysis of multiple peptides. 

 Chapter   17     deals with highly polymorphic human leukocyte antigen (HLA) genes, 
with diverse peptide-binding HLA specifi cities. Identifi cation of new antigenic peptides 
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that can bind to HLA class I and II molecules is important in vaccine development. Different 
HLA molecules are classifi ed into “HLA supertypes” in order to reduce complexity. This 
chapter focuses on classifi cation of HLA supertypes and their application in development of 
peptide-based vaccines. 

 Chapter   18     describes that peptide binding to MHC molecules is the most important 
selective step in T-cell recognition. This chapter explains how to derive peptide-MHC- 
binding motif profi les in EPIMHC and to use them in predicting peptide-MHC binding 
and T-cell epitopes. 

 Chapter   19     contains information related to the challenges involved in the task of T-cell 
epitope prediction due to MHC polymorphism and disparity encountered in the genera-
tion and presentation of T-cell epitopes. This chapter explains principles of some of the 
methods/algorithms for T-cell epitope prediction as well as procedural and practical aspects 
of their usage. 

 Chapter   20     describes a protocol to perform the calculation of electrostatic energy, fol-
lowed by an illustration on the outer surface protein A of  Borrelia burgdorferi , a pathogenic 
organism causing lyme disease. 

 Chapter   21     emphasizes on the importance of allergen prediction tools as there is an 
increase in the usage of genetically modifi ed (GM) food and biopharmaceuticals in the 
population. Thus the allergen prediction tools are being used to assess the safety of GM 
crops, therapeutics, and biopharmaceuticals. This chapter describes the way to use four 
popular allergenic prediction servers, viz. Structural Database of Allergenic Proteins 
(SDAP), Allermatch, Evaller 2, and AlgPred. 

 Chapter   22     includes information on adhesins, the virulence factors secreted from the 
pathogen, which are of immunological interest. This chapter describes the bioinformatics 
approaches for adhesin prediction, which include specifi c adhesin prediction algorithms. 

 Chapter   23     deals with an application area of immunoinformatics. It describes a  Candida 
albicans –zebrafi sh interactive infectious network, as an example, to demonstrate how a 
systems biology approach can be used to study systemic infl ammation. 

 Chapter   24     explains the sampling of the mucosal tissues and analyses of immune 
responses as an integral step towards vaccine development strategies against HIV. This 
chapter describes commonly used practices of immunizations and of obtaining important 
mucosal tissue samples in nonhuman primates. 

 Chapter   25     provides a scenario of the major knowledgebases, as one can fi nd continuous 
creation, usage, and, later, discontinuation of biological tools and databases. Thus, there 
should be a clear picture of the major knowledgebases that provide information about the 
functional existence of these databases and tools for the researchers from diverse backgrounds. 
This chapter provides an overview of information sources that also include a description of 
InnateDB. It helps researchers in selecting databases and tools related to immunoinformatics 
and systems biology, which can be further used in personalized medicine. 

 Chapter   26     provides details on small RNA molecules that play a vital role in defense sys-
tems. The detailed study of RNA gene silencing mechanisms has revealed that the small RNAs 
are the chief executioners for antiviral immunity in an organism. This chapter reviews the pos-
sibility of engineering small RNAs to enhance the immunity against specifi c viral pathogens. 

 Chapter   27     describes the use of structure-based clustering techniques in identifying 
superfamilies of major histocompatibility complex (MHC) proteins with similar binding 
specifi cities, which later help in vaccine development. This chapter provides a summary for 
grouping MHC proteins according to their structural interactions. 
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 Chapter   28     includes information on cytotoxic T-cell (CTL) epitopes that are found to 
be important in the form of an immunotherapeutic product as they might help in tumor 
cell destruction. This chapter focuses on several different sequence-, structure-, and molec-
ular modeling-based prediction tools to extract a list of peptide epitopes from tumor- specifi c 
or tumor-associated antigens (TSA or TAA). 

 Chapter   29     describes a protocol that delineates a process of genome-scale metabolic 
modeling, using fl ux balance analysis, for the analysis of host-pathogen behavior and inter-
actions. The methods for biological interpretations of computed cell phenotypes, in the 
context of individual host and pathogen models and their integrations, are also discussed. 

 Chapter   30     provides details on mathematical models for in vivo dynamics of HIV infec-
tion and some recent concepts of disease progression. Initially, it discusses a basic mathe-
matical model for investigating HIV dynamics, along with estimation of key parameters 
that characterize the infection. It also includes a review on some recent concepts related to 
disease progression that involves multiple infection of cells and the direct cell-to-cell trans-
mission of virus through the formation of virological synapses.   

  Kolkata, West Bengal, India     Rajat     K.     De   
      Namrata     Tomar    
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    Chapter 1   

 A Brief Outline of the Immune System 

           Namrata     Tomar      and     Rajat     K.     De    

    Abstract 

   The various cells and proteins responsible for immunity constitute the immune system, and their orchestrated 
response to defend foreign/non-self substances (antigen) is known as the immune response. When an 
antigen attacks the host system, two distinct, yet interrelated, branches of the immune system are active—
the nonspecifi c/innate and specifi c/adaptive immune response. Both of these systems have certain physi-
ological mechanisms, which enable the host to recognize foreign materials to itself and to neutralize, 
eliminate, or metabolize them. Innate immunity represents the earliest development of protection against 
antigens. Adaptive immunity has again two branches—humoral and cell mediated. It should be noted that 
both innate and adaptive immunities do not work independently. Moreover, most of the immune responses 
involve the activity and interplay of both the humoral and the cell-mediated immune branches of the 
immune system. We have described these branches in detail along with the mechanism of antigen recognition. 
This chapter also describes the disorders of immune system in brief.  

  Key words     Immune response  ,   Immune system  ,   Adaptive immunity  ,   Innate immunity  ,   Antibody  , 
  T cells  ,   B cells  ,   Allergy  ,   Antigen  ,   Humoral immune system  ,   Cell-mediated immune system  

1      Introduction 

 The defense system consists of a wide variety of cells and molecules 
that have evolved to protect animals from invading pathogenic 
microorganisms and cancer. Recognition and response are two 
major activities of immune system. Immune recognition is quite spe-
cifi c. Moreover, it is able to discriminate between foreign molecules 
and the body’s own cells and proteins. After the recognition of a 
foreign organism, it mounts an effector response through recruiting 
a variety of cells and molecules to eliminate the invader organism. 
Later exposure to the same foreign organism induces a memory 
response, characterized by a more rapid and heightened immune 
reaction that serves to eliminate the pathogen and prevent disease. 

  Historical perspective : The discipline of immunology developed 
through the observation when individuals who had recovered from 
certain infectious diseases were thereafter found to be protected 
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from the disease. The term “immunity” originated from the Latin 
term “immunis,” meaning “exempt,” that is, the state of  protection 
from infectious disease. The earliest literary reference to immunol-
ogy goes back to 430  bc  in writings of Thucydides, where he wrote 
that only those who had recovered from the plague could nurse the 
sick because they would not contract the disease a second time [ 1 ]. 
In 1798, Edward Jenner found that some milkmaids were immune 
to smallpox as they had earlier contracted cowpox (a mild disease). 
The next major advancement in immunology came with the induc-
tion of immunity to cholera by Louis Pasteur. He demonstrated 
the possibility of administrating a weaken pathogen as a vaccine 
through a classic experiment. In 1881, he fi rst vaccinated one 
group of sheep with heat-attenuated  Bacillus anthracis  and then 
challenged the vaccinated sheep and some unvaccinated sheep with 
a virulent culture of the bacillus. All the vaccinated sheep lived, and 
all the unvaccinated animals died. In 1885, after applying weak-
ened pathogen to animals, he administered a dose of vaccine to a 
boy bitten by a rabid dog and later found that the boy survived. 
However, Pasteur could not explain its mechanism. In 1890, 
experiments of Emil Von Behring and Shibasaburo Kitasato led to 
the understanding of the mechanism of immunity. Their experi-
ments described how antibodies present in the serum provided 
protection against pathogens. These experiments are described as 
milestone as the beginnings of the discipline of immunology.  

2    Types of Immune System: A Layered Defense System 

 This line of defense against foreign invader microbes has been 
divided into two general types of immune responses: innate 
immunity and adaptive immunity. These two differ in time taken 
and duration of response, effector cell types, and its specifi city for 
different classes of foreign microbes. Innate immune system rep-
resents a nonspecifi c response to a potentially harmful foreign 
particle; and the adaptive immune system displays a high degree 
of memory and specifi city. Types of immune system have been 
shown through line diagram in Fig.  1 . Table  1  provides the dif-
ferences between the innate and adaptive immunity. Below is the 
brief description of innate immunity.

     The innate immunity is an evolutionarily older defense system that 
is a dominant one in plants, fungi, insects, and primitive multicel-
lular organisms [ 2 ,  3 ]. The innate system represents the fi rst line of 
defense to an intruding pathogen. Innate immune systems are 
found in all plants and animals. The response evolved is therefore 
rapid and is unable to memorize. It comprises four types of defen-
sive barriers, namely anatomic (e.g., skin and mucous membranes), 
physiological (e.g., temperature, low pH), phagocytic (e.g., blood 

2.1  Innate Immunity 
(Nonspecifi c)
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  Fig. 1    Types of immune system (IS)       

   Table 1  
  Difference between innate and adaptive immune systems   

 Innate immune system  Adaptive immune system 

 Nonspecifi c response  Specifi c response 

 Immediate response  Lag time between antigen exposure and response 

 Retains no immunological memory  Retains immunological memory 

 Found in nearly all forms of life  Found in only jawed vertebrates 

monocytes, neutrophils, tissue macrophages), and infl ammatory 
(e.g., serum proteins). 

  Cells of the innate immune system : Phagocytes, neutrophils, macro-
phages, natural killer cells, mast cells, basophils, dendritic cells, 
eosinophils.  

  The adaptive immune system is activated by innate immunity. The 
components of the adaptive immune system possess slower temporal 
dynamics with high degree of specifi city and a more potent secon-
dary response. The adaptive immune system frequently  incorporates 

2.2  Adaptive 
Immunity (Acquired/
Specifi c Immunity)
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cells and molecules of the innate system in its fi ght against harmful 
foreign bodies. For example, complement system (molecules of the 
innate system) may be activated by antibodies (molecules of the 
adaptive system). The cells of the acquired immune system are T and 
B lymphocytes that we will describe later. It is of two types: (1) 
humoral (antibody-mediated system) and (2) cell mediated. Below 
is the brief description of the types of adaptive immune system. 

  It involves substances found in the humors, or body fl uids; therefore, 
the name is humoral immune system. This kind of immunity is medi-
ated by macromolecules found in extracellular fl uids such as secreted 
antibodies, complement proteins, and certain antimicrobial peptides. 

  Complement system : The complement system is involved in the 
responses of both innate immunity and acquired immunity. It is 
named so as it helps or “complements” the ability of antibodies 
and phagocytic cells to clear pathogens from an organism. It is a 
biochemical cascade of the innate immune system that helps clear 
pathogens from an organism. Activation of this system leads to 
cytolysis, chemotaxis, opsonization, immune clearance, and infl am-
mation. Three biochemical pathways activate the complement 
system: the classical complement pathway, the alternate comple-
ment pathway, and the mannose-binding lectin pathway [ 3 ]. 

  B cells : B cells belong to a group of white blood cells known as lym-
phocytes. The abbreviation “B,” in B cell, comes from the bursa of 
Fabricius in birds, where they mature. In mammals, immature B 
cells are formed in the bone marrow, which is used as a backronym 
for the cells’ name [ 5 ]. There is a random gene rearrangement dur-
ing B cell maturation in the bone marrow that generates more than 
10 10  number of B cells with different antigenic specifi cities. Later, 
there is a selection process to eliminate any B cells with membrane-
bound antibody that recognizes self- components. This ensures that 
self-reactive antibodies (autoantibodies) are not produced. 

  Somatic hypermutation : When a B cell recognizes an antigen, it 
starts proliferating. During proliferation, the B cell receptor (BCR) 
locus undergoes somatic mutation in the hypervariable regions, of 
10 5 - to 10 6 -fold greater than the normal rate of mutation across 
the genome [ 6 ,  7 ]. Hypermutation enhances the ability of immu-
noglobulin receptors present on B cells to recognize and bind a 
specifi c antigen [ 3 ]. 

  Antibodies : The production of antibodies is the main function of the 
humoral immune system [ 4 ]. Antibodies are secreted by plasma cell, 
a type of white blood cell. These are the large Y-shaped protein mol-
ecules secreted by B cells, also known as immunoglobulins (Ig). The 
antibody recognizes a unique part of the foreign target, called an 
antigen [ 2 ,  3 ]. Antibody has a “Y”-structured tip for a specifi c epit-
ope, known as paratope. The structural diagram of antibody has 
been shown in Fig.  2 . Isoforms of Igs have been described in Table  2 .

2.2.1  Humoral Immune 
System (Antibody- 
Mediated Immune System)

Namrata Tomar and Rajat K. De



7

  Fig. 2    Antibody structure       

   Table 2  
  Antibody isotypes   

 Type names  Description 

 IgA  Found in mucosal areas of gut, respiratory tract, and urogenital tract, including saliva, 
tears, and breast milk 

 IgD  Functions mainly as an antigen receptor on B cells that have not been exposed to 
antigens 

 IgE  Involves in allergy, binds to allergens, and triggers histamine release from mast cells 
and basophils 

 IgG  Only antibody that can cross the placenta to give passive immunity to the fetus 

 IgM  Secreted pentamer form, expressed on the surface of B cells (monomer). Eliminates 
pathogens in the early stages of B cell-mediated (humoral) immunity before there is 
suffi cient IgG 

     Class switch recombination (CSR) (immunoglobulin class switch-
ing/isotype switching  /  isotypic commutation) : B cell’s production of 
antibody from one class to another can be changed through a bio-
logical mechanism called as CSR binding, for example, from an 
isotype called IgM to an isotype called IgG. During this process, 
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the constant region portion of the antibody heavy chain is changed, 
but the variable region of the heavy chain stays the same; hence it 
does not affect the antigen specifi city.  

  It does not involve antibodies, rather activates phagocytes and 
antigen-specifi c cytotoxic T lymphocytes and releases various 
 cytokines in response to an antigen attack. 

  T lymphocytes : Although T lymphocytes arise in the bone marrow, 
it migrates to the thymus gland to mature unlike B cells [ 1 ]. Within 
the thymus, it expresses a unique antigen-binding molecule on its 
membrane, called as T cell receptor (TCR). TCRs can recognize 
only antigen that is bound to cell-membrane proteins called major 
histocompatibility complex (MHC) molecules, unlike B cells. 
There are two well-defi ned subpopulations of T cells: T helper 
(Th) and T cytotoxic (Tc) cells. It becomes an effector cell (acti-
vated) that secretes various growth factors known collectively as 
cytokines, after a Th cell recognizes and interacts with an antigen–
MHC class II molecule complex. The secreted cytokines play an 
important role in activating B cells, Tc cells, macrophages, and 
various other cells that participate in the immune response. 

 TCR–MHC molecule interaction to present antigen to T cell 
has been shown in Fig.  3 .

   Under the infl uence of TH-derived cytokines, a Tc cell recog-
nizes an antigen and MHC class I and further proliferates and dif-
ferentiates into an effector cell called as a cytotoxic T lymphocyte 
(CTL). It has cytotoxic activity and usually does not secrete cyto-
kines. The CTL has a vital function in eliminating antigen- 
displaying cell, such as virus-infected cells, tumor cells, and cells of 
a foreign tissue graft. 

2.2.2  Cell-Mediated 
Immune System

  Fig. 3    TCR–MHC interaction for antigen presentation       

 

Namrata Tomar and Rajat K. De



9

 T cell maturation also includes random rearrangements of a 
series of gene segments that encode the cell’s antigen-binding 
receptor, like B cell maturation. The random rearrangement of the 
TCR genes is capable of generating on the order of 10 9  unique 
antigenic specifi cities. Each T lymphocyte cell expresses about 10 5  
receptors, and all of the receptors on the cell and its clonal progeny 
have identical specifi city for antigen. However, it is later diminished 
through a selection process to ensure that only T cells with receptors 
capable of recognizing antigen associated with MHC molecules 
will be able to mature [ 1 ]. 

  The MHC : The MHC is a large genetic complex with multiple loci 
and encodes for three major classes of membrane-bound glycopro-
teins: class I, class II, and class III MHC molecules. These mole-
cules do not have fi ne specifi city for antigen characteristic; instead 
of this, it binds to a spectrum of antigenic peptides derived from 
the intracellular degradation of antigen molecules. In both class I 
and class II MHC molecules posses variable regions;, a cleft within 
which the antigenic peptide binds and is presented to T lympho-
cytes. As mentioned above, Th cells generally recognize antigen 
combined with class II molecules, whereas Tc cells generally recog-
nize antigen combined with class I molecules. 

 Below are the major differences among these three classes: (1) 
Class I MHC genes encode glycoproteins expressed on the surface 
of nearly all nucleated cells; the major function of the class I gene 
products is presentation of peptide antigens to Tc cells. (2) Class II 
MHC genes encode glycoproteins expressed primarily on antigen- 
presenting cells (macrophages, dendritic cells, and B cells), where 
they present processed antigenic peptides to Th cells. (3) Class III 
MHC genes encode various secreted immune system-related 
proteins, including components of the complement system and 
molecules involved in infl ammation. 

 Another important aspect is their structural features, where 
class I and class II MHC molecules have common structural fea-
tures and both have roles in antigen processing. However, the class 
III MHC region encodes molecules that have little in common 
with class I or II molecules.    

3    Disorders of Human Immunity 

 Although, the immune system is a remarkably specifi c and adaptive, 
however, it may lead to develop autoimmunity, hypersensitivities and 
immunodefi ciencies, upon deregulation. 

  Autoimmunity arises when immune system fails to distinguish 
between self and non-self. Here, immune system attacks on self-
antigens, instead of reacting against foreign antigens. The result 
is an inappropriate response of the immune system against 

3.1  Autoimmunity

Basics of the Immune System
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 self- components termed autoimmunity. Normal healthy 
 individuals have been shown to  possess self-reactive lymphocytes 
in periphery, where its presence does not inevitably result in auto-
immune reactions [ 1 ]. However, their activity is regulated 
through clonal anergy or clonal suppression. Its deregulation can 
lead to the activation of humoral or cell-mediated responses 
against self-antigens. These reactions can damage cells and 
organs, sometimes with fatal consequences. Lymphocytes or anti-
bodies bind to cell-membrane antigens and lead to cellular lysis 
and/or an infl ammatory response in the affected organ. The 
damaged cellular structure is gradually replaced by connective tis-
sue (scar tissue), and thereby the function of the organ declines. 

 Many autoimmune diseases are characterized by tissue destruc-
tion mediated directly by T cells. For example in rheumatoid arthri-
tis, self-reactive T cells attack the tissue in joints, causing an 
infl ammatory response that results in swelling and tissue destruc-
tion. In Hashimoto’s thyroiditis, autoantibodies reactive with 
tissue- specifi c antigens such as thyroid peroxidase and thyroglobu-
lin cause severe tissue destruction. Other examples include insulin- 
dependent diabetes mellitus and multiple sclerosis. The immune 
response is directed to a target antigen unique to a single organ or 
gland in an organ-specifi c autoimmune disease. This way, the effects 
are largely limited to that organ. In case of damage by humoral or 
cell-mediated effector mechanisms, the antibodies may overstimu-
late or block the normal function of the target organ.  

  The ability of the immune system to respond inappropriately to 
antigenic challenge is known as hypersensitivity or allergy. 
It refers to undesirable reactions produced by the normal immune 
system, including allergies and autoimmunity. The four-group 
classifi cation was given by Gell and Coombs in 1963 [ 8 ]. Table  3  
gives brief description of this classifi cation, along with an 
additional type.

3.2  Hypersensitivity

   Table 3  
  Allergy classifi cation   

 Type  Names  Mediators 

 I  Allergy, IgE mediated  IgE and IgG4 

 II  Cytotoxic, antibody dependent  IgM and IgG 

 III  Immune complex disease  IgG 

 IV  Delayed-type hypersensitive (DTH)  T cells 

 V  Autoimmune disease, receptor mediated  IgM or IgG 

Namrata Tomar and Rajat K. De



11

     Immunodefi ciency is a state in which the immune system compro-
mises or is unable to fi ght infectious disease. In this case, the system 
fails to protect the host from diseases or from malignant cells. 
A condition that occurs from a genetic or a developmental defect 
in the immune system is called a primary immunodefi ciency. 
Secondary immunodefi ciency, or acquired immunodefi ciency, is 
the loss of immune function and results from exposure to various 
agents. Till date, the most common secondary immunodefi -
ciency is acquired immunodefi ciency syndrome, or AIDS, which 
results from infection with the human immunodefi ciency virus 1 
(HIV-1) [ 1 ]. 

  Primary immunodefi ciency : A primary immunodefi ciency may 
affect either adaptive or innate immune functions. Most of the pri-
mary immunodefi ciencies are inherited, and the genetic defects are 
determined. The consequences of primary immunodefi ciency 
depend on the number and type of immune system components 
involved. Defects in components early in the hematopoietic devel-
opmental scheme affect the entire immune system. Defi ciencies 
involving components of adaptive immunity, effector T or B cells, 
while phagocytes or complement, are impaired in innate immunity. 

  Secondary immunodefi ciency : Agent-induced immunodefi ciency 
results from the exposure to any of a number of chemical and bio-
logical agents that induce an immunodefi cient state. These agents 
can be immunosuppressive medicines. The drugs that are used to 
combat autoimmune diseases such as rheumatoid arthritis or lupus 
erythematosis induce the abovementioned kind of    immunodefi -
ciency. Cytotoxic drugs or radiation treatments given to cancer 
patients damage the immune cells and thereby induce a state of 
immunodefi ciency.   

4    Conclusion 

 We have described immune system and its branches briefl y in this 
chapter. We have described the difference between the two said 
branches of the immune system in a tabular way. We have also 
highlighted the immune system disorders.     
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    Chapter 2   

 Cross Talk Between the Metabolic and Immune Systems 

           Namrata     Tomar      and     Rajat     K.     De    

    Abstract 

   Understanding the interplay between metabolic and cellular signaling systems has emerged as a focus in 
the study of metabolic disorders, cancer, and immune responses. Immune system is active in the regulation 
of metabolism. Lymphocyte activation initiates a program of cell growth, proliferation, and differentiation 
that increase metabolic demand. Activated lymphocytes must alter their metabolism to support these 
increased synthetic activities. In this chapter, we describe how signaling via the immune system integrates 
with metabolic functions to control immune response and vice versa. It has been explained mainly in the 
context of T lymphocyte activation and, to a lesser detail, in other immune cell types.  

  Key words     Immune system  ,   Metabolic system  ,   Lymphocyte  ,   T cells  ,   mTOR  ,   TLR  ,   Adipose tissue  , 
  Obesity  ,   Infl ammation  

1      Introduction 

 Immune system is required to ward off tumors and infectious par-
ticles attacking the host. It is a very balanced homeostatic system 
and also guards against immune dysregulation, such as in allergy 
and autoimmunity. There is increase in observations to investigate 
how immune cells affect certain nonimmune functions, including 
neurodegeneration, cardiovascular function, and metabolism. 
Thus, immune metabolism is an emerging fi eld of investigation, 
which is at the interface between the distinct disciplines of immu-
nology and metabolism. Hepatocytes and myocytes are two cell 
types in which metabolic pathways have been well studied. Unlike 
these two, resting lymphocytes do not store glycogen in a larger 
amount. It makes them highly dependent on the import of extra-
cellular glucose to meet increased metabolic needs [ 1 – 3 ]. The 
behaviors of lymphocytes and other leukocytes are controlled by 
metabolic activities of the cells at different levels. 

 Investigations on the molecular aspects of immunological- 
metabolic cross talk have become an important fi eld of research. 
During the activation of a resting lymphocyte, large metabolic 
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demands are placed on the cell as it initiates proliferation and cytokine 
production [ 4 ]. The cell grows to approximately double its resting 
size and then enters into a program of rapid proliferation while also 
differentiating from a quiescent cell to a highly secretory one. 

 The role of glucose in immune system is explored initially in 
this chapter. Moreover, the metabolic dependency in lymphocyte 
activation is explained. Metabolic alterations and disturbances 
affect immunity of an individual. Thus obesity-associated infl am-
mation, type 2 diabetes (T2D), and cardiovascular disease (CVD) 
are being explored as metabolic alterations, which result in the 
impairment of immune system. We have also described the role of 
nutrient sensors, adipose tissue, and toll-like receptors in maintain-
ing immune–metabolic interactions.  

2    Role of Glucose in the Immune System 

 In addition to acting as a defense mechanism for a human being, 
immune system also participates in the control of the resident colo-
nizing microfl ora, which is essential for immunologic and metabolic 
health. These regulatory processes are energy demanding, and 
immune cells from both innate and adaptive immune systems use 
numerous extracellular molecules and signals as fuels [ 5 ,  6 ]. The 
exact nature of the energetic demands differs among immune cells 
and the nature of the required response. For example, energy 
demand is different from that of proliferative/secretory (B or T 
lymphocytes) than that of non-proliferative/secretory (macro-
phages or neutrophils). Observations using lymphocytes, stimu-
lated with B- or T-specifi c mitogens (such as pokeweed mitogen for 
B cells, concanavalin-A for T cells), have revealed that the glucose 
uptake and catabolism are necessary to provide energy for their pro-
liferation, biosynthesis, and secretory activities [ 1 ,  2 ]. It has been 
found that mitogen-induced lymphocyte activation leads to an 
increase in glucose consumption, which mostly metabolizes to lac-
tate within 1 h of stimulation [ 7 ]. Moreover, other pathways of 
glucose utilization, such as the pentose phosphate pathway (PPP), 
have also been shown to be functional during lymphocyte stimula-
tion and have peaked at 48 h after stimulation. 

 The metabolism of resting lymphocytes is limited by the avail-
ability of trophic signals and does not depend upon the availability 
of nutrients, such as glucose [ 8 ]. Once T cells approximately dou-
ble their resting size and start proliferating, they start differentiat-
ing from a quiescent to a highly secretory state, after getting 
activation. These processes lead to increase in glucose consump-
tion and hence activation of glycolysis [ 9 ]. 

 Regulation of energy metabolism in immune cells requires 
coordination by signal transduction pathways as the functions of 
these pathways directly have an impact on the modulation of nutrient 
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uptake and metabolism. Glucose transporter (GLUT) and insulin 
receptor (InsR) proteins are expressed in immune cells, like monocytes 
/macrophages, neutrophils, and B and T lymphocytes [ 10 ,  11 ]. It 
has been shown that physiological doses of insulin have led to 
increased expression of GLUT3 and GLUT4 in monocytes and 
B lymphocytes [ 12 ]. In contrast, insulin does not alter GLUT 
expression in resting T cells and in neutrophils. However, in vitro 
mitogen or LPS (the ligand for TLR4) stimulation of immune cells 
enhances the expression of membranes GLUT1, GLUT3, and 
GLUT4 [ 13 ,  14 ]. It has been observed that expression of InsR is 
essential for immune cell division, size, and survival [ 15 ].  

3    Role of Immune Cells in Metabolism 

 There has been a fair amount of increase in the understanding of 
the immune system organization as well as its regulators. There is 
a close concordance between host nutritional status and immunity. 
Thus the investigation on the relationship among nutrition, health, 
and the immune system of an individual has now become a topic of 
study. 

 In the absence of B cells or IgA and in the presence of the 
microbiota, the intestinal epithelium upregulates interferon- 
inducible immune response pathways and represses Gata4-related 
metabolic functions [ 16 ]. It leads to lower absorption of lipid. 
Further, network analysis reveals the presence of two inversely 
expressed and interconnected epithelial cell gene networks—for 
lipid metabolism and regulating immunity. The authors have also 
observed similarities between the gene expression patterns in gut 
biopsies from individuals with common variable immunodefi ciency 
(CVID)/HIV infection and intestinal malabsorption and from 
B cell-defi cient mice. It possibly explains a relation between immu-
nodefi ciency and defective lipid absorption in humans. 

 Immune defi ciency has been observed in leptin-defi cient obese 
(ob/ob) mice. It has found to be associated with an impairment of 
dendritic cell (DC) function. The ob/ob mice have demonstrated 
reduced cellular and humoral response and an altered cytokine 
secretion profi le following keyhole limpet hemocyanin (KLH) 
immunization. Variations have been observed in the cytokine pro-
fi le secretion in both in vivo and in vitro experiments [ 17 ]. For 
example, more IL-10 and IFN-γ have been secreted by splenic cells 
from obese animals in an antigen-specifi c response. However, 
higher amounts of IL-10 and of IL-4 have been detected in con-
trol supernatant in a protocol of mixed lymphocyte reaction 
(MLR). Authors have also analyzed epidermal sheets of obese mice 
and found higher number of dendritic cells in obese mice com-
pared with control one.  

Immunological-Metabolic Interactions
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4    Metabolic Dependency in Lymphocyte Activation 

 Naive and memory T cells have metabolic activities for housekeeping 
functions, such as the transportation and turnover of biomaterials, 
maintenance of cytoskeleton, among others. Glucose oxidation 
through tricarboxylic acid (TCA) cycle and fatty acid β-oxidation 
provide most of the metabolic support for these basic cellular func-
tions in naive and memory cells [ 18 ,  19 ]. Immune signaling from 
T cell receptor (TCR), co-stimulatory molecules, and cytokine 
receptors activate resting T cells upon antigen exposure. Upon 
activation, quiescent naive T cells undergo a growth phase fol-
lowed by clonal expansion and differentiation. These changes are 
essential for accurate immune defense and regulation. Initial 
growth and rapid proliferation during the expansion phase increase 
bioenergetic and biosynthetic demands. It requires a metabolic 
rewiring during the transition between resting and activation 
stages. It also makes active T cells to use certain metabolic path-
ways in the ways that naive and memory T cells do not. In naive 
and memory T cells, the majority of pyruvate enters into the mito-
chondria, where it is converted to acetyl-CoA through oxidative 
decarboxylation, and later fl uxes into TCA cycle to generate 
ATP. However, in active T cells, a major portion of pyruvate moves 
away from the TCA cycle to produce lactate. Thus it is clear that 
the production of lactate via glycolysis is signifi cantly upregulated 
following T cell activation. It may be noted that this change is not 
restricted to low oxygen (anaerobic) in the environment and is 
actively regulated by signal transduction pathways when oxygen is 
plentiful (aerobic glycolysis) [ 20 ,  21 ]. Glutaminolysis, the gluta-
mine catabolic pathway, is another major carbohydrate catabolism 
that is signifi cantly elevated in T cells after their activation [ 22 ,  23 ].  

5    Effects of Metabolic Alteration on Immune Reactivity 

 Metabolic disturbances, like obesity, have serious effects on immunity. 
Obesity and related disease and disease-like symptoms, such as 
insulin resistance in T2D and cardiovascular diseases, have become 
like an epidemic. Fatty acids and glucose enter into the blood after 
taking a meal. For an obese individual, the body has higher levels 
of fat and glucose, and it alters responsiveness of the immune sys-
tem. This impairment of the immune system associated with human 
obesity has also been demonstrated in several animal models. 
Leptin is an adipocyte-derived cytokine. It is secreted proportion-
ally to the amount of fat to fi nely regulate body weight [ 24 ]. 
Complete congenital absence of leptin leads to hyperphagia and 
morbid obesity in both humans and rodents [ 25 ]. A study has 
shown that obese animals have a delayed wound healing associated 
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with increased polymorphonuclear cell infi ltration [ 26 ]. In addition, 
both T and B cell-mediated immune responses are impaired in 
leptin-defi cient obese mice (ob/ob) and diabetic db/db mice [ 27 ]. 

 Imbalance in the cytokine network is another feature of obe-
sity, which results in a low-grade systemic infl ammatory status. It 
has been observed in both obese humans and animals [ 28 ]. The 
infl ammatory cytokines interleukin 6 (IL6), IL1, and tumor necro-
sis factor-α (TNF-α) have found to be abnormally elevated in obe-
sity, which mostly originate from the activated macrophages 
infi ltrating the white adipose tissue [ 29 ,  30 ]. Investigations may be 
carried out to explore the reason behind the obesity-associated 
infl ammation, the extent of obesity and infl ammation being related, 
and the pathway(s) responsible for infl ammation-induced T2D, 
cardiovascular disease, and other related pathologies. On the prac-
tical side, as infl ammation mediates many pathological conse-
quences of obesity, it may lead to exploration of anti-infl ammatory 
drug discovery and drugs for the patients with obesity-associated 
metabolic and cardiovascular disorders.  

6    Role of Nutrient Sensors, Adipose Tissue, and Toll-Like Receptors 
in Maintaining Immune–Metabolic Cross Talk 

 In most of the cases, immune cells use and respond to nutrients 
similarly as found in other cells. There are cell-intrinsic metabolic 
processes that infl uence the performance of immune cells [ 31 ]. 
The interesting aspect is to have a completely different perspective 
on the immunological metabolic interface to fi nd out the extent 
and the precise mechanisms of typical cell-intrinsic metabolic pro-
cesses that infl uence the functional performance of immune cells. 

  AKT1-3, AMPK-activated protein kinase (AMPK), mamma-
lian target of rapamycin (mTOR),  and  LKB1 : The serine/threonine 
kinases AKT1-3, AMPK, mTOR, and LKB1 are cellular nutrient 
sensors that help to maintain energy homeostasis. 

 Finlay and Cantrell [ 32 ] have suggested that AKT1-3, AMPK, 
and LKB1 control a fate switch, from cytotoxic effector to memory 
CD8+ T cells, in addition to providing nutrient responses. 
According to the authors, AKT proteins regulate repertoires of 
adhesion molecules and chemokine receptors in CD8+ T cells and 
control traffi cking and migration. This, in turn, determines deci-
sion for the memory versus terminally differentiated effector CD8+ 
T cells. Considering LKB1, it is mentioned that an lkb1−/− bone 
marrow transplant was unable to reconstitute the hematopoietic 
system in irradiated mice. This observation suggests that the sur-
vival of hematopoietic stem cells (HSCs) depends on LKB1 [ 33 ]. 
An lkb1−/− bone marrow transplant was unable to reconstitute 
the hematopoietic system in irradiated mice, again suggesting that 
the survival of HSCs depends on LKB1. Moreover, a study shows 
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that CD28 co-stimulation of human peripheral blood T cells 
enhances expression of glucose transporters, glucose uptake, and 
glycolysis. This increase depends on PI3K activity. Further, the 
majority of glucose processed by CD28-co-stimulated T cells is 
converted to lactate. It is not used for biosynthesis or oxidized for 
maximal energy extraction [ 34 ]. These observations have shown 
that under certain conditions, immune cells may use metabolic 
pathways to control fate and function in the ways that are different 
from other cells. 

 Adipose tissue and Toll-like receptors (TLRs) of the innate 
immune system, which are found on immune cells, intestinal cells, 
and adipocytes, are being studied as essential factors in the com-
plex balance of immune and metabolic health. 

  TLRs are broadly expressed in cells of the innate immune system, 
such as macrophages, epithelial and endothelial cells, and organ 
parenchyma cells. They have specifi c roles in local innate immune 
defense [ 35 ]. TLRs of the innate immune system, which are found 
in immune cells, intestinal cells, and adipocytes, are observed as 
essential for maintaining the complex balance of immune and met-
abolic systems [ 36 ]. Lipid is one of the components, which is rec-
ognized by TLRs. Some of the mammalian TLRs also regulate 
energy metabolism, mostly through acting on adipose tissue. This 
has opened a wide scope of research on the role of TLRs in pathol-
ogies related to metabolism, such as obesity, insulin resistance, and 
atherosclerosis. A study has reported that saturated fatty acids can 
induce the activation of TLR2 and TLR4, whereas unsaturated 
fatty acids have shown to inhibit TLR-mediated signaling pathways 
and gene expression [ 37 ].  

  Adipose tissue is observed as an immunocompetent organ and adi-
pocytes as components of the innate immune system. Adipocytes 
secrete classical cytokines (TNF- α, IL-6, IL-1 receptor antagonist, 
and TGF-β), levels of which are signifi cantly increased in obesity, 
which contribute to the overall infl ammatory status of obese per-
sons [ 38 ]. In addition, leptin has also been shown to play an essen-
tial role in both innate and adaptive immune responses [ 39 ]. 

 Adipocytes and macrophages have recently been described to 
originate from a common ancestral progenitor and to share sev-
eral features as follows [ 40 ,  41 ]. Macrophages express some 
adipocyte- specifi c gene products, such as ap2, while adipocytes 
secrete macrophage- specifi c gene products, such as IL-6 or TNF-α. 
This common gene expression results in some analogous func-
tional activities, such as lipid accumulation by macrophages in 
atherosclerotic lesions or phagocytic capacities exhibited by adi-
pocytes towards certain pathogens, thereby revealing an apparent 
coordinated activity between these two cell types during the 
course of an innate immune response. Adipocytes, isolated from 

6.1  Toll-Like 
Receptors

6.2  Adipose Tissue
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diet-induced obese mice or genetically obese animals, exhibited 
increased TLR expression [ 42 – 44 ], together with higher cytokine 
production upon stimulation. TGF-β is positively correlated with 
obesity and up-regulated both in human and in ob/ob mice white 
adipose tissue [ 45 ].   

7    Conclusions 

 Fluctuations in blood glucose occur in infl ammatory diseases, such 
as obesity, diabetes, and insulin resistance. It is now becoming clear 
that the emerging fi eld of immune metabolism has theoretical and 
practical implications for future research. Generating an effi cient 
and effective immune response involves large increase in cellular 
proliferative, biosynthetic, and secretory activities and processes, 
which require high energy consumption. As mentioned, adaptive 
as well as innate immune cells must be able to rapidly respond to 
the presence of pathogens, shifting from a quiescent phenotype to 
a highly active state within hours after stimulation. For this pur-
pose, cells must dramatically alter their metabolism in order to sup-
port these increased synthetic activities based on extracellular 
signals as fuels, among which glucose is the most essential one. 
Since activated lymphocytes have high metabolic demands, manip-
ulation of the lymphocyte-specifi c metabolic control pathways may 
be useful in treating diseases characterized by immune hyperactiva-
tion, autoimmune disorders, and graft rejection.     
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    Chapter 3   

 Immunoinformatics: A Brief Review 

           Namrata     Tomar      and     Rajat     K.     De    

    Abstract 

   A large volume of data relevant to immunology research has accumulated due to sequencing of genomes 
of the human and other model organisms. At the same time, huge amounts of clinical and epidemiologic 
data are being deposited in various scientifi c literature and clinical records. This accumulation of the infor-
mation is like a goldmine for researchers looking for mechanisms of immune function and disease patho-
genesis. Thus the need to handle this rapidly growing immunological resource has given rise to the fi eld 
known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is 
the interface between computer science and experimental immunology. It represents the use of computa-
tional methods and resources for the understanding of immunological information. It not only helps in 
dealing with huge amount of data but also plays a great role in defi ning new hypotheses related to immune 
responses. This chapter reviews classical immunology, different databases, and prediction tool. Further, it 
briefl y describes applications of immunoinformatics in reverse vaccinology, immune system modeling, and 
cancer diagnosis and therapy. It also explores the idea of integrating immunoinformatics with systems biol-
ogy for the development of personalized medicine. All these efforts save time and cost to a great extent.  

  Key words     Systems biology  ,   Immunomics  ,   In silico models  ,   T cells  ,   B cells  ,   Allergy  ,   Reverse vaccinol-
ogy  ,   Personalized medicine  

1      Introduction 

 The human immune system is very complex and operates at 
 multiple levels, viz . , molecules, cells, organs, and organisms. Each 
individual has a unique immune system and will respond differ-
ently to immune challenges. It has a combination of biological 
structures and processes within an organism to protect it against 
disease. The earliest literary reference to immunology goes back to 
430  b.c ., courtesy Thucydides [ 1 ]. In 1798, Edward Jenner found 
some milkmaids immune to smallpox because earlier they con-
tacted cowpox (a mild disease). The next major advancement in 
immunology came with the induction of immunity to cholera by 
Louis Pasteur. After applying weakened pathogen to animals, 
he administered a dose of vaccine to a rabid dog-bitten boy who 
later survived. But Pasteur could not explain its mechanism. 
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In 1890, experiments of Emil Von Behring and Shibasaburo 
Kitasato led to the understanding of the mechanism of immunity. 
Their experiments described that antibodies present in the serum 
provided protection against pathogens [ 1 ]. 

 According to the traditional dogma of immunology, vertebrates 
have both innate and adaptive immunology. Innate immune system 
acts more rapidly and is older and more evolutionarily conserved in 
comparison with adaptive immune system. It provides the back-
bone on which adaptive immune system was able to evolve. Innate 
immune system is less specifi c and works as a fi rst line of defense 
[ 2 ]. It comprises four types of defensive barriers, viz . , anatomic 
(e.g., skin and mucous membranes), physiologic (e.g., temperature, 
low pH), phagocytic (e.g., blood monocytes, neutrophils, tissue 
macrophages), and infl ammatory (e.g., serum proteins). Adaptive 
immune responses in vertebrates are generated within 5 or 6 days 
after the initial exposure to the pathogen. It is coordinated by a 
network of highly specialized cells that communicate through cell 
surface molecular interactions and a complex set of intercellular 
communication molecules known as cytokines and chemokines. 
Later exposure to the same pathogen induces a heightened and 
more specifi c response because it retains memory [ 1 ]. Adaptive 
immune system has two parts: the cellular immune response of 
T cells and humoral response of B cells [ 1 ,  3 ]. An antigen has a 
specifi c small part, known as epitope that is recognized by the cor-
responding receptor present on B or T cells. B cell epitopes can be 
linear and discontinuous amino acids. T cell epitopes are short 
 linear peptides. Most of the T cells can be in either of the two sub-
sets, distinguished by the presence of one or the other of the two 
glycoproteins on their surface, designated as CD8 or CD4. CD4 
T cells function as T helper (Th) cells that recognize peptides dis-
played by MHC class II molecules. On the other hand, CD8 func-
tions as Tc (cytotoxic T) cells which recognize peptides displayed by 
MHC class I molecules. 

 The complexity of the immune system arises from its hierarchi-
cal and combinatorial properties. Thus huge amount of data related 
to immune systems is being generated. Immunologic research needs 
to deal with this complexity. Immunologists have been using high-
throughput experimental techniques for quite a long time, which 
have generated a vast amount of functional, clinical, and epidemio-
logical data. Therefore the development of new computational 
approaches to store and analyze these data is needed. This gives rise 
to the fi eld called immunoinformatics. Immunogenomics, immu-
noproteomics, epitope prediction, and in silico vaccination are 
 different areas of computational immunological research. Recently, 
systems biology approaches are being applied to investigate the 
properties of dynamic behavior of an immune system  network [ 4 ]. 
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It includes the study and design of algorithms for mapping 
poten tial B and T cell epitopes. These also can lead to exploring 
the potential binding sites for the development of new vaccines. 
This methodology is termed as “reverse vaccinology” [ 5 ]. It is quite 
advantageous because conventional methods need to cultivate 
pathogen and then to extract its antigenic proteins. 

 All the genes and proteins taking part in immune responses are 
referred to as “immunome,” and it excludes genes and proteins that 
are expressed in cell types other than in immune cells [ 6 ]. All 
immune reactions due to interaction between host and antigenic 
peptides are referred to as “immunome reactions,” and their study is 
called as “immunomics” [ 7 ]. Like genomics and proteomics, immu-
nomics is a new discipline, which uses high-throughput techniques 
to understand immune system mechanism [ 8 ,  9 ]. Figure  1  shows 
work fl ow in immunomics. This chapter describes various available 
information regarding classical immunology, different immunomic 
databases, B and T cell epitope prediction tools and software, and 
applications of immunoinformatics.

  Fig. 1    A possible work fl ow in immunomics       
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2       Data Sources 

 Data sources include availability of data from lab experiments 
through scientifi c literature, molecular databases, tools and web 
servers, and clinical records. In this section, we focus on various 
immune system-related data types and databases. The section starts 
with some experimental techniques and results. 

  Immunological experimental and high-throughput molecular 
 biology techniques help in fi nding the structure and function of 
immune genes and their products and thereby accumulating a vast 
amount of experimental data. Experiments involve many immuno-
logical techniques to understand the mechanism of an immune 
 system and its responses to various infections, diseases, and drugs, 
viz., affi nity chromatography [ 10 ], fl ow cytometry [ 11 ], radioim-
munoassay (RIA) [ 12 ], enzyme-linked immunosorbent assay 
(ELISA), [ 12 ,  13 ], competitive inhibition assay [ 14 ], and Coombs 
test [ 15 ]. Here, we present some experimental fi ndings that help 
to identify B and T cell epitopes and to study immune responses. 

 The ability to identify epitopes in the immune response has 
important implications in diagnosis of diseases. Thus epitopes for 
B and T cells need to be identifi ed and mapped. In this context, 
Wanga et al. [ 16 ] mapped B cell epitope present on nonstructural 
protein (NS1), viz . , NS1-18 and NS1-19, in Japanese encephalitis 
virus. For epitope mapping, a series of 51 partially overlapping 
fragments covering the entire NS1 protein were expressed with a 
glutathione  S -transferase (GST) tag and then screened by a mono-
clonal antibody (mAb). They found that the motif of (146) 
EHARW (150) was the minimal unit of the linear epitope recog-
nized by that mAb. Purifi cation techniques like affi nity chromatog-
raphy are used to purify MHC–peptide from membrane MHC 
molecules, which can be analyzed by capillary high-pressure liquid 
chromatography electrospray ionization-tandem mass spectrome-
try [ 17 ]. They can be further used to fi nd new tumor-associated 
antigens (TAA). One such approach to fi nd TAA is based on trans-
fection of expression library made from cDNA into cells expressing 
the desired MHC haplotypes [ 18 ]. The clones are selected on the 
basis of their ability to provoke immune response in T cells of 
the individuals with the same MHC type.  

  “Immunomic microarray” is a microarray technique based on the 
principle of binding and measurement of target biological speci-
mens to complementary probes. It helps in selecting proteins that 
cause autoimmunity from genomic sequences [ 19 ]. It is being 
applied to autoimmune disease diagnosis and treatment [ 20 ], 
allergy prediction [ 21 ], T and B cell epitope mapping [ 22 ], and 
vaccination [ 23 ] to name a few. It includes dissociable antibody 
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microarray [ 24 ], serum microarray [ 25 ], and serological analysis of 
cDNA expression library (SEREX) [ 26 ]. An antibody microarray is 
used to measure concentration of antigen for a specifi c antibody 
probe and thereby consists of antibody probes and antigen targets. 
On the contrast, peptide microarray uses antigen peptides as fi xed 
probes and serum antibodies as targets. The recent technology 
is peptide–MHC microarray or artifi cial antigen-presenting chip. 
In this technique, recombinant peptide–MHC complexes and 
 co- stimulatory molecules are immobilized on a surface, and popu-
lation of T cells is incubated with the microarray. The T cell spots 
act as artifi cial antigen-presenting cells [ 27 ] containing a defi ned 
MHC-restricted peptides. The advantage of using peptide–MHC 
is that it can map MHC-restricted T cell epitope. 

 The immunomic and genomic microarray data have some sim-
ilarities, yet both of them also differ in several ways; for example, 
both of them have different designs. One can measure two or 
more signals simultaneously determined by a single feature, i.e., 
epitope in immunomic microarray [ 28 ,  29 ]. DNA microarrays 
measure one response value for each gene per sample; that is, 
mRNA  concentration produced by the gene but a single epitope 
can generate different response values corresponding to different 
epitopes in peptide–MHC chips. In case of B cell epitope, it can be 
recognized by different isotypes of immunoglobulins, so here, one 
can measure both intensity and quality of antibody response.  

  The property of an antigen to bind specifi cally complementary anti-
bodies is known as the antigen’s antigenicity. Likewise, the ability of 
an antigen to induce an immune response is called its immunoge-
nicity. Immunomic databases include epitope information- related 
databases, analysis tools, and prediction algorithms, which are 
 crucial for basic immunological studies, diagnosis, and treatment of 
various diseases and in vaccine research [ 30 ]. InnateDB [ 31 ] 
(  http://www.innatedb.ca    ) has been created to understand com-
plete network of pathways and interactions of innate immune sys-
tem responses. It has ~18,000 annotated molecular interactions of 
relevance to innate immunity and >1,200 genes, involved in innate 
immunity according to the recent update till February 16, 2012. It 
has a newer version, called Cerebral [ 32 ], which is a Java plug-in for 
the cytoscape biomolecular interaction viewer version 2.8.2 [ 33 ] 
for automatically generating layouts of biological pathways. Table  1  
lists some of the databases that deal with information related to B 
cell epitopes, T cell epitopes, allergy prediction, and evolution of 
immune system genes and proteins.

     A brief detail on B cell epitope databases is provided here. Readers 
can fi nd a detailed description in later chapters. Mapping B cell 
epitopes plays an important role in vaccine design, immunodiag-
nostic tests, and antibody production. It has been found that 90 % 
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of B cell epitopes are conformational or discontinuous; however, 
they may comprise linear amino acid chain of peptides, which is 
brought closure in 3D space [ 34 ]. Bcipep [ 35 ] (  http://www.
imtech.res.in/raghava/bcipep    ) gives comprehensive information 
about experimentally verifi ed B cell epitopes and tools for mapping 
these epitopes on an antigen sequence. Conformational epitope 
database (CED) [ 36 ] has a collection of B cell epitopes from the 
literature, conformational epitopes defi ned by methods, like X-ray 
diffraction, NMR, scanning mutagenesis, overlapping peptides, and 
phage display. Epitome [ 37 ] (  http://www.rostlab.org/services/
epitome/    ) contains all known antigen–antibody complex struc-
tures. A semiautomated tool has also been developed which identi-
fi es the antigenic interactions within the known antigen–antibody 
complex structures. They compiled these interactions into Epitome. 
None of the other databases till now explicitly can locate the com-
plementary determining regions (CDRs) or identify the antigenic 
residues semiautomatically. Epitome update follows update of 
SCOP; that is, Epitome is updated twice a year as soon as SCOP 
gets updated. 

 The difference between Epitome and CED lies in the source of 
collection of B cell epitopes. Epitome collects B cell epitopes only 
from PDB structures and includes CDR information. In contrast, 
CED takes data from the literature and from abovementioned 
methods. As their sources are different, one can use the comple-
mentary information.  

   Table 1  
  Databases on B cell epitopes, T cell epitopes, allergen, and molecular evolution of immune system 
components   

 Databases  Names  URLs 

 B cell epitopes  CED  http://www.immunet.cn/ced/log.html 
 Bcipep  http://www.imtech.res.in/raghava/bcipep 
 Epiotme  http://www.rostlab.org/services/epitome/ 
 IEDB  http://www.immuneepitope.org/ 
 IMGT ®     http://www.imgt.org     

 T cell epitopes  Syfpeithi    http://www.syfpeithi.de     
 IEDB    http://www.immuneepitope.org/     
 IMGT ®     http://www.imgt.org     

 Allergen  Database of IUIS    http://www.allergen.org     
 SDAP    http://www.fermi.utmb.edu/SDAP/     

 Information related to 
molecular evolution 
of immune system 
components 

 ImmTree    http://www.bioinf.uta.fi /ImmTree     
 Immunome database    http://www.bioinf.uta.fi /Immunome/     
 ImmunomeBase    http://www.bioinf.uta.fi /ImmunomeBase     
 Immunome 

Knowledge Base 
   http://www.bioinf.uta.fi /IKB/     
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  A brief detail on T cell epitope databases is provided here. 
A detailed description can be found in later chapters. A functional 
T cell response requires MHC–peptide binding and a proper inter-
action of the MHC–peptide ligand with a specifi c T cell receptor. 
We need well-characterized data to model the process of binding 
of peptides to TAP and MHCs which function as T cell epitopes. 
Some recent investigations include fi nding and mapping of 
 potential epitopes. Epitope mapping leads to designing effective 
vaccines. Syfpeithi database [ 38 ] (  http://www.syfpeithi.de    ) has 
information on MHC class I and II anchor motifs and binding 
specifi city. It calculates a score based on the following rules— 
calculated score values differentiate among anchor, auxiliary 
anchor, or preferred residues. IEDB [ 39 ] has more than 88382 
peptidic epitopes and can be found at   http://www.immuneepitope.
org/     and ontology-related information (  http://ontology.iedb.org/    ) 
which has been specifi cally designed to capture  intrinsic, chemical, 
and biochemical information on immune epitopes and their inter-
actions with molecules of the host immune system. A beta version 
of IEDB (Immune Epitope Database and Analysis Resource 
Database) (  http://www.immuneepitope.org/    ) [ 30 ], sponsored by 
the National Institute for Allergy and Infectious Diseases (  http://
www.niaid.nih.gov    ) (NIAID), has different tools to fi nd B and 
T cell epitopes. It had 88382 peptidic epitopes till February 2012. 
FRED [ 40 ] deals with the methods for data processing and 
to compare the performance of the prediction methods consi-
dering experimental values. IMGT ®  [ 41 ] (the international ImMuno 
GeneTics information system ® ) (  http://www.imgt.org    ) has a 
good collection of IG, TR, MHC, and related proteins of 
the immune system of human and other vertebrates. It has fi ve 
databases and 15 interactive online tools for sequence, genome, 
and 3D structure analysis. The IMGT/HLA Database [ 42 ] 
(  http://www.ebi.ac.uk/imgt/hla/    ) provides a specialist database 
that has 5,518 HLA class I alleles and 1,612 HLA class II alleles. 
It is a part of the international ImMunoGeneTics project (IMGT).  

  Allergy is a steadily increasing health problem for all age groups 
caused by allergens. Allergens are proteins or glycoproteins recog-
nized by IgE that is produced by the immune system in allergic 
individuals. Online allergen databases and allergy prediction tools 
are being used to fi nd cross-reactivity between known allergens. 
Localization of B and T cells in the allergen may not coincide [ 43 ]. 
The differences between both kinds of epitopes present in an 
 antigen are as follows: T cell epitopes are only linear (as mentioned 
earlier) and distributed throughout the primary structure of the 
allergen, whereas B cell epitopes can be either linear or conforma-
tional, recognized by IgE antibodies, and are located on the  surface 
of the molecule accessible to antibodies. Moreover, in the case of 
B cell epitopes, predicting allergenicity in a molecule based on 
known conformational epitopes is a diffi cult task. 
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 Here, we describe allergen prediction databases in brief. One 
may get details on allergy prediction databases in a later chapter. 
Allergen Nomenclature database of the International Union 
of Immunological Societies (IUIS) has allergen database [ 44 ] 
(  http://www.allergen.org    ), which has been last updated in 
October 2009. AllergenPro database [ 45 ] contains 2,434 allergen- 
related information, e.g., allergens in rice microbes (712 records), 
animals (617 records), and plants (1,105 records). The web server 
Allergome 4.0 [ 46 ] (  www.allergome.org    ) provides an exhaustive 
repository of IgE-binding compound data. It has a total of 1,736 
allergen sources (updated in March 2010). The real-time monitor-
ing of IgE sensitization module (ReTiME), in Allergome 4.0, 
enables one to upload raw data from both in vivo and in vitro 
experiments. This is the fi rst attempt where IT has been applied to 
allergy data mining. SDAP [ 47 ] (Structural database of Allergenic 
Proteins) (  http://fermi.utmb.edu/SDAP/    ) is a web server that 
provides cross-referenced access to the sequence and structure 
of IgE epitope of allergenic proteins. Its algorithm is based on 
conserved properties of amino acid side chains. In its latest update, 
it has 1,478 allergens and isoallergens.   

3    Immunomic Tools and Algorithms 

 The property of an antigen to bind specifi cally complementary anti-
bodies is known as the antigen’s antigenicity; likewise, the ability of an 
antigen to induce an immune response is called its immunogenicity. 
The main objective of epitope prediction is to design a molecule that 
can replace an antigen in the process of either antibody production or 
antibody detection. Such a molecule can be synthesized or, in case of 
a protein, its gene can be cloned into an expression vector. Designed 
molecules are inexpensive and noninfectious in contrast to viruses or 
bacteria. Epitopes are important for understanding the disease mech-
anism, host-–pathogen interaction analyses, antimicrobial target dis-
covery, and vaccine design. Traditionally, determination of binding 
affi nity of MHC molecules and antigenic peptides predicts epitopes. 
The experimental techniques are found to be diffi cult and time 
 consuming. Due to this reason, several in silico methodologies 
are being developed and used to identify epitopes. Here, we throw 
some light on available immunology-related tools and algorithms. 
These techniques include matrix-driven methods, fi nding structural 
binding motifs, quantitative structure–activity relationship (QSAR) 
analysis, homology modeling, protein threading, docking techniques, 
and design of several machine-learning algorithms and tools. Table  2  
lists some of the tools that deal with B and T cell epitope prediction, 
allergy prediction, and in silico vaccination. However, detailed 
description and discussion over the usages of them will be provided in 
next chapters.
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   Table 2  
  Web servers and tools for prediction of B and T cell epitopes, allergens, and in silico vaccination   

 Web servers 
and tools  Names  URLs 

 B cell epitope 
prediction 

 ABCpred    http://www.imtech.res.in/raghava/abcpred     
 COBEpro    http://www.scartch.proteomics.uci.edu     
 Bepipred    http://www.cbs.dtu.dk/services/BepiPred     
 IMGT ®     http://www.imgt.org     
 Bcepred    http://www.imtech.res.in/raghava/bcepred/     
 DiscoTope    http://www.cbs.dtu.dk/services/DiscoTope/     
 CEP  http://www.115.111.37.205/cgi-bin/cep.pl 
 AgAbDb  http://www.115.111.37.206:8080/agabdb2/home.jsp 
 MIMOP  Request from franck.molina@cpbs.univ-montp1.fr 
 MIMOX    http://www.immunet.cn/mimox/     
 Pepitope    http://www.pepitope.tau.ac.il/     
 3DEX    http://www.schreiber-abc.com/3dex/     
 IEDB    http://www.immuneepitope.org     

 T cell epitope 
prediction 

 MMBPred    http://www.imtech.res.in/raghava/mmbpred/     
 NetCTL    http://www.cbs.dtu.dk/services/NetCTL/     
 NetMHC 3.0    http://www.cbs.dtu.dk/services/NetMHC/     
 TAPPred    http://www.imtech.res.in/raghava/tappred/     
 Pcleavage    http://www.imtech.res.in/raghava/pcleavage/     
 ElliPro    http://www.tools.immuneepitope.org/tools/ElliPro     
 MHCPred    http://www.ddg-pharmfac.net/mhcpred/MHCPred/     
 Propred    http://www.imtech.res.in/raghava/propred1/     
 EpiToolKit    http://www.epitoolkit.org     
 Syfpeithi    http://www.syfpeithi.de     
 IMGT ®     http://www.imgt.org     
 IEDB    http://www.immuneepitope.org/     
 EpiJen v 1.0    http://www.ddg-harmfac.net/epijen/EpiJen/EpiJen.htm     

 Allergy 
prediction 

 AlgPred    http://www.imtech.res.in/raghava/algpred     
 Allermatch    http://www.allermatch.org     
 APPEL    http://www.jing.cz3.nus.edu.sg/cgi-bin/APPEL     
 EVALLER    http://www.slv.se/en-gb/Group1/

Food-Safety/e-Testing-of-protein-allergenicity/     

 In silico 
vaccination 

 VaxiJen    http://www.ddg-pharmfac.net/vaxijen/     
 DyNAVacs    http://www.miracle.igib.res.in/dynavac/     
 NERVE    http://www.bio.unipd.it/molbinfo     
 VIOLIN    http://www.violinet.org     
 Vaxign    http://www.violinet.org/vaxign/     

    Experimental determination of B cell epitopes is time consuming 
and expensive; there is a need for computational methods for reli-
able identifi cation of putative B cell epitopes from antigenic 
sequences. B cell epitopes are antigenic determinants on the  surface 
of pathogens that interact with B cell receptors (BCRs). BCR- 
binding site is hydrophobic, having six hypervariable loops of 
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variable length and amino acid composition. B cell epitopes are 
classifi ed as continuous/linear/sequential and discontinuous/ 
conformational [ 48 ]. Linear epitopes are short peptides that 
 correspond to a contiguous amino acid sequence fragment of a 
protein. However, most epitopes are discontinuous, where distant 
residues are brought into spatial proximity by protein folding 
within the folded 3D protein structure. Experiments are mostly 
based on linear epitopes. There are both sequence-based and 
structure-based prediction tools, but prediction tools are limited 
for discontinuous B cell epitopes [ 35 ,  49 ]. 

  Methodologies for prediction of continuous B cell epitopes involve 
sequence-based methods, amino acid propensity scale-based meth-
ods, and machine-learning methods .  

  Sequence-based methods generally look for the epitope surface that 
must be accessible for antibody binding. These methods are limited 
to the prediction of continuous epitopes. Sequence-based methods 
have been tested on prediction of two protective epitopes known in 
infl uenza A virus hemagglutinin HA1 [ 50 ]. The fi rst continuous 
epitope is the 91–108 epitope (SKAFSNCYPYDVPDYASL), which 
is a protective epitope in rabbit able to elicit antibodies neutralizing 
infectivity of infl uenza viruses [ 51 ]. The second continuous epitope 
is the 127–133 epitope (WTGVTQN) protective against the infl u-
enza strain A/Achi/2/68 (H3N2) in mouse [ 52 ].  

  Parameters such as hydrophilicity, fl exibility, accessibility, turns, 
exposed surface, polarity, and antigenic propensity of polypeptide 
chains have been correlated with the location of continuous epit-
opes. Thus the classical methods of identifying potential linear 
B cell epitopes from antigenic sequences typically rely on the use of 
amino acid propensity scales. Amino acid scale-based methods 
apply amino acid scales to compute the scores of a residue  i  in a 
given protein sequence. The  i −( n  − 1)/2 neighboring residues on 
each side of residue  i  are used to compute the score for residue  i  in 
a window of size  n . The fi nal score for residue  i  is the average of 
the scale values for  n  amino acids in the window. Pellequer [ 53 ] 
compared several propensity scale methods using a dataset of 14 
epitope-annotated proteins. He found that the scales of Parker 
et al. [ 54 ], Chou and Fasman, [ 55 ], Levitt [ 56 ], and Emini [ 57 ] 
provide better results than the other scales tested [ 48 ]. El-Manzalawy 
et al. [ 58 ] compared propensity scale-based methods with a naive 
Bayes classifi er and used two datasets: one is propensity dataset, 
and the other is from BciPep [ 35 ]. 

 Bepitope tool [ 59 ] predicts continuous epitopes based on the 
prediction of protein turns. It is a newer version of PREDITOP [ 60 ] 
and uses more than 30 propensity scale values. Bcepred server [ 61 ] 
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(  http://www.imtech.res.in/raghava/bcepred/    ) predicts linear B 
cell epitopes with 58.7 % accuracy based on combined amino acid 
properties, like accessibility, hydrophilicity, fl exibility, polarity, 
exposed surface, and turns. Analyses of antigen–antibody interaction 
are done on antibody-binding sites on proteins, which help in 
 predicting the linear and conformational B cell epitopes. Taking this 
into consideration, a database, viz . , AgAbDb [ 62 ] (  http:// 
202.41.70.51:8080/agabdb2/    ), has been developed which is based 
on molecular interactions of antigen–antibody cocrystal structures.  

  Machine-learning algorithms and tools are being used to retrieve 
characteristics of an epitope. Here we describe some of these 
approaches in brief. Saha and Raghava [ 63 ] used feed-forward 
and recurrent neural networks to predict continuous B cell epit-
opes in ABCpred (  http://www.imtech.res.in/raghava/abcpred    ). 
COBEpro [ 64 ] is a two-step system for prediction of continuous B 
cell epitopes. In the fi rst step, COBEpro assigns a fragment epit-
opic propensity score to protein sequence fragment using SVM. In 
the second step, it calculates an epitopic propensity score for each 
residue based on the SVM scores of the peptide fragment in the 
antigenic sequence. For Bepipred [ 65 ], (  http://www.cbs.dtu.dk/
services/BepiPred    ), three datasets of linear B cell epitopes were 
constructed, viz . , annotated proteins from literature, AntiJen 
 database [ 66 ] (  http://www.ddg-pharmfac.net/antijen/AntiJen/
antijenhomepage.htm    ), and Los Alamos HIV database (  http://
www.hiv.lanl.gov    ). They tested a number of propensity scale meth-
ods on Pellequer dataset [ 53 ] and found the best scale by Levitt 
[ 56 ]. Then, they used HMM to predict the location of linear B cell 
epitopes and tested HMMs on Pellequer dataset to fi nd optimal 
parameters. HMM was combined with one set of the two best 
propensity scale methods, i.e., Parker [ 54 ] and Levitt [ 56 ], to get 
the more accurate predictions. Currently, ~60–66 % of accuracy 
has been found for continuous epitope prediction, applying 
 combinations of either amino acid scales or machine-learning 
 techniques. The higher accuracy could possibly be achieved by 
improving the quality of existing B cell epitope datasets [ 48 ].   

  The characterization and prediction of B cell epitopes are mainly 
conformational dependent based on the knowledge of the protein 
three-dimensional structure; thus the task of prediction is more dif-
fi cult compared to that of T cell epitopes. Changes in protein fold-
ing may lead to changes in the number of epitopes [ 43 ]. The most 
accurate way to identify B cell epitope is through X-ray  crystallography. 
Here we describe some of the prediction methods for confor-
mational B cell epitopes in brief. Anderson et al. presented a 
method called DiscoTope [ 67 ] (  http://www.cbs.dtu.dk/services/
DiscoTope/    ), which is a combination of amino acid statistics, spatial 
information, and surface exposure. It detects 15.5 % of residues 
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located in discontinuous epitopes with a specifi city of 95 %. It is said 
to be the fi rst method developed for prediction of discontinuous 
B cell epitope with better performance than methods based only on 
sequence data. PEPITO [ 68 ] uses a weighted linear combination of 
amino acid propensity scores and half-sphere exposure values [ 69 ] 
which encode side chain orientation and solvent accessibility of 
amino acid residues for the prediction of conformational epitopes. 
Authors have also reported its improvement in performance over 
DiscoTope method. 

 Bublil et al. developed Mapitope [ 70 ] for conformational 
B cell epitope mapping. The hypothesis behind Mapitope is that 
the simplest meaningful fragment of an epitope is an amino acid 
pair (AAP) of residues that lie within the epitope, which are the 
results of folding. A set of affi nity-isolated peptides was obtained 
by screening the phage display peptide libraries with the antibody 
of interest. This set was given as algorithm input, and 1–3 epitope 
candidates on the surface of the atomic structure of the antigens 
were obtained as output. 

 A computational method has been presented by Sollner et al. 
[ 71 ] to automatically select and rank peptides for the stimulation 
of otherwise functionally altered antibodies. They investigated the 
integration of B cell epitope prediction with the variability of anti-
gen and the conservation of patterns for posttranslational modifi -
cation (PTM) prediction. By their observation, they found high 
antigenicity, low variability, and low likelihood of PTM for the 
identifi cation of biorelevant sites. Ponomarenko [ 48 ] assembled 
non-redundant datasets of repetitive 3D structure of antigen and 
antigen–antibody complexes from the PDB. CEP web interface 
[ 72 ] (http://www.115.111.37.205/cgi-bin/cep.pl) predicts con-
formational and sequential epitopes and also antigenic determi-
nants. Less availability of the 3D structure data of protein antigens 
limits the utility of this server. A recent approach has focused on 
the impact of interior residues, different contributions of adjacent 
residues, and imbalanced data which contain much more non- 
epitope residues than epitope and applied random forest (RF) 
algorithm for the prediction of conformational B cell epitope pre-
diction [ 73 ]. This tool is available at   http://www.code.google.
com/p/my-project-bpredictor/downloads/list    . 

  Phage display library is widely used for fi nding protein–protein 
interactions (specially in antibody–antigen interactions), protein 
function identifi cation, and development of new drugs and vac-
cines [ 74 ]. Pizzi et al. [ 75 ] have proposed an approach for map-
ping B cell epitopes, in which a phage display library of random 
peptides is scanned against a desired antibody to obtain mimotopes 
that bind to the antibody with high affi nity. It is assumed that this 
panel of mimotopes mimics the physicochemical properties and 

 Mimotope-Based 
Methodology

Namrata Tomar and Rajat K. De

http://www.code.google.com/p/my-project-bpredictor/downloads/list
http://www.code.google.com/p/my-project-bpredictor/downloads/list


35

spatial organization of the genuine epitopes [ 34 ,  74  and  76 ]. 
Mimotopes and antigens are both recognized by the same  antibody 
paratope. Mimotopes are said to be the imitated part of the epit-
ope. It is possible that mimotope may have some valuable informa-
tion about epitope. However, homology may not exist between 
the mimotope and the epitope of the native antigen. This mimicry 
exists due to similarities in physiochemical properties and spatial 
organization [ 76 ]. Considering these properties, mimotope pools 
are being used to mine information to predict an epitope. 

 Using the above concept, MIMOP tool [ 76 ] has been devel-
oped. MIMOP predicts linear and conformational epitopes based 
on two algorithms, viz . , MimAlign uses degenerated alignment 
analyses, and MimCons is based on consensus identifi cation. 
MIMOX [ 77 ] (  http://web.kuicr.kyoto-u.ac.jp/~hjian/mimox    ) 
comes in the same category, which maps a single mimotope or a 
consensus sequence of a set of mimotopes onto the corresponding 
antigen structure. Then, it searches for all of the clusters of  residues 
that could be the native epitope. Pepitope [ 74 ] (  http://pepitope.
tau.ac.il/    ) (an advanced server for mimotope-based epitope 
 prediction approaches) uses two algorithms, viz., Pepsurf [ 78 ] and 
Mapitope [ 70 ]. It maps each mimotope to map them onto the 
solved structure of antigen surface. Alignment of mimotope is 
done fi rst in MIMOX, so this step is different in Pepitope. If we 
compare it with MIMOP, MIMOP aligns the peptides to the anti-
gen at the sequence level rather than directly to the 3D structure. 
The 3D structure is considered only following the alignment stage. 
Given the 3D structure of an antigen and a set of mimotopes (or a 
motif sequence derived from the set of mimotopes), Pep-3D- 
Search [ 79 ] (  http://kyc.nenu.edu.cn/Pep3DSearch/    ) can be 
used in two modes: mimotope or motif. It can be used for local-
izing the surface region mimicked by the mimotopes. 

 Sometimes linear peptides mimic conformational epitopes. 
The same phage display peptide libraries by screening with the 
respective antibodies are used to select these mimotopes. Schreiber 
et al. [ 80 ] presented software, 3DEX (3D-Epitope-Explorer) 
(  http://www.schreiber-abc.com/3dex/    ), that allows localizing 
linear peptide sequences within 3D structures of proteins. Its algo-
rithm takes into account the physiochemical neighborhood of C-α 
or C-β atoms of individual amino acids and surface exposure of the 
amino acids. Authors were able to localize mimotopes from HIV- 
positive patient plasma within 3D structure of gp120.  

  Ensemble methods combine the predictions of several predictors 
and often outperform individual predictors in many biomolecular 
sequence and structure classifi cation studies [ 81 ]. Several strategies 
for combining a set of predictors,  S , into a single consensus or 
meta-predictor exist: (1) majority voting, (2) weighted linear 
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 combination, and (3) meta-learning [ 82 ]. A large number of nearest 
neighbor- and decision tree-based classifi ers are trained using 
 different sets of training data features for developing an ensemble 
of linear B cell epitope classifi ers [ 83 ].    

  The current challenge in immunological prediction software is to 
predict interacting molecules to a high degree of accuracy. The 
most popular methods currently available are based on binding 
affi nity predictions for a range of MHC molecules. It is necessary 
to bind antigenic peptides with MHC so that cytotoxic T cells can 
recognize them. Thus, identifi cation of MHC-binding peptides is 
a central part of any algorithm which predicts T cell epitopes. 
There exist several methodologies for prediction of MHC-binding 
peptides, which are based on the idea of quantitative matrices, 
 hidden Markov model (HMM), artifi cial neural networks (ANNs), 
support vector machine (SVM), and structure of the peptides. 
Here we describe the abovementioned approaches in brief. One 
may fi nd the details of these methodologies, among others, in later 
chapters. 

  Huang and Dai [ 84 ] fi rst investigated a new encoding scheme of 
peptides based on BLOSUM matrix with the amino acid indicator 
vectors for direct prediction of T cell epitopes. It replaced each 
nonzero entry in the amino acid indicator vector by the corre-
sponding value appeared in the diagonal entries in BLOSUM 
matrix. MMBPred [ 85 ] (  http://www.imtech.res.in/raghava/
mmbpred/    ) server predicts the mutated promiscuous and high- 
affi nity MHC-binding peptide. It uses the matrix data in a linear 
prediction model and ignores peptide conformation. The predic-
tion is based on the quantitative matrices of 47 MHC alleles.  

  Transfer-associated protein (TAP) is an important component of 
the MHC I antigen processing and presentation pathway. A TAP 
transporter can translocate peptides of 8–40 amino acids into 
endoplasmic reticulum (ER). Zhang et al. developed PRED TAP  
[ 86 ] for the prediction of peptide binding to hTAP. They used a 
three-layer back propagation network with the sigmoid activation 
function. The inputs were the binary strings, representing nona-
mer peptide. Secondly, they used second-order HMM. The results 
are both sensitive and specifi c.  

  ANNs can identify each amino acid residue and interactions between 
adjacent ones in a potential epitope. An ANN for a  particular MHC 
molecule is trained to recognize associated input sequence and 
 outputs, viz., the binding affi nity for that sequence with the MHC 
molecule [ 87 ]. Trained ANN can predict the  binding affi nity 
of novel peptide sequences. Neilson et al. [ 88 ] described an 
improved neural network model to predict T cell class I epitopes. 
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They combined a sparse encoding, BLOSUM encoding, and input 
derived from HMM. The dataset consists of 528 nine-mer amino 
acid peptides for which the binding affi nity to the HLA I molecule 
A*0204 has been measured in a method described by Buus 
et al. [ 89 ]. NetCTL server [ 90 ] (  http://www.cbs.dtu.dk/services/
NetCTL/    ) has method to integrate the prediction of peptide MHC 
class I binding, proteasomal C terminal cleavage, and TAP transport 
effi ciency. NetMHC server 3.0 [ 91 ] (  http://www.cbs.dtu.dk/ 
services/NetMHC/    ) uses ANN and weight matrices. It has been 
trained on data from 55 MHC peptides (43 human and 12 nonhu-
man) and position-specifi c scoring matrices (PSSMs) for additional 
67 HLA alleles. 

 Prediction of MHC class II binding peptides is found to be 
diffi cult due to the reasons including variable length of reported 
binding peptides, undetermined core region for each peptide, 
and number of amino acids as primary anchor. Brusic et al. devel-
oped PERUN [ 92 ], a hybrid method for the prediction of MHC 
class II binding peptide. It uses available experimental data and 
expert knowledge of binding motifs, evolutionary algorithms, 
and ANNs. They used PlaNet package version 5.6 [ 93 ] to design 
and train a three-layered fully connected feed-forward ANN. The 
whole  process of MHC class I ligands’ degradation and presenta-
tion has been modeled in EpiJen [ 94 ] (  http://www.ddg-pharmfac.
net/epijen/EpiJen/EpiJen.htm    ) in an integrative approach. It is a 
multi-step algorithm for T cell epitope prediction, based on quan-
titative matrices, which belongs to the next generation of in silico 
T cell epitope identifi cation methods.  

  Ant colony search systems (ACSs) have been found useful for 
 solving combinatorial optimization problems and can be applied to 
the identifi cation of a multiple alignment of a set of peptides. 
Basically, ACSs [ 95 ] attempt to fi nd an optimal alignment for a 
given set of peptides based on the search strategy. For TAPPred 
[ 96 ] (  http://www.imtech.res.in/raghava/tappred/    ), nine features 
of amino acids have been analyzed to fi nd the correlation between 
binding affi nity and physiochemical properties. An SVM-based 
method to predict TAP binding affi nity of peptides has been devel-
oped and found cascade SVM to be more reliable. Cascade SVM 
has two layers of SVMs, and its performance is better than the 
other available algorithms. Nanni [ 97 ] demonstrated the use of 
SVM and support vector (SV) data description to predict T cell 
epitope. It is experimentally established that the immunoprotea-
some is involved in the generation of the MHC class I ligand. For 
this purpose, Pcleavage [ 98 ] (  http://www.imtech.res.in/raghava/
pcleavage/    ) has been developed to predict both kinds of cleavage 
sites in antigenic proteins. It uses SVM [ 99 ], Parallel Exemplar 
based Learning (PEBLS) [ 100 ], and Waikato Environment for 
Knowledge Analysis (Weka) [ 101 ].  

3.2.4  Other Machine- 
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  Accurate identifi cation of peptides that bind to specifi c MHC 
 molecules is important for understanding the underlying mechanism 
of immune recognition, for developing effective peptide-based 
vaccines, and for immunotherapies for allergy and autoimmunity. 
Current methods are mostly based on peptide binding affi nity to 
MHC for predicting T cell epitope. 3D QSAR technology CoMSIA 
has been applied to the problem of peptide–MHC binding [ 102 ]. 
It uses the interaction potential around aligned sets of 3D peptide 
structures to describe binding. TEPITOPE [ 103 ] is used to pre-
dict promiscuous and allele-specifi c HLA II-restricted T cell epit-
ope in silico. TEPITOPE’s user interface has a display and 
comparison of pocket profi les, and it fi nds similar HLA II differing 
in their binding capacity for a given peptide sequence. It can be 
applied to only 51 out of over 700 known HLA-DR molecules. 
A new method called as TEPITOPEpan (  http://www.biokdd.
fudan.edu.cn/Service/TEPITOPEpan/    ) is developed by extra-
polating from the binding specifi cities of HLA-DR molecules 
 characterized by TEPITOPE to those uncharacterized [ 104 ]. 

 T epitope designer [ 105 ], a web server, uses a defi nition of 
virtual binding pockets to position specifi c peptide residue anchors 
and estimation of peptide residue virtual binding pocket compati-
bility. Zhao et al. [ 106 ] described a novel predictive model using 
information from 29 human MHCp crystal structures. The overall 
binding between peptide and MHC provides a cumulative measure 
of the physical and chemical compatibility between each residue in 
the peptide and the residue forming the virtual pockets. ElliPro 
[ 107 ] (  http://www.tools.immuneepitope.org/tools/ElliPro    ) is a 
web tool that implements a modifi ed version of Thornton method, 
residue clustering algorithm, the Modeller program, and the Jmol 
viewer. It predicts and visualizes the antibody epitope in protein 
sequence and structure. It implements three algorithms for approx-
imation of the protein shape as an ellipsoid, calculation of the resi-
due protrusion index (PI), and clustering of neighboring residue 
based on their PI values. 

 It is generally accepted that only peptides that bind to MHC 
with an affi nity above a threshold value (typically 500 nM) func-
tion as T cell epitopes. Guan et al. in Edward Jenner Institute 
for Vaccine Research, UK, introduced MHCPred version 2.0 
[ 108 ] (  http://www.ddg-pharmfac.net/mhcpred/MHCPred/    ). It 
is a perl implementation of 2D QSAR application to peptide–MHC 
prediction and covers both class I and class II MHC allele peptide 
specifi city models. Peptide that can bind to MHC on the tumor 
cell surface has the potential to initiate a host immune response 
against the tumor. Schiewe et al. [ 109 ] developed an algorithm 
PeSSI (peptide–MHC prediction of structure through solvated 
interfaces) for fl exible structure prediction of peptide binding to 
MHC molecule. They used cancer testis (CT) antigens, KU-CT-1, 
that are potential to bind HLA-A2. 
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 Jojic et al. [ 110 ] developed an improved structure-based 
model which used known 3D structures of a small number of 
MHC–peptide complexes, MHC class I sequence, known binding 
energies for MHC–peptide complexes, and larger binary dataset 
having information about strong binders and non-binders. They 
used adaptive double threading, where the parameters of the 
threading model are learnable, and both MHC and peptide 
sequences can be threaded onto the structure of other alleles. 
Furman et al. [ 111 ] used an approach that can be applied to a wide 
range of MHC class I alleles. In this algorithm, peptide candidates 
are threaded, and their binding compatibility is evaluated by statis-
tical pairwise potentials. They used the pairwise potential table of 
Miyazawa and Jernigan [ 112 ]. 

 Immunodominant peptides are being used for rational design 
of peptide vaccines focusing on T cell immunity. Altuvia et al. 
[ 113 ] focused on antigenic peptides recognized by cytotoxic 
T cells. They applied the threading approach to screen a library of 
peptide sequence and identifi ed the ones that optimally fi t within 
the MHC groove. Propred [ 114 ] (  http://www.imtech.res.in/
raghava/proped    ) is a graphical web tool for predicting MHC class 
II binding regions in antigenic protein sequences. They extracted 
the matrices for 51 HLA-DR alleles from a pocket profi le database 
developed by Sturniolo et al. [ 115 ]. EpiToolKit [ 116 ] (  http://
www.epitoolkit.org    ) web server includes several prediction meth-
ods for MHC class I and class II ligands and minor histocompati-
bility antigens. It can also investigate the effect of mutation on 
T cell epitopes.  

  Molecular dynamics (MD) describes single and collective motion 
of atoms within a molecular system and provides a means by which 
one can measure theoretically that cannot be measured experimen-
tally [ 117 ]. It is particularly suitable for the simulation and analysis 
of the otherwise inaccessible details of MHC–peptide interaction 
and of the immune synapse. Zhang et al. [ 118 ] were among the 
fi rst who uses MD as a tool to explore peptide–MHC binding. 
They focused on docking using MD as well as on calculating free 
energies. Free energy calculations of the wild-type and the variant 
human T cell lymphotropic virus type 1 Tax peptide (LLFGYPVYV—
wild Tax and LLFGYAVYV—mutant Tax) presented by the MHC 
to the TCR have been performed using large-scale massively paral-
lel molecular dynamics simulations [ 119 ].   

  Allergy is caused by adverse immunological reaction, and the 
 causative agents are known as allergens that are otherwise not 
harmful in nature. An allergen cross-links immunoglobulin E (IgE) 
 antibodies on mast cells or basophils and releases infl ammatory 
mediators that cause allergy symptoms. Biotechnology- and genetic 
engineering-derived food contains some foreign proteins, which 
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can be allergic to many human beings. Evaluation of the potential 
allergenicity of food derived from biotechnology and genetic engi-
neering is a current food safety assessment. Allergen sequence 
databases are essential tools for safety assessments of bioengineered 
foods. They can analyze the structural and physiochemical proper-
ties of food allergen proteins. Current efforts in allergy informatics 
are primarily focused on prediction of T and B cell epitopes and 
assessment of allergenicity. 

 Allergy occurs by both extrinsic and intrinsic factors. Type I 
hypersensitive reaction is induced by certain allergens that elicit 
IgE antibodies [ 1 ]. Use of genetically modifi ed food and thera-
peutics makes allergenic protein prediction necessary. According to 
the proposed guidelines of World Health Organization (WHO) 
and Food and Agriculture Organization (FAO) in 2001, a protein 
that has at least six same contiguous amino acids or a window of 80 
amino acids when compared with known allergens is considered as 
allergen. It has already been established that allergens do not share 
common structural characteristics. Thus allergen databases are 
being used as reference for fi nding the sequence similarity in aller-
genicity evaluation [ 120 ]. It is said that a protein is considered as 
an allergen if it has a region or peptides identical to a known IgE 
epitope. 

 Allergen prediction method proposed by Kong et al. [ 121 ] is 
based on the determination of a combination of two allergen 
motifs in a given protein sequence. They took 575 proteins for 
allergen dataset and 700 sequences for non-allergen test set from 
the given reference [ 122 ]. They developed a database which has all 
possible combinations of two motifs from the set of allergenic 
motifs by using motif length of 35 amino acids and motif number 
of 500. Zorzet et al. [ 123 ] introduced a computational approach 
for classifying the amino acid sequences in allergens and non- 
allergens. They identifi ed preprocessed 91 food allergens from 
various specialized public repositories of food allergy and SWALL 
database (SWISSPROT and TrEMBL). 

 AlgPred [ 124 ] (  http://www.imtech.res.in/raghava/algpred    ) 
uses SVM and a similarity-based approach for analysis and scanned 
all 183 IgE epitopes against all proteins of the dataset. The server 
allows using a hybrid option to predict allergen using combined 
approach (SVMc, IgE epitope, ARPs BLAST, and MAST). 

 Stadler et al. [ 120 ] used MEME motif discovery tool to identify 
the most relevant motif present in allergen sequence. If the query 
fi nds an allergen motif or scores better than an E-value of 10 −8  in 
the pairwise sequence alignment step, it is considered as the aller-
genic sequence. Then, these are compared with the FAO/WHO 
guidelines by performing allergenicity prediction for the sequence 
in SWISSPROT, and a synthetic test database ALLERMATCH 
(  http://www.allermatch.org    ) is a web tool that uses sliding 
window approach to predict potential allergenicity of proteins [ 125 ]. 
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It is done according to the current recommendations of the FAO/
WHO Expert Consultation, [ 126 ] as outlined in Codex alimentar-
ius [ 127 ]; however, this method generates false- positive and false-
negative hits, so it is advised by the FAO/WHO that the outcomes 
should be combined with other allergenicity assessment methods. 

 APPEL [ 128 ] (Allergen Protein Prediction E-Lab) (  http://
www.jing.cz3.nus.edu.sg/cgi-bin/APPEL    ) tool uses SVM to 
identify novel allergen proteins. This tool correctly classifi ed 93 % 
of 229 allergens and 99.9 % of 6717 non-allergens. It is based on 
statistical method, and it has the potential to discover novel aller-
gen proteins. EVALLER [ 129 ] web server (  http://www.slv.se/
en-gb/Group1/Food-Safety/e-Testing-of-protein-allergenicity/    ) 
uses fi ltered length-adjusted allergen peptides (DFLAP) method 
[ 130 ] (via ulfh@slv.se) to identify the potential allergen proteins. 
DFLAP extracts variable length allergen sequence fragments and 
employs SVM. 

 EVALLER and APPEL servers assigned all calmodulins or 
calmodulin-like proteins as presumably non-allergens [ 128 ,  129 ]. 
But a conventional alignment approach (e.g., 35 % similarity over 
80 amino acid segments) gives preference to fi nd sequence simi-
larity between input proteins and known allergens and puts 
 abovementioned proteins in allergen category. These proteins are 
presumable non-allergenic homologues to the polcalcin family 
(members being potential allergens involved in pollen–pollen 
cross-sensitization). Tools, based on structural and physical charac-
teristics, are useful to identify potential cross-reacting proteins that 
may escape detection through sequence similarity method alone. 
Details related with allergen prediction approaches may be found 
in later chapters.   

4    Applications of Immunoinformatics 

 The use of immunological databases and prediction software has 
become an important part of the scientifi c research as they allow us 
to predict the interaction of molecules involved in an immune 
response, thereby signifi cantly shortening experimental procedure. 
In this section, we focus on applications of immunoinformatics. It 
includes in silico vaccine design and immune system modeling and 
immunoinformatics for cancer diagnosis and therapy. It also explores 
the idea of integrating systems biology with immunoinformatics .  

  Vaccines can be live attenuated whole pathogens, subunits, or 
 epitope based. It is possible to design attenuated pathogens by 
removing virulence factors or reducing their metabolic capacity. 
These procedures can be done through computational design and 
discovery. Several in silico techniques have been developed to 
 identify suitable vaccine candidates, principally proteins within 
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pathogen genomes that have antigenic properties. Generally used 
vaccines are live attenuated or killed bacteria or viruses (examples 
include cholera, polio, measles). Thus there is a concern about the 
safety of these vaccines; if they are incompletely attenuated or 
killed, they may revert their pathogenicity or cause undesirable 
immune reactions. On the other hand, synthetic peptides are con-
sidered as candidates for safe vaccines. Methods predicting immu-
nogenic peptides could lead to rational vaccine design. Genome 
sequencing, comparative proteomics, and immunoinformatics 
tools are well developed to design new vaccines. “Reverse vaccinol-
ogy,” a new concept, analyzes the entire genome to identify poten-
tially antigenic extracellular proteins and thus helps in saving time 
and money. It was pioneered for  Neisseria meningitides  responsible 
for sepsis and meningococcal meningitides, and the vaccine type is 
conjugate based on capsular polysaccharide. These vaccines are 
available for pathogenic  N. meningitides A, C, Y, and W135  [ 131 ]. 

  Microarray technique for vaccine design : Through microarray tech-
nology, it is easy to screen genes of various pathogens in different 
growth states and conditions for vaccine design [ 132 ]. It reduces 
the number of genes useful for vaccine in a given genome. Signal 
peptides derived from genomic sequences, structural motifs, and 
immunogenicity are important for vaccine development. 

  Epitope-driven approaches for vaccine design : These are compara-
tively more useful as they have no lethal effect of the whole- protein 
vaccines. It may induce immune response against immunodomi-
nant epitopes [ 133 ]. This kind of vaccine has a single start codon 
with an epitope which can be inserted consecutively in the con-
struct [ 134 ]. The prediction of promiscuous binding ligands is 
considered to be a prerequisite for the most subunit  vaccine design 
strategies [ 135 ]. It is originally named as “reverse immunogenet-
ics” where T cell epitope mapping tools were employed to fi nd 
new protein candidates for vaccines and diagnostic tests [ 136 ]. 
Epitope-driven vaccine design allows the discovery of previously 
unknown and undescribed antigens and epitopes as vaccine candi-
dates. The major disadvantage of the epitope-based approach is 
that algorithms may fail to predict all the relevant epitopes [ 137 ]. 
A web server, PEPVAC (Promiscuous EPitope-based VACcine) 
(  http://immunax.dfci.harvard.edu/PEPVAC/    ) [ 138 ], is opti-
mized for the formulation of multi-epitope vaccines with broad 
population coverage. This optimization is accomplished through 
the prediction of peptides that bind to several HLA molecules with 
similar peptide-binding specifi city. 

  Peptide-based vaccine design : Small peptides derived from  epitopes 
are used as peptide-based vaccines. These peptides are recognized 
by MHC class I and thus boost the immune response. Three novel 
classes of methods have been described to predict MHC- binding 
peptides and a voting scheme to integrate them for improved 

Namrata Tomar and Rajat K. De

http://immunax.dfci.harvard.edu/PEPVAC/


43

results [ 139 ]. The fi rst method is based on quadratic programming 
applied to quantitative and qualitative data. Second method uses 
linear programming, and the third one considers sequence profi les 
obtained by clustering known epitopes to score candidate peptides. 
This method is found to be better than other sequence-based 
methods for fi nding the MHC binders. 

  Alignment-free approach for vaccine design : Some proteins have 
similar structure and biological properties, but they may lack 
sequence similarity. For these kinds of proteins, a new alignment- 
free approach for antigen prediction has been proposed, which 
uses three datasets—each for bacteria, viruses, and tumors [ 140 ]. 
The models were validated using leave-one-out cross-validation 
(LOO-CV) on the whole sets and by external validation using test 
sets and were implemented in a server called VaxiJen version 2.0 
(  http://www.ddg-pharmfac.net/vaxijen/    ). 

  DNA vaccines : DNA vaccines produce cell-mediated and humoral 
immune response and are very useful in defending intracellular 
pathogens. It uses plasmid DNA, which contains a DNA sequence 
coding for an antigen and a promoter for gene expression in the 
mammalian cell. Plasmid DNA does not need a viral vector for 
delivery. Naked DNA is safe and can be used to sustain the expres-
sion of antigen in cells for longer periods of time than RNA or 
protein vaccines. The DNA delivers antigen as well as  activates 
innate immunity and an adaptive immunity against cancer anti-
gens. DyNAVacs [ 141 ] (  http://www.miracle.igib.res.in/dynavac/    ) 
incorporates different modules like codon optimization for heter-
ologous expression of genes in bacteria, yeast, and plant, mapping 
restriction enzyme sites, primer design, Kozak sequence insertion, 
custom sequence insertion, and design of genes for gene therapy. 

 The crucial question in deciding vaccine protocol is the vaccina-
tion schedule, i.e., is to decide whether the chronic protocol is able to 
give 100 % protection or shorter protocols could be applied. Thus a 
mathematical model/simulator (SimTriplex) which describes the 
immune response activated by the triplex  vaccine has been developed 
[ 142 ]. Immunological prevention of cancer has been obtained in 
HER-2/neu transgenic mice using a vaccine that combines three dif-
ferent immune stimuli (triplex vaccine) that is repeatedly adminis-
tered for the entire life-span of the host (chronic protocol). 

 The software NERVE [ 143 ] (  http://www.bio.unipd.it/ 
molbinfo    ) helps in designing subunit vaccines against bacterial 
pathogens. It combines automation with an exhaustive treatment 
of vaccine candidate selection task by implementing and integrat-
ing six different kinds of analyses. Xiang et al. developed a web-
based database system, VIOLIN [ 144 ] (Vaccine Investigation and 
Online Information Network) (  http://www.violinet.org    ), which 
curates, stores, and analyzes published vaccine data. It contains 
four integrated literature mining and search programs, viz . , 
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Litsearch, Vaxpresso, Vaxmesh, and Vaxlert. They have developed 
a web- based vaccine design system called Vaxign [ 145 ], which 
 predicts possible vaccine targets. Major predicted features include 
subcellular location of a protein, transmembrane domain, adhesion 
probability, sequence conservation among genomes, sequence 
similarity to host (human or mouse) proteome, and epitope bind-
ing to MHC class I and class II. However, synthetic vaccine candi-
dates must be tested experimentally to demonstrate their ability to 
generate neutralizing antibodies.  

  The immune system can be seen as a parallel, information process-
ing system that learns through examples, constantly adapts itself to 
new situations, and possesses a distributive memory for patterns. 
For theoretical immunology, immune system models and simula-
tions can describe more insights into various interactions resulting 
in immunological phenomena. These models can test and fi nd out 
the antigen–antibody interactions and immune responses for a 
 particular antigen, in case of drug administration or testing of 
a vaccine candidate. Using visual modeling application described 
by Gong and Cai [ 146 ] one can understand the adaptive immune 
system effectively. The hierarchical immune system consists of 
inherent immune tier, adaptive immune tier, and immune cell tier. 
It is designed and visualized with Java Applet technique for simula-
tion. For further simulation purpose, the learning of the antibody 
is implemented through the evolutionary mechanism of the 
immune algorithm. ImmunoGrid (  http://www.immunogrid.eu    ) 
and Virolab (  http://www.virolab.org/    ) projects are working to sim-
ulate immune systems. ImmunoGrid tries to simulate immune pro-
cesses by combining experiments and computational studies, while 
Virolab attempts to develop a virtual lab for infectious  diseases by 
examining the genetic causes of human illnesses [ 132 ]. SIMISYS 0.3 
[ 147 ] is another example of a software that models and simulates the 
innate and adaptive components of the immune system based on 
computational framework of cellular automata. It simulates healthy 
and disease conditions by interpreting inter actions among the cells, 
including macrophages, dendritic cells, B cells, T helper cells, and 
pathogenic bacteria. 

 Exclusive computational approaches like mathematical model-
ing generate enormous amount of data, but there should be a 
 balance between virtual and real experimental data. Computationally 
generated data needs to be formally tested and translated into real 
knowledge. Post-genomic era needs to exchange data from wet lab 
to simulation and vice versa [ 148 ]. The model should be accurate, 
easy to use, and understandable to both model designers and 
 biologists who can verify their hypothesis through in silico 
experiments.  

4.2  Immune 
System Modeling
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  Antigen presentation plays a central role in the immune response 
and as a result also in immunotherapeutic methods like antitumor 
vaccination. There is a need to rapidly screen the antigens and to 
design specifi c types of expression constructs for immunotherapy 
of cancer. Competent immune responses to cancer are likely to be 
restricted to the immunome of a specifi c cancer, including the set 
of antigens that drive successful immune responses. However, it is 
still diffi cult to fi nd the set of antigens that varies between different 
tumors. Antitumor vaccination takes advantage of in vivo pro-
cesses, and it harnesses the full power of the immune system, unlike 
the more artifi cial ex vivo expansion of T cells [ 149 ]. 

 Changes in the cancer diagnosis and prevention are being sup-
ported by informatics [ 150 ]. For example, the Cancer Biomedical 
Informatics Grid (caBIG) connects a network of 500 individuals 
and 50 institutions who share data and analyze tools to speed up 
the development of innovative approaches for the prevention and 
treatment of cancer [ 151 ]. The 2005 database issue of Nucleic 
Acids Research lists 14 cancer-related molecular databases, which 
mainly focus on cancer-related genes and gene expression [ 152 ]. 
Listings of tumor antigens are also available [ 153 ]. This list includes 
antigens that have defi ned T cell epitopes. Tumor-associated anti-
gens (TAA) have played a vital role in both diagnosis and treat-
ment of human carcinomas, such as   prostate-specifi c antigen     (PSA) 
in the diagnosis of prostate cancer. Despite this, the process of 
TAA identifi cation has often been hampered by the complicated 
lab procedures. To fasten the process of tumor antigen discovery, 
and improve diagnosis and treatment of human carcinoma, a pub-
licly available database Human Potential Tumor Associated Antigen 
(HPtaa) database (  http://www.hptaa.org    ) has been established 
[ 154 ]. Systems biology approaches target identifi cation of a small 
number of antigens expressed by cancer cells that are suitable tar-
gets of immune responses against cancer. A proteomic mapping of 
in vivo targets for antibodies in lungs, and solid tumors in experi-
mental animals defi ne aminopeptidase-P and annexin A1 as targets 
of anticancer immune responses [ 155 ]. Informatic methods have 
also been used for classifi cation of tumors into subtypes, which 
supports decision making for the selection of therapeutic 
approaches; however, such applications in cancer immunology are 
yet to come [ 156 ]. 

  Vaccine against tumors:  Reliable predictions of immunogenic T cell 
epitope peptides are crucial for rational vaccine design and repre-
sent a key problem in immunoinformatics. Computational 
approaches have been developed to facilitate the process of epitope 
detection and show potential applications to the immunotherapeu-
tic treatment of cancer. Epitope-driven vaccine design employs 
these bioinformatics algorithms to identify potential targets of 
 vaccines against cancer [ 157 ]. The development of epitope-based 
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DNA vaccines and their antitumor effects in preclinical research 
against B cell lymphoma have been described [ 158 ]. 

 Most immunotherapeutic approaches work on the induction of 
antitumor CD8 +  T cells, which exhibit cytolytic activity towards 
tumor cells expressing tumor-specifi c or tumor-associated Ags. But 
the immunization strategies that focus solely on CD8 +  T cell immu-
nity might prove to be insuffi cient because they will be unable to 
provide long-term protective immunity [ 159 ]. It has been shown 
that the peptides predicted to bind MHC can elicit a tumor-killing 
cytotoxic T lymphocyte (CTL) response [ 160 ]. Although CTLs 
have been found to be the key player in the generation of antitumor 
therapeutic effects, sometimes they also remain as suboptimal. 
CD4 +  T cells are critical for the generation and maintenance of 
CTL response through providing cytokines or by major pathway, 
i.e., dendritic cell licensing [ 161 ,  162 ]. Class II MHC-bound epit-
opes activate CD4 +  T cells and maintain effective CTL response 
that plays an important role in the antitumor response [ 163 ,  164 ]. 

 CD4 +  T cells determine the functional status of both innate and 
adaptive immune responses; thus, the inclusion of appropriate 
CD4 +  T cell epitopes may be essential for vaccine effi cacy. Idiotypic 
immunoglobulin M (IgM) expressed by B cell lymphoma is a clonal 
marker and a tumor-specifi c antigen. Thus, it can be used as an 
immune target. Specifi c immunogenic epitopes identifi ed from 
these tumor antigens can be used as vaccines to activate an immune 
response against tumor cells [ 165 ]. Concerning to lymphoprolif-
erative malignancies, tetanus toxin fragment C (TTFrC)-fusion vac-
cine design was able to activate anti-Id antibody responses and to 
suppress tumor growth in murine models [ 166 ,  167 ] as well as was 
effective in inducing CD8 +  CTL in several tumor models [ 168 ].  

  The idea to integrate immunoinformatics with systems biology 
approaches is for the better understanding of immune-related dis-
eases at various systems levels. This integration can open the path of 
several translational studies for better clinical practices. The associa-
tion between a disease and genetic variations is one of the most 
important aspects in pharmacogenomics and development of 
 personalized medicine. Figure  2  shows the integration that leads to 
the development of personalized medicine (inspired by  169 ). The 
information about allele frequencies of immune molecules in a 
human population is important as different patient subgroups can 
be identifi ed with different vaccine or drug responses [ 169 ]. For 
example, an SNP (S427T) in the innate immune gene interferon 
regulatory factor 3 (IRF3) has been associated with increased risk 
of human papillomavirus (HPV) persistence and cervical cancer 
[ 170 ]. Genomic variation databases such as HapMap (  http://www.
snp.cshl.org/    ) and dbSNP (  http://www.ncbi.nlm.nih.gov/SNP/    ) 
provide information on individual genotype data. The Allele 
Frequencies Database can be used to search for polymorphic regions 
of various populations on histocompatibility and immunogenetics 
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(  http://www.allelefrequencies.net/    ). This includes polymorphism 
information on HLA, cytokines, and killer-cell immunoglobulin-
like receptors (KIR). Thus, there is a scope for the development of 
optimized vaccines and drugs tailored to  personalized prevention 
and treatment through the integration of systems biology and 
immunoinformatics.

5        Conclusions and Discussions 

 High-throughput experimental techniques are combined with 
immunoinformatics, resulting in explosive growth of immunology. 
This is as similar as the event that has transformed genetics into 
genomics. Immunoinformatics may be placed at the junction point 
between experimental and computational approaches as it reduces 

  Fig. 2    An integration of immunoinformatics and systems biology, leading to the development of a personalized 
medicine, inspired by ref. [ 169 ]       
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time and cost involved in traditional study of immunology. This 
review considers useful online immunological databases, tools, and 
web servers and explores the application of immunoinformatics in 
various scientifi c domains with an emphasis on reverse vaccinology. 

 Earlier approaches have some limitations in handling real data 
(nonlinear data). Machine-learning techniques can deal with non-
linear data. SVM (a statistical learning methodology) is a learning 
technique which supports continuous and categorical variables. 
SVM is better than ANN, as it attains global minimum and is capa-
ble of working with less number of training patterns [ 171 ]. Thus 
both sequence characteristics and computational techniques should 
be integrated to acquire higher prediction accuracy. 

 “Reverse vaccinology” is a revolution in immunology as it uses 
the whole spectrum of antigens. This helps in using pools of vac-
cine candidates which otherwise would be missed (because of poor 
or no in vitro experimental information or facing problem in cul-
turing the specifi c pathogen) [ 171 ]. Recently, the prediction of 
promiscuous peptides (capable of binding to a wide array of MHC 
molecules) is being given much emphasis. Screening of large-scale 
pathogens and mapping of T cell epitopes allow identifi cation of 
prime target of epitope-based T cell vaccine design. 

 Immunoinformatics models simulate the real behavior of 
immune system processes and thus help to get the kinetics of cells 
during immune responses. It is engineered in such a way that it can 
be studied and interpreted easily and can be rebuilt if new experi-
mental data are introduced. These mathematical models remove 
the uncertainty of the systems as they are found to be closed to wet 
lab experiments. It leads to design the path for refi nement and 
model the new experiments. But they cannot be directly compared 
to real biological data as they rely on assumptions only. There is no 
data for extended time spans available to validate the model. This 
limits the accuracy of the results. Currently models are designed in 
such a way that they simulate the biological data only over a fi xed 
time period [ 172 ]. It should have the ability to show the system’s 
changes over an extended time period for immune response in case 
of antigen attack or drug administration. This will reduce the 
necessity of experimental research. 

 Drug response to a host’s immune system can be better stud-
ied through computational models. Effect of drug administration 
can be added to model the immune system to fi nd the drug effi cacy 
[ 172 ]. Immune system/drug response study provides an idea 
about the dose composition, drug dosage duration, age of the 
patient, and other parameters. These modeling capabilities may 
lead to designing a drug, which can treat a disease without any side 
effects. Thus the idea of integrating systems biology with immuno-
informatics can lead to better clinical trials.     
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    Chapter 4   

 Immunoinformatics of the V, C, and G Domains: IMGT ®  
Defi nitive System for IG, TR and IgSF, MH, and MhSF 

           Marie-Paule     Lefranc    

    Abstract 

   By its creation in 1989, IMGT ® , the international ImMunoGeneTics information system ®  (  http://www.imgt.
org    , CNRS and Université Montpellier 2), marked the advent of immunoinformatics, which emerged at the 
interface between immunogenetics and bioinformatics. IMGT ®  is the global reference in immunogenetics and 
immunoinformatics. The accuracy and the consistency of the IMGT ®  data are based on the IMGT Scientifi c 
chart rules generated from the IMGT-ONTOLOGY axioms and concepts, which comprise IMGT standard-
ized labels (DESCRIPTION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT unique 
numbering, and IMGT Collier de Perles (NUMEROTATION). The IMGT ®  standards have bridged the gap 
between genes, sequences, and three-dimensional (3D) structures for the receptors, chains, and domains. 
Started specifi cally for the immunoglobulins (IG) or antibodies and T cell receptors (TR), the IMGT-
ONTOLOGY concepts have been extended to conventional genes of the immunoglobulin superfamily (IgSF) 
and major histocompatibility (MH) superfamily (MhSF), members of which are defi ned by the presence of at 
least one variable (V) or constant (C) domain, or two groove (G) domains, respectively. In this chapter, we 
review the IMGT ®  defi nitive system for the V, C, and G domains, based on the IMGT-ONTOLOGY concepts 
of IMGT unique numbering and IMGT Collier de Perles.  

  Key words     IMGT  ,   Immunoinformatics  ,   Immunogenetics  ,   IMGT-ONTOLOGY  ,   IMGT Collier de 
Perles  ,   IMGT unique numbering  ,   Immunoglobulin  ,   Antibody  ,   T cell receptor  ,   Major histocompatibility  

1      Introduction 

 IMGT ® , the international ImMunoGeneTics information 
system ®  (  http://www.imgt.org    ) [ 1 ], was created in 1989 by Marie-
Paule Lefranc at Montpellier, France (CNRS and Université 
Montpellier 2). The founding of IMGT ®  marked the advent of 
immunoinformatics, a new science, which emerged at the inter-
face between immunogenetics and bioinformatics. For the fi rst 
time, immunoglobulin (IG) or antibody and T cell receptor (TR) 
variable (V), diversity (D), joining (J) and constant (C) genes were 
offi cially recognized as “genes” as well as the conventional genes. 
This major breakthrough allowed genes and data of the complex 
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and highly diversifi ed adaptive immune responses to be managed 
in genomic databases and tools. 

 The adaptive immune response was acquired by jawed 
vertebrates (or  gnathostomata ) more than 450 million years ago 
and is found in all extant jawed vertebrate species from fi shes to 
humans. It is characterized by a remarkable immune specifi city 
and memory, which are properties of the B and T cells owing to 
an extreme diversity of their antigen receptors. The specifi c 
antigen receptors comprise the immunoglobulins (IG) or anti-
bodies of the B cells and plasmocytes, and the T cell receptors 
(TR) [ 2 – 5 ]. The IG recognize antigens in their native (unprocessed) 
form, whereas the TR recognize processed antigens which are 
presented as peptides by the highly polymorphic major histo-
compatibility (MH, in humans HLA for human leucocyte 
antigens) proteins. 

 The potential antigen receptor repertoire of each individual is 
estimated to comprise about 2 × 10 12  different IG and TR, and the 
limiting factor is only the number of B and T cells that an organism 
is genetically programmed to produce [ 2 ,  3 ]. This huge diversity 
results from the complex molecular synthesis of the IG and TR 
chains    (Fig.  1 ) and more particularly of their variable domains 
(V-DOMAIN) which, at their N-terminal end, recognize and bind 
the antigens [ 2 ,  3 ].

   The IG and TR synthesis includes several unique mechanisms 
that occur at the DNA level: combinatorial rearrangements of the 
V, D, and J genes that code the V-DOMAIN (the V-(D)-J being 
spliced to the C gene that encodes the C-REGION in the tran-
script (Fig.  1 )), exonuclease trimming at the ends of the V, D, and 
J genes, and random addition of nucleotides by the terminal deoxy-
nucleotidyl transferase (TdT) that creates the junctional N-diversity 
regions, and later during B cell differentiation, for the IG, somatic 
hypermutations, and class or subclass switch [ 2 ,  3 ]. 

 IMGT ®  manages the diversity and complexity of the IG and 
TR and the polymorphism of the MH of humans and other ver-
tebrates. IMGT ®  is also specialized in the other proteins of the 
immunoglobulin superfamily (IgSF) and MH superfamily 
(MhSF) and related proteins of the immune system (RPI) of 
vertebrates and invertebrates. IMGT ®  provides a common 
access to standardized information from genes, sequences, 
genetics, two-dimensional (2D) and three-dimensional (3D) 
structures. It is a high-quality integrated knowledge resource in 
immunogenetics for exploring immune functional genomics. 
IMGT ®  (Fig.  2 ) comprises 7 databases (for sequences, genes 
and 3D structures) [ 6 – 11 ], 17 online tools [ 12 – 27 ], and more 
than 15,000 pages of Web resources (e.g., IMGT Scientifi c 
chart, IMGT Repertoire, IMGT Education > Aide-mémoire 
[ 28 ], The IMGT Immunoinformatics page) [ 1 ].
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   IMGT ®  is the global reference in immunogenetics and 
immunoinformatics [ 29 – 44 ]. Its standards have been endorsed 
by the World Health Organization–International Union of 
Immunological Societies (WHO-IUIS) Nomenclature 
Committee since 1995 (fi rst IMGT ®  online access at the 9th 
International Congress of Immunology, San Francisco, USA) 
[ 45 ,  46 ] and the WHO International Nonproprietary Name 
(INN) Programme [ 47 ,  48 ]. The accuracy and the consistency 
of the IMGT ®  data are based on IMGT-ONTOLOGY [ 49 – 51 ], 
the fi rst, and so far, unique ontology for immunogenetics and 
immunoinformatics [ 49 – 68 ]. IMGT- ONTOLOGY manages the 
immunogenetics knowledge through diverse facets that rely on 
seven axioms: IDENTIFICATION, DESCRIPTION, 
CLASSIFICATION, NUMEROTATION, LOCALIZATION, 
ORIENTATION, and OBTENTION [ 50 ,  51 ,  55 ]. The con-
cepts generated from these axioms led to the elaboration of the 
IMGT ®  standards that constitute the IMGT Scientifi c chart, 

  Fig. 1    Synthesis of an IG or antibody in humans. A human being has ~156 functional IG genes in his/her 
genome and potentially synthesizes 10 12  different IG or antibody proteins [ 2 ] and ~185 functional TR genes 
and potentially synthesize 10 12  different TR proteins [ 3 ]. The main steps of the IG synthesis, shown as example 
of antigen receptor synthesis, are indicated with numbers:  1 . DNA rearrangements.  2 . Transcription.  3 . 
Translation. The ten major molecular entities (V-gene, D-gene, J-gene, C-gene, V-D-J-gene, V-J-gene, L-V-D- 
J-C-sequence, L-V-J-C-sequence, V-D-J-C-sequence, V-J-C-sequence) are shown with standardized key-
words and concepts of identifi cation ( see   Note 1 ). Genomic DNA (“gDNA”), messenger RNA (“mRNA”) (or 
in vitro complementary DNA (cDNA) in databases) are types of molecules (“MoleculeType”) that are involved 
in the IG or TR synthesis, “germline” and “rearranged” are types of confi guration (“Confi gurationType”) (the 
confi guration of C-gene is “undefi ned” (not shown)) ( see   Note 1 ) (IMGT ®    http://www.imgt.org    , IMGT Education 
> Tutorials > Immunoglobulins and B cells; ibid > T cell receptors and T cells)       

 

IMGT® Defi nitive System for V, C and G Domains

http://www.imgt.org/


62

e.g., IMGT ®  standardized keywords (IDENTIFICATION) [ 56 ] 
( see   Note 1 ), IMGT ®  standardized labels (DESCRIPTION) 
[ 57 ] ( see   Note 2 ), standardized gene and allele nomenclature 
(CLASSIFICATION) [ 58 ] ( see   Note 3 ), and IMGT unique 
numbering [ 59 – 64 ] and standardized graphical 2D representa-
tion or IMGT Colliers de Perles [ 65 – 68 ] (NUMEROTATION). 

 The IMGT-ONTOLOGY CLASSIFICATION axiom was the 
trigger of immunoinformatics’ birth. Indeed the IMGT ®  concepts 

  Fig. 2    IMGT ® , the international ImMunoGenetics information system ® ,   http://www.imgt.org     [ 1 ]. Databases are 
shown as  cylinders  and tools as  rectangles . The IMGT Repertoire and other Web resources (>15,000 pages) 
are not shown       
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of classifi cation allowed, for the fi rst time, to classify the antigen 
receptor genes (IG and TR) for any locus (e.g., immunoglobulin 
heavy (IGH), T cell receptor alpha (TRA) ( see   Note 4 )), for any 
gene confi guration (germline, undefi ned, or rearranged) ( see   Note 1 ) 
(Fig.  1 ) and for any species (from fi shes to humans). Since the cre-
ation of IMGT ®  in 1989, at the 10th Human Genome Mapping 
Workshop (HGM10) ( see   Note 5 ), the standardized classifi cation 
and nomenclature of the IG and TR of human and other verte-
brate species have been under the responsibility of the IMGT 
Nomenclature Committee (IMGT-NC). The IMGT ®  IG and TR 
gene names [ 2 – 5 ] were approved by the Human Genome 
Organisation (HUGO) Nomenclature Committee (HGNC) in 
1999 [ 69 ,  70 ] and were endorsed by the WHO-IUIS Nomenclature 
Subcommittee for IG and TR [ 45 ,  46 ]. 

 The IMGT ®  IG and TR gene names are the offi cial interna-
tional reference and, as such, have been entered in IMGT/
GENE-DB [ 7 ], the IMGT ®  gene database, in the Genome 
Database (GDB) [ 71 ], in LocusLink at the National Center for 
Biotechnology Information (NCBI) USA [ 72 ], in Entrez Gene 
(NCBI) when this database (now designated as “Gene”) super-
seded LocusLink [ 73 ], in NCBI MapViewer, in Ensembl at 
the European Bioinformatics Institute (EBI) [ 74 ], and in the 
Vertebrate Genome Annotation (Vega) Browser [ 75 ] at the 
Wellcome Trust Sanger Institute (UK). HGNC, Gene (NCBI), 
Ensembl, and Vega have direct links to IMGT/GENE-DB [ 7 ]. 
IMGT ®  human IG and TR genes were also integrated in IMGT- 
ONTOLOGY on the National Center for Biomedical Ontology 
(NCBO) BioPortal and, on the same site, in the HUGO ontology 
and in the National Cancer Institute (NCI) Metathesaurus. Amino 
acid sequences of human IG and TR constant genes (e.g.,  Homo 
sapiens  IGHM, IGHG1, IGHG2) were provided to UniProt in 
2008. In June 2013, IMGT/GENE-DB [ 7 ] contains 3,107 
IMGT ®  genes and 4,722 IMGT ®  alleles from 17 species (694 
genes and 1,420 alleles for  Homo sapiens  and 868 genes and 1,318 
alleles for  Mus musculus ). Since 2007, IMGT ®  gene and allele 
names have been used for the description of the therapeutic 
 monoclonal antibodies (mAb, INN suffi x -mab) and of the fusion 
proteins for immunological applications (FPIA, INN suffi x -cept) 
of the WHO-INN programme [ 47 ,  48 ], with access from IMGT/
mAb-DB [ 11 ] ( see   Note 6 ). 

 The IMGT-ONTOLOGY NUMEROTATION axiom is 
acknowledged as the “IMGT ®  Rosetta stone” that has bridged the 
biological and computational spheres in bioinformatics [ 37 ]. The 
IMGT ®  concepts of numerotation comprise the IMGT unique 
numbering [ 59 – 64 ] and the IMGT Collier de Perles [ 65 – 68 ]. 
Developed for and by the “domain,” these concepts integrate 
sequences, structures, and interactions into a standardized knowledge 
for a modular and highly diverse functional genomics. The IMGT 
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unique numbering has been defi ned for the variable V domain 
(V-DOMAIN of the IG and TR, and V-LIKE-DOMAIN of IgSF 
other than IG and TR) [ 59 – 61 ], the constant C domain 
(C-DOMAIN of the IG and TR, and C-LIKE-DOMAIN of IgSF 
other than IG and TR) [ 62 ] ,  and the groove G domain 
(G-DOMAIN of the MH, and G-LIKE-DOMAIN of MhSF other 
than MH) [ 63 ]. Thus, the IMGT unique numbering and IMGT 
Collier de Perles provide a defi nitive and universal system for the V, 
C, and G domain of IG, TR, MH, IgSF, and MhSF [ 64 ,  68 ]. 

 This chapter reviews the V, C, and G domain IMGT ®  defi ni-
tive system and the IMGT ®  tools and databases which are widely 
used for standardized domain analysis and study: IMGT/
Collier-de- Perles tool [ 26 ] for their 2D representation, IMGT/
DomainGapAlign [ 9 ,  24 ,  25 ] for their amino acid sequence 
analysis, IMGT/V-QUEST [ 12 – 17 ] for the IG and TR 
V-DOMAIN nucleotide sequence analysis with results of the 
integrated IMGT/JunctionAnalysis [ 18 ,  19 ] and IMGT/
Automat [ 20 ,  21 ], and its high-throughput version IMGT/
HighV-QUEST for Next- Generation Sequencing (NGS) [ 22 , 
 23 ], IMGT/3Dstructure-DB for their 3D structures [ 8 – 10 ] 
and its extension, IMGT/2Dstructure-DB (for antibodies and 
other proteins for which the 3D structure is not available). 
IMGT ®  tools and databases run against IMGT reference direc-
tories built from sequences annotated in IMGT/LIGM-DB, 
the IMGT ®  nucleotide database [ 6 ] (170,685 sequences from 
335 species in June 2013) and from IMGT/GENE-DB [ 7 ]. 
The V, C, and G domain IMGT ®  defi nitive system allows stan-
dardized domain sequence, structure, and contact analysis. This 
is of major interest in: antibody engineering and humanization 
[ 32 ,  39 – 41 ,  43 ,  76 – 78 ], IG repertoire in normal and patho-
logical situations [ 79 – 82 ], IG allotypes and immunogenicity 
[ 83 – 85 ], TR clonal diversity and expression [ 23 ,  86 ], NGS rep-
ertoire [ 22 ,  23 ], TR/peptide-MH (TR/pMH) interactions 
[ 87 ,  88 ], computational analysis of MH helices [ 89 ,  90 ], and 
evolution studies of the IgSF [ 91 – 95 ] and MhSF [ 96 ,  97 ].  

2      V Domain IMGT ®  Defi nitive System 

 In the IMGT ®  defi nitive system, the V domain includes the 
V-DOMAIN of the IG (Fig.  3 ) [ 2 ] ( see   Note 7 ) and of the TR 
(Fig.  4 ) [ 3 ] ( see   Note 8 ), which correspond to the V-J-REGION 
or V-D-J-REGION encoded by V-(D)-J rearrangements [ 2 ,  3 ] 
(Fig.  1 ), and the V-LIKE-DOMAIN of the IgSF other than IG 
and TR [ 91 – 95 ].

    The V domain description of any receptor, any chain and any 
species is based on the IMGT unique numbering for V domain 
(V-DOMAIN and V-LIKE-DOMAIN) [ 59 – 61 ,  64 ]. 
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 A V domain (Fig.  5 ) comprises about 100 amino acids and is 
made of nine antiparallel beta strands (A, B, C, C′, C″, D, E, F, and 
G) linked by beta turns (AB, CC′, C″D, DE, and EF) and three 
loops (BC, C′C″, and FG), forming a sandwich of two sheets 
[ABED] [GFCC′C″] [ 59 – 61 ,  64 ].

   The sheets are closely packed against each other through 
hydrophobic interactions giving a hydrophobic core, and joined 
together by a disulfi de bridge between a fi rst highly conserved cys-
teine (1st-CYS) ( see   Note 9 ) in the B strand (in the fi rst sheet) and 
a second equally conserved cysteine (2nd-CYS) in the F strand (in 
the second sheet) [ 59 – 61 ,  64 ]. 

  Fig. 3    An immunoglobulin (IG) or antibody. In vivo, an IG or antibody is anchored in the membrane of a B cell 
as part of a signaling B cell receptor (BcR = membrane IG + CD79) or, as shown here, is secreted [ 2 ]. An IG is 
made of two identical heavy (H, for IG-HEAVY) chains and two identical light (L, for IG-LIGHT) chains [ 2 ]. An IG 
comprises 12 domains (for example, IgG1, shown here) or 14 domains (IgM or IgE). The V-DOMAIN of each 
chain ( green  online) and the C-DOMAIN, one for each L chain and three for each H chain ( blue  online) are 
highlighted. The light chain (here, L-KAPPA) is made of a variable domain (V-DOMAIN, here, V-KAPPA) at the 
N-terminal end and a constant domain (C-DOMAIN, here, C-KAPPA) at the C-terminal end. The heavy chain 
(here, H-GAMMA-1) is made of a VH (at the N-terminal end) and of three CH (four for H-MU or H-EPSILON,  see  
 Note 7 ) [ 2 ]. The structure is that of the antibody b12, an IgG1-kappa, and so far the only complete human IG 
crystallized (1hzh from IMGT/3Dstructure-DB (  http://www.imgt.org    ))       
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 The V domain strands and loops and their delimitations and 
lengths, based on the IMGT unique numbering for V domain 
[ 59 – 61 ,  64 ], are shown in Table  1 .

   In the IG and TR V-DOMAIN, the three hypervariable loops 
BC, C′C″, and FG involved in the ligand recognition (antigen for 
IG and pMH for TR) are designated complementarity determin-
ing regions (CDR-IMGT) ( see   Note 10 ), whereas the strands 
form the framework region (FR-IMGT), which includes FR1-

  Fig. 4    A T cell receptor (TR)/peptide-major histocompatibility 1 (pMH1) complex. A TR (here, TR alpha_beta) is 
shown (on  top , upside down) in complex with a MH (here, MH1) presenting a peptide in its groove.  In vivo , a 
TR is anchored in the membrane of a T cell as part of the signaling T cell receptor (TcR = TR + CD3) A TR is 
made of two chains, each comprising a variable domain (V-DOMAIN) at the N-terminal end and a constant 
domain (C-DOMAIN) at the C-terminal end [ 3 ]. The V-DOMAIN ( green  online) and the C-DOMAIN ( blue  online) 
of each chain are highlighted. The domains are V-ALPHA and C-ALPHA for the TR-ALPHA chain, V-BETA and 
C-BETA for the TR-BETA chain ( see   Note 8 ) [ 3 ]. A MH1 is made of the I-ALPHA chain with two G-DOMAIN 
(G-ALPHA1 and G-ALPHA2) and a C-LIKE- DOMAIN (C-LIKE), non-covalently associated with the B2M (a C-LIKE-
DOMAIN) [ 63 ]. The two G-DOMAIN ( yellow  online) and the C-LIKE ( blue  online) are highlighted. The TR/pMH1 
complex structure is 3qfj from IMGT/3Dstructure-DB (  http://www.imgt.org    )       
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IMGT, FR2- IMGT, FR3-IMGT, and FR4-IMGT (Table  1 ). For 
a V domain, the BC loop (or CDR1-IMGT in a V-DOMAIN) 
encompasses positions 27–38, the C′C″ loop (or CDR2-IMGT 
in a V-DOMAIN) positions 56–65, and the FG loop (or CDR3-
IMGT) positions 105–117. In a V-DOMAIN, the CDR3-IMGT 
encompasses the V-(D)-J junction that results from a V-J or 
V-D-J rearrangement [ 2 ,  3 ] and is more variable in sequence and 
length than the CDR1- IMGT and CDR2-IMGT that are encoded 
by the V-REGION only. For CDR3-IMGT of length >13 AA, 
additional IMGT positions are added at the top of the loop 
between 111 and 112 ( see   Note 11 ). 

 The loop and strand lengths are visualized in the IMGT 
Colliers de Perles [ 65 – 68 ] which can be displayed on one layer 
(closer to the amino acid sequence) or on two layers (closer to the 
3D structure) (Fig.  5 ). The lengths of the three loops, BC, C′C″, 
and FG (or CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT for a 
V-DOMAIN) are delimited by the IMGT anchors, which are 
shown in square in the IMGT Colliers de Perles ( see   Note 12 ). In 
biological data, the lengths of the loops and strands are given by 
the number of occupied positions (unoccupied positions or “IMGT 
gaps” are represented with hatches in the IMGT Collier de Perles 
(Fig.  5 ) or by dots in alignments). The CDR-IMGT lengths are 
given in number of amino acids (or codons), into brackets and 
separated by dots: for example [9.6.9] means that the BC, C′C″, 
and FG loops (or CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT 
for a V-DOMAIN) have a length of 9, 6, and 9 amino acids (or 
codons), respectively. Similarly [25.17.38.11] means that the FR1- 
IMGT, FR2-IMGT, FR3-IMGT, and FR4-IMGT have a length of 
25, 17, 38, and 11 amino acids (or codons), respectively. 

 A V domain has fi ve characteristic amino acids at given posi-
tions (positions with bold (online red) letters in the IMGT Colliers 
de Perles). Four of them are highly conserved and hydrophobic 
[ 28 ] ( see   Note 13 ) and are common to the C domain: 23 (1st- 
CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), and 104 
(2nd-CYS) ( see   Note 9 ). These amino acids contribute to the two 
major features shared by the V and C domain: the disulfi de bridge 
(between the two cysteines 23 and 104) and the internal hydro-
phobic core of the domain (with the side chains of tryptophan 
W41 and amino acid 89). The fi fth position, 118, is an anchor of 
the FG loop ( see   Note 12 ). It is occupied, in the V domains of 
IgSF other than IG or TR, by amino acids with different physico-
chemical properties [ 28 ]. In contrast, in IG and TR V-DOMAIN, 
that position 118 is occupied by remarkably conserved amino acids 
which consist in a phenylalanine or a tryptophan encoded by the 
J-REGION and therefore designated J-TRP or J-PHE 118 ( see  
 Note 9 ). The bulky aromatic side chains of J-TRP and J-PHE are 
internally orientated and structurally contribute to the V-DOMAIN 
hydrophobic core [ 61 ]. 
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  Fig. 5    Variable (V) domain. An IG VH (V-DOMAIN) is shown as example. ( a ) 3D structure ribbon representation 
with the IMGT strand and loop delimitations [ 61 ]. ( b ) IMGT Collier de Perles on two layers with hydrogen bonds. 
The IMGT Collier de Perles on two layers show, in the forefront, the GFCC′C″ strands (forming the sheet located 
at the interface VH/VL of the IG) and, in the back, the ABED strands. The BC, C′C″, and FG loops (for a V-DOMAIN, 
CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT, respectively) are represented in color online (for a VH,  red ,  orange , 
and  purple ). The IMGT Collier de Perles with hydrogen bonds ( green lines  online, here only shown for the 
GFCC′C″ sheet) is generated by the IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB, from the 
experimental 3D structure data [ 8 – 10 ]. ( c ) IMGT Collier de Perles on two layers generated from IMGT/
DomainGapAlign [ 9 ,  24 ,  25 ].  Pink circles  (online) indicate amino acid changes compared to the closest genes 
and alleles from the IMGT reference directory. ( d ) IMGT Collier de Perles on one layer. The CDR-IMGT lengths are 
[8.8.20] and the FR-IMGT are [25.17.38.11]. Amino acids are shown in the one-letter abbreviation ( see   Note 9 ). 
All proline (P) are shown online in  yellow . IMGT anchors are in square ( see   Note 12 ).  Hatched circles  are IMGT
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Fig. 5 (continued) gaps according to the IMGT unique numbering for V domain [ 61 ,  64 ]. Positions with  bold  
(online  red )  letters  indicate the four conserved positions that are common to a V domain and to a C domain: 23 
(1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [ 59 – 62 ,  64 ], and the fi fth conserved position 
that is specifi c to the IG and TR V-DOMAIN: 118 (J-TRP or J-PHE) [ 61 ,  64 ] (Table  1 ). In an IG or TR V-DOMAIN, the 
hydrophobic amino acids (hydropathy index with positive value: I, V, L, F, C, M, A) and tryptophan (W) [ 28 ] found 
at a given position in more than 50 % of sequences are shown (online with a  blue background color ). The FR4-
IMGT is at least composed of nine or ten amino acids beyond the phenylalanine F (J-PHE 118) or tryptophan W 
(J-TRP 118) of the motif F/W-G-X-G that characterizes the J-REGION. Arrows indicate the direction of the beta 
strands and their designations in 3D structures. The identifi er of the chain to which the VH domain belongs is 
1n0x_H (from the  Homo sapiens  b12 Fab) in IMGT/3Dstructure-DB (  http://www.imgt.org    ). The 3D ribbon repre-
sentation was obtained using PyMOL (  http://www.pymol.org    ) and “IMGT numbering comparison” of 1n0x_H 
(VH) from IMGT/3Dstructure-DB (  http://www.imgt.org    )       

       Table 1  
  V domain strands and loops, IMGT positions and lengths, based on the IMGT unique numbering for V 
domain (V-DOMAIN and V-LIKE-DOMAIN) [ 59 – 61 ,  64 ]   

 V domain strands 
and loops a  

 IMGT 
positions  Lengths b  

 Characteristic IMGT 
Residue@ Position c  

 V-DOMAIN FR-IMGT 
and CDR-IMGT 

 A-STRAND  1–15  15 (14 if gap at 10)  FR1-IMGT 
 B-STRAND  16–26  11  1st-CYS 23 

 BC-LOOP  27–38  12 (or less)  CDR1-IMGT 

 C-STRAND  39–46  8  CONSERVED-TRP 41  FR2-IMGT 
 C′-STRAND  47–55  9 

 C′C″-LOOP  56–65  10 (or less)  CDR2-IMGT 

 C″-STRAND  66–74  9 (or 8 if gap at 73)  FR3-IMGT 
 D-STRAND  75–84  10 (or 8 if gaps at 

81, 82) 
 E-STRAND  85–96  12  hydrophobic 89 
 F-STRAND  97–104  8  2nd-CYS 104 

 FG-LOOP  105–117  13 (or less, or 
more) 

 CDR3-IMGT 

 G-STRAND  118–128  11 (or 10)  V-DOMAIN J-PHE 118 
or J-TRP 118 d  

 FR4-IMGT 

   a IMGT ®  labels (concepts of description) are written in capital letters (no plural) [ 57 ] ( see   Note 2 ). Beta turns (AB, CC′, 
C″D, DE, or EF) are individualized only if they have additional AA compared to the standard description. If not, they 
are included in the strands 
  b In number of amino acids (or codons) 
  c IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a 
given position in a domain, based on the IMGT unique numbering [ 64 ] 
  d In the IG and TR V-DOMAIN, the G-STRAND (or FR4-IMGT) is the C-terminal part of the J-REGION, with 
J-PHE or J-TRP 118 and the canonical motif F/W-G-X-G at positions 118–121 [ 2 ,  3 ]. The JUNCTION refers to the 
CDR3-IMGT plus the two anchors 2nd-CYS 104 and J-PHE or J-TRP 118 [ 60 ,  61 ]. The JUNCTION (positions 
104–118) is therefore two amino acids longer than the corresponding CDR3-IMGT (positions 105–117) [ 2 ,  3 ]  
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 A last criterion used in the IMGT ®  defi nitive system for the 
characterization of a V domain is its delimitation taking into 
account the exon delimitations, if appropriate ( see   Note 14 ). This 
genomic approach integrates the strands A and G, in contrast to 
structural alignments that usually lack these strands due to their 
poor structural conservation, and bridges the gap between genomic 
data (exon) and 3D structure (domain).  

3    C Domain IMGT ®  Defi nitive System 

 In the IMGT ®  defi nitive system, the C domain includes the 
C-DOMAIN of the IG (Fig.  3 ) [ 2 ] ( see   Note 7 ) and of the TR 
(Fig.  4 ) [ 3 ] ( see   Note 8 ) and the C-LIKE-DOMAIN of the 
IgSF other than IG and TR [ 91 – 95 ]. The C domain description 
of any receptor, any chain and any species is based on the IMGT 
unique numbering for C domain (C-DOMAIN and C-LIKE-
DOMAIN) [ 62 ,  64 ]. 

 A C domain (Fig.  6 ) comprises about 90–100 amino acids and 
is made of seven antiparallel beta strands (A, B, C, D, E, F, and G) 
linked by beta turns (AB, DE, and EF), a transversal strand (CD) 
and loops (BC and FG), and forming a sandwich of two sheets 
[ABED] [GFC] [ 62 ,  64 ].

   A C domain has a topology and a three-dimensional structure 
similar to that of a V domain but without the C′ and C″ strands 
and the C′C″ loop [ 62 ]. 

 The C domain strands, turns, and loops and their delimitations 
and lengths, based on the IMGT unique numbering for C domain 
[ 62 ,  64 ], are shown in Table  2 .

   The lengths of the strands and loops are visualized in the 
IMGT Colliers de Perles [ 66 – 68 ], on one layer and two layers 
(Fig.  6 ). The loops BC and FG and the transversal strand CD are 
delimited by the IMGT anchors ( see   Note 12 ). 

 In the IMGT ®  defi nitive system, the C domains (C-DOMAIN 
and C-LIKE-DOMAIN) are delimited taking into account the 
exon delimitation, if appropriate ( see   Note 14 ). As for the V 
domain, this genomic approach integrates the strands A and G 
which are absent of structural alignments.  

Fig. 6 (continued) positions that are common to a V domain and to a C domain: 23 (1st-CYS), 41 (CONSERVED-
TRP), 89 (hydrophobic), 104 (2nd-CYS) [ 59 – 62 ,  64 ] (Table  2 ) and position 118 which, as the V domain in gen-
eral but in contrast to the V-DOMAIN, is not conserved in the C domain. The identifi er of the chain to which the 
CH domain belongs is 1n0x_H (of the  Homo sapiens  b12 Fab) from IMGT/3Dstructure-DB (  http://www.imgt.
org    ). The 3D ribbon representation was obtained using PyMOL and “IMGT numbering comparison” of 1n0x_H 
(CH1) from IMGT/3Dstructure-DB (  http://www.imgt.org    )       
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  Fig. 6    Constant (C) domain. An IG CH (C-DOMAIN) is shown as example. ( a ) 3D structure ribbon representation 
with the IMGT strand and loop delimitations [ 62 ]. ( b ) IMGT Collier de Perles on two layers with hydrogen bonds. 
The IMGT Colliers de Perles on two layers show, in the forefront, the GFC strands and, in the back, the ABED 
strands (located at the interface CH1/CL of the IG), linked by the CD transversal strand. The IMGT Collier de 
Perles with hydrogen bonds ( green lines  online, here only shown for the GFC sheet) was generated by the 
IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB, from the experimental 3D structure data [ 8 –
 10 ]. ( c ) IMGT Collier de Perles on two layers from IMGT/DomainGapAlign [ 9 ,  24 ,  25 ]. ( d ) IMGT Colliers de Perles 
on one layer. Amino acids are shown in the one-letter abbreviation ( see   Note 9 ). All proline (P) are shown online 
in  yellow . IMGT anchors are in  square  ( see   Note 12 ).  Hatched circles  are IMGT gaps according to the IMGT 
unique numbering for C domain [ 62 ,  64 ]. Positions with  bold  (online  red )  letters  indicate the four conserved 
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     Table 2  
  C domain strands, turns, and loops, IMGT positions and lengths, based on the IMGT unique 
numbering for C domain (C-DOMAIN and C-LIKE-DOMAIN) [ 62 ,  64 ]   

 C domain strands, turns, 
and loops a   IMGT positions  Lengths b  

 Characteristic IMGT 
Residue@Position c  

 A-STRAND  1–15  15 (14 if gap at 10) 

 AB-TURN  15.1–15.3  0–3 

 B-STRAND  16–26  11  1st-CYS 23 

 BC-LOOP  27–31  10 (or less) 

 34–38 

 C-STRAND  39–45  7  CONSERVED-TRP 41 

 CD-STRAND  45.1–45.9  0-9 

 D-STRAND  77–84  8 (or 7 if gap at 82) 

 DE-TURN  84.1–84.7  0–14 

 85.1–85.7 

 E-STRAND  85–96  12  Hydrophobic 89 

 EF-TURN  96.1–96.2  0-2 

 F-STRAND  97–104  8  2nd-CYS 104 

 FG-LOOP  105–117  13 (or less, or more) 

 G-STRAND  118–128  11 (or less) 

   a IMGT ®  labels (concepts of description) are written in capital letters (no plural) [ 57 ] ( see   Note 2 ) 
  b In number of amino acids (or codons) 
  c IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a 
given position in a domain, based on the IMGT unique numbering [ 64 ]  

4      G Domain IMGT ®  Defi nitive System 

 In the IMGT ®  defi nitive system, the G domain includes the 
G-DOMAIN of the MH (Fig.  4 ) ( see   Note 15 ) [ 63 ,  64 ] and the 
G-LIKE-DOMAIN of the MhSF other than MH (or RP1- 
MH1Like) ( see   Note 16 ) [ 96 ,  97 ]. The G domain description of 
any receptor, any chain and any species is based on the IMGT 
unique numbering for G domain (G-DOMAIN and G-LIKE- 
DOMAIN) [ 63 ,  64 ]. 

 A G domain (Fig.  7 ) comprises about 90 AA and is made of 
four antiparallel beta strands (A, B, C, and D) linked by turns 
(AB, BC, and CD), and of a helix; the helix sits on the beta strands, 
its axis forming an angle of about 40° with the strands [ 87 ,  88 ].

   Two G domains are needed to form the MhSF groove made of 
a “fl oor” and two “walls” [ 63 ,  64 ]. Each G domain contributes by 
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  Fig. 7    Groove (G) domain. ( a ) 3D structure ribbon representation of the two G domains. The two domains form a 
groove with a “fl oor” (four strands from each domain) and two “walls” (one helix from each domain) [ 63 ]. The G 
domains characterize the proteins of the MhSF which comprises the MH (MH1 and MH2) and the RPI- MH1Like 
(MhSF other than MH) [ 63 ]. The two G-DOMAIN of a MH1 are shown as an example. The view is from above the 
cleft with the G-ALPHA1 (on top) and G-ALPHA2 (on bottom). ( b ) IMGT Colliers de Perles of the two G-DOMAIN of 
a MH1. G-ALPHA1 (on  top ) and G-ALPHA2 (on  bottom ) belong to the I-ALPHA chain [ 63 ]. ( b ) IMGT Colliers de 
Perles of the two G-DOMAIN of a MH2. G-ALPHA (on  top ) and G-BETA (on  bottom ) to the II-ALPHA chain and to the 
II-BETA chain, respectively [ 63 ]. ( c ) IMGT Colliers de Perles of the two G-LIKE-DOMAIN of a RPI-MH1Like. 
G-ALPHA1-LIKE (on  top ) and G-ALPHA2-LIKE (on  bottom ) belong to the I-ALPHA-LIKE chain. Helices are moved 
outside of the fl oor to make it visible. Amino acids are shown in the one-letter abbreviation ( see   Note 9 ). All proline 
(P) are shown online in  yellow. Hatched circles  are IMGT gaps according to the IMGT unique numbering for G 
domain [ 63 ,  64 ]. Domain numbers are shown between  brackets . The 3D ribbon representation was obtained 
using PyMOL and “IMGT numbering comparison” of 1akj_A (G-ALPHA1 and G-ALPHA2) in IMGT/3Dstructure-DB 
(  http://www.imgt.org    ). IMGT Colliers de Perles amino acid sequences are from 1akj_A for MH1 ( Homo sapiens  
HLA-A*0201), 1fyt_A and 1fyt_B for MH2 ( Homo sapiens  HLA-DRA*0101 and HLA-DRB1*0101, respectively), and 
1cd1_C for RPI-MH1Like ( Mus musculus  CD1D1). The IMGT Colliers de Perles were generated using the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB (  http://www.imgt.org    ) [ 8 – 10 ]       
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its four strands and turns to half of the groove fl oor and by its helix 
to one wall of the groove [ 63 ,  64 ,  87 ,  88 ]. The MH groove in 
which the peptide binds is made of two G-DOMAIN belonging to 
a single chain or to two chains, depending on the MH group, 
MH1 or MH2, respectively ( see   Note 15 ). In the MH1, the groove 
is made of two G-DOMAIN (G-ALPHA1 and G-ALPHA2) which 
belong to the same chain I-ALPHA (Fig.  7b ), whereas in the 
MH2, the groove is made of two G-DOMAIN (G-ALPHA and 
G-BETA) which belong to two different chains, II-ALPHA and 
II-BETA, respectively (Fig.  7c ). For the RPI-MH1Like ( see   Note 
16 ), the two G-LIKE-DOMAIN also belong, as for the MH1, to 
the same chain (I-ALPHA-LIKE) [ 96 ,  97 ] (Fig.  7d ). 

 The G domain strands, turns, and helix and their delimitations 
and lengths, based on the IMGT unique numbering for G domain 
[ 63 ,  64 ] are shown in Table  3 .

   The strands and helix of each domain are visualized in the IMGT 
Collier de Perles [ 66 – 68 ,  87 ,  88 ] (Fig.  7 ). The views are from above 
the cleft, (with the helices displaced to show the fl oor) and with on 
top and on bottom, respectively, G-ALPHA1 and G-ALPHA2 
(MH1), G-ALPHA and G-BETA (MH2), and G-ALPHA1-LIKE 
and G-ALPHA2-LIKE (RPI-MH1Like). There is no link between 
G-ALPHA and G-BETA because they belong to different chains 
(II-ALPHA and II-BETA) ( see   Note 15 ). Two conserved cysteines, 

    Table 3  
  G domain strands, turns, and helix, IMGT positions and lengths, based on the IMGT unique numbering 
for G domain (G-DOMAIN and G-LIKE-DOMAIN) [ 63 ,  64 ]   

 G domain strands, 
turns, and helix a   IMGT positions  Lengths b  

 Characteristic IMGT Residue@
Position c  and additional positions d  

 A-STRAND  1–14  14  7A, CYS-11 

 AB-TURN  15–17  3 (or 2 or 0) 

 B-STRAND  18–28  11 (or 10 e ) 

 BC-TURN  29–30  2 

 C-STRAND  31–38  8 

 CD-TURN  39–41  3 (or 1 f ) 

 D-STRAND  42–49  8  49.1–49.5 

 HELIX  50–92  43 (or less or more)  54A, 61A, 61B, 72A, CYS-74, 92A 

   a IMGT ®  labels (concepts of description) are written in capital letters (no plural) [ 57 ] ( see   Note 2 ) 
  b In number of AA (or codons) 
  c IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a 
given position in a domain, based on the IMGT unique numbering [ 64 ] 
  d For details on additional positions, see ref.  63  
  e Or 9 in some G-BETA [ 63 ] 
  f Or 0 in some G-ALPHA2-LIKE [ 63 ]  
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CYS-11 (in the A strand) and CYS- 74 (in the helix) (Table  3 ) are 
found in the G-ALPHA2, G-BETA, and G-ALPHA2-LIKE (Fig.  7 ), 
where they form a disulfi de bridge fi xing the helix to the fl oor. 

 In the IMGT ®  defi nitive system, the G domains (G-DOMAIN 
and G-LIKE-DOMAIN) are delimited taking into account the 
exon delimitations, if appropriate (alignment sequence comparison 
with previously identifi ed genes are used when genomic data are 
not yet available as this was recently done for the rainbow trout 
( Oncorhynchus mykiss ) MH1 and MH2 (IMGT ®    http://www.imgt.
org    , IMGT Repertoire (MH) > IMGT Proteins and alleles > Protein 
displays)).  

5    IMGT ®  Tools for V, C, or G Domain Analysis 

  The IMGT/Collier-de-Perles tool [ 26 ], on the IMGT ®  Web site at 
  http://www.imgt.org    , allows the users to draw IMGT Colliers de 
Perles [ 65 – 68 ] starting from their own domain amino acid 
sequences (sequences already with IMGT gaps, using for example 
IMGT/DomainGapAlign (Table  4 )).

   IMGT Collier de Perles can be obtained for V and C domains 
(on one or two layers) and for G domains (with one or the two 
domains of the groove). 

 IMGT/Collier-de-Perles tool online can be customized to dis-
play the IG and TR CDR-IMGT according to the IMGT color 
menu and the amino acids according to their hydropathy or vol-
ume, or to the 11 IMGT physicochemical classes [ 28 ] ( see   Note 
13 ). IMGT color menu for the CDR-IMGT of a V-DOMAIN 
indicates the type of rearrangement V-J or V-D-J [ 2 ,  3 ]. Thus, the 
IMGT color menu for CDR1-IMGT, CDR2-IMGT, and CDR3- 
IMGT is red, orange, and purple for the IG VH ( see   Note 7 ) and 
for the TR V-BETA or V-DELTA ( see   Note 8 ) (encoded by a V-D- 
J-REGION resulting from a V-D-J rearrangement), and blue, 
green, and green-blue for the IG V-KAPPA or V-LAMBDA 
( see   Note 7 ) and for the TR V-ALPHA or V-GAMMA (see  Note 
8 ) (encoded by a V-J-REGION resulting from a V-J rearrange-
ment). Arbitrarily the red, orange, and purple are used for the BC, 
C′C″, and FG loops of the V domain of IgSF other than IG or TR. 

 The IMGT/Collier-de-Perles tool is integrated in IMGT/
DomainGapAlign [ 9 ,  24 ,  25 ] (users start from V, C, or G amino 
acid sequences) and in IMGT/V-QUEST [ 12 – 17 ] (users start 
from IG and TR V-DOMAIN nucleotide sequences) (Table  4 ). 
IMGT Colliers de Perles for V, C, and G domains are provided 
in IMGT/2Dstructure-DB (for amino acid sequences in the 
database) and in IMGT/3Dstructure-DB (on two layers with 
hydrogen bonds for the V or C domains or with the pMH con-
tact sites for the G domains, for 3D structures in the database) 
[ 8 – 10 ] (Table  4 ).  

5.1  IMGT/Collier-de- 
Perles Tool
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  IMGT/DomainGapAlign [ 9 ,  24 ,  25 ] is the IMGT ®  online tool for 
the analysis of amino acid sequences of V, C, and G domains 
(Table  4 ). IMGT/DomainGapAlign analyzes V, C, or G domain 
amino acid sequences ( see   Note 17 ) by comparison with the IMGT 
domain reference directory sets ( see   Note 18 ). IMGT/
DomainGapAlign results include: introduction of “IMGT gaps” in 
the user amino acid sequences; alignments and identifi cation of the 
genes and alleles by comparison with the closest domain(s); delimi-
tation of the V, C, or G domain(s) in the user sequence (Fig.  8 ).

5.2  IMGT/
DomainGapAlign

  Fig. 8    IMGT/DomainGapAlign alignment results. The alignment results are shown for two V domains, VH ( a ) and 
V-BETA ( b ), as examples of V-DOMAIN which belong to different receptors and chains (IG-HEAVY and TR-BETA, 
respectively) ( see   Notes 7  and  8 ). The sequences submitted to IMGT/DomainGapAlign were ungapped amino 
acid sequences ( see   Note 17 ). The nine strands (A, B, C, C′, C″, D, E, F, and G) ( horizontal arrows ), and the three 
loops (BC, C′C″, and FG) are shown according to the IMGT unique numbering for V domain [ 59 – 61 ,  64 ], with 
the  upper line , the V-DOMAIN FR-IMGT and CDR-IMGT delimitations (with start and end positions). The closest 
genes and alleles are identifi ed automatically by IMGT/DomainGapAlign by comparison with the IMGT domain 
reference directory (V and J genes and alleles for a V-DOMAIN) ( see   Note 18 ). The VH sequence (from b12 Fab, 
1n0x_H) is identifi ed as having 79.6 % and 93.8 % identity (results online, above the alignment) with  Homo 
sapiens  IGHV1-3*01 and IGHJ6*03, respectively ( see   Note 3 ). The VH CDR-IMGT lengths are [8.8.20] and the 
FR-IMGT lengths [25.17.35.11] = 91 AA (results online, below the alignment). The V-BETA sequence (from A6 
TR, 3qfj_E) is identifi ed as having 100 % identity with  Homo sapiens  TRBV6-5*01 and TRBJ2-7*01 ( see   Note 
3 ). The V-BETA CDR-IMGT lengths are [5.6.14] and the FR-IMGT lengths [26.17.37.10] = 90 AA (results online, 
below the alignment). The V-REGION of the b12 VH sequence is heavily mutated [ 2 ] as shown by the high 
number of amino acid changes (20, shown in  bold  below the alignment, and detailed per strand and per loop 
online in the IMGT/DomainGapAlign results) [ 9 ,  24 ,  25 ]. One AA change is also observed in the FR4-IMGT 
(T125 > I). In contrast the V-REGION of the V-BETA is unmutated, as expected for a TR [ 3 ]. The region localized 
in the CDR3-IMGT which results from the V-(D)-J rearrangement (Fig.  1 ) and which cannot be identifi ed as 
being V or J is the (N-D)-REGION. Conserved AA are in  bold  and in color online: C23 ( pink ), W41 ( blue ), hydro-
phobic 89 ( blue , here M, L), and C104 ( pink ). An N ( see   Note 9 ) in  green  online in the V-BETA (N77) indicates 
an N-glycosylation site (motif N-X-S/T).  Horizontal lines  below the user sequence indicate the domain and 
here, for a V-DOMAIN, its regions (in color online):  green  for V-REGION,  red  for (N-D)-REGION, and  yellow  for 
J-REGION (IMGT  ®  ,   http://www.imgt.org    , IMGT Scientifi c chart > IMGT color menu)       
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   If several closest genes and/or alleles are identifi ed, the user 
can select the display of each corresponding alignment. Clicking 
on the user sequence name in the alignment gives access to the 
IMGT/Collier-de-Perles tool [ 26 ] which automatically provides 
the IMGT Collier de Perles of the analyzed domain [ 65 – 68 ] with 
highlighted amino acid differences (in pink circles online) with the 
closest reference sequence (Fig.   5c    ). 

 The user amino acid sequence is also displayed, according to 
the IMGT color menu, with the delimitations of the domains (and 
for the V-DOMAIN, the V-REGION and J-REGION, and if present, 
the (N-D)-REGION) identifi ed by the tool. The characteristics 
of the AA changes are shown in strands and loops (and for the 
V-DOMAIN, in FR-IMGT and CDR-IMGT). 

 IMGT/DomainGapAlign is very popular for antibody human-
ization as it allows the comparison of the user V-DOMAIN against 
reference sequences of the V and J regions of other species (e.g., 
mouse, rat, human) and the delimitation and characterization of the 
FR-IMGT and of the CDR-IMGT to be grafted [ 32 ,  39 – 41 ,  43 ].  

  IMGT/V-QUEST [ 12 – 17 ] is the IMGT ®  online tool for the analysis 
of nucleotide sequences of the IG and TR V-DOMAIN (Table  4 ). 
IMGT/V-QUEST identifi es the variable (V), diversity (D) and junc-
tion (J) genes in rearranged IG and TR sequences and, for the IG, the 
nucleotide (nt) mutations and amino acid (AA) changes resulting from 
somatic hypermutations by comparison with the IMGT/V-QUEST 
reference directories ( see   Note 19 ). The tool integrates IMGT/
JunctionAnalysis [ 18 ,  19 ] for the detailed characterization of the V-D-J 
or V-J junctions ( see   Note 20 ), IMGT/Automat [ 20 ,  21 ] for a com-
plete sequence annotation, and IMGT/Collier-de-Perles [ 26 ]. 

 IMGT/V-QUEST functionalities include: introduction of 
“IMGT gaps” in the user nucleotide sequences (and in its transla-
tion); alignments and identifi cation of the genes and alleles with the 
closest germline V, D, and J genes ( see   Note 3 ), analysis of somatic 
hypermutations ( see   Note 21 ) and amino acid changes ( see   Note 
13 ), analysis of the junctions ( see   Note 22 ), and identifi cation of 
insertions and deletions (indels) and their correction ( see   Note 23 ). 

 Customized parameters and results provided by IMGT/V- -
QUEST and IMGT/JunctionAnalysis have been described else-
where [ 12 – 17 ].  

  IMGT/HighV-QUEST [ 22 ] is the high-throughput version of 
IMGT/V-QUEST. It is so far the only online tool available for the 
direct analysis of complete IG and TR domain sequences from Next 
Generation Sequencing (NGS). It analyzes sequences, preferentially 
long sequences obtained e.g., from Roche 454, without the need of 
computational read assembly [ 21 – 23 ] (Table  4 ). IMGT/HighV-
QUEST analyzes up to 50,000 sequences per run and performs sta-
tistical analysis on the results [ 22 ,  23 ], with the same degree of 

5.3  IMGT/V-QUEST

5.4  IMGT/
HighV-QUEST

IMGT® Defi nitive System for V, C and G Domains

10.1007/978-1-4939-1115-8_5


80

resolution and high quality results as IMGT/V-QUEST [ 12 – 17 ]. 
The option “Search for insertion/deletion” ( see   Note 23 ), added by 
default, allows an accurate V-DOMAIN analysis, despite the high 
frequency of indels due to homopolymer hybridization sequencing 
errors in NGS 454 sequences. IMGT/HighV-QUEST represents a 
major breakthrough for the analysis and the comparison of the huge 
repertoires of antigen receptor V-DOMAIN (potentially 2 × 10 12  per 
individual), by the recent standardized characterization of clono-
types or “IMGT clonotypes (AA),” with for the fi rst time for NGS 
data, a clear distinction between clonal diversity and expression [ 23 ]. 
Since its launch in October 2010, 846 users from 40 countries have 
been registered (2.5 billions of analyzed sequences in June 2014 
with 62 % from the USA, 25 % from EU, 13 % from the remaining 
world).   

6    V, C, and G Domain Analysis in IMGT ®  Databases 

  IMGT/3Dstructure-DB [ 8 – 10 ], the IMGT ®  structure database, pro-
vides IMGT annotation and contact analysis on receptors and chains 
which contain V, C, and/or G domains and for which 3D structures 
are available (Table  4 ). The “PDB code” (four letters and/or num-
bers, e.g., 1hzh) is used as “IMGT entry ID” for the 3D structures 
obtained from the Research Collaboratory for Structural Bioinformatics 
(RCSB) Protein Data Bank (PDB) [ 98 ] .  The IMGT/3Dstructure-DB 
card provides eight search/display options: “Chain details,” “Contact 
analysis,” “Paratope and epitope,” “3D visualization Jmol or 
QuickPDB,” “Renumbered IMGT fi les,” “IMGT numbering com-
parison,” “References and links,” “Printable card.” 

 The “Chain details” section comprises information fi rst on the 
chain itself, then per domain ( see   Notes 7 ,  8  and  15 ). Chain and 
domain annotation includes the IMGT gene and allele names ( see  
 Note 3 ), region and domain delimitations ( see   Note 2 ) and domain 
amino acid (AA) positions according to the IMGT unique num-
bering [ 59 – 64 ] (Subheadings  2 – 4 ). The closest IMGT genes and 
alleles (found expressed in each domain of a chain) are identifi ed 
with the integrated IMGT/DomainGapAlign [ 9 ,  24 ,  25 ], which 
aligns the AA sequences of the 3D structures with the IMGT 
domain reference directory ( see   Note 18 ). “Contact analysis” ( see  
 Note 24 ) gives access, by Clicking on “Domain contact (over-
view),” to a table with the different “Domain pair contacts” of the 
3D structure. “Domain pair contacts” are contacts between a pair 
of domains (V, C, and/or G) or between a domain and a ligand. 
Clicking on “DomPair” gives access to a given “Domain pair con-
tacts,” in which the atom pair contacts are described at the level of 
amino acids at a given position in a domain (or IMGT Residue@
Position). Clicking on “R@P” gives access to an individual “IMGT 
Residue@Position” card ( see   Note 25 ). The IMGT Residue@
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Position cards can also be accessed directly from the amino acid 
sequences of the IMGT/3Dstructure-DB card or from the IMGT 
Colliers de Perles, by clicking on one AA. 

 For IG/antigen [ 43 ] and TR/pMH [ 87 ,  88 ] complexes, a 
detailed and standardized description of paratope (amino acids of 
the V-DOMAIN in contact with the antigen) and epitope (resi-
dues of the antigen or of the pMH in contact with the paratope) is 
provided, on the basis of the contact analysis. 

 “Renumbered IMGT fi le” allows to view (or download) an 
IMGT coordinate fi le renumbered according to the IMGT unique 
numbering, and in which the chain and domain IMGT specifi c 
information (identical to that provided in “Chain details”) is 
added in the “REMARK 410” lines (blue online). Tools associ-
ated to IMGT/3Dstructure-DB include IMGT/StructuralQuery 
[ 8 ] and IMGT/DomainSuperimpose, available online. IMGT/
StructuralQuery allows to retrieve the IMGT/3Dstructure-DB 
entries, based on specifi c structural characteristics of the intramo-
lecular interactions: phi and psi angles, accessible surface area, type 
of atom contacts, distance in angstrom between amino acids, 
IMGT Residue@Position contacts and, for V-DOMAIN, CDR- 
IMGT length or pattern [ 8 ]. IMGT/DomainSuperimpose allows 
to superimpose the 3D structures of two domains from 
IMGT/3Dstructure-DB.  

  IMGT/2Dstructure-DB was created as an extension of 
IMGT/3Dstructure-DB [ 8 – 10 ] to describe and analyze amino 
acid sequences of chains and domains for which no 3D structures 
were available (Table  4 ). IMGT/2Dstructure-DB uses the 
IMGT/3Dstructure-DB informatics frame and interface which 
allow one to analyze, manage, and query IG or antibodies, TR and 
MH, as well as other IgSF and MhSF and engineered proteins 
(FPIA, CPCA), as polymeric receptors made of several chains, in 
contrast to the IMGT/LIGM-DB sequence database that analyzes 
and manages sequences individually [ 6 ]. The amino acid sequences 
are analyzed and managed with the IMGT ®  criteria of standardized 
nomenclature ( see   Note 3 ), description ( see   Note 2 ), and numero-
tation [ 59 – 64 ] (Subheadings  2 – 4 ). The current 
IMGT/2Dstructure-DB entries include amino acid sequences of 
antibodies from Kabat [ 99 ] (those for which there were no avail-
able nucleotide sequences), and amino acid sequences of mAb and 
FPIA from the WHO-INN programme [ 11 ,  47 ,  48 ] ( see   Note 6 ). 
Queries can be made on an individual entry, using the Entry ID or 
the Molecule name. The same query interface is used for 
IMGT/2Dstructure-DB and IMGT/3Dstructure-DB. Thus a 
“trastuzumab” query in “Molecule name” allows to retrieve three 
results: two INN (“trastuzumab” and “trastuzumab emtansine”) 
from IMGT/2Dstructure-DB, and one 3D structure (“1nz8”) 
from IMGT/3Dstructure-DB. The IMGT/2Dstructure-DB cards 
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provide standardized IMGT information on chains and domains 
and IMGT Colliers de Perles on one or two layers, identical to that 
provided for the sequence analysis in IMGT/3Dstructure-DB, 
however the information on experimental structural data (hydro-
gen bonds in IMGT Collier de Perles on two layers, Contact analy-
sis) is only available in the corresponding IMGT/3Dstructure-DB 
cards, if the antibodies have been crystallized.   

7    V, C, and G Domain Annotation and Contact Analysis Using the IMGT ®  
Defi nitive System 

 A TR/pMH complex (Fig.  4 ) provides an example of a structure that 
contains the three domain types: two V domains (V-ALPHA and 
V-BETA of the TR ( see   Note 8 )), four C domains (C-ALPHA and 
C-BETA of the TR ( see   Note 8 ) and C-LIKE of the MH1 I-ALPHA 
and of the B2M ( see   Note 15 )) and two G domains (G-ALPHA1 
and G-ALPHA2 of the MH1 I-ALPHA ( see   Note 15 )). The 
IMGT/3Dstructure card of the TR/pMH shown in Fig.  4  
( see   Note 26 ) can be accessed by typing its PDB code (3qfj) in the 
“Entry code” window of the IMGT/3Dstructure-DB and IMGT/
2Dstructure-DB Query page (  http://www.imgt.org    ). Snapshots of 
the IMGT domain annotation and IMGT contact analysis for the V, 
C, and G domains of this complex are described below. 

  In the IMGT/3Dstructure card for 3qfj, the TR is described as a 
“TR-ALPHA_BETA-2,” with a TR-ALPHA chain (3qfj_D) and a 
TR-BETA chain (3qfj_E). The TR-ALPHA chain comprises the 
V-ALPHA (1–110) [D1] + C-ALPHA (112–200) [D2]. The 
V-REGION and J-REGION of the V-ALPHA have 100 % identity 
with the human TRAV12-2*01 and TRAJ24*02, respectively, and 
the V-ALPHA CDR-IMGT lengths are [6.6.11]. The C-ALPHA 
has 100 % identity with the human TRAC*01. The TR-BETA-2 
chain comprises the V-BETA (1–115) [D1] + C-BETA-2 (116–
244) [D2]. The V-REGION and J-REGION of the V-BETA have 
100 % identity with the human TRBV6-5*01 and TRBJ2-7*01, 
respectively, and the V-BETA CDR-IMGT lengths are [5.6.14]. 
The C-BETA-2 has 98.40 % identity with TRBC2*01 owing to 
two in vitro AA changes, C85.1>A and N97>D. 

 The MH1 is described as MH1-ALPHA_B2M, with an I-ALPHA 
chain (3qfj_A) and the B2M (3qfj_B). The I-ALPHA chain comprises 
the G-ALPHA1 [ 1 – 90 ] [D1] + G-ALPHA2 (91–182) [D2] + C-LIKE 
(183–274) [D3], and each of the three domains has 100 % identity 
with HLA-A*0201. The B2M chain only comprises a C-LIKE 
[ 2 – 100 ] [D1] and has 100 % with the human B2M*01. 

 For each domain, the IMGT Colliers de Perles can be obtained 
by clicking on “IMGT Collier de Perles” (results in panel d in 
Figs.  9 ,  10  and  11 ) and, for the visualization of the hydrogen 
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bonds (for V and C), on “IMGT Collier de Perles on 2 layers” 
(results in panel b in Figs.  9 ,  10  and  11 ).    

 IMGT Colliers de Perles can be also obtained via the  IMGT/
DomainGapAlign results  (results in panel c in Figs.  9 ,  10  and  11 ). 
The IMGT Colliers de Perles of the TR V-BETA (Fig.  9 ) and 
V-ALPHA (Fig.  10 ) can be compared with those of the IG VH 
(Fig.  5 ) and the IMGT Colliers de Perles of the TR C-BETA 
(Fig.  11 ) with those of the IG CH1 (Fig.  6 ).  

  For G domains of pMH and TR/pMH complexes, a link to “IMGT 
pMH contact sites” [ 87 ,  88 ] is available that gives access to the IMGT 
Colliers de Perles of G domains with pMH contact sites (Fig.  12 ).  

 “IMGT pMH contact sites” are calculated from the experimen-
tal structural data and allow one to easily identify the peptide amino 
acids of the peptide which are effectively located in the groove. This 
display is of great interest for pMH2 and TR/pMH2 complexes in 
which the peptides are longer than the groove [ 63 ,  87 ,  88 ]. 

 “Domain pair contacts (overview)” gives access, by clicking on 
a “DomPair,” to the contacts between a pair of domains or between 
a domain and the ligand. Contacts between pairs of domains 
include, for examples, contacts between V-BETA and G-ALPHA1, 
V-BETA and G-ALPHA2 (Fig.  13 ), between V-ALPHA and 
G-ALPHA1, V-ALPHA and G-ALPHA2 (Fig.  14 ). Contacts 
between the TR domains (V-ALPHA, V-BETA) and the Ligand 
(peptide) are shown in Fig.  15 .    

 The paratope includes the amino acids of the V-ALPHA and 
V-BETA which have contacts with the G-ALPHA1, G-ALPHA2 
and peptide (displayed in Figs.  13 ,  14  ,  and  15 , and listed in the 
legends). Reciprocally, the epitope includes the amino acids of the 
G-ALPHA1, G-ALPHA2 and peptide that have contacts with the 
V-ALPHA and V-BETA (displayed in Figs.  13 ,  14  and  15 , and 
listed in the legends).   

8    Availability and Citation 

 Authors who use IMGT ®  databases and tools are encouraged to cite 
this article and to quote the IMGT ®  Home page,   http://www.imgt.
org    . Online access to IMGT ®  databases and tools are freely available 
for academics and under licences and contracts for companies.  

9    Notes 

     1.    More than 325 IMGT ®  standardized keywords (189 for 
sequences and 137 for 3D structures) were precisely defi ned 
[ 56 ]. They represent the controlled vocabulary assigned dur-
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  Fig. 9    V-BETA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB 
(  http://www.imgt.org    ) shown in Fig.  4 . The V-BETA can be compared with the VH displayed in Fig.  5 . ( a ) 3D 
structure ribbon representation with the IMGT strand and loop delimitations [ 61 ]. ( b ) IMGT Collier de Perles on 
two layers with hydrogen bonds. The IMGT Collier de Perles on two layers show, in the  forefront , the GFCC′C″ 
strands (forming the sheet located at the interface V-ALPHA/V-BETA of the TR) and, in the  back , the ABED 
strands. The CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT (corresponding to the BC, C′C″, and FG loops, respec-
tively) are represented online in  red ,  orange , and  purple  (for a V-BETA). The IMGT Collier de Perles with hydro-
gen bonds ( green lines  online, here only shown for the GFCC′C″ sheet) was generated by the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [ 8 – 10 ]. ( c ) IMGT Collier de Perles on two layers 
generated from IMGT/DomainGapAlign [ 9 ,  24 ,  25 ]. ( d ) IMGT Collier de Perles on one layer. The CDR-IMGT 
lengths are [5.6.14] and the FR-IMGT are [26.17.37.10]. Amino acids are shown in the one-letter abbreviation 
( see   Note 9 ). All proline (P) are shown online in  yellow . IMGT anchors are in  square  ( see   Note 12 ).  Hatched 
circles  are IMGT gaps according to the IMGT unique numbering for V domain [ 61 ,  64 ]. Positions with  bold  
(online  red )  letters  indicate the four conserved positions that are common to a V domain and to a C domain: 23 
(1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [ 59 – 62 ,  64 ], and the fi fth conserved posi-
tion that is specifi c to the IG and TR V-DOMAIN: 118 (here, J-PHE) which belongs to the motif F/W-G-X-G that 
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Fig. 9 (continued) characterizes the J-REGION [ 61 ,  64 ] (Table  1 ). The hydrophobic amino acids (hydropathy 
index with positive value: I, V, L, F, C, M, A) and tryptophan (W) [ 28 ] found at a given position in more than 50 % 
of sequences are shown (online with a  blue background color ).  Arrows  indicate the direction of the beta 
strands and their designations in 3D structures. The identifi er of the chain to which the V-BETA domain belongs 
is 3qfj_E (of the  Homo sapiens  A6 TR) in 3qfj from IMGT/3Dstructure-DB (  http://www.imgt.org    ). The 3D ribbon 
representation was obtained using PyMOL and “IMGT numbering comparison” of 3qfj_E (V-BETA) from IMGT/
3Dstructure-DB (  http://www.imgt.org    )       

ing the annotation process and allow standardized search 
criteria for querying the IMGT ®  databases and for the extrac-
tion of sequences and 3D structures. Standardized keywords 
assigned to nucleotide sequences are found in the “DE” (defi -
nition) and “KW” (keyword) lines of the fl at fi les of IMGT/
LIGM-DB, the IMGT ®  nucleotide sequences database [ 6 ] 
(Fig.  2 ). They characterize for instance the gene type, the con-
fi guration type and the functionality type. There are six gene 
types: variable (V), diversity (D), joining (J), constant (C), 
conventional-with-leader, and conventional-without- leader. 
Four of them (V, D, J and C) identify the IG and TR genes 
and are specifi c to immunogenetics. There are four confi gura-
tion types: germline (for the V, D, and J genes before DNA 
rearrangement), rearranged (for the V, D, and J genes after 
DNA rearrangement (Fig.  1 )), partially-rearranged (for D 
gene after only one DNA rearrangement), and undefi ned (for 
the C gene and for the conventional genes which do not rear-
range). The functionality type depends on the gene confi gura-
tion. The functionality type of genes in germline or undefi ned 
confi guration is functional (F), ORF (for “open reading 
frame”), or pseudogene (P). The functionality type of genes in 
rearranged or partially-rearranged confi guration is either pro-
ductive (no stop codon in the V-(D)-J region and in-frame 
junction) or unproductive (stop codon(s) in the V-(D)-J 
region, and/or out-of-frame junction). IMGT- ONTOLOGY 
concepts of identifi cation have been entered in BioPortal at 
the National Center for Biomedical Ontology (NCBO) in 
2010 (  http://bioportal.bioontology.org/ontologies/1491    ).   

   2.    More than 560 IMGT ®  standardized labels (277 for sequences 
and 285 for 3D structures) were precisely defi ned [ 57 ]. They 
are written in capital letters (no plural) to be recognizable 
without creating new terms. Standardized labels assigned to 
the description of sequences are found in the “FT” lines of the 
fl at fi les of IMGT/LIGM-DB [ 6 ] (Fig.  2 ). Querying these 
labels represent a big plus compared to the generalist data-
bases (GenBank/European Nucleotide Archive (ENA)/DNA 
Data Bank of Japan (DDBJ)). Thus it is possible to query for 
the “CDR3-IMGT” of the human rearranged productive 
sequences of IG-Heavy-Gamma (e.g., 1,733 CDR3-IMGT 
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  Fig. 10    V-ALPHA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB 
(  http://www.imgt.org    ) shown in Fig.  4 . The V-ALPHA can be compared with the VH (Fig.  5 ) and with the V-BETA 
(Fig.  9 ). ( a ) 3D structure ribbon representation with the IMGT strand and loop delimitations [ 61 ]. ( b ) IMGT Collier 
de Perles on two layers with hydrogen bonds. The IMGT Collier de Perles on two layers show, in the  forefront , 
the GFCC′C″ strands (forming the sheet located at the interface V-ALPHA/V-BETA of the TR) and, in the  back , 
the ABED strands. The CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT (corresponding to the BC, C′C″, and FG loops, 
respectively) are represented online in  blue ,  green , and  green-blue  (for a V-ALPHA). The IMGT Collier de Perles 
with hydrogen bonds ( green lines  online, here only shown for the GFCC′C″ sheet) was generated by the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [ 8 – 10 ]. ( c ) IMGT Collier de Perles on two layers gen-
erated from IMGT/DomainGapAlign [ 9 ,  24 ,  25 ]. ( d ) IMGT Collier de Perles on one layer. The CDR-IMGT lengths 
are [6.6.11] and the FR-IMGT are [25.17.34.11] (FR1-IMGT is 25 instead of 26, as Q1 is missing in 3qfj_D). 
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Fig. 10 (continued) The absence of four amino acids at positions 69–72 (strand C″) is a characteristic of the 
TRAV genes. Amino acids are shown in the one-letter abbreviation ( see   Note 9 ). All proline (P) are shown online 
in  yellow . IMGT anchors are in  square  ( see   Note 12  ). Hatched circles  are IMGT gaps according to the IMGT 
unique numbering for V domain [ 61 ,  64 ]. Positions with  bold  (online  red )  letters  indicate the four conserved 
positions that are common to a V domain and to a C domain: 23 (1st-CYS), 41 (CONSERVED-TRP), 89 (hydro-
phobic), 104 (2nd-CYS) [ 59 – 62 ,  64 ], and the fi fth conserved position that is specifi c to the IG and TR V-DOMAIN: 
118 (here, J-PHE) which belongs to the motif F/W-G-X-G that characterizes the J-REGION [ 61 ,  64 ] (Table  1 ). 
The hydrophobic amino acids (hydropathy index with positive value: I, V, L, F, C, M, A) and tryptophan (W) [ 28 ] 
found at a given position in more than 50 % of sequences are shown (online with a  blue background color ). 
 Arrows  indicate the direction of the beta strands and their designations in 3D structures. The identifi er of the 
chain to which the V-ALPHA domain belongs is 3qfj_D (of the  Homo sapiens  A6 TR) in 3qfj from 
IMGT/3Dstructure-DB (  http://www.imgt.org    ). The 3D ribbon representation was obtained using PyMOL and 
“IMGT numbering comparison” of 3qfj_D (V-ALPHA) from IMGT/3Dstructure-DB (  http://www.imgt.org    )       

obtained, with their sequences at the nucleotide or amino acid 
level). The core labels include V-REGION, D-REGION, 
J-REGION and C-REGION which correspond to the coding 
region of the V, D, J and C genes.   

   3.    IMGT ®  gene and allele names are based on the concepts of clas-
sifi cation of “Group,” “Subgroup,” “Gene” and “Allele” [ 58 ]. 
“Group” allows to classify a set of genes which belongs to the 
same multigene family, within the same species or between dif-
ferent species. For example, there are ten groups for the IG of 
higher vertebrates: IGHV, IGHD, IGHJ, IGHC, IGKV, IGKJ, 
IGKC, IGLV, IGLJ, IGLC. “Subgroup” allows to identify a 
subset of genes which belong to the same group, and which, in 
a given species, share at least 75 % identity at the nucleotide 
level, e.g.,  Homo sapiens  IGHV1 subgroup. Subgroups, genes 
and alleles are always associated to a species name. An allele is a 
polymorphic variant of a gene, which is characterized by the 
mutations of its sequence at the nucleotide level, identifi ed in its 
core sequence ( see   Note 2 ) and compared to the gene allele 
reference sequence, designated as allele *01. For example, 
 Homo sapiens  IGHV1-2*01 is the allele *01 of the  Homo sapi-
ens  IGHV1-2 gene that belongs to the  Homo sapiens  IGHV1 
subgroup which itself belongs to the IGHV group. For the 
IGH locus, the constant genes are designated by the letter (and 
eventually number) corresponding to the encoded isotypes 
(IGHM, IGHD, IGHG3, etc.), instead of using the letter 
C. IMGT-ONTOLOGY concepts of classifi cation have been 
entered in BioPortal at the National Center for Biomedical 
Ontology (NCBO) in 2013 (  http://bioportal.bioontology.
org/ontologies/1491    ). IG and TR gene names are managed in 
IMGT/GENE-DB, the IMGT ®  gene database [ 7 ]. IG and TR 
genes and alleles are not  italicized in publications.   

   4.    In higher vertebrates, there are seven IG and TR major loci 
(other loci correspond to chromosomal orphon sets, genes of 
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  Fig. 11    C-BETA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB 
(  http://www.imgt.org    ) shown in Fig.  4 . The C-BETA can be compared with the CH (Fig.  6 ). ( a ) 3D structure rib-
bon representation with the IMGT strand and loop delimitations [ 62 ]. ( b ) IMGT Collier de Perles on two layers 
with hydrogen bonds. The IMGT Colliers de Perles on two layers show, in the  forefront , the GFC strands and, in 
the  back , the ABED strands (located at the interface C-BETA/C-ALPHA of the TR), linked by the CD transversal 
strand. The C-BETA has extended F and G strands (six amino acids longer than other C domains). The IMGT 
Collier de Perles with hydrogen bonds ( green  lines online, here only shown for the GFC sheet) was generated 
by the IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [ 8 – 10 ]. ( c ) IMGT Collier de Perles on two 
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Fig. 11 (continued) layers from IMGT/DomainGapAlign [ 9 ,  24 ,  25 ]. ( d ) IMGT Colliers de Perles on one layer. Amino 
acids are shown in the one-letter abbreviation ( see   Note 9 ). All proline (P) are shown online in  yellow . IMGT 
anchors are in square ( see   Note 12 ). Hatched circles are IMGT gaps according to the IMGT unique numbering for 
C domain [ 62 ,  64 ]. Positions with  bold  (online  red )  letters  indicate the four conserved positions that are common 
to V and C domains: 23 (1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [ 59 – 62 ,  64 ] (Table  2 ) 
and position 118 which, as the V domain in general but in contrast to the V-DOMAIN, is not conserved in the C 
domain. The identifi er of the chain to which the C-BETA domain belongs is 3qfj_E (of the  Homo sapiens  A6 TR) 
from IMGT/3Dstructure-DB (  http://www.imgt.org    ). The 3D ribbon representation was obtained using PyMOL and 
“IMGT numbering comparison” of 3qfj_E (C-BETA) from IMGT/3Dstructure-DB (  http://www.imgt.org    )       

which are orphons, not used in the IG or TR chain synthesis). 
The IG major loci include the immunoglobulin heavy (IGH), 
and for the light chains, the immunoglobulin kappa (IGK) 
and the immunoglobulin lambda (IGL). The TR major loci 
include the T cell receptor alpha (TRA), the T cell receptor 
beta (TRB), the T cell receptor gamma (TRG), and the T cell 
receptor delta (TRD).   

   5.    The Tenth Human Genome Mapping Workshop (HGM10) 
took place at Silliman College, Yale, New Haven, Connecticut, 
the USA, on June 11–17, 1989. The IG and TR data of the 
Laboratoire d’ImmunoGénétique Moléculaire (CNRS, 
Montpellier University, Montpellier) were entered in the 
HGM10 database (Cytogenetics and Cell Genetics 1989. Vol 
51, A2336–A2344), with for the fi rst time, the genes of a 
complete antigen receptor locus, the T cell receptor gamma 
locus (“The human T-cell receptor γ (TRG) genes” by 
M.-P. Lefranc and T.H. Rabbitts (TIBS vol 14, June 1989)). 
The offi cial acceptance of these genes at HGM10 marked the 
birth of IMGT, which was decided in agreement with the 
HGM10 nomenclature and organizing committees, for bring-
ing the special expertise required for the management of the 
diversity and complexity of the IG and TR genes and alleles.   

   6.    IMGT/mAb-DB [ 11 ] has been developed to provide an 
easy access to amino acid sequences (links to IMGT/
2Dstructure-DB) and structures (links to IMGT/3Dstructure-
DB, if 3D structures are available) of therapeutic antibodies 
and FPIA from INN [ 47 ,  48 ] (Fig.  2 ). IMGT/mAb-DB data 
include mAb (an INN -mab is defi ned by the presence of at 
least an IG variable domain) and FPIA (an INN -cept is defi ned 
by a receptor fused to a Fc) [ 47 ,  48 ]. IMGT/mAb-DB also 
includes a few composite proteins for clinical applications 
(CPCA) (e.g., protein or peptide fused to an Fc for only increas-
ing their half-life; the INN prefi x ef- was recently adopted for 
these CPCA) and some related proteins of the immune system 
(RPI) (used, unmodifi ed) for clinical applications.   

   7.    An IG (“Receptor”) (Fig.  3 ) [ 2 ] is made of two identical heavy 
(H, for IG-HEAVY) chains and two identical light (L, for 
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  Fig. 12    pMH contact analysis from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from 
IMGT/3Dstructure-DB (  http://www.imgt.org    ) shown in Fig.  4 . The IMGT Colliers de Perles of the MH1 G-ALPHA1 
and G-ALPHA2 domains are shown with pMH contact sites. Each domain is shown with its four strands and helix 
using the IMGT unique numbering for G domain [ 63 ,  64 ] .  The view is from above the cleft, with G-ALPHA1 on top 
and G-ALPHA2 on bottom. The IMGT Colliers de Perles were generated using the IMGT/Collier-de-Perles tool 
integrated in IMGT/3Dstructure-DB [ 8 – 10 ]. The G-ALPHA1 and G-ALPHA2 amino acid positions were assigned
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Fig. 12 (continued)  automatically to the “IMGT pMH contact sites” [ 87 ,  88 ] from the experimental structural 
data. They are shown (in  colors  online) in the IMGT Colliers de Perles (IMGT ® ,   http://www.imgt.org    , IMGT Scientifi c 
chart > IMGT color menu). In the table  above , the numbers 1–9 refers to the peptide AA numbering in the groove 
which is determined automatically (here a 9-AA peptide LLFGFPVYV, 3qjj_C). The contact sites C1 to C11 refer to 
the 11 standard “IMGT pMH contact sites” defi ned for IMGT standardized analysis and comparison of pMH inter-
actions [ 87 ,  88 ]. Here, there are no C2 and C7 in agreement with a MH1 binding a 9-AA peptide [ 87 ,  88 ]. In that 
3D structure, there are no C5 and C6 contacts because the glycine G4 and phenylalanine F5 scores are too low       

IG-LIGHT) chains (“Chain”) and usually comprises 12 (e.g., 
IgG1) or 14 (e.g., IgM) domains. An IgG1 contains 12 
domains whereas an IgM contains 14 domains. Each chain has 
an N-terminal V-DOMAIN (or V-(D)-J-REGION, encoded 
by the rearranged V-(D)-J genes (Fig.  1 )), whereas the remain-
ing of the chain is the C-REGION (encoded by a C gene). 
The IG C-REGION comprises one C-DOMAIN (C-KAPPA 
or C-LAMBDA) for the L chain, or several C-DOMAIN 
(CH) for the H chain [ 2 ]. IG receptor, chain and domain 
structure labels, and correspondence with sequence labels, are 
shown for two examples of IG ( Homo sapiens  IgG1-kappa 
(Fig.  3 ) and IgM-lambda). 

 IG structure labels (IMGT/3Dstructure-DB) 
 Sequence labels 
(IMGT/LIGM-DB) 

 Receptor  Chain  Domain description type  Domain a   Region 

 IG-GAMMA- 1_
KAPPA  

 L-KAPPA b   V-DOMAIN  V-KAPPA  V-J-REGION 
 C-DOMAIN  C-KAPPA  C-REGION 

 H-GAMMA-1  V-DOMAIN  VH  V-D-J-REGION 
 C-DOMAIN  CH1  C-REGION c  
 C-DOMAIN  CH2 
 C-DOMAIN  CH3 

 IG-MU_
LAMBDA 

 L-LAMBDA b   V-DOMAIN  V-LAMBDA  V-J-REGION 
 C-DOMAIN  C-LAMBDA-1  C-REGION 

 H-MU  V-DOMAIN  VH  V-D-J-REGION 
 C-DOMAIN  CH1  C-REGION c  
 C-DOMAIN  CH2 
 C-DOMAIN  CH3 
 C-DOMAIN  CH4 d  

    a The IG V-DOMAIN includes VH (for the IG heavy chain) and VL (for the IG light chain). In higher vertebrates, the 
VL is V-KAPPA or V-LAMBDA, whereas in fi shes, the VL is V-IOTA. The C-DOMAIN includes CH (for the IG heavy 
chain, the number of CH per chain depending on the isotype [ 2 ]) and CL (for the IG light chain). In higher verte-
brates, the CL is C-KAPPA or C-LAMBDA, whereas in fi shes, the CL is C-IOTA. In humans, there are nine isotypes, 
H-MU, H-DELTA, H-GAMMA-3, H-GAMMA-1, H-ALPHA1, H-GAMMA2, H-GAMMA-4, H-EPSILON, 
H-ALPHA2 (listed in the order 5′–3′ in the IGH locus of the IGHC genes which encode the constant region of the 
heavy chains (IMGT ®    http://www.imgt.org    , IMGT Repertoire)) 
  b The kappa (L-KAPPA) or lambda (L-LAMBDA) light chains may associate to any heavy chain isotype (e.g., 
H-GAMMA-1, H-MU) 
  c The heavy chain C-REGION also includes the HINGE- REGION for the H-ALPHA, H-DELTA, and H-GAMMA chains 
and, for membrane IG (mIG), the  CONNECTING- REGION (CO), the TRANSMEMBRANE-REGION (TM), and the 
CYTOPLASMIC-REGION (CY); for secreted IG (sIG), the C-REGION includes CHS instead of CO, TM, and CY 
  d For H-MU and H-EPSILON   
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  Fig. 13    IMGT/3Dstructure-DB Domain pair contacts between V-BETA and MH1 from a TR/pMH complex. The 
TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB (  http://www.imgt.org    ) shown in Fig.  4 . The 
V-BETA has contacts with the G-ALPHA1 ( a ) and G-ALPHA2 ( b ). There are a total of 113 atom pair contacts (16 
polar including 3 hydrogen bonds and 97 nonpolar) for 15 pair contacts (sums of the two Summary tables). The 
results show that only amino acids of the CDR3-IMGT ( purple  color online) interact with the MH1 G-ALPHA1 
and G-ALPHA2 and, as expected, only with helix positions. The “Domain pair contacts” shows that in ( a ) the 
V-BETA binds A69, Q72, and T73 of the G-ALPHA1 helix (Fig.  12 ) by a single amino acid of the CDR3-IMGT, 
L110 (Fig.  9 ) and in ( b ) the V-BETA binds K58, A61A, H62, V63, E65, Q66 of the G-ALPHA2 helix (Fig.  12 ) by six 
amino acids, L110, A111, G112.1, G112, R113, and P114, all located at the top of the CDR3-IMGT (Fig.  9 )       
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   8.    A TR (“Receptor”) (Fig.  4 ) [ 3 ] is made of two chains (alpha 
and beta, or gamma and delta) (“Chain”) and comprises four 
domains. Each chain has an N-terminal V-DOMAIN (or 
V-(D)-J-REGION, encoded by the rearranged V-(D)-J genes 
[ 3 ]) whereas the remaining of the chain is the C-REGION 
(encoded by a C gene). The TR C-REGION comprises one 
C-DOMAIN [ 3 ]. TR receptor, chain and domain structure 
labels, and correspondence with sequence labels, are shown 
for two examples of TR ( Homo sapiens  TR alpha_beta (Fig.  4 ) 
and TR gamma_delta). 

 TR structure labels (IMGT/3Dstructure-DB) 
 Sequence labels 
(IMGT/LIGM-DB) 

 Receptor  Chain  Domain description type  Domain a   Region 

 TR-ALPHA_
BETA 

 TR-ALPHA  V-DOMAIN  V-ALPHA  V-J-REGION 
 C-DOMAIN  C-ALPHA  Part of C-REGION b  

 TR-BETA  V-DOMAIN  V-BETA  V-D-J-REGION 
 C-DOMAIN  C-BETA  Part of C-REGION b  

 TR-GAMMA_
DELTA 

 TR-GAMMA  V-DOMAIN  V-GAMMA  V-J-REGION 
 C-DOMAIN  C-GAMMA  Part of C-REGION b  

 TR-DELTA  V-DOMAIN  V-DELTA  V-D-J-REGION 
 C-DOMAIN  C-DELTA  Part of C-REGION b  

    a The TR V-DOMAIN includes V-ALPHA, V-BETA, V-GAMMA, and V-DELTA. The TR C-DOMAIN includes 
C-ALPHA, C-BETA, C-GAMMA, and C-DELTA (there are two isotypes for the TR-BETA and TR-GAMMA chains 
in humans, TR-BETA-1 and TR-BETA-2, and TR-GAMMA-1 and TR-GAMMA-2, the C-REGION of these chains 
being encoded by the TRBC1 and TRBC2 genes, and TRGC1 and TRGC2 genes, respectively) (IMGT ®    http://www.
imgt.org    , IMGT Repertoire) [ 3 ] 
  b The TR chain C-REGION also includes the CONNECTING- REGION (CO), the TRANSMEMBRANE-REGION 
(TM), and the CYTOPLASMIC-REGION (CY), which are not present in 3D structures   

   9.    The 20 usual amino acids (AA) are designated by one-letter or 
three-letter abbreviations, or in full: A (Ala), alanine; C (Cys), 
cysteine; D (Asp), aspartic acid; E (Glu), glutamic acid; F 
(Phe), phenylalanine; G (Gly), glycine; H (His), histidine; I 
(Ileu), isoleucine; K (Lys), lysine; L (Leu), leucine; M (Met), 
methionine; N (Asn), asparagine; P (Pro), proline; Q (Gln), 
glutamine; R (Arg), arginine; S (Ser), serine; T (Thr), threo-
nine; V (Val), valine; W (Trp), tryptophan; Y (Tyr), tyrosine. 
Highly conserved amino acids at a given position in a V, C, or 
G domain have IMGT labels [ 57 ] ( see   Note 2 ). They include 
1st-CYS (position 23), CONSERVED-TRP (position 41) and 
2nd-CYS (position 104) for the V and C domains [ 59 – 62 , 
 64 ], J-PHE and J-TRP (position 118) for the V-DOMAIN 
[ 59 – 61 ,  64 ], CYS-11 and CYS-74 for the G domain 
(G-ALPHA2, G-BETA, and G-ALPHA2-LIKE) [ 63 ,  64 ].   
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  Fig. 14    IMGT/3Dstructure-DB Domain pair contacts between V-ALPHA and MH1 from a TR/pMH complex. The 
TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB (  http://www.imgt.org    ) shown in Fig.  4 . The 
V-ALPHA has contacts with the G-ALPHA1 ( a ) and G-ALPHA2 ( b ). There is a total of 227 atom pair contacts (32 
polar including 4 hydrogen bonds and 195 nonpolar) for 26 pair contacts (sums of the two Summary tables). 
The results show that the three CDR-IMGT of V-ALPHA interact with the MH1 G-ALPHA1 and G-ALPHA2 and, 
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Fig. 14 (continued) as expected, only with helix positions. The “Domain pair contacts” shows that in ( a ) the 
V-ALPHA binds seven amino acids (E58, G62, R65, K66, K68, A69, and Q72) of the G-ALPHA1 helix (Fig.  12 ) by 
its CDR1- IMGT (D27 and Q37) and at a greater extent by its CDR3-IMGT (T108, D109, W113, and G114) 
(Fig.  10 ) and in ( b ) the V-ALPHA binds seven amino acids (Q66, A69, Y70, T73, E76, W77, R80) of the G-ALPHA2 
helix (Fig.  12 ) by its CDR1-IMGT (R28, G29, Q37, S38) and by its CDR2-IMGT (Y57, S38, N63). One amino acid 
of the FR3-IMGT, the lysine K82 (in the V-ALPHA D strand) has contacts with G72A, T73, and E76 (22 atom pair 
contacts: 4 polar including 1 hydrogen bond and 18 nonpolar)       

   10.    In the IMGT ®  defi nitive system, the CDR-IMGT have accurate 
and unambiguous delimitations in contrast for the CDR 
described in the literature. Correspondences between the 
IMGT unique numbering with other numberings are available 
in the IMGT Scientifi c chart. These correspondences with other 
numberings are useful for the interpretation of previously pub-
lished data but nowadays the usage of these numberings has 
become obsolete in regard of the development of immunoin-
formatics based on the IMGT ®  standards [ 59 – 68 ] (IMGT ®  
  http://www.imgt.org    , IMGT Scientifi c chart > Numbering).   

   11.    For CDR3-IMGT length > 13 AA, IMGT additional positions 
are created between positions 111 and 112 (in bold in the 
table below) at the top of the CDR3-IMGT loop in the fol-
lowing order 112.1,111.1, 112.2, 111.2, 112.3, 111.3, etc. 
(with two digits after the dot, if necessary). 

 CDR3-IMGT lengths  IMGT additional positions for CDR3-IMGT length > 13 AA 

  21       111   111.1  111.2  111.3  111.4  112.4  112.3  112.2  112.1   112  

  20    111   111.1  111.2  111.3  –  112.4  112.3  112.2  112.1   112  

  19    111   111.1  111.2  111.3   –    –   112.3  112.2  112.1   112  

  18    111   111.1  111.2  –  –  –  112.3  112.2  112.1   112  

  17    111   111.1  111.2  –  –  –  –  112.2  112.1   112  

  16    111   111.1  –  –  –  –  –  112.2  112.1   112  

  15    111   111.1  –  –  –  –  –  –  112.1   112  

  14    111   –  –  –  –  –  –  –  112.1   112  

   For CDR3-IMGT length < 13 AA ,  IMGT gaps are created 
classically from the top of the loop, in the following order 111, 
112, 110, 113, 109, 114, etc. (with two digits after the dot, if 
necessary).   

   12.    IMGT anchors are positions that belong to strands and represent 
anchors for the loops of the V and C domains (and by extension 
to the CD strand of the C domains that do not have the C′–C″ 
loop) [ 62 ]. Anchor positions are shown in square in IMGT 
Colliers de Perles. Positions 26 and 39 are anchors of the BC 
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  Fig. 15    IMGT/3Dstructure-DB Domain pair contacts between the TR V-ALPHA and V-BETA and the Ligand (a 
9-mer peptide) from a TR/pMH1 complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB 
(  http://www.imgt.org    ) shown in Fig.  4 . The V-ALPHA and B-BETA interact with the 9-mer peptide by only their 
CDR1-IMGT and to a greater extent by their CDR3-IMGT. No other amino acid is involved. In ( a ), the “Domain 
pair contacts” shows that the V-ALPHA binds AA 1–5 (LLFGF) of the peptide (AA positions in the groove) 
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Fig. 15 (continued) (Fig.  12 ) by its CDR1-IMGT (G29, Q37, S38) and binds AA 4–6 (GFP) of the peptide by its 
CDR3-IMGT (T107, T108, D109, S110) (Fig.  10 ). On the 123 atom pair contacts (16 polar including 3 hydrogen 
bonds and 107 nonpolar) (“Summary”), 93 atom pair contacts (10 polar including 2 hydrogen bonds and 83 
nonpolar) are engaged between V-ALPHA and two amino acids (G4 and F5) of the peptide. In ( b ) the “Domain 
pair contacts” shows that the V-BETA binds AA 5–8 by its CDR1-IMGT (E37) and at a greater extent by its 
CDR3-IMGT (G109, L110, A111, G112.1, P114). On the 101 atom pair contacts (7 polar including 2 hydrogen 
bonds and 94 nonpolar) (“Summary”), 59 atom pair contacts (3 polar including 2 hydrogen bonds and 56 
nonpolar) are engaged between the V-BETA and one amino acid (Y8) of the peptide       

loop of the V domain (CDR1-IMGT in V-DOMAIN) and C 
domain. Positions 55 and 66 are anchors of the C′–C″ loop of 
the V domain (CDR2-IMGT in V-DOMAIN), whereas posi-
tions 45 and 77 are anchors of the CD strand of the C domain. 
Positions 104 in F strand (2nd-CYS) and 118 in G strand (J-PHE 
or J-TRP in V-DOMAIN) are anchors of the FG loop of the V 
domain (CDR3-IMGT in V-DOMAIN) and C domain. The 
JUNCTION of an IG or TR V-DOMAIN includes the anchors 
104 and 118 and is therefore two amino acids longer than the 
corresponding CDR3-IMGT (positions 105–117).   

   13.    The 20 usual amino acids ( see   Note 9 ) have been classifi ed in 11 
IMGT physicochemical classes which are based on 
“Hydrophathy,” “Volume,” and “Chemical” characteristics 
(IMGT ®    http://www.imgt.org    , IMGT Education > Aide- 
mémoire > Amino acids). The amino acid (AA) changes are 
described according to the hydropathy, volume, and IMGT 
physicochemical classes [ 28 ]. For example Q1 > E (++−) means 
that in the AA change (Q > E), the two amino acids belong to the 
same hydropathy (+) and volume (+) classes but to different 
IMGT physicochemical properties (−) classes. Four types of AA 
changes are identifi ed in IMGT ® : very similar (+++), similar 
(++−, +−+), dissimilar (−−+, −+−, +−−), and very dissimilar (−−−).   

   14.    The exon rule is not used for the delimitation of the 5′ end of 
the fi rst N-terminal domain of proteins with a leader (this 
includes the V-DOMAIN of the IG and TR chains). In those 
cases, the 5′ end of the fi rst N-terminal domain corresponds to 
the proteolytic site between the leader (L-REGION) and the 
coding region of the mature protein. The IG and TR 
V-DOMAIN is therefore delimited in 5′ by a proteolytic site 
and in 3′ by the splicing site of the J-REGION. The exon rule 
takes into account the fact that a domain may be encoded by 
two exons as found in IgSF other than IG and TR.   

   15.    A MH (“Receptor”) [ 63 ] depending on the MH group is made 
of one chain (I-ALPHA) noncovalently associated to the beta2-
microglobulin (B2M) (MH1 group, in the literature MHC class 
I) (Fig.  4 ) or of two chains (II-ALPHA and II-BETA) (MH2 
group, in the literature MHC class II). The I-ALPHA chain has 
two G-DOMAIN, whereas each II-ALPHA and II-BETA has 
one G-DOMAIN. MH receptor, chain and domain structure 
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labels, and correspondence with sequence labels, are shown for 
examples of members of the MH1 and MH2 groups. 

 MH 
group 

 MH structure labels (IMGT/3Dstructure-DB) 
 Sequence labels 
(IMGT/LIGM-DB) 

 Receptor  Chain 

 Domain 
description 
type a   Domain 

 Domain 
number  Region 

 MH1  MH1- ALPHA_
B2M  

 I-ALPHA  G-DOMAIN  G-ALPHA1  [D1]  Part of REGION b  
 G-DOMAIN  G-ALPHA2  [D2] 

 C-LIKE- 
DOMAIN  

 C-LIKE  [D3] 

 B2M  C-LIKE- 
DOMAIN  

 C-LIKE  [D]  REGION 

 MH2  MH2- ALPHA_
BETA  

 II-ALPHA  G-DOMAIN  G-ALPHA  [D1]  Part of REGION b  
 C-LIKE- 

DOMAIN  
 C-LIKE  [D2] 

 II-BETA  G-DOMAIN  G-BETA  [D1]  Part of REGION b  
 C-LIKE- 

DOMAIN  
 C-LIKE  [D2] 

    a The domain description type shows that the MH proteins belong to the MhSF by their G-DOMAIN and to the IgSF 
by their C-LIKE-DOMAIN. The B2M associated to the I-ALPHA chain in MH1 has only a single C-LIKE-DOMAIN 
and only belongs to the IgSF 
  b The REGION of the I-ALPHA, II-ALPHA, and II-BETA chains also includes the CONNECTING-REGION (CO), 
the TRANSMEMBRANE-REGION (TM), and the CYTOPLASMIC-REGION (CY) which are not present in the 3D 
structures   

   16.    MhSF proteins other than MH only include RPI-MH1Like 
proteins (there is no “RPI-MH2Like” identifi ed so far) 
[ 96 ,  97 ]. The RPI-MH1Like in humans comprise: AZGP1 
(that regulates fat degradation in adipocytes), CD1A to CD1E 
proteins (that display phospholipid antigens to T cells and par-
ticipate in immune defense against microbian pathogens), 
FCGRT (that transports maternal immunoglobulins through 
placenta and governs neonatal immunity), HFE (that interacts 
with transferring receptor and takes part in iron homeostasis 
by regulating iron transport through cellular membranes), 
MICA and MICB (that are induced by stress and involved in 
tumor cell detection), MR1 (that may regulate mucosal immu-
nity), PROCR, previously EPCR (that interacts with activated 
C protein and is involved in the blood coagulation pathway), 
RAET1E, RAETG, and RAET1L (that are inducible by reti-
noic acid and stimulate cytokine/chemokine production and 
cytotoxic activity of NK cells), and ULBP1, ULBP2, and 
ULBP3 (that are ligands for NKG2D receptor).   

   17.    In the IMGT/DomainGapAlign Welcome page, amino acid 
sequences are submitted in FASTA format (pasted in a text 
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area or uploaded in a fi le). A precise delimitation of the domain 
sequences is not required, however if the sequence contains 
several domains, the sequence should be split between the 
 different domains. Several domain amino acid sequences can 
be analyzed simultaneously (up to 50) provided that each 
sequence has a distinct name and that they all belong to the 
same domain type (V, C, or G). If not, the query needs to be 
launched for each domain type, successively. If the limits and 
the numbers of domains of an amino acid sequence are 
unknown, the protein can be analyzed progressively, shorten-
ing the sequence once a domain has been identifi ed by the 
tool (it should be reminded that the fi rst domain identifi ed by 
the tool is not necessarily the fi rst one in the protein).   

   18.    The IMGT domain reference directory is the IMGT reference 
directory for V, C, and G domains. It is manually curated and 
contains the amino acid sequences of the domains delimited 
according to the IMGT rules (based on the exon delimitations). 
Sequences are from the IMGT Repertoire [ 1 ] and from IMGT/
GENE-DB [ 7 ]. Owing to the particularities of the V-DOMAIN 
synthesis [ 2 ,  3 ] there is no V-DOMAIN in the IMGT reference 
directory. Instead, the directory comprises the translation of the 
IG and TR germline V and J genes (V-REGION and J-REGION, 
respectively). The IMGT domain reference directory provides 
the IMGT “gene” and “allele” names (“CLASSIFICATION” 
axiom) ( see   Note 3 ). Data are comprehensive for human and 
mouse IG and TR and human MH whereas for other species and 
IgSF and MhSF they are added progressively. The IMGT domain 
reference directory comprises domain sequences of functional 
(F), ORF (open reading frame) and in frame pseudogene (P) 
genes ( see   Note 1 ). As IMGT alleles are characterized at the 
nucleotide level ( see   Note 3 ), identical sequences at the amino 
acid level may therefore correspond to different alleles, in the 
IMGT domain reference directory. These reference amino acid 
sequences can be displayed by querying IMGT/DomainDisplay 
(  http://www.imgt.org    ).   

   19.    The IMGT/V-QUEST reference directory sets include IMGT 
reference sequences from all functional (F) genes and alleles, 
all open reading frame (ORF) and all in-frame pseudogenes 
(P) alleles. By defi nition, the IMGT reference directory sets 
contain one sequence for each allele ( see   Note 3 ). By default, 
the user sequences are compared with all genes and alleles. 
However, the option “With allele *01 only” is useful for: (1) 
“Detailed view,” if the user sequences need to be compared 
with different genes, and (2) “Synthesis view,” if the user 
sequences which use the same gene need to be aligned together 
(independently of the allelic polymorphism). 
 IMGT/QUEST reference directories have been set up for spe-
cies which have been extensively studied, such as human and 
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mouse. This also holds for the other species or taxons with 
incomplete IMGT reference directory sets. In those cases, 
results should be interpreted considering the status of the IMGT 
reference directory (information on the updates on the IMGT ®  
Web site). Links to the IMGT/V-QUEST reference directory 
sets are available from the IMGT/V-QUEST Welcome page.   

   20.    The way to identify the closest germline D is different between 
IMGT/V-QUEST and IMGT/JunctionAnalysis since the 
evaluation of the alignment score is different. In case of dis-
crepancy, the results of IMGT/JunctionAnalysis are the most 
accurate. If the option “with full list of eligible D-GENE” was 
selected in “Display view,” its results allow comparing the 
IMGT/JunctionAnalysis D gene identifi cation with all D 
genes which match the junction with their corresponding 
score. The alignment provided by IMGT/V-QUEST is still 
provided, although less accurate, as it is less stringent and dis-
plays several D genes and alleles, and therefore may help solv-
ing some ambiguous cases.   

   21.    The number of silent and nonsilent mutations is evaluated, as 
well as each type of transition (a > g, g > a, c > t, t > c) and trans-
version (a > c, c > a, a > t, t > a, g > c, c > g, g > t, t > g). The number 
of identical AA and of AA changes is evaluated, as well as each 
type of AA changes ( see   Note 13 ). Mutation hot spots are iden-
tifi ed in the germline V-REGION with their positions. They 
include (a/t) a ,  t (a/t), (a/g) g (c/t)(a/t), (a/t)(a/g) c (c/t) (or 
w a ,  t w, r g yw, wr c y). IMGT/V-QUEST is frequently used by 
clinicians for the analysis of somatic hypermutations in leuke-
mia, lymphoma, and myeloma, and more particularly in chronic 
lymphocytic leukemia (CLL) [ 80 – 82 ] in which the percentage 
of mutations of the rearranged IGHV gene in the VH of the 
leukemic clone has a patient prognostic value. IMGT/V-QUEST 
is the recommended standard recommended by ERIC for com-
parative analysis between laboratories [ 80 ].   

   22.    The sequences of the V-(D)-J junctions determined by 
IMGT/JunctionAnalysis [ 18 ,  19 ] are also used in the charac-
terization of stereotypic patterns in CLL [ 81 ,  82 ] and for the 
junction synthesis of specifi c probes for the follow-up of resid-
ual diseases in leukemias and lymphomas.   

   23.    Potential insertions or deletions are suspected by 
 IMGT/V- QUEST when the V-REGION score is very low 
(less than 200), and/or the percentage of identity is less than 
85 %, and/or when the input sequence has different CDR1-
IMGT and/or CDR2-IMGT lengths, compared to those of 
the closest germline V. In those cases, the user can go back to 
the IMGT/V-QUEST Search page and select the option 
“Search for insertions and deletions” in “Advanced parame-
ters.” If indeed insertions and/or deletions are detected, they 
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will be described in the “Result summary” row with their 
localization in FR-IMGT or CDR-IMGT, the nb of inserted 
or deleted nt and, for insertions, the inserted nt, the presence 
or absence of frameshift, the V-REGION codon from which 
the insertion or deletion starts and the nt position in the user 
submitted sequence. The insertions are highlighted in capital 
letters in the user sequence and the tool runs a classical 
IMGT/V- QUEST search after having removed the insertion(s) 
from the user sequence. In case of deletions, the tool adds 
gaps to replace the identifi ed deletions before running a classi-
cal IMGT/V- QUEST search. Users should be aware that an 
insertion or a deletion at the beginning of FR1-IMGT or at 
the end of the FR3-IMGT may not be detected.   

   24.    In IMGT/3Dstructure-DB, contacts are described as atom pair 
contacts. Atom pair contacts are obtained by a local program in 
which atoms are considered to be in contact when no water mol-
ecule can take place between them [ 8 ,  9 ]. Atom pair contacts are 
provided by atom contact types (Non-covalent, Polar, Hydrogen 
bond, etc.) and/or atom contact categories ((BB) Backbone/
backbone, (SS) Side chain/side chain, etc.) [ 8 ,  9 ,  87 ,  88 ].   

   25.    In an IMGT Residue@Position card (or “R@P”), the “IMGT 
Residue@Position” is defi ned by the IMGT position number-
ing in a domain, or if not characterized, in the chain, the AA 
name (three-letter and between parentheses one-letter abbre-
viation), the IMGT domain description and the IMGT chain 
ID, e.g., “110–LEU(L)–V-BETA–3qfj_E.” The characteris-
tics reported in an “R@P” includes (1) general information 
(PDB fi le numbering, IMGT fi le numbering, residue full name 
and formula), (2) structural information “IMGT 
LocalStructure@Position” (secondary structure, Phi and Psi 
angles (in degrees), and accessible surface area (ASA) (in 
square angstrom)), and (3) detailed contact analysis with 
amino acids of other domains.   

   26.    The fi rst  Homo sapiens  TR/pMH complex crystallized is that 
of the TR alpha_beta A6 [ 100 ] (1ao7 in IMGT/
3Dstructure-DB). The TR alpha_beta A6 recognizes a 9-mer 
peptide LLFGYPVYV of the Tax protein of the human T cell 
lymphotropic virus-1 (HTLV-1) presented by the human 
MH1, HLA-A*0201. Several TR/pMH complexes containing 
the same TR A6 with the same MH1 (HLA- A*0201) but dif-
ferent peptide variants or ligands were then crystallized and 
these represent interesting data to compare specifi city, cross-
reactivity and binding mechanisms of these complexes. The 
IMGT/3Dstructure-DB entry 3qfj (Fig.  4 ), is one of these 
variants in which the Tax peptide has one amino acid change 
Y5>F [ 101 ]. In the IMGT/3Dstructure-DB card the peptide 
is described as “Tax peptide 11-19 (Q82235), Y5>F [HTLV1].”         
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    Chapter 5   

 IMGT/HLA and the Immuno Polymorphism Database 

           James     Robinson    ,     Jason     A.     Halliwell    , and     Steven     G.    E.     Marsh    

    Abstract 

   The IMGT/HLA Database (  http://www.ebi.ac.uk/ipd/imgt/hla/    ) was fi rst released over 15 years ago, 
providing the HLA community with a searchable repository of highly curated HLA sequences. The HLA 
complex is located within the 6p21.3 region of human chromosome 6 and contains more than 220 genes 
of diverse function. Many of the genes encode proteins of the immune system and are highly polymorphic, 
with some genes currently having over 3,000 known allelic variants. The Immuno Polymorphism Database 
(IPD) (  http://www.ebi.ac.uk/ipd/    ) expands on this model, with a further set of specialist databases 
related to the study of polymorphic genes in the immune system. The IPD project works with specialist 
groups or nomenclature committees who provide and curate individual sections before they are submitted 
to IPD for online publication. IPD currently consists of four databases: IPD-KIR contains the allelic 
sequences of killer-cell immunoglobulin-like receptors; IPD-MHC is a database of sequences of the major 
histocompatibility complex of different species; IPD-HPA, alloantigens expressed only on platelets; and 
IPD-ESTDAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank 
of immunologically characterized melanoma cell lines. Through the work of the HLA Informatics Group 
and in collaboration with the European Bioinformatics Institute we are able to provide public access to this 
data through the website   http://www.ebi.ac.uk/ipd/    .  

  Key words     Immunogenetics  ,   Database  ,   Polymorphism  ,   Variation  ,   Sequence  ,   Allele  ,   MHC  ,   HLA  , 
  KIR  

1       Introduction 

 The Immuno Polymorphism Database (IPD) is a set of specialist 
databases related to the study of polymorphic genes in the immune 
system. The IPD project [ 1 ] works with specialist groups or 
nomenclature committees who provide and curate individual 
 sections before they are submitted to IPD for online publication. 
The IPD project stores all the data in a set of related databases. 
IPD currently consists of fi ve databases: IMGT/HLA contains 
sequences of the human major histocompatibility complex; IPD-
KIR contains the allelic sequences of killer-cell immunoglobulin- 
like receptors; IPD-MHC is a database of sequences of the MHC 
of different species; IPD-HPA, alloantigens expressed only on 
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platelets; and IPD-ESTDAB, which provides access to the 
European Searchable Tumour Cell-Line Database, a cell bank of 
immunologically characterized melanoma cell lines. 

 The IMGT/HLA Database [ 2 ] was established to provide a 
locus-specifi c database (LSDB) for the allelic sequences of the 
genes in the HLA system, also known as the human major histo-
compatibility complex (MHC). The core genes of interest in the 
HLA system are 21 highly polymorphic HLA genes, found within 
the 6p21.3 region of the short arm of human chromosome 6, 
whose protein products mediate human responses to infectious 
disease and infl uence the outcome of cell and organ transplants. 
The MHC is one of the most complex and polymorphic regions of 
the human genome, with in excess of 220 genes [ 3 ]. Three distinct 
regions have been identifi ed within the MHC. The class I region is 
located at the telomeric end of the MHC and encodes the genes 
for the HLA class I molecules, HLA- A, -B, and -C. These are 
codominantly expressed on the cell surface and responsible for pre-
senting intracellularly derived peptides to CD8-positive T cells. 
The class II region lies at the centromeric end of the MHC and 
encodes HLA class genes HLA-DRA, -DRB1, -DRB3, -DRB4, 
-DRB5, -DQA1, -DQB1, -DPA1, and -DPB1. HLA class II 
expression is limited to cells involved in immune responses, where 
these molecules present extracellular derived peptides to CD4-
positive T cells. Located between the class I and class II regions lies 
the class III region where a number of non-HLA genes with 
immune function are located. The HLA molecules play a key role 
in transplantation, with the success of kidney and bone marrow 
transplantation correlated with the degree to which donors and 
recipient are HLA matched. It has been shown that HLA match-
ing is recognized as a critical determinant of outcome for patients 
receiving unrelated donor hematopoietic stem cell for hematologi-
cal disorders [ 4 ]. This has led to progressive improvements in the 
level of resolution achieved by HLA class I and II typing methods. 
The typing of HLA now focuses on distinguishing differences at 
both synonymous and the non-synonymous level, for the nucleo-
tide sequences encoding the protein domains of HLA class I and 
II, which bind peptides and interact with variable lymphocyte 
receptors. The consequence of these improvements has required 
the development, for each polymorphic HLA class I and II gene, 
of a nucleotide sequence database that is both accurate and com-
prehensive. The fi rst public release of the IMGT/HLA Database 
was made on 16 December 1998 [ 5 ]. This centralized and curated 
LSDB manages these highly polymorphic variants and with a 
nomenclature now covering more than 50 genes and almost 
10,000 alleles. Since its inception the database has been updated 
every 3 months, with over 60 releases, to include all the publicly 
available sequences offi cially named by the WHO Nomenclature 
Committee.  
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2     IMGT/HLA Nomenclature 

 The naming of new HLA genes and allele sequences and their 
quality control is the responsibility of the WHO Nomenclature 
Committee for Factors of the HLA System, which fi rst met in 
1968. This committee meets regularly to discuss issues of nomen-
clature and has published 19 major reports [ 6 – 24 ] initially docu-
menting the serologically defi ned HLA antigens and more recently 
the genes and alleles defi ned by nucleotide sequences. The IMGT/
HLA Database provides the nomenclature committee with the 
online tools necessary for its task. The dissemination of new allele 
names and sequences is of paramount importance in the clinical 
transplant setting, because the variation that distinguishes HLA 
alleles can have a critical impact on the outcome of a hematopoietic 
stem cell transplant [ 25 ,  26 ]. The identifi cation, verifi cation, and 
publication of the sequences of these variants through a centralized 
resource are necessary for accurate identifi cation of HLA alleles in 
a clinical setting. Sequencing of HLA alleles began in the late 
1970s predominantly using protein-based techniques to determine 
the sequences of HLA class I allotypes. The fi rst complete HLA 
class I allotype sequence, B7.2, now known as  B*07:02:01 , was 
published in 1979 [ 27 ]. The fi rst HLA class II allele,  DRA*01:01 , 
was defi ned by protein sequencing and later in 1982 by DNA 
sequencing [ 28 – 30 ]. The fi rst HLA DNA sequences or alleles were 
named by the WHO Nomenclature Committee for Factors of the 
HLA System (10) in 1987. At that time 12 class I alleles and 9 class 
II alleles were named: in the fi rst 9 months of 2013 the WHO 
Nomenclature Committee was able to assign names to 1,029 
alleles; see    Fig.  1 .

3        IMGT/HLA as a Model for Other Highly Polymorphic Gene Systems 

 The HLA Nomenclature and its publication through the IMGT/
HLA Database have been taken as a model by other groups work-
ing in the fi eld. The MHC sequences of many different species 
have been reported [ 31 – 42 ], along with different nomenclature 
systems used in the naming and identifi cation of new genes and 
alleles in each species [ 43 ]. The nomenclature for MHC genes 
and alleles in species other than humans [ 24 ,  44 ] and mice [ 45 , 
 46 ] has historically been overseen either informally by groups 
 generating sequences or by formal nomenclature committees set 
up by the International Society for Animal Genetics (ISAG) [ 47 ]. 
This work is now overseen by the Comparative MHC Nomenclature 
Committee and is supported by ISAG and the Veterinary 
Immunology Committee (VIC) of the International Union of 
Immunological Societies (IUIS) [ 48 ]. The sequences of the MHC 
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from a number of different species are highly conserved between 
species [ 49 ], and by bringing the work of different nomenclature 
committees and the sequences of different species together it is 
hoped to provide a central resource that will facilitate further 
research on the MHC of each species and on their comparison 
[ 50 ]. The fi rst version of the IPD-MHC database involved the 
work of groups specializing in non-human primates (NHP) [ 41 ], 
canines (DLA) [ 37 ], and felines (FLA) [ 51 ] and incorporated all 
data previously available in the IMGT/MHC Database [ 50 ]. Since 
the fi rst version we have been able to add sequences from cattle 
(BoLA) [ 42 ], teleost fi sh [ 52 ], rats (RT1) [ 53 ], sheep (OLA) [ 40 ], 
and swine (SLA) [ 39 ]. In 2012 the nomenclature used to describe 
the alleles of NHP was extensively revised and updated [ 41 ]. This 
was accompanied by updating the IPD-MHC NHP section to 
complement the publication; IPD-MHC NHP currently contains 
over 4,000 alleles covering 47 species of apes and Old World and 
New World Monkeys. The management of the sequences within 
IPD-MHC and the provision of an online submission tool have 
enabled these databases to grow, the number of sequences increas-
ing by at least 10 % each year and the nomenclature to expand 
since the inclusion of a species within IPD. This has resulted in 
regular publications reporting updates or changes to the nomen-
clature [ 40 – 42 ,  54 ]. 

  Fig. 1    Graph of HLA allele numbers. Graph showing the numbers of antigens and alleles named by year from 
1987 to the end of March 2013. The numbers of HLA class I alleles are shown in  red  and the HLA class II alleles 
in  yellow        
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 The principles behind the IMGT/HLA model can also be 
applied outside the MHC; this is seen in the IPD-KIR database. 
The Killer-cell Immunoglobulin-like Receptors (KIR) are members 
of the immunoglobulin super family (IgSF) formerly called killer-
cell inhibitory receptors. KIRs have been shown to be highly poly-
morphic both at the allelic and haplotypic levels [ 55 ]. They are 
composed of two or three Ig domains, a transmembrane region, 
and cytoplasmic tail, which can in turn be short (activatory) or long 
(inhibitory). The leukocyte receptor complex (LRC), which 
encodes KIR genes, has been shown to be poly morphic, polygenic, 
and complex in a manner similar to the MHC. Because of the com-
plexity in the KIR region and KIR sequences a KIR Nomenclature 
Committee was established in 2002 to undertake the naming of 
human KIR allele sequences. The fi rst KIR Nomenclature report 
was published in 2003 [ 56 ], which coincided with the fi rst release 
of the IPD-KIR database. The number of offi cially named human 
KIR alleles has increased since the initial release which contained 89 
alleles. As of September 2013, there are over 600 alleles, which 
code for over 320 unique protein sequences.  

4     IPD Data Sources 

 IPD receives submissions from laboratories across the world. These 
submissions are curated and analyzed, and if they meet the strict 
requirements, an offi cial allele designation is assigned. The IMGT/
HLA Database is the offi cial repository for the WHO Nomenclature 
Committee for Factors of the HLA System and is the only way of 
receiving an offi cial allele designation for a sequence. The other 
IPD sections work in the same way with offi cial nomenclature com-
mittees for KIR and different nonhuman MHC committees. The 
sequences are then incorporated into the periodic releases of the 
database. Since its release in December 1998 the IMGT/HLA 
Database has received over 17,700 submissions. These submissions 
have come from a variety of sources; the majority are from labora-
tories involved in clinical HLA typing for hospitals or donor regis-
tries or commercial organizations performing contract HLA typing 
for large hematopoietic stem cell donor registries. Further data has 
been submitted following large-scale genome sequencing projects 
[ 3 ,  57 ]. For all projects the submissions must meet strict acceptance 
criteria before the sequence receives an offi cial designation. These 
minimum standards cover the methodologies used to defi ne the 
sequence, the length of sequence submitted, and the source of the 
sequence; the full list of the minimum criteria can be seen online. 
Within IMGT/HLA, around 3 % of the submissions received fail 
to meet these criteria and are rejected. In addition all the submis-
sions received by the IPD are also available from the Interna-
tional Nucleotide Sequence Database Collaboration (INSDC) [ 58 ]. 
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The INSDC consists of DNA DataBank of Japan (DDBJ) (Japan), 
GenBank (USA), and the EMBL-European Nucleotide Archive 
(ENA) (UK) [ 59 – 61 ]. The ENA entries also contain database 
cross-references to the IPD entries. Cross- references to the IMGT/
HLA Database are also included in ENSEMBL [ 62 ] and VEGA 
entries [ 63 ].  

5     Tools Available at IPD 

 IPD provides a large number of tools for the analysis of HLA, KIR, 
and nonhuman MHC sequences. These tools are either custom 
written for the database or are incorporated into existing tools on 
the European Bioinformatics Institute (EBI) website [ 64 ,  65 ]. 

 These tools include the following:

 ●    Sequence alignments—Access to alignment tool, which fi lters 
pre-generated alignments to the users’ specifi cation; provides 
alignments at the protein, cDNA, and gDNA level.  

 ●   Allele queries—Access to detailed information on any allele, 
including information on database cross-references and semi-
nal publications.  

 ●   Sequence similarity search tools—Integration into EBI’s suite 
of search tools including FASTA [ 66 ] and BLAST [ 67 ].  

 ●   Downloads—Access to an FTP directory containing all the 
data from the current and previous releases in a variety of com-
monly used formats like FASTA, MSF, and PIR.    

 There are core tools, which are common to all projects, and 
other tools specifi c for individual sections. For example tools have 
also been developed to support the laboratories that sequence 
HLA. The use of sequence-based typing (SBT) as a method for 
defi ning the HLA type is well documented [ 68 ,  69 ]; most SBT 
typing strategies currently employed use the exon 2 and exon 3 
sequences for HLA class I analysis and exon 2 alone for HLA class 
II analysis. Due to the heterozygous nature of the SBT analysis the 
combinations of many pairs of alleles may give an ambiguous typ-
ing result; currently there are nearly 80,000 recognized ambiguous 
combinations. The IMGT/HLA maintains and regularly updates a 
listing of these ambiguous allele combinations. The document also 
includes a list of all alleles which are identical over exons 2 and 3 
for HLA class I and exon 2 for HLA class II.  

6     Clinical Algorithms 

 The IPD project also collaborates with clinicians to provided Web- 
based version of published algorithms which have a clinical impact 
on transplant outcome. Two examples of this are the IMGT/HLA 
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Database—DPB1 T-Cell Epitope Algorithm and the IPD-KIR—
Donor B Content Algorithm. 

 Recent developments on the IPD-KIR website include online 
tools to assist in the prediction of transplant outcome in an unre-
lated hematopoietic stem cell transplant based on the KIR content 
of the individuals involved. In 2008 a tool was added to the web-
site to help predict NK cell alloreactivity based on the KIR ligands 
present in the patient and donor, as transplant strategies based on 
KIR-ligand mismatches had been shown to infl uence relapse, graft 
vs. host disease (GvHD), and survival in patients with acute 
myeloid leukaemia (AML) [ 70 ]. In 2010, with the goal of devel-
oping a donor selection strategy to improve transplant outcome, 
Cooley et al. [ 71 ] compared the contribution of KIR gene motifs 
to the clinical benefi t conferred by donors with a particular haplo-
type. Donor KIR genotype infl uenced transplantation outcome for 
some forms of leukaemia after a T-cell replete unrelated donor 
transplant. KIR genotyping several HLA-matched potential donors 
could substantially increase the frequency of transplants using 
unrelated donor grafts with favorable KIR gene content. In order 
to implement this strategy the IPD-KIR database was asked to pro-
vide an online version of the algorithm described in the paper. The 
B-Content calculator (  http://www.ebi.ac.uk/ipd/kir/donor_b_
content.html    ) allows the user to enter the KIR genotypes for up to 
fi ve prospective donors and receive their B-Content assignments 
and a prediction result of the effect of the KIR genotype on trans-
plant outcome. To ensure that only valid KIR genotypes are sub-
mitted, all genotypes submitted are compared to a list of predicted 
genotypes based on known KIR haplotypes. In addition this list 
has been supplemented with a number of additional KIR geno-
types that have been defi ned in routine KIR typing. If a prospective 
donor’s KIR typing does not match any of the genotypes on this 
list a warning is issued. 

 Recent data has suggested that certain HLA mismatches may 
be permissive (i.e., do not result in a poor clinical outcome), while 
others are non-permissive (do result in a poor clinical outcome) 
[ 72 ]. The classifi cation of HLA-DPB1 mismatches based on T-cell 
epitope (TCE) groups has been shown to identify permissive mis-
matches and non-permissive mismatches for HLA-DPB1 after 
unrelated donor hematopoietic stem cell transplantation (HSCT). 
With the strong clinical data showing a survival disadvantage in 
patients who receive a transplant from a non-permissive HLA- 
DPB1 TCE mismatched donor, defi ned on the basis of functional 
data, matching of DPB1 TCE groups can be routinely included in 
the donor selection process [ 73 – 76 ]. The IMGT/HLA Database 
provides an online, freely available tool, which was developed to 
help those selecting donors to predict the immunogenicity of any 
given patient–donor HLA-DPB1 types [ 77 ]. The aim of the tool is 
to provide a web interface to predict HLA-DPB1 immunogenicity 
based on the published algorithms. Tables in the original publi-
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cations provide details of the TCE groups, functionally defi ned 
on the basis of alloreactive T-cell cross-reactivity patterns and 
 predicted immunogenicity hierarchies for a number of HLA-DPB1 
proteins. These tables are then queried for the TCE groups, and 
these results generate the predicted immunogenicity. The search 
tool allows users to enter the HLA-DPB1 data for a single prospec-
tive patient and up to fi ve prospective donors (Fig.  2 ). The pre-
dicted immunogenicity of the HLA-DPB1 matching for each 
patient–donor pair is provided. If the input includes nonexistent 
alleles, null alleles, or the unstudied TCE groups, a warning detail-
ing the problem is given. The tool also allows for labeling the 
patient and donors with user-defi ned identifi cation numbers. The 
results can therefore be printed and stored. The web tool is hosted 
on the IMGT/HLA Database website and can be accessed at 
  http://www.ebi.ac.uk/ipd/imgt/hla/dpb.html    .

  Fig. 2    Example of the DPB1-T-Cell Epitope Algorithm web page. A graphic example of the prediction of immu-
nogenicity and permissivity by the tool. ( a ) The input screen with the HLA-DPB1 typing of the prospective 
patient (HLA-DPB1*01:01, 106:01) and prospective donor 1 (HLA-DPB1*03:01, 04:01). ( b ) The output screen 
showing that the two alleles of the prospective patients are both predicted to have “low” immunogenicity, 
while the HLA-DPB1*03:01 allele of the prospective donor 1 is predicted to have “intermediate” immunogenic-
ity, indicating that the HLA-DPB1 matching status for this patient and donor is “non-permissive host vs. graft 
disease”       
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7        Conclusion 

 The IPD project provides a resource for those interested in the 
study of polymorphic sequences in the immune system. By accom-
modating related systems in a single database, data can be made 
available in common formats aiding the use and interpretation. 
As the projects grow and more sections are added, the benefi t of 
having expertly curated sequences from related areas stored in a 
single location is becoming more apparent. This is particularly true 
of the IPD-MHC project, where cross-species studies are able to 
utilize the high-quality sequences provided by the different nomen-
clature committees in a common standardized format, ready for 
use. The initial release of the IPD Database contained only four 
sections and a small number of tools; however as the database has 
grown and more sections and species have been added, more tools 
have been added to the website. We plan to use the existing data-
base structures to house data for new sections of the IPD project 
as they become available. The fi les will also be made available in 
different formats to download from the website, FTP server, and 
included different web services at the EBI [ 65 ]. 

 The IMGT/HLA Database provides a centralized resource for 
the study of the HLA system, whether this is clinically or scientifi -
cally focussed. The database and accompanying tools allow the 
study of HLA alleles from a single site on the World Wide Web. 
It aids in the management and development of HLA nomencla-
ture, providing a continuing and updated resource for the WHO 
Nomenclature Committee. The challenges for the database are to 
keep up with this increase in submitted sequences, keep pace with 
the increasing diffi culties in performing analyses on the larger data-
sets, and develop new tools for the visualization of the sequences 
while maintaining the high standards set in the presentation and 
quality of the HLA sequences and nomenclature to the research 
community.  

8     Licensing 

 The IPD is covered by the Creative Commons Attribution- 
NoDerivs Licence, which is applicable to all copyrightable parts of 
the database, which includes the sequence alignments. This means 
that users are free to copy, distribute, display, and make commer-
cial use of the databases in all legislations, provided that they give 
the appropriate credit [ 78 ,  79 ]. If users intend to distribute a mod-
ifi ed version of the data in any form, then they must ask us 
for permission; this can be done by contacting hla@alleles.org for 
further details of how modifi ed data can be reproduced.     

IMGT/HLA & IPD
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    Chapter 6   

 Databases for T-Cell Epitopes 

           Chun-Wei     Tung    

    Abstract 

   Modem immunology and vaccinology incorporate immunoinformatics techniques to give insights into 
immune systems and accelerate vaccine design. Databases managing epitope data in a structured form with 
immune-related annotations including sequences, alleles, source organisms, structures, and diseases could 
be the most crucial part of immunoinformatics offering data sources for the analysis of immune systems 
and development of prediction methods. This chapter provides an overview of publicly available databases 
of T-cell epitopes including general databases, pathogen- and tumor-specifi c databases, and 3D structure 
databases.  

  Key words     Database  ,   Immunogenicity  ,   Immunoinformatics  ,   Major histocompatibility complex  , 
  Pathogen  ,   T-cell epitope  ,   Transporter associated with antigen processing  ,   Tumor  ,   Vaccine  

1       Introduction 

 T-cell epitopes are processed antigens presented in the surface of 
antigen-presenting cells (APCs) that can be recognized by T cells 
leading to T-cell activation. Generally, there are two major antigen 
processing and presentation pathways responsible for endogenous 
and exogenous antigens. Major histocompatibility complex 
(MHC) molecules play major roles in both recognition of antigens 
and presentation of antigens to T cells for both endogenous and 
exogenous antigens. To be recognized by T cells, endogenous 
antigens should be cleaved by proteasome, transported into endo-
plasmic reticulum by transporter associated with antigen process-
ing (TAP), and presented to the cell surface by MHC class I 
molecules. For exogenous antigens, they should be processed by 
lysosome and presented to the cell surface by MHC class II mole-
cules to be immunogenic. 

 Two major T cells of cytotoxic T (Tc) and T helper (Th) cells 
are responsible for recognizing endogenous and exogenous anti-
gens presented by MHC class I and II molecules, respectively. The 
Tc cells play a critical role in protective immunity by recognizing and 
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eliminating self-altered cells, which recognize processed antigens 
derived from intracellular degradation of foreign antigens and bound 
to MHC class I molecules. In contrast, the activation of Th cells 
causes the proliferation and differentiation of the Th cells into differ-
ent Th subtypes secreting various cytokines that assist B-cell matura-
tion, Tc-cell activation, and macrophage activation. 

 The identifi cation and analysis of T-cell epitopes are important 
for vaccine development [ 1 ,  2 ]. Various assays were developed to 
detect features of T-cell activation induced by T-cell epitopes. The 
cytotoxic activity of activated Tc cells can be directly evaluated by 
measuring the specifi c lysis by Tc cells. Tc cells cause apoptosis 
of target cells via the release of lytic granules containing perforin 
and granzymes or Fas/Fas ligand interactions. There are three 
commonly used assays for Tc-cell activation including the 
 chromium- release assay, just another method (JAM) test, and 
in vivo T-cell cytotoxicity assay [ 3 ]. The chromium-release assay 
measures radioactivity released from the lysis of target cells labeled 
with  51 Cr [ 4 ]. The JAM test measures the amount of DNA retained 
in target cells labeled with [ 3 H]thymidine that are not killed by 
Tc cells [ 5 ]. For in vivo Tc-cell cytotoxicity assay, target cells are 
fi rstly labeled with carboxyfl uorescein succinimidyl ester (CFSE). 
Subsequently, fl ow cytometry is utilized to evaluate the Tc-cell 
activity according to the loss of CFSE-bright cells [ 3 ]. 

 During T-cell activation, cytokines and cytokine receptors 
are produced and lead to the proliferation of activated T cells. The 
T-cell activation is commonly measured by the clonal size. 
Proliferation assays are reliable and simple methods that have been 
widely used to assess overall T-cell responses [ 6 ]. The incorpora-
tion of [ 3 H]thymidine or BrdU can be utilized to analyze T-cell 
proliferation. The CFSE-based methods are also applicable for 
T-cell proliferation [ 7 ]. The cytokine signatures produced during 
T-cell activation are also practical indicators of T-cell activation. 
For example, IL-2 is required for conventional T-cell proliferation 
that can be used as an indicator. The elicited cytokines can be pro-
fi led using enzyme-linked immunosorbent spot (ELISPOT) assay 
to monitor immune responses [ 8 ,  9 ]. Both cytokine release and 
T-cell proliferation could be indicators of Th-cell activation. 

 The mapping of T-cell epitopes could provide useful informa-
tion for the design of peptide-based vaccines. In order to provide 
better understanding of immune responses associated with T-cell 
epitopes, several high-throughput methods have been developed 
for the large-scale identifi cation of T-cell epitopes [ 10 ]. For example, 
the construction of peptide libraries comprised synthetic overlap-
ping peptides for screening T-cell epitopes [ 11 ] and 15-mer 
 peptides with 11 amino acid overlap are concluded to be good 
compromise for stimulating both Tc and Th cells [ 12 ]. With the 
high-throughput methods, data of T-cell epitopes grows fast. It is 
desirable to develop informatics techniques for organization and 
utilization of the produced epitope data. 

Chun-Wei Tung
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 Immunoinformatics aims to analyze and model immunological 
problems using information techniques of database, data mining, 
and machine learning. Databases providing centralized, structured, 
and searchable information of T-cell epitopes could help the 
 mapping of T-cell epitopes on new pathogens and serve as data 
sources for analyzing T-cell epitopes and constructing computa-
tional prediction models. With benefi t from the low costs, high 
effi ciency, and high accuracy, computational prediction models are 
becoming essential tools for T-cell epitope mapping in modern 
immunology    [ 13 ]. The utilization of a larger dataset and more 
relevant data for constructing computational prediction models 
could improve their prediction performances [ 14 ,  15 ]. The T-cell 
epitope databases hence play a vital role in providing accurate and 
detailed data for constructing prediction models ( see   Note 1 ). 

 Several important databases of T-cell epitopes have been devel-
oped to meet the urgent need of data storage and sharing. This 
chapter summarized databases focused on T-cell epitopes with 
brief descriptions of their content and functionality. According to 
their main contents, databases are classifi ed into three categories of 
general databases, pathogen- and tumor-specifi c databases, and 3D 
structure databases.  

2    Databases 

 General protein sequence and structure databases such as UniProt 
and PDB databases could be valuable resources of T-cell epitopes. 
Keywords can be utilized to search for T-cell epitope-related 
 information. However, this chapter focuses on only specialized 
databases of T-cell epitopes. General protein databases will not be 
included. 

  Databases of T-cell epitopes collecting information of MHC- 
binding peptides, T-cell epitopes, and complexes of T-cell receptor 
(TCR)–peptide–MHC are listed in    Table  1 . Several pioneer data-
bases were developed more than 10 years ago. Some of their ser-
vices are no longer available. For example, FIMM database [ 16 ] 
containing data relevant to functional molecular immunology is no 
longer accessible. MHCPEP database [ 17 ] is one of the earliest 
T-cell epitope databases whose maintenance and update are dis-
continued. Fortunately, most of their contents were collected and 
integrated into newly developed databases. This section describes 
the databases that are still accessible.

   MHCPEP, probably the fi rst specialized database for MHC- 
binding peptides, is a curated database comprising over 13,000 
peptide sequences known to bind MHC molecules [ 17 ]. Its 
 contents were collected from published literatures and experi-
mental data with information of peptide sequences, associated 
MHC alleles, anchor positions, peptide sources, and references. 

2.1  Databases 
of T-Cell Epitopes

Databases for T-Cell Epitopes
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One of the unique features of MHCPEP is that T-cell responses 
were collected and classifi ed into six categories of high, medium, 
little, none, immunogenic-not-quantifi ed, and unknown. For 
MHC class I binding peptides, the classifi cations are according to 
the concentration of peptides giving 50 % of maximum specifi c 
lysis by Tc cells of target cells displaying the peptide. For MHC 
class II binding peptides, the concentration of peptides giving 50 % 
of maximum proliferation is utilized to classify T-cell responses 
induced by the epitopes. MHC-binding affi nity is also classifi ed 
into fi ve categories of high, medium, low, none, and unknown. 
The predefi ned categories provide useful information for analyzing 
the correlation between T-cell responses and MHC-binding affi ni-
ties and constructing classifi ers [ 15 ]. Several newly developed data-
bases integrated MHCPEP contents into their databases such as 
MHCBN [ 18 ] and EPIMHC [ 19 ] ( see   Note 2 ). 

 SYFPEITHI provides a publicly accessible resource for curated 
MHC ligands and peptide motifs [ 20 ]. In addition to basic informa-
tion of MHC alleles, MHC-binding peptides, T-cell epitopes, sources, 
and references, the most signifi cant features are the information of 
peptide motifs and their prediction function. In contrast to MHCPEP 
database containing both published and preliminary data, SYFPEITHI 
only collects epitopes with published functional evidences making it a 
popular and reliable resource for T-cell epitope research. Currently, 
there are more than 8,000 MHC-binding peptides with qualitative 
data of MHC-binding peptides and T-cell epitopes in SYFPEITHI. The 
usage of SYFPEITHI for searching and mapping of T-cell epitopes 
has been demonstrated in a recent article [ 21 ]. 

    Table 1  
  General databases of T-cell epitopes   

 Database  Description  Availability 

 MHCPEP  Database of MHC-binding 
peptides 

   ftp://ftp.wehi.edu.au/pub/biology/mhcpep/     

 SYFPEITHI  Database of MHC ligand and 
peptide motifs 

   http://www.syfpeithi.de/     

 AntiJen 
(JenPep) 

 Quantitative immunology 
database 

   http://www.ddg-pharmfac.net/antijen     

 FIMM  Functional immunology 
database 

 Not available 

 MHCBN  Database of MHC/TAP-binding 
peptides and T-cell epitopes 

   http://www.imtech.res.in/raghava/mhcbn/     

 EPIMHC  Database for customized 
computational vaccinology 

   http://bio.dfci.harvard.edu/epimhc/     

 IEDB  Immune epitope database    http://www.iedb.org/     
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 JenPep is a family of relational databases containing quantitative 
data on peptides binding to MHC and TAP and T-cell epitopes 
aiming to support the development of computational vaccinology 
[ 22 ,  23 ]. Instead of classifying peptides into several categories of 
MHC-binding and T-cell responses, the quantitative data provided 
in JenPep could be useful for developing quantitative prediction 
methods. AntiJen, the successor to JenPep, contains a wider spec-
trum of immunological data and advanced search functions [ 24 ]. 
More than 31,000 entries have been collected in AntiJen database 
with thermodynamic and kinetic measures of peptides binding 
to MHC and TAP, MHC–peptide–TCR complexes, and general 
immunological protein–protein interactions. With hyperlinks to 
major databases including Swiss-Prot, NCBI protein database, 
and PUBMED reference database, users can easily retrieve related 
information. There are more than 4,000 T-cell epitopes with 
experimental information available in AntiJen. However, it seems 
that AntiJen database has not been updated for a long time. The 
hyperlinks to Swiss-Prot and IMGT/HLA are broken. 

 FIMM is a functional immunology database consisting of 
 protein antigens, MHC molecules, MHC-binding peptides, and 
relevant disease associations [ 16 ]. The major sources of MHC-
binding peptides include MHCPEP, SYFPEITHI, HIV Molecular 
Immunology Database [ 25 ], and literatures. FIMM focuses on 
human MHCs (human leukocyte antigens, HLAs) and associated 
diseases as the most distinctive feature ( see   Note 3 ). 

 MHCBN was developed to serve as a comprehensive database 
of MHC-binding peptides integrating information from MHCPEP, 
FIMM, SYFPEITHI, and HIV Molecular Immunology database 
with hyperlinks to major databases of GenBank, Swiss-Prot, PDB, 
IMGT/HLA, and PUBMED. The latest version 4.0 of MHCBN 
contains more than 25,000 peptide entries of binders and nonbind-
ers for MHC and TAP molecules and T-cell epitopes [ 18 ]. Search 
function is available for each data fi eld. Advanced tools for the map-
ping of T-cell epitopes and dataset creation are also available at 
the website of MHCBN. Please refer to the article describing the 
detailed tutorial for epitope mapping using MHCBN [ 26 ]. 

 EPIMHC focuses on T-cell epitopes of naturally occurring 
proteins [ 19 ]. EPIMHC was compiled from MHCPEP, 
SYFPEITHI, JenPep, MHCBN, FIMM, and literatures using the 
same data scheme of MHCPEP. There are more than 2,000 T-cell 
epitopes out of 4,875 distinct MHC-binding peptides whose 
source organisms are known. More than 80 T-cell epitopes are 
derived from tumor-associated antigens. A useful function for gen-
erating position-specifi c scoring matrices from query results enables 
the development of motif predictors of interests ( see   Note 4 ). 

 IEDB, the immune epitope database, is a versatile and compre-
hensive database with the largest collection of immune epitopes 
[ 27 ]. Epitope information is curated from literatures into the 

Databases for T-Cell Epitopes



128

structured database with detailed experimental information including 
T-cell assays and MHC-binding assays. Hyperlinks to major data-
bases are available for each entry. Different T-cell assays could con-
clude divergent results; hence the detailed information of T-cell 
assays should be carefully curated instead of pulling assays alto-
gether. IEDB database compiling more than 200,000 T-cell assays 
and 230,000 MHC-binding assays from literatures with detailed 
experimental information is an essential resource for developing 
computational prediction methods for both MHC binding and 
T-cell activation. Numerous functions have been developed and 
integrated into IEDB database including the IEDB-3D structure 
database ( see  Subheading  2.3 ) [ 28 ] and immune epitope database 
analysis resource (IEDB-AR) [ 29 ]. IEDB-AR provides several 
T-cell epitope prediction tools for proteasome cleavage, TAP bind-
ing, and MHC binding that could help the identifi cation and 
design of T-cell epitopes. IEDB is recently expanded to include 
non-peptidic epitopes and hyperlinks to ChEBI, a database and 
ontology of chemical entities of biological interest, enabling the 
analysis of non-peptidic epitopes.  

  The aforementioned general databases tried to collect T-cell 
 epitopes as many as possible without focusing on specifi c applica-
tions ( see   Notes 5  and  6 ). For developing treatments against 
pathogens and diseases, it is desirable to collect and analyze patho-
gen- or tumor-specifi c T-cell epitopes. Several databases have been 
created to fulfi ll the need of storage and analysis of pathogen- and 
tumor- specifi c T-cell epitopes as listed in Table  2 .

2.2  Pathogen- 
and Tumor- Specifi c 
Databases of T-Cell 
Epitopes

   Table 2  
  Pathogen- and tumor-specifi c databases of T-cell epitopes   

 Database  Description  Availability 

 AntigenDB  Database of 
pathogen antigens 

   http://www.imtech.res.in/raghava/antigendb/     

 Protegen  Database of 
protective 
antigens 

   http://www.violinet.org/protegen/     

 HIV Molecular 
Immunology 
Database 

 HIV database    http://www.hiv.lanl.gov/content/immunology/     

 HCV Immunology 
Database 

 HCV database    http://hcv.lanl.gov/content/immuno/immuno-main.
html     

 Cancer Immunity 
Peptide Database 

 Database of tumor 
T-cell antigens 

   http://www.cancerimmunity.org/peptide/     

 TANTIGEN  Database of tumor 
T-cell antigens 

   http://cvc.dfci.harvard.edu/tadb/     
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   AntigenDB puts a special emphasis on pathogen antigens [ 30 ] 
with or without epitope information. In addition to basic infor-
mation of T-cell epitopes and MHC-binding peptides, several use-
ful features have been integrated including gene-expression and 
 posttranslational modifi cations (PTMs) to facilitate vaccine devel-
opment. Highly expressed antigens are suitable vaccine candidate. 
PTM information could give insights into the recognition of 
TCR–peptide–MHC. For each antigen containing T-cell epitopes, 
its induced immunogenicity of Tc or Th cells, T-cell epitopes, 
 associated PTMs, MHC-binding affi nity, TAP binders, and cleavage 
sites are collected from literatures and available at AntigenDB. 
AntigenDB contains more than 500 antigens from 44 important 
pathogenic species. In addition to protein antigens, glycoproteins 
and lipoproteins are also collected in AntigenDB. It provides 
numerous hyperlinks to major databases that could be a useful 
database for computational vaccinology. 

 Protegen is a database for protective antigens capable of 
 inducing immune responses in the host against infectious and non-
infectious diseases [ 31 ]. Currently, 708 protective antigens are 
available against over 100 infectious diseases, cancers, and allergies 
that could be a useful resource for developing vaccines, biomarkers 
for disease diagnosis, and analysis of protective antigens. In  contrast 
to AntigenDB that includes epitopes of both protective and non- 
protective antigens, Protegen contains only protective antigens. 

 HIV Molecular Immunology Database [ 25 ] and HCV 
Immunology Database [ 32 ] are specifi cally designed for HIV- and 
HCV-related information including T-cell epitopes and their inter-
actions with the host immune system. The built-in search  functions 
allow users to effi ciently extract related information. Subheading  3  
of both databases provides summarized experimental information 
extracted from literature that enables in-depth exploration of 
 epitopes. The numbers of Tc and Th epitopes are 7,537 and 1,315 
for the HIV Database and 383 and 222 epitopes for the HCV 
Database, respectively. 

 For the development of T-cell epitope-based cancer vaccines, 
the Cancer Immunity Peptide Database was constructed with a 
collection of 129 tumor antigens with T-cell epitopes [ 33 ]. The 
tumor antigens are categorized into four types of unique, tumor- 
specifi c, differentiation, and overexpressed antigens with hyper-
links to GeneCard and PubMed. In spite of the small size of 
the database, it collected only epitopes with required experimen-
tal evidences for inducing T-cell responses serving as a useful 
resource for validated epitopes. TANTIGEN (tumor T-cell anti-
gen database) comprises 4,006 antigen entries from 251 unique 
antigens with information of T-cell epitopes and MHC-binding 
peptides [ 34 ]. The integration of prediction tools for MHC-
binding peptides could help the identifi cation of potential T-cell 
epitopes.  
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   The collection and analysis of 3D structures of TCR–peptide–MHC 
complexes could provide a better understanding of TCR–peptide–
MHC interactions. Three-dimensional structure databases of 
T-cell epitopes are listed in Table  3 . MPID is fi rstly created by col-
lecting structures of peptide–MHC complexes from PDB database 
[ 35 ]. The updated version MPID-T extended its contents to 
include TCR–peptide–MHC complexes [ 36 ]. Currently, the latest 
version MPID-T2 (Nov, 2010) comprises 353 peptide–MHC and 
62 TCR–peptide–MHC structures. Intermolecular parameters 
were pre-calculated and available for the analysis of structures in 
MPID-T2 including hydrogen bonds, gap index, gap volume, 
binding energy, molecular surface electrostatic potential, TCR 
docking angle, and contact area. WebLogo tool [ 37 ] is utilized 
to represent peptide motifs obtained from MPID-T2. The pre- 
calculated structural alignments of peptide–MHC and TCR–pep-
tide–MHC complexes could provide insights into the interactions 
of TCR–peptide–MHC.

   IMGT/3Dstructure-DB [ 38 ] is the 3D structure database of 
IMGT, the international ImMunoGenetics information system. Both 
its 3D structures of TCR–peptide–MHC and peptide–MHC 
 complexes were collected from the PDB database and stored in 
IMGT/3Dstructure-DB. Its most distinctive feature is that all struc-
tures were annotated with the IMGT-ONTOLOGY concepts of clas-
sifi cation and domain information obtained by applying IMGT/
DomainGapAlign [ 38 ]. Non-peptidic epitopes are also included. 
Pre-calculated contact residues are available for investigating the 
structural features of peptide–MHC complexes with or without TCR. 
Currently, IMGT/3Dstructure-DB contains 84 and 486 entries of 

2.3  Three- 
Dimensional (3D) 
Structure Databases 
of T-Cell Epitopes

   Table 3  
  3D structure databases of T-cell epitopes   

 Database  Description  Availability 

 MPID-T2  Database of crystal structures 
of peptide–MHC and 
TCR–peptide–MHC 

   http://biolinfo.org/mpid-t2/     

 IMGT/3Dstructure-DB  3D structure database 
of IMGT 

   http://www.imgt.
org/3Dstructure-DB/     

 IEDB-3D  3D structure database 
of IEDB 

   http://www.iedb.org/     

 CrossTope  Database of experimental 
and modeled pMHC-I 
structures 

   http://www.crosstope.com.br     
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TCR– peptide–MHC and peptide–MHC structures (Apr 6, 2013), 
respectively. IMGT database integrating various tools and databases 
of its own is a comprehensive system for analyzing T-cell epitopes. 
The detailed protocol for querying the IMGT/3Dstructure-DB is 
available in a published book chapter [ 39 ]. 

 IEDB-3D, the 3D structure database of IEDB, collects pub-
lished 3D structures of TCR or MHC complexes with epitopes 
curated in IEDB [ 28 ]. All the 3D structures were curated from 
PDB database including complexes of TCR–peptide–MHC and 
peptide–MHC. IEDB-3D is fully integrated with IEDB enabling 
the cross-reference of detailed information of structures, epitopes, 
references, T-cell assays, and MHC binding. The integrated 
EpitopeViewer provides intuitive user interface for the analysis of 
contacting atoms in 3D structures [ 40 ]. IEDB-3D can be easily 
accessed from the link of “Browse by 3D structure.” Notably, both 
peptidic and non-peptidic T-cell epitope are curated in IEDB-3D. 
On the date of access (Jun 11, 2013), there were 62 and 337 non-
redundant structures for TCR–peptide–MHC and peptide–MHC 
complexes, respectively. 

 Due to the lack of available 3D structures of peptide–MHC 
complexes ( see   Note 7 ), CrossTope was developed as a curated 
database collecting 3D structures of immunogenic peptide–MHC 
class I complexes (pMHC-I) from the public PDB database and 
computational modeling [ 41 ]. All pMHC-I complexes are curated 
from literatures with experimentally verifi ed T-cell responses. 
Except for the pMHC-I complexes with available 3D structures in 
PDB that can be directly curated into CrossTope, a three-step 
modeling method is applied to reconstruct pMHC-I complexes 
[ 42 ]. For each entry, the structure types of “crystal” and “model” 
indicate the sources of pMHC-I complexes from PDB crystal 
structures and computational modeling, respectively. The pMHC-
 I structures could serve as useful resources for structure-based 
 virtual screening of cross-reactive targets as demonstrated by 
the authors [ 41 – 43 ]. Currently, CrossTope contains 182 non- 
redundant pMHC-I complexes from two human and two murine 
alleles.   

3     Notes 

 This chapter summarized three kinds of databases related to 
T-cell epitopes including general databases, pathogen- and tumor- 
specifi c databases, and 3D structure databases. The efforts of 
large-scale identifi cation of T-cell epitopes will continue produc-
ing a vast amount of T-cell epitope data. The databases of T-cell 
epitopes will be more important than ever as data sources for the 
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analysis of immune responses, development of computational 
 prediction methods, and vaccine design. Several notes are  provided 
as follows:

    1.    For the development of computational prediction methods 
for T-cell epitopes, one of the most crucial parts is the dataset 
construction that is usually integrated from different databases 
[ 14 ]. However, different databases could use distinct criteria 
for data curation and annotation. Also, there are various assays 
for determining T-cell responses induced by epitopes as 
described in Subheading  1  and results from different assays 
may not be directly comparable. The integration of heteroge-
neous data should be carefully processed.   

   2.    The web service of MHCPEP is discontinued. However, its 
data is still available at an FTP site as shown in Table  1 .   

   3.    FIMM is no longer accessible, and its data has been integrated 
into MHCBN and EPIMHC.   

   4.    EPIMHC web server is currently not working, while its main 
web page is still accessible.   

   5.    Most general databases of T-cell epitopes also contain informa-
tion of protein sources and host organisms. By querying the 
databases with keywords related to pathogens, pathogen- 
specifi c information can be retrieved.   

   6.    The IEDB database, being the largest general database 
of immune epitopes, provides also disease information related 
to epitopes. For extracting disease-specifi c information, the 
function of “disease fi nder” can be utilized to fi lter epitope 
data related to the disease of interests such as cancers from 
IEDB.   

   7.    The 3D structures of T-cell epitopes and related MHCs 
and TCRs could provide important clues to the molecular 
mechanism of antigen presentation and T-cell activation. 
However, the available structures from existing databases are 
scarce. Computational modeling methods could be alternative 
ways to accomplish structure databases. More experimental 
and computational efforts are desirable to improve knowledge 
in this fi eld.         
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    Chapter 7   

 Databases for B-Cell Epitopes 

           Juan     Liu      and     Wen     Zhang   

    Abstract 

   Identifi cation and characterization of B-cell epitopes in target antigens is one of the key steps in epitope- driven 
vaccine design, immunodiagnostic tests, and antibody production. For localizing epitopes by experimental 
methods is time consuming and cost expensive, researchers have been developing in silico or computational 
models for the prediction of B-cell epitopes, enabling immunologists and clinicians to identify the most prom-
ising epitopes for characterization in the laboratory. A suffi cient number of available B-cell epitopes are indis-
pensable for establishing the prediction models. To our knowledge, some popular databases associated with 
the B-cell epitopes are proposed and widely used in the immunoinformatics. In this chapter, we present an 
overview of the important databases and introduce how to compile datasets for the development of B-cell 
epitope prediction tools.  

  Key words     B-cell epitope  ,   Mimotope  ,   Databases  ,   Immune response  

1      Introduction 

 The interactions between antibodies and antigens play important roles 
in the immunological reaction, and the interaction sites can reveal the 
mechanism of the immune system and help to design the vaccines 
[ 1 – 4 ]. A B-cell epitope is the region or the segment of an antigen 
which is recognized by B cells and thus activates the B-cell immune 
response. With growing need of vaccine design, the recognition of B 
cell epitope has become more and more important. In general, B-cell 
epitopes can be categorized into two classes,  linear (continuous) and 
conformational (discontinuous). A continuous epitope is a segment 
of sequential residues in an antigen sequence, while a discontinuous 
epitope is a segment of antigen residues that are far away from each 
other in the primary sequence but are brought to spatial proximity by 
polypeptide folding. According to crystallographic studies, the dis-
continuous epitopes take the majority of all epitopes (~90 %). 

 The B-cell epitope is rather important to immunodetection and 
immunotherapeutic applications since an epitope as the minimal 
immune unit is strong enough to elicit a potent humoral immune 
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response with no harmful side effects to human body [ 5 ]. The ulti-
mate goal of epitope prediction is to aid the design of molecules 
that can mimic the structure and function of a genuine epitope and 
replace it in medical diagnostics and therapeutics and also in vaccine 
design [ 6 ]. The most reliable methods for identifi cation of an epit-
ope are X-ray crystallography and NMR techniques [ 7 ,  8 ], but they 
are costly and time consuming. Hence, computational methods and 
tools, with the virtues of low cost and high speed, are employed to 
predict B-cell epitopes in silico. 

 Since two classes of B-cell epitopes are quietly different, the 
computational methods can be divided into the linear-epitope pre-
diction methods and conformational-epitope prediction methods. 
The linear-epitope prediction methods are usually constructed on 
the linear-epitope sequences, and typical models utilize the amino 
acid propensities (hydrophilicity, fl exibility, beta turns, surface acces-
sibility, etc.) to make the prediction [ 9 – 13 ]. The recent machine 
learning-based models utilize sequence-derived features (amino 
acid composition, amino acid cooperativeness, etc.) [ 14 – 20 ]. Since 
the lengths of linear epitopes are not fi xed and can vary from 5 to 
20 amino acids, all the epitope sequences have been set to the speci-
fi ed epitope length via trimming and extending operations, respec-
tively, to build the prediction models. The conformational- epitope 
prediction methods are usually built on the crystal structures of 
antigen–antibody complexes. The binding sites (conformational-
epitope residues) are fi rst annotated by analyzing the antigen– 
antibody complexes, and then prediction models are constructed 
based on the structures with annotated conformational epitopes. 
Typical methods use the structural features (secondary structure, 
RSA, neighbor count, half-sphere neighbor count, protrusion 
index, etc.) to make the prediction [ 21 – 32 ]. 

 There is a vast and increasing number of biological data in the 
last decades, which provide abundant data resources for the devel-
opment of immunoinformatics. As the critical component of the 
epitope-based vaccine design, the B-cell epitopes are of the most 
important. Data resource is critical for the development of the 
B-cell epitope prediction models. This chapter briefl y introduces 
popular databases for the B-cell epitopes and helps the researchers 
get access to the data resources for the development of useful com-
putational tools.  

2    The Popular B-Cell Epitope Databases 

 The availability of experimental data plays a pivotal role in B-cell 
epitope prediction. With the development of biological technique, 
a great number of B-cell epitope-related data are being released 
and available on the Internet or in the publications. The popular 
databases are listed in Table  1 .

Juan Liu and Wen Zhang
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    The 3D structure of antigen or the complex of antigen–antibody is 
stored in the Protein Data Bank (PDB) database [ 33 ]; PDB was 
established by Brookhaven National Laboratories in 1971, subse-
quently managed and maintained by the RCSB. PDB database 
compiles the compounds derived from the X-ray crystallography 
and NMR experiments ( see   Note 1 ). The main server and all the 
mirrors around the world provide database search and download 
service as well as the description of the PDB data fi le formats. The 
construction and development of PDB database meet the need of 
researchers in every fi eld of bioinformatics including epitope 
prediction.  

  The Immune Epitope Database (IEDB) [ 34 ] is established in 2004 
by the La Jolla Institute for Allergy and Immunology as a part of 
the National Institutes of Health. IEDB is the most commonly 
used and most authoritative database in epitope prediction [ 35 ]. 
As a big project, this database provides a catalog of experimentally 
characterized B-cell epitopes (both linear epitope and conforma-
tional epitope), T-cell epitopes, as well as major histocompatibility 
complex (MHC) binding, which are collected from peer-viewed 
publications or directly submitted by research groups. At present, 
IEDB includes 159,339 B-cell assays. Each epitope is linked to its 
reference source, and the epitope structure, source antigen, and 
organism from which the epitope is derived are all described. For 
published manuscripts, some information such as the authors, arti-
cle title, journal name, and abstract are provided. The interface for 
the IEDB database is shown in    Fig.  1 .

2.1  Protein 
Data Bank

2.2  The Immune 
Epitope Database

   Table 1  
  The popular B-cell epitope-related databases   

 Databases  URLs  Comments 

 PDB    http://www.rcsb.org/pdb      Protein data bank 

 IEDB    http://www.iedb.org/      Immune Epitope 
Database 

 Bcipep    http://www.imtech.res.in/raghava/bcipep      B-cell epitope database 

 CED    http://immunet.cn/ced/      Conformational epitope 
database 

 EPITOME    http://www.rostlab.org/services/epitome/      Database of structurally 
inferred antigenic 
epitopes in proteins 

 AntiJen    http://www.ddg-pharmfac.net/antijen/AntiJen/
aj_bcell.htm     

 Kinetic, thermodynamic, 
and cellular database 

 HIV Molecular 
Immunology 

   http://www.hiv.lanl.gov/content/immunology/
index     

 HIV molecular 
immunology database 

Databases for B-Cell Epitopes

http://www.rcsb.org/pdb
http://www.iedb.org/
http://www.imtech.res.in/raghava/bcipep
http://immunet.cn/ced/
http://www.rostlab.org/services/epitome/
http://www.ddg-pharmfac.net/antijen/AntiJen/aj_bcell.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/aj_bcell.htm
http://www.hiv.lanl.gov/content/immunology/index
http://www.hiv.lanl.gov/content/immunology/index


138

   In addition to databases, IDEB provides some tools to predict 
linear B-cell epitopes by using amino acid scales as well as some 
tools to predict conformational epitopes by using crystal structures 
( see   Note 2 ).  

  Bcipep [ 36 ] is a database established by the Institute of Microbial 
Technology, Chandigarh, in India (shown in Fig.  2 ). This database 
contains the experimentally determined linear B-cell epitopes, 
which are collected from literature and other publicly available 
databases. At present, there are nearly 555 epitopes in Bcipep, cov-
ering a wide range of pathogenic organisms like viruses, bacteria, 
protozoa, and fungi. For each entry, some details such as peptide 
sequence, source protein, and pathogen group are described. For 
data obtained from other databases, hyperlinks to the original 
resources are also provided.

   The database also supports the use of keyword search, peptide 
mapping, and BLAST search for the analysis and extraction of data.  

  CED [ 37 ] is a conformational epitope database (as shown in 
Fig.  3 ). At present, CED contains 293 entries, and all entries are 
manually curated from publications in PubMed and ScienceDirect. 
Specifi cally, more than 3,000 references are analyzed manually, and 
the conformational epitopes with high resolution and complete-
ness are extracted into the database. CED provides related infor-
mation on epitopes including location of the epitope, the 
immunological property of the epitope, the source antigen, and 
corresponding antibody of the epitope.

   In addition, the database can be browsed or searched through 
a user-friendly web interface. Most epitopes in CED can also 
be viewed interactively in the context of their 3D structures. 

2.3  Bcipep

2.4  Conformational 
Epitope Database

  Fig. 1    The interface for the IEDB database       
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CED also provides hyperlinks to several external databases, such as 
PDB database and PubMed, providing wide background informa-
tion for each entry.  

  Epitome [ 38 ] is a database of all known antigenic epitopes infer-
ring from the antigen–antibody complexes as well as the antibodies 
that interact with them (as shown in Fig.  4 ).

2.5  Epitome

  Fig. 2    The interface for the Bcipep database       

  Fig. 3    The interface for the CED database       
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   In this database, an antigenic interaction is defi ned as the 
 interaction between an antigen residue and one of the six 
complementarity- determining regions (CDRs) of an antibody, and 
antigenic epitopes consist of the antigenic interaction sites. Thus, 
antigenic epitopes infer from the antigen–antibody complexes. 
Specifi cally, all available structures of antibodies are fi rst aligned 
and analyzed so as to identify CDRs, and then all antigen residue 
proteins in PDB that bind to CDRs are identifi ed. By doing this, 
the structures of all known antigen–antibody complexes in the 
PDB are analyzed, and antigenic interactions are annotated and 
extracted into the database. 

  Fig. 4    The interface for the Epitome database       
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 Epitome contains 142 antigens from protein–antibody complex 
structures with 10,180 annotated antigenic interactions ( see   Note 3 ). 
The related information such as PDB ID, PDB chain ID, and PDB 
position is provided for the entries. Additionally, Epitome provides 
the interface-friendly tool to visualize interactions in Jmol.  

  AntiJen [ 39 ] is a comprehensive database focused on the integration 
of kinetic, thermodynamic, functional, and cellular data within the 
context of immunology and vaccinology (as shown in Fig.  5 ). The 
database currently contains totally 24,000 entries that were col-
lected from the experimentally determined data reported in PubMed 
publications, including quantitative binding data for peptides 
 binding to MHC ligand, TCR–MHC complexes, T-cell epitope, 
TAP, B-cell epitope molecules, and immunological protein–protein 
interactions. The present version (AntiJen v2.0) contains 3,541 
B-cell epitopes (linear and conformational epitopes) and provides 
user-friendly retrieval interface. Each epitope is described by its pep-
tide source, Ab source, antibody, comment, and external hyperlink.

     HIV Molecular Immunology Database [ 40 ] contains HIV virus 
epitopes which are extracted from the HIV immunology literature 
(as shown in Fig.  6 ). At present, there are nearly 11,361 HIV- 
specifi c B-cell and T-cell responses summarized and annotated in 
this database ( see   Note 4 ). The annotation includes information 

2.6  AntiJen

2.7  HIV Molecular 
Immunology Database

  Fig. 5    The interface for the AntiJen database       
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such as cross-reactivity, escape mutations, antibody sequence, TCR 
usage, functional domains that overlap with an epitope, immune 
response associations with rates of progression and therapy, and 
how specifi c epitopes were experimentally defi ned.

3        The Mimotope Databases 

 The aforementioned databases are important resources for linear/
conformational B-cell epitope prediction. The data from these 
databases provide the resources for computational biologists to 
derive benchmark and customized datasets for new algorithm 
development and tool evaluation. In recent years, mimotopes are 
also widely used in immunoinformatics. A mimotope is a macro-
molecule, often a peptide, which mimics the structure of a genuine 
 epitope. It causes an antibody response similar to the one elicited 
by the genuine epitope. That means, an antibody for a given 
 epitope antigen will recognize a mimotope which mimics that epi-
tope. Moreover, the selected mimotopes commonly share high 
sequential similarity which implies that certain key binding motifs 
and physicochemical preferences exist during the interaction with 
antibody. Therefore mapping these mimotopes back to the source 
antigen can help fi nding the genuine epitopes more accurately. 
Mimotopes are commonly obtained from phage display libraries 
through bio-panning. There have been several databases contain-
ing the information of released mimotopes which are summarized 
in Table  2     [ 41 ].

  Fig. 6    The interface for the HIV Molecular Immunology database       
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    Artifi cial Selected Peptides/Proteins Database (ASPD) (as shown 
in Fig.  7 ) is a curated database that incorporates data on full- length 
proteins, protein domains, and peptides that were obtained 
through in vitro-directed evolution processes (mainly by means 
of phage display) [ 42 ]. ASDP is the fi rst database for mimotopes, 
 currently containing 195 entries which were described in 112 
 original papers. For each entry, the following information is pro-
vided: target, template, links to external databases (SWISS-PROT, 
PDB), aligned sequences of peptides which retrieved from in vitro 
evolution and relevant native or constructed sequences, rounds of 
selection, and occurrences of clones with each sequence. ASPD has 
a user-friendly interface and can be searched by means of the SRS 
system. In addition, ASDP provides a BLAST search tool for look-
ing directly for homologies. ASPD database has not been updated 
for years.

     PepBank (as shown in Fig.  8 ) is a database of peptides based on 
sequential text mining and public peptide data sources [ 43 ]. Only 
peptides with available sequences and with 20 amino acids or 
shorter are stored. At present, it contains 21,691 individual  peptide 
entries originated from PubMed, ASPD, UniProt, and PDF. The 
database has a Web-based user interface with a simple, Google-
like search function, advanced text search, BLAST and Smith–
Waterman search capabilities.

     MimoDB (as shown in Fig.  9 ) is a database of peptides that have 
been selected from random peptide libraries based on their abilities 
to bind with small compounds, nucleic acids, proteins, cells, tis-
sues, etc. through phage display [ 44 ,  45 ]. The core data of the 
MimoDB database are mimotope sets and related information such 

3.1  Artifi cial 
Selected Peptides/
Proteins Database

3.2  PepBank

3.3  MimoDB

   Table 2  
  Mimotope databases   

 Databases  URLs  Comments 

 ASPD    http://wwwmgs.bionet.nsc.ru/mgs/gnw/aspd      Artifi cially selected protein/
peptide database, fi rst 
mimotope database 

 RELIC Peptides    http://www.northeastern.edu/xray/
downloads/     

 Small molecule-oriented 
peptide database 

 PepBank    http://pepbank.mgh.harvard.edu      Includes but not limited 
to peptide sequences 

 MimoDB    http://immunet.cn/mimodb/      Largest mimotope database 
currently 

 Sun’s Benchmark 
datasets 

   http://cs.nenu.edu.cn/bioinfo/benchmark%20
datasets/index.html     

 Datasets for mimotope- 
based B-cell epitope 
prediction 
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  Fig. 8    The interface for the PepBank database       

as sequences, structures, targets, templates, and libraries. Peptides 
are grouped into a mimotope set if they are from the same inde-
pendent experiment. In this database, (1) only peptides with avail-
able sequences are stored; (2) only peptides that are 40 amino acids 
or shorter are stored; (3) only peptides selected from phage display 

  Fig. 7    The interface for the ASPD database       
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random peptide libraries are stored; and (4) peptides selected from 
phage display cDNA libraries, e.g., antibody phage display librar-
ies, are excluded. In the current release 3.0, 19,399 peptides 
grouped into 2,197 sets are collected from 1,051 published papers. 
MimoDB provides tools for simple and advanced search, structure 
visualization, BLAST, and alignment view on the fl y.

     Sun’s benchmark datasets (as shown in Fig.  10 ), constructed by 
Sun et al. [ 46 ], are special for conformational B-cell epitope pre-
diction based on mimotope analysis. The current version 2.0 con-
sists of 39 complex structures (16 antigen–antibody complexes and 
23 protein–protein interaction structures) with 66 mimotope sets. 

3.4  Sun’s 
Benchmark Datasets

  Fig. 9    The interface for the MimoDB database       

  Fig. 10    The interface for Sun’s benchmark datasets       
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In addition, 24 cases each with only one mimotope set for one 
 complex structure are also provided as the test data. Each set 
includes information on the complex structure, the template chain, 
the mimotopes obtained from corresponding phage display experi-
ment, and the epitope ( see   Note 5 ). All datasets can be  downloaded 
freely for academic purposes.

     The RELIC peptides database ( see   Note 5 ) was released in 2004 
and contained more than 5,000 peptide sequences selected with 
small-molecule metabolite drugs as well as random clones from its 
parent libraries. A web interface was provided to access the database. 
RELIC peptides were usually indispensable as the part of the RELIC 
suite for many tools in the database heavily depend on the data [ 47 ].   

4    Notes 

     1.    In the PDB database, searchable structures are updated over 
time as some structures become out of date and are removed 
from the database.   

   2.    IEDB database provides some state-of-the-art tools to analyze 
the B-cell epitopes. Specifi cally, the tool “Antibody Epitope 
Prediction” can be used to predict the linear epitopes; 
Discotope and ElliPro can be used for the conformational- 
epitope prediction.   

   3.    If the interested protein has not a known complex with an 
antibody in the database, user can blast its sequence against all 
the sequences in the database. All known complexes between 
antibodies and proteins that are similar to the interested 
sequence will be returned.   

   4.    In the HIV molecular immunology database, only B-cell 
responses to HIV-1 and HIV-2 are summarized and annotated.   

   5.    RELIC web server was shut down in October 2010. To replace 
the functionality of those peptide analysis tools, Makowski 
et al. have written a set of stand-alone programs for Windows 
platforms. All the executable versions of the programs, instruc-
tions for use, and sample input and output fi les for the  programs 
can be downloaded via   http://www.northeastern.edu/xray/
downloads/    .         
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    Chapter 8   

 Antigen–Antibody Interaction Database (AgAbDb): 
A Compendium of Antigen–Antibody Interactions 

           Urmila     Kulkarni-Kale     ,     Snehal     Raskar-Renuse    ,     Girija     Natekar-Kalantre    , 
and     Smita     A.     Saxena   

    Abstract 

   Antigen–Antibody Interaction Database (AgAbDb) is an immunoinformatics resource developed at the 
Bioinformatics Centre, University of Pune, and is available online at   http://bioinfo.net.in/AgAbDb.htm    . 
Antigen–antibody interactions are a special class of protein–protein interactions that are characterized by 
high affi nity and strict specifi city of antibodies towards their antigens. Several co-crystal structures of 
antigen–antibody complexes have been solved and are available in the Protein Data Bank (PDB). AgAbDb 
is a derived knowledgebase developed with an objective to compile, curate, and analyze determinants 
of interactions between the respective antigen–antibody molecules. AgAbDb lists not only the residues of 
binding sites of antigens and antibodies, but also interacting residue pairs. It also helps in the identifi cation 
of interacting residues and buried residues that constitute antibody-binding sites of protein and peptide 
antigens. The Antigen–Antibody Interaction Finder (AAIF), a program developed in-house, is used to 
compile the molecular interactions, viz. van der Waals interactions, salt bridges, and hydrogen bonds. 
A module for curating water- mediated interactions has also been developed. In addition, various residue-
level features, viz.  accessible surface area, data on epitope segment, and secondary structural state of bind-
ing site residues, are also compiled. Apart from the PDB numbering, Wu–Kabat numbering and explicit 
defi nitions of complementarity- determining regions are provided for residues of antibodies. The molecular 
interactions can be visualized using the program Jmol. AgAbDb can be used as a benchmark dataset to 
validate algorithms for prediction of B-cell epitopes. It can as well be used to improve accuracy of existing 
algorithms and to design new algorithms. AgAbDb can also be used to design mimotopes representing 
antigens as well as aid in designing processes leading to humanization of antibodies.  

  Key words     Antigen  ,   Antibody  ,   Antigen–antibody complex  ,   Antigen–antibody interactions  ,   B-cell 
 epitope  ,   Paratope  ,   Antibody-binding site  ,   Conformational or discontinuous epitope  ,   Immuno-
informatics  ,   Bioinformatics  ,   Derived database  

  Abbreviations 

   AAIF    Antigen–Antibody Interaction Finder   
  Ab    Antibody   
  Ag    Antigen   
  Ag–Ab    Antigen–antibody   
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  AgAbDb    Antigen–Antibody Interaction Database   
  ASA    Accessible surface area   
  BR    Buried residue   
  BS    Binding site   
  CDR    Complementarity-determining region on heavy chain   
  CE    Conformational epitope   
  CEP    Conformational epitope prediction   
  Ig    Immunoglobulin   
  IR    Interacting residues   
  LDR    Complementarity-determining region on light chain   
  PDB    Protein Data Bank   

1        Introduction 

 Antibodies are produced by vertebrates in response to antigens. 
Antigens are usually foreign molecules of invading pathogens. 
Antibodies are produced in billions of forms by B cells and are 
 collectively referred to as immunoglobulins (abbreviated as Ig). 
The clonal selection theory states that all the antibodies produced 
by an individual B cell have the same antigen-binding site. 
Furthermore, every B cell produces a single species of antibody 
having a unique antigen-binding site. 

  An antibody molecule is a polymer of two light and two heavy 
chains. The two light chains are identical and are of a length of 
~220 amino acids each. Similarly, the two heavy chains are identical 
with a typical length of ~440 amino acids each. The four chains are 
held together by various noncovalent and covalent (disulfi de) 
bonds. Every light chain has one variable and one constant region, 
whereas heavy chains have one variable and two to three constant 
regions. As a result, two identical antigen-binding sites are formed 
by the N-terminal variable regions of a pair of light and heavy 
chains. The tail (Fc) and hinge regions are however formed by the 
constant regions of two heavy chains. The antigen-binding site of 
an antibody is referred to as a “paratope” [ 1 ,  2 ].  

  There are fi ve classes of antibodies such as IgA, IgD, IgE, IgG, and 
IgM, which are based on fi ve types of heavy chains such as α, δ, ε, 
γ, and μ. Each of these heavy chains is known to invoke a specifi c 
cascade of reactions upon binding to an antigen. However, there 
are only two types of light chains (κ or λ) that pair with one of the 
heavy chains. Therefore, the type of light chain does not seem to 
affect the properties of the antibody, other than its specifi city for 
the antigen [ 1 ,  2 ].  

  Paratope, the antigen-binding site of an antibody, is typically a 
region on the surface of the antibody that interacts with a region 
on the surface of the antigen (epitope) through non-covalent 
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of Antibodies

1.3  Paratope
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interaction. The paratope region is observed to be unique to every 
antibody and is said to be complementary to the “epitope” of the 
antigen. A paratope is made of six discontinuous regions, which are 
referred to as complementarity-determining regions (CDRs). 
There are three CDRs each on light and heavy chains. These 
regions are highly variable and are the loops connecting beta 
strands of the immunoglobulin fold.  

  The binding of an antigen to an antibody is reversible, and both the 
molecules can exist independently. The antigen–antibody interac-
tions are thus mediated by many relatively weak, non- covalent forces 
such as hydrogen bonds, hydrophobic interactions, van der Waals 
forces, and ionic interactions. Of all the forces, van der Waals forces 
are the weakest and can attract all kinds of molecules. Hydrogen or 
ion–dipole bonds are formed between oppositely charged atoms, 
whereas “hydrophobic” interactions are formed between atoms of 
nonpolar amino acids which do not form electric dipole [ 3 ,  4 ]. 
These weak forces are effective only when the antigen molecule is 
close enough to allow some of its atoms to fi t into complementary 
niches on the surface of the antibodies. The attractive forces exerted 
by ionic and hydrophobic bonds help the molecules to overcome 
hydration energies. This leads to the expulsion of water molecules 
and results in bringing the epitope and paratope closer. This spatial 
proximity facilitates van der Waals interactions. The overall strength 
of binding depends on goodness of fi t between the epitope and 
paratope and the total area of contact between them [ 3 ,  4 ].  

  Antigen–antibody interactions are highly specifi c, and understand-
ing the molecular basis of the specifi city has been one of the goals 
of immunology. A large number of high-resolution X-ray struc-
tures of several antigens have been solved in the native (uncom-
plexed) form as well as in complex with antibody, and the data are 
archived in Protein Data Bank (PDB) [ 5 ]. Analyses of these struc-
tures have helped in understanding characteristics of both epitopes 
(antibody-binding site on antigen) and paratopes (antigen-binding 
site of antibody), which are complementary to each other and are 
relational entities [ 6 – 8 ]. 

 Epitopes are of two types, viz. sequential or contiguous and 
conformational or discontinuous. The sequential epitopes are a 
stretch of amino acid residues linked by the peptide bonds and are 
recognized by an antibody. The other type is called conformational 
or discontinuous epitope where the antibody recognizes multiple 
sequential regions that come together due to folding of the poly-
peptide chain and a few independent residues [ 9 – 11 ]. Availability 
of crystal structures enabled the study of various features of binding 
sites such as size, shape, and complementarity of interacting surfaces 
of the antigens and antibodies [ 12 – 14 ]. These features and data, in 
an implicit and explicit manner, also served as a knowledgebase to 
develop and benchmark algorithms for prediction of sequential 
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(continuous) and conformational (discontinuous) B-cell epitopes. 
These algorithms have been extensively reviewed elsewhere [ 15 ,  16 ]. 
Several attempts have been made to compile and curate the immu-
nological data at various levels of complexity, which has resulted in 
the development of several useful databases that could themselves 
be grouped into categories based on the data archived, viz. anti-
body sequences and crystal structures: IMGT/LIGM-DB [ 17 ] and 
IMGT/3D structure DB [ 18 ]; experimentally characterized linear 
and conformational epitopes: IEDB [ 19 ], Epitome [ 20 ], CED [ 21 ], 
and BCIpep [ 22 ]; and Antigen–Antibody Interaction Database: 
AgAbDb [ 23 ], BEID [ 24 ], and IEDB3D [ 25 ]. Since humoral or 
antibody-based immune response is the fi rst line of defense against 
most of the bacterial and viral pathogens, development of well-
designed  immunoinformatics databases in this area has been con-
sidered as one of the most important activities in the realm of 
reverse vaccinology and vaccine  informatics [ 26 ,  27 ]. Importance 
of these databases is further  substantiated since computational 
modeling of B-cell epitopes is complex due to posttranslational 
modifi cations of B-cell epitopes and the role of carbohydrates in 
antigen–antibody interactions. 

 The fi rst version of AgAbDb was published only with curated 
data of Ag–Ab complexes where antigens are proteins. The fi rst ver-
sion included limited data on interactions [ 23 ]. It is the fi rst database 
that compiled various non-covalent atomic interactions, which facil-
itates the binding of antibodies to antigens. AgAbDb also docu-
mented the interacting residues (IR) and buried residues (BR) 
specifi cally [ 23 ]. It is known that many residues of an antigen get 
buried under an antibody and may not necessarily be a part of any 
intermolecular interactions. However, these residues are important in 
maintaining the scaffold of binding sites. The residues of binding site 
(BS) however are obtained by summation of IR and BR, which help 
to determine the area of an antigen buried under the footprint of an 
antibody [ 28 – 30 ]. AgAbDb was also instrumental in providing the 
interacting residue pairs of antigens and antibodies. Most of the 
immunoinformatics databases and servers mentioned earlier [ 19 – 22 , 
 24 ,  25 ] list interacting residues of the epitopes and paratopes inde-
pendently and lack data on equivalence. It was further noticed that 
most of the databases listing the interaction data are not  specially 
designed for Ag–Ab interaction studies and provide data on interac-
tions of other immunological molecules as well. As a result of this, 
there is a lag in updation and several Ag–Ab complexes are not 
included in their versions posted online. 

 This chapter documents features of the current version of 
AgAbDb, which has signifi cant additions in terms of not only 
curated data of peptide antigen–antibody complexes but also 
water-mediated interactions, epitope segment data with secondary 
structural states of participating residues, etc. The content, format, 
browsing, and retrieval of data from AgAbDb are explained using 
suitable examples.   
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2    Materials 

  PDB archives high-resolution structures of several antigens in both 
native (free unbound state) and complex (bound to antibody) 
states [ 5 ]. There are a few structures in the PDB where residues of 
either antigen or antibody molecules are mutated to study the 
effect of mutations on antigen–antibody interactions. The PDB is 
searched using text-based queries to retrieve entries of antigen–
antibody complexes. It is a multi-step process, and scripts are 
 written to compile all the structures. These structures are broadly 
grouped into two types based on the length of antigen sequence. 
Antigens having length ≤35 amino acids were referred to as pep-
tide antigens. Antigen sequences with length >35 were grouped as 
protein antigens. The atomic coordinate fi le for each antigen–
antibody co-crystal structure is downloaded from the PDB (  www.
rcsb.pdb.org    ). The data are parsed through a series of Perl scripts 
to curate the derived data of an antigen, antibody, and various 
intermolecular interactions. 

 The most recent release of AgAbDb (Aug 3, 2013) includes 
data of 427 antigen–antibody co-crystal structure complexes. 
There are 289 and 138 entries, respectively, for protein and  peptide 
antigens in complex with respective antibodies. Of the protein 
antigens, majority are monomers (266) whereas 21 are dimers and 
only 2 are multimers. AgAbDb is updated regularly based on the 
release of antigen–antibody co-crystal structure complexes in 
the PDB.  

  AgAbDb compiles and curates derived data of antigen–antibody 
interactions, and the PDB is the primary source of experimental 
data. Various tables are populated with the data of antigen, anti-
body, and antigen–antibody interactions. The derived data includes 
the residues of epitope and paratope, interacting residue pairs, and 
types of interactions between them. Derived data of molecular 
interactions is generated using Antigen–Antibody Interaction 
Finder (AAIF), a Perl program developed in-house [ 23 ]. Various 
geometrical and stereochemical criteria used to curate interactions 
are described earlier [ 23 ]. Perl scripts are also written to curate 
water-mediated interactions, sequential epitope segments, second-
ary structural state of the residues of epitope, etc.   

3    Methods 

  The AgAbDb is implemented as a relational database using MySQL 
Server 5. The database comprises of 12 tables to compile, curate, 
and archive data on antigens, antibodies, and interactions and is 
normalized up to Third Normal Form (3NF). The lists of interacting 
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and buried residues of the respective antibody and antigen are 
stored in four tables. The various types of atomic interactions 
between antigens and antibodies are stored in two tables. An addi-
tional table is used to store “water-mediated interactions,” a fea-
ture which is added recently. Two tables are used to store the 
epitope segments and secondary structures of amino acid residues, 
while the remaining three tables are used to store the annotation 
data of every antigen, antibody, and entire complex. The query 
system has been developed using JSP, JSTL, HTML, and 
JavaScripts. Perl scripts are written to retrieve the data from the 
PDB and to populate database tables.  

  The residues of the binding site of both the antigen and antibody 
are compiled. The residues of BS of an antigen (epitope) are classi-
fi ed as IR and BR based on their role in the complex formation. 
The binding site of an antibody (paratope) comprises three CDRs 
each on the variable domain of heavy (CDR 1–3) and light (LDR 
1–3) chains.  

  The residues of an antigen that form non-covalent interaction(s) 
with residue(s) of an antibody molecule are defi ned as IR. AAIF 
calculates non-covalent interactions, viz. van der Waals interactions, 
hydrogen bonds, salt bridges, short contacts using distance, and 
geometry-based criteria described earlier [ 23 ,  31 – 34 ]. The posi-
tions of hydrogen atoms are predicted using the fourth atom fi xa-
tion algorithm. The hydrogen bond donors and acceptors are 
defi ned as per HBplus program [ 35 ].  

  In addition to the IR, a few more residues of an antigen are buried 
under the footprint of an antibody. These residues do not directly 
participate in the antigen–antibody interactions but are part of the 
scaffold to maintain the binding site. These residues are identifi ed 
based on loss of solvent-accessible surface area (ASA) upon antibody 
binding. Solvent ASA of antigen and antibody molecules was com-
puted using the Voronoi polyhedron algorithm [ 36 ] in both unbound 
and bound states. The difference in the solvent ASA of every residue 
of the antigen (and antibody) in uncomplexed as well as complexed 
states needs to be computed to determine the area of interaction and 
the list of BR. The residues that lose ASA greater than or equal to 
0.1 Å 2  upon formation of the complex are defi ned as BR.  

  Water-mediated hydrogen bonds between antigen and antibody 
molecules are computed. Only the crystallographic water mole-
cules present in the PDB fi les are included in the computation. 
Potential hydrogen bond donors and acceptors were defi ned as per 
HBplus program [ 35 ]. Both bond distance and angle criteria are 
used to curate ionic interactions between charged residues and 
trapped water molecules.  
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  The antibody-binding sites of antigens are typically made of a few 
sequential epitopes that come together due to folding of the poly-
peptide chain along with a few individual residues referred as 
singleton residues [ 28 – 30 ]. The continuous sequential segments 
of conformational epitope (antibody-binding site) are listed along 
with the individual residues, if any.  

  Single-letter codes of the secondary structural state of every  residue 
of the sequential epitope are compiled. The secondary structural 
states defi ned by the DSSP program [ 37 ] are used for this 
purpose.  

  The residues of light and heavy chains of antibodies are re- 
numbered based on the CDR defi nitions put forward by Wu and 
Kabat using the AbCheck server [ 38 ]. The AgAbDb tables are 
populated such that the correspondence between both the PDB 
and Kabat numbering is maintained.   

4    AgAbDb: Need and Scope 

  The structures of more than 1,000 complexes of antigens with 
respective antibodies have been solved to date, and the data is depos-
ited in the PDB [ 5 ]. Several antibodies have been co- crystallized 
with various antigens such as proteins, peptides, small molecules, 
nucleotides, and DNA. These co-crystal structures have been solved 
with different objectives like mapping the antibody- binding sites, 
studying the mode of interactions between the two molecules, iden-
tifying critically important residues, examining cross-reactivity of 
antibodies towards antigens, and assessing conformational changes 
in the antigen, antibody, or both upon formation of complexes. 

 The vast amount of co-crystal structure complex data have also 
been collectively used for studying the properties of interacting 
interfaces such as epitopes and paratopes in particular and protein–
protein interactions in general [ 14 ]. The analysis of data was 
also instrumental in the development of B-cell epitope prediction 
algorithms for both sequential and conformational epitopes. Apart 
from serving as a knowledgebase for epitope predictions, the data 
have also been used to validate and benchmark the performance of 
epitope prediction algorithms. The data of antibody structures 
in free and bound forms have been used to develop dedicated 
homology- modeling programs for the prediction of three- 
dimensional structures of antibodies [ 40 ,  41 ]. The importance of 
prediction of 3D structures of antibodies is ever increasing as the 
antibodies are increasingly being used for diagnostic and therapeu-
tic purposes in diseases such as cancer. Humanization of antibodies 
is another important area where high-resolution curated data of 
the antigen–antibody structures and interactions are desirable. 
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     Note : A list of all the available antigen–antibody complexes in PDB 
could be made by searching PDB using keyword-based searches. 
However, there is always a possibility of missing out on a few 
entries since all the three keywords, antigen, antibody, and com-
plex, may not be explicitly present in every PDB fi le. Most often, 
the type of antigen and its description such as the lysozyme or a 
peptide sequence are mentioned rather than the word antigen. 
Therefore, compilation of PDB fi les of Ag–Ab complexes becomes 
a multi-step curation exercise. In AgAbDb, the scripts have been 
written to automate PDB searches and curation. These searches are 
performed every week to corroborate with the weekly schedule of 
updation of PDB.  

  Every antigen–antibody co-crystal structure helps in understand-
ing how an antibody interacts with an antigen at an atomic level 
and illustrates specifi city of interaction. AgAbDb catalogs the anti-
gen–antibody interactome data individually and collectively. The 
home page of AgAbDb is shown in    Fig.  1 . The current version of 
AgAbDb archives data on protein and peptide antigens only. 
Furthermore, AgAbDb curates data of only those complexes where 
both the antibody chains (heavy and light) are part of the complex. 
Figure  2  shows the growth of antigen–antibody co-crystal  structure 

4.2  AgAbDb: Design 
and Contents

  Fig. 1    A snapshot of the home page of AgAbDb       
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complexes of protein and peptide antigens over a period of time. 
Figure  3  shows a bar chart of the number of structures against 
resolution at which they were solved. It can be seen that a majority 
of the structures have been solved with a resolution better than 3 Å.

      Note : For data on complexes of other antigens such as carbohy-
drates, RNA, and DNA, the users are suggested to use the PDB. It 
is planned to populate AgAbDb with data on all the antigen–anti-
body complexes, regardless of the antigen type in future.  

  A user-friendly web-enabled interface for AgAbDb (  http:// 
115.111.37.206:8080/agabdb2    ) has been designed and tested for 
all the web browsers. A “quick search box” is provided on all the 
web pages of the interface. The “quick search” supports the data-
base search using the PDB ID or the keywords. This in turn opens 
a page listing the search results. AgAbDb can be browsed by click-
ing on the PDB ID. The search results page also provides links to 
view the antigen–antibody interactions archived in AgAbDb using 
Jmol [V], to view the corresponding complex at the RCSB PDB 
site [P], and to download the fi le from the RCSB PDB [D]. 

 The “Search” option on the menu bar pops down three options 
( see  Fig.  4 ). Text-based queries can be performed in the “Advanced 
search” as shown in panel “A.” This page also provides an option 
to search Ag–Ab complexes for a pair of interacting residues.

4.3  AgAbDb: 
Search and Browse
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  Fig. 2    The growth of co-crystal structures of protein- and peptide–antibody 
 complexes in AgAbDb       
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   The “Residue wise search: Ag and Ab” option permits retrieval 
of entries for any interacting residues (panel “B”). The “Residue- 
wise interactions: CDR” search provides quick summary of 
 interacting residues for selected CDRs of antibody (panel “C”). 
Detailed help for searching and browsing is also provided on the 
AgAbDb website. 

  Note : It is advisable to use keyword-based searches when either the 
antigen or the antibody is known. One can quickly view Ag–Ab 
interactions, if the PDB ID is known. AgAbDb, however, is the 
only database which facilitates querying of AgAb interactions using 
residues of epitope, paratope, or both.  

  AgAbDb archives data of antigens, antibodies, and molecular 
interactions under eight categories, viz. Summary, IR: Epitope- 
Paratope, IR: Epitope Segments, Binding Site: IR + BR, Atomic 
Level Interactions, Water-Mediated Interactions, View Interactions, 
and Statistics. The tables displaying interaction data under each of 
these eight categories can be exported as Excel fi les. The complex, 
binding site residues of antigen and antibody along with subsets of 
various interactions can be visualized using Jmol (  http://www.
jmol.org/    ). The snapshots of screens based on eight categories are 
shown in Fig.  5 . AgAbDb records for a complex of the antibody 

4.4  AgAbDb: Data 
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  Fig. 3    Distribution of co-crystal structures of antigen–antibody complexes based 
on resolution       
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  Fig. 4    Snapshots of various search strategies in AgAbDb       

  Fig. 5    Snapshots of various data archived in AgAbDb. The PDB ID: 1A14 (complex of neuraminidase and anti-
body NC10) is used as a case study       
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NC10 Fv and neuraminidase from infl uenza virus ([ 39 ], PDB ID: 
1A14) are shown. AgAbDb uses PDB ID as a unique identifi er to 
archive interaction data.

    This section provides overall information of the complex, the 
 antigen, and the antibody. Data are curated from the PDB and 
typically lists PDB ID, PubMed ID, resolution, release date, and 
citation information. The data on antibody includes name, class/
type, scientifi c and common names of the source, and the PDB 
chain identifi ers for light and heavy chains. The data on antigen 
includes name, scientifi c and common names of the source, anti-
gen type (protein or peptide), and the PDB chain identifi ers. 

  Note : The data on class/type of the antibody, if available in the 
PDB, is curated. It is observed that class/type of antibody is men-
tioned only occasionally in the PDB.  

  This section lists all the interacting residues of the binding sites. 
The residues of antibody (paratope) that are interacting with the 
residues of antigen (epitope) are provided. For example, the num-
bers of interacting residues of paratope (NC10 Fv) and epitope 
(neuraminidase) are 12 and 17, respectively (PDB ID: 1A14). The 
paratope residues are listed with chain type (heavy or light chain), 
PDB numbering, and Kabat numbering. It is preferred to have 
both the numbering systems and their equivalence known as far as 
antibody numbering is concerned. The table also lists equivalence 
between the interacting residues of the antigen and antibody. This 
is one of the unique features of AgAbDb. It is very useful and 
facilitates interesting analyses as a residue may interact with one or 
more residues. The residues of both antigen or antibody having 
minimum and maximum contacts can be identifi ed. For example, 
Asn400 of the antigen interacts with two residues of CDR2 and 
one residue of CDR1 of heavy chain. Identifi cation of such impor-
tant residues or hot spots may have applications in mutation 
 analysis, which is a prerequisite for designing antigen scaffolds 
and/or peptide/subunit vaccines. Other immunoinformatics 
resources, viz. IEDB-3D and IMGT/3Dstructure-DB, do not 
provide the list of pairs of interacting residues in an explicit fashion. 
Generation of such a list using these resources calls for processing 
of the data through multiple steps. The “IR: Epitope-Paratope” 
table also lists secondary structural states of interacting residues of 
antigen, which are obtained from DSSP assignments [ 37 ]. Analysis 
pertaining to preference of secondary structural states of antigens 
has always been the area of interest and has been used effectively in 
epitope prediction programs. 

  Note : AgAbDb curates data of binding sites and interactions parsing 
the coordinate data and not by mining the text of published refer-
ences. It was observed that there are a lot of variations in the way in 
which the authors have listed epitope and paratope residues and 
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interactions in the published papers. Some publications listed only 
the interacting residues, while others listed both interacting and bur-
ied residues. Furthermore, it was noted that different programs and 
varied criteria are being used by the authors to enlist residues of 
binding sites. Hence, for the purpose of objectivity and uniformity in 
defi ning binding site residues, all the complexes were parsed through 
the program, AAIF, which is developed in-house. Other resources, 
viz. IEDB-3D, provide both “curated” and “calculated” contacts.  

  This section enlists the segments of the binding site. Antibody- 
binding site of antibody NC10 characterized in PDB ID: 1A14 
consists of four segments and three individual residues. Most often 
antibody-binding sites on antigens are conformational epitopes, 
where multiple sequential epitopes and a few individual residues are 
brought together due to the folding of polypeptide chain. The seg-
ments or the sequential epitopes are defi ned where consecutive 
amino acids (at least two) are a part of the binding site. The confor-
mational epitope prediction (CEP) server, the fi rst program to pre-
dict conformational or discontinuous epitopes, developed by our 
group (  http://bioinfo.net.in/cep.htm     or   http://117.239.43.116/
index.html    ), successfully used the distance- based criteria to predict 
conformational epitopes using sequential epitopes and individual 
residues [ 29 ,  30 ]. 

  Note : Various resources may use different criteria and cutoffs for 
listing segments, sequential epitopes, and hence conformational 
epitopes.  

  This section lists all the residues of the respective binding sites of 
the antigens and antibodies. Separate tables for antigen and anti-
body molecules are generated. In addition to the interacting 
 residues, several residues of epitope are buried under the footprint 
of an antibody. Such residues are a part of the binding site scaffold 
and may not directly interact with residues of CDRs and LDRs 
of an antibody. Similarly, CDR and LDR also have only a few inter-
acting residues while the other residues forming the scaffold, 
though not interacting explicitly, are used to calculate the area of 
interface of antibody with antigen. 

  Note : It is advisable to know the composition of both the  epitope 
and paratope in terms of interacting and buried residues for a vari-
ety of purposes and applications.  

  This section displays various non-covalent interactions between 
residues of the epitopes and paratopes. For example, NC10 anti-
body (PDB ID: 1A14) has about 107 non-covalent interactions of 
the types such as salt bridges (1), hydrogen bonds (7), short van 
der Waals interactions (2), and van der Waals interactions (97). 
These interactions are curated using the program AAIF. 

4.4.3  IR: Epitope 
Segments

4.4.4  Binding Site: 
IR + BR

4.4.5  Atomic Level 
Interactions
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  Note : Though several programs are available for characterizing 
various interactions between residues of antigen and antibodies, it 
calls for analysis that requires pre- and post-processing. Curation 
and summary of residues involved in non-covalent interactions is a 
value added feature of AgAbDb.  

  This table lists the interactions mediated through crystallographic 
water molecules. It is known that the water molecules are observed 
in cavities of binding sites of antigens and antibodies. Such trapped 
water molecules often form bridging hydrogen bonds between the 
antibody and antigen. AgAbDb now provides a utility to enlist 
water-mediated interactions. 

 Note : Since there are no trapped water molecules in the complex of 
NC10 and neuraminidase (PDB ID: 1A14), a snapshot of this 
table is not included in Fig.  5 .  

  This section provides a residue-wise summary of various inter-
actions. Separate tables are provided for the antigen (epitope) and 
antibody (paratope), which list the residues that contribute maxi-
mally to the antigen–antibody interactions. This section provides a 
summary of interactions for every residue and includes data on the 
total number of interactions, which is a sum of the total number of 
hydrogen bonds, van der Waals interactions, and salt bridges. The 
table also lists the total number of residues (from the partner mol-
ecule) with which a given residue is interacting. This section also 
helps to quickly enlist which of the 20 amino acids are parts of 
the paratope and epitope. For example, NC10 antibody CDRs 
have only 7 (S, T, N, F, L, D, Y) amino acids whereas the neur-
aminidase epitope has 11 (S, K, T, N, G, A, D, I Y, P, W) amino 
acids as characterized in the complex 1A14 [ 39 ]. 

 AgAbDb also helps in analyzing how every CDR partici-
pates in binding to the epitope. This utility is provided under the 
“Search” option on the main menu bar. Three CDRs on light 
chain are termed as LDR 1–3. There are three LDRs (light chain) 
and three CDRs (heavy chain). Since the PDB numbering may or 
may not be in accordance with the position of a given residue in 
sequence and/or Kabat scheme of numbering, AgAbDb provides 
equivalence between PDB and Kabat numbering. “CDR statistics” 
for NC10 antibody (PDB ID: 1A14) reveals that two of the six 
CDRs such as LDR2 and CDR1 do not participate in the antigen 
binding at all. The LDR1, LDR3, CDR2, and CDR3, respectively, 
have 2, 4, 3, and 3 residues interacting with various residues of 
the antigen. Of the 107 total interactions, 25, 34, 27, and 21 
interactions are contributed by LDR1, LDR3, CDR2, and CDR3, 
respectively. Thus, AgAbDb can be used to perform various 
queries and to study the multiple aspects of antigen–antibody 
interactions.  

4.4.6  Water-Mediated 
Interactions

4.4.7  Statistics
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  AgAbDb is updated every week. Curation of antigen–antibody 
interaction data of the antigens other than proteins and peptides is 
under process. The interaction data of the antigens such as small 
molecules, carbohydrates, RNA, and DNA will be curated and 
made available in future.       
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    Chapter 9   

 Allergen Databases 

           Gaurab     Sircar    ,     Debasree     Sarkar    ,     Swati     Gupta     Bhattacharya     , 
and     Sudipto     Saha    

    Abstract 

   In this chapter, fi ve popular allergen databases have been described: (1) Allergome is based on basic and 
clinical information on allergens causing an IgE-mediated disease; (2) AllergenOnline allows online search 
of peer-reviewed allergen list; (3) International Union of Immunological Societies Allergen nomenclature 
subcommittee database contains systematic nomenclature and molecular details of well-characterized 
 allergens; (4) AllFam allows classifying allergens into protein families based on domain information; and 
(5) SDAP provides in detail structural information of the allergens.  

  Key words     Allergen nomenclature  ,   IgE-mediated disease  ,   Domain  ,   3D structure  

1      Introduction 

 Allergens are basically nonparasitic antigens capable of triggering a 
type-I hypersensitivity reaction in individuals with genetic predispo-
sition to allergy. This immune response is mediated by inappropriate 
production of immunoglobulin E (IgE). The hereditary tendency 
of an individual to make IgE derived from plasma cells in response 
to stimulation of Th2 cells by common environmental allergens. 
There are many different types of allergens that could trigger an 
allergic reaction and may require clinical care. The common sources 
of allergen are dust mite excretion, pollen, latex, mould, insect 
stings, and some foods including peanuts, seafood, and shellfi sh. 
There are certain important features that make an antigen to be 
allergen: (1) can induce Th2 type response, (2) activation of IL-4-
producing CD4+ T cells, and (3) contains peptides that bind host 
MHC class II molecule to prime T cells [ 1 ,  2 ]. Clinico-immunological 
and molecular data related to allergy and allergens are increasing 
with advancement of genomic and proteomic technologies. 
Sequences and three-dimensional structures of several potential 
food and aeroallergens have been determined in recent years. 
Information related to allergens is stored in specialized databases 
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and repositories to support allergy research [ 3 ]. Basically, allergen 
databases can be classifi ed into two types [ 4 ]: (A) Biological data-
base, which provides only clinical or physiological information about 
allergens: It may not contain molecular information. Some of the 
examples of this class are Allergome (  http://www.allergome.org/    ), 
Informall (  http://farrp.unl.edu/resources/gi-fas/informall    ), and 
AllAllergy (  http://allallergy.net/    ). (B) Molecular databases, which 
focused on sequences and structures of allergens: International 
Union of Immunological Societies (IUIS) allergen nomenclature 
subcommittee, Allergen Database for Food Safety (ADFS) (  http://
allergen.nihs.go.jp/ADFS/    ), Allergen Online (  http://allergenonline.
com    ), AllerMatch (  http://www.allermatch.org    ), and Structural 
Database of Allergen Proteins (SDAP) (  http://fermi.utmb.edu/
SDAP/sdap_ver.html    ) are some of the molecular databases. In this 
 chapter, we discuss about fi ve commonly used allergen databases of 
which the fi rst one is a biological database (Allergome) and the 
remaining four are molecular databases (AllergenOnline, IUIS aller-
gen nomenclature database, AllFam, and SDAP) ( see   Note 1 ).  

2    Materials and Methods 

   The Allergome Database is available at   http://www.allergome.
org/    . The web version 4.0 is free, but a registration is required and 
users need to choose a username (max 16 spaces) and a password 
(max 16 characters). The menus are in the top side of the page 
and are interlinked [ 5 ,  6 ]. Followings are the brief description of 
menus. 

  It links to the home page of Allergome and allows access to the 
following menus: allergens, real-time monitoring of IgE sensitiza-
tion (ReTiME), RefArray, Tools, History, and statistics. Access to 
historical copies of the database needs registration, and new users 
need to log in for further access.  

  This menu allows to access search engine of Allergome. In this 
search page, users can input query in the allergen database. There 
are two types of search: (1) quick search and (2) advanced search. 
Details of the two searches are described in Subheading  2.1.2 .  

  The “ReTiME” links to a module created to acquire and store real- 
time data related to IgE sensitization.  

  RefArray is a module created to access the references in the 
Allergome reference archive that contains all the processed papers 
available from the literature.  

  Allergome aligner allows comparing query sequence with the 
Allergome sequence dataset.  

2.1  Allergome 
Database

2.1.1  Description 
of Allergome Database

 Allergome Home

 Allergens

  ReTiME

 RefArray

  Tools
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  History page allows access to historical copies of the allergome 
database, starting from the year 2005.  

  The number of allergen sources and its composition available in 
Allergome database starting from 2005 are available in this link. 
The updated version on March 20, 2013, contains 2,275 entries.  

  It contains updated links to events, scientifi c associations, and 
journals.  

  This page contains general information about the database menus 
and how to use it. There are other information related to specifi ca-
tion and requirements for accessing the data from Allergome.   

   There are two ways to search the database: (1) quick search and (2) 
advanced search. The query forms have been shown in    Fig.  1a, b .

     (A)    In the “Quick Search” page, users can search the scientifi c or 
common name of the allergen source or the common name 
or IUIS defi ned name or Allergome code of the allergen mol-
ecule ( see   Notes 2  and  3 ).   

   (B)    The Allergome search engine retrieves monographs, which 
contain all the entries showing matches with words being 
searched for (i.e., “pollen birch” will list all the monographs 
containing both the words).   

   (C)    In the “Advanced Search,” fi elds are considered as a single 
string of character (i.e., “ Dermatophagoides farinae ” does not 
retrieve allergens of the “ Dermatophagoides pteronyssinus ” 
species).   

   (D)    Users can perform advanced search on “All” the archives of the 
Allergome database (default choice in the Select-a-fi eld from 
pop-down menu). This search may be slower, but searches 
for the queried text in any part of the Allergome database. 
Alternatively, a specifi c archive may be selected if the term 
being searched for is known to be in that archive (e.g., term 
“Pollen” in the “Tissues” archive).   

   (E)    Users can also perform a refi ned advanced search by using 
Allergenicity Scoring parameters like Species of Interest, Data 
Generation, Sequence, and Epidemiology from Literature.    

    In the output, each allergen molecule is described in a monograph 
that includes general features of the allergen and data on allergenic-
ity of the native and cloned molecule. An example of an allergen 
monograph is shown in Fig.  1c . The monograph is divided into 
three parts: (1) The “General Information” page contains data for 
the identifi cation of the allergen and its relationship with other aller-
gens within the Allergome. (2) The “Native Form” page contains 

 History

 Statistics

  Links

  Help

2.1.2  Usage of Allergome 
Database

2.1.3  Query Result 
of Allergome
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  Fig. 1    Screenshots of Allergome ( a ) query submission form for “Quick Search”; ( b ) form for “Advanced Search”; 
( c ) example of a molecule monograph         

 

Gaurab Sircar et al.



169

data on allergenicity of the allergen in its natural conformation. 
(3) The “Recombinant Form” page(s) contains (contain) data on 
allergenicity of the allergen obtained by means of molecular biology 
techniques. “Recombinant Form” pages are named by the expres-
sion vector used to produce the recombinant molecule.   

   The AllergenOnline database is accessible at    http://www.allerge-
nonline.org/    .     The version 13 as on February 13, 2012, contains 
1,630 peer-reviewed sequences and 612 taxonomic  protein groups 
[ 7 ]. The menus are on the left side of the page and are interlinked. 
Following are the brief description of menus. 

  It links to the home page of AllergenOnline, and it describes briefl y 
about the features and tools available in the database. There are 
other information related to tools and contact of peer reviewers.  

  This page shows the brief overview about the AllergenOnline data-
base, including processing data entries and references.  

  It shows the e-mail address of the database developers.  

  It allows the user to access all the entries in one page. The data is 
presented in eight columns: species, common name, IUIS Allergen, 
type, group, length, GI number, and version release number. There 
are fi lters in each column for quick search. More details about this 
query page are described in Subheading  2.2.2 .  

2.2  AllergenOnline 
Database

2.2.1  Description 
of the AllergenOnline 
Database

 AllergenOnline Home

 About AllergenOnline

 Contact Page

 Browse the Database

Fig. 1 (continued)
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  This page shows statistics of previous and current version, release 
date, sequences, groups, and species listed in the database.  

  This menu allows the user to perform query search using one or 
more protein sequences in FASTA format. More details about this 
query page are described in Subheading  2.2.2 .  

  It links to other related databases.  

  It links to Food Allergy Research and Resource Program home 
page.  

  It links to a tool of celiac disease risk assessment of novel protein 
and allows users to browse by peptides, references, and proteins. 
In addition, it also allows sequence search by exact peptide match 
and full FASTA sequence.   

    There are two ways to search the database: (1) browse entries and 
(2) sequence search.

    (A)    For browsing all the AllergenOnline database entries, click on 
the “Browse the Database” hyperlink under the “Navigation” 
options along the left-hand side of the home page.   

   (B)    A summary page containing an outline of the whole database 
is displayed in a table with the following columns: Species, 
Common, IUIS Allergen, Type, Group, Length, GI number, 
and Version release number. Under each column, a blank fi eld 
allows fi ltering of the table by that column using a particular 
keyword (e.g., fi ltering with the keyword “ Actinidia chinensis ” 
in the “Species” column lists all the entries in the database for 
that particular species).   

   (C)    Clicking on each of the entries in the “Group” column opens 
new window containing information about the published ref-
erences used to classify the protein as an allergen as well as the 
individual sequences clustered into the group.   

   (D)    Clicking on the “gi” number for each entry opens the page 
containing the complete NCBI entry of that particular 
protein.   

   (E)    For sequence search option, click on the “Sequence Search 
allergen Database” hyperlink under the “Navigation” options 
along the left-hand side of the home page.   

   (F)    Users can enter one or more protein sequences in FASTA for-
mat and use any one of the search method options: (1) Full 
FASTA, (2) Sliding 8mer window, and (3) 8mer exact search.      

  The page displaying the entries by browsing options in the 
AllergenOnline database is shown in Fig.  2 . It contains informa-
tion about the Allergen Source (columns “Species” and “Common” 

 Version History

 Sequence Search 
Allergen Database

 Database and GMO

 FARRP Home

 Celiac Disease

2.2.2  Usage 
of AllergenOnline Database

2.2.3  AllergenOnline 
Database Query Result
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enlisting the scientifi c and common names of the source organism, 
respectively), IUIS Allergen Nomenclature, Type of Allergen (e.g., 
aero, plant, food animal, venom, or salivary), Allergen Groups and 
References describing the evidence of allergenicity for the group, 
and the length and NCBI gi number of the allergen molecule 
and the database version in which the specifi c allergen was 
entered. Sequences of allergens are compiled in a table under 
 “species,” shown in the left-hand column (scientifi c name: genus 
and  species). The common name of the source is also listed. Each 
sequence is listed separately, and there can be multiple different 
isoforms or partial sequences for a single type of allergen (e.g., 
 Actinidia  deliciosa   Act d 1). IUIS designation or name is shown if 
known. The allergen “Group” is linked to more information 
including the published references describing the information used 
to classify the protein as an allergen as well as the individual 
sequences clustered into the group. The gi number in the table of 
allergens is hyperlinked to the NCBI page to display the complete 
NCBI entry. For groups with multiple sequence entries, all entries 
and gi numbers are listed along with the publication references. 
The references may apply to a single sequence or to one or more 
sequences in the group. In some cases, they provide information of 
the allergenicity of the source. Additional columns supply informa-
tion on the number of amino acids in the allergen protein sequence 
and the database version in which the specifi c allergen was entered. 
In case of sequence query search, the expected result is the best hit 
protein name based on high  Z  score, percentage of identity, and 
similarity values.

  Fig. 2    Screenshot of AllergenOnline database       
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       The IUIS subcommittee has proposed a unique, unambiguous, and 
systematic nomenclature of well-characterized allergenic proteins 
published in peer-reviewed journals and maintains a database, 
which is available at   http://www.allergen.org/    . This database 
contains all the allergens offi cially approved by World Health 
Organization (WHO) and IUIS [ 8 – 10 ]. The menus are on the top 
side of the page and are interlinked. Following is the brief descrip-
tion of menus. 

  It links to the home page of IUIS Allergen Nomenclature Subcommittee 
database. It contains a brief description of the database and also allows 
users to search the database by allergen name and source.  

  It links to query page and allows users to search by (1) IUIS name 
of the allergen, (2) allergen source (scientifi c name or common 
name), and (3) major taxonomic group in the form of drop-down 
box for example “Plantae Liliopsida,” which can further be fi ltered 
by orders from respective drop-down menu. Figure  3a  shows the 
search form for the database.

     This menu links to “Tree view” page that has an updatable list of 
allergens with their offi cial nomenclature arranged according to 
Linnaean system, viz. kingdoms—Plantae, Fungi, and Animalia; 
each is further subdivided into relevant orders containing link to 
the list of allergenic source organisms.  

  This page contains the allergen nomenclature publication list.  

  This page contains WHO/IUIS allergen standardization  committee 
member list.  

  This page contains IUIS executive committee member address list 
including chairman, secretary, and committee members.  

  This page allows users to submit a new allergen to the IUIS aller-
gen nomenclature database.  

  It allows members to log in to the IUIS database.   

      (A)    Users can search by allergen name and by allergen source 
(common or scientifi c name).   

   (B)    Alternatively, the major taxonomic group of the source organ-
ism may be selected from the drop-down box to retrieve a 
list of allergenic molecules from organisms belonging to that 
group. An example of such a list is shown in Fig.  3b . This list 
may be fi ltered by choosing the taxonomic order of the organ-
ism from the next drop-down menu.   

   (C)    Users can get detailed information of each allergen molecule 
by clicking on the allergen name.      

2.3  IUIS Allergen 
Nomenclature 
Subcommittee 
Database

2.3.1  Description 
of the IUIS Allergen 
Nomenclature 
Subcommittee Database

 Home

 Search

 Tree View

 Publications

 Standardization

 Executive Committee

 Submission Form

  Log-In

2.3.2  Usage of the IUIS 
Allergen Nomenclature 
Subcommittee Database
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  Fig. 3    Screenshots of IUIS Allergen nomenclature subcommittee database ( a ) query submission form; 
( b ) results of a broad search with only the major taxonomic group of the source organism selected from the 
drop- down menu; ( c ) the page containing detailed information about a particular allergenic molecule         
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  An example of the output containing details of the allergen queried 
is shown in Fig.  3c . The search result shows additional information 
such as biochemical name, molecular weight of the allergen, and 
allergenicity evidence in terms of IgE binding property of native 
and recombinant allergen, basophil test, and histamine assay. Each 
entry may also contain a list of isoallergens approved and num-
bered accordingly by IUIS. Each of these entries has external link 
to GenBank, UniProt sequence data through corresponding acces-
sion number, and, if available, the PDB IDs. These entries also 
contain external links to PubMed references.   

   AllFam is available online at   http://www.meduniwien.ac.at/allergens/
allfam/    . All the allergens in AllFam were assigned and classifi ed to 
corresponding Pfam families. There are 1,091 allergens, out of 
which 995 were assigned to 186 AllFam families [ 11 ]. The menus 
are on the left side of the page and are interlinked. Following is the 
brief description of menus. 

2.3.3  IUIS Allergen 
Nomenclature 
Subcommittee Database 
Query Result

2.4  AllFam Database

2.4.1  Description 
of the AllFam Database

Fig. 3 (continued)
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  It links to home page of AllFam, a database of allergen families. 
It describes AllFam statistics and how to use AllFam database and 
AllFam news.  

  This page links to query page of the database. It allows users to 
search by two options: (1) Get AllFam family chart and (2) search 
by allergen families. Detailed information about query search of 
AllFam database is available in Subheading  2.4.2 .  

  This page links to information about AllFam database including 
background, how AllFam was created, how to cite AllFam, and the 
AllFam team.  

  This page links to information about AllFam construction and 
algorithms, AllFam user interface, problems, and errors.  

  This page links to papers citing AllFam database.   

       (A)    The menu “Browse/search AllFam” allows users to access the 
query submission form as shown in Fig.  4a . There are two 
search options: (1) Get AllFam family chart and (2) search by 
allergen families.

       (B)    In the “Get AllFam family chart” option, users can browse all 
the AllFam data by clicking in the “Browse AllFam” button. 
The output result is a list of all the protein family names along 
with the number of allergens in each family. The search can be 
restricted by allergen source or route of exposure to be selected 
from the respective drop-down menu.   

   (C)    Users can get detailed information for each allergen by clicking 
on the allergen name in the listed allergen name.   

   (D)    In “Search for allergen families” option, users can search AllFam 
database by Pfam ID, AllFam ID, and keywords. For example, 
the keywords “inhalant fungal allergens” gave output with a list 
of 64 AllFam families containing total 132 allergens.      

  The AllFam Allergen Family Chart output page is shown in 
Fig.  4b . Each allergen family has two links. The one with the 
“Fact sheet” links to the page containing information about cor-
responding Pfam ID, biochemical properties of the allergenic 
protein, and their allergological signifi cance along with references 
as shown in Fig.  4c . “List allergens” links to a new page display-
ing the list of allergens reported under that specifi c allergen fam-
ily as shown in Fig.  4d . In that list, the allergens are arranged with 
their corresponding IUIS name, source organism, and routes of 
exposure. In addition, the output page links to Allergome and 
IUIS databases.   

 AllFam Home

 Browse/Search AllFam

 About AllFam

 FAQ

 Papers Citing AllFam

2.4.2  Usage 
of the AllFam Database

2.4.3  AllFam Database 
Query Result

Allergen Databases
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  Fig. 4    Screenshots of AllFam ( a ) query submission form; ( b ) output page showing AllFam Allergen Family Chart; 
( c ) “Fact sheet” of a protein family; ( d ) page containing list of all allergens from a particular protein family         

   The SDAP database is available from   https://fermi.utmb.edu/
SDAP/     and contains information of 1,526 allergens, out of which 
92 allergens have PDB structures [ 12 ,  13 ]. It is free for academic 
and nonprofi t use; however licenses for commercial use can be 
obtained by contacting W. Braun (webraun@utmb.edu). This data-
base also provides prediction tools for allergens including FAO/
WHO allergenicity test and IgE epitopes. The menus are on the 
left side of the page. Following is the brief description of menus. 

2.5  Structural 
Database of Allergenic 
Proteins Database

2.5.1  Description 
of the SDAP Database
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Fig. 4 (continued)
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  It links to the home page of SDAP, which allows browsing of 
 allergens alphabetically and provides links for citation and 
recent developments. At the top of the page, it also provides 
option to go and search “SDAP all proteins” and “SDAP food 
allergens.”  

 SDAP Home Page

  Fig. 5    Screenshots of SDAP ( a ) query submission page;    ( b ) output page showing alphabetical listing of aller-
gens; ( c ) sample output page containing detailed information on the allergen molecule         
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Fig. 5 (continued)

  This page provides information about the content of SDAP 
 database including the lists of allergens, list of allergens with 
 protein sequences, list of allergens with PDB structures, list of 
allergens with 3D models, list of allergens with IgE epitopes, and 
list of allergens with Pfam classes. This page also allows browsing 
of allergens alphabetically.  

  These menus allow users to search SDAP all allergens and SDAP 
food allergens. Detailed information about its usage is available in 
Subheading  2.5.2 .  

  There are many important web tools including FAO/WHO 
 allergenicity test, FASTA search in SDAP, peptide match, peptide 
similarity, peptide-protein PD index, AllerML (markup languages 
for allergens), and SDAP list available in this links.  

  It links to pages about general information, manual, FAQ, publica-
tions list, team, and advisory board members of SDAP database.  

  This page links to other important allergy-related databases.  

  There are many other software tools available including homology 
modelling, energy minimizations, calculation of solvent-accessible 
areas, and mapping of conformational epitopes.  

  These are links to important protein databases including PDB, 
NCBI-Entrez, SWISS-PROT, and PIR.  

 SDAP Overview

 Use SDAP (SDAP 
All and SDAP Food)

 SDAP Tools

 About SDAP

 Allergy Links

 Other Software Tools

 Protein Databases Link
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  These are links to important protein classifi cations including 
CATH, ProtoMap, TOPS, and VAST.  

  These are links to popular bioinformatics servers.  

  These are links to macromolecular structural views tools.  

  This page links to bioinformatics.ca, which provides information 
about Canadian bioinformatics workshops.   

       (A)    Users can search the database by the left panel menu “Use 
SDAP” and also by clicking on top menu links “SDAP All aller-
gens” or “SDAP Food allergens.” The snapshot of the “SDAP- 
All allergens” search page is shown in Fig.  5a  ( see   Note 2 ).

       (B)    The query search allows users to search a term or a phrase. 
It provides a fi lters search by choosing any of the selected fi elds: 
Allergen—scientifi c name; Source—scientifi c name; Source—
common name; Allergen description.   

   (C)    It also allows users to browse the data according to the fi rst 
letter of the allergen name arranged alphabetically from the 
home page.   

   (D)    Users can get full detailed information about sequence and 
structure of each allergen by clicking in the allergen name from 
the search results.      

  Each search result will appear as a tabular list of allergens along 
with their homologues in a new page. The list contains preliminary 
information on allergens including its IUIS status and the 
 biochemical nature of the protein under the heading “Keywords.” 
All information about the allergens starting with the alphabet “A” 
is displayed in Fig.  5b . Users can browse more detailed information 
of each allergen; for example information on “allergen Aca s 13” is 
shown in Fig.  5c .    

3    Notes 

        1.    The users can download all the entries from the search result, 
registration may be required, and users need to choose a user-
name and a password.   

   2.    The default values set for query search were the optimized val-
ues and can be changed by the users.   

   3.    The database searching is not case sensitive.         

 Protein Classifi cation Link

 Link to Bioinformatics 
Servers

 Link to Bioinformatics Tools

 Other Bioinformatics Links

2.5.2  Usage of the SDAP 
Database

2.5.3  SDAP Database 
Query Result
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Chapter 10

Prediction of Conformational B-Cell Epitopes

Wen Zhang, Yanqing Niu, Yi Xiong, and Meng Ke

Abstract

Conformational B-cell epitopes play an important role in the epitope-based vaccine design. The increase 
of available data promotes the development of computational methods. Compared with the wet experi-
ments, the computational methods are faster and more economic. In the past few years, a number of 
computational methods (especially the machine learning-based methods) have been developed to predict 
the conformational B-cell epitopes. In this chapter, we introduce important data resources and computa-
tional methods, which are publicly available. Moreover, we introduce our ensemble learning-based method 
that can predict the conformational epitopes from sequences. These promising methods may assist immu-
nologists in identifying potential vaccine candidates.

Key words Conformational B-cell epitopes, Machine learning, Epitope-based vaccine design

1 Introduction

Antigen–antibody interaction is a critical event in the immune 
 process, which may elucidate the underlying mechanism of  
immune recognition [1–4]. The sites on antigens recognized and 
bound by B cell-produced antibodies are well known as B-cell epi-
topes. The location of B-cell epitopes is useful for synthesizing 
peptides that can elicit the immune response with specific cross-
reacting antibodies. For this reason, the identification of B-cell 
 epitopes facilitates the design of the potentially safer peptide-based 
vaccines. B-cell epitopes can be classified into two categories: linear 
(continuous) epitopes and conformational (discontinuous) epitopes. 
Linear epitopes are formed by continuous amino acid sequences, 
while conformational epitopes consist of residues that are distantly 
separated in the sequences but spatially proximal.

In the last decade, the increase of available data promotes the 
development of computational methods, which may be fast and 
economic [5]. Although the majority of all epitopes (about 90 %) 
are conformational, the study began fairly late. In the prediction 
work, there are several definitions ever used for the conformational 
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epitopes inferred from the X-ray structures of antigen–antibody 
complexes. By definitions, the epitope residue is an antigen residue 
with area loss upon antibody binding more than a given threshold 
or an antigen residue separated from any antibody residue by a 
Euclidean distance less than 4 Å. The study revealed that these 
definitions do not make significant difference. Here, we must 
emphasize that the epitopes in the computational work are not 
functional but structural, and structural epitopes cannot definitely 
lead to the immune response. Currently, the prediction of func-
tional epitopes is a tough task. Thereafter, the epitopes mean the 
structural epitopes.

Although some protein docking methods (such as Patch Dock 
[6] and ClusPro [7]) can be used to predict conformational epit-
opes, these methods are different from those which are specially 
designed for the conformational epitope prediction. The docking 
methods require the structures of both antigens and antibodies  
to make prediction, while the specially designed methods attempt 
to predict the epitopes from antigens in the absence of antibodies.

CEP is the pioneering method proposed for the prediction of 
conformational epitopes [8], which uses the residue solvent acces-
sibility. DiscoTope [9] exploits the surface accessibility, spatial 
information, and amino acid statistics information to identify 
 epitopes. PEPITO [10] combines amino acid propensities and 
half- sphere exposure values at multiple distances to make predic-
tion. ElliPro [11] uses Thornton’s propensities and residue cluster-
ing to make prediction. In SEPPA [12], two concepts, “unit patch 
of residue triangle” and “clustering coefficient,” are introduced  
to describe the local spatial context and spatial compactness. 
EPITOPIA [13] combines structural and physicochemical features 
and then adopts naive Bayes classifier to make prediction. EPCES 
[14] uses the consensus score of several structural and physico-
chemical terms. EPSVR [15] uses support vector machine (SVM) 
and combines various features for prediction. EPMeta [16] is a 
meta method combining the predictions from several existing serv-
ers. Liu et al. [17] adopted the logistic regression to predict the 
conformational epitopes. We [18] proposed a random forest-based 
method by dealing with the imbalanced dataset and combining 
various features. Above methods construct the prediction models 
based on antigen structures.

Although a great number of structure-based methods have been 
developed, their application is undermined by the limited number 
of available structures, and the experimental techniques that deter-
mine structures are costly and time consuming. Instead of making 
predictions from structures, Ansari et al. made the first attempt on 
sequence-based conformational epitope prediction [19]. Gao et al. 
developed a method based on averaging selected scores generated 
from sliding 20-mers by SVMs [20]. Recently, we proposed an 
ensemble learning model using the antigen sequences [21].

Wen Zhang et al.
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2 Materials

 (a) Immune Epitope Database (IEDB) (http://www.iedb.org/) 
[22] can provide a highly annotated set of B-cell epitopes 
curated from crystal structures of antigen–antibody complexes.

 (b) Conformational Epitope Database (CED) (http://immunet.
cn/ced/) [23] collected the conformational epitopes  thoroughly 
sourced from articles published in the peer-reviewed journals. 
Initially, references were obtained by exhaustive querying on 
PubMed and ScienceDirect. The references were further manu-
ally filtered to annotate conformational epitopes.

 (c) AntiJen [24] is a database with the published experimentally 
determined conformational B-cell epitopes (http://www. 
ddg- pharmfac.net/antijen/).

In the conformational epitope prediction, the antigen–antibody 
complexes are analyzed to annotate the binding sites (epitope 
 residues) on the antigens, and then only the antigens (structures or 
sequences) are used to develop the prediction models.

Several datasets are widely used in the conformational epitope 
prediction. The structure datasets can be classified into two kinds: 
bound dataset and unbound dataset. A bound dataset consists  
of the antigen–antibody complex structures, and the epitopes on 
antigen are annotated according to the definition of the conforma-
tional epitope. Then, the structures of the antigens are directly 
extracted from the complexes for modeling. An unbound dataset 
consists of complex structures and unbound structures of antigens. 
Annotated epitope residues on complexes (calculated according to 
the definition) are aligned to the residues on unbound structures 
of antigens. Then, the unbound antigen structures are used for 
modeling. One popular bound dataset is published by Rubinstein, 
which consists of 66 non-redundant complex structures, available 
at http://epitopia.tau.ac.il/trainData/. Liang’s unbound dataset 
including 48 complexes and the unbound structures of antigens 
are available at http://sysbio.unl.edu/services/. The antigen 
sequences can be extracted from the antigen–antibody complexes 
for the sequence-based prediction. Ansari et al. published bench-
mark sequence datasets available at http://www.imtech.res.in/
raghava/cbtope/supple.php.

3 Method

In this section, we introduce widely used conformational epitope 
prediction methods and their public servers (see Note 1).

2.1 Database

2.2 Dataset

Prediction of Conformational B-Cell Epitopes
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DiscoTope [9] is a structure-based method for conformational 
 epitope prediction. The method uses the amino acid propensity 
(Parker hydrophilicity scale), spatial information (contact num-
bers), and surface accessibility to make prediction.

Parker hydrophilicity scale is an amino acid propensity, which 
can be obtained from AAIndex database. The residue contact 
number is the number of Cα atoms in the antigen within a distance 
of 10 Å of the residue Cα atom. The relative solvent-accessible 
surface area per antigen residue is calculated using the NACCESS 
program with a probe radius of 1.4 Å.

Given an antigen–antibody complex structure, the contact 
number score and surface accessibility score of each antigen resi-
due are calculated. Here, the Parker hydrophilicity score of each 
residue is calculated over a smoothing window of seven residues. 
For a candidate residue, the weighted sum of the Parker hydrophi-
licity score, contact number score, and surface accessibility score is 
used for prediction. According to a preset threshold, the residue  
is predicted as epitope or non-epitope.

The web server of DiscoTope is available at http://www.cbs.
dtu.dk/services/DiscoTope/. The users can use the PDB IDs of 
antigen–antibody complexes or the PDB files as input, and the 
server will return the prediction results. Users can specify the 
threshold for epitope identification.

For a given structure, a patch of 20 amino acids is constructed 
around each solvent-accessible antigen residue. Rubinstein et al. 
statistically evaluated a wide range of amino acid physicochemical 
and structural-geometrical properties [13]. These properties are 
(1) the ratio between the frequencies of some amino acid types in 
the patch and the remaining antigen surface, (2) the ratio between 
the frequency of helix secondary structures in the patch and the 
remaining antigen surface, (3) the average relative accessibility of 
the patch to the solvent, (4) the average accessibility of the patch, 
(5) the average curvature of the patch atoms, and (6) several amino 
acid propensities.

Then, Rubinstein et al. use the feature selection technique to 
obtain the optimal property subset. Starting with all properties, 
one property for which the deletion had the least effect on predic-
tion accuracy is removed at each iteration. Finally, the subset of 
properties with the highest number of successful predictions was 
selected as the optimal set. The optimal property subset is used to 
represent patches as feature vectors. Then, naive Bayes is used  
as the classification engine to build prediction model. Thus, a 
server named “Epitopia” is constructed to predict conformational 
epitopes.

Epitopia is available at http://epitopia.tau.ac.il. Users can 
enter the PDB ID or upload the PDB file for prediction.

3.1 DiscoTope

3.2 EPITOPIA

Wen Zhang et al.
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In EPCES [14], a patch (with 20 residues) is formed around each 
candidate antigen residue. EPCES uses consensus score from six 
different scoring terms to make prediction. These scoring terms 
are residue epitope propensity, conservation score, side-chain 
energy score, contact number, surface planarity score, and second-
ary structure composition.

The residue epitope propensity was calculated as the product 
of the normalized solvent-accessible surface of the residue and the 
logarithm ratio of the epitopic area to the rest area. The conserva-
tion score was calculated by the position-specific substitution 
matrix generated from PSIBLAST and the diagonal element of 
BLOSUM62. The side-chain energy score was calculated from the 
side-chain energies of all possible rotamers. The contact number is 
as same as the introduction in Subheading 3.1. The planarity of 
each patch was calculated as the root mean squared deviation of all 
the Cα atoms in the patch from the least squares plane through the 
atoms. The secondary structure composition was the fraction of 
patch residues forming turns or loops in all 20 patch residues.

For each candidate residue, the residue epitope propensity, 
conservation score, and side-chain energy score were calculated at 
the residue level and distance-based averaged over all residues in 
the patch by following distance-based equation
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where Eresidue(K) is the score of residue K in the patch, d is the 
 distance between K and the central residue of the patch, and T is 
the parameter needed to be optimized.

Each scoring term can predict a candidate residue as epitope  
or non-epitope according to its score and a given threshold. For a 
residue, if more than five scoring terms yield the scores greater 
than a given threshold, it is finally predicted as the epitope 
residue.

A web-based EPCES application is available at http://sysbio.
unl.edu/services/EPCES/. The PDB ID of an unbound structure 
or the PDB file is used as the input. The output will be displayed 
on this web page when the prediction is completed. The output 
includes the predicted antigen residue and its possibility of being 
an epitope residue.

EPSVR [15] uses a support vector regression (SVR) method to 
integrate six scoring terms ever used in the EPCES.

For each surface patch, the number of epitopic residues could 
be any integer value between 0 and the patch size (i.e., 20). 
Therefore, each patch is assigned a real value associated with the 
number of epitopic residues, and the prediction of conformational 

3.3  EPCES

3.4  EPSVR

Prediction of Conformational B-Cell Epitopes
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epitopes is transformed as a problem of regression. Each surface 
patch had six SVR attributes, whose values were calculated with 
the six scoring terms: residue epitope propensity, conservation 
score, side-chain energy score, contact number, surface planarity 
score, and secondary structure composition. The six scores and the 
number of observed epitope residues in the patch were scaled to 
0–1. Then, the SVR-based model is built to make prediction.

The web server of EPSVR is available at  http://sysbio.unl.
edu/EPSVR/. The input and output of EPSVR are same as those 
of EPCES.

CBTOPE [19] is the first method of predicting conformational 
B-cell epitopes from antigen sequences. The fixed-length window 
is shifted over the antigen sequences to generate residue segments 
(peptides). According to the central residues (epitope or non- 
epitope), the peptides are labeled as positive or negative. Then, 
each peptide can be represented as a feature vector by several 
encoding schemes, including binary profile, physicochemical pro-
file, and composition profile.

Binary profile represents each amino acid as a 21-dimensional 
vector. Physicochemical profile uses Grantham polarity, Karplus–
Schulz flexibility, Kolaskar antigenicity, Parker hydrophobicity, and 
Ponnuswami polarity index to represent amino acids. Amino acid 
composition is the percentage of each amino acid type in a peptide. 
Three encoding schemes are used for peptide representation, and the 
prediction models are constructed by using SVM. Among all encod-
ing schemes, the composition profile can produce the best results.

A web server CBTOPE has been developed to predict 
 con formational epitopes, available at http://www.imtech.res.in/
raghava/cbtope/. Users can enter antigen sequences for prediction.

4 The Sequence-Based Ensemble Learning Method

We follow the work pioneered by CBTOPE and focus on two 
aspects concerning the sequence-based prediction [21]. One is to 
explore more potential sequence-derived features relevant to con-
formational epitopes. The other is to effectively use various fea-
tures which may share redundant information. In order to address 
these issues, we evaluate several sequence-derived features, which 
are ever used in the epitope prediction or similar tasks. Second, we 
consider the ensemble learning technique that can incorporate use-
ful features, and the weighted scoring approach is adopted to build 
the prediction model.

The overlapping residue segments (peptides) are generated from 
the antigen sequences by using a sliding window of the length L. 
For simplifying, let L be an odd integer. For a sequence with N 
residues, a total of N − L + 1 peptides are extracted, and each  peptide 

3.5 CBTOPE

4.1 The Basic Idea 
of Ensemble Learning 
Method

Wen Zhang et al.
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is labeled as positive or negative according to the label of its central 
residue (epitope residue or non-epitope residue). The prediction 
of conformational epitopes from sequences is formulated as the 
problem of binary classification. We consider several sequence- 
derived features, which are described as follows.

Physicochemical propensities: These physicochemical propen-
sities are flexibility scale, hydrophilicity scale, surface-exposed 
 residue scale, polarity scale, beta-turn scale, and accessibility scale.

Sparse profile: Sparse profile is a widely used representation of 
amino acids. Each amino acid type (20 common types in all) can be 
represented by a 20-bit binary string, in which the value at one bit 
is 1 and others are 0.

Amino acid composition: According to the previous study, 
some amino acid types are significantly overrepresented in  epitopes, 
and others are underrepresented; thus the amino acid composition 
can be used to differentiate epitope regions from non-epitope 
regions. Here, we use the amino acid composition of the residue 
segments (also called as sliding windows or samples) extracted 
from the whole sequences.

Amino acid function group: Since contacts between antibodies 
and the antigens are mostly determined through functional 
 moieties of the R-groups, functional moieties can influence the 
location of antibody–antigen-binding sites. According to different 
R-groups, 20 amino acid types are classified into 13 classes. In 
order to take antigen–antibody interaction into consideration, we 
present a novel feature named “amino acid function group” and 
use 13-bit binary strings to represent 13 functional classes.

Amino acid functional composition: By incorporating both 
amino acid function group and amino acid composition, we pres-
ent a novel feature “amino acid functional composition,” which 
represents the percentage of each amino acid functional type in a 
sequence.

Evolutionary profile: The evolutionary conservation is rep-
resented by the position-specific scoring matrix (PSSM), which is 
obtained by aligning the target sequence against NCBI non- 
redundant reference sequences with PSI-BLAST tool. For an 
amino acid sequence with L residues, the PSSM has L rows and 20 
columns. PSSM values in each row are rescaled by the standard 
logistic function f(x) = 1/(1 + e− x). When using the evolutionary 
profile, a residue is represented by its corresponding 20- dimensional 
row vector in the matrix.

Amino acid pair profile: The amino acid pair profile is usually 
observed to be associated with the protein functions. Amino acid 
pair profile of a sequence represents the percentage of each amino 
acid pair type.

Although structural information cannot be directly obtained 
from antigen sequences, some state-of-the-art tools can help to 
predict it. Here, the SABLE program [25] is adopted, for the 

Prediction of Conformational B-Cell Epitopes



192

stand-alone tool is publicly available. With the given sequences as 
input, the software can predict the secondary structures (SS) and 
relative accessible surface areas (RASA) of residues. The predicted SS 
of a residue is denoted as H, E, or C (helix, sheet, coil), and (1, 0, 
0), (0, 1, 0), and (0, 0, 1) are, respectively, used to represent three 
types. The predicted RASA of a residue is a real value between  
0 and 100, representing the percentage of exposed area of the resi-
due over its full area.

The statistical study indicates that all features have the ability 
of differentiating epitope regions from non-epitope regions [21]. 
Since the amino acid functional composition incorporates both 
amino acid composition and amino acid group, seven groups of 
features including physicochemical propensities, evolutionary 
 profile, amino acid functional composition, sparse profile, amino 
acid pair, sequence-predicted secondary structure, and sequence- 
predicted relative solvent accessibility are finally used for the devel-
opment of prediction models.

Obviously, there are much more non-epitopes than epitopes, 
and the instances are seriously imbalanced. A strategy based on the 
data bootstrap is used to deal with the imbalanced data, and ran-
dom forest [26] is used as the classification engine. Thus, a classi-
fication model which consists of multiple random forests is 
constructed (described in Fig. 1) and used as the base module for 
ensemble learning.

Since a peptide can be represented as different feature vectors 
by different descriptors (features), multiple base modules can be 
constructed. We adopt a simple ensemble strategy named weighted 
scoring [27] to integrate modules and develop the ensemble model 

Fig. 1 The classification model based on the random forest and data bootstrap
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(described in Fig. 2). Given an instance, each base module will 
produce a score, and then these scores are normalized. Further,  
a weight is assigned to the normalized score yielded by a base 
 module, and the sum of weighted scores is adopted as the final 
prediction (see Note 2).

The web server is constructed by JavaScript and Tomcat. In order 
to calculate the conservation score, secondary structures, and rela-
tive accessible surface areas, we have to use some external tools 
(i.e., PSI-BLAST and SABLE program). PSI-BLAST is a Windows 
version executive program; SABLE [25] is written in Perl. The 
outputs from external tools are parsed to obtain feature values used 
for sequence representation.

We adopt the Weka package [28] to implement the machine 
learning methods. Weka is a collection of java code implementing 
machine learning algorithms, including data preprocessing, classi-
fication, regression, clustering, association rules, and visualization. 
Here, we use the random forest class in Weka to develop our 
ensemble learning model. The inputs of the model are the feature 
vectors representing sequences, and probability of being an  epitope 
residue is returned for each residue. The server is available at 
http://bcell.whu.edu.cn.

4.2 The Construction 
of Web Server

Fig. 2 The schematic diagram of ensemble model by integrating base modules
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In the web page of prediction (shown in Fig. 3), users can 
enter an antigen sequence and its information (sequence name and 
chain name). In addition, the e-mail address should be specified to 
receive the prediction result. A typical task (a sequences of 30 resi-
dues) takes about 15–20 min. The running time depends on the 
length of the submitted sequence. In the returned result (shown in 
Fig. 4), the first column is the residue id; the second column is the 
residue name; and the third column is the probability for the resi-
due to be the epitope residue.

5 Conclusion

This chapter introduces the data resources and computational 
methods related with the conformational B-cell epitope  prediction, 
especially our sequence-based conformational epitope prediction 
method and the public server. The above-discussed methods  

Fig. 3 The web page of the server

Fig. 4 An example of the returned result
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have large potential for the practical use. The publicly available 
servers will assist immunologists in identifying potential vaccine 
candidates.

6 Notes

 1. As far as we know, some structure-based methods are trained 
and evaluated on the bound dataset (DiscoTope, SEPPA, 
Epitopia), and others are constructed and tested on the 
unbound dataset (EPSVR, EPCES). CBTOPE and our ensem-
ble method are developed by using antigen sequences.

 2. The sequence-based ensemble learning method has some 
advantages. First, the ensemble model provides a flexible frame 
that incorporates individual feature-based classifiers. Second, 
the ensemble model can select the features by itself and inte-
grate them based on the discriminative power. According to 
the optimal weights, we can approximately know the compo-
nents of the ensemble model. Therefore, this ensemble model 
is easy to not only implement but also explain.
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    Chapter 11   

 Computational Prediction of B Cell Epitopes 
from Antigen Sequences 

           Jianzhao     Gao     and     Lukasz     Kurgan    

    Abstract 

   Computational identifi cation of B-cell epitopes from antigen chains is a diffi cult and actively pursued 
research topic. Efforts towards the development of method for the prediction of linear epitopes span over 
the last three decades, while only recently several predictors of conformational epitopes were released. We 
review a comprehensive set of 13 recent approaches that predict linear and 4 methods that predict confor-
mational B-cell epitopes from the antigen sequences. We introduce several databases of B-cell epitopes, 
since the availability of the corresponding data is at the heart of the development and validation of com-
putational predictors. We also offer practical insights concerning the use and availability of these B-cell 
epitope predictors, and motivate and discuss feature research in this area.  

  Key words     B-cell epitope  ,   Linear epitope  ,   Conformational epitope  ,   Antigen  ,   Immunotherapeutic  , 
  Vaccine  ,   Prediction  ,   Database  

1      Introduction 

 One of the key aspects of an immune system is the antibody- 
mediated ability to identify foreign, infectious objects, such as bac-
teria and viruses. This is implemented through binding of the 
antibodies and antigens (e.g., proteins from the pathogenic entity) 
at sites known as B-cell epitopes. Ability to identify these binding 
areas in the antigen sequence or on its surface is important for the 
development of vaccines and immunotherapeutics [ 1 ]. The B-cell 
epitopes are categorized into two classes: linear/continuous and 
conformational/discontinuous. The former B-cell epitope is a 
short segment in the corresponding amino acid sequence (   Fig.  1a ). 
Majority of the B-cell epitopes are conformational, which means 
that they are distributed over multiple segments in the protein 
chain that are located in close proximity in the folded three-dimensional 
structure (Fig.  1b ) [ 2 ].

   Although several experimental techniques can be used to iden-
tify the B-cell epitopes [ 3 ], they are relatively time consuming and 
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expensive, particularly when considering to do that on large, 
genomic scale. Computational methods are a viable alternative to 
provide a fast and cost-effective way to predict the B-cell epitopes 
[ 4 ]. A fairly large number of computational B-cell epitope predic-
tors, which are characterized by varying degrees of success and 
scope, have been developed over the last three decades [ 4 – 7 ]. 
Although progress has been accomplished in the context of the 
development and applications of these computational methods, 
much remains to be done, particularly considering modest predic-
tive performance of these approaches ( see   Note 1 ). In parallel, a 
few efforts to collect, annotate, and deposit B-cell epitopes into 
publicly accessible databases are currently under way [ 8 – 10 ] and 
integrated resources that provide access to multiple tools for pre-
diction and analysis of epitopes are available [ 11 ,  12 ]. Such efforts 
should make these technologies more accurate (more data allows 
for building more accurate predictive models) and more conve-
nient (freely available and integrated) for the end users. 

 The algorithms that predict the B-cell epitopes are classifi ed into 
sequence based and structure based. The structure-based methods use 
the three-dimensional structure of the antigen to perform the predic-
tion, while the sequence-based methods utilize only the sequence of 
the antigen. While the structure-based predictors usually provide 
higher predictive performance when directly compared with the 
sequence-based methods [ 13 – 15 ], they are constrained to a relatively 
small set of targets for which the structure is available. They also suffer 
from a limited availability of the annotated data. Recent years have 
witnessed a revival of the development of the sequence-based meth-
ods, which currently are capable of fi nding both linear and conforma-
tional epitopes. To this end, we overview major relevant databases and 
summarize a comprehensive set of 17 sequence-based predictors of 

  Fig. 1    Example linear and conformational epitopes. Panel ( a ) shows linear epitope for the B-lymphocyte anti-
gen CD20 from  H. sapiens  (IEDB ID: 161083l; PDB ID: 3PP4:P). Panel ( b ) gives conformational epitope for the 
voltage-gated potassium channel from  S. lividans  (IEDB ID: 142362; PDB id: 1K4D:C). Annotations of epitopes 
were extracted from the Immune Epitope DataBase (IEDB) [ 8 ] and the protein structures were collected from 
the Protein Data Bank PDB [ 24 ].  Red  color denotes localization of the B-cell epitope on the surface of the 
antigen protein and  red  and  bold font  shows the epitope in the corresponding sequence       

 

Jianzhao Gao and Lukasz Kurgan



199

the B-cell epitopes, which expands over the coverage of recent predic-
tors offered by the prior reviews [ 4 ,  6 ].  

2    Databases of B-Cell Epitopes 

 Several databases that store experimentally annotated B-cell epit-
opes were developed over the last decade. They differ in scope and 
sources of data. These databases provide data that are used to 
develop and evaluate new and improved predictors of B-cell epit-
opes ( see   Note 2 ). We briefl y summarize, in chronological order, 
six publicly available databases. 

  This repository was developed in 2001 at the Edward Jenner 
Institute for Vaccine Research in the UK [ 16 ]. It was later updated 
to version 2.0 [ 10 ,  17 ]. It stores experimental thermodynamic 
binding data concerning the interaction of peptides including 
B-cell receptors, T-cell receptors, major histocompatibility com-
plexes (MHCs), TAP transporters, and immunological protein–
protein interactions. The B-cell and T-cell epitopes are also 
included. As of January 2013, there were total of 24,000 entries in 
this database, and according to [ 17 ] 816 entries were related to 
B-cell epitopes. Users can search for the relevant data utilizing 
BLAST [ 18 ] and a variety of specialized search options that allow 
defi ning specifi c experimental conditions and molecules. Based on 
the Web of Knowledge as of June 2013, this resource accumulated 
211 citations across the three publications. 

  Availability :   http://www.ddg-pharmfac.net/antijen/    .  

  IEDB (Immune Epitope DataBase) was established in 2004 at the 
La Jolla Institute of Allergy and Immunology in San Diego 
[ 19 ,  20 ] and it was recently upgraded to version 2.0 [ 8 ]. This 
comprehensive resource provides integrated access to experimen-
tally characterized B-cell epitopes, T-cell epitopes, and data on the 
MHC binding. The data are extracted from epitope-related articles 
available in PubMed and from direct submissions from scientists. 
The database includes epitope sequence and structure, source anti-
gen and organism from which the epitope is derived, and details 
concerning experiments describing recognition of an epitope and 
related assays including MHC ligand elution assays and MHC 
binding assays. Users can conveniently query the database through 
a web interface utilizing a variety of criteria, such as the source 
antigen, source organism, epitope structure, immune recognition 
context, and host organism. Based on the Web of Knowledge as of 
June 2013, this database is highly cited with the combined number 
of citations for the three articles totaling to 332. 

  Availability :   http://www.iedb.org    .  

2.1  AntiJen

2.2  IEDB
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  This resource was developed in 2004 at the Institute of Microbial 
Technology, Chandigarh, in India [ 21 ]. It provides access to experi-
mentally determined linear B-cell epitopes, which were extracted 
from literature in PubMed and collected from other publicly avail-
able databases. As of January 2013, it contained 3,031 entries 
including 539 entries from bacteria, 2,046 from viruses, 236 from 
protozoa, 53 from fungi, and 157 from other organisms. Users can 
search the database through a variety of options including keywords 
related to the relevant publications, sequence, entry number, and 
source organism, by utilizing sequence similarity with BLAST, and 
by scanning through the associated protein structures. 

  Availability :   http://www.imtech.res.in/raghava/bcipep/    .  

  CED (Conformational Epitope Database) was built in 2005 by 
Huang and Honda at the University of Electronic Science and 
Technology in China [ 22 ]. This database focuses on the conforma-
tional epitopes. The entries were extracted from peer-reviewed 
journal articles collected from PubMed and ScienceDirect. CED 
provides the location of the epitope in the sequence and structure, 
immunological properties of the epitope, source antigen, and cor-
responding antibody. The database can be browsed or searched 
using keywords through a website interface. As of January 2013, 
CED included 293 entries. 

  Availability :   http://immunet.cn/ced/    .  

  This database was established in 2005 by Rost Group at the 
Columbia University [ 23 ]. Epitome provides access to a collection 
of antigen–antibody complex structures, including annotation and 
visualization of residues that are involved in the interactions and 
information concerning certain structural characteristics of the 
binding regions. The entries were collected from Protein Data 
Bank (PDB) [ 24 ]. User can search the database utilizing keywords 
with options to specify chain and certain structural properties of 
antigen and antibody, and also by fi nding similar sequence with 
BLAST. This resource contains 142 antigens from protein–
antibody complexes [ 23 ]. 

  Availability :   http://www.rostlab.org/services/epitome/    .  

  Structural Epitope Database (SEDB) was developed in 2011 at 
the Pondicherry University in India [ 9 ]. It provides access to a 
comprehensive set of structures of B-cell, T-cell, and MHC 
binding proteins. The data was collected from PDB, PDBsum 
[ 25 ], MHCBN [ 26 ], IMGT/3D [ 27 ], Bcipep, and IEDB 
 databases. SEDB includes information concerning epitope sequ-
ence and position, antigen–antibody interacting residues, and 

2.3  Bcipep

2.4  CED

2.5  Epitome

2.6  SEDB
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 corresponding taxonomic identifi ers, and is cross-linked to relevant 
databases such as IEDB, UniprotKB [ 28 ], PDB, and NCBI [ 29 ]. 
The database can be either browsed or searched by fi nding, using 
BLAST, similar chains. It currently includes 614 entries with 
273 B-cell epitopes. 

  Availability :   http://sedb.bicpu.edu.in/    .   

3    Sequence-Based Predictors of Linear B-Cell Epitopes 

 Prediction of linear B-cell epitopes from the antigen sequences 
dates back to 1980s. The trailblazing methods were fairly simple 
and utilized a single propensity (fl exibility, solvent accessibility, 
etc.) of the underlying chain or chain fragment [ 2 ,  30 – 35 ]. A new 
generation of methods that combined multiple physicochemical 
propensities to predict B-cell epitopes has surfaced in 1990s. They 
include PREDITOP [ 36 ], PEOPLE [ 37 ], BEPITOPE [ 38 ], 
BcePred [ 39 ], and LEP-LP [ 40 ] predictors. Predictive quality of 
these approaches was questioned in 2005 in a study by Blythe and 
Flower [ 41 ]. They analyzed predictive performance of close to 500 
amino acid propensity scales on 50 antigens and determined that 
these propensities performed only slightly better than random. 
Since then this fi eld has observed a revival that resulted in the 
development of more sophisticated knowledge-based methods, 
particularly in the context of the predictive models that they uti-
lize. The considered models included a neural network in ABCpred 
[ 42 ], hidden Markov model in BepiPred [ 43 ], and naïve Bayes 
that was used in Epitopia [ 13 ,  14 ]. The dominant model used in 
recent years is the support vector machine (SVM), which was 
applied in a wide range of methods, such as AAP [ 44 ], BCPred 
[ 45 ], FBCPred [ 46 ], COBEpro [ 47 ], BayesB method [ 48 ], 
BROracle [ 49 ], LEPS [ 50 ], SVMTriP [ 51 ], and LBtope [ 52 ]. 
These approaches differ in the formulation and scope of informa-
tion extracted from the input antigen sequence, in the size of data 
that were used to compute the SVM model, and in the type of 
SVM kernel function used. Table  1  summarizes methods that were 
developed since 2005 and includes one representative older 
method, BEPITOPE ( see   Note 3 ). COBEpro can also predict con-
formational epitopes and thus it is discussed later in this chapter. 
Several predictors of linear B-cell epitopes are widely cited in the 
literature, relative to when they were published. Based on the Web 
of Knowledge as of June 2013, ABCpred and BepiPred that were 
published in 2006 were already cited 139 and 145, respectively. 
The AAP method that was published in 2007 was cited 106 times, 
and the newer articles for BCPred and Epitopia that were released 
in 2008 and 2008 already accumulated 54 and 47 (for the two 
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publications combined) citations, respectively. Most of the above-
mentioned recent sequence-based linear B-cell epitope predictors, 
except BROracle, are available as convenient web servers that 
require the end user only to provide an input antigen sequence. 
Five methods, BepiPred, AAP, BCPred, FBCPred, and Epitopia, 
can also be downloaded as stand-alone applications, which would 
appeal to the users who would like to incorporate such tools into 
their computational pipelines. Following, we summarize the 13 
predictors from Table  1  in the chronological order.

    Table 1  
  Summary of sequence-based predictors of linear B-cell epitopes   

 Method  Year  Model  Type a   Input b   Availability 

 BEPITOPE  2003  Scoring function  SP  SC  By contacting the authors 

 ABCpred  2006  Neural network  WS  SC    http://www.imtech.res.in/raghava/
abcpred/     

 BepiPred  2006  Hidden Markov 
model 

 WS + SP  MC    http://www.cbs.dtu.dk/services/
BepiPred/     

 AAP  2007  Support vector 
machine 

 WS + SP  SC    http://ailab.cs.iastate.edu/bcpreds/     

 LEP-LP  2008  Scoring function  WS  Unknown    http://biotools.cs.ntou.edu.tw/lepd_
antigenicity.php c      

 BCPred  2008  Support vector 
machine 

 WS + SP  SC    http://ailab.cs.iastate.edu/bcpreds/     

 FBCPred  2008  Support vector 
machine 

 WS + SP  SC    http://ailab.cs.iastate.edu/bcpreds/     

 Epitopia  2009  Naïve Bayes  WS + SP  SC    http://epitopia.tau.ac.il     

 BayesB  2010  Support vector 
machine 

 WS  SC    http://www.immunopred.org/bayesb/     

 BROracle  2011  Support vector 
machine 

 SP  Unknown    https://sites.google.com/site/
oracleclassifi ers/ c      

 LEPS  2011  Support vector 
machine 

 WS  SC    http://leps.cs.ntou.edu.tw     

 SVMTriP  2012  Support vector 
machine 

 WS  SC    http://sysbio.unl.edu/SVMTriP     

 LBtope  2013  Support vector 
machine 

 WS  MC    http://crdd.osdd.net/raghava/lbtope/     

  The methods are sorted chronologically 
  a  SP  stand-alone program,  WS  web server 
  b  SC  method predicts a single chain, i.e., prediction has to be restarted for each chain,  MC  multiple chains can be pre-
dicted at the same time 
  c A given predictor is currently unavailable  

Jianzhao Gao and Lukasz Kurgan
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    BEPITOPE was published in 2003 by Pellequer’s group at the 
Centre de Marcoule at CEA in France [ 38 ]. BEPITOPE utilizes a 
scoring function that combines information from over 30 selected 
physicochemical propensities including hydrophilicity, fl exibility, 
propensity to form beta turns, and surface accessibility. User can 
defi ne sequence motifs to fi lter the predictions. 

  Inputs : Protein sequence in FASTA format or accession 
number. 

  Outputs : Numerical profi le over the input chain where putative 
epitopes are indicated by peaks. 

  Architecture : Scoring function. 
  Availability : This program is available for free for academic use 

and has to be requested from the authors. User is required to sign 
a license agreement before receiving a copy of the software. Web 
server is not available.  

  ABCpred was developed in 2006 by Raghava’s group at the 
Institute of Microbial Technology, Chandigarh, in India [ 42 ]. This 
method was one of the fi rst to use a more sophisticated, machine 
learning-based prediction model. This model is a recurrent neural 
network that has a single hidden layer with 35 neurons. It utilizes 
a segment of 16 consecutive residues to perform prediction. 

  Inputs : Amino acid sequence using since-letter encoding. User 
can also set values of several parameters including threshold to 
identify epitopes and segment length. Default values are used in 
case if user does not want to set parameter values. 

  Outputs : Starting position and numeric score for predicted 
epitope(s). 

  Architecture : Recurrent neural network. 
  Availability : Web server at   http://www.imtech.res.in/raghava/

abcpred/    .  

  BepiPred was created in 2006 by Lund’s group at the Technical 
University of Denmark [ 43 ]. This is the fi rst and so far the only 
method that utilizes hidden Markov model. This model combines 
multiple physicochemical propensities including antigenicity, 
hydrophilicity, hydrophobicity, solvent accessibility, and second-
ary structure, which are preprocessed using a running mean 
window. 

  Inputs : Protein sequence or a set of sequences (up to 2000) in 
FASTA format. Each sequence has to have at least 10 and no more 
than 6,000 amino acids. User can also set value of threshold to 
identify epitopes; default value (0.35) is used otherwise. 

  Outputs : Numeric score for each residue in the query protein 
sequence. The predicted epitope is composed of residues with 
scores higher than the threshold. 

  Architecture : Hidden Markov model. 

3.1  BEPITOPE

3.2  ABCpred

3.3  BepiPred
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  Availability : Web server at   http://www.cbs.dtu.dk/services/
BepiPred/    . Stand-alone version for UNIX platform is also avail-
able at this website.  

  AAP (amino acid pair antigenicity) predictor was developed in 
2007 at the Shanghai Jiaotong University in China [ 44 ]. This is 
the fi rst method that utilizes the SVM-based prediction model. 
The authors introduced antigenicity propensity scale, which was 
empirically shown to improve over previously used physicochemi-
cal propensities, that was utilized to convert the query sequence 
into numerical inputs for the SVM. 

  Inputs : Amino acid sequence using since-letter encoding. User 
can also select the length of the epitope to be predicted, with 
default value set to 20 and allowed values of 12, 14, 16, 18, 20, 
and 22. 

  Outputs : Predicted epitope segments with the predefi ned 
length. 

  Architecture : Support vector machine with RBF kernel. 
  Availability : The authors do not provide the software. 

However, a web server that is a part of BCPREDS platform can 
be found at   http://ailab.cs.iastate.edu/bcpreds/    . Stand-alone ver-
sion is also available at this website.  

  LEP-LP was released in 2008 by Tun-Wen Pai’s group at the 
National Taiwan Ocean University [ 40 ]. The authors utilized 
mathematical morphology to extract local peaks from a numerical 
profi le that implements combination of several weighted physico-
chemical propensity scales, such as hydrophilicity, solvent accessi-
bility, polarity, fl exibility, antigenicity, and secondary structure. 

  Inputs : Amino acid sequence using since-letter encoding. 
  Outputs : Ranked putative epitope segments with the associ-

ated numeric scores. 
  Architecture : Scoring function based on mathematical 

morphology. 
  Availability : Web server at   http://biotools.cs.ntou.edu.tw/

lepd_antigenicity.php     (currently unavailable).  

  BCPred was published in 2008 at the Iowa State University [ 45 ]. 
This is the second method that applied SVM-based prediction 
model; however this model is customized to use string kernel. The 
authors utilized a specifi c type of the string kernel, subsequence 
kernel, which considers a feature (input) space generated by a set 
of k-mer subsequences of the input chain. 

  Inputs : Amino acid sequence using since-letter encoding. User 
can also select the length of the epitope to be predicted, with default 
value set to 20 and allowed values of 12, 14, 16, 18, 20, and 22. 

3.4  AAP

3.5  LEP-LP

3.6  BCPred

Jianzhao Gao and Lukasz Kurgan

http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://ailab.cs.iastate.edu/bcpreds/
http://biotools.cs.ntou.edu.tw/lepd_antigenicity.php
http://biotools.cs.ntou.edu.tw/lepd_antigenicity.php


205

  Outputs : Predicted epitope segments with the predefi ned length 
and with the associated numeric scores. 

  Architecture : Support vector machine with string kernel. 
  Availability : Web server at   http://ailab.cs.iastate.edu/bcpreds/    . 

Stand-alone version is also available at this website.  

  FBCPred was developed in 2008 at the Iowa State University [ 46 ]. 
Similar to BCPred, this method also uses SVM model with the 
subsequence kernel. FBCPred targets prediction of linear B-cell 
epitopes of variable length, in contrast to BCPred that assumes 
fi xed (user-defi ned) length. 

  Inputs : Amino acid sequence using since-letter encoding. User 
can also select the length of the epitope to be predicted, with 
default value set to 14. 

  Outputs : Predicted epitope segments with the predefi ned 
length and with the associated numeric scores. 

  Architecture : Support vector machine with string kernel. 
  Availability : Web server at   http://ailab.cs.iastate.edu/bcpreds/    . 

Stand-alone version is also available at this website.  

  This predictor was published in 2009 by Tal Pupko group at the 
Tel Aviv University in Israel [ 13 ,  14 ]. Epitopia predicts linear 
B-cell epitopes from either a protein structure or sequence; here 
we focus on the sequence-based version. This method uses naïve 
Bayes classifi er by considering a small sliding window of seven resi-
dues. The inputs for the classifi er are generated from this window 
by using 14 physicochemical propensities including polarity, fl exi-
bility, antigenicity, hydrophilicity, solvent accessibility, secondary 
structure, and ratio between the frequency of selected amino acid 
in the window and the remaining part of the sequence. 

  Inputs : Protein sequence in FASTA format and an e-mail 
address of the user. 

  Outputs : Numeric immunogenicity score and corresponding 
probability for each amino acid in the query protein sequence. The 
immunogenicity scores are used to derive a ranked list of epitope 
segments. 

  Architecture : Naïve Bayes classifi er. 
  Availability : Web server at   http://epitopia.tau.ac.il    . Stand- 

alone version for LINUX platform is also available at this website.  

  This method was created in 2010 at the National University of 
Singapore [ 48 ]. BayesB utilizes the SVM model and employs Bayes 
feature extraction that is based on differences in the frequency of 
occurrence of amino acid types at each position in a predefi ned 
(training) set of epitopes and non-epitope segments. 

  Inputs : Protein sequence in FASTA format or using since- 
letter encoding. User can also select the length of the epitope to be 
predicted, with default value set to 20. 

3.7  FBCPred

3.8  Epitopia

3.9  BayesB
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  Outputs : Predicted epitope segments with the predefi ned 
length. 

  Architecture : Support vector machine with RBF kernel. 
  Availability : Web server at   http://www.immunopred.org/

bayesb/    .  

  B-Cell Epitope Oracle (BROracle) method was developed in 2011 
at the Dana-Farber Cancer Institute [ 49 ]. This predictor is imple-
mented using SVM model. The input to the model were generated 
from the sequence and a variety of sequence-derived characteristics 
including evolutionary information calculated from PSI-BLAST 
output [ 53 ], secondary structure predicted with PSI-PRED [ 54 ], 
solvent accessibility predicted with ACCpro [ 55 ], disorder predicted 
with VSL2 algorithm [ 56 ], and sequence complexity computed with 
SEG algorithm [ 57 ]. 

  Inputs : Protein sequence. 
  Outputs : Unknown. 
  Architecture : SVM classifi er with polynomial kernel. 
  Availability : Stand-alone program at   https://sites.google.com/

site/oracleclassifi ers/     (currently unavailable). Web server is not 
available.  

  LEPS (Linear Epitope prediction based on Propensities scale and 
SVM) was created in 2011 by Tun-Wen Pai’s group at the National 
Taiwan Ocean University [ 50 ]. This method extends the LEP-LP 
predictor by the same group. First, candidate epitopes are pre-
dicted with LEP-LP. Next, SVM model is used to remove less 
probable candidates utilizing their amino acid sequences. 

  Inputs : Protein sequence in FASTA format or using since- letter 
encoding. The user has an option to adjust 32 parameters related to 
the setup of the propensities considered in LEP-LP. Default param-
eter values are used in case if user does not want to set parameter 
values. 

  Outputs : Ranked list of predicted epitope segments. 
  Architecture : Support vector machine with RBF kernel. 
  Availability : Web server at   http://leps.cs.ntou.edu.tw    .  

  SVMTriP was created in 2012 by Chi Zhang’s group at the 
University of Nebraska, Lincoln [ 51 ]. This predictor is based on 
SVM model that utilizes similarity, calculated with Blosum62 
matrix, and frequency of tripeptides (3-mers) from the input 
 antigen chain. 

  Inputs : Protein sequence in FASTA format or using since- 
letter encoding. User can select the length of the epitope to be 
predicted, with default value set to 20. 

3.10  BROracle

3.11  LEPS

3.12  SVMTriP
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  Outputs : Predicted epitope segments with the predefi ned 
length and with the associated numeric scores. 

  Architecture : Support vector machine with string kernel. 
  Availability : Web server at   http://sysbio.unl.edu/SVMTriP    .  

  LBtope was published in 2013 by Raghava group at the Institute 
of Microbial Technology, Chandigarh, in India [ 52 ]. This method 
converts the antigen chain into numerical features (descriptors) 
that are based on dipeptide (2-mer) profi les. These features are fed 
into the SVM model that predicts epitopes. 

  Inputs : Protein sequence or a set of sequences, in FASTA 
 format. User can also select model type, using fi xed size epitope 
fragments (20 residues long) or variable length epitopes (user-
defi ned between 5 and 30); default value (variable length with 15 
residues segment) is used otherwise. 

  Outputs : Predicted epitope segments with the predefi ned 
length and with the associated numeric scores. 

  Architecture : Support vector machine with undisclosed type of 
kernel. 

  Availability : Web server at   http://crdd.osdd.net/raghava/
lbtope/    .   

4    Sequence-Based Predictors of Conformational B-Cell Epitopes 

 A few methods were recently developed to predict the conforma-
tional B-cell epitopes from protein chains. This is a challenging 
problem given the fact that the corresponding epitopic residues are 
potentially distributed over an entire protein chain, without neces-
sarily being clustered into longer segments. The prediction meth-
ods score each amino acid in an input protein chain (using a numeric 
or a binary value) to indicate whether it is part of an epitope. 
A drawback of this prediction is that these programs do not group 
the predicted epitopic residues into the corresponding epitopes, 
which could be an issue if a given chain contains more than one 
epitope. The sequence-based predictors of conformational epit-
opes, which are summarized in Table  2 , include COBEpro that was 
designed to predict linear epitopes and extended to predict confor-
mational epitopes [ 47 ], CBTOPE [ 58 ], BEST [ 15 ], and Bprediction 
[ 59 ] ( see   Note 4 ). The fi rst three methods apply the SVM model, 
while the most recent Bprediction is based on the random forest 
model, which utilizes a set of decision trees. Based on the Web of 
Knowledge as of June 2013, the oldest sequence- based predictor 
of conformational B-cell epitopes, COBEpro, which was published 
in 2009, was already cited 30 times. The other methods are 
too recent to accumulate citations. COBEpro, CBTOPE, and 

3.13  LBtope
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Bprediction are available to the end users via web servers. Two of 
the methods, CBTOPE and BEST, are provided as stand-alone 
software that the end users would install and use on their comput-
ers. Next, we summarize these four predictors in the chronological 
order.

    COBEpro was published in 2009 by Baldi’s group at the University 
of California [ 47 ]. COBEpro has a two-tier architecture where the 
fi rst layer applies SVM to predict short segments (5–18 residues 
long) in the input chain utilizing information based on their simi-
larity to epitopic segments in a training database, and secondary 
structure and solvent accessibility predicted with SSpro [ 60 ,  61 ] 
and ACCpro [ 55 ], respectively. The second layer is used to com-
bine the above predictions to calculate epitopic propensity score 
for each amino acid. This allows COBEpro to be used for the pre-
diction of discontinuous B-cell epitopes. 

  Inputs : Protein sequence or a set of sequences, using since- 
letter encoding, and an e-mail address of the user. 

  Outputs : Ranked (according to propensity) list of most likely 
predicted epitopes, including their predicted secondary structure 
and solvent accessibility, and numeric propensity scores for each 
amino acid in the query protein sequence. 

  Architecture : Support vector machine with Gaussian kernel. 
  Availability : COBEpro is incorporated into the SCRATCH 

web server suite at   http://scratch.proteomics.ics.uci.edu/    .  

  CBTOPE was released in 2010 by Raghava’s group at the Institute 
of Microbial Technology, Chandigarh, in India [ 58 ]. This method 
applies a sliding window (a segment of 19 residues that is moved 

4.1  COBEpro

4.2  CBTOPE

   Table 2  
  Summary of sequence-based predictors of conformational B-cell epitopes   

 Method  Year  Model  Type a   Input b   Availability 

 COBEpro  2009  Support vector 
machine 

 WS  SC    http://scratch.proteomics.ics.uci.edu     

 CBTOPE  2010  Support vector 
machine 

 WS + SP  MC    http://www.imtech.res.in/raghava/cbtope/     

 BEST  2012  Support vector 
machine 

 SP  MC    http://biomine.ece.ualberta.ca/BEST/     

 Bprediction  2012  Random forest  WS  SC    http://bcell.whu.edu.cn     

  The methods are sorted chronologically 
  a  SP  stand-alone program,  WS  web server 
  b  SC  method predicts a single chain, i.e., prediction has to be restarted for each chain,  MC  multiple chains can be 
 predicted at the same time  
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along the input antigen sequence) to predict the epitopic score for 
the residues in the middle of a given window. CBTOPE computes 
amino acid composition, which is represented using a binary vec-
tor, of the residues in the window and these values are inputted 
into the SVM model that predicts epitopic propensity. 

  Inputs : Protein sequence in FASTA format or using since- 
letter encoding. User can select a threshold for the output scores 
from the predictor, with a default value set to −0.3. Residues with 
scores above the threshold are assumed to be epitopic. 

  Outputs : Numeric propensity scores for each amino acid in the 
query antigen chain. The scores are integers between 0 and 9, 
where higher value denotes a higher likelihood of a given residue 
to be in an epitope. 

  Architecture : Support vector machine with Gaussian kernel. 
  Availability : Web server at   http://www.imtech.res.in/raghava/

cbtope/    . Stand-alone version for Windows operating system is also 
available at this website.  

  BEST (B-cell Epitope prediction using Support vector machine 
Tool) was published in 2012 by Kurgan’s group at the University 
of Alberta in Canada [ 15 ]. This method utilizes SVM model and a 
comprehensive set of sequence-derived characteristics of the anti-
gen chain. BEST is implemented using a two-layer architecture;  
see  Fig.  2 . In the fi rst layer, the input antigen sequence is processed 
using sliding widows of 20 amino acids. Each 20-mer segment is 
encoded by a numerical feature vector that utilizes sequence 
 conservation computed based on Weighted Observation Percentage 

4.3   BEST

  Fig. 2    Architecture of the BEST predictor of conformational B-cell epitopes. SVM stands for support vector 
machine       

 

Sequence-Based Prediction for B Cell Epitopes

http://www.imtech.res.in/raghava/cbtope/
http://www.imtech.res.in/raghava/cbtope/


210

(WOP) matrix generated with PSI-BLAST [ 53 ], similarity to 
 training epitopes based on measure proposed in [ 47 ], and second-
ary structure and relative solvent accessibility predicted with SPINE 
[ 62 ,  63 ]. This vector is inputted into SVM model and the predic-
tions from SVM are combined to generate the epitopic  propensities 
in the second layer.

    Inputs : Protein sequence or a set of sequences, in FASTA 
format. 

  Outputs : Numeric propensity scores for each amino acid in the 
query protein sequence. 

  Architecture : Support vector machine with RBF kernel 
  Availability : Stand-alone software for Linux platform is avail-

able at   http://biomine.ece.ualberta.ca/BEST/    . Web server is not 
available.  

  Bprediction was made available in 2012 by Zhang’s group at the 
Wuhan University in China [ 59 ]. This predictor has a two-level 
design and applies an ensemble of random forest models that take 
a set of numerical features computed from sliding windows of 
size 9 (9-mers) generated over the antigen chain as their inputs. 
The inputs are divided into nine sets, where each set is utilized 
by a different random forest model, which include (1) physico-
chemical propensities including fl exibility, hydrophilicity, solvent 
accessibility, polarity, and propensity for formation of beta turns; 
(2) amino acid composition of the residues in the window represented 
using binary vectors and (3) real-valued vectors; (4) composition 
of amino acid sets defi ned based on their R-groups; (5) values from 
the position-specifi c scoring matrix (PSSM) generated by PSI- 
BLAST [ 53 ]; (6) composition of dipeptides (2-mers) in the win-
dow; and (7) secondary structure and (8) relative solvent 
accessibility predicted with SABLE [ 64 ]. The second level gener-
ates the output propensity scores by computing weighted average 
of normalized, based on  z  scores, values of predictions from these 
nine models;  see  Fig.  3 .

    Inputs : Protein sequence using since-letter encoding and an 
e-mail address of the user. 

  Outputs : Numeric propensity scores for each amino acid in the 
query protein sequence. 

  Architecture : Ensemble of random forests. 
  Availability : Web server at   http://bcell.whu.edu.cn    . 

 The overall architectures of the two most recent conforma-
tional B-cell epitope predictors, BEST and Bprediction, are rela-
tively similar (Figs.  2  and  3 ). Both utilize the two-layered design 
and use multiple sequence alignments computed with PSI- BLAST 
and predictions of secondary structure and solvent accessibility. The 
main differences are in the fact that they use different prediction 

4.4  Bprediction
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models (SVM vs. ensemble of decision forests) and several  different 
inputs (similarity scores vs. physicochemical propensities and vari-
ous amino acid compositions). In spite of utilizing these relatively 
sophisticated architectures, the predictive performance of these 
and other predictors of conformational epitopes is at modest levels 
( see   Note 1 ). This calls for more research towards the development 
of more accurate methods ( see   Note 5 ).   

5    Notes 

     1.    We sampled recent publications that evaluated predictive per-
formance of the current B-cell epitope predictors. For simplic-
ity we concentrate on the area under the ROC curve (AUC) 
measure [ 4 ]. AUC values range between 0.5 and 1, with 0.5 
denoting a random prediction and higher values correspond-
ing to better predictive performance. Five methods that pre-
dict epitopes from antigen sequences were compared side by 
side in [ 15 ] and were shown to achieve AUC between 0.52 
and 0.57 on a benchmark dataset consisting of 149 antigens. 
In another study, six and two methods that predict epitopes 
from antigen structures and sequences, respectively, were eval-
uated on a small dataset with 19 antigens; their AUC values 
were in the 0.57–0.63 range [ 59 ]. A recent review of predic-
tors that utilize antigen structure demonstrates that AUC 

  Fig. 3    Architecture of the Bprediction method for the prediction of conformational B-cell epitopes. FS  i   refers to 
 i th feature set, where  i  = 1 (physicochemical propensities), 2 (binary amino acid composition), 3 (real-valued 
amino acid composition), 4 (composition of amino acid sets), 5 (composition of dipeptides), 6 (PSSM values), 
7 (predicted secondary structure), 8 (predicted relative solvent accessibility). RF stands for random forest       
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 values for the prediction of conformational epitopes range 
between 0.57 and 0.64 [ 5 ]. Overall, these results reveal that 
further research is needed to improve the currently modest 
levels of predictive performance.   

   2.    One of the reasons behind relatively low predictive perfor-
mance of B-cell epitope predictors is a relatively small size of 
the currently available annotated data. Most of the current and 
more successful methods are knowledge based, which means 
that they utilize annotated, with the location of epitopes, 
structures or sequences of antigens to calculate and optimize 
their predictive models. Availability of additional annotated 
data would likely result in an improved performance of predic-
tors, as the data used to build them would be more representa-
tive of the complete population of epitopes.   

   3.    When testing sequence-based predictors of linear B-cell epit-
opes we found that two of them, LEP-LP and BROracle, were 
no longer available. The web server implementations of the 
remaining methods allow predictions for a single chain. In case 
a user wants to predict a set of chains, he or she has to supply 
and predict them one at a time. The two exceptions are 
BepiPred and LBtope that simultaneously process prediction 
of multiple chains, with a limit of up to 2,000 sequences for a 
single run of BepiPred. Moreover, the BayesB predictor can-
not predict peptides shorter than 25 residues.   

   4.    Three sequence-based predictors of conformational B-cell epi-
topes are available to the end users as web servers and two as 
stand-alone applications. Two of them, COBEpro and 
Bprediction, are limited in the sense that they can predict only 
one sequence at the time. The other two, BEST and CBTOPE, 
are capable of predicting multiple chains in a single run. A fur-
ther limitation of COBEpro is that it can be used to predict 
chains shorter than 1,500 residues.   

   5.    There are potentially many ways to pursue the development of 
more accurate predictors of the B-cell epitopes. One possibility is 
to utilize a consensus of different predictors. Although 
Bprediction already implements a consensus approach, it is lim-
ited to the same predictive models and the same prediction fl ow. 
Instead, the consensus should consider combining  outputs of 
multiple methods that use different models and fl ows, say BEST, 
Bprediction, BCTOPE, and COBEpro. Similar attempts were 
shown to be successful for related prediction tasks, such as pre-
diction of MHC class II peptide binding [ 65 ] and T-cell epitopes 
[ 66 ]. Another potential direction is to fi nd new and useful 
sources of information that are helpful in identifying epitopic 
regions. Examples include predicted disordered regions and fl ex-
ible residues, predicted regions involved in protein–protein inter-
actions, and results generated through homology modeling.         
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Chapter 12

Machine Learning-Based Methods for Prediction  
of Linear B-Cell Epitopes

Hsin-Wei Wang and Tun-Wen Pai

Abstract

B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, 
disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the 
performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to 
increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based 
algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we 
have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It 
should be noticed that a combination of selected propensity scales and statistics of epitope residues with 
machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction 
systems. It is also observed from most of the comparison results that the kernel method of support vector 
machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, 
except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and 
SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical 
features and amino acid combinations is illustrated in details.

Key words B-cell epitope, Machine learning, Support vector machine, Propensity scale, Kernel 
function

1 Introduction of B-Cell Epitopes

The immune system is a collection of organs, tissues, cells, and 
molecules that work together to protect the body from various 
foreign pathogens such as bacteria, viruses, parasites, and fungi. 
This defense system against pathogens has been divided into two 
main strategies in vertebrates: innate immunity and adaptive immu-
nity mechanisms. The innate immune system is considered as the 
first defending process against invading pathogens, while the adap-
tive immune system of the second defending layer creates immu-
nological memories after an initial response to a specific pathogen 
and induces an enhanced response to subsequent encounters 
regarding the same pathogen. The latter adaptive immunity is clas-
sified into two branches of immune responses including cellular 
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immunity mediated by T-cell lymphocytes that eliminate infected 
cells and humoral immunity mediated by B-cell lymphocytes 
secreting antibodies which neutralize pathogens in the body fluid. 
Epitopes or antigenic determinants are defined as clusters of amino 
acid segments located on the surface of an antigen that bind to 
antigen-specific membrane receptors on lymphocytes or to secreted 
antibodies, and which elicit either cellular or humoral immune 
response and are recognized by specific antibodies [1]. Due to 
expensive and time-consuming factors of biomedical and immuno-
logical experiments, in silico epitope prediction and analysis prior 
to biological experiments become practical and standard strategies 
for both biomedical researchers and immunologists regarding vari-
ous immunology-related applications such as epitope-based vac-
cine design and disease prevention, diagnosis, and treatment. 
There are several good review articles for both T-cell and B-cell 
epitope prediction analysis based on computational approaches as 
well as several useful epitope databases [2–8]. Among all published 
papers, epitope prediction methods can be simply categorized into 
four major types: sequence-based, structure-based, hybrid of 
sequence-based and structure-based, and consensus methods. It is 
in general expected that the prediction accuracy could be improved 
if an antigen structure has been determined. This is mainly due to 
easy validation of the surface characteristics of candidate epitopes 
on an antigen from the resolved structure. Hence, combination of 
sequence and structure features simultaneously should provide 
better prediction results than using sequence-based or structure- 
based along methods. Furthermore, combining several prediction 
methods and summarizing all individual prediction result through 
a voting mechanism could be anticipated to achieve an even better 
prediction accuracy since each prediction method held its own 
strength. Nevertheless, due to limited numbers of determined 
antibody–antigen complex structures and integrating difficulties 
for various computational limitations, there is yet no such a suc-
cessfully integrated system for both B-cell and T-cell epitope pre-
diction. Most of the prediction systems still focus on identifying 
one specific type of epitope according to its own characteristics.

T-cell epitopes are defined as peptide sequences presented on 
the surface of an antigen-presenting cell, and they are bound to 
major histocompatibility complex (MHC) class I and II molecules. 
Known as a structural basis for peptide binding to MHC mole-
cules, T-cell epitopes are typically composed by continuous amino 
acids ranging from 9 to 11 in length for MHC class I binding and 
a length ranging from 13 to 25 amino acids for MHC class II bind-
ing [9, 10, 4]. For B-cell epitopes, it is generally categorized into 
two types: linear epitope (LE), a segment composed of a continu-
ous stretch of amino acid residues, and conformational epitope 
(CE) constituted by several sequentially discontinuous segments 
that are dispersed among discontinuous regions, but become 
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aggregated on the protein surface [11, 12]. Compared to 
 continuous T-cell epitopes, linear B-cell epitopes possess signifi-
cantly various peptide lengths from 2 to 829 residues from verified 
LE data statistics (IEDB: http://www.eiedb.org/) [13]. Length 
distribution of verified linear B-cell epitopes from IEDB database 
is shown in Fig. 1. Near 95 % of verified linear B-cell epitopes pos-
sess flexible lengths ranging from 6 to 30 residues. Even several 
annotated epitopes are with lengths larger than 100 residues. 
It was also reported that the proportion of LEs is considered with 
only 10 % of all B-cell epitopes [11], while the majority of B-cell 
epitope belongs to the discontinuous CE type with epitope size 
ranging from 6 to 29 residues [14]. However, in contrast to less 
complex features of T-cell epitope prediction systems and superior 
achievement for T-cell epitope prediction, the performance of pre-
dicting B-cell epitopes is yet to be satisfied and all proposed 
approaches still face a lot of challenges in computational immunol-
ogy. Besides, only a small set of verified CEs are curated, a small set 
of resolved antibody–antigen complex structures, and not many 
convincible CE prediction systems are available. Therefore, in this 
chapter, we mainly discuss most of the published linear B-cell epi-
tope prediction methods, and demonstrate how to adopt machine 
learning- based approaches for linear B-cell epitope prediction. It is 
also noticed that the support vector machine (SVM)-based learn-
ing method is one of the most popular approaches in recent reports. 

Fig. 1 Length distribution of linear B-cell epitopes and non-epitopes collected from IEDB database (version 2.4)

Prediction of Linear B-Cell Epitopes
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In addition, the SVM-based system provided better performance 
compared to other machine learning methods. To demonstrate the 
usage of in silico prediction on linear B-cell epitopes through 
machine learning approaches, we choose to introduce the SVM 
classifier and hope that readers can fully understand the complete 
procedures and fundamental knowledge of linear B-cell epitope 
prediction.

Currently, various computational approaches and software for 
linear B-cell epitope prediction have been boomingly proposed in 
the last decade. Table 1 shows available methods, applicable web-
sites, and kernel methods applied for LE prediction in a chrono-
logical order.

Most of the LE prediction focused on sequence contents and 
their corresponding propensity scales including surface  accessibility 
[35], hydrophilicity [36], flexibility [37], and secondary structure 
[38] have been heavily considered in epitope predictive algorithms. 
The distinguishing characteristics among currently available pro-
grams such as BEPITOPE [17], PEOPLE [16], and BcePred [18] 
are mainly dealing with computation of different weighting scales 
over a sliding window along a query protein sequence. However, 
Blythe and Flower hypothesized that “single- scale amino acid pro-
pensity profiles cannot be used to predict epitope locations reli-
ably” [39], a conclusion based on the observation that in the field 
of epitope prediction, even the best combinations of physicochem-
ical propensity scales were not accurate enough to estimate and 
predict qualified B-cell epitopes. Therefore, several methods inte-
grating the concept of amino acid propensity scales with machine 
learning technologies were proposed. For example, Saha and 
Raghava used recurrent artificial neural networks based on amino 
acid sequence information in ABCPred [19]; Larsen employed 
hidden Markov model (HMM) in BepiPred [20]; Chen et al. 
adopted SVM classifier on amino acid pairs [22]; Söllner and Mayer 
utilized a molecular operating environment with the decision tree 
and nearest neighbor approaches [21]; El-Manzalawy et al. devel-
oped BCPred [23] and FBCPred [24] employing SVM with a sub-
sequence kernel for both fixed and flexible length epitopes; 
Sweredoski and Baldi developed COBEpro [26]; Wang et al. 
designed LEPS [30]; and Gao et al. presented BEST [31]; the last 
three approaches applied an SVM classifier in a two-step system to 
predict LEs based on an improved propensity scale approach; simi-
larly, the BEEPro system designed by Lin et al. [33] and the 
LBtope system provided by Singh et al. [34] also adopted SVM 
classifiers by combining different propensity scales to enhance the 
prediction accuracies.

In the ABCPred system, two artificial neural network methods 
were developed, feed-forward (FNN) and recurrent neural  network 
(RNN), for the prediction of continuous B-cell epitopes. Both FNN 
and RNN networks were used to achieve B-cell epitope prediction 
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Table 1 
Linear B-cell epitope prediction methods

Name URL Method Year Reference

Antigenic http://www.emboss.bioinformatics.nl/
cgi-bin/emboss/antigenic

Physicochemical 
properties, occurrence 
of amino acid residues

1990 [15]

PEOPLE n/a Physicochemical 
properties

1999 [16]

BEPITOPE Stand-alone program can be obtained 
freely to academics jlpellequer@cea.fr

Physicochemical 
properties

2003 [17]

BcePred http://www.imtech.res.in/raghava/
bcepred/

Physico-chemical 
properties

2004 [18]

ABCpred http://www.imtech.res.in/raghava/
abcpred/

ANN 2006 [19]

BepiPred http://www.cbs.dtu.dk/services/
BepiPred/

HMM 2006 [20]

Söllner n/a MOE, KNN, Decision 
tree

2006 [21]

Chen n/a SVM, AAP 2007 [22]

BCPred http://www.ailab.cs.iastate.edu/bcpreds/ SVM, String kernel 2008 [23]

FBCPred http://www.ailab.cs.iastate.edu/bcpreds/ SVM, String kernel 2008 [24]

LEPD http://www.lepd.cs.ntou.edu.tw/ Physicochemical 
properties, 
mathematical 
morphology

2008 [25]

COBEpro http://www.ics.uci.edu/~baldig/
scratch/index.html

SVM 2009 [26]

Epitopia http://epitopia.tau.ac.il Naïve Bayes classifier 2009 [27, 28]

BayesB http://www.immunopred.org/bayesb/
index.html

SVM, Bayes feature 
extraction

2010 [29]

LEPS http://leps.cs.ntou.edu.tw/ Physicochemical 
properties, 
mathematical 
morphology, SVM

2011 [30]

BEST http://biomine.ece.ualberta.ca/BEST/ SVM 2012 [31]

SVMTriP http://sysbio.unl.edu/SVMTriP/ SVM, tripeptide 
similarity and 
propensity

2012 [32]

BEEPro n/a Physicochemical 
properties, SVM, 
PSSM

2013 [33]

LBtope http://crdd.osdd.net/raghava/lbtope/ SVM, binary profile, 
dipeptide 
composition, AAP

2013 [34]

ANN artificial neural network, HMM hidden Markov model, MOE molecular operating environment, KNN k-nearest 
neighbor, PSSM position-specific scoring matrix, n/a not applicable

http://www.emboss.bioinformatics.nl/cgi-bin/emboss/antigenic
http://www.emboss.bioinformatics.nl/cgi-bin/emboss/antigenic
http://www.imtech.res.in/raghava/bcepred/
http://www.imtech.res.in/raghava/bcepred/
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http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.ailab.cs.iastate.edu/bcpreds/
http://www.ailab.cs.iastate.edu/bcpreds/
http://www.lepd.cs.ntou.edu.tw/
http://www.ics.uci.edu/~baldig/scratch/index.html
http://www.ics.uci.edu/~baldig/scratch/index.html
http://epitopia.tau.ac.il/
http://www.immunopred.org/bayesb/index.html
http://www.immunopred.org/bayesb/index.html
http://leps.cs.ntou.edu.tw/
http://biomine.ece.ualberta.ca/BEST/
http://sysbio.unl.edu/SVMTriP/
http://crdd.osdd.net/raghava/lbtope/
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using different window lengths from 10 to 20 amino acids, and the 
best performance of 66 % accuracy evaluated on a dataset of 700 
B-cell epitopes and 700 non-epitopes was obtained by adopting an 
RNN trained on peptides of 16 amino acids in length. The BepiPred 
combined two amino acid propensity scales and an HMM trained on 
LEs to gain a slightly improved prediction accuracy rate over the 
propensity scale only-based methods by Parker et al. and Levitt et al. 
on the Pellequer dataset of 14 proteins and 83 epitopes. In Chen’s 
approach, the observed certain amino acid pairs (AAPs) tend to 
appear more frequently in known B-cell epitopes than in non-epitope 
peptides. They utilized an AAP propensity scale based on such 
observation and trained with an SVM classier to increase an improved 
prediction accuracy rate of 71 % from the datasets of 872 B-cell epi-
topes and 872 non- epitopes. In the method of Söllner and Mayer, 
each epitope is represented using a set of propensity scales, neigh-
borhood matrices, and respective probability and likelihood values. 
This approach combined several parameters previously associated 
with antigenicity, and included novel parameters based on frequen-
cies of amino acids and amino acid neighborhood propensities. In 
their report, the best performance of 72 % was achieved utilizing a 
nearest- neighbor classifier with feature selection from datasets of 
1,211 B-cell epitopes and 1,211 non-epitopes. For the BCPred 
developed by El-Manzalawy et al., they applied five different kernel 
methods to evaluate SVM classifiers on a homology-reduced dataset 
of 701 linear B-cell epitopes and 701 non-epitopes, and they dem-
onstrated that the BCPred outperformed the ABCPred and Chen’s 
methods. In addition to BCPred, El-Manzalawy et al. also devel-
oped another FBCPred for predicting flexible length linear B-cell 
epitopes using the subsequence kernels. Two machine learning 
approaches were adopted in their study: one approach utilized four 
sequence kernels for determining a similarity score between any arbi-
trary pair of variable length sequences, and the other approach 
applied four different methods of mapping a variable length sequence 
into a fixed length feature vector. The FBCPred was demonstrated 
with an improved performance of 73 % accuracy rate on the homol-
ogy-reduced dataset of flexible length linear B-cell epitopes. In the 
COBEpro system, Sweredoski applied SVM to make predictions on 
short peptide fragments within the query antigen sequence and cal-
culated an epitopic propensity score for each residue based on the 
fragment predictions. The accuracy rates and AUC values of 
COBEpro possessed better performance than Chen, BCpred, and 
BepiPred regarding different benchmark datasets. The LEPS system 
designed by Wang et al. combined improved propensity scale 
method, local high antigenicity profile, occurring frequencies of 
amino acid segments (AASs), and SVM classifier to predict LEs with 
flexible length. Using several benchmark datasets, LEPS has shown 
its competitive performance comparing to BepiPred, ABCPred, 
BCPred, and FBCPred. For the BEEPro developed by Lin et al., 
authors have claimed that both linear and conformational epitopes 
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could be predicted by the SVM-based system which employed the 
features mainly based on evolutionary information, amino acid ratio 
propensity scale, and 14 specifically selected physicochemical pro-
pensity scales. The results have shown a superior performance com-
pared to BepiPred, ABCPred, BCPred, FBCPred, and LEPS. For 
the BEST system presented by Gao et al., authors constructed an 
SVM training architecture based on features of averaging selected 
propensity scores by a 20-mer sliding window, sequence similarity 
score, predicted secondary structure, and solvent accessibility. The 
prediction performance was compared to Chen, BCPred, COBEpro, 
BayseB, and CBTOPE with an accuracy rate around 74 % for  
fragment-based LE prediction. For the latest LBtope system, authors 
provided five various training datasets, and they emphasized on 
experimentally verified non- epitope datasets compared to previously 
random peptides used in other studies. In this study, they applied 
SVM and K-nearest- neighbor learning models using various physi-
cochemical propensity scales and amino acid composition-transition-
distribution properties, and the LBtope prediction system obtained 
accuracy rates ranged from 54 to 86 % on the created datasets. Since 
most of machine learning-based approaches applied SVM classifiers 
to improve the performance of B-cell epitope prediction and the 
results showed that SVM-based methods possessed a better perfor-
mance than other approaches, here we will briefly introduce basic 
theories of SVM in the next section for readers interested in related 
fields. An example of prediction system will also be applied to illus-
trate the combination of propensity scales and machine learning ker-
nel method for LE prediction.

2 A Supervised Learning Method: SVM Classifier

Machine learning is a subfield of applied statistics, which trains on 
a collected sample dataset and generalizes rules from previous 
experiences. The training data with unknown probability distribu-
tion is usually applied to extract some general principles and per-
haps the distribution for future predictions on new testing data. 
There are several types of machine learning algorithm based on 
trained inputs or desired outcomes, such as supervised, unsuper-
vised, semi-supervised, and reinforcement learning mechanisms. 
Recently, one of the most popular computer algorithms for a vari-
ety of biological applications including epitope prediction is the 
SVM kernel method, a supervised learning model and learned by 
known epitope contents to predict novel epitopes within a query 
protein sequence [40]. To build an epitope prediction model, 
users have to provide a set of training examples including two 
classes, named as true epitopes and non-epitopes. The constructed 
SVM model is a representation of the trained examples as points 
in the selected feature space, and these sample points are divided 
by a hyperplane with a separable margin as wide as possible. 

Prediction of Linear B-Cell Epitopes
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Query protein sequence segments are then mapped into the same 
feature space and assigned to one of the two defined categories 
based on the locations of the testing segment.

Figure 2a shows a simple example of mapped points in a two- 
dimensional feature space. In this example, it is assumed that each 
peptide was calculated and mapped into a corresponding feature 
point by two selected feature values: secondary structure (confor-
mation parameter for beta turn) and hydrophilicity (Parker’s 
parameters [36]). The feature profile of each known epitope or 
non-epitope peptide is calculated according to the residue contents 
and the feature values are mapped into the two-dimensional space 
and represented by triangle and circle objects, respectively. In this 
case, it is quite easy to draw a line between two clusters geometri-
cally, and an unknown data point could be predicted easily accord-
ing to the query feature point falling on the epitope or the 
non-epitope sides of this separating line. If we add one more dif-
ferent feature such as Janin’s accessible area to classify a peptide 
into two clusters, the feature space becomes a three-dimensional 
space, and we need a plane to divide the space into two parts as 
shown in Fig. 2b. Definitely, similar procedures could be extended 
to higher dimensions by adding more features. Hence, the original 
straight line in two-feature space can be extended to a hyperplane 
in a higher dimensional space which represents the border line to 
separate two clusters.

2.1 The Hyperplane 
of an SVM Model

Fig. 2 Two examples of two-class SVM classifiers. (a) The first example of two-dimensional feature space and 
two classes were separated by a straight line with the maximum margin. (b) The second example of adding 
one more feature to a three-dimensional feature space and the two class samples were separated by a hyper-
plane with maximum margin. Each circle and triangle element represents samples from two different classes, 
and empty circle and triangle objects represent the support vectors for each class. The hyperplane was defined 
with a maximum margin between two planes constructed by support vectors
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It is obvious that the hyperplanes are not unique in an SVM model. 
How to select an optimal hyperplane between two clusters is the 
main goal of adopting SVM predictor and it serves as the key factor 
of a successful SVM classifier. Based on general statistical assump-
tions and the definition of a margin as the distance between the 
hyperplane to the nearest points (support vectors) within one clus-
ter, the SVM model could find an optimal hyperplane possessing 
the maximal margin from any one of the training data points within 
two clusters. Hence, the selected hyperplane could maximize the 
performance of the SVM classifier to predict query samples. 
Nevertheless, several outlier data points might reside in wrong 
clusters from real applications and are called misclassified samples, 
and it might be solved by introducing an ε-insensitive loss function 
[41] which balances the number of hyperplane violations and the 
size of the margin.

Sometimes a tolerant margin could not support to find an optimal 
hyperplane to separate two clusters since the data points are crossly 
distributed in a feature space. In that case, there might exist a ker-
nel function which provides a solution by adding an additional 
dimension for the data points. The original points could be trans-
ferred by a kernel function in order to find a better hyperplane to 
separate two clusters in a higher dimensional feature space. For an 
example shown in Fig. 3, the one-dimensional feature points could 
apply a simple square operation to transfer all data points into a 
two-dimensional space, and therefore an optimal hyperplane could 
be observed clearly. There are several frequently applied standard 
kernel functions, such as linear, polynomial, radial basis function 
(RBF), and sigmoid which can help to transfer the data points into 
a higher dimension to find a better hyperplane [42, 43]. However, 
it should be noticed that a very high-dimensional kernel function 

2.2 Maximum 
Margins 
of a Hyperplane

2.3 Selection 
of Kernel Functions

Fig. 3 An example of applying degree-2 polynomial kernel on all data points. (a) One-dimensional feature 
space and hard to find a single line to separate all data into two classes. (b) Applying square operation on all 
data points, and a clear hyperplane could separate all data points into two classes
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may cause overfitting problems and generally lead poor predictive 
performance. To avoid too many irrelevant dimensions, the selec-
tion of types and degrees of kernel functions should be carefully 
considered. Nevertheless, the traditional way to find a better kernel 
function is usually achieved by a trial-and-error approach and veri-
fied by cross-validation processes. But the selected so-called best 
kernel function still does not guarantee the optimal performance.

3 A Practical Example of Predicting Liner Epitope Based on SVM Classifier

To demonstrate how to apply SVM in predicting LEs, we selected 
the features used by Wang et al. [30], including physicochemical 
and AAS propensity scales. The first step is to discover all segments 
with global high or local high antigenicities according to the cor-
responding physicochemical properties. Once the potential seg-
ments were identified, the frequently appeared AASs were evaluated 
according to previously identified LE candidates. Based on the 
SVM method and the constructed models, the potential candidate 
segments were classified into epitopes or non-epitopes. Here we go 
through more details and learn how to apply machine learning 
technology intuitively in the application of LE prediction.

An antigenic peptide possesses physicochemical properties of hydro-
philicity, polarity, charge, flexibility, accessibility, secondary struc-
ture, and some other miscellaneous factors. For each category of 
specific physicochemical property, the individual score was given by 
sliding a window of a specified length along the query protein 
sequence from the N to C terminal direction and applying respec-
tive assigned weighting coefficients to each residue. The mean value 
of the assigned physicochemical feature within a sliding window 
was then calculated, and the average value was considered as a rep-
resentative score at the midpoint of the window [44]. The bound-
ary problems will be faced at both the N- and C-termini since the 
length of the neighboring residues was not sufficient to be consid-
ered within a fixed sliding window size. Hence, only the covered 
neighboring amino acids were applied to calculate the antigenicity 
value. Once an individual scale for each physicochemical feature was 
determined, a combination of different weighted coefficients on 
various scales at each position was calculated to achieve a final anti-
genicity profile. Different weighting coefficient assignment defi-
nitely affects the final antigenicity profile at a certain level. Users 
could assign the weightings according to his/her special concerns 
or simply apply equally distributed weightings. Here we applied dif-
ferent weighting coefficients to enhance and distinguish the impor-
tance of antigenic features with respect to LE prediction. In this 
example, we applied the beta turn [45], hydrophilicity [46], flexi-
bility [47], and surface accessibility [48] with weighting coefficients 
of 0.4, 0.3, 0.15, and 0.15, respectively [16] (see Note 1).

3.1 Antigenicity 
Analysis
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Most of the LE prediction systems focused on identifying the 
global high antigenicity segments. However, Wang et al. found 
that some of the experimental verified epitopes are located within 
the local high antigenicity profile. They applied some filtering pro-
cesses to identify segments with global or local high antigenicity as 
epitope candidates. Their proposed filtering processes were com-
pleted employing mathematical morphology algorithm which is a 
nonlinear filter for signal analysis built on lattice theory and topol-
ogy with applications to one-, two-, or n-dimensional signals. An 
antigenicity profile was interacted with a predetermined structur-
ing element under three basic operations: erosion, dilation, and 
opening. Details of operating descriptions could be referred to 
refs. [49–52]. Nevertheless, the segments with local high or global 
high antigenicity were detected and extracted for next processes. It 
should be noticed that the default settings of window size for cal-
culation of antigenicity scale, extraction of local peaks, and filtering 
of minimal size of epitope candidates played an important role at 
the initial stage. These default window sizes were selected accord-
ing to the optimal performance in terms of accuracy analysis from 
known datasets [53]. The global antigenicity was defined as the 
average of the whole protein sequence antigenicity, and the low-
to- moderate antigenicity meant the antigenicity of a predicted 
peptide lower than that of global antigenicity. Once the antigenic 
scale of each amino acid was calculated applying a running mean 
window by default settings, all epitope candidates were extracted 
when the average antigenicity of residues was continuously higher 
than that of the entire sequence or when the residues were located 
within peptides with locally high antigenicity compared to their 
neighboring segments. For fragments with globally or locally high 
antigenic residues, a merging function was performed to identify 
the candidates of LEs. All extracted segments with either globally 
or locally high antigenicity scales would be further filtered by the 
next classifier according to the SVM learning model based on pre-
viously statistical features. One example for extracting all possible 
epitope candidates is shown in Fig. 4. The figure shows a set of 
identified epitope candidates by mathematical morphology 
approaches on the P30 protein. The original antigenicity profile 
according to the default weighting coefficient settings was shown 
in Fig. 4a. Eroded antigenicity profile by an erosion operator was 
shown in Fig. 4b, and a following dilation filter was applied on the 
previously eroded profile and an opened antigenicity profile was 
obtained and shown in Fig. 4c. All local peaks in Fig. 4d could be 
detected by taking the difference between the original and opened 
antigenicity profiles at the corresponding positions. These local 
peak segments were further filtered by a scanning window and the 
filtered segments were regarded as initially predicted candidates as 
shown in Fig. 4e. Finally, the predicted candidate LEs were 
obtained according to the locally high antigenic characteristics as 
shown in Fig. 4f.

3.2 Mathematical 
Morphology and Local 
Peak Determination
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The processes of adopting an SVM machine learning-based 
approach for epitope prediction usually comprise two major stages. 
The first stage requires a collection of training datasets and selected 
features. The training dataset includes samples in two categories: 
positive samples (true epitope segments) and negative samples 
(non-epitope segments). These samples will be trained to construct 

3.3 SVM Classifier 
on Candidate Epitopes

Fig. 4 An example of applying combination of morphological filters to extract segments with globally or locally 
high antigenicity characteristics on the P30 protein. (a) The original antigenicity profile for P30 protein. 
(b) Eroded antigenicity profile by an erosion operator. (c) Followed by a dilation filter and an opened antigenicity 
profile was obtained. (d) All local peaks detected by taking the difference between (a) and (c) at the corre-
sponding positions. (e) Filtering local peaks with a default scanning window and the highlighted segments 
were considered as the candidate epitope locations. (f) All predicted candidate LEs for P30 protein based on 
selected physicochemical propensity scales
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an SVM model according to the selected feature set. It should be 
noticed that a successful collection of training samples leads to 
good performance for all machine learning-based classifiers. In 
other words, lacking verified knowledge for collecting either posi-
tive or negative class samples affects the performance of the classi-
fier dramatically and yields a biased estimation on evaluating system 
performance. As we know, most of the machine learning-based 
classification applications in biological fields fall short in negative 
samples. To balance the collection of both positive and negative 
class training samples, sometimes the generation of artificial nega-
tive samples is required [54]. Here, we adopted the Chen’s dataset 
[22] containing 872 epitopes and 872 non-epitopes, for training 
the SVM classifier. All epitopes and non-epitopes within this data-
set were restricted to a length of 20 residues. For the feature selec-
tion problem, since the physicochemical properties were already 
considered in the previous epitope candidate selection, here we 
only choose the amino acid combination propensity scales as the 
training features. We evaluated the statistical characteristics that 
determined the frequencies of occurrence of AASs with various 
lengths from another B-cell LE dataset, Bcipep [55], and the 
Chen’s non-epitope dataset. Next, an SVM model was built based 
on the statistical features of the epitopes and non-epitopes. It 
should be noticed that the requirement of fixed window size for 
training and prediction sometimes considered as a deficiency in the 
machine learning-based approaches. Here, all collected epitopes 
and non-epitopes within the training dataset were restricted to a 
length of 20 residues. These verified epitopes were retrieved 
employing a “truncation-extension treatment.” That is, when the 
length of an LE was longer than 20 residues, an equal number of 
superfluous residues were truncated from both the N- and 
C-termini to preserve the central 20 residues. Conversely, when 
the length of an LE was shorter than 20 residues, an equal number 
of neighboring residues were added to both the N- and C-termini 
according to its original sequences until the epitope comprised 20 
residues. Both epitopes and non-epitopes with fixed length were 
then used to analyze their corresponding features and trained to 
produce an SVM model for future prediction.

For constructing an SVM model in this example, we simply consid-
ered three statistical features by calculating the occurrence fre-
quencies of combined residues in different lengths for both 
epitopes and non-epitopes. For the first feature of amino acid seg-
ment with two residues (AAS2), 400 possible combinations of resi-
due pairs should be analyzed for their corresponding occurrence 
frequencies in both the collected epitope and non-epitope seg-
ments. The epitope index Epidexi

2 of the ith pattern (AASi
2) is 

defined by taking logarithmic value of the ratio of the number of 
AASi

2 among all epitopes AASs2 compared to the same ratio in the 

3.4 Statistical 
Analysis of Amino 
Acid Segments 
and Corresponding 
Epitope Indexes
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non-epitope AASs2 group. It can be formulated as the following 
equation:

 

Epidexi

i
i

i

i
i

i

f f

f f
i2

2 2

2 2
1 2 400=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= ¼

+ +

- -

å
å

log
/

/
, , , ,

 

where fi
2 + and fi

2 − are the numbers of AASi
2 in the epitope and 

non-epitope datasets, respectively, and ∑ ifi
2 + and ∑ ifi

2 − denote the 
total number of AASi

2 in the corresponding dataset. Finally, the 
values of Epidexi

2 are normalized to the range of [0, 1] to avoid 
dominance of any individual Epidexi

2 in the classifier learning pro-
cesses. For the next two features of amino acid segments with three 
and four residues (AAS3 and AAS4), there are a total of 8,000 and 
160,000 possible combinations, respectively. In this case, a large 
portion of AAS3 or AAS4 do not appear in the non- epitope dataset 
and it would cause a problem of dividing by zero. Hence, the defi-
nitions of Epidexi

3 and Epidexi
4 are modified from the definition of 

Epidexi
2, and the corresponding epitope indices for AAS3 and AAS4 

are defined as the following formula. Both obtained Epidexi
3 and 

Epidexi
4 will be normalized to the range of [0, 1] as well:
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There are a variety of choices of open-source SVM software for 
feature training, model selection, and cross validation [56]. Users 
are able to select a suitable SVM tool based on their own require-
ments. Here one of the most popular open-source toolboxes, 
LIBSVM (Library for Support Vector Machines) developed by 
Chang and Lin [42], is adopted to demonstrate the application on 
LE prediction. In LIBSVM, each instance in the training set 
 possessed one target value (class label) and several features (attri-
butes). In the testing set, only the features are required for each 
instance. The objective of SVM is to generate a model from the 
training set that facilitated the prediction of the target value of each 
instance in the testing set. A peptide corresponded to an instance 
and the target value (1 or −1) represents whether that peptide is an 
epitope. Each peptide contains three feature values including 
Epidexi

2, Epidexi
3, and Epidexi

4. For example, a 20-mer peptide is 
decomposed into 19 AASi

2 subsegments, and the corresponding 
epitope index of this peptide is obtained by taking the average of 
19 Epidexi

2 from the corresponding AASi
2. Similarly, the feature 

values of Epidexi
3 and Epidexi

4 can be obtained by calculating the 
averages of 18 Epidexi

3 and 17 Epidexi
4 subsegments, respectively. 

3.5 SVM Features 
and Kernel Selection
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As previously described, sometimes the sample data points are 
crossly distributed in a feature space and cannot be separated by a 
linear hyperplane. In that case, a kernel function transformation 
might be able to provide a solution by adding an additional dimen-
sion for sample points. However, there is no straightforward deci-
sion or theoretical methods to decide what kind of kernel functions 
provides the best results for a given dataset; trial and error on 
experimenting with different kernel functions is the only way to 
find the best function. In this example, the experimental dataset 
was used to construct an SVM model based on three feature values 
and the target values of each epitope and non-epitope. Four com-
mon kernel functions including linear, polynomial, RBF, and sig-
moid were provided by LIBSVM. We examined all these four 
kernel functions with a fivefold cross-validation (see Note 2). The 
training dataset was equally divided into five different subsets; four 
of the subsets were used for training the model and the last one 
was used for testing the model. These processes were repeated five 
times with each individual subset used as the testing subset. Based 
on the cross-validation results in this case, the RBF kernel function 
provided the best performance regarding the collected samples and 
it was selected as the default kernel function. Subsequently, the 
RBF kernel function was applied to train the whole collected posi-
tive and negative datasets again and construct the final SVM classi-
fier for future LE prediction.

To evaluate the performance of an epitope prediction system, 
either peptide- or residue-level evaluation could be applied accord-
ing to the characteristics of prediction system and testing data-
bases. For example, several epitope/non-epitope datasets provided 
by LBtope only contain fragments of antigen proteins and are 
required to be verified as LEs or not. Definitely, the peptide-level 
evaluation will be an appropriate selection in this application. 
However, if a whole-antigen protein sequence was considered as 
the query data and the prediction system could provide flexible 
length LE candidates, then a residue-level evaluation method is 
more suitable. Therefore, residue-level evaluation method was 
applied to the LEPS prediction system. There are five commonly 
used indicators for measuring effectiveness of a prediction system, 
which include (1) sensitivity (SEN), defined as the percentage of 
epitopes that are correctly predicted as epitopes; (2) specificity 
(SPE), defined as the percentage of non-epitopes that are correctly 
predicted as non-epitopes; (3) positive predictive value (PPV), 
defined as the probability that a predicted epitope is an epitope; (4) 
accuracy (ACC), defined as the proportion of correctly predicted 
peptides; and (5) Matthews correlation coefficient (MCC), which is 
a measure of the predictive performance incorporating both SEN 
and SPE into a single value between −1 and +1. A merged and 

3.6 Performance 
Measurement

Prediction of Linear B-Cell Epitopes



232

non-redundant testing dataset called AHP dataset was created by 
Wang et al. from AntiJen, HIV, and PC datasets, which contained 
193 proteins with 843 non-overlapping epitopes [30]. These three 
datasets were selected to balance the variations in each dataset 
including variations in epitope length and the physicochemical 
properties of antigens. It should be noticed that all antigen pro-
teins selected in testing dataset must be different from the training 
dataset and all repeated proteins should be removed in advance. In 
this example the SVM-based learning system could achieve a per-
formance of SEN of 27.0 %, SPE of 84.2 %, ACC of 72.5 %, PPV 
of 32.1 %, and MCC of 10.4 %. One point should be mentioned 
here: The PPV indicated the rate of identifying real epitopes among 
all positive predicted candidates, and it is one of the most impor-
tant factors for immunologists in conducting vaccine development. 
Reduction of the false-positive candidates can significantly improve 
the effectiveness and efficiency of identifying the real epitopes. 
Compared to other systems, the LEPS also showed its excellent 
performance for all different testing datasets. All the comparison 
details can be referred to Wang et al. [30].

4 Conclusion

In silico linear B-cell epitope prediction is definitely an impor-
tant procedure for designing peptide-based vaccine, diagnostic 
test, disease prevention, treatment, antibody production, and 
other related applications. Successful prediction facilitates bio-
medical researchers and immunologists in reduction of experi-
mental time and overall costs. In this chapter, current linear 
B-cell epitope prediction methods, collected databases, and 
available online systems based on machine learning techniques 
are comprehensively reviewed. Especially, one of the most 
applied machine learning methods, the support vector machine 
classifier, is also briefly  introduced for non-computer-back-
ground readers. To  demonstrate the usage of combining popu-
larly used  propensity scales and machine learning techniques, an 
LE prediction system proposed by Wang et al. was also introduced 
through step-by-step description. We hope that the details can 
help beginners to find some  important materials, to clarify some 
fundamental questions, and to gain a better understanding of 
applying machine learning approaches on epitope prediction. 
Though research on epitope analysis and related prediction sys-
tems were booming in the last two decades, the performance on 
B-cell epitope prediction is yet to be satisfied comparing to T-cell 
epitope prediction. This is mainly due to the complexity of B-cell 
epitope binding mechanisms, variable lengths of B-cell epitopes, 
and limited availability of resolved antigen and antibody–antigen 
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complex structures. In addition, still several other existing prob-
lems are waiting for solutions to improve recent prediction tools. 
The first problem is the deficiency of a comprehensive learning 
dataset containing both verified epitope and verified non- epitope 
peptides. Especially the verified non-epitope dataset plays an 
important role to improve prediction accuracy. In general, many 
trained non-epitope samples were generated by artificially random 
approaches which might lead to a wrong and biased learning 
model. Except the verified epitopes on both positive and negative 
classes, the total number of non-redundant epitopes should be 
large enough for reliable training and similar sequences should be 
avoided for appearing in both training and testing datasets. It 
must be very careful to remove redundant and high similarity 
sequences from a testing dataset comparing to the training data-
set. Overly optimistic performance may be obtained if similar pro-
tein sequences appeared in both datasets. Most importantly, if 
more three- dimensional antigen structures or antigen–antibody 
complexes could be crystallized and determined, the binding 
mechanisms between antibodies and antigens could be under-
stood in more details. Hence, it might be possible to categorize 
B-cell epitopes into several different interaction mechanisms and 
various levels of immunogenic potency. The machine learning 
approaches could also be advanced from a two-class to a multiple-
class classifier. With all these considerations, the integrated predic-
tion system based on sequence and structural features could 
become more reliable and practical.

5 Notes

 1. Since the original propensity scores are in different scales, a 
normalization procedure needs to be performed before com-
bining each antigenicity score. The final antigenicity scores for 
each reside therefore appear within a range of [0, 1].

 2. In addition to the selection of kernel functions, several param-
eters for each kernel function are required to be identified. 
LIBSVM provides a simple parameter selection tool based on 
grid-search approach to try different combinations of parame-
ters heuristically.
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    Chapter 13   

 Mimotope-Based Prediction of B-Cell Epitopes 

           Jian     Huang     ,     Bifang     He    ,   and     Peng     Zhou   

    Abstract 

   Mimotopes are peptides mimicking epitopes on the corresponding antigen. They can be obtained via 
 panning the phage-displayed random peptide library against the corresponding monoclonal antibody or 
specifi c sera. Besides mimotopes however, the experimental results also include all kinds of unwanted 
sequences called “target-unrelated peptides,” which often interfere with the subsequent experimental and 
computational analyses. Nevertheless, the prediction of B-cell epitopes based on the experimental result of 
phage display has shown to be a promising and reliable strategy with acceptable precision. In this chapter, 
we summarize mimotope-based prediction of B-cell epitopes under three conditions and focus on proto-
cols and tips for retrieving, cleaning, and decoding the data from phage display technology.  

  Key words     B-cell epitope  ,   Epitope prediction  ,   Mimotope  ,   Target-unrelated peptide  ,   Phage display  , 
  Peptide library  

1      Introduction 

  B-cell epitopes are special regions on an antigen that can bind to 
the corresponding B-cell receptors or antibodies [ 1 ]. Traditionally, 
they are grouped into two categories: continuous and discontinu-
ous epitope. A continuous epitope is also known as a sequential or 
a linear epitope since it is just a continuous segment of antigen 
sequence. On the contrary, a discontinuous epitope includes a few 
separate residues and several segments that are not continuous at 
the sequence level but adjacent at the 3D-structure level due to 
protein folding. Accordingly, this type of B-cell epitope is also 
called conformational epitope. As the basis of the interaction 
between antigen and antibody, mapping B-cell epitopes on the 
antigen is a basic task in immunology study. 

 Though there are several experimental methods for B-cell epi-
tope mapping, they are labor intensive, time consuming, and costly. 
Even worse, the experimental methods sometimes are technically 
diffi cult or even impossible. For example, some antigens such as 

1.1  B-Cell Epitopes
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membrane proteins are hard to get crystallized and to obtain a 
crystal of any antigen-antibody complex partly depends on luck. In 
such conditions, X-ray diffraction method is not always applicable. 
The 3D structure of protein in solution can be resolved using 
nuclear magnetic resonance (NMR) spectroscopy; however, it is 
only available for small proteins rather than big antigen-antibody 
complexes. In addition, experimental methods sometimes are not 
suitable for an immense scale. Therefore, B-cell epitope prediction 
has been widely used to lower the experimental workload [ 1 ].  

  More than 30 years ago, the study of B-cell epitope prediction 
started from locating continuous B-cell epitope in silico using 
propensity scales of amino acids to profi le an antigen sequence. 
Such methods were thought to be helpful for fi nding peptide 
candidates capable of eliciting antibodies that were also cross-
reacting with the whole antigen, therefore benefi ting the devel-
opment of novel epitope-based vaccines or diagnostics [ 2 ]. 
However, the systemic evaluation work by Blythe and Flower 
showed that even the best scales had only marginally better per-
formances than random, implying that better scales and methods 
were needed for predicting continuous B-cell epitopes [ 3 ]. 
Indeed, new scales [ 4 ,  5 ] and machine-learning methods demon-
strate improved performances for the prediction of continuous 
B-cell epitopes [ 2 ]. 

 In recent years, more attention is paid to the prediction of 
 discontinuous B-cell epitopes given the fact that nearly 90 % native 
B-cell epitopes are conformational [ 6 ]. At present, dozens of algo-
rithms and programs for the prediction of discontinuous B-cell 
epitopes are available [ 2 ]. These programs, based on either antigen 
structure or sequence, have succeeded in some case studies. 

 The prediction of B-cell epitopes mentioned above, either for 
continuous or for discontinuous epitopes, is based only on antigen 
sequence or structure and tries to map major regions on the anti-
gen that may induce humoral immune response. However, it is 
context dependent for a given B-cell epitope. Therefore, a new 
paradigm for B-cell epitope prediction needs not only antigen 
information but also relevant data such as sequences of corre-
sponding antibody and mimotopes.  

  Mimotopes are peptides mimicking an epitope on the correspond-
ing antigen [ 7 ]. They are usually obtained through screening the 
random peptide library using special sera or a monoclonal anti-
body. Since an antigen and its mimotopes competitively bind to 
the same monoclonal antibody or sera, their physicochemical char-
acteristics and spatial arrangement are believed to be similar [ 8 ]. 
Thus, the native epitope can reasonably be located when its mimo-
topes are compared to the antigen sequence or structure. 

1.2  B-Cell Epitope 
Prediction

1.3  Mimotope-Based 
Prediction of B-Cell 
Epitopes
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 The random peptide library used most widely nowadays is con-
structed by displaying inserted peptides on the coat proteins of 
phages. The technology, now called phage display, was fi rst 
 introduced by George Smith [ 9 ]. Screening a phage-displayed ran-
dom peptide library is termed as biopanning or panning in short, 
which usually includes the following steps. First of all, special sera 
or a monoclonal antibody is fi xed on the surface of disks or beads 
and then incubated with a random peptide library. The antibody 
used to screen the library is termed as target, and the correspond-
ing antigen is called template. Then phages with no affi nity to the 
target are washed away with buffer. Later on, bound phages are 
eluted with the target, the template, or stronger buffer only. At 
last, the bound phages are amplifi ed by infecting bacteria to build 
a secondary library, which is then used for the next round of pan-
ning. After several rounds, eluted phage clones are randomly 
picked and sequenced [ 10 ]. 

 However, there are not only mimotopes but also “target- 
unrelated peptides” in the sequencing results [ 11 ]. 
Target- unrelated peptides (TUPs) creep into the results due to 
growth advantage or binding to other components of the screen-
ing system rather than binding to the target. If mimotopes are 
signal that can be used to predict the corresponding epitope, TUPs 
are noise that will interfere with the prediction. 

 Nevertheless, mimotope-based prediction of B-cell epitopes 
represents a new trend in B-cell epitope prediction, which utilizes 
not only antigen information but also context data relevant to the 
corresponding antibody [ 12 ]. Therefore, it has shown to be a 
promising and reliable approach with acceptable precision among 
various types of methods for B-cell epitope prediction so far. In this 
chapter, we focus on protocols and tips for retrieving, cleaning, 
and decoding the data from phage display technology to interpret 
and predict B-cell epitopes more reasonably and accurately.   

2    Data and Methods 

      1.    Retrieve and manually check all sequencing data of the phage 
display experiment provided by your sequencer or contracted 
company ( see   Note 1 ).   

   2.    Retrieve the antigen sequence fi le from the UniProt 
Knowledgebase (  http://www.uniprot.org/    ) if it is known [ 13 ].   

   3.    Retrieve the antigen structure fi le from the PDB database 
(  http://www.rcsb.org    ) if it is resolved.   

   4.    For computational biologists who want to develop and evalu-
ate tools for mimotope-based prediction of B-cell epitopes, get 
data from the MimoDB database (  http://immunet.cn/
mimodb    ) [ 14 ].      

2.1  Data Retrieval

Prediction of B-Cell Epitopes Based on Mimotopes
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      1.    Use TUPScan (  http://immunet.cn/sarotup/cgi-bin/TUPScan.pl    ) 
to clean peptides with any known TUP motif [ 11 ].   

   2.    Use MimoSearch (  http://immunet.cn/sarotup/cgi-bin/
MimoSearch.pl    ) to clean peptides identical to those in the 
MimoDB database with various targets [ 14 ].   

   3.    Use MimoBlast (  http://immunet.cn/sarotup/cgi-bin/
MimoBlast.pl    ) to clean peptides highly similar to those in the 
MimoDB database with various targets [ 14 ].   

   4.    Use PhD7Faster (  http://immunet.cn/sarotup/cgi-bin/ 
PhD7Faster.pl    ) to clean peptides possibly with growth advantage 
if they are from the Ph.D.-7 library (New England Biolabs) [ 15 ].   

   5.    Use SABinder (  http://immunet.cn/sarotup/cgi-bin/
SABinder.pl    ) to clean peptides that possibly bind to strept avi-
din if this protein is a component of the screening system 
rather than the target.      

        1.    Use EpiSearch (  http://curie.utmb.edu/episearch.html    ) [ 16 ], 
Pepitope (  http://pepitope.tau.ac.il/    ) [ 17 ], and PepMapper 
(  http://informatics.nenu.edu.cn/PepMapper    ) [ 18 ] to decode 
all mimotopes and predict the conformational epitopes on the 
antigen structure ( see   Note 3 ).   

   2.    Find common results from the above predictions if possible.      

       1.    Use JalView (  http://www.jalview.org    ) to align all mimotopes 
and identify the consensus sequence [ 19 ].   

   2.    Use the SAROTUP suite to check if the consensus sequence is 
specifi c enough [ 11 ].   

   3.    Format all mimotopes and the consensus sequence for BLAST 
(  http://blast.ncbi.nlm.nih.gov    ).   

   4.    Perform a local BLAST analysis to see if any segment of the 
antigen is homologous to the consensus sequence or any 
mimotope which indicates linear B-cell epitopes ( see   Note 4 ).   

   5.    Use PRATT (  http://www.ebi.ac.uk/Tools/pfa/pratt    ) to dis-
cover patterns that are conserved in mimotopes [ 20 ].   

   6.    Use MimoScan (  http://immunet.cn/sarotup/cgi-bin/
MimoScan.pl    ) to check if the patterns mentioned above are 
specifi c enough.   

   7.    Use the ScanProsite tool (  http://prosite.expasy.org/scan-
prosite    ) to scan if the antigen contains patterns that are con-
served in mimotopes. The matching segment also indicates 
linear B-cell epitopes [ 21 ].   

   8.    Perform a BLAST against the PDB database using the antigen 
sequence.   

2.2  Data Cleaning 
( See   Note 2 )

2.3  Data Decoding

2.3.1  When the Antigen 
Structure Is Known

2.3.2  When Only 
the Antigen Sequence 
Is Known
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   9.    Use Swiss-Model (  http://swissmodel.expasy.org    ) to build 
homology models for the antigen if the highest similarity of 
 step 8  is above 20 % [ 22 ].   

   10.    Repeat Subheading  2.3.1  to predict possible conformational 
epitopes on the antigen structure model.      

      1.    Use JalView (  http://www.jalview.org    ) to align all mimotopes 
and identify the consensus sequence [ 19 ].   

   2.    Use the SAROTUP suite to check if the consensus sequence is 
specifi c enough [ 11 ].   

   3.    Perform a BLAST analysis for the consensus sequence and for 
each peptide, respectively, as well to see if it is homologous to 
any known protein (  http://blast.ncbi.nlm.nih.gov    ). The con-
sensus sequence or some mimotopes could have high similari-
ties with the antigen that induces the sera or the monoclonal 
antibody ( see   Note 4 ).   

   4.    Use PRATT (  http://www.ebi.ac.uk/Tools/pfa/pratt    ) to dis-
cover patterns that are conserved in mimotopes [ 20 ].   

   5.    Use MimoScan (  http://immunet.cn/sarotup/cgi-bin/
MimoScan.pl    ) to check if the patterns mentioned above are 
specifi c enough.   

   6.    Use the ScanProsite tool (  http://prosite.expasy.org/scan-
prosite    ) to scan if any known protein matches patterns that are 
conserved in mimotopes [ 21 ]. The antigen that induces the 
sera or the monoclonal antibody may contain patterns that are 
conserved in mimotopes.   

   7.    If the antigen is determined after the analyses above, repeat 
 steps 8 – 10  of Subheading  2.3.2 .        

3    Notes 

     1.    All sequencing data should be manually checked, especially 
when there are ambiguous amino acids. For example, sequences 
interrupted by a stop codon are often reported by sequencing 
companies when they are panning from the Ph.D. series of 
libraries (New England Biolabs). However, the stop codon 
TAG should be translated into a glutamine when the library 
was amplifi ed in ER2738 strain or any supE strain.   

   2.    TUP is not an absolute concept. It depends on the context. 
For example, the phage clones binding to plastic are usually 
taken as TUPs. However, they are signals rather than noise when 
plastic is just the intended target. Besides, both experimental 
and computational methods cannot eliminate TUPs completely. 

2.3.3  When the Antigen 
Is Unknown

Prediction of B-Cell Epitopes Based on Mimotopes
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In addition, there might be phage clones that have special 
affi nity to the target but also have growth advantage at the 
same time. Thus, some signals might be excluded too.   

   3.    Both Pepitope and PepMapper have integrated two programs, 
respectively, i.e., PepSurf and Mapitope, MimoPro and Pep-
3D- Search. It is natural to select the common results from 
these tools as the reliable prediction if their results intersect. 
According to our tests, all these programs have their own pros 
and cons. For example, Mapitope is not suitable for a single 
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Chapter 14

Hybrid Methods for B-Cell Epitope Prediction

Approaches to the Development and Utilization of Computational 
Tools for Practical Applications

Salvador Eugenio C. Caoili

Abstract

Many computational approaches to B-cell epitope prediction have been published, including combinations 
of previously proposed methods, which complicates the tasks of further developing such computational 
approaches and of selecting those most appropriate for practical applications (e.g., the design of novel 
immunodiagnostics and vaccines). These tasks are considered together herein to clarify their close but 
often overlooked interrelationship, thereby providing a guide to their performance in mutual support of 
one another, with emphasis on key physicochemical and biological considerations that are relevant from an 
applications perspective. This aims to assist investigators in performing either or both tasks, with the over-
all goals of successfully applying computational tools towards practical ends and of generating informative 
new data towards iterative improvement of the tools, particularly as regards the design of peptide-based 
immunogens for eliciting the production of antipeptide antibodies that modulate biological activity of 
protein targets via functionally relevant cross-reactivity in relation to the phenomena of protein folding and 
protein disorder.

Key words Epitope prediction, B-cell epitopes, Proteins, Peptides, Antibodies, Protein folding, 
Antibody–antigen binding, Immunogenicity, Cross-reactivity, Biological activity

1 Introduction

B-cell epitope prediction is the computational identification of 
molecular or supramolecular (e.g., protein quaternary) structural 
features that are potential targets for immune recognition via 
binding by immunoglobulins (e.g., antibodies). The said features 
(i.e., B-cell epitopes) each comprise atoms that come into direct 
contact with the paratope (i.e., epitope-binding site) upon binding 
by immunoglobulin, although they may also comprise other atoms 
that are nonetheless important for the binding process (e.g., to 
maintain or assume a particular conformational state that is recog-
nized by the paratope) [1]. Whereas virtually any sufficiently large 
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structure (e.g., biomolecule or synthetic molecule) may contain 
one or more B-cell epitopes, the published literature has focused 
mainly on peptidic B-cell epitopes (i.e., of proteins and peptides), 
for which their constituent amino-acid residues (rather than indi-
vidual atoms) are often the structural units of practical interest in 
computational analyses (e.g., of molecular sequences) and experi-
mental procedures (e.g., for B-cell epitope construction by either 
peptide synthesis or protein engineering). Likewise, the discussion 
herein is primarily concerned with peptidic B-cell epitopes 
described in terms of amino-acid residue sequences, albeit noting 
that three-dimensional structure and atomic-level details are cru-
cial considerations for B-cell epitope prediction (e.g., where 
solvent- accessible surface area of atoms is used to estimate the 
affinity of paratope–epitope binding [2, 3]).

B-cell epitope prediction may be conceptualized in categorical 
and deterministic terms, as if structural features could be 
 dichotomized into mutually exclusive epitope and non-epitope 
categories whose members consistently behaved as such empiri-
cally. The simplicity of this approach is appealing in that it readily 
lends itself to very straightforward computational analyses (e.g., 
for binary classification), but it overlooks the highly context-
dependent and stochastic nature of B-cell epitope recognition by 
immunoglobulins, which is subject to biological variability that 
manifests even under tightly controlled experimental conditions 
(e.g., where immunization experiments are performed on essen-
tially homogeneous animal populations maintained in the same 
uniform laboratory environment). A more realistic alternative 
approach is to identify physicochemically plausible candidate struc-
tural features (e.g., accessible surface patches having dimensions 
conceivably compatible with binding by a paratope) as putative 
B-cell epitopes, which may be further characterized quantitatively 
as to particular properties of interest (e.g., potential to actually 
elicit the production of antibodies having a particular biological 
activity, such as the ability to neutralize a pathogen or virulence 
factor thereof ) on the basis of pertinent physicochemical and bio-
logical information (e.g., juxtaposition of various putative B-cell 
epitopes vis-á-vis functional correlates of their structure). This can 
be understood in relation to the concepts of antigenicity, immuno-
genicity, and cross-reactivity, as discussed below.

As typically understood in the context of B-cell epitope predic-
tion, antigenicity is the potential for immune recognition via 
binding by immunoglobulin, whereas immunogenicity is the 
potential to actually elicit the production of such immunoglobu-
lin as antibodies. Hence, immunogenicity implies antigenicity 
insofar as binding by surface immunoglobulins of B-cell receptors 
is a prerequisite for B-cell activation and consequent antibody 
production. However, antigenicity may be poorly correlated with 
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immunogenicity (e.g., in the setting of immune tolerance to 
B-cell epitopes among self proteins). Nevertheless, antigenicity 
may be manifest via cross- reaction whereby antibodies produced 
in response to one structurally unique B-cell epitope also bind 
another, which itself may be of low immunogenicity. This cross-
reaction, the potential for which is hereafter referred to as cross-
reactivity, may occur as a consequence of functional similarity 
between the two B-cell epitopes that enables the same antibodies 
to bind both, although the structural basis for such similarity may 
be inapparent at the sequence level (e.g., where highly divergent 
sequences adopt dissimilar conformations, but in doing so place 
B-cell epitope atoms in spatial configurations that enable binding 
by the same paratope). More generally, sequence similarity may 
be poorly correlated with cross-reactivity, especially considering 
the possibility of low cross-reactivity between B-cell epitopes dif-
fering from each other in only a single chemical group [4] and 
even between those of identical sequence where the overall struc-
tural contexts (e.g., as regards conformation and surface accessi-
bility) are sufficiently dissimilar (e.g., where the same sequence 
forms part of either a short unfolded peptide or a large folded 
protein, such that the sequence becomes conformationally con-
strained and at least partially buried in the protein).

Antigenicity and immunogenicity are often regarded as all-or- 
none binary functions of molecular sequence and possibly other 
variables, which is implicit in the selective labeling of sequences as 
predicted antigenic or immunogenic B-cell epitopes and is tanta-
mount to the problematic conceptualization of B-cell epitope pre-
diction in categorical and deterministic terms that has been alluded 
to in Subheading 1.1. To avoid this, both antigenicity and immu-
nogenicity may be cast alternatively as continuous variables that in 
turn are functions of key variables defined by relevant experimental 
contexts. Minimally, such a context could be described as a bipha-
sic process comprising two consecutive temporal phases, namely an 
initial immunization phase and a subsequent immunoassay phase, 
with each phase associated with a particular antigen (i.e., structure 
potentially recognizable by the immune system and possibly con-
taining one or more B-cell epitopes) [2]. The immunization phase 
would be associated with an antigen (hereafter referred to as the 
immunogen) administered to elicit an immune response, particu-
larly the production of antibodies that are capable of binding the 
said antigen (i.e., the immunogen) while the immunoassay phase 
would be associated with an antigen (hereafter referred to as the 
immunoassay antigen) serving as an immunologic probe to detect 
antibodies via an immunoassay.

According to the biphasic scheme outlined thus far (which 
assumes the placement of appropriate experimental controls, e.g., 
by obtaining antibodies from unimmunized animals for use as 
negative- control antibodies in the immunoassay phase), antigenicity 
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may be equated with the affinity of antibodies (generated during the 
immunization phase) for the immunoassay antigen while immuno-
genicity may be expressed as the quantity (e.g., expressed as either 
the concentration or fraction) of such antibodies. Insofar as the 
affinity would depend on the particular immunoassay antigen used, 
immunogenicity would be evaluated using an immunoassay anti-
gen that is either the immunogen itself (used in the immunization 
phase) or an appropriate surrogate thereof (e.g., a fragment of the 
immunogen for which the antibodies have sufficiently high affinity 
that enables their detection via the immunoassay) to avoid possible 
failure to detect the antibodies. Where the immunogen and immu-
noassay antigen are nonidentical, cross- reactivity may be expressed 
as the affinity of the antibodies for the immunoassay antigen 
relative to their affinity for the immunogen or some antigenically 
similar surrogate thereof (again with the proviso that the surrogate 
is bound by the antibodies with sufficiently high affinity). Affinity 
is thus fundamental to B-cell epitope  prediction and therefore war-
rants further elaboration below.

For a bimolecular reversible-association reaction between a receptor 
R (e.g., antibody) and a ligand L (e.g., antigen) for the reversible 
formation of a receptor–ligand complex RL (e.g., antibody–antigen 
complex), affinity (i.e., strength of binding) may be expressed as the 
equilibrium association constant KA, or, equivalently, as the equilib-
rium dissociation constant KD, noting that: 

 K KA D= 1 /  (1)

and also: 

 K k kA on off= /  (2)

where kon and koff are the on- and off-rate constants for the associa-
tion and dissociation reactions, respectively, which under equilib-
rium binding conditions implies: 

 KD R L RL= [ ][ ] / [ ]  (3)

with the square brackets denoting the molar concentrations of 
the indicated molecular species (in which case KD is equivalent to 
the value of [R] at which [RL] = [L], i.e., at which [RL] is half- 
maximal). Furthermore, KA is related to the free-energy change 
DG  of association, under equilibrium binding conditions as: 

 K G RTA = -exp( / )D  (4)

where R is the gas constant and T the temperature. Hence, antige-
nicity may be expressed as KA or KD for some combination of 
immunogen, immunoassay antigen, and possibly other experimental 
parameters, notably in relation to the constraint of B-cell affinity 
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maturation [5], which in vivo serves as a means of increasing antibody 
affinity for antigen yet also tends to limit the said affinity by impos-
ing both an upper bound on kon (corresponding to the diffusion-
control limit) and a lower bound on koff (related to the kinetics of 
receptor-mediated antigen endocytosis by B cells via surface 
immunoglobulin) [6] in accordance with Eq. 2, as detailed below.

Again denoting receptor and ligand by R and L, respectively 
(cf. Eq. 3), the on-rate constant for diffusion-limited collisional 
encounters between R and L is given by: 

 k a D D Non
max

R L= +4 1 000p ( )( / , )  (5)

where a is the encounter distance; DR and DL are the diffusion 
constants; and N is Avogadro’s number (i.e., 6. 02 × 1023 mol−1); 
and kon

max  is thus obtained in M−1 s−1 for a in cm and both DR and 
DL in cm2 s−1 [7]. For binding of antibodies to small protein anti-
gens in solution, kon

max  is typically in the range of 105–106 M−1 s−1 
[8, 9], and antibodies in general are thus unlikely to have much 
higher values of kon

max  [6]. For capture of IgG-class antibodies from 
solution by sufficiently large or immobilized antigens where the 
antigen diffusion constant is practically zero, kon

max  may be esti-
mated from Eq. 5 using an encounter distance of 1. 57 × 10−8 cm 
and an antibody diffusion constant of 4 × 10−7 cm2 s−1, yielding a 
value of 4. 75 × 107 M−1 s−1 [7].

To estimate the lower bound for koff during affinity maturation, 
endocytic antigen uptake may be modeled to a first approximation 
with classical Michaelis–Menten kinetics applied to transmembrane 
transport [5], in which case the Michaelis–Menten constant is 
given by: 

 K k k kM off in on= +( ) /  (6)

where kin is the rate constant for endocytic internalization of sur-
face immunoglobulin-bound antigen. As KM is numerically 
equivalent to the antigen concentration at which the steady-state 
rate of antigen internalization is half-maximal, a decrease in KM 
confers a competitive advantage upon B cells thus enabled to 
internalize antigen more rapidly, such that kon may approach kon

max  
(from Eq. 5) during affinity maturation; but koff is unlikely to 
decrease much further below kin as the gain in competitive advan-
tage would become negligible [6], such that KM approaches the 
lower limit of kin  ∕ kon according to Eq. 6. Considering the reported 
half-life of 8.5 min for surface immunoglobulins endocytosed on 
Epstein–Barr virus-transformed B-lymphoblastoid cells [10], the 
lower bound for koff during affinity maturation is estimated to be in 
the range of 10−4 to 10−3 s−1 under the assumption that two to 
three surface-immunoglobulin half-lives is the upper limit beyond 
which increased immune-complex stability confers no competitive 
advantage [6].
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Affinity maturation thus tends to limit antibody affinity for 
antigen with a ceiling value on KA, although higher values may be 
realized where affinity maturation is bypassed (e.g., through pro-
tein engineering or artificial affinity selection via yeast display [11]).

2 Theoretical Framework

From the standpoint of translational research, B-cell epitope pre-
diction is useful insofar as it facilitates efficient utilization of avail-
able empirical data (e.g., on biomolecular sequences and structures) 
as bases for developing practical applications, notably immunodi-
agnostic and immunization (e.g., vaccination) strategies for health 
care. B-cell epitope prediction provides support for the design of 
antigens either as immunologic probes for antibody detection or as 
immunogens for eliciting the production of antibodies that in turn 
serve as immunologic probes for antigen detection. This aids in the 
development of immunodiagnostics where the goal is either 
detection of antibodies as indicators of immune status (e.g., in 
relation to past vaccination) and as markers of disease (e.g., due to 
infection) or detection of antigens (e.g., of pathogens) as markers 
of disease. The role of B-cell epitope prediction in the design of 
antigens as immunogens also provides support for the develop-
ment of strategies for prophylactic or therapeutic induction of 
antibody- mediated immunity, either using the immunogens as 
vaccine components for active immunization or to elicit the pro-
duction of antibodies for passive immunization. These all necessitate 
application- specific and highly context-dependent analyses of poten-
tial paratope–epitope interactions, with attention to antigenicity, 
immunogenicity, and cross-reactivity as defined in Subheading 1.2, 
as these relate to safety and efficacy for biomedical applications in 
particular.

Given a set of candidate epitopes (e.g., defined as oligopeptidic 
subsequences of a polypeptide chain corresponding to a protein of 
interest), B-cell epitope prediction may thus be regarded as primar-
ily concerned with estimating antigenicity as the affinity (cf. Eqs. 1–4) 
for binding of each candidate epitope by a complementary para-
tope, considering that sufficiently high affinity is necessary for 
practically significant binding (e.g., detectable antibody–antigen 
binding in a diagnostic immunoassay, or pathogen neutralization 
by antibodies elicited via immunization with a vaccine). Additionally, 
estimation of immunogenicity among the candidate epitopes is 
also often practically relevant, particularly where immune responses 
might be strongly biased towards antibody production against 
highly immunogenic epitopes, possibly at the expense of antibody 
production against other epitopes (e.g., overlapping or neighboring 
the said immunogenic epitopes [12]) that may thus be less readily 
exploited as targets for both immunodiagnosis and immunization. 
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Furthermore, estimation of cross- reactivity between candidate 
epitopes is crucial where envisioned applications entail cross-reaction 
of antibodies with epitopes different from those against which the 
antibodies were produced (e.g., where antipeptide antibodies are 
to cross-react with protein antigens); and this may be approached 
by estimating cross-reactivity as affinity for binding of a particular 
target epitope (e.g., on a protein) by a paratope complementary 
to a given candidate epitope (e.g., of a peptide), insofar as cross-
reactivity is a conceptual generalization of antigenicity as paratope 
affinity for an epitope.

In view of the preceding considerations, B-cell epitope 
 prediction is ultimately useful mainly as a means to avoid undesir-
able antibody–antigen interactions, particularly nonspecific ones, 
in immunodiagnosis and immunization. In immunodiagnosis, 
nonspecific antibody–antigen interactions (involving reagents that 
are either antibodies for antigen detection or antigens for antibody 
detection) tend to produce potentially misleading false-positive 
results (e.g., the incorrect diagnosis of disease where none is present). 
In immunization, where the desired outcome is the production or 
administration of antibodies that prevent or otherwise control 
disease, the antibodies may fail to confer protective immunity and 
even produce unintended deleterious effects (e.g., autoimmune 
disease or paradoxic antibody-mediated enhancement of infectious 
disease), especially where the antibodies bind nonspecifically (e.g., 
cross-reacting with self antigens, thereby producing autoimmune 
disease). These undesirable interactions can be avoided by restricting 
the repertoire of epitopes presented for paratope binding, either in 
an immunoassay or in the course of an immunization process. 
Where the goal is to design antigens as immunologic probes for 
antibody detection, B-cell epitope prediction aids in identifying 
epitopes that are sufficiently antigenic yet of restricted cross-reac-
tivity in the sense of having acceptably low potential for binding by 
nonspecifically cross-reactive antibodies (which are irrelevant as 
immunodiagnostic markers but may nonetheless produce false-
positive results). Likewise, where the goal is to design immuno-
gens for the production of antibodies (either as immunologic 
probes for antigen detection or as mediators of immunity), B-cell 
epitope prediction aids in identifying epitopes that are sufficiently 
antigenic (and, by extension, immunogenic in some biologically 
realistic context) yet elicit the production of antibodies with ade-
quately restricted cross-reactivity (i.e., reacting or cross-reacting 
strongly with their intended targets but only minimally with other 
antigens). In all cases, the particular quantitative criteria for suffi-
cient antigenicity and restricted cross-reactivity must be operationally 
defined in an application-specific manner, in relation to physico-
chemical and biological constraints (e.g., on antibody concentration 
in the system under consideration, possibly distinguishing between 
physically feasible and medically acceptable upper limits [5]).
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In the overall scheme of B-cell epitope prediction, paratope–epitope 
binding affinity (Eqs. 1–4) links underlying biomolecular structure 
(e.g., described in terms of protein sequences and atomic coordi-
nates) to biological function (i.e., biological outcomes of paratope–
epitope binding). B-cell epitope prediction may thus be resolved 
into two sequential steps, namely estimation of antigenicity as 
paratope–epitope binding affinity and estimation of biological 
impact as regards potential for paratope–epitope binding. These 
steps are discussed in turn below, noting they may be performed 
only implicitly in certain (e.g., machine learning) approaches to 
B-cell prediction. Throughout the discussion, the binding affinity 
is equated with the free-energy change DG  of paratope–epitope 
binding (as introduced in Eq. 4).

To estimate DG , one or more candidate epitopes must first be 
defined, possibly by partitioning one or more antigen structures of 
interest into physicochemically plausible candidate B-cell epitopes. 
Considering a hypothetical monomeric protein antigen that exists 
in either completely unfolded (e.g., denatured) or completely 
folded (e.g., native) forms, the unfolded form (i.e., a single poly-
peptide chain) may be partitioned into a set of overlapping oligo-
peptide sequences while the folded form may be partitioned into a 
set of overlapping surface patches, such that each oligopeptide 
sequence and surface patch is regarded as a candidate epitope. The 
candidate epitopes may be more precisely defined in relation to 
geometric constraints on antibody–antigen binding. For example, 
assuming a typical circular antibody footprint diameter of 20 Å  
[13, 14], each hexapeptide sequence may be regarded as a candidate 
epitope for the unfolded form given a peptide contour length of 
3.5 Å  per residue [3, 15]; and each patch may be defined as being 
centered on the Cα atom of a solvent- accessible (i.e., surface-
exposed) residue and encompassing all other solvent-accessible 
residues whose Cα atoms are within a 10-Å  radius of the central 
residue [2], possibly applying additional constraints to avoid defin-
ing physically implausible fragmented or ring-like patches [16] as 
well as patches comprising residues located within paratope-inac-
cessible concavities (e.g., deep and narrow crevices that may be 
solvent-accessible yet paratope- inaccessible) [13]. Such residue-
oriented analyses yield arbitrarily defined candidate epitopes, espe-
cially considering that B-cell epitopes are actually defined at an 
atomic level of detail (albeit with unavoidably imprecise delinea-
tion of their boundaries) [1]; nonetheless, the resulting candidate 
epitopes are reasonably representative structures amenable to pro-
duction via conventional residue-oriented experimental procedures 
(e.g., of peptide synthesis and protein engineering). This approach 
can be generalized to proteins with quaternary structure and those 
forming parts of supramolecular structures such as viral capsids 
and biological membranes, such that surface patches may comprise 
residues of more than one polypeptide chain. Furthermore, intrinsic 
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disorder (i.e., conformational flexibility as dynamic random coils) 
of proteins at the levels of intradomain sequence segments (e.g., 
surface-exposed loops), domains and entire polypeptide chains 
may be a prominent feature of B-cell epitopes even in the native 
state, such that surface patches may comprise disordered residues. 
Where the antigen of primary interest is a single protein (e.g., a 
virulence factor of a pathogen), additional antigens (e.g., proteins 
of a host organism infected by the pathogen) may also be consid-
ered for the purpose of defining a set of application-relevant candi-
date epitopes insofar as antibodies targeting the protein might also 
cross-react with any of the other antigens (e.g., thereby producing 
false-positive immunodiagnostic results or mediating autoimmune 
reactions).

Once a set of candidate epitopes has thus been defined, DG  
may be estimated on the basis of their structure. In principle, a set 
of plausible paratopes could be defined (e.g., by stochastic simula-
tion of adaptive immunoglobulin-diversity generation via germline 
heavy- and light-chain variable-region gene rearrangement, with 
paratope structure prediction); subsequently, docking between the 
paratope and candidate-epitope structures could be performed and 
evaluated to estimate affinity, for example, using structural ener-
getics [17, 18], which quantitatively relates DG  to the associated 
changes in apolar and polar solvent-accessible surface area that 
occur in the binding process. However, this would require detailed 
organism-specific immunobiological knowledge on the species 
selected for antibody production and would also be very computa-
tionally expensive. As an alternative, much less computationally 
demanding approximations may be employed that treat the para-
tope implicitly on the basis of candidate-epitope structure. For 
instance, structural energetics may still be employed by assuming 
that all paratope and epitope solvent-accessible surface area is com-
pletely lost (i.e., buried at the paratope–epitope interface) upon 
binding and that the paratope thus loses the same amounts of apo-
lar and polar solvent-accessible surface area as the epitope [2, 3]. 
Where affinity maturation is anticipated to limit the maximum 
binding affinity (e.g., during immunization in vivo) as discussed in 
Subheading 1.3, an affinity ceiling can be applied such that any 
initial affinity estimates (e.g., obtained using structural energetics) 
exceeding the ceiling value are revised downward to the said value 
(i.e., such that DG  is set to the value corresponding to the affinity 
ceiling). Additionally, cross-reactivity may be estimated as DG  for 
binding alternative candidate epitopes that differ from one another 
in terms of conformational state (e.g., in the case of an antipeptide 
paratope cross-reacting with a folded protein comprising the 
sequence of the unfolded peptide recognized by the antipeptide 
paratope) or sequence (e.g., in the case of an antipathogen para-
tope cross-reacting with a host self antigen comprising a sequence 
similar to that recognized by the antipathogen paratope).
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Having estimated DG  for the candidate epitopes, the biological 
impact of paratope–epitope binding may in turn be estimated. 
In particular, immunogenicity may be at least partially inferred 
from antigenicity estimated in terms of DG , insofar as primary 
antibody responses to B-cell epitopes are driven by affinity of para-
tope–epitope binding [19]. However, potential for high-affinity 
binding (e.g., as suggested by estimated DG  values) may fail to 
manifest as immunogenicity where immune tolerance is established 
towards particular epitopes (e.g., of self antigens or other normally 
tolerated antigens), yet such tolerance might also be broken by 
immunization with the epitopes (e.g., if these are covalently cou-
pled to highly immunogenic carrier molecules); in either case, 
B-cell epitope prediction can facilitate identification of possible 
problems related to immune tolerance (e.g., by identifying candi-
date epitopes that are likely to be tolerated and for which breaking 
of tolerance might result in autoimmune or allergic reactions). 
Moreover, differences in DG  among physically overlapping B-cell 
epitopes may manifest as immunodominance (i.e., bias of immune 
responses towards a subset of so-called immunodominant epit-
opes) whereby antibody responses are mounted against immuno-
dominant epitopes, thus suppressing antibody responses to 
nonimmunodominant epitopes such that the immunogenicity of 
epitopes may be masked.

The mechanistic basis of immunodominance among B-cell 
 epitopes may be understood in terms of the affinity-driven competi-
tion among B-cell clones for antigen to recruit T-cell help (as 
expressed in Eq. 6), with higher paratope–epitope affinity favoring 
B-cell clonal expansion and antibody production; this leads to ear-
lier and more extensive binding of immunodominant epitopes by 
antibodies that interferes with antigen capture by B-cells whose 
surface immunoglobulins bind nonimmunodominant epitopes, 
particularly where the nonimmunodominant epitopes physically 
overlap with the immunodominant epitopes such that binding of 
the immunodominant epitopes by antibodies sterically blocks sub-
sequent binding of nonimmunodominant epitopes by paratopes 
[3, 12]. Hence, immunodominance among candidate epitopes of 
an antigen may be modeled to a first approximation as a thermody-
namically determined hierarchical steric-exclusion phenomenon, by 
ranking the candidate epitopes in order of decreasing estimated 
paratope affinity and subsequently defining the subset of predicted 
immunodominant epitopes to include each candidate epitope 
whose paratope affinity exceeds that of every candidate epitope with 
which it physically overlaps, assuming that the affinity ranking is 
maintained in the course of immunization (including affinity matu-
ration where applicable) [3]. However, the actual situation may be 
complicated by tolerance to particular epitopes (in which case toler-
ated epitopes might be better excluded from the affinity ranking, 
assuming that tolerance towards them would likely be maintained 
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rather than broken in the course of immunization), original 
antigenic sin (i.e., immune imprinting with consequent bias towards 
production of antibodies against epitopes that are identical or anti-
genically similar to epitopes recognized by memory B cells gener-
ated during previous immune responses) [20, 21] and quantitatively 
similar paratope affinities among epitopes (such that the determin-
istic affinity ranking may fail to capture the stochastic emergence of 
immunodominance, e.g., where potential for bistability arises due 
to comparable paratope affinities between epitopes); and steric 
exclusion conceivably can occur where immunodominant and 
nonimmunodominant epitopes are non- overlapping yet placed 
sufficiently close to (e.g., abutting) one another.

Given the immediately preceding considerations, immuno-
dominance thus poses a major challenge for B-cell epitope prediction. 
Nevertheless, the problem of predicting immunodominance may 
be at least partially circumvented for certain applications, particu-
larly where immunogen structure is investigator-determined 
(e.g., where the immunogen is a vaccine component). Towards 
this end, the most straightforward approach is to physically isolate 
an epitope such that it becomes essentially the only epitope pre-
sented to the immune system during immunization; this approach 
is applicable where peptide-based immunogens are administered to 
elicit the production of antipeptide antibodies (e.g., that cross- 
react with protein antigens), with oligopeptide sequences serving 
as immunogenic epitopes, although the typically low intrinsic 
immunogenicity of these sequences often necessitates their incor-
poration into larger immunogenic structures such as multiple anti-
genic peptides (each comprising multiple copies of the same 
epitope) [22–25] or carrier-containing constructs (wherein the 
epitope of interest is covalently linked to a macromolecular or 
particulate immunogenic carrier, in which case carrier- and linker- 
associated epitopes may elicit extraneous antibody production) 
[3, 26]. Alternatively, epitopes may be selectively modified (e.g., 
via site-directed mutagenesis) in order to decrease their immuno-
genicity (e.g., by substituting alanine residues for residues with 
larger sidechains), thereby favoring immunodominance of a par-
ticular epitope of interest (e.g., that physically overlaps with the 
modified epitopes); such modification of epitopes may be employed 
for immune refocusing [27], whereby immune imprinting (e.g., 
original antigenic sin) is overcome by selectively deleting epitopes 
recognized by memory B cells, thereby unmasking the immunoge-
nicity of other epitopes for targeting by antibody responses.

Although issues of immunogenicity and immunodominance 
are fundamental to B-cell epitope prediction, it is more generally 
concerned with biological function of antibodies produced via 
immunization (often without much regard to actual degrees of 
immunogenicity and immunodominance, provided that an ade-
quate supply of antibodies can be generated, e.g., as monoclonal 
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antibodies for passive immunization [28]). Very broadly construed, 
such biological function encompasses binding of antigen and any 
downstream events (e.g., modulation of antigen biological activity, 
or activation of various immune effector mechanisms), either 
in vitro or in vivo. In vitro, antigen binding itself may thus be 
regarded as the minimal criterion for biological function; and such 
binding in itself (i.e., exclusive of downstream events, except per-
haps the binding of appropriately labeled detector constructs) 
may be sufficient for the purpose of detecting either antigens or 
antibodies (e.g., via an immunoassay for some immunodiagnostic 
application).

Resolving antigen binding by antibodies into epitope binding 
by paratopes, each paratope–epitope binding event may be regarded 
either as a reaction if the epitope is identical to that which elicited 
production of the antibodies during immunization or as a cross- 
reaction in all other cases. Where cross-reactions are due to an 
antibody capable of binding both a peptide and a cognate protein 
(i.e., comprising the sequence of the peptide), the antibody may be 
either an antipeptide antibody (e.g., produced by immunization 
with the peptide) cross-reactive with the protein or an antiprotein 
antibody (e.g., produced by immunization with the protein) cross- 
reactive with peptide. With regard to such peptide–protein cross- 
reactions, a distinction has been proposed between so-called 
genuine and apparent cross-reactions, which purportedly involve 
native and denatured proteins, respectively [29–31]. As originally 
proposed, the distinction is rooted in the classical paradigm of per-
ceived dichotomy between completely folded native and com-
pletely unfolded denatured proteins (as evident in the reference to 
denatured-protein epitopes as unfoldons [29]), which has been 
more recently supplanted by a much more nuanced view of protein 
disorder observed at various levels of both native and denatured 
protein structure, with protein structural and functional versatility 
manifest as intrinsic protein disorder [32, 33] as well as coupled 
protein folding and binding [34]. Hence, genuine and apparent 
cross-reactions might be more meaningfully distinguished on the 
basis of antibody-mediated modulation of native-protein function 
[35] rather than the presence or degree of protein disorder; but 
such a distinction would nonetheless be problematic operationally 
insofar as protein denaturation occurs to varying degrees in real 
biological samples, possibly without complete loss of protein func-
tion where only partial denaturation occurs. At any rate, some 
denaturation is likely to occur among protein immunogens admin-
istered in vivo (e.g., during vaccination) prior to paratope–epitope 
binding, such that polyclonal antiprotein antibodies may inevitably 
bind denatured protein to some extent [36]. As regards disordered 
regions of proteins, these may serve as crucial targets (i.e., epitopes 
or epitope-containing sites) for binding by (i.e., cross-reaction of) 
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antipeptide antibodies elicited by oligopeptide subsequences of the 
proteins; for although antipeptide antibodies may fail to cross-react 
with protein epitopes that are conformationally constrained due 
to folding (e.g., because the paratopes recognize the epitope 
sequences in conformations different from those in the protein 
[37]), such antibodies may nonetheless cross-react with disordered 
protein epitopes (which can readily adopt conformations recog-
nized by the paratopes [5]).

Beyond antigen binding per se, antibody biological function 
may manifest as modulation of antigen biological function, as 
already alluded to above for cross-reaction of antipeptide antibod-
ies with native cognate proteins. Thus, where the antigen is a pro-
tein, binding of the antigen by antibody may modulate protein 
function (e.g., enzyme catalysis, in which case the antibody might 
function as a competitive inhibitor binding an active site or as a 
noncompetitive inhibitor binding an allosteric site, notwithstand-
ing the possibility that the antibody might function instead as an 
allosteric activator), possibly via relatively nonspecific mechanisms 
(e.g., where antibodies target neither active sites nor allosteric- 
inhibitor binding sites on an enzyme, yet nonetheless interfere 
with its catalytic activity by binding it and thus hindering its diffu-
sion especially through gel-like biological matrices, possibly also 
sequestering it within immune complexes and thereby restricting 
substrate access to its active sites). Such functional modulation may 
be regarded as protective if it favors a desirable prophylactic or 
therapeutic outcome (e.g., neutralization of a pathogen). Other 
protective effects may be less directly realized via downstream 
immune effector mechanisms such as complement pathways and 
immune-complex clearance by professional phagocytes (e.g., mac-
rophages). For example, initial activation of the classical comple-
ment pathway by immune complexes may be augmented by 
consequent activation of the alternative complement pathway, 
leading to opsonization of the immune complexes (thus favoring 
their immune clearance via internalization by professional phago-
cytes) and possibly even the formation of membrane attack com-
plexes (thus perforating target biological membranes such as the 
outer membranes of Gram-negative bacterial pathogens); and 
incorporation of IgG into the immune complexes may itself lead to 
their opsonization. Such downstream immune mechanisms may be 
activated regardless of the target antigen conformational state (i.e., 
native or denatured), provided that antibodies bind the target 
antigen to form suitable immune complexes. Accordingly, antibody- 
mediated protective effects may be classified as instances of either 
class-I or -II protectivities [38], which, respectively, correspond 
to direct effects of antibody binding and to indirect effects medi-
ated by immune mechanisms activated by immune complexes. 
Although this suggests that antigen binding by antibodies protects 
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against disease, such binding may actually promote or enhance 
disease, as exemplified by the phenomena of autoantibody-mediated 
hypersensitivity and of antibody-dependent enhancement of 
infection. Antibody-dependent enhancement of infection, which 
occurs in infections due to a wide variety of pathogens ranging 
from viruses to protozoa [39], tends to exhibit nonlinear antibody- 
concentration dependence, such that enhancement occurs when 
antibody concentrations fall below some critical threshold for 
protection [40], with the threshold itself possibly dependent on 
factors such as complement-component concentrations [41] and 
pathogen state (e.g., developmental stage) [42, 43].

To quantitatively describe the biological impact of paratope–epitope 
binding and thus complete the task of B-cell epitope prediction for 
a particular practical application, affinity (as expressed in Eqs. 1–4) 
can serve as the fundamental basis for the entire theoretical frame-
work [2, 3]. An affinity value in the form of an association-constant 
value KA is in itself a quantitative description of a molecular binding 
process, yet it is practically meaningful only in relation to an 
application-specific cutoff value K A

cut , at or above which the binding 
process would be deemed useful for its intended purpose.

Typically, K A
cut  must be sufficiently high to elicit antibody pro-

duction in the first place (which for in-vivo immunization likely 
requires K A

cut  in the submillimolar range [19]), unless immuniza-
tion is somehow bypassed (e.g., via genetic engineering of 
antibody- secreting cells). At any rate, all applications dependent on 
antibody–antigen binding interactions entail the formation of 
immune complexes, such that K A

cut  must correspond to some 
required minimum extent of immune-complex formation, which 
typically can be expressed as a fraction f of antigen bound by anti-
body. For example, the equilibrium value of f under conditions of 
antibody excess relative to antigen may be obtained from Eq. 3 as: 

 
f

K
=

+
1

1 ( / [ ])D Ab  
(7)

where KD is the equilibrium dissociation constant (as in Eqs. 1 
and 3) and [Ab] is the antibody concentration, such that KD is the 
value of [Ab] at which half of the binding sites for antibody are 
occupied. For extension of applicability to more complex cases 
where cooperative binding interactions occur, Eq. 7 may be gener-
alized to a form of the Hill equation [44, 45]: 

 
f

K n=
+

1
1 ( / [ ])D Ab  

(8)

where n is an interaction coefficient whose value is a lower bound on 
the number of binding sites for antibody on the antigen (such that 

2.3 Quantitative 
Biological Effects 
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Eq. 8 reduces to Eq. 7 where n is unity). Combining Eqs. 1 and 8, 
the equilibrium association constant KA may be obtained as: 
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such that K A
cut  is thus obtained if the minimum anticipated values 

are assumed for [Ab] and f. The minimum anticipated value for 
[Ab] may, for instance, correspond to a threshold antibody titer for 
ascertaining immunity (e.g., following vaccination) or for diagnos-
ing disease (e.g., following infection). As to the minimum antici-
pated value for f, this may be selected on the basis of technical 
considerations (e.g., for immunodiagnostics to detect antibodies, 
in relation to the amount of antigen and sensitivity limit of equip-
ment used, so as to ensure antibody detection at the threshold 
antibody titer).

For immunodiagnostics wherein formed immune complexes 
may irreversibly dissociate (e.g., in immunosorbent assays wherein 
immobilized immune complexes are subject to extensive washing), 
an important additional consideration is that the off-rate koff for 
immune-complex dissociation must be sufficiently low for the 
immune complexes to persist long enough to enable their detec-
tion, in which case K A

cut  might be computed according to Eq. 2 
using the upper (i.e., diffusion-control) limit for the on-rate kon as 
given by Eq. 5 (which is plausible where antibodies are obtained via 
immunization that entails affinity maturation) and some techni-
cally appropriate upper bound on koff (noting that koff is the recip-
rocal of the mean lifetime of an individual immune complex); 
hence, decreasing K A

cut  (e.g., by increasing the upper bound on 
koff) would tend to increase the analytical detection limit, thus ren-
dering the diagnostic test less sensitive and therefore more prone 
to yielding false-negative results.

For applications that aim to neutralize the biological activity of 
a particular target antigen (e.g., toxin or other pathogen), K A

cut  
may be computed on the basis of a practically acceptable upper 
bound on the probability p of some biological outcome (e.g., 
lethality or infection). In the absence of antibodies to the target 
antigen, p may be estimated phenomenologically as: 

 
p

C C b=
+

1
1 ( / )m  

(10)

where b is an empirical coefficient, C is the concentration of caus-
ative agent, and Cm is the value of C at which p is half-maximal, 
such that Cm is the median effective concentration (in the sense of 
tending to produce the biological effect in half the members of a 
given test population, e.g., of whole organisms or of cells in vitro) 
and may, for example, represent the median lethal concentration 
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(LC50) or the median infectious concentration (IC50, distinct from 
the median inhibitory concentration in pharmacological studies) 
where the biological effect is lethality or infection, respectively; 
more generally [46], C may represent the dose of causative agent, 
with Cm thus representing the median effective dose (e.g., the 
median lethal dose LD50 or the median infective dose ID50), typi-
cally normalized per unit body mass.

For a simple bimolecular association (i.e., as described by 
Eqs. 1–4) between a causative agent and a neutralizing antibody 
thereto, with binding equilibrium rapidly attained upon introduc-
tion of the causative agent into the system or subsystem of interest 
(e.g., a cell culture, or the total extracellular body fluid or circulat-
ing blood plasma of a living host organism), the concentration C 
of free causative agent (i.e., not bound by antibody) may be esti-
mated from the total concentration C0 of free and antibody- bound 
causative agent combined assuming an excess of antibody, as: 

 
C

C
K

=
+

0

1 ([ ] / )Ab D  
(11)

where [Ab] is the antibody concentration and KD is the equilib-
rium dissociation constant (as in Eqs. 1 and 3). Combining 
Eqs. 1, 10, and 11, the equilibrium association constant KA may be 
obtained as: 
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such that K A
cut  is thus obtained if the maximum anticipated values 

are assumed for C0, [Ab] and p. The maximum anticipated values 
for C0 and p may be selected on the basis of clinical or experimental 
exposure or infection data in conjunction with Eq. 10, whereas the 
corresponding values for [Ab] may be selected in line with physio-
logical constraints (e.g., upper bounds on endogenous antibody 
production, where active immunization is employed) subject to 
technical and safety considerations (e.g., as regards upper bounds 
on administration of exogenous antibodies, where passive immuni-
zation is employed) [5]. For communicable infectious diseases, the 
value for p may be selected on the basis of the critical immunization 
threshold qc (i.e., the minimum proportion of immune individuals 
in a host population required for herd immunity, that is, 
 population-level resistance to epidemic spread of disease), which for 
well-mixed host populations (i.e., wherein individual hosts are 
homogeneously interacting with one another) may be estimated as: 

 
q

Rc = -1
1

0  
(13)

Salvador Eugenio C. Caoili



261

where R0 is the basic reproduction number (i.e., the number of 
secondary cases that one case is expected to produce in a com-
pletely susceptible host population); hence, the complement of qc 
(i.e., 1 − qc) may be regarded as an upper bound on acceptable 
values of p, considering that p is the expected failure rate for 
attempts to achieve protective antibody-mediated immunity 
among individual hosts in the context of Eq. 12 (such that p ≤ 1 − 
qc would be acceptable assuming that the maximum anticipated 
antibody concentration were to be realized in every member of the 
entire host population).

With regard to all scenarios considered thus far, the central 
task of quantitatively estimating paratope–epitope affinity is further 
complicated where the problem of potential cross-reaction arises. 
For example, whereas the application of structural energetics to 
estimate affinity of an antibody reacting with an epitope (i.e., where 
the epitope itself elicited production of the antibody) is relatively 
straightforward, it is much less so for the same antibody cross- 
reacting with another structurally distinct epitope of a different 
conformation or sequence, as the structural difference between the 
epitopes introduces additional contributions of uncertain magni-
tude (e.g., to account for structural adjustments upon binding) 
into the calculation of affinity for the cross-reaction [2, 3]. 
Typically, the affinity of a cross-reaction is lower than that of the 
corresponding reaction due to suboptimal paratope–epitope com-
plementarity, but the affinity of cross-reaction may exceed that of 
reaction (e.g., where cross-reaction involves a more conformation-
ally constrained epitope, such that cross-reaction is more thermo-
dynamically favorable due to a decrease in the loss of conformational 
entropy upon binding by antibody). Hence, predicted affinities are 
likely to be less accurate for cross-reactions than for reactions, 
although this may be a relatively minor problem for cross-reaction 
of antipeptide antibodies with disordered cognate protein regions, 
particularly where the protein epitopes can readily adopt confor-
mations recognized by the antibodies [5]. At the same time, the 
possibility of unintended cross-reaction (e.g., of antipathogen anti-
bodies cross-reacting with host self antigens) must be carefully 
considered in an application-specific manner (e.g., with reference 
to self antigens of the relevant host species). Taking the example of 
antibodies to be produced against a peptide fragment of a patho-
gen protein, computational evaluation of potential for deleterious 
cross-reactions in a particular host might initially proceed on the 
basis of sequence comparisons to search for sequences matching 
that of the peptide among proteins of the relevant host proteome 
and possibly also proteomes of organisms contributing to the host 
diet or forming part of the host environment, with the host and 
other proteomes relevant as regards potential autoimmune and 
allergic reactions, respectively. Any exact or partial sequence 
matches thus found could be further investigated as to their possible 
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biological significance, for example, with attention to relative 
abundance as well as histologic and subcellular localization, 
considering that low-abundance intracellular host self antigens 
conceivably are unlikely targets for autoimmune antibodies (but 
also noting that the contents of at least some host intracellular 
compartments are accessible to antibodies [47]).

The theoretical framework developed thus far can be incre-
mentally extended on the basis of greater mechanistic detail by 
means of modeling and simulating immune and infectious  processes 
at multiple levels of structural and functional organization, with 
paratope–epitope binding affinity still as the basic foundation. This 
could provide increasingly more appropriate methods for  particular 
specialized applications (e.g., immunodiagnostics and vaccines). 
Although the present work emphasizes the role of B-cell epitope 
prediction methods in supporting biomedical and other practical 
applications, the quantitative approaches described herein for this 
purpose apply as well to basic experimental research (e.g., studies 
on antibody-mediated toxin- and pathogen-neutralization in vitro) 
that nonetheless can yield results useful as benchmark data for 
 evaluation and further refinement of B-cell epitope prediction 
methods [35], as discussed further below.

In the context of B-cell epitope prediction, benchmarking is the 
process whereby computational predictions of paratope–epitope 
binding are evaluated against empirical data (i.e., benchmark data). 
Benchmarking thus facilitates comparison between alternative pre-
diction methods, thereby providing an objective basis for the itera-
tive refinement of such methods. The judicious selection and 
utilization of benchmark data is a crucial prerequisite to avoid 
benchmarking errors (i.e., overrating or underrating of prediction 
methods, which can mislead investigators in their decisions on 
selecting between methods and modifying these towards superior 
computational performance) [35, 48].

Numerous and diverse forms of empirical data on paratope– 
epitope binding are available for use as benchmark data. Among 
these data, those of primary interest are on outcomes of antibody–
antigen binding assays. Such data may be broadly categorized as 
either qualitative or quantitative. The qualitative data are typically 
dichotomous, such that they are designated either as positive data if 
they are associated with empirical evidence of paratope–epitope 
binding or as negative data otherwise. The quantitative data are 
much more heterogeneous and are often associated with various units 
of measurement reflecting the diverse experimental approaches by 
which they were obtained, although these data are amenable to nor-
malization that enables their coherent aggregation for benchmarking; 
furthermore, quantitative data may be readily transformed into 
dichotomous qualitative data by applying a threshold or cutoff value, 
but this results in loss of information and statistical power [49]. 

2.4 Benchmarking 
B-cell Epitope 
Prediction Using 
Quantitative Data
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Because of the ease with which qualitative data can be generated 
experimentally and quantitative data can be converted into qualita-
tive data, qualitative data have historically predominated as the 
basis for benchmarking B-cell prediction; however, this approach is 
fundamentally problematic and error-prone [35, 48], for which 
reason the present work focuses on the use of quantitative bench-
mark data instead.

The benchmark data are customarily organized into records, 
each of which comprises three minimal data components, namely 
structural data on an immunogen, structural data on an antigen 
used in an immunoassay, and data on the outcome of the immuno-
assay, with the concept of an immunoassay broadly defined to 
include structural determination (e.g., X-ray crystallography and 
NMR spectroscopy for elucidating immune-complex structure); 
often, the only structural data provided are in the form of sequences. 
Arguably, other data on immunization conditions (e.g., species of 
immunized animal) and on immunoassay conditions (e.g., antigen 
and antibody concentrations as well as temperature) are equally 
important as input for B-cell epitope prediction methods (e.g., in 
view of Eqs. 3, 4, and 7–12), but benchmarking has historically 
focused almost exclusively on the minimal data. Where the immu-
nogens and antigens are peptidic (i.e., peptides or proteins), each 
putative epitope is a set of amino-acid residues that may be either 
continuous (i.e., consisting of a single unbroken sequence of con-
tiguous residues, which is typical where at least the immunogen or 
the antigen is an oligopeptide) or discontinuous (i.e., comprising 
two or more noncontiguous sequence segments, which is typical 
where both the immunogen and the antigen are proteins).

Peptidic epitopes may be delineated for monoclonal antibodies 
either via structural determination (e.g., on inspection of paratope–
epitope atomic contacts in NMR structures) or via binding studies 
(e.g., mapping epitope residues by observing decreases in binding 
affinity following removal or substitution of residues in antigens), 
but such epitopes may be much more difficult to delineate unam-
biguously for polyclonal antibodies due to coexistence of multiple 
paratopes that bind overlapping epitope sequences; yet, an indi-
vidual monoclonal antibody or even a panel of monoclonal 
 antibodies from a common source may be unrepresentative of 
the polyclonal repertoire from which it was originally derived. 
This dilemma between monoclonal and polyclonal antibodies can 
be deliberately minimized for polyclonal antipeptide antibodies by 
using immunogens containing only short oligopeptides, such that 
the oligopeptides are each likely to contain only one epitope. 
Hence, benchmarking with quantitative data is considered herein 
for antipeptide antibodies reacting with peptide antigens and cross- 
reacting with protein antigens, for clarity of illustration.

Quantitative benchmark data are values of continuous variables, 
and B-cell epitope prediction methods themselves render predictions 
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(i.e., computational approximations of the benchmark data) as values 
of continuous variables, although this is often obscured by sub-
sequent dichotomization of predictions for  compatibility with 
available qualitative data. The predictions thus can be used directly 
as values of continuous variables to evaluate a performance mea-
sure such as the Pearson correlation coefficient (PCC) [35, 48]. 
For two continuous variables X and Y of which paired values 
(Xi, Yi) define n data points, the PCC (denoted by r) can be gener-
alized as a weighted PCC (wPCC), such that: 
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where w is a nonnegative weight while X  and U  are weighted 
arithmetic means both of the form: 
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where Z is a generic continuous variable. If the values of X are 
empirically obtained while those of Y are corresponding computa-
tional predictions, each data point (Xi, Yi) may be assigned a weight 
wi representing the appraised worth of Xi relative to other values of 
X, such that zero weight is assigned to data points deemed com-
pletely worthless while progressively more positive weights are 
assigned to other data points of increasing appraised worth. The 
weight thus could be defined as a function of both measurement 
quality (e.g., as regards accuracy and precision) and informative-
ness (i.e., the potential usefulness of a particular empirically 
obtained numeric value in the benchmarking of predictions). For 
simplicity, the present work focuses mainly on informativeness to 
define an upper limit on the weight assuming maximum measure-
ment quality (e.g., perfect accuracy and precision).

To benchmark B-cell epitope prediction for antipeptide anti-
bodies reacting with peptide antigens, empirical values for a stan-
dard measure of affinity such as KA or KD (cf. Eqs. 1–4) may serve 
as benchmark data, such that the predictions themselves should be 
approximations of the said values computed on the basis of other 
pertinent data (e.g., antigen sequence and immunoassay tempera-
ture, for structural-energetic calculations), in which case a correlation-
coefficient value may be obtained using Eqs. 14 and 15 with all 
weights set to unity (i.e., using an unweighted PCC). However, 
this approach conceivably would be problematic if applied to 
benchmark B-cell epitope prediction for antipeptide antibodies 
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cross-reacting with protein antigens; because the antibodies might 
bind either or both native and denatured cognate protein antigens, 
the appropriate selection of protein-antigen structure to be used as 
the basis for rendering affinity predictions (e.g., using structural 
energetics) would be unclear if antigen binding per se (as affinity) 
were measured. Nevertheless, this problem can be circumvented 
by benchmarking with continuous antibody dose-response data 
that reflect antibody-mediated modulation (e.g., inhibition) of 
native-protein biological function (e.g., enzyme catalysis), which is 
especially appropriate where the envisioned practical application 
would be to identify target epitopes on native proteins (e.g., to 
support the design and development of vaccines that elicit the pro-
duction of antipeptide antibodies binding native proteins and 
thereby neutralizing protein biological activity).

To facilitate the utilization of benchmark datasets comprising 
continuous dose-response data on antibody-mediated modulation 
of biological activity, such data typically can be normalized to yield 
quotients in the range of zero to unity that represent the magni-
tude of an observed antibody-mediated biological effect relative to 
its theoretical or empirically determined maximum magnitude  
[35, 48]. Each quotient may thus be obtained as: 

 q B B= / 0  (16)

where B and B0 are the observed and maximum magnitudes of the 
antibody-mediated biological effect, respectively. For antibody- 
mediated inhibition of biological activity (e.g., enzyme catalytic 
activity or pathogen infectivity), B may be equated with the 
observed fractional activity loss due to binding by antibody, such 
that B0 is unity (corresponding to complete loss of activity). 
Likewise, for antibody-mediated host protection against lethal 
challenge (e.g., with a toxin or pathogen), B may be equated with 
the observed fractional host survival (i.e., proportion of surviving 
hosts) due to binding by antibody (e.g., antitoxin or pathogen- 
neutralizing antibody), such that B0 is again unity (corresponding 
to complete protection against lethality).

More generally, B and B0 are readily defined where q can be 
interpreted as the probability of a particular functional state (e.g., 
catalytically active versus inactive, or viable versus nonviable). In 
the mechanistically simplest cases, this functional state directly cor-
responds to the binding state (i.e., either free or antibody-bound) 
of the antigen of interest (e.g., an enzyme with a single catalytic 
site that is active in the free state but completely inactivated in the 
antibody-bound state). In such cases, the probability of the func-
tional state is equivalent to the fraction of antigen that is either free 
or antibody-bound, with the equilibrium value of the antibody- 
bound fraction f approximated under conditions of antibody excess 
relative to the antigen according to Eq. 7 or 8. Alternatively, 
Eqs. 10 and 11 can be used jointly to evaluate the probability p of 
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some biological outcome (e.g., lethality or infection) due to some 
causative agent (e.g., toxin or pathogen), by first estimating the 
free concentration C of the said agent (using Eq. 11) and subse-
quently estimating p (using Eq. 10). Thus, predictive estimates of f 
and p can be used as values for the empirical quotient q in Eq. 16.

Granted that Eqs. 7, 8, 10, and 11 may be applicable only to 
relatively simple cases, they nonetheless illustrate the importance of 
antibody concentration [Ab] in the rendering of predictions that 
are to be benchmarked against continuous dose- response data nor-
malized as the empirical quotient q according to Eq. 16. In particu-
lar, values of q approaching either zero or unity correspond to 
extremes of [Ab] (i.e., low or high values of [Ab] with negligible 
or near-maximal biological effects, respectively) and are thus rela-
tively uninformative insofar as estimation of q (e.g., using 
Eqs. 7, 8, 10, and 11) becomes insensitive to variation in [Ab] in 
the limit of low or high [Ab]; conversely, the most informative 
value of q is half unity, which corresponds to the point of maximal 
sensitivity to variation in [Ab] (e.g., at which the second derivative 
of f in Eqs. 7 and 8 is zero) in the estimation of q.

Returning to the problem of assigning the weight w per data 
point for Eq. 14 in light of the immediately preceding consider-
ations, if X is equated with the empirical quotient q in Eq. 16 while 
Y is obtained as a predictive estimate of q (e.g., by means of 
Eqs. 7, 8, 10, and 11), w should be maximal where q is half unity 
and zero where q is either zero or unity; these constraints are satis-
fied by the Shannon information entropy [50] calculated in bits as: 

 H q q q q= - + - -( log ( )log ( ))2 21 1  (17)

assuming two possible alternative states of the mathematically 
modeled system (e.g., an enzyme that is either active when free or 
inactivated when antibody-bound, or a cell that has either survived 
or died following challenge with a toxin). If the values of q (i.e., 
benchmark data) under consideration are all of maximum mea-
surement quality, w may be equated with H; otherwise, w may be 
assigned a value less than H according to limitations of measure-
ment quality (e.g., of accuracy and precision). In other words, H 
may be regarded as an upper bound on w in the limit of perfect 
measurement quality.

Further clarification is warranted regarding the choice of H as 
a measure of informativeness in the present work considering that 
H has long been recognized instead as a measure of uncertainty, 
particularly in line with the view of statistical mechanics as an appli-
cation of information theory [51, 52]. This view holds that uncer-
tainty may be quantitatively expressed as H in terms of a probability 
distribution for the occupancy of microscopic states available to a 
thermodynamic system, following the form of Eq. 17 for a two- 
state system; accordingly, the uncertainty is least if occupancy of 
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exactly one state is completely certain (i.e., with probability equal 
to unity, corresponding to zero entropy), whereas the uncertainty 
is greatest for a uniform probability distribution over all the avail-
able states (i.e., with all states being equiprobable, e.g., having a 
probability of half unity for each state in a two-state system). The 
notion of entropy as uncertainty may be extended to systems for 
which the states under consideration are mutually exclusive out-
comes (e.g., death or survival), such that completely certain out-
comes are associated with zero entropy while maximally uncertain 
(i.e., equiprobable) outcomes are associated with maximum 
entropy (e.g., one bit for two equiprobable outcomes). From the 
standpoint of predictively estimating the empirical quotient q in 
Eq. 16, zero and maximum entropy, respectively, correspond to 
the most and least trivial predictive tasks in that tolerance for error 
(e.g., in the estimation of the dissociation constant KD for use in 
Eqs. 7, 8, 10, and 11) increases without bound as q approaches 
either zero or unity, at which values q thus becomes completely 
uninformative for benchmarking (consistent with the use of H as 
the weight w in Eqs. 14 and 15 (see Note 1).

3 Computational Resources

As discussed in Subheading 2.4, empirical data on paratope– 
epitope binding serve as the basis for benchmarking B-cell epitope 
prediction. Furthermore, these data may be utilized directly to 
develop B-cell epitope prediction methods (e.g., via machine learn-
ing approaches [53, 54]). Databases containing such data are 
therefore crucial (albeit underutilized) computational resources 
supporting the advancement of B-cell epitope prediction.

Adopting a broadly inclusive view of databases as organized 
collections of data in any physical form, the earliest published data-
bases of B-cell epitope data were small collections of qualitative 
binding data compiled for the express purpose of benchmarking 
particular prediction methods [55–58]. These databases, which 
were published as tables in printed manuscripts, comprised data on 
peptide sequences as objects of peptide–protein cross-reactivity, 
including data on both antipeptide antibodies cross-reacting with 
protein antigens and antiprotein antibodies cross-reacting with 
peptide antigens. The said data were positive data (i.e., based on 
empirical evidence of cross-reaction). For benchmarking purposes, 
these positive data (i.e., peptide sequences associated with empiri-
cal evidence of cross-reaction) were typically combined with other 
data assumed to be negative (i.e., peptide sequences for which 
empirical evidence of cross-reaction was unavailable, either because 
they yielded negative results in experiments to detect cross- 
reactions or because such experiments had not been performed in 
the first place). This approach to the definition of negative data 
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poses a problem where data are thus mislabeled as negative when 
in fact the associated peptide sequences may actually comprise 
B-cell epitopes, which might be detectable only under particular 
experimental conditions (e.g., different from those used for pub-
lished work reporting negative results) [35]. The problem is fur-
ther compounded by conflation of data on cross-reactions of 
antipeptide antibodies with protein antigens and of antiprotein 
antibodies with peptide antigens, notably where negative results 
on the latter type of cross-reaction are interpreted as implying that 
the peptide antigens in question are devoid of B-cell epitopes that 
could elicit antipeptide antibodies capable of cross-reacting with 
cognate proteins [3]. Such conflation of data on peptide–protein 
cross-reactions was motivated at least in part by the extreme pau-
city of available data in the earliest B-cell epitope databases; how-
ever, more recently published B-cell epitope data demonstrate the 
potential for inconsistencies arising from the practice (e.g., where 
antiprotein antibodies fail to cross-react with a peptide antigen, 
which nonetheless can elicit the production of antipeptide anti-
bodies that cross-react with the cognate protein) [3].

Hence, the interrelated problems of defining negative data and 
conflating data on mechanistically distinct peptide–protein cross-
reactions (i.e., involving antipeptide versus antiprotein antibodies) 
thus arose in the course of attempts to benchmark B-cell epitope 
prediction using extremely small datasets. The underlying paucity 
of available benchmark data has been partially mitigated with the 
accumulation of newer published B-cell epitope data, which have 
been curated for inclusion in various databases accessible via the 
Internet. These databases vary in their scope and purpose. For 
example, the database Bcipep [59, 60] explicitly focuses on sup-
porting peptide-based vaccine design (with emphasis placed on 
epitope immunodominance, in line with prime-boost vaccination 
strategies), whereas CED (a conformational epitope database) 
[61] is specialized for storage and retrieval of detailed three- 
dimensional structural data on epitopes. Among all such databases, 
IEDB (Immune Epitope Database) [62–64] exemplifies both 
breadth and depth of coverage as regards epitope data (including 
both B-cell and T-cell epitope data, for peptidic and non-peptidic 
epitopes from biological and synthetic sources). With the notable 
exception of epitope data on human immunodeficiency virus 
(HIV), which are accessible via the Los Alamos National Laboratory 
HIV molecular immunology database (http://www.hiv.lanl.gov/
content/immunology) rather than IEDB, IEDB comprises rigor-
ously curated epitope data on an extremely wide variety of antigens 
including those of numerous pathogens, allergens, and autoanti-
gens (i.e., self antigens targeted by autoimmune responses).

IEDB contains records that each pertain to a B-cell assay (typi-
cally an immunoassay to detect antibody–antigen binding) for a 
particular B-cell epitope structure (e.g., either a continuous or 
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discontinuous peptidic epitope), which may be an individual B-cell 
epitope or an antigenic region containing one or more such epit-
opes [62, 65] and is denoted by “Epitope” in data-field names and 
values (see Note 2). Each of the said records contains the three 
minimal data components (i.e., structural data on an immunogen, 
structural data on an antigen used in an immunoassay, and data on 
the outcome of the immunoassay) required for benchmarking as 
outlined in Subheading 2.4. In particular, the records contain data 
fields defined in relation to the concepts of “1st Immunogen” (i.e., 
immunogen administered to produce antibodies) and “Antigen” 
(i.e., antigen used in the B-cell assay), such that each record con-
tains two data fields named “1st Immunogen Epitope Relation” 
and “Antigen Epitope Relation” (hereafter referred to as the 
immunogen and antigen fields, respectively), at least one of which 
may be assigned the value “Epitope.” Where both fields are 
assigned the value “Epitope,” the B-cell assay aimed to detect reac-
tion (e.g., of antipeptide antibodies with the peptide administered 
to elicit their production); otherwise, the B-cell assay aimed to 
detect cross-reaction (e.g., of antipeptide antibodies with a cog-
nate protein, in which case the immunogen and antigen fields are 
assigned the values “Epitope” and “Source Antigen,” respectively). 
As regards B-cell assay outcomes, each record contains a data field 
named “Qualitative Measurement” that is assigned a dichotomous 
outcome value of either “Positive” or “Negative” (indicating either 
detectable or undetectable binding, respectively); additionally, 
each record also contains data fields for capturing quantitative data 
(including numeric value and measurements units) on assay out-
come where such data are available.

IEDB thus contains quantitative data suitable for benchmark-
ing B-cell epitope prediction as outlined in Subheading 2.4. 
Records containing these data may be retrieved (and downloaded 
as comma-separated value [CSV] files) via the B Cell Search facility 
of IEDB, with filtering via appropriate restriction of data-field val-
ues (Fig. 1). For example, setting the epitope-type field to “Linear 
peptide” and both the immunogen and antigen fields to “Epitope” 
retrieves records on reaction of antipeptide antibodies with peptide 
antigens; but if the antigen field is set to “Source Antigen” rather 
than “Epitope,” this retrieves records on cross- reaction of antipep-
tide antibodies with cognate protein antigens [5]. In this manner, 
undesirable conflation of benchmark data (e.g., on antipeptide 
antibodies cross-reacting with protein antigens versus antiprotein 
antibodies cross-reacting with peptide antigens) is avoided. 
Filtering on other data fields (e.g., representing immunized animal 
species and antibody clonality) may likewise be performed to con-
trol for possible confounding variables (e.g., interspecies variation 
in antibody responses, or potentially unrepresentative monoclonal-
antibody data in the context of immunization with peptide-based 
vaccines [48]). Additional filtering with respect to B-cell assay type 
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Fig. 1 IEDB B cell search facility web interface (directly accessible online through http://www.immuneepitope.
org/advancedQueryBcell.php). Example shows user options selected from pull-down menus, for restricting 
searches by data fields of the type “Epitope Relation,” particularly “1st Immunogen Epitope Relation” (within 
the Immunization section) and “Antigen Epitope Relation” (within the B cell assay section), with both fields set 
to “Epitope” (which is appropriate for retrieving records on B-cell assays wherein a short oligopeptide sequence 
was used both to elicit the production of antibodies and to detect the antibodies). Clicking on assay finder but-
ton (within the B cell assay section) launches assay finder popup window (Fig. 2)
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(represented by the data field named “Assay”) may be performed 
using the Assay Finder feature of the B Cell Search facility. Within 
the Assay Finder (popup) window, a B-cell assay tree is provided 
(Fig. 2); this tree can be navigated to view a hierarchical classifica-
tion scheme of available assay types, which may be marked indi-
vidually or by category (Table 1) to define appropriate selections of 
assay types for filtering in order to retrieve only those records 
matching one of the selected assay types. The two main assay-type 
categories are “antibody binding to epitope” and “antibody-
dependent biological activity.” “Antibody binding to epitope” 
comprises “binding constant determination assay,” which in turn 
comprises “equilibrium association constant (KA)” and “equilib-
rium dissociation constant (KD)” (directly corresponding to the 
like-named quantities in Eq. 1); having measurement units of “[1/
nM]” and “[nM],” respectively, these two categories are appropri-
ate for retrieving quantitative data with which to benchmark para-
tope–epitope affinity predictions, noting that records thus retrieved 
should be checked for possible data duplication (see Note 3). 
“Antibody-dependent biological activity” comprises a wide variety 

Fig. 2 IEDB assay finder popup window launched from B cell search facility web interface (Fig. 1), displaying 
B-cell assay tree. Example shows current selection comprising B-cell assays to obtain equilibrium association 
and dissociation constants. Within the assay tree, the node for equilibrium association constant is expanded to 
display its subsidiary assay types (calorimetry, ELISA, etc.) while the node for equilibrium dissociation constant, 
which has essentially the same subsidiary assay types, is collapsed; and the subsidiary assay types of the node 
for antibody-dependent biological activity (collapsed at bottom of assay tree panel) are presented in Table 1
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Table 1 
IEDB B-cell assay categories and types for antibody-dependent biological activity

Assay category or type Subsidiary assay types

Activation of additional Antibody-dependent cellular cytotoxicity
immune response in vitro Antibody-mediated histamine release

Complement-dependent cytotoxicity
Opsonization/phagocytosis

Efficacy of epitope-specific Protection after challenge (e.g.,
antibody intervention in vivo survival after challenge)

Decreased disease symptoms after treatment
Disease symptom exacerbation
Induction of hypersensitivity
Induction of tolerance
Reduction of fertility after treatment

Activation/enhancement of (Not applicable)
antigen activity

Antigen inhibition of (Not applicable)
antibody activity

Neutralization/inhibition of (Not applicable)
antigen activity

of assays (e.g., “neutralization/inhibition of antigen activity” and 
“survival after challenge”), all of which can yield quantitative data 
that are values of (or can be transformed into values of ) the quo-
tient q in Eqs. 16 and 17; hence, these assays are appropriate for 
retrieving quantitative data with which to benchmark predictions 
of antibody-mediated biological effects. In all cases (i.e., for pre-
dictions of affinities and biological effects), retrieved records should 
be checked for a valid numerical value assigned to the data field 
named “Quantitative measurement” [which may be empty (see 
Note 4)]; and also for any value assigned to the data field named 
“Measurement inequality” (which may be assigned a value of “ < ” 
or “ > ,” indicating that the quantitative measurement represents a 
lower or upper limit rather than a point estimate) (see Note 5). For 
predictions on biological effects in particular, B-cell assay antibody 
concentrations (for use with Eqs. 7, 8, 10, and 11), which are typi-
cally absent from the IEDB records, may have to be either extracted 
or inferred (where possible) from the original literature references.

The most important aspect of IEDB and other actively main-
tained databases is their evolution over time to encompass ever 
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greater amounts of epitope data (e.g., gleaned from published 
experimental work) for benchmarking prediction methods and to 
curate these data in ways that better facilitate the benchmarking 
process (e.g., by storing a wider variety of relevant data within 
readily searchable data fields). Apart from already published work, 
direct submission of yet unpublished data for inclusion in the data-
bases is an increasingly significant driver of database growth, such 
that conventional published-literature searches may fail to retrieve 
newer data added to the databases. As database record structures 
and contents continue to evolve and expand, investigators may be 
compelled to retrieve additional data (e.g., immunoassay antibody 
concentrations) from primary sources (e.g., published manu-
scripts) where these data have yet to be captured within existing 
database records. Ultimately, the most crucial determinant of the 
availability of benchmark data is their actual generation in the first 
place. Experimentalists thus could greatly contribute to the further 
accumulation of informative benchmark data by generating dose- 
response data at or near half-maximal response levels, expressing 
antibody-mediated effects as apparent concentration-dependent 
changes in median effective doses of particular causative agents 
wherever possible, in line with the preceding Subheading 2.4. This 
demands explicit specification of antibody concentrations in molar 
or equivalent terms rather than incommensurable arbitrary units 
(e.g., based on titers operationally defined only for a particular 
immunoassay protocol) (see Note 6).

For the purpose of discussion, methods for B-cell epitope predic-
tion are categorized herein as either classical or postclassical on the 
basis of their underlying computational approaches. The classical 
methods are exemplified by the earliest published epitope predic-
tion algorithms, which generate simple sequence profiles using 
various amino-acid residue propensity scales. In contrast, the post-
classical methods are more sophisticated in that they explicitly con-
sider more structural detail (e.g., atomic coordinates of folded 
protein antigens) or otherwise employ more advanced computa-
tional techniques (e.g., machine learning [53, 66]); either way, the 
predictions are based on more structural information, although 
this may be only implicit (e.g., among machine learning approaches 
that utilize sequences without explicitly generating structural 
models). A recurrent theme in the development of both classical 
and postclassical methods is the trend towards hybrid methods 
(i.e., combinations of simpler methods to generate more reliable 
predictions), which is illustrated below using representative exam-
ples from the published literature.

Classical methods of B-cell epitope prediction entail sequence 
profiling of proteins. The earliest published B-cell epitope predic-
tion method, namely that of Hopp and Woods [55], assigns 
numeric hydrophilicity values to each of the 20 canonical proteino-
genic amino acids and evaluates the average hydrophilicity over a 

3.2 Prediction 
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sliding window several residues in width along the entire sequence 
of a polypeptide chain, thus yielding sequence profiles whose peaks 
correspond to putative B-cell epitopes. The hydrophilicity values 
used were derived from free-energy changes associated with the 
transfer of model compounds from aqueous to organic phases 
[67], reflecting the notion that hydrophilic residues tend to be 
located on surface-exposed regions of proteins. Reasoning that 
B-cell epitopes must contain at least some residues that are physi-
cally accessible to paratopes, hydrophilicity is thus regarded as a 
surrogate for surface exposure, which in turn is regarded as a sur-
rogate for antigenicity (i.e., the capacity to function as a B-cell 
epitope). This argument is open to the criticisms that surface 
 exposure cannot be reliably inferred from hydrophilicity and that 
surface exposure is not even a sufficient condition for antigenicity 
[68]. Nevertheless, the method served as a provisional means for 
B-cell epitope prediction at a time when the best available biomo-
lecular data were almost exclusively amino acid sequences deduced 
from nucleic acid sequences, as opposed to detailed three- 
dimensional protein structures, which are presently more readily 
obtained both experimentally [69] and computationally [70].

Notwithstanding the above mentioned limitations of the 
method of Hopp and Woods, it is the prototype of a large class of 
related methods whose common feature is the basic sliding- window 
algorithm [57, 71]. Members of this class are distinguished from 
one another by their chosen parameter of interest (e.g., hydrophi-
licity) as well as the mathematical averaging procedure applied to 
the parameter (i.e., simple computation of arithmetic means versus 
more elaborate procedures with weighting schemes biased in favor 
of more centrally located residues within the sliding window to 
yield smoother plots). Apart from the original hydrophilicity scale 
used by Hopp and Woods, alternative hydrophilicity scales have 
been developed, for example, based on retention times of model 
compounds in high-performance liquid chromatography [72]. 
Additionally, parameters other than hydrophilicity have been sug-
gested as alternative bases for B-cell epitope prediction. These 
parameters include surface accessibility [73], segmental mobility 
(i.e., atomic mobility) [74, 75], and propensity for occurrence in 
aperiodic secondary structure exemplified by turns [58], all of 
which are based on observed statistical tendencies of amino-acid 
residues in three-dimensional protein crystal structures.

Given the diversity of parameters thus considered among 
classical methods for B-cell epitope prediction, the mathematical 
combination of multiple parameters (i.e., into hybrid methods 
for B-cell epitope prediction) has been proposed as a possible strat-
egy for increasing the accuracy of B-cell epitope prediction [56, 57, 
76, 77]. However, this introduces the problem of assigning rela-
tive weights to particular parameters, which is complicated by the 
fact that the parameters to be combined are strongly correlated 
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with one another (i.e., they actually contain similar information); 
for example, the so-called antigenic index [56] was devised as the 
sum of multiple terms, each of which is the product of a parameter 
(secondary-structure propensity, hydrophilicity, flexibility, or sur-
face probability) and a corresponding author-assigned numerical 
weight, such that secondary-structure propensity is assigned the 
greatest weight while both flexibility and surface probability are 
assigned the least weight (in view of their relatively poor correlation 
with antigenicity). The redundancy of information content among 
the parameters is a manifestation of the underlying physical inter-
pretation of antigenicity in all cases, namely that antigenicity is pri-
marily a function of surface exposure. For this reason, the  limitations 
of the method of Hopp and Woods apply to all other methods that 
are based entirely on generation of sequence profiles using propen-
sity scales for the 20 canonical proteinogenic amino acids.

Postclassical methods of B-cell epitope prediction transcend the 
simple sequence profiling of their classical predecessors, in the sense 
of exploiting higher-level structural information by means other 
than conventional residue-oriented propensity scales. The said 
structural information may pertain to rigid (e.g., folded) as well as 
flexible (e.g., unfolded) features, noting that rigidity and flexibility 
represent extremes on a continuum of possible conformational 
states. Although certain classical methods employ sequence-based 
secondary-structure and flexibility prediction (e.g., to predict turns 
and flexible loops as locations of putative B-cell epitopes), they 
nonetheless utilize residue-oriented propensity scales (e.g., based 
on statistical tendencies of residues to occur within turns [58] or on 
flexibility expressed as Debye–Waller temperature factors quantify-
ing atomic mobility in crystal structures [75]).

With the increasing availability of detailed protein structural 
models [69, 70], protein atomic coordinates may be used instead of 
sequences as bases for B-cell epitope prediction via postclassical 
methods. For example, the CEP (conformational epitope predic-
tion) server [78] uses protein atomic coordinates (specified as a user-
supplied PDB ID or actual atomic coordinate file in PDB format) as 
input, explicitly considering amino-acid residue solvent accessibility 
(expressed as relative and absolute values per residue) and spatial 
proximity (grouping plausible epitope residues within 6 Å  of one 
another) to delineate putative sequential (i.e., linear) and conforma-
tional (i.e., discontinuous) B-cell epitopes on proteins. Likewise, the 
DiscoTope server [79, 80] also uses protein atomic coordinates as 
input, although it is specifically intended for predicting discontinu-
ous B-cell epitopes using a combination of residue contact number 
(i.e., count of neighboring residues in contact with a particular resi-
due, inversely correlated with surface accessibility) and epitope log-
odds ratio (expressing the statistical tendency of a residue to occur 
within known epitopes), thus employing a hybrid-method strategy 
to yield more accurate predictions than would be possible using 
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either residue contact number or epitope log-odds ratio alone. 
The more recently developed ElliPro server [81] accepts either 
protein atomic coordinates or sequence as input; where a sequence 
is provided as input, this is used to generate a predicted structural 
model via homology modeling (with MODELLER [82–84]), as 
protein atomic coordinates are required to model the protein as an 
ellipsoid for which putative epitopes are delineated by spatial cluster-
ing of residues having a high protrusion index (i.e., degree of 
 protrusion beyond the ellipsoid [85]).

Other postclassical methods utilize protein sequences as input 
without explicitly computing atomic coordinates, in which case 
structure is implicitly considered, likely in conjunction with other 
factors (e.g., biological correlates of structure such as immuno-
dominance and immune protection). Such methods are typically 
based on machine learning approaches, including artificial neural 
networks and support vector machines, which entail training on 
empirical epitope data as may be obtained from the databases dis-
cussed in Subheading 3.1. For example, the ABCpred server [86] 
uses a recurrent neural network trained on data from the Bcipep 
database [59] for predicting immunogenic linear B-cell epitopes of 
fixed length, whereas the BCPREDS server [87] employs a support 
vector machine also trained on Bcipep data but for predicting 
immunogenic linear B-cell epitopes of variable length. Machine 
learning has also been applied to prediction of protective linear 
B-cell epitopes (i.e., eliciting protective antibody responses) among 
protein antigen sequences [38], employing a workflow that incor-
porates information on sequence variability and on conservation of 
patterns for post-translational modification and thus exemplifying 
a hybrid-method approach to B-cell epitope prediction.

More generally, machine learning approaches can be applied to 
B-cell epitope prediction where structure is either explicitly or 
implicitly considered. This is exemplified by the Epitopia server [88], 
which accepts either protein atomic coordinates or sequences and 
employs a naive Bayes classifier to predict immunogenicity of pro-
tein regions. As regards further development of such machine 
learning approaches, the main limiting factor is the availability of 
adequate amounts of suitable training data. These training data 
must be of the same type as the benchmark data for subsequent 
evaluation of predictive performance, but the training data must be 
kept strictly separate from the benchmark data so as to avoid 
the generation of misleadingly biased benchmark results that over-
estimate predictive performance. This is especially challenging 
where the training and benchmark data are quantitative rather than 
qualitative, considering the dearth of available quantitative data.

A collection of computational tools for B-cell epitope predic-
tion using classical and postclassical methods is available online as 
part of the IEDB-AR (Immune Epitope Database and Analysis 
Resource) [63, 89], which also encompasses the database IEDB 
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discussed in Subheading 3.1. The tools are under the heading of 
“B Cell Epitope Prediction Tools” (at http://tools.immuneepitope.
org/main/html/bcell_tools.html) and listed with brief descrip-
tions in Table 2, with sample output presented in Fig. 3. For more 
comprehensive accounts of various other published B-cell epitope 
methods, recent reviews [54, 90–92] may be consulted. Many of 
these tools are based on hybrid methods and may themselves be 
combined with each other and with other computational tools to 
create new hybrid methods (see Note 7).

4 Notes

 1. Although minimally informative data correspond to H values 
of zero (see Eq. 17), they nonetheless point to the possibility of 
modifying experimental conditions (notably antibody concen-
tration [Ab]) in order to yield new data that are more informa-
tive. In particular, q values of zero and unity, respectively, 
suggest that more informative data might be obtained by either 
increasing or decreasing [Ab] so as to bring q closer to half 
unity (e.g., in accordance with Eqs. 7, 8, 10, and 11), with the 
prospect of such improvement being more generally conceiv-
able where [Ab] would be decreased rather than increased.

 2. A curated IEDB B-cell epitope structure may comprise atoms 
or even entire amino-acid residues in addition to those form-
ing part of any actual epitope relevant to a particular IEDB 
B-cell assay record. This is typically the case for linear peptide 
antigens, which may each contain one or more B-cell epitopes 
that have yet to be more precisely delineated by rigorous epit-
ope mapping (e.g., by residue-wise incremental truncation of 
the peptide antigens from either or both amino and carboxy 
termini, until antibody–antigen binding becomes undetect-
able). Hence, investigators may opt to use IEDB data as start-
ing points to design and perform additional experimental work 
to obtain more precise B-cell epitope data for benchmarking.

 3. Paired IEDB B-cell assay records corresponding to equivalent 
association and dissociation constants (i.e., reciprocal values 
for exactly the same B-cell assay) may be curated because val-
ues of both constants were explicitly published (even though 
one had been mathematically derived from the other). Data 
duplication may thus occur where both records are errone-
ously included in analyses.

 4. Where available, numerical values of quantitative data on B-cell 
assay outcomes are placed in an IEDB record data field named 
“Quantitative Measurement.” However, this field may be left 
empty, for example, because the data are published only in graph-
ical form (i.e., without printing the actual numerical values); 
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still, the numerical values might be retrieved from the authors 
or inferred from graphical figures in certain cases (e.g., where 
the values are proportions of populations, as in Kaplan–Meier 
survival curves, especially where population sizes are relatively 
small such that values corresponding to discrete numbers of 
individuals may be more easily discerned).

 5. The IEDB record data field named “Measurement inequality” 
may be either assigned a value of “ = ” or simply left empty 
(which is the usual case) to indicate that the quantitative mea-
surement is a point estimate.

 6. Quantitative data on B-cell assay outcome are often in the 
form of immunoassay signals (e.g., expressed as absor-
bance for enzyme immunoassays or fluorescence intensity 
for immunofluorescence assays) or corresponding titers 

Table 2 
IEDB-AR B-cell epitope prediction tools

Implemented method Description/remarks

Chou and Fasman Classical; uses propensity scale based on statistics of
beta turn prediction residue occurrence in beta turns among protein 

crystals

Emini surface Classical; uses propensity scale based on statistics of
accessibility scale residue surface accessibility among protein crystals

Karplus and Schulz Classical; uses propensity scale based on statistics of
flexibility scale residue atomic mobility among protein crystals

Kolaskar and Tongaonkar Classical; uses propensity scale based on statistics of
antigenicity scale residue occurrence within known protein epitopes

Parker hydrophilicity Classical; uses propensity scale based on
scale chromatographic mobility of model compounds

BepiPred linear Postclassical; uses recurrent neural network trained on
epitope prediction immunogenic peptide epitope data

DiscoTope prediction of Postclassical; predicts discontinuous epitopes using
epitopes from protein residue contact number (inversely correlated with
structure surface accessibility) and epitope log-odds ratio

ElliPro epitope prediction Postclassical; predicts linear and discontinuous
based upon structural epitopes using residue protrusion defined by
protrusion modeling protein structure as an ellipsoid
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(e.g., maximum dilution factors beyond which signals 
become undetectable or comparable with background noise 
levels). These are typically difficult to quantitatively relate to 
absolute antibody concentrations. Hence, reporting of actual 
antibody concentrations (e.g., as dissociation constants and 
median inhibitory concentrations) along with other associ-
ated quantitative information (e.g., antigen concentrations 
and immunoassay temperatures) serves to provide more 
directly useful data for benchmarking B-cell epitope predic-
tion methods.

 7. For any given practical application (e.g., vaccine design), mul-
tiple methods may be used for B-cell epitope prediction, as 
consensus among these (e.g., one or more putative B-cell epi-
topes identified by all or most) may provide stronger decision 
support than predictions of each method taken separately. 
However, certain methods may be more appropriate than 
others for a given application (e.g., predicting immunogenic 
 peptide epitopes is appropriate for designing peptide-based 
vaccine immunogens, whereas predicting epitopes recog-
nized by antiprotein antibodies is appropriate for designing 
antigens as immunodiagnostic probes for antibody detection). 

Fig. 3 IEDB-AR DiscoTope sample output for Plasmodium falciparum apical membrane antigen 1 (AMA1), 
using PDB ID 1Z40 chain A. The output is in the form of a sequence profile that superficially resembles one 
generated by means of a classical B-cell epitope prediction method. However, the score is calculated on the 
basis of a combination of residue contact number (i.e., count of neighboring residues in contact with a particu-
lar residue, inversely correlated with surface accessibility) and epitope log-odds ratio (expressing the statisti-
cal tendency of a residue to occur within known epitopes)
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    Chapter 15   

 Building Classifi er Ensembles for B-Cell Epitope Prediction 

           Yasser     EL-Manzalawy      and     Vasant     Honavar    

    Abstract 

   Identifi cation of B-cell epitopes in target antigens is a critical step in epitope-driven vaccine design, immu-
nodiagnostic tests, and antibody production. B-cell epitopes could be linear, i.e., a contiguous amino acid 
sequence fragment of an antigen, or conformational, i.e., amino acids that are often not contiguous in the 
primary sequence but appear in close proximity within the folded 3D antigen structure. Numerous com-
putational methods have been proposed for predicting both types of B-cell epitopes. However, the devel-
opment of tools for reliably predicting B-cell epitopes remains a major challenge in immunoinformatics. 

 Classifi er ensembles a promising approach for combining a set of classifi ers such that the overall per-
formance of the resulting ensemble is better than the predictive performance of the best individual classi-
fi er. In this chapter, we show how to build a classifi er ensemble for improved prediction of linear B-cell 
epitopes. The method can be easily adapted to build classifi er ensembles for predicting conformational 
epitopes.  

  Key words     B-cell epitope prediction  ,   Classifi ers ensemble  ,   Random forest  ,   Epitope prediction toolkit  

1      Introduction 

 Antigen-antibody interactions play a crucial role in the humoral 
immune response. Antibodies, a family of structurally related gly-
coproteins produced in membrane-bound or secreted form by B 
lymphocytes, serve as mediators of specifi c humoral immunity by 
engaging various effector mechanisms that serve to eliminate the 
bound antigens [ 1 ]. The part of the antigen recognized by anti-
bodies is called B-cell epitope. B-cell epitopes often classifi ed into 
two categories: (1) linear (continuous) B-cell epitopes consist of 
amino acid residues that are sequential in the primary structure of 
the protein and (2) conformational (discontinuous) B-cell epitopes 
consist of residues that are not sequential in the protein primary 
structure but come together in the protein 3D structure. 
Conformational B-cell epitopes form the majority of B-cell epit-
opes. Several experimental procedures for mapping both types of 
B-cell epitopes have been presented [ 2 ]. However,  in silico   methods 
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for identifying B-cell epitopes have the potential to dramatically 
decrease the cost and the time associated with the experimental 
mapping of B-cell epitopes [ 3 ]. 

 Several computational methods have been proposed for predict-
ing either linear or conformational B-cell epitopes [ 3 – 5 ]. Methods 
for predicting linear B-cell epitopes range from simple propensity 
scale profi ling methods [ 6 – 9 ] to methods based on state-of-the-art 
machine learning predictors (e.g., [ 10 – 14 ]). Methods for predicting 
conformational B-cell epitopes (e.g., [ 15 – 19 ]) utilize some struc-
ture and physicochemical features derived from antigen-antibody 
complexes that could be correlated with antigenicity [ 3 ]. Despite 
the large number of B-cell epitope prediction methods proposed in 
literature, the performance of existing methods leaves signifi cant 
room for improvement [ 4 ]. 

 One of the promising approaches for improving the predictive 
performance of computational B-cell epitope prediction tools is to 
combine multiple classifi ers. This approach is motivated by the 
observation that no single predictor outperforms all other predic-
tors and that predictors often complement each other [ 20 ]. 

 Against this background, we present a framework for develop-
ing classifi er ensembles [ 21 ] and explain the procedure for building 
several variants of classifi er ensembles based on the framework. 
Specifi cally, we describe a procedure for building classifi er ensem-
bles for predicting linear B-cell epitopes using Epitopes Toolkit 
(EpiT) [ 22 ]. We also show how to adapt the procedure for building 
classifi er ensembles for predicting conformational B-cell epitopes 
( see   Note 1 ). The procedures described in this chapter can be 
adapted for any other machine learning benchmark.  

2    Materials 

  We used the FBCPRED data set [ 11 ], a homology-reduced data 
set of variable-length linear B-cell epitopes extracted from Bcipep 
database [ 23 ]. The data set has 934 epitopes and non-epitopes 
(respectively) such that the length distribution of epitopes and 
non-epitopes is preserved.  

  WEKA [ 24 ] is a machine learning workbench that is widely used 
by bioinformatics developers for developing prediction tools. 
Unfortunately, the vast majority of WEKA-implemented algo-
rithms do not accept amino acid sequences as input. Hence, devel-
opers have to preprocess their sequence data for extracting useful 
features before using WEKA classifi cation algorithms. Alternatively, 
developers of epitope prediction tools can use the Epitopes Toolkit 
(EpiT) [ 22 ] which is built on top of WEKA and provides a spe-
cialized set of useful data preprocessors (e.g., fi lters) and classifi -
cation algorithms for developing B-cell epitope prediction tools. 

2.1  Data Set

2.2  Epitopes 
Toolkit (EpiT)
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A java implementation of EpiT is freely available at the project 
website,   http://ailab.ist.psu.edu/epit    . More information about 
how to install and use EpiT is provided in the project 
documentation.   

3    Methods 

 In this section, we show how to use EpiT to build individual and 
classifi er ensembles for predicting linear B-cell epitopes. The pro-
cedure can be easily adapted for any other machine learning work-
bench (e.g., RapidMiner [ 25 ] and KNIME [ 26 ]). 

  Here, we show how to build a single predictor using FlexLenBCPred.
nr80.arff, FBCPRED data in WEKA format available at   http://
ailab.ist.pdu.edu/red/bcell/FBCPred.zip    , and a Random Forest 
classifi er [ 27 ] with 50 trees (RF50).

    1.    Run EpiT.   
   2.    Go to Application menu and select  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

FilteredClassifi er. The FilteredClassifi er is a WEKA class for 
running an arbitrary classifi er on data that has been passed 
through arbitrary fi lter.   

   6.    Click on the  FilteredClassifi er  in the classifi er panel and specify 
the following classifi er and fi lter. For the classifi er, choose 
weka.classifi ers.trees.RandomForest and set  numTrees  to 50. 
For the fi lter, choose epit.fi lters.unsupervised.attribute.
AAP. The AAP fi lter implements the amino acid propensity 
scale features proposed in [ 28 ].   

   7.    Having both the data set and the classifi cation algorithm speci-
fi ed, we are ready to build the model and evaluate it using 
 ten-fold cross-validation ( see   Note 2 ). Just click  start button  
and wait for the ten-fold cross-validation procedure to fi nish. 
The  classifi er output panel  shows several statistical estimates of 
the classifi er using ten-fold cross-validation ( see  Fig.  1 ).

         A classifi er ensemble consists of a collection of individual (or base) 
classifi ers that work together using a suitably designed fusion method 
(e.g., combination rule or second-level classifi er) for optimally com-
bining the outputs of the individual classifi ers. This design process 
involves two basic steps: (1) design a set of complementary or diverse 
base classifi ers: diversity of classifi ers could be ensured by manipulating 

3.1  Building a Single 
Classifi er with EpiT

3.2  Building 
a Classifi er Ensemble 
with EpiT

Classifi er Ensembles for B-Cell Epitope Prediction

http://ailab.ist.psu.edu/epit
http://%0dailab.ist.pdu.edu/red/bcell/FBCPred.zip
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the classifi ers’ inputs, outputs, or the training algorithms [ 21 ] 
( see   Notes 3  and  4 ); (2) design a combination rule that exploits the 
behaviors of the individual classifi ers to optimally combine them. 
Figure  2  shows a framework for constructing classifi er ensembles 
using EpiT. In this framework, different classifi er ensembles can be 
developed by using different combinations of choices of fi lters, base 
classifi ers, and combination rules. In this example, we fi x the base 
classifi er to RF50 and use different fi lters for each individual classi-
fi er. We also experiment with different combination rules. To build 
a classifi er ensemble for predicting fl exible-length linear B-cell epit-
opes using EpiT, follow the following procedure:

     1.    Run EpiT.   
   2.    Go to Application menu and select the  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

Vote. The Vote classifi er is a WEKA class for combining classi-
fi ers. Different combinations of probability estimates for clas-
sifi cation are available.   

   6.    Click on  classifi ers  and enter four FilteredClassifi ers. Set the 
 classifi er  parameter for each FilteredClassifi er to RF50 and set 

  Fig. 1    Output statistics for ten-fold cross-validation experiment evaluating Vote classifi er with average (AVG) 
of probabilities combination rule       
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the  fi lter  parameter to AAP, CTD, SequenceComposition, and 
SequenceDiCompositions, respectively.   

   7.    Select one of the available combination rule options. In our 
experiment we used the WEKA default setting for this param-
eter, average of probabilities.   

   8.    Click  start  button to start a ten-fold cross-validation experi-
ment and wait for the output results ( see  Fig.  1 ).    

  A more sophisticated way for combining multiple classifi ers 
according to the framework in Fig.  2  is to replace the simple com-
bination rule used with Vote classifi er with a meta-predictor, a 
second-stage classifi er. The procedure for building such a classifi er 
ensemble is as follows:

    1.    Run EpiT.   
   2.    Go to Application menu and select the  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

Stacking. The Stacking classifi er is a WEKA class for combining 
several classifi ers using the stacking method [ 29 ].   

  Fig. 2    Framework for building classifi er ensembles using EpiT tool       
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   6.    Click on  classifi ers  and enter four FilteredClassifi ers. Set the 
 classifi er  parameter for each FilteredClassifi er to RF50 and set 
the  fi lter  parameter to AAP, CTD, SequenceComposition, and 
SequenceDiCompositions, respectively.   

   7.    Click on  metaclassifi er  and choose the naïve Bayes (NB) classi-
fi er, weka.classifi ers.bayes.NaiveBayes.   

   8.    Set  numFolds  to 3. This parameter sets the number of folds 
used for cross-validation experiment performed for training 
the meta-classifi er. Click  OK .   

   9.    Click  start  button to start a ten-fold cross-validation experiment.    

  Table  1  compares the performance (in terms of AUC scores ( see  
 Note 5 )) of two classifi ers, NB and RF50, using four sets of input 
features: (1) amino acid pair (AA) propensities [ 28 ]; (2) composition-tran-
sition-distribution (CTD) [ 30 ]; (3) amino acid composition (AAC); 
and (4) dipeptide composition (DC). Table  2  compares the perfor-
mance of a classifi er ensemble that combines four NB classifi ers 

     Table 1  
  AUC values for naïve Bayes (NB) and Random 
Forest (RF50) classifi ers using four different sets 
of input features   

 Features  NB  RF50 

 AAP  0.67  0.72 

 CTD  0.65  0.65 

 AAC  0.66  0.71 

 DC  0.63  0.72 

     Table 2  
  AUC values for a classifi er ensemble that combines 
four NB classifi ers trained using the four sets of 
input features (AAP, CTD, AAC, DC) and a classifi er 
ensemble that combines four RF50 constructed 
using the four sets of input features   

 Combination rule  NB  RF50 

 AVG  0.69  0.74 

 PROD  0.65  0.75 

 MIN  0.64  0.75 

 MAX  0.68  0.74 

  The classifi er ensembles are obtained using the same base 
classifi ers but different combination rules  
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trained using the four sets of input features (AAP, CTD, AAC, DC) 
and a classifi er ensemble that combines four RF50 constructed 
using the four sets of input features. Four simple combination rules 
have been evaluated: AVG, PROD, MIN, and MAX which repre-
sent average, product, minimum, and maximum estimated proba-
bilities from the four base classifi ers for each input instance. Table  3  
compares the performance of the NB- and RF50-based classifi er 
ensembles (reported in Table  2 ) when the simple combination rule 
is replaced with a meta-classifi er (second-stage classifi er).

     Table  1  shows that the predictive performance of each classifi er 
seems to be highly dependent on the input features. For example, 
AUC scores of RF50 range from 0.65 to 0.72 for different choices 
of input features. Tables  2  and  3  show that  combining individual 
classifi ers constructed with different input features and using the 
same classifi cation algorithm (e.g., NB and RF50) not only elimi-
nate the dependency on the input features but also yields a classifi er 
ensemble with performance higher than the best individual classi-
fi er performance obtained in Table  1 . 

 It should be noted that the RF50 classifi er, treated in our 
experiments as an individual classifi er, is itself an ensemble of 50 
different decision tree classifi ers. The performance of RF50 might 
be improved using several approaches including (1) increasing the 
number of trees, (2) selecting a subset of the 50 trees using some 
criteria for eliminating redundant and poor tree predictors [ 31 ], 
and (3) building a multiple classifi er system in which RF50 is 
treated as a base classifi er.   

4    Notes 

        1.    The current implementation of EpiT does not support the 
extraction of evolutionary or structure-based features since 
most of these features require running third-party programs 

    Table 3  
  AUC values for a classifi er ensemble that combines 
four NB classifi ers trained using the four sets of 
input features (AAP, CTD, AAC, DC) and a classifi er 
ensemble that combines four RF50 constructed 
using the four sets of input features   

 Meta-predictor  NB  RF50 

 NB  0.69  0.75 

 Logistic  0.69  0.75 

  The classifi er ensembles are obtained using the same base 
classifi ers but different meta-predictors  

Classifi er Ensembles for B-Cell Epitope Prediction
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(e.g., BLAST [ 32 ]). Building classifi er ensemble that uses such 
 features requires preprocessing the training data such that 
each epitope in the original data is represented with a com-
bined set of extracted features (each set of features might be 
extracted using one or more third-party program (s)). The 
resulting combined set of features are used as inputs and the 
fi lter for each FilteredClassifi er will select a range of attribute 
indices (corresponding to a set of features) to pass to the base 
classifi er.   

   2.    In ten-fold cross-validation experiments, the data set is ran-
domly partitioned into ten equal subsets such that the relative 
proportion of epitopes to non-epitopes in each subset is pre-
served. Nine of the subsets are used for training the classifi er 
and the remaining subset is used for testing the classifi er. This 
procedure is repeated ten times, each time setting aside a 
 different subset of the data for testing. The estimated perfor-
mance of the classifi er corresponds to an average of the results 
from the ten cross-validation runs.   

   3.    Classifi er ensembles can be developed using a single set of fea-
tures and a single classifi cation algorithm by training each base 
classifi er with different training data (i.e., sampled instances or 
sampled subspace of the original training data). WEKA pro-
vides built-in classifi cation algorithms for building such ensem-
ble of classifi ers (e.g., Bagging [ 33 ] and AdaBoost [ 34 ]).   

   4.    For unbalanced data, an ensemble of classifi ers system can be 
created by training each single classifi er using all training 
instances from the minority class and an equal number of 
training instances (selected at random) from the majority class 
[ 21 ]. Such base classifi ers can be created using EpiT Balanced 
Classifi er (for more details please refer to EpiT documenta-
tion). The classifi ers can be combined using a combination 
rule via Vote class or using a meta-classifi er via Stacking class.   

   5.    The receiver operating characteristic (ROC) curve is obtained 
by plotting the true positive rate as a function of the false- 
positive rate as the discrimination threshold of the binary classi-
fi er is varied. A widely used measure of classifi er performance is 
the area under ROC curve (AUC). A perfect classifi er will have 
an AUC = 1, while a random guessing classifi er will have an 
AUC = 0.5, and any classifi er performing better than random 
will have an AUC value that lies between these two values.         
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    Chapter 16   

 Multiplex Peptide-Based B Cell Epitope Mapping 

              Sanne     M.M.     Hensen    ,     Merel     Derksen    , and     Ger     J.M.     Pruijn    

    Abstract 

   B cell epitope mapping is widely applied to determine antibody-binding sites. Several methods exist to map 
B cell epitopes and here we describe three methods that are characterized by the simultaneous analysis of 
multiple peptides. In the fi rst approach a microarray of overlapping synthetic peptides derived from an 
antigenic protein is used and the binding of the antibodies is analyzed by fl uorescently labeled secondary 
antibodies. This method is particularly suited for the identifi cation of linear epitopes of an established 
target protein. In the second approach the binding of antibodies to a random synthetic peptide library 
immobilized on microbeads is determined by enzyme-conjugated secondary antibodies and the selection 
of antibody-bound beads by a light microscope. This method can be applied when information on the 
identity of the antigenic protein is lacking. In the third method an antigen is proteolytically digested and 
antibody binding to the resulting peptides is analyzed by surface plasmon resonance imaging ( i SPR). The 
latter method can be applied when the purifi ed antigenic protein is available.  

  Key words     Antibody  ,   Antigen  ,   Peptide microarray  ,   Microbeads  ,   Antigen fragment library  ,    i SPR  

1      Introduction 

 B cell epitope mapping is essential for several biomedical applications, 
such as diagnostic peptide development and vaccine design. 
Numerous methods exist to identify either conformational B cell epi-
topes, in which amino acids in distinct parts of the protein contribute 
to antibody binding, or linear B cell epitopes, which are formed by a 
continuous stretch of amino acids in the antigenic protein. For the 
identifi cation of a conformational epitope X-ray crystallography of 
the crystallized antibody-antigen complex represents one of the main 
methods. Although X-ray crystallography is a powerful method to 
characterize epitopes, a major drawback is the complicated and time-
consuming crystallization process [ 1 ]. Another approach that is com-
monly used to determine conformational epitopes is based on mass 
spectrometry (MS). An antibody- antigen complex can be subjected 
to mild proteolysis and because the epitope is protected from cleav-
age by the bound antibody, the sequence of the region(s) bound by 
the antibody can be determined by MS. However, the resolution of 
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this method is rather low. A related approach is the so-called 
 hydrogen/deuterium (H/D) exchange method for the identifi cation 
of protein–protein interactions [ 2 ]. Antibody and antigen are sepa-
rately labeled with deuterium and subsequently allowed to form a 
complex in D 2 O. Next, the solution containing the complex is 
strongly diluted with water, allowing the exchange of deuterium for 
hydrogen, unless a part of the antigen is protected by a bound anti-
body. Finally, the complex is digested with a protease (e.g., pepsin) 
and deuterium retention can be measured with MS, resulting in the 
identifi cation of amino acids at or close to the epitope. 

 Although most B cell epitopes may be conformational, the 
most commonly used methods are based on linear B cell epitopes, 
which is at least in part due to the time-consuming, expensive, and 
specifi c expertise-requiring properties of conformational epitope 
mapping methods. In this respect it is important to note that the 
characterization of linear epitopes generally suffi ces for the devel-
opment of diagnostic and therapeutic molecules. A frequently used 
approach to map linear epitopes is the generation of a peptide 
library followed by the selection of antibody-binding peptides 
from this library. Peptide libraries can be composed of chemically 
synthesized peptides, biologically displayed peptides, or peptides 
obtained by proteolytic fragmentation of the antigen. Synthetic 
peptides can be produced on pins [ 3 ,  4 ] or on membrane supports 
[ 5 ,  6 ], but a major disadvantage of using pins and membrane sup-
ports is the limited number of peptides that can be screened simul-
taneously (96 to up to 2,000). Nowadays, it is more common to 
use glass slides (peptide microarrays) or microbeads. Peptide 
microarrays provide the ability to screen more than 100,000 pep-
tides and require a signifi cantly lower amount of reagents com-
pared to pins and membrane supports [ 7 ]. Antibody binding can 
be detected by classical immunolabeling methods followed by visu-
alization with a fl uorescence scanning system [ 8 ] or by surface 
plasmon resonance imaging ( i SPR), a label-free and easy-to- 
perform detection method.  i SPR is based on the principle that the 
refractive index of a thin gold layer changes when molecules bind 
to the gold-coated surface [ 9 ,  10 ]. When beads are used, millions 
of peptides can be synthesized and screened for antibody binding 
[ 11 ]. Antibody-bound beads can be immunolabeled and selected 
by a fl uorescence microscope or with a fl uorescence-activated cell 
sorter. A disadvantage of the microbead-based approach is that the 
peptide sequence needs to be determined after antibody binding, 
unless “barcoded” beads are used [ 12 ]. 

 Biological peptide libraries are generated using biological sys-
tems such as bacteriophages to produce and display the peptides 
and are characterized by the coupling of peptide and peptide- 
encoding nucleic acid sequence. The latter feature facilitates the 
elucidation of the amino acid sequence of targeted peptides. 
A major advantage of biologically displayed peptides is the high 
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number (up to 10 9 ) and length of peptides that can be displayed. 
A disadvantage, on the other hand, is that only standard amino 
acids can be incorporated. If posttranslational modifi cations are 
important for epitope formation, these will not be detected. 
Bacteriophages are most frequently used as a biological system to 
display peptides (phage display) [ 13 ]. DNA fragments encoding 
the peptides are inserted in the phage genome, fused to the 
sequence encoding a surface protein, which results in the presenta-
tion of the peptides on the surface of the phage particles. Several 
selection rounds are performed to enrich for phages that bind with 
the highest affi nity to the antibodies. Finally, the genome of the 
resulting phages can be sequenced to identify the epitope of the 
antibodies of interest. 

 Besides the synthetic and biological peptide libraries, antigen 
fragment libraries can be used for linear B cell epitope mapping. In 
this approach an antigenic protein is chemically or enzymatically 
cleaved, leading to the production of several fragments. An immu-
noprecipitation with the antibody of interest can be performed and 
bound peptides can be characterized by MS. An alternative possi-
bility is the immobilization of the antigen fragments on a microar-
ray and the subsequent analysis of antibody binding, e.g., by  i SPR 
[ 14 ]. A major advantage of antigen fragment libraries is that it 
allows the detection of epitopes depending on posttranslational 
modifi cations. 

 In the following sections, we describe three multiplex methods 
that can be used for the mapping of B cell epitopes. The fi rst is 
suitable for the characterization of epitopes of a defi ned antigenic 
protein, using a microarray of overlapping synthetic peptides. The 
second is the screening of a random peptide library using synthetic 
peptides immobilized on microbeads. The third starts with the 
generation of proteolytic fragments of a specifi c antigen and identi-
fi es antigenic fragments by  i SPR analysis.  

2    Materials 

  This protocol is based on the PepStar™ microarrays (JPT Peptide 
Technologies) and was optimized for mapping epitopes of cyto-
solic 5′-nucleotidase IA targeted by antibodies in sera from spo-
radic inclusion body myositis (IBM) patients (Pluk, van Hoeve 
et al. [ 8 ]). The general aspects of the procedure are applicable to 
other microarrays. The protocol describes the incubation and 
washing steps by manual actions. However, the procedure described 
can also be performed using an incubation station.

    1.    Peptide microarray displaying an overlapping set of peptides 
derived from the antigen of interest ( see   Note 1 ), e.g., the 
PepStar™ microarray (JPT Peptide Technologies GmbH, Berlin, 
Germany), which contains the peptide array in triplicate.   

2.1  Overlapping 
Peptide Microarray 
Screening

Multiplex Epitope Mapping
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   2.    Blank slide (dummy).   
   3.    Two spacers per microarray.   
   4.    Tris-buffered saline (TBS): 0.15 M NaCl, 0.05 M Tris–HCl, 

pH 7.6.   
   5.    Blocking solution (MTBST): 5 % Nonfat dried milk, 0.05 % 

Tween-20 in TBS ( see   Note 2 ).   
   6.    Antibody solution, e.g., serum 100- to 500-fold diluted in 

MTBST ( see   Note 3 ).   
   7.    Deionized water.   
   8.    Fluorescently labeled secondary antibody, e.g., 2 mg/mL Alexa 

Fluor-568-labeled goat-anti-human antibody ( see   Note 3 ).   
   9.    If available, incubation station which can perform washing and 

incubation steps in a temperature-controlled environment.   
   10.    Fluorescence scanner for microarrays, e.g., ProScanArray 

(PerkinElmer,  see   Note 4 ).   
   11.    Software tool capable of assigning signal intensities to the indi-

vidual spots on the microarray.      

  This protocol describes the screening of a random peptide library 
(peptides immobilized on Tentagel beads) with IgG isolated from 
patient sera. Screening can be performed by the use of labeled sec-
ondary antibodies, though this requires the blocking with F(ab′) 2  
fragments generated from the healthy individuals’ IgG. Alternatively, 
screening can be performed by directly “labeling” the patients’ 
IgG, e.g., by conjugation to alkaline phosphatase (AP). In this 
method the peptide library beads are fi rst blocked with IgG or 
F(ab′) 2  from healthy individuals, followed by the binding of the 
labeled IgG and the detection of beads bound by the labeled anti-
bodies. The protocol outlined below describes the screening of 
beads with AP-labeled patients’ IgGs. 

 All solutions should be fi ltered through a 0.2 μm fi lter. 

      1.    IgG from healthy individuals.   
   2.    Tris/EDTA buffer: 50 mM Tris–HCl, pH 7.0, 2 mM EDTA.   
   3.    Ficin, 36 U/mL in TE buffer.   
   4.     L -Cysteine, 1 M in TE buffer.   
   5.     N -ethylmaleimide, 100 mM in TE buffer.   
   6.    PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2 HPO 4 , 1.8 mM 

KH 2 PO 4 , pH 7.4.      

      1.    Patient sera.   
   2.    Protein A-agarose column.   
   3.    PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2 HPO 4 , 1.8 mM 

KH 2 PO 4 , pH 7.4.   

2.2  Microbead- 
Based Random 
Peptide Library 
Screening

2.2.1  Materials 
for the Generation 
of F(ab′) 2  Fragments

2.2.2  Materials for IgG 
Isolation from Serum 
and AP Conjugation
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   4.    PBS containing 0.5 M NaCl, 0.05 % NP40.   
   5.    Elution buffer: 100 mM glycine-HCl, pH 2.5, 500 mM NaCl, 

0.05 % NP-40.   
   6.    1 M Tris.   
   7.    Reagents for protein concentration determination, e.g., 

Bradford reagents.   
   8.    Dialysis tubing/devices (MW cutoff 3.5 kDa).   
   9.    Alkaline phosphatase (e.g., activated alkaline phosphatase, 

Roche Applied Science Cat. No. 11464752001).      

      1.    Peptide bead library (1–5 × 10 6  peptides) of 50,000–100,000 
beads per microvial ( see   Note 5 ).   

   2.    Buffer A: 50 mM Tris–HCl, pH 7.5, 150 mM NaCl. Before 
use add 0.5 % Tween-20.   

   3.    5 mg/mL F(ab′) 2  from healthy individuals in PBS.   
   4.    IgG isolated from patient sera.   
   5.    AP buffer: 100 mM Tris, 100 mM NaCl, 5 mM MgCl 2 , 

pH 7.5.   
   6.    NBT: 50 mg/mL Nitro-blue tetrazolium in 70 % DMF.   
   7.    BCIP: 25 mg/mL 5-Bromo-4-chloro-3′-indolyphosphate in 

70 % DMF.   
   8.    NBT/BCIP solution: 33 μL NBT, 33 μL BCIP, 10 mL AP.   
   9.    100 mM EDTA, pH 8.0.       

  When the antigenic protein is available in purifi ed form and when 
posttranslational modifi cations may be involved in antibody bind-
ing, antigen fragment libraries might be used to determine B cell 
epitopes. The (modifi ed) antigen is proteolytically digested and 
the resulting peptides are screened with the antibody for binding 
peptides by  i SPR (Fig.  3a ). 

      1.    Protein of interest: 250 μg protease in 500 μL PBS (s ee   Note 6 ).   
   2.    45 mM Dithiothreitol (DTT) in 50 mM NH 4 HCO 3 .   
   3.    100 mM Iodoacetamide in 50 mM NH 4 HCO 3  ( see   Note 7 ).   
   4.    Sequencing-grade trypsin (s ee   Note 8 ).   
   5.    Sequencing-grade chymotrypsin (s ee   Note 9 ).   
   6.    Lys-N protease (s ee   Note 10 ).   
   7.    Sep-Pak C18 cartridges (Waters Corporation, Milford, MA).   
   8.    100 mM Acetic acid (HAc).   
   9.    10 % Formic acid.      

2.2.3  Peptide Bead 
Library Screening 
Components

2.3  Screening 
of Antigen Fragment 
Libraries by 
Microarray  i SPR

2.3.1  Preparation 
of Peptide Fragments

Multiplex Epitope Mapping
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      1.    Agilent 1100 HPLC system (Agilent Technologies, Santa 
Clara, California, USA).   

   2.    Optilynx guard columns (Optimized Technologies, Oregon 
City, Oregon, USA).   

   3.    Polysulfoethyl A strong cation exchange (SCX) column 
(PolyLC, Columbia, MD, USA; 200 mm × 2.1 mm inner 
diameter, 5 μm, 200 Å).   

   4.    Water, pH 2.7.   
   5.    80 % Acetonitrile, pH 2.7.   
   6.    Solvent A: 5 mM KH 2 PO 4 , 30 % acetonitrile, pH 2.7.   
   7.    Solvent B: 5 mM KH 2 PO 4 , 30 % acetonitrile, 350 mM KCl, 

pH 2.7.   
   8.    10 % Formic acid.      

      1.     i SPR sensor discs containing a dextran hydrogel with carbox-
ylic acid groups (HC200, XantecBioanalytics GmbH, 
Dusseldorf, Germany) (s ee   Note 11 ).   

   2.    50 mM MES buffer, pH 5.4.   
   3.    0.8 M  N -hydroxysuccinimide (NHS) in 50 mM MES buffer, 

pH 5.4.   
   4.    0.2 M  N -ethyl- N ′-(dimethylaminopropyl)carbodiimide (EDC) 

in 50 mM MES buffer, pH 5.4.   
   5.    0.25 % Acetic acid (HAc), pH 4.5.   
   6.    Microarray spotter.   
   7.    1 M Ethanolamine.      

      1.     i SPR apparatus (IBIS Technologies BV, Hengelo, The 
Netherlands).   

   2.    PBS, 0.03 % Tween-20.   
   3.    10 mM Glycine-HCl, pH 1.5.   
   4.    SPRint software (IBIS Technologies BV, Hengelo, The 

Netherlands).        

3    Methods 

      1.    Block the microarray slide in MTBST at room temperature for 
1 h ( see   Note 12 ).   

   2.    Remove the MTBST and prevent the microarray slide from 
drying.   

   3.    Assemble an incubation chamber: A small petri dish is placed 
upside down on a wet cloth in a larger petri dish. The cloth will 
prevent evaporation of the solution. A microarray slide, with 

2.3.2  Separation 
of Peptide Fragments

2.3.3  Preparation 
of Microarray

2.3.4   i SPR Analyses

3.1  Overlapping 
Peptide Microarray 
Screening

Sanne M.M. Hensen et al.
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the peptide surface upward, is placed on top of the small petri 
dish with the spacers on the ends of the slide. A second micro-
array slide, the dummy slide ( see   Note 13 ), is placed on top of 
the spacers (Fig.  1a ).

       4.    Pipette 300 μL of the antibody solution (diluted serum) into 
the chamber (Fig.  1b ).   

   5.    Incubate the microarrays for 2 h at 37 °C.   
   6.    Remove the antibody solution by suction and disassemble the 

incubation chamber.   
   7.    Wash the microarray slide fi ve times (5 min each) with MTBST.   

   8.    Incubate the microarray slide in a closed petri dish for 1 h at 
30 °C under agitation with the 2,000-fold diluted secondary 
antibody conjugate in MTBST ( see   Note 14 ).   

   9.    Wash the microarray slide fi ve times with MTBST buffer 
(5 min each).   

   10.    Wash the microarray slide fi ve times using deionized water 
(5 min each).   

dummy slide

spacer

microarray slide

pipette tip

Array

Patient 1

Patient 2

Control

a c

b

  Fig. 1    Peptide microarray screening. ( a ) Assembly of the microarray incubation chamber. Spacers are placed 
on the slide containing the array and a second slide is placed on top of the spacers. The surface of the microar-
rays containing the peptides should be facing inwards. ( b ) The diluted patient serum is pipetted between the 
two slides. ( c ) Example of results obtained with a peptide microarray. A 90-spot array containing a set of 
overlapping peptides derived from the cytosolic 5′-nucleotidase IA protein was incubated with two patient sera 
and one healthy control serum. Bound antibodies were visualized by a fl uorescently labeled secondary anti-
body and fl uorescence scanning. The two spots in the lower left corner represent positive controls       
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   11.    Blow a gentle stream of nitrogen on the microarray surface to 
dry the slide.   

   12.    Visualize bound antibodies by scanning the microarray slides 
using a compatible fl uorescence microarray scanner ( see  Fig.  1c  
for an example).   

   13.    Determine the signal intensities for the individual peptide 
spots and calculate the average intensity of spots containing 
identical peptides.    

         1.    Dilute healthy control IgG in Tris/EDTA buffer to 4 mg/mL.   
   2.    Add 70 μL Ficin solution to 500 μL of the diluted IgG.   
   3.    Start the reaction by adding 2 μL  L -cysteine.   
   4.    Incubate the mixture at 37 °C for 24 h.   
   5.    Stop the reaction by adding 60 μL of  N -ethylmaleimide. 

Incubate the mixture for 15 min at room temperature.   
   6.    Dialyze overnight against PBS at 4 °C.   
   7.    The products can be analyzed by SDS-PAGE.      

      1.    Centrifuge serum at 2,000 ×  g  at 4 °C for 15 min ( see   Note 15 ). 
Pass the supernatant through a 0.2 μm fi lter. The supernatant 
can be stored at 4 °C prior to use.   

   2.    Wash the protein A-agarose column with PBS containing 
0.5 M NaCl and 0.05 % NP40 for 2 h at 4 °C.   

   3.    Apply 1 vol. of elution buffer to the column and subsequently 
pre-equilibrate the column with PBS.   

   4.    Add 2 mL of serum, tenfold diluted in PBS, to the column. 
Circulate the diluted serum overnight through the column to 
ensure binding of all antibodies.   

   5.    Wash the column with PBS containing 0.5 M NaCl and 0.05 % 
NP40.   

   6.    Elute the bound IgG with elution buffer and collect fractions 
of 1 mL. Immediately add 70 μL 1 M Tris to each of the 
fractions.   

   7.    Determine the protein concentration of the fractions, e.g., by 
using the Bradford reagent, and analyze the purity by SDS- 
PAGE and total protein staining.   

   8.    Pool the IgG-containing fractions and dialyze against PBS.   
   9.    Conjugate alkaline phosphatase to the isolated IgGs according 

to the instructions of the supplier.      

  All washing steps include mild vortexing of the samples followed 
by collecting the beads by brief centrifugation at 400 ×  g .

    1.    Wash the peptide beads four times with buffer A.   
   2.    Divide beads in aliquots of approx. 10,000 beads per microvial .    

3.2  Microbead- 
Based Random 
Peptide Library 
Screening

3.2.1  Generation 
of F(ab′) 2  Fragments

3.2.2  IgG Isolation 
from Serum 
and Conjugation to AP

3.2.3  Peptide-Bead 
Library Screening
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   3.    Block peptide beads that are recognized by common antibodies 
by adding 100 μL F(ab′) 2  solution and 400 μL buffer A 
( see   Note 16 ). Incubate the mixture by end-over-end rotation 
for 3 h at room temperature.   

   4.    Centrifuge and wash the beads four times with 1 mL buffer A.   
   5.    Incubate the beads with AP-conjugated IgGs in 0.5 mL buffer A. 

Incubate by end-over-end rotation at room temperature 
overnight.   

   6.    Collect the beads by centrifugation and wash fi ve times with 
buffer A.   

   7.    Incubate the beads in 1 mL buffer A under agitation for 15 min.   
   8.    Wash the beads twice with AP buffer.   
   9.    Add 0.5 mL of NBT/BCIP solution and incubate for 30 min 

at room temperature.   
   10.    Wash the beads with 100 mM EDTA to stop the AP reaction.   

   11.    Transfer the beads to a petri dish and select the colored beads 
using a light microscope (Fig.  2 ).

       12.    The identity of the peptides on the selected beads can subse-
quently be analyzed by amino acid sequencing, e.g., by Edman 
degradation.    

AP-IgG
AP

substrate

Selection
of positive

beads

Sequencing
of peptides

a

b

  Fig. 2    Epitope mapping by randomized peptide library screening. ( a ) A randomized peptide library immobilized 
on beads (each bead contains many copies of the same peptide) is incubated with the antibody of interest 
conjugated to alkaline phosphatase (AP-IgG). Subsequently, bound antibodies are visualized by incubation with 
an AP substrate. Conversion of the substrate into a stained product, which precipitates on the beads, allows 
the isolation of the antibody-bound beads. Finally, the identity of the peptides can be determined by amino acid 
sequencing of the peptides, e.g., by Edman degradation. ( b ) Example of peptide library beads after the staining 
reaction. The  arrow  marks a stained bead       
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          1.    Dissolve 250 μg of protein per protease in 500 μL PBS.   
   2.    Add 12.5 μL of 45 mM DTT.   
   3.    Incubate for 30 min at 56 °C.   
   4.    Add 12.5 μL of 100 mM iodoacetamide.   
   5.    Incubate for 30 min at RT in the dark.   
   6.    Digest protein with trypsin, chymotrypsin, or Lys-N by add-

ing the enzyme at a 1:100 enzyme/substrate mass ratio by 
overnight incubation at 37 °C.   

   7.    Desalt samples and exchange buffer to 100 mM HAc using 
Sep-Pak C18 cartridges, end volume 40 μL.   

   8.    Add 20 μL of 10 % formic acid and freeze samples at −20 °C.      

      1.    Use 20 μL of samples to separate peptides by SCX chromatog-
raphy [ 15 ].   

   2.    Load peptides onto two C18 Optilynx guard columns using an 
Agilent 1100 HPLC system, with a fl ow rate of 100 μL/min 
using water, pH 2.7 as a solvent.   

   3.    Elute peptides with 80 % acetonitrile, pH 2.7, and load onto a 
polysulfoethyl A SCX column for 10 min with a fl ow rate of 
100 μL/min.   

   4.    Separate different peptide populations using a nonlinear gradi-
ent at a fl ow rate of 200 μL/min: from 0 to 10 min, 100 % 
solvent A; from 10 to 15 min, 0–26 % solvent B; from 15 to 
40 min, 26–35 % solvent B; from 40 to 45 min, 35–60 % sol-
vent B; and from 45 to 49 min, 60–100 % solvent B.   

   5.    Collect fractions in 1-min intervals.   
   6.    Evaporate solvents.   
   7.    Resuspend fractionated peptides in 60 μL 10 % formic acid.   
   8.    Determine peptide composition of the fractions by LC-MS/MS.      

      1.    Mix equal volumes of 0.8 M NHS and 0.2 M EDC.   
   2.    Add to the sensor disc surface and incubate for 20 min.   
   3.    Wash the sensor disc with 0.25 % HAc, pH 4.5.   
   4.    Dry sensor disc under nitrogen for 30 min.   
   5.    Dilute peptides in 50 mM MES buffer (pH 5.4) to a fi nal con-

centration of 1 ng/nL (s ee   Note 17 ).   
   6.    Spot 1 nL (or more, in case of a continuous fl ow microspotter) 

of the peptide solution on the surface of the sensor discs by the 
microarray spotter (s ee   Note 18 ).   

   7.    Incubate for 1 h at room temperature in a humidity chamber.   
   8.    Block unreacted groups by incubation with 1 M ethanolamine 

for 10 min.   
   9.    Rinse the sensor disc with PBS and keep wet until use.      

3.3  Screening 
of Antigen Fragment 
Libraries by 
Microarray  i SPR

3.3.1  Preparation 
of Peptide Fragments

3.3.2  Separation 
of Peptide Fragments

3.3.3  Preparation 
of Microarray Chip
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      1.    Incubation, washing, and regeneration are performed in an 
automated way using liquid-handling procedures in the  i SPR 
apparatus.   

   2.    Inject a sample plug of 80 μL containing the antibodies (in PBS, 
0.03 % Tween-20) and pass 20 μL backward and forward over 
the array in a fl ow cell with a speed of 30 μL/s (s ee   Note 19 ).   

   3.    Rinse the fl ow cell with PBS and 0.03 % Tween-20.   
   4.    Regenerate the array by two consecutive injections (30 s each) 

of 400 μL 10 mM glycine-HCl, pH 1.5.   
   5.    Data can be analyzed with the SPRint software ( see  Fig.  3b  for 

an example of an  i SPR sensorgram).

3.3.4   i SPR Analyses

  Fig. 3    Screening of antigen fragment libraries by microarray  i SPR. ( a ) The antigen of interest is subjected to 
proteolysis and the resulting peptides are separated by SCX chromatography. Peptide fractions are sequenced 
with LC-MS/MS and spotted on a microarray chip. Antibody binding is subsequently determined by  i  SPR 
analysis. ( b ) Example of an  i  SPR sensorgram. Each curve represents one antibody-containing serum that is 
tested for its reactivity with different peptide fractions. The resonance angle shift corresponds to the amount 
of antibodies bound to a peptide spot on the array       
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4             Notes 

     1.    Peptide microarray slides should be handled with care to keep 
the peptide surface intact.   

   2.    It is recommended to fi lter the wash solutions used (using 
0.4–2 μm fi lters). However, milk solutions cannot be fi ltered.   

   3.    Serum dilutions in the 1:100–1:500 range and a secondary 
antibody concentration of 1 μg/mL are recommended. 
However, these concentrations might need optimization in 
order to reduce background signals.   

   4.    Other fl uorescence scanners with a resolution of at least 10 μm 
can be used.   

   5.    A random peptide library can be generated by a mix-and-split 
approach, mixing and splitting the beads after each synthesis 
step. Peptide-containing Tentagel beads should be resus-
pended in acetonitrile:dichloromethane (82:18). The solvent 
should be evaporated using an exiccator and beads can be 
stored dry at 4 °C.   

   6.    Method is suitable for the analysis of recombinant proteins as 
well as endogenous proteins isolated from a biological source. 
Posttranslationally modifi ed proteins, modifi ed either in vivo 
or in vitro, can be analyzed.   

   7.    Prepare iodoacetamide solution fresh. Store in the dark until 
use.   

   8.    Trypsin cleaves proteins at the C-terminal side of lysine and 
arginine residues, except when these residues are C-terminally 
fl anked by a proline.   

   9.    Chymotrypsin cleaves proteins at the C-terminal side of tyro-
sine, tryptophan, and phenylalanine residues.   

   10.    Lys-N cleaves proteins at the N-terminal side of lysine resi-
dues, which means that the primary amines of the resulting 
fragments are located at the N-terminus.   

   11.    Sensor discs containing other reactive groups can also be used.   
   12.    The Pepstar™ microarrays are pretreated by the manufacturer 

to minimize nonspecifi c binding and blocking with protein 
solutions may cause high background signals. However, when 
using patient sera or plasma an additional blocking step is rec-
ommended. Besides blocking solutions from a commercial 
supplier, e.g., Pierce Biotechnology (Cat. No.37536), MTBST 
was found to be a suitable blocking solution [ 8 ].   

   13.    The dummy slide is used during the procedure to facilitate the 
incubation and to prevent contamination of the solutions used.   

   14.    To determine nonspecifi c binding of the secondary antibody, a 
parallel incubation of a microarray slide that is not exposed to 
the primary antibody can be performed.   
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   15.    If desired, patient sera can be pooled prior to IgG isolation.   
   16.    When using AP-conjugated IgGs, blocking can also be per-

formed using IgGs from control individuals. However, depend-
ing on the source of the AP-conjugated IgGs, blocking with 
F(ab′) 2  fragments is preferred to reduce background staining. 
An example is the use of IgGs from rheumatoid arthritis 
patients which may contain antibodies directed to the Fc part 
of IgGs.   

   17.    Fractions displaying a large overlap in peptide composition can 
be pooled if desirable.   

   18.    As the peptides are relatively small, the contrast of the immo-
bilized array to the background (visualized by  i SPR) is low. To 
visualize the array, a protein, e.g., human IgG, can be spotted 
in parallel.   

   19.    The sample plug is fl anked by two air plugs to prevent the dif-
fusion of sample components into the PBS and 0.03 % 
Tween-20.         
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    Chapter 17   

 Classifi cation of Human Leukocyte Antigen (HLA) 
Supertypes 

           Mingjun     Wang      and     Mogens     H.     Claesson   

    Abstract 

   Identifi cation of new antigenic peptides, derived from infectious agents or cancer cells, which bind to 
human leukocyte antigen (HLA) class I and II molecules, is of importance for the development of new 
effective vaccines capable of activating the cellular arm of the immune response. However, the barrier to 
the development of peptide-based vaccines with maximum population coverage is that the restricting HLA 
genes are extremely polymorphic resulting in a vast diversity of peptide-binding HLA specifi cities and a 
low population coverage for any given peptide–HLA specifi city. One way to reduce this complexity is to 
group thousands of different HLA molecules into several so-called HLA supertypes: a classifi cation that 
refers to a group of HLA alleles with largely overlapping peptide binding specifi cities. In this chapter, we 
focus on the state-of-the-art classifi cation of HLA supertypes including HLA-I supertypes and HLA-II 
supertypes and their application in development of peptide-based vaccines.  

  Key words     Peptide  ,   Vaccine  ,   HLA-I supertypes  ,   HLA-II supertypes  

1      Introduction 

 The immune system, including the innate and adaptive as well as 
overlapping systems, plays a pivotal role in the defense against viral 
or bacterial infections, immune homeostasis, and cancer surveil-
lance. Within the immune system, T lymphocytes are crucial for 
adaptive immune responses, and are activated upon recognition of 
peptides displayed by human leukocyte antigen class I (HLA-I) or 
class-II (HLA-II) molecules at the surfaces of antigen-presenting 
cells (APCs). T lymphocytes express the T cell receptor (TCR) that 
recognizes specifi c peptides, which have been processed and pre-
sented in combination with an HLA molecule. There are two 
major subtypes of T lymphocytes: CD8 +  cytotoxic T cells (CTLs) 
and CD4 +  helper T cells. CTLs recognize peptides in the context 
of HLA-I molecules, while CD4 +  helper T cells recognize peptides 
associated with HLA-II molecules. The functional activity of these 
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two subsets of T cells is said to be restricted by HLA-I and -II 
molecules, respectively. 

 It is known that CTLs play a major role in killing tumor cells 
[ 1 ,  2 ] and controlling viral or bacterial infections [ 3 – 7 ], while 
CD4 +  T cells are required for priming and expansion of naive CD8 +  
T cells as well as secondary expansion of CD8 +  memory T cells 
[ 8 – 12 ]. It might therefore be of critical importance to incorporate 
both HLA-I- and -II-restricted epitopes in peptide-based vaccines 
to obtain participation of both CD4 +  and CD8 +  T cells for genera-
tion of strong and long-lasting immunity. 

 Thus, identifi cation of new antigenic peptides, derived from 
infectious agents or tumor antigens, which may bind to HLA-I or 
HLA-II molecules in exchange with self-peptides normally occu-
pying the HLA-binding site ( see  below), is important for develop-
ing new effective vaccines capable of activating the cellular arm of 
the immune responses. However, the barrier to development of 
peptide-based vaccines with maximum population coverage is that 
the restricting HLA genes are extremely polymorphic resulting in 
a vast diversity of peptide-binding HLA specifi cities and a low pop-
ulation coverage for any given peptide–HLA specifi city. As of April 
2013, it has been reported that there are 7,089 HLA-I alleles and 
2,065 HLA-II alleles (  http://hla.alleles.org    ). Undoubtedly, these 
numbers will be further increased in the future. To reduce this 
complexity, one option is to group thousands of different HLA 
molecules into clusters of several so-called HLA supertypes: a clas-
sifi cation that refers to a group of HLA alleles with largely overlap-
ping peptide binding specifi cities. In this chapter, we discuss the 
state-of-the-art classifi cation of HLA-I and HLA-II supertypes and 
their application in development of peptide-based vaccines.  

2    HLA-I Molecule and Assembly of HLA-I Peptide Complex 

 The major histocompatibility complex class I (MHC-I) antigens 
are referred to as the human leukocyte antigens class I (HLA-A, 
-B, and -C) and as H-2 class I antigens (K, D, and L) in mice. 
HLA-I antigens consist of three non-covalently associated compo-
nents: a 45 kDa glycosylated amino acid (AA) heavy chain (HC), a 
12 kDa light chain (beta 2 microglobulin, β2m), and a short 8–10 
AA self-peptide. The heavy chain of HLA-I consists of about 340 
AA residues, including a cytoplasmic region (about 30 AA resi-
dues), a transmembrane region (about 40 AA residues), and an 
extracellular region composed of three immunoglobulin-like 
domains (α1, α2, and α3), each consisting of approximately 90 
AA. The α1 and α2 domains form a peptide-binding groove and 
contain the positions contributing to the binding pockets for the 
peptide and T cell receptors. The binding groove is divided into six 
distinct pockets (A–F) based on chemical and physical characteristics; 
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the most important pockets for peptide binding are the B and the 
F pockets. The membrane-proximal α3 domain of the HC con-
tains a binding site for the co-stimulatory molecule CD8 [ 13 ] 
expressed by CTLs, which play an important enhancing role in 
killing virus-infected cells and cancer cells. The α1 and α2 domains 
consist of two segmented alpha helices forming the walls and eight 
antiparallel β strands forming the fl oor—together forming a unique 
peptide-binding groove, which is the site where the self (or foreign 
antigen-derived) peptide (8–10 AA) binds to the polymorphic 
parts of the HC and is presented to peptide-specifi c CTL for scru-
tiny. β2m is non-covalently associated with the extracellular region 
of the HLA-I heavy chain by non-covalent interactions with α2 
and α3 domains [ 14 ]. β2m is essential for the correct conformation 
of the peptide-binding groove of the heavy chain and stabilizes the 
HLA-I antigen peptide complex on the cell surface. Thus, β2m 
indirectly participates in the antigen presentation to specifi c T-cell 
receptors of CTL [ 15 – 17 ]. 

 The assembly of HLA-I peptide complex occurs in the endo-
plasmic reticulum (ER). Initially, the HLA-I HC associates with 
the chaperone calnexin (CNX) initiating an early folding and a 
disulfi de bond formation within the HC. The newly synthesized 
HLA-I HC then associates with β2m to form heterodimer. This 
heterodimer is rapidly recruited into the peptide-loading complex 
(PLC) consisting of a transporter associated with antigen process-
ing (TAP), and the chaperones tapasin, calreticulin (CRT), and 
ERp57. The HLA-I HC/β2m heterodimer is now ready for pep-
tide loading. Peptides, both self- and pathogen-derived, are pre-
dominantly generated in the cytosol by the proteasome to degrade 
cytosolic proteins into short peptides, although a proteasome- 
independent peptide produced directly by insulin-degrading 
enzyme has been recently documented [ 18 ]. Thereafter, the pep-
tides are transported into the ER by the TAP1 and TAP2. These 
peptides are further trimmed by aminopeptidase ERAAP1 and 
ERAAP2 to 8–10 AA, a length appropriate for HLA-I binding. 
Once HLA-I/HC-β2m dimers, physically associated with PLC, 
bind a subset of high-affi nity peptides, the fully assembled MHC-I 
peptide complexes are released from PLC and transported via the 
Golgi apparatus to the cell surface, where the peptides are pre-
sented by HLA-I to CTL for scrutiny ( see  details in reviews 
[ 19 ,  20 ]).  

3    HLA-II Molecule and Antigen-Presenting Pathway 

 The HLA-II molecule consists of two chains: α and β chain (each 
one with two domains: α1 and α2, β1 and β2) and a self-peptide 
with 13–25 AA located in a cleft formed by the α1 and β1 domains. 
Classical HLA-II molecules include HLA-DR, HLA-DQ, and 
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HLA-DP and are expressed mostly in the membrane of the 
professional antigen-presenting cells, where they present processed 
extracellular antigenic peptides to CD4 +  T cells. In contrast to the 
antigen-binding groove of HLA-I molecule, which is closed at 
each end, the antigen-binding groove of HLA-II molecules is open 
at both ends and allows longer peptides (13–25 AA) to be loaded 
[ 21 ,  22 ]. During synthesis of HLA-II molecules in the ER, the α 
and β chains are produced and associate with an invariant chain, 
which stabilizes the HLA-II molecule and prevents it from binding 
of intracellular peptides or peptides from the endogenous pathway. 
The invariant chain directs transportation of HLA-II from the ER 
to the Golgi complex, followed by fusion with late endosomes 
which contain peptides derived from endocytosed, degraded pro-
teins (self or foreign). The invariant chain is then cleaved by cathep-
sins to form a small fragment known as CLIP, which occupies the 
peptide-binding groove of the HLA-II molecules. HLA-DM 
 facilitates CLIP removal and makes the peptide-binding groove of 
HLA-II ready for peptide loading before the HLA-II-peptide 
complex migrates to the cell surfaces to be scrutinized by CD4 +  T 
cells [ 23 ].  

4    Classifi cation of Supertypes 

  The concept of supertypes was fi rstly introduced by Alessandro 
Sette’s group in 1995 [ 24 ,  25 ]. The defi nition of an HLA super-
type is that HLA molecules with similar peptide binding features 
are grouped into one supertype; this means that if a peptide is able 
to bind to one allele within a supertype, it can also bind to all other 
alleles in this supertype. In practice, actually only a few peptides 
that are able to bind to one allele in a supertype can bind to all the 
other alleles within the supertype. To date, many methods have 
been used to defi ne HLA-I supertypes, including structural simi-
larities, shared peptide-binding motifs, and identifi cation of cross- 
reacting peptides [ 26 – 29 ]. Based on motifs derived from binding 
data or sequencing of endogenously bound peptides, along with 
simple structural analyses, Sette and Sidney [ 30 ] defi ned nine 
supertypes (HLA-A1, -A2, -A3, -A24, -B7, -B27, -B44, -B58, 
-B62), which were reported to cover most of the HLA-A and -B 
polymorphisms. Subsequently, Ole Lund’s group [ 26 ] constructed 
hidden Markov models (HMMs) [ 31 ] for HLA-I molecules using 
a Gibbs sampling procedure [ 32 ] and defi ned a similarity measure 
between these sequence motifs. By using this similarity to cluster 
alleles into supertypes, Ole Lund’s group [ 26 ] further defi ned 
three new HLA-I supertypes (HLA-A26, -B8, and -B39), in addi-
tion to the nine supertypes described previously by Alessandro 
Sette’s group [ 30 ], which was based on about 100 HLA-I peptide 
interactions. In the past few years, a lot of binding data have been 
generated; MHC-binding motif information is readily accessible 

4.1  HLA-I Supertypes
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(  http://www.iedb.org    ), and MHC sequence data are also available 
in the IMGT (the international ImMunoGeneTics information 
system:   http://www.imgt.org    ) database. In 2008 Alessandro 
Sette’s group analyzed the updated list of alleles available through 
IMGT using a simple approach largely based on compilation of 
published motifs, binding data, and analyses of shared repertoires 
of binding peptides, in combination with clustering based on the 
primary sequence of the B and F peptide-binding pockets [ 29 ]. 
They provided updated supertype assignments, with new assign-
ments for about 1,000 different HLA-I alleles, which is about a 
tenfold increase in the number of alleles compared to their original 
classifi cation done in 1999 [ 30 ]. In the updated HLA-I classifi ca-
tion, Alessandro Sette’s group found that about 80 % of the 945 
alleles examined were classifi ed into one of the nine supertypes 
identifi ed previously [ 30 ], and they did not suggest the existence 
of any other novel supertypes. However, they found that some 
alleles have specifi cities spanning two different supertypes, nine 
alleles share features of both the A01 and A03 supertypes, and 
another ten alleles have a specifi city overlapping the A01 and A24 
supertypes [ 29 ]. In addition, some alleles could not be assigned to 
any supertypes known today on the basis of the criteria mentioned 
above; thus these unclassifi ed alleles remain to be addressed. 

 In summary, the updated HLA-I classifi cation described by 
Alessandro Sette’s group [ 29 ] is in agreement with those defi ned 
by other approaches from the other groups [ 26 ,  33 ,  34 ] including 
Ole Lund’s group, and is now widely accepted and has been used 
for development of peptide-based vaccines [ 29 ,  35 ,  36 ].  

  The structural composition between HLA-I and HLA-II mole-
cules is fundamentally different, thus leading to very different 
binding characteristics. The binding groove is closed at both ends 
in an HLA-I molecule, while the peptide-binding groove of 
HLA-II molecules is open at both ends, which allow the binding 
of longer peptides (13–25 AA residues) than that for HLA-I mol-
ecules. A deeper understanding of the polymorphism of HLA-II 
molecules will contribute signifi cantly to HLA-II-binding peptide 
prediction and classifi cation of supertypes. 

 In contrast to HLA-I supertypes, HLA-II supertypes have 
been less intensively studied, although a few studies about HLA-II 
supertypes [ 26 ,  37 – 41 ] have been reported. One important rea-
son is that peptide binding data for HLA-II molecules is less avail-
able than those for HLA-I molecules due to the complexity of 
HLA-II structure. Nevertheless, studies have suggested that many 
DR molecules [ 26 ,  37 ,  38 ] and many DP molecules [ 40 ,  42 ] can 
be grouped into supertypes. In 1998, Ou et al. [ 38 ] grouped 
HLA-DR molecules into seven different functional supertypes on 
the basis of their ability to bind and present antigenic peptides to 
T cells and their association with susceptibility or resistance to disease. 
In 2002, Castelli et al. [ 40 ] defi ned an HLA-DP4 supertype and 

4.2  HLA-II 
Supertypes
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supported the existence of three main binding supertypes among 
HLA-DP molecules. In 2005, Doytchinova et al. [ 37 ] applied a 
combined bioinformatics approach using both protein sequence 
and structural data, to 2,225 HLA-II molecules, to detect simi-
larities in their peptide-binding sites for defi nition of HLA-II 
supertypes. They defi ned 12 HLA-II supertypes, including fi ve 
DRs (DR1, DR3, DR4, DR5, and DR9), three DQs (DQ1, DQ2, 
and DQ3), and four DPs (DPw1, DPw2, DPw4, and DPw6). In 
2011, Greenbaum et al. [ 41 ] determined the binding capacity of 
a large panel of non-redundant peptides for a set of 27 common 
HLA DR, DQ, and DP molecules. The measured binding data 
were then used to defi ne class II supertypes on the basis of shared 
 binding repertoires. Seven different supertypes (main DR, DR4, 
DRB3, main DQ, DQ7, main DP, and DP2) were defi ned. 
Subsequently, according to motif-based supertype classifi cation 
[ 27 ], seven different supertypes were defi ned after the analysis of 
27 HLA II proteins described in a previous report [ 41 ]. All the 
molecules belonging to the DP genetic locus (DPB1*0101, 
DPB1*0201, DPB1*0401, DPB1*0402, DPB1*0501, and 
DPB1*1401) were grouped into a single supertype; DQ proteins 
were grouped into two different supertypes, each containing 
three HLAs: (DQB1*0301, DQB1*0302, DQB1*0401) and 
(DQB1*0201, DQB1*0501, DQB1*0602). The motif-based 
classifi cation of the DR proteins is less defi ned compared with the 
other loci. The HLA-DR can be grouped into four supertypes: 
(DRB1*0401, DRB1*0405, DRB1*0802, DRB1*1101), 
(DRB3*0101, DRB3*0202), (DRB1*0301, DRB1*1302), and 
the fourth containing the remaining DR proteins. Functional and 
motif-based clustering of 27 defi ned HLA-II molecules revealed 
the presence of proteins sharing both functional and structural 
properties, thus supporting the concept of HLA-II supertypes.   

5    HLA Supertypes and Vaccines 

 To date, one of the major drawbacks of a peptide-based vaccine 
strategy is that the restricting HLA genes are extremely polymor-
phic resulting in a vast diversity of peptide-binding HLA specifi ci-
ties and a low population coverage for any given peptide–HLA 
specifi city. To increase population coverage, one might include 
defi ned epitopes for each HLA-I allele; however, this would lead to 
a vaccine comprising hundreds of peptides. As mentioned above, 
one way to reduce this complexity is to group HLA molecules into 
HLA supertypes; a classifi cation that as mentioned above refers to 
a group of HLA alleles with largely overlapping peptide binding 
specifi cities [ 24 ,  25 ,  30 ]. Ideally this means that a peptide, which 
binds to one allele within a supertype, has a high probability of 
binding to other allelic members of the same supertype. The concept 
of HLA supertypes has been successfully applied to characterize 
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and identify T cell epitopes from a variety of different pathogens, 
including measles-mumps-rubella, SARS, EBV, HIV, HCV, HBV, 
HPV, infl uenza, LCMV, Lassa virus,  F. tularensis , vaccinia, and 
cancer antigens as well [ 29 ]. 

 HLA supertypes have been utilized as a component in several 
approaches and algorithms designed for predicting peptide candi-
dates [ 43 – 48 ]. The technology behind “reverse immunology” is 
developing rapidly in order to identify T cell epitopes from tumor 
antigens and infectious microorganisms [ 44 – 51 ]. During the SARS 
epidemic back in 2003, the SARS genome was identifi ed in a mat-
ter of weeks, and a complete CTL epitope scanning—just barely 
possible at that time—was completed a few months later [ 43 ]. 
Therefore, “reverse immunology” as a powerful tool to identify 
T cell epitopes has now reached the stage where genome-, patho-
gen-, and HLA-wide scanning for HLA-binding antigenic epitopes 
become feasible at a scale and speed that makes it possible to exploit 
the genome information as fast as it can be generated. Importantly, 
a large-scale dataset of measured HLA-II-binding affi nities cover-
ing 26 allelic variants, including a total of 44541 affi nity measure-
ments for HLA-DR alleles as well as 11 HLA-DP and DQ 
molecules [ 52 ], are available to be used as training data for gener-
ating prediction tools utilizing several machine learning algo-
rithms. To date, the computer-based algorithms for predicting 
peptides binding to HLA-I molecules are being developed for 
HLA-II-restricted peptide epitopes, a development, which is of 
pivotal importance for understanding the immune response and its 
effect on host-pathogen interactions [ 32 ,  52 – 55 ]. Those tools will 
defi nitely lead to fast identifi cation of novel peptides restricted by 
HLA-I and HLA-II supertypes for use in vaccines against infec-
tious agents as well as tumors. In this respect, individual peptides 
harboring both HLA-I and HLA-II binding potentials [ 46 – 48 ,  56 ] 
might be of particular importance. 

 In conclusion, classifi cation of HLA supertypes reduces com-
plexity of HLA polymorphisms and has a signifi cant impact on the 
development of peptide-based vaccines with maximum population 
coverage. Since CD4 +  T cells are required for priming of naïve 
CD8 +  T cells as well as expansion of CD8 +  memory T cells [ 8 – 12 ], 
it is of critical importance to incorporate both HLA-I and -II super-
type-restricted epitopes in peptide-based vaccines with maximum 
population coverage to obtain participation of both CD4 +  and 
CD8 +  T cells for generation of strong and long-lasting immunity.     
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    Chapter 18   

 Customized Predictions of Peptide–MHC Binding 
and T-Cell Epitopes Using EPIMHC 

           Magdalena     Molero-Abraham    ,     Esther     M.     Lafuente    , and     Pedro     Reche    

    Abstract 

   Peptide binding to major histocompatibility complex (MHC) molecules is the most selective requisite for 
T-cell recognition. Therefore, prediction of peptide–MHC binding is the main basis for anticipating T-cell 
epitopes. A very popular and accurate method to predict peptide–MHC binding is based on motif-profi les 
and here we show how to make them using EPIMHC (  http://imed.med.ucm.es/epimhc/    ). EPIMHC is 
a database of T-cell epitopes and MHC-binding peptides that unlike any related resource provides a frame-
work for computational vaccinology. In this chapter, we describe how to derive peptide–MHC binding 
motif-profi les in EPIMHC and use them to predict peptide–MHC binding and T-cell epitopes. Moreover, 
we show evidence that customization of peptide–MHC binding predictors can lead to enhanced epitope 
predictions.  

  Key words     MHC  ,   HLA  ,   PSSM  ,   T-cell epitope  ,   Prediction  

  Abbreviations 

   MHC    Major histocompatibility complex   
  HLA    Human leukocyte antigen   
  PSSM    Position specifi c scoring matrices   

1        Introduction 

 T cells play a key role in fi ghting infectious agents such as  pathogenic 
viruses, bacteria and parasites, as well as in cancer immune surveil-
lance, eliminating tumoral cells. T cells respond to foreign peptide 
antigens (T-cell epitopes) bound the cell surface expressed major 
histocompatibility complex (MHC) molecules [ 1 – 4 ]. There are 
two main classes of MHC molecules, MHC class I (MHCI) and 
MHC class II (MHCII) that are in turn recognized by CD8 +  
T and CD4 +  T cells, respectively [ 4 ]. In humans, MHC molecules 
are known as Human Leukocyte Antigens (HLAs) and are 
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extremely polymorphic [ 5 ]. HLA polymorphisms are the basis for 
distinct peptide binding specifi city of HLA allelic variants [ 5 ]. 

 The relevance of T-cell epitopes for understanding disease 
pathology [ 6 ] and for epitope-based vaccines [ 7 – 10 ] has led to the 
identifi cation of thousands of epitopes and MHC-peptide ligands 
from all kind of antigens. The availability of this vast amount of 
data has had two major intertwined consequences. On the one 
hand, it has given rise to comprehensive databases and resources to 
store the ever-increasing data. On the other hand, it has fueled the 
development of computational approaches for the prediction of 
T-cell epitopes. 

 Relevant examples of T-cell epitope and MHC-peptide ligand 
databases include SYFPEITHI [ 11 ], JenPep [ 12 ], and MHCBN 
[ 13 ], TEPIDAS [ 14 ], ImmuneEpitope Database [ 15 ], and 
EPIMHC [ 16 ]. These resources are instrumental for the  analysis 
of peptide–MHC binding and T-cell epitope immunogenicity, 
 primarily serving as source of data but also providing analytic and 
predictive tools. All these databases are based on relational data-
bases and share a considerable amount of capabilities. Yet they also 
have unique features. Here we will work with EPIMHC [ 16 ], a 
highly curated database of T-cell epitopes and MHC-binding pep-
tides that unlike any related resource enables tailored predictions 
of T-cell epitopes using custom-made peptide–MHC binding 
motif-profi les [ 17 – 19 ]. 

 T-cell epitopes are determined by several molecular events 
[ 20 – 22 ], of which peptide–MHC binding is the most selective. 
Therefore, prediction of peptide–MHC binding is the main basis 
to anticipate T-cell epitopes [ 23 ]. Peptide–MHC binding predic-
tions can be achieved through a great variety of methods [ 23 ], 
including peptide–MHC binding motif-profi les [ 17 – 19 ] which 
rank among the most successful and popular of them [ 24 ]. These 
motif-profi les consist of weighted position specifi c scoring matrices 
(PSSM) [ 25 ] created from sets of aligned peptide sequences known 
to bind to the relevant MHC molecules. 

 Prediction of T-cell epitopes using a large set of MHC-specifi c 
motif-profi les is readily available for free public use in at our 
RANKPEP site (   http://imed.med.ucm.es/Tools/rankpep.html     ). 
We generated the peptide–MHC binding profi les available in 
RANKPEP from the largest non-redundant set of peptides that we 
could identify. In computational cross-validations, RANKPEP pro-
fi les exhibited a great performance [ 17 ]. However, they are not 
necessarily the best for all predictive matters. In fact there is no 
general consensus on what peptides should be included for pep-
tide–MHC binding model building. Therefore, in this chapter, we 
illustrate how to use EPIMHC to derive custom-made peptide–
MHC binding motif-profi les and produce tailored T-cell epitope 
predictions.  
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2    Materials 

  EPIMHC is a database with comprehensive information on MHC- 
restricted ligands and T-cell epitopes that are observed in real 
 proteins from a great variety of sources including tumor antigens. 
Peptide data were collected from related databases [ 11 ,  26 ,  27 ] 
and the literature and was incorporated into the database upon 
computational curation (altered peptide ligands are not included). 
EPIMHC data is structured as a relational database with a set of 
related tables (Fig.  1 ). Entries in EPIMHC are unique with regard 
to the combination of two features: the sequence of the peptide 
and the MHC restriction element. Main annotations in EPIMHC 
include information on the ligand (sequence, length, MHC bind-
ing, T-cell activity, processing, protein source, protein name, and 
organisms), the MHC restriction element (CLASS, MHC mole-
cule and MHC source), and publication reference. The “processing” 
fi eld indicates whether the peptides are processed and presented 
from their protein sources in vivo (annotated as  natural ). “MHC 
binding” and “immunogenicity level” fi elds follow a qualitative 
annotation of four values (high, moderate, little, unknown). The 
immunogenicity level only applies to peptides with reported “T-cell 
activity.” Immunogenicity and MHC-binding binding levels were 
obtained from the literature and translated onto the indicated 
qualitative values as previously reported [ 26 ]. If no information on 
peptide–MHC binding and/or Immunogenicity level was found, 
then such fi elds were annotated as unknown.

   EPIMHC database is accessible online at    http://imed.med.
ucm.es/epimhc/      (Fig.  2 ) through an intuitive and user-friendly 
Web interface. This server allows for complex database queries, 

2.1  EPIMHC 
Database 
and Query Form

  Fig. 1    EPIMHC database structure       
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combining any annotation fi eld, thanks to the underlying SQL 
 language. For example, users can search for peptide ligands and/or 
epitopes that are restricted by one, various or all MHC molecules 
(left side of the screen), and restrict the search according to various 
criteria like length and source of the peptide (right of the screen). 
Also, any fi eld of interest can be included in the search output. The 
EPIMHC search output will be described in detail in the Method 
section in the context of the generation of custom-made profi les.

  Fig. 2    EPIMHC database Web interface. EPIMHC resource is available for free public use at    http://imed.med.
ucm.es/epimhc/            
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     As mentioned, motif-profi les consist of weighted PSSM [ 25 ] 
 created from a set of aligned peptide sequences known to bind to 
a given MHC molecule. In order to predict peptide–MHC bind-
ing and T-cell epitope using motif-profi les, we used a search 
 algorithm known as RANKPEP [ 17 ,  18 ]. The algorithm uses the 
profi le coeffi cients to score all possible peptide fragments in a pro-
tein with the width of the PSSM and ranks them by score. The 
width of a PSSM is given by the number of residue sites in a mul-
tiple sequence alignment. Although rank per se is insuffi cient to 
assess whether a peptide is a potential binder, we have shown that 
T-cell epitopes score among the top 2 % ranking peptides [ 17 ,  18 ]. 
Motif-profi les assume that peptide residues contribute indepen-
dently to MHC binding. This assumption is well supported by 
experimental data, although there are reported instances in which 
the contribution of peptide residues to MHC-binding is infl uenced 
by neighboring residues [ 28 ]. 

 RANKPEP is accessible online for public use at the site    http://
imed.med.ucm.es/Tools/rankpep.html      (Fig.  3 ). Currently, 88 and 
50 different MHCI and MHCII molecules, respectively, can be 
targeted for peptide binding predictions in RANKPEP using 
the relevant motif-profi les. The profi les available in RANKPEP 
have been derived from large sets of non-redundant peptide–MHC 
binders, without taking in consideration their T-cell activity and 
source. These sets can include self-peptides eluted from MHC 
molecules. The RANKPEP Web server is fl exible, intuitive and 
combines several interesting features. Notably, users can upload 
their own motif-profi les, such as those generated using EPIMHC 
( see  Subheading  3 ). A simplifi ed version of the RANKPEP 
input form can also be launched from EPIMHC to facilitate 
 tailored prediction of T-cell epitopes using custom-made profi les 
( see  Subheading  3 ).

3          Methods 

 In this section, we show a step-by-step guide to derive a specifi c 
peptide–MHC binding motif-profi le in EPIMHC and produce 
tailored T-cell epitope predictions. In particular, we will target 
the prediction of A*0201-restricted CD8 T-cell epitopes 
from SARS coronavirus nucleoprotein (GI: 30173007). This 
protein contains 7 experimentally identifi ed A*0201-restricted 
CD8 T-cell epitopes (Table  1 ) and we will use that knowledge to 
assess the predictive accuracy of various peptide–MHC binding 
motif-profi les.

       We will build a motif-profi le from all 9-mer peptides that are anno-
tated in EPIMHC to bind with high affi nity to the human MHC I 
molecule HLA-A*0201 (A*0201) ( see   Notes 1 – 6 ). To this end, 

2.2  Prediction 
of a Peptide–MHC 
Binding and T-Cell 
Epitopes Using 
Profi les

3.1  Peptide Selection 
and Motif-Profi le 
Building
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we fi rst do a search in EPIMHC with the following selection crite-
ria, leaving the remaining fi elds with default settings:

    1.    Select HLA-A*0201 in  MHC SELECTION .   
   2.    Select 9 in  LENGTH  ( see   Note 2 ).   
   3.    Select high in  PEPTIDE BINDING  LEVEL.     

  Fig. 3    RANKPEP Web server. The fi gure depicts a screenshot of the RANKPEP interface with the option of 
uploading custom-made profi les highlighted. RANKPEP is available for free public use at    http://imed.med.ucm.
es/Tools/rankpep.html            
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 In Fig.  4a  we show a screen capture of the selection described. 
Upon submitting the search, we get 178 peptides (Fig.  4b ). 
EPIMHC search results consist of a tabulated list, rows, of records 
fi tting the search criteria. The table columns provide the informa-
tion fi elds selected by the users in the query form. The default 
fi elds are those shown in Fig.  4b  and include the MHC restriction 
element ( MHC ), the MHC class (I or II) ( CLASS ), the sequence 

    Table 1  
  Known A*0201-restricted CD8 T-cell epitopes in SARS nucleoprotein   

 Epitope sequence  Location  References 

 ALNTPKDHI  139–147  [ 34 ] 

 LQLPQGTTL  160–168  [ 34 ] 

 LALLLLDRL  220–228  [ 34 ] 

 LLLDRLNQL  223–231  [ 34 ] 

 RLNQLESKV  227–235  [ 34 ] 

 GMSRIGMEV  317–325  [ 34 ] 

 ILLNKHIDA  352–360  [ 34 ] 

  None of these epitopes has been used for profi le building in EPIMHC  

  Fig. 4    EPIMHC search example and output. The fi gure illustrates a search example in the EPIMHC resource for 
peptides binding to HLA-A*0201 with high affi nity ( a ) and the result of that specifi c search ( b )       
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of the peptide ( SEQUENCE ), the name of the source protein 
( PROTEIN SOURCE NAME ), whether the peptide is an epitope 
(Yes or NO) ( EPITOPE ), T-cell activity level ( EPITOPE LEVEL ), 
the source organisms of the peptide ( PEPTIDE SOURCE 
ORGANISMS ), and length of the peptide ( LENGTH ). Clicking on 
the peptide sequence will show its location onto the relevant protein 
source. Also, one can retrieve the protein source record in NCBI by 
clicking on the relevant protein source names. Users can select any 
record by clicking on the record-checkbox or select all records 
by clicking on the option  check all  at the bottom of the result page 
and download the data in a variety of text formats from the relevant 
action buttons ( FASTA Sequence ,  Table format , or  Full Record ).

   Motif-profi les are built from peptide sequences selected in 
the output. Currently, EPIMHC can generate two types of profi les 
that are specifi ed by clicking on either the  p.mtx  or the  pwp  
 checkboxes. The fi rst one uses a branch proportional weighting 
method [ 29 ], while the second uses position-based weights [ 30 ]. 
To make a motif-profi le incorporating position-based weights from 
all peptide records, we follow the next sequential steps (highlighted 
in Fig.  5a ):

     1.    Click on  check all  (all peptides will be selected) ( see   Note 6 ).   
   2.    Click the  p.mtx  check box.   
   3.    Click the  create matrix  action button.    

  Fig. 5    Profi le-building using peptides selected in the EPIMHC output. ( a ) Figure highlights the steps that 
are needed (labeled 1, 2, and 3) to make a motif-profi le with position-based weights from all peptides in the 
EPIMHC search output ( b ) RANKPEP form launched by EPIMHC with ready-to-use custom-made profi le 
( highlighted )       
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  Upon hitting the  create matrix  button, EPIMHC opens a 
 simplifi ed version of the RANKPEP Web interface that incorpo-
rates the custom-made motif-profi le from the selected peptides 
(Fig.  5b ). The profi le appears under the  File  fi eld of the form and 
can be downloaded with a mouse right click (PC) or by a mouse 
click-and-hold (MAC). The profi le thus generated, shown in 
Fig.  6 , has the format required by the MAST-motif search algo-
rithm [ 31 ] and can be uploaded to the original RANKPEP Web 
server to produce custom predictions of peptide–MHC binding 
and T-cell epitopes. However, the RANKPEP interface launched 
by EPIMHC allows a more direct and simple way to achieve such 
a task (Fig.  5b ). Under  SET DISPLAY OPTIONS,  users can select 
between two options to set the number of peptides to be returned 
by the algorithm: one is as a fi xed  number of top scoring peptides  
and the other as a  percentage of top scoring peptides . Users can also 
restrict the peptides sorted by RANKPEP by molecular weight 
(MW) so that only peptides within a MW window will be returned. 
By default, MW fi ltering is not applied. The RANKPEP interface 
also provides three models for proteasomal cleavage predictions 
[ 17 ,  22 ]. By default, model  one  is selected. These models will be 
applied regardless of the class of the MHC targeted for predictions 
but the predictions are only meaningful for MHC I-restricted pep-
tides ( see   Note 4 ).

     To target SARS nucleoprotein for T-cell epitope predictions using 
the RANKPEP form launched by EPIMHC with the custom-made 
profi le we carry on as follows:

    1.    Set peptides to display to 2 % of top scoring peptides ( see   Note 5 ).   
   2.    Paste the SARS nucleoprotein, FASTA format, in the text box 

INPUT section.   
   3.    Click on the matrix check box.   
   4.    Click on the action button  Run Rankpep .     

 The indicated steps are highlighted in Fig.  7a  and we describe 
next the RANKPEP output (Fig.  7b )

   The top part of the RANKPEP output shows the matrix 
 (profi le) used for the predictions, a consensus sequence that would 
reach the largest score, optimal (largest) score and a binding 
threshold (BT). The later is an important feature. Large scores lead 

3.2  Prediction 
of Peptide–MHC 
Binding and T-Cell 
Epitopes With EPIMHC 
Custom-Made Profi les

  Fig. 6    EPIMHC profi le with position-based weights generated from 178 9-mer peptides binding to HLA- A*0201 
with high affi nity       
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to top ranking peptides and are indicative of peptide–MHC 
 binding. However, rank per se is insuffi cient to know whether a 
given peptide will bind to a particular MHC molecule, e.g., scor-
ing a single peptide. Therefore, EPIMHC provides a profi le- 
specifi c BT that serves to identify the most confi dent peptide–MHC 
binders and T-cell epitopes as those with a score ≥ BT. The profi le-
specifi c BT provided by EPIMC is obtained by scoring all the pep-
tides used to make the relevant profi le matching the 90 percentile 
value of all peptide scores [ 18 ]. The next part in the RANKPEP 
output consists of a list of peptides from the input protein ranked 
by the scores obtained with the relevant profi le. In our case, 
RANKPEP shows only 9 peptides from SARS nucleoprotein 
because we selected to display only the 2 % of top scoring peptides. 
For every peptide, RANKPEP shows its rank ( RANK ), location 
in the protein sequence ( POS) , sequence (SEQUENCE), three 
N-terminal ( N ) and C-terminal ( C ) fl aking residues, score (SCORE), 
and relative score, in percentage, with regard to the optimum score 
( %OPT ). Peptides whose scores are equal or greater than the BT 
score are highlighted in red, and those containing a C-terminal 
end predicted to be the result of proteasomal cleavage are shown 
in violet. 

 As we made a profi le from peptides binding with high affi nity 
to A*0201, we are predicting peptides from SARS nucleoprotein 
that bind to A*0201 and hence potential A*0201-restricted CD8 
T-cell epitopes. In fact, in the results shown in Fig.  7b , it is possible 
to identify 5 out of the 7 known A*0201-restricted CD8 T-cell 
epitopes from SARS nucleoprotein (Table  2 ).

  Fig. 7    Tailored prediction of peptide–MHC binding using the RANKPEP form launched by EPIMHC ( a ) The fi gure 
illustrate the steps to predict HLA-A*0201-restricted peptides from SARS nucleoprotein. ( b ) RANKEP output 
showing the prediction results       
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     The goodness of peptide–MHC binding and T-cell epitope 
 predictions provided by any predictive model, including motif-
profi les, is tied to the data used for model building [ 32 ,  33 ]. To 
demonstrate such infl uence, here we will compare the predictions 
of A*0201- restricted CD8 T-cell epitopes from SARS nucleopro-
tein that are obtained with 4 distinct motif-profi les, including that 
described in the previous section (hereafter profi le #1). The spe-
cifi c peptide selections that give rise to the different profi les used in 
this section are detailed in Table  2 . Briefl y, all profi le-motifs are 
generated from peptides binding with high affi nity to A*0201. In 
addition, profi le #3 and #4 only include peptides from viruses and 
profi le #2 and #4 only include peptides known to display T-cell 
activity (they are epitopes). To evaluate the predictive performance 
of these profi les, we scored and ranked all peptides from SARS 
nucleoprotein and compared the ranking achieved by the known 
SARS nucleoprotein A*0201-restricted CD8 T-cell epitopes 
shown in Table  1 . These results are summarized in Table  3 . All 
four motif-profi les produce related results, ranking the known 
CD8 T-cell epitopes among the top scoring peptides of SARS 
nucleoprotein. This is expected as A*0201-restricted CD8 T-cell 
epitopes and the peptides used for model building have in com-
mon the ability to bind to A*0201. However, there are also differ-
ences in the results. Thus, only the profi les derived from viral 
peptides are capable of predicting the known A*0201-restricted 
CD8 T-cell epitopes from SARS nucleoprotein among the top 11 
scoring peptides (Table  3 ). Judging from the dispersion of the 
ranks (Table  3 ), the best overall epitope predictions are obtained 

3.3  Comparison 
of CD8 T-Cell Epitope 
Predictions Using 
Various Custom-Made 
Profi les

    Table 2  
  Description of custom-made profi les used in this study   

 EPIMHC search selection 

 EPIMHC search 
result and profi le 
building 

 Profi le 
name 

 MHC 
molecule 

 PEP. binding 
level 

 PEP. source 
organism 

 T-cell 
activity  Length  Peptides  Method 

 Profi le #1  HLA- A*0201  High  All  All  9  178  p.mtx b  

 Profi le #2  HLA- A*0201  High  All  YES  9   95  p.mtx b  

 Profi le #3  HLA- A*0201  High  Viruses a   All  9   48  p.mtx b  

 Profi le #4  HLA- A*0201  High  Viruses a   YES  9   32  p.mtx b  

   a The viruses selected in EPIMHC were the following: Dengue virus, Epstein-Barr virus, Hepatitis B virus, Hepatitis C 
virus, Human immunodefi ciency virus 1, Human immunodefi ciency virus 1 OPT, Human immunodefi ciency virus 2, 
Infl uenza A virus, Measles virus, and West Nile virus. None of the CD8 T-cell epitopes from SARS nucleoprotein are 
included in any of the peptide selections used for making these profi les 
  b PSSMs generated using position-based weights [ 30 ]  
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with a motif-profi le derived from viral peptides with known T-cell 
activity (T-cell epitopes). It remains to be explored whether discard-
ing peptide–MHC binders with no reported T-cell activity always 
improves the resulting T-cell epitope prediction models. It is impor-
tant to note that none of the known epitopes used in these analyses 
have been used to derive any of the profi les. In fact, the current 
version of EPIMHC does not contain any SARS peptides at all.

   In conclusion, profi les are very powerful at capturing nontrivial 
motifs and the results shown here support that epitope predictions 
can be improved using customized peptide–MHC binding profi les. 
EPIMHC is the only available resource readily suitable for that task.   

4    Notes 

        1.    In EPIMHC, users can make profi les from any peptide  selection 
but the peptides must be related to some extend (e.g., binding 
to the same MHC) to produce profi les yielding meaningful 
predictions ( see  Subheading  3.1 ).   

   2.    EPIMHC is better suited for making MHC I-specifi c profi les. 
Moreover, profi les can only be generated from peptides 
with the same length; otherwise EPIMHC returns an error 

     Table 3  
  Ranking and statistics of known SARS nucleoprotein A*0201-restricted CD8 T-cell epitopes using four 
custom-made motif-profi les   

 Epitope  Profi le #1  Profi le # 2  Profi le #3  Profi le # 4 

 ALNTPKDHI  3  3  4  4 

 GMSRIGMEV  2  1  1  3 

 ILLNKHIDA  8  7  5  5 

 LALLLLDRL  34  11  30  11 

 LLLDRLNQL  1  2  9  2 

 LQLPQGTTL  10  13  7  10 

 RLNQLESKV  5  4  3  1 

 Rank  Statistics 

 Median  5  4  5  4 

 Mean  9  5.8  5.4  5.1 

 Stdev  11.3  4.5  9.8  3.9 

 Range  1–34  1–13  1–30  1–11 

  Peptide ranks are obtained after scoring all peptides in SARS nucleoprotein with the relevant motif-profi les and depict 
the peptide score relative to that of all remaining peptides. Rank 1 means that the peptide has the largest score of all 
peptides  
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( see  Subheading  3.1 ). There are practical and structure-based 
reasons for this  limitation as discussed by Reche et al. [ 18 ].   

   3.    EPIMHC can also produce profi les from peptides that have 
been selected to bind to MHC II molecules, provided that 
they have the same length ( see  Subheading  3.1 ). However, as 
data availability is  limited, we recommend using a motif dis-
covery program such as MEME [ 31 ] for making peptide–
MHC II binding profi les from peptides of any length as 
described in previous reports [ 17 ,  18 ].   

   4.    The proteasomal cleavage predictions should not be taken in 
consideration when predicting peptide binding to MHC II 
molecules: the proteasome is not involved in class II antigen 
processing. We are working in correcting this inconsistency.   

   5.    For RANKPEP to return all peptides in a given protein sorted 
by score, users need to make the following selections in the 
RANKPEP input form: fi rst set peptides to display by number 
and then select 990 from the pull-down menu.   

   6.    To generate profi les that are capable of capturing the relevant 
peptide–MHC binding feature, we suggest using a minimum 
of fi ve peptides.         
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    Chapter 19   

 T-Cell Epitope Prediction Methods: An Overview 

           Dattatraya     V.     Desai      and     Urmila     Kulkarni-Kale    

    Abstract 

   The scientifi c community is overwhelmed by the voluminous increase in the quantum of data on biological 
systems, including but not limited to the immune system. Consequently, immunoinformatics databases are 
continually being developed to accommodate this ever increasing data and analytical tools are continually 
being developed to analyze the same. Therefore, researchers are now equipped with numerous databases, 
analytical and prediction tools, in anticipation of better means of prevention of and therapeutic interven-
tion in diseases of humans and other animals. 

 Epitope is a part of an antigen, recognized either by B- or T-cells and/or molecules of the host immune 
system. Since only a few amino acid residues that comprise an epitope (instead of the whole  protein) are suf-
fi cient to elicit an immune response, attempts are being made to identify or predict this critical stretch or patch 
of amino acid residues, i.e., T-cell epitopes and B-cell epitopes to be included in multiple- subunit vaccines. 

 T-cell epitope prediction is a challenge owing to the high degree of MHC polymorphism and disparity 
in the volume of data on various steps encountered in the generation and presentation of T-cell epitopes 
in the living systems. Many algorithms/methods developed to predict T-cell epitopes and Web servers 
incorporating the same are available. These are based on approaches like considering amphipathicity pro-
fi les of proteins, sequence motifs, quantitative matrices (QM), artifi cial neural networks (ANN), support 
vector machines (SVM), quantitative structure activity relationship (QSAR) and molecular docking 
 simulations, etc. This chapter aims to introduce the reader to the principle(s) underlying some of these 
methods/algorithms as well as procedural and practical aspects of using the same.  

  Key words     T-cell epitope  ,   Proteasomal cleavage  ,   MHC–peptide binding  ,   TAP transport  ,   Quantitative 
matrix  ,   Motif  ,   MHC polymorphism  ,   Epitope prediction algorithm  ,   Vaccine design  ,   Immunoinformatics  , 
  Bioinformatics  

1      Introduction 

  An epitope is the part of an antigen, recognized by the cells 
(B- and T-) and/or molecules (antibodies, MHCs, etc.) of the host 
immune system. A peptide epitope is a set of amino acid residues 
present either in continuity (linear or sequential) or as a surface 
patch (conformational or discontinuous) of a protein molecule. 
While B-cell epitopes are both sequential and conformational, the 
T-cell epitopes are linear.  

1.1  Epitope: 
A Relational Entity
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  T-cell epitopes of length 8–11 and 13–17 bind to Major 
Histocompatibility Complex MHC class-I and MHC class-II 
 molecules respectively and are presented on surface of Antigen 
Presenting Cells (APC). Cytotoxic T-cells are activated upon pre-
sentation of endogenous antigenic peptides by MHC class I mol-
ecules. The processing pathway of MHC class I restricted antigens 
involves three major steps: proteasomal cleavage, TAP transport, 
and MHC binding. 

 Antigenic proteins are subjected to cleavage by the protea-
some to generate peptides in cells. The proteolytic activity of the 
 proteasome is said to be trypsin-like, chymotrypsin-like, and 
peptidylglutamyl- peptide hydrolytic activity [ 1 ]. Proteolytic cleav-
age by the proteasome generates peptides with the correct C ter-
minus, which is an essential requirement for their binding to MHC 
class I molecules [ 2 ,  3 ]. 

 The transporters associated with antigen processing (TAP), 
transports some of these peptides to the endoplasmic reticulum 
(ER). It is known that the TAP has higher transport affi nity for 
some peptides over others. The peptides of length 8–12 amino 
acids are transported with highest effi ciency [ 4 ]. Three amino acids 
of N′ and C′ termini of the peptides have been found to be impor-
tant for TAP binding [ 5 ]. There exists a correlation between TAP 
binding affi nity and rate of transport of peptides [ 6 ]. 

 The peptides bind to the MHC class I molecules in the 
ER. MHC class I molecules interact with the N′ terminal and C′ 
terminal amino acids of the peptide, thereby leaving a bulge in the 
middle. This restricts the length of peptide interacting with MHC 
class I molecules to 8–11 amino acids. The MHC class I–peptide 
complex is subsequently translocated to the cell surface, where it 
may activate cytotoxic T-cells. 

 The MHC class II molecules, expressed in APCs, bind to pep-
tides derived primarily from degradation of endocytosed proteins 
and present them for recognition by the T-cell receptors of CD4+ 
T-helper cells. MHC class II molecules play a pivotal role in adap-
tive immune response [ 7 ].  

  MHC molecules exhibit a high degree of polymorphism. The 
MHC molecules of humans are referred to as human leucocyte 
antigens (HLA). MHC class I molecules are encoded by the genes 
present at six loci, viz., HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, 
and HLA-G, on Chromosome No. 6 of humans. MHC class II 
molecules are encoded by genes present at fi ve loci on Chromosome 
No. 6 of humans. The loci are designated as HLA-DP, HLA-DQ, 
HLA-DR, HLA-DM, and HLA-DO. HLA alleles are highly poly-
morphic, in the sense, the number of alleles varies from as low as a 
single allele each, for HLA-DRB2, HLA-DRB8, and HLA-DRB9 
to as high as 3,005 alleles for HLA-B, as reported in the 
current version of the IMGT/HLA database [as on July 26, 2013]. 

1.2  T-Cell Epitopes: 
Outcome of Multistep 
Processing

1.3  MHC Diversity: 
Opportunities 
and Challenges
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One may visit the IMGT/HLA database, available online for the 
detailed information and data on HLA molecules (  http://www.
ebi.ac.uk/ipd/imgt/hla/    ) [ 8 ]. 

 Therefore, the MHC alleles of every human being would 
be unique. Although the MHC alleles of no two humans would be 
similar, many of the different MHC molecules have similar peptide 
binding specifi cities. MHC molecules with similar peptide binding 
specifi cities are grouped together to form MHC supertypes. 

 MHC supertypes have been defi ned based on sequential and 
structural similarities, presence of similar peptide binding motifs, 
amino acid pattern in the binding pocket, amino acid binding 
 preferences, etc., wherein each MHC molecule of a particular 
supertype would bind to the same peptides. 

 Nine major MHC class I supertypes, viz., HLA-A1, A2, A3, 
A24,B7, B27, B44, B58, B62 have been recognized [ 9 ], while twelve 
MHC class II supertypes have been defi ned, viz., fi ve DRs, three 
DQs, and four DPs. The HLA class II supertypes are DR1, DR3 , 
DR4, DR5, DR9, DQ1, DQ2, DQ3, DPw1, DPw2, DPw4, and 
DPw6 [ 10 ]. 

 The existence of MHC polymorphism and MHC allelic distri-
bution in one or more ethnic groups, diversity of the peptide rep-
ertoire together with the strength of MHC–peptide binding needs 
ample consideration in identifi cation of T-cell epitopes and thereby 
multi-epitope vaccine design.  

  Owing to technological advancement, enormous amount of data 
has continually been pouring in, into the populist databases of 
sequences and structures of biological molecules in general and 
that of the immune system in particular. The dedicated databases 
containing data on the molecules of the immune system, per se are 
fl ooded with data. The IMGT/LIGM-DB [ 11 ] for example, con-
tains 170,685 entries, corresponding to nucleotide sequences of 
immunoglobulin and T-cell receptors from 335 species (as on 
August 5, 2013), while the IMGT/3Dstructure-DB [ 12 ,  13 ], 
contains 2,802 entries (as on August 5, 2013) corresponding to 
the experimentally determined structures of molecules of the 
immune system, viz., immunoglobulins, T-cell receptors, MHC 
molecules, and related proteins of the immune system (RPI), etc. 
The IMGT/MH-DB [ 14 ] on the other hand has 9,719 allele 
sequences of HLA class I, HLA class II, and non-HLA alleles, 
along with detailed relevant information. Please note that the 
number of sequence and structure entries in the databases keeps 
increasing with time. 

 Paradoxical as it may sound, critical data on certain specifi c 
aspects is found to be woefully wanting. For instance, the experi-
mental data on proteasomal cleavage sites is extremely limited. 
Furthermore, disparity also exists in the number of known pep-
tide epitopes and non-epitopes. While the number of known peptide 

1.4  The Paradox: 
Data Deluge 
and Paucity
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 epitopes is much higher than that of non-epitopes, in any antigenic 
protein, the actual peptide epitopes would comprise of no more than 
a fraction of amino acid residues. There is a need to archive experi-
mentally validated true positives as well as true negatives. This obser-
vation is true for MHC-binders and non-binders as well. 

 Development of immunoinformatics databases and tools is 
therefore necessitated by the voluminous increase in data and the 
need to predict with reasonable accuracy, the binding sites and the 
interactions of the molecules of immune system. T-cell epitope 
prediction, in particular, is a challenge owing to the high degree of 
MHC polymorphism, and disparity in the volume of data on vari-
ous steps encountered in the generation and presentation of T-cell 
epitopes in living systems. 

 Development of new immunoinformatics tools to predict 
T-cell epitopes as well as improvising performance of existing tools 
is an ongoing process. Scientists have used various approaches, like 
considering amphipathicity profi les of proteins, motif-based meth-
ods, quantitative matrix based methods, methods based on Artifi cial 
neural networks, Support vector machines, QSAR and docking 
simulations to predict T-cell epitopes. This chapter provides details 
of some of these approaches.   

2     Methods for T-Cell Epitope Prediction 

 Methods of T-cell epitope prediction are broadly categorized into 
two classes, viz., direct methods and indirect methods. Direct pre-
diction methods are based on sequence and structure analyses of 
T-cell epitopes. They rely on features like the presence of amphipa-
thicity, MHC-binding motifs, etc., but have rather limited accu-
racy and high false positive rate. Indirect methods, on the other 
hand, predict MHC–peptide binding, using some of the elegant 
techniques based on statistical learning theory, like the artifi cial 
neural networks (ANN), support vector machine (SVM), etc. 
Albeit prediction of MHC–peptide binding is obligatory, predic-
tion of proteasomal cleavage and TAP transport are also essential 
components, in the realm of T-cell epitope prediction. Since 
MHC–peptide binding prediction is the subject matter of an ear-
lier chapter, this chapter shall discuss the principles of some of the 
direct methods of T-cell epitope prediction as well as integrated 
methods that predict T-cell epitopes. 

  Amphipathicity refers to the presence of both hydrophilic (polar) 
and hydrophobic (apolar) regions in a single molecule. Membrane 
phospholipids for example are well known amphipathic molecules. 
Amphipathic regions may be displayed by proteins and peptides as 
well. The algorithm described below takes into account the 
amphipathicity present in proteins to predict T-cell epitopes. 

2.1  Amphipathicity 
Based Method
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   One of the early studies to predict T-cell epitopes was the one 
 carried out by DeLisi and Berzofski, published in 1985 [ 15 ], which 
led to the development of AMPHI algorithm in 1987 [ 16 ]. The 
AMPHI algorithm is based on the model of amphipathic helix, 
in which one face is predominantly hydrophilic (polar) while 
the other face is predominantly hydrophobic (nonpolar). Such 
amphipathic structures where hydrophilic and hydrophobic regions 
are formed when the polarity of residues along the sequence varies 
with a regular periodicity. 

 The developers of this tool divided the protein sequence into 
overlapping blocks of amino acid residues. For each block, average 
hydrophobicity and the extent of occurrence of hydrophobic resi-
dues in a pattern with a regular periodicity were determined. The 
periodicities of occurrence of hydrophobic residues corresponded 
to alpha-helical structure of proteins. Their studies showed that 
the T-cell epitopes show local secondary structural features, which 
refl ect the periodicity in the hydrophobic profi le of the segment of 
amino acid residues. T-cell epitopes possibly comprise of amphipa-
thic structures, displaying periodicity in hydrophobic residues. 

 It must be kept in mind that even though T-cell epitopes com-
prise of contiguous stretch of blocks of amphipathic residues, it is 
not necessary that every such stretch would be a potential T-cell 
epitope. The developers of AMPHI algorithm reported a sensitiv-
ity of 75 %. This algorithm is currently not available to the users in 
the form of either an online or offl ine tool and has been included 
in the chapter as it was a pioneering effort.   

  These methods follow an approach of searching protein sequences 
for regions that contain known MHC-binding amino acid motifs. 
The peptides that bind to MHC molecules contain certain amino 
acids at specifi c positions, which are called “anchor residues.” The 
anchor residues facilitate peptide binding within the peptide- 
binding groove of the MHC molecule. The patterns of anchor 
residues are called “motifs.” The motif present in peptides that 
bind to one MHC allele may differ from the motif present in pep-
tides that bind to another MHC allele. Unusual anchor position 
and auxiliary anchor position for amino acid residues in the pep-
tides have also been identifi ed [ 17 – 20 ]. The motif based methods, 
thus utilize the knowledge of MHC binding motifs to identify 
T-cell epitopes. 

  The EpiMer algorithm searches for MHC-binding motifs in a given 
protein sequence. It generates a list of MHC-binding motif matches 
for a given protein. Clusters of MHC-binding motifs in a protein 
sequence are identifi ed. T-cell epitopes are predicted based on the 
relative density of MHC-binding motifs. Therefore, EpiMer algo-
rithm, predicts putative T-cell epitopes based on the clustering 
of MHC-binding motifs within a protein sequence. The developers of 
EpiMer algorithm have reported a sensitivity ranging from 53 to 71 %. 

2.1.1   AMPHI

2.2  Motif Based 
Methods

2.2.1  EpiMer 
and OptiMer
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 OptiMer algoritm takes into account both amphipathicity and 
presence of MHC binding motifs in a protein sequence. OptiMer 
algorithm generates a list of peptides from a protein sequence, 
which contain these MHC binding motifs. Using the AMPHI 
algorithm (discussed in Section  2.1.1 ), the OptiMer algorithm 
then identifi es peptides that show amphipathicity and form a helix 
or beta strand. These amphipathic peptides are then compared 
with known (published) MHC binding motifs. The algorithm sub-
sequently extends the predicted amphipathic peptides, to maxi-
mize the density of MHC binding motif matches per length of 
protein region. Therefore, OptiMer algorithm searches for MHC- 
binding motifs, as well as amphipathic secondary structural fea-
tures. The developers of this algorithm have reported a sensitivity 
of 53–75 % in the various proteins tested by them. Both OptiMer 
and EpiMer can predict promiscuous T-cell epitopes for multiple 
MHC alleles [ 21 ].  

  SYFPEITHI [ 22 ] is the name of a database of MHC ligands and 
peptide motifs of humans and other vertebrate species. The data-
base facilitates search for peptides as well as prediction of T-cell 
epitopes. The prediction of T cell epitopes is based on an algorithm 
that takes into account the position of amino acids in the peptide, 
such as the anchor position, unusual anchor position, and auxiliary 
anchor position. Preferred amino acids as well as amino acids whose 
presence at particular positions is undesirable for peptide binding 
are also taken into account and are scored accordingly. 

 The scoring system of the algorithm evaluates every amino acid 
within a given peptide. The values are assigned to the amino acids at 
various positions in a peptide based on the frequency of occurrence 
of the respective amino acids in natural ligands, T-cell epitopes or 
binding peptides. The value of an amino acid can vary from a high 
positive value, say 15, the highest value that is attributed to ideal/
optimal anchor residues to a low positive value of 1, which is attrib-
uted to amino acids that are only slightly preferred to a negative 
value which is attributed to amino acids that are disadvantageous 
to peptide binding at a particular position in the peptide. The val-
ues at each position are summed up to assign a fi nal score for the 
peptide that acts as a T-cell epitope.  

  TEPITOPE is a tool, which implements an algorithm based on the 
prediction of HLA-II–peptide binding [ 23 ]. It consists of 11 posi-
tion specifi c scoring matrices (PSSM) to represent MHC–peptide 
binding specifi cities. Each PSSM is a matrix where the binding 
pockets are represented by peptide binding specifi city vectors. 
Since it covered only 51 HLA-DR alleles, it has limited usability in 
today’s context. 

 TEPITOPEpan is a new method based on HLA-DR binding 
pocket similarity [ 24 ]. 

2.2.2  SYFPEITHI

2.2.3  TEPITOPE 
and TEPITOPEpan
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 From the experimentally determined structures of MHC class 
II-peptide complexes available in the Protein Data Bank (PDB), 
HLA-DR binding pockets are identifi ed. The residues that have 
close contact with one or more residues of peptide binding core 
represent these pockets. Then the pocket similarity between two 
HLA molecules is computed by the sequence similarity of the cor-
responding HLA residues. For an uncharacterized HLA-DR 
 molecule, the binding specifi city of each pocket is computed as a 
weighted average of pocket binding specifi cities over HLA-DR 
molecules characterized by TEPITOPE. Although TEPITOPEpan 
uses the library of specifi city matrices obtained in TEPITOPE, it 
can be used for prediction of MHC class II binding peptides with 
over 700 HLA-DR alleles with known sequences.   

      Quantitative matrix (QM) provides a means for quantitative repre-
sentation of qualitative data/information. A quantitative matrix is 
essentially a position weight matrix, which contains the contribu-
tion of each amino acid located at every position in a peptide, 
towards the potential for MHC binding by the peptide. QMs are 
available for different MHC alleles. A QM for a particular MHC 
allele contains a value, which denotes the impact (favorable, neu-
tral, or unfavorable) of presence of amino acid residues at various 
positions in a peptide on the binding of the peptide to a given 
MHC allele. As an example, QM for HLA-A2 [ 25 – 27 ], is given 
in Table  1 , which is also available at   http://www.imtech.res.in/
raghava/nhlapred/matrices/a2.html    .

   The QM based methods hypothetically fragment the protein 
sequence into overlapping peptides of a chosen length, say 9-mer 
peptides for instance. Each amino acid of the peptides is assigned a 
coeffi cient value depending on the type of amino acid and its posi-
tion in 9-mer peptide from the quantitative matrix. A score is then 
obtained for every peptide either by summation or multiplication of 
each of the coeffi cient values. Peptides having a score more than 
the threshold score are predicted to be MHC binders.  

  An artifi cial neural network (ANN) is a computational model that 
emulates the neural circuitry of the brain. It is a “machine learning 
tool” that can be trained to learn the features of appropriate pat-
terns and subsequently be used to recognize the similar patterns 
present in novel data. It is a network made up of a few to many 
neurons (not actual biological neurons!), also referred to as nodes 
or units, which are interconnected. These nodes may be present in 
multiple layers; viz., an input layer, one or more middle layers (hid-
den layers) and an output layer (Fig.  1 ). The nodes of the input 
layer receive the inputs and the nodes of the output layer give out 
the output. The middle layer(s), or hidden layer(s), consists of a 
network of neurons, whose connections are made and remade in 
such a manner, as to learn the pattern present in the data that is 

2.3  Methods Based 
on Quantitative 
Matrices and/or 
Machine Learning 
Techniques

2.3.1  Quantitative 
Matrices

2.3.2  Artifi cial Neural 
Networks
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used to train the network. The ANN is trained with the dataset 
called “training dataset” and tested with the dataset called “test 
dataset.” As the ANN learns the inherent patterns present in 
the training dataset, it makes appropriate connections among the 
nodes (neurons) of the hidden layer, assigning them appropriate 
“weights.” It is possible that the ANN may recognize correctly 
the patterns in the test dataset, but may commit errors as well. The 
error committed by the ANN can be corrected, wherein the 
 network connections would be readjusted (accompanied by appro-
priate changes in the weights). Finally, a well learned ANN can be used 
to carry out an appropriate task. There are various types of ANNs, 
ranging from simple networks like “Perceptrons” to complex 

   Table 1  
  Quantitative matrix for HLA-A2 [ 25 – 27 ]   

 Amino acid/position  P1  P2  P3  P4  P5  P6  P7  P8  P9 

 A  0.52  −0.67  −0.25  −0.29  −0.35  −0.55  −0.1  −0.34  −0.05 

 C  0  −2  −0.4  0.29  1  1.67  1.33  0.67  1 

 D  −1.6  −2  0.08  0.34  −0.75  −0.86  −0.82  −0.4  −1.69 

 E  −1.41  −1.64  −1.48  −0.05  −0.43  −0.92  −1.08  −0.04  −2 

 F  0  −1.08  1.05  −0.4  1.28  0.27  1.39  −0.53  −2 

 G  0.91  −1.82  −0.47  1.18  0.3  −0.4  −0.11  0.13  −1.82 

 H  0.22  −2  0.22  0.22  −0.29  −0.5  0.93  −0.22  −2 

 I  −0.27  0.89  −0.62  −1.09  −0.62  0  −0.27  −0.07  0 

 K  0.25  −1.47  −1.14  −0.75  −0.77  −1.56  −1.2  −0.63  −1.43 

 L  0.51  1.62  1.24  −0.29  0.19  0.44  0.38  0.22  1.31 

 M  −0.67  1.47  0.29  1.43  1.33  1.67  0  0.4  1 

 N  −0.22  −2  0.29  −1  −1.11  −0.82  −0.22  −0.44  −2 

 P  −0.5  −2  −0.5  0.59  0.62  0.88  0.17  0.11  −2 

 Q  −0.75  −1.14  −1.64  0.26  −0.82  −0.35  −0.22  0.33  −1.33 

 R  0.17  −0.86  −0.29  0.32  −0.11  −1.11  −0.8  −0.15  −1.2 

 S  0.76  −2  0.4  0.5  0  0.11  −0.53  0.1  −1.08 

 T  −0.88  −0.75  −0.81  −0.92  −0.5  −0.67  −0.24  0.92  −0.71 

 V  −0.81  −0.88  0.22  −0.83  0  1.23  0.44  −0.5  1.38 

 W  −1.38  −1.6  −0.1  −1.64  −0.11  −1.47  −0.86  −1  −2 

 X  2  2  0  0  0  2  2  0  0 

 Y  −0.12  −2  0.09  −2  0.43  −0.12  −0.25  0  −1.43 

   Source : http://www.imtech.res.in/raghava/nhlapred/matrices/a2.html  
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 networks like “Kohonen network,” also called a “self- organizing 
map” [ 28 ].

   ANNs are applied for various tasks, such as gene prediction, 
protein secondary structure prediction, B- and T-cell epitope 
 prediction, etc and are extensively reviewed elsewhere [ 29 – 31 ]. 
For an ANN trained for T-cell epitope prediction, the typical input 
layer would have nodes for the amino acid sequence while the 
 output layer would have nodes for “epitope” and “non-epitope.”  

  A support vector machine (SVM) is a computational model, a 
machine learning tool that is based on statistical learning theory. It 
also learns and recognizes patterns present in the data and is widely 
used for classifi cation of linear or non-linear data. Data points pres-
ent in two-dimensional space may be divided into two categories by 
a line, while the data points present in three-dimensional space may 
be categorized into two categories by a plane. If data points are 
present in multi-dimensional space, a “hyperplane” would be 
required to classify such data. Essentially, a SVM classifi es complex 
data present in multidimensional space (high-dimensional space) by 
constructing a hyperplane, which is defi ned by a kernel function. 
A SVM maps the data into a high-dimensional feature space, 
wherein every coordinate corresponds to a particular feature of the 
data. A suitable kernel function is used for classifi cation of data. 
Linear kernel, polynomial kernel, radial basis function (RBF) ker-
nel, string kernel, etc. are some of the types of kernel functions. 

 SVMs are widely used in modern biology [ 32 – 34 ]. For exam-
ple, during analysis of microarray data on gene expression in  normal 
cells and cancerous cells, a SVM may be used to separate out genes 
implicated in cancer from normal genes. Likewise, a SVM may be 
used to identify “T-cell epitopes” from among the many thousands 
of peptides which are non-epitopes.  

2.3.3  Support Vector 
Machine (SVM)

  Fig. 1    Architecture of a simple artifi cial neural network (ANN)       
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  It is a direct method for prediction of CTL epitopes. It employs 
quantitative matrices, ANN, and support vector machine for CTL 
epitope prediction. One can use any of these techniques separately, 
obtain a consensus of the methods, or have a combined approach. 
The quantitative matrices, as explained earlier, are matrices that 
quantify the impact of the presence of appropriate amino acid 
residues at particular positions in the peptides on immunogenicity 
of the peptides/ability to act as a CTL epitope. The feedforward 
neural network model was trained on curated dataset of CTL 
epitopes, non-epitopes, and MHC non-binders procured from 
MHCBN [ 35 ], a database of MHC binders and non-binders and 
subsequently tested using curated datasets as well as blind datasets. 
The support vector machine, employing a hyperplane defi ned by a 
polynomial kernel function was developed for classifi cation of pep-
tides into CTL epitopes and non-epitopes. CTLpred provides 
users with the option of using either a consensus of SVM and ANN 
or a combined approach. The tool also provides for MHC restric-
tion for a number of MHC alleles, thereby providing a scope for 
either restricting the CTL epitope prediction to a particular MHC 
allele, or for multiple MHC alleles as per the need of the user. 
CTLPred performs with a reasonable accuracy of 62.0 %, 72.2 %, 
75.4 %, 77.6 %, and 75.8 % for QM, ANN, SVM, consensus, and 
combined approaches respectively, as reported by the developers of 
this tool [ 26 ].  

  NetCTL is method that integrates predictions of MHC class I 
binding affi nity, transporter associated with antigen processing 
(TAP) transport effi ciency, and C-terminal proteasomal cleavage 
for prediction of CTL epitopes [ 36 ]. 

 MHC class I affi nity prediction is based on ANN. Each of the 
MHC supertypes is represented by an ANN trained on nonameric 
peptides with known binding affi nity to a given MHC class I allele. 
Each peptide is assigned a value between 0 and 1, where 0 corre-
sponds to low affi nity for MHC class I binding and 1 to high MHC 
class I binding affi nity. 

 C-terminal proteasomal cleavage prediction is carried out by 
four prediction methods which are used individually to assign a 
predicted cleavage value to the residues. These methods are C-term 
2.0 and 20S networks of the NetChop 2.0 prediction server, 
NetChop C-term 3.0 and NetChop 20S-3.0 prediction servers 
[ 37 ,  38 ]. All these methods are based on artifi cial neural networks 
(ANN). 

 TAP transport effi ciency prediction method is based on the 
matrix described by Peters et al. [ 39 ]. Predicted TAP transport 
effi ciency of peptides with arbitrary length is calculated by scoring 
only the C terminus and the three N-terminal amino acid residues. 
The TAP transport effi ciency score for a given nonamer is given as the 
average of the values for the nonamer and its decameric precursor. 

2.3.4  CTLPred

2.3.5  NetCTL
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Low TAP transport effi ciency is indicated by a low predicted value 
while high TAP transport effi ciency is indicated by a high predicted 
value. 

 When combining the predictions of MHC class I affi nity, TAP 
transport effi ciency, and proteasomal cleavage, the MHC class I 
affi nities are rescaled to make the prediction values comparable 
between MHC class I supertypes using the approach given by 
Sturniolo et al. [ 40 ]. 

 The predicted scores from proteasomal cleavage, MHC bind-
ing and TAP transport are integrated as a weighted sum with a 
relative weight on peptide–MHC binding of 1. 

 NetCTLpan is a pan-specifi c MHC class I pathway epitope 
prediction tool, which is customized to predict CTL epitopes for 
six vertebrate species, including humans [ 41 ].  

  Whole antigen processing prediction (WAPP) is an integrated 
method, in which individual methods for prediction of proteasomal 
cleavage, TAP transport as well as MHC binding are combined to 
form a single prediction algorithm that emulates the whole process-
ing pathway of MHC class I antigens [ 42 ]. 

 The proteasomal cleavage prediction method in WAPP uses a 
probability-based model encoded by proteasomal cleavage matri-
ces (PCMs). The developers of WAPP constructed proteasomal 
cleavage matrices from experimentally verifi ed cleavage sites, 
together with four N-terminal and two C-terminal amino acids 
fl anking each cleavage site, from three proteins, viz., beta-casein, 
enolase, and prion proteins. Using these small peptides, all of 
which contained a cleavage site between the fourth and fi fth posi-
tions, position-specifi c scoring matrices (PSSM) were constructed, 
which are termed as PCMs. 

 The TAP transport affi nity prediction method in WAPP is 
called SVMTAP, which is based on support vector regression 
(SVR). The SVM, optimized with a simple linear kernel, was 
trained and tested with data consisting of 9-mer peptides with 
experimentally verifi ed ln IC50 values [ 43 ] and implemented using 
SVM- light , which is an implementation of SVM in the computing 
language “C”. Detailed information on SVM- light  is available at 
  http://svmlight.joachims.org/    . 

 The MHC binding prediction method in WAPP is SVMHC 
[ 44 ], a SVM-based method trained on verifi ed MHC binding pep-
tides from the SYFPEITHI and MHCPEP [ 45 ] databases. The 
SVM, optimized with linear, polynomial as well as radial basis func-
tion kernels is implemented using SVM- light . 

 In order to improve the prediction accuracy, the proteasomal 
cleavage method and SVMTAP were used as fi lters to remove pep-
tides unlikely to be generated by proteasomal cleavage and/or 
transported by TAP, while MHC class I binding prediction by 
SVMHC is carried out due to high accuracy. 

2.3.6   WAPP
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 The output of WAPP is peptides that are predicted to possess a 
C terminus produced by proteasomal cleavage, good TAP affi nity, 
and good affi nity to MHC class I molecules. Peptides with a score 
below the threshold score of either proteasomal cleavage method 
or SVMTAP method were fi ltered out, to reduce the number of 
false positives.  

  It is an algorithm for T cell epitope prediction based on quantita-
tive matrices. It carries out multiple steps, viz., prediction of pro-
teasomal cleavage, TAP transport, MHC binding, and epitope 
selection successively, using QMs [ 46 ]. 

 EpiJen mimics the cellular antigen processing pathway, work-
ing in a hierarchical or successive manner and not in parallel. 
Peptides that have been eliminated at any of the preceding steps do 
not continue to the successive steps. 

 Nonameric peptides derived from AntiJen [ 47 ] and SYFPEITHI 
databases were used to generate models for proteasomal cleavage, 
TAP binding, and MHC binding, trained them and tested them 
using “leave one out cross-validation,” LOOCV using Receiver 
Operating Characteristic (ROC) curves. 

 Quantitative matrices of protein–peptide interaction were 
derived using additive method, wherein either multiple regression 
or discriminant analysis was used to derive the QMs, depending 
upon whether the dependent variable was continuous or discon-
tinuous and solved using partial least squares (PLS) method, 
implemented in SYBYL 6.9 (  http://www.tripos.com/    ). 

 EpiJen server can be used to identify epitopes from both 
 protein sequences as well as nucleic acid sequences (which can be 
subjected to 3-frame or 6-frame translation). 

 Sensitivity and positive predictive value vary at varying thresh-
olds used for prediction. The developers of this method recom-
mend usage of a threshold of 5 % at which sensitivity of the method 
is reported to be 85 %.  

  EpiTOP follows a proteochemometrics-based approach to MHC 
class II binding peptide prediction [ 48 ]. Proteochemometrics 
approach is an extrapolation of QSAR approach. Quantitative 
structure–activity relationship (QSAR) is a well-known approach 
which relates quantitative properties of ligands to their activity. 
It is popularly used in medicinal chemistry, drug design and 
 discovery. In the proteochemometrics approach, a quantitative 
description of the protein is also considered in addition to the 
description of the ligands. 

 EpiTOP has developed and validated proteochemometric 
models to predict peptide binding to 12 HLA-DRB1 alleles using 
a quantitative matrix. The developers of EpiTOP extracted pep-
tides binding to 12 HLA-DRB1 alleles from the Immune Epitope 
Database (IEDB) [ 49 ] to derive the QM. 

2.3.7  EpiJen

2.3.8  EpiTOP
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 They described the peptides using three  z -scales broadly 
 corresponding to volume, hydrophobicity, and polarizability for 
each of the constituent amino acid residues [ 50 ]. Nonameric 
 peptides were encoded by a sequence of 27  z -descriptors (9 posi-
tions × 3  z -scales), while the HLA-DRB1 alleles were encoded by 
54 descriptors (18 positions × 3  z -scales) corresponding to the 
polymorphic residues within the binding site that interact with the 
peptide. Cross-terms for adjacent peptide positions and peptide–
protein cross-terms were also included in the models. The affi nities 
of MHC binders were assessed as pIC50 values. 

 Iterative self-consistent (ISC) algorithm was used to derive the 
proteochemometric quantitative matrix. EpiTOP generates over-
lapping nonameric peptides from the input query protein sequence. 
Nonameric peptides bearing anchor residues at position 1 are 
assessed, while the rest are discarded. The binding affi nities of 
the nonamers are predicted using the proteochemometric quanti-
tative matrix. While the sensitivity of this tool, as reported by its 
developers is about 45 % for the top 5 % cutoff, it increases to 
about 95 % for the top 25 % cutoff.  

  It is a pan-specifi c method for CD4+ T-cell epitope prediction 
based on the specifi city-determining residues (SDR) [ 51 ]. These 
are amino acid residues that are responsible for specifi c interactions 
between a given pair of interacting proteins, or between a protein 
and a peptide. 

 The developers of this tool studied crystal structures of pep-
tide–MHC class II complexes involving HLA DQ and DR loci, as 
well as carried out quantum chemistry-based analyses of peptide–
MHC class II interactions to identify the SDRs. They constructed 
a database called PredivacDB, which contains SDRs and nonameric 
high-affi nity binding peptides derived from the Immune Epitope 
Database (IEDB), a database of MHC binders and nonbinders 
(MHCBN) and EPIMHC [ 52 ], a curated database of MHC bind-
ing peptides. 

 The PREDIVAC tool predicts MHC class II binding peptides 
by identifying the SDRs in the query protein and comparing them 
with the SDRs associated with HLA proteins of known specifi city 
present in PredivacDB. It calculates amino acid frequencies and 
weights for peptides associated with allotypes sharing similar SDRs 
as the query protein sequence at each binding position. Subsequently, 
a position-weight matrix (PWM) is built based on the binding data. 
The query protein sequences are parsed into overlapping  nonameric 
peptides, each of which is assigned a binding score using the 
PWM. Thereby, T-cell epitope mapping is carried out. The devel-
opers of this tool have reported identifi cation of 75 % of immuno-
dominant epitopes within the top 3 % scoring peptides. PREDIVAC 
covers over 95 % of HLA class II DR allotypes distributed in various 
geographical regions and ethnic groups across the globe.    

2.3.9  PREDIVAC
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3    Practical Considerations 

 There are many methods available for prediction of T-cell epitopes, 
some of which have been explained in Section  2 . This section 
throws light on the practical considerations of some of the popular 
methods of T-cell epitope prediction. 

  Availability: The graphical user interface for epitope prediction 
using SYFPEITHI is available online at   http://www.syfpeithi.de/
bin/MHCServer.dll/EpitopePrediction.htm     
 A screenshot of the same is given in Fig.  2 . Offl ine version is also 
available for purchase.

   Typical input: The server accepts protein sequence in single  letter 
code in plain text format as input. The maximum sequence length 
accepted by the tool is 2,048 amino acid residues. A user needs to 
choose one, many or all MHC alleles provided by the tool. However, 
if the user chooses all alleles, the input sequence length accepted by 
the online tool is only 100 amino acid residues. If the sequence is 
longer than 100, it needs to be split. Else, purchase of offl ine version 
is recommended by the developers of this tool. Choice also exists for 
the length of peptide epitopes. One may choose octamers (8-mers), 
nonamers (9-mers), decamers (10- mers), endecamers (11-mers), 
pentadecamers (15-mers), and all mers. However, pentadecamer 
peptides are for MHC class II alleles only. 

 Typical output: The tool returns lists of peptide epitopes of the 
chosen length, corresponding to the respective MHC alleles 
 chosen by the user. For a chosen peptide length and the MHC 

3.1  SYFPEITHI

  Fig. 2    Screenshot of the graphical user interface of SYFPEITHI epitope prediction tool       

 

Dattatraya V. Desai and Urmila Kulkarni-Kale

http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm
http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm


347

allele, the tool provides a list of peptides ranked in the descending 
order of their score along with the position of the fi rst amino acid 
residue of the peptide in the input protein sequence. Position of 
each individual amino acid of the peptide is also indicated. Anchor 
amino acids are shown in bold face, while auxiliary amino acids are 
underlined. A sample output is given in Fig.  3 . In case the user 
selects more than one MHC allele, and peptides of different 
lengths, an index of all the alleles along with the peptide lengths is 
provided followed by the list of peptides, as shown in Fig.  4 .
    Points to note:

 ●    The developers of this tool state that the naturally presented 
epitope should be among the top-scoring 2 % of all peptides 
predicted for a particular MHC allele. For a 300 amino acid 
residue long input protein for example, of all the nonameric 
peptides predicted by the tool, the naturally presented epitope 
should be among the 6 top-scoring peptides.  

 ●   The preferred length of the peptide binding to different MHC 
molecules may be different. Some MHC molecules may prefer 
a nonamer, while some may prefer a decamer, for instance.  

 ●   Since the maximal scores of the peptide epitopes vary among 
different MHC alleles, the developers of SYFPEITHI advise 
users to include known epitopes in order to have an approxi-
mation of the scoring.  

 ●   SYFPEITHI predicts 15-mer peptides as MHC class II bind-
ing peptides. These 15-mer peptides contain three N-terminal 
fl anking residues, the nonamer core residues located within the 
binding groove, and three C-terminal fl anking residues.     

  Fig. 3    Sample output of SYFPEITHI displaying the list of nonamer peptides for HLA-B*39:01 allele in the 
decreasing order of their score and peptide position       
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  Availability: CTLPred is available online at   http://www.imtech.
res.in/raghava/ctlpred    . 

 A screenshot of the Web server is given in Fig.  5 .

   Typical input: The server accepts protein sequence in single letter 
code in plain text or any of the standard sequence formats as input. 
Minimum sequence length should be nine amino acid residues. 
Local sequence fi les may also be uploaded. 

 Prediction approaches: The user may choose any of the following 
approaches along with the cutoff score:

 ●    QM based approach  
 ●   ANN based approach  
 ●   SVM based approach  
 ●   Consensus approach  
 ●   Combined approach    

 In the consensus approach as well as the combined approach, 
predictions are carried out using both ANN and SVM. However, in 
the consensus approach, only when both the ANN and SVM predict 
a peptide to be a T-cell epitope, does the CTLpred server report 
a peptide to be a T-cell epitope. If either of the methods predicts a 
peptide to be a  non- epitope, the server reports the peptide to be a 
non-epitope. On the other hand, in the combined approach, even if 
one among ANN and SVM predicts a peptide to be an epitope, the 
CTLpred server reports the peptide to be an epitope. 

3.2  CTLPred

  Fig. 4    Sample output of SYFPEITHI displaying the list of MHC alleles and peptides of appropriate lengths along 
with a partial list of peptide epitopes       
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 Cutoff score: The cutoff score is used to differentiate between the 
epitopes and non-epitopes. The peptides achieving score greater 
than the cutoff score are predicted as epitopes. Default cutoff score 
of prediction methods will be used in case the user does not choose 
a cutoff score. The default cutoff score is the one at which the sen-
sitivity and specifi city of prediction methods are nearly equal. 

 Typical output: The output includes comprehensive information 
including the length of input sequence, prediction approach used, 
number of nonamers generated, cutoff score, date and time when 
the prediction was carried out, and the result in three  formats, viz., 
color display, overlap display, and tabular display. A sample output 
is given in Fig.  6 .

   Color display: In this display, the amino acid sequence of the input 
protein is shown with 100 amino acid residues in each line. The 
fi rst amino acid residue of the predicted CTL epitopes is colored 
red, the other amino acid residues of the epitope are colored in 
blue while the rest are colored black. 

 Overlap display: In this display, overlapping CTL epitopes are 
shown in separate lines. A scale indicating the position of the epit-
ope in the protein sequence is given. The coloring scheme of the 
amino acid residues of the predicted CTL epitopes is as shown in 
the color display. 

  Fig. 5    Screenshot of the graphical user interface of CTLpred       
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 Tabular display: In this display, peptide rank, start position of the 
peptide, peptide sequence, score(s), and prediction—epitope or 
non-epitope are given in a tabular format. The peptides 
are displayed in the descending order of their score. For every pep-
tide that is predicted to be an epitope, a set of matrices are  provided 
to fi nd MHC restriction. This option provides information about 
the MHC alleles for which the particular epitope is applicable 
(Fig.  7 ). Also, the user may choose the number of peptides to be 
displayed in the table.

  Fig. 6    Sample output of CTLpred, with consensus approach       

  Fig. 7    Sample output of CTLpred displaying information about the MHC alleles with which a particular epitope 
would interact       
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     Availability: NetCTL is available online at   http://tools.
immuneepitope.org/stools/netchop/netchop.do    . Please note 
that the same GUI provides the users the option to use NetCTLpan  
and NetCHOP as well. NetCTLpan is a tool that provides 
 pan-specifi c CTL epitope predictions while NetCHOP predicts 
proteasome cleavage motifs using ANNs. A screenshot of the GUI 
is shown in Fig.  8 . NetCTL alone is available online at   http://
www.cbs.dtu.dk/s ervices/NetCTL/    

   Typical input: The server accepts protein sequence in FASTA for-
mat as input. Local sequence fi les in FASTA format may also be 
uploaded. 

 Choice of prediction methods: The user needs to choose one of 
the following prediction methods: NetCHOP/NetCTL/
NetCTLpan. 

3.3  NetCTL/
NetCTLpan/NetChop

  Fig. 8    Screenshot of the graphical user interface of NetCTL       
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  Options available while using NetCTL: While the tool can be run 
with default parameters, there is a provision to alter the parameters 
by the user. The weights on the C terminal cleavage and TAP trans-
port effi ciency can be altered, and so is the threshold value of predic-
tion. The following points need to be pondered over by the users: 

 ●    Increase in weight on the C terminal cleavage increases the 
number of predicted peptides, while decrease in the weight on 
C terminal cleavage decreases the number of predicted pep-
tides at the given threshold score.  

 ●   Increase in weight on TAP transport effi ciency increases the 
number of predicted peptides, while decrease in the weight on 
TAP transport effi ciency decreases the number of predicted 
peptides at the given threshold score.  

 ●   Increase in threshold score increases specifi city marginally but 
decreases sensitivity and vice versa. Therefore, at higher thresh-
old score, the number of predicted epitopes may be lesser in 
number, but are highly specifi c.  

 ●   A user must choose any 1 of the 12 MHC class I supertypes.    

 Typical output for NetCTL: The prediction is shown as output in 
two formats, viz., graphical view and tabular view. The graphical 
view (Fig.  9 ) shows predicted epitopes in a graph of NetCTL score 
plotted against amino acid residue position. Peptides that have a 
score above the threshold score are predicted as binders and are 
shown in green, while the non-epitopes are shown in pink, the red 
line being the threshold score.

   The tabular view (Fig.  10 ) of the output shows the following 
columns:

 ●     # (amino acid residue position).  
 ●   Peptide Sequence (in single letter code).  
 ●   Predicted MHC Binding Affi nity (given as 1 − log50k(aff), 

where log50k is the logarithm with base 50, and aff is the affi n-
ity in nM units).  

 ●   Rescale Binding Affi nity (predicted binding affi nity normalized 
by the 1st percentile score).  

 ●   C Terminal Cleavage Affi nity (Predicted proteasomal cleavage 
score).  

 ●   TAP Transport Effi ciency (Predicted TAP transport effi ciency).  
 ●   Prediction Score (Overall prediction score).    

 The positive predictions are displayed in green, while the rest 
are shown in black. One can sort the predicted output by clicking 
on the respective column header.  

3.3.1   NetCTL
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  A screenshot of the GUI for NetCTLpan is shown in Fig.  11 .
   Options available while using NetCTLpan: NetCTLpan can be run 
using default parameters, but also provides users the provision to 
change the following parameters:

 ●    Species: User may choose one of the six vertebrate species, 
including humans.  

 ●   Select allele: User may choose any of the enlisted MHC alleles 
of the selected species. If the user selects “human” as the spe-
cies, the tool also provides for choice of length of the peptide 
(8-mer to 11-mer).  

3.3.2  NetCTLpan

  Fig. 9    Graphical view of sample output of NetCTL       
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 ●   Show only frequently occurring alleles: If the user selects 
“human” as the species, a “Frequently occurring alleles check- 
box” is provided, which is checked by default. This allows the 
selection of only those human MHC alleles that occur in at 
least 1 % of the human population or have allele frequency of 
1 % or higher. Un-checking the check-box allows selection 
of all the human MHC alleles enlisted in the tool. The HLA 
supertype of some of the HLA alleles is indicated in 
parentheses.  

 ●   Threshold for showing predictions: It is the low combined 
prediction score threshold (ranging between −99.9 and 3) to 
fi lter with predictions to be displayed.  

 ●   Weight on C terminal cleavage: Increase in the weight on 
 proteasomal cleavage will increase the number of predicted 
epitopes.  

 ●   Weight on TAP transport effi ciency: Increase in the weight on 
TAP transport effi ciency will increase the number of predicted 
epitopes.  

 ●   Threshold for epitope identifi cation: It is the threshold to label 
predictions as epitopes. This threshold value is based on the % 
rank score.  

 ●   Percentile for positive prediction: It is the percentile cutoff value 
for positive prediction. Increase in the percentile cutoff 
value will increase the number of peptides labelled as epitopes.    

  Fig. 10    Tabular view of sample output of NetCTL       
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 Typical output for NetCTLpan: The output is in two formats, viz., 
graphical view and tabular view. The graphical view (Fig.  12 ) shows 
predicted epitopes in a graph of NetCTLpan score plotted against 
amino acid residue position. Peptides that have a score above the 
threshold score are predicted as binders and are shown in green, 
while the non-epitopes are shown in pink, the red line being the 
threshold score.

   The tabular view (Fig.  13 ) of the output shows the following 
columns:

 ●     # (amino acid residue position).  
 ●   MHC Prediction (MHC Prediction score given in 1-log50K(aff) 

where log50k is the logarithm with base 50, and aff is the affi n-
ity in nM units).  

 ●   TAP Prediction score (Predicted TAP transport effi ciency).  
 ●   Cleavage Prediction score (Predicted proteasomal cleavage 

score).  

  Fig. 11    Screenshot of the graphical user interface of NetCTLpan       
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  Fig. 12    Graphical view of sample output of NetCTLpan       

  Fig. 13    Tabular view of sample output of NetCTLpan       
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 ●   Combined Prediction score (Overall prediction score).  
 ●   %Rank (% Rank of prediction score to a set of 1,000 random 

natural 9-mer peptides).    

 The positive predictions are displayed in green, while the rest 
are shown in black. One can sort the predicted output by clicking 
on the respective column header.  

  A screenshot of the GUI for NetCHOP is shown in Fig.  14 .
   Options available while using NetCHOP: While the tool can 

be run with default parameters, the user may choose either C term 
3.0 or 20s 3.0 as the prediction servers. One may alter the thresh-
old as well. Increase in threshold score increases specifi city but 
decreases sensitivity and vice versa. 

 Typical output for NetCTLpan: The output is in two formats, viz., 
graphical view and tabular view. The graphical view (Fig.  15 ) shows 
predicted epitopes in a graph of NetCHOP score plotted against 
amino acid residue position. Peptides that have a score above the 
threshold score are predicted as binders and are shown in green, 
while the non-epitopes are shown in pink, the red line being the 
threshold score.

3.3.3  NetChop

  Fig. 14    A screenshot of the GUI for NetChop       
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   The tabular view (Fig.  16 ) of the output shows the following 
columns:

 ●     # (amino acid residue position)  
 ●   Amino Acid (Amino acid residue)  
 ●   Prediction Score (NetChop prediction score)      

  Availability: EpiTOP is available online at   http://www.pharmfac.
net/EpiTOP/    . A screenshot of the GUI is shown in Fig.  17 .

   Typical input: The server accepts protein sequence in single letter 
code (raw format) as input. The user needs to choose the HLA class 
II allele from the drop-down menu provided. The output cutoff also 
needs to be chosen: 5 %, 10 %, 15 %, 20 %, 25 %, or all binders. 

3.4  EpiTOP

  Fig. 15    Graphical view of output of NetChop       
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  Fig. 16    Tabular view of output of NetChop       

  Fig. 17    Screenshot of GUI of EpiTOP       
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 Typical output: A sample output is shown in Fig.  18 .
   It is a tabular representation showing the position of the fi rst 

amino acid of the peptide, the actual peptide epitope and the score 
in log (1/IC50). The epitopes are given in the descending order of 
scores.  

  Availability: It is available online at   http://predivac.biosci.uq.edu.
au/    . Three options are provided to the users:

 ●    Binding prediction.  
 ●   Population coverage prediction.  
 ●   Epitope prediction.    

3.5  PREDIVAC

  Fig. 18    Typical output of EpiTOP       
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  This predicts the MHC class II binders in the protein sequence. 
Also, it can evaluate whether a particular peptide can bind to a 
particular MHC class II allele. 

 Typical input: The server accepts a single protein sequence (in 
FASTA format) or a peptide list (in FASTA format or as a simple 
list of the peptide sequences) as input. Please note that the sequence 
submitted must not contain any non-standard amino acids. The 
user must specify the MHC class II allele from the drop-down 
menu as well as the threshold for prediction. The threshold refers 
to the percentage of top scoring peptides in the input protein 
sequence. Obviously, there is no need to specify the threshold 
value if the input is a peptide list. A screenshot of the GUI of 
“Binding prediction” option of PREDIVAC is shown in Fig.  19 .

   Typical output: It comprises of the list of peptides that would bind 
to the specifi ed MHC class II allele, its start and end positions as 
well as the score. A frequency matrix and a scoring matrix are also 
given. Figure  20  shows the table of peptides in the output.

   Results of “Population coverage prediction” and “Epitope 
prediction” using PREDIVAC were not received by the authors as 
on the date of submission this chapter.    

3.5.1  Binding Prediction

  Fig. 19    A screenshot of the GUI of “Binding prediction” option of PREDIVAC       
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4    Note 

 Although many methods for “prediction of MHC class I and class 
II binding peptides” are available, for example, PropredI [ 53 ], 
Propred [ 54 ], MULTIPRED2 [ 55 ], etc., they have not been dis-
cussed here as discussion on the methods for “MHC class I and 
class II binding peptides” would form the subject matter of another 
chapter in the same book.     
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    Chapter 20   

 Computational Antigenic Epitope Prediction by Calculating 
Electrostatic Desolvation Penalties of Protein Surfaces 

           Sébastien     Fiorucci      and     Martin     Zacharias    

    Abstract 

   The prediction of antigenic epitopes on the surface of proteins is of great importance for vaccine development 
and to specifi cally design recombinant antibodies. Computational methods based on the three- dimensional 
structure of the protein allow for the detection of noncontinuous epitopes in contrast to methods based on 
the primary amino-acid sequence only. A method recently developed to predict protein–protein binding sites 
is presented, and the application to predict putative antigenic epitopes is described in detail. The prediction 
approach is based on the local perturbation of the electrostatic fi eld at the surface of a protein due to a neutral 
probe of low dielectric constant that represents an approaching binding partner. The calculated change in 
electrostatic energy corresponds to an energy penalty of desolvating a protein surface region, and antigenic 
epitope surface regions tend to be associated with a lower penalty compared to the average protein surface. 
The protocol to perform the calculations is described and illustrated on an example antigen, the outer surface 
protein A of  Borrelia burgdorferi , a pathogenic organism causing lyme disease.  

  Key words     Protein–protein interactions  ,   Poisson Boltzmann calculation  ,   Electrostatic properties  , 
  Epitope prediction  

1      Introduction 

 The activation of the immune system typically involves the specifi c 
recognition of an antigen (Ag) by an antibody (Ab). Binding or 
recognition regions on the surface of an antigen for antibodies are 
called antigenic epitopes. If residues involved in an epitope are 
contiguous in the polypeptide chain, this epitope is called a con-
tinuous or linear epitope. A discontinuous or nonlinear epitope is 
composed of residues that are not necessarily continuous in the 
polypeptide sequence but have spatial proximity on the surface of 
a protein structure. The analysis of known epitope regions on pro-
teins indicates that there are often characteristic protein surface 
regions which are preferentially recognized by antibody molecules, 
and hence are more suited as high-affi nity epitopes compared to 
other surface regions. 
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 The prediction of such antigenic epitopes is of major  importance 
to specifi cally design new vaccines, new Abs and to possibly develop 
new therapeutic strategies of vaccine development. Several avail-
able epitope prediction methods are mainly developed to identify 
continuous epitope sequences of a protein based solely on the pri-
mary amino acid sequence of the protein. Such methods are based 
on amino acid physicochemical properties (e.g., hydrophilicity [ 1 ,  2 ], 
solvent accessibility [ 3 ]) or knowledge-based scoring functions 
derived from the analysis of Ag–Ab interaction databases using 
machine learning algorithms [ 4 – 7 ]. However, despite the use of 
consensus scoring functions the success of such approaches is lim-
ited [ 8 ,  9 ]. One reason for the limited performance is that a signifi -
cant fraction of epitopes are discontinuous and the antigenicity of 
a linear peptide segment is also infl uenced by the surrounding 
 surface regions. So far only a limited number of methods have 
been specifi cally developed to predict discontinuous B-cell epit-
opes [ 10 – 17 ] which is mainly due to the modest amount of 
 available three-dimensional (3D) Ag–Ab complex structures. 
Structure-based methods often outperform more classical meth-
ods, based upon conservation and hydrophobicity of binding 
patches, that are often used to predict general protein binding sites 
[ 18 ]. Recent conformational B-cell epitope prediction algorithms 
have shown some successes, however, the level of prediction accu-
racy is not yet satisfactory [ 18 ]. 

 The association of an antigen with its specifi c antibody partner 
follows general rules that drive protein–protein complex forma-
tion. Protein–protein interfaces are to a large extent well packed 
and are often composed of a buried hydrophobic core surrounded 
by a more hydrophilic ring partly exposed to solvent. Hydrophobic 
interactions and electrostatic complementarity are important driv-
ing forces for high affi nity binding. The formation of the protein–
protein complex requires the removal of water from the interface 
region. The removal of water molecules introduces a large desolva-
tion penalty that needs to be overcome upon binding and which 
needs to be offset by attractive electrostatic and hydrophobic 
 contributions. It is expected that the barrier to remove water 
(desolvation) is an important contribution that modulates the 
capacity of a surface region to interact with other proteins in gen-
eral and with antibodies in particular. 

 A rapid method to calculate the solvation energy or a desolva-
tion penalty is based on the accessible surface areas of atoms in the 
protein and on atomic solvation parameters derived from empiri-
cal vapor- to-water free energies of transfer of amino acid side-
chain analogs. Such methods neglect the infl uence of the amino 
acid neighborhood and can lead to an incorrect prediction of 
the solvation energy. A more accurate method to calculate the 
electrostatic properties of a molecular system is to introduce a 
dielectric boundary between protein and water and treat the 
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 aqueous environment as a continuum. One can distinguish approaches 
based on solving the Poisson-Boltzmann equation numerically 
and approaches based on the Generalized Born formalism. We 
present here a method aimed at predicting protein–protein bind-
ing sites based on the electrostatic energy to remove water or to 
replace it with a region of low dielectric constant (electrostatic 
desolvation penalty, in the following: ESTADE). The method is 
based on the idea that preferred binding sites on protein surfaces 
may correspond to regions with a low electrostatic desolvation 
penalty. Notably, the present protocol has been successfully 
used to predict conformational antigenic epitopes in ref.  19  and 
in ref.  20 .  

2    Materials 

 The application of the approach for calculating electrostatic 
 desolvation maps (ESTADE) on protein surfaces requires a 3D 
structure of the antigenic protein or at least a structural model. 
In the following the required steps for performing the calculations 
are outlined and explained. 

      1.    The protein can be downloaded from Web servers like Protein 
Data Bank (  http://www.rcsb.org/    ) that provide 3D coordi-
nates of the protein.   

   2.    In case where no crystallographic data is available, one can gener-
ate 3D structure of the protein by homology (MODELLER [ 21 ]: 
  http://salilab.org/modeller/    , SWISS-MODEL [ 22 ]:   http://
swissmodel.expasy.org/    ) or ab initio modeling (ROBETTA [ 23 ]: 
  http://www.robetta.org/    , I-TASSER [ 24 ]:   http://zhanglab.
ccmb.med.umich.edu/I-TASSER/    ).      

  The electrostatic potential of a protein is infl uenced by the proton-
ation states of surface residues. Several protocols can be used to 
predict the protonation state of residues: PROPKA [ 25 ] (  http://
propka.ki.ku.dk/    ) or H++ [ 26 ] (  http://biophysics.cs.vt.edu/    ) for 
instance.  

  The electrostatic potential of the antigenic protein can be calculated 
by the fi nite-difference Poisson-Boltzmann (FDPB) method 
using programs such as APBS [ 27 ] (Adaptive Poisson Boltzmann 
Solver:   http://www.poissonboltzmann.org/apbs    ) or PBEQ (Poisson 
Boltzmann Equation Solver:   http://www.charmm-gui.org/? 
doc=input/pbeqsolver    ) or the Poisson-Boltzmann solvers imple-
mented in several molecular modeling packages, like AMBER [ 28 ] 
(  http://ambermd.org/    ) , CHARMM [ 29 ] (  http://www.charmm.
org/    ), NAMD [ 30 ] (  http://www.ks.uiuc.edu/Research/namd/    ), 

2.1  Protein 
3D Structure

2.2  Calculation 
of Protonation State 
of Residues

2.3  Electrostatic 
Potential Calculations
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or GROMACS [ 31 ] (  http://www.gromacs.org/    ). Modifi cations of 
the approach employing electrostatic potential calculations based on 
the Generalized Born approach have also been developed [ 32 ].   

3    Methods 

  Before predicting antigenic epitopes at the surface of proteins 
based on electrostatic calculations, it might be necessary to fi rst 
control the corresponding PDB fi les:

 ●    Multiple conformations of a residue side chain must be elimi-
nated because the calculations can only consider one side chain 
conformation for each residue. In such a case, the easiest solu-
tion is to retain only one of possible side chain conformation 
for the epitope mapping. If the residue is of critical importance 
for protein function (i.e., residue within the active site in the 
case of an enzyme), one may prepare several conformers of 
the protein and map desolvation properties for each of them.  

 ●   Missing atoms must be added before running the analysis. 
If only few atoms are missing, programs like PDB2PQR [ 33 ] 
(  http://www.poissonboltzmann.org/pdb2pqr    ) or MMTSB 
[ 34 ] (  http://mmtsb.org/    ) may be useful to add missing 
atoms. If a larger part of the structure is missing in the crystal 
structure, one can use homology or ab initio modeling soft-
ware packages.  

 ●   As a next step, the protonation states of charged residues must 
be predicted. The issue can be important for Ag–Ab complexes 
since it is known that the propensity of charged or polar resi-
dues to be at the Ag–Ab interface is often higher than for other 
protein–protein complexes. PropKA is a very fast empirical 
method able to predict  p Ka values of ionizable groups within a 
couple of seconds. Other software based on PB calculations 
(H++) may also help.  

 ●   Finally, atomic charges must be assigned to the protein atoms. 
Several force fi elds can be used and the most popular ones are 
related to well-known molecular modeling software packages: 
CHARMM, AMBER, GROMACS but some parameters were 
specifi cally designed to predict solvation properties of proteins 
(PARSE [ 35 ]). The Amber parm03 forcefi eld was used to 
assign atomic charges and radii in ref  19 .     

 ●      To obtain accurate electrostatic properties, the grid focusing 
technique is required during the FDPB calculations. In ref.  19 , 
the coarse grid size equals twice the dimension of the fi nest 
grid. The latter encompassed the full protein (protein size plus 
5 Å in XYZ dimension) and is centered on the center of mass 
of the protein.  

3.1  System Setup

3.2  Parameters 
of the PB Equation 
Solver
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 ●   A good compromise between speed of the calculation and 
accuracy of the electrostatic properties is to set the grid spacing 
of the fi nal focused grid lower than 0.5 Å. 129 points in each 
space direction is generally suffi cient for a small or medium 
sized system. In case of large proteins (>50 kDa) one may use 
a higher number of points to defi ne the fi nest grid.  

 ●   The molecular surface is generated using a water probe with 
radius of 1.4 Å.  

 ●   A dielectric constant of 10 and 80 is used for protein and 
 solvent, respectively. The choice for the dielectric constant of 
the protein is a compromise between estimates for the buried 
interior of proteins ( ε  = 4) and surface regions ( ε  ~ 20).     

 ●      The electrostatic desolvation free energy of a protein is calculated 
(once) and subtracted from the electrostatic energy of the protein 
with a neutral and low dielectric spherical probe ( ε  = 10) placed at 
many different positions at the protein surface. This calculation 
gives the electrostatic energy (penalty) of placing the neutral low 
dielectric probe at the particular surface position ( see  Fig.  1 ).

 ●      The calculations can be performed systematically for various 
surface positions of the probe distributed approximately evenly 
at a distance of 3 Å from each other.  

 ●   The electrostatic desolvation penalty of a surface patch is then 
estimated as the average desolvation of all probes within a dis-
tance cutoff of 10 Å to a given surface point. The normalized 
desolvation penalty can then be mapped onto the surface 
defi ned by the probe adding the score in the bfactor column of 
a pdb fi le. The averaging procedure reduces the grid errors 
inherent to FDPB calculations. At the same time it has the 
advantage to include the effect of the shape of the surface on 
the desolvation free energy compared to using one probe with 
a larger radius [ 19 ].  

 ●   For the prediction of possible protein binding sites (the  epitope 
in the case of an antigen) probe positions with the lowest (aver-
age) desolvation penalty must be considered (Cf. Subheading  5 ). 
Typically, one considers the patch with lowest electrostatic 

3.3  Desolvation 
Analysis

  Fig. 1    Electrostatic desolvation mapping. Surface regions in  red  correspond to lowest electrostatic desolvation 
penalty (interpreted as high probability to be an antigenic epitope)       
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desolvation penalty as the most likely antigenic epitope (it has 
the lowest associated penalty to remove water and replace it by 
a protein partner represented by a probe of low dielectric 
constant).      

4    Computational Epitope Mapping of OspA Lipoprotein 

 The present protocol has previously been successfully tested on a set 
of 156 proteins in their bound and unbound conformations includ-
ing a series of 27 Ag–Ab complexes with known structures [ 19 ]. 
The accuracy of the prediction was assessed using ROC curves 
(receiver operator curves) and the area under the curve reaches 
~0.6. It needs to be emphasized that the approach can only predict 
a tendency of a surface region to be part of an antibody recognition 
region which may limit the prediction accuracy. However, by com-
parison with crystal structures of the bacterial protein lysozyme 
cocrystallized with different antibodies it could be demonstrated 
that the protocol is also able to predict multiple antigenic epitopes 
associated with a low electrostatic desolvation penalty [ 19 ]. 

 We illustrate here on a test case, the outer surface protein A 
lipoprotein (OspA) of  Borrelia burgdorferi , the results and perfor-
mance which can be typically obtained using the computational 
epitope mapping based on the ESTADE approach. The OspA lipo-
protein of the lyme disease causing  B. burgdorferi  is an important 
target and several recombinant monoclonal antibodies that bind to 
OspA have already been developed. The calculation of electrostatic 
desolvation penalties on the protein surface indicates several 
regions with a low associated desolvation penalty (Fig.  2 ). Surfaces 
in red correspond to low desolvation regions and they correlate 
well with the location of the Ag–Ab interface extracted from the 
3D structure of OspA in complex with a monoclonal antibody 
(pdb 1FJ1). Among the fi ve predicted low desolvation sites, three 
are located at the known Ag–Ab interface. For these putative epit-
opes, the accuracy of correctly predicted residues is roughly 80 %.

5        Notes 

     The ESTADE method described in ref.  19  has been implemented in 
the open source protein–protein docking program Ptools/
ATTRACT [ 36 ,  37 ] (  http://www.unice.fr/icn/fi orucci    ). Before 
running the analysis, the user should take care of the following rec-
ommendations: A “clean” PDB fi le must be provided (after remov-
ing multiple conformations of side chains and adding  missing atoms 
as described above). Hydrogens must be removed from the original 
PDB fi le (the program PDB2PQR will add them  automatically). 
The main script uses the programming language Python and several 
PTools script, so the library dependencies must be checked. 

5.1  Implementation 
of the ESTADE Method 
in the Program 
Package Ptools

Sébastien Fiorucci and Martin Zacharias
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The script may also need extra Python programs/commands, not 
provided with PTools. For fi le preparation the  following steps are 
implemented in the script:

 ●    To generate pdb and pqr input fi les, the AMBERTOOLS and 
PDB2PQR tools are required.  

 ●   To calculate electrostatic properties and solve the FDPB 
 equation, the APBS package has been chosen but alternative 
programs can also be used (see above). The AMBERTOOLS, 
PDB2PQR, and APBS are freely available software (current 
versions: Ambertools 13, pdb2pqr 1.8 and APBS 1.3).  

 ●   Environment variables ($AMBERHOME) must be set before 
running the script. PDB2PQR and APBS binaries must be in 
your PATH.    

 For instance, to run the electrostatic desolvation analysis on 
the protein coordinates stored in the fi le  1FJ1 _ l.pdb  the following 
main script can be used (part of the Ptools package): 

  $ e-static_profi le.csh 1FJ1_l.pdb   

  The program automatically generates a directory called  1FJ1_l  and 
stores all results in a series of fi les in this directory.

 ●    The script produces pdb fi les called  1FJ1_l_Desolv.pdb  and 
 1FJ1_l_Desolv_av.pdb  which contain the desolvation energy of 
each probe position and the normalized desolvation energy, 
respectively.  

 ●   The desolvation energy per residue can also be obtained: The 
fi le  1FJ1_l_Desolv_res.txt  contains the residue name, residue 

5.2  Output Files

  Fig. 2    Antigen–antibody complex structure ( right , pdb1FJ1). Electrostatic desolva-
tion mapping of OspA lipoprotein ( left ) to highlight the correlation between the 
epitope region and the predicted low desolvation surface regions ( red ). The surface 
desolvation mapping is shown in the same view as the Ag structure ( grey cartoon ) 
in the  right panel        
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number and the desolvation energy per residue (NA means 
that the residue is not accessible to solvent), the fi rst few rows 
of an example fi le are given below: 
     SER    1   6.51  
  LEU    2   5.47  
  ASP    3   5.06  
  GLU    4   6.52  
  LYS    5   5.66  
  ASN    6   4.31  
  SER    7     NA  
  VAL    8   3.40  
  SER    9   6.51  
  VAL   10   4.71  
  …  

 ●   The script produces also a pdb fi le called  1FJ1_l_Desolv_res.pdb  
which stores in the bfactor column weights according to the 
binding site prediction: a weight of 2.0 means a high probabil-
ity to be at the protein–protein interface and a weight of 1.0 
means a low probability.  

 ●   A list of residues belonging to putative binding sites is also 
proposed in the fi le  1FJ1_l_Desolv_site.txt.  If two binding site 
are too close to each other (distance <10 Å), only the one with 
the lowest desolvation penalty will be retained. The output is 
also explained in the header of each script contained in the 
source directory. For visual inspection of the prediction, the fi le 
 1FJ1_l_Desolv_res.pdb  is most useful. The protein surface can 
be represented with a color code given by the B-factor that is a 
measure of the electrostatic desolvation penalty of the corre-
sponding surface region.         
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    Chapter 21   

 In Silico Prediction of Allergenic Proteins 

           Gaurab     Sircar    ,     Bodhisattwa     Saha    ,     Swati     Gupta     Bhattacharya    , 
and     Sudipto     Saha    

    Abstract 

   Currently, the prediction of new allergens is becoming important due to use of genetically modifi ed (GM) 
foods and biopharmaceuticals. In this chapter, we describe how to use four popular allergenic prediction servers: 
(1) Structural Database of Allergenic Proteins (SDAP), (2) Allermatch, (3) Evaller 2, and (4) AlgPred. The 
fi rst two prediction servers are based on traditional approaches, whereas Evaller 2 and AlgPred use  sophisticated 
machine learning techniques.  

  Key words     Codex bipartite test  ,   IgE epitope  ,   Sequence alignment  ,   Support vector machine  

1      Introduction 

    Here, we have described popular Web based tools, which allows 
users to predict the allergenicity of novel proteins. A number 
of different immunochemical, biochemical, and immunological 
methods have emerged and evolved over time, to predict the aller-
genicity and cross IgE reactivity of proteins causing hypersensitiv-
ity. A sensitized individual may respond similarly to proteins that 
share certain common structural and molecular features with the 
protein that elicited the initial immune reaction. This phenomenon 
is designated as cross reactivity and is tightly connected particularly 
to IgE epitopes which can be either linear or conformational. 
Pollen–fruit, latex–fruit are some common type of cross reactivity 
caused by promiscuous IgE epitope recognition due to protein 
structural similarity. The prediction tools are becoming important 
to assess the safety of GM crops, therapeutics, and biopharmaceu-
ticals and also for the prediction of aeroallergens [ 1 ]. In the year 
2001, World Health Organization (WHO) and the Food and 
Agriculture Organization (FAO) proposed guidelines to assess the 
potential allergenicity of proteins, in which partly similar bioinfor-
matics testing is a mandatory introductive step. The bioinformatics 
part of the guidelines says that a protein is potentially allergenic 
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if it either shows a match of six consecutive amino acids or an 
 identity of >35 %, across an 80 amino acid window. Subsequently, 
in 2003 the Codex Alimentarius Commission [ 2 ,  3 ] recognized 
some uncertainties in these tests and suggested weight of evidence 
approach that includes source of gene, sequence similarities with 
known allergens, stability of protein allergenicity, and IgE bind-
ings. The relationships between amino acid sequence similarity of 
query proteins to known allergens and their type-I hypersensitivity 
potential have impels the development of bioinformatics tools for 
allergic risk assessment. The bioinformatics approaches for protein 
allergenicity assessment can be divided into following categories: 
(a) alignment based on Codex bipartite test; (b) alignment-based 
feature-extraction combined with statistical learning; (c) homology 
with allergen-derived motifs or reported IgE epitopes; (d) machine 
learning based approaches. Popular Web based tools that allow 
users to predict allergens using query amino acid sequences are 
SDAP [ 4 ], Allermatch [ 5 ], Evaller [ 6 ], and AlgPred [ 7 ]. In recent 
years, bioinformatics approaches have emerged as a relatively reli-
able and fast method to predict the allergenicity of new proteins.  

2    Materials and Methods 

   The SDAP is available from   https://fermi.utmb.edu/SDAP/     and 
provides prediction tools along with database information of 1,526 
allergens [ 4 ]. The menus are in the left side of the page. Following 
are the brief description of SDAP tools: 

  This page allows FAO/WHO allergenicity rules based on sequence 
homology as proposed in FAO/WHO report. It allows three types 
of tests: (1) perform an exact match search of contiguous amino 
acids; (2) perform FASTA alignments for 80 amino acids sliding 
window; and (3) perform full FASTA alignment.  

  This link allows users to fi nd sequence similarity between query 
protein and all allergens from SDAP by using FASTA search.  

  It allows users to search exact match of peptides in allergen 
sequences.  

  It allows users to search property based peptide similarity search in 
allergen sequences.  

  It allows users to search property based peptide similarity index 
property distance (PD) for two sequences.  

2.1  Description 
of Structural Database 
of Allergenic Proteins 
(SDAP)

2.1.1  Description of SDAP

 FAO/WHO Allergenicity Test

 FASTA Search in SDAP

 Peptide Match

 Peptide Similarity

 Peptide-Protein PD Index
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  This page describes about allergen markup language, AllerML. 
It is a tool to access data on allergens in multiple databases. AllerML 
is based on IUIS nomenclature and consists of a hierarchical set of 
tags that describes the information available in allergen databases 
including common names, sources, sequences, structures, IgE epi-
topes and cross-reactivity.  

  This page links to various lists available to download all allergens 
available in SDAP, including allergens with PDB structures, aller-
gens with 3D models, and allergens with epitopes.   

       (a)    Enter the name of the sequence (optional).   
   (b)    Users can paste or type the query the protein sequence. The 

sequence must be written using one-letter amino acid code ( see  
 Note 1 ).   

   (c)    Users can choose one out of three options: (1) Full FASTA align-
ment, in which default parameter for E-values is set at less than 
0.01; (2) FASTA alignments for an 80 amino acids sliding window, 
in which sequence identity default cutoff is set at 35; (3) Exact 
match for contiguous amino acids, default number is set at 6.       

      (a)    Enter the name of the sequence (optional) as shown in Fig.  1a .
       (b)    Users can paste or type the protein sequence. The sequence 

must be written using one-letter amino acid code, and the max-
imum length of the sequence should be 1,000 ( see   Note 2 ).     

      (a)    Users can select a sequence database out of two databases: 
SDAP allergens or SwissProt.   

   (b)    Users can paste or type the query peptide sequence as a string 
of single-letter amino acid codes. The maximum length of the 
query peptide sequence is 30.   

   (c)    Users can select the number of similar sequences in the output 
results. The default set for this, is and the maximum number 
for similar sequences in the output results is 100.      

      (a)    Users can paste or type the query peptide sequence as a string 
of single-letter amino codes. The maximum length of the 
sequence is 30.   

   (b)    Users can select the number of similar sequences in the output 
results, and in this case the default is set at 50, and the maxi-
mum number is 100.       

      (a)    Users can paste or type the fi rst protein sequence in single-
letter amino acids code. The maximum length of the sequence 
is 1,000. The fi rst sequence should be shorter or equal to the 
second sequence.   

   (b)    Secondly, users need to paste or type the second query protein 
sequence for computing the PD sequence similarity index.      

 Aller_ML_allergen Markup 
Language

 List SDAP

2.1.2  Usage of SDAP

 FAO/WHO Allergenicity 
Rules Based on Sequence 
Homology

2.1.3  FASTA Similarity 
Search in the SDAP 
Database

 Exact Match of Peptides 
in Allergen Sequences

 Property Based Peptide 
Similarity Search 
in Allergen Sequences

2.1.4  Property Based 
Similarity Index Property 
Distance (PD) for Two 
Sequences

Allergen Prediction
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      (a)    The output of FAO/WHO allergenicity rules based on 
sequence homology full FASTA alignment results in a tabular 
format as shown in Fig.  1b . The column names of the table are 
ordered based on best hits and its importance. The column 
names are (1) Allergen name, which on selecting gives total 
information on the allergen including its source, structure; (2) 
Sequence accession number and it links to SwissProt/NCBI/
PIR databases (3) View Sequence; (4) Sequence length; (5) Bit 
score in descending order; (6) E score in ascending order.   

2.1.5  SDAP Query Result

  Fig. 1    Screenshots of SDAP. ( a ) Query search of FAO/WHO allergenicity rules; ( b ) Output result of FAO/WHO 
allergenicity rules based on full FASTA alignment search       
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   (b)    The output result of FASTA search in SDAP database is similar 
to FAO/WHO full FASTA alignment described above.   

   (c)    The output of peptide match result shows mapping of a query 
peptide sequence with matched allergen sequences in SDAP 
database.   

   (d)    The output of peptide similarity results in a tabular format 
with potential allergens hits are in sequential order based on 
PD sequence similarity index. The column names of the table 
are: (1) Allergen names; (2) Link to NCBI/PIR/Swiss 
Prot; (3) Property Distance (PD) sequence similarity index; 
(4) z (PD, min); (5) z (PD, all); (6) start residue; (7) matching 
region; and (8) end residue.   

   (e)    The output result of Peptide-protein PD index provides a list 
of all the matched sequences and its PD values. At the bottom, 
it provides best matches with minimum PD score.       

   Allermatch is available at   www.allermatch.org/allermatch/    . This 
Web tool allows users to predict allergenicity of proteins by bioin-
formatics approaches as recommended by the Codex Alimentarius 
and FAO/WHO [5]. The menus are in the left side and are inter-
linked. Following are the brief description of menus: 

  It links to home page of Allermatch and users can directly go to 
search page from home page.  

  This page links to input form, from where the users can make 
query search. More details about its usage are presented in 
Subheading  2.2.2 .  

  This page links to the list of sequences of known allergenic proteins 
that have been hosted by UniProt Protein Knowledgebase and 
WHO-IUIS.  

  It links to publication references of Allermatch.  

  This page links to brief introduction of bioinformatics approaches 
used for prediction of allergenic proteins.  

  This page links to usage of Allermatch search page with query 
sequence and output result examples.  

  This page links to team members and contact information.  

  This page provides e-mail link of contact person for feedback.  

  It links to disclaimer information page.  

  It links to copyright information.  

2.2  Allermatch

2.2.1  Description 
of Allermatch

  Home

  Search

 Databases

 Publication

 Introduction

 Example

 About Us

 Feedback

 Disclaimer

 Copyright

Allergen Prediction
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  It links to acknowledgement page.  

  It links to references page.   

       (a)    Users can go to search menu or directly go to search page from 
home page. The input form is shown in Fig.  2a  ( see   Note 1 ). 
There are three options: (1) 80 amino acids sliding window 
alignment; (2) exact hit of 6 amino acids; (3) full FASTA 
alignment.

       (b)    For 80 amino acids sliding window search, the default cut off 
percentage value is set at 35 ( see   Note 3 ).   

   (c)    For exact match search, the default wordmatch value is set at 6.   
   (d)    Users can choose a database out of three databases: (1) UniProt 

and WHO-IUIS; (2) UniProt; and (3) WHO- IUIS. The 
default database set is Uniprot and WHO-IUIS.      

   The search result is summarized into ten columns as shown in 
Fig.  2b . Each hit specifi c to allergenic protein is presented in a line, 
with the following information: (1) “Hit No.” in ascending order; 
(2) “Db,” database from which the allergen sequence has been 
retrieved; (3) “Allergen id,” the Allermatch TM  identifi er for the 
allergenic protein; (4) “Best hit” (identity), ranked in descending 
order; (5) “No. of hits identity >35,” the number of 80-amino acids 
subsequences (windows) of the query sequence that showed hits 
above the cut-off value; (6) “% of hits identity >35,” the fraction 
(percentage, %) of the total number of analyzed subsequences (win-
dows) of the input sequence that showed hits above the cutoff value 
with the allergenic protein; (7) “Full identity,” percentage of identi-
cal amino acids in the FASTA alignment against the complete input 
sequence; (8) “External link,” links to external protein databases; 
(9) “Species name”; (10) “Detailed information,” links to more 
information about the allergenic protein hit as shown in Fig.  2c .  

  The output result is similar to 80 amino acids sliding window 
approach. The query result with at least one hit is listed and users 
are allowed to retrieve more detailed information from the link.  

  The output results provide a list of allergens showing signifi cant 
homology with the query protein and the top hit with lowest 
E-value. The FASTA alignment of query and matched sequence 
are also shown in the result.    

   Evaller 2 is a Web tool which allows users to predict allergens based on 
its amino acid sequence [6]. It is available from   http://www.slv.se/
en-gb/Group1/Food-Safety/ e-Testing-of-protein-allergenicity/    . 
This Web tool is based on the core algorithm named ‘Detection based 
on Filtered Length-adjusted Allergen Peptides’ (DFLAP) and uses 
support vector machine (SVM) for training the FLAPs and testing the 

  Thanks

 References

2.2.2  Usage 
of Allermatch

2.2.3  Allermatch 
Query Result

 Output Result of 80 Amino 
Acids Sliding Window 
Alignment

 Output Result 
of Wordmatch

 Output Result of Full 
FASTA Alignment

2.3  Evaller 2

2.3.1  Description 
of the Evaller
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  Fig. 2    Screenshots of Allermatch. ( a ) Query search page with Bet v 1 amino acid sequence; ( b ) Output result of 80 
amino acids sliding window against Bet v 1. ( c ) Results of 80 amino acid sliding window against wi_Bet_v_1_bj         

query protein sequence. The main menus are in the left side and are 
interlinked. In addition, there are more menus about Evaller on 
the right side as well. At the bottom of the page, there are some links 
including contact details, information about developers, and previous 
reports. Following are the brief description of the main menus: 

 

Allergen Prediction
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  This page links to information about food safety specifi c to 
allergenicity. 

  This page links to information about toxicological effects of 
acrylamide.  

  This page links to lists food allergens.  

  This page links to information about dioxin in Swedish food.  

  This page links to comments on usage of energy drinks.   

  It links to introduction of Evaller Web tool. 

  This page provides stepwise information about the use of Evaller 
Web tool, including submission of a query amino acid sequence, 
specifi cation of output, output results in graphical format, and 
downloading results as text fi le.  

  It allows users to submit the query sequence for prediction. More 
details about its usage are available in Subheading  2.3.2 .   

 Food Safety

 Acrylamide

 Allergens

 Dioxin in Swedish food

 Energy Drinks

 e-Testing of Protein 
Allergenicity

 How EVALLER Works

 e-Test Allergenicity

Fig. 2 (continued)
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  This page provides facts about the usage of heavy metals and 
 minerals in foods for children.  

  It links to a reference about plants and plant parts that are unsuit-
able for use in food.  

  This page links to some advice to reduce the risk of being poisoned 
by mushrooms.  

  This page links to facts about pine nuts.   

       1.    Users can query the protein sequence from the left menu, 
“e-Test allergenicity” as shown in Fig.  3a  ( see   Note 1 ). The 
Web tool allows users to copy or paste the query sequence in 
FASTA  format and the minimum sequence length allowed is 
40. In addition, there is an option to browse the input sequence 
from local computer.

       2.    The user can specify the number of best matching FLAPs 
within a range from 1 to 7 from a drop down menu and the 
default value set is 5 ( see   Note 3 ).      

      1.    In the graphical output result, the query amino acid appears as 
a bar either red (presumably an allergen) or green (presumably 
not an allergen). Below the bar, the query matching FLAPs 
come into view as short bars in descending darkness of grey, 
where the darkest bar represents the highest scoring FLAP as 
shown in Fig.  3b .   

   2.    It also allows users to download results as a text fi le, by clicking 
on the clickable links.   

   3.    In the textual assignment of the output result, the query 
sequence is represented as being either of the two assessment 
categories “Presumably an allergen” or “Presumably not an 
allergen.”       

   AlgPred is available at   http://www.imtech.res.in/raghava/algpred/    . 
It uses different approaches to predict allergens including mapping 
of IgE epitopes, motif based modeling search, classifi ers based on 
support vector machine (SVM) and blast search on allergen represen-
tative proteins (ARPs) [ 7 ]. The menus are in the left side and are 
interlinked. Following are the brief description of menus: 

  It links to the home page of AlgPred. It describes about salient 
features of the Web server and publication reference.  

 Heavy Metals 
and Minerals in Foods 
for Children

 List of Plants and Plant 
Parts Unsuitable 
for Use in Food

 Mushrooms 
and Mushroom Toxins

 Pine Nuts with a Strange 
Metallic Taste

2.3.2  Usage of EVALLER

2.3.3  EVALLER 
Query Result

2.4  AlgPred

2.4.1  Description 
of AlgPred

 Home

Allergen Prediction
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  This page allows users to query a protein sequence. Its detail usage 
is available at Subheading  2.4.2 .  

  This page provides information about the usage of AlgPred server.  

  It links to information about datasets and different methods/algorithm 
used in developing AlgPred. It also provides results (sensitivity, specifi c-
ity, and accuracy) on various thresholds of SVM based classifi cations, so 
that users can change the default parameters set on the submission 
accordingly ( see   Note 3 ).  

  This page provides supplemental data including dataset, perfor-
mance of SVM modules, and hybrid approaches.  

  It links to other related information about allergens.  

 Help

 Submission

 Algorithm

 Supplementary

 Related Links

  Fig. 3    Screenshots of Evaller. ( a ) Query search page with Bet v 1 amino acid sequence. ( b ) Output results of 
Evaller         
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  It links to acknowledgement page.  

  It links to contact address of the developers of AlgPred.  

  It links to the contact address for feedback information.   

       (a)    Users can input the query protein sequence from the 
 “submission” menu. It allows users to paste or type the amino 

 Acknowledgements

 Developers

 Contact

2.4.2  Usage 
of AlgPred Server

Fig. 3 (continued)
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acid sequence in single-letter code or upload the sequence fi le 
from local computer ( see   Note 1 ). Users are allowed to select 
any of the two formats: (1) plain format (single-letter code), 
(2) standard format like FASTA or PIR.   

   (b)    Users can choose one, two, or more prediction methods from 
available six approaches. (1) IgE epitope and Percentage of 
Identity; (2) MEME/MAST motif search; (3) SVM method 
based on amino acid composition (SVMc); (4) SVM method 
based on dipeptide composition; (5) BLAST search on aller-
gen representative peptides (ARPs); (6) Hybrid approach 
(SVMc + IgE epitope + ARPs BLAST + MAST). The SVM 
method based on amino acid composition is set as default 
method. AlgPred submission form with two prediction 
approaches (SVM module based on amino acid composition 
and Blast search on ARPs) selected is shown in Fig.  4a  ( see  
 Note 4 ).

             (a)    The results of all the approaches selected are presented in a 
single output page as shown in Fig.  4b .   

   (b)    Each red box represents the output result of the selected 
approach. In case of default approach (SVM based on amino 
acid composition), there are three confi dence scores: (1) SVM 
predicted scores, (2) Positive Predictive Value (PPV), and (3) 
Negative Predictive Value (NPV). SVM score above a thresh-
old cut off value (−0.4) is predicted as potential allergen and in 
addition PPV and NPV scores give confi dence to the users. 
The accuracy of the prediction depends on higher SVM and 
PPV scores.   

   (c)    The BLAST result displays hits found with ARPs database and 
a single hit is predicted as potential allergen.        

3    Notes 

     1.    The input query protein sequence should be in single-letter 
amino acid code and users need to select whether it is in stan-
dard format.   

   2.    In case of SDAP Web tool, the input sequence length more 
than 1,000 were not used for prediction.   

   3.    The default parameters set were the best performance values 
based on accuracy, sensitivity, and specifi city on datasets used 
to develop the methods. However, users may change the 
default parameter according to their need.   

   4.    It is advisable to search in two or more allergen prediction 
servers based on different approaches for reliability.         

2.4.3  AlgPred 
Query Result

Gaurab Sircar et al.
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  Fig. 4    Screen shots of AlgPred. ( a ) Query search page with Bet v 1 amino acid sequence. ( b ) Output results of 
AlgPred       
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    Chapter 22   

 Prediction of Virulence Factors Using Bioinformatics 
Approaches 

           Rupanjali     Chaudhuri     and     Srinivasan     Ramachandran    

    Abstract 

   Virulence factors produced by a pathogen are essential for causing disease in the host. They enable the 
pathogen to establish itself within the host thus enhancing its potential to cause disease and in some 
instances underlie evasion of host defense mechanisms. Identifi cation of these molecules, especially those 
of immunological interest and their use in vaccine development are attractive and are among the initial 
steps of reverse vaccinology. Surface localized virulence factors such as adhesins serve as excellent immu-
nogenic candidates in this regard. In this chapter we have described the bioinformatics approaches for 
adhesin prediction, which include specifi c adhesin prediction algorithms.  

  Key words     Virulence factors  ,   Host  ,   Pathogen  ,   Immunogenic  ,   Adhesins  ,   Vaccine  

1      Introduction 

 Despite advances in technologies to combat infections, infectious 
diseases continue to challenge humans. This may be attributed to 
the rise in drug-resistant strains of pathogens such as  Mycobacterium 
tuberculosis  and new emerging infectious pathogens such as SARS 
coronavirus and infl uenza virus. A key step in the establishment of 
infectious disease is microbial virulence, which has been described 
as an emergent property of host–microbe interaction [ 1 ]. At the 
molecular level, entities like proteins, carbohydrates, or lipids 
enable the pathogens to establish themselves in a susceptible host. 
These molecules form inherent part of the pathogen cellular sys-
tem and are collectively termed “virulence factors” [ 2 ,  3 ]. Virulence 
factors in various pathogens play diverse roles in the establishment 
of disease. These include colonization of the host, evasion of host 
defense mechanisms, immunosuppression, acquisition of nutrients 
from host cell, mediation of entry and exit into host cell in intracel-
lular pathogens, and sensing change of environment [ 4 ,  5 ]. These 
factors enable colonization of host niche and eventually cause dam-
age to host tissues [ 2 ,  4 ,  6 ]. 
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 It was therefore realized that targeting these microbial molecules 
by identifying their immunogenicity and use in vaccine formula-
tions could serve as effi cient anti-infective strategy. Vaccinologists 
are therefore preparing vaccine formulations with these molecules 
for priming the immune system in order to neutralize their activity 
in the event of a host–pathogen contact [ 5 ,  7 ]. 

 A diverse array of molecules is involved during host–pathogen 
interaction and the prominent players vary between the pathogens. 
These include adhesins, toxins, enzymes, and capsules (polysaccha-
rides or polypeptides). 

 Adhesins have attracted interest from immunological perspec-
tive because they are located on the cell surface and are likely to be 
accessible to the molecules of the immune system [ 8 ]. In the sub-
sequent sections we provide an overview of these molecules and 
describe their prediction using Bioinformatics. 

  Adhesins enable adherence of the pathogen to host cells and con-
stitutes the initial major step in the process of infection. This role 
of adhesins qualifi es them for vaccine candidates as targeting adhes-
ins could arrest infection at the initial stage [ 8 ]. Even though 
adhesins exhibit sequence polymorphisms, the conserved regions 
may serve for potential vaccine especially those containing receptor 
binding domain [ 9 ]. Recently, a potent combination of adhesins of 
 Plasmodium falciparum  has been identifi ed, which could transcend 
strain variations [ 10 ]. 

 Examples include FimH adhesin of uropathogenic  Escherichia 
coli . Vaccination with this protein proved effective against urinary 
tract infection caused by  E. coli  in both mice and in nonhuman 
primates [ 11 ]. Filamentous hemagglutinin (FHA) and pertactin 
adhesins of gram-negative bacteria  Bordetella pertussis  elicits long- 
lasting cell mediated respiratory immune response [ 12 ]. These 
adhesins are components of the approved acellular pertussis 
licensed vaccine [ 13 ]. Another adhesin  Neisseria meningitidis  
adhesin A (NadA) is part of a multicomponent meningococcal 
serogroup B vaccine named Bexero, which is capable of eliciting a 
robust immune response. This vaccine has cleared all clinical trials 
and awaiting license for use [ 14 ].   

2    Materials and Methods 

  The advent of genomics technologies has revolutionized biological 
research. The complete genome sequence of a pathogen provides 
an abundance of opportunities to identify putative virulence factors 
through sequence analysis. These investigations are being aided by 
the development of new computational algorithms in this area. 

1.1  Adhesins

2.1  Bioinformatics 
Approaches 
of Adhesin 
Characterization
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In the sections below, we discuss and outline the methods used in 
several investigations:

    1.    Sequence Similarity Search: Sequence similarity search is very 
popular and is among the fi rst to be applied in sequence analysis. 
The goal here is to obtain orthologous sequences correspond-
ing to a given query. This approach has been used to identify 
orthologues of known adhesins characterized in other patho-
gens ( see   Note 1 ). The best known algorithm is the Basic Local 
Alignment Search Tool (BLAST) algorithm [ 15 ]. Examples 
include application of BLAST algorithms in screening for poten-
tial adhesins in  Mycoplasma agalactiae ,  Escherichia coli , 
 Mycoplasma conjunctivae ,  Mycoplasma pneumonia ,  Rickettsial 
species  [ 16 – 21 ]. In addition BLAST can be used to identify 
orthologues of enzymes from pathogens involved in virulence: 
Hyaluronidase, Neuraminidase, Phospholipases, Proteases, 
Collagenase, Kinase, Coagulase, Leukocidins, Hemolysins.   

   2.    Sequence Motif search: Sequence motif refers to a particular 
arrangement or pattern of amino acids within a protein 
sequence, or nucleotides within a DNA sequence, which is 
characteristic of a specifi c biochemical function [ 22 ]. In par-
ticular, majority of protein sequence motifs, provide unique 
detectable sequence features for a set of protein sequences and 
thus act as signatures of protein families. Such motifs indicate 
similar functional roles. 

 For example, in fungi, many Glycosylphosphatidylinositol- 
modifi ed (GPI) proteins linked to plasma membrane via pre-
formed GPI anchor play role in adhesion and virulence [ 23 ,  24 ]. 
These proteins have C-terminal GPI-motif described as follows: 
“[GNSDAC]-[GASVIETKDLF]-[GASV]-X(4,19)-
[FILMVAGPSTCYWN](10)>” in Prosite format, where “>” 
indicates the C-terminal end of the protein [ 26 ]. Algorithm 
based on identifying sequences having a C-terminal, fungus- 
specifi c, consensus sequence for GPI modifi cation (GPI-motif) 
helps screen a set of potential fungal adhesins [ 25 ]. Table  1  lists 
the motifs identifi ed in several adhesins.

       3.    Signal Peptide: Signal Peptide (SP) is a short stretch of 
sequence present in the N-terminus of the protein directing 
it to the secretory pathway [ 31 ]. Adhesins being membrane 
attached proteins usually posses N-terminal signal peptide for 
translocation across the membrane of the endoplasmic reticu-
lum [ 32 ,  33 ]. Therefore, algorithms using this information to 
screen for proteins having N-terminal signal peptide may help 
identifying potential adhesins ( see   Note 2 ). However, there 
are adhesins called “anchorless adhesins,” which do not have 
Signal peptide or Transmembrane domain. These “anchorless 
adhesins” cannot be identifi ed through these approaches.   

Virulence Factors Prediction 
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   4.    Transmembrane domain: Transmembrane domains are the 
regions of membrane proteins which traverse in and out, loop-
ing through the membrane. They are characteristics of integral 
membrane proteins. Since adhesins are mostly membrane pro-
teins, the prediction of proteins having transmembrane domain 
would contribute to the set of putative adhesins ( see   Note 3 ). 
However, this approach would lead to large number of false 
positives as not all proteins possessing transmembrane domains 
are adhesins.   

   5.    Domain Search: Domains are conserved autonomously folding 
functional unit of a protein [ 34 ]. The domains of a protein 
together defi ne the function of the protein. The domain infor-
mation of an unannotated protein sequence can be used to 
 predict its function ( see   Note 4 ).     

 Some adhesin domains are known. Examples include GLEYA 
adhesin domain, PA14 domain, ALS_N domain in fungal species, 

   Table 1  
  Motifs in adhesins and other virulence factors   

 Motif  Description  Reference 

 Beta-helix motif  These are right-handed parallel beta-helix supersecondary 
structural motifs in primary amino acid sequences. Present 
in toxins, virulence factors, adhesins, and surface proteins of 
Chlamydia, Helicobacteria, Bordetella, Leishmania, Borrelia, 
Rickettsia, Neisseria, and  Bacillus anthracis  

 [ 26 ] 

 FxxN, GGA(I,L,V)  These are tetrapeptide motifs FxxN and GGA(I, L, V) present 
in polymorphic membrane protein family (Pmp) of 
 Chlamydia pneumonia . They are required as duplicate 
copies for adhesion to host cells 

 [ 27 ] 

 RGD, SGxG  These are arginine-glycine-aspartic acid (RGD) and 
glycosaminoglycan binding site (SGXG) motifs present in 
autotransporter family proteins of  Bordetella pertussis —
pertactin (Prn), Bordetella resistance to killing (BrkA) and 
Bordetella autotransporter protein-C (BapC). The 
arrangement of motifs confer BapC adhesive property to 
binding sites on the macrophages and epithelial cells 

 [ 28 ] 

 PARF motif 
(A/T/E)
xYLxx(LYF)N 

 This is a (A/T/E)XYLXXLN amino acid sequence motif 
referred to as PARF (peptide associated with rheumatic 
fever). It is located in the N-terminal hypervariable region 
of the collagen binding M protein type 3 of  Streptococcus 
pyogenes  and  Streptococcus dysgalactiae ssp. equisimilis  (SDSE) 

 [ 29 ] 

 HExxH containing 
metalloprotease 
adhesins 

 This is a zinc binding sequence motif His-Glu-Xaa-Xaa-His. 
It is present in certain adhesins like  Treponema pallidum  
extracellular matrix binding adhesin Tp0751 

 [ 30 ] 

Rupanjali Chaudhuri and Srinivasan Ramachandran
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YadA adhesin protein domain, fi brinogen-binding domain, 
Gingipain adhesin domains forming part of cleaved adhesin 
domain in bacterial species [ 35 – 40 ]. Sequence analysis to study 
the presence of such adhesin related domains in the query pro-
tein sequence may help predicting potential adhesins.  

  Although the computational methods described in preceding sec-
tion permit identifying potential adhesins they are limited in their 
scope. Unlike many families of proteins, adhesins lack a well defi ned 
common sequence pattern or signatures, rendering their identifi ca-
tion using the general signature sequence search or unique motif 
search diffi cult. This is mainly because adhesins include diverse proteins. 
Even adhesins belonging to same species include diverse molecular 
types and lack a common specifi c pattern in sequence. For exam-
ple, the adhesins- M proteins in  Streptococcus pyogenes , Gal/GalNAc 
lectin in  Entamoeba histolytica , Fimbrial adhesins in  Escherichia 
coli , Blood group antigen binding adhesin (BabA) in  Helicobacter 
pylori , YadA collagen binding adhesin in  Yersinia enterolitica  [ 41 –
 45 ] lack signifi cant similarity among each other. 

 However, in certain cases like in fungal species where many 
adhesins possess fungal specifi c GPI-motif, sequence motif search 
algorithm can be used to screen for potential fungal adhesins. 
However, identifi cation methods solely based on motif searches 
such as GPI-anchor searches could return several false positives 
because all GPI-anchored proteins are not adhesins. Similar con-
cerns apply to other identifi cation methods such as Signal peptide 
search. The basic principles and limitations of various bioinformatics 
approaches used to characterize adhesins are summarized in Fig.  1 .

   These limitations formed the foundation for developing non- 
homology group of algorithms, which use a large number of com-
positional properties.  

2.2  Challenges 
in Bioinformatics 
Characterization 
of Adhesins

  Fig. 1    Advantages and limitations of different sequence and motif based approaches for prediction of potential 
virulence factors       
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   SPAAN is an adhesin prediction tool developed using artifi cial 
neural network trained on compositional properties of known 
adhesins and non-adhesins. The algorithm is trained to predict 
adhesins and adhesin-like proteins solely from the sequence data. It 
is a non-homology method. SPAAN was trained using 105 compo-
sitional properties including 20 amino acid frequencies, 20 selected 
dipeptide frequencies, 20 multiplet frequency, 20 charge composi-
tions, and 25 hydrophobic compositions. It showed an optimal 
sensitivity of 89 % and specifi city of 100 % on a defi ned test set and 
could identify 97.4 % of known adhesins at high Pad value from a 
wide range of bacteria. Though SPAAN was trained on datasets 
dominated by bacterial adhesins, it can be used for general purpose 
to identify adhesins from a wide spectrum of species belonging to 
diverse phyla. Many novel adhesins in diverse species have been 
characterized using SPAAN [ 46 ]. It is one of the most widely used 
adhesin prediction tool available. The standalone software package 
of SPAAN can be downloaded from   http://sourceforge.net/
projects/adhesin/fi les/    . 

 System Requirement: Red Hat Linux version 7.3 or above. 
 Other requirements: C compiler 
 Instruction for usage

    1.    SPAAN is provided as a tar-gzipped fi le. Post download, it 
should be unzipped and untarred by the command “tar xvzf 
SPAAN.tar.gz.”   

   2.    The query sequences should be in FASTA format. Multiple 
sequences can be present in the input fi le.   

   3.    The input fi le should be named as “query.dat.”   
   4.    The command to run the software SPAAN is “./askquery.”   
   5.    The output data is stored in “query.out.”   
   6.    If the existing binary fi les are not compatible to the system, the 

source C codes provided need to recompiled using the follow-
ing example command-“gcc –lm standard.c –o standard.o.”     

 List of C source codes to be compiled—standard.c, fi lter.c, 
annotate.c, and fi nalp1.c in the main SPAAN directory; recognize.c, 
AAcompo.c, hdr.c, multiplets.c, querydipep.c, and charge.c in 
their respective directories: AAcompo, hdr, multiplets, dipep, and 
charge: recognize.c needs to be compiled individually in each of 
the fi ve mentioned directories. 

 Figure  2  describes an example of a run of SPAAN output result 
fi le “query.out.”

     MAAP was developed using Support Vector Machine (SVM) 
trained through compositional properties for classifying malarial 
adhesins and adhesin-like proteins [ 47 ]. The SVM light  package [ 48 ] 
of Support Vector Machine was used for this purpose. A total of 
420 compositional properties including amino acid frequencies of 

2.3  Specialized 
Algorithms 
for Adhesin Prediction

2.3.1  SPAAN: A Software 
Program for Prediction 
of Adhesins and Adhesin-
Like Proteins

2.3.2  MAAP: Malarial 
Adhesin and Adhesin-Like 
Proteins Predictor
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20 and 400 dipeptide frequencies were used to characterize the 
sequences of known adhesins and nonadhesins of  Plasmodium  spe-
cies. MAAP runs on complete proteomes of  Plasmodium  species 
revealed that in  Plasmodium falciparum  at P maap  scores above 
0.0, a sensitivity of 100 % was observed with two false positives. In 
 P. vivax  and  P. yoelii  an optimal threshold P maap  score of 0.7 was 
found optimal with very few false positives (upto 5). The MAAP 
Web server provides users with an interface where they can paste or 
upload their query sequences and predict whether the protein 
sequence is an adhesin ( see   Note 5 ). Users have the facility to set 
their own desired threshold cutoff value. The result can be exported 
as tab delimited text fi le by the users. The standalone version can 
be downloaded from the “Download” tab of MAAP Web server or 
  http://sourceforge.net/projects/adhesin/fi les/    . 

 Figure  3  describes the output result obtained using MAAP 
Web server.

     In pathogenic fungi, adhesins play major roles as virulence factors 
mediating the interaction of the pathogens to variety of host cell 
types. In addition, adhesins in fungi aid in biofi lm formation con-
tributing to increased drug resistance and persistence of infections 
[ 49 ]. It has been established that differences in adhesion are respon-
sible for greater virulence of one strain compared to other in fungi 
[ 50 ]. The fungal pathogens represent a diverse group of species. 

2.3.3  FungalRV adhesin 
Predictor

  Fig. 2    An example of a run of SPAAN output result fi le “query.out.” The results are output under three column 
heads, Serial No. (SN), Probability of adhesin (Pad-value), Protein name (Annotation)       
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 FungalRV adhesin predictor was developed using Support 
Vector Machine (SVM) trained through compositional properties 
for classifying human pathogenic fungal adhesins and adhesin like 
proteins [ 51 ]. This tool was developed using SVM light  package of 
Support Vector Machine trained through 3,945 compositional 
properties including amino acid frequencies of 20 from amino 
acids, 247 selected dipeptide frequencies, 3,653 selected tripep-
tide frequencies, 20 amino acid multiplets frequencies, frequency 
of the hydrophobic amino acids and four moments of hydropho-
bic amino acid distribution of order 2–5. This is a non-homology 
based prediction tool. We obtained an overall MCC value of 
0.8702 considering all 8 pathogens, namely,  Candida albicans , 
 Candida glabrata ,  Aspergillus fumigatus ,  Coccidioides immitis , 
 Coccidioides posadasii ,  Histoplasma capsulatum ,  Blastomyces der-
matitidis , and  Paracoccidioides brasiliensis  thus showing high sen-
sitivity and specifi city at a threshold of 0.511. In case of 
 P. brasiliensis  the algorithm achieved a sensitivity of 66.67 %. This 
tool was made into FungalRV Web server available at   http://
fungalrv.igib.res.in    . The “Adhesin Predictor” tab of the FungalRV 
Web server provides users with an interface where they can paste 
or upload their query sequences and predict whether the protein 
sequence is a fungal adhesin ( see   Note 6 ). Users have been pro-
vided the facility to set their own desired threshold cutoff value. 
This facility has been provided to allow users to optimize the 
threshold for other fungi for which “FungalRV adhesin predictor” 
was not trained. The result can be exported as tab delimited text 
fi le by the users. The facility to search for fungal specifi c GPI 

  Fig. 3    Screenshot of output result obtained using MAAP Web server. The protein sequences scoring above thresh-
old are highlighted in  green  color, whereas those scoring below the threshold are highlighted in  red  color. 
The result can be saved in a tab delimited plain text fi le format by clicking on the  purple  colored link ( encircled )       
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pattern in the predicted adhesins and adhesin like proteins using 
fuzzpro program of EMBOSS has been provided. Users also have 
been provided the facility to conduct BLAST search with human 
reference proteins ( see   Note 7 ). The standalone version can be 
downloaded from the “Download” tab of FungalRV Web server or 
  http://sourceforge.net/projects/adhesin/fi les/    . Figure  4  describes 
the output adhesin prediction results obtained using FungalRV 
Web server.

     In addition to FungalRV, another Support Vector Machine 
(SVM) based algorithm named Faapred for prediction of fungal 
adhesins and adhesin-like proteins is available [ 52 ]. The SVM 
models for Faapred development were trained with composi-
tional features- amino acid, dipeptide, multiplet fractions, charge 
and hydrophobic compositions, as well as PSI-BLAST derived 
PSSM matrices. The best classifi ers were screened based on high 
MCC and accuracy. The amino acid composition model (ACHM), 
PSSM-a, and PSSM-b came out as the best classifi ers with ACHM 
providing the highest MCC value of 0.610. Thus the prediction 
of Faapred uses classifi ers based on compositional properties as 

2.3.4  Faapred

  Fig. 4    Screenshot of output result obtained using FungalRV Web server. The protein sequences scoring above 
threshold are highlighted in  green  color, whereas those scoring below the threshold are highlighted in  red  
color. The result can be saved in a tab delimited plain text fi le format by clicking on the  purple  colored link 
( encircled ). Additional data on BLAST with Href proteins and GPI patterns are also displayed       
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well as PSSM. Faapred provides overall accuracy of 86 %. The 
prediction method is freely available as a World Wide Web based 
server at   http://bioinfo.icgeb.res.in/faap    .    

3    Notes 

     1.    BLAST algorithm is widely used to fetch orthologues. 
Reciprocal Best Hits (RBH) method has shown good effi -
ciency in identifying orthologues. RBH is based on the prin-
ciple that two genes from different genomes are orthologous if 
they fi nd each other as the best hit in BLAST search in the 
other genome. Here BLASTP is usually carried out at a maxi-
mum E-value threshold of 1 × 10 −6 , including Smith–Waterman 
algorithm and Soft-fi ltering.   

   2.    Various bioinformatics algorithms are available, which aid 
identifying signal peptides. SignalP algorithm available at 
  http://www.cbs.dtu.dk/services/SignalP/     is widely used. The 
query sequences input in FASTA format can be submitted to 
predict presence of signal peptides.   

   3.    Transmembrane prediction algorithms for example TMHMM 
available at   http://www.cbs.dtu.dk/services/TMHMM/     is 
generally used to predict presence of transmembrane regions.   

   4.    Conserved Domains can be predicted using domain prediction 
algorithms for example CDD search available at   http://www.
ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml    . The presence of 
known adhesin related domains in the query sequences can be 
predicted.   

   5.    The query proteins in FASTA format can be uploaded in the 
MAAP Web server. The server can be used to analyze the 
whole genome in one run.   

   6.    Query protein sequences in FASTA format can be uploaded in 
FungalRV Web server. This Web server can be used to analyze 
the whole genome.   

   7.    An adhesin vaccine should ideally not have similarity to human 
reference proteins to avoid cross-reactivity. The facility to con-
duct BLAST search with human reference proteins has there-
fore been provided in the FungalRV Web server. The cutoff 
E-value used here is 0.01, which borders on the limits of 
threshold similarity.         
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Chapter 23

A Systems Biology Approach to Study Systemic 
Inflammation

Bor-Sen Chen and Chia-Chou Wu

Abstract

Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high 
throughput data on the host–pathogen interactions gives us an opportunity to have a glimpse on the 
 systemic inflammation. In this article, a dynamic Candida albicans–zebrafish interactive infectious network 
is built as an example to demonstrate how systems biology approach can be used to study systematic 
inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the 
hyphal growth, zebrafish, and host–pathogen intercellular PPI networks were combined to form an inte-
grated infectious PPI network that helps us understand the systematic mechanisms underlying the patho-
genicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis 
and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. 
Two cellular networks were also developed corresponding to the different infection stages (adhesion and 
invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic 
role of hyphal development in the C. albicans infection process. Important defense-related proteins in 
zebrafish were predicted using the same approach. This integrated network consisting of intercellular 
 invasion and cellular defense processes during infection can improve medical therapies and facilitate devel-
opment of new antifungal drugs.

Key words Host–pathogen interaction network, Infection, Hyphal development, Dynamic PPI 
 network, Immune response, Host defense

1 Introduction

Candida albicans is an opportunistic fungal pathogen responsible 
for various mucosal infections, such as candidiasis and other poten-
tially life-threatening diseases [1]. It is also the species most 
 frequently responsible for hospital-acquired fungal infections. This 
pathogen can colonize various biomaterials, such as ventricular 
assist devices and urinary and vascular catheters, forming dense 
biofilms that are resistant to most antifungal drugs [2]. C. albicans 
infections and candidiasis are difficult to treat and create very seri-
ous therapeutic challenges. Mortality rates among patients with 
candidiasis can be as high as 40–60 % [3]. Therefore, knowledge of 
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the molecular mechanisms underlying the pathogenicity of C. albicans 
and the defense of host could improve medical therapy and facili-
tate new antifungal drugs development.

Under normal circumstances, C. albicans lives in 80 % of  
the human population with no harmful effects, although its over-
growth, often observed in immunocompromised (e.g., HIV- 
positive) individuals, results in candidiasis, [4, 5]. C. albicans can 
grow in a variety of morphological forms, ranging from yeast form, 
pseudohyphae form, to true tubular hyphae form, depending on 
the growth conditions in the host environment [6]. A number  
of molecules have been implicated as associated with the virulence of 
C. albicans, such as host recognition biomolecules, secreted aspar-
tyl proteases, and phospholipases, as well as life cycle factors like 
adhesion and morphogenesis [7]. Among those factors, the transi-
tion from yeast to hyphal form is considered to be critical for  
C. albicans pathogenesis [6, 8]. Although previous studies have 
provided some hints, the detailed molecular mechanisms respon-
sible for morphological forms remain to be elucidated.

The C. albicans (strain SC5314) genome, used in this article, 
has already been sequenced , revealing that almost two-thirds of its 
~6,000 open reading frames are orthologous to genes of Sacch
aromyces cerevisiae, the most intensively studied eukaryotic model 
organism to have its entire genome sequenced [9, 10]. Compared 
to C. albicans, S. cerevisiae has abundant high- throughput screen-
ing data and it is closely related to C. albicans (i.e., both fall within 
the hemiascomycetes class), the information from S. cerevisiae 
could be usefully adapted for our understanding biology and 
pathogenesis of C. albicans [9].

The zebrafish (Danio rerio) has emerged as a powerful new 
vertebrate model for human disease. Numerous studies have 
already utilized the zebrafish system to study the pathogenesis of 
various human infectious diseases, including those caused by bac-
teria or viruses [11, 12]. The zebrafish immune system shows 
remarkable similarities to mammalian counterparts. As a demon-
stration of the zebrafish’s utility as a model organism for human 
disease, in 49 cases of a zebrafish mutant gene being cloned based 
on a forward genetic screen, the genes were found to have homo-
logs in human disease [13]. Overall, the zebrafish genetic map 
demonstrates highly conserved synteny with the human genome 
[14]. Chao et al. have also demonstrated that C. albicans can 
 colonize and invade the fish host at multiple anatomical sites and 
prove fatal in a dose-dependent manner [15]. Therefore, a zebraf-
ish infection model could be used to investigate the details of the 
C. albicans invasive process and infectious mechanisms.

In this article, we construct an infectious C. albicans and zebraf-
ish intercellular PPI network by mining and integrating microarray 
data, PPI information, and host–pathogen intercellular interactions 
to investigate how the infectious behaviors of C. albicans on host 
tissue are regulated. Consequently, we discovered that all major 
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hyphae-related pathways are visible in our hyphal PPI network, 
confirming the reliability and accuracy of our methods. From a sys-
tems perspective, we were able to predict the proteins with the larg-
est changes in the number of interactions and the hub proteins for 
morphological switching processes. We identified several important 
hyphae growth-related proteins–e.g., Ubi4, Act1, Kex2, Hsl1, and 
Tsa1–and some proteins worth further exploration for pathogenic-
ity research such as Hht21, Kre1, and Orf19.5438. Moreover, 
three noteworthy functions in C. albicans infection—cellular iron ion 
homeostasis, glucose transport, and cell wall molecular biosynthesis—
were named as pathogen invasion mechanisms from  analysis of the 
integrated intercellular protein interaction networks. Further, sev-
eral functions such as apoptosis and immune response were also 
found to be involved in host defense mechanisms.

2 Materials

Manipulation of the animal model was approved by the Institutional 
Animal Care and Use Committee of National Tsing Hua University.

C. albicans (strain SC5314) and adult zebrafish (strain AB) were 
used in the experiments. Their maintenance and preparation  
were performed according to procedures described previously 
[15]. Zebrafish were anesthetized by immersion in water contain-
ing 0.17 g/ml of tricaine (Sigma) and then intraperitoneally 
injected with 1 × 108 CFU C. albicans cells suspended in 10 μl 
 sterile phosphate- buffered saline (PBS). The infected fish were sac-
rificed by immersion in ice water at 0.5, 1, 2, 4, 6, 8, 12, 16, and 
18 h post-injection (hpi) and frozen in liquid nitrogen. C. albicans 
infected zebrafish were treated with Trizol® Reagent (Invitrogen, 
USA), pulverized in liquid nitrogen using a small mortar and 
 pestle, and then disrupted using a MagNA Lyser System (Roche) 
with glass beads (cat. no. G8772-100G, Sigma) by shaking at 
5,000 rpm for 15 s. After phase separation by adding chloroform, 
the total RNA was purified using an RNeasy Mini Kit (Qiagen, 
Germany). Purified RNA was quantified at OD260 nm using a 
ND-1000 spectrophotometer (Nanodrop Technology, USA) and 
analyzed using a Bioanalyzer 2100 (Agilent Technologies, USA) 
with RNA 6000 Nano LabChip kit (Agilent Technologies, USA). 
1 μg of the total RNA was amplified using a Quick-Amp Labeling 
kit (Agilent Technologies, USA) and labeled with Cy3 (CyDye, 
PerkinElmer, USA) during the in vitro transcription process. 
0.625 μg of Cy3 cRNA for the C. albicans array and 1.65 μg of 
Cy3 cRNA for the zebrafish array, were fragmented to an average 
size of 50–100 nucleotides by incubation with fragmentation buf-
fer at 60 °C for 30 min. The fragmented labeled cRNA was then 
hybridized to both C. albicans and zebrafish oligo microarrays 
(Agilent Technologies, USA) at 60 °C for 17 h. After washing and 
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drying using a nitrogen gun, microarrays were scanned using an 
Agilent microarray scanner (Agilent Technologies, USA) at 535 nm 
for Cy3. For each time point, three biological replicates were done 
for both organisms. The raw data were processed with Loess nor-
malization and the results have been deposited in Gene Expression 
Omnibus (accession number GSE32119).

3 Methods

The global screening method for infection-related proteins was 
divided into three key steps: (1) data preprocessing and selection, 
(2) dynamic C. albicans hyphal growth and zebrafish networks 
construction, (3) intercellular PPI network between pathogen and 
host construction. The flowchart of the method is shown in Fig. 1. 
After constructing the overall network, consisted of the hyphal 
growth PPI network for C. albicans, the PPI network for zebrafish 
and the intercellular PPI network between pathogen and host, we 
search for potential infection-related proteins and immune response 
pattern recognition molecules in both C. albicans and zebrafish.

Several types of data were mined and integrated to construct the 
integrated cellular network. In C. albicans, the required data 
included its microarray gene expression profiles, PPIs from S. cere
visiae, gene orthologs data between C. albicans and S. cerevisiae, 
and gene annotations for C. albicans. There are 9 time points in 
the C. albicans microarray data spanning from 0.5 to 18 hpi (i.e., 
0.5, 1, 2, 4, 6, 8, 12, 16, and 18 hpi). The gene ortholog data were 
acquired from the Candida Genome Database (CGD), and the  
C. albicans gene annotations were retrieved from the Gene Onto-
logy. The PPI data of S. cerevisiae were extracted from the Biological 
General Repository for Interaction Datasets (BioGRID).

In zebrafish, the required data included gene expression 
 profiles, PPIs from Homo sapiens, data on human and zebrafish 
gene orthologs and functional gene annotations for zebrafish. 
There were also 9 time points in the zebrafish microarray data 
spanning from 0.5 to 18 hpi (i.e., 0.5, 1, 2, 4, 6, 8, 12, 16, and 18 
hpi). The gene ortholog data were acquired using the ZFIN and 
InParanoid. The zebrafish gene annotations were retrieved from 
the Gene Ontology. The PPI data for Homo sapiens were extracted 
from BioGRID and the Human Protein Reference Database 
(HPRD).

Because of the lack of PPI databases between C. albicans and 
zebrafish at present, gene orthology data between C. albicans  
and S. cerevisiae as well as between zebrafish and human were 
 utilized to set up protein data pools for our candidate C. albicans 
and zebrafish PPI networks, respectively. C. albicans PPIs can be 
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Fig. 1 Flowchart for construction of the integrated infectious PPI network. The construction of our integrated 
intercellular PPI network was performed by database mining and network identification. The network con-
struction combines DNA microarray data with different types of information from various databases, as shown 
in the white boxes. Blue boxes show the steps of candidate subnetwork construction. The next, bottom part 
(orange boxes) of the flowchart illustrates the steps of network identification and the subsequent construction 
of the integrated cellular network

Systems Biology Approach to Systemic Inflammation
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inferred by applying orthology data between C. albicans and  
S. cerevisiae to the latter’s PPI data; similarly, zebrafish PPIs can be 
inferred by mapping human PPI data to orthology data between 
humans and zebrafish. Then, the protein pool consisting of differ-
entially expressed proteins was set up. Since large-scale protein 
activity measurements are unavailable, mRNA expression profiles 
were used as a substitute. Although the mRNA expression levels 
cannot be completely representative of the corresponding protein 
expression levels, they are at least partially and positively correlated 
[16, 17]. The mRNA expression level for each protein was used to 
select differentially expressed proteins using one-way analysis of 
variance (ANOVA), where the null hypothesis was the average 
expression levels at every time point being equal. In C. albicans 
and zebrafish, the proteins with p-values returned by ANOVA that 
were less than 0.01 were added to the protein pool. In this step, we 
found that a set of 4,820 proteins is too large for constructing the 
PPI network for C. albicans and then narrowed the protein pool of 
C. albicans to avoid overfitting in the parameter identification for 
the PPI network construction. So utilizing the GO database to fur-
ther select a hyphal growth protein pools within the 4,820  proteins 
set, we constructed a hyphal PPI network for C. albicans consisting 
of a subset of 403 proteins identified as related to hyphal growth. 
In addition, we were able to locate the beginning of hyphal growth 
in the body of the zebrafish at 2–4 hpi from microscopy images of 
the experiment (Fig. 2). Therefore, we selected 598 additional pro-
teins whose mRNA levels changed by more than twofold in 1–6 h 
to hyphal growth protein pool. Most of these 598 proteins had not 
yet been confirmed as associated with hyphal growth. Combining 
the 403 hyphae-related proteins with the 598 proteins yielded 
1,001 proteins for the final hyphal growth protein pool. A candidate 
PPI network could be constructed based on this protein pool and 
PPI information. Since candidate PPI networks contain many false 
positive PPIs, the candidate PPI network was pruned using micro-
array data and based on a dynamic interaction model (see Note 1).

The candidate PPI network can be depicted as a dynamic system in 
which interactive proteins and mRNA are considered as inputs of 
the system and protein activities as outputs of the system. All pro-
teins in the candidate PPI network can be considered as target 
proteins. For a target protein p in the candidate PPI network with 
N interacting proteins, a dynamic model of the protein’s activity 
can be represented as follows:

 
y t y t b y t y t x t y t tp p
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pq p q p p p p p
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+[ ] = [ ] + [ ] [ ] + [ ] - [ ] + [ ]
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(1)

where yp[t] represents the activity level of p at time t, bpq denotes 
the interaction ability of the q th interactive protein to p, yq[t] rep-
resents the protein activity level of the q-th protein interacting with 

3.4 Dynamic 
Interaction Model 
for PPI Networks 
During Infection
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p, αp denotes the translation rate from mRNA to protein, xp[t] 
represents the mRNA expression level of p, βp indicates the decay 
rate of the protein, and ωp[t] is stochastic noise. The PPI rate is 
proportional to the product of two proteins’ concentrations [18], 
and thus the interaction is modeled as a nonlinear multiplication 
scheme. The biological interpretation of Eq. 1 is that the protein 
activity level of target protein p at time t + 1 is a function of the 
present protein activity level plus regulatory interactions with QP 
interactive proteins, plus additive translation effects from mRNA, 
minus present protein degradation effects, and plus some  stochastic 
noise. Because of the undirected nature of protein interactions,  

Fig. 2 Microscopy images of the infection process of C. albicans in zebrafish tissue. Infection of zebrafish with 
C. albicans. The respective time points are 0.5 (a), 1 (b), 2 (c), 4 (d), 6 (e), 8 (f), and 12 h (g). “L” indicates liver 
and “I” indicates intestines. It is apparent that hyphae began to grow between the 2 and 4 h

Systems Biology Approach to Systemic Inflammation
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we did not assign direction for a two-protein interaction in the PPI 
subnetwork in Eq. 1. After the dynamic interaction model for the 
pth protein is constructed as in Eq. 1, the interaction parameters 
bpq, translation parameter αp and decay rate βp can be estimated 
from microarray data by least square parameter estimation method. 
Since the number of interactions in a candidate PPI network is 
dependent on the biological situation or condition used instudies, 
there exist many false positives and several interactions may not be 
relevant for our purposes. Therefore, the estimated interaction 
parameters bp̂q should be pruned using the model order detection 
method.

After identifying the regulatory interaction parameters b ̂
pq, Akaike 

Information Criterion (AIC) [19] is then employed for both model 
order selection and determination of significant interactions in the 
infection PPI networks, i.e., to determine the number of interac-
tions QP in Eq. 1. The AIC, which includes both the estimated 
residual error and model complexity in one statistical measure, 
decreases as the residual error decreases and increases as the num-
ber of interactions (i.e., complexity) increases [20].

 
AIC whereP P
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P P PQ

Q
L

Y p( ) = + = -2
2
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As the expected residual error decreases with increasing 
 interactions for inadequate model complexities, there should be a 
minimum located near the correct interaction number [19, 20]. 
Therefore, AIC can be used to select model order (i.e., the num-
ber of interactions) based on the protein interaction abilities b ̂

pq 
identified above. After constructing the PPI networks for host and 
pathogen, we constructed a network for the protein interactions 
between pathogen and host in the following (see Note 2).

To identify the intercellular PPIs between pathogen and host 
 during infection of zebrafish with C. albicans, we utilized the 
Temporal Relationship Identification Algorithm (TRIA), which 
uses gene expression data to identify a given transcription factor’s 
regulatory targets from its binding targets as inferred from ChIP-
chip data [21]. The first step was to build a pool of C. albicans cell 
surface proteins. We used the GO database to select 195 cell sur-
face proteins to build the resultant protein pool for C. albicans. 
Because host resistance against C. albicans infections is mediated 
predominantly by phagocytes, namely neutrophils and macro-
phages [22, 23], we assumed that cell surface proteins of C. albi
cans may interact with any protein of zebrafish in the infectious 
process. So we let x x xN= ¼( )1,, ,,  denote the gene expression 
time profile of C. albicans cell surface protein x and y y yN= ¼( )1,, ,,  

3.5 Determination 
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of an Intercellular PPI 
Networks Between 
Pathogen and Host

Bor-Sen Chen and Chia-Chou Wu



411

denote the gene expression time profile of zebrafish protein y.  
We constructed the protein interactions between C. albicans and 
zebrafish via  cross- correlation calculations of their time series 
microarray data.

We compute the cross-correlation between x  and y with a lag 
of k time points as follows:
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time lag after the C. albicans infection. We interpolated the 9 time 
points available for both C. albicans and zebrafish into 36 time 
points. The interval between each time point was half an hour. In 
this study, we set T = 8, meaning that we computed the cross- 
correlation between a C. albicans cell surface protein and a zebraf-
ish protein for all possible time lags less than 4 h. Although the 
beginning of hyphal growth in the body of the zebrafish occurs  
at 2–4 h post-infection, we assumed the hyphae-related proteins of 
C. albicans might influence zebrafish proteins ahead of 4 h post- 
infection. Then, we tested the null hypothesis H0:c(k) = 0 (i.e., the 
cell surface proteins of C. albicans and zebrafish proteins are uncor-
related) and the alternative hypothesis Ha:c(k) ≠ 0 by the bootstrap 
method [24] to obtain a p-value. After all cross-correlations were 
calculated, we set the constraint that cross-correlation levels must 
be higher than 0.95. The PPIs satisfying this constraint were 
 considered as potential intercellular PPIs between C. albicans and 
zebrafish (see Note 3).

4 Notes

 1. Our aim is to construct the integrated intercellular interaction 
 network between the hyphal proteins of C. albicans and zebraf-
ish proteins during the infection process. The flowchart for 
construction is shown in Fig. 1, and has three main routes, 
among which two separately construct the hyphal PPI net-
work of C. albicans and the PPI network of zebrafish. The 
third constructs the host–pathogen intercellular PPI network. 
Based on the microarray data, we selected 4,820 and 9,665 
proteins for inclusion in the source protein pools of C. albicans 
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and zebrafish respectively. In addition, we selected 1,001  
proteins for inclusion in the hyphal growth protein pool from 
the C. albicans protein pool due to the need to investigate 
what factors are behind the transition from yeast form to 
hyphal form in the  infection process. In the candidate C. albi
cans hyphal PPI network, there were 3,604 protein–protein 
interactions; in the candidate zebrafish PPI network, there 
were 1,129.

 2. We utilize the 9-time-point C. albicans time series microarray 
data to construct two dynamic networks for different infection 
stages. Since hyphae appear to begin to grow in the zebrafish 
body from 2 to 4 hpi in the experimental microscopy images 
(Fig. 2), we collected two groups of data at different stages of 
infection to construct two separate networks. With the C. albi
cans microarray data spanning 0.5–4 h, we constructed a net-
work called the ‘adhesive stage network’, which represents C. 
albicans cells in the adhesion stage. Since cubic spline interpo-
lation requires at least four data points to solve a cubic polyno-
mial [25], we included the 4 h data point to construct this 
network. With the C. albicans microarray data spanning 
2–12 h, we constructed another network called the ‘hyphal 
stage network’, which represents C. albicans cells transitioning 
to the hyphal form. Similarly, we collected two groups of data 
at different stages of infection to construct two separate PPI 
networks for zebrafish as well: one for microarray data from 
0.5 to 4 h, and another for data from 2 to 12 h, named the 
zebrafish stage 1 network and zebrafish stage 2 network, 
respectively. By estimating the system parameters using the 
time course microarray data and selecting model order using 
the AIC [19, 20], the likelihood of false positive interactions in 
the potential PPI network for the infection process was 
reduced. Network refinement yielded 550 proteins with 2,725 
PPIs in the adhesive stage network and 555 proteins with 
3,171 PPIs in the hyphal stage network: these two networks 
could then be combined into the C. albicans dynamic hyphal 
PPI network for the infection process (Fig. 3). Similar refine-
ments in the zebrafish data returned 1,248 proteins with 2,344 
PPIs in the zebrafish stage 1 network and 1,265 proteins with 
2,379 PPIs in the zebrafish stage 2 network, and these two 
networks could then be combined into the zebrafish dynamic 
PPI network for the defensive process (Fig. 4). The C. albicans 
dynamic hyphal PPI network, the zebrafish dynamic PPI net-
work, and the host–pathogen intercellular PPI network could 
be merged into an integrated infection intercellular PPI 
network.
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 3. The global system view of the C. albicans- and zebrafish- 
integrated infection intercellular PPI network is illustrated in 
Fig. 5. The entire integrated infection intercellular network can 
be divided into eight levels according to the location of protein 
action (i.e., nucleus, intracellular, cell surface, or extracellular) 
and species (i.e., C. albicans or zebrafish), and is composed  

Fig. 3 Dynamic hyphal PPI network of C. albicans during infection. The dynamic hyphal PPI network of C. albicans 
contains 3,452 PPIs among 557 proteins. This network contains three different color lines. The red lines denote 
PPIs that did not appear in the adhesive stage network but did in the hyphal stage network. The green lines 
indicate PPIs that appeared in the adhesive stage network but did not appear in the hyphal stage network. The 
blue lines and yellow nodes indicate the PPIs and proteins (respectively) that appeared in the adhesive stage 
network and the hyphal stage network. The node size denotes the connectivity degree

Systems Biology Approach to Systemic Inflammation
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Fig. 4 Dynamic PPI network of zebrafish during infection. The dynamic PPI network of zebrafish contains  
2,500 PPIs among 1,281 proteins. The red lines denote PPIs that did not appear in the zebrafish stage 1 
 network but were present in the zebrafish stage 2 network. The green lines denote PPIs that appeared in  
the zebrafish stage 1 network but did not appear in the zebrafish stage 2 network. The blue lines indicate  
the PPIs that appeared in both the zebrafish stage 1 and stage 2 networks. The node size denotes the 
 connectivity degree

of three subnetworks. The upper subnetwork is the dynamic 
hyphal PPI network of C. albicans. The middle subnetwork 
shows the host–pathogen intercellular interaction network. 
For simplicity, only the top five correlated interactions of the 
C. albicans cell surface proteins are listed. The bottom subnet-
work is the dynamic defensive protein interaction network of 
zebrafish.

Bor-Sen Chen and Chia-Chou Wu
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Fig. 5 Integrated intercellular dynamic PPI network during C. albicans infection. The infectious intercellular 
network is composed of three subnetworks. The upper subnetwork is the dynamic hyphal PPI network of  
C. albicans. The middle subnetwork shows the host–pathogen intercellular interaction network. For simplicity, 
only the top five correlated interactions of the C. albicans cell surface proteins are listed. The bottom subnet-
work is the dynamic defensive protein interaction network of zebrafish. This infectious intercellular PPI  network 
contains lines and nodes of three different colors. The red lines denote PPIs that did not appear in the stage 1 
network but did in the stage 2 network. The green lines denote PPIs that appeared in the stage 1 network but 
did not in the stage 2 network. The blue lines denote PPIs that appeared in both the stage 1 and 2 networks. 
The node size denotes connectivity degree
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    Chapter 24   

 Procedures for Mucosal Immunization and Analyses 
of Cellular Immune Response to Candidate HIV Vaccines 
in Murine and Nonhuman Primate Models 

           Shailbala     Singh    ,     Pramod     Nehete    ,     Patrick     Hanley    ,     Bharti     Nehete    , 
    Guojun     Yang    ,     Hong     He    ,     Scott     M.     Anthony    ,     Kimberly     S.     Schluns    , 
and     K.     Jagannadha     Sastry    

    Abstract 

   Sampling the mucosal tissues and analyses of immune responses are integral to vaccine-development strategies 
against human immunodefi ciency virus (HIV), which is transmitted predominantly across the oro- genital 
mucosa. While immune assay development and standardization attempts employ mouse models, immuno-
genicity and protective effi cacy that can be extrapolated to humans are realized only from experiments in 
nonhuman primates. Here, we describe commonly used practices for immunizations in rhesus macaques 
( Macaca mulatta ) along with procedures for obtaining important mucosal tissues samples from macaques 
and mice. We also describe detailed protocols for two important assays applicable in mouse as well as pri-
mate experiments for determining antigen-specifi c T cells responses induced after vaccination.  

  Key words     HIV–AIDS  ,   Vaccines  ,   Animal models  ,   Nonhuman primates  ,   Rhesus macaques  ,   Mucosal 
immunity  ,   T cells  ,   ELISPOT  ,   Cytokine  ,   Flow cytometry  

1      Introduction 

    Vaccination in general may be the most cost-effective strategy 
against global infectious diseases. This cannot be emphasized 
enough in case of the acquired immunodefi ciency syndrome 
(AIDS) induced by human immunodefi ciency virus (HIV) infec-
tion, an epidemic with enormous monitory and human resources 
being expended [ 1 – 3 ]. Despite worldwide efforts over the past few 
decades a vaccine against HIV–AIDS is still not a reality. Incredible 
amounts of variations among the strains prevalent around the 
world have been formidable obstacles [ 3 ,  4 ]. However, great 
strides have been made in the understanding of the biology and 
pathology of HIV infection mainly due to the research involving 
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nonhuman primate (NHP) models. Investigations employing a 
variety of NHP species created a wealth of knowledge mainly 
because of the close genetic links between NHP and humans, more 
specifi cally the similarities with respect immune and hematopoietic 
organizations [ 5 ,  6 ]. Nonhuman primates have been a critical 
component to the successes in molecular biology, largely in part 
due to the advances in procedure development in techniques for 
vaccination and immune function monitoring [ 7 ]. Over the past 
20+ years our laboratory has investigated the suitability of syn-
thetic peptides, recombinant proteins, or immunogens expressed 
from viral vectors as HIV vaccine candidates for their effi ciency to 
induce immune responses in multiple systemic and mucosal tissues 
[ 8 – 10 ]. We describe in this chapter key methods for immuniza-
tion, harvesting tissues or biopsies of mucosal tissues, immune 
assays to detect T cell responses. Detailed protocols covering these 
techniques from HIV vaccine studies mainly in rhesus macaques 
and some in mice are described below.  

2    Procedures Describing Immunization by Various Routes in Rhesus Macaques 

 Nonhuman primates are routinely restrained with ketamine, xyla-
zine, telazol, or domitor for any procedures that require handling 
outside the cage [ 11 ,  12 ]. When appropriate, administration of 
biohazardous substances should be conducted with the primate 
located inside a biosafety cabinet (designated Class IIB) in the bio-
containment laboratory or, alternatively, biosafety level 3 (BSL 3) 
practices should be utilized. Prior to experimental inoculation, the 
base level immune responses must be determined for future com-
parison with the post-immunization values such that each animal 
can serve as its own control in addition to having separate group of 
animals that are either unimmunized or mock-immunized with 
control reagents. Usually blood and tissue biopsy samples are col-
lected from each animal and single cell suspensions are prepared 
for either immediate analysis of T cells responses or banked along 
with serum samples for later batch analyses. Experimental animals 
can receive the vaccine formulation by any of multiple routes. The 
route as well as concentration and volume of the vaccine adminis-
tration must be conducted according to the protocols approved by 
the institutional animal care and use committee (IACUC). 
Administration of the vaccine can be accomplished in a variety of 
different routes that include different mucosal tissues as well as 
topical, intramuscular, intravenous, intradermal, subcutaneous, 
and intraperitoneal [ 13 – 16 ]. Beyond these more traditional routes, 
the use of a gene gun and electroporation are also options for 
delivering vaccines [ 17 ]. 

Shailbala Singh et al.
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       1.    Visualization device (depending on size of vaginal opening).
   (a)    Vaginal speculum.   
  (b)    Colposcope.   
  (c)    Otoscope with appropriate sized ear cone.       

   2.    Appropriate syringes (1–3 ml) and needles (normally 23–25 G).   
   3.    Catheter (22–25 G × 2–3 in.) for topical administration or 

feeding tube.   
   4.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques 
[ 11 ,  12 ].   

   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    Visualization device is inserted and inoculation site identifi ed.   
   5.    If required, the animal may be placed in a biosafety cabinet.   
   6.    If the inoculum is to be injected, then a small gauge needle 

attached to a syringe is used ( see   Note 1 ).   
   7.    If the inoculum is to be applied topically, then either a feeding 

tube or catheter without the stylet is used to infuse the inocu-
lum slowly ( see   Notes 2  and  3 ).   

   8.    Following infusion, the animal should be observed immedi-
ately post infusion, 1 h post infusion, and 24 h post infusion 
for any signs of toxicity.       

       1.    Visualization device (depending on depth of inoculation).
   (a)    Flexible endoscope.   
  (b)    Anoscope.   
  (c)    Otoscope with appropriate sized ear cone.       

   2.    Catheter 22–25 G with 2–3 in. length.   
   3.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    If required, the animal may be placed in a biosafety cabinet.   
   5.    Depending on the needed depth of the infusion, then a fl exible 

endoscope, anoscope, or otoscope may be used to visualize 
inoculation site ( see   Note 2 ).   

   6.    Once identifi ed, the inoculum can be administered using either 
the biopsy channel in the endoscopes or a catheter with the 
stylet removed.   

2.1  Intravaginal 
(IVAG) Immunization

2.1.1  Materials

2.1.2  Methods

2.2  Intrarectal (IR) 
Immunization

2.2.1  Materials

2.2.2  Methods

Analyses of Mucosal Cellular Immune Responses in Murine and Nonhuman Primate Models
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   7.    Following infusion, the animal should be observed immediately 
post infusion, 1 h post infusion, and 24 h post infusion for any 
signs of toxicity.       

       1.    Catheter without stylet 22–25 G with 1–2 in. length.   
   2.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in either right or left lateral recumbency 

depending on the side to be inoculated.   
   3.    If required, the animal may be placed in a biosafety cabinet.   
   4.    The inoculum is infused slowly (over 1 min) into the nasal cav-

ity of choice ( see   Note 4 ).   
   5.    Following infusion, the animal should be observed immedi-

ately post infusion, 1 h post infusion, and 24 h post infusion 
for any signs of toxicity.       

       1.    Flexible rhinoscope or endoscope (3.5 mm) or feeding tube.   
   2.    Endotracheal tube (size dependent on monkey).   
   3.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is intubated via standard procedure.   
   3.    If required, the animal may be placed in a biosafety cabinet.   
   4.    The inoculum is infused slowly (over 1 min) into the trachea 

either through the biopsy channel on the fl exible rhinoscope/
endoscope or feeding tube.   

   5.    Following the procedure, the animal should be extubated via 
standard procedure.   

   6.    Following infusion, the animal should be observed immedi-
ately post infusion, 1 h post infusion, and 24 h post infusion 
for any signs of toxicity.       

       1.    Laryngoscope.   
   2.    Appropriate sized needles/syringes.   
   3.    Catheter without stylet 22–25 G with 1–2 in. length.   
   4.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal may need to be intubated via standard procedure.   
   3.    Animal is placed in either dorsal or ventral recumbency depending 

upon the injector’s preference.   

2.3  Intranasal (IN) 
Immunization

2.3.1  Materials

2.3.2  Methods

2.4  Intratracheal 
Immunization

2.4.1  Materials

2.4.2  Methods

2.5  Intratonsillar 
Immunization

2.5.1  Materials

2.5.2  Methods

Shailbala Singh et al.
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   4.    If required, the animal may be placed in a biosafety cabinet.   
   5.    Use the laryngoscope to visualize the tonsils.   
   6.    Using the appropriate length needle with a small gauge inject 

the inoculum directly into the tonsils.   
   7.    Monitor for hemostasis following the injection.   
   8.    Extubate the animal via standard procedure.   
   9.    Following infusion, the animal should be observed immedi-

ately post infusion, 1 h post infusion, and 24 h post infusion 
for any signs of toxicity.       

       1.    Hair Clippers.   
   2.    Exfoliating pad.   
   3.    Adhesive (Stripping) Tape.   
   4.    Pipettes.   
   5.    Transcutaneous immunization device.   
   6.    Inoculum.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in a manner to give the best access to the area 

to be inoculated.   
   3.    If required, the animal may be placed in a biosafety cabinet.   
   4.    The area to be inoculated is clipped and cleaned with 70 % 

isopropyl alcohol or other appropriate cleaning agent.   
   5.    Exfoliation method:

   (a)    Rub the area approximately 50 times with the exfoliation pad.   
  (b)    Apply adhesive tape to area and remove.   
  (c)    Turn the tape 90°, reapply, and then remove.       

   6.    For topical immunization use a pipette to apply inoculum to 
the exfoliated area. Ensure that the inoculum is spread over the 
entire area.   

   7.    For transcutaneous immunization, use a specialized device to 
inject the inoculum into the site of interest.   

   8.    There may be erythema at the site of inoculation following 
immunization but it should resolve within 48 h.   

   9.    Following infusion, the animal should be observed immedi-
ately post infusion, 1 h post infusion, and 24 h post infusion 
for any signs of toxicity.       

       1.    Appropriate syringes and needles.   
   2.    Squeeze back cage.   
   3.    Inoculum.      

2.6  Topical 
Immunization (Skin)

2.6.1  Materials

2.6.2  Methods

2.7  Intramuscular 
(IM) Immunization

2.7.1  Materials

Analyses of Mucosal Cellular Immune Responses in Murine and Nonhuman Primate Models
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      1.    If elected, intramuscular injections may be administered to 
anesthetized animals. Anesthetize the animal according to 
standard procedures. When the animal is fully anesthetized, 
proceed by following  steps 3  through  6 .   

   2.    To administer injections to conscious animals, immobilize the 
monkey into a lateral profi le by pulling the back of the squeeze 
cage forward ( see   Note 5 ).   

   3.    Preferred areas for injection are the hamstrings, quadriceps, 
and/or triceps muscles.   

   4.    Insert the needle with the attached syringe into the muscle.   
   5.    Pull back slightly on the syringe plunger. If there is no evi-

dence of blood, slowly advance plunger to inject the drug. If 
there is evidence of blood, withdraw the needle slightly to 
reposition it and repeat  step 4 .   

   6.    Remove the syringe unit and deposit into a sharps container 
( see   Note 6 ).   

   7.    Return the squeeze-back device to its normal position to 
release the animal.   

   8.    In case of an anesthetized animal, return the squeeze-back 
device to the normal position only when the animal is sitting 
unsupported in an upright position and appears alert.   

   9.    Following injection, the animal should be observed immedi-
ately post injection, 1 h post injection, and 24 h post injection 
for any signs of toxicity.       

       1.    Appropriate syringes and needles.   
   2.    Appropriate sized catheter.   
   3.    Inoculum.      

      1.    Anesthetize animals per standard procedure.   
   2.    Shave the hair around the cephalic vein (dorsum of the fore-

arm) or the saphenous vein (back of the leg).   
   3.    Cleanse the area with either a betadine scrub or Nolvasan scrub.

   (a)    Scrub the area in a circular motion, begin with small cir-
cles and work outwards.   

  (b)    Wipe clean with 70 % isopropyl alcohol.   
  (c)    Repeat  steps 3a ,  b  at least three times.       

   4.    Using aseptic technique, with the bevel of the needle up intro-
duce the catheter with stylet through the skin and into the vein.   

   5.    Identify a fl ash of blood.   
   6.    Slowly thread the catheter into the vein.   
   7.    Remove the stylet.   

2.7.2  Methods

2.8  Intravenous (IV) 
Immunization

2.8.1  Materials

2.8.2  Methods

Shailbala Singh et al.
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   8.    Attach an injection plug or a stopcock to the catheter.   
   9.    If administering test article or medication, fl ush the catheter 

with saline or heparinized saline for longer catheter patency 
( see   Note 7 ).   

   10.    Check for perivascular leaks ( see   Note 8 ).   
   11.    If no leaks are apparent, tape catheter in place and attach 

syringe or infusion set.   
   12.    If a leak develops, remove the catheter and repeat  steps 4  

through  8  proximal to the original site of the catheter insertion 
or in a different arm/leg.   

   13.    Once the catheter is in place, infuse the inoculum through the 
catheter ( see   Note 9 ).   

   14.    Following injection, the animal should be observed immedi-
ately post injection, 1 h post injection, and 24 h post injection 
for any signs of toxicity.       

       1.    Appropriate syringes and needles.   
   2.    Squeeze back cage.   
   3.    Inoculum.      

      1.    If elected, intradermal injections may be administered to anes-
thetized animals. Anesthetize animals via standard protocol 
and once the animal is fully anesthetized, proceed by following 
 steps 3  through  7 .   

   2.    To administer injections to conscious animals, immobilize 
the monkey by pulling the back of the squeeze cage forward 
( see   Note 5 ).   

   3.    Shave, or use a pre-shaved area to inject ( see   Note 10 ).   
   4.    By holding the skin taut, insert the needle bevel up just under 

the surface of the skin at an angle of 15–20° until the bevel is 
covered and inject slowly. A distinct bleb must form at the site 
of inoculation.   

   5.    Remove the syringe unit and deposit it into a sharps container 
( see   Note 6 ).   

   6.    Return the squeeze-back device to its normal position.   
   7.    Following injection, the animal should be observed immedi-

ately post injection, 1 h post injection, and 24 h post injection 
for any signs of toxicity.       

       1.    Appropriate syringes and needles.   
   2.    Squeeze back cage.   
   3.    Inoculum.      

2.9  Intradermal (ID) 
Immunization

2.9.1  Materials

2.9.2  Methods

2.10  Subcutaneous 
(SC) Immunization

2.10.1  Materials

Analyses of Mucosal Cellular Immune Responses in Murine and Nonhuman Primate Models
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      1.    If elected, subcutaneous injections may be administered to 
anesthetized animals. Anesthetize per standard procedures and 
once the animal is fully anesthetized, proceed by following 
 steps 3  through  7 .   

   2.    To administer injections to conscious animals, immobilize the 
monkey into a lateral profi le by pulling the back of the squeeze 
cage forward ( see   Note 5 ).   

   3.    Preferred areas for subcutaneous injections are the lateral 
fl anks.   

   4.    Shave, or use a pre-shaved area to inject ( see   Note 10 ).   
   5.    If possible, grasp the skin and pull it away from the body 

slightly.   
   6.    At the end of the skin closest to body, insert the needle with 

attached syringe through the skin approximately at an angle 
of 45°.   

   7.    Pull back the syringe plunger slightly to ensure that the needle 
has not penetrated any blood vessel. If there is no evidence of 
blood, slowly advance the plunger to inject the drug. If there 
is evidence of blood, withdraw the needle slightly to reposition 
it and repeat  step 6 .   

   8.    Remove the syringe unit and deposit it into a sharps container 
( see   Note 6 ).   

   9.    Return the squeeze-back device to its normal position.   
   10.    Following injection, the animal should be observed immedi-

ately post injection, 1 h post injection, and 24 h post injection 
for any signs of toxicity.       

      1.    The inoculum is injected and a small “bleb” should be 
identifi ed.   

   2.    The perineum of the animal should be elevated prior to the 
infusion and approximately 10–20 min following the proce-
dure to prevent any leakage.   

   3.    If necessary, a vaginal speculum, otoscope, or colposcope may 
be used to visualize the cervix.   

   4.    The head should remain as lateral as possible to avoid leakage 
out of the nostril or leakage into the throat. Maintain the head 
in lateral position for at least 3–5 min if possible.   

   5.    Use caution not to injure the monkey during the squeeze 
operation.   

   6.    Do not recap the needle.   
   7.    A saline fl ush is not required for IV fl uids.   
   8.    Leaks are noted if the fl uid begins to form a subcutaneous 

bump on the skin around the injection site.   

2.10.2  Methods

 Notes

Shailbala Singh et al.
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   9.    If necessary, an infusion pump may be used to control the rate 
of infusion.   

   10.    When performing on conscious animals, shave the injection 
site at a prior sedation.       

3    Collection of Peripheral Blood and Body Fluids in Rhesus Macaques 

 Vaccine-mediated induction of humoral and cellular immune 
responses is generally determined in the blood and tissue samples, 
and in case of HIV a variety of mucosal tissues are also sampled to 
realize the effectiveness in inducing immunity at these portals of 
viral entry [ 15 ,  16 ]. Although venipuncture is the normal route of 
blood collection arterial puncture may be necessary for certain 
parameters. Size of the animal is an important consideration for 
blood collection as it determines the blood volume that can be 
safely removed without any adverse consequences for the animal. 
Additional samples collected in relation to mucosal routes of 
 vaccination, specifi cally oral and intranasal include saliva and 
s ecretions/washes from vaginal, rectal, bronchial, and nasal tissues. 
Tissue collection is also an important need for most experiments. 
Most commonly, during the course of the experiment that does 
not involve sacrifi cing the animals, either pinch or punch biopsies 
are used to obtain the tissue. If the anatomic location of tissue is 
internal such as liver or kidney, then visualization through either 
ultrasound or directly via laparoscopy or open surgery is preferred. 
Tissue sample from the lumen of an organ (e.g., stomach, colon) 
can be retrieved via a natural orifi ce by using fl exible endoscopy. 
Collection of biopsies from lymph nodes is a common practice for 
most vaccination studies. Normally these biopsies are performed 
on peripheral lymph nodes (e.g., inguinal or axillary); however, 
sometimes specifi c lymph nodes may also be required due to their 
association with a certain tissue and/or route of immunization. In 
those cases, rigid endoscopy or open surgery may be necessary. 

       1.    Appropriate syringes and needles.   
   2.    Vacutainer blood collection device.   
   3.    Appropriate blood collection tubes.      

       1.    Anesthetize animals per standard procedure.   
   2.    Position the monkey to allow for venous access.   
   3.    Prepare the site of the blood collection by rubbing with either 

70 % isopropyl alcohol- soaked gauze or cotton balls, or alcohol 
wipes.   

   4.    Palpate the pulse if the targeted vein is not visible.   

3.1  Blood

3.1.1  Materials

3.1.2  Methods

Analyses of Mucosal Cellular Immune Responses in Murine and Nonhuman Primate Models
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   5.    For collection of blood sample using a syringe, proceed as 
described in  steps a – e .
   (a)    Penetrate the skin with syringe/needle unit at an appro-

priate angle.   
  (b)    Apply slight negative pressure to plunger to draw out the 

blood from the vein.   
  (c)    Allow the blood to fi ll the syringe to the desired amount 

by maintaining negative pressure on the plunger.   
  (d)    Remove the syringe/needle unit and dispense blood into 

the appropriate blood collection tube.   
  (e)    Immediately following the removal of the needle, apply 

pressure to the area to maintain hemostasis ( see   Note 1 ).    
      6.    For collection of blood sample using a vacutainer, proceed as 

described in  steps a – f .
   (a)    Align the vacutainer with the needle at the same angle of 

entry as used with the syringe/needle method.   
  (b)    Following complete entrance of the needle into the skin, 

attach a blood collection tube to the vacutainer and 
advance the needle to the correct depth to adequately fi ll 
the tube.   

  (c)    Once the blood collection tube is fi lled, remove the tube 
from the vacutainer.   

  (d)    If other tubes are needed, insert another blood collection 
tube into the vacutainer and repeat step c.   

  (e)    When the blood is collected in the last tube, gently remove 
the vacutainer system with needle from the animal.   

  (f)    Apply pressure to the area to maintain hemostasis 
( see   Note 1 ).    

              1.    Flexible rhinoscope or endoscope (3.5 mm) or feeding tube.   
   2.    Endotracheal tube (size dependent on monkey).   
   3.    Sterile saline (amount dependent on monkey size).      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is intubated via standard procedure.   
   3.    If required, the animal may be placed in a biosafety cabinet.   
   4.    The sterile saline is rapidly infused into the bronchi through 

either the biopsy channel on the fl exible rhinoscope/ 
endoscope or the feeding tube.   

   5.    After infusion, negative pressure is applied on either the feed-
ing tube or biopsy channel to extract bronchial fl uid.   

   6.    Place the collected fl uid into an appropriate container.   

3.2  Bronchoalveolar 
Lavage (BAL)

3.2.1  Materials

3.2.2  Methods
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   7.    It may be necessary to reposition the feeding tube or scope for 
better fl uid extraction ( see   Note 2 ).   

   8.    Following the procedure, the animal should be extubated via 
standard procedure   

   9.    The animal should be observed immediately post infusion, 1 h 
post infusion, and 24 h post infusion for any sign of respiratory 
distress.       

       1.    Appropriate syringes (1–10 ml).   
   2.    Catheter (22–25 G × 2–3 in.) or feeding tube (6–8 fr).   
   3.    Sterile phosphate buffered saline (1× PBS).      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    If required, the animal may be placed in a biosafety cabinet.   
   5.    Place the feeding tube or catheter into the vaginal vault and 

rapidly infuse approximately 3–5 ml of sterile 1× PBS into the 
vagina.   

   6.    Aspirate the fl uid into syringe and place into appropriate 
container.       

       1.    Appropriate syringes (1–10 ml).   
   2.    Feeding tube (6–8 fr).   
   3.    Sterile phosphate buffered saline (1× PBS).      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    If required, the animal may be placed in a biosafety cabinet.   
   5.    It may be necessary to manual evacuate feces near the entrance 

of the rectum.   
   6.    Place the feeding tube into the rectum up to a depth of approx-

imately 4–5 cm and rapidly infuse approximately 3–5 ml of 
sterile 1× PBS into rectum.   

   7.    Aspirate fl uid into syringe and place into appropriate container.       

       1.    Catheter without stylet 22–25 G with 1–2 in. length.   
   2.    Sterile saline (3–5 ml).   
   3.    15 or 50 ml conical tube.      

3.3  Vaginal 
Secretions

3.3.1  Materials

3.3.2  Methods

3.4  Rectal 
Secretions

3.4.1  Materials

3.4.2  Methods

3.5  Nasal Lavage

3.5.1  Materials
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      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in either right or left lateral recumbency 

depending on the side chosen for collection of nasal lavage 
fl uids.   

   3.    If required, the animal may be placed in a biosafety cabinet   
   4.    With the head either tilted forward or hanging off table saline 

(3–5 ml) is infused using the catheter into the upper nostril 
and the fl uid is captured into a 15 or 50 ml conical tube from 
the lower nostril.   

   5.    The procedure can be repeated on the other side if necessary.   
   6.    Fluid can also be aspirated from the nostril using the catheter, 

but be cautious about disrupting the nasal mucosa ( see   Note 3 ).       

      1.    Always monitor the animals for hemostasis.   
   2.    Only a fraction of the fl uid infused will be able to be extracted.   
   3.    If the nasal mucosa is disrupted, then blood can contaminate 

the fl uid being collected. In the event of bleeding from nasal 
cavity either push cotton into the nose or pinch the nostrils 
with gauze to achieve hemostasis.       

4    Harvesting of Mucosal and Lymphoid Tissues from Rhesus Macaques 

 In rhesus macaques, because of the large size of the animals and 
the cost of the animals over the course of an experiment biopsies 
are conducted to evaluate the immune responses in the tissues of 
interest. 

       1.    Visualization device (depending on depth of inoculation).
   (a)    Flexible endoscope.   
  (b)    Anoscope.   
  (c)    Otoscope with appropriate sized ear cone.       

   2.    Biopsy device (1.8 or 5 mm cup biopsy).   
   3.    Hanks Balanced Salt Solution (HBSS).      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    If required, the animal may be placed in a biosafety cabinet.   
   5.    Depending on the depth required for the collection of biopsy, 

a fl exible endoscope or anoscope or otoscope may be used to 
visualize the biopsy site.   

3.5.2  Methods

 Notes

4.1  Rectal Pinch 
Biopsies

4.1.1  Materials

4.1.2  Methods
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   6.    Once identifi ed, use the biopsy device to obtain samples 
needed ( see   Note 1 ).   

   7.    Place biopsies in HBSS.   
   8.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of hemorrhage or pain. Give analgesia and 
antibiotics as necessary.       

       1.    Visualization device (depending on size of vaginal opening).
   (a)    Vaginal speculum.   
  (b)    Colposcope.   
  (c)    Otoscope with appropriate sized ear cone.       

   2.    Biopsy device (1.8 or 5 mm cup biopsy).   
   3.    HBSS.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in ventral recumbency.   
   3.    Perineum is cleaned using a betadine solution or chlorhexidine 

solution.   
   4.    Visualization device is inserted and biopsy site identifi ed.   
   5.    Once identifi ed, use the biopsy device to obtain samples 

needed ( see   Note 1 ).   
   6.    Place biopsies in the HBSS.   
   7.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of hemorrhage or pain. Give analgesia and 
antibiotics as necessary.       

       1.    Flexible endoscope.   
   2.    Endotracheal tube.   
   3.    Biopsy device (1.8 mm).   
   4.    HBSS.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Intubate animal per standard procedure.   
   3.    Animal is placed in left lateral recumbency.   
   4.    Endoscope is placed into the esophagus and advanced into the 

stomach or duodenum ( see   Note 2 ).   
   5.    Identify biopsy location for each area to be sampled.   
   6.    Once identifi ed, use the biopsy device to obtain samples 

needed ( see   Note 1 ).   
   7.    Place biopsies in the appropriate medium.   

4.2  Vaginal/Cervical 
Pinch Biopsies

4.2.1  Materials

4.2.2  Methods

4.3  Gastric/Duodenal 
Pinch Biopsies

4.3.1  Materials

4.3.2  Methods
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   8.    After gastroscopy, remove scope and extubate the animal.   
   9.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of nausea, hemorrhage, or pain. Give 
analgesia and antibiotics as necessary.       

       1.    Small surgical pack.
   (a)    Scalpel (#10 or #15 blade).   
  (b)    Mosquito hemostats.   
  (c)    Brown–Adson tissue forceps.   
  (d)    Olsen-Hegar or Mayo-Hegar needle holders.   
  (e)    Mayo scissors.   
  (f)    Metzenbaum scissors.   
  (g)    Surgical towels.   
  (h)    Surgical drape.       

   2.    Sterile Gauze.   
   3.    Suture.   
   4.    HBSS.      

      1.    Animal is anesthetized and intubated using standard anesthesia 
techniques.   

   2.    Animal is placed in dorsal recumbency.   
   3.    Lymph nodes are identifi ed either in the axilla or inguinal area.   
   4.    Hairs covering the identifi ed area are clipped and the site is 

prepared for surgery.   
   5.    Use a scalpel to make a small incision over the lymph node.   
   6.    Use blunt dissection to identify the lymph node and to sepa-

rate it from the underlying tissues.   
   7.    If excising the entire lymph node, then prior to removal use an 

encircling suture around the lymph node vessels. Place the 
excised lymph node in the appropriate medium.   

   8.    If only removing a section of the lymph node, then use sharp 
scissors or scalpel to remove the section. Place the section of 
lymph node in HBSS and hold the gauze on the remaining 
lymph node to maintain hemostasis.   

   9.    Close the incision using a two-layer closure with the appropri-
ate sized suture.   

   10.    Extubate the animal.   
   11.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of hemorrhage or pain. Give analgesia and 
antibiotics as necessary.       

4.4  Peripheral 
Lymph Node Biopsies

4.4.1  Materials

4.4.2  Methods
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       1.    Flexible endoscope.   
   2.    Biopsy device (1.8 mm).   
   3.    Bowel cleansing solution.   
   4.    HBSS.      

      1.    Prior to performing a colon biopsy by using colonoscopy, the 
colon of the animal must be cleansed to allow for proper evalu-
ation. This colonic cleanse is normally done using a bowel 
cleansing solution such as NuLYTELY over the course of 2 days.   

   2.    Animal is anesthetized and intubated using standard anesthesia 
techniques.   

   3.    Animal is placed in dorsal recumbency.   
   4.    Endoscope is placed into the rectum and advanced into the 

colon ( see   Notes 3  and  4 ).   
   5.    Identify biopsy location for each area to be sampled.   
   6.    Once identifi ed, use the biopsy device to obtain samples 

needed ( see   Note 1 ).   
   7.    Place biopsies in HBSS.   
   8.    After colonoscopy, remove the scope and extubate the animal.   
   9.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of nausea, hemorrhage, or pain. Give 
analgesia and antibiotics as necessary.       

       1.    Visualization device.
   (a)    Oral speculum.   
  (b)    Tongue Depressor.       

   2.    Biopsy device (1.8 or 5 mm cup biopsy).   
   3.    HBSS.      

      1.    Animal is anesthetized using standard anesthesia techniques.   
   2.    Animal is placed in dorsal or ventral recumbency.   
   3.    Visualization device is inserted and biopsy site identifi ed.   
   4.    Once identifi ed, use the biopsy device to obtain samples 

needed ( see   Note 1 ).   
   5.    Place biopsies in HBSS.   
   6.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of hemorrhage or pain. Give analgesia and 
antibiotics as necessary.       

4.5  Colon Biopsy

4.5.1  Materials

4.5.2  Methods

4.6  Buccal Biopsies

4.6.1  Materials

4.6.2  Methods
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       1.    Visualization device.
   (a)    Oral speculum.   
  (b)    Tongue Depressor.       

   2.    Endotracheal Tube.   
   3.    Laryngoscope.   
   4.    Small surgical pack.

   (a)    Scalpel (#10 or #15 blade).   
  (b)    Mosquito hemostats.   
  (c)    Brown–Adson tissue forceps.   
  (d)    Olsen-Hegar or Mayo-Hegar needle holders.   
  (e)    Mayo scissors.   
  (f)    Metzenbaum scissors.   
  (g)    Surgical towels.   
  (h)    Surgical drape.       

   5.    Gauze.   
   6.    HBSS.      

      1.    Animal is anesthetized and intubated using standard anesthesia 
techniques.   

   2.    Animal is placed in dorsal or ventral recumbency.   
   3.    Visualization device is inserted and biopsy site identifi ed 

( see   Note 5 ).   
   4.    Once identifi ed, use the sharp scissors or scalpel to obtain sam-

ple needed.   
   5.    Place biopsies in the HBSS.   
   6.    Place gauze on the tonsil to maintain hemostasis.   
   7.    Extubate the animal and monitor for excessive hemorrhaging 

from the biopsy site.   
   8.    Following procedure, the animal should be observed immedi-

ately post procedure, 1 h post procedure, and 24 h post proce-
dure for any signs of hemorrhage or pain. Give analgesia and 
antibiotics as necessary.       

      1.    If multiple biopsies from the same organ are required over a 
period of time make sure not to take them from the exact same 
location to avoid possible trauma and perforation of the organ 
of interest.   

   2.    If duodenal biopsies are needed, then advance the endoscope 
into the duodenum prior to taking stomach biopsies.   

   3.    Depending on the needs and the experience of the endosco-
pist, the endoscope can be advanced to the ileocecal junction.   

4.7  Tonsillar 
Biopsies

4.7.1  Materials

4.7.2  Methods

 Notes
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   4.    Be sure to take biopsies on removal of the scope not during 
advancement of the scope to avoid possible colonic perforation.   

   5.    Laryngoscope may also be used to provide light.       

5    Harvesting of Mucosal and Lymphoid Tissues from Mice 

 Unlike rhesus macaques, where biopsies are conducted to collect 
tissue samples for evaluation of immune response, in case of mice 
collection of tissues is usually done by performing necropsy on the 
animal. The size and age of mice along with the vaccination regi-
men determines the yield of lymphocytes from the different organs. 

       1.    CO 2  tank and chamber for euthanasia.   
   2.    Dissection board (thin Styrofoam or cork board).   
   3.    Hypodermic needles—27 G.   
   4.    Syringe—10 ml.   
   5.    70 % Ethanol.   
   6.    Pair of curved scissors.   
   7.    Pair of straight scissors.   
   8.    Forceps.   
   9.    Petri dishes (60 mm).   
   10.    HBSS containing HEPES,  L -glutamine, gentamicin, and peni-

cillin/streptomycin (HGPG).   
   11.    Phosphate Buffered Saline (1× PBS).      

      1.    Prior to collection of tissue, euthanize the mouse using CO 2  
( see   Note 1 ). Prepare one mouse at a time for collection.   

   2.    Spray down the mouse with 70 % ethanol to disinfect as well 
as limit the contamination of tissues with mouse hair/fur 
( see   Note 2 ).   

   3.    For good visualization and cleaner collection of tissues secure 
the mouse on its back on a dissecting board by pinning down 
its fore and hind limbs such that the abdomen is stretched.   

   4.    Using a blunt ended or curved scissor, make a small vertical 
incision on the abdomen. Through the incision, insert the scis-
sors between the skin and peritoneum and proceed to bluntly 
dissociate the skin from underlying peritoneum from neck to 
pelvic region. Extend the blunt separation laterally in axillae 
and inguinal regions ( see   Note 3 ).   

   5.    Use a different sterile pair of curved scissors to cut open the 
peritoneal cavity from the base of abdomen to the ribcage. Pin 
down the fragments of peritoneum laterally with the skin. 

5.1  Necropsy 
and Collection 
of Mouse Mucosal 
and Lymphoid Tissue

5.1.1  Materials

5.1.2  Methods
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This will expose the organs of abdomen such as intestines, 
reproductive tract and liver. To access the lungs open the 
thoracic cavity by cutting the ribs and lift the sternum with 
fi ne forceps and cut the diaphragm carefully ( see  Fig.  1 ) [ 18 ,  19 ].

       6.     Lungs : For collection of lymphocytes from the lungs, the 
organs must be fi rst perfused to remove any circulating cells 
and then excised according to the following steps.
   (a)    For perfusion 10–20 ml of cold 1× PBS is injected into the 

right ventricle of the mouse heart until the lungs are 
cleared of blood and turn white in color. A slit in the left 
ventricle or severing of portal vein allows the blood to 
leave circulation.   

  (b)    Once the lungs are white, gently excise them and collect 
them in a petri dish with 5 ml of HBSS taking care not to 
remove any peritracheal lymphoid tissue.    

      7.     Female Reproductive Tract  ( FRT ): Female reproductive tract 
of mice comprises of bicornuate uterus where the two horns 
merge into the body of uterus. Between the body of uterus 
and highly muscular vagina lies the cervix. The uterine horns 
are connected to the ovaries that lie caudal to the kidneys. FRT 
is embedded in the fat and lies close to the dorsal body wall 
( see  Fig.  1 ) [ 19 ]. For collection of FRT proceed according to 
the following steps.

Lymph Nodes

Spleen

Lungs

Female
Reproductive
Tract (FRT)

Portal Vein

  Fig. 1    Ventral view of mouse during necropsy showing the anatomic locations of 
lymph nodes, spleen, lungs, and the female reproductive tract (modifi ed from 
Dunn T.B. 1954 J. Nat. Cancer Inst.14: 1281–1434)       
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   (a)    Upon removal of peritoneum lining the abdomen, FRT 
can be accessed by moving the GI tract to the right. Insert 
the scissors between colon and pelvis and cut the bone.   

  (b)    For excising the FRT, commence by cutting away the two 
horns from the ovaries. Gently hold the horns together 
with forceps and using the scissors remove all the associ-
ated fat and connective tissue.   

  (c)    Proceed with removal of connective tissue till the end of 
vagina and cut out FRT to remove it from the abdominal 
cavity.    

      8.     Lymphoid tissues  such as lymph nodes and spleen can be col-
lected and lymphocytes isolated directly without any digestion 
( see   Note 4 ) [ 18 – 20 ].       

      1.    To ensure humane euthanasia, the fl ow of CO 2  from the gas 
cylinder must start slowly so that the air in the chamber is dis-
placed at a rate of 10–30 % per minute. At this rate, in about 
1 min, the animal becomes unconscious and there is an absence 
of righting refl ex when the CO 2  concentration in the chamber 
is about 50 %. The fl ow rate of CO 2  can be increased at this 
time and once the animal has ceased breathing, the fl ow of 
CO 2  must be maintained for another minute. Observe the ani-
mal for any muscle activity for another 30 s before proceeding 
with the dissection.   

   2.    When the cells from the mice tissues need to be cultured for 
immune assay such as ELISPOT or the mice are immunized 
using viral vectors, the collection of tissues must be conducted 
in a tissue culture hood and the instruments to be used for col-
lection must be sterile.   

   3.    Care must be taken to avoid puncturing of the peritoneal cav-
ity or incision of any blood vessels in the neck region. Once the 
two layers are separated, extend the incision in the skin to the 
neck region anteriorly and till the anal region posteriorly. 
Refl ect the skin laterally and pin it down on the dissecting 
board on each side.   

   4.    While collecting lymphoid tissues, remove most of the connec-
tive tissue and fat because their presence negatively affects the 
recovery and viability of the lymphocytes       

6    Cell Isolation 

 Mononuclear cells from blood, body fl uids, and tissues are purifi ed 
for immune assays and these methods are common for mice and 
rhesus macaques as described below (any unique differences are 
mentioned at appropriate places). 

 Notes
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  Heparinized or citrated venous blood samples of rhesus macaques 
are obtained as described above and PBMC are isolated by den-
sity gradient sedimentation using Ficoll Histopaque-1077 sepa-
ration solution according to the protocol described below 
( see   Note 1 ) [ 21 ]. 

      1.    Swinging Rotor Centrifuge.   
   2.    Ficoll Histopaque-1077.   
   3.    Phosphate Buffered Saline (1× PBS).   
   4.    Complete RPMI medium (RPMI-1640 medium supple-

mented with 10 % heat- inactivated FBS, 2 mM  L -glutamine, 
100 U/ml penicillin/streptomycin, 25 μg/ml gentamicin, and 
50 μM β-mercaptoethanol).   

   5.    Trypan blue solution.   
   6.    Conical centrifuge tubes—15 and 50 ml.      

      1.    A 1:2 dilution of whole blood is made by mixing with equal 
volume of 1× PBS. In a 50 ml conical tube, carefully layer the 
blood on a cushion of Ficoll Histopaque-1077 ( see   Note 2 ).   

   2.    Centrifuge the tube at    2,700 RPM or 1,565 ×  g  for 20 min in 
a swinging bucket rotor without brakes.   

   3.    After centrifugation, discard the upper layer without disturbing 
the band of PBMC present at the interface and then carefully 
collect the band of PBMC into another 50 ml conical tube.   

   4.    Wash the cells twice by mixing with 20 ml of 1× PBS and cen-
trifuging the tubes at 1,800 RPM or 700 ×  g  for 10 min.   

   5.    Resuspend the cell pellet in complete RPMI 1640 medium and 
determine the number of viable PBMC using Trypan blue 
exclusion method ( see   Notes 3  and  4 ).      

      1.    For ideal separation of mononuclear cells from the blood, 
Ficoll must be brought to room temperature before overlaying 
of blood.   

   2.    The ratio of volume of diluted whole blood to Ficoll 
Histopaque-1077 can range from 3:1 to 4:1.   

   3.    Purifi ed PBMC can either be used directly for the immune 
assays or be stored frozen (freezing medium is a mixture of 
90 % FBS and 10 % DMSO) in liquid nitrogen for later use. 
When using the cryopreserved PBMC, the vials of frozen 
PBMC are removed from liquid nitrogen and rapidly thawed 
in a 37 °C water bath, gently mixed, washed with complete 
RPMI medium to remove the freezing medium and resus-
pended in complete RPMI medium.   

6.1  Preparation 
of Peripheral Blood 
Mononuclear 
Cells (PBMC)

6.1.1  Materials

6.1.2  Methods

 Notes
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   4.    PBMC are used directly or further processed to purify into 
lymphocytes subsets such as CD4+ T cells and CD8+ T cells by 
using specifi c isolation kits such as Dynal T cell negative selec-
tion kit (Invitrogen, Carlsbad, CA).       

  In case of mucosal tissues such as colon and vagina, a Percoll den-
sity gradient is used for isolation and purifi cation of lymphocytes 
from the other cells such as epithelial cells and fi broblasts [ 22 ]. 

      1.    Swinging Rotor Centrifuge.   
   2.    Buffered Percoll.   
   3.    Phosphate Buffered Saline (1× PBS).   
   4.    RPMI 1640 medium.   
   5.    Complete RPMI medium (RPMI-1640 medium supple-

mented with 10 % heat- inactivated FBS, 2 mM  L -glutamine, 
100 U/ml penicillin/streptomycin, 25 μg/ml gentamicin, and 
50 μM β-mercaptoethanol.   

   6.    Syringe-30 ml.   
   7.    Blunt ended needle-18 G, 6 in. long.   
   8.    Trypan blue solution.   
   9.    Conical centrifuge tubes—15 and 50 ml.      

      1.    In 15 ml conical centrifuge tubes, prepare the Percoll gradients 
by underlaying 4 ml of 35 % Percoll with 4 ml of 60 % Percoll, 
both diluted from concentrated stock using serum free RPMI 
( see   Note 1 ). One tube can accommodate 6 ml of cell suspen-
sion on top of this gradient.   

   2.    Refrigerate the gradients at 4 °C for 1 h before using.   
   3.    Gently layer 6 ml of cell suspension on top of each gradient. 

Final volume in each 15 ml conical tube will be 14 ml.   
   4.    Centrifuge the tubes in at 1,800 RPM or 700 ×  g  for 20 min, 

4 °C in a swinging bucket rotor  without  brakes.   
   5.    Collect the epithelial cells such enterocytes present in the top 

interface layer (between media and 35 % Percoll) and the lym-
phocytes that are located primarily at the lower interface 
(between 35 and 60 % Percoll) separately in sterile 50 ml coni-
cal tubes.   

   6.    Add 1× PBS to the collected cells and achieve a fi nal volume of 
50 ml.   

   7.    Invert the tubes several times to mix the cells with 1× PBS.   
   8.    Centrifuge the tubes for 10 min at 1,800 RPM or 700 ×  g , 25 °C.   
   9.    Discard the supernatant and repeat the washing step by resus-

pending the cell pellet in 50 ml of fresh 1× PBS.   

6.2  Percoll Gradient 
Enrichment

6.2.1  Materials

6.2.2  Methods
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   10.    After the second wash, discard the supernatant and resuspend 
the cell pellet in 5 ml of complete RPMI medium.   

   11.    Count viable cells in a hemocytometer using trypan blue.      

      1.    The 60 % Percoll solution, which will be the lower solution in 
the tube, is tinted red in order to readily distinguish it from the 
35 % Percoll.       

       1.    Petri dish—60 mm.   
   2.    Scalpel.   
   3.    Forceps.   
   4.    Conical tubes—15 and 50 ml.   
   5.    Nylon mesh cell strainer—70 μm pore.   
   6.    Collagenase (from  Clostridium histolyticum ) solution.   
   7.    Rocking platform.   
   8.    Incubator—37 °C.   
   9.    Ammonium chloride–Potassium (ACK) Lysing Buffer.   
   10.    Complete RPMI medium (RPMI-1640 medium supple-

mented with 10 % heat- inactivated FBS, 2 mM  L -glutamine, 
100 U/ml penicillin/streptomycin, 25 μg/ml gentamicin, and 
50 μM β-mercaptoethanol).   

   11.    Trypan blue solution.   
   12.    Swinging bucket rotor centrifuge.      

      1.    Cut the lungs into 100–300 mm 2  pieces using a scalpel and 
transfer the tissue along with HBSS to a 15 ml conical tube.   

   2.    Centrifuge the tubes at 1,500 RPM or 483 ×  g  for 5 min at room 
temperature. Since lung tissue is spongy in nature and does not 
form a pellet at the bottom of the tube, the supernatants must 
be removed carefully so that no tissue pieces are discarded.   

   3.    Digest the tissue with gentle agitation by incubating in 5 ml of 
collagenase solution (RPMI-1640 containing 10 % FBS, 100 U 
Penicillin/streptomycin, and 125 U/ml of Collagenase (Type 
II)) for 60 min at 37 °C.   

   4.    After 1 h, strain the cell suspension through a disposable 70 μm 
disposable cell strainer to remove any undigested tissue and 
large cells. Wash the strainer by pipetting 10 ml of complete 
RPMI medium through it to recover any cells trapped in the 
mesh of the strainer.   

   5.    Centrifuge the tubes for 5 min at 1,500 RPM or 483 ×  g  and 
discard the cell supernatants.   

   6.    Lyse the red blood cells by resuspending the cell pellet in 1 ml 
of ACK Lysing Buffer (Invitrogen) and incubating for 5 min at 
room temperature.   

 Notes

6.3  Isolation 
of Mononuclear Cells 
from Mouse Lungs

6.3.1  Materials

6.3.2  Methods
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   7.    After 5 min incubation, add 5 ml of complete RPMI and 
centrifuge the cells for 5 min at 1,500 RPM or 483 ×  g .   

   8.    Discard the supernatants and resuspend the cell pellets in 5 ml 
of complete RPMI medium and count the cells by trypan blue 
exclusion method.       

       1.    Petri dish—60 mm.   
   2.    Frosted glass slides.   
   3.    Forceps.   
   4.    Conical tubes—50 ml.   
   5.    Nylon mesh cell strainer—70 μM pore.   
   6.    ACK Lysing Buffer.   
   7.    Complete RPMI medium (RPMI-1640 medium supple-

mented with 10 % heat- inactivated FBS, 2 mM  L -glutamine, 
100 U/ml penicillin/streptomycin, 25 μg/ml gentamicin, and 
50 μM β-mercaptoethanol)   

   8.    Trypan blue solution.   
   9.    Swinging bucket rotor centrifuge.      

      1.    Lymphoid tissues such as lymph nodes and spleen can be 
homogenized between frosted ends of glass slides to form single 
cell suspension.   

   2.    Pass the cell suspension through a 70 μm cell strainer to remove 
any large cells and pieces of connective tissue such as splenic 
capsule.   

   3.    Rinse the strainer by pipetting 10 ml of complete RPMI to 
recover all the cells trapped in the mesh of the strainer.   

   4.    Centrifuge the tube at 1,500 RPM or 483 ×  g  for 5 min and 
discard the supernatants.   

   5.    For cells isolated from spleens, lyse RBC by resuspending the 
cell pellet in 1 ml of ACK lysis buffer and incubate for 5 min to 
room temperature.   

   6.    After the incubation, add 5 ml of complete RPMI and centri-
fuge the cells for 5 min at 1,500 RPM or 483 ×  g .   

   7.    Discard the supernatants and resuspend the cell pellets in 
10 ml of complete RPMI and count the cells.       

       1.    Petri dish—60 mm.   
   2.    Forceps.   
   3.    Scissors.   
   4.    Conical tubes—15 and 50 ml.   
   5.    Nylon mesh cell strainer—40 μm pore.   
   6.    HBSS containing HGPG [ 21 ,  22 ].   

6.4  Isolation 
of Mononuclear Cells 
from Mouse Lymphoid 
Tissues

6.4.1  Materials

6.4.2  Methods

6.5  Isolation 
of Mononuclear Cells 
from Mouse Female 
Reproductive 
Tract (FRT)

6.5.1  Materials
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   7.    HBSS containing HGPG and 1.3 mM EDTA ( see   Note 1 ) 
[ 23 ,  24 ].   

   8.    Collagenase IV solution (100 ml RPMI, 1 mM MgCl 2 , 1 mM 
CaCl 2 , 2 ml HGPG, and 15,000 U of Collagenase IV) 
( see   Note 1 ).   

   9.    Incubator—37 °C.   
   10.    Erlenmeyer Flask—25 ml.   
   11.    Magnetic stir bar.   
   12.    Magnetic stirrer.   
   13.    RPMI 1640 medium (HyClone laboratories, Logan, UT).   
   14.    Complete RPMI medium (RPMI-1640 medium supple-

mented with 10 % heat- inactivated FBS, 2 mM  L -glutamine, 
100 U/ml penicillin/streptomycin, 25 μg/ml gentamicin, and 
50 μM β-mercaptoethanol).   

   15.    Trypan blue solution.   
   16.    Swinging bucket rotor centrifuge.      

      1.    Place the organ on a moist paper and gently trim off any 
remaining fat, connective tissue, and blood vessels that may be 
attached to the reproductive tract ( see  Fig.  2a ).

       2.    Using fi ne tipped pair of scissors cut open the lumen of the 
reproductive tract. Commence from the vaginal end and pro-
ceed anteriorly towards the reproductive horns ( see  Fig.  2b ).   

   3.    Lay the tissue fl at and use the blunt edge of scissors to scrape 
the mucosa to remove any mucus.   

6.5.2  Methods

Ovary

Fat and 
Connective
Tissue

FRT

Vagina

a b c

  Fig. 2    Cartoon depicting typical processing procedures for isolating lymphocytes from the FRT tissue from 
mice. Panel ( a ) shows the female reproductive tract (FRT) along with the associated connective tissue excised 
from a mouse. Panel ( b ) shows procedures for making longitudinal incision on the FRT to open the lumen of 
the organ. Panel ( c ) shows procedures for making lateral sections of the FRT prior to digestion of tissue to 
isolate lymphocytes       
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   4.    Cut the fl attened FRT laterally into 0.5 cm long pieces and 
place in a 50 ml conical tube with 10 ml of HBSS containing 
HGPG ( see  Fig.  2c ).   

   5.    Invert the tubes several times to rinse off any mucus attached 
to pieces of FRT. Allow the tubes to sit for a minute till the 
pieces settle down at the bottom of the tube and then pour off 
the HBSS carefully ( see   Note 2 ).   

   6.    Add 20 ml of HBSS + EDTA solution (pre-warmed to 37 °C) to 
the tube with the tissue. Place a stir bar in a 25 ml Erlenmeyer 
fl ask and transfer the contents of the conical tube to the fl ask 
( see   Note 3 ). Incubate the fl ask with constant stirring for 60 min 
at 37 °C ( see   Note 4 ). Retain the conical tubes for later use.   

   7.    After incubation for 60 min, transfer the content of the 
fl ask back to the conical tube. Gently pour off HBSS–EDTA 
( see   Note 2 ).   

   8.    Add 20 ml of RPMI to the tube with tissues and invert several 
times to rinse off any HBSS–EDTA ( see   Note 5 ).   

   9.    Take out the pieces of FRT in a petri dish and add about 
2–3 ml of collagenase solution to it. Use a sharp pair of scissors 
to cut the pieces into further smaller size ( see   Note 6 ).   

   10.    Tilt the petri dish to collect the pieces of FRT and the collage-
nase on the side of the dish and pour them back into the coni-
cal tubes. Make up the volume of the contents in the tube to 
20 ml with collagenase solution. Stir the tubes and pour the 
contents into fl ask with stir bar. Incubate the fl ask for another 
60 min at 37 °C with constant stirring. Continue to retain 
50 ml conical tubes for further use.   

   11.    After an hour, gently add the cell suspension from the fl ask 
into a 40 μm disposable cell strainer placed in the 50 ml conical 
tubes. Use the plunger of a 1 ml tuberculin syringe to release 
any cells that might be trapped in the strainer. Rinse the strainer 
by pipetting additional 10 ml of complete RPMI.   

   12.    Centrifuge the tubes at 1,600 RPM or 550 ×  g  for 6 min. 
Remove the cell supernatants and resuspend the cell pellet in 
5 ml HBSS + HGPG.   

   13.    Transfer the cell suspension to a 15 ml conical tube and centri-
fuge the tube at 1,600 RPM or 550 ×  g  for 6 min.   

   14.    Remove the supernatants and resuspend the cell pellet in 1 ml 
of HBSS + HGPG.   

   15.    Proceed to counting and staining the cells for fl ow cytometry.       

      1.    Prepare EDTA and collagenase solutions in the morning on 
the day of isolation [ 24 ].   

   2.    To ensure that no FRT segments are lost during the washing 
process, gently tilt the tubes on a beaker and hold a pair of 

 Notes
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forceps inside the tube to catch any fl oating pieces of 
FRT. Monitor the beaker as well for the presence of any lost 
tissue pieces. Repeat the wash step once and try to remove as 
much HBSS as possible.   

   3.    Confi rm that all the pieces of FRT have been transferred to the 
fl ask.   

   4.    Retain the conical tubes for later use.   
   5.    Since EDTA is a chelating agent and may interfere with the 

activity of collagenase during digestion, it is important to 
remove all the traces of HBSS–EDTA solution. Besides the tis-
sue, the Erlenmeyer fl ask must also have no traces of EDTA, 
therefore, use vacuum to suction it out of the fl ask [ 25 ].   

   6.    Smaller pieces of tissue are digested better because of increased 
surface area for collagenase action.       

7    Immune Function Analyses 

 In principle vaccine studies, including many in the NHP models, 
are designed to improve adaptive immune responses in order to 
prepare the host to fi ght against diseases by priming humoral and 
cellular immune responses specifi c to a variety of HIV antigens. 
Since viruses by defi nition are obligate intracellular pathogens that 
upon entering the host will quickly invade the host cells to secure 
shelter and resources for propagation, T cell responses (helper and 
CTL) against viral antigens have special importance in aiming 
towards potential elimination of the virus-infected/producing cells 
[ 26 – 29 ]. The T cells responses particularly at the genital mucosal 
portals of virus entry such as the oral, vaginal and rectal tissues are 
highly relevant and critical for providing barrier protection [ 15 , 
 28 ]. There are many methods available to measure the T cell medi-
ated immune responses that include (a) assaying the cytolytic activ-
ity of CD8 +  T cells termed cytotoxic T lymphocytes (CTL), (b) 
quantitative determination of cytokine production by CD8 +  T cells 
as well as CD4 +  T helper cells (T h ) by employing fl uorescence 
tagged antibodies for intracellular cytokine staining (ICS), and (c) 
enumerating the numbers of cytokine producing T cells using the 
enzyme-linked spot-forming (ELISPOT) assay [ 30 ,  31 ]. All these 
T cell assays involve in vitro activation of the cells for varying 
lengths of time with peptide or protein antigens corresponding to 
viral sequences. The ICS and ELISPOT assays have advantage over 
classical CTL assay to bypass the need for MHC-matched cell lines 
and the time consuming prior expansion of effector cells. Accurate 
and sensitive methodology for measuring the function of antigen 
specifi c T cells is important for determining the strength and 
breadth of cell-mediated immunity induced by vaccine candidate. 
Since NHP models are expensive resources with limited availability, 
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detailed murine studies are performed fi rst for selecting and 
optimizing not only the type and quantity of vaccine candidates 
but also the route of immunization, tissues to be analyzed, and 
methods/assays to be utilized before testing in the NHP models. 
Detailed protocols for the cytokine ELISPOT and ICS assays to 
measure antigen-specifi c T cells responses are described below and 
where applicable differences as they pertain to analyzing mouse 
versus macaque samples are noted. 

  The ELISPOT assay employs a quantitative sandwich enzyme- 
linked immune adsorbing assay methodology for enumerating 
the number of cells secreting the cytokine of interest in response 
to specifi c stimulation [ 32 ,  33 ]. Monoclonal or polyclonal anti-
body specifi c for the cytokine of interest is coated onto an 
ELISPOT plate, which is generally a 96-well microtiter plate with 
polyvinylidene difl uoride (PVDF) membrane bottom. The coated 
antibody captures the cytokine(s) secreted by the cells seeded 
into the wells when incubated with the antigen of interest, usu-
ally at 37 °C for 24–48 h. After washing off the cells, biotinylated 
polyclonal second antibody specifi c to the cytokine being deter-
mined is added. This is followed by treatment with Streptavidin-
enzyme (ALP or HRP) and chromogen AEC substrate or BCIP/
NBT substrate to visualize the signal in terms of spots represent-
ing the individual cytokine secreting cells. The spots are counted 
manually using a stereomicroscope or automated systems. 
Alternately, for unbiased interpretation of the data the counting 
of the spots can be contracted to third party commercial sources 
(e.g., KS ELISPOT, from Carl Zeiss, Inc., Thornwood, NY). The 
data is presented as cytokine spot forming cells (SFC) per total 
number of cells in the well [ 34 ]. 

 ELISPOT assay is performed using either commercially avail-
able kits (e.g., MABTECH) or selecting an antibody pair specifi c 
to the cytokine to be determined. In general, when using the com-
mercially available kits, the manufacturers provide detailed direc-
tions to be followed. The following are the required materials and 
the step-by-step methodology for the ELISPOT assay as performed 
in our laboratory for enumerating IFN-γ producing cells within 
the mononuclear cells prepared from blood or tissue specimens of 
mice and rhesus macaques in vaccine studies [ 35 ]: 

      1.    96-well PVDF-bottomed plates (EMD Millipore, Billerica, MA).   
   2.    IFN-γ ELISPOT Set (BD Biosciences, San Jose, CA) ( see   Note 1 ).   
   3.    Concanavalin A (Con A) (Sigma Aldrich, St. Louis, MO).   
   4.    Dulbecco's PBS (DPBS, Ca 2 /Mg 2 -free; Life technologies, 

Rockville, MD).   
   5.    HBSS (Sigma Aldrich, St. Louis, MO).   

7.1  Enzyme Linked 
Immuno Spot 
(ELISPOT) Assay

7.1.1  Materials
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   6.    RPMI 1640 culture medium (HyClone laboratories, Logan, 
UT).   

   7.    Complete RPMI medium [Complete RPMI medium 
[RPMI-1640 containing 10 % heat-inactivated FBS, 2 mM 
 L -glutamine, 100 U/ml penicillin/streptomycin, 25 μG/ml 
gentamicin, and 50 μM β-mercaptoethanol]   

   8.    Tween 20 (Sigma Aldrich, Saint Louis, MO).   
   9.    3-Amino-9-ethyl-cardazole (AEC; Sigma Aldrich, St. Louis, MO).   
   10.     N , N -Dimethyl-Formamide (DMF).   
   11.    0.1 M sodium acetate buffer.   
   12.    30 % hydrogen peroxide (H 2 O 2 ) (protect from light and store 

at 4 °C).   
   13.    70 % Ethanol.   
   14.    Avidin Peroxidase.   
   15.    1× Phosphate Buffered Saline–Tween (0.5 % Tween 20).      

   Coating Plate with capture antibody: Day 1 

    1.    Pre-wet the PVDF membrane of ELISPOT plate with either 
15 μl of 35 % ethanol/well for 1 min or 50 μl of 70 % ethanol/
well for 30 s ( see   Note 1 ). Discard the ethanol and wash the 
plate twice with 200 μl of sterile water/well followed by three 
washes with 200 μl of sterile 1× PBS for each well.   

   2.    Coat the wells with 100 μl of diluted purifi ed anti-IFN-γ cap-
ture antibody. For making the dilutions of purifi ed antibody in 
1× PBS either follow the manufacturer’s recommendation or 
start with a stock solution of 1–10 μg/ml ( see   Notes 2  and  3 ).   

   3.    Cover the plate and seal it with parafi lm to prevent evaporation 
and incubate the plates overnight at 4 °C ( see   Note 4 ).    

   Setting up ELISPOT Assay: Day 2 

    1.    Discard any unbound capture antibody by washing the plate 
thrice with 1× PBS. Block the plate with complete RPMI 
medium (RPMI medium supplemented with 10 % FBS) for at 
least 2 h at room temperature ( see   Notes 5  and  6 ).   

   2.    Adjust the single suspension of PBMC or lymphocytes recov-
ered from different tissues (isolated by protocol described previ-
ously) to a fi nal concentration of 1–2 × 10 6  cells/ml in complete 
RPMI medium. Add 100 μl of the cell suspension to each well 
(equivalent to 1–2 × 10 5  cells/well,  see   Notes 7  and  8 ).   

   3.    Depending upon the vaccine administered, the lymphocytes 
are stimulated with the test antigen (single or pools of peptides 
corresponding to the antigen) ( see   Notes 9  and  10 ). Mitogens 
such as Concanavalin A or PHA are used as positive control 

7.1.2  Methods
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and complete RPMI medium as negative control reagents for 
stimulation of the cells ( see   Note 11 ). There should be either 
duplicate or triplicate wells for determining the response for 
each stimulating agent.   

   4.    The plates are incubate for 36–48 h in a humidifi ed 37 °C, 5 % 
CO 2  incubator ( see   Notes 12  and  13 ).    

   Developing ELISPOT plate: Day 4/5 

    1.    Discard the cells and supernatants from the ELISPOT plate 
and wash the plate fi ve times with 1× PBS-T (wash buffer). 
Each well must be soaked with 200 μl of wash buffer for 
3–5 min during each wash ( see   Note 14 ).   

   2.    After discarding the wash buffer, add 100ul of diluted anti-IFN-γ 
biotinylated detection antibody (dilution buffer is 1× 
PBS + 10 % FBS) to each well ( see   Note 2 ). Cover the ELISPOT 
plate and incubate at room temperature for 2 h.   

   3.    Discard the detection antibody and wash the plate thrice with 
200 μl of wash buffer/well. Allow wells to soak in the wash 
buffer for 1–3 min each time.   

   4.    Following the washes, add 100 μl of streptavidin-conjugated 
horseradish peroxidase or alkaline phosphatase (diluted in 1× 
PBS-10 % FBS according to manufacturer’s recommendation) 
and incubate for 1 h at room temperature ( see   Note 15 ).   

   5.    At the end of the incubation, discard the enzyme solution and 
wash the wells four times with 1× PBS-T. Soak the wells with 
200 μl of wash buffer for 1–3 min for each wash.   

   6.    Discard wash buffer and wash the plates twice with 1× PBS 
using 200 μl/well. Allow the membrane to soak for 1–2 min 
each time to remove any trace amounts of 1× PBS-T that may 
interfere with the enzyme reaction.   

   7.    Dispense 100 μl of the substrate solution/well of the ELISPOT 
plate and monitor for color development of spots. It usually 
takes 5–60 min for the spots to develop ( see   Note 16 ). Stop 
the reaction by discarding the substrate solution and washing 
the plate with DI water ( see   Note 17 ).   

   8.    Allow the plates to air-dry at room temperature in the dark 
overnight.   

   9.    Enumerate the spots by counting manually under a dissection 
microscope or using an automated ELISPOT reader system 
(Carl Zeiss Microimaging, Thornwood, NY) ( see  Fig.  3a  for 
sample images of wells with IFN-γ spot forming cells after 
treatment with test and positive/negative control reagents, 
and Fig.  3b  typical data from the analyses of cells from macaques 
in a vaccine study).
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             1.    Pre-wetting PVDF membrane improves the effi ciency of coating 
with the antibody. However, prolonged exposure or large 
volume of ethanol leads to leakage of the membrane therefore 
time and volume requirement for ethanol must be adhered to 
strictly. Once the membrane has been pre-wet, it must be 
ensured that the membrane does not dry out.   

   2.    It is critical to follow the recommended dilution mentioned in 
the Certifi cate of Analysis included with the kit because the 
quality of the antibody may change with  different lots of 
reagents.   

   3.    The Human IFN-γ ELISPOT Kit from BD Biosciences shows 
cross-reactivity with nonhuman primates. The ELISPOT 
reagents (capture antibody and detection antibody) and color 
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  Fig. 3    Representative data from the IFN-γ ELISPOT assay. Panel ( a ) shows typical appearance of IFN-γ spot 
forming cells in the different wells of an ELISPOT assay plate where the lymphocytes were incubated with test 
antigen, Con A, and culture medium (the latter two are positive and negative control treatments). Panel ( b ) shows 
data for a typical assay determining the protective effi cacy of adenoviral vectors expressing the HIV-1 envelope 
protein against pathogenic challenge with the simian human immunodefi ciency virus (SHIV). The vaccine-
induced immune responses at different time points before and after immunization and virus challenge, in terms 
of IFN-γ producing cells in response to stimulation with three overlapping peptide pools corresponding to HIV-1 
envelope protein (stacked columns and data values shown on  left vertical axis ), and viral loads in terms of 
plasma RNA copy equivalents ( solid line  and data values shown on  right vertical axis ) in a representative mock-
vaccinated control monkey (panel on the  left ) and a vaccinated monkey (panel on the  right )       
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development reagents as individual reagents or kits along with 
pre- coated plates are also available from R&D System.   

   4.    Incubation can be done at room temperature for 4 or 2 h at 
37 °C. For convenience plates can be coated few days prior to 
assay performance and stored at 4 °C.   

   5.    Blocking before addition of PBMC or lymphocytes to the plate 
is necessary for reducing any nonspecifi c background.   

   6.    In case of mice, since the sacrifi ce of the animals and setting up 
of the ELISPOT assay are usually done on the same day, it is 
useful to block the plates prior to counting and making dilu-
tions of the lymphocytes.   

   7.    The number of responder cells in each well as 2 × 10 5  is an 
optimum number because in our experience 1–2 × 10 5  cells 
yielded decreased number of positive spots whereas >2 × 10 5  
cells gave higher background.   

   8.    Inclusion of a step of stimulation of PBMC with the antigens 
for a defi ned period of time prior to setting up of the ELISPOT 
assay is called short-term culture (STC) ELISPOT assay. This 
pre-stimulation step can be used to increase the sensitivity of 
the assay where there is a concern that the direct ELISPOT 
assay may fail to detect the immune response. In addition, in 
experiments where the assay is performed with cells cryopre-
served for longer periods of time, inclusion of a pre- stimulation 
step can reduce the variations that may exist with different 
sample collections. Smith et al. [ 36 ] have noted that pre- 
stimulation step prior to transfer of cells to ELISPOT plate 
leads to an increase in the spot forming units being detected.   

   9.    In case of direct stimulation of lymphocytes in the ELISPOT 
plates, to avoid drying out of the PVDF membrane of 
ELISPOT plates while adding cells + antigenic stimulant, 
pre-mix 100 μl of the diluted lymphocytes with 100 μl of 
antigen solution in a 96-well cell culture plate and then trans-
fer this mixture to the ELISPOT plates using a multichannel 
pipettor. This approach also minimizes the time required for 
transfer of cells.   

   10.    For evaluating immune responses to multiple peptides, a 
cocktail composed of 2 μg/ml of each peptide is used for 
stimulation.   

   11.    In our laboratory, whenever possible, we also routinely include 
similarly stimulated PBMC from naïve animals as additional 
negative controls   

   12.    The incubation period for the detection of cytokine producing 
cells in the ELISPOT assay can range from 36 to 72 h depend-
ing upon the stimulating agent and the cytokine response 
being evaluated.   
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   13.    Ensure that the ELISPOT plate is not disturbed during the 
incubation period. Also do not stack up the plates during 
incubation. Movement of plates can result in the movement of 
cells and as a result streaks will be observed instead of spots. 
Stacking of plates can result in uneven distribution of tem-
perature and cells.   

   14.    Adherence to recommended soaking time is critical for limit-
ing background in the wells containing cells treated with cell 
medium alone.   

   15.    During the incubation with enzyme solution, commence prep-
aration of the working substrate solution according to the 
manufacturer’s protocol. Solution of either AEC or TMB is 
used for HRP while BCIP/NBT is used as substrate for alka-
line phosphatase.   

   16.    Development of spots must be monitored carefully. Over 
development leads to staining of the membrane making it 
tough to distinguish spots from the background. The color 
development must be stopped when the brown spots in the 
wells containing Con A start turning green.   

   17.    Remove the plastic tray under the plate carefully and wash the 
plate with DI water to remove any residues of the substrate.       

  Intracellular cytokine (ICC) analysis is widely used to assess cell 
mediated immune responses to various antigens and infectious 
agents [ 30 ,  31 ]. This assay is commonly used in many laboratories 
to evaluate the T cells responses in nonhuman primates immunized 
with vaccines against SIV or HIV. Besides requiring relatively less 
time for conducting the procedure, this assay also enables accurate 
determination of the frequency of cytokine-producing cells in dif-
ferent T cell subsets within the mononuclear cells from peripheral 
blood as well as tissues [ 31 ]. Using commercially available anti- 
human monoclonal antibodies to human immune cells surface 
markers and cytokines that can also cross-react with their simian 
analogues, we routinely perform ICC assays for determining the 
frequency of IFN-γ and IL-2 secreting rhesus macaque CD4+ and 
CD8+ T cells responding to in vitro stimulation with either pro-
teins or peptides corresponding to the vaccine(s) administered to 
the animals. 

      1.    12 mm × 75 mm polystyrene test tube (Falcon, Lincoln Park, NJ).   
   2.    Dulbecco's PBS (DPBS, Ca 2 /Mg 2 -free; Life technologies, 

Rockville, MD).   
   3.    Phorbol 12-myristate 13-acetate (PMA) and Ionomycin 

(Sigma-Aldrich, St. Louis, MO).   

7.2  Intracellular 
Cytokine Analyses

7.2.1  Materials
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   4.    96-well round-bottom cell culture plate (BD Biosciences, 
Franklin Lake, NJ).   

   5.    Cytofi x/Cytoperm™ Fixation/Permeabilization Solution Kit 
with BD GolgiPlug solution (BD Biosciences; San Jose, CA).   

   6.    FACS Buffer: DPBS supplemented with 2 % FBS.   
   7.    Complete RPMI medium [RPMI-1640 containing 10 % 

heat-inactivated FBS, 2 mM  L -glutamine, 100 U/ml 
 penicillin/streptomycin, 25 μg/ml gentamicin, and 50 μM 
β-mercaptoethanol].   

   8.    Aqua LIVE/DEAD ®  Fixable Dead Cell Stain Kits (Invitrogen; 
Carlsbad, CA).   

   9.    Antigenic proteins/peptides.   
   10.    Centrifuge with Swinging Bucket Rotor.   
   11.    Antibodies ( see   Note 1 ): such as

   (a)    CD3 PE-Cy7 (SP34-2) (BD Biosciences; San Jose, CA).   
  (b)    CD8 Alexa Fluor700 (RPA-T8) (BD Biosciences; San 

Jose, CA).   
  (c)    CD28 PerCP-cy5.5 (L293) (BD Biosciences; San Jose, CA).   
  (d)    CD95 APC (DX2) (BD Biosciences; San Jose, CA).   
  (e)    IFN-γ FITC (B27) (BD Biosciences; San Jose, CA).   
  (f)    IL-2 PE (MQ1-17H12) (BD Biosciences; San Jose, CA).   
  (g)    CD4 eFluor4 (OKT4) (eBiosciences, San Diego, CA).    

          Stimulation of cells: 

   1.    Single cell suspensions from PBMC or tissues are fi rst resus-
pended at a concentration of 10 × 10 6  cells/ml, in complete 
RPMI medium and then100 μl (1 × 10 6  cells) of the cell sus-
pension is added to each well of a 96-well round-bottomed cell 
culture plate for stimulation with the antigen. Both freshly iso-
lated as well as cryopreserved cells can be used for this protocol 
( see   Note 2 ).   

   2.    The choice of use of either peptide pools or proteins as stimu-
lating antigens is dictated by the immunogen(s) used in the 
vaccine study. Unstimulated cells serve as negative and cells 
stimulated with PMA and ionomycin serve as positive controls, 
respectively ( see   Note 3 ).   

   3.    Cells are fi rst incubated for 1.5 h in a humidifi ed 37 °C, 5 % 
CO 2  incubator with the appropriate antigen. To allow for the 
intracellular accumulation of cytokines, 10 μg/ml of the pro-
tein transport inhibitor, brefeldin A ( see   Note 4 ) is then added 
to the cell suspension and the incubation is continued further 
for 4.5 h.    

7.2.2  Methods
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  Staining for surface markers: 

   1.    After 6 h of stimulation, centrifuge the plate at 1,600 RPM or 
550 ×  g  for 2 min and discard the cell culture medium.   

   2.    Wash the cell pellet twice with FACS buffer (200 μl/well) and 
stain the cells with live/dead fi xable Aqua LIVE/DEAD fl uo-
rescent reactive dye at 4 °C for 30 min in the dark.   

   3.    Wash the cells once with cold FACS wash buffer and proceed 
for staining of surface markers.   

   4.    Prepare a cocktail of fl uorescently labeled antibodies against 
cell surface markers such as CD3, CD4, CD8, CD28, and 
CD95 by diluting them in FACS buffer and add 100 μl of this 
cocktail to each well. Incubate the cells with the antibodies in 
the dark for 30 min at 4 °C ( see   Note 5 ). For each experiment 
both compensation controls ( see   Note 6 ) and fl uorescence 
minus one (FMO) controls ( see   Note 7 ) must also be included.   

   5.    After incubation, wash the stained cells twice with cold FACS 
wash buffer as described previously, and fi x with fi xation buffer 
(3 % buffered paraformaldehyde solution, 200 μl/well) for at 
least 20 min ( see   Note 8 ).   

   6.    After fi xing, cells can be resuspended in either FACS buffer or 
fi xation solution and stored overnight at 4 °C in the dark 
before proceeding for intracellular cytokine staining.    

  Staining for intracellular cytokines: 

   1.    Fixed cells are fi rst permeabilized by washing twice with per-
meabilization buffer and then incubated with 50 μl/well of 
permeabilization buffer for 20 min at 4 °C.   

   2.    Add 50 μl/well of appropriately diluted antibodies against 
cytokines such as IFN-γ (B27) and IL-2 (MQ1-17H12) to the 
permeabilized cells and incubate them in the dark cells for 
60 min at 4 °C ( see   Note 9 ).   

   3.    Following staining, wash the cells twice with the permeabiliza-
tion buffer and then fi x with 200 μl of 3 % buffered parafor-
maldehyde solution/well before proceeding for acquisition on 
a fl ow cytometer ( see   Notes 10  and  11 ).    

  Flow cytometry analysis: 

  The fi xed samples can be acquired on a fl ow cytometer such as LSR 
II or BD LSRFortessa (BD Bioscience) and FACS data can be ana-
lyzed by using software such as FlowJo (TreeStar, OR, USA).  

  An example of the gating strategy and analysis of different cell 
surface markers is illustrated in Fig.  4 . Lymphocyte population is 
gated by generating forward (FSC) and side (SSC) scatter dot 
plots. Live lymphocytes are identifi ed by gating on cells negative 
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for aqua stain. The T lymphocytes are identifi ed by gating on CD3 
positive live cells and then CD8 and CD4 T lymphocytes can be 
identifi ed based on the expression of the two markers. Further 
characterization of the different effector and memory CD8 and 
CD4 subsets in case of macaque samples is done based on the 
expression of CD28 and CD95 wherein naïve cells are CD28+ 
CD95−, central memory cells are CD28+ CD95+ and effector 
memory cells are CD28− CD95+. An example of intracellular 
staining for production of cytokines is shown in Fig.  5 . Expression 
of cytokines IL-2 and IFN-γ is determined for the different subsets 
on T lymphocytes defi ned on the basis on surface expression of 
cellular makers.

      The protocol for activating and staining the cells is similar for 
the assay with cells from mice. An example of the gating strategy 
and analysis of different cell surface markers in murine FRT is illus-
trated in Fig.  6 . The lymphocytes are identifi ed by gating on cells 
positive for CD45. Activated CD8 T lymphocytes are identifi ed by 
gating on cells which are positive for both CD8 and CD44 
expression.

0 50K 100K 150K 200K 250K
0

50K

100K

150K

200K

250K

55.7

0 100 1000 10000 1x10 5
0

50K

100K

150K

200K

250K

0 100 1000 10000 1x10 5
0

50K

100K

150K

200K

250K

Tn Tcm

Tem

SSC

FSC

98.5 67.3SSC

Aqua

SSC

CD3

CD8

CD4

Lymphocytes Live Cells CD3  Cells
+

40.8

55.5

27.0 26.1

45.0

CD8   T Cells+

CD28

CD95

Tn Tcm

Tem

58.5 36.2

5.19

CD4   T Cells+

CD95

1.9

0.12

CD28

  Fig. 4    Gating scheme utilized for the analyses of the different T cell subsets from a representative monkey. The 
lymphocytes were fi rst gated using a dot pot with FSC versus SSC, and then live lymphocytes were identifi ed 
based on SSC and aqua-negative population. The T cells were then identifi ed by CD3 expression. The CD4+ 
CD8− and CD4− CD8+ populations within the CD3+ T cell population were also determined. On the basis of 
CD28 and CD95 expression, the CD4 +  and CD8 +  T cells were further differentiated into naıve (Tn CD28 +  
CD95 − ), central memory (Tcm CD28 +  CD95 + ) and effector memory (Tem CD28 −  CD95 + ) subsets       
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            1.    All antibodies used in this study are cross-reactive to rhesus 
monkeys as reported in NIH Nonhuman Primate Reagent 
Resource core facility.   

   2.    When using the cryopreserved PBMC, the vials of frozen 
PBMC are removed from liquid nitrogen and rapidly thawed 
in a 37 °C water bath, gently mixed, washed with complete 
RPMI medium to remove the freezing medium, and resus-
pended in complete RPMI medium.   

   3.    For the stimulation with peptide pools, a cocktail of peptides 
containing 2 μg/ml/peptide is prepared in complete RPMI 
medium and 100 μl/well is used for treatment of cells. For 
positive control a mixture of PMA and ionomycin is used and 
the fi nal concentration of 10 ng and 100 ng/well, respectively. 
For negative control, cells are treated with 100 μl of complete 
RPMI medium. The fi nal total volume for 96-well tissue cul-
ture plate is 0.2 ml/well (100 μl cell suspension and 100 μl of 

 Notes

  Fig. 5    Typical plots showing the INF-γ and IL-2 profi les of CD4+ and CD8+ memory subsets after stimulation 
with PMA+ionomycin (positive control) or antigen-specifi c peptides or culture medium (negative control) for 
monkey PBMC       
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the stimulating antigen). In addition, we routinely include 
PBMC obtained from naive macaques as an additional nega-
tive control.   

   4.    Since it inhibits any secretory function of the cells, brefeldin is 
toxic to the cells if present for longer than 6 h. Therefore, 
duration of treatment with brefeldin must be monitored 
carefully.   

   5.    A properly titrated antibody will achieve the optimal separation 
between positive and negative staining and thereby preventing 
wastage of reagents.   

   6.    For the compensation controls, a complete set of tubes con-
taining cell suspensions from one of monkey are stained with 
fl uorescent conjugated monoclonal Antibody individually as 
single color stains. Compensation controls are utilized to elim-
inate false signal that results from spectral overlap between 
 fl uorescent dyes.   

   7.    Fluorescence minus one (FMO) is a multicolor staining com-
bination that contains all reagents but the one of interest. 
FMO and is used to determine the boundary between a posi-
tive and negative population by duplicating autofl uorescence 
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  Fig. 6    Gating scheme utilized for the analyses of the different T lymphocyte subsets from FRT of mice. The 
lymphocytes from unvaccinated and vaccinated mice are fi rst gated using a dot pot with FSC versus SSC. Cell 
surface marker CD45 is used to identify the leukocytes among the gated cells. To determine the activation 
status of CD8 T lymphocytes, expression of CD44 and CD8 is determined on CD45 positive cells. Activated cells 
can be identifi ed as those positive for the expression of both CD44 and CD8, while naïve CD8 T cells are nega-
tive for the expression of CD44       
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level and data present in fully stained sample. It is critical to 
eliminate nonspecifi c background to observe minor and subtle 
changes in the lymphocyte functions which can be obscured by 
the presence of this auto fl uorescence.   

   8.    Permeabilization buffer contains detergent such as saponin or 
Triton TM  X; therefore, it is important to fi x the antibodies on 
the surface of the cells before proceeding to the permeabiliza-
tion step.   

   9.    For intracellular staining, the antibodies must be diluted in 
permeabilization buffer and cells must be maintained in this 
buffer for the pores of the cell membrane to remain open.   

   10.    While fi xation for 30 min is enough for lymphocytes isolated 
from immunized but uninfected animals, to ensure safe han-
dling of lymphocytes from SIV or SHIV-infected macaques, 
FACS analysis must be performed only after overnight fi xation 
in 3 % buffered paraformaldehyde   

   11.    Always protect stained cells from light during staining, storage 
as well as acquisition stages to prevent bleaching of fl uores-
cence. Store the stained cell suspensions at 4 °C in the dark.           
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    Chapter 25   

 Immunoinformatics and Systems Biology 
in Personalized Medicine 

           Guillermo     Lopez-Campos    ,     Jesús     F.     Bermejo-Martin    , 
    Raquel     Almansa    , and     Fernando     Martin-Sanchez    

    Abstract 

   Every year new databases and tools for the storage and analysis of biological data are developed, updated, 
and discontinued. For this reason it is very important to have a clear picture of the major repositories 
providing information about the availability of these databases and tools as well as a brief description of them. 
This chapter provides an overview of the most important information sources which can guide researchers 
through the process of selecting databases and tools of interest for immunoinformatics and systems 
biology in personalized medicine. 

 As an example of a particular resource of interest that combines a curated database and tools for data 
analysis, this chapter also includes a description of InnateDB. This database offers access to curated infor-
mation relative to the innate immune response in a systems biology context.  

  Key words     Immunoinformatics  ,   Databases  ,   Systems biology  ,   Bioinformatics  ,   Immunology  ,   Standards  , 
  Web servers  

1      Introduction 

 In the last decade, biology, immunology, and their applications in 
medicine have witnessed a revolution in the methods and tools 
available for research. The development of new laboratory tech-
niques has been supported by the maturity of bioinformatics tools, 
databases and their subsequent applications. These new techniques 
and methods have enabled the systematic collection and analysis of 
large amounts of data in global perspectives in what have been 
called “-omics” approaches and thus the use of the “-omics” suffi x 
has expanded across the study of the different molecular levels 
(genomics, transcriptomics, proteomics, metabolomics) and disci-
plines (immunomics). A common aspect across all these approaches 
is the ability to generate unprecedented amounts of data that 
require strong support from bioinformatics for their processing 
(data storage and retrieval in databases, standards). 
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 The term immunoinformatics was coined in 2001 [ 1 ] referring 
to the use of an informational network used to model and under-
stand the regulatory elements and feedback processes associated 
with the immune system. Nowadays, the term can be broadly con-
sidered as the area of bioinformatics specifi cally devoted to the analy-
sis and management of information related with the immune system. 
Although by June 2013, a PubMed search using the term “immu-
noinformatics” yields a total of 120 articles it must be noted that this 
term is not comprehensive enough to cover all the published articles 
that describe tools and applications of bioinformatics in the area of 
immunology. The number of tools and databases available in this 
fi eld has increased during the last decade and several of these 
resources and methods have been oriented to specifi c aspects of 
immunology, such as the MHC or T-cell receptors, and provide 
single-level analysis or information (e.g., analysis of epitope recogni-
tion, antigen binding regions, sequences, or  three- dimensional 
structures). In some cases some of the resources combine a few of 
these aspects but either remaining at the same molecular level (e.g., 
protein sequences and structures) or combining nucleotide and pro-
tein sequences. 

 In their work “Immunology in the post genomic area” 
A. Aderem and L. Hood [ 2 ] described the pioneering role of 
immunology in the analyses of complex regulatory networks, the 
use of informatics and the key role of integrating all this multilevel 
information within the concept of systems biology. The aim of sys-
tems biology is to provide a “system” or “multilevel” understand-
ing of biological processes through the integration and modeling 
of different data sources. Therefore, immunology, with all its com-
plex interaction between different cell types, different regulatory 
and signaling pathways, and different molecules and genes, pro-
vides a perfect environment for the development and use of 
approaches based on systems biology. 

 Systems biology combined with the data gathered from 
“-omics” methods are key to understand the trends towards preci-
sion medicine, which aims at defi ning diseases not only by its tra-
ditional signs and symptoms but also by its underlying molecular 
causes and other factors such as environmental risk factors [ 3 ,  4 ]. 
In this context the immune system plays a central role as a protec-
tive element, including protection against infections. The immune 
system is also responsible for the development of some diseases or 
the exacerbation of other processes such as allergies or autoim-
mune phenomena. Therefore, it provides a good model for the 
study of the equation “Genome*Exposome = Phenome” which is 
the key for supporting the current investigations towards personal-
ized and precision medicine. Achieving these goals exceeds the 
scope of immunoinformatics since it requires the use of other data 
types and information sources, such as for example electronic clini-
cal records, as well as other different techniques provided by other 
areas of Biomedical Informatics.  
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2    Finding Relevant Databases for Immunoinformatics 

 Along the last years there have been many publications describing 
databases which provide data and information associated with 
immunology. In this chapter we have considered that rather than 
providing a list with a brief description of the different data-
bases, it is more useful to provide a description of two of the 
major resources containing information about available data-
bases and tools associated with immunoinformatics, namely, the 
Nucleic Acids Research Database Annual Issue and the Canadian 
Bioinformatics Links Directory [ 5 ]. The reason to describe these 
resources, rather than the most traditional approach based on 
listing a set of databases of interest with a brief description for 
each of them, is that these resources provide access to up-to-date 
annotated lists of immunoinformatics resources which ensures 
the quality and relevance of these databases and tools. 

  Since 1993, the Nucleic Acids Research (NAR) journal publishes 
every year two special issues devoted to the broader fi eld of bioin-
formatics, one focuses on Databases and the other describes Web 
Services. 

 The fi rst of these yearly issues is released every January and it is 
the one devoted to biological databases. In this issue it is possible 
to fi nd articles associated with the publication of new biological 
data repositories as well as updates and major changes from previ-
ously published databases. Associated with this publication, the 
journal also maintains an online repository, the Molecular Biology 
Database Collection (MBDC) (  http://www.oxfordjournals.org/
nar/database/c    ), with all the databases published in the previous 
years as well as their original articles where the resources were 
described. 

 On July 2013 the collection included more than 1,500 data-
bases, organized under a series of major topics such as nucleotide 
databases, RNA sequence databases or cell biology (   Fig.  1 ). Among 
those various topics it is possible to fi nd one annotated as immuno-
logical databases, which contains 31 different databases (Table  1 ). 
These databases are specifi cally focused on immunology and there-
fore can be considered as reference immunoinformatics databases.

    The MBDC also includes a number of resources associated 
with systems biology under the category “Metabolic and Signaling 
Pathways,” where many resources are stored in its four subcatego-
ries (Table  2 ).

   The collection provides a category where human genes and 
disease databases are grouped. In this category it is possible to fi nd 
interesting databases for the development of personalized medi-
cine from an immunological perspective. In this category and sub-
categories (Table  1 ) it is possible to fi nd polymorphisms databases 

2.1  Molecular 
Biology Database 
Collection

Immunoinformatics and Systems Biology
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  Fig. 1    Screenshot showing the major topics used to classify the resources in the Molecular Biology Database 
Collection. It is also possible to see in the  upper - right  and  bottom - left  corners the different options to access 
and retrieve the information       

    Table 1  
  List of the databases found in the category “Immunological” at the MBDC   

 Name  URL 

 ALPSbase [ 22 ]    http://www.niaid.nih.gov/topics/alps/Pages/default.aspx     

 AntigenDB [ 23 ]    http://www.imtech.res.in/raghava/antigendb     

 AntiJen [ 24 ]    http://www.ddg-pharmfac.net/antijen/AntiJen/
antijenhomepage.htm     

 BCIpep [ 25 ]    http://bioinformatics.uams.edu/mirror/bcipep/     

 dbMHC [ 26 ]    http://www.ncbi.nlm.nih.gov/gv/mhc/     

 DIGIT [ 27 ]    http://www.biocomputing.it/digit     

 Epitome [ 28 ]    http://www.rostlab.org/services/epitome/     

 GPX-Macrophage Expression 
Atlas [ 29 ] 

   http://www.gpxmea.gti.ed.ac.uk/     

(continued)

 

Guillermo Lopez-Campos et al.

http://www.niaid.nih.gov/topics/alps/Pages/default.aspx
http://www.imtech.res.in/raghava/antigendb
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://bioinformatics.uams.edu/mirror/bcipep/
http://www.ncbi.nlm.nih.gov/gv/mhc/
http://www.biocomputing.it/digit
http://www.rostlab.org/services/epitome/
http://www.gpxmea.gti.ed.ac.uk/


461

Table 1
(continued)

 Name  URL 

 HaptenDB [ 30 ]    http://www.imtech.res.in/raghava/haptendb/     

 HPTAA [ 31 ]    http://www.bioinfo.org.cn/hptaa/     

 IEDB-3D [ 32 ]    http://www.immuneepitope.org/bb_structure.php     

 IL2Rgbase [ 33 ]    http://www.ncbi.nlm.nih.gov/lovd/home.php?select_db=IL2RG     

 IMGT [ 34 ]    http://www.imgt.org/     

 IMGT/GENE-DB [ 35 ]    http://www.imgt.org/IMGT_GENE-DB/GENElect?livret=0/     

 IMGT/HLA [ 36 ]    http://www.ebi.ac.uk/ipd/imgt/hla/     

 IMGT/LIGM-DB [ 37 ]    http://www.imgt.org/ligmdb/     

 InnateDB [ 16 ]    http://www.innatedb.com/     

 IPD-ESTDAB [ 8 ]    http://www.ebi.ac.uk/ipd/estdab/     

 IPD-HPA—Human Platelet 
Antigens [ 8 ] 

   http://www.ebi.ac.uk/ipd/hpa/     

 IPD-KIR—Killer-cell 
Immunoglobulin-like 
Receptors [ 8 ] 

   http://www.ebi.ac.uk/ipd/kir/     

 IPD-MHC [ 8 ]    http://www.ebi.ac.uk/ipd/mhc/     

 MHCBN [ 38 ]    http://www.imtech.res.in/raghava/mhcbn/     

 MHCPEP [ 39 ]    http://bio.dfci.harvard.edu/DFRMLI/     

 MPID-T2 [ 40 ]    http://biolinfo.org/mpid-t2/     

 Protegen [ 41 ]    http://www.violinet.org/protegen/     

 SuperHapten [ 42 ]    http://bioinformatics.charite.de/superhapten/     

 The Immune Epitope Database 
(IEDB) [ 43 ] 

   http://www.iedb.org/     

 VBASE2 [ 44 ]    http://www.vbase2.org/     

 FIMM [ 45 ]    http://www.research.i2r.a-star.edu.sg/fi mm/     
 Not operative in June 2013 

 MUGEN Mouse Database [ 46 ]    http://www.mugen-noe.org/database/     
 Not operative in June 2013 

 Interferon Stimulated Gene 
Database [ 47 ] 

   http://www.lerner.ccf.org/labs/williams/xchip-html.cgi     
 Not operative in June 2013 

  Three out of the 31 were not operative in June 2013  
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   Table 2  
  Category and subcategories used in the molecular biology database collection compiled by NAR   

 Category  Subcategory 

 Nucleotide sequence databases  International nucleotide sequence database 
collaboration 

 Coding and noncoding DNA 
 Gene structure, introns and exons, splice sites 
 Transcriptional regulator sites and transcription 

factors 

 RNA sequence databases 

 Protein sequence databases  General sequence databases 
 Protein properties 
 Protein localization and targeting 
 Protein sequence motifs and active sites 
 Protein domain databases; protein classifi cation 
 Databases of individual protein families 

 Structure databases  Small molecules 
 Carbohydrates 
 Nucleic acid structure 
 Protein structure 

 Genomics databases (non-vertebrate)  Genome annotation terms, ontologies, and 
nomenclature 

 Taxonomy and identifi cation 
 General genomics databases 
 Viral genome databases 
 Prokaryotic genome databases 
 Unicellular eukaryotes genome databases 
 Fungal genome databases 
 Invertebrate genome databases 

 Metabolic and signaling pathways  Enzymes and enzyme nomenclature 
 Metabolic pathways 
 Protein–protein interactions 
 Signaling pathways 

 Human and other vertebrate genomics  Model organisms, comparative genomics 
 Human genome databases, maps, and viewers 
 Human ORFs 

 Human genes and diseases  General human genetics databases 
 General polymorphism databases 
 Cancer gene databases 
 Gene-, system-, or disease-specifi c databases 

 Microarray data and other gene expression databases 

 Proteomics resources 

 Other molecular biology databases  Drugs and drug design 
 Molecular probes and primers 

(continued)
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such as ClinVar [ 6 ], databases from the Human Genome Variation 
Society, PharmGKB [ 7 ] or the reference of IPD—Immuno 
Polymorphisms database [ 8 ]. 

 The collection provides links to different sets of interesting 
databases from an immunological perspective but because of their 
generalistic approach they are placed under different subjects. 
Some examples of such resources include gene expression data-
bases, such as the Gene Expression Omnibus (GEO) from the 
National Center for Biotechnology Information (NCBI) [ 9 ] or 
the European Bioinformatics Institute’s [ 10 ] ArrayExpress data-
base [ 11 ], or structure databases, such as the Protein Data Bank 
(PDB) [ 12 ]. 

 Alternatively to the searches based on the categories, the col-
lection also provides an option to search for a specifi c database 
using an alphabetic listing of the contents as well as the possibility 
of using a search tool that can be found as “Search Summary 
Papers.” This tool is very useful since it provides a text box where 
the user can type the search term of interest and select the fi eld 
(among “title,” “author,” “affi liation,” “paper,” “references,” or 
“all”) where the search of interest will be carried out (Fig.  2 ).

   Both approaches, search by category and search by term, 
should be combined when looking for a database of interest since 
they provide different insight and different results. An interesting 
example is the comparison between the resources grouped under 
the subject immunological databases and a text search strategy 
using the terms “immunological” or “immunology.” The results 
(Table  3 ) show that different search strategies present different 
results with some degree of overlapping ( see   Note 1 ).

Table 2
(continued)

 Category  Subcategory 

 Organelle databases  Mitochondrial genes and proteins 

 Plant databases  General plant databases 
 Arabidopsis thaliana 
 Rice 
 Other plants 

 Immunological databases 

 Cell biology 

  In some the listed resources might appear in the subcategories, whereas in other cases they might be appear 
directly under the main category  
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  Fig. 2    Screenshot showing the search box and possible search topics in the Molecular Biology Database 
Collection when the “Search Summary Papers” option is used to query the database       

     Bioinformatics Links Directory (  http://www.bioinformatics.ca/
links_directory/    ) is another important resource providing informa-
tion about databases and tools. It is a community driven resource 
and includes contents selected from the recommendation of experts 
in bioinformatics, and where registered members can suggest and 
submit reviews of links, resources, databases, and tools. It is impor-
tant to remark that there is a close relationship between the NAR 
special issues and the Bioinformatics Links Directory, because part 
of the content is directly extracted from those NAR special issues. 
This relationship is more visible for the tools contained in the Links 
Directory because the contents of the NAR Web Services Special 
issue have been feeding the directory since 2003. 

 The elements contained in the Links Directory are contextu-
ally annotated, and there are tags based on MeSH (Medical Subject 
Headings) terms to describe the resources. This annotation is an 
important and characteristic feature of the Links Directory and can 
be used for searching purposes. Part of this annotation includes a 
rating of each of the resources. This rating is presented as the 
“Links Directory Index” which is based on the citations of that 
particular resource in PubMed and Google Scholar or, when appli-
cable, in social media such as Twitter and Google+. These rates 
give an idea of how often the resource is used and can be used to 
rank the results of the searches carried out in the site. Another 
important characteristic is the curation of the contents, elimina-
ting “dead” contents and links that are not available any longer. 

2.2  The Canadian 
Bioinformatics Links 
Directory
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   Table 3  
  Comparison of the results between a search using category list “immunological databases” and 
search terms “immunological” and the related    term “immunology”   

 Category list “immunological databases”  Search term “immunological” 

 ALPSbase   IPD-ESTDAB  
 AntigenDB   IPD-HPA—Human Platelet Antigens  
  AntiJen    IPD-KIR—Killer-cell Immunoglobulin-like 

Receptors  
 BCIpep   IPD-MHC  
 dbMHC   The Immune Epitope Database (IEDB)  
 DIGIT   VBASE2  
 Epitome 
  FIMM  
 GPX-Macrophage Expression Atlas 
 HaptenDB 
 HPTAA 
  IEDB-3D  
 IL2Rgbase 
 IMGT 
 IMGT/GENE-DB 
 IMGT/HLA 
 IMGT/LIGM-DB 
 InnateDB 
 Interferon Stimulated Gene Database 
  IPD-ESTDAB  
  IPD-HPA—Human Platelet Antigens  
  IPD-KIR—Killer-cell Immunoglobulin-like 

Receptors  
  IPD-MHC  
 MHCBN 
 MHCPEP 
 MPID-T2 
 MUGEN Mouse Database 
  Protegen  
 SuperHapten 
  The Immune Epitope Database (IEDB)  
  VBASE2  

(continued)

The Bioinformatics Links Directory contained 620 databases, 164 
links and 1,459 tools in June 2013, and it is being continuously 
updated with new contents. 

 The information in the directory is structured around three cat-
egories, Resources, Databases and Tools, and 11 concepts, Computer 
Related, DNA, Education, Expression, Human Genome, Literature, 
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Table 3
(continued)

Model Organisms, Other Molecules, Proteins, RNA, and Sequence 
Comparison. Each of these concepts contains in turn different 
subcategories (Fig.  3 ).

   Each link entry includes the name and link of the described 
element, the concepts to which is associated, a brief description of 
the contents, a link to the PubMed citation and Directory Index, a 
link to the NAR Issue when available, a report on users feedback, 
and fi nally the set of tags used for annotating the entry. 

 AGRIS— Arabidopsis  Gene Regulatory 
Information Server 

  AntiJen  
  FIMM  
 HAGR—Human Ageing Genomic Resources 
 HemoPDB—Hematopoiesis Promoter Database 
 HIV Molecular Immunology Database 
  IEDB-3D  
 NMPDR—National Microbial Pathogen Data 

Resource 
  Protegen  
 RECODE 
 SOURCE 
 SysZNF 
  The Immune Epitope Database (IEDB)  
  VBASE2  
 VFDB—Virulence Factors Database 

      

  It can be seen that the three strategies lead to different results with a different degree of overlapping among them. 
Common elements are shown in bold and the Venn diagram shows the shared elements in the three searches  

Category list “immunological databases”

Search term “immunological”

Search term “immunology”
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 Accessing the information contained in the resources can be 
performed in two different ways. The fi rst one is based on brows-
ing by concepts and sub-concepts. The sub-concepts are shown 
when the cursor is over each of the main categories, then it is pos-
sible to click on them and then all the resources are shown. The 
results are then presented showing all the resources, databases, 
and tools annotated under that sub-concept in alphabetical order. 
On top of the page there are several buttons that allow the user to 
subscribe to a RSS channel associated with that search to receive 
the latest news related with changes in those contents, change the 
results presentation to see them in a compact way or sort them by 
the Directory Index rank. It is also possible to download the results 

  Fig. 3    Screenshot of the Home page of the Bioinformatics Links Directory. It is possible to see the different 
elements that enable the data retrieval from this resource. On the  upper  part the “text-box” search and in the 
 lower  part of this screenshot just two of the different topics used to classify the resources. Above these two 
topics are the buttons used to select between the contents category (resource, database or tool) and the num-
ber of elements contained on each of them in June 2013       
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in a variety of formats and fi lter them by hiding the undesired 
 categories (resources, databases or tools). In the bottom of the 
screen the associated Tag Cloud represents the tags used in the 
annotation of those links. 

 Alternatively it is possible to query the directory using a text 
box placed on the top of the page. These searches can be per-
formed on the titles, the descriptions, the tags or by default in all 
these fi elds at once (Fig.  4 ).

3        Finding Relevant Tools for Immunoinformatics, Systems Biology, 
and Personalized Medicine 

 The main resource to search for bioinformatics tools is the 
Bioinformatics Links category, since it contains all the tools pub-
lished in the NAR Special Issue on Web services since 2003. The 
search methodology for tools is the same described in the previous 
section, with the only difference that in this case the user should 
press the buttons “Hide Databases” and “Hide resources” in order 
to retrieve only the tools. A useful strategy for the retrieval of tools 
is to use the “Tags” used to annotate the links, in Table  4  there is 
a list of possible tags of interest and Table  5  shows some of the 
results of a search performed using the “Tag”  Health and Disease .

4        Sharing Data in Immunoinformatics 

 The widespread use of knowledge representation standards and 
ontologies in biomedical informatics has greatly simplifi ed the data 
integration and sharing processes. Immunoinformatics has not 
been different and there have been some important developments 
not only in the integration of ontologies in existing resources (for 
example in IEDB [ 13 ]) but also in the development of some spe-
cifi c ontologies focused on immunology. A good example of this 
specifi c ontologies is the IMGT ontology [ 14 ], fi rstly developed in 
1999 as part of the efforts of the Immunogenetics international 
collaboration (Table  6 ). Another important aspect related with 
data sharing and data integration is the development and use of 
reporting guidelines. These guidelines enable the reporting of 
minimal information related with biological investigations [ 15 ]. 
It is possible to access to the list of available reporting guidelines 
through the biosharing.org Web portal (  http://www.biosharing.
org/standards/reporting_guideline    ). There were 62 guidelines in 
June 2013 and several of them are recommended or associated 
with the contents of this chapter (Table  7 ).
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  Fig. 4    Screenshot showing the details of an entry in the Bioinformatics Links Directory from the results of a 
search using the Tag “peptide mapping”. In the  upper  part of the image it is possible to see the sorting and 
download options available. In the  lower  part of the screenshot it is possible to appreciate the contents of the 
entries with the link to the resource, its description, ranking and fi nally the associated tags assigned during the 
annotation process       
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5        An Example of the Combination of Immunoinformatics, Systems Biology, 
and Personalized Medicine: InnateDB 

 Nowadays, with the development of new “-omics” based tech-
nologies, the analysis of different sets of biological molecules 
 represents a key aspect of most biomedical research projects. An 
important aspect related with the use of bioinformatic resources 
and tools consists of the need to provide a context for the 
 interpretation of the results. In this sense the protocol described 
in this section describe the use of the database InnateDB [ 16 ] 

   Table 4  
  Tags for the retrieval of links associated with immunoinformatics, systems biology or personalized 
medicine in the Bioinformatics links directory   

 Algorithms  Histocompatibility antigens class II 

 Alleles  Immune system 

 Amino acid sequence  Immunogenetics 

 Amino acid sequence homology  Immunoglobulin variable region 

 Amino acids  Immunoglobulins 

 Antibodies  Kinetics 

 Antibody specifi city  Lymphocytes 

 Antigen receptors  Major histocompatibility complex 

 Antigen–antibody complex  Molecular structure 

 Antigens  Peptide mapping 

 b-Lymphocyte epitopes  Post-translational protein processing 

 Binding sites  Protein binding 

 Biological evolution  Protein databases 

 Chemical models  Protein interaction mapping 

 Chemical models  Proteins 

 Communicable diseases  Proteomics 

 Computational biology  Reference standards 

 Computer simulation  Sensitivity and specifi city 

 Epitope mapping  Sequence alignment 

 Epitopes  Systems biology 

 Genetic databases  Systems integration 

 Histocompatibility antigens   t -Lymphocyte epitopes 

 Histocompatibility antigens class I   Tertiary  protein structure 
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(  http://www.innatedb.com    ) ( see   Note 2 ), a curated resource 
developed in Canada and focused on the innate immune response. 
This system provides access to a unifi ed interface for accessing 
curated information (at different levels) about pathways and mol-
ecules, and their interactions, associated with the innate immune 
response of human ( Homo sapiens ), mouse ( Mus musculus ), and 
cow ( Bos taurus ). 

   Table 5  
  Example of some of the tools that can be found at the Links directory when the search is done using 
the Tag “Health and Disease”   

 Tools  Description 

 IEDB-AR. The Immune Epitope Database 
Analysis Resource (IEDB-AR) [ 48 ] 

 Analysis of immune epitopes 

 DyNaVacS [ 49 ]  DNA vaccine design tool 

 DigSee—Disease Gene Search Engine 
with Evidence Sentences [ 50 ] 

 Tool for understanding the relationship between 
genes and diseases from the literature 

 EpiToolKit [ 51 ]  Suite of tools for immunological research 

 NetMHC3.0 [ 52 ]  Prediction of MHC Class I peptide binding 

 OptiTope [ 53 ]  Identifi cation of epitopes for vaccine design 

 PEPVAC [ 54 ]  Multiple epitope vaccines design tool 

 PGMRA [ 55 ]  Phenotype–genotype association tool 

   Table 6  
  Example of some of the ontologies found at OBO Foundry (  http://www.obofoundry.org/    ) that are 
relevant for Immunoinformatics   

 Ontology name  URL 

 Cell Type Ontology    http://www.cellontology.org/     

 Foundational Model of Anatomy    http://www.fma.biostr.washington.edu/     

 Protein Ontology    http://www.pir.georgetown.edu/pro/     

 Human Disease Ontology    http://www.disease-ontology.org     

 Gene Ontology    http://www.geneontology.org     

 Human Phenotype Ontology    http://www.human-phenotype-ontology.org     

 Infectious Disease Ontology    http://www.infectiousdiseaseontology.org     

 Ontology for Biomedical Investigations    http://www.obi-ontology.org/     

 Systems Biology ontology    http://www.ebi.ac.uk/sbo/     

 Vaccine Ontology    http://www.violinet.org/vaccineontology/     
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 The information retrieval process at this resource can be 
performed in different ways. The simplest query system is based on 
the selection among the different organisms available in the data-
base, the selection of the identifi er used for the search (which could 
be a protein or a gene name, an Ensembl ID, or a RefSeq ID) and 
fi nally the type of results of interest, choosing among genes, pro-
teins or interactions (Fig.  5 ). Under the tab named “Search” the 
database provides the user with a more complex query interface for 
queries based on the molecules, the interactions or the pathways. 
The contents of the database are grouped together in different 
categories depending on the type of interactions, the pathways or 
the different immune gene lists, and this grouping is also provided 
as a way to browse the database.

   Table 7  
  Examples of some of the relevant minimum information reporting guidelines   

 Reporting guideline name  Purpose 

 MIAME [ 56 ]  Minimum information about a microarray experiment 
   http://www.fged.org     

 MIATA [ 57 ]  Minimal information about T cell assays 
   http://www.miataproject.org     

 MIMIx [ 58 ]  Minimum information about a molecular interaction experiment 
   http://www.psidev.info/mimix     

 MISFISHIE [ 59 ]  Minimum information specifi cation for in situ hybridization and 
immunohistochemistry experiments 

   http://www.mged.sourceforge.net/misfi shie/     

  Fig. 5    Screenshot of the home page of InnateDB showing the menu as well as the simplifi ed query interface       
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   A very interesting characteristic of InnateDB is that it also 
offers some tools for the analysis of user’s data ( see   Notes 3  and  4 ). 
The tab “Data Analysis” gives access to a set of tools to analyze 
pathways, the gene ontology, networks, interactions and transcrip-
tion binding factor sites (TFBSs). Each of these analytical tools 
allows the users to upload their own data using a tabular format, 
providing at least the name of the genes or proteins of interest and 
depending on the tool also some other numerical data such as the 
gene expression intensities or  p -values. 

 In the pathway analysis the system uses all the pathways from a 
selection of major public databases such as KEGG [ 17 ], Reactome 
[ 18 ], NetPath [ 19 ], or PID [ 20 ] and makes the tool one of the 
most comprehensive in terms of the number of resources used for 
pathway analysis. In the analysis of gene ontology, interactions, 
and networks, the analysis exploits the curated information stored 
in the database to enrich the results of these analyses.  

6    Notes 

     1.    The molecular Biology Database Collection is a very powerful 
resource to identify databases and it is updated on a yearly basis 
on January. An important characteristic of the MBDC is that it 
provides an historical perspective of those resources that have 
been previously published in the database special issue and are 
still available at the date of each annual update in January. For 
this reason those resources that are removed after January and 
therefore are not available any longer might still be listed in 
Web site.   

   2.    An interesting feature of InnateDB is that it has a mirror in 
Ireland (  http://www.innatedb.teagasc.ie    ) that might be faster 
for European users and helps to reduce the load of the Canadian 
server.   

   3.    InnateDB interface is a mouse over interface so it is necessary 
to put the mouse pointer over the tags for the different tabs for 
the different services available avoiding clicking on them 
because it would generate an error.   

   4.    An important characteristic associated with the use of the 
analytical tools included in InnateDB is that they require the 
use of accession numbers from any of the following data-
bases: Ensembl (preferred), RefSeq, Entrez, UniProt, or 
InnateDB. For this reason in the case of working with gene 
symbols these must be transformed into any of the previ-
ously cited accession numbers. This gene ID conversion step 
might be carried out using a Web conversion tool such as the 
one offered at DAVID [ 21 ] (   http://www.david.abcc.ncifcrf.
gov/conversion.jsp    )    .         
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    Chapter 26   

 The Role of Small RNAs in Vaccination 

           Ajeet     Chaudhary     and     Sunil     Kumar     Mukherjee    

    Abstract 

   The concept of vaccination came to light following Edward Jenner’s classical observation on milkmaids 
who were protected against smallpox. However, plants lack the cellular based immunity system and thus it 
was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like 
cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants 
have also evolved immunity against their pathogens. The further advances in the fi eld revealed that an 
endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the 
antiviral immune responses are related to the induction of specifi c small RNAs. The detection of virus 
specifi c small RNAs (vsiRNA) in immunized plants confi rmed their roles in the immunity against patho-
gens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of 
RNAi can be effi ciently used to control the invading viruses in transgenic plants. It is also possible that the 
microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA mol-
ecules play a vital role in defense system and these can be engineered to enhance the immunity against 
specifi c viral pathogens.  

  Key words     Cross-protection  ,   PDR  ,   RNA interference  ,   Endogenous siRNA  ,   Artifi cial microRNA  

1       Introduction 

 Cross-protection is a phenomenon known for developing immunity 
against various diseases like smallpox, infl uenza, measles, and teta-
nus in human beings in the form of vaccination ( see   Note 1 ). The 
earliest documented examples of vaccination were from India and 
China in the seventeenth century, where vaccination with powdered 
scabs from people infected with smallpox was used to protect 
against the disease [ 1 ]. This kind of immunity essentially depends 
upon the B-cells and T-cells in the animal kingdom [ 2 ]. However, 
plants lack this cellular immune system; and instead they have 
evolved different mechanisms to deal with the protection against 
the invading pathogens, especially viruses. Previously, a few defense 
mechanisms have been known in plants like PAMP- triggered 
immunity (PTI) and effector triggered immunity (ETI) and others 
like systemic acquired response (SAR), etc. [ 3 ,  4 ] ( see   Note 2 ). 
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Later, a more effective RNA-dependent antiviral immunity was 
discovered in plants which is now more commonly known as RNA 
interference (RNAi). RNAi mediated antiviral defense mechanism is 
similar in some way to cell based immunity of the animal system [ 5 ]. 
In plants, instead of antibodies against pathogens, the prevailing 
RNAi mechanisms produce small RNAs which specifi cally target 
the viral genome sequence for inactivation. This RNAi mechanism 
can also be artifi cially directed against viral pathogen to induce 
immunity against the pathogens in transgenic plants. The subse-
quent part of this article focuses on the plant defense response 
against the model pathogens, i.e., viruses only.  

2     Cross-Protection 

 Plant scientists have been trying to develop resistance through pro-
phylactic inoculation with attenuated viral strains in plants for 
decades. This kind of immunization is known as cross-protection. 
It originated from the classical observation that many plants did not 
show secondary infection of the virus if they had previously been 
infected by same or closely related non-virulent viruses (   Fig.  1 ). 

B, Mild viral symptom 

Virulent Virus 

C, No severe damage done by virus A, Healthy plant

Attenuated/
Mild Virus 

Agroinoculation

b, complete devastation of plant done 
by virus 

a, Healthy plant 
(Control)

Virulent Virus 

  Fig. 1    Cross-protection in tobacco plants: ( A ) A healthy tobacco plant was fi rst inoculated with mild or attenuated 
virus by using agrobacteria or white fl y. ( B ) After few days when the plant started showing mild viral symptoms, 
the second dose of virus was given with the virulent strain of the same virus. ( C ) The plant did not show any 
severe symptoms and instead was healthy with normal fl owering and fruiting. ( a ) In control experiment a 
healthy plant was directly inoculated with a severe strain of virus. ( b ) The plant was severely affected by the 
virus, and showed severe symptoms with delayed fl owering and fruiting       
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The earliest evidence for the cross-protection was recorded by 
Mckinney [ 6 ]. He observed that tobacco plants were no longer 
vulnerable to subsequent infection of TMV strain causing green 
mosaic symptom if previously they had been infected with the mild 
strain of TMV causing mild green mosaic symptom. Shortly there-
after, the similar results were also observed by Thung [ 7 ], using 
TMV strains, and Salaman [ 8 ] with strains of potato virus X (PVX). 
They both independently demonstrated that simultaneous inocu-
lation of a mild and a severe virus strain into a plant led to less severe 
symptoms than when the severe strain was inoculated alone. Since 
then cross-protection has been used against many viral diseases in 
various parts of the world to protect the crop plants against devas-
tating viral disease (Table  1 ).

    In China, an experiment was performed in the year 1964; using 
symptom-less mutant of tomato mosaic virus (ToMV) and signifi -
cant increase in yield of tomato was observed [ 9 ]. In the same 
manner, the mild strain of Citrus tristeza virus (CTV) was used to 
save several million citrus trees in Brazil and Australia from more 
severe strains of CTV [ 10 ]. A successful operation aimed for the 
cross-protection of apple orchards against several strains of Apple 
mosaic virus (AMV) was also completed in New Zealand [ 11 ]. 

 Passion fruit vines are generally productive for as long as 8 
years, but productivity drops to 2 years in areas heavily infected 
with the passion fruit woodiness virus. Protection from severe 
strains of the virus has been achieved in Australia, using fi eld iso-
lates obtained from fruit plants displaying mild symptoms [ 12 ,  13 ]. 
In West Africa, virulent strains of cacao swollen shoot virus (SSV) 
cause typical symptoms of swollen shoot disease in cacao planta-
tions. Mild strains of the virus obtained in the fi eld effectively pro-
tected the plant from attack by a severe strain [ 14 ] after fi eld trial 

   Table 1  
  List of plants treated with cross-protection against different viruses worldwide [ 144 ]   

 Virus system  Host plant  Country 

 Tobacco mosaic virus (TMV)  Tomato  Netherlands, UK, Japan, France, USA 

 Tomato mosaic virus (ToMV)  Tomato, pepper  China 

 Citrus tristeza virus (CTV)  Citrus  Brazil, Australia, India 

 Apple mosaic virus  Apple  New Zealand 

 Passion fruit woodiness virus (PFWV)  Passion fruit  Australia 

 Cacao swollen shoot virus (SSV)  Cacao  West Africa 

 Cucumber mosaic virus 
(CMV) + RNA-5 versus CMV 

 Pepper  China, India 

Small RNAs in Vaccination



482

periods of 3 years. Only 8 % of protected plants developed severe 
symptoms as opposed to 70 % among non-protected plants [ 15 ]. 
Papaya ringspot virus (PRV) causes extensive damage to papaya 
trees, and limits papaya production in several tropical and subtropi-
cal areas. No resistant papaya cultivars have been obtained so far. 
To diminish the economic loss caused by the virus, symptom-less 
strain of PRV obtained by nitrous acid treatment had been used 
that protected papaya trees from infection with severe strains [ 16 ]. 

 During the worldwide practice of cross-protection in crop 
plants, it was observed that in some cases no resistant plants could 
be obtained, or it has adversely affected crop plants. To explain this 
ambiguity of cross-protection, many hypotheses were given, but 
no single hypothesis could account for all data obtained. Later it 
was found that, for plant protection, whole virus genome is not 
required, only part of the viral genome is suffi cient to confer the 
resistance.  

3     Pathogen Derived Resistance (PDR) 

 In 1985, Sanford and Johnston [ 17 ] proposed the concept of 
pathogen derived resistance (PDR). PDR is a method to induce 
resistance in plants against viral pathogen by introducing gene(s) 
of pathogen into the susceptible host. The PDR approach is based 
on the fact that in all pathogen–host interaction, there are certain 
pathogen encoded cellular functions that are essential for patho-
gens but not for host. These functions are mostly indispensable for 
pathogens. If one of such functions is compromised in host, patho-
gens will not survive. These essential cellular functions which are 
under control of pathogen’s gene might be altered by the presence 
of a corresponding gene product in dysfunctional form or in excess 
or appearance of the same at a wrong developmental phase of the 
pathogen life cycle in the host. Therefore, resistance to a particular 
pathogen can be attained by transforming a plant with an appropri-
ate pathogen’s gene. The validity of the concept of PDR was fi rst 
demonstrated by Powell Abel. In his work, transgenic plant over- 
expressing the coat protein (CP) of tobacco mosaic virus (TMV) 
showed resistance to TMV. In these experiments, transgenic 
tobacco plants expressing high levels of TMV-CP were more resis-
tant to the TMV virions [ 18 ]. Subsequently, there have been 
numerous attempts to generate virus resistance in transgenic plants 
based on this concept, i.e., through the expression of virus derived 
genes or genome fragments [ 19 – 23 ]. Furthermore, in a quest to 
fi nd the mechanism for resistance, John A. Linbdo performed an 
experiment using Tobacco etch virus (TEV) coat protein. The 
transgenic tobacco plant expressing TEV coat protein recovered 
from TEV infection after 3–5 weeks of inoculation. The transgene 
mRNA levels in recovered tissue were 12–22 times less than in 
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un- inoculated transgenic tissue of the same developmental stage [ 24 ]. 
It was concluded that virus infection induced destruction of RNAs 
related to the invading viral genome, conferring resistance against 
the virus and suggesting the existence of RNA-directed antiviral 
defense mechanism [ 25 ]. The RNA (and not the viral protein in 
the transgenic) directed antiviral defense was demonstrated by 
many different means including the transgenic introduction of the 
non-translatable version of RNA of the pathogen gene. Moreover, 
the discovery of virus encoded suppressor protein of gene silencing 
made it clear that small RNAs are a key player behind the antiviral 
immunity of plants [ 26 – 28 ].  

4     Viral Recovery 

 Another form of cross-protection is also visible in virus infected 
plant which is known as viral recovery. Viral recovery is a phenom-
enon in which, virus infected plant tends to recover from viral 
infection after some time and becomes immune upon reinfection 
with same or similar virus. During 1920s, many researchers in USA 
made the observation that in the ringspot virus infected plants, the 
ringspot symptoms gradually failed to develop on the newly emerg-
ing leaves, but the sap from the new growth continued to be infec-
tious and would readily produce the disease on healthy plants [ 29 ]. 
Later in the year 1939, W. M. Stanley had experimentally showed 
the viral recovery phenomenon in tobacco plant [ 30 ]. He observed 
that the inoculation of young Turkish tobacco plants with tobacco 
ringspot virus is followed by the appearance of marked systemic 
lesions. As the plant grows and the disease progresses, the new 
leaves which the plant produces show less and less severe symp-
toms until after about 2 weeks, following which the new emerging 
leaves appear quite normal in comparison to the leaves of healthy 
plants. The plant is then considered to have recovered, for the 
leaves produced thereafter look healthy and cuttings grow into 
normal looking plants. Since then, this recovery phenomenon has 
been observed in many combinations of plants and viruses. For 
example, the shock disease of Blue berry was observed in 1950. 
The plant stayed in shock (diseased) condition for 1–2 years, after 
which it recovered from disease though it carried the virus. Many 
other similar observations of viral recovery have been made in dif-
ferent crops. Like cross-protection, viral recovery is also strain spe-
cifi c. It works only for closely related strains of viruses. However, 
there is no need of prior infection with mild or attenuated virus. 
The discovery of the “gene silencing system” in 1990s resolved the 
long debate over the mechanism of cross-protection and viral 
recovery. Molecular virologists proved that cross-protection (or 
PDR or viral recovery) is a consequence of RNA silencing mecha-
nism operating at the transcript level.  
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5     Homology Dependence 

 Both cross-protection and viral recovery phenomena are homology 
dependent (Fig.  2 ). They work for the homologous or nearly 
homologous viruses only. In the beginning researchers tried with 
many different combinations of viruses to induce resistance, but 
they could not get desired results [ 31 – 33 ]. Attempts were made to 
inoculate unrelated virus like PVX into same plants immunized with 
different viruses such as TMV a priori, but the TMV- immunized 
plants could not resist the development of PVX viral symptoms. 
Sequence homology dependence nature of viral protection was 
more descriptively revealed by Ratcliff et al. [ 34 ]. In their experi-
ment, when recovered leaves of tomato black ring nepovirus strain 
W22 infected tobacco plants were inoculated with progressively 
less related virus PVX or closely related BUK strain, the plants did 
not resist the occurrence of disease. This analysis confi rmed that the 
resistance associated with the recovery was specifi c to strains that 
were related in genomic sequence to the recovery- inducing virus. 
Of the viruses used for the secondary infection, BUK is the most 
closely related to W22, having 68 % nucleotide identity in RNA2. 
Tomato ringspot nepovirus RNA1 and PVX RNA have no long 

New Leaf, No symptom 

A

10 inoculation with 
Virus A 

Recovery

B
20 inoculation 
with Virus B

20 inoculation with 
Virus A 
(Homologous)

C
D

  Fig. 2    Homology-dependent protection and recovery: ( a ) The plant was inoculated with Virus A, leading to the 
development of viral symptoms (Black ringspot). ( b ) After 2–3 weeks of primary inoculation, in the  upper  part 
of plant the new leaf showed no symptoms of black ringspot disease. The plant is said to be recovered. 
( c ) When recovered leaves were again inoculated with same virus (Virus A), plant leaves failed to develop any 
symptoms. This is homology-dependent cross-protection. ( d ) However, if secondary inoculation is with differ-
ent strains of the virus (Virus B), the plant leaves develop viral symptom in usual manner. Adopted from 
Hamilton et al. (1999)       
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stretches of sequence identity with W22 RNA. Therefore, resistance 
in the recovered leaves is specifi c for viruses that have RNA 
sequence that are similar to the virus used for primary inoculation. 
In Fig.  2 , the homology-dependent viral protection phenomenon 
is elaborated.

6        Protein or RNA? 

 The mechanism for all three phenomena (PDR, cross-protection, 
viral recovery) took some time to come out. To resolve the dilemma 
over what is more important; Protein or RNA of the inoculating 
viral ORF for the protection against virus, researchers looked at 
the consequences with both the translatable and non-translatable 
form of viral ORFs. When the researchers tried to express the viral 
protein in plants, they surprisingly noticed that the plants express-
ing the lowest or even undetectable level of protein often displayed 
the highest resistance [ 35 ]. Furthermore, attempts were made to 
express the untranslatable viral mRNA or viral transcripts which 
cannot synthesis functional protein in plants. In one such experi-
ment the expression of untranslatable viral mRNA demonstrated 
the resistance in plants, thus confi rming the involvement of RNA 
in resistance [ 36 ]. The other examples of PDR directed at the 
RNA level involve the expression of non-structural protein gene 
sequences resulting from frameshift mutation [ 35 ,  37 ] or sequence 
present in untranslated regions [ 38 ] or various antisense RNAs 
[ 39 ,  40 ]. In all these cases the transgenic plants were unable to 
generate functional protein for corresponding mRNA. So it was 
concluded that RNA plays a key role in the PDR.  

7     Small RNA (sRNA) 

 In the recent discovery it has been shown that whole RNA comple-
ment is not required, only fragment(s) of RNA is suffi cient to 
implement the viral recovery. For the fi rst time, presence of small 
RNA corresponding to the virus in the infected plant was shown 
by Andrew J. Hamilton and Baulcombe [ 41 ]. They detected the 
~25 nucleotide long double-stranded RNA (ds-RNA) correspond-
ing to the potato virus X (PVX) positive strand in tobacco plant 
after 4 days of inoculation with PVX virus. Twenty-fi ve-nucleotide 
PVX RNA accumulated to the similar extent in systemic leaves but 
not in mock inoculated leaves. The presence of these small RNAs 
in PVX infected tobacco plant is linked with the role of small RNAs 
in the antiviral immunity. These small dsRNAs were found from 
both the virus-infected and -recovered leaves. Long before the dis-
covery of small RNA in antiviral immunity, it was made clear that 
the gene silencing mechanisms control both antiviral immunity and 

Small RNAs in Vaccination



486

transgene silencing in the homology-dependent manner [ 42 – 46 ]. 
In the subsequent years, when RNA based gene silencing mecha-
nism more descriptively explained in various model organisms, it 
was found that the small RNAs are sole executioners for all type of 
silencing and antiviral immunity. 

 The small RNAs (sRNAs) are 21–24 nucleotides long non-
coding RNA and are involved in sequence specifi c regulation of 
gene expression at transcriptional and posttranscriptional level. 
RNA silencing is an evolutionary conserved, sequence-specifi c 
mechanism that regulates gene expression and chromatin states 
and defends against invasive nucleic acids such as transposons, 
 transgenes, and viruses [ 47 – 49 ]. Silencing is directed by 21–24 
ntsRNAs, processed from the double-stranded (ds) RNA precur-
sors by Dicer or Dicer-like (DCL) enzymes (    see   Note 3 ). The 
sRNAs associate with Argonaute (AGO) ( see   Note 4 ) proteins 
and guide the resulting RNA-induced silencing complexes (RISC) 
( see   Note 5 ) to silence complementary RNA or DNA (Fig.  3 ). 
In plants, silencing pathways generate two types of sRNAs: 
microRNAs (miRNAs) and short interfering (si)RNAs. The 
miRNAs are produced by DCL1 from hairpin dsRNA containing 

DCL2

DCL2

HYL

siRNA duplex

Long dsRNA

RISC loading 
complex

AGO1

AGO2
AGO1 pre-RISC

HEN1
AGO RISC

2’-OCH3 Target Cleavage

  Fig. 3    siRNA Pathway: dsRNA precursors (viral DNA, structural Loci) are processed by Dicer (DCL-2 or DCL- 4) 
to produce siRNA duplexes containing guide and passenger strands. The plant dicer and the cognate dsRNA- 
binding protein HYL (which together form the RISC-loading complex, RLC) load the duplex into Argonaute1 
(AGO1) the passenger strand is later destroyed and the guide strand directs AGO1 to the target RNA. Adopted 
from Nature Reviews by Megha Ghildiyal and Phillip D. Zamore (2009)       
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precursors transcribed by Pol II from the endogenous  MIR  genes. 
They silence target genes through mRNA cleavage and/or trans-
lational repression. The miRs are present in all forms of eukaryotic 
life except the fungi, and about 30,000 of them are known till 
today. The siRNAs of distinct size classes are processed by DCL4 
(21-nt), DCL2 (22- nt) or DCL3 (24-nt) enzymes from dsRNA 
precursors in plants. These precursors are produced by plant 
encoded RNA-dependent RNA polymerases (RDRs) ( see   Note 6 ) 
or from the overlapping sense and antisense Pol II transcripts. 
RDR6-dependent, 21-nt  trans -acting siRNAs (tasiRNAs) and 
secondary siRNAs silence genes posttranscriptionally (like miRNAs), 
while the RDR2- dependent 24-nt heterochromatic siRNAs 
 (hcsiRNAs) silence repetitive DNA transcriptionally through 
RNA-dependent DNA methylation (RdDM).

   As discussed in the paragraph above, among other small RNAs, 
small interfering RNAs (siRNAs) are regarded as main player of the 
antiviral immunity. There are many strong evidences to support 
the exclusive role of siRNA in antiviral activity in plants. The detec-
tion of siRNA specifi c to the viral coat protein gene in transgenic 
plants resistant to Papaya ringspot virus (PRSV) support the 
involvement siRNAs in the establishment of resistance against viral 
pathogens [ 50 ]. The virus infected plant elicits the RNA silencing 
through biogenesis of siRNA to target virus and homologous 
RNAs for degradation [ 51 ]. Discovery of viral suppressor proteins 
( see   Note 7 ) of RNA silencing [ 26 – 28 ,  52 ], and mutation studies 
of RNA silencing gene like  SGS2/SDE1 ,  SGS3 ,  SDE3 , and  AGO1 in 
Arabidopsis thaliana  [ 53 ] further validate the role of siRNA in 
plant immunity against viral pathogens.  SGS2/SDE1 ,  SGS3 ,  SDE3 , 
and  AGO1  gene were identifi ed as important for transgene induced 
RNA silencing in  Arabidopsis thaliana . The products of these 
genes are involved in the production of dsRNA which acts as a 
substrate for downstream machinery of RNA silencing. Moreover, 
it was observed that the mutant  A. thaliana  for above genes were 
hypersensitive to CMV infection as well as susceptible for some 
other viruses [ 54 – 58 ].  

8     Exogenous siRNA 

 To develop a better understanding about plant antiviral immunity, 
it is imperative to go into the details of siRNA. In the broader 
sense, on the basis of origin of dsRNA, siRNAs are classifi ed as 
exogenous and endogenous. For exogenous siRNA, the source of 
dsRNA may be transgenes or viral nucleic acids. However, in the 
case of endogenous siRNA it may be transposons, repeat sequences, 
or convergently transcribed RNAs. The siRNA pathway in 
Arabidopsis consists of mainly two families of ribonuclease protein, 
Dicer and Argonaute. The member of dicer like (DCL1, DCL2, 
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DCL3, DCL4) protein family possesses RNaseIII type activity and 
involve in the processing of dsRNA to generate siRNA. DCL2, 
DCL3, DCL4 generate 22-, 24-, 21-bp siRNA respectively while 
DCL1 produces 21-nt small RNA and act in the production of 
miRNAs. The viral nucleic acids (DNA/RNA viruses) are mainly 
processed by DCL4 protein and produce 21 nt viral siRNA 
(vsiRNA). In the absence of DCL4, DCL2 and DCL3 act to pro-
cess viral dsRNA. However, DCL1 is also a player but a minor 
contributor to vsiRNA production. It has been observed that a 
triple mutant (loss of function for dcl2, dcl3, dcl4 gene) Arabidopsis 
plant produces low amount of vsiRNA upon infection with Turnip 
mosaic virus (TuMV). So it suggests that DCL1 is also capable of 
producing vsiRNA when other DCL-activities are hampered. The 
Argonaute (AGO) is the RNaseH nuclease type protein which 
cleaves the single-stranded (ss) RNA. The AGO protein bound 
with ssRNA of the ds-siRNA forms the RNA-induced silencing 
complex (RISC) that targets the complementary mRNA [ 59 ]. 
There are ten types of AGO proteins (AGO1-10) present in 
Arabidopsis plant with their distinct functions. 

 Two models have been proposed to explain the silencing trig-
ger on virus attack. In the fi rst model, the genomic components of 
the incoming virus may have an inbuilt capability to form intramo-
lecular dsRNA due to the presence of extensive complementary 
regions in their genome. These folded viral RNAs are then directly 
recognized and processed by DCL to vsiRNA [ 60 ]. In second 
model, dsRNA can be produced by viral RNA polymerase from 
DNA or RNA viruses as a converging bidirectional transcript 
(DNA virus) or an intermediate in genome replication and tran-
scription [ 61 ]. The systemic spread of virus induced silencing gives 
rise to another type of pathway for dsRNA production which 
requires the host RdRPs (RNA-dependent RNA polymerases, also 
called RDRs). The Arabidopsis plant has 6 RDRs with specialized 
but interconnected function in production of different dsRNAs 
[ 62 – 64 ]. Only RDR1 and RDR6 are involved in targeting viral 
genome for vsiRNA synthesis. Some lines of evidence also support 
the involvement of RDR2 in the production of vsiRNA [ 65 ]. The 
combination of RDR1, RDR2, and RDR6 produces nearly 90 % of 
vsiRNA in the virus infected Arabidopsis plant [ 60 ]. The vsiRNA 
strand that guides silencing through RISC is called the guide 
strand, while the other strand, which is eventually destroyed, is 
known as the passenger strand. In addition to AGO protein and 
small RNA complex, RISC also contains some other proteins that 
direct the RISC to the site of mRNA degradation [ 66 ]. The ther-
modynamic stability of 5′ end of two siRNA strand in the duplex 
determines the guide and passenger strand [ 67 ,  68 ]. Then the 
RISC loading complexes (RIC) recruit AGO2 protein which 
cleaves the passenger strand at the phosphodiester bond between 
the nucleotide at position 10 and 11 nucleotide of paired guide 
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strand [ 69 ]. The release of passenger strand from pre-RISC complex 
converts it into mature RISC. The guide strand is subsequently 
2′-O-methylated at 3′ end by s-adenosylmethionine-dependent 
methyltransferase HEN1 ( see   Note 8 ) [ 70 ,  71 ]. Following this, the 
matured RISC can bind with complementary mRNA transcript 
and inactivate it.  

9     Use of Exogenous siRNA to Engineer Plant Antiviral Immunity: Transgenic Use 

 The RNA silencing phenomenon has provided a wonderful weapon 
to combat viral pathogens. Various strategies have been adopted by 
researchers to augment the plant antiviral immunity by mimicking 
the natural RNA silencing pathway. In past RNA silencing phenom-
enon was inadvertently evoked in quest to make virus resistance 
plant by introducing virus derived sequences into plants. As the 
siRNA based RNA silencing phenomenon is better understood, 
it has been widely used for engineering virus resistance [ 72 ]. The 
idea to engineer virus resistance is based on the expression of arti-
fi cial dsRNAs, homologous to viral sequences in plants [ 73 ,  74 ]. 
As dsRNA is a substrate for the Dicer, plant-encoded RdRps will 
not be necessary to turn on RNAi effects. So it is possible to target 
the wide range of virus by expressing artifi cial dsRNAs homolo-
gous to viral sequences [ 75 – 78 ]. The transgenic plant expressing 
dsRNAs has been successfully employed against various plant viruses 
like tomato golden mosaic virus (TGMV) [ 79 ], Tomato yellow leaf 
curl Sardinia virus (TYLCSV) [ 80 ], Tomato yellow leaf curl virus 
(TYLCV) [ 81 ]. Artifi cial dsRNAs in plants can be generated by two 
methods: (1) Hairpin constructs in which virus sequence is cloned 
in sense and antisense manner and separated by an intron [ 82 – 84 ]; 
(2) Independent expression of transgene in the sense and/or antisense 
manner, resembling the mechanism of co- suppression [ 85 ,  86 ]. 
Pooggin et al. obtained the improved resistance in transgenic 
plants against  Vigna mungo  yellow mosaic virus (MYMV) using IR 
(inverted repeat) construct containing the common region of the 
MYMV [ 73 ]. Similarly, Noris et al. [ 87 ] and Ribeiro et al. [ 88 ] pro-
duced transgenic plants expressing siRNAs against TYLCSV and 
Tomato chlorotic mottle virus (ToCMoV), respectively. The artifi -
cial dsRNA technology has no limitation in the choice of targeted 
sequences. But mostly conserved and viability related nucleotide 
sequences in viruses are opted for targeting. For example Rep gene 
(Replication gene, AC1 gene from bogomovirues) is strictly 
required for replication, so it is a high-priority RNAi target for 
almost all plant viruses [ 89 ]. Various researchers have obtained 
promising results by targeting Rep gene of ACMV [ 90 ,  91 ]. This 
approach defi nitely can be aimed to any viral coding gene, until the 
decrease in viral mRNA has negative effect in virus life cycle. Some 
researchers also tried to target the viral silencing suppressor gene. 
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The viral silencing suppressors are the viral proteins to counteract 
the RNAi of plants. They play a signifi cant role in the accumulation 
of viral transcripts [ 75 ,  92 ,  93 ]. Fagoaga et al. [ 94 ] have engi-
neered  Citrus tristeza  virus resistance by targeting the p23 gene, a 
viral silencing suppressor. In the midst of cat and mouse game 
between viruses and plants, nature has bestowed plants with many 
endogenous siRNA which provides spontaneous response to biotic 
and abiotic stresses.  

10     Endogenous siRNA 

 Endogenous siRNAs (endo-siRNAs) are small RNA which are 
encoded by own genome of an organism. The fi rst endo-siRNA 
was discovered in plants and  C. elegans  [ 95 ,  96 ], and in recent 
years they have been reported from mammal and fl ies too. In plants 
they arise from various sources like transposons, repetitive ele-
ments, and tandem repeats such as 5S ribosomal gene [ 97 ]. They 
are also called  cis -acting siRNA (casiRNAs) and comprise the bulk 
of endo-siRNA in cellular milieu. The production of casiRNA 
requires DCL3, RDR2, Pol IV, and AGO6 or AGO4 proteins 
[ 97 – 105 ]. These 24-nt long casiRNAs are methylated by HEN1 
and promote the heterochromatin formation by histone modifi ca-
tion and DNA methylation at loci from which they emerge [ 95 , 
 97 ,  106 – 108 ]. The other class of plant endo-siRNAs includes 
tasiRNA, nat-siRNA, lsiRNA, etc. The  trans -acting siRNa are pro-
duced by convergence of miRNa and siRNA pathway in plants 
[ 109 – 113 ]. Sometimes the cleavage of certain transcripts by 
miRNA directed pathways recruits RDR6, which copies the cleaved 
transcript and converts it to dsRNA and provides the substrate for 
DCL4. DCL4 splices the dsRNA into 21-nt long tasiRNA [ 113 ]. 
In response to biotic stress plants also produce natural antisense 
transcript-derived siRNAs (natsiRNAs) [ 114 ,  115 ]. The nat- 
siRNAs are produced from a pair of convergently transcribed 
RNA. In such case one transcript is expressed constitutively while 
the complementary RNA is transcribed only under stress condi-
tions such as pathogen attack or abiotic stresses. They are 21 and 
24-nt long (or even could be longer), require DCL2/DCL1, 
RDR6, SGS3 (Suppressor of Gene Silencing 3, an RNA binding 
protein), and RNA Pol IV for production from an overlapping 
region of two transcripts [ 114 – 116 ]. The cleavage of one mRNA 
from the pair is then directed by the same nat-siRNA, and it is 
another example of secondary siRNA production. In addition to 
natsiRNA, there is another stress responsive class of siRNA that is 
atypical in size (39–41-nt long) called long siRNA. It is also pro-
duced from natural antisense transcript pairs with the help of 
DCL1, DCL4, AGO7, RDR6, and Pol IV [ 117 ]. Taken together, 
endogenous siRNAs have evolved with diverse functions at various 
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levels of defense. They can induce transcriptional gene silencing via 
DNA methylation or histone modifi cation, or they can posttran-
scriptionally silence the gene by mRNA degradation [ 118 ]. The 
natural antisense siRNA, “nat-siRNA ATGB2” and long siRNA, 
“lsiRNA-1” both were observed to be induced specifi cally in 
 Arabidopsis thaliana  upon recognition of  Pseudomonas syringae  
effector AvrPt2 by the cognate  Arabidopsis  disease resistance (R) 
protein RPS2 (Katiyar-Agarwal et al. [ 114 ]). The mutation in the 
small RNA biogenesis components like RDR6 and HYL1 ( see  
 Note 9 ) but not in the silencing components hampered the RPS2 
mediated resistance in Arabidopsis. It suggests the role for nat- 
siRNAATGB2 and lsiRNA-1 in AvrPt2-specifi ed effector triggered 
immunity (ETI) upon bacterial infection [ 117 ]. It is also claimed 
that endo-siRNAs are responsible for transgeneration-systemic 
acquired resistance in  Arabidopsis thaliana  through chromatin 
modifi cation against bacterial pathogen  P. syringae  [ 119 – 121 ]. 
Although the signifi cant role of endogenous siRNAs in pathogen 
triggered immunity against bacterial pathogens, in biotic and abi-
otic stresses, has been documented, their role in antiviral immunity 
has not been explored yet. 

 The virus induced endo-siRNA can be screened by blocking 
the generation of ds RNAs from exogenous sources in plants.  

11     MicroRNA (miRNA) 

 MicroRNAs (miRs) are another important class of endogenous 
small RNA, but they are different from endo-siRNA on the basis of 
origin, biogenesis, and function. Unlike exo-siRNAs, they have 
their own genes from which they are generated by serial trimming 
of their precursor structures. They play a vital role in developmen-
tal process, pathogen response, abiotic stress, gene regulation, etc. 
The miRs are 21–22 nt noncoding small RNA, transcribed from 
their own gene present in intergenic region or some time from 
intron region ( mirtrons ) by RNA Pol II [ 122 ,  123 ]. The 
MIRNA genes are transcribed as primary transcripts (pri-miR-
NAs) with hairpin structure, which are cleaved by DCL1 along 
with HYPONASTIC LEAVES 1 (HYL1) and SERRATE (SE) 
( see   Note 10 ), producing pre-miRNAs. These pre-miRNAs are in 
turn processed by DCL1 and HEN1 producing a duplex compris-
ing the mature miRNA imperfectly base paired with a miRNA* 
strand. The newly formed duplex is then methylated by the methyl- 
transferase HUA ENHANCER 1 (HEN1) proteins [ 124 ]. This 
process occurs in the nucleus from where the methylated duplex is 
exported out by HASTY proteins and incorporated into AGO1 
containing RISC complex. In the RISC complex the passenger 
strand is cleaved off while guide strand remains attached. The mi- 
RISC then binds to the cognate target mRNA usually at 3′ UTRs 
(mostly in animals and insects) or within the protein coding region 
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(mostly in plants) by exact or near-exact complementary base pairing, 
following which the mRNA target is cleaved or translationally 
repressed [ 109 ,  125 ,  126 ]. This miRNA directed RNAi machinery 
also can be exploited to develop antiviral immunity in plants. 
Recently many virus induced novel miRNAs have been identifi ed 
in various virus infected plants. For example, miR156 and miR164 
have been identifi ed, which are induced upon infection with Turnip 
Mosaic Virus (TuMV) in  Arabidopsis  plant [ 92 ]. The miR158 and 
miR1885 are also identifi ed as virus induced miRNA in  Brassica  
against Cucumber Mosaic Virus (CTV) [ 127 ]. The identifi cation 
of novel miRNAs in virus infected plants has some bearing on the 
development of antiviral strategies in terms of over-expressing the 
virus responsive host miRNAs in plants.  

12     Transgenic Use 

 Artifi cial miRNA can be generated  in planta  to target a gene of 
interest by mimicking the intact secondary structure of endogenous 
miRNA precursor [ 128 – 132 ]. The precursor miRNA selectively 
produces the sRNA duplex of miRNA–miRNA* in vivo. The 
change in precursor sequences are allowed until the structural 
integrity is maintained. The precisely designed miRNAs often result 
in high level accumulation of miRNA with desired consequence of 
silencing the target mRNA. The fi rst amiRNAs were designed and 
used in human cell lines [ 132 ] and later in Arabidopsis [ 130 ] where 
they suppressed the reporter gene. Very soon it was realized that 
amiRNAs can be used for various purposes like silencing of endog-
enous plant gene(s) or to develop antiviral immunity in plants with 
some obvious advantage over hairpin construct ( see   Note 11 ). Since 
then, various resistant transgenic plants have been generated by 
using amiRNA constructs specifi cally designed to silence viral 
pathogenic ORFs, leading to resistance against viruses. The resis-
tance was observed in Arabidopsis against turnip yellow mosaic 
virus (TYMV) by targeting gene silencing suppressor gene, P69 of 
TYMV with amiRNA construct [ 129 ]. In another experiment 2b 
gene of cucumber mosaic virus was targeted using the same strategy 
of amiRNA, and signifi cant resistance was observed [ 48 ]. More 
recently in our laboratory, transgenic tomato lines expressing 
amiRNA against Tomato Leaf Curl Virus New Delhi (ToLCNDV) 
were shown to resist/tolerate the virus [ 133 ,  134 ].  

13     Conclusion 

 Various methods are available to induce resistance against patho-
gens since ancient time. But now the journey of vaccination/
immunization has reached to a new horizon. In the incessant 
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marathon to develop immunity against pathogens, researchers 
have made surmounting progresses from classical observation of 
cross- protection to RNA interference. The concept of PDR has 
opened a complete new scope for induced resistance. Though it 
has been in practice for a long time, only recently we have more 
grips on this technique as we understand more of the phenomenon 
in mechanistic terms. The detailed study of RNA gene silencing 
mechanism revealed small RNAs as the chief executioner molecule 
responsible for antiviral immunity in an organism. Ultimately 
researchers have started to exploit the RNAi mechanism against 
viral pathogen by devising various strategies, like hairpin construct 
for production of dsRNA, artifi cial miRNA, etc. The discovery of 
endogenous siRNAs in the pathogen infested plants has laid the 
foundation for a new approach to develop antiviral immunity.  

14     Notes 

        1.     Vaccine . The term vaccine is derived from Latin  vaccīn-us  
(means from  vacca , cow) and was used fi rst for Edward Jenner’s 
preparation from cowpox to prevent smallpox [ 135 ]. It is a 
biological preparation that contains mild or attenuated form of 
pathogens, its toxin, or one of its surface proteins and elicits an 
immune response against virulent form of the same pathogens. 
The vaccine catalyzes the body’s defense response by being 
recognized as a foreign material, and the body neutralizes it by 
secreting antibodies against it. Moreover, these immune 
responses are also memorized for later time-periods.   

   2.     PAMP-triggered immunity  ( PTI ). Pathogen-associated molec-
ular patterns (PAMPs) are conserved molecules associated with 
nonviral pathogens like the bacterial fl agellin-derived peptide 
fl g22 [ 4 ]. These PAMPs are recognized by diverse pattern 
recognition receptors (PRRs) in plants and elicit the fi rst line 
of defense. These PRRs are transmembrane in nature and 
include receptor-like kinase (RLKs) and receptor-like proteins. 
The bacterial fl agellin fl g22 is recognized by complex of recep-
tor-like kinase Flagellin Sensing 2 (RLK FLS2) and regulatory 
kinase BAK1 which trigger a set of pathogen-related responses. 
The pathogen-related response includes production of reactive 
oxygen species (ROS), activation of calcium- dependent kinases 
(CDK) and mitogen-activated kinases (MAPKs), etc. [ 4 ]. 

  Effector triggered immunity  ( ETI ). To neutralize the pri-
mary defense response (viz., PTI) of a host organism, a 
pathogen uses effector proteins. The effector proteins coun-
teract the defense response of the host by blocking the PTI 
associated signalling cascade. However, to overcome the 
effector proteins, plants have evolved resistance gene (R gene). 
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The R gene mediates the recognition of effector proteins and 
results in the effector triggered immunity (ETI). The ETI leads 
to the hypersensitive responses and programmed cell death 
(PCD) to confi ne the pathogen to limited regions only [ 4 ]. 

  Systemic-acquired resistance  ( SAR ). SAR is a hormonally con-
trolled immune response which induces defenses in distal non-
infected tissues after PTI and ETI. The key molecules involved 
in SAR are salicylic acid (SA) and ethylene/jasmonic acid 
(ET/JA). Salicylic acid stimulates the hypersensitive response 
and programmed cell death through ETI, while ethylene/jas-
monic acid controls the spread of PCD [ 4 ].   

   3.     Dicer or Dicer-like  ( DCL )  enzymes . Dicer is very important 
ribonuclease protein of RNase III family, involved in the pro-
cessing of double-stranded RNA (dsRNA) to form short 
double- stranded fragment of RNA (20–25 bp) with two base- 
pair overhang at 3′ end [ 136 ]. The Dicer contains one PAZ 
domain and two RNase III domains, and the distance between 
these two domains infl uences the length of siRNAs it produces 
[ 136 ]. The Dicer protein ultimately facilitates the formation of 
RISC. In plants, they are called Dicer-like (DCL) proteins. 
The Arabidopsis mainly encode four different DCL genes, 
DCL 1–4. The DCL 2, 3, 4 are the main players in viral siRNA 
formation, while DCL1 engages itself in producing microR-
NAs. The DCL4 is a chief sensor of viral dsRNAs and produces 
21 nt vsiRNA, while DCL2 and DCL3 act in the absence of 
DCL4 and generate 22 nt and 24 nt vsiRNA respectively [ 46 ].   

   4.     Argonaute  ( AGO )  proteins . Argonaute proteins are specialized 
small-RNA binding protein which constitute the catalytic 
component of RISC. Typically they have a molecular weight of 
~100 kDa and are characterized by a Piwi-Argonaute-Zwille 
(PAZ) domain and a PIWI domain [ 137 ]. It is named after an 
AGO knockout in Arabidopsis, which shows typical phenotype 
resembling to tentacle of octopus  Argonauta argo  [ 138 ]. AGO 
proteins specifi cally bind with different classes of small non-
coding RNAs viz, miRNA, siRNA, etc. Small RNAs direct 
Argonaute proteins to their specifi c targets through sequence 
complementarity, and lead to silencing of the target. On the 
basis of sequence homology, Argonaute protein has been clas-
sifi ed in two subclasses: (1) Arabidopsis Ago subfamily which 
resemble with AGO1 and (2) Drosophila PIWI protein called 
Piwi subfamily [ 139 ]. Ago proteins are conserved throughout 
species and many organisms express multiple family members, 
ranging from 27 in  C. elegans , 10 in  Arabidopsis , 8 in humans, 
5 in  Drosophila , to 1 in  Schizosaccharomyces pombe  [ 139 ].   

   5.     RNA-induced silencing complexes  ( RISC ). The RNA-induced 
silencing complex is effector molecule of gene silencing. It is a 
multiprotein complex containing AGO proteins bound with 
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guide siRNA or miRNA molecule [ 46 ]. RISC uses the siRNA 
or miRNA as a template to recognizing target mRNA. When 
the RISC encounters the complementary region, it binds to 
target mRNA, activates RNaseH function of AGO, and 
cleaves/inactivates the mRNA [ 46 ]. The whole process of 
gene silencing through RISC is very crucial for growth and 
development of an organism as well as defense against invading 
viral pathogens.   

   6.     RNA-dependent RNA polymerases  ( RDRs ). RNA-dependent 
RNA polymerase is required for synthesis of RNA strand 
from RNA template. They possess a conserved RNA-
dependent RNA polymerase catalytic domain. RDRs are 
widely present in plants, fungi, protists as well as in RNA 
viruses, but are absent in humans, mice, and  Drosophila  
[ 140 ]. However, the viral RDRs are more recently named as 
RdRps to differentiate them from eukaryotic RDRs. The 
 Arabidopsis thaliana  possesses six RDRs (RDR1-6) [ 140 ]. 
RDR1, RDR2, and RDR6 are more ubiquitously involved in 
the production of dsRNA molecules that are eventually gen-
erated into different types of siRNAs targeting respective 
endogenous loci [ 139 ]. Beside their role in antiviral activities 
through gene silencing mechanism, plant RDRs also have 
important functions in growth and development [ 140 ].   

   7.     Viral RNAi suppressor protein . Suppression of RNAi mecha-
nism is a common strategy employed by viruses to suppress the 
antiviral effects of the host’s RNAi mediated defense system 
against the viruses. 

 These viral suppressor proteins interact with components of 
host RNA silencing machinery and block their immediate 
action. For example, the p19 protein is a known suppressor of 
RNA silencing and encoded by tombusviruses. It sequesters 
small RNA duplex molecules and blocks the initiation of RNAi 
pathways against viral genome [ 141 ]. About 70 such suppres-
sors are known till date, and the function and crystal struc-
tures of many of those are known. However, they lack a broad 
consensus suppression motif.   

   8.     Methyl-transferase HUA ENHANCER 1  ( HEN1 ). The HUA 
ENHANCER 1 (HEN1) is a methyltransferase protein that 
adds methyl group to the ribose moiety of 3′-most nucleotide 
of miRNAs and siRNA to increase the stability against 3′–5′ 
degradation and 3′ uridylation [ 142 ]. The plant specifi c HEN1 
contains two double-stranded RNA binding domains (dsRBD1 
and dsRBD2) and a La-motif-containing domain (LCD). The 
substrate recognition is accomplished through both dsRBDs. 
However, the length of the substrate is infl uenced by the dis-
tance between the MTase domain and the LCD, each interact-
ing with one end of the small RNA duplex. The methylation 
process is Mg 2+  dependent [ 142 ].   
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   9.     HYPONASTIC LEAVES 1  ( HYL1 ). The HYPONASTIC 
LEAVES1 (HYL1) is a dsRNA-binding protein that involves 
the processing of primary miRNAs into microRNAs along 
with SERRATE and DCL1. It has two tandem double- stranded 
RNA binding domains (dsRBDs). The C terminus contains 
the putative protein–protein interaction domain, while the N 
terminus has the putative nuclear localization signals. The N 
terminus domain containing dsRBDs is indispensable for its 
function; however, the C terminus can be compromised. In 
Arabidopsis, HYL1 plays a critical role in processing of miRNA 
from pri-miRNA through DCL1 [ 143 ]   

   10.     SERRATE  ( SE ). SERRATE (SE) protein is another important 
protein, along with DCL1 and HYL1, which is involved in the 
processing of miRNA from long transcripts (pri-miRNAs). It is 
a zinc fi nger protein with N terminus domain that used to bind 
with RNA, while both domains (zinc fi nger and N terminus) 
are required for binding with DCL1 and stimulate the cleavage 
of dsRNA in an ionic strength-dependent manner [ 119 ].   

   11.     Advantages of amiRNAs . Various strategies have been adopted 
for silencing genes of interest in plants. Some of these approaches 
were/are based on the generation of siRNAs derived from dsR-
NAs or hairpin constructs. The large inserts used in these 
approaches produce a diverse set of siRNAs. Because of amplifi -
able nature of siRNAs, very often multiple species of siRNAs 
are generated in the form of transitive siRNAs. Hence, the 
chances of silencing of undesired genes (off- targets), resulting 
from fortuitous binding, are also increased. In some extreme 
situations, transgenes might become less stable due to auto-
silencing, and loss of the silencing activity on target sequences 
in subsequent progenies is also observed. The artifi cial miRNA 
approach has offered a new alternative way to target genes of 
interest, circumventing these above diffi culties.         
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    Chapter 27   

 Structure-Based Clustering of Major Histocompatibility 
Complex (MHC) Proteins for Broad-Based T-Cell Vaccine 
Design 

           Joo     Chuan     Tong     ,     Tin     Wee     Tan    , and     Shoba     Ranganathan   

    Abstract 

   Structure-based clustering technique is useful for identifying superfamilies of major histocompatibility 
complex (MHC) proteins with similar binding specifi cities. The resolved MHC superfamilies play an 
important role in vaccine development, from discovering new targets for broad-based vaccines and thera-
peutics to optimizing the affi nity and selectivity of hits. Here, we describe a protocol and provide a sum-
mary for grouping MHC proteins according to their structural interaction characteristics.  

  Key words     Bioinformatics  ,   Immunoinformatics  ,   Clustering  ,   MHC superfamily  ,   Virtual screening  , 
  Computer-aided vaccine design  

1      Introduction 

 The identifi cation of major histocompatibility complex (MHC) 
superfamilies with similar antigen-binding specifi cities has a tre-
mendous impact in the fi eld of vaccine design. The epitopes that 
bind these MHC proteins are useful for broad-based T-cell vaccine 
design, based on their population coverage with the maximum 
number of MHC proteins [ 1 ]. The classifi cation of MHC proteins 
into superfamilies has been achieved in three ways: (a) conserva-
tion of peptide sequences [ 2 ], (b) conservation of amino acid resi-
dues in MHC-binding pockets [ 3 ], and (c) structural interaction 
profi les of MHC proteins and their binding peptides [ 4 ]. The pro-
cedure for clustering MHC proteins using their interaction profi les 
was demonstrated in 2007, when Tong et al. [ 4 ] investigated the 
structural interaction patterns of 68 peptide/HLA complexes 
spanning 13 class I alleles. Here, we share our experience with the 
structure-based classifi cation technique and implementing the pro-
tocol presented.  
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2    Materials 

  Retrieve all required information to your computer. Diligently 
check to ensure that all duplicate sequences are removed.

    1.    Protein sequences of MHC alleles: The international 
ImMunoGeneTics information system (IMGT)/HLA data-
base (  http://www.ebi.ac.uk/imgt/hla/    ) [ 5 ].   

   2.    Sequences of MHC-bound ligands and their restricting alleles: 
The Immune Epitope Database (IEDB;   http://www.
immuneepitope.org/    ) [ 6 ].   

   3.    3-D structures of MHC–peptide complexes: The Protein Data 
Bank (PDB;   http://www.rcsb.org/    ) [ 7 ].   

   4.    Refer Table  1  for other data sources.

             1.    Sequence similarity searches: The Basic Local Alignment 
Search Tool (BLAST;   http://blast.ncbi.nlm.nih.gov/    ) [ 8 ].   

   2.    Multiple sequence alignments: Clustal Omega (  http://www.
clustal.org/omega/    ) [ 9 ].   

   3.    Homology modeling: MODELLER version 9.11 (  http://
www.salilab.org/modeller/    ) [ 10 ].   

   4.    Optimizing side chains of protein structures: SCWRL [ 11 ].   
   5.    Clustering of MHC–peptide interaction parameters: MATLAB 

Statistics Toolbox functions [ 12 ].   

2.1  Data Sources

2.2  Software

   Table 1  
  Publicly available immunological databases   

 Name  URL 

 IEDB    http://www.iedb.org     

 IMGT    http://imgt.org     

 IPD    http://www.ebi.ac.uk/ipd/     

 The HIV Molecular Immunology Database    http://www.hiv.lanl.gov/content/immunology/     

 SYFPEITHI    http://www.syfpeithi.de/     

 AntiJen    http://www.ddg-pharmfac.net/antijen/     

 MHCBN    http://www.imtech.res.in/raghava/mhcbn/     

 MPID-T    http://biolinfo.org/mpid-t2/     

 BEID    http://datam.i2r.a-star.edu.sg/BEID/     

 CED    http://immunet.cn/ced/     
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   6.    Calculating hydrogen bonding potential in proteins: HBPLUS 
(  http://www.biochem.ucl.ac.uk/bsm/hbplus/    ) [ 13 ].   

   7.    Calculating accessible surface areas and gap volumes: SURFNET 
(  http://www.cgl.ucsf.edu/chimera/docs/Contributed
Software/surfnet/surfnet.html    ) [ 14 ].   

   8.    Assessing the stereochemical quality of protein structures: 
PROCHECK (  http://www.ebi.ac.uk/thornton-srv/software/ 
PROCHECK/    ) [ 15 ].   

   9.    Optimizing side-chain positions of proteins: ICM-Pro (  http://
www.molsoft.com/icm_pro.html    ) [ 16 ].       

3    Methods 

  Perform protein homology modeling on MHC alleles with no 
experimentally solved 3-D structures. Diligently follow the below 
procedure when building the models. 

      1.    Perform a BLAST search against the PDB to identify homolo-
gous proteins to a target MHC sequence based on sequence 
identity.   

   2.    Refer    Fig.  1  on how to select appropriate structure as tem-
plate based on the percentage of identical residues in the 
alignment [ 17 ].

       3.    Choose a template that contains a ligand in the solved structure.   

3.1  Homology 
Modeling

3.1.1  Template Selection

  Fig. 1    Zones for protein homology modeling. Two sequences of similar length will 
most likely fold into the same structure if their pairwise sequence identity falls 
within the safe zone [ 17 ]       
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   4.    Where two or more representative sequences with comparable 
pairwise sequence identity are available, choose the highest 
resolution homologue with minimal missing residues as tem-
plate structure.      

      1.    Input the target and template sequences in FASTA format into 
the Clustal Omega program [ 9 ].   

   2.    Set the “Output Alignment Format” to FASTA.   
   3.    Click “Submit” to run the job.   
   4.    Manually inspect and edit to minimize the number of mis-

aligned residues ( see   Note 1 ).   
   5.    Next, check the initial alignment in view of the template 

structure(s).   
   6.    Avoid gaps in secondary structure elements and in buried regions.      

      1.    Use the MODELLER program version 9.11 [ 10 ] for homol-
ogy modeling.   

   2.    The program takes in as inputs one or more PDB fi les, an 
alignment fi le, and a model building fi le and generates as out-
put homology models of the target sequence.   

   3.    Create a model building fi le as shown in Fig.  2 .

3.1.2  Target-Template 
Alignment

3.1.3  Model Building

  Fig. 2    Example model building fi le used as input for the MODELLER program for 
model building. The system reads in a template structure “1hhh” and an align-
ment fi le “target-template.ali” and generates three homology models of the 
sequence “hla-a3.” The starting_model and ending_model defi ne the number of 
models to be calculated (i.e., in this case, it will run from indices 1 to 3). The 
make method in the last line will compute the models       
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       4.    Run MODELLER by typing “mod9v1 <model_building_fi le_
name>” in the command prompt at the working directory 
containing the input fi les ( see   Note 2 ).   

   5.    Next, use the ICM-Pro software [ 16 ] to refi ne the side-chain 
positions of proteins.   

   6.    Input the target structure in PDB format into the ICM-Pro 
software.   

   7.    Right click on the PDB name in the ICM Workspace and 
choose the option “Convert PDB” to convert the PDB fi le 
into an ICM object.   

   8.    Select the side chains you wish to optimize in the graphical 
display.   

   9.    From the right click menu, select “Advanced/Optimize Side 
Chains” to call the data entry box.   

   10.    Set the number of calls per variable and press “OK.” In gen-
eral, the simulation length increases with increasing number of 
calls per variable. The default number was recommended as an 
appropriate simulation length.   

   11.    The software will output a table displaying a list of energy con-
formations. View each conformation by clicking the entries in 
the table.      

      1.    Use the PROCHECK program [ 15 ] to check for normality of 
bond lengths and bond angles.   

   2.    The system reads a fi le in PDB format and generates as output 
the following plots:
   (a)    Ramachandran plot—to show the φ and ψ torsion angles 

for all residues in the structure.   
  (b)    Ramachandran plots by residue type—to show individual 

Ramachandran plots for each of the 20 different types of 
amino acids.   

  (c)    Chi1-Chi2 plots—to show the χ 1  and χ 2  side-chain torsion 
angles for all amino acid residue types.   

  (d)    Main-chain parameters—to compare the main-chain 
parameters of the target structure with that of well-defi ned 
structures at a similar resolution.   

  (e)    Side-chain parameters—to compare the side-chain param-
eters of the target structure with that of well-defi ned 
structures at a similar resolution.   

  (f)    Residue properties—to show how the protein’s geometri-
cal properties change along its primary sequence.   

  (g)    Main-chain bond length distributions—to show how each 
of the different main-chain bond lengths is distributed in 
the structure.   

3.1.4  Model Validation
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  (h)    Main-chain bond angle distributions—to show how each 
of the different main-chain bond angles is distributed in 
the structure.   

  (i)    RMS distances from planarity—to show the RMS dis-
tances from planarity for the different planar groups in the 
structure.   

  (j)    Distorted geometry plots—to show all the distorted main- 
chain bond lengths, main-chain bond angles, and planar 
groups.       

   3.    Run PROCHECK by typing the following in command 
prompt: procheck <pdb_fi le> <chain_id> <resolution>.       

       1.    The HBPLUS program reads a fi le in PDB format and gener-
ates as output a list of potential hydrogen bonds [ 13 ].   

   2.    HBPLUS requires all atoms in the input PDB fi le to be cor-
rectly labeled and ordered, and no atoms have alternate loca-
tions. Use the “Clean” program that comes bundled with 
HBPLUS to check and correct inconsistencies in the PDB fi le.   

   3.    Run HBPLUS on the “clean” PDB fi le by typing “hbplus 
<cleaned fi lename> <uncleaned fi lename>” in the command 
prompt at the working directory containing the cleaned and 
uncleaned PDB fi les ( see   Note 3 ).      

       1.    The SURFNET program [ 14 ] is used to compute the accessi-
ble surface area (ASA) between an MHC molecule and its 
bound peptide.   

   2.    For MHC class I complexes, the ASA between an MHC mol-
ecule and its bound peptide is defi ned as the mean ΔASA on 
complexation when going from a monomeric MHC protein to 
a dimeric MHC–peptide complex state.   

   3.    The program takes in as inputs a PDB fi le, atom range of MHC 
and peptide in the fi le, output format, and grid spacing of the 
surface maps and generates as output the interface area of the 
protein.   

   4.    The parameter fi le surfnet.par is used to confi gure all parame-
ters for the plot.   

   5.    Create a parameter fi le for the MHC molecule.   
   6.    In the section “OUTPUT FILES,” the fi rst line of the text will 

contain information of the MHC molecule (see Fig.  3 ).
       7.    Assign the fi rst column name as “mhc.”   
   8.    Set the atom range of the MHC molecule in the third (i.e., 

start atom) and fourth (i.e., last atom) columns.   
   9.    Run SURFNET by typing “surfnet” in the command prompt 

at the working directory containing the input PDB fi le and the 
parameter fi le.   

3.2  Interaction 
Parameters

3.2.1  Intermolecular 
Hydrogen Bonds

3.2.2  Interface Area
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   10.    An output fi le “mhc.srf” will be generated containing the 
interface area of the MHC molecule.   

   11.    Now, create another parameter fi le for the MHC–peptide 
complex ( see  Fig.  4 ).

       12.    Assign the fi rst column name as “mhc-peptide.”   
   13.    Set the atom range of the MHC–peptide complex in the third 

(i.e., start atom) and fourth (i.e., last atom) columns.   

  Fig. 3    Example parameter fi le used as input for the SURFNET program to com-
pute interface area of MHC molecule       

  Fig. 4    Example parameter fi le used as input for the SURFNET program to compute interface area of MHC– 
peptide complex       
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   14.    Half the difference between the ASA of the MHC–peptide 
complex and the ASA of the MHC molecule. This will give 
you the ASA between an MHC class I molecule and its bound 
peptide.   

   15.    The ASA between an MHC class II molecule and its bound 
peptide can be computed in a similar manner as above.      

       1.    The gap volume (Å 3 ) or the gap region between the bound 
peptide and MHC protein is an indicator of the goodness of fi t 
between the two molecules. This is computed using the 
SURFNET program [ 14 ].   

   2.    The parameter fi le surfnet.par is used to confi gure all para-
meters for the plot.   

   3.    Set the maximum radius to 5.00 Å and minimum radius to 
1.00 Å.   

   4.    Set the option “Calculate gap volume” to “Y.”   
   5.    Use the default values for all other parameters.   
   6.    Run SURFNET by typing “surfnet” in the command prompt 

at the working directory containing the input PDB fi le and the 
parameter fi le.   

   7.    An output fi le “gaps.srf” will be generated containing the gap 
volume between the MHC and its bound ligand.      

      1.    The gap index [ 18 ] is an indicator of the electrostatic and 
geometric complementarity the bound peptide and MHC 
molecule.   

   2.    Divide the gap volume of the bound complex (refer 
Subheading  3.2.3 ) with its accessible surface area (refer 
Subheading  3.2.2 ). This will give you the gap index of the 
MHC–peptide complex.       

      1.    The MATLAB Statistics Toolbox functions are used to cluster 
the derived MHC–peptide interaction data set.   

   2.    Calculate the distance between objects using the “pdist” func-
tion:  Y  = pdist( X ) where  X  is the data set.   

   3.    Group the objects into binary clusters using the “linkage” 
function:  Z  = linkage( Y ).   

   4.    Use the “dendrogram” function to plot the hierarchical cluster 
tree: dendrogram( Z ).   

   5.    Use the “cluster” function to prune the bottom of the hierar-
chical tree and partition the data into groups: cluster( Z , “cut-
off,”  c ) where  c  is a threshold for cutting  Z  into clusters.   

   6.    Alternatively, use the “clusterdata” function to perform all the 
above steps at one go:  T  = clusterdata( X ,  c ) where  X  is the data 
set and c is a threshold for cutting  Z  into clusters.       

3.2.3  Gap Volume

3.2.4  Gap Index

3.3  Hierarchical 
Clustering
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4    Notes 

        1.    Sometimes it may be diffi cult to align two sequences where the 
percentage sequence similarity is low. To arrive at a better 
 alignment, we fi nd that it is best to visually inspect the results 
and manually edit where necessary.   

   2.    The homology modeling program may not generate the best 
model in a single run. To arrive at a better model, we fi nd that 
it is best to generate several models and select the model with 
the lowest “MODELLER objective function” value.   

   3.    All hydrogen bond potentials are defi ned in accordance to 
standard geometric parameters using HBPLUS [ 13 ].         
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    Chapter 28   

 Immunoinformatics, Molecular Modeling, 
and Cancer Vaccines 

           Seema     Mishra      and     Subrata     Sinha    

    Abstract 

   Cancer vaccines are a natural way of fi ghting the development and progression of cancer as they harness 
the power of immune system to tweak it into killing cancerous cells. One of the most important agents in 
an immune system, the cytotoxic T cells (CTL), play a major role and the CTL epitopes in the form of an 
immunotherapeutic product have been shown to help mount an immune response towards tumor cell 
destruction. Immunoinformatics and molecular modeling tools have proven powerful towards the predic-
tion of plausible CTL epitopes as well as other epitopes, cutting short the time and cost. We focus on the 
sequential methodology using these tools as well as some databases to generate a succinct list of enterpris-
ing subtype-specifi c or promiscuous peptide epitopes.  

  Key words     Cancer vaccine  ,   Immunoinformatics  ,   Cytotoxic T cell  ,   Peptide epitopes  ,   MHC-binding 
epitopes  ,   Proteasomal cleavage prediction  ,   TAP transporter-binding epitopes  ,   Molecular modeling  

1      Introduction 

 Immunoinformatics tools are a powerful means of designing cancer 
vaccines for the purpose of fi nding potential, effective immunother-
apy candidates. Peptide epitopes in the form of B-cell and T-cell 
antigens from proteins that are either present uniquely or overex-
pressed in tumors are capable of eliciting an immune response 
towards tumor cells. These peptide or protein epitopes can func-
tion as plausible immunotherapy candidates and one of the ways to 
harvest these is to utilize the power of immunoinformatics. 

 It has been estimated that experimental vaccine discovery and 
development to registration takes about 10–20 years and a cost 
amounting to US$ 200–900 million [ 1 ]. Immunoinformatics tools 
cut both the time and costs involved and have been found to be 
reliable in terms of accuracy of results as well as effectiveness in 
several studies [ 2 – 5 ] .  

 This chapter focuses on the methodology adopted in harnessing 
several different sequence- and structure- or molecular modeling- based 
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prediction tools to harvest a list of peptide epitopes from tumor-
specifi c or tumor-associated antigens (TSA or TAA) that can be 
studied further in experiments to deduce their activity as good 
binders to major histocompatibility complex (MHC) molecules, to 
T cells and subsequent elicitation of immune response [ 6 ] .  

 Before we begin, the authors believe that a succinct refresher 
in T cell antigen processing and presentation will be helpful in 
understanding the overall methodology. Nature designed CD8+ 
cytotoxic T lymphocytes (CTLs) to function as Shiva, the lord of 
destruction of evil. It is precisely the CTLs that target the mole-
cules or the cells for destruction. CD4+ helper T lymphocytes 
(HTLs) serve to prime and maintain these CTLs. Generation of an 
integrated CD8+ and CD4+ T cell immune response may prove a 
more effective immunotherapeutic procedure as opposed to using 
either one alone [ 7 ] .  

 T cell epitopes in the form of peptide antigens are presented on 
the cell surface. After cleavage of relevant protein/s within the cells, 
the individual peptides bind to the surface of the proteins of the 
major histocompatibility complex (MHC) class I molecules (also 
known as the human leukocyte antigen (HLA) system in humans—
in this chapter, the two terms are used interchangeably). In case of 
tumor antigens which are generated within the cells endogenously, 
antigen presentation by MHC class I pathway is required. Tumor 
cells, in order to evade the immune system, may vary the expression 
of MHC class I on their surface, but that is another story. 

 Virtually all tumor-specifi c or tumor-associated antigens are 
processed through MHC class I antigen-processing pathway in 
three major steps (as mentioned in Fig.  1 ):

     1.    Generation of antigenic peptides by hydrolysis of the protein 
antigen by constitutive proteasome or immunoproteasome   

   2.    Transport of peptides from cytosol to endoplasmic reticulum 
(ER) by transporter associated with antigen-processing (TAP) 
protein.   

   3.    Binding of peptides to human leukocyte antigen (HLA) class I 
molecules assisted by several chaperones   

   4.    Transport of peptide-MHC complex through Golgi bodies to 
cellular surface for presentation to CD8+ T cells.    

  MHC class II antigen-processing pathway for presentation to 
CD4+ T cells involves assembly of HLA class II molecules in ER 
with invariant chain, followed by degradation of this invariant 
chain in MHC class II compartments to generate class II-associated 
invariant peptide (CLIP) which remains bound in the MHC 
groove. CLIP is then exchanged for antigenic peptides that are 
derived from exogenous protein molecules internalized  via  endo-
somes. This process is facilitated by HLA-DM molecules and then 
presented to CD4+ T cells. This is the main pathway for exogenous 
antigens. While MHC class I molecules are found on the surface of 
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nucleated cells, MHC class II molecules are present only on the 
antigen-presenting cells and lymphocytes. 

 Tools developed for CD8+ T cell epitope prediction occur in 
greater number than those developed for CD4+ T cell epitope pre-
diction, because of the diffi culty in accurately identifying CD4+ T 
cell epitopes owing to greater length of the epitopes extending out 
of the binding groove of MHC class II molecules [ 8 ] .  Further, the 
former prediction softwares utilize more diverse algorithmic 
approaches. This algorithmic diversity leads towards more accurate 
prediction of results generated through a consensus. In literature, 
antigen processing and presentation pathway has been explored 
more in the context of CD8+ T cell epitope prediction, primarily 
due to their main role in cellular immune response. A sequential 
methodological pathway towards promiscuous and/or subtype-
based T cell epitope prediction for use in cancer vaccine design is 
explained in the following sections.  

  Fig. 1    Figure depicting a clear representation of antigen processing and presentation pathway in the case of 
MHC class I and MHC class II molecules (image taken with permission from BioCarta pathways website, anti-
gen processing and presentation,   http://www.biocarta.com/pathfi les/h_mhcpathway.asp    ) (reproduced with 
kind permission)       
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2     Materials 

     1.    A list of tumor-specifi c or tumor-associated protein/s can be 
retrieved from literature search or from the following 
databases:
   (a)    TANTIGEN: Tumor T Cell Antigen database from the 

website   http://cvc.dfci.harvard.edu/tadb/     .    
  (b)    T cell-defi ned tumor antigens from the website   http://

cancerimmunity.org/peptide/     [ 9 ] .        
   2.    Amino acid sequence and known structure, if any, is obtained 

from National Center for Biotechnology Information (NCBI) 
or from Swiss-Prot or Protein Data Bank (PDB) databases.   

   3.    Sequence-based prediction tools based on a variety of algo-
rithms are used for the studies:
   (a)    MHC-binding epitope prediction: BIMAS (  http://www- 

bimas.cit.nih.gov/molbio/hla_bind/    ) [ 10 ], SYFPEITHI 
(  http://www.syfpeithi.de/Scripts/MHCServer.dll/
EpitopePrediction.htm    ) [ 11 ,  12 ], Propred-I (  http://www.
imtech.res.in/raghava/propred1/    ) [ 13 ], Propred (  http://
www.imtech.res.in/raghava/propred/    ) [ 14 ], NetMHC 3.4 
(  http://www.cbs.dtu.dk/services/NetMHC/    ) [ 15 ,  16 ] .    

  (b)    Proteasomal cleavage prediction: PAProC (  http://www.
paproc.de/    ) [ 17 ], NetChop3.1 (  http://www.cbs.dtu.dk/
services/NetChop/    ) [ 18 ], MAPPP (based on 
FRAGPREDICT,   http://www.mpiib-berlin.mpg.de/
MAPPP/cleavage.html    ) [ 19 ] .    

  (c)    TAP transporter-binding peptide prediction: TAPPred 
(  http://www.imtech.res.in/raghava/tappred/    ) [ 20 ], TAP 
Hunter (  http://datam.i2r.a-star.edu.sg/taphunter/index.
html    ).   

  (d)    Combination tools: Propred-I (  http://www.imtech.res.in/
raghava/propred1/    ), MAPPP (  http://www.mpiib-berlin.
mpg.de/MAPPP/expertquery.html    ) [ 21 ], NetCTL1.2 
(  http://www.cbs.dtu.dk/services/NetCTL/    ) [ 22 ] .        

   4.    Structure-based molecular modeling software: Discovery 
Studio (  http://www.accelrys.com/    ), Sybyl (  http://www.tri-
pos.com/    ), Swiss PDB Viewer (  http://www.expasy.ch/
spdbv/    ), AMBER (  http://amber.scripps.edu/    ).      

3    Methods 

 A combination of different algorithms for MHC-binding T cell 
epitope prediction lends greater accuracy. These algorithms span 
across experimentally derived matrices, virtual matrices, binding 
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motif-based algorithm, profi le hidden Markov model, and artifi cial 
neural networks to generate a repertoire of potential epitopes that 
can generate an immune response. When combined with protea-
somal cleavage prediction and TAP transporter-binding predic-
tion, the picture may present the events happening within real 
cellular milieu. A pictorial representation in the form of a fl ow 
chart of these steps is shown in Fig.  2 .

   The methodologies outlined below are generalized and can be 
used with any software of choice as mentioned in Subheading  2 . 

      1.    The complete sequence of TSA or TAA, or if it is unavailable, 
a partial one, is used as an input in the web server of the 
selected prediction tool, mostly in FASTA format.   

   2.    In one of the main parameters present in web servers, one or 
more of the HLA alleles are chosen to represent each supertype, 

3.1  Sequence-Based 
Prediction for Peptide-
MHC Binding

  Fig. 2    A fl ow chart depicting key steps during T cell epitope prediction and shortlisting of potential T cell epitopes. 
Images (in a generalized form) were created from downloaded structure fi les from RCSB PDB website with PDB 
IDs 1G7Q (MHC class I molecule in complex with octameric peptide from tumor-associated antigen MUC1), 1FNT 
(20S proteasome), 1JJ7 (C-terminal ATPAse domain of human TAP1 molecule), 3L6F (MHC class II molecule in 
complex with 15 amino acid residue-long phosphopeptide derived from melanoma antigen recognized by T cells 
1), and 1DUZ (MHC class I molecule in complex with nonameric peptide from Tax protein of HTLV-1)       
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e.g., “HLA-A,” “HLA-B,” or “HLA-C” alleles for MHC class 
I molecules.   

   3.    The output is in the form of mostly nonamer (9-mer) or nine 
amino acid-long peptides as potential MHC class I-binder epi-
topes or 15-mer MHC class II-binder epitope sequences, 
ranked by the scoring scheme implemented in respective soft-
ware. The high scorers have greater potential to function as 
good MHC- binder molecules.   

   4.    The scoring scheme refl ects the binding affi nity and a variety of 
scoring schemes are implemented. As an example, BIMAS 
algorithm provides score for the subsequence which is a pre-
dicted epitope, according to estimated half time ( T  1/2 ) of dis-
sociation of β2 microglobulin from MHC class I molecules. In 
another example, SYFPEITHI scoring scheme refl ects the role 
of the amino acids as primary and secondary anchors involved 
in MHC binding (primary anchor residues occur at positions 
2 and 9 in a nonamer peptide, while secondary anchors are at 
fi rst, third, fi fth, and seventh positions) and thereby the fre-
quency of respective amino acid in T cell epitopes.   

   5.    To harvest promiscuous epitopes that can bind to multiple 
HLA alleles with good affi nity in order to provide a larger 
 population coverage, the epitopes common in the output pro-
duced using several alleles are enlisted through manual search 
among the high scorers.      

  While the sequence-based predictions can be validated using 
structure- based predictions using computer-aided vaccine design 
approach, an insight into intermolecular interactions provided 
by this approach is also valuable. Modifi cations of peptide epit-
ope sequence, or of T cell receptor sequences, have been studied 
for enhanced binding [ 7 ] and modeling can provide useful 
insights into experimentation. Several modeling software such as 
Schrodinger’s molecular modeling, Discovery Studio ((DS), 
  http://www.accelrys.com/    ), Sybyl (  http://www.tripos.com/    ), 
Swiss PDB Viewer (  http://www.expasy.ch/spdbv/    ), and AMBER 
(  http://amber.scripps.edu/    ) among others can be implemented. 
One of the methods to study MHC-peptide epitope-binding 
affi nity using Accelrys’ Discovery Studio 3.5 is explained below.

    1.    The three-dimensional coordinates of HLA molecules are 
retrieved from PDB, or if a particular HLA allele/subtype is 
not available in PDB, then a model can be generated via 
homology modeling. The HLA molecules are polymorphic 
and their binding site is like a cleft. This cleft is closed at both 
ends in case of class I MHC and open at both ends in case of 
class II MHC molecules.   

3.2  Structure- or 
Molecular Modeling-
Based Prediction
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   2.    The list of peptide epitopes predicted by sequence-based 
prediction tools is used to model these peptides onto the HLA 
molecules.   

   3.    The structures are checked to make sure that they are of the 
lowest possible X-ray crystallographic resolution good enough 
to be used further and that there are no missing residues in the 
groove region where peptide epitope is to be modelled. If 
there are missing residues, they should be added fi rst before 
proceeding further.   

   4.    Hydrogens are added to the crystallographic complexes, which 
are energy minimized to reduce structural strain. During 
energy minimization, care should be taken so that the peptide-
binding groove region does not get distorted extensively.   

   5.    The predicted epitopes are threaded onto the nonamer pep-
tides present in the complex by mutating/replacing the origi-
nal peptide residues using Macromolecules tool in DS.   

   6.    After the predicted peptides have been threaded, the entire 
complex is energy minimized using Simulation tool. A 13 Å 
non-bonded cutoff and a distance-dependent dielectric con-
stant of 4 r , in order to simulate the solvent in an approximate 
way, are applied. Potentials and charges are assigned using 
default CHARMM/CFF force-fi eld parameters. A full minimi-
zation of the complex is achieved using 1,000 steps of steepest 
descent algorithm followed by 1,000 steps of conjugate gradi-
ent algorithm or till the value of RMS gradient of potential 
energy becomes less than 0.4 kcal/mol/Å.   

   7.    After minimization, rigid-body docking of the peptide to HLA 
molecules using LigandFit followed by intermolecular energy 
calculations is done. This provides an insight into the binding 
affi nity. Further intermolecular interaction analyses for the 
number of hydrogen bonds and interaction contacts among 
others can be done using receptor-ligand interaction protocol 
in DS ( see   Notes 1–4 ).    

        1.    The complete sequence of TSA or TAA, or if it is unavailable, 
a partial one, is used as an input in the web server of the 
selected prediction tool, mostly in FASTA format ( see   Note 3 ).   

   2.    Specify the length of fragments, which is mostly 9-mer epitope 
for MHC class I molecules, and 10- to 15-mer epitope for 
MHC class II molecules.   

   3.    Keeping all other parameters at default value, the input 
sequence is submitted for processing. The output mainly con-
sists of fragments with probabilities of cleavage. The fragments 
with highest probabilities of cleavage on the carboxy-terminal 
side are selected and enlisted.      

3.3  Sequence-Based 
Prediction 
for Proteasome 
Cleavage
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      1.    The complete sequence, in FASTA format or any acceptable 
format, of TSA or TAA, or if a full sequence is unavailable, a 
partial sequence, is used as an input in the web server of the 
selected prediction tool ( see   Note 3 ).   

   2.    Keeping all other parameters default, output is generated in 
terms of binders with higher or lower affi nities or non-binders.       

4    Notes 

     1.    As an alternative, peptide-MHC docking and binding affi nity 
studies can also be done using the Dock Proteins protocol, 
implementing ZDOCK and RDOCK software, in Discovery 
Studio.   

   2.    Users are requested to use the most recent versions of software 
tools available, as these are in stages of continuous develop-
ment as more and more datasets and improved algorithms 
become available.   

   3.    There is almost always a help/FAQ section on the web server 
pages, which users can consult for proper usage and to dispel any 
doubts. Before starting to use the software/web server, reading 
these sections fi rst and understanding the basic principles behind 
the software/web server development and usage for several 
parameters provided therein are highly recommended.   

   4.    We found a good correlation between sequence-based predic-
tion scores and intermolecular interaction energy values [ 6 ]; 
that is, peptide epitopes with a high score in the sequence-
based prediction methods (translating into high binders to 
MHC class I molecules) also had the lowest interaction energy 
values obtained  via  molecular docking to same MHC 
molecules.         
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    Chapter 29   

 Investigating Host–Pathogen Behavior and Their 
Interaction Using Genome-Scale Metabolic 
Network Models 

           Priyanka     P.     Sadhukhan     and     Anu     Raghunathan    

    Abstract 

   Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting 
from the genome sequence of an organism and contribute towards understanding and predicting the 
genotype–phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to 
eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These 
models have been used to not only understand the fl ux distribution in evolutionary conserved pathways 
like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in 
 Escherichia coli  to predicting inborn errors of  Homo sapiens  metabolism. This chapter describes a protocol 
that delineates the process of genome scale metabolic modeling for analysing host–pathogen behavior and 
interaction using fl ux balance analysis (FBA). The steps discussed in the process include (1) reconstruction 
of a metabolic network from the genome sequence, (2) its representation in a precise mathematical frame-
work, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The meth-
ods for biological interpretations of computed cell phenotypes in the context of individual host and 
pathogen models and their integration are also discussed.  

  Key words     Genome scale metabolic modeling  ,   Network reconstruction  ,   Host–pathogen  ,   Flux 
balance analysis  ,   Constraints-based modeling  

1      Introduction 

    Metabolites form the link between high-level physiological 
function and molecular components at both the protein and DNA 
level. Metabolites are centrally placed in the reductionist causal 
chain, interconnected closely to the proteins (enzymes) that 
transform them (and the genes that encode them) on the lower 
end and higher levels of biological organization in the cells, tissues, 
and organs of the organism. Thus capturing metabolism in a model 
not only allows us to probe downward causation, as it is connected 
to gene/transcript/protein components but also simultaneously link 
them to higher level properties of the organism [ 1 ]. The causal 



524

link for infection lies in the critical balance and dynamics of the 
pathogen and the host and their potential interaction. Such inter-
actions can typically manifest as clearance, latency, symbiosis, death 
of the invader or the host. The success of a pathogen lies in the 
availability of several virulence mechanisms and components 
encoded by the genome. These include but are not limited to quo-
rum sensing (QS) siderophores-based iron uptake systems, cable 
pili for adhesion, motility, hemolysin, proteases, phospholipases, 
secretion systems, lipopolysaccharides (LPS), toxins, and extracel-
lular capsules [ 2 ]. It is critical to understand metabolism (the bio-
chemical engine directly related to proliferative potential) including 
metabolic virulence factors like QS, LPS, and rhamnolipids to 
unravel mechanisms of pathogenesis. Probing such host–pathogen 
interactions using metabolic models can be considered a distinct 
three-step process involving:

    1.    Metabolic modeling of the pathogen.   
   2.    Metabolic modeling of the host.   
   3.    Integrating host and pathogen metabolism together to under-

stand their interaction.    

  Constraints-based modeling techniques defi ne biological sys-
tems by a set of constraints that characterize all feasible cell behav-
iors rather than precise phenotypes [ 3 ]. Flux balance analysis (FBA) 
calculates the fl ow of metabolites through a network making it 
possible to predict growth rates of organisms or biosynthesis rates 
of specifi c metabolites. FBA represents all metabolic reactions in 
the network as a mathematical formalism—a numerical matrix of 
stoichiometric coeffi cients of each reaction. Classically, constraints- 
based FBA has been used to compute cell function using a genome 
scale metabolic network as a starting point, but can be applied to 
regulatory and signaling networks as well. Constraints are typically 
represented as bounds and balances [ 4 ]. The stoichiometry of each 
reaction imposes a physicochemical constraint on the fl ow of 
metabolites through the network [ 5 ,  6 ]. The stoichiometric matrix 
imposes balance (mass) constraints on the system and each reac-
tion is given bounds (the maximum and minimum allowable fl uxes 
of the reaction). Together, they defi ne the space of allowable fl ux 
distributions of a system—that is, the rates at which every metabo-
lite is consumed or produced by each reaction at steady state. The 
dependence on “hard to measure” parameters in vivo is thus mini-
mal and the method is scalable [ 7 ]. The prediction in terms of 
fl uxes or reaction rates rather than concentrations is an outcome of 
applying the steady state assumption and optimality criterion. The 
power of the FBA predictions and elegance of the constraints- 
based approach have led to accurate in silico representation of 
organisms [ 8 – 10 ]. This approach has become extremely popular 
for understanding the cell phenotypes in varying environmental 
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(C-source, N-source, O 2 ) conditions, minimal media and also in 
the event of genetic perturbation (gene deletions). These applica-
tions can be extended to understand host and pathogen behavior 
in isolation and their dynamics together. 

 This chapter summarizes steps that have almost become stan-
dard operating procedures in the area of network modeling of 
metabolism over the last decade that can be applied while investi-
gating host and pathogen behavior. It covers briefl y metabolic net-
work reconstruction, translation to mathematical models their 
simulation techniques. The analysis of the solution and their bio-
logical relevance are stated using examples in literature. In a con-
cise form this illustrates the paradigm of metabolic systems biology 
in the context of host–pathogen behavior and dynamics.  

2     Materials 

 The materials can be broadly categorized into two categories. The 
fi rst category includes tools for reconstruction that mainly consist of 
varied databases and the second category includes software and pro-
grams to actually convert the networks to models and analyze them. 

  Metabolic network reconstruction of a specifi c species is generally 
built using information from biological databases and literature 
sources. Aiding the process, are several online public resources. 
Some representative bioinformatics resources utilized for meta-
bolic reconstructions are discussed below:

    1.     BRENDA  (  http://www.brenda-enzymes.info/    ) provides 
enzyme related data and includes organism-specifi c informa-
tion on localization. These databases also cite literature refer-
ences making it easy to look up the source and evaluate the 
information.   

   2.     MetaCyc  (  http://metacyc.org/    ),  KEGG  (  http://www.
genome.jp/kegg/    ) and  NCBI  (  http://www.ncbi.nlm.nih.
gov/    ) include gene, protein, and reaction information for sev-
eral organisms.  KEGG  also delineates pathways with detailed 
maps that are a great resource while reconstructing a metabolic 
network.  NCBI  has a comprehensive literature database that 
provides access to all the legacy data relating to the organism 
of interest.   

   3.    Model SEED is an online tool for available for semi-automated 
model generation.   

   4.    The NCBI, Gene Expression Omnibus (GEO:   www.ncbi.nlm.
nih.gov/geo/    ) provides gene expression data.   

2.1  Databases
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   5.    Recon X (  http://humanmetabolism.org/    ) provides information 
on human metabolism and the recent version of reconstruc-
tion of human genome (Recon 2, discussed in detail below). 
The preferred format for representing a network reconstruction 
is the SBML format.      

  All mathematical simulations for the toy network and the genome- 
scale model are worked out using the COBRA Toolbox [ 11 ,  12 ], 
available for Python or MATLAB® (MathWorks, Inc.) platforms. 
Although in Subheading  4  details are provided for functions from 
the COBRA Toolbox (MATLAB) to simulate host–pathogen 
behavior and interaction, the functions for Python based toolbox 
are similar and work on the same logic. 

 An optimization toolbox that works with MATLAB is recom-
mended. Examples include Gurobi, Tomlab, and LINDO. All 
simulation results in Subheading  4  are based on using Tomlab as 
the solver.   

3    Methods 

 There are four major steps for metabolic modeling of any organism 
(host or pathogen). Following this procedure (Fig.  1 ) allows com-
putation of biological phenotype of the in silico organism and 
extends the analysis to interacting systems. The four steps are as 
follows:

     1.    Network Reconstruction.   
   2.    Translation into Mathematical Model.   
   3.    Simulation and Analysis.   
   4.    Biological Interpretation.    

   Genome-Scale Metabolic Network Reconstructions have become 
increasingly popular for studying metabolism and have been built 
for organisms across the three kingdoms of life. Multiple versions 
also exist for the same organism. Quality Controlled, Quality 
Assured reconstructions are thus indispensible yet critical to ensure 
accuracy of predictions of cell function. Reconstructed networks 
(discussed here specifi cally for metabolic networks), but applicable 
to regulatory [ 13 ] and signaling [ 14 ] can be used for computa-
tional modeling. The bottom-up approach is the method of choice 
and based on genomic and legacy data. The outcome is a bio-
chemically, genetically, and genomically structured database: a 
knowledge-base of the organism of interest [ 15 ]. Mathematical 
translation into a stoichiometric matrix allows simulation of bio-
logical phenotypes like growth rate or biosynthesis of metabolites. 
Strict adherence to the rules of network reconstruction as discussed 

2.2  Software 
and Programs

3.1  Network 
Reconstruction
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in this section result in mathematical models that can accurately 
predict cell function (also refer  Notes 1 – 3  and  7 ). A detailed 
description of the process is delineated elsewhere [ 16 ]. 

  The very fi rst step involved is the generation of a draft reconstruc-
tion based on the most current version of the genome annotation 
of the organism of interest. This is generally done computationally 
from the genome sequence by identifying open reading frames 
(ORFs), genes and coding sequences, using a family of algorithms 
for similarity search like FASTA and BLAST. Candidate metabolic 
functions are assigned based on the similarity scores in conjunction 
with several biochemical databases like KEGG [ 17 ] and EcoCyc 
[ 18 ]. The draft reconstruction is primarily a collection of genome 
encoded metabolic functions. Incorrect inclusions and exclusions 
of existing function are expected at this point due to errors in 
annotation of the genome or gene function in the databases used. 
The similarity scores represent the confi dence level of a given gene 
function assignment and can be used subsequently to include or 
preclude reactions in the model. Currently, a few tools including 
MODEL SEED [ 19 ] and SCRUMPY [ 20 ] exist to build genome- 
scale metabolic draft reconstructions. A metabolic reconstruction 
primarily would include all genes coding enzymes that are involved 
in metabolism and small molecule transport. This would amount 

3.1.1  Generating a Draft 
Reconstruction 
for a Genome Scale 
Network

  Fig. 1    Schematic representation of the iterative process for modeling host–pathogen behavior and interaction       
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to several hundred gene–protein–reaction (GPR) relationships that 
need refi nement through a process of manual curation. The cura-
tion process determines the validity of each gene’s functional 
assignment. A quick search on PubMed with the name of the 
organism name should give an idea of how extensively the organ-
ism under consideration has been studied.  

  Manual refi nement of the content in the draft reconstruction 
(Fig.  2 ) is required to build a model that predicts cell function 
accurately [ 16 ]. The ease of the curation process and the time for 
refi nement depend on the quality and accuracy of the genome 
annotation and the extent of experimental data that exists on the 
organism for which the network is being reconstructed.

3.1.2  Refi ning 
the Network 
Reconstruction

  Fig. 2    The network reconstruction process. The network reconstruction process starts with the genome anno-
tation and identifi cation of ORFs, the assignment of gene, protein and reactions based on similarity search 
algorithms. Once the GPR is assigned as seen for hexokinase in the fi gure, the curation steps begin. Curation 
involves checking reaction content including elemental and charge balances, directionality of the reaction and 
the localization. Once the curation of the GPR is completed on genome-wide basis, one has a genome-scale 
curated network reconstructed ready for translation to mathematical matrix model       
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     The accuracy of the network reconstruction relies on correct 
assignment of Gene–Protein–Reaction Relationships (GPRs). 
Candidate metabolic functions identifi ed in the draft  reconstruction 
need to be verifi ed through literature search. Incorrect genome 
annotations are generally the cause for errors in the draft and leg-
acy data based on biochemistry, genetics, or physiology of the 
organism should be used extensively to validate the metabolic 
function assigned. The two driving questions that need to be 
answered for every GPR in the reconstruction [ 16 ] are: (1) Is the 
GPR really present in the organism? and (2) How is this GPR con-
nected to the rest of the network? Since this is a tedious job, it is a 
good recommendation to assemble the reconstruction one bio-
chemical pathway after the other in order to understand gaps in 
knowledge as well. If organism-specifi c information is absent in 
literature, phylogenetically close organisms can be used to make 
connections. However, a note regarding that should be included 
along with the confi dence score for assigning that function. Generic 
databases like KEGG, BRENDA, and METACYC are useful for 
this process. 

 GPRs are written as Boolean statements ( see  Fig.  3c  for TCA 
cycle) and defi ne the genetics behind the functional protein. GPRs 
mainly comprise of two operators, to defi ne the associations, 
“AND” and “OR.” The AND operator is applied when two or 
more genes are required together for a particular protein (e.g., 
protein isocitrate lyase is a hetero-dimer encoded by two genes 
“ aceAa ” and “ aceAb ”). A protein can be coded by more than one 
gene, and the expression of either of these genes may result in a 
functional protein, this relation is defi ned with the OR operator. 
Also this operator can be applied where two or more proteins are 
required for one function or reaction (Fig.  3c ). There are four 
types of functional protein GPRs that can be defi ned as Boolean 
relations: (1) multifunctional proteins, (2) isozymes, (3) multi-
meric protein, and (4) multiprotein complex. Mis-assignments in 
the GPR associations affect results of in silico gene deletion studies 
in the future. However, these discrepancies that are essentially fail-
ure modes of the model, can be used later to refi ne reconstructions 
iteratively.

     Once GPR assignments are made, the reaction needs to be further 
curated. Curating a reaction involves validating the content of a 
reaction in the GPR [ 16 ]. The content of the reaction includes (1) 
use of substrates and cofactors, (2) metabolite charge, (3) direc-
tionality, and (4) localization.  

  In biochemical reactions, in addition to the primary substrate and 
product, cofactors are important. Since these vary with organisms, 
specifi c substrate and cofactor utilization needs to be ascertained 
from organism-specifi c databases as changes in the cofactor usage 
affect the overall prediction potential of the model. Since KEGG 

3.1.3  Assigning Correct 
Gene–Protein–Reaction 
Relationships

3.1.4  Curating 
the “Reaction” in the GPR

3.1.5  Use of Substrates 
and Cofactors
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  Fig. 3    ( a ) The TCA cycle in  M. tuberculosis . The TCA cycle reactions are as follows: ( 1 ) citrate synthase, ( 2 ) 
aconitase, ( 3 ) isocitrate dehydrogenase, ( 4 ) 2-oxoglutarate decarboxylase, ( 5 ) succinate-semialdehyde dehy-
drogenase, ( 6 ) succinate dehydrogenase, ( 7 ) fumarase, ( 8 ) malate dehydrogenase, ( 9 ) isocitrate lyase, and ( 10 ) 
malate synthase. The intermediates of the TCA cycle are color coded based on the number of carbon atoms. 
The reduced form of the cofactors involved is represented in  light green  and the oxidized form in  dark green . 
( b ) Elementally balanced equations for every reaction are derived for the model. ( c ) Boolean representation of 
Gene protein reaction associations. The four different types of protein associations are illustrated here. All 
fi gures represent GPR associations of different types in the model. The fi rst level (in  sky-blue ) is the gene level, 
the second (in  dark blue ) represents the corresponding translated peptide, the third level (in  orange ) represents 
a functional protein and the last level (in  yellow ) is the reaction. ( 1 ) RxnAbbr:  Acont . This reaction is carried out 
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Fig. 3 (continued) by one protein, namely,  Acn . It has a simple 1-to-1 gene–protein relation. ( 2 ) Rxn Abbr.:  CS . 
This reaction is carried out by three isozymes, from three different ORFs. ( 3 ) Rxn Abbr.:  ICDHy . This reaction is 
carried out by isozymes, from two different ORFs. ( 4 ) Rxn Abbr.:  ICL . This reaction is carried out by two 
isozymes, from three different ORFs. Peptides  AceAa  and  AceAb ,  translated  from their respective ORFs, form 
the subunits of the protein  Icl , that catalyzes the isocitrate lyase reaction. This reaction is also catalyzed by 
another isozyme, which is translated from only one gene, as represented in the fi gure. ( 5 ) Rxn Abbr.:  SSALx . 
This reaction is carried out by one protein, which has two distinct domains that are responsible for specifi c 
functions. Both domains are necessary to catalyze this reaction           
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and BRENDA [ 21 ] list all possible transformations of an enzyme 
that have been identifi ed in any organism, if there is only one reac-
tion associated with that enzyme in the database, the reaction does 
not require organism based refi nement. At this stage each network 
reaction should be assigned a confi dence score (normally 0–4) 
refl ecting the availability of information and strength of evidence.  

  Metabolites are generally listed with their uncharged formula in 
most databases. However, many metabolites are protonated or 
deprotonated in cells or in medium conditions. The protonation 
state represents the charged formula and is related to the pH. As 
metabolic networks are reconstructed assuming an intracellular pH 
of 7.2, the protonated formula calculated based on the  p Ka value 
of the functional groups of the metabolite should be used in the 
model for accuracy.  

  Biochemical data for reaction directionality for the target organism 
help assign correct directionality. Whenever experimental data are 
not available, new approaches use the estimation of the standard 
Gibbs free energy of formation (Δ fG o) and of reaction (Δ rG o) to 
assign the direction [ 22 ]. Other methods combine thermodynamic 
information with network topology and heuristic rules to assign 
reaction directionality [ 23 ] also have been developed.  

  Subcellular localization of a protein or compartmental localization 
of a reaction needs to be included as they affect certain functions. 
PSORT [ 24 ] and PASUB [ 25 ] are nucleotide/amino acid 
sequence-based algorithms that can be used to predict the cellular 
localization. Novel Web-based methods [ 26 ] have recently been 
developed to predict the subcellular location of eukaryotic and 
prokaryotic proteins.  

  Reactions for biosynthesis of macromolecules or polymers (LPS, 
peptidoglycan, lipids, phospholipids) are diffi cult to curate. These 
reactions are generally not represented accurately in a database as 
their molecular formula is different in every organism. These reac-
tions generally result in stoichiometric inconsistencies. Translation 
of structural data of peptidoglycan or LPS to molecular formulae 
and elementally balanced biosynthesis reactions for macromole-
cules and polymers is a challenge. Few algorithms have been devel-
oped to identify all the reactions that are stoichiometrically 
inconsistent [ 27 ]. This step is particularly important for quality 
control of networks generated by community efforts. Community 
approaches towards network reconstruction are becoming increas-
ing popular [ 28 ,  29 ] and the use of automated and computational 
approaches towards ensuring the quality and accuracy is imminent. 
These components are very important as in some pathogens they 
could potentially differentiate serovars or be implicated in differential 
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mechanisms of pathogenesis like  F. tularensis ,  P. gingivalus , and 
 H. pylori  [ 7 ,  30 ,  31 ].  

  Although an automated procedure of draft reconstruction is con-
venient for building large models, small networks can be assembled 
one biochemical pathway after the other until the required net-
work is developed. Here, we use the assembly of the TCA cycle 
(Fig.  3 ) for the pathogen  Mycobacterium tuberculosis  H37Rv as an 
example. The proteins representations are also shown and include 
examples of isozymes, protein complexes, and the Boolean repre-
sentation of their association (refer Fig.  3c ). 

 The TCA cycle plays essential roles in cell metabolism, providing 
reducing equivalents for energy generation and biosynthetic reac-
tions, along with precursors for lipids, amino acids, and heme. Many 
variants of TCA cycle operate in pathogens based on the diversity of 
their metabolic niches. Although the Mtb genome is annotated to 
encode a complete TCA cycle, Tian et al. have shown that the con-
version of α-KG to succinate is via a succinic semialdehyde interme-
diate instead of the classical succinyl CoA [ 32 ]. The reconstruction 
of the TCA Cycle network for Mtb and its curation using the 
COBRA Toolbox is delineated stepwise (refer  Note 2 ) and methods 
for saving and exporting the model is also discussed ( Note 13 ).  

  To have a complete representation of an organism and be able to 
simulate its fundamental phenotype of growth, one has to repre-
sent biomass composition in a network reconstruction. Demand 
reactions are also artifi cial reactions that are added to the network 
to represent metabolite accumulation properties of the cell.  

  The biomass of an in silico organism is derived from the macromo-
lecular components that make up cells (Fig.  4 ). The biomass reaction 
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  Fig. 4    Formulation of biomass composition. The biomass composition reaction is 
represented typically in the metabolic models as a linear combination of many 
inputs and a balanced output that corresponds to the biomass       
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is thus depicted as a weighted linear combination of the fractional 
contributions of all known cell constituents required to make 1 g 
of cellular biomass [ 33 ]. Each cellular biomass macromolecule is 
divided into its corresponding building blocks, such as amino 
acids, fatty acids, and nucleotides. The detailed biomass composi-
tion of the target organism needs to be experimentally determined 
for cells growing in log phase. However, in cases where it is not 
possible to obtain a detailed biomass composition for the target 
organism, one can estimate the relative fraction of the precursors 
from the genome data in a database. Since this reaction is often the 
main phenotype computed by the model, care should be taken to 
build an accurate representation.

   The biomass reaction is also referred to as a “Biomass objective 
function” (BOF) and directly infl uences growth rate calcula-
tions [ 34 ]. BOFs allow differentiating phenotypic states of a cell. 
For example, in  Y. pestis  91001, the biomass composition differs at 
25 °C versus 37 °C [ 35 ]. The composition also determines the 
potential host (insect or mammalian). It is the weightage or the 
coeffi cients of the terms for the four fatty acid acyl chains 14:0, 16:1, 
16:0, and 18:1 that differ between the two BOFs [ 36 ].  

   Demand reactions are unbalanced network reactions that allow the 
accumulation of a compound, that are otherwise not allowed due 
to mass-balance principles in steady-state models. Sink reactions 
are similar to demand reactions but are defi ned to be reversible and 
thus provide the network with metabolites. Demand reactions 
need to be added for compounds like cofactors, lipopolysaccha-
ride, and antigens that the organism is known to produce [ 16 ]. 
These reactions should be used carefully and be biologically rele-
vant if used while computing cell phenotypes. A brief description is 
given in  Note 8 .  

  Exchange reactions typically allow specifi cations of media or envi-
ronment using uptake rates. Growth conditions are crucial to 
defi ning the biological question or hypothesis addressed and the 
success of the simulation. 

 Growth conditions would ideally identify (1) essential carbon 
and nitrogen sources, (2) known auxotrophies, (3) composition of 
media base (water, protons, metal ions), (3) different environ-
ments the pathogen thrives in, (4) crucial metabolites in the host 
that attenuate or increase the growth and survival of pathogen, (5) 
specifi c host niches the pathogen resides in. To defi ne a media con-
straint fi le, the reader is referred to  Note 5 .   

  The network reconstruction is converted into a mathematical 
format by extraction of the S-matrix. The extraction of the 
S-matrix is illustrated (Fig.  5 ) with an example of the TCA cycle 
from  M. tuberculosis  H37Rv. Several condition specifi c models 
can be defi ned for testing, by application of systems boundaries 
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that defi nes the successful conversion of a network reconstruc-
tion into a condition- specifi c model. These are added as exchange 
reactions. Multiple iterations of validation allow defi nition of a 
refi ned model that can accurately simulate phenotypic behavior 
that is biologically relevant.

  Fig. 5    Translation of the TCA metabolic network to stoichiometric matrix format. The set of reactions that 
represent the TCA cycle is translated into a mathematical model, represented as the S matrix. The reactions 
represented here are from  M. tuberculosis : ( 1 ) citrate synthase, ( 2 ) aconitase, ( 3 ) isocitrate dehydrogenase, 
( 4 ) 2-oxoglutarate decarboxylase, ( 5 ) succinate-semialdehyde dehydrogenase, ( 6 ) succinate dehydrogenase, 
( 7 ) fumarase, ( 8 ) malate dehydrogenase, ( 9 ) isocitrate lyase, and ( 10 ) malate synthase       
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    FBA is a method for assessing the systemic properties and cell 
behaviors of a metabolic genotype. The fundamentals of FBA have 
been reviewed [ 3 ,  4 ,  37 ,  38 ]. In short, the matrix equation (Eq.  1 ) 
that describes the steady-state mass balances of the biochemical 
reaction network [ 39 ,  40 ] is the lynchpin of FBA.

     S v b× =    ( 1 )    

where S is the stoichiometric matrix ( m  ×  n ), v is the vector of  n  
metabolic fl uxes, and b is the vector representing  m  transport 
fl uxes (i.e., known consumption rates, by-product production 
rates, and uptake rates). Mathematically, the S matrix acts as a lin-
ear transformation between the vector that defi nes fl uxes through 
 n  reactions in the biochemical network and the vector of the time 
derivatives of the concentrations of  m  metabolites involved in these 
reactions. 

 For example, the stoichiometric matrix, derived directly from 
the genome-scale metabolic network for Mtb,  i NJ66 [ 41 ] has a 
dimension of 826 × 1,025 ( m  = 826;  n  = 1,025). Based on matrix 
theory, the row space and null space of the S-matrix defi ne the fl ux 
solution spaces while the column and left null spaces are related to 
the concentration space. Based on the defi nition of the null space, 
all steady state solutions to the fl ux balance equations are con-
tained in this space. The solution space of interest to us is actually 
the intersection of the region that satisfy the mass balance con-
straints as defi ned by Eq.  1  and the linear inequalities defi ned by 
maximum and minimum rates ( α  i  ≤  v  i  ≥  β  i ) or any other physico-
chemical constraints [ 42 ] (defi ned through physiological data or 
OMICS data). The feasible set of solutions defi nes the boundaries 
and capabilities of the in silico cell and represent what a cell can 
theoretically do [ 43 ]. Since Eq.  1  is an underdetermined system of 
linear equations having infi nite number of solutions, defi ning bio-
logical objectives (as linear combinations of fl uxes) for optimiza-
tion is a critical factor allowing convergence to only one relevant 
solution (the one that results in the maximum or minimum value 
of the objective function). Thus designing objective functions is 
critical to posing the right biological question and also in interpre-
tation of computed cell function.   

     For small models it is possible to extract the stoichiometric matrix 
manually but genome-scale stoichiometric models, need effi cient 
editing to translate into a model, run simulations, and visualize 
results. Since the mathematical methods are a combination of lin-
ear algebra and optimization, a program in addition to the linear 
solver is needed to interpret the solver’s output. Currently, tools 
like Model SEED are available for automated model generation. 
OptFlux [ 44 ] and CellNetAnalyzer [ 45 ] mainly feature editing 
and visualization. PySCeS [ 46 ], YANASquare [ 47 ], MEGU [ 48 ], 
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BioMet Toolbox [ 49 ], and Cytoscape [ 50 ] are limited in for net-
work modeling capabilities. None of these however are scalable 
to genome level and allow simulations for interrogation and pre-
diction of cell function and behavior. FAME: the Flux Analysis 
and Modeling Environment [ 51 ] a Web-based, python scripted 
environment for FBA and some related functions, that doesn’t 
require proprietary software is also slowly gaining popularity as a 
“one stop shop” for FBA. The most versatile and popular tool for 
mathematical simulation is the COBRA Toolbox [ 11 ,  12 ], a mat-
lab, based tool for model solving and command-line manipula-
tion. This chapter discusses methods and objective functions 
from the COBRA Toolbox to simulate host–pathogen behavior 
and interaction. 
  Analysis methods  
 A model is only as powerful as the questions posed. The success of 
a model is based on the defi ned objective functions. Choice and 
design of the right mathematical objective makes way for validating 
biological hypotheses and driving biological discovery. Most 
COBRA methods depend on physicochemical and biological con-
straints to delineate the allowable phenotypic space under specifi c 
conditions. These constraints are hard physicochemical constraints 
including compartmentalization, mass conservation, molecular 
crowding, and thermodynamic directionality. Designing con-
straints that represent the actual organism pathology using 
known experimental data is critical to exploiting the power of 
CBM. Methods have also been described recently to use transcrip-
tomic, proteomic data to reduce the size of the set of computed 
feasible states [ 52 – 54 ]. Although existent, more integrative meth-
ods to translate OMICs data types into constraints are needed to 
expand the repertoire of analyses related to host–pathogen inter-
actions. Although studying host–pathogen interactions using 
constraints- based FBA has its limitations, it is probably one of the 
few methods that allows for system level analyses. The COBRA 
Toolbox gives access to several COBRA methods. Detailed descrip-
tions of COBRA methods and protocols can be found elsewhere 
[ 11 ,  12 ]. The following examples listed here discuss protocols for 
in silico experiments to probe pathogen or host metabolic behavior 
and understand their interaction. 

   Understanding the topology of the network by identifying gaps 
and dead ends is advisable before proceeding with other functional 
analysis. The steady-state assumption in FBA prevents accumula-
tion of any metabolite in the network, and hence, the reactions 
that produce them are never used in computing of the phenotypic 
state of the cell. Incomplete networks can be assessed, the gaps 
delineated and fi lled by this set of functions in COBRA. 

3.3.1  Structural Analysis 
of the Metabolic Network
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  Gaps in network structure due to missing information and func-
tional characterization of putative genes limit phenotypic out-
comes. A gap is the link between two reactions that is missing in 
the network. Filling these gaps makes it possible to reconcile fail-
ure modes of the model. 

 Only dead-ends with strong genetic evidence should be 
included in the model. Three potential hypotheses can be extended 
towards identifi ed dead ends. These include (1) reactions required 
to produce or consume the metabolite are absent either from the 
reconstruction or genome annotation (2) the reaction that causes 
the dead-end may not actually occur in the organism, or (3) the 
dead-ends actually exists in the organism. 

 The two COBRA functions that identify gaps are (A) detect-
DeadEnds or (B) gapFind. (Refer  Note 4 ). 

  The GapFind algorithm [ 15 ] allows one to fi nd all gaps in a model 
and all metabolites that are downstream from a model gap. 
 > > [ a l l G a p s , r o o t G a p s , d o w n s t r e a m G a p s ] 
= gapFind(model,fi ndNCgaps,verbFlag) 

 where array:  allGaps  is a list of the metabolite indices for a metab-
olite at a gap;  rootGaps  is a list of metabolites that cannot be 
produced; and  downstreamGaps  is a list of metabolites that are 
produced in a reaction that requires a metabolite that cannot be 
produced. 

 This function is run in an interactive and iterative fashion to 
guarantee that all gaps are identifi ed. It is necessary to set the upper 
and lower bounds of the exchange to relative large or small magni-
tudes to get accurate results. If the bound magnitudes are too 
small, the algorithm will incorrectly identify many metabolites as 
gaps; if this occurs, increase the bound magnitudes by tenfold 
(refer  Note 4 ).  

  The detectDeadEnds function searches the model.S matrix for 
metabolites that participate in only one reaction (can only be pro-
duced or only be consumed) and returns the corresponding indi-
ces for the metabolites in the model.mets fi eld. Setting 
removeExternalMets to true removes external metabolites from 
the results. Not all gaps can be identifi ed by simply inspecting the 
model.S matrix (refer  Note 4 ). 

 For example, 108 reactions have been identifi ed as dead ends 
with high confi dence in  S. aureus  and are included in the mode 
[ 55 ]. Subsequent additions to the model will likely close some of 
these gaps. Thus Gap analysis is the fi rst step towards iterative 
model building with refi nements coming from fi lling these gaps.   

  The function GapFill [ 56 ] can be used to bridge network gaps 
after their identifi cation. GapFill can achieve this by adding meta-
bolic reactions, transport pathways and relaxing irreversibilities of 

 Gap Analysis
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 Detect Dead Ends 
in a Model
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reactions. Reactions known not to be present in an organism (e.g., 
an incomplete TCA cycle in  M. genitalium ,  H. Pylori , incomplete 
glycolysis in  F. tularensis ) although identifi ed through the pro-
gram, should be excluded as gap fi lling candidates. Thus it is essen-
tial to study the literature carefully for the organism whose 
reconstruction is being developed to interpret the GapFill results. 

 GapFill can be used effi ciently to unblock synthesis of constitu-
ents of biomass guided by the known components in the growth 
medium. For example, in  M. genitalium  the authors [ 57 ] unblocked 
biomass production by addition of 65 reactions, for which more 
than 60 % were involved in metabolite transport (uptake of amino 
acids, folate, ribofl avin, metal ions, cofactors such as CoA), the rest 
involving hydrolysis of dipeptides and some biotransformations. 

 Integrating GapFill predictions, homology search (BLASTp), 
and structural fold (PFAM) identifi cation algorithms, genes encoding 
three subunits (MG098, MG099, and MG100) in the  M. genta-
lium  genome have been connected to the glutamyl-tRNA(Gln) 
amidotransferase protein [ 57 ]. 

  growthExpMatch  is another optimization-based algorithm 
that identifi es the minimum number of reactions from a universal 
reaction database that are required for the in silico organism to 
grow in specifi ed media conditions [ 15 ].    

  Computing cell function or phenotype is critical to hypothesis gen-
eration and biological discovery. Objective functions in an optimi-
zation problem are used to defi ne the exact biological function one 
wants to compute. Insights into mechanisms of infection and 
pathogenesis from a metabolic stand point that can be extended to 
the catalyst enzymes and encoding proteins can be obtained using 
COBRA methods. These methods allow computing phenotypes 
like growth in an environmental niche, oxygen sensitivity, energy 
requirements to identifi cation of virulent genes and drug targets 
(Fig.  6 ). The following protocols discuss the set up of the compu-
tation via a mathematical function that would provide the correct 
biological interpretation.

    Simulating maximal growth of the organism using FBA is one of 
the most fundamental calculations consistent with genome scale 
behavior. The growth rate on a variety of carbon sources can be 
predicted by fi xing the uptake of nutrients and defi ning the com-
position of 1 g of biomass. 

 The function  optimizeCbModel(model) , discussed in  Note 9 , 
in COBRA toolbox can be used. This function runs FBA on the 
selected model for maximization of the set objective function. The 
data structure solution that results contains an optimal solution 
where “f” gives the value of the objective function. This is essen-
tially the unique optimal growth rate predicted in silico. The vector 
“x” gives a non-unique optimal fl ux distribution through the net-
work. The shadow prices and reduced costs are also calculated by 
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optimizeCbModel function. The vector of  m  shadow prices is 
 FBAsolution.y  and the vector of  n  reduced costs is FBAsolution.w. 

 The sensitivity of the FBA solution is indicated by either shadow 
prices or reduced costs. The sensitivity analysis of the optimal value 
of the objective function allows one to understand how constraints 
affect its value. Since constraints in FBA are defi ned by bounds on 
reaction rates or fl ux values, shadow prices for them determine how 
the cell is limited by a particular constraint and indicate how much 
the addition of that metabolite will increase or decrease the objec-
tive. Shadow prices are the derivative of the objective function with 
respect to the exchange fl ux of a metabolite. 

 The reduced costs on the other hand represent the amount by 
which the objective function will be reduced if the corresponding 
reaction is forced to carry a fl ux (i.e., if the gene is expressed or 
“turned on”). By understanding what set of reduced costs are 
zero, alternate equivalent fl ux distributions can be analyzed to get 
redundancies built into the cell. Reduced costs are the derivatives 
of the objective function with respect to an internal reaction with 
0 fl ux, indicating how much each particular reaction affects the 
objective. 

 Sensitivity analysis of the objective functions helps interpret 
understanding decisions a cell makes regarding metabolic options. 
The reader is referred to a Linear Programming textbook to under-
stand the concepts of optimization. 

  Fig. 6    Functional analysis of host–pathogen behavior and interaction. The fl ow chart delineates functional cell 
phenotypes that can be computed using COBRA methods       
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 The function described above can be used for optimal growth 
predictions in a network model of any organism. What makes it 
amenable to study host–pathogen interactions is the ability to 
defi ne several alternate environments the pathogen can reside in as 
constraints and calculate the optimal growth possible. Of course, 
the identifi cation of these microenvironments depend on specifi c 
niches in the host, the stage of infection etc. and are nontrivial to 
defi ne. However, multiple simulations in different environments 
allow us to identify not only the proliferative potential of the 
pathogen but also the accuracy of defi ning the host milieu as dis-
cussed in the protocol that follows.  

  Using the same protocol as above, FBA can be used to calculate 
the maximum yields of cofactors like ATP, NADH, and 
NADPH. Proton balancing limits production of cofactors ATP, 
NADH, and NADPH. Sensitivity analysis on maximal ATP yield 
objective for  E. coli  core model shows that the shadow price of 
cytosolic protons (h[c]) is −0.25 [ 4 ]. What this means is that one 
needs to add 4 mol protons/mol glucose for the ATP yield to 
drop by a unit, i.e., 1 mol ATP/mol glucose. As discussed previ-
ously, the cap on the ATP production is a direct outcome of the 
steady- state assumption. Any increase would result in import of 
additional protons that have no way to leave the cell and change 
the intracellular pH.  

  This protocol generally is used to determine the minimal media 
required to produce biomass in silico can be extended to under-
stand the host niche or nutrient environment the pathogen may 
encounter. Each potential environmental (media) component that 
is defi ned by existence of a transport mechanism in the real organ-
ism is taken out of the network and then interrogated for possibil-
ity of growth. If the network is not capable of producing biomass 
without taking up that specifi c metabolite, the metabolite is 
deemed “essential.” Generally during this process, the uptake rates 
for protons and water are not constrained and the uptake rates of 
all other media components are set to be maximally 20 mmol/h/g 
(dry weight)[ 43 ]. The oxygen uptake rate is set based on aerobic-
ity required anywhere from 0 for anaerobic to the maximum value 
after which biomass is not affected in silico. 

 Using these methods minimal media of several organisms have 
been designed. One example is  Helicobacter pylori  [ 31 ], where in it 
was predicted that amino acids are alone suffi cient to form the bulk 
carbon requirements. Minimal media or environmental calcula-
tions also allow us to identify any major problems with the recon-
structions, e.g., if growth is possible in the absence of a carbon 
source that is a major discrepancy unless noted so in literature. 
Generally agreements between the in silico-predicted and the 
in vitro/in vivo-determined requirements indicate validity of the 
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network reconstruction and consistency of predicted conditions 
dependent in silico behavior. Further, this function can be used to 
delineate the minimum nutritional requirements for wild type and 
mutant strains of any organism [ 58 ]. For example, in the  S. aureus  
reconstruction [ 55 ] discrepancies were detected in the computa-
tionally predicted, amino acid requirements for growth of the 
pathogen. Kuroda and colleagues report that the six amino acids 
are specifi cally required for strain N315 to grow despite presence 
of pathways for the synthesis of all amino acids. Flux balance mod-
els in general and specifi cally iSB619 do not account for regulatory 
effects and predictions made assume gene to be expressed at the 
needed levels. The authors have explored the discrepancy between 
experimental results and computational predictions by studying 
the in silico effect of adding each amino acid individually to the 
predicted minimal media listed (always with arginine). They found 
on average, providing one of amino acids noted as essential from 
experimental data led to more biomass production than providing 
one amino acid not listed as essential. A Wilcoxon rank sum test 
can be further used to test if the results are likely to be the result of 
random chance.  S. aureus  is said to require an organic source of 
nitrogen provided by amino acids, so the requirement of at least 
one amino acid is not surprising. The authors predicted that 
 S. aureus  can grow more effi ciently by taking up certain amino 
acids rather than synthesizing them, even though the genome 
encodes that functionality [ 55 ]. 

 Differentiating serovars of a pathogen can also be accom-
plished using FBA when the major difference is the ability to fer-
ment carbon sources. For example, the ability or inability to 
ferment rhamnose and melibiose is typically used to classify strains 
of  Y. pestis . YP CO92 is known to be lethal to humans and is char-
acterized by the inability to ferment rhamnose as is predicted in 
silico. A simple simulation can also identify the reason for this out-
come (potential over accumulation of L-lactaldehyde) [ 35 ]. 
Metabolic models can also recapitulate common amino acid auxot-
rophies seen in strains like the epidemic strains of  Y. pestis .  

  The effect of reducing fl ux through any reaction in the network on 
optimal function (growth, energy or biosynthetic capability) is very 
important in host–pathogen studies. Robustness analysis allows 
the computation of how an objective of interest (e.g., growth rate) 
changes as the fl ux through a specifi c reaction of interest varies in 
magnitude. One could systematically study the effect of varying 
fl ux through each gene on growth and virulence of the pathogen 
in a host environment. The interdependence of oxygen or h+ fl ux 
on multiple objectives of the cell can be predicted to understand 
how microenvironments affect growth, function and pathogenicity. 
Predicting haplo-insuffi cient phenotypes in eukaryotes has also 
been proposed by studying the effect of decreasing the expression 
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level of a specifi c metabolic enzyme on the growth rate [ 11 ]. This 
function ( see   Note 10 ) is used to compute and plot the value of the 
model objective function as a function of fl ux values for a reaction 
of interest ( controlRxn ) as a means to analyze the network robust-
ness with respect to that reaction [ 11 ]. 
  Aerobicity: Effect of oxygen on metabolism and growth  
 The sensitivity of growth rate to oxygen uptake on a variety of 
 different carbon sources can be calculated using FBA. The carbon 
source uptake rate must be restricted to the same molar maximum 
for all calculations. Under these conditions, biomass production 
would intuitively increase with oxygen uptake until there is no 
longer an oxygen limitation. Robustness has also been used to 
understand glutamate mediated acid resistance and growth for the 
live vaccine strain of  Francisella tularensis  in the chamberlain 
media [ 30 ].  

  Gene deletion phenotypes can be simulated [ 11 ,  12 ] by using the 
same  optimizeCbModel(model)  function used for calculating 
optimal growth. Perturbation parameter however is the removal of 
the gene and its corresponding reaction in the network. The gene–
reaction relationships defi ned by Boolean rules are critical to this 
protocol. The upper and lower fl ux bounds for the reaction(s) cor-
responding to the deleted gene are both set to zero. The result 
obtained in the data structure f: now describes growth objective 
under the infl uence of the gene perturbation, i.e., deletion. To look 
at genome wide effects it is also possible to use the functions that 
performs a model-wide single gene deletion study ( see   Note 11 ). 

 Biological interpretation of gene deletion data has far reaching 
implications in understanding essentiality of genes and also poten-
tial drug targets. The three categories of results that can be obtained 
include (1) unchanged maximal growth, (2) reduced maximal 
growth, or (3) no growth. The interpretation has signifi cant impli-
cations in understanding pathogen genetics and host–pathogen 
interactions. These simulations can thus differentiate virulent, avir-
ulent and attenuated (growth of mutant in vivo at a lower rate than 
the wild type) genes. The fi rst category indicates a nonlethal gene 
or avirulent genes while the third category result indicates a lethal 
gene or virulent gene function. The second category of genes would 
be identifi ed attenuated genes in pathogens that could translate to 
vaccine strains. For example, in silico gene deletion predictions for 
salmonella compared to experimentally identifi ed in vivo essential 
and nonessential genes [ 59 ]. And the growth rates predicted were 
consistent with physiologically identifi ed virulent, avirulent, and 
attenuated strains in literature [ 60 ]. Using in silico gene deletion 
study, potential new drug targets can be identifi ed with low sequence 
identity to human proteins. One of these antimalarial targets dis-
covered, nicotinate mononucleotide adenylyltransferase (NMNAT), 
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was experimentally tested in a growth inhibition assay using a 
recently discovered small molecule inhibitor [ 61 ]. 

 The effect of deleting two genes simultaneously on growth can 
be simulated. Here, reactions bounds of all the reactions corre-
sponding to these two genes are set to zero and the effect of that 
perturbation is observed in the value of the objective function. 
These results may be useful in explaining potential epistatic inter-
actions. Theoretically double deletion of every gene pair in the 
genome-scale network is a simple task, although experimental vali-
dation is quite daunting. However, identifying microenvironments 
to probe the effects in silico of these gene perturbations allows one 
to narrow down the experimental targets by several orders of mag-
nitude and prioritize the most relevant epistatic interactions. These 
interacting pairs suggest combination targets in treatment strate-
gies and can be classifi ed as condition-dependent or independent. 

 Pairwise double gene deletions can be performed using the 
function  doubleGeneDeletion . This function calculates the 
growth rates and relative growth ratios for every two-gene 
 combination in the model. Relative growth rate data can be used 
to identify epistatic (synthetic lethal or synthetic sick) interactions 
between genes in the model. A synthetic sick interaction is one in 
which the growth rate ratios of the double deletion and each single 
gene deletion are less than 0.01 [ 12 ]. The function in COBRA is 
 fi ndEpistaticInteractions(model,grRatio) .  

  The metabolic capacity of an organism, and hence its robustness, is 
determined by all alternate routes it can use to achieve an objective 
[ 30 ,  59 ]. FVA is a derivative of FBA allows one to examine the 
redundancies by calculating the full range of numerical values for 
each reaction fl ux in a network [ 62 ]. In silico prediction of meta-
bolic pathways utilized during infection allows us to identify redun-
dant metabolism that the pathogen could exploit in order to survive 
and replicate. This is carried out by optimizing for a particular 
objective, while still satisfying the given constraints set on the sys-
tem. One can thus also determine the minimum and maximum fl ux 
value that each reaction in the model can take up while satisfying all 
constraints on the system for a specifi c objective (refer  Note 12 ). 

 For example, for Salmonella given the possible nutrients pro-
vided in the host-cell environment, FVA identifi ed a reactome of 
417 reactions when biomass production is optimal. Flux variability 
analysis (FVA) was used to identify such metabolic reactions that 
might be operational in different environments including that dur-
ing infection. This allows us to identify the host metabolism that 
 Francisella  could exploit in order to survive and replicate. By set-
ting the  optPercentage  variable (refer  Note 12 ) one can further 
investigate fl ux variability at suboptimal values of the objective 
function [ 30 ,  59 ].  

3.4.6  Flux Variability 
Analysis (FVA)
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  The concept of metabolite essentiality has been introduced recently 
for studying the cellular robustness and to complement the classi-
cal reaction (gene)-centric approach [ 63 ,  64 ]. Metabolite essenti-
ality analysis predicts whether the removal of a metabolite from the 
cell causes death. Structural analogs of metabolites that are essen-
tial can be potential drug candidates [ 64 ]. Simulations involve 
deleting all reactions that either consume or produce the metabo-
lite and calculating optimal growth [ 63 ]. All metabolites that result 
in no cell growth are deemed essential to the organism. 

 Further use of this data to identify potential drug candidates is 
possible using the EMFilter framework [ 65 ]. This EMFilter is a 
four step procedure that eliminates metabolites from the essential 
list by removing (1) evolutionarily conserved currency metabolites 
with high connectivity, e.g., ATP and NADH. (2) metabolites that 
form nodes with triconnectivity (more than three reactions), and 
an out degree of two (metabolite-consuming), (3) metabolites that 
are common to human metabolism, and (4) metabolites whose 
connected enzymes possess homologs in humans. The metabolites 
that remain are potential candidates for designing drug candidates.  

   A lot of methods and protocols focus on building bacterial patho-
gen and host models. The human genome sequence annotation 
provided the appropriate foundation for human metabolic recon-
structions and have resulted in four genome-scale reconstructions, 
the HumanCyc [ 66 ], the Edinburgh Human Metabolic Network 
[ 67 ,  68 ], Recon 1[ 69 ], and Recon2[ 29 ]. 

 The genome-scale human network models can serve as host for 
most pathogens. Use of generic metabolism models of hosts devel-
ops understanding of mechanisms of either the pathogen or the host 
a whole. However, it is also necessary to build models for individual 
organelles as well to understand the different stages of infection. For 
example interactions between macrophages and the pathogen can 
be understood better if the host model is tailored to represent mac-
rophage phenotypes rather than just overall metabolism. Several 
OMICS data types can be used for this purpose [ 52 ,  70 ,  71 ]. An 
example is the incorporation of gene expression data [ 72 ] to develop 
a human alveolar macrophage model [ 53 ]. The GIMME [ 73 ] algo-
rithm retains those present in the high- throughput data and orphan 
reactions in Recon 1. The reactions with no detected expression are 
minimized and those not required to retain fl ux through the objec-
tive reaction are removed. Recon1 is the fi rst version of the genome-
scale metabolic network for  Homo sapiens  [ 69 ]. As an example, 
Bordbar and colleagues have developed a macrophage model using 
Recon1 [ 53 ]. The function   createTissueModel  in the COBRA 
toolbox can be used to build these tissue specifi c models. The details 
of this protocol for iAB-AMØ- 1410 (refer  Note 15 ) delineates the 
development of a host–pathogen interaction model in the context of 
alveolar macrophage and mTB.   

3.4.7  Metabolite 
Essentiality 
for Drug Design

3.4.8  Building Tissue 
Models Using OMICS Data
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  The integration of the refi ned host and pathogen models is critical 
in developing a host–pathogen interaction model. Since most met-
abolic pathways are evolutionarily conserved across species, both 
the individual models have several metabolites and reactions in 
common. It is essential to rename metabolites and reactions to 
delineate between organisms while integrating the host and patho-
gen models [ 53 ]. As pathogens reside in a phagosome, the models 
need to be re-compartmentalized and phagosome environment 
and necessary transport across the macrophage cytoplasm needs to 
be delineated (Fig.  7 ). As an example, the macrophage model is 
developed here with the latest version of the genome-scale human 
metabolic network and is then integrated with iNJ661 as discussed 
( Notes 14 – 16 ).

3.5  Host–Pathogen 
Interaction Model

  Fig. 7    Schematic of compartmentalization in host–pathogen interaction model. Re-compartmentalization 
 process while integrating a host and a pathogen model is critical to understanding the infection process. In the 
given  Human macrophage – M. tuberculosis  example, the pathogen engulfed is within a phagosome in 
the macrophage cell. The phagosome environment mainly consists of lipids, and thus, the metabolite pool 
available within the phagosome is different from the host cytosolic metabolite pool. Hence, an additional 
phagosome compartment is added to the model       
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4          Conclusions 

 This chapter discussed the many protocols developed for the 
constraints- based fl ux balance modeling of genome-scale meta-
bolic networks that can be used to probe host and pathogen behav-
ior and their interaction. The philosophy of this systems approach 
as applied to genome-scale metabolic networks results in three 
important insights. First, accurate in silico organism-scale models 
can now be reconstructed that help drive experiments and generate 
novel hypotheses. Reconciliation of failure modes of these models 
allows iterative model-building. Second, cell function and biolo-
gical phenotype is a result of the many hard constraints (physico-
chemical) that organisms operate under. Third, availability of 
impressive computational toolboxes driving in silico interrogation 
of cell behavior makes analysis of complex interacting systems 
achievable in the near future.  

5    Notes 

    This section outlines the actual codes and results for using func-
tions in the COBRA toolbox for reconstruction, simulation and 
analysis of metabolic models. The corresponding subsection in the 
main text that references these notes is listed here. These are help-
ful to the beginner and the already initiated user alike and will help 
in connecting mathematical simulations to biological phenotypes. 
The thought process behind formulating the mathematical prob-
lem for the biological question to be answered is the holy grail of 
modeling host–pathogen behavior and their interactions for novel 
hypothesis generation and biological discovery.

    1.     Basic functions for metabolic network reconstruction and 
analysis : 
 Before using any COBRA functions, check whether COBRA 
toolbox is working by using the comman   d: 
 >>initCobraToolbox 
 To change the cobra solver: 
 >>changeCobraSolver('tomlab_cplex', 'LP')   

   2.     Toy network of Mycobacterium tuberculosis TCA (citric acid 
cycle): Network reconstruction and implementation . 
 The reader is referred to the TCA cycle of  M. tuberculosis  
(Fig.  3 ) to understand the reactions involved (Fig.  3b ) and the 
GPR Boolean logic (Fig.  3c ) before proceeding to the recon-
struction of the network. This network essentially consists of 
ten steps of the TCA cycle and a glyoxylate bypass. The reac-
tions have been adopted from the iNJ661  M. tuberculosis  model.   

Investigating Host–Pathogen Behavior and Their Interaction Using Genome-Scale…



548

   3.     To build a model in COBRA usable format : 
 The network and stoichiometric model (referred as  my 
TCAmodel  below) can be built from scratch using the  create-
Model  function. Reaction abbreviations, protein and gene 
names, metabolites and equations for all reactions involved in 
TCA need to be assembled prior to creating then network in a 
text or excel fi le. 
 >>rxnAbrList = {'ACONT';'CS'; 'FUM'; 'ICDHy'; 'ICL'; 
'MALS'; 'MDH'; 'OXGDC'; 'SSALx'; 'SUCD1i'}; 
 >>rxnNameList = {'aconitase'; 'citrate synthase'; 
'fumarase'; 'isocitrate dehydrogenase (NADP)'; 
'Isocitrate lyase'; 'malate synthase'; 'malate 
dehydrogenase'; ' 2-oxoglutarate decarboxylase'; 
'succinate-semialdehyde dehydrogenase (NAD)'; 
'succinate dehydrogenase'}; 
 >rxnList = {'cit[c]<=>icit[c] '; 
 'accoa[c]+h2o[c]+oaa[c] ->cit[c]+coa[c]+h[c] '; 
 'h2o[c]+fum[c]<=>mal-L[c] '; 
 'icit[c]+nadp[c] ->akg[c]+co2[c]+nadph[c] '; 
 'icit[c] ->glx[c]+succ[c] '; 
 'accoa[c]+h2o[c]+glx[c] ->coa[c]+h[c]+mal-L[c] '; 
 'mal-L[c]+nad[c]<=>oaa[c]+h[c]+nadh[c] '; 
 'h[c]+akg[c] ->co2[c]+sucsal[c] '; 
 'h2o[c]+nad[c]+sucsal[c] ->2h[c]+succ[c]+nadh[c] '; 
 'succ[c]+fad[c] ->fum[c]+fadh2[c] '} 
 >>myTCAmodel =  createModel (rxnAbrList,rxnName
List,rxnList); 

 The function  createModel  automatically creates the S 
matrix from the network reconstruction based on the informa-
tion derived from the elementally balanced equations that 
defi ne the reaction. 

 The directionality of the reactions in the network decide 
the value of the upper bound value (10 6 ) and the lower bound 
(0 for irreversible and −10 6  for irreversible). 

 The network made using the above reactions is incom-
plete, as the system is isolated in the cytosolic compartment, 
denoted by “[c]” in the model. The TCA cycle cannot func-
tion in isolation in the pathogen. The genome-scale 
 Mycobacterium tuberculosis  metabolic model, iNJ661 (for 
detailed description, refer  Note 6 ) is used, to describe the 
COBRA toolbox utilities. This toy TCA network is used only 
to describe structural analysis functions (Gap analysis). 

 The toy network can also be imported from a COBRA 
acceptable format excel sheet (discussed in detail in  Note 6 ). 
 >>myTCAmodel = xls2model('modelFile')   
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   4.     Identifi cation of gaps and dead-ends in the network : 
  gapFind  function identifi es all blocked metabolites, down-
stream of a gap in a model. MILP algorithm is required to solve 
this function. Accordingly, the COBRA solver must be changed. 
 >>changeCobraSolver('tomlab_cplex', 'MILP') 
 It is preferable to change the reaction bounds (rxnbounds) on 
exchange reactions appropriately to allow uptake of every 
metabolite, to fi nd every gap in a model. 
 >>[allGaps,rootGaps,downstreamGaps] = gapFind 
(myTCAmodel); 

 The output of the function gives three arrays described below:
 ●      allGaps : all blocked metabolites (metabolites with no 

in-fl ux).  
 ●    rootGaps : all root no production (and consumption) gaps.  
 ●    downstreamGaps : array of all downstream gaps.    

 In this example,  gapFind  predicts all 20 metabolites in the 
TCA cycle as blocked metabolites or gaps (Fig.  8 ).

   This is expected and true as no metabolite transport reac-
tions are provided to the system. In addition to the transport 
reactions that are biologically relevant for symport or antiport 
and exchange reactions must be added to the model. This con-
cept is further discussed in detail ( see   Note 6 ), while explaining 
how cell growth medium is provided in the model. Transport 
and exchange reactions can either be added for all the metabo-
lites in the network based on legacy data. 

 “Deadend” metabolites participate in only one reaction or 
are either only produced or only consumed. Deadends can be 

  Fig. 8    Gapfi nd Simulation Output For A Network. GapFind simulation output lists all the gaps (blocked metabolites) 
including rootgaps and downstream gaps for the TCA cycle network discussed       
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identifi ed using the  detectDeadEnds  function. This function 
checks if the  S matrix  values are all −1 or all +1 and also check 
if the lower bound is zero for each metabolite. 
 >>deadends = detectDeadEnds(myTCAmodel); 

 The function outputs indices of dead end metabolites. 
In the TCA network; 
 accoa[c] , coa[c],nadp[c],co2[c],nadph[c],fad[c]
,fadh2[c]; are identifi ed as dead ends. 

 As discussed in the reaction content curation sub-protocol, 
all reactions need to be elementally and charge balanced. The 
function  checkMassChargeBalance  checks if reactions are 
mass-balanced. The function compares sum of elements on left 
side with the sums of elements on the right hand side of each 
reaction. 
 >>[massImb,imBaMass,imBaCharge,imbaBool,eleme
nts] = checkMassChargeBalance(myTCAmodel); 
 The output:

 ●      massImb : Gives an  ExN  sparse matrix with mass imbal-
ance, if the reaction is elementally balanced, value is zero.  

 ●     imBaMass : Cell array of size  N  with mass imbalance. e.g.: 
−1H represents 1 hydrogen missing in the reaction.  

 ●     imBaCharge : Array of size  N  with charge imbalance for 
each reaction.  

 ●     imbaBool : Boolean vector indicating imbalanced 
reactions.    
 The function checks for the elements “H,” “C,” “O,” “P,” 

“S,” “N,” “Mg,” “X,” “Fe,” “Zn,” “Co,” “R”; in each reac-
tion for imbalances.   

   5.     Adding transport reactions and exchanges to the network : 
 Transport reactions represent the exchange of metabolites 
between any two compartments. In the case of prokaryotes, 
exchange between cytosol and extracellular compartment is 
required. In the model it is represented as the cytosolic metab-
olite going out to the extracellular environment and becoming 
an extracellular metabolite and vice versa (i.e., [c] ⟺ [e]). 
Transport can be by diffusion, where nutrients like H 2 O or O 2  
are freely exchanged or via antiport or symport of an ion like 
H +  along with the metabolite. Examples for free diffusion of 
water, oxygen, and carbon dioxide are shown below. 
 >>myTCAmodel = addReaction(myTCAmodel,'Tr_
h2o(c)','h2o[c]<=>h2o[e]'); 
 >>myTCAmodel = addReaction(myTCAmodel,'Tr_
co2(c)','co2[c]<=>co2[e]'); 
 >>myTCAmodel = addReaction(myTCAmodel,'Tr_
o2(c)','h[c]<=>o2[e]'); 
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 In order to complete the TCA cycle network, transport 
reactions are necessary for all intermediates in the pathway, but 
the equation has to be based on literature data. 

 Metabolite uptake and secretion to and from the envir-
onment is defi ned by addition of exchange reactions in the 
 stoichiometric matrix. Exchange reactions represent the fl ow of 
metabolites across the boundary of the cell. Also exchange reac-
tions, associated with media components, can be assigned reac-
tion bounds accordingly to measured uptake rates; for example, 
glucose exchange fi xed at a value of −1, would mean uptake of 
glucose from the media into the cell at a rate of 1 mmol/gDW/h. 

 Exchange reactions need to be added for metabolites that 
can exchange across the system boundary. For example to add 
these reactions for cofactors nad[e], nadh[e], fad[e], fadh2[e], 
nadp[e], nadph[e] an easy function  addExchangeRxn  is used. 
 >>myTCAmodel = addExchangeRxn(myTCAmodel,{'na
d[e]','nadh[e]','fad[e]','fadh2[e]','nadp[e]', 
'nadph[e]'}); 

 The reaction bounds can be adjusted to 
 (a)  input certain metabolites (media) into the cell at a particu-

lar rate 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
glc[e]',-1,'b'); 

 (b) force certain metabolites only into the cell at varying rates 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
glc[e]',-1,'l'); 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
glc[e]',0,'u'); 

 (c)  force certain metabolites (fermentation product) to be only 
secreted out of the cell 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
lac- D[e]',0,'l'); 

 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
lac- D[e]',10,'u'); 

 (d) allow a metabolite to freely go in and out of the cell 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
h2o [e]',-1000,'l'); 
 >>myTCAmodel = changeRxnBounds(myTCAmodel,'Ex_
h2o[e]',1000,'u');   

   6.     Flux balance and constraints-based analysis of the genome-scale 
Mycobacterium tuberculosis metabolic model ,  Inj661 : 
 The TCA cycle does not function in isolation inside the cell. 
Thus, it is not fruitful to convert it into a complete model that 
can be subject to meaningful simulations and analyses using 
COBRA methods. Thus, the genome-scale  Mycobacterium 
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tuberculosis  metabolic model, iNJ661 [ 41 ] is used in this note 
to demonstrate the use of COBRA toolbox; the SBML format 
of the model is provided in the BIGG database (  http://bigg.
ucsd.edu/    ). The biomass reaction is provided in the model 
itself [ 41 ]. 

 The following notes include details on how to import an 
already reconstructed network model in SBML format, run 
FBA and constraints-based analysis simulations.   

   7.     Importing the reconstruction fi le into COBRA toolbox : 
 To import a constraints-based model from SBML format fi le 
into MATLAB, the following COBRA toolbox function is used: 
 >>myModel = readCbModel 

 This function opens a prompt box, which asks the user to 
select the model fi le to be imported. 

 One can also import model from excel fi le: 

 >>myModel = xls2model('modelFile') 

 COBRA requires a specifi c format for 'modelFile'. It must 
consist of two tabs, ' reactions ' and ' metabolites '. 
 ' reactions ' tab format: 

 col 1 Abbreviation HEX1 
 col 2 Name Hexokinase 
 col 3  Reaction 1 atp[c] + 1 glc-D[c] -- > 1 

adp[c] + 1 g6p[c] + 1 h[c] 
 col 4 GPR b0001 
 col 5  Genes b0001 (optional: column can be 

empty) 
 col 6  Protein AlaS (optional: column can be 

empty) 
 col 7 Subsystem Glycolysis 
 col 8 Reversible 0 (irreversible) 
 col 9  Lower bound 0  (irreversible  reactions 

have lower bound 0) 
 col 10 Upper bound 1000, 
 col 11  Objective 0 (optional: column can 

be empty) 
 col 12 Confi dence Score 0,1,2,3,4 
 col 13 EC. Number 1.1.1.1 
 col 14  Notes N/A (optional: column can be 

empty) 
 col 15  References PMID: 1111111 (optional: 

column can be empty) 
 'metabolites' tab format: 
 col 1    Abbreviation 
 col 2    Name 
 col 3    Formula (neutral) 
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 col 4    Formula (charged) 
 col 5    Charge 
 col 6    Compartment 
 col 7    KEGG ID 
 col 8    PubChem ID 
 col 9    ChEBI ID 
 col 10 InChI string 
 col 11 Smiles 
 ' metabolites ' tab must consist of complete list of metabolites 
occurring in all compartments, i.e., the same metabolite 
appearing in multiple compartments must be represented 
 distinctly as two metabolites. For example, ATP occurring in 
mitochondria and in the cytosolic compartments must be rep-
resented in two separate rows as 'atp[m]' and 'atp[c]', respec-
tively. Abbreviations for metabolites must be the same as used 
in the Reactions.   

   8.     Defi ning the in silico media or environmental constraints fi le : 
 To represent the environment or the media in silico, the 
exchange reactions must be set accordingly. This is also neces-
sary for combining experimentally derived data into the model. 
This process allows a more accurate representation of the real 
system. The default fl ux unit used is  mmol gDW  − 1    h  − 1   ( millimoles 
per gram dry cell weight per hour ). The exchange bounds can be 
changed for various exchange reactions. In the following exam-
ple glucose exchange is set to an uptake of  1 mmol gDW  − 1    h  − 1   
 >>myModel = changeRxnBounds(model,'EX_
glc(e)', -1,'l'); 
 >>myModel = changeRxnBounds(model,'EX_
glc(e)', -1,'u'); 

 In certain cases, one may need provide sink or demand 
r eactions into the model, to compensate for production of 
 certain compounds (lipopolysaccharides, toxins, etc.) (refer 
Subheading  3.1.13 ). 

 To add sink or demand reactions, the following functions 
are used: 
 >>myModel = addSinkRxn(myModel,  {metabolite 
List}); 
 >>myModel = addDmdReaction(myModel,  {metabolite 
List}); 

 Sink and demand reactions also help in debugging the 
model. These reactions are critical to integrating two models 
( Note 16  discusses the host–pathogen interaction model). It is 
recommended to simply write a list of  changeRxnBounds  
function for all required exchanges into a Matlab script fi le that 
can be used numerous times for any simulations. Or save 
the script as a function, which can be used for various models 
( see  Fig.  9 ).
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  Fig. 9    Constraint File defi ning in silico media or environmental niche. The in silico media or environment for the 
cell in the simulation is defi ned by changing the bounds of the exchanges       

       9.     Setting up the FBA problem  
 Choice of objective functions is at the discretion of the  modeler. 
Typically, biomass growth rate, fermentation product produc-
tion rate, cofactor yield for respiration (NAD/NADH  balance) 
or energy (ATP/ADP balance) can be used. Linear combination 
of metabolites can also be aggregate objectives; minimization of 
sum of fl uxes is a mathematical representation of optimizing 
resources for a cell and is also a frequently used objective 
 function. In this example the biomass growth rate is set as the 
objective function    (Fig.  10 ).

   The function to defi ne the objective reaction is 
 >>myModel = changeObjective(model,  rxnName, 
objective Coeff). 
  rxnName  is a cell array consisting reaction(s) to be set as 
objective, and  objectiveCoeff  is the value of objective coeffi -
cient for each reaction. 
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  Fig. 10    Graphical representation of Robustness Analysis. The Robustness diagram 
shows the sensitivity of cell growth rate to oxygen availability       

 To set biomass as objective in the iNJ661 model: 
 >>myModel = changeObjective(iNJ661,  'biomass_
Mtb_9_60atp', 1) 
  optimizeCbModel  solves the FBA problem 
 This function solves LP problems of the form: 
max/min c'*v 

 {subject to  S  ·  v  =  b}  
  lb  ≤  v  ≤  ub  
 >>Solution = optimizeCbModel(myModel) 

 This output of the function is a matlab structure with six 
fi elds given below:

 ●    f: Objective value  
 ●   x: Primal, i.e., fl ux through each reaction  
 ●   y: Dual  
 ●   w: Reduced costs  
 ●   s: Slacks  
 ●    stat: Solver status in standardized form (1 = Optimal solu-

tion, 2 = Unbounded solution, 0 = Infeasible -1 = No solution 
reported).    
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 The time taken to run the optimization is also given in the 
output. The output is described in depth in Subheading  3.3.1 . 
 Similarly, to set the FBA problem to maximize respiration 
using balanced NAD/NADH production as objective, an arti-
fi cial reaction, can be added using the following function: 
 >>myModel = addReaction(myModel,'nadRxn','nad
h[c]->nad[c]+h[c]'); 

 The demand reaction added, ' nadRxn ' is set as objective 
for FBA 
 >>myModel = changeObjective(myModel,  ' nadRxn ', 1) 
 >>Solution = optimizeCbModel(myModel) 

 A result is shown in Fig.  11 :
   Similarly, ATP production can also be predicted by adding 

an artifi cial reaction that couples ATP and ADP in the cell.   
   10.     Robustness analysis : 

 Robustness analysis can be performed for a control reaction 
against any objective. The following example shows the sensi-
tivity of growth rate to oxygen uptake rate 'EX_o2(e)'. 
 >>myModel = changeObjective(myModel, 
'biomass_Mtb_9_60atp'); 
 >[controlFlux,objFlux] = robustnessAnalysis
(myModel,'EX_o2(e)',20); 

 A plot of growth rate (objective function) on the ordinate 
and oxygen uptake (control reaction) on the abscissa axes is 
automatically generated, the number of points on the plot 
is being user defi ned (the above example produces 20 points). 
A snapshot of the plot produced is given (Fig.  10 ).   

   11.     Gene deletion analysis : 
 Gene Deletion can be simulated using the  singleGeneDele-
tion  and  doubleGeneDeletion  functions in the COBRA toolbox. 
 >>[grRatio,grRateKO,grRateWT,hasEffect,delR
xns] = singleGeneDeletion(myModel); 

  Fig. 11    Flux Balance Analysis (FBA) Solution Output. The Solver output for a FBA 
simulation summarizes the value of the objective function and other sensitivity 
parameters of the optimization like reduced costs and shadow prices       
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 The function iteratively blocks the reaction(s) affected by 
each gene (depending on the Boolean relationships) and runs 
an FBA to check for viability. This function is useful for identi-
fying gene essentiality. 
 The output is explained below:

 ●     grRateWT : growth rate of the Wild Type (1/h).  
 ●    grRateKO : respective growth rates of the Knock outs (1/h).  
 ●     hasEffect : Indicates the effect of corresponding gene dele-

tion {1 = reactions removes as result of deletion; 0 = no effect}.  
 ●     delRxns : Lists the reactions affected by the respective gene 

deletion.  
 ●     grRatio : Computed growth rate ratio between deletion 

strain and wild type {grRateKO/grRateWT}.    
 The simulations predict that genes 'Rv1436', 'Rv1437', 

'Rv1438' are most essential due to their low grRatio. 
 >>[grRatioDble,grRateKO,grRateWT] = doubleGene 
Deletion(myModel); 

 The function by default computes deletion analysis for 
each gene in the model, which takes a long time to compute. 
Depending on the goal of the study a list of genes to be deleted 
can also be provided by the user which also reduces the com-
putation time required. 
 >>[grRatioDble,grRateKO,grRateWT] = doubleGene 
Deletion(myModel, list1,list2); 

 The output for  doubleGeneDeletion  is similar to  singleGene 
Deletion  function:

 ●     grRateWT : growth rate of the Wild Type (1/h).  
 ●    grRateKO : respective growth rates of the Knock outs (1/h).  
 ●     grRatio : Computed growth rate ratio between deletion 

strain and wild type {grRateKO/grRateWT}.      
   12.     To set up an FVA : 

 FVA can be set up in COBRA toolbox using the function: 
 >>myModel = changeObjective(myModel,  'biomass_ 
Mtb_9_60atp'); 
 [minFlux, maxFlux] =  fl uxVariability(myModel) 

 The function can also perform FVA by considering solu-
tions that give a certain percentage of the optimal solution. 
 >>[minFlux, maxFlux] =  fl uxVariability(myModel,  50) 

 The value 50 defi nes the fl ux variability at half the value of 
the optimal solution.   

   13.     Saving and exporting the model : 
 Any modifi ed model with exchanges and additional constraints 
can be saved and exported in different formats. 
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 The following command line functions in COBRA tool-
box allow saving the fi le in sbml, mat, excel, and text formats. 
 (a)  SBML: A model can be imported from SBML format to 

MATLAB structure, using COBRA toolbox. Model struc-
tures can also be exported as SBML fi le, using the follow-
ing function: 
 >>writeCbModel(model, 'sbml') 

 (b)  mat fi le: The standard COBRA model structure in 
MATLAB saved as mat fi le. 
 >>writeCbModel(model, 'mat') 

 (c)  Excel sheet: Model can be saved in COBRA acceptable 
 format excel sheet. 
 >>writeCbModel(model, 'xls') 

 (d)  Text fi le: Similarly, the model can be saved in text fi le, with 
tab separated columns. 
 >>writeCbModel(model, 'text')   

   14.     Building host–pathogen interaction models : 
 Coupling individual host and pathogen metabolic models, 
helps better understand host–pathogen interaction and patho-
genesis. This example builds a combined model of the human 
alveolar macrophage and  M. tuberculosis , using the Recon 2.02 
(refer Subheading  3.4.8 ), the latest version of the human met-
abolic network reconstruction [ 29 ] and the iNJ661 model 
 discussed previously (Bordbar et al. [ 53 ]) have shown the use 
of this protocol for converting Recon1 into an alveolar macro-
phage. This method delineates the use of ReconX, a general 
metabolic reconstruction, and gene expression data for build-
ing tissue specifi c models.   

   15.     Building the macrophage model : 
 The following function uses the Recon 2.02 model as a tem-
plate to build the alveolar macrophage model using gene 
expression data. 
 >>[macrophageModel,Rxns] = createTissueSpecifi c 
Model(recon, GE); 

 The command uses the GIMME [ 11 ] and Shlomi [ 54 ] 
algorithms to build tissue specifi c models. The algorithm 
desired to be used can be specifi ed in the solver while calling 
the function. The input to the function, namely, ' recon ' is the 
Recon 2.02 model. It can be downloaded in the toolbox 
acceptable format from ReconX (refer Subheading  2 ). The 
other input “GE” is a matlab structure consisting of two arrays 
. Locus  and . Data , that represent a given transcriptome data set. 
. Locus  is an array containing the gene identifi er and . Data  can 
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have two values (1 = presence calls) and (0 = absence calls). In 
this example, only human macrophage gene expression data 
from ref.  74  was retrieved from the GEO. Transcriptome data 
of various stages of disease compared with undiseased controls 
can be used for delineating host–pathogen  interactions better 
[ 53 ]. Information on exchanges required to defi ne exchange 
of metabolites between pathogen and host requires additional 
 literature survey and is critical to interpretation of simulation 
data in the context of host–pathogen interaction.   

   16.     Building the human macrophage–M. Tuberculosis integrated 
model : 
 After building and curating the macrophage model, the iNJ661 
pathogen model is integrated. For this, each species and reac-
tion in the models must be represented uniquely, e.g., 'adp[c]' 
represents cytosolic ADP in both the models. Hence, the com-
partmentalization would be erroneous. The Recon 2 model 
has six compartments including the extracelluar compartment 
'[e]' and the iNJ661 has two compartments'[e]&[c]'. In addi-
tion to this a “phagosome” compartment, with appropriate 
exchanges between macrophage cytosol and phagosome, must 
be added ( see  Fig.  7 ). The new reaction names and metabolites 
names can be reassigned to the existing arrays. 
 >>myModel.mets( i ) = 'newMetaboliteName';{ where 'i' 
is the array index } 

 Another way to change the names and abbreviation is by 
exporting the models into excel or text format and renaming 
the compartments, using an editor. One can add a short string 
to the existing names to differentiate between various compart-
ments. For instance, 'adp[c]' can be reassigned as 'adp[H_c]' 
and 'adp[P_c]' the H referring to the host and the P referring 
to the pathogen models respectively. The reaction formula is 
updated automatically, on changing the  myModel.mets . The 
two models can be integrated by using the aforementioned 
' addReaction ' function. 
 >>myModel.mets = { };  { where   'myModel'   is the pathogen 
model } 
 >>myModel.rxns = { }; 
 >>myRxns = myModel.rxns 
 >>rxnFormulas = printRxnFormula(myModel, myRxns); 
{ array of reaction formulas } 
 >>intModel = macrophageModel; { to build an integrated 
model } 
 >>for i = 1:numel(myRxns) 
 intModel = addReaction(intModel, myRxns{i}, rxns 
Formulas{i}); 
 end 
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Chapter 30

Mathematical Models of HIV Replication and Pathogenesis

Dominik Wodarz

Abstract

This review outlines how mathematical models have been helpful, and continue to be so, for obtaining 
insights into the in vivo dynamics of HIV infection. The review starts with a discussion of a basic mathe-
matical model that has been frequently used to study HIV dynamics. Some crucial results are described, 
including the estimation of key parameters that characterize the infection, and the generation of influential 
theories which argued that in vivo virus evolution is a key player in HIV pathogenesis. Subsequently, more 
recent concepts are reviewed that have relevance for disease progression, including the multiple infection 
of cells and the direct cell-to-cell transmission of the virus through the formation of virological synapses. 
These are important mechanisms that can influence the rate at which HIV spreads through its target cell 
population, which is tightly linked to the rate at which the disease progresses towards AIDS.

Key words Mathematical models, Virus dynamics, Evolution, Multiple infection of cells, Cell-to-cell 
transmission, Virological synapse

1  Introduction

Human immunodeficiency virus infection results in a complex 
disease process. Following the acute phase, characterized by rela-
tively high viral loads, the infection enters an asymptomatic phase 
where viral loads are significantly reduced. The asymptomatic 
phase lasts on average between 5 and 10 years, but the duration is 
highly variable. As virus load rises and the immune system becomes 
progressively impaired, AIDS eventually develops, which is the end 
stage of the disease. HIV infects different immune cell types, 
including CD4+ T helper cells, dendritic cells, and macrophages. 
The CD4+ T cell count is an important measure for how well the 
immune system functions, and HIV infection depletes the CD4+ T 
helper cell population, eventually leading to a collapse of immune 
function.

Much research has been done into the mechanisms that drive 
HIV pathogenesis [1–4]. In this respect, mathematical models 
have played a crucial role in complementing experimental work in 
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order to improve our understanding about the mechanisms of 
HIV pathogenesis. This has been reviewed extensively e.g. in refs. 
5–8. Importantly, the collaboration between mathematical model-
ers and experimentalists lead to a detailed quantification of viral 
and immunological parameters. In addition, various types of math-
ematical models have been used to explore mechanisms that could 
lead to the progression from the asymptomatic period of the infec-
tion to AIDS. Much of this work was based on evolutionary 
dynamics [9], because virus evolution in vivo is thought to be a 
crucial driving force underlying disease progression.

This work on HIV infection is part of the larger field of virus 
dynamics [5, 10], and research on HIV dynamics has been a very 
prominent topic in this field. Much of the classic work on this topic 
has been very well reviewed in books and papers, with excellent 
summaries provided in e.g. refs. 5–8. This review will start by sum-
marizing some of this work. The rest of the article, however, will 
focus on more recent topics that are relevant for understanding the 
replication and evolution of HIV in vivo. These include the mul-
tiple infection of cells and the direct transmission of the virus from 
cell to cell via the formation of virological synapses. Although these 
topics are only beginning to be explored in detail, they are of great 
interest for improving our understanding of HIV dynamics, evolu-
tion, and pathogenesis.

2  The Basic Model of Virus Dynamics

The basic model of virus dynamics [5–7, 11] (Fig. 1) has three 
variables: the population sizes of susceptible, uninfected cells, T; 
infected cells, I; and free virus particles, V. These quantities can 
either denote the total abundance in a host, or the abundance in a 
given volume blood or tissue. Free virus particles infect uninfected 
cells at a rate proportional to the product of their abundances, 
βΤV. The rate constant, β, describes the efficacy of this process, 
including the rate at which virus particles find uninfected cells, the 
rate of virus entry, and the rate and probability of successful infec-
tion. Infected cells produce free virus at a rate k. Infected cells die 
at a rate a, and free virus particles are removed from the system at 
rate u. Therefore, the average life-time of an infected cell is 1/a, 
whereas the average life-time of a free virus particle is 1/u. The 
total amount of virus particles produced from one infected cell, the 
“burst size”, is k/a. Uninfected cells are produced at a constant 
rate, λ, and die at a rate d. The average life-time of an uninfected 
cell is 1/d. In the absence of infection, the population dynamics of 
host cells is given by dT/dt = λ − dT. This is a simple linear 
 differential equation. Without virus, the abundance of uninfected 
cells converges to the equilibrium value λ/d. Combining the 
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dynamics of virus infection and host cells, we obtain the basic 
model of virus dynamics:
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This is a system of nonlinear differential equations. An analytic 
solution of the time development of the variables is not possible, 
but we can derive various approximations and thereby obtain a 
complete understanding of the system. Before infection, we have 
I = 0, v = 0, and uninfected cells are at equilibrium T = λ/d. Denote 
by t = 0 the time when infection occurs. Suppose infection occurs 
with a certain amount of virus particles, v0. Thus the initial condi-
tions are T0 = λ/d, I0 = 0, and V0. Whether or not the virus can 
grow and establish an infection depends on a condition very similar 
to the spread of an infectious disease in a population of host indi-
viduals [12]. The crucial quantity is the basic reproductive ratio of 
the virus, R0, which is defined as the number of newly infected cells 
that arise from any one infected cell when almost all cells are unin-
fected (Fig. 2). The rate at which one infected cell gives rise to new 
infected cells is given by βkT/u. If all cells are uninfected then 
T = λ/d. Since the life-time of an infected cell is 1/a, we obtain 
R0 = βλk/(adu).If R0 < 1 then the virus will not spread, since every 
infected cell will on average produce less than one other infected 
cell. The chain reaction is sub-critical. On average we expect 1/
(1 − R0) rounds of infection before the virus population dies out. 

Infected
target cell (I)

a

Uninfected
target cell (S)

d

Virus (v)

+

u

k

Fig. 1 Schematic diagram explaining the basic model of virus dynamics. See text 
for explanations
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If on the other hand R0 > 1, then every infected cell will on average 
produce more than one newly infected cell. The chain reaction will 
generate an explosive multiplication of virus. Virus growth will not 
continue indefinitely, because the supply of uninfected cells is lim-
ited. There will be a peak in virus load and subsequently damped 
oscillations to an equilibrium. The equilibrium abundance of unin-
fected cells, infected cells, and free virus is given by T* = T0/R0, 
I* = (R0 − 1)du/(βk), V* = (R0 − 1)d/β. At equilibrium, any one 
infected cell will on average give rise to one newly infected cell.

If the virus has a basic reproductive ratio much larger than one, 
then T* will be greatly reduced compared to T0, which means that 
during infection the equilibrium abundance of uninfected cells is 
much smaller than before infection. In other words, the above 
simple model cannot explain a situation where during a persistent 
virus infection almost all infectable cells remain uninfected, except 
in the case when R0 is only slightly bigger than unity (which is 
unlikely in general). Furthermore, if R0 ≫ 1, then the equilibrium 
abundance of infected cells and free virus is approximately given by 
I* ≈ λ/a and V* ≈ (λk)/(au). Interestingly, both quantities do not 
depend on the infection parameter β [13]. The reason is that a 
highly infectious virus (large β) will rapidly infect uninfected cells, 
but at equilibrium there will only be few uninfected cells in the 
system. A less infectious virus (smaller β) will take longer to infect 
uninfected cells, but the equilibrium abundance of uninfected cells 
is higher. For both viruses the product βT will be the same at equi-
librium, resulting in a constant rate of production of new infected 
cells, and therefore in similar equilibrium abundances of infected 
cells and free virus. For a highly cytopathic virus (a much larger 
than d), the equilibrium abundance of infected cells will be small 
compared to the abundance of cells prior to infection. In fact, the 
larger a, the smaller the abundance both of infected cells and of 
free virus. For a non-cytopathic virus (a ≈ d), the equilibrium 
abundance of infected cells will be roughly equivalent to the total 
abundance of susceptible cells prior to infection.

Ro=3

Ro=1

Fig. 2 Schematic diagram that illustrates the basic reproductive ratio of the virus. 
See text for explanations
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3  Insights into the Kinetics and Evolutionary Dynamics of HIV Infection

One of the first major insights generated by the collaboration 
between mathematical modelers and experimentalist was the quan-
tification of the turnover rates of infected cells and free virus dur-
ing the chronic phase of the infection [14–19]. Patients were 
treated with drugs, preventing the infection of new cells. The 
resulting exponential decline of the virus population could be fit 
with the type of mathematical model described in the previous sec-
tion, which allowed quantification of the turnover rate of free virus 
particles and infected cells. This work showed for the first time that 
HIV turns over rapidly during the chronic phase of the infection, 
which implies an enormous potential of the virus to evolve during 
this time, allowing it to escape immune responses and to acquire 
drug resistance. Specifically, the half-life of the infected cell 
 population was found to be between 1 and 3 days, and the half-life 
of free virus particles is of the order or hours. Subsequent work 
showed that the decline of the virus population for longer periods 
of time is characterized by several phases: a first fast phase followed 
by is followed by a slower second phase. As virus load declines, the 
rate of decline slows down even more. The fast phase was due to 
the decline of productively infected T cells, while the slower phases 
were due to the decline of longer lived infected antigen presenting 
cells, and latently infected T cells that provide long lived viral res-
ervoirs [20–22]. This quantitative work provided a much improved 
understanding of the natural history of HIV infection. Another 
important measure that was quantified was the basic reproductive 
ratio of HIV [23–25]. This was done by analyzing the dynamic of 
virus growth and decline during the acute phase of the infection, 
and was performed both in SIV-infected macaques and in HIV- 
infected humans. Other important kinetic estimates concerned 
immune response such as the rates at which cytotoxic T lympho-
cytes (CTL) or CD8 T cells kill infected cells—an important branch 
of the immune system for fighting the virus [26, 27]. This also 
leads to an important discussion about the role of lytic and non- 
lytic CTL responses for the control of the infection during the 
asymptomatic phase.

While obtaining a variety of parameter estimates that charac-
terize HIV infection has been of central importance to the field, 
mathematical models also made conceptual advances. Theories 
were developed about the processes that contribute to the transi-
tion from the asymptomatic period towards the development of 
AIDS [5]. A central theme in these models has been that viral 
evolution in vivo is a crucial driving force of disease progression. 
One of the more prominent theories argued that viral evolution of 
escape from immune responses can gradually weaken the immune 
system and lead to its collapse once the virus population had 
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diversified sufficiently [28–30]. Other theories looked at different 
evolutionary processes, considering virus evolution towards faster 
replication rates, increased cytopathicity, or broadened cell tro-
pism [31, 32], and theories about the in vivo evolution of HIV 
have been developed further e.g. [33–36]. While it is difficult to 
validate these theories, partly because an array of mechanisms is at 
work in HIV infection, it has become clear that viral evolution 
does indeed play a pivotal role in the disease process. In an elegant 
set of experiments, monkeys were infected with SIV, and the virus 
was sampled and characterized at an early, intermediate, and late 
stage post infection [37]. This showed that over time, the virus 
became faster replicating, more cytopathic, and less recognized by 
the immune system. When the later virus isolates were injected 
into a new monkey host, the rate of initial virus growth was faster, 
the set-point virus load higher, and the rate of disease progression 
faster compared to a scenario where the earlier virus isolates were 
used to infect a new monkey host. This set of experiments showed 
that the virus evolves to more virulent phenotypes, and that this 
evolution enables the virus to be more aggressive and to cause 
faster disease progression. More recent work investigated viral 
evolutionary processes in more detail, especially the escape of HIV 
from immune responses [38–44], analyzing the fitness cost of 
escape mutants and the dynamics of escape during the disease.

In the following, the review will switch gear and discuss some 
more recent data and concepts that have important implications 
for our understanding of the principles that govern virus growth 
through its target cell population, the evolution of the virus, and 
thus the mechanisms that contribute to pathogenesis. In particular, 
the review will focus on multiple infection of cells and on the direct 
cell-to-cell transmission of the virus through virological synapses. 
Both data and mathematical modeling concepts will be explored.

4  Multiple Infection of Cells

Until fairly recently, the concept of coinfection has not played a 
prominent role in HIV research. This likely stems at least in part 
from the early observation that infection leads to the down- 
modulation of the CD4 receptor (reviewed in refs. 45, 46), and 
the more recent observation that HIV also down modulates the 
CCR5 and CXCR4 viral coreceptors [47] from the cell surface, 
reducing the susceptibility of cells to reinfection over time. In fact, 
three separate HIV proteins, Nef, Vpu, and Env, mediate CD4 
down modulation [48, 49], emphasizing its biological significance. 
Furthermore, it was also observed quite early in the epidemic that 
infection frequency of cells in blood is low, on the order of one in 
one thousand to one in one hundred thousand, leading to the 
incorrect assumption that the probability of two infection events in 
the same cell must be exponentially lower.
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Over time it has become clear that this picture is not correct 
and that coinfection with two or more viruses, i.e. multiple infec-
tion of cells, is a frequent phenomenon that plays an important role 
in the natural history of HIV. First and perhaps foremost, HIV-1 
replication occurs predominantly in the lymphoid tissues, where the 
concentration of target cells is higher than in the blood, and cell to 
cell contact facilitates transmission of multiple virions between cells. 
Even when few infected cells can be identified in mucosal tissues, 
they are observed to be infected with multiple viruses [50], and in 
situ staining in splenocytes of HIV-1 patients observed an average 
of 3–4 integrated proviruses per cell and sequencing of HIV-1 
nucleic acids in these cells confirms multiple infection with diver-
gent viruses and recombination between them [51]. During acute 
infection of macaques with a pathogenic strain of SIV, an average of 
1.5 viruses per cell was observed, indicating coinfection of a large 
fraction of cells [52]. The recent description of cell to cell transmis-
sion of HIV via virological synapse formation [53–55] dramatically 
illustrates how multiple infection of cells can be locally generated.

Although CD4 loss from the cell surface is a consequence of 
HIV-1 infection, it is not clear that its primary function is to pre-
vent reinfection (superinfection) of cells prior to virion production. 
Instead removal of CD4 from the cell surface has been shown by 
several groups to increase the infectivity of the newly produced 
virions [56, 57], allowing more Env protein to associate with viri-
ons and increasing viral pathogenesis [58]. Further, there is an 
18–24 h delay between infection of a cell and production of viral 
proteins which modulate CD4 expression, during which the cell 
remains susceptible to reinfection, so inhibition of superinfection is 
only operative during the productive phase of infection, when 
superinfection might be more toxic to the already stressed cell, 
causing premature cell death through apoptosis, lowering virus 
production (reviewed in refs. 45, 59). Since the lifespan of a pro-
ductively infected T cell in vivo is only about ½ to 1 day, once virus 
production is underway in the cell, superinfection at this late stage 
would most likely be unhelpful to the virus.

Experimental systems to study the dynamics of multiple infec-
tion have frequently utilized recombinant viruses bearing different 
reporter genes, allowing quantification of cells infected with one or 
both viruses [60–62]. These studies, carried out in tissue culture or 
in vivo within human thymic tissue in SCID mice (SCID-hu Thy/
Liv mice) have made it abundantly clear that multiple infection is a 
natural consequence of HIV-1 replication. Over many rounds of 
replication in tissue culture or in the SCID-hu Thy/Liv system 
multiple infection proceeds without apparent inhibition, despite the 
ability of HIV-1 to inhibit reinfection, resulting in frequent recom-
bination [62]. The inference is that the pace of HIV-1 replication 
exceeds the inhibition effect, and that fostering multiple infection, 
rather than inhibiting it, may be to the benefit of the virus.
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Recombination is the best studied outcome of multiple infection. 
It can have important implications for the evolution of HIV in vivo. 
Recombination can potentially speed up the rate of evolution by 
bringing together different advantageous alleles into a single 
genome. On the negative side (from the virus’ standpoint), recom-
bination can also break up existing advantageous allelic combina-
tions or it can lead to the inactivation of viable viruses if they are 
coinfected and recombine with defective viruses. The effect of 
recombination on the evolutionary dynamics in vivo is complex, 
and can depend on several population genetic phenomena, such as 
the degree of epistasis. This has been studied in a variety of theo-
retical papers [63–68].

There are other important consequences of coinfection for 
virus dynamics. Viruses defective in vital functions can be pheno-
typically complemented during coinfection, resulting in chimeric 
virions bearing mixtures of genes and proteins from more than one 
parental strain [61, 69], and recombination can repair the defect at 
the genetic level [61, 69]. Viruses with essentially zero fitness can 
replicate as a result of complementation during coinfection [61]. 
In addition, it is likely that other evolutionary processes are influ-
enced by the occurrence of multiple infection of cells [70–73].

5  Does Multiple Infection Influence Basic Virus Dynamics?

This question has been studied with mathematical models in dif-
ferent settings. In the most basic setting, multiple infection can be 
studied with the following mathematical model. Instead of a single 
infected cell population, we now assume the existence of several 
infected cell sub-populations, i.e. cells infected with i copies of a 
given virus, Ii. The model is given by the following set of ordinary 
differential equations.
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Cells infected with i viruses die with a rate a, and infection 
with an additional virus is represented by the term βIiV. All 
Infected cells produce free virus with a rate k. Finally, free virus 
decays with a rate uV. Note that the end of the infection cascade, In, 
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is an artificial feature of the ODE model, and this population 
should not be concentrated on.

According to this formulation, infected cells produce the same 
amount of virus regardless of the number of viruses present in 
these cells. Hence, virus production is completely determined by 
cellular resources. Adding more virus genomes to the cell reduces 
the replicative output of the individual viruses in the cells such that 
the total amount of virus produced remains the same. A more 
complex variation of this model has been studied by Dixit et al. 
[74]. They found that in this setting, multiple infection of cells 
does not influence the basic virus dynamics. This is because an 
infected cell essentially behaves the same way whether it contains 
one copy of the virus or whether it contains multiple copies. The 
opposite assumption has been studied by Cumings et al. [75]. In 
their model, the rate of virus production increased asymptotically 
with the number of viruses that are resident within a cell. This 
leads to a more complicated situation. In particular, the exact 
properties of the model can depend on the nature of the infection 
term, for example whether it is a straightforward mass action term 
or whether the rate of infection saturates with the number of target 
cells. In such models, the basic dynamics of virus growth can be 
fundamentally altered (Fig. 3). Whether an infection becomes 
established or not can depend on the initial conditions, initial virus 
growth can be super-exponential, and the response to therapy can 
depend on virus load. These are properties that are not observed in the 
standard model of virus dynamics. Whether these properties apply 
to HIV infection is not clear at the moment. Experimental support 
for such dynamics has been found in adenovirus infections [76], 
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but these properties have so far not been documented in HIV, 
although they have not been specifically investigated. With HIV, it 
will be important to determine whether the rate of virus replication 
does or does not depend on the number of viruses in the cell, and 
if it does, what the laws of infection are, i.e. what mathematical 
infection term describes virus growth best. These issues will be 
important to investigate. If multiple infection does alter the dynam-
ics of virus growth, then there are obvious implications for the 
dynamics of the infection and for pathogenesis.

6  Different Virus Transmission Pathways

The rate of viral spread through the target cell population has been 
shown to influence the level of virus control and the pattern of disease 
progression [37, 77, 78]. Viral spread through the population of tar-
get cells can occur via two basic mechanisms [53, 79–84] (Fig. 4a). 
(1) In cell-free spread, viruses are released from cells into the extracel-
lular environment and infect susceptible targets that are encountered. 
(2) In cell–cell spread, viruses can pass directly from one cell to another 
without entering the extracellular environment, through the forma-
tion of virological synapses. On a per cell basis, cell to cell spread has 

with different s
Synaptic and free
virus transmission

s=1

s>>1

Synaptic strategiesa b

Fig. 4 Synaptic vs. free virus transmission. (a) Schematic showing that HIV can 
spread through its target cell population by two transmission pathways: via the 
release of free virus, and through the formation of virological synapses, leading 
to direct cell-to-cell transmission. (b) Synaptic transmission can potentially 
involve different strategies. Either many viruses are passed per synapse, or 
fewer viruses are transferred per synapse. The higher the number of viruses 
transferred per synapse, the lower the number of target cells to which a source 
cell can connect and transfer viruses, because many viruses harbored in the 
source cell are lost with each synaptic connection
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been shown to be very effective [79]. Tens to hundreds of virus 
particles are transferred through synapses, a certain fraction of which 
successfully integrates into the genome of the target cell. This has 
been thought to confer an advantage to the virus population in a vari-
ety of settings [79, 85]. Synaptic transmission in HIV infection is 
considered to be particularly important in tissue sites, such as lymph 
nodes and the spleen, where cells have a relatively high likelihood to 
come into contact with each other and to form synapses. This can lead 
to the frequent multiple infection of target cells. Synapse formation 
has been shown in vitro to lead to the co-transmission of multiple 
copies of HIV-1 across a single synapse [86]. This is in contrast to 
cell-free transmission, which typically leads to the transmission of sin-
gle viral copies to target cells. Indeed, in the blood where cells mix 
more readily and synapse formation is less likely to occur, most infected 
cells have been found to contain a single copy of HIV-1 [87].

The different viral transmission pathways can lead to different 
rates of virus spread through the target cell population, and the 
viral spread rate through target cells has been shown to influence 
the rate of disease progression [77]. Therefore, to better under-
stand the determinants of progression, it is important to quantify 
the relative contribution of free virus vs. synaptic transmission to 
virus growth, and this requires mathematical models that take both 
transmission pathways into account. The following sections will 
review such mathematical models, demonstrate how application to 
data can estimate crucial parameters, and investigate synaptic and 
free virus transmission in an evolutionary light.

7  A Mathematical Model of Synaptic and Free Virus Transmission

We outline a general system of ordinary differential equations 
(ODEs) that describes the dynamics of target and infected cells in 
the presence of cell-free and synaptic viral transmission. Let us 
denote by xi the number of cells infected by i viruses, 0 ≤ i ≤ N. We 
assume that N is the maximum multiplicity of infection possible in 
a cell. The variable x0 stands for uninfected (target) cells. The equa-
tions are as follows [88–90]:
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The various components of this system and notations are 
explained as follows. The terms describing target cell production 
and death (λ − dx0) are the same as in the standard model of virus 
dynamics. The terms multiplying b  describe infection of cells by 
free-virus transmission. The variable v stands for the concentration 

of free virus, and is described by the equation v k x uv
i

N
i

i= -
=

( )å
1

 where 

coefficients k(i) describe the intensity of free virus production by 
cells of multiplicity i, and u is the viral death rate. Using the 
standard assumption that the virus population is at a quasi-steady 
state, adjusting rapidly to the population of infected cells, we have 
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A two-parametric model for these probabilities was used in ref. 89, 
such that s viruses attempt transfer per synapse, with a probability 
of successful infection of r per virus. Coefficients a(i) denote death 
rates of cells with multiplicity of infection i. For simplicity, let us 
assume that the rate of viral replication and the death rate of 
infected cells do not depend on the number of viruses in the cell. 
If kinetics are independent of the number of viruses in cells, a much 

simpler description is possible. Let us denote x x y x
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where x are target cells and y are infected cells. Then we can add 
the equations in (Eq. 3) with i = 1, …, N and under the quasi-sta-
tionarity assumption obtain
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8  The Relative Contribution of Free Virus and Synaptic Transmission

A variant of the above described simplified system was applied to 
experimental data in order to estimate the relative contribution of 
free virus and synaptic transmission to virus growth [88].

In a previous study [84], virus growth was compared in two 
culture conditions. In a first set of experiments, cultures were kept 
under gentle shaking conditions, preventing the formation of viral 
synapses. Thus, only cell-free transmission occurred. A second set 
of experiments was performed under static conditions, in which 
both transmission pathways were likely to occur. Data on two types 
of cells (the transformed CD4+ T cell line Jurkat and primary 
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CD4+ lymphocytes) were obtained. Time-series of the percentage 
of infected cells were generated. These data provided a first and 
interesting picture, but the number of data points in this study was 
not sufficient for model fitting and parameterization. In order to 
obtain a larger number of data points a new and analogous set of 
experiments was performed [88]. We focused on Jurkat cells 
because the kinetics of cell proliferation and cell death are better 
defined than in primary CD4 T cells.

The predicted percentage of infected cells, 100y/(x + y)%, was 
fitted to the observed percentages, using standard non-linear least 
squares procedures. Under static culture conditions, we estimate 
the replication rate βst = βsyn + βfree. Under shaking conditions, we 
estimated βsh = βfree. From the estimated values of βst and βsh, we 
calculated the ratio of the viral replication rate for synaptic and free 
virus transmission, βsyn/βfree = βst − βsh)/(βsh). These calculations 
indicated that synaptic and free virus transmissions contribute 
approximately equally to virus spread through the target cells.

This was an interesting result given the observation that on a 
per cell basis, synaptic transmission has been found to be much 
more efficient at infecting cells than free virus transmission. It indi-
cates that both pathways can make significant contributions to dis-
ease progression, pathogenesis, and responses to treatment. 
Further work, involving additional experimental methods to dis-
sect the two transmission modes, will be necessary to quantify this 
further.

9  Synaptic Transmission and Evolutionary Perspectives

The occurrence of synaptic transmission in HIV infection brings 
up an evolutionary question. What is the optimal number of viruses 
transferred from a source cell to a target cell such that the rate of 
viral spread, and hence the potential to cause pathogenesis, is maxi-
mized? Along similar lines, how does this optimum depend on the 
biological assumptions?

Using the full model described above that takes into account 
both transmission pathways, different synaptic transmission strate-
gies were investigated, defined by the number of viruses transferred 
per synapse (Fig. 4b) [89, 90]. A number of scenarios were inves-
tigated. The most basic scenario gave rise to the prediction that the 
optimal viral strategy to maximize the rate of virus spread is the 
transfer of a single virus particle per synapse. Passing a larger num-
ber of viruses through synapses leads to the infection of already 
infected cells. This essentially wastes these viruses because they 
could be transmitted to uninfected cells instead, thus increasing 
the rate of viral spread. This result is interesting to consider in the 
context of a different viral infection. A study examined the in vitro 
growth and consequent plaque formation with vaccinia virus [91]. 
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It was shown that newly infected cells expressed specific proteins 
that resulted in the “repulsion” of other viruses that attempted to 
infect the same cells. Thus, instead of coinfecting the cells, these 
viruses were “redirected” towards uninfected cells. Hence, vaccinia 
virus has evolved a mechanism to avoid multiple infection of cells, 
instead ensuring that more uninfected cells are being targeted. 
Experiments showed that this mechanism significantly accelerates 
the rate of virus growth in this system. This observation supports 
the theoretical notion that transferring many viruses to cells can be 
ineffective and disadvantageous because virus particles that could 
in principle enter uninfected cells are wasted by entering already 
infected cells. Although no viral synapses are formed in the vaccinia 
system, the spatial arrangement of cells during plaque formation 
has a similar effect in the sense that viruses released from a source 
cell are most likely to repeatedly reach the same set of target cells 
that are in their direct vicinity. The example of vaccinia shows that 
there is a certain selection pressure against transferring high num-
bers of virus particles to the same cell.

In the light of this, an explanation is required for the observa-
tion that on the order of 102 virus particles are transferred through 
synapses in HIV infection [53, 86]. A number of scenarios were 
explored that could make an intermediate number of transferred 
viruses the optimal viral strategy [89], and these scenarios are dis-
cussed as follows.

A higher burst size of multiply infected cells could have this 
effect. While this can indeed elevate the efficiency of passing many 
viruses per synapse, the increase in burst size must be super- additive 
for this effect to be observed, e.g. doubly infected cells must pro-
duce and transfer more than twice as much virus as singly infected 
cells. There are currently no data that examine the burst size of 
infected cells in dependence of the infection multiplicity. A super- 
additive effect, however, is unlikely to occur unless special coopera-
tive interactions between co-resident viruses occur. Cooperative 
effects have been observed in the context of unintegrated viral DNA, 
which could produce offspring virus in the presence of integrated 
virus rather than becoming a replicative dead end [61], although the 
contribution of this effect for the overall dynamics is currently 
unclear. Even if more viruses are produced in multiply infected 
cells, this could be canceled out by an increased death rate [85]. 
The effect of multiple infection on the kinetics of virus production 
and cell death remains to be determined.

Another process that can result in an intermediate optimal 
number of transferred viruses is the viral saturation of intracellular 
defense factors. This could make it advantageous to pass many 
viruses per synapse in the following way. The individual factors 
bind virus particles with the effect of reducing their probability of 
successful infection. It is possible that the number of inhibiting fac-
tors that can bind the virus particles is limited, and thus a synapse 
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that sends a large number of viruses into a specific target cell has a 
possibility to “flood” and saturate this defense [92]. Suppose that 
n1 immune particles are available in the cell, then the first n1 viruses 
will be bound to them, resulting in a low individual probability of 
infection. If the number of viruses entering the cell by synapse, 
s > n1, then the remaining n2 = s − n1 particles will have a higher 
probability of successfully infecting. The relevance of this mecha-
nism in HIV infection, however, remains unclear. TRIM5α has 
been identified as an intracellular factor that inhibits HIV replica-
tion upon entry into the cell. It has been found to be especially 
effective at preventing HIV-1 infection in cells derived from Old 
World monkeys [93–95]. The human version of TRIM5α is less 
protective against HIV-1. Members of the APOBEC family of 
restriction factors interfere with reverse transcription, although 
this effect is countered by viral Vif [96]. It is unlikely, however, 
that synaptic transmission can lead to the saturation of this factor 
because it is incorporated into the virion in the source cell before 
displaying activity during reverse transcription upon infection of 
the target cell. Similarly, factors such as tetherin probably are not 
applicable because viral assembly and budding is inhibited [96], 
and cannot be saturated by multiple infection. Nevertheless, exper-
iments indicate that cells contain saturable targets that inhibit 
infection of cells [97] and that could be directly relevant to our 
model scenario, although they remain to be identified [92]. 
Saturation of antiviral factors in target cells by multiple infection 
through virological synapses is being investigated increasingly, see 
ref. 92 for a review.

10  Conclusions

The paper reviews various concepts that are related to HIV patho-
genesis, with emphasis on the insights learnt from mathematical 
models. It starts with a review of some of the classical work which 
has provided crucial quantitative insights into the processes underly-
ing the infection. The review then concentrates on some of the 
recent work we have done in the context of multiple infection of 
cells and synaptic transmission of the virus. These are processes that 
can determine the rate of viral replication. The rate of virus spread 
and growth through the target cell population in turn is a major fac-
tor influencing the progression and pathogenesis of the disease [77]. 
Some basic facts about multiple infection and synaptic transmission 
have been reviewed, as well as some first steps that were taken to 
describe them mathematically, measuring important parameters and 
providing some conceptual insights. It will be useful to explore these 
topics in more detail with a combination of experimental and math-
ematical approaches, to gain a better understanding of the mecha-
nisms that drive viral replication and pathogenesis.
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It is important to point out that the review has covered very 
specific aspects that are relevant to our understanding of HIV 
pathogenesis. Obviously, there are many components that are rel-
evant to disease progression and that have also been investigated 
with mathematical models. The interactions between HIV and 
HIV-specific immune responses constitute one such topic (for a 
review, see ref. 98). These interactions, and the corresponding 
mathematical models, are more complex in nature and build upon 
basic models of virus replication that are discussed here.
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