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Preface

The immune system evolves as a defense mechanism against foreign particles and cancer
cells in an organism. It interacts with self and foreign components and mounts adequate
responses against pathogenic foreign and mutated self. At the same time, it should tolerate
self and most of the other environmental particles so that an organism can maintain a
healthy state. Immunology, a branch of biomedical science, deals with the structural and
functional studies of all aspects of immune systems and their components. It includes physi-
ological studies of the immune system in both healthy and diseased states as well as in
immunological disorders. Immunology is a combinatorial science due to the diverse range
of interactions involving immune system components and their targets. The combinatorial-
ity also lies in the arrangements of immunoglobulins (Ig) in an individual, where the num-
ber of such arrangements is more than 10°. The dynamic behavior of these interactions
makes the systems even more complex.

In recent years, traditional approaches in science, due to the advent of high-throughput
technology, have been complemented by computer-aided research. In silico analyses of the
biological problems aid experimental research to reduce time and cost. Increasing amount
of genomic sequence and functional annotation data are fuelling immunological research.
There is also an abundance of large-scale projects for investigating host-pathogen and host-
antigen interactions. Immunology, as in the case of molecular biology, has now moved from
being a traditional qualitative science to more quantitative one. The requirement of storing,
managing, and analyzing continuously growing experimental, clinical, and epidemiologic
data has led to form a new research discipline known as “immunoinformatics.” Due to the
combinatorial nature of immunological data, efficient immunoinformatic databases and
tools are required. The discipline “immunoinformatics,” like bioinformatics, lies at the
intersection of experimental and computational sciences. Iz silico models are increasingly
being used to simulate immune system behavior as well as for analysis of host and pathogen
genomes and their interactions. Simulating immune systemic models has certain applica-
tions, e.g., finding the course of infection and optimization of clinical protocols.
Immunoinformatics is at the heart of the research areas of immunogenomics, immunopro-
teomics, and computational vaccinology. The most important task of immunoinformatics is
to analyze immunological data using computational tools to generate biologically signifi-
cant and rational interpretations.

Immunomics, in which we combine traditional immunology with computer science,
mathematics, statistics, chemistry, biochemistry, genomics, and proteomics, offers large-
scale analysis of immune system for further translation of basic immunology research into
clinical practices. Although immunoinformatics is still in an evolving stage, it clearly has the
potential to accelerate immunology research. Computational models also help in selecting
appropriate laboratory experiments and formulating novel and testable hypotheses that
could not be achieved using traditional approaches alone earlier. High complexity of immu-
nological processes may lead to imprecise biochemical measurements and the inherent scientific
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biases and misconceptions. Therefore, care should be taken while developing computational
tools for investigating and modeling underlying immunological processes. Otherwise,
biases and misconceptions encoded in computational tools might result in the wrong bio-
logical interpretations.

Content and General Outline of the Book

We have tried to make this edition of the book self-contained. In principle, it aims at stu-
dents and researchers from diverse background and levels interested in working with immu-
nological problems. It provides biological insights into a certain extent as well as a simpler
way to implement approaches and algorithms in the immunoinformatics research domain.
There are 30 chapters distributed in five sections that cover various aspects of basic immu-
nology to immunoinformatics.

Part I is dedicated to describing the transition from basic and traditional immunology
to immunoinformatics. It includes three chapters that introduce a basic immune system, its
interaction with metabolic machinery, and informatics related to immune system. Part II
contains comprehensive detail on most of the existing databases related to an immune sys-
tem and its components. Similarly, most of the possible approaches/tools/algorithms for
the prediction of T /B-cell epitopes, allergenic proteins, and virulence factors are described
in Part III. In Part IV, systems biology approaches in the immunoinformatics domain have
been explained, particularly for inflammation and personalized medicine. Part V deals with
some applications of immunoinformatics research. In this section, we have provided appli-
cations of immunoinformatics in cancer diagnosis and therapy, HIV pathogenesis, and
methods to investigate the mechanisms of host-pathogen interactions. Part V also includes
the description of the role of structure-based clustering of MHC molecules as well as small
RNA in vaccine designing.

Chapter 1 introduces the basic immune system to the readers. It describes two distinct
yet interrelated branches of an immune system, which gets activated at the time of antigen
attack upon host system.

Chapter 2 depicts various investigations related to the behaviors of lymphocytes and other
leukocytes regulated by metabolic activities of cells at different levels. Investigations on the
molecular aspects of immunological-metabolic cross talk have become an interesting research
topic. The role of glucose in an immune system and metabolic dependency in lymphocyte
activation is explained in this chapter, along with the description of the role of nutrient sensors,
adipose tissue, and toll-like receptors in maintaining immune-metabolic interactions.

Chapter 3 shows the need to handle the large accumulation of high-throughput data
that has given rise to the field known as immunoinformatics. Thus this chapter reviews clas-
sical immunology, different databases, and prediction tools. Further, it briefly describes
applications of immunoinformatics in reverse vaccinology, immune system modeling, can-
cer diagnosis, and therapy.

Chapter 4 provides details on the IMGT® system that was first developed in 1989.
Since its development, it has been considered an interface between immunogenetics and
immunoinformatics. This chapter reviews IMGT® definitive system for V, C, and G domains
based on the IMGT-ONTOLOGY concepts. The web resource of IMGT provides data for
nucleotide and protein sequences, genetic polymorphisms, as well as tools for analyzing
immunoglobulins, T-cell receptors (TCR), major histocompatibility complex (MHC), and
related components of an immune system.
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Chapter 5 explains that Immuno Polymorphism Database (IPD) is based on the IMGT®
model, which includes databases related to the study of polymorphic genes in an immune
system. IPD currently consists of four databases: IPD-KIR, IPD-MHC, IPD-HPA, and
IPD-ESTDAB.

Chapter 6 overviews publicly available databases of T-cell epitopes, including general
databases, pathogen- and tumor-specific databases, and 3D structure databases. These data-
bases include sequences, alleles, source organisms, structures, and diseases. Thus they are
important data sources helping in the analysis of immune system components, functional-
ities, and development of prediction methods.

In Chap. 7, an overview of important databases for B-cell epitopes is provided, which
also demonstrates the way to compile datasets for development of B-cell epitope prediction
tools. Identification and characterization of B-cell epitopes in antigens are important in
epitope-driven vaccine design, immunodiagnostic tests, and antibody production.

Chapter 8 describes a database, called AgAbDb, which includes an account of antigen-
antibody interactions, a type of protein-protein interaction. These interactions are character-
ized by high affinity and specificity of antibodies towards their antigens. The chapter identifies
and lists residues of binding sites of antigens and antibodies. It also compiles, curates, and
analyzes determinants of interactions between the respective antigen-antibody molecules.

Chapter 9 deals with some allergen databases that can be classified into two types: biologi-
cal and molecular databases. In this chapter, five popular allergen databases have been described.
Among them, one is a biological database and the remaining four are molecular databases.

Chapter 10 introduces an ensemble learning-based method using antigenic sequences,
which can predict the conformational B-cell epitopes. It also describes the properties of
some existing data resources and computational methods for the same.

Chapter 11 provides a comprehensive set of 13 recent approaches for predicting linear
B-cell epitopes and 4 methods for predicting conformational B-cell epitopes from the anti-
gen sequences. It also provides some practical insights towards the use of these B-cell epit-
ope predictors.

Chapter 12 narrates some fundamental of B-cell epitopes and use of SVM techniques
for their prediction. It provides an example of linear B-cell prediction system based on
physicochemical features and amino acid combinations.

Chapter 13 introduces mimotopes, the peptides that mimic epitopes on the corre-
sponding antigen and can be obtained via panning the phage-display peptide library against
the corresponding monoclonal antibody. This chapter describes mimotope-based predic-
tion of B-cell epitopes under three conditions. It also provides details on protocols for
retrieving and decoding the data obtained using phage-display technology.

Chapter 14 emphasizes on key physicochemical and biological considerations for B-cell
epitope prediction that are relevant from an application perspective. It helps researchers in
implementing computational tools for more practical purposes.

Chapter 15 shows a way to build a hybrid classifier for improved prediction of linear
B-cell epitopes. It is further mentioned in the same chapter that this method can easily be
applied for predicting conformational epitopes.

Chapter 16 contains the information regarding the B-cell epitope mapping and its wide
usage to determine antibody-binding sites, diagnostic peptide development, and vaccine
design. Three methods are described in this chapter, which are characterized by the simul-
taneous analysis of multiple peptides.

Chapter 17 deals with highly polymorphic human leukocyte antigen (HLA) genes,
with diverse peptide-binding HLA specificities. Identification of new antigenic peptides
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that can bind to HLA class I and II molecules is important in vaccine development. Different
HLA molecules are classified into “HLA supertypes” in order to reduce complexity. This
chapter focuses on classification of HLA supertypes and their application in development of
peptide-based vaccines.

Chapter 18 describes that peptide binding to MHC molecules is the most important
selective step in T-cell recognition. This chapter explains how to derive peptide-MHC-
binding motif profiles in EPIMHC and to use them in predicting peptide-MHC binding
and T-cell epitopes.

Chapter 19 contains information related to the challenges involved in the task of T-cell
epitope prediction due to MHC polymorphism and disparity encountered in the genera-
tion and presentation of T-cell epitopes. This chapter explains principles of some of the
methods/algorithms for T-cell epitope prediction as well as procedural and practical aspects
of their usage.

Chapter 20 describes a protocol to perform the calculation of electrostatic energy, fol-
lowed by an illustration on the outer surface protein A of Borrelia burgdorferi, a pathogenic
organism causing lyme disease.

Chapter 21 emphasizes on the importance of allergen prediction tools as there is an
increase in the usage of genetically modified (GM) food and biopharmaceuticals in the
population. Thus the allergen prediction tools are being used to assess the safety of GM
crops, therapeutics, and biopharmaceuticals. This chapter describes the way to use four
popular allergenic prediction servers, viz. Structural Database of Allergenic Proteins
(SDAP), Allermatch, Evaller 2, and AlgPred.

Chapter 22 includes information on adhesins, the virulence factors secreted from the
pathogen, which are of immunological interest. This chapter describes the bioinformatics
approaches for adhesin prediction, which include specific adhesin prediction algorithms.

Chapter 23 deals with an application area of immunoinformatics. It describes a Candida
albicans—zebrafish interactive infectious network, as an example, to demonstrate how a
systems biology approach can be used to study systemic inflammation.

Chapter 24 explains the sampling of the mucosal tissues and analyses of immune
responses as an integral step towards vaccine development strategies against HIV. This
chapter describes commonly used practices of immunizations and of obtaining important
mucosal tissue samples in nonhuman primates.

Chapter 25 provides a scenario of the major knowledgebases, as one can find continuous
creation, usage, and, later, discontinuation of biological tools and databases. Thus, there
should be a clear picture of the major knowledgebases that provide information about the
functional existence of these databases and tools for the researchers from diverse backgrounds.
This chapter provides an overview of information sources that also include a description of
InnateDB. It helps researchers in selecting databases and tools related to immunoinformatics
and systems biology, which can be further used in personalized medicine.

Chapter 26 provides details on small RNA molecules that play a vital role in defense sys-
tems. The detailed study of RNA gene silencing mechanisms has revealed that the small RNAs
are the chief executioners for antiviral immunity in an organism. This chapter reviews the pos-
sibility of engineering small RNAs to enhance the immunity against specific viral pathogens.

Chapter 27 describes the use of structure-based clustering techniques in identifying
superfamilies of major histocompatibility complex (MHC) proteins with similar binding
specificities, which later help in vaccine development. This chapter provides a summary for
grouping MHC proteins according to their structural interactions.
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Chapter 28 includes information on cytotoxic T-cell (CTL) epitopes that are found to
be important in the form of an immunotherapeutic product as they might help in tumor
cell destruction. This chapter focuses on several different sequence-, structure-, and molec-
ular modeling-based prediction tools to extract a list of peptide epitopes from tumor-specific
or tumor-associated antigens (TSA or TAA).

Chapter 29 describes a protocol that delineates a process of genome-scale metabolic
modeling, using flux balance analysis, for the analysis of host-pathogen behavior and inter-
actions. The methods for biological interpretations of computed cell phenotypes, in the
context of individual host and pathogen models and their integrations, are also discussed.

Chapter 30 provides details on mathematical models for in vivo dynamics of HIV infec-
tion and some recent concepts of disease progression. Initially, it discusses a basic mathe-
matical model for investigating HIV dynamics, along with estimation of key parameters
that characterize the infection. It also includes a review on some recent concepts related to
disease progression that involves multiple infection of cells and the direct cell-to-cell trans-
mission of virus through the formation of virological synapses.

Kolkata, West Bengal, India Rajat K. De
Namrata Tomar
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Chapter 1

A Brief Outline of the Inmune System

Namrata Tomar and Rajat K. De

Abstract

The various cells and proteins responsible for immunity constitute the immune system, and their orchestrated
response to defend foreign/non-self substances (antigen) is known as the immune response. When an
antigen attacks the host system, two distinct, yet interrelated, branches of the immune system are active—
the nonspecific/innate and specific/adaptive immune response. Both of these systems have certain physi-
ological mechanisms, which enable the host to recognize foreign materials to itself and to neutralize,
eliminate, or metabolize them. Innate immunity represents the earliest development of protection against
antigens. Adaptive immunity has again two branches—humoral and cell mediated. It should be noted that
both innate and adaptive immunities do not work independently. Moreover, most of the immune responses
involve the activity and interplay of both the humoral and the cell-mediated immune branches of the
immune system. We have described these branches in detail along with the mechanism of antigen recognition.
This chapter also describes the disorders of immune system in brief.

Key words Immune response, Immune system, Adaptive immunity, Innate immunity, Antibody,
T cells, B cells, Allergy, Antigen, Humoral immune system, Cell-mediated immune system

1 Introduction

The defense system consists of a wide variety of cells and molecules
that have evolved to protect animals from invading pathogenic
microorganisms and cancer. Recognition and response are two
major activities of immune system. Immune recognition is quite spe-
cific. Moreover, it is able to discriminate between foreign molecules
and the body’s own cells and proteins. After the recognition of a
foreign organism, it mounts an effector response through recruiting
a variety of cells and molecules to eliminate the invader organism.
Later exposure to the same foreign organism induces a memory
response, characterized by a more rapid and heightened immune
reaction that serves to eliminate the pathogen and prevent disease.

Historical perspective: The discipline of immunology developed
through the observation when individuals who had recovered from
certain infectious diseases were thereafter found to be protected

Rajat K. De and Namrata Tomar (eds.), Immunoinformatics, Methods in Molecular Biology, vol. 1184,
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from the disease. The term “immunity” originated from the Latin
term “immunis,” meaning “exempt,” that is, the state of protection
from infectious disease. The earliest literary reference to immunol-
ogy goes back to 430 bc in writings of Thucydides, where he wrote
that only those who had recovered from the plague could nurse the
sick because they would not contract the disease a second time [1].
In 1798, Edward Jenner found that some milkmaids were immune
to smallpox as they had earlier contracted cowpox (a mild disease).
The next major advancement in immunology came with the induc-
tion of immunity to cholera by Louis Pasteur. He demonstrated
the possibility of administrating a weaken pathogen as a vaccine
through a classic experiment. In 1881, he first vaccinated one
group of sheep with heat-attenuated Bacillus anthracis and then
challenged the vaccinated sheep and some unvaccinated sheep with
a virulent culture of the bacillus. All the vaccinated sheep lived, and
all the unvaccinated animals died. In 1885, after applying weak-
ened pathogen to animals, he administered a dose of vaccine to a
boy bitten by a rabid dog and later found that the boy survived.
However, Pasteur could not explain its mechanism. In 1890,
experiments of Emil Von Behring and Shibasaburo Kitasato led to
the understanding of the mechanism of immunity. Their experi-
ments described how antibodies present in the serum provided
protection against pathogens. These experiments are described as
milestone as the beginnings of the discipline of immunology.

2 Types of Immune System: A Layered Defense System

2.1 Innate Immunity
(Nonspecific)

This line of defense against foreign invader microbes has been
divided into two general types of immune responses: innate
immunity and adaptive immunity. These two differ in time taken
and duration of response, effector cell types, and its specificity for
different classes of foreign microbes. Innate immune system rep-
resents a nonspecific response to a potentially harmful foreign
particle; and the adaptive immune system displays a high degree
of memory and specificity. Types of immune system have been
shown through line diagram in Fig. 1. Table 1 provides the dif-
ferences between the innate and adaptive immunity. Below is the
brief description of innate immunity.

The innate immunity is an evolutionarily older defense system that
is a dominant one in plants, fungi, insects, and primitive multicel-
lular organisms [2, 3]. The innate system represents the first line of
defense to an intruding pathogen. Innate immune systems are
found in all plants and animals. The response evolved is therefore
rapid and is unable to memorize. It comprises four types of defen-
sive barriers, namely anatomic (e.g., skin and mucous membranes),
physiological (e.g., temperature, low pH), phagocytic (e.g., blood
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Ph i
Innate IS Physiological

——{nflammatory |

Immune System (IS)

B cells (Antibodies-

Humoral IS

mediated)
Adaptive IS
Cell-mediated IS » Tcells
Fig. 1 Types of immune system (IS)
Table 1
Difference between innate and adaptive immune systems
Innate immune system Adaptive immune system
Nonspecific response Specific response
Immediate response Lag time between antigen exposure and response
Retains no immunological memory Retains immunological memory
Found in nearly all forms of life Found in only jawed vertebrates

monocytes, neutrophils, tissue macrophages), and inflammatory
(e.g., serum proteins).

Cells of the innate immune system: Phagocytes, neutrophils, macro-
phages, natural killer cells, mast cells, basophils, dendritic cells,

eosinophils.
2.2 Adaptive The adaptive immune system is activated by innate immunity. The
Immunity (Acquired/ components of the adaptive immune system possess slower temporal
Specific Immunity) dynamics with high degree of specificity and a more potent secon-

dary response. The adaptive immune system frequently incorporates
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2.2.1  Humoral Immune
System (Antibody-
Mediated Immune System)

cells and molecules of the innate system in its fight against harmful
foreign bodies. For example, complement system (molecules of the
innate system) may be activated by antibodies (molecules of the
adaptive system). The cells of the acquired immune system are T and
B lymphocytes that we will describe later. It is of two types: (1)
humoral (antibody-mediated system) and (2) cell mediated. Below
is the brief description of the types of adaptive immune system.

It involves substances found in the humors, or body fluids; therefore,
the name is humoral immune system. This kind of immunity is medi-
ated by macromolecules found in extracellular fluids such as secreted
antibodies, complement proteins, and certain antimicrobial peptides.

Complement system: The complement system is involved in the
responses of both innate immunity and acquired immunity. It is
named so as it helps or “complements” the ability of antibodies
and phagocytic cells to clear pathogens from an organism. It is a
biochemical cascade of the innate immune system that helps clear
pathogens from an organism. Activation of this system leads to
cytolysis, chemotaxis, opsonization, immune clearance, and inflam-
mation. Three biochemical pathways activate the complement
system: the classical complement pathway, the alternate comple-
ment pathway, and the mannose-binding lectin pathway [3].

B celis: B cells belong to a group of white blood cells known as lym-
phocytes. The abbreviation “B,” in B cell, comes from the bursa of
Fabricius in birds, where they mature. In mammals, immature B
cells are formed in the bone marrow, which is used as a backronym
for the cells’ name [5]. There is a random gene rearrangement dur-
ing B cell maturation in the bone marrow that generates more than
10" number of B cells with different antigenic specificities. Later,
there is a selection process to eliminate any B cells with membrane-
bound antibody that recognizes self-components. This ensures that
self-reactive antibodies (autoantibodies) are not produced.

Somatic hypermutation: When a B cell recognizes an antigen, it
starts proliferating. During proliferation, the B cell receptor (BCR)
locus undergoes somatic mutation in the hypervariable regions, of
10%- to 10°-fold greater than the normal rate of mutation across
the genome [6, 7]. Hypermutation enhances the ability of immu-
noglobulin receptors present on B cells to recognize and bind a
specific antigen [3].

Antibodies: The production of antibodies is the main function of the
humoral immune system [4]. Antibodies are secreted by plasma cell,
a type of white blood cell. These are the large Y-shaped protein mol-
ecules secreted by B cells, also known as immunoglobulins (Ig). The
antibody recognizes a unique part of the foreign target, called an
antigen [2, 3]. Antibody has a “Y”-structured tip for a specific epit-
ope, known as paratope. The structural diagram of antibody has
been shown in Fig. 2. Isoforms of Igs have been described in Table 2.
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Antigen binding site
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Light chain
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Constant
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Light chain

Heavy chain

Fig. 2 Antibody structure

Table 2
Antibody isotypes

Type names  Description

IgA Found in mucosal areas of gut, respiratory tract, and urogenital tract, including saliva,
tears, and breast milk

IgD Functions mainly as an antigen receptor on B cells that have not been exposed to
antigens

IgE Involves in allergy, binds to allergens, and triggers histamine release from mast cells
and basophils

IgG Only antibody that can cross the placenta to give passive immunity to the fetus

IgM Secreted pentamer form, expressed on the surface of B cells (monomer). Eliminates

pathogens in the early stages of B cell-mediated (humoral) immunity before there is
sufficient IgG

Class switch vecombination (CSR) (immunoglobulin class switch-
ing/isotype switching/ isotypic commutation): B cell’s production of
antibody from one class to another can be changed through a bio-
logical mechanism called as CSR binding, for example, from an
isotype called IgM to an isotype called IgG. During this process,
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222 Cell-Mediated
Immune System

the constant region portion of the antibody heavy chain is changed,
but the variable region of the heavy chain stays the same; hence it
does not affect the antigen specificity.

It does not involve antibodies, rather activates phagocytes and
antigen-specific cytotoxic T lymphocytes and releases various
cytokines in response to an antigen attack.

T lymphocytes: Although T lymphocytes arise in the bone marrow,
it migrates to the thymus gland to mature unlike B cells [1]. Within
the thymus, it expresses a unique antigen-binding molecule on its
membrane, called as T cell receptor (TCR). TCRs can recognize
only antigen that is bound to cell-membrane proteins called major
histocompatibility complex (MHC) molecules, unlike B cells.
There are two well-defined subpopulations of T cells: T helper
(Th) and T cytotoxic (Tc) cells. It becomes an effector cell (acti-
vated) that secretes various growth factors known collectively as
cytokines, after a Th cell recognizes and interacts with an antigen—
MHC class II molecule complex. The secreted cytokines play an
important role in activating B cells, Tc cells, macrophages, and
various other cells that participate in the immune response.

TCR-MHC molecule interaction to present antigen to T cell
has been shown in Fig. 3.

Under the influence of TH-derived cytokines, a Tc cell recog-
nizes an antigen and MHC class I and further proliferates and dif-
ferentiates into an effector cell called as a cytotoxic T lymphocyte
(CTL). It has cytotoxic activity and usually does not secrete cyto-
kines. The CTL has a vital function in eliminating antigen-
displaying cell, such as virus-infected cells, tumor cells, and cells of
a foreign tissue graft.

—1
8

TCR

LT

—— Antigen

MHC

]

|

Antigen presenting
Cell (APC)

Fig. 3 TCR—MHC interaction for antigen presentation
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T cell maturation also includes random rearrangements of a
series of gene segments that encode the cell’s antigen-binding
receptor, like B cell maturation. The random rearrangement of the
TCR genes is capable of generating on the order of 10° unique
antigenic specificities. Each T lymphocyte cell expresses about 10°
receptors, and all of the receptors on the cell and its clonal progeny
have identical specificity for antigen. However, it is later diminished
through a selection process to ensure that only T cells with receptors
capable of recognizing antigen associated with MHC molecules
will be able to mature [1].

The MHC: The MHC is a large genetic complex with multiple loci
and encodes for three major classes of membrane-bound glycopro-
teins: class I, class II, and class III MHC molecules. These mole-
cules do not have fine specificity for antigen characteristic; instead
of this, it binds to a spectrum of antigenic peptides derived from
the intracellular degradation of antigen molecules. In both class I
and class II MHC molecules posses variable regions;, a cleft within
which the antigenic peptide binds and is presented to T lympho-
cytes. As mentioned above, Th cells generally recognize antigen
combined with class II molecules, whereas Tc cells generally recog-
nize antigen combined with class I molecules.

Below are the major differences among these three classes: (1)
Class I MHC genes encode glycoproteins expressed on the surface
of nearly all nucleated cells; the major function of the class I gene
products is presentation of peptide antigens to Tc cells. (2) Class 11
MHC genes encode glycoproteins expressed primarily on antigen-
presenting cells (macrophages, dendritic cells, and B cells), where
they present processed antigenic peptides to Th cells. (3) Class I1I
MHC genes encode various secreted immune system-related
proteins, including components of the complement system and
molecules involved in inflammation.

Another important aspect is their structural features, where
class I and class II MHC molecules have common structural fea-
tures and both have roles in antigen processing. However, the class
IIT MHC region encodes molecules that have little in common
with class I or IT molecules.

3 Disorders of Human Immunity

3.1 Autoimmunity

Although, the immune system is a remarkably specific and adaptive,
however, it may lead to develop autoimmunity, hypersensitivities and
immunodeficiencies, upon deregulation.

Autoimmunity arises when immune system fails to distinguish
between self and non-self. Here, immune system attacks on self-
antigens, instead of reacting against foreign antigens. The result
is an inappropriate response of the immune system against
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3.2 Hypersensitivity

self-components termed autoimmunity. Normal healthy
individuals have been shown to possess self-reactive lymphocytes
in periphery, where its presence does not inevitably result in auto-
immune reactions [1]. However, their activity is regulated
through clonal anergy or clonal suppression. Its deregulation can
lead to the activation of humoral or cell-mediated responses
against self-antigens. These reactions can damage cells and
organs, sometimes with fatal consequences. Lymphocytes or anti-
bodies bind to cell-membrane antigens and lead to cellular lysis
and/or an inflammatory response in the affected organ. The
damaged cellular structure is gradually replaced by connective tis-
sue (scar tissue), and thereby the function of the organ declines.

Many autoimmune diseases are characterized by tissue destruc-
tion mediated directly by T cells. For example in rheumatoid arthri-
tis, self-reactive T cells attack the tissue in joints, causing an
inflammatory response that results in swelling and tissue destruc-
tion. In Hashimoto’s thyroiditis, autoantibodies reactive with
tissue-specific antigens such as thyroid peroxidase and thyroglobu-
lin cause severe tissue destruction. Other examples include insulin-
dependent diabetes mellitus and multiple sclerosis. The immune
response is directed to a target antigen unique to a single organ or
gland in an organ-specific autoimmune disease. This way, the effects
are largely limited to that organ. In case of damage by humoral or
cell-mediated effector mechanisms, the antibodies may overstimu-
late or block the normal function of the target organ.

The ability of the immune system to respond inappropriately to
antigenic challenge is known as hypersensitivity or allergy.
It refers to undesirable reactions produced by the normal immune
system, including allergies and autoimmunity. The four-group
classification was given by Gell and Coombs in 1963 [8]. Table 3
gives brief description of this classification, along with an
additional type.

Table 3
Allergy classification

Type Names Mediators

I Allergy, IgE mediated IgE and 1gG4
II Cytotoxic, antibody dependent IgM and IgG
II1 Immune complex disease IgG

v Delayed-type hypersensitive (DTH) T cells

\Y% Autoimmune disease, receptor mediated IgM or IgG
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deficiencies
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Immunodeficiency is a state in which the immune system compro-
mises or is unable to fight infectious disease. In this case, the system
fails to protect the host from diseases or from malignant cells.
A condition that occurs from a genetic or a developmental defect
in the immune system is called a primary immunodeficiency.
Secondary immunodeficiency, or acquired immunodeficiency, is
the loss of immune function and results from exposure to various
agents. Till date, the most common secondary immunodefi-
ciency is acquired immunodeficiency syndrome, or AIDS, which
results from infection with the human immunodeficiency virus 1
(HIV-1) [1].

Primary immunodeficiency: A primary immunodeficiency may
affect either adaptive or innate immune functions. Most of the pri-
mary immunodeficiencies are inherited, and the genetic defects are
determined. The consequences of primary immunodeficiency
depend on the number and type of immune system components
involved. Defects in components early in the hematopoietic devel-
opmental scheme affect the entire immune system. Deficiencies
involving components of adaptive immunity, etfector T or B cells,
while phagocytes or complement, are impaired in innate immunity.

Secondary immunodeficiency: Agent-induced immunodeficiency
results from the exposure to any of a number of chemical and bio-
logical agents that induce an immunodeficient state. These agents
can be immunosuppressive medicines. The drugs that are used to
combat autoimmune diseases such as rheumatoid arthritis or lupus
erythematosis induce the abovementioned kind of immunodefi-
ciency. Cytotoxic drugs or radiation treatments given to cancer
patients damage the immune cells and thereby induce a state of
immunodeficiency.

4 Conclusion

We have described immune system and its branches briefly in this
chapter. We have described the difference between the two said
branches of the immune system in a tabular way. We have also
highlighted the immune system disorders.
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Chapter 2

Cross Talk Between the Metabolic and Immune Systems

Namrata Tomar and Rajat K. De

Abstract

Understanding the interplay between metabolic and cellular signaling systems has emerged as a focus in
the study of metabolic disorders, cancer, and immune responses. Immune system is active in the regulation
of metabolism. Lymphocyte activation initiates a program of cell growth, proliferation, and differentiation
that increase metabolic demand. Activated lymphocytes must alter their metabolism to support these
increased synthetic activities. In this chapter, we describe how signaling via the immune system integrates
with metabolic functions to control immune response and vice versa. It has been explained mainly in the
context of T lymphocyte activation and, to a lesser detail, in other immune cell types.

Key words Immune system, Metabolic system, Lymphocyte, T cells, mTOR, TLR, Adipose tissue,
Obesity, Inflammation

1 Introduction

Immune system is required to ward off tumors and infectious par-
ticles attacking the host. It is a very balanced homeostatic system
and also guards against immune dysregulation, such as in allergy
and autoimmunity. There is increase in observations to investigate
how immune cells affect certain nonimmune functions, including
neurodegeneration, cardiovascular function, and metabolism.
Thus, immune metabolism is an emerging field of investigation,
which is at the interface between the distinct disciplines of immu-
nology and metabolism. Hepatocytes and myocytes are two cell
types in which metabolic pathways have been well studied. Unlike
these two, resting lymphocytes do not store glycogen in a larger
amount. It makes them highly dependent on the import of extra-
cellular glucose to meet increased metabolic needs [1-3]. The
behaviors of lymphocytes and other leukocytes are controlled by
metabolic activities of the cells at different levels.

Investigations on the molecular aspects of immunological-
metabolic cross talk have become an important field of research.
During the activation of a resting lymphocyte, large metabolic

Rajat K. De and Namrata Tomar (eds.), Immunoinformatics, Methods in Molecular Biology, vol. 1184,
DOI 10.1007/978-1-4939-1115-8_2, © Springer Science+Business Media New York 2014

13



14 Namrata Tomar and Rajat K. De

demands are placed on the cell as it initiates proliferation and cytokine
production [4]. The cell grows to approximately double its resting
size and then enters into a program of rapid proliferation while also
differentiating from a quiescent cell to a highly secretory one.

The role of glucose in immune system is explored initially in
this chapter. Moreover, the metabolic dependency in lymphocyte
activation is explained. Metabolic alterations and disturbances
affect immunity of an individual. Thus obesity-associated inflam-
mation, type 2 diabetes (T2D), and cardiovascular disease (CVD)
are being explored as metabolic alterations, which result in the
impairment of immune system. We have also described the role of
nutrient sensors, adipose tissue, and toll-like receptors in maintain-
ing immune—metabolic interactions.

2 Role of Glucose in the Immune System

In addition to acting as a defense mechanism for a human being,
immune system also participates in the control of the resident colo-
nizing microflora, which is essential for immunologic and metabolic
health. These regulatory processes are energy demanding, and
immune cells from both innate and adaptive immune systems use
numerous extracellular molecules and signals as fuels [5, 6]. The
exact nature of the energetic demands differs among immune cells
and the nature of the required response. For example, energy
demand is different from that of proliferative /secretory (B or T
lymphocytes) than that of non-proliferative /secretory (macro-
phages or neutrophils). Observations using lymphocytes, stimu-
lated with B- or T-specific mitogens (such as pokeweed mitogen for
B cells, concanavalin-A for T cells), have revealed that the glucose
uptake and catabolism are necessary to provide energy for their pro-
liferation, biosynthesis, and secretory activities [1, 2]. It has been
found that mitogen-induced lymphocyte activation leads to an
increase in glucose consumption, which mostly metabolizes to lac-
tate within 1 h of stimulation [7]. Moreover, other pathways of
glucose utilization, such as the pentose phosphate pathway (PPP),
have also been shown to be functional during lymphocyte stimula-
tion and have peaked at 48 h after stimulation.

The metabolism of resting lymphocytes is limited by the avail-
ability of trophic signals and does not depend upon the availability
of nutrients, such as glucose [8]. Once T cells approximately dou-
ble their resting size and start proliferating, they start differentiat-
ing from a quiescent to a highly secretory state, after getting
activation. These processes lead to increase in glucose consump-
tion and hence activation of glycolysis [9].

Regulation of energy metabolism in immune cells requires
coordination by signal transduction pathways as the functions of
these pathways directly have an impact on the modulation of nutrient
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uptake and metabolism. Glucose transporter (GLUT) and insulin
receptor (InsR) proteins are expressed in immune cells, like monocytes
/macrophages, neutrophils, and B and T lymphocytes [10, 11]. It
has been shown that physiological doses of insulin have led to
increased expression of GLUT3 and GLUT4 in monocytes and
B lymphocytes [12]. In contrast, insulin does not alter GLUT
expression in resting T cells and in neutrophils. However, in vitro
mitogen or LPS (the ligand for TLR4) stimulation of immune cells
enhances the expression of membranes GLUT1, GLUT3, and
GLUT4 [13, 14]. It has been observed that expression of InsR is
essential for immune cell division, size, and survival [15].

3 Role of Imnmune Cells in Metabolism

There has been a fair amount of increase in the understanding of
the immune system organization as well as its regulators. There is
a close concordance between host nutritional status and immunity.
Thus the investigation on the relationship among nutrition, health,
and the immune system of an individual has now become a topic of
study.

In the absence of B cells or IgA and in the presence of the
microbiota, the intestinal epithelium upregulates interferon-
inducible immune response pathways and represses Gata4-related
metabolic functions [16]. It leads to lower absorption of lipid.
Further, network analysis reveals the presence of two inversely
expressed and interconnected epithelial cell gene networks—for
lipid metabolism and regulating immunity. The authors have also
observed similarities between the gene expression patterns in gut
biopsies from individuals with common variable immunodeficiency
(CVID)/HIV infection and intestinal malabsorption and from
B cell-deficient mice. It possibly explains a relation between immu-
nodeficiency and defective lipid absorption in humans.

Immune deficiency has been observed in leptin-deficient obese
(ob/ob) mice. It has found to be associated with an impairment of
dendritic cell (DC) function. The ob/ob mice have demonstrated
reduced cellular and humoral response and an altered cytokine
secretion profile following keyhole limpet hemocyanin (KLH)
immunization. Variations have been observed in the cytokine pro-
file secretion in both in vivo and in vitro experiments [17]. For
example, more IL.-10 and IFN-y have been secreted by splenic cells
from obese animals in an antigen-specific response. However,
higher amounts of 1L-10 and of IL-4 have been detected in con-
trol supernatant in a protocol of mixed lymphocyte reaction
(MLR). Authors have also analyzed epidermal sheets of obese mice
and found higher number of dendritic cells in obese mice com-
pared with control one.
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4 Metabolic Dependency in Lymphocyte Activation

Naive and memory T cells have metabolic activities for housekeeping
functions, such as the transportation and turnover of biomaterials,
maintenance of cytoskeleton, among others. Glucose oxidation
through tricarboxylic acid (TCA) cycle and fatty acid p-oxidation
provide most of the metabolic support for these basic cellular func-
tions in naive and memory cells [18, 19]. Immune signaling from
T cell receptor (TCR), co-stimulatory molecules, and cytokine
receptors activate resting T cells upon antigen exposure. Upon
activation, quiescent naive T cells undergo a growth phase fol-
lowed by clonal expansion and differentiation. These changes are
essential for accurate immune defense and regulation. Initial
growth and rapid proliferation during the expansion phase increase
bioenergetic and biosynthetic demands. It requires a metabolic
rewiring during the transition between resting and activation
stages. It also makes active T cells to use certain metabolic path-
ways in the ways that naive and memory T cells do not. In naive
and memory T cells, the majority of pyruvate enters into the mito-
chondria, where it is converted to acetyl-CoA through oxidative
decarboxylation, and later fluxes into TCA cycle to generate
ATP. However, in active T cells, a major portion of pyruvate moves
away from the TCA cycle to produce lactate. Thus it is clear that
the production of lactate via glycolysis is significantly upregulated
following T cell activation. It may be noted that this change is not
restricted to low oxygen (anaerobic) in the environment and is
actively regulated by signal transduction pathways when oxygen is
plentiful (aerobic glycolysis) [20, 21]. Glutaminolysis, the gluta-
mine catabolic pathway, is another major carbohydrate catabolism
that is significantly elevated in T cells after their activation [22, 23].

5 Effects of Metabolic Alteration on Immune Reactivity

Metabolic disturbances, like obesity, have serious effects on immunity.
Obesity and related disease and disease-like symptoms, such as
insulin resistance in T2D and cardiovascular diseases, have become
like an epidemic. Fatty acids and glucose enter into the blood after
taking a meal. For an obese individual, the body has higher levels
of fat and glucose, and it alters responsiveness of the immune sys-
tem. This impairment of the immune system associated with human
obesity has also been demonstrated in several animal models.
Leptin is an adipocyte-derived cytokine. It is secreted proportion-
ally to the amount of fat to finely regulate body weight [24].
Complete congenital absence of leptin leads to hyperphagia and
morbid obesity in both humans and rodents [25]. A study has
shown that obese animals have a delayed wound healing associated
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with increased polymorphonuclear cell infiltration [26]. In addition,
both T and B cell-mediated immune responses are impaired in
leptin-deficient obese mice (ob/ob) and diabetic db/db mice [27].

Imbalance in the cytokine network is another feature of obe-
sity, which results in a low-grade systemic inflammatory status. It
has been observed in both obese humans and animals [28]. The
inflammatory cytokines interleukin 6 (IL6), IL1, and tumor necro-
sis factor-a (TNF-a) have found to be abnormally elevated in obe-
sity, which mostly originate from the activated macrophages
infiltrating the white adipose tissue [29, 30]. Investigations may be
carried out to explore the reason behind the obesity-associated
inflammation, the extent of obesity and inflammation being related,
and the pathway(s) responsible for inflaimmation-induced T2D,
cardiovascular disease, and other related pathologies. On the prac-
tical side, as inflaimmation mediates many pathological conse-
quences of obesity, it may lead to exploration of anti-inflammatory
drug discovery and drugs for the patients with obesity-associated
metabolic and cardiovascular disorders.

6 Role of Nutrient Sensors, Adipose Tissue, and Toll-Like Receptors
in Maintaining Inmune-Metabolic Cross Talk

In most of the cases, immune cells use and respond to nutrients
similarly as found in other cells. There are cell-intrinsic metabolic
processes that influence the performance of immune cells [31].
The interesting aspect is to have a completely different perspective
on the immunological metabolic interface to find out the extent
and the precise mechanisms of typical cell-intrinsic metabolic pro-
cesses that influence the functional performance of immune cells.

AKTI-3, AMPK-activated protein kinase (AMPK), mamma-
lian target of rapamycin (mTOR), and LKBI: The serine/threonine
kinases AKT1-3, AMPK, mTOR, and LKB1 are cellular nutrient
sensors that help to maintain energy homeostasis.

Finlay and Cantrell [32] have suggested that AKT1-3, AMPK,
and LKB1 control a fate switch, from cytotoxic effector to memory
CD8+ T cells, in addition to providing nutrient responses.
According to the authors, AKT proteins regulate repertoires of
adhesion molecules and chemokine receptors in CD8+ T cells and
control trafficking and migration. This, in turn, determines deci-
sion for the memory versus terminally differentiated effector CD8+
T cells. Considering LKB1, it is mentioned that an lkbl1-/- bone
marrow transplant was unable to reconstitute the hematopoietic
system in irradiated mice. This observation suggests that the sur-
vival of hematopoietic stem cells (HSCs) depends on LKB1 [33].
An lkbl-/- bone marrow transplant was unable to reconstitute
the hematopoietic system in irradiated mice, again suggesting that
the survival of HSCs depends on LKB1. Moreover, a study shows
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6.1 Toll-Like
Receptors

6.2 Adipose Tissue

that CD28 co-stimulation of human peripheral blood T cells
enhances expression of glucose transporters, glucose uptake, and
glycolysis. This increase depends on PI3K activity. Further, the
majority of glucose processed by CD28-co-stimulated T cells is
converted to lactate. It is not used for biosynthesis or oxidized for
maximal energy extraction [34]. These observations have shown
that under certain conditions, immune cells may use metabolic
pathways to control fate and function in the ways that are different
from other cells.

Adipose tissue and Toll-like receptors (TLRs) of the innate
immune system, which are found on immune cells, intestinal cells,
and adipocytes, are being studied as essential factors in the com-
plex balance of immune and metabolic health.

TLRs are broadly expressed in cells of the innate immune system,
such as macrophages, epithelial and endothelial cells, and organ
parenchyma cells. They have specific roles in local innate immune
defense [35]. TLRs of the innate immune system, which are found
in immune cells, intestinal cells, and adipocytes, are observed as
essential for maintaining the complex balance of immune and met-
abolic systems [36]. Lipid is one of the components, which is rec-
ognized by TLRs. Some of the mammalian TLRs also regulate
energy metabolism, mostly through acting on adipose tissue. This
has opened a wide scope of research on the role of TLRs in pathol-
ogies related to metabolism, such as obesity, insulin resistance, and
atherosclerosis. A study has reported that saturated fatty acids can
induce the activation of TLR2 and TLR4, whereas unsaturated
fatty acids have shown to inhibit TLR-mediated signaling pathways
and gene expression [37].

Adipose tissue is observed as an immunocompetent organ and adi-
pocytes as components of the innate immune system. Adipocytes
secrete classical cytokines (TNF- a, IL-6, IL-1 receptor antagonist,
and TGEF-P), levels of which are significantly increased in obesity,
which contribute to the overall inflammatory status of obese per-
sons [ 38]. In addition, leptin has also been shown to play an essen-
tial role in both innate and adaptive immune responses [39].
Adipocytes and macrophages have recently been described to
originate from a common ancestral progenitor and to share sev-
eral features as follows [40, 41]. Macrophages express some
adipocyte-specific gene products, such as ap2, while adipocytes
secrete macrophage-specific gene products, such as IL-6 or TNF-a.
This common gene expression results in some analogous func-
tional activities, such as lipid accumulation by macrophages in
atherosclerotic lesions or phagocytic capacities exhibited by adi-
pocytes towards certain pathogens, thereby revealing an apparent
coordinated activity between these two cell types during the
course of an innate immune response. Adipocytes, isolated from
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diet-induced obese mice or genetically obese animals, exhibited
increased TLR expression [42—44 |, together with higher cytokine
production upon stimulation. TGE-f is positively correlated with
obesity and up-regulated both in human and in ob/ob mice white
adipose tissue [45].

7 Conclusions

Fluctuations in blood glucose occur in inflammatory diseases, such
as obesity, diabetes, and insulin resistance. It is now becoming clear
that the emerging field of immune metabolism has theoretical and
practical implications for future research. Generating an efficient
and effective immune response involves large increase in cellular
proliferative, biosynthetic, and secretory activities and processes,
which require high energy consumption. As mentioned, adaptive
as well as innate immune cells must be able to rapidly respond to
the presence of pathogens, shifting from a quiescent phenotype to
a highly active state within hours after stimulation. For this pur-
pose, cells must dramatically alter their metabolism in order to sup-
port these increased synthetic activities based on extracellular
signals as fuels, among which glucose is the most essential one.
Since activated lymphocytes have high metabolic demands, manip-
ulation of the lymphocyte-specific metabolic control pathways may
be useful in treating diseases characterized by immune hyperactiva-
tion, autoimmune disorders, and graft rejection.
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Chapter 3

Immunoinformatics: A Brief Review

Namrata Tomar and Rajat K. De

Abstract

A large volume of data relevant to immunology research has accumulated due to sequencing of genomes
of the human and other model organisms. At the same time, huge amounts of clinical and epidemiologic
data are being deposited in various scientific literature and clinical records. This accumulation of the infor-
mation is like a goldmine for researchers looking for mechanisms of immune function and disease patho-
genesis. Thus the need to handle this rapidly growing immunological resource has given rise to the field
known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is
the interface between computer science and experimental immunology. It represents the use of computa-
tional methods and resources for the understanding of immunological information. It not only helps in
dealing with huge amount of data but also plays a great role in defining new hypotheses related to immune
responses. This chapter reviews classical immunology, different databases, and prediction tool. Further, it
briefly describes applications of immunoinformatics in reverse vaccinology, immune system modeling, and
cancer diagnosis and therapy. It also explores the idea of integrating immunoinformatics with systems biol-
ogy for the development of personalized medicine. All these efforts save time and cost to a great extent.

Key words Systems biology, Immunomics, In silico models, T cells, B cells, Allergy, Reverse vaccinol-
ogy, Personalized medicine

1 Introduction

The human immune system is very complex and operates at
multiple levels, viz., molecules, cells, organs, and organisms. Each
individual has a unique immune system and will respond differ-
ently to immune challenges. It has a combination of biological
structures and processes within an organism to protect it against
disease. The earliest literary reference to immunology goes back to
430b.c., courtesy Thucydides [1]. In 1798, Edward Jenner found
some milkmaids immune to smallpox because earlier they con-
tacted cowpox (a mild disease). The next major advancement in
immunology came with the induction of immunity to cholera by
Louis Pasteur. After applying weakened pathogen to animals,
he administered a dose of vaccine to a rabid dog-bitten boy who
later survived. But Pasteur could not explain its mechanism.
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In 1890, experiments of Emil Von Behring and Shibasaburo
Kitasato led to the understanding of the mechanism of immunity.
Their experiments described that antibodies present in the serum
provided protection against pathogens [1].

According to the traditional dogma of immunology, vertebrates
have both innate and adaptive immunology. Innate immune system
acts more rapidly and is older and more evolutionarily conserved in
comparison with adaptive immune system. It provides the back-
bone on which adaptive immune system was able to evolve. Innate
immune system is less specific and works as a first line of defense
[2]. It comprises four types of defensive barriers, viz., anatomic
(e.g., skin and mucous membranes), physiologic (e.g., temperature,
low pH), phagocytic (e.g., blood monocytes, neutrophils, tissue
macrophages), and inflammatory (e.g., serum proteins). Adaptive
immune responses in vertebrates are generated within 5 or 6 days
after the initial exposure to the pathogen. It is coordinated by a
network of highly specialized cells that communicate through cell
surface molecular interactions and a complex set of intercellular
communication molecules known as cytokines and chemokines.
Later exposure to the same pathogen induces a heightened and
more specific response because it retains memory [1]. Adaptive
immune system has two parts: the cellular immune response of
T cells and humoral response of B cells [1, 3]. An antigen has a
specific small part, known as epitope that is recognized by the cor-
responding receptor present on B or T cells. B cell epitopes can be
linear and discontinuous amino acids. T cell epitopes are short
linear peptides. Most of the T cells can be in either of the two sub-
sets, distinguished by the presence of one or the other of the two
glycoproteins on their surface, designated as CD8 or CD4. CD4
T cells function as T helper (Th) cells that recognize peptides dis-
played by MHC class II molecules. On the other hand, CD8 func-
tions as Tc (cytotoxic T) cells which recognize peptides displayed by
MHC class I molecules.

The complexity of the immune system arises from its hierarchi-
cal and combinatorial properties. Thus huge amount of data related
to immune systems is being generated. Immunologic research needs
to deal with this complexity. Immunologists have been using high-
throughput experimental techniques for quite a long time, which
have generated a vast amount of functional, clinical, and epidemio-
logical data. Therefore the development of new computational
approaches to store and analyze these data is needed. This gives rise
to the field called immunoinformatics. Immunogenomics, immu-
noproteomics, epitope prediction, and in silico vaccination are
different areas of computational immunological research. Recently,
systems biology approaches are being applied to investigate the
properties of dynamic behavior of an immune system network [4].
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Fig. 1 A possible work flow in immunomics

It includes the study and design of algorithms for mapping
potential B and T cell epitopes. These also can lead to exploring
the potential binding sites for the development of new vaccines.
This methodology is termed as “reverse vaccinology” [5]. It is quite
advantageous because conventional methods need to cultivate
pathogen and then to extract its antigenic proteins.

All the genes and proteins taking part in immune responses are
referred to as “immunome,” and it excludes genes and proteins that
are expressed in cell types other than in immune cells [6]. All
immune reactions due to interaction between host and antigenic
peptides are referred to as “immunome reactions,” and their study is
called as “immunomics” [7]. Like genomics and proteomics, immu-
nomics is a new discipline, which uses high-throughput techniques
to understand immune system mechanism [8, 9]. Figure 1 shows
work flow in immunomics. This chapter describes various available
information regarding classical immunology, different immunomic
databases, B and T cell epitope prediction tools and software, and
applications of immunoinformatics.
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2 Data Sources

2.1 Data from Lab
Experiments

2.2 Exploring
the Microarray
Technology

for Inmunomics

Data sources include availability of data from lab experiments
through scientific literature, molecular databases, tools and web
servers, and clinical records. In this section, we focus on various
immune system-related data types and databases. The section starts
with some experimental techniques and results.

Immunological experimental and high-throughput molecular
biology techniques help in finding the structure and function of
immune genes and their products and thereby accumulating a vast
amount of experimental data. Experiments involve many immuno-
logical techniques to understand the mechanism of an immune
system and its responses to various infections, diseases, and drugs,
viz., affinity chromatography [10], flow cytometry [11], radioim-
munoassay (RIA) [12], enzyme-linked immunosorbent assay
(ELISA), [12, 13], competitive inhibition assay [ 14 ], and Coombs
test [15]. Here, we present some experimental findings that help
to identify B and T cell epitopes and to study immune responses.

The ability to identify epitopes in the immune response has
important implications in diagnosis of diseases. Thus epitopes for
B and T cells need to be identified and mapped. In this context,
Wanga et al. [16] mapped B cell epitope present on nonstructural
protein (NS1), viz., NS1-18 and NS1-19, in Japanese encephalitis
virus. For epitope mapping, a series of 51 partially overlapping
fragments covering the entire NS1 protein were expressed with a
glutathione S-transferase (GST) tag and then screened by a mono-
clonal antibody (mAb). They found that the motif of (146)
EHARW (150) was the minimal unit of the linear epitope recog-
nized by that mAb. Purification techniques like affinity chromatog-
raphy are used to purify MHC-peptide from membrane MHC
molecules, which can be analyzed by capillary high-pressure liquid
chromatography electrospray ionization-tandem mass spectrome-
try [17]. They can be further used to find new tumor-associated
antigens (TAA). One such approach to find TAA is based on trans-
tection of expression library made from ¢cDNA into cells expressing
the desired MHC haplotypes [18]. The clones are selected on the
basis of their ability to provoke immune response in T cells of
the individuals with the same MHC type.

“Immunomic microarray” is a microarray technique based on the
principle of binding and measurement of target biological speci-
mens to complementary probes. It helps in selecting proteins that
cause autoimmunity from genomic sequences [19]. It is being
applied to autoimmune disease diagnosis and treatment [20],
allergy prediction [21], T and B cell epitope mapping [22], and
vaccination [23] to name a few. It includes dissociable antibody
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microarray [24 ], serum microarray [25], and serological analysis of
cDNA expression library (SEREX) [26]. An antibody microarray is
used to measure concentration of antigen for a specific antibody
probe and thereby consists of antibody probes and antigen targets.
On the contrast, peptide microarray uses antigen peptides as fixed
probes and serum antibodies as targets. The recent technology
is peptide-MHC microarray or artificial antigen-presenting chip.
In this technique, recombinant peptide-MHC complexes and
co-stimulatory molecules are immobilized on a surface, and popu-
lation of T cells is incubated with the microarray. The T cell spots
act as artificial antigen-presenting cells [27] containing a defined
MHC-restricted peptides. The advantage of using peptide-MHC
is that it can map MHC-restricted T cell epitope.

The immunomic and genomic microarray data have some sim-
ilarities, yet both of them also differ in several ways; for example,
both of them have different designs. One can measure two or
more signals simultaneously determined by a single feature, i.e.,
epitope in immunomic microarray [28, 29]. DNA microarrays
measure one response value for each gene per sample; that is,
mRNA concentration produced by the gene but a single epitope
can generate different response values corresponding to different
epitopes in peptide-MHC chips. In case of B cell epitope, it can be
recognized by different isotypes of immunoglobulins, so here, one
can measure both intensity and quality of antibody response.

The property of an antigen to bind specifically complementary anti-
bodies is known as the antigen’s antigenicity. Likewise, the ability of
an antigen to induce an immune response is called its immunoge-
nicity. Immunomic databases include epitope information-related
databases, analysis tools, and prediction algorithms, which are
crucial for basic immunological studies, diagnosis, and treatment of
various diseases and in vaccine research [30]. InnateDB [31]
(http://www.innatedb.ca) has been created to understand com-
plete network of pathways and interactions of innate immune sys-
tem responses. It has ~18,000 annotated molecular interactions of
relevance to innate immunity and >1,200 genes, involved in innate
immunity according to the recent update till February 16, 2012. It
has a newer version, called Cerebral [32], which is a Java plug-in for
the cytoscape biomolecular interaction viewer version 2.8.2 [33]
for automatically generating layouts of biological pathways. Table 1
lists some of the databases that deal with information related to B
cell epitopes, T cell epitopes, allergy prediction, and evolution of
immune system genes and proteins.

A brief detail on B cell epitope databases is provided here. Readers
can find a detailed description in later chapters. Mapping B cell
epitopes plays an important role in vaccine design, immunodiag-
nostic tests, and antibody production. It has been found that 90 %
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Table 1
Databases on B cell epitopes, T cell epitopes, allergen, and molecular evolution of immune system
components
Databases Names URLs
B cell epitopes CED http://www.immunet.cn/ced /log.html
Bcipep http: //www.imtech.res.in/raghava /bcipep
Epiotme http: //www.rostlab.org/services/epitome /
IEDB http: //www.immuneepitope.org,/
IMGT® http: //www.imgt.org
T cell epitopes Syfpeithi http: //www.syfpeithi.de
IEDB http: //www.immuneepitope.org,/
IMGT® http: //www.imgt.org
Allergen Database of IUIS http: //www.allergen.org
SDAP http: //www.fermi.utmb.edu/SDAP/
Information related to ImmTree http: //www.bioinf.uta.fi/ImmTree
molecular evolution Immunome database http: //www.bioinf.uta.fi/Immunome /
of immune system ImmunomeBase http: //www.bioinf.uta.fi/ImmunomeBase
components Immunome http: //www.bioinf.uta.fi/IKB/

Knowledge Base

of B cell epitopes are conformational or discontinuous; however,
they may comprise linear amino acid chain of peptides, which is
brought closure in 3D space [34]. Bcipep [35] (http://www.
imtech.res.in/raghava/bcipep) gives comprehensive information
about experimentally verified B cell epitopes and tools for mapping
these epitopes on an antigen sequence. Conformational epitope
database (CED) [36] has a collection of B cell epitopes from the
literature, conformational epitopes defined by methods, like X-ray
diffraction, NMR, scanning mutagenesis, overlapping peptides, and
phage display. Epitome [37] (http://www.rostlab.org/services/
epitome/) contains all known antigen—antibody complex struc-
tures. A semiautomated tool has also been developed which identi-
fies the antigenic interactions within the known antigen—antibody
complex structures. They compiled these interactions into Epitome.
None of the other databases till now explicitly can locate the com-
plementary determining regions (CDRs) or identify the antigenic
residues semiautomatically. Epitome update follows update of
SCOP; that is, Epitome is updated twice a year as soon as SCOP
gets updated.

The difference between Epitome and CED lies in the source of
collection of B cell epitopes. Epitome collects B cell epitopes only
from PDB structures and includes CDR information. In contrast,
CED takes data from the literature and from abovementioned
methods. As their sources are different, one can use the comple-
mentary information.
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A brief detail on T cell epitope databases is provided here.
A detailed description can be found in later chapters. A functional
T cell response requires MHC—peptide binding and a proper inter-
action of the MHC—peptide ligand with a specific T cell receptor.
We need well-characterized data to model the process of binding
of peptides to TAP and MHCs which function as T cell epitopes.
Some recent investigations include finding and mapping of
potential epitopes. Epitope mapping leads to designing effective
vaccines. Syfpeithi database [38] (http://www.syfpeithi.de) has
information on MHC class I and II anchor motifs and binding
specificity. It calculates a score based on the following rules—
calculated score values differentiate among anchor, auxiliary
anchor, or preferred residues. IEDB [39] has more than 88382
peptidic epitopes and can be found at http: //www.immuneepitope.
org/ and ontology-related information (http://ontology.iedb.org/)
which has been specifically designed to capture intrinsic, chemical,
and biochemical information on immune epitopes and their inter-
actions with molecules of the host immune system. A beta version
of IEDB (Immune Epitope Database and Analysis Resource
Database) (http: //www.immuneepitope.org/) [30], sponsored by
the National Institute for Allergy and Infectious Diseases (http://
www.niaid.nih.gov) (NIAID), has different tools to find B and
T cell epitopes. It had 88382 peptidic epitopes till February 2012.
FRED [40] deals with the methods for data processing and
to compare the performance of the prediction methods consi-
dering experimental values. IMGT®[41 ] (the international ImMuno
GeneTics information system®) (http://www.imgt.org) has a
good collection of IG, TR, MHC, and related proteins of
the immune system of human and other vertebrates. It has five
databases and 15 interactive online tools for sequence, genome,
and 3D structure analysis. The IMGT/HLA Database [42]
(http://www.ebi.ac.uk/imgt/hla/) provides a specialist database
that has 5,518 HLA class I alleles and 1,612 HLA class II alleles.
Itis a part of the international ImMunoGeneTics project (IMGT).

Allergy is a steadily increasing health problem for all age groups
caused by allergens. Allergens are proteins or glycoproteins recog-
nized by IgE that is produced by the immune system in allergic
individuals. Online allergen databases and allergy prediction tools
are being used to find cross-reactivity between known allergens.
Localization of B and T cells in the allergen may not coincide [43].
The differences between both kinds of epitopes present in an
antigen are as follows: T cell epitopes are only linear (as mentioned
earlier) and distributed throughout the primary structure of the
allergen, whereas B cell epitopes can be either linear or conforma-
tional, recognized by IgE antibodies, and are located on the surface
of the molecule accessible to antibodies. Moreover, in the case of
B cell epitopes, predicting allergenicity in a molecule based on
known conformational epitopes is a difficult task.


http://www.syfpeithi.de/
http://www.immuneepitope.org/
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Here, we describe allergen prediction databases in brief. One
may get details on allergy prediction databases in a later chapter.
Allergen Nomenclature database of the International Union
of Immunological Societies (IUIS) has allergen database [44]
(http://www.allergen.org), which has been last updated in
October 2009. AllergenPro database [45 ] contains 2,434 allergen-
related information, e.g., allergens in rice microbes (712 records),
animals (617 records), and plants (1,105 records). The web server
Allergome 4.0 [46] (www.allergome.org) provides an exhaustive
repository of IgE-binding compound data. It has a total of 1,736
allergen sources (updated in March 2010). The real-time monitor-
ing of IgE sensitization module (ReTiME), in Allergome 4.0,
enables one to upload raw data from both in vivo and in vitro
experiments. This is the first attempt where IT has been applied to
allergy data mining. SDAP [47] (Structural database of Allergenic
Proteins) (http://fermi.utmb.edu/SDAP/) is a web server that
provides cross-referenced access to the sequence and structure
of IgE epitope of allergenic proteins. Its algorithm is based on
conserved properties of amino acid side chains. In its latest update,
it has 1,478 allergens and isoallergens.

3

Immunomic Tools and Algorithms

The property of an antigen to bind specifically complementary anti-
bodies is known as the antigen’s antigenicity; likewise, the ability of an
antigen to induce an immune response is called its immunogenicity.
The main objective of epitope prediction is to design a molecule that
can replace an antigen in the process of either antibody production or
antibody detection. Such a molecule can be synthesized or, in case of
a protein, its gene can be cloned into an expression vector. Designed
molecules are inexpensive and noninfectious in contrast to viruses or
bacteria. Epitopes are important for understanding the disease mech-
anism, host-—pathogen interaction analyses, antimicrobial target dis-
covery, and vaccine design. Traditionally, determination of binding
affinity of MHC molecules and antigenic peptides predicts epitopes.
The experimental techniques are found to be difficult and time
consuming. Due to this reason, several in silico methodologies
are being developed and used to identify epitopes. Here, we throw
some light on available immunology-related tools and algorithms.
These techniques include matrix-driven methods, finding structural
binding motifs, quantitative structure—activity relationship (QSAR)
analysis, homology modeling, protein threading, docking techniques,
and design of several machine-learning algorithms and tools. Table 2
lists some of the tools that deal with B and T cell epitope prediction,
allergy prediction, and in silico vaccination. However, detailed
description and discussion over the usages of them will be provided in
next chapters.


http://www.allergen.org/
http://www.allergome.org/
http://fermi.utmb.edu/SDAP/

Table 2

Immunoinformatics 31

Web servers and tools for prediction of B and T cell epitopes, allergens, and in silico vaccination

Web servers

and tools Names URLs
B cell epitope ABCpred http: //www.imtech.res.in /raghava /abcpred
prediction COBEpro http: //www.scartch.proteomics.uci.edu
Bepipred http: //www.cbs.dtu.dk /services /BepiPred
IMGT® http: //www.imgt.org
Bceepred http: //www.imtech.res.in/raghava /bcepred /
DiscoTope http: //www.cbs.dtu.dk /services /DiscoTope /
CEDP http: //www.115.111.37.205 /cgi-bin/cep.pl
AgAbDb http: //www.115.111.37.206:8080/agabdb2 /home.jsp
MIMOP Request from franck.molina@cpbs.univ-montp1.fr
MIMOX http: //www.immunet.cn/mimox,/
Pepitope http: //www.pepitope.tau.ac.il /
3DEX http: //www.schreiber-abc.com/3dex/
IEDB http: //www.immuneepitope.org
T cell epitope MMBPred http: //www.imtech.res.in/raghava/mmbpred /
prediction NetCTL http: //www.cbs.dtu.dk /services /NetCTL/
NetMHC 3.0 http: //www.cbs.dtu.dk /services/NetMHC /
TAPPred http: //www.imtech.res.in/raghava /tappred /
Pcleavage http: //www.imtech.res.in /raghava/pcleavage /
ElliPro http: //www.tools.immuneepitope.org/tools/ElliPro
MHCPred http: //www.ddg-pharmfac.net/mhcpred/MHCPred /
Propred http: //www.imtech.res.in /raghava /propredl /
EpiToolKit http: //www.epitoolkit.org
Syfpeithi http: //www.sytpeithi.de
IMGT® http: //www.imgt.org
IEDB http: //www.immuneepitope.org,/
EpiJenv 1.0 http: //www.ddg-harmfac.net/epijen/EpiJen/EpiJen.htm
Allergy AlgPred http: //www.imtech.res.in /raghava /algpred
prediction Allermatch http: //www.allermatch.org
APPEL http: //www.jing.cz3.nus.edu.sg/cgi-bin /APPEL
EVALLER http: //www.slv.se /en-gb/Groupl /
Food-Safety /e-Testing-of-protein-allergenicity /
In silico VaxiJen http: //www.ddg-pharmfac.net/vaxijen,/
vaccination DyNAVacs http: //www.miracle.igib.res.in /dynavac/
NERVE http: //www.bio.unipd.it/molbinfo
VIOLIN http: //www.violinet.org
Vaxign http: //www.violinet.org/vaxign,/

3.1 B Cell Epitope
Prediction

Experimental determination of B cell epitopes is time consuming
and expensive; there is a need for computational methods for reli-
able identification of putative B cell epitopes from antigenic
sequences. B cell epitopes are antigenic determinants on the surface
of pathogens that interact with B cell receptors (BCRs). BCR-
binding site is hydrophobic, having six hypervariable loops of
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http://www.schreiber-abc.com/3dex/
http://www.immuneepitope.org/
http://www.imtech.res.in/raghava/mmbpred/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetMHC/
http://www.imtech.res.in/raghava/tappred/
http://www.imtech.res.in/raghava/pcleavage/
http://www.tools.immuneepitope.org/tools/ElliPro
http://www.ddg-pharmfac.net/mhcpred/MHCPred/
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3.1.1 Prediction

of Methodology

for Continuous B Cell
Epitopes

Sequence-Based Methods

Amino Acid Propensity
Scale-Based Methods

variable length and amino acid composition. B cell epitopes are
classified as continuous/linear/sequential and discontinuous/
conformational [48]. Linear epitopes are short peptides that
correspond to a contiguous amino acid sequence fragment of a
protein. However, most epitopes are discontinuous, where distant
residues are brought into spatial proximity by protein folding
within the folded 3D protein structure. Experiments are mostly
based on linear epitopes. There are both sequence-based and
structure-based prediction tools, but prediction tools are limited
for discontinuous B cell epitopes [35, 49].

Methodologies for prediction of continuous B cell epitopes involve
sequence-based methods, amino acid propensity scale-based meth-
ods, and machine-learning methods.

Sequence-based methods generally look for the epitope surface that
must be accessible for antibody binding. These methods are limited
to the prediction of continuous epitopes. Sequence-based methods
have been tested on prediction of two protective epitopes known in
influenza A virus hemagglutinin HA1 [50]. The first continuous
epitope is the 91-108 epitope (SKAFSNCYPYDVPDYASL), which
is a protective epitope in rabbit able to elicit antibodies neutralizing
infectivity of influenza viruses [51]. The second continuous epitope
is the 127-133 epitope (WTGVTQN) protective against the influ-
enza strain A/Achi/2 /68 (H3N2) in mouse [52].

Parameters such as hydrophilicity, flexibility, accessibility, turns,
exposed surface, polarity, and antigenic propensity of polypeptide
chains have been correlated with the location of continuous epit-
opes. Thus the classical methods of identifying potential linear
B cell epitopes from antigenic sequences typically rely on the use of
amino acid propensity scales. Amino acid scale-based methods
apply amino acid scales to compute the scores of a residue 7 in a
given protein sequence. The i—(z-1)/2 neighboring residues on
each side of residue 7 are used to compute the score for residue 7 in
a window of size #. The final score for residue 7 is the average of
the scale values for #» amino acids in the window. Pellequer [53]
compared several propensity scale methods using a dataset of 14
epitope-annotated proteins. He found that the scales of Parker
et al. [54], Chou and Fasman, [55], Levitt [56], and Emini [57]
provide betterresults than the otherscales tested [48 |. EI-Manzalawy
et al. [58] compared propensity scale-based methods with a naive
Bayes classifier and used two datasets: one is propensity dataset,
and the other is from BciPep [35].

Bepitope tool [59] predicts continuous epitopes based on the
prediction of protein turns. It is a newer version of PREDITOP [60]
and uses more than 30 propensity scale values. Beepred server [61]



Machine-Learning
Methods

3.1.2  Prediction
Methodology

for Discontinuous
B Cell Epitopes
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(http: //www.imtech.res.in/raghava/bcepred /) predicts linear B
cell epitopes with 58.7 % accuracy based on combined amino acid
properties, like accessibility, hydrophilicity, flexibility, polarity,
exposed surface, and turns. Analyses of antigen—antibody interaction
are done on antibody-binding sites on proteins, which help in
predicting the linear and conformational B cell epitopes. Taking this
into consideration, a database, viz., AgAbDb [62] (http://
202.41.70.51:8080 /agabdb2 /), has been developed which is based
on molecular interactions of antigen—antibody cocrystal structures.

Machine-learning algorithms and tools are being used to retrieve
characteristics of an epitope. Here we describe some of these
approaches in brief. Saha and Raghava [63] used feed-forward
and recurrent neural networks to predict continuous B cell epit-
opes in ABCpred (http://www.imtech.res.in/raghava/abcpred).
COBEpro [64] is a two-step system for prediction of continuous B
cell epitopes. In the first step, COBEpro assigns a fragment epit-
opic propensity score to protein sequence fragment using SVM. In
the second step, it calculates an epitopic propensity score for each
residue based on the SVM scores of the peptide fragment in the
antigenic sequence. For Bepipred [65], (http://www.cbs.dtu.dk/
services/BepiPred), three datasets of linear B cell epitopes were
constructed, viz., annotated proteins from literature, AntiJen
database [66] (http://www.ddg-pharmfac.net/antijen/AntiJen/
antijenhomepage.htm), and Los Alamos HIV database (http://
www.hiv.lanl.gov). They tested a number of propensity scale meth-
ods on Pellequer dataset [53] and found the best scale by Levitt
[56]. Then, they used HMM to predict the location of linear B cell
epitopes and tested HMMs on Pellequer dataset to find optimal
parameters. HMM was combined with one set of the two best
propensity scale methods, i.c., Parker [54] and Levitt [56], to get
the more accurate predictions. Currently, ~60-66 % of accuracy
has been found for continuous epitope prediction, applying
combinations of either amino acid scales or machine-learning
techniques. The higher accuracy could possibly be achieved by
improving the quality of existing B cell epitope datasets [48].

The characterization and prediction of B cell epitopes are mainly
conformational dependent based on the knowledge of the protein
three-dimensional structure; thus the task of prediction is more dif-
ficult compared to that of T cell epitopes. Changes in protein fold-
ing may lead to changes in the number of epitopes [43]. The most
accurate way toidentify B cell epitopeis through X-ray crystallography.
Here we describe some of the prediction methods for confor-
mational B cell epitopes in brief. Anderson et al. presented a
method called DiscoTope [67] (http://www.cbs.dtu.dk/services/
DiscoTope /), which is a combination of amino acid statistics, spatial
information, and surface exposure. It detects 15.5 % of residues
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Mimotope-Based
Methodology

located in discontinuous epitopes with a specificity of 95 %. It is said
to be the first method developed for prediction of discontinuous
B cell epitope with better performance than methods based only on
sequence data. PEPITO [68] uses a weighted linear combination of
amino acid propensity scores and half-sphere exposure values [69]
which encode side chain orientation and solvent accessibility of
amino acid residues for the prediction of conformational epitopes.
Authors have also reported its improvement in performance over
DiscoTope method.

Bublil et al. developed Mapitope [70] for conformational
B cell epitope mapping. The hypothesis behind Mapitope is that
the simplest meaningful fragment of an epitope is an amino acid
pair (AAP) of residues that lie within the epitope, which are the
results of folding. A set of affinity-isolated peptides was obtained
by screening the phage display peptide libraries with the antibody
of interest. This set was given as algorithm input, and 1-3 epitope
candidates on the surface of the atomic structure of the antigens
were obtained as output.

A computational method has been presented by Sollner et al.
[71] to automatically select and rank peptides for the stimulation
of otherwise functionally altered antibodies. They investigated the
integration of B cell epitope prediction with the variability of anti-
gen and the conservation of patterns for posttranslational modifi-
cation (PTM) prediction. By their observation, they found high
antigenicity, low variability, and low likelihood of PTM for the
identification of biorelevant sites. Ponomarenko [48] assembled
non-redundant datasets of repetitive 3D structure of antigen and
antigen—antibody complexes from the PDB. CEP web interface
[72] (http://www.115.111.37.205 /cgi-bin/cep.pl) predicts con-
formational and sequential epitopes and also antigenic determi-
nants. Less availability of the 3D structure data of protein antigens
limits the utility of this server. A recent approach has focused on
the impact of interior residues, different contributions of adjacent
residues, and imbalanced data which contain much more non-
epitope residues than epitope and applied random forest (RF)
algorithm for the prediction of conformational B cell epitope pre-
diction [73]. This tool is available at http://www.code.google.
com/p/my-project-bpredictor/downloads/list.

Phage display library is widely used for finding protein—protein
interactions (specially in antibody—antigen interactions), protein
function identification, and development of new drugs and vac-
cines [74]. Pizzi et al. [75] have proposed an approach for map-
ping B cell epitopes, in which a phage display library of random
peptides is scanned against a desired antibody to obtain mimotopes
that bind to the antibody with high affinity. It is assumed that this
panel of mimotopes mimics the physicochemical properties and
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spatial organization of the genuine epitopes [34, 74 and 76].
Mimotopes and antigens are both recognized by the same antibody
paratope. Mimotopes are said to be the imitated part of the epit-
ope. It is possible that mimotope may have some valuable informa-
tion about epitope. However, homology may not exist between
the mimotope and the epitope of the native antigen. This mimicry
exists due to similarities in physiochemical properties and spatial
organization [76]. Considering these properties, mimotope pools
are being used to mine information to predict an epitope.

Using the above concept, MIMOP tool [76] has been devel-
oped. MIMOP predicts linear and conformational epitopes based
on two algorithms, viz., MimAlign uses degenerated alignment
analyses, and MimCons is based on consensus identification.
MIMOX [77] (http://web.kuicr.kyoto-u.ac.jp/~hjian,/mimox)
comes in the same category, which maps a single mimotope or a
consensus sequence of a set of mimotopes onto the corresponding
antigen structure. Then, it searches for all of the clusters of residues
that could be the native epitope. Pepitope [74] (http://pepitope.
tau.ac.il/) (an advanced server for mimotope-based epitope
prediction approaches) uses two algorithms, viz., Pepsurf [78] and
Mapitope [70]. It maps each mimotope to map them onto the
solved structure of antigen surface. Alignment of mimotope is
done first in MIMOX, so this step is different in Pepitope. If we
compare it with MIMODP, MIMOP aligns the peptides to the anti-
gen at the sequence level rather than directly to the 3D structure.
The 3D structure is considered only following the alignment stage.
Given the 3D structure of an antigen and a set of mimotopes (or a
motif sequence derived from the set of mimotopes), Pep-3D-
Search [79] (http://kyc.nenu.edu.cn/Pep3DSearch/) can be
used in two modes: mimotope or motif. It can be used for local-
izing the surface region mimicked by the mimotopes.

Sometimes linear peptides mimic conformational epitopes.
The same phage display peptide libraries by screening with the
respective antibodies are used to select these mimotopes. Schreiber
et al. [80] presented software, 3DEX (3D-Epitope-Explorer)
(http: //www.schreiber-abc.com/3dex /), that allows localizing
linear peptide sequences within 3D structures of proteins. Its algo-
rithm takes into account the physiochemical neighborhood of C-a
or C-f atoms of individual amino acids and surface exposure of the
amino acids. Authors were able to localize mimotopes from HIV-
positive patient plasma within 3D structure of gp120.

Ensemble methods combine the predictions of several predictors
and often outperform individual predictors in many biomolecular
sequence and structure classification studies [81]. Several strategies
for combining a set of predictors, S, into a single consensus or
meta-predictor exist: (1) majority voting, (2) weighted linear
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3.2 T GCell Epitope
Prediction

3.2.1 Matrix-Driven
Methods

3.2.2 Hidden Markov
Model-Based Method

3.2.3 Artificial Neural
Network-Based Method

combination, and (3) meta-learning [82]. A large number of nearest
neighbor- and decision tree-based classifiers are trained using
different sets of training data features for developing an ensemble
of linear B cell epitope classifiers [83].

The current challenge in immunological prediction software is to
predict interacting molecules to a high degree of accuracy. The
most popular methods currently available are based on binding
affinity predictions for a range of MHC molecules. It is necessary
to bind antigenic peptides with MHC so that cytotoxic T cells can
recognize them. Thus, identification of MHC-binding peptides is
a central part of any algorithm which predicts T cell epitopes.
There exist several methodologies for prediction of MHC-binding
peptides, which are based on the idea of quantitative matrices,
hidden Markov model (HMM), artificial neural networks (ANNSs),
support vector machine (SVM), and structure of the peptides.
Here we describe the abovementioned approaches in brief. One
may find the details of these methodologies, among others, in later
chapters.

Huang and Dai [84] first investigated a new encoding scheme of
peptides based on BLOSUM matrix with the amino acid indicator
vectors for direct prediction of T cell epitopes. It replaced each
nonzero entry in the amino acid indicator vector by the corre-
sponding value appeared in the diagonal entries in BLOSUM
matrix. MMBPred [85] (http://www.imtech.res.in/raghava/
mmbpred/) server predicts the mutated promiscuous and high-
affinity MHC-binding peptide. It uses the matrix data in a linear
prediction model and ignores peptide conformation. The predic-
tion is based on the quantitative matrices of 47 MHC alleles.

Transfer-associated protein (TAP) is an important component of
the MHC I antigen processing and presentation pathway. A TAP
transporter can translocate peptides of 8—40 amino acids into
endoplasmic reticulum (ER). Zhang et al. developed PRED™?
[86] for the prediction of peptide binding to h'TAP. They used a
three-layer back propagation network with the sigmoid activation
function. The inputs were the binary strings, representing nona-
mer peptide. Secondly, they used second-order HMM. The results
are both sensitive and specific.

ANNs can identify each amino acid residue and interactions between
adjacent ones in a potential epitope. An ANN for a particular MHC
molecule is trained to recognize associated input sequence and
outputs, viz., the binding affinity for that sequence with the MHC
molecule [87]. Trained ANN can predict the binding affinity
of novel peptide sequences. Neilson et al. [88] described an
improved neural network model to predict T cell class I epitopes.
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They combined a sparse encoding, BLOSUM encoding, and input
derived from HMM. The dataset consists of 528 nine-mer amino
acid peptides for which the binding affinity to the HLA I molecule
A*0204 has been measured in a method described by Buus
etal. [89]. NetCTL server [90] (http: //www.cbs.dtu.dk /services/
NetCTL/) has method to integrate the prediction of peptide MHC
class I binding, proteasomal C terminal cleavage, and TAP transport
efficiency. NetMHC server 3.0 [91] (http://www.cbs.dtu.dk/
services/NetMHC/) uses ANN and weight matrices. It has been
trained on data from 55 MHC peptides (43 human and 12 nonhu-
man) and position-specific scoring matrices (PSSMs) for additional
67 HLA alleles.

Prediction of MHC class II binding peptides is found to be
difficult due to the reasons including variable length of reported
binding peptides, undetermined core region for each peptide,
and number of amino acids as primary anchor. Brusic et al. devel-
oped PERUN [92], a hybrid method for the prediction of MHC
class II binding peptide. It uses available experimental data and
expert knowledge of binding motifs, evolutionary algorithms,
and ANNSs. They used PlaNet package version 5.6 [93] to design
and train a three-layered fully connected feed-forward ANN. The
whole process of MHC class I ligands” degradation and presenta-
tion has been modeled in EpiJen [94] (http: //www.ddg-pharmfac.
net/epijen/EpiJen/EpiJen.htm) in an integrative approach. Itis a
multi-step algorithm for T cell epitope prediction, based on quan-
titative matrices, which belongs to the next generation of in silico
T cell epitope identification methods.

Ant colony search systems (ACSs) have been found useful for
solving combinatorial optimization problems and can be applied to
the identification of a multiple alignment of a set of peptides.
Basically, ACSs [95] attempt to find an optimal alignment for a
given set of peptides based on the search strategy. For TAPPred
[96] (http://www.imtech.res.in/raghava/tappred /), nine features
of amino acids have been analyzed to find the correlation between
binding affinity and physiochemical properties. An SVM-based
method to predict TAP binding affinity of peptides has been devel-
oped and found cascade SVM to be more reliable. Cascade SVM
has two layers of SVMs, and its performance is better than the
other available algorithms. Nanni [97] demonstrated the use of
SVM and support vector (SV) data description to predict T cell
epitope. It is experimentally established that the immunoprotea-
some is involved in the generation of the MHC class I ligand. For
this purpose, Pcleavage [98] (http: //www.imtech.res.in/raghava/
pcleavage /) has been developed to predict both kinds of cleavage
sites in antigenic proteins. It uses SVM [99], Parallel Exemplar
based Learning (PEBLS) [100], and Waikato Environment for
Knowledge Analysis (Weka) [101].
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3.2.5 Structure-Based
Prediction

Accurate identification of peptides that bind to specific MHC
molecules is important for understanding the underlying mechanism
of immune recognition, for developing effective peptide-based
vaccines, and for immunotherapies for allergy and autoimmunity.
Current methods are mostly based on peptide binding affinity to
MHC for predicting T cell epitope. 3D QSAR technology CoMSIA
has been applied to the problem of peptide-MHC binding [102].
It uses the interaction potential around aligned sets of 3D peptide
structures to describe binding. TEPITOPE [103] is used to pre-
dict promiscuous and allele-specific HLA II-restricted T cell epit-
ope in silico. TEPITOPE’s user interface has a display and
comparison of pocket profiles, and it finds similar HLA II differing
in their binding capacity for a given peptide sequence. It can be
applied to only 51 out of over 700 known HLA-DR molecules.
A new method called as TEPITOPEpan (http://www.biokdd.
fudan.edu.cn/Service/TEPITOPEpan/) is developed by extra-
polating from the binding specificities of HLA-DR molecules
characterized by TEPITOPE to those uncharacterized [104].

T epitope designer [105], a web server, uses a definition of
virtual binding pockets to position specific peptide residue anchors
and estimation of peptide residue virtual binding pocket compati-
bility. Zhao et al. [106] described a novel predictive model using
information from 29 human MHCp crystal structures. The overall
binding between peptide and MHC provides a cumulative measure
of the physical and chemical compatibility between each residue in
the peptide and the residue forming the virtual pockets. ElliPro
[107] (http: //www.tools.immuneepitope.org/tools /ElliPro) is a
web tool that implements a modified version of Thornton method,
residue clustering algorithm, the Modeller program, and the Jmol
viewer. It predicts and visualizes the antibody epitope in protein
sequence and structure. It implements three algorithms for approx-
imation of the protein shape as an ellipsoid, calculation of the resi-
due protrusion index (PI), and clustering of neighboring residue
based on their PI values.

It is generally accepted that only peptides that bind to MHC
with an affinity above a threshold value (typically 500 nM) func-
tion as T cell epitopes. Guan et al. in Edward Jenner Institute
for Vaccine Research, UK, introduced MHCPred version 2.0
[108] (http: //www.ddg-pharmfac.net/mhcpred/MHCPred /). It
is a perl implementation of 2D QSAR application to peptide-MHC
prediction and covers both class I and class II MHC allele peptide
specificity models. Peptide that can bind to MHC on the tumor
cell surface has the potential to initiate a host immune response
against the tumor. Schiewe et al. [109] developed an algorithm
PeSSI (peptide-MHC prediction of structure through solvated
interfaces) for flexible structure prediction of peptide binding to
MHC molecule. They used cancer testis (CT) antigens, KU-CT-1,
that are potential to bind HLA-A2.
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3.2.6 Molecular
Dynamics-Based
Prediction

3.3 Allergy
Informatics
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Jojic et al. [110] developed an improved structure-based
model which used known 3D structures of a small number of
MHC-peptide complexes, MHC class I sequence, known binding
energies for MHC—peptide complexes, and larger binary dataset
having information about strong binders and non-binders. They
used adaptive double threading, where the parameters of the
threading model are learnable, and both MHC and peptide
sequences can be threaded onto the structure of other alleles.
Furman et al. [111] used an approach that can be applied to a wide
range of MHC class I alleles. In this algorithm, peptide candidates
are threaded, and their binding compatibility is evaluated by statis-
tical pairwise potentials. They used the pairwise potential table of
Miyazawa and Jernigan [112].

Immunodominant peptides are being used for rational design
of peptide vaccines focusing on T cell immunity. Altuvia et al.
[113] focused on antigenic peptides recognized by cytotoxic
T cells. They applied the threading approach to screen a library of
peptide sequence and identified the ones that optimally fit within
the MHC groove. Propred [114] (http://www.imtech.res.in/
raghava/proped) is a graphical web tool for predicting MHC class
IT binding regions in antigenic protein sequences. They extracted
the matrices for 51 HLA-DR alleles from a pocket profile database
developed by Sturniolo et al. [115]. EpiToolKit [116] (http://
www.epitoolkit.org) web server includes several prediction meth-
ods for MHC class I and class II ligands and minor histocompati-
bility antigens. It can also investigate the effect of mutation on
T cell epitopes.

Molecular dynamics (MD) describes single and collective motion
of atoms within a molecular system and provides a means by which
one can measure theoretically that cannot be measured experimen-
tally [117]. It is particularly suitable for the simulation and analysis
of the otherwise inaccessible details of MHC—peptide interaction
and of the immune synapse. Zhang et al. [118] were among the
first who uses MD as a tool to explore peptide-MHC binding.
They focused on docking using MD as well as on calculating free
energies. Free energy calculations of the wild-type and the variant
human T celllymphotropicvirustype 1 Taxpeptide (LLEFGYPVYV—
wild Tax and LLEFGYAVYV—mutant Tax) presented by the MHC
to the TCR have been performed using large-scale massively paral-
lel molecular dynamics simulations [119].

Allergy is caused by adverse immunological reaction, and the
causative agents are known as allergens that are otherwise not
harmful in nature. An allergen cross-links immunoglobulin E (IgE)
antibodies on mast cells or basophils and releases inflammatory
mediators that cause allergy symptoms. Biotechnology- and genetic
engineering-derived food contains some foreign proteins, which
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can be allergic to many human beings. Evaluation of the potential
allergenicity of food derived from biotechnology and genetic engi-
neering is a current food safety assessment. Allergen sequence
databases are essential tools for safety assessments of bioengineered
foods. They can analyze the structural and physiochemical proper-
ties of food allergen proteins. Current efforts in allergy informatics
are primarily focused on prediction of T and B cell epitopes and
assessment of allergenicity.

Allergy occurs by both extrinsic and intrinsic factors. Type I
hypersensitive reaction is induced by certain allergens that elicit
IgE antibodies [1]. Use of genetically modified food and thera-
peutics makes allergenic protein prediction necessary. According to
the proposed guidelines of World Health Organization (WHO)
and Food and Agriculture Organization (FAO) in 2001, a protein
that has at least six same contiguous amino acids or a window of 80
amino acids when compared with known allergens is considered as
allergen. It has already been established that allergens do not share
common structural characteristics. Thus allergen databases are
being used as reference for finding the sequence similarity in aller-
genicity evaluation [120]. It is said that a protein is considered as
an allergen if it has a region or peptides identical to a known IgE
epitope.

Allergen prediction method proposed by Kong et al. [121] is
based on the determination of a combination of two allergen
motifs in a given protein sequence. They took 575 proteins for
allergen dataset and 700 sequences for non-allergen test set from
the given reference [122]. They developed a database which has all
possible combinations of two motifs from the set of allergenic
motifs by using motif length of 35 amino acids and motif number
of 500. Zorzet et al. [123] introduced a computational approach
for classitying the amino acid sequences in allergens and non-
allergens. They identified preprocessed 91 food allergens from
various specialized public repositories of food allergy and SWALL
database (SWISSPROT and TrEMBL).

AlgPred [124] (http://www.imtech.res.in/raghava/algpred)
uses SVM and a similarity-based approach for analysis and scanned
all 183 IgE epitopes against all proteins of the dataset. The server
allows using a hybrid option to predict allergen using combined
approach (SVMc, IgE epitope, ARPs BLAST, and MAST).

Stadler et al. [120] used MEME motif discovery tool to identify
the most relevant motif present in allergen sequence. If the query
finds an allergen motif or scores better than an E-value of 10-% in
the pairwise sequence alignment step, it is considered as the aller-
genic sequence. Then, these are compared with the FAO/WHO
guidelines by performing allergenicity prediction for the sequence
in SWISSPROT, and a synthetic test database ALLERMATCH
(http: //www.allermatch.org) is a web tool that uses sliding
window approach to predict potential allergenicity of proteins [ 125].


http://www.imtech.res.in/raghava/algpred
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It is done according to the current recommendations of the FAO/
WHO Expert Consultation, [126] as outlined in Codex alimentar-
ius [127]; however, this method generates false-positive and false-
negative hits, so it is advised by the FAO /WHO that the outcomes
should be combined with other allergenicity assessment methods.

APPEL [128] (Allergen Protein Prediction E-Lab) (http://
www.jing.cz3.nus.edu.sg/cgi-bin/APPEL) tool uses SVM to
identify novel allergen proteins. This tool correctly classified 93 %
of 229 allergens and 99.9 % of 6717 non-allergens. It is based on
statistical method, and it has the potential to discover novel aller-
gen proteins. EVALLER [129] web server (http://www.slv.se/
en-gb/Groupl /Food-Safety/e-Testing-of-protein-allergenicity /)
uses filtered length-adjusted allergen peptides (DFLAP) method
[130] (via ulth@slv.se) to identify the potential allergen proteins.
DFLAP extracts variable length allergen sequence fragments and
employs SVM.

EVALLER and APPEL servers assigned all calmodulins or
calmodulin-like proteins as presumably non-allergens [128, 129].
But a conventional alignment approach (e.g., 35 % similarity over
80 amino acid segments) gives preference to find sequence simi-
larity between input proteins and known allergens and puts
abovementioned proteins in allergen category. These proteins are
presumable non-allergenic homologues to the polcalcin family
(members being potential allergens involved in pollen—pollen
cross-sensitization). Tools, based on structural and physical charac-
teristics, are useful to identify potential cross-reacting proteins that
may escape detection through sequence similarity method alone.
Details related with allergen prediction approaches may be found
in later chapters.

4 Applications of Inmunoinformatics

4.1 Reverse
Engineering
for Vaccine Design

The use of immunological databases and prediction software has
become an important part of the scientific research as they allow us
to predict the interaction of molecules involved in an immune
response, thereby significantly shortening experimental procedure.
In this section, we focus on applications of immunoinformatics. It
includes in silico vaccine design and immune system modeling and
immunoinformatics for cancer diagnosis and therapy. It also explores
the idea of integrating systems biology with immunoinformatics.

Vaccines can be live attenuated whole pathogens, subunits, or
epitope based. It is possible to design attenuated pathogens by
removing virulence factors or reducing their metabolic capacity.
These procedures can be done through computational design and
discovery. Several in silico techniques have been developed to
identify suitable vaccine candidates, principally proteins within
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pathogen genomes that have antigenic properties. Generally used
vaccines are live attenuated or killed bacteria or viruses (examples
include cholera, polio, measles). Thus there is a concern about the
safety of these vaccines; if they are incompletely attenuated or
killed, they may revert their pathogenicity or cause undesirable
immune reactions. On the other hand, synthetic peptides are con-
sidered as candidates for safe vaccines. Methods predicting immu-
nogenic peptides could lead to rational vaccine design. Genome
sequencing, comparative proteomics, and immunoinformatics
tools are well developed to design new vaccines. “Reverse vaccinol-
ogy,” a new concept, analyzes the entire genome to identify poten-
tially antigenic extracellular proteins and thus helps in saving time
and money. It was pioneered for Neisseria meningitides responsible
for sepsis and meningococcal meningitides, and the vaccine type is
conjugate based on capsular polysaccharide. These vaccines are
available for pathogenic N. meningitides A, C, Y, and W135[131].

Microarray technique for vaccine design: Through microarray tech-
nology, it is easy to screen genes of various pathogens in different
growth states and conditions for vaccine design [132]. It reduces
the number of genes useful for vaccine in a given genome. Signal
peptides derived from genomic sequences, structural motifs, and
immunogenicity are important for vaccine development.

Epitope-driven approaches for vaccine design: These are compara-
tively more useful as they have no lethal effect of the whole-protein
vaccines. It may induce immune response against immunodomi-
nant epitopes [133]. This kind of vaccine has a single start codon
with an epitope which can be inserted consecutively in the con-
struct [134]. The prediction of promiscuous binding ligands is
considered to be a prerequisite for the most subunit vaccine design
strategies [135]. It is originally named as “reverse immunogenet-
ics” where T cell epitope mapping tools were employed to find
new protein candidates for vaccines and diagnostic tests [136].
Epitope-driven vaccine design allows the discovery of previously
unknown and undescribed antigens and epitopes as vaccine candi-
dates. The major disadvantage of the epitope-based approach is
that algorithms may fail to predict all the relevant epitopes [137].
A web server, PEPVAC (Promiscuous EPitope-based VACcine)
(http://immunax.dfci.harvard.edu/PEPVAC/) [138], is opti-
mized for the formulation of multi-epitope vaccines with broad
population coverage. This optimization is accomplished through
the prediction of peptides that bind to several HLA molecules with
similar peptide-binding specificity.

Peptide-based vaccine design: Small peptides derived from epitopes
are used as peptide-based vaccines. These peptides are recognized
by MHC class I and thus boost the immune response. Three novel
classes of methods have been described to predict MHC-binding
peptides and a voting scheme to integrate them for improved
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results [ 139]. The first method is based on quadratic programming
applied to quantitative and qualitative data. Second method uses
linear programming, and the third one considers sequence profiles
obtained by clustering known epitopes to score candidate peptides.
This method is found to be better than other sequence-based
methods for finding the MHC binders.

Alignment-free approach for vaccine design: Some proteins have
similar structure and biological properties, but they may lack
sequence similarity. For these kinds of proteins, a new alignment-
free approach for antigen prediction has been proposed, which
uses three datasets—each for bacteria, viruses, and tumors [140].
The models were validated using leave-one-out cross-validation
(LOO-CV) on the whole sets and by external validation using test
sets and were implemented in a server called VaxiJen version 2.0
(http:/ /www.ddg-pharmfac.net/vaxijen/).

DNA vaccines: DNA vaccines produce cell-mediated and humoral
immune response and are very useful in defending intracellular
pathogens. It uses plasmid DNA, which contains a DNA sequence
coding for an antigen and a promoter for gene expression in the
mammalian cell. Plasmid DNA does not need a viral vector for
delivery. Naked DNA is safe and can be used to sustain the expres-
sion of antigen in cells for longer periods of time than RNA or
protein vaccines. The DNA delivers antigen as well as activates
innate immunity and an adaptive immunity against cancer anti-
gens. DyNAVacs [141] (http: //www.miracle.igib.res.in /dynavac/)
incorporates different modules like codon optimization for heter-
ologous expression of genes in bacteria, yeast, and plant, mapping
restriction enzyme sites, primer design, Kozak sequence insertion,
custom sequence insertion, and design of genes for gene therapy.

The crucial question in deciding vaccine protocol is the vaccina-
tion schedule, i.e., is to decide whether the chronic protocol is able to
give 100 % protection or shorter protocols could be applied. Thus a
mathematical model/simulator (SimTriplex) which describes the
immune response activated by the triplex vaccine has been developed
[142]. Immunological prevention of cancer has been obtained in
HER-2 /neu transgenic mice using a vaccine that combines three dif-
ferent immune stimuli (triplex vaccine) that is repeatedly adminis-
tered for the entire life-span of the host (chronic protocol).

The software NERVE [143] (http://www.bio.unipd.it/
molbinfo) helps in designing subunit vaccines against bacterial
pathogens. It combines automation with an exhaustive treatment
of vaccine candidate selection task by implementing and integrat-
ing six different kinds of analyses. Xiang et al. developed a web-
based database system, VIOLIN [144] (Vaccine Investigation and
Online Information Network) (http://www.violinet.org), which
curates, stores, and analyzes published vaccine data. It contains
four integrated literature mining and search programs, viz.,
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4.2 Immune
System Modeling

Litsearch, Vaxpresso, Vaxmesh, and Vaxlert. They have developed
a web-based vaccine design system called Vaxign [145], which
predicts possible vaccine targets. Major predicted features include
subcellular location of a protein, transmembrane domain, adhesion
probability, sequence conservation among genomes, sequence
similarity to host (human or mouse) proteome, and epitope bind-
ing to MHC class I and class II. However, synthetic vaccine candi-
dates must be tested experimentally to demonstrate their ability to
generate neutralizing antibodies.

The immune system can be seen as a parallel, information process-
ing system that learns through examples, constantly adapts itself to
new situations, and possesses a distributive memory for patterns.
For theoretical immunology, immune system models and simula-
tions can describe more insights into various interactions resulting
in immunological phenomena. These models can test and find out
the antigen—antibody interactions and immune responses for a
particular antigen, in case of drug administration or testing of
a vaccine candidate. Using visual modeling application described
by Gong and Cai [146] one can understand the adaptive immune
system effectively. The hierarchical immune system consists of
inherent immune tier, adaptive immune tier, and immune cell tier.
It is designed and visualized with Java Applet technique for simula-
tion. For further simulation purpose, the learning of the antibody
is implemented through the evolutionary mechanism of the
immune algorithm. ImmunoGrid (http://www.immunogrid.cu)
and Virolab (http: //www.virolab.org/) projects are working to sim-
ulate immune systems. ImmunoGrid tries to simulate immune pro-
cesses by combining experiments and computational studies, while
Virolab attempts to develop a virtual lab for infectious diseases by
examining the genetic causes of human illnesses [132]. SIMISYS 0.3
[147] is another example of a software that models and simulates the
innate and adaptive components of the immune system based on
computational framework of cellular automata. It simulates healthy
and disease conditions by interpreting interactions among the cells,
including macrophages, dendritic cells, B cells, T helper cells, and
pathogenic bacteria.

Exclusive computational approaches like mathematical model-
ing generate enormous amount of data, but there should be a
balance between virtual and real experimental data. Computationally
generated data needs to be formally tested and translated into real
knowledge. Post-genomic era needs to exchange data from wet lab
to simulation and vice versa [ 148]. The model should be accurate,
easy to use, and understandable to both model designers and
biologists who can verify their hypothesis through in silico
experiments.


http://www.immunogrid.eu/
http://www.virolab.org/

4.3 Immuno-
informatics for Cancer
Diagnosis and Therapy
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Antigen presentation plays a central role in the immune response
and as a result also in immunotherapeutic methods like antitumor
vaccination. There is a need to rapidly screen the antigens and to
design specific types of expression constructs for immunotherapy
of cancer. Competent immune responses to cancer are likely to be
restricted to the immunome of a specific cancer, including the set
of antigens that drive successful immune responses. However, it is
still difficult to find the set of antigens that varies between different
tumors. Antitumor vaccination takes advantage of in vivo pro-
cesses, and it harnesses the full power of the immune system, unlike
the more artificial ex vivo expansion of T cells [149].

Changes in the cancer diagnosis and prevention are being sup-
ported by informatics [ 150]. For example, the Cancer Biomedical
Informatics Grid (caBIG) connects a network of 500 individuals
and 50 institutions who share data and analyze tools to speed up
the development of innovative approaches for the prevention and
treatment of cancer [151]. The 2005 database issue of Nucleic
Acids Research lists 14 cancer-related molecular databases, which
mainly focus on cancer-related genes and gene expression [152].
Listings of tumor antigens are also available [153]. This list includes
antigens that have defined T cell epitopes. Tumor-associated anti-
gens (TAA) have played a vital role in both diagnosis and treat-
ment of human carcinomas, such as prostate-specific antigen (PSA)
in the diagnosis of prostate cancer. Despite this, the process of
TAA identification has often been hampered by the complicated
lab procedures. To fasten the process of tumor antigen discovery,
and improve diagnosis and treatment of human carcinoma, a pub-
licly available database Human Potential Tumor Associated Antigen
(HPtaa) database (http://www.hptaa.org) has been established
[154]. Systems biology approaches target identification of a small
number of antigens expressed by cancer cells that are suitable tar-
gets of immune responses against cancer. A proteomic mapping of
in vivo targets for antibodies in lungs, and solid tumors in experi-
mental animals define aminopeptidase-P and annexin Al as targets
of anticancer immune responses [155]. Informatic methods have
also been used for classification of tumors into subtypes, which
supports decision making for the selection of therapeutic
approaches; however, such applications in cancer immunology are
yet to come [156].

Vaccine against tumors: Reliable predictions of immunogenic T cell
epitope peptides are crucial for rational vaccine design and repre-
sent a key problem in immunoinformatics. Computational
approaches have been developed to facilitate the process of epitope
detection and show potential applications to the immunotherapeu-
tic treatment of cancer. Epitope-driven vaccine design employs
these bioinformatics algorithms to identify potential targets of
vaccines against cancer [157]. The development of epitope-based
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4.4 Immuno-
informatics

and Systems Biology
for Personalized
Medicine

DNA vaccines and their antitumor effects in preclinical research
against B cell lymphoma have been described [158].

Most immunotherapeutic approaches work on the induction of
antitumor CD8* T cells, which exhibit cytolytic activity towards
tumor cells expressing tumor-specific or tumor-associated Ags. But
the immunization strategies that focus solely on CD8* T cell immu-
nity might prove to be insufficient because they will be unable to
provide long-term protective immunity [159]. It has been shown
that the peptides predicted to bind MHC can elicit a tumor-killing
cytotoxic T lymphocyte (CTL) response [160]. Although CTLs
have been found to be the key player in the generation of antitumor
therapeutic effects, sometimes they also remain as suboptimal.
CD4* T cells are critical for the generation and maintenance of
CTL response through providing cytokines or by major pathway,
i.e., dendritic cell licensing [161, 162]. Class I MHC-bound epit-
opes activate CD4* T cells and maintain effective CTL response
that plays an important role in the antitumor response [ 163, 164].

CD4* T cells determine the functional status of both innate and
adaptive immune responses; thus, the inclusion of appropriate
CD4* T cell epitopes may be essential for vaccine efficacy. Idiotypic
immunoglobulin M (IgM) expressed by B cell lymphoma is a clonal
marker and a tumor-specific antigen. Thus, it can be used as an
immune target. Specific immunogenic epitopes identified from
these tumor antigens can be used as vaccines to activate an immune
response against tumor cells [165]. Concerning to lymphoprolif-
erative malignancies, tetanus toxin fragment C (TTFrC)-fusion vac-
cine design was able to activate anti-Id antibody responses and to
suppress tumor growth in murine models [ 166, 167] as well as was
effective in inducing CD8* CTL in several tumor models [168].

The idea to integrate immunoinformatics with systems biology
approaches is for the better understanding of immune-related dis-
eases at various systems levels. This integration can open the path of
several translational studies for better clinical practices. The associa-
tion between a disease and genetic variations is one of the most
important aspects in pharmacogenomics and development of
personalized medicine. Figure 2 shows the integration that leads to
the development of personalized medicine (inspired by 169). The
information about allele frequencies of immune molecules in a
human population is important as different patient subgroups can
be identified with different vaccine or drug responses [169]. For
example, an SNP (S427T) in the innate immune gene interferon
regulatory factor 3 (IRF3) has been associated with increased risk
of human papillomavirus (HPV) persistence and cervical cancer
[170]. Genomic variation databases such as HapMap (http: //www.
snp.cshl.org/) and dbSNP (http: //www.ncbi.nlm.nih.gov/SNP /)
provide information on individual genotype data. The Allele
Frequencies Database can be used to search for polymorphic regions
of various populations on histocompatibility and immunogenetics
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Fig. 2 An integration of immunoinformatics and systems biology, leading to the development of a personalized
medicine, inspired by ref. [169]

(http:/ /www.allelefrequencies.net/). This includes polymorphism
information on HLA, cytokines, and killer-cell immunoglobulin-
like receptors (KIR). Thus, there is a scope for the development of
optimized vaccines and drugs tailored to personalized prevention
and treatment through the integration of systems biology and
immunoinformatics.

5 Conclusions and Discussions

High-throughput experimental techniques are combined with
immunoinformatics, resulting in explosive growth of immunology.
This is as similar as the event that has transformed genetics into
genomics. Immunoinformatics may be placed at the junction point
between experimental and computational approaches as it reduces
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time and cost involved in traditional study of immunology. This
review considers useful online immunological databases, tools, and
web servers and explores the application of immunoinformatics in
various scientific domains with an emphasis on reverse vaccinology.

Earlier approaches have some limitations in handling real data
(nonlinear data). Machine-learning techniques can deal with non-
linear data. SVM (a statistical learning methodology) is a learning
technique which supports continuous and categorical variables.
SVM is better than ANN, as it attains global minimum and is capa-
ble of working with less number of training patterns [171]. Thus
both sequence characteristics and computational techniques should
be integrated to acquire higher prediction accuracy.

“Reverse vaccinology” is a revolution in immunology as it uses
the whole spectrum of antigens. This helps in using pools of vac-
cine candidates which otherwise would be missed (because of poor
or no in vitro experimental information or facing problem in cul-
turing the specific pathogen) [171]. Recently, the prediction of
promiscuous peptides (capable of binding to a wide array of MHC
molecules) is being given much emphasis. Screening of large-scale
pathogens and mapping of T cell epitopes allow identification of
prime target of epitope-based T cell vaccine design.

Immunoinformatics models simulate the real behavior of
immune system processes and thus help to get the kinetics of cells
during immune responses. It is engineered in such a way that it can
be studied and interpreted easily and can be rebuilt if new experi-
mental data are introduced. These mathematical models remove
the uncertainty of the systems as they are found to be closed to wet
lab experiments. It leads to design the path for refinement and
model the new experiments. But they cannot be directly compared
to real biological data as they rely on assumptions only. There is no
data for extended time spans available to validate the model. This
limits the accuracy of the results. Currently models are designed in
such a way that they simulate the biological data only over a fixed
time period [172]. It should have the ability to show the system’s
changes over an extended time period for immune response in case
of antigen attack or drug administration. This will reduce the
necessity of experimental research.

Drug response to a host’s immune system can be better stud-
ied through computational models. Effect of drug administration
can be added to model the immune system to find the drug efficacy
[172]. Immune system/drug response study provides an idea
about the dose composition, drug dosage duration, age of the
patient, and other parameters. These modeling capabilities may
lead to designing a drug, which can treat a disease without any side
effects. Thus the idea of integrating systems biology with immuno-
informatics can lead to better clinical trials.
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Chapter 4

Immunoinformatics of the V, C, and G Domains: IMGT®
Definitive System for IG, TR and IgSF, MH, and MhSF

Marie-Paule Lefranc

Abstract

By its creation in 1989, IMGT®, the international InMunoGeneTics information system® (http: //www.imgt.
org, CNRS and Université Montpellier 2), marked the advent of immunoinformatics, which emerged at the
interface between immunogenetics and bioinformatics. IMGT® is the global reference in immunogenetics and
immunoinformatics. The accuracy and the consistency of the IMGT® data are based on the IMGT Scientific
chart rules generated from the IMGT-ONTOLOGY axioms and concepts, which comprise IMGT standard-
ized labels (DESCRIPTION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT unique
numbering, and IMGT Collier de Perles (NUMEROTATION). The IMGT® standards have bridged the gap
between genes, sequences, and three-dimensional (3D) structures for the receptors, chains, and domains.
Started specifically for the immunoglobulins (IG) or antibodies and T cell receptors (TR), the IMGT-
ONTOLOGY concepts have been extended to conventional genes of the immunoglobulin superfamily (IgSF)
and major histocompatibility (MH) superfamily (MhSF), members of which are defined by the presence of at
least one variable (V) or constant (C) domain, or two groove (G) domains, respectively. In this chapter, we
review the IMGT® definitive system for the V, C, and G domains, based on the IMGT-ONTOLOGY concepts
of IMGT unique numbering and IMGT Collier de Perles.

Key words IMGT, Immunoinformatics, Immunogenetics, IMGT-ONTOLOGY, IMGT Collier de
Perles, IMGT unique numbering, Immunoglobulin, Antibody, T cell receptor, Major histocompatibility

1 Introduction

IMGT®, the international ImMunoGeneTics information
system® (http://www.imgt.org) [1], was created in 1989 by Marie-
Paule Lefranc at Montpellier, France (CNRS and Université
Montpellier 2). The founding of IMGT® marked the advent of
immunoinformatics, a new science, which emerged at the inter-
face between immunogenetics and bioinformatics. For the first
time, immunoglobulin (IG) or antibody and T cell receptor (TR)
variable (V), diversity (D), joining (J) and constant (C) genes were
officially recognized as “genes” as well as the conventional genes.
This major breakthrough allowed genes and data of the complex
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and highly diversified adaptive immune responses to be managed
in genomic databases and tools.

The adaptive immune response was acquired by jawed
vertebrates (or gnathostomata) more than 450 million years ago
and is found in all extant jawed vertebrate species from fishes to
humans. It is characterized by a remarkable immune specificity
and memory, which are properties of the B and T cells owing to
an extreme diversity of their antigen receptors. The specific
antigen receptors comprise the immunoglobulins (IG) or anti-
bodies of the B cells and plasmocytes, and the T cell receptors
(TR) [2-5]. The IG recognize antigens in their native (unprocessed)
form, whereas the TR recognize processed antigens which are
presented as peptides by the highly polymorphic major histo-
compatibility (MH, in humans HLA for human leucocyte
antigens) proteins.

The potential antigen receptor repertoire of each individual is
estimated to comprise about 2 x 10'* different IG and TR, and the
limiting factor is only the number of B and T cells that an organism
is genetically programmed to produce [2, 3]. This huge diversity
results from the complex molecular synthesis of the IG and TR
chains (Fig. 1) and more particularly of their variable domains
(V-DOMAIN) which, at their N-terminal end, recognize and bind
the antigens [2, 3].

The IG and TR synthesis includes several unique mechanisms
that occur at the DNA level: combinatorial rearrangements of the
V, D, and J genes that code the V-DOMAIN (the V-(D)-]J being
spliced to the C gene that encodes the C-REGION in the tran-
script (Fig. 1)), exonuclease trimming at the ends of the V, D, and
J genes, and random addition of nucleotides by the terminal deoxy-
nucleotidyl transferase (TdT) that creates the junctional N-diversity
regions, and later during B cell differentiation, for the IG, somatic
hypermutations, and class or subclass switch [2, 3].

IMGT® manages the diversity and complexity of the IG and
TR and the polymorphism of the MH of humans and other ver-
tebrates. IMGT® is also specialized in the other proteins of the
immunoglobulin superfamily (IgSF) and MH superfamily
(MhSF) and related proteins of the immune system (RPI) of
vertebrates and invertebrates. IMGT® provides a common
access to standardized information from genes, sequences,
genetics, two-dimensional (2D) and three-dimensional (3D)
structures. It is a high-quality integrated knowledge resource in
immunogenetics for exploring immune functional genomics.
IMGT® (Fig. 2) comprises 7 databases (for sequences, genes
and 3D structures) [6—11], 17 online tools [12-27], and more
than 15,000 pages of Web resources (e.g., IMGT Scientific
chart, IMGT Repertoire, IMGT Education > Aide-mémoire
[28], The IMGT Immunoinformatics page) [1].
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Fig. 1 Synthesis of an IG or antibody in humans. A human being has ~156 functional IG genes in his/her
genome and potentially synthesizes 10" different IG or antibody proteins [2] and ~185 functional TR genes
and potentially synthesize 10'2 different TR proteins [3]. The main steps of the IG synthesis, shown as example
of antigen receptor synthesis, are indicated with numbers: 7. DNA rearrangements. 2. Transcription. 3.
Translation. The ten major molecular entities (V-gene, D-gene, J-gene, C-gene, V-D-J-gene, V-J-gene, L-V-D-
J-C-sequence, L-V-J-C-sequence, V-D-J-C-sequence, V-J-C-sequence) are shown with standardized key-
words and concepts of identification (see Note 1). Genomic DNA (“gDNA”), messenger RNA (“mRNA”) (or
in vitro complementary DNA (cDNA) in databases) are types of molecules (“MoleculeType”) that are involved
in the 1G or TR synthesis, “germline” and “rearranged” are types of configuration (“ConfigurationType”) (the
configuration of C-gene is “undefined” (not shown)) (see Note 1) (IMGT® http://www.imgt.org, IMGT Education
> Tutorials > Immunoglobulins and B cells; ibid > T cell receptors and T cells)

IMGT® is the global reference in immunogenetics and
immunoinformatics [29-44]. Its standards have been endorsed
by the World Health Organization—International Union of
Immunological  Societies (WHO-IUIS)  Nomenclature
Committee since 1995 (first IMGT® online access at the 9th
International Congress of Immunology, San Francisco, USA)
[45, 46] and the WHO International Nonproprietary Name
(INN) Programme [47, 48]. The accuracy and the consistency
of the IMGT® data are based on IMGT-ONTOLOGY [49-51],
the first, and so far, unique ontology for immunogenetics and
immunoinformatics [49-68 ]. IMGT-ONTOLOGY manages the
immunogenetics knowledge through diverse facets that rely on
seven axioms: IDENTIFICATION, DESCRIPTION,
CLASSIFICATION, NUMEROTATION, LOCALIZATION,
ORIENTATION, and OBTENTION [50, 51, 55]. The con-
cepts generated from these axioms led to the elaboration of the
IMGT® standards that constitute the IMGT Scientific chart,


http://www.imgt.org/

62 Marie-Paule Lefranc

sequences/oligonucleotides

IMGT/
3 mAb-DB
: & .
™
IMGT/GeneFrequency ® INN
o ‘5_’ sequences
g 2
¢ P
IMGT/Genelnfo —I g o
IMGT/CloneSearch | g
IMGT/GeneSearch | E
v
IMGT/GeneView J "g
j=
IMGT/LocusView &
IMGT/LIGMotif
= g
) 2.8
%oy s g §
7 % 8
Py o
”m

s
"6/05\_\_\.
i ~~—..._9en
Genetic approach IMGT/GENE-DB i _e_s{er[.) Structyreg
- Genomic approach SERELSL

Structural approach

3D
domains

E . Sequences

7 Genes

I 30 structures
1 monoclonal antibodies

Fig. 2 IMGT®, the international InMunoGenetics information system®, http://www.imgt.org [1]. Databases are
shown as cylinders and tools as rectangles. The IMGT Repertoire and other Web resources (>15,000 pages)
are not shown

e.g., IMGT® standardized keywords (IDENTIFICATION) [56]
(see Note 1), IMGT® standardized labels (DESCRIPTION)
[57] (see Note 2), standardized gene and allele nomenclature
(CLASSIFICATION) [58] (see Note 3), and IMGT unique
numbering [59-64] and standardized graphical 2D representa-
tion or IMGT Colliers de Perles [65-68 ] (NUMEROTATION).

The IMGT-ONTOLOGY CLASSIFICATION axiom was the
trigger of immunoinformatics’ birth. Indeed the IMGT® concepts
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of classification allowed, for the first time, to classify the antigen
receptor genes (IG and TR) for any locus (e.g., immunoglobulin
heavy (IGH), T cell receptor alpha (TRA) (see Note 4)), for any
gene configuration (germline, undefined, or rearranged) (see Note 1)
(Fig. 1) and for any species (from fishes to humans). Since the cre-
ation of IMGT® in 1989, at the 10th Human Genome Mapping
Workshop (HGM10) (see Note 5), the standardized classification
and nomenclature of the IG and TR of human and other verte-
brate species have been under the responsibility of the IMGT
Nomenclature Committee (IMGT-NC). The IMGT® IG and TR
gene names [2-5] were approved by the Human Genome
Organisation (HUGO) Nomenclature Committee (HGNC) in
1999[69,70] and were endorsed by the WHO-IUIS Nomenclature
Subcommittee for IG and TR [45, 46].

The IMGT® IG and TR gene names are the official interna-
tional reference and, as such, have been entered in IMGT/
GENE-DB [7], the IMGT® gene database, in the Genome
Database (GDB) [71], in LocusLink at the National Center for
Biotechnology Information (NCBI) USA [72], in Entrez Gene
(NCBI) when this database (now designated as “Gene”) super-
seded LocusLink [73], in NCBI MapViewer, in Ensembl at
the European Bioinformatics Institute (EBI) [74], and in the
Vertebrate Genome Annotation (Vega) Browser [75] at the
Wellcome Trust Sanger Institute (UK). HGNC, Gene (NCBI),
Ensembl, and Vega have direct links to IMGT/GENE-DB [7].
IMGT® human IG and TR genes were also integrated in IMGT-
ONTOLOGY on the National Center for Biomedical Ontology
(NCBO) BioPortal and, on the same site, in the HUGO ontology
and in the National Cancer Institute (NCI) Metathesaurus. Amino
acid sequences of human IG and TR constant genes (e.g., Homo
sapiens IGHM, IGHGI, IGHG2) were provided to UniProt in
2008. In June 2013, IMGT/GENE-DB [7] contains 3,107
IMGT® genes and 4,722 IMGT® alleles from 17 species (694
genes and 1,420 alleles for Homo sapiens and 868 genes and 1,318
alleles for Mus musculus). Since 2007, IMGT® gene and allele
names have been used for the description of the therapeutic
monoclonal antibodies (mAb, INN suffix -mab) and of the fusion
proteins for immunological applications (FPIA, INN suffix -cept)
of the WHO-INN programme [47, 48], with access from IMGT/
mAb-DB [11] (see Note 6).

The IMGT-ONTOLOGY NUMEROTATION axiom is
acknowledged as the “IMGT® Rosetta stone” that has bridged the
biological and computational spheres in bioinformatics [37]. The
IMGT® concepts of numerotation comprise the IMGT unique
numbering [59-64] and the IMGT Collier de Perles [65-68].
Developed for and by the “domain,” these concepts integrate
sequences, structures, and interactions into a standardized knowledge
for a modular and highly diverse functional genomics. The IMGT
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unique numbering has been defined for the variable V domain
(V-DOMAIN of the 1G and TR, and V-LIKE-DOMAIN of IgSF
other than IG and TR) [59-61], the constant C domain
(C-DOMAIN of the IG and TR, and C-LIKE-DOMAIN of IgSF
other than IG and TR) [62], and the groove G domain
(G-DOMAIN of the MH, and G-LIKE-DOMAIN of MhSF other
than MH) [63]. Thus, the IMGT unique numbering and IMGT
Collier de Perles provide a definitive and universal system for the V,
C, and G domain of IG, TR, MH, IgSF, and MhSF [64, 68].
This chapter reviews the V, C, and G domain IMGT® defini-
tive system and the IMGT® tools and databases which are widely
used for standardized domain analysis and study: IMGT/
Collier-de-Perles tool [26] for their 2D representation, IMGT/
DomainGapAlign [9, 24, 25] for their amino acid sequence
analysis, IMGT/V-QUEST [12-17] for the IG and TR
V-DOMAIN nucleotide sequence analysis with results of the
integrated IMGT /JunctionAnalysis [18, 19] and IMGT/
Automat [20, 21], and its high-throughput version IMGT/
HighV-QUEST for Next-Generation Sequencing (NGS) [22,
23], IMGT /3Dstructure-DB for their 3D structures [8-10]
and its extension, IMGT /2Dstructure-DB (for antibodies and
other proteins for which the 3D structure is not available).
IMGT® tools and databases run against IMGT reference direc-
tories built from sequences annotated in IMGT/LIGM-DB,
the IMGT® nucleotide database [6] (170,685 sequences from
335 species in June 2013) and from IMGT/GENE-DB [7].
The V, C, and G domain IMGT® definitive system allows stan-
dardized domain sequence, structure, and contact analysis. This
is of major interest in: antibody engineering and humanization
[32, 3941, 43, 76-78], 1G repertoire in normal and patho-
logical situations [79-82], IG allotypes and immunogenicity
[83-85], TR clonal diversity and expression [23, 86], NGS rep-
ertoire [22, 23], TR/peptide-MH (TR/pMH) interactions
[87, 88], computational analysis of MH helices [89, 90], and
evolution studies of the IgSF [91-95] and MhSF [96, 97].

2 V Domain IMGT® Definitive System

In the IMGT® definitive system, the V domain includes the
V-DOMAIN of the IG (Fig. 3) [2] (s¢e Note 7) and of the TR
(Fig. 4) [3] (see Note 8), which correspond to the V-J-REGION
or V-D-J-REGION encoded by V-(D)-J rearrangements [2, 3]
(Fig. 1), and the V-LIKE-DOMAIN of the IgSF other than IG
and TR [91-95].

The V domain description of any receptor, any chain and any
species is based on the IMGT unique numbering for V domain
(V-DOMAIN and V-LIKE-DOMAIN) [59-61, 64].
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H-GAMMA-1 H-GAMMA-1

Fig. 3 An immunoglobulin (IG) or antibody. In vivo, an |G or antibody is anchored in the membrane of a B cell
as part of a signaling B cell receptor (BcR=membrane IG+ CD79) or, as shown here, is secreted [2]. An IG is
made of two identical heavy (H, for IG-HEAVY) chains and two identical light (L, for IG-LIGHT) chains [2]. An IG
comprises 12 domains (for example, IgG1, shown here) or 14 domains (IgM or IgE). The V-DOMAIN of each
chain (green online) and the C-DOMAIN, one for each L chain and three for each H chain (blue online) are
highlighted. The light chain (here, L-KAPPA) is made of a variable domain (V-DOMAIN, here, V-KAPPA) at the
N-terminal end and a constant domain (C-DOMAIN, here, C-KAPPA) at the C-terminal end. The heavy chain
(here, H-GAMMA-1) is made of a VH (at the N-terminal end) and of three CH (four for H-MU or H-EPSILON, see
Note 7) [2]. The structure is that of the antibody b12, an IgG1-kappa, and so far the only complete human 1G
crystallized (1hzh from IMGT/3Dstructure-DB (http://www.imgt.org))

AV domain (Fig. 5) comprises about 100 amino acids and is
made of nine antiparallel beta strands (A, B, C, C’, C”, D, E, F, and
G) linked by beta turns (AB, CC’, C"D, DE, and EF) and three
loops (BC, C'C”, and FQG), forming a sandwich of two sheets
[ABED] [GFCC'C"] [59-61, 64].

The sheets are closely packed against each other through
hydrophobic interactions giving a hydrophobic core, and joined
together by a disulfide bridge between a first highly conserved cys-
teine (1st-CYS) (see Note 9) in the B strand (in the first sheet) and
a second equally conserved cysteine (2nd-CYS) in the F strand (in
the second sheet) [59-61, 64].
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Fig. 4 AT cell receptor (TR)/peptide-major histocompatibility 1 (pMH1) complex. ATR (here, TR alpha_beta) is
shown (on top, upside down) in complex with a MH (here, MH1) presenting a peptide in its groove. /n vivo, a
TR is anchored in the membrane of a T cell as part of the signaling T cell receptor (TcR=TR+CD3) ATR is
made of two chains, each comprising a variable domain (V-DOMAIN) at the N-terminal end and a constant
domain (C-DOMAIN) at the C-terminal end [3]. The V-DOMAIN (green online) and the C-DOMAIN (b/ue online)
of each chain are highlighted. The domains are V-ALPHA and C-ALPHA for the TR-ALPHA chain, V-BETA and
C-BETA for the TR-BETA chain (see Note 8) [3]. A MH1 is made of the I-ALPHA chain with two G-DOMAIN
(G-ALPHA1 and G-ALPHA2) and a C-LIKE-DOMAIN (C-LIKE), non-covalently associated with the B2M (a C-LIKE-
DOMAIN) [63]. The two G-DOMAIN (yellow online) and the C-LIKE (b/ue online) are highlighted. The TR/pMH1
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The V domain strands and loops and their delimitations and
lengths, based on the IMGT unique numbering for V domain

[59-61, 64], are shown in Table 1.

In the IG and TR V-DOMAIN, the three hypervariable loops
BC, C’'C”, and FG involved in the ligand recognition (antigen for
1G and pMH for TR) are designated complementarity determin-
ing regions (CDR-IMGT) (see Note 10), whereas the strands
form the framework region (FR-IMGT), which includes FR1-
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IMGT, FR2-IMGT, FR3-IMGT, and FR4-IMGT (Table 1). For
a V domain, the BC loop (or CDRI-IMGT in a V-DOMAIN)
encompasses positions 27-38, the C'C” loop (or CDR2-IMGT
in a V-DOMAIN) positions 56-65, and the FG loop (or CDR3-
IMGT) positions 105-117. In a V-DOMAIN, the CDR3-IMGT
encompasses the V-(D)-J junction that results from a V-] or
V-D-]J rearrangement [2, 3] and is more variable in sequence and
length than the CDR1-IMGT and CDR2-IMGT that are encoded
by the V-REGION only. For CDR3-IMGT of length >13 AA,
additional IMGT positions are added at the top of the loop
between 111 and 112 (see Note 11).

The loop and strand lengths are visualized in the IMGT
Colliers de Perles [65-68] which can be displayed on one layer
(closer to the amino acid sequence) or on two layers (closer to the
3D structure) (Fig. 5). The lengths of the three loops, BC, C'C”,
and FG (or CDRI1-IMGT, CDR2-IMGT, and CDR3-IMGT for a
V-DOMAIN) are delimited by the IMGT anchors, which are
shown in square in the IMGT Colliers de Perles (see Note 12). In
biological data, the lengths of the loops and strands are given by
the number of occupied positions (unoccupied positions or “IMGT
gaps” are represented with hatches in the IMGT Collier de Perles
(Fig. 5) or by dots in alignments). The CDR-IMGT lengths are
given in number of amino acids (or codons), into brackets and
separated by dots: for example [9.6.9] means that the BC, C'C”,
and FG loops (or CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT
for a V-DOMAIN) have a length of 9, 6, and 9 amino acids (or
codons), respectively. Similarly [25.17.38.11 ] means that the FR1-
IMGT, FR2-IMGT, FR3-IMGT, and FR4-IMGT have a length of
25,17, 38, and 11 amino acids (or codons), respectively.

AV domain has five characteristic amino acids at given posi-
tions (positions with bold (online red) letters in the IMGT Colliers
de Perles). Four of them are highly conserved and hydrophobic
[28] (see Note 13) and are common to the C domain: 23 (1st-
CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), and 104
(2nd-CYS) (see Note 9). These amino acids contribute to the two
major features shared by the V and C domain: the disulfide bridge
(between the two cysteines 23 and 104) and the internal hydro-
phobic core of the domain (with the side chains of tryptophan
W41 and amino acid 89). The fifth position, 118, is an anchor of
the FG loop (see Note 12). It is occupied, in the V domains of
IgSF other than IG or TR, by amino acids with different physico-
chemical properties [28]. In contrast, in IG and TR V-DOMAIN,
that position 118 is occupied by remarkably conserved amino acids
which consist in a phenylalanine or a tryptophan encoded by the
J-REGION and therefore designated J-TRP or J-PHE 118 (see
Note 9). The bulky aromatic side chains of J-TRP and J-PHE are
internally orientated and structurally contribute to the V-DOMAIN
hydrophobic core [61].
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Fig. 5 Variable (V) domain. An 1G VH (V-DOMAIN) is shown as example. (a) 3D structure ribbon representation
with the IMGT strand and loop delimitations [61]. (b) IMGT Collier de Perles on two layers with hydrogen bonds.
The IMGT Collier de Perles on two layers show, in the forefront, the GFCC’C” strands (forming the sheet located
at the interface VH/VL of the IG) and, in the back, the ABED strands. The BC, C’'C”, and FG loops (for a V-DOMAIN,
CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT, respectively) are represented in color online (for a VH, red, orange,
and purple). The IMGT Collier de Perles with hydrogen bonds (green lines online, here only shown for the
GFCC’C” sheet) is generated by the IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB, from the
experimental 3D structure data [8—10]. (c) IMGT Collier de Perles on two layers generated from IMGT/
DomainGapAlign [9, 24, 25). Pink circles (online) indicate amino acid changes compared to the closest genes
and alleles from the IMGT reference directory. (d) IMGT Collier de Perles on one layer. The CDR-IMGT lengths are
[8.8.20] and the FR-IMGT are [25.17.38.11]. Amino acids are shown in the one-letter abbreviation (see Note 9).
All proline (P) are shown online in yellow. IMGT anchors are in square (see Note 12). Hatched circles are IMGT
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Table 1

V domain strands and loops, IMGT positions and lengths, based on the IMGT unique numbering for V
domain (V-DOMAIN and V-LIKE-DOMAIN) [59-61, 64]

V domain strands IMGT Characteristic IMGT V-DOMAIN FR-IMGT
and loops? positions  Lengths® Residue@ Position® and CDR-IMGT
A-STRAND 1-15 15 (14 if gap at 10) FR1-IMGT
B-STRAND 16-26 11 1st-CYS 23
BC-LOOP 27-38 12 (or less) CDRI1-IMGT
C-STRAND 3946 8 CONSERVED-TRP 41 FR2-IMGT
C’-STRAND 47-55 9
C’C"-LOOP 56-65 10 (or less) CDR2-IMGT
C”-STRAND 66-74 9 (or 8 if gap at 73) FR3-IMGT
D-STRAND 75-84 10 (or 8 if gaps at

81, 82)
E-STRAND 85-96 12 hydrophobic 89
F-STRAND 97-104 8 2nd-CYS 104
FG-LOOP 105-117 13 (or less, or CDR3-IMGT

more)
G-STRAND 118-128 11 (or 10) V-DOMAIN J-PHE 118 FR4-IMGT

or J-TRP 118¢

IMGT® labels (concepts of description) are written in capital letters (no plural) [57] (se¢ Note 2). Beta turns (AB, CC/,
C’D, DE, or EF) are individualized only if they have additional AA compared to the standard description. If not, they
are included in the strands

*In number of amino acids (or codons)

IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a
given position in a domain, based on the IMGT unique numbering [64]

“In the IG and TR V-DOMAIN, the G-STRAND (or FR4-IMGT) is the C-terminal part of the J-REGION, with
J-PHE or J-TRP 118 and the canonical motif F/W-G-X-G at positions 118-121 [2, 3]. The JUNCTION refers to the
CDR3-IMGT plus the two anchors 2nd-CYS 104 and J-PHE or J-TRP 118 [60, 61]. The JUNCTION (positions
104-118) is therefore two amino acids longer than the corresponding CDR3-IMGT (positions 105-117) [2, 3]

Fig. 5 (continued) gaps according to the IMGT unique numbering for V domain [61, 64]. Positions with bold
(online red) letters indicate the four conserved positions that are common to a V domain and to a C domain: 23
(1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [59-62, 64], and the fifth conserved position
that is specific to the 1G and TR V-DOMAIN: 118 (J-TRP or J-PHE) [61, 64] (Table 1). In an IG or TR V-DOMAIN, the
hydrophobic amino acids (hydropathy index with positive value: |, V, L, F, C, M, A) and tryptophan (W) [28] found
at a given position in more than 50 % of sequences are shown (online with a blue background color). The FR4-
IMGT is at least composed of nine or ten amino acids beyond the phenylalanine F (J-PHE 118) or tryptophan W
(J-TRP 118) of the motif F/W-G-X-G that characterizes the J-REGION. Arrows indicate the direction of the beta
strands and their designations in 3D structures. The identifier of the chain to which the VH domain belongs is
1n0x_H (from the Homo sapiens b12 Fab) in IMGT/3Dstructure-DB (http://www.imgt.org). The 3D ribbon repre-
sentation was obtained using PyMOL (http://www.pymol.org) and “IMGT numbering comparison” of 1n0x_H
(VH) from IMGT/3Dstructure-DB (http://www.imgt.org)
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A last criterion used in the IMGT® definitive system for the
characterization of a V domain is its delimitation taking into
account the exon delimitations, if appropriate (se¢ Note 14). This
genomic approach integrates the strands A and G, in contrast to
structural alignments that usually lack these strands due to their
poor structural conservation, and bridges the gap between genomic
data (exon) and 3D structure (domain).

3

C Domain IMGT® Definitive System

In the IMGT® definitive system, the C domain includes the
C-DOMAIN of the IG (Fig. 3) [2] (see Note 7) and of the TR
(Fig. 4) [3] (see Note 8) and the C-LIKE-DOMAIN of the
IgSF other than IG and TR [91-95]. The C domain description
of any receptor, any chain and any species is based on the IMGT
unique numbering for C domain (C-DOMAIN and C-LIKE-
DOMAIN) [62, 64].

A C domain (Fig. 6) comprises about 90-100 amino acids and
is made of seven antiparallel beta strands (A, B, C, D, E, F, and G)
linked by beta turns (AB, DE, and EF), a transversal strand (CD)
and loops (BC and FG), and forming a sandwich of two sheets
[ABED] [GFC] [62, 64].

A C domain has a topology and a three-dimensional structure
similar to that of a V domain but without the C’ and C” strands
and the C’'C” loop [62].

The C domain strands, turns, and loops and their delimitations
and lengths, based on the IMGT unique numbering for C domain
[62, 64], are shown in Table 2.

The lengths of the strands and loops are visualized in the
IMGT Colliers de Perles [66—68], on one layer and two layers
(Fig. 6). The loops BC and FG and the transversal strand CD are
delimited by the IMGT anchors (see Note 12).

In the IMGT® definitive system, the C domains (C-DOMAIN
and C-LIKE-DOMAIN) are delimited taking into account the
exon delimitation, if appropriate (se¢ Note 14). As for the V
domain, this genomic approach integrates the strands A and G
which are absent of structural alignments.

Fig. 6 (continued) positions that are common to aV domain and to a C domain: 23 (1st-CYS), 41 (CONSERVED-
TRP), 89 (hydrophobic), 104 (2nd-CYS) [59-62, 64] (Table 2) and position 118 which, as the V domain in gen-
eral but in contrast to the V-DOMAIN, is not conserved in the C domain. The identifier of the chain to which the
CH domain belongs is 1n0x_H (of the Homo sapiens b12 Fab) from IMGT/3Dstructure-DB (http://www.imgt.
org). The 3D ribbon representation was obtained using PyMOL and “IMGT numbering comparison” of 1n0x_H
(CH1) from IMGT/3Dstructure-DB (http://www.imgt.org)
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Fig. 6 Constant (C) domain. An IG CH (C-DOMAIN) is shown as example. (a) 3D structure ribbon representation
with the IMGT strand and loop delimitations [62]. (b) IMGT Collier de Perles on two layers with hydrogen bonds.
The IMGT Colliers de Perles on two layers show, in the forefront, the GFC strands and, in the back, the ABED
strands (located at the interface CH1/CL of the 1G), linked by the CD transversal strand. The IMGT Collier de
Perles with hydrogen bonds (green lines online, here only shown for the GFC sheet) was generated by the
IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB, from the experimental 3D structure data [8—
10]. (¢) IMGT Collier de Perles on two layers from IMGT/DomainGapAlign [9, 24, 25]. (d) IMGT Colliers de Perles
on one layer. Amino acids are shown in the one-letter abbreviation (see Note 9). All proline (P) are shown online
in yellow. IMGT anchors are in square (see Note 12). Hatched circles are IMGT gaps according to the IMGT
unique numbering for C domain [62, 64]. Positions with bold (online red) letters indicate the four conserved
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Table 2

C domain strands, turns, and loops, IMGT positions and lengths, based on the IMGT unique
numbering for C domain (C-DOMAIN and C-LIKE-DOMAIN) [62, 64]

C domain strands, turns,

Characteristic IMGT

and loops® IMGT positions Lengths® Residue@Position®
A-STRAND 1-15 15 (14 if gap at 10)
AB-TURN 15.1-15.3 0-3
B-STRAND 16-26 11 1st-CYS 23
BC-LOOP 27-31 10 (or less)

34-38
C-STRAND 3945 7 CONSERVED-TRP 41
CD-STRAND 45.1-45.9 0-9
D-STRAND 77-84 8 (or 7 it gap at 82)
DE-TURN 84.1-84.7 0-14

85.1-85.7
E-STRAND 85-96 12 Hydrophobic 89
EF-TURN 96.1-96.2 0-2
E-STRAND 97-104 8 2nd-CYS 104
FG-LOOP 105-117 13 (or less, or more)
G-STRAND 118-128 11 (or less)

IMGT® labels (concepts of description) are written in capital letters (no plural) [57] (see Note 2)

*In number of amino acids (or codons)

IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a
given position in a domain, based on the IMGT unique numbering [64]

4 G Domain IMGT® Definitive System

In the IMGT® definitive system, the G domain includes the
G-DOMAIN of the MH (Fig. 4) (see Note 15) [63, 64] and the
G-LIKE-DOMAIN of the MhSF other than MH (or RPI-
MH]1Like) (see Note 16) [96, 97]. The G domain description of
any receptor, any chain and any species is based on the IMGT
unique numbering for G domain (G-DOMAIN and G-LIKE-
DOMAIN) [63, 64].

A G domain (Fig. 7) comprises about 90 AA and is made of
four antiparallel beta strands (A, B, C, and D) linked by turns
(AB, BC, and CD), and of a helix; the helix sits on the beta strands,
its axis forming an angle of about 40° with the strands [87, 88].

Two G domains are needed to form the MhSF groove made of
a “floor” and two “walls” [63, 64]. Each G domain contributes by



a MhSF domain of G type b G-DOMAIN (MH1)

CD _ AB

G-ALPHAL
[D1]

G-ALPHAZ2
[D2]

MH class |

c G-DOMAIN (MH2) d G-LIKE-DOMAIN

OE
G-ALPHA1-LIKE
[D1]

lcdl C

G-ALPHAZ2-LIKE

MHclass Il RPI-MH1Like

Fig. 7 Groove (G) domain. (a) 3D structure ribbon representation of the two G domains. The two domains form a
groove with a “floor” (four strands from each domain) and two “walls” (one helix from each domain) [63]. The G
domains characterize the proteins of the MhSF which comprises the MH (MH1 and MH2) and the RPI-MH1Like
(MhSF other than MH) [63]. The two G-DOMAIN of a MH1 are shown as an example. The view is from above the
cleft with the G-ALPHA1 (on top) and G-ALPHAZ2 (on bottom). (b) IMGT Colliers de Perles of the two G-DOMAIN of
a MH1. G-ALPHA1 (on fop) and G-ALPHA2 (on bottom) belong to the I-ALPHA chain [63]. (b) IMGT Colliers de
Perles of the two G-DOMAIN of a MH2. G-ALPHA (on fop) and G-BETA (on bottor) to the II-ALPHA chain and to the
I-BETA chain, respectively [63]. (¢) IMGT Colliers de Perles of the two G-LIKE-DOMAIN of a RPI-MH1Like.
G-ALPHA1-LIKE (on fop) and G-ALPHA2-LIKE (on bottorn) belong to the I-ALPHA-LIKE chain. Helices are moved
outside of the floor to make it visible. Amino acids are shown in the one-letter abbreviation (see Note 9). All proline
(P) are shown online in yellow. Hatched circles are IMGT gaps according to the IMGT unique numbering for G
domain [63, 64]. Domain numbers are shown between brackets. The 3D ribbon representation was obtained
using PyMOL and “IMGT numbering comparison” of 1akj_A (G-ALPHA1 and G-ALPHA2) in IMGT/3Dstructure-DB
(http://www.imgt.org). IMGT Colliers de Perles amino acid sequences are from 1akj_A for MH1 (Homo sapiens
HLA-A*0201), 1fyt_A and 1fyt_B for MH2 (Homo sapiens HLA-DRA*0101 and HLA-DRB1*0101, respectively), and
1cd1_C for RPI-MH1Like (Mus musculus CD1D1). The IMGT Colliers de Perles were generated using the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB (http://www.imgt.org) [8—10]
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Table 3

G domain strands, turns, and helix, IMGT positions and lengths, based on the IMGT unique numbering
for G domain (G-DOMAIN and G-LIKE-DOMAIN) [63, 64]

G domain strands,

Characteristic IMGT Residue@

turns, and helix? IMGT positions  Lengths® Position® and additional positions®
A-STRAND 1-14 14 7A, CYS-11

AB-TURN 15-17 3 (or2or0)

B-STRAND 18-28 11 (or 10¢)

BC-TURN 29-30 2

C-STRAND 31-38 8

CD-TURN 39-41 3 (or 1

D-STRAND 42-49 8 49.1-49.5

HELIX 50-92 43 (or less or more) 54A, 61A, 61B, 72A, CYS-74, 92A

JIMGT® labels (concepts of description) are written in capital letters (no plural) [57] (see Note 2)

*In number of AA (or codons)

IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a
given position in a domain, based on the IMGT unique numbering [64]

4For details on additional positions, see ref. 63

¢Or 9 in some G-BETA [63]

fOr 0 in some G-ALPHA2-LIKE [63]

its four strands and turns to half of the groove floor and by its helix
to one wall of the groove [63, 64, 87, 88]. The MH groove in
which the peptide binds is made of two G-DOMAIN belonging to
a single chain or to two chains, depending on the MH group,
MH]1 or MH2, respectively (see Note 15). In the MH1, the groove
is made of two G-DOMAIN (G-ALPHAI and G-ALPHA2) which
belong to the same chain I-ALPHA (Fig. 7b), whereas in the
MH2, the groove is made of two G-DOMAIN (G-ALPHA and
G-BETA) which belong to two different chains, II-ALPHA and
II-BETA, respectively (Fig. 7c). For the RPI-MH1Like (see Note
16), the two G-LIKE-DOMAIN also belong, as for the MHI1, to
the same chain (I-ALPHA-LIKE) [96, 97] (Fig. 7d).

The G domain strands, turns, and helix and their delimitations
and lengths, based on the IMGT unique numbering for G domain
[63, 64] are shown in Table 3.

The strands and helix of each domain are visualized in the IMGT
Collier de Perles [66-68, 87, 88] (Fig. 7). The views are from above
the cleft, (with the helices displaced to show the floor) and with on
top and on bottom, respectively, G-ALPHAl and G-ALPHA2
(MH1), G-ALPHA and G-BETA (MH2), and G-ALPHA1-LIKE
and G-ALPHA2-LIKE (RPI-MHI1Like). There is no link between
G-ALPHA and G-BETA because they belong to different chains
(II-ALPHA and II-BETA) (see Note 15). Two conserved cysteines,
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CYS-11 (in the A strand) and CYS-74 (in the helix) (Table 3) are
found in the G-ALPHA2, G-BETA, and G-ALPHA2-LIKE (Fig. 7),
where they form a disulfide bridge fixing the helix to the floor.

In the IMGT® definitive system, the G domains (G-DOMAIN
and G-LIKE-DOMAIN) are delimited taking into account the
exon delimitations, if appropriate (alignment sequence comparison
with previously identified genes are used when genomic data are
not yet available as this was recently done for the rainbow trout
(Oncorbynchus mykiss) MH1 and MH2 (IMGT® http: //www.imgt.
org, IMGT Repertoire (MH) > IMGT Proteins and alleles > Protein

displays)).

5 IMGT® Tools for V, C, or G Domain Analysis

5.1 IMGT/Collier-de-
Perles Tool

The IMGT /Collier-de-Perles tool [26], on the IMGT® Web site at
http: //www.imgt.org, allows the users to draw IMGT Colliers de
Perles [65-68] starting from their own domain amino acid
sequences (sequences already with IMGT gaps, using for example
IMGT /DomainGapAlign (Table 4)).

IMGT Collier de Perles can be obtained for V and C domains
(on one or two layers) and for G domains (with one or the two
domains of the groove).

IMGT /Collier-de-Perles tool online can be customized to dis-
play the IG and TR CDR-IMGT according to the IMGT color
menu and the amino acids according to their hydropathy or vol-
ume, or to the 11 IMGT physicochemical classes [28] (see Note
13). IMGT color menu for the CDR-IMGT of a V-DOMAIN
indicates the type of rearrangement V-J or V-D-J [2, 3]. Thus, the
IMGT color menu for CDR1-IMGT, CDR2-IMGT, and CDR3-
IMGT is red, orange, and purple for the IG VH (se¢ Note 7) and
for the TR V-BETA or V-DELTA (see Note 8) (encoded by a V-D-
J-REGION resulting from a V-D-J rearrangement), and blue,
green, and green-blue for the IG V-KAPPA or V-LAMBDA
(see Note 7) and for the TR V-ALPHA or V-GAMMA (see Note
8) (encoded by a V-J-REGION resulting from a V-] rearrange-
ment). Arbitrarily the red, orange, and purple are used for the BC,
C’'C”, and FG loops of the V domain of IgSF other than I1G or TR.

The IMGT/Collier-de-Perles tool is integrated in IMGT/
DomainGapAlign [9, 24, 25] (users start from V, C, or G amino
acid sequences) and in IMGT/V-QUEST [12-17] (users start
from IG and TR V-DOMAIN nucleotide sequences) (Table 4).
IMGT Colliers de Perles for V, C, and G domains are provided
in IMGT/2Dstructure-DB (for amino acid sequences in the
database) and in IMGT /3Dstructure-DB (on two layers with
hydrogen bonds for the V or C domains or with the pMH con-
tact sites for the G domains, for 3D structures in the database)
[8-10] (Table 4).
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52 IMGT/ IMGT /DomainGapAlign [9, 24, 25] is the IMGT® online tool for

DomainGapAlign the analysis of amino acid sequences of V, C, and G domains
(Table 4). IMGT/DomainGapAlign analyzes V, C, or G domain
amino acid sequences (see Note 17) by comparison with the IMGT
domain reference directory sets (see Note 18). IMGT/
DomainGapAlign results include: introduction of “IMGT gaps” in
the user amino acid sequences; alignments and identification of the
genes and alleles by comparison with the closest domain(s); delimi-
tation of the V, C, or G domain(s) in the user sequence (Fig. 8).

1nlx_H QVGLVOSGA. EVEKP GAE

1GHV1-3°01 QVOLVOSGA. EVEKP GASVEVSCEAS GYTF....TSYA

i’ SHT KYSOKFQ.G RVTITROTSA STAYMELSSLAS EDTANYYC AR....ieeisssaccsss sasssncnans
b EEFA D FA N R S IGHIE03

TREVE-5'01 HAGVTQTPEFOVLET GOSMTLOCAQD MNH.......EY MSWYRQDP GMGLRLIRY 5VG....AGI TDQGEVP.H GYHVSRS.TT EDFPLRLLIAAP SQTSVYFS A35¥...eavrevs serrnncnns
Homo sapiens RP TREJ2-T°01
Y FGPGTRLTVT

Fig. 8 IMGT/DomainGapAlign alignment results. The alignment results are shown for two V domains, VH (a) and
V-BETA (b), as examples of V-DOMAIN which belong to different receptors and chains (IG-HEAVY and TR-BETA,
respectively) (see Notes 7 and 8). The sequences submitted to IMGT/DomainGapAlign were ungapped amino
acid sequences (see Note 17). The nine strands (A, B, C, C’, C”, D, E, F, and G) (horizontal arrows), and the three
loops (BC, C'C”, and FG) are shown according to the IMGT unique numbering for V domain [59-61, 64], with
the upper line, the V-DOMAIN FR-IMGT and CDR-IMGT delimitations (with start and end positions). The closest
genes and alleles are identified automatically by IMGT/DomainGapAlign by comparison with the IMGT domain
reference directory (V and J genes and alleles for a V-DOMAIN) (see Note 18). The VH sequence (from b12 Fab,
1n0x_H) is identified as having 79.6 % and 93.8 % identity (results online, above the alignment) with Homo
sapiens IGHV1-3*01 and IGHJ6*03, respectively (see Note 3). The VH CDR-IMGT lengths are [8.8.20] and the
FR-IMGT lengths [25.17.35.11]1=91 AA (results online, below the alignment). The V-BETA sequence (from A6
TR, 3qfj_E) is identified as having 100 % identity with Homo sapiens TRBV6-5*01 and TRBJ2-7*01 (see Note
3). The V-BETA CDR-IMGT lengths are [5.6.14] and the FR-IMGT lengths [26.17.37.10] =90 AA (results online,
below the alignment). The V-REGION of the b12 VH sequence is heavily mutated [2] as shown by the high
number of amino acid changes (20, shown in bold below the alignment, and detailed per strand and per loop
online in the IMGT/DomainGapAlign results) [9, 24, 25]. One AA change is also observed in the FR4-IMGT
(T125>1). In contrast the V-REGION of the V-BETA is unmutated, as expected for a TR [3]. The region localized
in the CDR3-IMGT which results from the V-(D)-J rearrangement (Fig. 1) and which cannot be identified as
being V or J is the (N-D)-REGION. Conserved AA are in bold and in color online: C23 (pink), W41 (blue), hydro-
phabic 89 (blue, here M, L), and G104 (pink). An N (see Note 9) in green online in the V-BETA (N77) indicates
an N-glycosylation site (motif N-X-S/T). Horizontal lines below the user sequence indicate the domain and
here, for a V-DOMAIN, its regions (in color online): green for V-REGION, red for (N-D)-REGION, and yellow for
J-REGION (IMGT®, http://www.imgt.org, IMGT Scientific chart>IMGT color menu)
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If several closest genes and/or alleles are identified, the user
can select the display of each corresponding alignment. Clicking
on the user sequence name in the alignment gives access to the
IMGT /Collier-de-Perles tool [26] which automatically provides
the IMGT Collier de Perles of the analyzed domain [65-68] with
highlighted amino acid differences (in pink circles online) with the
closest reference sequence (Fig. 5¢).

The user amino acid sequence is also displayed, according to
the IMGT color menu, with the delimitations of the domains (and
for the V-DOMAIN, the V-REGION and J-REGION; and if present,
the (N-D)-REGION) identified by the tool. The characteristics
of the AA changes are shown in strands and loops (and for the
V-DOMAIN; in FR-IMGT and CDR-IMGT).

IMGT /DomainGapAlign is very popular for antibody human-
ization as it allows the comparison of the user V-DOMAIN against
reference sequences of the V and ] regions of other species (e.g.,
mouse, rat, human) and the delimitation and characterization of the
FR-IMGT and of the CDR-IMGT to be grafted [32, 3941, 43].

IMGT/V-QUEST [12-17] is the IMGT® online tool for the analysis
of nucleotide sequences of the IG and TR V-DOMAIN (Table 4).
IMGT/V-QUEST identifies the variable (V), diversity (D) and junc-
tion (J) genes in rearranged 1G and TR sequences and, for the 1G, the
nucleotide (nt) mutations and amino acid (AA) changes resulting from
somatic hypermutations by comparison with the IMGT/V-QUEST
reference directories (se¢e Note 19). The tool integrates IMGT/
JunctionAnalysis [ 18, 19] for the detailed characterization of the V-D-]
or V-J junctions (see Note 20), IMGT /Automat [20, 21] for a com-
plete sequence annotation, and IMGT /Collier-de-Perles [26].

IMGT/V-QUEST functionalities include: introduction of
“IMGT gaps” in the user nucleotide sequences (and in its transla-
tion); alignments and identification of the genes and alleles with the
closest germline V, D, and J genes (see Note 3), analysis of somatic
hypermutations (se¢ Note 21) and amino acid changes (sez Note
13), analysis of the junctions (se¢ Note 22), and identification of
insertions and deletions (indels) and their correction (see Note 23).

Customized parameters and results provided by IMGT /V--
QUEST and IMGT /JunctionAnalysis have been described else-
where [12-17].

IMGT /HighV-QUEST [22] is the high-throughput version of
IMGT /V-QUEST. It is so far the only online tool available for the
direct analysis of complete IG and TR domain sequences from Next
Generation Sequencing (NGS). It analyzes sequences, preferentially
long sequences obtained e.g., from Roche 454, without the need of
computational read assembly [21-23] (Table 4). IMGT /HighV-
QUEST analyzes up to 50,000 sequences per run and performs sta-
tistical analysis on the results [22, 23], with the same degree of
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resolution and high quality results as IMGT/V-QUEST [12-17].
The option “Search for insertion/deletion” (se¢ Note 23), added by
default, allows an accurate V-DOMAIN analysis, despite the high
frequency of indels due to homopolymer hybridization sequencing
errors in NGS 454 sequences. IMGT /HighV-QUEST represents a
major breakthrough for the analysis and the comparison of the huge
repertoires of antigen receptor V-DOMAIN (potentially 2 x 102 per
individual), by the recent standardized characterization of clono-
types or “IMGT clonotypes (AA),” with for the first time for NGS
data, a clear distinction between clonal diversity and expression [23].
Since its launch in October 2010, 846 users from 40 countries have
been registered (2.5 billions of analyzed sequences in June 2014
with 62 % from the USA, 25 % from EU, 13 % from the remaining
world).

6 V,C, and G Domain Analysis in IMGT® Databases

6.1 IMGT/3Dstruc-
ture-DB

IMGT /3Dstructure-DB [8-10], the IMGT® structure database, pro-
vides IMGT annotation and contact analysis on receptors and chains
which contain V, C, and /or G domains and for which 3D structures
are available (Table 4). The “PDB code” (four letters and/or num-
bers, ¢.g., 1hzh) is used as “IMGT entry ID” for the 3D structures
obtained from the Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB) [98]. The IMGT /3Dstructure-DB
card provides eight search /display options: “Chain details,” “Contact
analysis,” “Paratope and epitope,” “3D visualization Jmol or
QuickPDB,” “Renumbered IMGT files,” “IMGT numbering com-
parison,” “References and links,” “Printable card.”

The “Chain details” section comprises information first on the
chain itself, then per domain (see Notes 7, 8 and 15). Chain and
domain annotation includes the IMGT gene and allele names (see
Note 3), region and domain delimitations (see Note 2) and domain
amino acid (AA) positions according to the IMGT unique num-
bering [59-64] (Subheadings 2—4). The closest IMGT genes and
alleles (found expressed in each domain of a chain) are identified
with the integrated IMGT /DomainGapAlign [9, 24, 25], which
aligns the AA sequences of the 3D structures with the IMGT
domain reference directory (see Note 18). “Contact analysis” (see
Note 24) gives access, by Clicking on “Domain contact (over-
view),” to a table with the different “Domain pair contacts” of the
3D structure. “Domain pair contacts” are contacts between a pair
of domains (V, C, and/or G) or between a domain and a ligand.
Clicking on “DomPair” gives access to a given “Domain pair con-
tacts,” in which the atom pair contacts are described at the level of
amino acids at a given position in a domain (or IMGT Residue@
Position). Clicking on “R@P” gives access to an individual “IMGT
Residue@Position” card (see Note 25). The IMGT Residue@
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Position cards can also be accessed directly from the amino acid
sequences of the IMGT /3Dstructure-DB card or from the IMGT
Colliers de Perles, by clicking on one AA.

For 1G/antigen [43] and TR/pMH [87, 88] complexes, a
detailed and standardized description of paratope (amino acids of
the V-DOMAIN in contact with the antigen) and epitope (resi-
dues of the antigen or of the pMH in contact with the paratope) is
provided, on the basis of the contact analysis.

“Renumbered IMGT file” allows to view (or download) an
IMGT coordinate file renumbered according to the IMGT unique
numbering, and in which the chain and domain IMGT specific
information (identical to that provided in “Chain details”) is
added in the “REMARK 410” lines (blue online). Tools associ-
ated to IMGT /3Dstructure-DB include IMGT /StructuralQuery
[8] and IMGT/DomainSuperimpose, available online. IMGT/
StructuralQuery allows to retrieve the IMGT /3Dstructure-DB
entries, based on specific structural characteristics of the intramo-
lecular interactions: phi and psi angles, accessible surface area, type
of atom contacts, distance in angstrom between amino acids,
IMGT Residue@Position contacts and, for V-DOMAIN, CDR-
IMGT length or pattern [8]. IMGT /DomainSuperimpose allows
to superimpose the 3D structures of two domains from
IMGT/3Dstructure-DB.

IMGT/2Dstructure-DB  was created as an extension of
IMGT /3Dstructure-DB [8-10] to describe and analyze amino
acid sequences of chains and domains for which no 3D structures
were available (Table 4). IMGT/2Dstructure-DB uses the
IMGT /3Dstructure-DB informatics frame and interface which
allow one to analyze, manage, and query IG or antibodies, TR and
MH, as well as other IgSF and MhSF and engineered proteins
(FPIA, CPCA), as polymeric receptors made of several chains, in
contrast to the IMGT /LIGM-DB sequence database that analyzes
and manages sequences individually [6]. The amino acid sequences
are analyzed and managed with the IMGT® criteria of standardized
nomenclature (see Note 3), description (see Note 2), and numero-
tation [59-64] (Subheadings  2-4). The  current
IMGT /2Dstructure-DB entries include amino acid sequences of
antibodies from Kabat [99] (those for which there were no avail-
able nucleotide sequences), and amino acid sequences of mAb and
FPIA from the WHO-INN programme [11, 47, 48] (see Note 6).
Queries can be made on an individual entry, using the Entry ID or
the Molecule name. The same query interface is used for
IMGT /2Dstructure-DB and IMGT/3Dstructure-DB. Thus a
“trastuzumab” query in “Molecule name” allows to retrieve three
results: two INN (“trastuzumab” and “trastuzumab emtansine”)
from IMGT /2Dstructure-DB, and one 3D structure (“1nz8”)
from IMGT /3Dstructure-DB. The IMGT /2Dstructure-DB cards
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provide standardized IMGT information on chains and domains
and IMGT Colliers de Perles on one or two layers, identical to that
provided for the sequence analysis in IMGT /3Dstructure-DB,
however the information on experimental structural data (hydro-
gen bonds in IMGT Collier de Perles on two layers, Contact analy-
sis) is only available in the corresponding IMGT /3Dstructure-DB
cards, if the antibodies have been crystallized.

7 V,C, and G Domain Annotation and Contact Analysis Using the IMGT®

Definitive System

7.1 IMGT Domain
Annotation

A TR/pMH complex (Fig. 4) provides an example of a structure that
contains the three domain types: two V domains (V-ALPHA and
V-BETA of the TR (se¢ Note 8)), four C domains (C-ALPHA and
C-BETA of the TR (see Note 8) and C-LIKE of the MH1 I-ALPHA
and of the B2M (see Note 15)) and two G domains (G-ALPHA1
and G-ALPHA2 of the MH1 I-ALPHA (se¢ Note 15)). The
IMGT/3Dstructure card of the TR/pMH shown in Fig. 4
(see Note 26) can be accessed by typing its PDB code (3qfj) in the
“Entry code” window of the IMGT /3Dstructure-DB and IMGT/
2Dstructure-DB Query page (http://www.imgt.org). Snapshots of
the IMGT domain annotation and IMGT contact analysis for the V,
C, and G domains of this complex are described below.

In the IMGT /3Dstructure card for 3qfj, the TR is described as a
“TR-ALPHA_BETA-2,” with a TR-ALPHA chain (3qfj_D) and a
TR-BETA chain (3qfj_E). The TR-ALPHA chain comprises the
V-ALPHA (1-110) [DI1]+C-ALPHA (112-200) [D2]. The
V-REGION and J-REGION of the V-ALPHA have 100 % identity
with the human TRAV12-2*01 and TRAJ24*02, respectively, and
the V- ALPHA CDR-IMGT lengths are [6.6.11]. The C-ALPHA
has 100 % identity with the human TRAC*01. The TR-BETA-2
chain comprises the V-BETA (1-115) [D1]+C-BETA-2 (116~
244) [D2]. The V-REGION and J-REGION of the V-BETA have
100 % identity with the human TRBV6-5*01 and TRBJ2-7*01,
respectively, and the V-BETA CDR-IMGT lengths are [5.6.14].
The C-BETA-2 has 98.40 % identity with TRBC2*01 owing to
two in vitro AA changes, C85.1>A and N97>D.

The MH1 isdescribed as MH1-ALPHA_B2M, with an [-ALPHA
chain (3qfj_A) and the B2M (3qfj_B). The I-ALPHA chain comprises
the G-ALPHA1 [1-90][D1]+G-ALPHA2 (91-182) [D2]+C-LIKE
(183-274) [D3], and each of the three domains has 100 % identity
with HLA-A*0201. The B2M chain only comprises a C-LIKE
[2-100] [D1] and has 100 % with the human B2M*01.

For each domain, the IMGT Colliers de Perles can be obtained
by clicking on “IMGT Collier de Perles” (results in panel d in
Figs. 9, 10 and 11) and, for the visualization of the hydrogen
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bonds (for V and C), on “IMGT Collier de Perles on 2 layers”
(results in panel b in Figs. 9, 10 and 11).

IMGT Colliers de Perles can be also obtained via the JMGT/
DomainGapAlign results (results in panel ¢ in Figs. 9, 10 and 11).
The IMGT Colliers de Perles of the TR V-BETA (Fig. 9) and
V-ALPHA (Fig. 10) can be compared with those of the IG VH
(Fig. 5) and the IMGT Colliers de Perles of the TR C-BETA
(Fig. 11) with those of the IG CHI1 (Fig. 6).

For G domains of pMH and TR /pMH complexes, a link to “IMGT
pMH contact sites” [87, 88] is available that gives access to the IMGT
Colliers de Perles of G domains with pMH contact sites (Fig. 12).

“IMGT pMH contact sites” are calculated from the experimen-
tal structural data and allow one to easily identity the peptide amino
acids of the peptide which are effectively located in the groove. This
display is of great interest for pMH2 and TR /pMH2 complexes in
which the peptides are longer than the groove [63, 87, 88].

“Domain pair contacts (overview)” gives access, by clicking on
a “DomPair,” to the contacts between a pair of domains or between
a domain and the ligand. Contacts between pairs of domains
include, for examples, contacts between V-BETA and G-ALPHAL,
V-BETA and G-ALPHA2 (Fig. 13), between V-ALPHA and
G-ALPHA1, V-ALPHA and G-ALPHA2 (Fig. 14). Contacts
between the TR domains (V-ALPHA, V-BETA) and the Ligand
(peptide) are shown in Fig. 15.

The paratope includes the amino acids of the V-ALPHA and
V-BETA which have contacts with the G-ALPHAL, G-ALPHA2
and peptide (displayed in Figs. 13, 14, and 15, and listed in the
legends). Reciprocally, the epitope includes the amino acids of the
G-ALPHAIL, G-ALPHA2 and peptide that have contacts with the
V-ALPHA and V-BETA (displayed in Figs. 13, 14 and 15, and
listed in the legends).

8 Availability and Citation

Authors who use IMGT® databases and tools are encouraged to cite
this article and to quote the IMGT® Home page, http: //www.imgt.
org. Online access to IMGT® databases and tools are freely available
for academics and under licences and contracts for companies.

9 Notes

1. More than 325 IMGT® standardized keywords (189 for
sequences and 137 for 3D structures) were precisely defined
[56]. They represent the controlled vocabulary assigned dur-
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Fig. 9 V-BETA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB
(http://www.imgt.org) shown in Fig. 4. The V-BETA can be compared with the VH displayed in Fig. 5. (@) 3D
structure ribbon representation with the IMGT strand and loop delimitations [61]. (b) IMGT Collier de Perles on
two layers with hydrogen bonds. The IMGT Collier de Perles on two layers show, in the forefront, the GFCC'C”
strands (forming the sheet located at the interface V-ALPHA/V-BETA of the TR) and, in the back, the ABED
strands. The CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT (corresponding to the BC, C’'C”, and FG loops, respec-
tively) are represented online in red, orange, and purple (for a V-BETA). The IMGT Collier de Perles with hydro-
gen bonds (green lines online, here only shown for the GFCC'C” sheet) was generated by the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [8—10]. (¢) IMGT Collier de Perles on two layers
generated from IMGT/DomainGapAlign [9, 24, 25]. (d) IMGT Collier de Perles on one layer. The CDR-IMGT
lengths are [5.6.14] and the FR-IMGT are [26.17.37.10]. Amino acids are shown in the one-letter abbreviation
(see Note 9). All proline (P) are shown online in yellow. IMGT anchors are in square (see Note 12). Hatched
circles are IMGT gaps according to the IMGT unique numbering for V domain [61, 64]. Positions with bold
(online rea) letters indicate the four conserved positions that are common to a V domain and to a C domain: 23
(1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [59-62, 64], and the fifth conserved posi-
tion that is specific to the IG and TR V-DOMAIN: 118 (here, J-PHE) which belongs to the motif F/W-G-X-G that
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ing the annotation process and allow standardized search
criteria for querying the IMGT® databases and for the extrac-
tion of sequences and 3D structures. Standardized keywords
assigned to nucleotide sequences are found in the “DE” (defi-
nition) and “KW?” (keyword) lines of the flat files of IMGT/
LIGM-DB, the IMGT® nucleotide sequences database [6]
(Fig. 2). They characterize for instance the gene type, the con-
figuration type and the functionality type. There are six gene
types: variable (V), diversity (D), joining (J), constant (C),
conventional-with-leader, and conventional-without-leader.
Four of them (V, D, J and C) identify the IG and TR genes
and are specific to immunogenetics. There are four configura-
tion types: germline (for the V, D, and ] genes before DNA
rearrangement), rearranged (for the V, D, and ] genes after
DNA rearrangement (Fig. 1)), partially-rearranged (for D
gene after only one DNA rearrangement), and undefined (for
the C gene and for the conventional genes which do not rear-
range). The functionality type depends on the gene configura-
tion. The functionality type of genes in germline or undefined
configuration is functional (F), ORF (for “open reading
frame”), or pseudogene (P). The functionality type of genes in
rearranged or partially-rearranged configuration is either pro-
ductive (no stop codon in the V-(D)-J region and in-frame
junction) or unproductive (stop codon(s) in the V-(D)-J
region, and/or out-of-frame junction). IMGT-ONTOLOGY
concepts of identification have been entered in BioPortal at
the National Center for Biomedical Ontology (NCBO) in
2010 (http://bioportal.bioontology.org/ontologies,/1491).

2. More than 560 IMGT® standardized labels (277 for sequences
and 285 for 3D structures) were precisely defined [57]. They
are written in capital letters (no plural) to be recognizable
without creating new terms. Standardized labels assigned to
the description of sequences are found in the “FT” lines of the
flat files of IMGT/LIGM-DB [6] (Fig. 2). Querying these
labels represent a big plus compared to the generalist data-
bases (GenBank/European Nucleotide Archive (ENA)/DNA
Data Bank of Japan (DDBJ)). Thus it is possible to query for
the “CDR3-IMGT” of the human rearranged productive
sequences of IG-Heavy-Gamma (e.g., 1,733 CDR3-IMGT

Fig. 9 (continued) characterizes the J-REGION [61, 64] (Table 1). The hydrophobic amino acids (hydropathy
index with positive value: 1, V, L, F, C, M, A) and tryptophan (W) [28] found at a given position in more than 50 %
of sequences are shown (online with a blue background color). Arrows indicate the direction of the beta
strands and their designations in 3D structures. The identifier of the chain to which the V-BETA domain belongs
is 3qfj_E (of the Homo sapiens A6 TR) in 3qfj from IMGT/3Dstructure-DB (http://www.imgt.org). The 3D ribbon
representation was obtained using PyMOL and “IMGT numbering comparison” of 3qfj_E (V-BETA) from IMGT/
3Dstructure-DB (http://www.imgt.org)
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Fig. 10 V-ALPHA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB
(http://www.imgt.org) shown in Fig. 4. The V-ALPHA can be compared with the VH (Fig. 5) and with the V-BETA
(Fig. 9). (@) 3D structure ribbon representation with the IMGT strand and loop delimitations [61]. (b) IMGT Collier
de Perles on two layers with hydrogen bonds. The IMGT Collier de Perles on two layers show, in the forefront,
the GFCC’C” strands (forming the sheet located at the interface V-ALPHA/V-BETA of the TR) and, in the back,
the ABED strands. The CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT (corresponding to the BC, C'C”, and FG loops,
respectively) are represented online in blue, green, and green-blue (for a V-ALPHA). The IMGT Collier de Perles
with hydrogen bonds (green lines online, here only shown for the GFCC’C” sheet) was generated by the IMGT/
Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [8—10]. (c) IMGT Collier de Perles on two layers gen-
erated from IMGT/DomainGapAlign [9, 24, 25]. (d) IMGT Collier de Perles on one layer. The CDR-IMGT lengths
are [6.6.11] and the FR-IMGT are [25.17.34.11] (FR1-IMGT is 25 instead of 26, as Q1 is missing in 3qfj_D).
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obtained, with their sequences at the nucleotide or amino acid
level). The core labels include V-REGION, D-REGION,
J-REGION and C-REGION which correspond to the coding
region of the V, D, J and C genes.

3. IMGT® gene and allele names are based on the concepts of clas-
sification of “Group,” “Subgroup,” “Gene” and “Allele” [58].
“Group” allows to classify a set of genes which belongs to the
same multigene family, within the same species or between dif-
ferent species. For example, there are ten groups for the IG of
higher vertebrates: IGHV, IGHD, IGH], IGHC, IGKV, IGK]J,
IGKC, IGLV, IGLJ, IGLC. “Subgroup” allows to identify a
subset of genes which belong to the same group, and which, in
a given species, share at least 75 % identity at the nucleotide
level, e.g., Homo sapiens IGHV1 subgroup. Subgroups, genes
and alleles are always associated to a species name. An allele is a
polymorphic variant of a gene, which is characterized by the
mutations of its sequence at the nucleotide level, identified in its
core sequence (see Note 2) and compared to the gene allele
reference sequence, designated as allele *01. For example,
Homo sapiens IGHV1-2*01 is the allele *01 of the Homo sapi-
ens IGHV1-2 gene that belongs to the Homo sapiens IGHV1
subgroup which itself belongs to the IGHV group. For the
IGH locus, the constant genes are designated by the letter (and
eventually number) corresponding to the encoded isotypes
(IGHM, IGHD, IGHGS3, etc.), instead of using the letter
C. IMGT-ONTOLOGY concepts of classification have been
entered in BioPortal at the National Center for Biomedical
Ontology (NCBO) in 2013 (http://bioportal.bioontology.
org/ontologies/1491). IG and TR gene names are managed in
IMGT/GENE-DB, the IMGT® gene database [7]. IG and TR
genes and alleles are not italicized in publications.

4. In higher vertebrates, there are seven IG and TR major loci
(other loci correspond to chromosomal orphon sets, genes of

<

Fig. 10 (continued) The absence of four amino acids at positions 69—72 (strand C”) is a characteristic of the
TRAV genes. Amino acids are shown in the one-letter abbreviation (see Note 9). All proline (P) are shown online
in yellow. IMGT anchors are in square (see Note 12). Hatched circles are IMGT gaps according to the IMGT
unique numbering for V domain [61, 64]. Positions with bold (online red) letters indicate the four conserved
positions that are common to a V domain and to a C domain: 23 (1st-CYS), 41 (CONSERVED-TRP), 89 (hydro-
phobic), 104 (2nd-CYS) [59-62, 64], and the fifth conserved position that is specific to the 1G and TR V-DOMAIN:
118 (here, J-PHE) which belongs to the motif F/W-G-X-G that characterizes the J-REGION [61, 64] (Table 1).
The hydrophobic amino acids (hydropathy index with positive value: 1, V, L, F, C, M, A) and tryptophan (W) [28]
found at a given position in more than 50 % of sequences are shown (online with a blue background colon).
Arrows indicate the direction of the beta strands and their designations in 3D structures. The identifier of the
chain to which the V-ALPHA domain belongs is 3qfi_D (of the Homo sapiens A6 TR) in 3qfj from
IMGT/3Dstructure-DB (http://www.imgt.org). The 3D ribbon representation was obtained using PyMOL and
“IMGT numbering comparison” of 3qfj_D (V-ALPHA) from IMGT/3Dstructure-DB (http://www.imgt.org)



http://www.imgt.org/
http://www.imgt.org/
http://bioportal.bioontology.org/ontologies/1491
http://bioportal.bioontology.org/ontologies/1491

88 Marie-Paule Lefranc

d
G 1!11125
(D) ur sz (E) (Q
(L) LV—2 @ ©
(K) ® ® O ®
: 11

N7 7.

(F) 0///19 €) ®m() ®)e
® ) ©) ® M © O
® B SIONONONG
€ © ¢ () =@ @
@ (7] »[1] PR @ O
®N ® O 20 @ ©
M) Q@ w(T)=@®) @ [s]
(F) =(€) W) (s) (L) €] (A)me
T

w(SH %75

C) @-RePIET & @ @
® @ @ ® @
€ ® @ ® @®
o8 o~ g6
5 ] e
wi(H) €9 D:

- B - O | o % 1 &

Fig. 11 C-BETA from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB
(http://www.imgt.org) shown in Fig. 4. The C-BETA can be compared with the CH (Fig. 6). (a) 3D structure rib-
bon representation with the IMGT strand and loop delimitations [62]. (b) IMGT Collier de Perles on two layers
with hydrogen bonds. The IMGT Colliers de Perles on two layers show, in the forefront, the GFC strands and, in
the back, the ABED strands (located at the interface C-BETA/C-ALPHA of the TR), linked by the CD transversal
strand. The C-BETA has extended F and G strands (six amino acids longer than other C domains). The IMGT
Collier de Perles with hydrogen bonds (green lines online, here only shown for the GFC sheet) was generated
by the IMGT/Collier-de-Perles tool integrated in IMGT/3Dstructure-DB [8—10]. (¢) IMGT Collier de Perles on two


http://www.imgt.org/

IMGT® Definitive System for V, C and G Domains 89

which are orphons, not used in the IG or TR chain synthesis).
The IG major loci include the immunoglobulin heavy (IGH),
and for the light chains, the immunoglobulin kappa (IGK)
and the immunoglobulin lambda (IGL). The TR major loci
include the T cell receptor alpha (TRA), the T cell receptor
beta (TRB), the T cell receptor gamma (TRG), and the T cell
receptor delta (TRD).

5. The Tenth Human Genome Mapping Workshop (HGM10)
took place at Silliman College, Yale, New Haven, Connecticut,
the USA, on June 11-17, 1989. The IG and TR data of the
Laboratoire d’ImmunoGénétique  Moléculaire  (CNRS,
Montpellier University, Montpellier) were entered in the
HGM10 database (Cytogenetics and Cell Genetics 1989. Vol
51, A2336-A2344), with for the first time, the genes of a
complete antigen receptor locus, the T cell receptor gamma
locus (“The human T-cell receptor y (TRG) genes” by
M.-P. Lefranc and T.H. Rabbitts (TIBS vol 14, June 1989)).
The official acceptance of these genes at HGM10 marked the
birth of IMGT, which was decided in agreement with the
HGM10 nomenclature and organizing committees, for bring-
ing the special expertise required for the management of the
diversity and complexity of the IG and TR genes and alleles.

6. IMGT/mADb-DB [11] has been developed to provide an
easy access to amino acid sequences (links to IMGT/
2Dstructure-DB) and structures (links to IMGT /3Dstructure-
DB, if 3D structures are available) of therapeutic antibodies
and FPIA from INN [47, 48] (Fig. 2). IMGT/mAb-DB data
include mAb (an INN -mab is defined by the presence of at
least an IG variable domain) and FPIA (an INN -cept is defined
by a receptor fused to a Fc) [47, 48]. IMGT/mAb-DB also
includes a few composite proteins for clinical applications
(CPCA) (e.g., protein or peptide fused to an Fc for only increas-
ing their half-life; the INN prefix ef- was recently adopted for
these CPCA) and some related proteins of the immune system
(RPI) (used, unmodified) for clinical applications.

7. An 1G (“Receptor”) (Fig. 3) [2] is made of two identical heavy
(H, for IG-HEAVY) chains and two identical light (L, for

Fig. 11 (continued) layers from IMGT/DomainGapAlign [9, 24, 25]. (d) IMGT Colliers de Perles on one layer. Amino
acids are shown in the one-letter abbreviation (see Note 9). All proline (P) are shown online in yellow. IMGT
anchors are in square (see Note 12). Hatched circles are IMGT gaps according to the IMGT unique numbering for
C domain [62, 64]. Positions with bold (online red) letters indicate the four conserved positions that are common
toV and C domains: 23 (1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic), 104 (2nd-CYS) [59-62, 64] (Table 2)
and position 118 which, as the V domain in general but in contrast to the V-DOMAIN, is not conserved in the C
domain. The identifier of the chain to which the C-BETA domain belongs is 3qfj_E (of the Homo sapiens A6 TR)
from IMGT/3Dstructure-DB (http://www.imgt.org). The 3D ribbon representation was obtained using PyMOL and
“IMGT numbering comparison” of 3qfj_E (C-BETA) from IMGT/3Dstructure-DB (http://www.imgt.org)
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IMGT pMH contact sites for
Peptide chain ID: 3qfj_C and sequence: LLFGFPVYV

MHL1 chain ID: 3qfj_A and domains: G-ALPHAL, G-ALPHA2

Click here for standards IMGT contact sites.

AA
numbering
Sl 1 2 3 4 5 6 7 8 9
groove
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sequence
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IMGT Collier de Perles with pMH contact sites
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Fig. 12 pMH contact analysis from a TR/pMH complex. The TR/pMH1 complex structure is 3qfj from
IMGT/3Dstructure-DB (http://www.imgt.org) shown in Fig. 4. The IMGT Colliers de Perles of the MH1 G-ALPHA1
and G-ALPHA2 domains are shown with pMH contact sites. Each domain is shown with its four strands and helix
using the IMGT unique numbering for G domain [63, 64]. The view is from above the cleft, with G-ALPHA1 on top
and G-ALPHA2 on bottom. The IMGT Colliers de Perles were generated using the IMGT/Collier-de-Perles tool
integrated in IMGT/3Dstructure-DB [8—10]. The G-ALPHA1 and G-ALPHA2 amino acid positions were assigned
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IG-LIGHT) chains (“Chain”) and usually comprises 12 (e.g.,
IgGl) or 14 (e.g., IgM) domains. An IgGl contains 12
domains whereas an IgM contains 14 domains. Each chain has
an N-terminal V-DOMAIN (or V-(D)-J-REGION, encoded
by the rearranged V-(D)-J genes (Fig. 1)), whereas the remain-
ing of the chain is the C-REGION (encoded by a C gene).
The IG C-REGION comprises one C-DOMAIN (C-KAPPA
or C-LAMBDA) for the L chain, or several C-DOMAIN
(CH) for the H chain [2]. IG receptor, chain and domain
structure labels, and correspondence with sequence labels, are
shown for two examples of 1G (Homo sapiens 1gGl-kappa
(Fig. 3) and IgM-lambda).

Sequence labels

IG structure labels (IMGT/3Dstructure-DB) (IMGT/LIGM-DB)
Receptor Chain Domain description type  Domain? Region
IG-GAMMA-1_ L-KAPPA® V-DOMAIN V-KAPPA V-J-REGION
KAPPA C-DOMAIN C-KAPPA C-REGION
H-GAMMA-1 V-DOMAIN VH V-D-J-REGION
C-DOMAIN CH1 C-REGIONE®
C-DOMAIN CH2
C-DOMAIN CH3
IG-MU_ L-LAMBDA®  V-DOMAIN V-LAMBDA V-J-REGION
LAMBDA C-DOMAIN C-LAMBDA-1 C-REGION
H-MU V-DOMAIN VH V-D-J-REGION
C-DOMAIN CH1 C-REGIONE®
C-DOMAIN CH2
C-DOMAIN CH3
C-DOMAIN CH4¢4

“The IG V-DOMAIN includes VH (for the IG heavy chain) and VL (for the IG light chain). In higher vertebrates, the
VL is V-KAPPA or V-LAMBDA, whereas in fishes, the VL is V-IOTA. The C-DOMAIN includes CH (for the IG heavy
chain, the number of CH per chain depending on the isotype [2]) and CL (for the IG light chain). In higher verte-
brates, the CL is C-KAPPA or C-LAMBDA, whereas in fishes, the CL is C-IOTA. In humans, there are nine isotypes,
H-MU, H-DELTA, H-GAMMA-3, H-GAMMA-1, H-ALPHAl, H-GAMMA2, H-GAMMA-4, H-EPSILON,
H-ALPHA2 (listed in the order 5-3’ in the IGH locus of the IGHC genes which encode the constant region of the
heavy chains (IMGT® http: //www.imgt.org, IMGT Repertoire))

"The kappa (L-KAPPA) or lambda (L-LAMBDA) light chains may associate to any heavy chain isotype (e.g.,
H-GAMMA-1, H-MU)

“The heavy chain C-REGION also includes the HINGE-REGION for the H-ALPHA, H-DELTA, and H-GAMMA chains
and, for membrane IG (mIG), the CONNECTING-REGION (CO), the TRANSMEMBRANE-REGION (TM), and the
CYTOPLASMIC-REGION (CY); for secreted IG (sIG), the C-REGION includes CHS instead of CO, TM, and CY

YFor H-MU and H-EPSILON

Fig. 12 (continued) automatically to the “IMGT pMH contact sites” [87, 88] from the experimental structural
data. They are shown (in colors online) in the IMGT Colliers de Perles (IMGT®, http://www.imgt.org, IMGT Scientific
chart>IMGT color menu). In the table above, the numbers 1-9 refers to the peptide AA numbering in the groove
which is determined automatically (here a 9-AA peptide LLFGFPVYV, 3qjj_C). The contact sites C1 to C11 refer to
the 11 standard “IMGT pMH contact sites” defined for IMGT standardized analysis and comparison of pMH inter-
actions [87, 88]. Here, there are no C2 and C7 in agreement with a MH1 binding a 9-AA peptide [87, 88]. In that
3D structure, there are no C5 and C6 contacts because the glycine G4 and phenylalanine F5 scores are too low
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Cl IMGT/3Dstructure-DB Domain pair contacts

Domain Chain Domain Chain
Contacts of  |1nq]v.BETA 3qfi_E| """ |[D1] G-ALPHA1 3qfj_A

Summary:
Residue Number of residues Atom pair contact types

pair contacts Tots) From1 From2 Total Polar Hydrogen MNonpolar
3 4 1 3 26 0 0 26

List of the Residue@Position pair contacts:
Click 'R@P* for INGT Residue@Position cards

Order Order Atom pair contact types
IMGT Residue Domain Chain IMGT Residue Domain Chain  Total Polar Hydrogen Nonpolar
Num Num

R@P 110 LEU L
R@P 110 LEU L
R@P 110 LEU L

R@F 69  ALA A G-ALPHA1[D1] 3qf_A 1 0 0 1
RE@P 72  GLN Q G-ALPHA1[D1] 3qfi_A 8 0 0 8
R@P 73 THR T G-ALPHA1[D1] 3qf_A 7 0 0 7

b IMGT/3Dstructure-DB Domain pair contacts

Domain Chain Domain Chain

Contacts of |4 v.BETA 3qfi_E| "I |[D2] G-ALPHA2 3qfi_A

Summary:
Residue Number of residues Atom pair contact types

pair contacts Tota| From1 From2 Total Polar Hydrogen Nonpolar

12 12 6 6 87 18 3 4l

List of the Residue@Position pair contacts:
Click 'R@P"’ for INGT Residue@Position cards

Order Order Atom pair contact types

IMGT Residue Domain Chain IMGY Residue Domain Chain Total Polar Hydrogen Nonpolar

Num Num
R@FP 110 LEU L R@P 58 LYS K G-ALPHAZ2[D2] 3qfi_A 1 1 0 0
R@P 1M1 ALA A R@P 58 LYS K G-ALPHA2[D2] 3qfi_A 5 1 1 4
R@P 1121 GLY G R@P 61A ALA A G-ALPHA2[D2] 3qfi_A 9 1 0 8
R@P 1121 GLY G R@P 63 VAL V G-ALPHAZ [D2] 3qfi_A 1 0 0 1
R@P 112 GLY G RE@P 61A ALA A G-ALPHA2[D2] 3qfi_A 14 2 0 12
R@P 112 GLY G R@P 62 HIS H G-ALPHA2[D2] 3qfi_A 1 0 0 1
R@P 112 GLY G R@P 66 GLN Q G-ALPHAZ2 [D2] 3qfi_A 1 0 ] 1
R@P 113 ARG R R@P 61A ALA A G-ALPHA2[D2] 3qfi_A 3 1 0 2
R@P 113 ARG R R@P 62 HIS H G-ALPHA2[D2] 3qfi_A 30 6 0 24
R@P 113 ARG R R@P €5 GLU E G-ALPHA2[D2] 3qfi_A 10 4 2 [
R@P 113 ARG R R@P €6 GLN Q G-ALPHA2[D2] 3qfi_A 5 0 1] 5
R@P 114 PRO P R@P 66 GLN Q G-ALPHAZ[D2] 3gfi_A 7 0 0 7

Fig. 13 IMGT/3Dstructure-DB Domain pair contacts between V-BETA and MH1 from a TR/pMH complex. The
TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB (http://www.imgt.org) shown in Fig. 4. The
V-BETA has contacts with the G-ALPHA1 (a) and G-ALPHA2 (b). There are a total of 113 atom pair contacts (16
polar including 3 hydrogen bonds and 97 nonpolar) for 15 pair contacts (sums of the two Summary tables). The
results show that only amino acids of the CDR3-IMGT (purple color online) interact with the MH1 G-ALPHA1
and G-ALPHA2 and, as expected, only with helix positions. The “Domain pair contacts” shows that in (a) the
V-BETA binds A69, Q72, and T73 of the G-ALPHA1 helix (Fig. 12) by a single amino acid of the CDR3-IMGT,
L110 (Fig. 9) and in (b) the V-BETA binds K58, A61A, H62, V63, E65, Q66 of the G-ALPHA2 helix (Fig. 12) by six
amino acids, L110,A111, G112.1, G112, R113, and P114, all located at the top of the CDR3-IMGT (Fig. 9)
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8. A TR (“Receptor”) (Fig. 4) [3] is made of two chains (alpha
and beta, or gamma and delta) (“Chain”) and comprises four
domains. Each chain has an N-terminal V-DOMAIN (or
V-(D)-J-REGION, encoded by the rearranged V-(D)-] genes
[3]) whereas the remaining of the chain is the C-REGION
(encoded by a C gene). The TR C-REGION comprises one
C-DOMAIN [3]. TR receptor, chain and domain structure
labels, and correspondence with sequence labels, are shown
for two examples of TR ( Homo sapiens TR alpha_beta (Fig. 4)
and TR gamma_delta).

Sequence labels

TR structure labels (IMGT/3Dstructure-DB) (IMGT/LIGM-DB)
Receptor Chain Domain description type  Domain? Region
TR-ALPHA_ TR-ALPHA  V-DOMAIN V-ALPHA V-J-REGION
BETA C-DOMAIN C-ALPHA  Part of C-REGIONP
TR-BETA V-DOMAIN V-BETA V-D-J-REGION
C-DOMAIN C-BETA Part of C-REGIONP
TR-GAMMA_  TR-GAMMA V-DOMAIN V-GAMMA  V-J-REGION
DELTA C-DOMAIN C-GAMMA  Part of C-REGIONP
TR-DELTA V-DOMAIN V-DELTA V-D-J-REGION
C-DOMAIN C-DELTA Part of C-REGIONP

The TR V-DOMAIN includes V-ALPHA, V-BETA, V-GAMMA, and V-DELTA. The TR C-DOMAIN includes
C-ALPHA, C-BETA, C-GAMMA, and C-DELTA (there are two isotypes for the TR-BETA and TR-GAMMA chains
in humans, TR-BETA-1 and TR-BETA-2, and TR-GAMMA-1 and TR-GAMMA-2, the C-REGION of these chains
being encoded by the TRBC1 and TRBC2 genes, and TRGC1 and TRGC2 genes, respectively) (IMGT® http://www.
imgt.org, IMGT Repertoire) [3]

*The TR chain C-REGION also includes the CONNECTING-REGION (CO), the TRANSMEMBRANE-REGION
(TM), and the CYTOPLASMIC-REGION (CY), which are not present in 3D structures

9. The 20 usual amino acids (AA) are designated by one-letter or
three-letter abbreviations, or in full: A (Ala), alanine; C (Cys),
cysteine; D (Asp), aspartic acid; E (Glu), glutamic acid; F
(Phe), phenylalanine; G (Gly), glycine; H (His), histidine; I
(Ileu), isoleucine; K (Lys), lysine; L (Leu), leucine; M (Met),
methionine; N (Asn), asparagine; P (Pro), proline; Q (Gln),
glutamine; R (Arg), arginine; S (Ser), serine; T (Thr), threo-
nine; V (Val), valine; W (Trp), tryptophan; Y (Tyr), tyrosine.
Highly conserved amino acids at a given positionina V, C, or
G domain have IMGT labels [57] (see Note 2). They include
1st-CYS (position 23), CONSERVED-TRP (position 41) and
2nd-CYS (position 104) for the V and C domains [59-62,
64], J-PHE and J-TRP (position 118) for the V-DOMAIN
[59-61, 64], CYS-11 and CYS-74 for the G domain
(G-ALPHA2, G-BETA, and G-ALPHA2-LIKE) [63, 64].
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[ IMGT/3Dstructure-DB Domain pair contacts

Domain Chain Domain Chain

Contacts of  |1n1) v-ALPHA 3qfi_D| "I |[D1] G-ALPHA1 3qfj_A

Summary:
Residue Number of residues Atom pair contact types
pair contacts Total From1 From2 Total Polar Hydrogen Nonpolar
13 14 i 7 19 17 3 102

List of the Residue@Position pair contacts:
Click 'R@P* for IMGT Residue@Position cards

Order Order Atom pair contact types

l:'?r: Residue Domain Chain I:f; Residue Domain Chain  Total Polar Hydrogen MNonpolar
R@F 3 GLU E V-ALPHA[D1] 3gfi_D R@F 58 GLU E G-ALPHA1[D1] 3qfi_A 2 2 0 0
R@P 27 ASP D R@P 58 GLU E G-ALPHA1[D1] 3qf_A 2 1 1] 1
REP 27 GLN Q R@P 66 LYS K G-ALPHA1([D1] 3qfi_A 4 1 0 3
REP 108 THR T R@P 65 ARG R G-ALPHA1[D1] 3gfi_A 7 3 1 4
R@P 108 THR T R@P €8 LYS K G-ALPHA1[D1] 3qfi_A 3 o o 3
RE@P 108 ASP D REP 62 GLY G G-ALPHA1[D1] 3qfi_A 1 1 0 0
REP 109 ASP D R@P 65 ARG R G-ALPHA1[D1] 3qgfi_A 20 3 2 14
R@F 109 ASP D R@P 66 LYS K G-ALPHA1[D1] 3qfi_A 14 1 0 13
R@P 113 TRP W R@P 65 ARG R G-ALPHA1[D1] 3qfi_A 20 1 o 19
R@P 113 TRP W R@P 68 LYS K G-ALPHA1[D1] 3qfi_A 9 1] 1] 9
R@P 113 TRP W R@F 69 ALA A G-ALPHA1[D1] 3gfi_A 18 0 0 18
R@P 113 TRP W R@P 72 GLN Q G-ALPHA1[D1] 3qfi_A 10 0 0 10
R@P 114 GLY G R@P 65 ARG R G-ALPHA1[D1] 3qfi_A 9 1 o 8

(o} IMGT/3Dstructure-DB D n pair contacts

Domain Chain Domain Chain

Contacts of [D1] V-ALPHA 3qfj_D with [D2] G-ALPHA2 3qfj_A

Summary:
Residue  Number of residues Atom pair contact types
pair contacls Tota) From1 From?2 Total Polar Hydrogen Nonpolar
13 16 8 8 108 15 1 93

List of the Residue@Position pair contacts:
Click 'R@P* for IMGT Residue@Position cards

Order Order Atom pair contact types

I:f; Residue Domain Chain I::: Residue Domain Chain  Total Polar Hydrogen Nonpolar
R@P 28 ARG R R@P 77 TRP W G-ALPHAZ [D2] 3qfi_A 13 1 [} 12
R@P 28 ARG R R@P 80 ARG R G-ALPHAZ2[D2] 3gfi_A 5 1 o 4
REP 29 GLY G REF 77 TRP W G-ALPHAZ[D2] 3qfi_A T 0 0 7
R@P 37 GLN Q R@F 70 TYR Y G-ALPHAZ[D2] 3gfi_A [3 0 0 [
R@P 37 GLN Q R@P 73 THR T G-ALPHAZ [D2] 3qfi_A 1 1 0 10
R@P 38 SER S REF 66 GLN Q G-ALPHAZ([D2] 3qfi_A 1 1 0 0
R@P 57 TYR Y REP 66 GLN Q G-ALPHAZ[D2] 3gfi_A 22 2 0 20
R@P 57 TYR Y R@P 69 ALA A G-ALPHAZ [D2] 3gfi_A 8 1 0 7
R@P 58 SER S R@F €9 ALA A G-ALPHAZ2 [D2] 3qfi_A 8 2 0 6
REP 63 ASN N REP 76 GLU E G-ALPHAZ[D2] 3qfi_A 5 2 0 3
RE@P 82 LYS K V-ALPHA[D1] 3qfiD R@P 72A GLY G G-ALPHA2([D2] 3qgfi_A 1 0 o 1
R@P 82 LYS K V-ALPHA[D1] 39f_D R@P 73 THR T G-ALPHAZ([D2] 3qfi_A 7 2 0 5
REP 82 LYS K V-ALPHA[D1] 3gfiD REP 76 GLU E G-ALPHAZ[D2] 3qf_A 14 2 1 12

Fig. 14 IMGT/3Dstructure-DB Domain pair contacts between V-ALPHA and MH1 from a TR/pMH complex. The
TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB (http://www.imgt.org) shown in Fig. 4. The
V-ALPHA has contacts with the G-ALPHA1 (a) and G-ALPHA2 (b). There is a total of 227 atom pair contacts (32
polar including 4 hydrogen bonds and 195 nonpolar) for 26 pair contacts (sums of the two Summary tables).
The results show that the three CDR-IMGT of V-ALPHA interact with the MH1 G-ALPHA1 and G-ALPHA2 and,
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In the IMGT® definitive system, the CDR-IMGT have accurate
and unambiguous delimitations in contrast for the CDR
described in the literature. Correspondences between the
IMGT unique numbering with other numberings are available
in the IMGT Scientific chart. These correspondences with other
numberings are useful for the interpretation of previously pub-
lished data but nowadays the usage of these numberings has
become obsolete in regard of the development of immunoin-
formatics based on the IMGT® standards [59-68] (IMGT®
http: //www.imgt.org, IMGT Scientific chart > Numbering).
For CDR3-IMGT length>13 AA, IMGT additional positions
are created between positions 111 and 112 (in bold in the
table below) at the top of the CDR3-IMGT loop in the fol-
lowing order 112.1,111.1, 112.2, 111.2, 112.3, 111.3, etc.
(with two digits after the dot, if necessary).

CDR3-IMGT lengths

IMGT additional positions for CDR3-IMGT length >13 AA

21
20
19
18
17
16
15
14

111 111.1 111.2 111.3 1114 1124 1123 1122 112.1 112

111 111.1 111.2 111.3 - 1124 112.3 1122 112.1 112
111 111.1 111.2 111.3 - = 112.3 1122 1121 112
111 111.1 1112 - = = 112.3 1122 112.1 112
111 111.1 1112 - — - - 112.2 112.1 112
111 111.1 - - - - - 112.2 112.1 112
111 111.1 - - - - - - 112.1 112
111 - = = = = = = 112.1 112

<

12.

For CDR3-IMGT length <13 AA, IMGT gaps are created
classically from the top of the loop, in the following order 111,
112,110,113, 109, 114, etc. (with two digits after the dot, if
necessary).

IMGT anchors are positions that belong to strands and represent
anchors for the loops of the V and C domains (and by extension
to the CD strand of the C domains that do not have the C'-C”
loop) [62]. Anchor positions are shown in square in IMGT
Colliers de Perles. Positions 26 and 39 are anchors of the BC

Fig. 14 (continued) as expected, only with helix positions. The “Domain pair contacts” shows that in (a) the
V-ALPHA binds seven amino acids (E58, G62, R65, K66, K68, A69, and Q72) of the G-ALPHA1 helix (Fig. 12) by
its CDR1-IMGT (D27 and Q37) and at a greater extent by its CDR3-IMGT (T108, D109, W113, and G114)
(Fig. 10) and in (b) the V-ALPHA binds seven amino acids (Q66, A69,Y70,T73,E76, W77, R80) of the G-ALPHA2
helix (Fig. 12) by its CDR1-IMGT (R28, G29, Q37, S38) and by its CDR2-IMGT (Y57, S38, N63). One amino acid
of the FR3-IMGT, the lysine K82 (in the V-ALPHA D strand) has contacts with G72A, T73, and E76 (22 atom pair
contacts: 4 polar including 1 hydrogen bond and 18 nonpolar)
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=l IMGT/3Dstructure-DB Domain pair contacts

Domain Chain Domain Chain

Contacts of |1p4] v-ALPHA 3qfi_D| " |(Ligand) 3qfj_C

Summary:
Residue Number of residues Atom pair contact types
pair contacts Tota) From1 From2 Total Polar Hydrogen Nonpolar
15 13 7 6 123 16 3 107

List of the Residue@Position pair contacts:
Click 'R@P' for IMGT Residue@Position cards

Order Order Atom pair contact types

I:‘”:: Residue Domain Chain I:lnl?r: Residue Domain Chain Total Polar Hydrogen MNenpolar
R@P 29 GLY G R@P 1 LEU L (Ligand) 3qfi_C 5 0 0 5
R@P 37 GLN Q R@P 1 LEU L (Ligand) 3qfi_C 4 0 0 4
R@P 37 GLN Q R@P 2 LEU L (Ligand) 3qfi_C 6 2 1 4
R@P 37 GLN Q R@P 3 PHE F (Ligand) 3qf_C 12 2 0 10
R@P 37 GLN a R@P 4 GLY G (Ligand) 3qfi_C 7 2 0 5
R@P 37 GLN a R@P 5 PHE F (Ligand) 3qfi_C 13 0 0 13
R@P 38 SER S R@P 5 PHE F (Ligand) 3qfi_C 10 0 0 10
R@P 107 THR T R@P 5 PHE F (Ligand) 3qfi_C 2 0 0 2
R@P 108 THR T RE@EP 4 GLY G (Ligand) 3qfi_C 5 2 0 3
R@P 108 THR T R@P 5 PHE F (Ligand) 3qfi_C 5 0 0 5
R@P 109 ASP D RE@P 4 GLY G (Ligand) 3qfi_C 15 3 0 12
R@P 109 ASP D R@P 5 PHE F (Ligand) 3qfi_C 13 [} 0 13
R@P 110 SER S R@P 4 GLY G (Ligand) 3qfi_C 8 2 2 6
R@P 110 SER S R@P 5 PHE F (Ligand) 3gfi_C 15 1 0 14
R@P 110 SER S R@P 6 PRO P (Ligand) 3qfi_C 3 2 0 1

b
Domain Chain ) Domain Chain
Contacts of - |[p1] v-BETA 3qfi_E| " |(Ligand) 3qfi_C
Summary:
Residue Number of residues Atom pair contact types
pair contacts Tota| From1 From2 Total Polar Hydrogen Nonpolar
9 10 6 4 101 7 2 94

List of the Residue@Position pair contacts:
Click '/R@P" for IMGT Residue@Position cards

Order Order Atom pair contact types

Lo Residue Domain Chain Lo Residue Domain Chain Total Polar Hydrogen MNonpolar

Num Num
R@P 37 GLU E R@P 8 TYR Y (Ligand) 3qfi C 12 2 1 10
R@P 109 GLY G R@P 6 PRO P (Ligand) 3qfi C 1 1 0 0
R@P 10 LEU L R@P & PRO P (Ligand) 3qfi C 1 2 0 9
R@P 10 LEU L R@P 7 VAL V (Ligand) 3qfi C 9 1 0 8
R@P 10 LEU L R@P 8 TYR Y (Ligand) 3qfi C 35 1 1 34
R@P 111 ALA A R@P 7 VAL V (Ligand) 3qfi C 2 0 0 2
R@P 111 ALA A R@P 8 TYR Y (Ligand) 3qfi C 12 0 0 12
R@P 1121 GLY G R@P 7 VAL V (Ligand) 3qfi_C 9 0 0 9
R@P 114 PRO P R@P 5 PHE F (Ligand) 3qfi C 10 0 0 10

Fig. 15 IMGT/3Dstructure-DB Domain pair contacts between the TR V-ALPHA and V-BETA and the Ligand (a
9-mer peptide) from a TR/pMH1 complex. The TR/pMH1 complex structure is 3qfj from IMGT/3Dstructure-DB
(http://www.imgt.org) shown in Fig. 4. The V-ALPHA and B-BETA interact with the 9-mer peptide by only their
CDR1-IMGT and to a greater extent by their CDR3-IMGT. No other amino acid is involved. In (a), the “Domain
pair contacts” shows that the V-ALPHA binds AA 1-5 (LLFGF) of the peptide (AA positions in the groove)
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loop of the V domain (CDRI-IMGT in V-DOMAIN) and C
domain. Positions 55 and 66 are anchors of the C'-C” loop of
the V domain (CDR2-IMGT in V-DOMAIN), whereas posi-
tions 45 and 77 are anchors of the CD strand of the C domain.
Positions 104 in F strand (2nd-CYS) and 118 in G strand (J-PHE
or J-TRP in V-DOMAIN) are anchors of the FG loop of the V
domain (CDR3-IMGT in V-DOMAIN) and C domain. The
JUNCTION of an IG or TR V-DOMAIN includes the anchors
104 and 118 and is therefore two amino acids longer than the
corresponding CDR3-IMGT (positions 105-117).

13. The 20 usual amino acids (see Note 9) have been classified in 11
IMGT physicochemical classes which are based on
“Hydrophathy,” “Volume,” and “Chemical” characteristics
(IMGT®  http://www.imgt.org, IMGT Education>Aide-
mémoire >Amino acids). The amino acid (AA) changes are
described according to the hydropathy, volume, and IMGT
physicochemical classes [28]. For example Q1 >E (++-) means
that in the AA change (Q> E), the two amino acids belong to the
same hydropathy (+) and volume (+) classes but to different
IMGT physicochemical properties (-) classes. Four types of AA
changes are identified in IMGT®: very similar (+++), similar
(++—, +—+), dissimilar (——+, —+—, +—-), and very dissimilar (---).

14. The exon rule is not used for the delimitation of the 5’ end of
the first N-terminal domain of proteins with a leader (this
includes the V-DOMALIN of the IG and TR chains). In those
cases, the 5’ end of the first N-terminal domain corresponds to
the proteolytic site between the leader (L-REGION) and the
coding region of the mature protein. The IG and TR
V-DOMAIN is therefore delimited in 5’ by a proteolytic site
and in 3’ by the splicing site of the J-REGION. The exon rule
takes into account the fact that a domain may be encoded by
two exons as found in IgSF other than IG and TR.

15. A MH (“Receptor”) [63] depending on the MH group is made
of one chain (I-ALPHA) noncovalently associated to the beta2-
microglobulin (B2M) (MH]1 group, in the literature MHC class
I) (Fig. 4) or of two chains (II-ALPHA and II-BETA) (MH2
group, in the literature MHC class II). The I-ALPHA chain has
two G-DOMAIN, whereas each II-ALPHA and II-BETA has
one G-DOMAIN. MH receptor, chain and domain structure

Fig. 15 (continued) (Fig. 12) by its CDR1-IMGT (G29, Q37, S38) and binds AA 4-6 (GFP) of the peptide by its
CDR3-IMGT (T107,T108, D109, S110) (Fig. 10). On the 123 atom pair contacts (16 polar including 3 hydrogen
bonds and 107 nonpolar) (“Summary”), 93 atom pair contacts (10 polar including 2 hydrogen bonds and 83
nonpolar) are engaged between V-ALPHA and two amino acids (G4 and F5) of the peptide. In (b) the “Domain
pair contacts” shows that the V-BETA binds AA 5-8 by its CDR1-IMGT (E37) and at a greater extent by its
CDR3-IMGT (G109, L110,A111, G112.1, P114). On the 101 atom pair contacts (7 polar including 2 hydrogen
bonds and 94 nonpolar) (“Summary”), 59 atom pair contacts (3 polar including 2 hydrogen bonds and 56
nonpolar) are engaged between the V-BETA and one amino acid (Y8) of the peptide
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labels, and correspondence with sequence labels, are shown for
examples of members of the MH1 and MH2 groups.

Sequence labels

MH structure labels (IMGT/3Dstructure-DB) (IMGT/LIGM-DB)
Domain
MH description Domain
group Receptor Chain type? Domain number Region

MH1 MHI1-ALPHA_ I-ALPHA G-DOMAIN G-ALPHAl [Dl1] Part of REGION®

B2M G-DOMAIN G-ALPHA2 [D2]
C-LIKE- C-LIKE [D3]
DOMAIN
B2M C-LIKE- C-LIKE [D] REGION
DOMAIN
MH2 MH2-ALPHA_ II-ALPHA G-DOMAIN G-ALPHA [D1] Part of REGION®
BETA C-LIKE- C-LIKE [D2]
DOMAIN
II-BETA  G-DOMAIN G-BETA  [DI] Part of REGION®
C-LIKE- C-LIKE [D2]
DOMAIN

“The domain description type shows that the MH proteins belong to the MhSF by their G-DOMAIN and to the IgSF
by their C-LIKE-DOMAIN. The B2M associated to the I-ALPHA chain in MH1 has only a single C-LIKE-DOMAIN

and only belongs to the IgSF

"The REGION of the I-ALPHA, II-ALPHA, and II-BETA chains also includes the CONNECTING-REGION (CO),
the TRANSMEMBRANE-REGION (TM), and the CYTOPLASMIC-REGION (CY) which are not present in the 3D

structures

16.

17.

MhSF proteins other than MH only include RPI-MH1 Like
proteins (there is no “RPI-MH2Like” identified so far)
[96, 97]. The RPI-MH1Like in humans comprise: AZGP1
(that regulates fat degradation in adipocytes), CD1A to CD1E
proteins (that display phospholipid antigens to T cells and par-
ticipate in immune defense against microbian pathogens),
FCGRT (that transports maternal immunoglobulins through
placenta and governs neonatal immunity), HFE (that interacts
with transferring receptor and takes part in iron homeostasis
by regulating iron transport through cellular membranes),
MICA and MICB (that are induced by stress and involved in
tumor cell detection), MR1 (that may regulate mucosal immu-
nity), PROCR, previously EPCR (that interacts with activated
C protein and is involved in the blood coagulation pathway),
RAETI1E, RAETG, and RAET1L (that are inducible by reti-
noic acid and stimulate cytokine /chemokine production and
cytotoxic activity of NK cells), and ULBP1, ULBP2, and
ULBP3 (that are ligands for NKG2D receptor).

In the IMGT/DomainGapAlign Welcome page, amino acid
sequences are submitted in FASTA format (pasted in a text
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area or uploaded in a file). A precise delimitation of the domain
sequences is not required, however if the sequence contains
several domains, the sequence should be split between the
different domains. Several domain amino acid sequences can
be analyzed simultaneously (up to 50) provided that each
sequence has a distinct name and that they all belong to the
same domain type (V, C, or G). If not, the query needs to be
launched for each domain type, successively. If the limits and
the numbers of domains of an amino acid sequence are
unknown, the protein can be analyzed progressively, shorten-
ing the sequence once a domain has been identified by the
tool (it should be reminded that the first domain identified by
the tool is not necessarily the first one in the protein).

The IMGT domain reference directory is the IMGT reference
directory for V, C, and G domains. It is manually curated and
contains the amino acid sequences of the domains delimited
according to the IMGT rules (based on the exon delimitations).
Sequences are from the IMGT Repertoire [1] and from IMGT /
GENE-DB [7]. Owing to the particularities of the V-DOMAIN
synthesis [2, 3] there is no V-DOMAIN in the IMGT reference
directory. Instead, the directory comprises the translation of the
I1Gand TR germline Vand J genes (V-REGION and J-REGION,
respectively). The IMGT domain reference directory provides
the IMGT “gene” and “allele” names (“CLASSIFICATION”
axiom) (se¢ Note 3). Data are comprehensive for human and
mouse IG and TR and human MH whereas for other species and
IgSF and MhSEF they are added progressively. The IMGT domain
reference directory comprises domain sequences of functional
(F), ORF (open reading frame) and in frame pseudogene (P)
genes (see Note 1). As IMGT alleles are characterized at the
nucleotide level (see Note 3), identical sequences at the amino
acid level may therefore correspond to different alleles, in the
IMGT domain reference directory. These reference amino acid
sequences can be displayed by querying IMGT,/DomainDisplay
(http: //www.imgt.org).

The IMGT/V-QUEST reference directory sets include IMGT
reference sequences from all functional (F) genes and alleles,
all open reading frame (ORF) and all in-frame pseudogenes
(P) alleles. By definition, the IMGT reference directory sets
contain one sequence for each allele (see Note 3). By default,
the user sequences are compared with all genes and alleles.
However, the option “With allele *01 only” is useful for: (1)
“Detailed view,” if the user sequences need to be compared
with different genes, and (2) “Synthesis view,” if the user
sequences which use the same gene need to be aligned together
(independently of the allelic polymorphism).

IMGT /QUEST reference directories have been set up for spe-
cies which have been extensively studied, such as human and
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20.

21.

22.

23.

mouse. This also holds for the other species or taxons with
incomplete IMGT reference directory sets. In those cases,
results should be interpreted considering the status of the IMGT
reference directory (information on the updates on the IMGT®
Web site). Links to the IMGT /V-QUEST reference directory
sets are available from the IMGT /V-QUEST Welcome page.

The way to identify the closest germline D is different between
IMGT/V-QUEST and IMGT /JunctionAnalysis since the
evaluation of the alignment score is different. In case of dis-
crepancy, the results of IMGT /JunctionAnalysis are the most
accurate. If the option “with full list of eligible D-GENE” was
selected in “Display view,” its results allow comparing the
IMGT /JunctionAnalysis D gene identification with all D
genes which match the junction with their corresponding
score. The alignment provided by IMGT/V-QUEST is still
provided, although less accurate, as it is less stringent and dis-
plays several D genes and alleles, and therefore may help solv-
ing some ambiguous cases.

The number of silent and nonsilent mutations is evaluated, as
well as each type of transition (a>g, g>a, c>t, t>c) and trans-
version (a>c,c>a,a>t, t>a, g>c,c>g, g>t, t>g). The number
of identical AA and of AA changes is evaluated, as well as each
type of AA changes (see Note 13). Mutation hot spots are iden-
tified in the germline V-REGION with their positions. They
include (a/0)a, t(a/1), (a/8)g(c/0(a/1), (a/t)(a/g)e(c/t) (or
wa, tw, rgyw, wrcy). IMGT /V-QUEST is frequently used by
clinicians for the analysis of somatic hypermutations in leuke-
mia, lymphoma, and myeloma, and more particularly in chronic
lymphocytic leukemia (CLL) [80-82] in which the percentage
of mutations of the rearranged IGHV gene in the VH of the
leukemic clone hasa patient prognosticvalue. IMGT /V-QUEST
is the recommended standard recommended by ERIC for com-
parative analysis between laboratories [80].

The sequences of the V-(D)-J junctions determined by
IMGT /JunctionAnalysis [18, 19] are also used in the charac-
terization of stereotypic patterns in CLL [81, 82] and for the
junction synthesis of specific probes for the follow-up of resid-
ual diseases in leukemias and lymphomas.

Potential insertions or deletions are suspected by
IMGT/V-QUEST when the V-REGION score is very low
(less than 200), and /or the percentage of identity is less than
85 %, and /or when the input sequence has different CDR1-
IMGT and/or CDR2-IMGT lengths, compared to those of
the closest germline V. In those cases, the user can go back to
the IMGT/V-QUEST Search page and select the option
“Search for insertions and deletions” in “Advanced parame-
ters.” If indeed insertions and /or deletions are detected, they
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will be described in the “Result summary” row with their
localization in FR-IMGT or CDR-IMGT, the nb of inserted
or deleted nt and, for insertions, the inserted nt, the presence
or absence of frameshift, the V-REGION codon from which
the insertion or deletion starts and the nt position in the user
submitted sequence. The insertions are highlighted in capital
letters in the user sequence and the tool runs a classical
IMGT /V-QUEST search after having removed the insertion(s)
from the user sequence. In case of deletions, the tool adds
gaps to replace the identified deletions before running a classi-
cal IMGT/V-QUEST search. Users should be aware that an
insertion or a deletion at the beginning of FR1-IMGT or at
the end of the FR3-IMGT may not be detected.

In IMGT /3Dstructure-DB, contacts are described as atom pair
contacts. Atom pair contacts are obtained by a local program in
which atoms are considered to be in contact when no water mol-
ecule can take place between them [8, 9]. Atom pair contacts are
provided by atom contact types (Non-covalent, Polar, Hydrogen
bond, etc.) and/or atom contact categories ((BB) Backbone/
backbone, (SS) Side chain/side chain, etc.) [8, 9, 87, 88].

In an IMGT Residue@Position card (or “R@P”), the “IMGT
Residue@Position” is defined by the IMGT position number-
ing in a domain, or if not characterized, in the chain, the AA
name (three-letter and between parentheses one-letter abbre-
viation), the IMGT domain description and the IMGT chain
ID, e.g., “110-LEU(L)-V-BETA-3qfj_E.” The characteris-
tics reported in an “R@P” includes (1) general information
(PDB file numbering, IMGT file numbering, residue full name
and formula), (2) structural information “IMGT
LocalStructure@Position” (secondary structure, Phi and Psi
angles (in degrees), and accessible surface area (ASA) (in
square angstrom)), and (3) detailed contact analysis with
amino acids of other domains.

The first Homo sapiens TR /pMH complex crystallized is that
of the TR alpha_beta A6 [100] (lao7 in IMGT/
3Dstructure-DB). The TR alpha_beta A6 recognizes a 9-mer
peptide LLEFGYPVYV of the Tax protein of the human T cell
lymphotropic virus-1 (HTLV-1) presented by the human
MHI1, HLA-A*0201. Several TR /pMH complexes containing
the same TR A6 with the same MH1 (HLA-A*0201) but dif-
ferent peptide variants or ligands were then crystallized and
these represent interesting data to compare specificity, cross-
reactivity and binding mechanisms of these complexes. The
IMGT/3Dstructure-DB entry 3qfj (Fig. 4), is one of these
variants in which the Tax peptide has one amino acid change
Y5>F [101]. In the IMGT/3Dstructure-DB card the peptide
isdescribed as “Tax peptide 11-19 (Q82235),Y5>F[HTLV1].”
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Chapter 5

IMGT/HLA and the Immuno Polymorphism Database

James Robinson, Jason A. Halliwell, and Steven G.E. Marsh

Abstract

The IMGT /HLA Database (http://www.ebi.ac.uk/ipd /imgt,/hla/) was first released over 15 years ago,
providing the HLA community with a searchable repository of highly curated HLA sequences. The HLA
complex is located within the 6p21.3 region of human chromosome 6 and contains more than 220 genes
of diverse function. Many of the genes encode proteins of the immune system and are highly polymorphic,
with some genes currently having over 3,000 known allelic variants. The Immuno Polymorphism Database
(IPD) (http://www.ebi.ac.uk/ipd/) expands on this model, with a further set of specialist databases
related to the study of polymorphic genes in the immune system. The IPD project works with specialist
groups or nomenclature committees who provide and curate individual sections before they are submitted
to IPD for online publication. IPD currently consists of four databases: IPD-KIR contains the allelic
sequences of killer-cell immunoglobulin-like receptors; IPD-MHC is a database of sequences of the major
histocompatibility complex of different species; IPD-HPA, alloantigens expressed only on platelets; and
IPD-ESTDAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank
of immunologically characterized melanoma cell lines. Through the work of the HLA Informatics Group
and in collaboration with the European Bioinformatics Institute we are able to provide public access to this
data through the website http://www.ebi.ac.uk/ipd/.

Key words Immunogenetics, Database, Polymorphism, Variation, Sequence, Allele, MHC, HLA,
KIR

1 Introduction

The Immuno Polymorphism Database (IPD) is a set of specialist
databases related to the study of polymorphic genes in the immune
system. The IPD project [1] works with specialist groups or
nomenclature committees who provide and curate individual
sections before they are submitted to IPD for online publication.
The IPD project stores all the data in a set of related databases.
IPD currently consists of five databases: IMGT/HLA contains
sequences of the human major histocompatibility complex; IPD-
KIR contains the allelic sequences of killer-cell immunoglobulin-
like receptors; IPD-MHC is a database of sequences of the MHC
of different species; IPD-HPA, alloantigens expressed only on
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platelets; and IPD-ESTDAB, which provides access to the
European Searchable Tumour Cell-Line Database, a cell bank of
immunologically characterized melanoma cell lines.

The IMGT/HLA Database [2] was established to provide a
locus-specific database (LSDB) for the allelic sequences of the
genes in the HLA system, also known as the human major histo-
compatibility complex (MHC). The core genes of interest in the
HILA system are 21 highly polymorphic HLA genes, found within
the 6p21.3 region of the short arm of human chromosome 6,
whose protein products mediate human responses to infectious
disease and influence the outcome of cell and organ transplants.
The MHC is one of the most complex and polymorphic regions of
the human genome, with in excess of 220 genes [ 3]. Three distinct
regions have been identified within the MHC. The class I region is
located at the telomeric end of the MHC and encodes the genes
for the HLA class I molecules, HLA-A, -B, and -C. These are
codominantly expressed on the cell surface and responsible for pre-
senting intracellularly derived peptides to CD8-positive T cells.
The class II region lies at the centromeric end of the MHC and
encodes HLA class genes HLA-DRA, -DRBI1, -DRB3, -DRB4,
-DRB5, -DQAI1, -DQBI1, -DPA1, and -DPB1. HLA class II
expression is limited to cells involved in immune responses, where
these molecules present extracellular derived peptides to CD4-
positive T cells. Located between the class I and class II regions lies
the class III region where a number of non-HLA genes with
immune function are located. The HLA molecules play a key role
in transplantation, with the success of kidney and bone marrow
transplantation correlated with the degree to which donors and
recipient are HLA matched. It has been shown that HLA match-
ing is recognized as a critical determinant of outcome for patients
receiving unrelated donor hematopoietic stem cell for hematologi-
cal disorders [4]. This has led to progressive improvements in the
level of resolution achieved by HLA class I and II typing methods.
The typing of HLA now focuses on distinguishing differences at
both synonymous and the non-synonymous level, for the nucleo-
tide sequences encoding the protein domains of HLA class I and
II, which bind peptides and interact with variable lymphocyte
receptors. The consequence of these improvements has required
the development, for each polymorphic HLA class I and II gene,
of a nucleotide sequence database that is both accurate and com-
prehensive. The first public release of the IMGT/HLA Database
was made on 16 December 1998 [5]. This centralized and curated
LSDB manages these highly polymorphic variants and with a
nomenclature now covering more than 50 genes and almost
10,000 alleles. Since its inception the database has been updated
every 3 months, with over 60 releases, to include all the publicly
available sequences officially named by the WHO Nomenclature
Committee.
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2 IMGT/HLA Nomenclature

The naming of new HLA genes and allele sequences and their
quality control is the responsibility of the WHO Nomenclature
Committee for Factors of the HLA System, which first met in
1968. This committee meets regularly to discuss issues of nomen-
clature and has published 19 major reports [6—24] initially docu-
menting the serologically defined HLA antigens and more recently
the genes and alleles defined by nucleotide sequences. The IMGT/
HLA Database provides the nomenclature committee with the
online tools necessary for its task. The dissemination of new allele
names and sequences is of paramount importance in the clinical
transplant setting, because the variation that distinguishes HLA
alleles can have a critical impact on the outcome of a hematopoietic
stem cell transplant [25, 26]. The identification, verification, and
publication of the sequences of these variants through a centralized
resource are necessary for accurate identification of HLA alleles in
a clinical setting. Sequencing of HLA alleles began in the late
1970s predominantly using protein-based techniques to determine
the sequences of HLA class I allotypes. The first complete HLA
class I allotype sequence, B7.2, now known as B*07:02:01, was
published in 1979 [27]. The first HLA class II allele, DRA*01:01,
was defined by protein sequencing and later in 1982 by DNA
sequencing [28-30]. The first HLA DNA sequences or alleles were
named by the WHO Nomenclature Committee for Factors of the
HILA System (10) in 1987. At that time 12 class I alleles and 9 class
IT alleles were named: in the first 9 months of 2013 the WHO
Nomenclature Committee was able to assign names to 1,029
alleles; see Fig. 1.

3 IMGT/HLA as a Model for Other Highly Polymorphic Gene Systems

The HLA Nomenclature and its publication through the IMGT/
HILA Database have been taken as a model by other groups work-
ing in the field. The MHC sequences of many different species
have been reported [31-42], along with different nomenclature
systems used in the naming and identification of new genes and
alleles in each species [43]. The nomenclature for MHC genes
and alleles in species other than humans [24, 44] and mice [45,
46] has historically been overseen either informally by groups
generating sequences or by formal nomenclature committees set
up by the International Society for Animal Genetics (ISAG) [47].
This work is now overseen by the Comparative MHC Nomenclature
Committee and is supported by ISAG and the Veterinary
Immunology Committee (VIC) of the International Union of
Immunological Societies (IUIS) [48]. The sequences of the MHC
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Fig. 1 Graph of HLA allele numbers. Graph showing the numbers of antigens and alleles named by year from
1987 to the end of March 2013. The numbers of HLA class | alleles are shown in red and the HLA class Il alleles
in yellow

from a number of different species are highly conserved between
species [49], and by bringing the work of different nomenclature
committees and the sequences of different species together it is
hoped to provide a central resource that will facilitate further
research on the MHC of each species and on their comparison
[50]. The first version of the IPD-MHC database involved the
work of groups specializing in non-human primates (NHP) [41],
canines (DLA) [37], and felines (FLA) [51] and incorporated all
data previously available in the IMGT/MHC Database [50]. Since
the first version we have been able to add sequences from cattle
(BoLA) [42], teleost fish [52], rats (RT1) [53], sheep (OLA) [40],
and swine (SLA) [39]. In 2012 the nomenclature used to describe
the alleles of NHP was extensively revised and updated [41]. This
was accompanied by updating the IPD-MHC NHP section to
complement the publication; IPD-MHC NHP currently contains
over 4,000 alleles covering 47 species of apes and Old World and
New World Monkeys. The management of the sequences within
IPD-MHC and the provision of an online submission tool have
enabled these databases to grow, the number of sequences increas-
ing by at least 10 % each year and the nomenclature to expand
since the inclusion of a species within IPD. This has resulted in

regular publications reporting updates or changes to the nomen-
clature [40-42, 54].
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The principles behind the IMGT/HLA model can also be
applied outside the MHC; this is seen in the IPD-KIR database.
The Killer-cell Immunoglobulin-like Receptors (KIR) are members
of the immunoglobulin super family (IgSF) formerly called killer-
cell inhibitory receptors. KIRs have been shown to be highly poly-
morphic both at the allelic and haplotypic levels [55]. They are
composed of two or three Ig domains, a transmembrane region,
and cytoplasmic tail, which can in turn be short (activatory) or long
(inhibitory). The leukocyte receptor complex (LRC), which
encodes KIR genes, has been shown to be polymorphic, polygenic,
and complex in a manner similar to the MHC. Because of the com-
plexity in the KIR region and KIR sequences a KIR Nomenclature
Committee was established in 2002 to undertake the naming of
human KIR allele sequences. The first KIR Nomenclature report
was published in 2003 [56], which coincided with the first release
of the IPD-KIR database. The number of officially named human
KIR alleles has increased since the initial release which contained 89
alleles. As of September 2013, there are over 600 alleles, which
code for over 320 unique protein sequences.

4

IPD Data Sources

IPD receives submissions from laboratories across the world. These
submissions are curated and analyzed, and if they meet the strict
requirements, an official allele designation is assigned. The IMGT /
HLA Database is the official repository for the WHO Nomenclature
Committee for Factors of the HLA System and is the only way of
receiving an official allele designation for a sequence. The other
IPD sections work in the same way with official nomenclature com-
mittees for KIR and different nonhuman MHC committees. The
sequences are then incorporated into the periodic releases of the
database. Since its release in December 1998 the IMGT/HLA
Database has received over 17,700 submissions. These submissions
have come from a variety of sources; the majority are from labora-
tories involved in clinical HLA typing for hospitals or donor regis-
tries or commercial organizations performing contract HLA typing
for large hematopoietic stem cell donor registries. Further data has
been submitted following large-scale genome sequencing projects
[3,57]. For all projects the submissions must meet strict acceptance
criteria before the sequence receives an official designation. These
minimum standards cover the methodologies used to define the
sequence, the length of sequence submitted, and the source of the
sequence; the full list of the minimum criteria can be seen online.
Within IMGT /HLA, around 3 % of the submissions received fail
to meet these criteria and are rejected. In addition all the submis-
sions received by the IPD are also available from the Interna-
tional Nucleotide Sequence Database Collaboration (INSDC) [58].
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The INSDC consists of DNA DataBank of Japan (DDBJ) (Japan),
GenBank (USA), and the EMBL-European Nucleotide Archive
(ENA) (UK) [59-61]. The ENA entries also contain database
cross-references to the IPD entries. Cross-references to the IMGT /
HLA Database are also included in ENSEMBL [62] and VEGA
entries [63].

5 Tools Available at IPD

IPD provides a large number of tools for the analysis of HLA, KIR,

and nonhuman MHC sequences. These tools are either custom

written for the database or are incorporated into existing tools on

the European Bioinformatics Institute (EBI) website [64, 65].
These tools include the following:

e Sequence alignments—Access to alignment tool, which filters
pre-generated alignments to the users’ specification; provides
alignments at the protein, cDNA, and gDNA level.

e Allele queries—Access to detailed information on any allele,
including information on database cross-references and semi-
nal publications.

¢ Sequence similarity search tools—Integration into EBI’s suite
of search tools including FASTA [66] and BLAST [67].

e Downloads—Access to an FIP directory containing all the
data from the current and previous releases in a variety of com-
monly used formats like FASTA, MSF, and PIR.

There are core tools, which are common to all projects, and
other tools specific for individual sections. For example tools have
also been developed to support the laboratories that sequence
HLA. The use of sequence-based typing (SBT) as a method for
defining the HLA type is well documented [68, 69]; most SBT
typing strategies currently employed use the exon 2 and exon 3
sequences for HLA class I analysis and exon 2 alone for HLA class
IT analysis. Due to the heterozygous nature of the SBT analysis the
combinations of many pairs of alleles may give an ambiguous typ-
ing result; currently there are nearly 80,000 recognized ambiguous
combinations. The IMGT /HLA maintains and regularly updates a
listing of these ambiguous allele combinations. The document also
includes a list of all alleles which are identical over exons 2 and 3
for HLA class I and exon 2 for HLA class II.

6 Clinical Algorithms

The IPD project also collaborates with clinicians to provided Web-
based version of published algorithms which have a clinical impact
on transplant outcome. Two examples of this are the IMGT/HLA
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Database—DPBI1 T-Cell Epitope Algorithm and the IPD-KIR—
Donor B Content Algorithm.

Recent developments on the IPD-KIR website include online
tools to assist in the prediction of transplant outcome in an unre-
lated hematopoietic stem cell transplant based on the KIR content
of the individuals involved. In 2008 a tool was added to the web-
site to help predict NK cell alloreactivity based on the KIR ligands
present in the patient and donor, as transplant strategies based on
KIR-ligand mismatches had been shown to influence relapse, graft
vs. host disease (GvHD), and survival in patients with acute
myeloid leukaemia (AML) [70]. In 2010, with the goal of devel-
oping a donor selection strategy to improve transplant outcome,
Cooley et al. [71] compared the contribution of KIR gene motifs
to the clinical benefit conferred by donors with a particular haplo-
type. Donor KIR genotype influenced transplantation outcome for
some forms of leukaemia after a T-cell replete unrelated donor
transplant. KIR genotyping several HLLA-matched potential donors
could substantially increase the frequency of transplants using
unrelated donor grafts with favorable KIR gene content. In order
to implement this strategy the IPD-KIR database was asked to pro-
vide an online version of the algorithm described in the paper. The
B-Content calculator (http://www.ebi.ac.uk/ipd/kir/donor_b_
content.html) allows the user to enter the KIR genotypes for up to
five prospective donors and receive their B-Content assignments
and a prediction result of the effect of the KIR genotype on trans-
plant outcome. To ensure that only valid KIR genotypes are sub-
mitted, all genotypes submitted are compared to a list of predicted
genotypes based on known KIR haplotypes. In addition this list
has been supplemented with a number of additional KIR geno-
types that have been defined in routine KIR typing. If a prospective
donor’s KIR typing does not match any of the genotypes on this
list a warning is issued.

Recent data has suggested that certain HLA mismatches may
be permissive (i.e., do not result in a poor clinical outcome), while
others are non-permissive (do result in a poor clinical outcome)
[72]. The classification of HLA-DPB1 mismatches based on T-cell
epitope (TCE) groups has been shown to identify permissive mis-
matches and non-permissive mismatches for HLA-DPBI1 after
unrelated donor hematopoietic stem cell transplantation (HSCT).
With the strong clinical data showing a survival disadvantage in
patients who receive a transplant from a non-permissive HLA-
DPBI1 TCE mismatched donor, defined on the basis of functional
data, matching of DPB1 TCE groups can be routinely included in
the donor selection process [73-76]. The IMGT/HLA Database
provides an online, freely available tool, which was developed to
help those selecting donors to predict the immunogenicity of any
given patient—donor HLA-DPBI types [77]. The aim of the tool is
to provide a web interface to predict HLA-DPBI immunogenicity
based on the published algorithms. Tables in the original publi-
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a Prospective HLA-DPB1Typing

. Prospective patient 1

DPB1* | 01:01 | DPB1* | 106:01

Prospective donor 1

DPB1* | 03:01 | DPB1* | 04:01

b  Predicted Immunogenecity

Patient Typings: Prospective patient 1

Allele TCE group Predicted Immunogenicity Comments
DPB1*01:01 3 Low
DPB1*106:01 35 Low

Donor Typings: Prospective donor 1

Allele TCE group Predicted Immunogenicity Comments
DPB1*03:01 Intermediate
| DPB1*04:01 Low l

The predicted immunogenecity of the DPB1 matching for this pair is: Non-permissive HvG

Fig. 2 Example of the DPB1-T-Cell Epitope Algorithm web page. A graphic example of the prediction of immu-
nogenicity and permissivity by the tool. (a) The input screen with the HLA-DPB1 typing of the prospective
patient (HLA-DPB1*01:01, 106:01) and prospective donor 1 (HLA-DPB1*03:01, 04:01). (b) The output screen
showing that the two alleles of the prospective patients are both predicted to have “low” immunogenicity,
while the HLA-DPB1*03:01 allele of the prospective donor 1 is predicted to have “intermediate” immunogenic-
ity, indicating that the HLA-DPB1 matching status for this patient and donor is “non-permissive host vs. graft

disease”

cations provide details of the TCE groups, functionally defined
on the basis of alloreactive T-cell cross-reactivity patterns and
predicted immunogenicity hierarchies for a number of HLA-DPB1
proteins. These tables are then queried for the TCE groups, and
these results generate the predicted immunogenicity. The search
tool allows users to enter the HLA-DPB1 data for a single prospec-
tive patient and up to five prospective donors (Fig. 2). The pre-
dicted immunogenicity of the HLA-DPB1 matching for each
patient—donor pair is provided. If the input includes nonexistent
alleles, null alleles, or the unstudied TCE groups, a warning detail-
ing the problem is given. The tool also allows for labeling the
patient and donors with user-defined identification numbers. The
results can therefore be printed and stored. The web tool is hosted
on the IMGT/HLA Database website and can be accessed at
http: //www.ebi.ac.uk/ipd /imgt/hla/dpb.html.
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7 Conclusion

The IPD project provides a resource for those interested in the
study of polymorphic sequences in the immune system. By accom-
modating related systems in a single database, data can be made
available in common formats aiding the use and interpretation.
As the projects grow and more sections are added, the benefit of
having expertly curated sequences from related areas stored in a
single location is becoming more apparent. This is particularly true
of the IPD-MHC project, where cross-species studies are able to
utilize the high-quality sequences provided by the different nomen-
clature committees in a common standardized format, ready for
use. The initial release of the IPD Database contained only four
sections and a small number of tools; however as the database has
grown and more sections and species have been added, more tools
have been added to the website. We plan to use the existing data-
base structures to house data for new sections of the IPD project
as they become available. The files will also be made available in
different formats to download from the website, FTP server, and
included different web services at the EBI [65].

The IMGT /HLA Database provides a centralized resource for
the study of the HLA system, whether this is clinically or scientifi-
cally focussed. The database and accompanying tools allow the
study of HLA alleles from a single site on the World Wide Web.
It aids in the management and development of HLA nomencla-
ture, providing a continuing and updated resource for the WHO
Nomenclature Committee. The challenges for the database are to
keep up with this increase in submitted sequences, keep pace with
the increasing difficulties in performing analyses on the larger data-
sets, and develop new tools for the visualization of the sequences
while maintaining the high standards set in the presentation and
quality of the HLA sequences and nomenclature to the research
community.

8 Licensing

The IPD is covered by the Creative Commons Attribution-
NoDerivs Licence, which is applicable to all copyrightable parts of
the database, which includes the sequence alignments. This means
that users are free to copy, distribute, display, and make commer-
cial use of the databases in all legislations, provided that they give
the appropriate credit [78, 79]. If users intend to distribute a mod-
ified version of the data in any form, then they must ask us
for permission; this can be done by contacting hla@alleles.org for
further details of how modified data can be reproduced.
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Chapter 6

Databases for T-Cell Epitopes

Chun-Wei Tung

Abstract

Modem immunology and vaccinology incorporate immunoinformatics techniques to give insights into
immune systems and accelerate vaccine design. Databases managing epitope data in a structured form with
immune-related annotations including sequences, alleles, source organisms, structures, and diseases could
be the most crucial part of immunoinformatics offering data sources for the analysis of immune systems
and development of prediction methods. This chapter provides an overview of publicly available databases
of T-cell epitopes including general databases, pathogen- and tumor-specific databases, and 3D structure
databases.

Key words Database, Immunogenicity, Immunoinformatics, Major histocompatibility complex,
Pathogen, T-cell epitope, Transporter associated with antigen processing, Tumor, Vaccine

1 Introduction

T-cell epitopes are processed antigens presented in the surface of
antigen-presenting cells (APCs) that can be recognized by T cells
leading to T-cell activation. Generally, there are two major antigen
processing and presentation pathways responsible for endogenous
and exogenous antigens. Major histocompatibility complex
(MHC) molecules play major roles in both recognition of antigens
and presentation of antigens to T cells for both endogenous and
exogenous antigens. To be recognized by T cells, endogenous
antigens should be cleaved by proteasome, transported into endo-
plasmic reticulum by transporter associated with antigen process-
ing (TAP), and presented to the cell surface by MHC class 1
molecules. For exogenous antigens, they should be processed by
lysosome and presented to the cell surface by MHC class II mole-
cules to be immunogenic.

Two major T cells of cytotoxic T (Tc) and T helper (Th) cells
are responsible for recognizing endogenous and exogenous anti-
gens presented by MHC class I and 1T molecules, respectively. The
Tc cells play a critical role in protective immunity by recognizing and
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eliminating self-altered cells, which recognize processed antigens
derived from intracellular degradation of foreign antigens and bound
to MHC class I molecules. In contrast, the activation of Th cells
causes the proliferation and differentiation of the Th cells into difter-
ent Th subtypes secreting various cytokines that assist B-cell matura-
tion, Tc-cell activation, and macrophage activation.

The identification and analysis of T-cell epitopes are important
for vaccine development [1, 2]. Various assays were developed to
detect features of T-cell activation induced by T-cell epitopes. The
cytotoxic activity of activated Tc cells can be directly evaluated by
measuring the specific lysis by Tc cells. Tc cells cause apoptosis
of target cells via the release of lytic granules containing perforin
and granzymes or Fas/Fas ligand interactions. There are three
commonly used assays for Tc-cell activation including the
chromium-release assay, just another method (JAM) test, and
in vivo T-cell cytotoxicity assay [3]. The chromium-release assay
measures radioactivity released from the lysis of target cells labeled
with 5!Cr [4]. The JAM test measures the amount of DNA retained
in target cells labeled with [*H]thymidine that are not killed by
Tc cells [5]. For in vivo Tc-cell cytotoxicity assay, target cells are
firstly labeled with carboxyfluorescein succinimidyl ester (CESE).
Subsequently, flow cytometry is utilized to evaluate the Tc-cell
activity according to the loss of CESE-bright cells [3].

During T-cell activation, cytokines and cytokine receptors
are produced and lead to the proliferation of activated T cells. The
T-cell activation is commonly measured by the clonal size.
Proliferation assays are reliable and simple methods that have been
widely used to assess overall T-cell responses [6]. The incorpora-
tion of [*H]thymidine or BrdU can be utilized to analyze T-cell
proliferation. The CESE-based methods are also applicable for
T-cell proliferation [7]. The cytokine signatures produced during
T-cell activation are also practical indicators of T-cell activation.
For example, IL-2 is required for conventional T-cell proliferation
that can be used as an indicator. The elicited cytokines can be pro-
filed using enzyme-linked immunosorbent spot (ELISPOT) assay
to monitor immune responses [8, 9]. Both cytokine release and
T-cell proliferation could be indicators of Th-cell activation.

The mapping of T-cell epitopes could provide useful informa-
tion for the design of peptide-based vaccines. In order to provide
better understanding of immune responses associated with T-cell
epitopes, several high-throughput methods have been developed
for the large-scale identification of T-cell epitopes [10]. For example,
the construction of peptide libraries comprised synthetic overlap-
ping peptides for screening T-cell epitopes [11] and 15-mer
peptides with 11 amino acid overlap are concluded to be good
compromise for stimulating both Tc and Th cells [12]. With the
high-throughput methods, data of T-cell epitopes grows fast. It is
desirable to develop informatics techniques for organization and
utilization of the produced epitope data.
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Immunoinformatics aims to analyze and model immunological
problems using information techniques of database, data mining,
and machine learning. Databases providing centralized, structured,
and searchable information of T-cell epitopes could help the
mapping of T-cell epitopes on new pathogens and serve as data
sources for analyzing T-cell epitopes and constructing computa-
tional prediction models. With benefit from the low costs, high
efficiency, and high accuracy, computational prediction models are
becoming essential tools for T-cell epitope mapping in modern
immunology [13]. The utilization of a larger dataset and more
relevant data for constructing computational prediction models
could improve their prediction performances [14, 15]. The T-cell
epitope databases hence play a vital role in providing accurate and
detailed data for constructing prediction models (se¢ Note 1).

Several important databases of T-cell epitopes have been devel-
oped to meet the urgent need of data storage and sharing. This
chapter summarized databases focused on T-cell epitopes with
brief descriptions of their content and functionality. According to
their main contents, databases are classified into three categories of
general databases, pathogen- and tumor-specific databases, and 3D
structure databases.

2 Databases

2.1 Databases
of T-Cell Epitopes

General protein sequence and structure databases such as UniProt
and PDB databases could be valuable resources of T-cell epitopes.
Keywords can be utilized to search for T-cell epitope-related
information. However, this chapter focuses on only specialized
databases of T-cell epitopes. General protein databases will not be
included.

Databases of T-cell epitopes collecting information of MHC-
binding peptides, T-cell epitopes, and complexes of T-cell receptor
(TCR)—peptide-MHC are listed in Table 1. Several pioneer data-
bases were developed more than 10 years ago. Some of their ser-
vices are no longer available. For example, FIMM database [16]
containing data relevant to functional molecular immunology is no
longer accessible. MHCPEP database [17] is one of the earliest
T-cell epitope databases whose maintenance and update are dis-
continued. Fortunately, most of their contents were collected and
integrated into newly developed databases. This section describes
the databases that are still accessible.

MHCPEDP, probably the first specialized database for MHC-
binding peptides, is a curated database comprising over 13,000
peptide sequences known to bind MHC molecules [17]. Its
contents were collected from published literatures and experi-
mental data with information of peptide sequences, associated
MHC alleles, anchor positions, peptide sources, and references.
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Table 1

General databases of T-cell epitopes

Database Description Availability

MHCPEP Database of MHC-binding ftp://ftp.wehi.edu.au/pub/biology/mhcpep/
peptides

SYFPEITHI Database of MHC ligand and http: //www.sytpeithi.de /
peptide motifs

AntiJen Quantitative immunology http: //www.ddg-pharmfac.net/antijen

(JenPep) database

FIMM Functional immunology Not available
database

MHCBN Database of MHC/TAP-binding http: //www.imtech.res.in/raghava/mhcbn/
peptides and T-cell epitopes

EPIMHC Database for customized http: //bio.dfci.harvard.edu/epimhc/

computational vaccinology

IEDB Immune epitope database http: //www.iedb.org/

One of the unique features of MHCPEP is that T-cell responses
were collected and classified into six categories of high, medium,
little, none, immunogenic-not-quantified, and unknown. For
MHC class 1 binding peptides, the classifications are according to
the concentration of peptides giving 50 % of maximum specific
lysis by Tc cells of target cells displaying the peptide. For MHC
class IT binding peptides, the concentration of peptides giving 50 %
of maximum proliferation is utilized to classify T-cell responses
induced by the epitopes. MHC-binding affinity is also classified
into five categories of high, medium, low, none, and unknown.
The predefined categories provide useful information for analyzing
the correlation between T-cell responses and MHC-binding affini-
ties and constructing classifiers [ 15]. Several newly developed data-
bases integrated MHCPEP contents into their databases such as
MHCBN [18] and EPIMHC [19] (see Note 2).

SYFPEITHI provides a publicly accessible resource for curated
MHC ligands and peptide motifs [20]. In addition to basic informa-
tion of MHC alleles, MHC-binding peptides, T-cell epitopes, sources,
and references, the most significant features are the information of
peptide motifs and their prediction function. In contrast to MHCPEP
database containing both published and preliminary data, SYFPEITHI
only collects epitopes with published functional evidences making it a
popular and reliable resource for T-cell epitope research. Currently,
there are more than 8,000 MHC-binding peptides with qualitative
dataof MHC-bindingpeptidesand T-cell epitopesin SYFPEITHI. The
usage of SYFPEITHI for searching and mapping of T-cell epitopes
has been demonstrated in a recent article [21].


ftp://ftp.wehi.edu.au/pub/biology/mhcpep/
http://www.syfpeithi.de/
http://www.ddg-pharmfac.net/antijen
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JenPep is a family of relational databases containing quantitative
data on peptides binding to MHC and TAP and T-cell epitopes
aiming to support the development of computational vaccinology
[22, 23]. Instead of classitying peptides into several categories of
MHC-binding and T-cell responses, the quantitative data provided
in JenPep could be useful for developing quantitative prediction
methods. AntiJen, the successor to JenPep, contains a wider spec-
trum of immunological data and advanced search functions [24].
More than 31,000 entries have been collected in AntiJen database
with thermodynamic and kinetic measures of peptides binding
to MHC and TAP, MHC-peptide-TCR complexes, and general
immunological protein—protein interactions. With hyperlinks to
major databases including Swiss-Prot, NCBI protein database,
and PUBMED reference database, users can easily retrieve related
information. There are more than 4,000 T-cell epitopes with
experimental information available in AntiJen. However, it seems
that AntiJen database has not been updated for a long time. The
hyperlinks to Swiss-Prot and IMGT /HLA are broken.

FIMM is a functional immunology database consisting of
protein antigens, MHC molecules, MHC-binding peptides, and
relevant disease associations [16]. The major sources of MHC-
binding peptides include MHCPEP, SYFPEITHI, HIV Molecular
Immunology Database [25], and literatures. FIMM focuses on
human MHCs (human leukocyte antigens, HLLAs) and associated
diseases as the most distinctive feature (see Note 3).

MHCBN was developed to serve as a comprehensive database
of MHC-binding peptides integrating information from MHCPEP,
FIMM, SYFPEITHI, and HIV Molecular Immunology database
with hyperlinks to major databases of GenBank, Swiss-Prot, PDB,
IMGT/HLA, and PUBMED. The latest version 4.0 of MHCBN
contains more than 25,000 peptide entries of binders and nonbind-
ers for MHC and TAP molecules and T-cell epitopes [18]. Search
function is available for each data field. Advanced tools for the map-
ping of T-cell epitopes and dataset creation are also available at
the website of MHCBN. Please refer to the article describing the
detailed tutorial for epitope mapping using MHCBN [26].

EPIMHC focuses on T-cell epitopes of naturally occurring
proteins [19]. EPIMHC was compiled from MHCPEP,
SYFPEITHI, JenPep, MHCBN, FIMM, and literatures using the
same data scheme of MHCPEP. There are more than 2,000 T-cell
epitopes out of 4,875 distinct MHC-binding peptides whose
source organisms are known. More than 80 T-cell epitopes are
derived from tumor-associated antigens. A useful function for gen-
erating position-specific scoring matrices from query results enables
the development of motif predictors of interests (see Note 4).

IEDB, the immune epitope database, is a versatile and compre-
hensive database with the largest collection of immune epitopes
[27]. Epitope information is curated from literatures into the
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Table 2

Pathogen- and tumor-specific databases of T-cell epitopes

Database Description Availability
AntigenDB Database of http: //www.imtech.res.in/raghava /antigendb /
pathogen antigens
Protegen Database of http: //www.violinet.org/protegen/
protective
antigens
HIV Molecular HIV database http: //www.hiv.lanl.gov/content/immunology/
Immunology
Database
HCV Immunology ~ HCV database http://hcv.lanl.gov/content/immuno/immuno-main.
Database html

Cancer Immunity
Peptide Database

TANTIGEN

Database of tumor

Database of tumor

http: //www.cancerimmunity.org/peptide /
T-cell antigens

http://cve.dfci.harvard.edu/tadb/
T-cell antigens

2.2 Pathogen-
and Tumor-Specific
Databases of T-Cell
Epitopes

structured database with detailed experimental information including
T-cell assays and MHC-binding assays. Hyperlinks to major data-
bases are available for each entry. Different T-cell assays could con-
clude divergent results; hence the detailed information of T-cell
assays should be carefully curated instead of pulling assays alto-
gether. IEDB database compiling more than 200,000 T-cell assays
and 230,000 MHC-binding assays from literatures with detailed
experimental information is an essential resource for developing
computational prediction methods for both MHC binding and
T-cell activation. Numerous functions have been developed and
integrated into IEDB database including the IEDB-3D structure
database (see Subheading 2.3) [28] and immune epitope database
analysis resource (IEDB-AR) [29]. IEDB-AR provides several
T-cell epitope prediction tools for proteasome cleavage, TAP bind-
ing, and MHC binding that could help the identification and
design of T-cell epitopes. IEDB is recently expanded to include
non-peptidic epitopes and hyperlinks to ChEBI, a database and
ontology of chemical entities of biological interest, enabling the
analysis of non-peptidic epitopes.

The aforementioned general databases tried to collect T-cell
epitopes as many as possible without focusing on specific applica-
tions (se¢e Notes 5 and 6). For developing treatments against
pathogens and diseases, it is desirable to collect and analyze patho-
gen- or tumor-specific T-cell epitopes. Several databases have been
created to fulfill the need of storage and analysis of pathogen- and
tumor-specific T-cell epitopes as listed in Table 2.


http://www.imtech.res.in/raghava/antigendb/
http://www.violinet.org/protegen/
http://www.hiv.lanl.gov/content/immunology/
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AntigenDB puts a special emphasis on pathogen antigens [30]
with or without epitope information. In addition to basic infor-
mation of T-cell epitopes and MHC-binding peptides, several use-
ful features have been integrated including gene-expression and
posttranslational modifications (PTMs) to facilitate vaccine devel-
opment. Highly expressed antigens are suitable vaccine candidate.
PTM information could give insights into the recognition of
TCR—peptide-MHC. For each antigen containing T-cell epitopes,
its induced immunogenicity of Tc or Th cells, T-cell epitopes,
associated PTMs, MHC-binding affinity, TAP binders, and cleavage
sites are collected from literatures and available at AntigenDB.
AntigenDB contains more than 500 antigens from 44 important
pathogenic species. In addition to protein antigens, glycoproteins
and lipoproteins are also collected in AntigenDB. It provides
numerous hyperlinks to major databases that could be a useful
database for computational vaccinology.

Protegen is a database for protective antigens capable of
inducing immune responses in the host against infectious and non-
infectious diseases [31]. Currently, 708 protective antigens are
available against over 100 infectious diseases, cancers, and allergies
that could be a useful resource for developing vaccines, biomarkers
for disease diagnosis, and analysis of protective antigens. In contrast
to AntigenDB that includes epitopes of both protective and non-
protective antigens, Protegen contains only protective antigens.

HIV Molecular Immunology Database [25] and HCV
Immunology Database [32] are specifically designed for HIV- and
HCV-related information including T-cell epitopes and their inter-
actions with the host immune system. The built-in search functions
allow users to efficiently extract related information. Subheading 3
of both databases provides summarized experimental information
extracted from literature that enables in-depth exploration of
epitopes. The numbers of Tc and Th epitopes are 7,537 and 1,315
for the HIV Database and 383 and 222 epitopes for the HCV
Database, respectively.

For the development of T-cell epitope-based cancer vaccines,
the Cancer Immunity Peptide Database was constructed with a
collection of 129 tumor antigens with T-cell epitopes [33]. The
tumor antigens are categorized into four types of unique, tumor-
specific, differentiation, and overexpressed antigens with hyper-
links to GeneCard and PubMed. In spite of the small size of
the database, it collected only epitopes with required experimen-
tal evidences for inducing T-cell responses serving as a useful
resource for validated epitopes. TANTIGEN (tumor T-cell anti-
gen database) comprises 4,006 antigen entries from 251 unique
antigens with information of T-cell epitopes and MHC-binding
peptides [34]. The integration of prediction tools for MHC-
binding peptides could help the identification of potential T-cell
epitopes.
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Table 3

3D structure databases of T-cell epitopes

Database

Description Availability

MPID-T2

Database of crystal structures http: //biolinfo.org,/mpid-t2 /
of peptide-MHC and
TCR—peptide-MHC

IMGT /3Dstructure-DB 3D structure database http: //www.imgt.
of IMGT org/3Dstructure-DB /
IEDB-3D 3D structure database http: //www.iedb.org/
of IEDB
CrossTope Database of experimental http: //www.crosstope.com.br
and modeled pMHC-I
structures
2.3 Three- The collection and analysis of 3D structures of TCR—peptide-MHC
Dimensional (3D) complexes could provide a better understanding of TCR-peptide—
Structure Databases MHC interactions. Three-dimensional structure databases of
of T-Cell Epitopes T-cell epitopes are listed in Table 3. MPID is firstly created by col-

lecting structures of peptide-MHC complexes from PDB database
[35]. The updated version MPID-T extended its contents to
include TCR—peptide-MHC complexes [36]. Currently, the latest
version MPID-T2 (Nov, 2010) comprises 353 peptide-MHC and
62 TCR-peptide-MHC structures. Intermolecular parameters
were pre-calculated and available for the analysis of structures in
MPID-T2 including hydrogen bonds, gap index, gap volume,
binding energy, molecular surface electrostatic potential, TCR
docking angle, and contact area. WebLogo tool [37] is utilized
to represent peptide motifs obtained from MPID-T2. The pre-
calculated structural alignments of peptide-MHC and TCR—pep-
tide-MHC complexes could provide insights into the interactions
of TCR—peptide-MHC.

IMGT /3Dstructure-DB [38] is the 3D structure database of
IMGT, the international ImMunoGenetics information system. Both
its 3D structures of TCR-peptide-MHC and peptide-MHC
complexes were collected from the PDB database and stored in
IMGT /3Dstructure-DB. Its most distinctive feature is that all struc-
tures were annotated with the IMGT-ONTOLOGY concepts of clas-
sification and domain information obtained by applying IMGT/
DomainGapAlign [38]. Non-peptidic epitopes are also included.
Pre-calculated contact residues are available for investigating the
structural features of peptide-MHC complexes with or without TCR.
Currently, IMGT /3Dstructure-DB contains 84 and 486 entries of
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TCR—peptide-MHC and peptide-MHC structures (Apr 6, 2013),
respectively. IMGT database integrating various tools and databases
of its own is a comprehensive system for analyzing T-cell epitopes.
The detailed protocol for querying the IMGT /3Dstructure-DB is
available in a published book chapter [39].

IEDB-3D, the 3D structure database of IEDB, collects pub-
lished 3D structures of TCR or MHC complexes with epitopes
curated in IEDB [28]. All the 3D structures were curated from
PDB database including complexes of TCR—peptide-MHC and
peptide-MHC. IEDB-3D is fully integrated with IEDB enabling
the cross-reference of detailed information of structures, epitopes,
references, T-cell assays, and MHC binding. The integrated
EpitopeViewer provides intuitive user interface for the analysis of
contacting atoms in 3D structures [40]. IEDB-3D can be easily
accessed from the link of “Browse by 3D structure.” Notably, both
peptidic and non-peptidic T-cell epitope are curated in IEDB-3D.
On the date of access (Jun 11, 2013), there were 62 and 337 non-
redundant structures for TCR—peptide-MHC and peptide-MHC
complexes, respectively.

Due to the lack of available 3D structures of peptide-MHC
complexes (see Note 7), CrossTope was developed as a curated
database collecting 3D structures of immunogenic peptide-MHC
class I complexes (pMHC-I) from the public PDB database and
computational modeling [41]. All pMHC-I complexes are curated
from literatures with experimentally verified T-cell responses.
Except for the pMHC-I complexes with available 3D structures in
PDB that can be directly curated into CrossTope, a three-step
modeling method is applied to reconstruct pMHC-I complexes
[42]. For each entry, the structure types of “crystal” and “model”
indicate the sources of pMHC-I complexes from PDB crystal
structures and computational modeling, respectively. The pMHC-
I structures could serve as useful resources for structure-based
virtual screening of cross-reactive targets as demonstrated by
the authors [41-43]. Currently, CrossTope contains 182 non-
redundant pMHC-I complexes from two human and two murine
alleles.

3 Notes

This chapter summarized three kinds of databases related to
T-cell epitopes including general databases, pathogen- and tumor-
specific databases, and 3D structure databases. The efforts of
large-scale identification of T-cell epitopes will continue produc-
ing a vast amount of T-cell epitope data. The databases of T-cell
epitopes will be more important than ever as data sources for the
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analysis of immune responses, development of computational
prediction methods, and vaccine design. Several notes are provided
as follows:

1.

For the development of computational prediction methods
for T-cell epitopes, one of the most crucial parts is the dataset
construction that is usually integrated from different databases
[14]. However, different databases could use distinct criteria
for data curation and annotation. Also, there are various assays
for determining T-cell responses induced by epitopes as
described in Subheading 1 and results from different assays
may not be directly comparable. The integration of heteroge-
neous data should be carefully processed.

. The web service of MHCPEP is discontinued. However, its

data is still available at an FTP site as shown in Table 1.

. FIMM is no longer accessible, and its data has been integrated

into MHCBN and EPIMHC.

. EPIMHC web server is currently not working, while its main

web page is still accessible.

. Most general databases of T-cell epitopes also contain informa-

tion of protein sources and host organisms. By querying the
databases with keywords related to pathogens, pathogen-
specific information can be retrieved.

. The IEDB database, being the largest general database

of immune epitopes, provides also disease information related
to epitopes. For extracting disease-specific information, the
function of “disease finder” can be utilized to filter epitope
data related to the disease of interests such as cancers from
IEDB.

. The 3D structures of T-cell epitopes and related MHCs

and TCRs could provide important clues to the molecular
mechanism of antigen presentation and T-cell activation.
However, the available structures from existing databases are
scarce. Computational modeling methods could be alternative
ways to accomplish structure databases. More experimental
and computational efforts are desirable to improve knowledge
in this field.
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Chapter 7

Databases for B-Cell Epitopes

Juan Liu and Wen Zhang

Abstract

Identification and characterization of B-cell epitopes in target antigens is one of the key steps in epitope-driven
vaccine design, immunodiagnostic tests, and antibody production. For localizing epitopes by experimental
methods is time consuming and cost expensive, researchers have been developing in silico or computational
models for the prediction of B-cell epitopes, enabling immunologists and clinicians to identify the most prom-
ising epitopes for characterization in the laboratory. A sufficient number of available B-cell epitopes are indis-
pensable for establishing the prediction models. To our knowledge, some popular databases associated with
the B-cell epitopes are proposed and widely used in the immunoinformatics. In this chapter, we present an
overview of the important databases and introduce how to compile datasets for the development of B-cell
epitope prediction tools.

Key words B-cell epitope, Mimotope, Databases, Immune response

1 Introduction

The interactions between antibodies and antigens play important roles
in the immunological reaction, and the interaction sites can reveal the
mechanism of the immune system and help to design the vaccines
[1-4]. A B-cell epitope is the region or the segment of an antigen
which is recognized by B cells and thus activates the B-cell immune
response. With growing need of vaccine design, the recognition of B
cell epitope has become more and more important. In general, B-cell
epitopes can be categorized into two classes, linear (continuous) and
conformational (discontinuous). A continuous epitope is a segment
of sequential residues in an antigen sequence, while a discontinuous
epitope is a segment of antigen residues that are far away from each
other in the primary sequence but are brought to spatial proximity by
polypeptide folding. According to crystallographic studies, the dis-
continuous epitopes take the majority of all epitopes (~90 %).

The B-cell epitope is rather important to immunodetection and
immunotherapeutic applications since an epitope as the minimal
immune unit is strong enough to elicit a potent humoral immune
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response with no harmful side effects to human body [5]. The ulti-
mate goal of epitope prediction is to aid the design of molecules
that can mimic the structure and function of a genuine epitope and
replace it in medical diagnostics and therapeutics and also in vaccine
design [6]. The most reliable methods for identification of an epit-
ope are X-ray crystallography and NMR techniques [7, 8], but they
are costly and time consuming. Hence, computational methods and
tools, with the virtues of low cost and high speed, are employed to
predict B-cell epitopes in silico.

Since two classes of B-cell epitopes are quietly different, the
computational methods can be divided into the linear-epitope pre-
diction methods and conformational-epitope prediction methods.
The linear-epitope prediction methods are usually constructed on
the linear-epitope sequences, and typical models utilize the amino
acid propensities (hydrophilicity, flexibility, beta turns, surface acces-
sibility, etc.) to make the prediction [9-13]. The recent machine
learning-based models utilize sequence-derived features (amino
acid composition, amino acid cooperativeness, etc.) [ 14-20]. Since
the lengths of linear epitopes are not fixed and can vary from 5 to
20 amino acids, all the epitope sequences have been set to the speci-
fied epitope length via trimming and extending operations, respec-
tively, to build the prediction models. The conformational-epitope
prediction methods are usually built on the crystal structures of
antigen—antibody complexes. The binding sites (conformational-
epitope residues) are first annotated by analyzing the antigen—
antibody complexes, and then prediction models are constructed
based on the structures with annotated conformational epitopes.
Typical methods use the structural features (secondary structure,
RSA, neighbor count, half-sphere neighbor count, protrusion
index, etc.) to make the prediction [21-32].

There is a vast and increasing number of biological data in the
last decades, which provide abundant data resources for the devel-
opment of immunoinformatics. As the critical component of the
epitope-based vaccine design, the B-cell epitopes are of the most
important. Data resource is critical for the development of the
B-cell epitope prediction models. This chapter briefly introduces
popular databases for the B-cell epitopes and helps the researchers
get access to the data resources for the development of useful com-
putational tools.

2 The Popular B-Cell Epitope Databases

The availability of experimental data plays a pivotal role in B-cell
epitope prediction. With the development of biological technique,
a great number of B-cell epitope-related data are being released
and available on the Internet or in the publications. The popular
databases are listed in Table 1.
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The popular B-cell epitope-related databases

Databases URLs Comments
PDB http: //www.rcsb.org,/pdb Protein data bank
IEDB http: //www.iedb.org/ Immune Epitope
Database
Bcipep http: //www.imtech.res.in /raghava /bcipep B-cell epitope database
CED http: //immunet.cn/ced/ Conformational epitope
database
EPITOME http: //www.rostlab.org/services /epitome / Database of structurally
inferred antigenic
epitopes in proteins
AntiJen http: //www.ddg-pharmfac.net/antijen /AntiJen/ Kinetic, thermodynamic,
aj_bcell.htm and cellular database
HIV Molecular http: //www.hiv.lanl.gov/content/immunology,/ HIV molecular
Immunology index immunology database
2.1 Protein The 3D structure of antigen or the complex of antigen—antibody is
Data Bank stored in the Protein Data Bank (PDB) database [33]; PDB was

2.2 The Immune
Epitope Database

established by Brookhaven National Laboratories in 1971, subse-
quently managed and maintained by the RCSB. PDB database
compiles the compounds derived from the X-ray crystallography
and NMR experiments (se¢ Note 1). The main server and all the
mirrors around the world provide database search and download
service as well as the description of the PDB data file formats. The
construction and development of PDB database meet the need of
researchers in every field of bioinformatics including epitope
prediction.

The Immune Epitope Database (IEDB) [34] is established in 2004
by the La Jolla Institute for Allergy and Immunology as a part of
the National Institutes of Health. IEDB is the most commonly
used and most authoritative database in epitope prediction [35].
As a big project, this database provides a catalog of experimentally
characterized B-cell epitopes (both linear epitope and conforma-
tional epitope), T-cell epitopes, as well as major histocompatibility
complex (MHC) binding, which are collected from peer-viewed
publications or directly submitted by research groups. At present,
IEDB includes 159,339 B-cell assays. Each epitope is linked to its
reference source, and the epitope structure, source antigen, and
organism from which the epitope is derived are all described. For
published manuscripts, some information such as the authors, arti-
cle title, journal name, and abstract are provided. The interface for
the IEDB database is shown in Fig. 1.
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In addition to databases, IDEB provides some tools to predict
linear B-cell epitopes by using amino acid scales as well as some
tools to predict conformational epitopes by using crystal structures
(see Note 2).

Bcipep [36] is a database established by the Institute of Microbial
Technology, Chandigarh, in India (shown in Fig. 2). This database
contains the experimentally determined linear B-cell epitopes,
which are collected from literature and other publicly available
databases. At present, there are nearly 555 epitopes in Bcipep, cov-
ering a wide range of pathogenic organisms like viruses, bacteria,
protozoa, and fungi. For each entry, some details such as peptide
sequence, source protein, and pathogen group are described. For
data obtained from other databases, hyperlinks to the original
resources are also provided.

The database also supports the use of keyword search, peptide
mapping, and BLAST search for the analysis and extraction of data.

CED [37] is a conformational epitope database (as shown in
Fig. 3). At present, CED contains 293 entries, and all entries are
manually curated from publications in PubMed and ScienceDirect.
Specifically, more than 3,000 references are analyzed manually, and
the conformational epitopes with high resolution and complete-
ness are extracted into the database. CED provides related infor-
mation on epitopes including location of the epitope, the
immunological property of the epitope, the source antigen, and
corresponding antibody of the epitope.

In addition, the database can be browsed or searched through
a user-friendly web interface. Most epitopes in CED can also
be viewed interactively in the context of their 3D structures.
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CED also provides hyperlinks to several external databases, such as
PDB database and PubMed, providing wide background informa-
tion for each entry.

2.5 Epitome Epitome [38] is a database of all known antigenic epitopes infer-
ring from the antigen—antibody complexes as well as the antibodies
that interact with them (as shown in Fig. 4).
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In this database, an antigenic interaction is defined as the
interaction between an antigen residue and one of the six
complementarity-determining regions (CDRs) of an antibody, and
antigenic epitopes consist of the antigenic interaction sites. Thus,
antigenic epitopes infer from the antigen—antibody complexes.
Specifically, all available structures of antibodies are first aligned
and analyzed so as to identify CDRs, and then all antigen residue
proteins in PDB that bind to CDRs are identified. By doing this,
the structures of all known antigen—antibody complexes in the
PDB are analyzed, and antigenic interactions are annotated and
extracted into the database.
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2.6 AntiJen

Epitome contains 142 antigens from protein—antibody complex
structures with 10,180 annotated antigenic interactions (se¢ Note 3).
The related information such as PDB ID, PDB chain ID, and PDB
position is provided for the entries. Additionally, Epitome provides
the interface-friendly tool to visualize interactions in Jmol.

AntiJen [39] is a comprehensive database focused on the integration
of kinetic, thermodynamic, functional, and cellular data within the
context of immunology and vaccinology (as shown in Fig. 5). The
database currently contains totally 24,000 entries that were col-
lected from the experimentally determined data reported in PubMed
publications, including quantitative binding data for peptides
binding to MHC ligand, TCR-MHC complexes, T-cell epitope,
TAP, B-cell epitope molecules, and immunological protein—protein
interactions. The present version (AntiJen v2.0) contains 3,541
B-cell epitopes (linear and conformational epitopes) and provides
user-friendly retrieval interface. Each epitope is described by its pep-
tide source, Ab source, antibody, comment, and external hyperlink.

2.7 HIV Molecular HIV Molecular Immunology Database [40] contains HIV virus
Immunology Database  cpitopes which are extracted from the HIV immunology literature

(as shown in Fig. 6). At present, there are nearly 11,361 HIV-
specific B-cell and T-cell responses summarized and annotated in
this database (se¢ Note 4). The annotation includes information
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such as cross-reactivity, escape mutations, antibody sequence, TCR
usage, functional domains that overlap with an epitope, immune
response associations with rates of progression and therapy, and
how specific epitopes were experimentally defined.

3 The Mimotope Databases

The aforementioned databases are important resources for linear/
conformational B-cell epitope prediction. The data from these
databases provide the resources for computational biologists to
derive benchmark and customized datasets for new algorithm
development and tool evaluation. In recent years, mimotopes are
also widely used in immunoinformatics. A mimotope is a macro-
molecule, often a peptide, which mimics the structure of a genuine
epitope. It causes an antibody response similar to the one elicited
by the genuine epitope. That means, an antibody for a given
epitope antigen will recognize a mimotope which mimics that epi-
tope. Moreover, the selected mimotopes commonly share high
sequential similarity which implies that certain key binding motifs
and physicochemical preferences exist during the interaction with
antibody. Therefore mapping these mimotopes back to the source
antigen can help finding the genuine epitopes more accurately.
Mimotopes are commonly obtained from phage display libraries
through bio-panning. There have been several databases contain-
ing the information of released mimotopes which are summarized
in Table 2 [41].
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Databases URLs Comments
ASPD http:/ /wwwmgs.bionet.nsc.ru/mgs/gnw/aspd  Artificially selected protein/
peptide database, first
mimotope database
RELIC Peptides http:/ /www.northeastern.edu/xray/ Small molecule-oriented
downloads/ peptide database
PepBank http://pepbank.mgh.harvard.edu Includes but not limited
to peptide sequences
MimoDB http://immunet.cn/mimodb/ Largest mimotope database
currently

Sun’s Benchmark
datasets

http://cs.nenu.edu.cn/bioinfo/benchmark%20  Datasets for mimotope-
datasets/index.html based B-cell epitope

prediction

3.1 Artificial
Selected Peptides/
Proteins Database

3.2 PepBank

3.3 MimoDB

Artificial Selected Peptides/Proteins Database (ASPD) (as shown
in Fig. 7) is a curated database that incorporates data on full-length
proteins, protein domains, and peptides that were obtained
through in vitro-directed evolution processes (mainly by means
of phage display) [42]. ASDP is the first database for mimotopes,
currently containing 195 entries which were described in 112
original papers. For each entry, the following information is pro-
vided: target, template, links to external databases (SWISS-PROT,
PDB), aligned sequences of peptides which retrieved from in vitro
evolution and relevant native or constructed sequences, rounds of
selection, and occurrences of clones with each sequence. ASPD has
a user-friendly interface and can be searched by means of the SRS
system. In addition, ASDP provides a BLAST search tool for look-
ing directly for homologies. ASPD database has not been updated
for years.

PepBank (as shown in Fig. 8) is a database of peptides based on
sequential text mining and public peptide data sources [43]. Only
peptides with available sequences and with 20 amino acids or
shorter are stored. At present, it contains 21,691 individual peptide
entries originated from PubMed, ASPD, UniProt, and PDE. The
database has a Web-based user interface with a simple, Google-
like search function, advanced text search, BLAST and Smith-
Waterman search capabilities.

MimoDB (as shown in Fig. 9) is a database of peptides that have
been selected from random peptide libraries based on their abilities
to bind with small compounds, nucleic acids, proteins, cells, tis-
sues, etc. through phage display [44, 45]. The core data of the
MimoDB database are mimotope sets and related information such
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as sequences, structures, targets, templates, and libraries. Peptides
are grouped into a mimotope set if they are from the same inde-
pendent experiment. In this database, (1) only peptides with avail-
able sequences are stored; (2) only peptides that are 40 amino acids
or shorter are stored; (3) only peptides selected from phage display
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Random Peptide Library Screening: Benchmark Dataset and Prediction Tools Evaluvation. Molecules 2011, 16(6), 4971-4993.

Fig. 10 The interface for Sun’s benchmark datasets

3.4 Sun’s

random peptide libraries are stored; and (4) peptides selected from
phage display cDNA libraries, e.g., antibody phage display librar-
ies, are excluded. In the current release 3.0, 19,399 peptides
grouped into 2,197 sets are collected from 1,051 published papers.
MimoDB provides tools for simple and advanced search, structure
visualization, BLAST, and alignment view on the fly.

Sun’s benchmark datasets (as shown in Fig. 10), constructed by

Benchmark Datasets Sun et al. [46], are special for conformational B-cell epitope pre-

diction based on mimotope analysis. The current version 2.0 con-
sists of 39 complex structures (16 antigen—antibody complexes and
23 protein—protein interaction structures) with 66 mimotope sets.
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3.5 RELIC Peptides
Database

In addition, 24 cases each with only one mimotope set for one
complex structure are also provided as the test data. Each set
includes information on the complex structure, the template chain,
the mimotopes obtained from corresponding phage display experi-
ment, and the epitope (se¢ Note 5). All datasets can be downloaded
freely for academic purposes.

The RELIC peptides database (see Note 5) was released in 2004
and contained more than 5,000 peptide sequences selected with
small-molecule metabolite drugs as well as random clones from its
parent libraries. A web interface was provided to access the database.
RELIC peptides were usually indispensable as the part of the RELIC
suite for many tools in the database heavily depend on the data [47].

4 Notes

1. In the PDB database, searchable structures are updated over
time as some structures become out of date and are removed
from the database.

2. IEDB database provides some state-of-the-art tools to analyze
the B-cell epitopes. Specifically, the tool “Antibody Epitope
Prediction” can be used to predict the linear epitopes;
Discotope and ElliPro can be used for the conformational-
epitope prediction.

3. If the interested protein has not a known complex with an
antibody in the database, user can blast its sequence against all
the sequences in the database. All known complexes between
antibodies and proteins that are similar to the interested
sequence will be returned.

4. In the HIV molecular immunology database, only B-cell
responses to HIV-1 and HIV-2 are summarized and annotated.

5. RELIC web server was shut down in October 2010. To replace
the functionality of those peptide analysis tools, Makowski
et al. have written a set of stand-alone programs for Windows
platforms. All the executable versions of the programs, instruc-
tions for use, and sample input and output files for the programs

can be downloaded via http://www.northeastern.edu/xray/
downloads/.
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Chapter 8

Antigen—-Antibody Interaction Database (AgAhDb):
A Gompendium of Antigen-Antibody Interactions

Urmila Kulkarni-Kale, Snehal Raskar-Renuse, Girija Natekar-Kalantre,
and Smita A. Saxena

Abstract

Antigen—Antibody Interaction Database (AgAbDD) is an immunoinformatics resource developed at the
Bioinformatics Centre, University of Pune, and is available online at http://bioinfo.net.in/AgAbDb.htm.
Antigen—antibody interactions are a special class of protein—protein interactions that are characterized by
high affinity and strict specificity of antibodies towards their antigens. Several co-crystal structures of
antigen—antibody complexes have been solved and are available in the Protein Data Bank (PDB). AgAbDb
is a derived knowledgebase developed with an objective to compile, curate, and analyze determinants
of interactions between the respective antigen—antibody molecules. AgAbDD lists not only the residues of
binding sites of antigens and antibodies, but also interacting residue pairs. It also helps in the identification
of interacting residues and buried residues that constitute antibody-binding sites of protein and peptide
antigens. The Antigen—Antibody Interaction Finder (AAIF), a program developed in-house, is used to
compile the molecular interactions, viz. van der Waals interactions, salt bridges, and hydrogen bonds.
A module for curating water-mediated interactions has also been developed. In addition, various residue-
level features, viz. accessible surface area, data on epitope segment, and secondary structural state of bind-
ing site residues, are also compiled. Apart from the PDB numbering, Wu-Kabat numbering and explicit
definitions of complementarity-determining regions are provided for residues of antibodies. The molecular
interactions can be visualized using the program Jmol. AgAbDb can be used as a benchmark dataset to
validate algorithms for prediction of B-cell epitopes. It can as well be used to improve accuracy of existing
algorithms and to design new algorithms. AgAbDD can also be used to design mimotopes representing
antigens as well as aid in designing processes leading to humanization of antibodies.

Key words Antigen, Antibody, Antigen—antibody complex, Antigen—antibody interactions, B-cell
epitope, Paratope, Antibody-binding site, Conformational or discontinuous epitope, Immuno-
informatics, Bioinformatics, Derived database
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Ab Antibody
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Ag-Ab Antigen—antibody
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AgAbDb  Antigen—-Antibody Interaction Database

ASA Accessible surface area

BR Buried residue

BS Binding site

CDR Complementarity-determining region on heavy chain
CE Conformational epitope

CEP Conformational epitope prediction

Ig Immunoglobulin

IR Interacting residues

LDR Complementarity-determining region on light chain
PDB Protein Data Bank

1 Introduction

1.1 Antibody
Structure

1.2 Types
of Antibodies

1.3 Paratope

Antibodies are produced by vertebrates in response to antigens.
Antigens are usually foreign molecules of invading pathogens.
Antibodies are produced in billions of forms by B cells and are
collectively referred to as immunoglobulins (abbreviated as Ig).
The clonal selection theory states that all the antibodies produced
by an individual B cell have the same antigen-binding site.
Furthermore, every B cell produces a single species of antibody
having a unique antigen-binding site.

An antibody molecule is a polymer of two light and two heavy
chains. The two light chains are identical and are of a length of
~220 amino acids each. Similarly, the two heavy chains are identical
with a typical length of ~440 amino acids each. The four chains are
held together by various noncovalent and covalent (disulfide)
bonds. Every light chain has one variable and one constant region,
whereas heavy chains have one variable and two to three constant
regions. As a result, two identical antigen-binding sites are formed
by the N-terminal variable regions of a pair of light and heavy
chains. The tail (Fc) and hinge regions are however formed by the
constant regions of two heavy chains. The antigen-binding site of
an antibody is referred to as a “paratope” [1, 2].

There are five classes of antibodies such as IgA, IgD, IgE, IgG, and
IgM, which are based on five types of heavy chains such as a, 9, €,
v, and p. Each of these heavy chains is known to invoke a specific
cascade of reactions upon binding to an antigen. However, there
are only two types of light chains (x or A) that pair with one of the
heavy chains. Therefore, the type of light chain does not seem to
affect the properties of the antibody, other than its specificity for
the antigen [1, 2].

Paratope, the antigen-binding site of an antibody, is typically a
region on the surface of the antibody that interacts with a region
on the surface of the antigen (epitope) through non-covalent
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interaction. The paratope region is observed to be unique to every
antibody and is said to be complementary to the “epitope” of the
antigen. A paratope is made of six discontinuous regions, which are
referred to as complementarity-determining regions (CDRs).
There are three CDRs each on light and heavy chains. These
regions are highly variable and are the loops connecting beta
strands of the immunoglobulin fold.

The binding of an antigen to an antibody is reversible, and both the
molecules can exist independently. The antigen—antibody interac-
tions are thus mediated by many relatively weak, non-covalent forces
such as hydrogen bonds, hydrophobic interactions, van der Waals
forces, and ionic interactions. Of all the forces, van der Waals forces
are the weakest and can attract all kinds of molecules. Hydrogen or
ion—dipole bonds are formed between oppositely charged atoms,
whereas “hydrophobic” interactions are formed between atoms of
nonpolar amino acids which do not form electric dipole [3, 4].
These weak forces are effective only when the antigen molecule is
close enough to allow some of its atoms to fit into complementary
niches on the surface of the antibodies. The attractive forces exerted
by ionic and hydrophobic bonds help the molecules to overcome
hydration energies. This leads to the expulsion of water molecules
and results in bringing the epitope and paratope closer. This spatial
proximity facilitates van der Waals interactions. The overall strength
of binding depends on goodness of fit between the epitope and
paratope and the total area of contact between them [3, 4].

Antigen—antibody interactions are highly specific, and understand-
ing the molecular basis of the specificity has been one of the goals
of immunology. A large number of high-resolution X-ray struc-
tures of several antigens have been solved in the native (uncom-
plexed) form as well as in complex with antibody, and the data are
archived in Protein Data Bank (PDB) [5]. Analyses of these struc-
tures have helped in understanding characteristics of both epitopes
(antibody-binding site on antigen) and paratopes (antigen-binding
site of antibody), which are complementary to each other and are
relational entities [6-8].

Epitopes are of two types, viz. sequential or contiguous and
conformational or discontinuous. The sequential epitopes are a
stretch of amino acid residues linked by the peptide bonds and are
recognized by an antibody. The other type is called conformational
or discontinuous epitope where the antibody recognizes multiple
sequential regions that come together due to folding of the poly-
peptide chain and a few independent residues [9-11]. Availability
of crystal structures enabled the study of various features of binding
sites such as size, shape, and complementarity of interacting surfaces
of the antigens and antibodies [ 12—14]. These features and data, in
an implicit and explicit manner, also served as a knowledgebase to
develop and benchmark algorithms for prediction of sequential
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(continuous) and conformational (discontinuous) B-cell epitopes.
These algorithms have been extensively reviewed elsewhere [15, 16].
Several attempts have been made to compile and curate the immu-
nological data at various levels of complexity, which has resulted in
the development of several useful databases that could themselves
be grouped into categories based on the data archived, viz. anti-
body sequences and crystal structures: IMGT /LIGM-DB [17] and
IMGT /3D structure DB [18]; experimentally characterized linear
and conformational epitopes: IEDB [19], Epitome [20], CED [21],
and BClIpep [22]; and Antigen—Antibody Interaction Database:
AgAbDb [23], BEID [24], and IEDB3D [25]. Since humoral or
antibody-based immune response is the first line of defense against
most of the bacterial and viral pathogens, development of well-
designed immunoinformatics databases in this area has been con-
sidered as one of the most important activities in the realm of
reverse vaccinology and vaccine informatics [26, 27]. Importance
of these databases is further substantiated since computational
modeling of B-cell epitopes is complex due to posttranslational
modifications of B-cell epitopes and the role of carbohydrates in
antigen—antibody interactions.

The first version of AgAbDb was published only with curated
data of Ag—Ab complexes where antigens are proteins. The first ver-
sion included limited data on interactions [23]. It is the first database
that compiled various non-covalent atomic interactions, which facil-
itates the binding of antibodies to antigens. AgAbDb also docu-
mented the interacting residues (IR) and buried residues (BR)
specifically [23]. It is known that many residues of an antigen get
buried under an antibody and may not necessarily be a part of any
intermolecular interactions. However, these residues are important in
maintaining the scaffold of binding sites. The residues of binding site
(BS) however are obtained by summation of IR and BR, which help
to determine the area of an antigen buried under the footprint of an
antibody [28-30]. AgAbDb was also instrumental in providing the
interacting residue pairs of antigens and antibodies. Most of the
immunoinformatics databases and servers mentioned earlier [ 19-22,
24, 25] list interacting residues of the epitopes and paratopes inde-
pendently and lack data on equivalence. It was further noticed that
most of the databases listing the interaction data are not specially
designed for Ag—Ab interaction studies and provide data on interac-
tions of other immunological molecules as well. As a result of this,
there is a lag in updation and several Ag—Ab complexes are not
included in their versions posted online.

This chapter documents features of the current version of
AgAbDb, which has significant additions in terms of not only
curated data of peptide antigen—antibody complexes but also
water-mediated interactions, epitope segment data with secondary
structural states of participating residues, etc. The content, format,
browsing, and retrieval of data from AgAbDb are explained using
suitable examples.
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2 Materials

2.1 Data Collection

2.2 Data Curation

PDB archives high-resolution structures of several antigens in both
native (free unbound state) and complex (bound to antibody)
states [5]. There are a few structures in the PDB where residues of
either antigen or antibody molecules are mutated to study the
effect of mutations on antigen—antibody interactions. The PDB is
searched using text-based queries to retrieve entries of antigen—
antibody complexes. It is a multi-step process, and scripts are
written to compile all the structures. These structures are broadly
grouped into two types based on the length of antigen sequence.
Antigens having length <35 amino acids were referred to as pep-
tide antigens. Antigen sequences with length >35 were grouped as
protein antigens. The atomic coordinate file for each antigen-
antibody co-crystal structure is downloaded from the PDB (www.
resb.pdb.org). The data are parsed through a series of Perl scripts
to curate the derived data of an antigen, antibody, and various
intermolecular interactions.

The most recent release of AgAbDb (Aug 3, 2013) includes
data of 427 antigen—antibody co-crystal structure complexes.
There are 289 and 138 entries, respectively, for protein and peptide
antigens in complex with respective antibodies. Of the protein
antigens, majority are monomers (266) whereas 21 are dimers and
only 2 are multimers. AgAbDb is updated regularly based on the
release of antigen—antibody co-crystal structure complexes in
the PDB.

AgAbDb compiles and curates derived data of antigen—antibody
interactions, and the PDB is the primary source of experimental
data. Various tables are populated with the data of antigen, anti-
body, and antigen—antibody interactions. The derived data includes
the residues of epitope and paratope, interacting residue pairs, and
types of interactions between them. Derived data of molecular
interactions is generated using Antigen—Antibody Interaction
Finder (AAIF), a Perl program developed in-house [23]. Various
geometrical and stereochemical criteria used to curate interactions
are described earlier [23]. Perl scripts are also written to curate
water-mediated interactions, sequential epitope segments, second-
ary structural state of the residues of epitope, etc.

3 Methods

3.1 Database Design
and Organization

The AgAbDb is implemented as a relational database using MySQL
Server 5. The database comprises of 12 tables to compile, curate,
and archive data on antigens, antibodies, and interactions and is
normalized up to Third Normal Form (3NF). The lists of interacting
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3.2 Characterization
of Binding Sites

3.3 Interacting
Residues (IR)

3.4 Buried
Residues (BR)

3.5 Water-Mediated
Interactions

and buried residues of the respective antibody and antigen are
stored in four tables. The various types of atomic interactions
between antigens and antibodies are stored in two tables. An addi-
tional table is used to store “water-mediated interactions,” a fea-
ture which is added recently. Two tables are used to store the
epitope segments and secondary structures of amino acid residues,
while the remaining three tables are used to store the annotation
data of every antigen, antibody, and entire complex. The query
system has been developed using JSP, JSTL, HTML, and
JavaScripts. Perl scripts are written to retrieve the data from the
PDB and to populate database tables.

The residues of the binding site of both the antigen and antibody
are compiled. The residues of BS of an antigen (epitope) are classi-
fied as IR and BR based on their role in the complex formation.
The binding site of an antibody (paratope) comprises three CDRs
each on the variable domain of heavy (CDR 1-3) and light (LDR
1-3) chains.

The residues of an antigen that form non-covalent interaction(s)
with residue(s) of an antibody molecule are defined as IR. AAIF
calculates non-covalent interactions, viz. van der Waals interactions,
hydrogen bonds, salt bridges, short contacts using distance, and
geometry-based criteria described earlier [23, 31-34]. The posi-
tions of hydrogen atoms are predicted using the fourth atom fixa-
tion algorithm. The hydrogen bond donors and acceptors are
defined as per HBplus program [35].

In addition to the IR, a few more residues of an antigen are buried
under the footprint of an antibody. These residues do not directly
participate in the antigen—antibody interactions but are part of the
scaffold to maintain the binding site. These residues are identified
based on loss of solvent-accessible surface area (ASA) upon antibody
binding. Solvent ASA of antigen and antibody molecules was com-
puted using the Voronoi polyhedron algorithm [ 36 ] in both unbound
and bound states. The difference in the solvent ASA of every residue
of the antigen (and antibody) in uncomplexed as well as complexed
states needs to be computed to determine the area of interaction and
the list of BR. The residues that lose ASA greater than or equal to
0.1 A2 upon formation of the complex are defined as BR.

Water-mediated hydrogen bonds between antigen and antibody
molecules are computed. Only the crystallographic water mole-
cules present in the PDB files are included in the computation.
Potential hydrogen bond donors and acceptors were defined as per
HBplus program [35]. Both bond distance and angle criteria are
used to curate ionic interactions between charged residues and
trapped water molecules.
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The antibody-binding sites of antigens are typically made of a few
sequential epitopes that come together due to folding of the poly-
peptide chain along with a few individual residues referred as
singleton residues [28-30]. The continuous sequential segments
of conformational epitope (antibody-binding site) are listed along
with the individual residues, if any.

Single-letter codes of the secondary structural state of every residue
of the sequential epitope are compiled. The secondary structural
states defined by the DSSP program [37] are used for this
purpose.

The residues of light and heavy chains of antibodies are re-
numbered based on the CDR definitions put forward by Wu and
Kabat using the AbCheck server [38]. The AgAbDb tables are
populated such that the correspondence between both the PDB
and Kabat numbering is maintained.

4 AgAbDb: Need and Scope

4.1 Antigen-
Antibody Complexes

The structures of more than 1,000 complexes of antigens with
respective antibodies have been solved to date, and the data is depos-
ited in the PDB [5]. Several antibodies have been co-crystallized
with various antigens such as proteins, peptides, small molecules,
nucleotides, and DNA. These co-crystal structures have been solved
with different objectives like mapping the antibody-binding sites,
studying the mode of interactions between the two molecules, iden-
tifying critically important residues, examining cross-reactivity of
antibodies towards antigens, and assessing conformational changes
in the antigen, antibody, or both upon formation of complexes.

The vast amount of co-crystal structure complex data have also
been collectively used for studying the properties of interacting
interfaces such as epitopes and paratopes in particular and protein—
protein interactions in general [14]. The analysis of data was
also instrumental in the development of B-cell epitope prediction
algorithms for both sequential and conformational epitopes. Apart
from serving as a knowledgebase for epitope predictions, the data
have also been used to validate and benchmark the performance of
epitope prediction algorithms. The data of antibody structures
in free and bound forms have been used to develop dedicated
homology-modeling programs for the prediction of three-
dimensional structures of antibodies [40, 41]. The importance of
prediction of 3D structures of antibodies is ever increasing as the
antibodies are increasingly being used for diagnostic and therapeu-
tic purposes in diseases such as cancer. Humanization of antibodies
is another important area where high-resolution curated data of
the antigen—antibody structures and interactions are desirable.
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Welcome to Antigen Antibody Interactions Database.

AgAbDb, a derived knowledge base, archives molecular interactions
of protein and peptide antigens characterized by co-crystal
structures. The interactions are compiled at two levels, viz. residue
level and atomic level. The interactions are characterized using
AAIF (Antigen-Antibody Interaction Finder) developed in-house.
AAJF enlists various non-covalent interactions such as van der
Waals, salt bridges, hydrogen bonds and short contacts using
distance and geometry-based criteria. Apart from molecular
interactions, AgAbDb also archives information pertaining to Ag and
* Ab description, definition of Complementarity Determining Regions
on light chain (LDR) and Complementarity Determining Regions on
heavy chain (CDR) residues of the antibody with both, the PDB as
well as Wu and Kabat numbering.

AgAbDb Statistics

The database contains 427" antigen-antibody complexes.
+ 289 Protein-Ab complexes
+ 138 Peptide-Ab complexes

*as on Wed Aug 07 16:09:49 IST 2013

Fig. 1 A snapshot of the home page of AgAbDb

4.2 AgAbDb: Design
and Contents

Note: A list of all the available antigen—antibody complexes in PDB
could be made by searching PDB using keyword-based searches.
However, there is always a possibility of missing out on a few
entries since all the three keywords, antigen, antibody, and com-
plex, may not be explicitly present in every PDB file. Most often,
the type of antigen and its description such as the lysozyme or a
peptide sequence are mentioned rather than the word antigen.
Therefore, compilation of PDB files of Ag—Ab complexes becomes
a multi-step curation exercise. In AgAbDDb, the scripts have been
written to automate PDB searches and curation. These searches are
performed every week to corroborate with the weekly schedule of
updation of PDB.

Every antigen—antibody co-crystal structure helps in understand-
ing how an antibody interacts with an antigen at an atomic level
and illustrates specificity of interaction. AgAbDb catalogs the anti-
gen—antibody interactome data individually and collectively. The
home page of AgAbDD is shown in Fig. 1. The current version of
AgAbDD archives data on protein and peptide antigens only.
Furthermore, AgAbDD curates data of only those complexes where
both the antibody chains (heavy and light) are part of the complex.
Figure 2 shows the growth of antigen—antibody co-crystal structure
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Fig. 2 The growth of co-crystal structures of protein- and peptide—antibody
complexes in AgAbDb

complexes of protein and peptide antigens over a period of time.
Figure 3 shows a bar chart of the number of structures against
resolution at which they were solved. It can be seen that a majority
of the structures have been solved with a resolution better than 3 A.

Note: For data on complexes of other antigens such as carbohy-
drates, RNA, and DNA, the users are suggested to use the PDB. It
is planned to populate AgAbDb with data on all the antigen—anti-
body complexes, regardless of the antigen type in future.

A user-friendly web-enabled interface for AgAbDb (http://
115.111.37.206:8080/agabdb2) has been designed and tested for
all the web browsers. A “quick search box” is provided on all the
web pages of the interface. The “quick search” supports the data-
base search using the PDB ID or the keywords. This in turn opens
a page listing the search results. AgAbDb can be browsed by click-
ing on the PDB ID. The search results page also provides links to
view the antigen—antibody interactions archived in AgAbDb using
Jmol [V], to view the corresponding complex at the RCSB PDB
site [P], and to download the file from the RCSB PDB [D].

The “Search” option on the menu bar pops down three options
(see Fig. 4). Text-based queries can be performed in the “Advanced
search” as shown in panel “A.” This page also provides an option
to search Ag—Ab complexes for a pair of interacting residues.
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4.4 AgAbDb: Data
Formats and Displays
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Fig. 3 Distribution of co-crystal structures of antigen—antibody complexes based
on resolution

The “Residue wise search: Ag and Ab” option permits retrieval
of entries for any interacting residues (panel “B”). The “Residue-
wise interactions: CDR” search provides quick summary of
interacting residues for selected CDRs of antibody (panel “C”).
Detailed help for searching and browsing is also provided on the

AgAbDDb website.

Note: It is advisable to use keyword-based searches when either the
antigen or the antibody is known. One can quickly view Ag-Ab
interactions, if the PDB ID is known. AgAbDb, however, is the
only database which facilitates querying of AgAb interactions using
residues of epitope, paratope, or both.

AgAbDb archives data of antigens, antibodies, and molecular
interactions under eight categories, viz. Summary, IR: Epitope-
Paratope, IR: Epitope Segments, Binding Site: IR+ BR, Atomic
Level Interactions, Water-Mediated Interactions, View Interactions,
and Statistics. The tables displaying interaction data under each of
these eight categories can be exported as Excel files. The complex,
binding site residues of antigen and antibody along with subsets of
various interactions can be visualized using Jmol (http://www.
jmol.org/). The snapshots of screens based on eight categories are
shown in Fig. 5. AgAbDD records for a complex of the antibody
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Fig. 5 Snapshots of various data archived in AgAbDb. The PDB ID: 1A14 (complex of neuraminidase and anti-

body NC10) is used as a case study
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4.4.1  Summary

442 IR:
Epitope—Paratope

NC10 Fv and neuraminidase from influenza virus ([39], PDB ID:
1A14) are shown. AgAbDb uses PDB ID as a unique identifier to
archive interaction data.

This section provides overall information of the complex, the
antigen, and the antibody. Data are curated from the PDB and
typically lists PDB ID, PubMed ID, resolution, release date, and
citation information. The data on antibody includes name, class/
type, scientific and common names of the source, and the PDB
chain identifiers for light and heavy chains. The data on antigen
includes name, scientific and common names of the source, anti-
gen type (protein or peptide), and the PDB chain identifiers.

Notze: The data on class/type of the antibody, if available in the
PDB, is curated. It is observed that class/type of antibody is men-
tioned only occasionally in the PDB.

This section lists all the interacting residues of the binding sites.
The residues of antibody (paratope) that are interacting with the
residues of antigen (epitope) are provided. For example, the num-
bers of interacting residues of paratope (NC10 Fv) and epitope
(neuraminidase) are 12 and 17, respectively (PDB ID: 1A14). The
paratope residues are listed with chain type (heavy or light chain),
PDB numbering, and Kabat numbering. It is preferred to have
both the numbering systems and their equivalence known as far as
antibody numbering is concerned. The table also lists equivalence
between the interacting residues of the antigen and antibody. This
is one of the unique features of AgAbDb. It is very useful and
facilitates interesting analyses as a residue may interact with one or
more residues. The residues of both antigen or antibody having
minimum and maximum contacts can be identified. For example,
Asn400 of the antigen interacts with two residues of CDR2 and
one residue of CDRI1 of heavy chain. Identification of such impor-
tant residues or hot spots may have applications in mutation
analysis, which is a prerequisite for designing antigen scaffolds
and/or peptide/subunit vaccines. Other immunoinformatics
resources, viz. IEDB-3D and IMGT/3Dstructure-DB, do not
provide the list of pairs of interacting residues in an explicit fashion.
Generation of such a list using these resources calls for processing
of the data through multiple steps. The “IR: Epitope-Paratope”
table also lists secondary structural states of interacting residues of
antigen, which are obtained from DSSP assignments [ 37]. Analysis
pertaining to preference of secondary structural states of antigens
has always been the area of interest and has been used effectively in
epitope prediction programs.

Note: AgAbDDb curates data of binding sites and interactions parsing
the coordinate data and not by mining the text of published refer-
ences. It was observed that there are a lot of variations in the way in
which the authors have listed epitope and paratope residues and
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interactions in the published papers. Some publications listed only
the interacting residues, while others listed both interacting and bur-
ied residues. Furthermore, it was noted that different programs and
varied criteria are being used by the authors to enlist residues of
binding sites. Hence, for the purpose of objectivity and uniformity in
defining binding site residues, all the complexes were parsed through
the program, AAIF, which is developed in-house. Other resources,
viz. IEDB-3D, provide both “curated” and “calculated” contacts.

This section enlists the segments of the binding site. Antibody-
binding site of antibody NC10 characterized in PDB ID: 1A14
consists of four segments and three individual residues. Most often
antibody-binding sites on antigens are conformational epitopes,
where multiple sequential epitopes and a few individual residues are
brought together due to the folding of polypeptide chain. The seg-
ments or the sequential epitopes are defined where consecutive
amino acids (at least two) are a part of the binding site. The confor-
mational epitope prediction (CEP) server, the first program to pre-
dict conformational or discontinuous epitopes, developed by our
group (http://bioinfo.net.in/cep.htm or http: //117.239.43.116/
index.html), successfully used the distance-based criteria to predict
conformational epitopes using sequential epitopes and individual
residues [29, 30].

Note: Various resources may use different criteria and cutoffs for
listing segments, sequential epitopes, and hence conformational
epitopes.

This section lists all the residues of the respective binding sites of
the antigens and antibodies. Separate tables for antigen and anti-
body molecules are generated. In addition to the interacting
residues, several residues of epitope are buried under the footprint
of an antibody. Such residues are a part of the binding site scaffold
and may not directly interact with residues of CDRs and LDRs
of an antibody. Similarly, CDR and LDR also have only a few inter-
acting residues while the other residues forming the scaffold,
though not interacting explicitly, are used to calculate the area of
interface of antibody with antigen.

Note: It is advisable to know the composition of both the epitope
and paratope in terms of interacting and buried residues for a vari-
ety of purposes and applications.

This section displays various non-covalent interactions between
residues of the epitopes and paratopes. For example, NC10 anti-
body (PDB ID: 1A14) has about 107 non-covalent interactions of
the types such as salt bridges (1), hydrogen bonds (7), short van
der Waals interactions (2), and van der Waals interactions (97).
These interactions are curated using the program AAIF.
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4.4.6 Water-Mediated
Interactions

4.4.7 Statistics

Note: Though several programs are available for characterizing
various interactions between residues of antigen and antibodies, it
calls for analysis that requires pre- and post-processing. Curation
and summary of residues involved in non-covalent interactions is a

value added feature of AgAbDDb.

This table lists the interactions mediated through crystallographic
water molecules. It is known that the water molecules are observed
in cavities of binding sites of antigens and antibodies. Such trapped
water molecules often form bridging hydrogen bonds between the
antibody and antigen. AgAbDb now provides a utility to enlist
water-mediated interactions.

Notze: Since there are no trapped water molecules in the complex of
NC10 and neuraminidase (PDB ID: 1A14), a snapshot of this
table is not included in Fig. 5.

This section provides a residue-wise summary of various inter-
actions. Separate tables are provided for the antigen (epitope) and
antibody (paratope), which list the residues that contribute maxi-
mally to the antigen—antibody interactions. This section provides a
summary of interactions for every residue and includes data on the
total number of interactions, which is a sum of the total number of
hydrogen bonds, van der Waals interactions, and salt bridges. The
table also lists the total number of residues (from the partner mol-
ecule) with which a given residue is interacting. This section also
helps to quickly enlist which of the 20 amino acids are parts of
the paratope and epitope. For example, NC10 antibody CDRs
have only 7 (S, T, N, F, L, D, Y) amino acids whereas the neur-
aminidase epitope has 11 (S, K, T, N, G, A, D, 1Y, P, W) amino
acids as characterized in the complex 1A14 [39].

AgAbDD also helps in analyzing how every CDR partici-
pates in binding to the epitope. This utility is provided under the
“Search” option on the main menu bar. Three CDRs on light
chain are termed as LDR 1-3. There are three LDRs (light chain)
and three CDRs (heavy chain). Since the PDB numbering may or
may not be in accordance with the position of a given residue in
sequence and/or Kabat scheme of numbering, AgAbDb provides
equivalence between PDB and Kabat numbering. “CDR statistics”
for NC10 antibody (PDB ID: 1A14) reveals that two of the six
CDRs such as LDR2 and CDRI1 do not participate in the antigen
binding at all. The LDRI1, LDR3, CDR2, and CDR3, respectively,
have 2, 4, 3, and 3 residues interacting with various residues of
the antigen. Of the 107 total interactions, 25, 34, 27, and 21
interactions are contributed by LDR1, LDR3, CDR2, and CDR3,
respectively. Thus, AgAbDb can be used to perform various
queries and to study the multiple aspects of antigen—antibody
interactions.
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AgAbDb is updated every week. Curation of antigen—antibody
interaction data of the antigens other than proteins and peptides is
under process. The interaction data of the antigens such as small
molecules, carbohydrates, RNA, and DNA will be curated and
made available in future.
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Chapter 9

Allergen Databases

Gaurab Sircar, Debasree Sarkar, Swati Gupta Bhattacharya,
and Sudipto Saha

Abstract

In this chapter, five popular allergen databases have been described: (1) Allergome is based on basic and
clinical information on allergens causing an IgE-mediated disease; (2) AllergenOnline allows online search
of peer-reviewed allergen list; (3) International Union of Immunological Societies Allergen nomenclature
subcommittee database contains systematic nomenclature and molecular details of well-characterized
allergens; (4) AllFam allows classifying allergens into protein families based on domain information; and
(5) SDAP provides in detail structural information of the allergens.

Key words Allergen nomenclature, IgE-mediated disease, Domain, 3D structure

1 Introduction

Allergens are basically nonparasitic antigens capable of triggering a
type-I hypersensitivity reaction in individuals with genetic predispo-
sition to allergy. This immune response is mediated by inappropriate
production of immunoglobulin E (IgE). The hereditary tendency
of an individual to make IgE derived from plasma cells in response
to stimulation of Th2 cells by common environmental allergens.
There are many different types of allergens that could trigger an
allergic reaction and may require clinical care. The common sources
of allergen are dust mite excretion, pollen, latex, mould, insect
stings, and some foods including peanuts, seafood, and shellfish.
There are certain important features that make an antigen to be
allergen: (1) can induce Th2 type response, (2) activation of 1L.-4-
producing CD4+ T cells, and (3) contains peptides that bind host
MHC class I molecule to prime T cells [ 1,2 ]. Clinico-immunological
and molecular data related to allergy and allergens are increasing
with advancement of genomic and proteomic technologies.
Sequences and three-dimensional structures of several potential
food and aeroallergens have been determined in recent years.
Information related to allergens is stored in specialized databases

Rajat K. De and Namrata Tomar (eds.), Immunoinformatics, Methods in Molecular Biology, vol. 1184,
DOI 10.1007/978-1-4939-1115-8_9, © Springer Science+Business Media New York 2014

165



166 Gaurab Sircar et al.

and repositories to support allergy research [3]. Basically, allergen
databases can be classified into two types [4]: (A) Biological data-
base, which provides only clinical or physiological information about
allergens: It may not contain molecular information. Some of the
examples of this class are Allergome (http: //www.allergome.org/),
Informall (http://farrp.unl.edu/resources/gi-fas/informall), and
AllAllergy (http://allallergy.net/). (B) Molecular databases, which
focused on sequences and structures of allergens: International
Union of Immunological Societies (IUIS) allergen nomenclature
subcommittee, Allergen Database for Food Safety (ADES) (http://
allergen.nihs.go.jp/ADES /), Allergen Online (http://allergenonline.
com), AllerMatch (http://www.allermatch.org), and Structural
Database of Allergen Proteins (SDAP) (http://fermi.utmb.edu/
SDAP /sdap_ver.html) are some of the molecular databases. In this
chapter, we discuss about five commonly used allergen databases of
which the first one is a biological database (Allergome) and the
remaining four are molecular databases (AllergenOnline, TUIS aller-
gen nomenclature database, AllFam, and SDAP) (see Note 1).

2 Materials and Methods

2.1 Allergome
Database

2.1.1 Description
of Allergome Database

Allergome Home

Allergens

ReTiME

RefArray

Tools

The Allergome Database is available at http://www.allergome.
org/. The web version 4.0 is free, but a registration is required and
users need to choose a username (max 16 spaces) and a password
(max 16 characters). The menus are in the top side of the page
and are interlinked [5, 6]. Followings are the brief description of
menus.

It links to the home page of Allergome and allows access to the
following menus: allergens, real-time monitoring of IgE sensitiza-
tion (ReTiME), RefArray, Tools, History, and statistics. Access to
historical copies of the database needs registration, and new users
need to log in for further access.

This menu allows to access search engine of Allergome. In this
search page, users can input query in the allergen database. There
are two types of search: (1) quick search and (2) advanced search.
Details of the two searches are described in Subheading 2.1.2.

The “ReTiME” links to a module created to acquire and store real-
time data related to IgE sensitization.

RefArray is a module created to access the references in the
Allergome reference archive that contains all the processed papers
available from the literature.

Allergome aligner allows comparing query sequence with the
Allergome sequence dataset.


http://www.allergome.org/
http://farrp.unl.edu/resources/gi-fas/informall
http://allallergy.net/
http://allergen.nihs.go.jp/ADFS/
http://allergen.nihs.go.jp/ADFS/
http://allergenonline.com/
http://allergenonline.com/
http://www.allermatch.org/
http://fermi.utmb.edu/SDAP/sdap_ver.html
http://fermi.utmb.edu/SDAP/sdap_ver.html
http://www.allergome.org/
http://www.allergome.org/

History

Statistics

Links

Help

2.1.2 Usage of Allergome
Database

2.1.3 Query Result
of Allergome
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History page allows access to historical copies of the allergome
database, starting from the year 2005.

The number of allergen sources and its composition available in
Allergome database starting from 2005 are available in this link.
The updated version on March 20, 2013, contains 2,275 entries.

It contains updated links to events, scientific associations, and
journals.

This page contains general information about the database menus
and how to use it. There are other information related to specifica-
tion and requirements for accessing the data from Allergome.

There are two ways to search the database: (1) quick search and (2)
advanced search. The query forms have been shown in Fig. la, b.

(A) In the “Quick Search” page, users can search the scientific or
common name of the allergen source or the common name
or IUIS defined name or Allergome code of the allergen mol-
ecule (see Notes 2 and 3).

(B) The Allergome search engine retrieves monographs, which
contain all the entries showing matches with words being
searched for (i.e., “pollen birch” will list all the monographs
containing both the words).

(C) In the “Advanced Search,” fields are considered as a single
string of character (i.e., “ Dermatopbagoides favinae” does not
retrieve allergens of the “Dermatophagoides ptevonyssinus”
species).

(D) Users can perform advanced search on “All” the archives of the
Allergome database (default choice in the Select-a-field from
pop-down menu). This search may be slower, but searches
for the queried text in any part of the Allergome database.
Alternatively, a specific archive may be selected if the term
being searched for is known to be in that archive (e.g., term
“Pollen” in the “Tissues” archive).

(E) Users can also perform a refined advanced search by using
Allergenicity Scoring parameters like Species of Interest, Data
Generation, Sequence, and Epidemiology from Literature.

In the output, each allergen molecule is described in a monograph
that includes general features of the allergen and data on allergenic-
ity of the native and cloned molecule. An example of an allergen
monograph is shown in Fig. lc. The monograph is divided into
three parts: (1) The “General Information” page contains data for
the identification of the allergen and its relationship with other aller-
gens within the Allergome. (2) The “Native Form” page contains
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Fig. 1 Screenshots of Allergome (a) query submission form for “Quick Search”; (b) form for “Advanced Search”;
(c) example of a molecule monograph
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2.2 AllergenOnline
Database

2.2.1 Description
of the AllergenOnline
Database

AllergenOnline Home

About AllergenOnline
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data on allergenicity of the allergen in its natural conformation.
(3) The “Recombinant Form” page(s) contains (contain) data on
allergenicity of the allergen obtained by means of molecular biology
techniques. “Recombinant Form” pages are named by the expres-
sion vector used to produce the recombinant molecule.

The AllergenOnline database is accessible at http: //www.allerge-
nonline.org/. The version 13 as on February 13, 2012, contains
1,630 peer-reviewed sequences and 612 taxonomic protein groups
[7]. The menus are on the left side of the page and are interlinked.
Following are the brief description of menus.

It links to the home page of AllergenOnline, and it describes briefly
about the features and tools available in the database. There are
other information related to tools and contact of peer reviewers.

This page shows the brief overview about the AllergenOnline data-
base, including processing data entries and references.

It shows the e-mail address of the database developers.

It allows the user to access all the entries in one page. The data is
presented in eight columns: species, common name, IUIS Allergen,
type, group, length, GI number, and version release number. There
are filters in each column for quick search. More details about this
query page are described in Subheading 2.2.2.
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Version History

Sequence Search
Allergen Database

Database and GMO

FARRP Home

Celiac Disease

222 Usage
of AllergenOnline Database

2.2.3 AllergenOnline
Database Query Result

This page shows statistics of previous and current version, release
date, sequences, groups, and species listed in the database.

This menu allows the user to perform query search using one or
more protein sequences in FASTA format. More details about this
query page are described in Subheading 2.2.2.

It links to other related databases.

It links to Food Allergy Research and Resource Program home
page.

It links to a tool of celiac disease risk assessment of novel protein
and allows users to browse by peptides, references, and proteins.
In addition, it also allows sequence search by exact peptide match
and full FASTA sequence.

There are two ways to search the database: (1) browse entries and
(2) sequence search.

(A) For browsing all the AllergenOnline database entries, click on
the “Browse the Database” hyperlink under the “Navigation”
options along the left-hand side of the home page.

(B) A summary page containing an outline of the whole database
is displayed in a table with the following columns: Species,
Common, [UIS Allergen, Type, Group, Length, GI number,
and Version release number. Under each column, a blank field
allows filtering of the table by that column using a particular
keyword (e.g., filtering with the keyword “ Actinidia chinensis”
in the “Species” column lists all the entries in the database for
that particular species).

(C) Clicking on each of the entries in the “Group” column opens
new window containing information about the published ref-
erences used to classify the protein as an allergen as well as the
individual sequences clustered into the group.

o

(D) Clicking on the “gi” number for each entry opens the page
containing the complete NCBI entry of that particular
protein.

(E) For sequence search option, click on the “Sequence Search
allergen Database” hyperlink under the “Navigation” options
along the left-hand side of the home page.

(F) Users can enter one or more protein sequences in FASTA for-
mat and use any one of the search method options: (1) Full
FASTA, (2) Sliding 8mer window, and (3) 8mer exact search.

The page displaying the entries by browsing options in the
AllergenOnline database is shown in Fig. 2. It contains informa-
tion about the Allergen Source (columns “Species” and “Common”
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Fig. 2 Screenshot of AllergenOnline database

enlisting the scientific and common names of the source organism,
respectively), IUIS Allergen Nomenclature, Type of Allergen (e.g.,
aero, plant, food animal, venom, or salivary), Allergen Groups and
References describing the evidence of allergenicity for the group,
and the length and NCBI gi number of the allergen molecule
and the database version in which the specific allergen was
entered. Sequences of allergens are compiled in a table under
“species,” shown in the left-hand column (scientific name: genus
and species). The common name of the source is also listed. Each
sequence is listed separately, and there can be multiple different
isoforms or partial sequences for a single type of allergen (e.g.,
Actinidin deliciosa Act d 1). TUIS designation or name is shown if
known. The allergen “Group” is linked to more information
including the published references describing the information used
to classify the protein as an allergen as well as the individual
sequences clustered into the group. The gi number in the table of
allergens is hyperlinked to the NCBI page to display the complete
NCBI entry. For groups with multiple sequence entries, all entries
and gi numbers are listed along with the publication references.
The references may apply to a single sequence or to one or more
sequences in the group. In some cases, they provide information of
the allergenicity of the source. Additional columns supply informa-
tion on the number of amino acids in the allergen protein sequence
and the database version in which the specific allergen was entered.
In case of sequence query search, the expected result is the best hit
protein name based on high Z score, percentage of identity, and
similarity values.
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2.3 IUIS Allergen
Nomenclature
Subcommittee
Database

2.3.1 Description

of the IUIS Allergen
Nomenclature
Subcommittee Database

Home

Search

Tree View

Publications

Standardization

Executive Committee

Submission Form

Log-In

2.3.2 Usage of the IUIS

Allergen Nomenclature
Subcommittee Database

The TUIS subcommittee has proposed a unique, unambiguous, and
systematic nomenclature of well-characterized allergenic proteins
published in peer-reviewed journals and maintains a database,
which is available at http://www.allergen.org/. This database
contains all the allergens officially approved by World Health
Organization (WHO) and IUIS [8-10]. The menus are on the top
side of the page and are interlinked. Following is the briet descrip-
tion of menus.

Itlinks to the home page of TUIS Allergen Nomenclature Subcommittee
database. It contains a brief description of the database and also allows
users to search the database by allergen name and source.

It links to query page and allows users to search by (1) TUIS name
of the allergen, (2) allergen source (scientific name or common
name), and (3) major taxonomic group in the form of drop-down
box for example “Plantae Liliopsida,” which can further be filtered
by orders from respective drop-down menu. Figure 3a shows the
search form for the database.

This menu links to “Tree view” page that has an updatable list of
allergens with their official nomenclature arranged according to
Linnaean system, viz. kingdoms—Plantae, Fungi, and Animalia;
each is further subdivided into relevant orders containing link to
the list of allergenic source organisms.

This page contains the allergen nomenclature publication list.

This page contains WHO /IUIS allergen standardization committee
member list.

This page contains IUIS executive committee member address list
including chairman, secretary, and committee members.

This page allows users to submit a new allergen to the TUIS aller-
gen nomenclature database.

It allows members to log in to the TUIS database.

(A) Users can search by allergen name and by allergen source
(common or scientific name).

(B) Alternatively, the major taxonomic group of the source organ-
ism may be selected from the drop-down box to retrieve a
list of allergenic molecules from organisms belonging to that
group. An example of such a list is shown in Fig. 3b. This list
may be filtered by choosing the taxonomic order of the organ-
ism from the next drop-down menu.

(C) Users can get detailed information of each allergen molecule
by clicking on the allergen name.
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Search Results:
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Apim3 | Acid phosphatase 43 g 1655755 1655755
. - 2010-04-29 2010-04-29
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Fig. 3 Screenshots of IUIS Allergen nomenclature subcommittee database (a) query submission form;
(b) results of a broad search with only the major taxonomic group of the source organism selected from the
drop-down menu; (c) the page containing detailed information about a particular allergenic molecule
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Fig. 3 (continued)

2.3.3 UIS Allergen
Nomenclature
Subcommittee Database
Query Result

2.4 AllFam Database

2.4.1 Description
of the AllFam Database

2010-04-29 16:57:55
2012-09-04 15:30:09

GenBank Nucleotide

| AJooe774

UniProt

076821

PDB

An example of the output containing details of the allergen queried
is shown in Fig. 3c. The search result shows additional information
such as biochemical name, molecular weight of the allergen, and
allergenicity evidence in terms of IgE binding property of native
and recombinant allergen, basophil test, and histamine assay. Each
entry may also contain a list of isoallergens approved and num-
bered accordingly by IUIS. Each of these entries has external link
to GenBank, UniProt sequence data through corresponding acces-
sion number, and, if available, the PDB IDs. These entries also
contain external links to PubMed references.

AllFam is available online at http: //www.meduniwien.ac.at/allergens /
allfam/. All the allergens in AllFam were assigned and classified to
corresponding Pfam families. There are 1,091 allergens, out of
which 995 were assigned to 186 AllFam families [11]. The menus
are on the left side of the page and are interlinked. Following is the
briet description of menus.


http://www.meduniwien.ac.at/allergens/allfam/
http://www.meduniwien.ac.at/allergens/allfam/

AllFam Home

Browse/Search AllFam

About AllFam

FAQ

Papers Citing AllFam

2.4.2 Usage
of the AllFam Database

2.4.3 AllFam Database
Query Result
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It links to home page of AllFam, a database of allergen families.
It describes AllFam statistics and how to use AllFam database and
AllFam news.

This page links to query page of the database. It allows users to
search by two options: (1) Get AllFam family chart and (2) search
by allergen families. Detailed information about query search of
AllFam database is available in Subheading 2.4.2.

This page links to information about AllFam database including
background, how AllFam was created, how to cite AllFam, and the
AllFam team.

This page links to information about AllFam construction and
algorithms, AllFam user interface, problems, and errors.

This page links to papers citing AllFam database.

(A) The menu “Browse/search AllFam” allows users to access the
query submission form as shown in Fig. 4a. There are two
search options: (1) Get AllFam family chart and (2) search by
allergen families.

(B) In the “Get AllFam family chart” option, users can browse all
the AllFam data by clicking in the “Browse AllFam” button.
The output result is a list of all the protein family names along
with the number of allergens in each family. The search can be
restricted by allergen source or route of exposure to be selected
from the respective drop-down menu.

(C) Users can get detailed information for each allergen by clicking
on the allergen name in the listed allergen name.

(D) In “Search for allergen families” option, users can search AllFam
database by Pfam ID, AllFam ID, and keywords. For example,
the keywords “inhalant fungal allergens” gave output with a list
of 64 AllFam families containing total 132 allergens.

The AllFam Allergen Family Chart output page is shown in
Fig. 4b. Each allergen family has two links. The one with the
“Fact sheet” links to the page containing information about cor-
responding Pfam ID, biochemical properties of the allergenic
protein, and their allergological significance along with references
as shown in Fig. 4c. “List allergens” links to a new page display-
ing the list of allergens reported under that specific allergen fam-
ily as shown in Fig. 4d. In that list, the allergens are arranged with
their corresponding TUIS name, source organism, and routes of
exposure. In addition, the output page links to Allergome and
TUIS databases.
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2.5 Structural

The SDAP database is available from https://fermi.utmb.edu/

Database of Allergenic  SDAP/ and contains information of 1,526 allergens, out of which

Proteins Database

2.5.1 Description
of the SDAP Database

92 allergens have PDB structures [12, 13]. It is free for academic
and nonprofit use; however licenses for commercial use can be
obtained by contacting W. Braun (webraun@utmb.edu). This data-
base also provides prediction tools for allergens including FAO/
WHO allergenicity test and IgE epitopes. The menus are on the
left side of the page. Following is the brief description of menus.
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route of exposure.

Show families of allergens from | all - | sources
with routes of exposure All =) R
Show 10 : entries per page
Show only families that contain more than one allergen.
Browse AllFam

Search for allergen families

Search for a protein family in AllFam

Search for in | Family name or keywords

SearchAllFam | | Clear this form

"AllFam

Database of allergen families @

AllFam Home
Browse/search AllFam
About AllFam

FAQ

Papers citing AllFam

Powered by

owivion of Medical
Biotechnology

Allfam > Browse/search > Allergen family chart

AllFam Allergen Family Chart

Sources: All
Routes of exposure: All

186 allergen families containing 1023 allergens found:

Acc. Protein family name Number of allergens
AF050 Prolamin superfamily List allergens Fact sheet [N 52
AF007 EF hand domain List allergens Fact sheet [N 53
AF051 Profilin List allergens Fact sheet [N 45
AF054 Tropomyosin List allergens Fact sheet [N 47
AF045 Cupin superfamily List allergens Fact sheet [N 43
AF069 Bet v 1-related protein List allergens Fact sheet [ 30
AF044 CRISP/PR-1/venom group 5 allergen family  List allergens Fact sheet N 27
AF015 Lipocalin List allergens Fact sheet [ 25
AF093 Expansin, C-terminal domain List allergens Fact sheet [ 22
AF021 Subtilisin-like serine protease List allergens Fact sheet [ 21
Entries 1 to 10 of 186 Next >>

| Perform another search]

Fig. 4 Screenshots of AllFam (a) query submission form; (b) output page showing AllFam Allergen Family Chart;
(c) “Fact sheet” of a protein family; (d) page containing list of all allergens from a particular protein family


https://fermi.utmb.edu/SDAP/
https://fermi.utmb.edu/SDAP/
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AF050: Prolamin superfamily

Pfam domains

PF00234: Protease inhibitor/seed storage/LTP family

Biochemical properties

The prolamin superfamily derives its name from the alcohol-soluble proline and glutamine rich storage
proteins of cereals. Members of the this family are characterized by the presence of an a-helical globular
domain that contains a conserved pattern of six or eight cysteine residues that form three or four intra-
molecular disulfide bonds [1]. Apart from the conserved cysteine pattern, there exist litte sequence
similarities between members of different subfamilies. Members of the prolamin superfamily include the
cereal prolamin seed storage proteins and several families of disulfide-rich small proteins. The prolamin seed
storage proteins (gliadins and glutenins) contain a repetitive coiled-coil domain rich in proline and glutamine
residues and a globular disulfide-rich domain. Families of low molecular weight sulfur-rich proteins are the
grain softness proteins, indolines, non-specific lipid transfer proteins, soybean hydrophobic protein,

Allergen Databases

bifunctional a-amylase/protease inhibitors, and 2S albumin seed storage proteins.

Allergological significance
Several families that belong to the prolamin superfamily were described as allergens.

Cereal prolamins: These proteins rarely account for allergic reactions. IgE reactivity to these proteins
was observed in patients with wheat-induced atopic dermatitis or exercise-induced anaphylaxis [2].

2S albumins: The 2S albumins are a major group of seed storage proteins from a botanically diverse
range of dicotyledonous plants. Many of the seed and tree nut allergens belong to the 25 albumins such
as Sin a 1 from yellow mustard, Ber e 1 from Brazil nut, Jug r 1 from English walnut, and Ara h 2 and Ara
6 from peanut [1].

Non-specific lipid transfer proteins: nsLTPs have been suggested to mediate the transfer of

phospholipids between vesicles and membranes. However, plants have used the three-dimensional
scaffold of the nsLTPs in a promiscuous fashion and many nsLTPs are not able to transfer lipids. Instead,
they may play a role in plant defense against fungi and bacteria. nsLTPs are found in high concentrations
in epidermal tissues of fruits. Hence, they are major allergens of fruits from the Rosaceae family. In
addition, allergenic nsLTPs were found in nuts, seeds, vegetables, pollen and Hevea brasiliensis latex [3,

4).
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177

AllFam Home
Browse/search AllFam
About AllIFam

FAQ

Papers citing AllFam

Powered by

oiisien of Medical
Biotechnology

Fig. 4 (continued)

AllFam > Browse/search > Allergen list

AllFam Allergen List

AFO050: Prolamin superfamily [view allergen family fact sheet]

Sources: All

Routes of exposure: All

82 allergens found (sorted by allergen name)

Name Source Kingdom Routes of
exposure
Amba 6 WS Ambrosia ar ia (short rag d) Plants Inhalation
Anao3 IS Anacardium occidentale (cashew) Plants Ingestion
Apig2 WIS Apium graveolens (celery) Plants Ingestion
Arah 2 WIS Arachis hypogaea (peanut) Plants Ingestion
Arah 6 WIS  Arachis hypogaea (peanut) Plants Ingestion
Arah7 IS Arachis hypogaea (peanut) Plants Ingestion
Arah9 WIS  Arachis hypogaea (peanut) Plants Ingestion
Arat3 Arabidopsis thali ear cress) Plants Inhalation
Artv3 WIS Artemisia vulgaris (mugwort) Plants Inhalation
Berel WIS Bertholletia excelsa (Brazil nut) Plants Ingestion
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SDAP Home Page It links to the home page of SDAP, which allows browsing of
allergens alphabetically and provides links for citation and
recent developments. At the top of the page, it also provides
option to go and search “SDAP all proteins” and “SDAP food
allergens.”

a

SDAP Home Page SDAP - All Allergens

ELeE Go to: SDAP All allergens Go to: SDAP Food allergens

SDAP Food

Last Updated: August 20, 2012
Use SOAR AN Alphabetical listing of allergens: ABCDEEGHIJKLMNOPQRSTUVWXYZ
The SDAP web server is only for Academic and non-profit use.

List SDAP AN

SDAP Food

iy s General Search of SDAP - All Allergens

%9 s«les:am:wluln:l::: All ields < | Search Term or Phrase:

P only ergens

P ® Search all allergens

W _Search | Reset

Aller ML, Allgrgen

Mikup LU See the SDAP manual for help with the search. All queries implement a case insensitive search for the presence of the query term in a record from the

kit =0 database. For example, a search for fl in the field “allergen - scientific name” will give the result Asp fl 13,

About SDAP

Below is a list of acceptable search terms for the Search Field: allergen type

EAQ « weed pollen

o " ras ol

Advisory Board « tree pollen

- mites

Allergy Links « animals

Our Software Tools + fungi (moulds) [

MPACK - insects

£anToy « food

W

MASIA

PCPMer

LterProsuet The SDAP project is supported by a Research Development Grant (#2535-01) from the John Sealy Memorial Endowment Fund for

faml Biomedical Research, and by FDA Grant FD-U-002249-1.

b

SOAP Tooks Search Results

Test

SapSeskil Al Allerg hose N Start with: A

Peplide Maich lspecies - Scientific SPecies -

- c

Efﬁmml Sy, Allergen Nw Common Type Description

Aller_ML, Allergen cas 13 |Acarus siro mite mites [fatty acid binding protein

Maduplaosiaoe  [actc 10 |Actinidia chinensis _[Gold Kiwi fruit ffoods sLTP1

About SDAP '?gla‘.i o1 \Actinidia chinensis  |Gold Kiwi fruit ffoods nsLTP1

Sosemlnlomaled (3ot ¢ 5 [Actinidia ohi (Gold Kiwi fruit ffoods Kiwellin

ﬁ&aﬂm& ?%ﬁ)i lActinidia chinensis  |Gold Kiwi fruit [foods Kiwellin

T ctcB  |Actinidia chi Gold Kiwi fruit ffoods [Pathogenesisrelated protein PR-10

Allergy Links éﬁ"fm \Actinidia chinensis  [Gold Kiwi fruit [foods Pathogenesis-related protein PR-10

ST lactd 1 |Actinidia deliciosa  [Kiwi fruit foods S e L el

e Ctd 10 |Actinidia deliciosa  [Kiwi fruit foods nsLTP1

Lt peld - lactinidia deliciosa  [Kiwi fruit foods nSLTP1

PCPMer

et Reld ' lactinidia deliciosa  [Kiwifruit foods nSLTP1

Protein 111 |Actinidia delici [Kiwi fruit foods Major latex protein

%ﬁ&;ﬁm 110101 (ictinidia deliciosa  Kiwi fruit foods Major latex protein

T 12 |Actinidia deli Kiwi fruit _ ffoods Th fike protein; Old Name: Actc 2

BIR K] \Actinidia delici Kiwi fruit foods Unknown Function

Pg’:*ﬂf‘ Qlassification 0101 |Actinidia deliciosa IKiwi fruit foods Unknown Function

& Actinidia deli [Kiwi fruit foods [Phytocystatin

] T

Fig. 5 Screenshots of SDAP (a) query submission page; (b) output page showing alphabetical listing of aller-

gens; (c) sample output page containing detailed information on the allergen molecule
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Allergen Aca s 13 Wf‘//
\..\1{5

by s
( [Allergen Aca s 13 .
mites E— —
[Species - Syst tic Name Acarus siro o
EAN Species - C Name mite 44
S [Keywords fatty acid binding protein ol
@ AN
& Class 2\
Alf:hsl\;:d- Reference
Eriksson TL, Whitley P, Johansson E, van Hage-Hamsten M, Gafvelin G. Identification and characterisation of two
Reference 1 fallergens from the dust mite Acarus siro, homologous with fatty acid-binding proteins. Int Arch Allergy Immunol. 1999
Aug;119(4):275-81.
Aca s 13 - Protein Sequences
_Source | Link to Source | View Sequence | FASTAGSDAP | BLAST@NCBI | BLAST@EXPASy | PROSITEGPIR.
GenBank | 118638268 | Gol Gaol Gol Gol Gol
FASTA@SDAP: FASTA search against all SDAP allergen sequences performed at SDAP
BLAST@ExPASy: BLAST search performed at the j i (ExPASy) proteomics server of the Swiss Institute of
ioi ics (SIB)
PROSITE@PIR: PROSITE search performed at PIR - Protein Information Resources
Aca s 13 - Protein Sequence Properties
tease cleavage sites
Protein Sequenc ptideCutter@EXPASY,
i | Gol
This page provides information about the content of SDAP

Fig.5 (continued)
database including the lists of allergens, list of allergens with

protein sequences, list of allergens with PDB structures, list of
allergens with 3D models, list of allergens with IgE epitopes, and
list of allergens with Pfam classes. This page also allows browsing

SDAP Overview
of allergens alphabetically.
These menus allow users to search SDAP all allergens and SDAP

food allergens. Detailed information about its usage is available in

Subheading 2.5.2.
allergenicity test, FASTA search in SDAP, peptide match, peptide

Use SDAP (SDAP
similarity, peptide-protein PD index, AllerML (markup languages

All and SDAP Food)
There are many important web tools including FAO,/WHO

SDAP Tools
for allergens), and SDAP list available in this links.
It links to pages about general information, manual, FAQ, publica-

tions list, team, and advisory board members of SDAP database.

About SDAP
This page links to other important allergy-related databases.

Allergy Links
Other Software Tools There are many other software tools available including homology
modelling, energy minimizations, calculation of solvent-accessible
areas, and mapping of conformational epitopes.
These are links to important protein databases including PDB,

NCBI-Entrez, SWISS-PROT, and PIR.

Protein Databases Link
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Protein Classification Link

Link to Bioinformatics

Servers

Link to Bioinformatics Tools

Other Bioinformatics Links

2.5.2  Usage of the SDAP
Database

2.5.3 SDAP Database
Query Result

These are links to important protein classifications including
CATH, ProtoMap, TOPS, and VAST.

These are links to popular bioinformatics servers.

These are links to macromolecular structural views tools.

This page links to bioinformatics.ca, which provides information
about Canadian bioinformatics workshops.

(A) Users can search the database by the left panel menu “Use
SDAP?” and also by clicking on top menu links “SDAP All aller-
gens” or “SDAP Food allergens.” The snapshot of the “SDAP-
All allergens” search page is shown in Fig. 5a (see Note 2).

(B) The query search allows users to search a term or a phrase.
It provides a filters search by choosing any of the selected fields:
Allergen—scientific name; Source—scientific name; Source—
common name; Allergen description.

(C) It also allows users to browse the data according to the first
letter of the allergen name arranged alphabetically from the
home page.

(D) Users can get full detailed information about sequence and
structure of each allergen by clicking in the allergen name from
the search results.

Each search result will appear as a tabular list of allergens along
with their homologues in a new page. The list contains preliminary
information on allergens including its IUIS status and the
biochemical nature of the protein under the heading “Keywords.”
All information about the allergens starting with the alphabet “A”
is displayed in Fig. 5b. Users can browse more detailed information
of each allergen; for example information on “allergen Acas 13” is
shown in Fig. 5c.

3 Notes

1. The users can download all the entries from the search result,
registration may be required, and users need to choose a user-
name and a password.

2. The default values set for query search were the optimized val-
ues and can be changed by the users.

3. The database searching is not case sensitive.
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Chapter 10

Prediction of Conformational B-Cell Epitopes

Wen Zhang, Yanqing Niu, Yi Xiong, and Meng Ke

Abstract

Conformational B-cell epitopes play an important role in the epitope-based vaccine design. The increase
of available data promotes the development of computational methods. Compared with the wet experi-
ments, the computational methods are faster and more economic. In the past few years, a number of
computational methods (especially the machine learning-based methods) have been developed to predict
the conformational B-cell epitopes. In this chapter, we introduce important data resources and computa-
tional methods, which are publicly available. Moreover, we introduce our ensemble learning-based method
that can predict the conformational epitopes from sequences. These promising methods may assist immu-
nologists in identifying potential vaccine candidates.

Key words Conformational B-cell epitopes, Machine learning, Epitope-based vaccine design

1 Introduction

Antigen—antibody interaction is a critical event in the immune
process, which may elucidate the underlying mechanism of
immune recognition [1-4]. The sites on antigens recognized and
bound by B cell-produced antibodies are well known as B-cell epi-
topes. The location of B-cell epitopes is useful for synthesizing
peptides that can elicit the immune response with specific cross-
reacting antibodies. For this reason, the identification of B-cell
epitopes facilitates the design of the potentially safer peptide-based
vaccines. B-cell epitopes can be classified into two categories: linear
(continuous) epitopes and conformational (discontinuous) epitopes.
Linear epitopes are formed by continuous amino acid sequences,
while conformational epitopes consist of residues that are distantly
separated in the sequences but spatially proximal.

In the last decade, the increase of available data promotes the
development of computational methods, which may be fast and
economic [5]. Although the majority of all epitopes (about 90 %)
are conformational, the study began fairly late. In the prediction
work, there are several definitions ever used for the conformational

Rajat K. De and Namrata Tomar (eds.), Immunoinformatics, Methods in Molecular Biology, vol. 1184,
DOI 10.1007/978-1-4939-1115-8_10, © Springer Science+Business Media New York 2014
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epitopes inferred from the X-ray structures of antigen—antibody
complexes. By definitions, the epitope residue is an antigen residue
with area loss upon antibody binding more than a given threshold
or an antigen residue separated from any antibody residue by a
Euclidean distance less than 4 A. The study revealed that these
definitions do not make significant difference. Here, we must
emphasize that the epitopes in the computational work are not
functional but structural, and structural epitopes cannot definitely
lead to the immune response. Currently, the prediction of func-
tional epitopes is a tough task. Thereafter, the epitopes mean the
structural epitopes.

Although some protein docking methods (such as Patch Dock
[6] and ClusPro [7]) can be used to predict conformational epit-
opes, these methods are different from those which are specially
designed for the conformational epitope prediction. The docking
methods require the structures of both antigens and antibodies
to make prediction, while the specially designed methods attempt
to predict the epitopes from antigens in the absence of antibodies.

CEP is the pioneering method proposed for the prediction of
conformational epitopes [8], which uses the residue solvent acces-
sibility. DiscoTope [9] exploits the surface accessibility, spatial
information, and amino acid statistics information to identify
epitopes. PEPITO [10] combines amino acid propensities and
half-sphere exposure values at multiple distances to make predic-
tion. ElliPro [11] uses Thornton’s propensities and residue cluster-
ing to make prediction. In SEPPA [12], two concepts, “unit patch
of residue triangle” and “clustering coefficient,” are introduced
to describe the local spatial context and spatial compactness.
EPITOPIA [13] combines structural and physicochemical features
and then adopts naive Bayes classifier to make prediction. EPCES
[14] uses the consensus score of several structural and physico-
chemical terms. EPSVR [15] uses support vector machine (SVM)
and combines various features for prediction. EPMeta [16] is a
meta method combining the predictions from several existing serv-
ers. Liu et al. [17] adopted the logistic regression to predict the
conformational epitopes. We [18] proposed a random forest-based
method by dealing with the imbalanced dataset and combining
various features. Above methods construct the prediction models
based on antigen structures.

Although a great number of structure-based methods have been
developed, their application is undermined by the limited number
of available structures, and the experimental techniques that deter-
mine structures are costly and time consuming. Instead of making
predictions from structures, Ansari et al. made the first attempt on
sequence-based conformational epitope prediction [19]. Gao et al.
developed a method based on averaging selected scores generated
from sliding 20-mers by SVMs [20]. Recently, we proposed an
ensemble learning model using the antigen sequences [21].
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2 Materials

2.1 Database

2.2 Dataset

(a) Immune Epitope Database (IEDB) (http://www.iedb.org/)
[22] can provide a highly annotated set of B-cell epitopes
curated from crystal structures of antigen—antibody complexes.

(b) Conformational Epitope Database (CED) (http://immunet.
cn/ced/)[23] collected the conformational epitopes thoroughly
sourced from articles published in the peer-reviewed journals.
Initially, references were obtained by exhaustive querying on
PubMed and ScienceDirect. The references were further manu-
ally filtered to annotate conformational epitopes.

(c) AntiJen [24] is a database with the published experimentally
determined conformational B-cell epitopes (http://www.
ddg-pharmfac.net/antijen/).

In the conformational epitope prediction, the antigen—antibody
complexes are analyzed to annotate the binding sites (epitope
residues) on the antigens, and then only the antigens (structures or
sequences) are used to develop the prediction models.

Several datasets are widely used in the conformational epitope
prediction. The structure datasets can be classified into two kinds:
bound dataset and unbound dataset. A bound dataset consists
of the antigen—antibody complex structures, and the epitopes on
antigen are annotated according to the definition of the conforma-
tional epitope. Then, the structures of the antigens are directly
extracted from the complexes for modeling. An unbound dataset
consists of complex structures and unbound structures of antigens.
Annotated epitope residues on complexes (calculated according to
the definition) are aligned to the residues on unbound structures
of antigens. Then, the unbound antigen structures are used for
modeling. One popular bound dataset is published by Rubinstein,
which consists of 66 non-redundant complex structures, available
at http://epitopia.tau.ac.il /trainData/. Liang’s unbound dataset
including 48 complexes and the unbound structures of antigens
are available at http://sysbio.unl.edu/services/. The antigen
sequences can be extracted from the antigen—antibody complexes
for the sequence-based prediction. Ansari et al. published bench-
mark sequence datasets available at http://www.imtech.res.in/
raghava/cbtope /supple.php.

3 Method

In this section, we introduce widely used conformational epitope
prediction methods and their public servers (see Note 1).


http://www.iedb.org/
http://immunet.cn/ced/
http://immunet.cn/ced/
http://www.ddg-pharmfac.net/antijen/
http://www.ddg-pharmfac.net/antijen/
http://epitopia.tau.ac.il/trainData/
http://sysbio.unl.edu/services/
http://www.imtech.res.in/raghava/cbtope/supple.php
http://www.imtech.res.in/raghava/cbtope/supple.php
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3.1 DiscoTope

3.2 EPITOPIA

DiscoTope [9] is a structure-based method for conformational
epitope prediction. The method uses the amino acid propensity
(Parker hydrophilicity scale), spatial information (contact num-
bers), and surface accessibility to make prediction.

Parker hydrophilicity scale is an amino acid propensity, which
can be obtained from AAlndex database. The residue contact
number is the number of Ca atoms in the antigen within a distance
of 10 A of the residue Ca atom. The relative solvent-accessible
surface area per antigen residue is calculated using the NACCESS
program with a probe radius of 1.4 A.

Given an antigen—antibody complex structure, the contact
number score and surface accessibility score of each antigen resi-
due are calculated. Here, the Parker hydrophilicity score of each
residue is calculated over a smoothing window of seven residues.
For a candidate residue, the weighted sum of the Parker hydrophi-
licity score, contact number score, and surface accessibility score is
used for prediction. According to a preset threshold, the residue
is predicted as epitope or non-epitope.

The web server of DiscoTope is available at http: //www.cbs.
dtu.dk/services/DiscoTope/. The users can use the PDB IDs of
antigen—antibody complexes or the PDB files as input, and the
server will return the prediction results. Users can specify the
threshold for epitope identification.

For a given structure, a patch of 20 amino acids is constructed
around each solvent-accessible antigen residue. Rubinstein et al.
statistically evaluated a wide range of amino acid physicochemical
and structural-geometrical properties [13]. These properties are
(1) the ratio between the frequencies of some amino acid types in
the patch and the remaining antigen surface, (2) the ratio between
the frequency of helix secondary structures in the patch and the
remaining antigen surface, (3) the average relative accessibility of
the patch to the solvent, (4) the average accessibility of the patch,
(5) the average curvature of the patch atoms, and (6) several amino
acid propensities.

Then, Rubinstein et al. use the feature selection technique to
obtain the optimal property subset. Starting with all properties,
one property for which the deletion had the least effect on predic-
tion accuracy is removed at each iteration. Finally, the subset of
properties with the highest number of successful predictions was
selected as the optimal set. The optimal property subset is used to
represent patches as feature vectors. Then, naive Bayes is used
as the classification engine to build prediction model. Thus, a
server named “Epitopia” is constructed to predict conformational
epitopes.

Epitopia is available at http://epitopia.tau.ac.il. Users can
enter the PDB ID or upload the PDB file for prediction.


http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/DiscoTope/
http://epitopia.tau.ac.il/

3.3 EPCES

3.4 EPSVR
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In EPCES [14], a patch (with 20 residues) is formed around each
candidate antigen residue. EPCES uses consensus score from six
different scoring terms to make prediction. These scoring terms
are residue epitope propensity, conservation score, side-chain
energy score, contact number, surface planarity score, and second-
ary structure composition.

The residue epitope propensity was calculated as the product
of the normalized solvent-accessible surface of the residue and the
logarithm ratio of the epitopic area to the rest area. The conserva-
tion score was calculated by the position-specific substitution
matrix generated from PSIBLAST and the diagonal element of
BLOSUMBG62. The side-chain energy score was calculated from the
side-chain energies of all possible rotamers. The contact number is
as same as the introduction in Subheading 3.1. The planarity of
each patch was calculated as the root mean squared deviation of all
the Ca atoms in the patch from the least squares plane through the
atoms. The secondary structure composition was the fraction of
patch residues forming turns or loops in all 20 patch residues.

For each candidate residue, the residue epitope propensity,
conservation score, and side-chain energy score were calculated at
the residue level and distance-based averaged over all residues in
the patch by following distance-based equation

20 -d

Epatch (l) = ZEresidue (K) e !

k=1

where E.qu(K) is the score of residue K in the patch, 4 is the
distance between K and the central residue of the patch, and T'is
the parameter needed to be optimized.

Each scoring term can predict a candidate residue as epitope
or non-epitope according to its score and a given threshold. For a
residue, if more than five scoring terms yield the scores greater
than a given threshold, it is finally predicted as the epitope
residue.

A web-based EPCES application is available at http://sysbio.
unl.edu/services/EPCES /. The PDB ID of an unbound structure
or the PDB file is used as the input. The output will be displayed
on this web page when the prediction is completed. The output
includes the predicted antigen residue and its possibility of being
an epitope residue.

EPSVR [15] uses a support vector regression (SVR) method to
integrate six scoring terms ever used in the EPCES.

For each surface patch, the number of epitopic residues could
be any integer value between 0 and the patch size (i.e., 20).
Therefore, each patch is assigned a real value associated with the
number of epitopic residues, and the prediction of conformational


http://sysbio.unl.edu/services/EPCES/
http://sysbio.unl.edu/services/EPCES/
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3.5 CBTOPE

epitopes is transformed as a problem of regression. Fach surface
patch had six SVR attributes, whose values were calculated with
the six scoring terms: residue epitope propensity, conservation
score, side-chain energy score, contact number, surface planarity
score, and secondary structure composition. The six scores and the
number of observed epitope residues in the patch were scaled to
0-1. Then, the SVR-based model is built to make prediction.

The web server of EPSVR is available at http://sysbio.unl.
edu/EPSVR/. The input and output of EPSVR are same as those
of EPCES.

CBTOPE [19] is the first method of predicting conformational
B-cell epitopes from antigen sequences. The fixed-length window
is shifted over the antigen sequences to generate residue segments
(peptides). According to the central residues (epitope or non-
epitope), the peptides are labeled as positive or negative. Then,
each peptide can be represented as a feature vector by several
encoding schemes, including binary profile, physicochemical pro-
file, and composition profile.

Binary profile represents each amino acid as a 21-dimensional
vector. Physicochemical profile uses Grantham polarity, Karplus—
Schulz flexibility, Kolaskar antigenicity, Parker hydrophobicity, and
Ponnuswami polarity index to represent amino acids. Amino acid
composition is the percentage of each amino acid type in a peptide.
Three encoding schemes are used for peptide representation, and the
prediction models are constructed by using SVM. Among all encod-
ing schemes, the composition profile can produce the best results.

A web server CBTOPE has been developed to predict
conformational epitopes, available at http://www.imtech.res.in/
raghava/cbtope /. Users can enter antigen sequences for prediction.

4 The Sequence-Based Ensemble Learning Method

4.1 The Basic Idea
of Ensemble Learning
Method

We follow the work pioneered by CBTOPE and focus on two
aspects concerning the sequence-based prediction [21]. One is to
explore more potential sequence-derived features relevant to con-
formational epitopes. The other is to effectively use various fea-
tures which may share redundant information. In order to address
these issues, we evaluate several sequence-derived features, which
are ever used in the epitope prediction or similar tasks. Second, we
consider the ensemble learning technique that can incorporate use-
ful features, and the weighted scoring approach is adopted to build
the prediction model.

The overlapping residue segments (peptides) are generated from
the antigen sequences by using a sliding window of the length L.
For simplifying, let L be an odd integer. For a sequence with N
residues, a total of N- L+ 1 peptides are extracted, and each peptide
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is labeled as positive or negative according to the label of'its central
residue (epitope residue or non-epitope residue). The prediction
of conformational epitopes from sequences is formulated as the
problem of binary classification. We consider several sequence-
derived features, which are described as follows.

Physicochemical propensities: These physicochemical propen-
sities are flexibility scale, hydrophilicity scale, surface-exposed
residue scale, polarity scale, beta-turn scale, and accessibility scale.

Sparse profile: Sparse profile is a widely used representation of
amino acids. Each amino acid type (20 common types in all) can be
represented by a 20-bit binary string, in which the value at one bit
is 1 and others are 0.

Amino acid composition: According to the previous study,
some amino acid types are significantly overrepresented in epitopes,
and others are underrepresented; thus the amino acid composition
can be used to differentiate epitope regions from non-epitope
regions. Here, we use the amino acid composition of the residue
segments (also called as sliding windows or samples) extracted
from the whole sequences.

Amino acid function group: Since contacts between antibodies
and the antigens are mostly determined through functional
moieties of the R-groups, functional moieties can influence the
location of antibody—antigen-binding sites. According to different
R-groups, 20 amino acid types are classified into 13 classes. In
order to take antigen—antibody interaction into consideration, we
present a novel feature named “amino acid function group” and
use 13-bit binary strings to represent 13 functional classes.

Amino acid functional composition: By incorporating both
amino acid function group and amino acid composition, we pres-
ent a novel feature “amino acid functional composition,” which
represents the percentage of each amino acid functional type in a
sequence.

Evolutionary profile: The evolutionary conservation is rep-
resented by the position-specific scoring matrix (PSSM), which is
obtained by aligning the target sequence against NCBI non-
redundant reference sequences with PSI-BLAST tool. For an
amino acid sequence with L residues, the PSSM has L rows and 20
columns. PSSM values in each row are rescaled by the standard
logistic function flx)=1/(1+e *). When using the evolutionary
profile, aresidue is represented by its corresponding 20-dimensional
row vector in the matrix.

Amino acid pair profile: The amino acid pair profile is usually
observed to be associated with the protein functions. Amino acid
pair profile of a sequence represents the percentage of each amino
acid pair type.

Although structural information cannot be directly obtained
from antigen sequences, some state-of-the-art tools can help to
predict it. Here, the SABLE program [25] is adopted, for the
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Fig. 1 The classification model based on the random forest and data bootstrap

stand-alone tool is publicly available. With the given sequences as
input, the software can predict the secondary structures (SS) and
relative accessible surface areas (RASA) of residues. The predicted SS
of a residue is denoted as H, E, or C (helix, sheet, coil), and (1, 0,
0), (0, 1, 0), and (0, 0, 1) are, respectively, used to represent three
types. The predicted RASA of a residue is a real value between
0 and 100, representing the percentage of exposed area of the resi-
due over its full area.

The statistical study indicates that all features have the ability
of differentiating epitope regions from non-epitope regions [21].
Since the amino acid functional composition incorporates both
amino acid composition and amino acid group, seven groups of
features including physicochemical propensities, evolutionary
profile, amino acid functional composition, sparse profile, amino
acid pair, sequence-predicted secondary structure, and sequence-
predicted relative solvent accessibility are finally used for the devel-
opment of prediction models.

Obviously, there are much more non-epitopes than epitopes,
and the instances are seriously imbalanced. A strategy based on the
data bootstrap is used to deal with the imbalanced data, and ran-
dom forest [26] is used as the classification engine. Thus, a classi-
fication model which consists of multiple random forests is
constructed (described in Fig. 1) and used as the base module for
ensemble learning.

Since a peptide can be represented as different feature vectors
by different descriptors (features), multiple base modules can be
constructed. We adopt a simple ensemble strategy named weighted
scoring [27] to integrate modules and develop the ensemble model
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4.2 The Construction
of Web Server

(described in Fig. 2). Given an instance, each base module will
produce a score, and then these scores are normalized. Further,
a weight is assigned to the normalized score yielded by a base
module, and the sum of weighted scores is adopted as the final
prediction (see Note 2).

The web server is constructed by JavaScript and Tomcat. In order
to calculate the conservation score, secondary structures, and rela-
tive accessible surface areas, we have to use some external tools
(i.e., PSI-BLAST and SABLE program). PSI-BLAST is a Windows
version executive program; SABLE [25] is written in Perl. The
outputs from external tools are parsed to obtain feature values used
for sequence representation.

We adopt the Weka package [28] to implement the machine
learning methods. Weka is a collection of java code implementing
machine learning algorithms, including data preprocessing, classi-
fication, regression, clustering, association rules, and visualization.
Here, we use the random forest class in Weka to develop our
ensemble learning model. The inputs of the model are the feature
vectors representing sequences, and probability of being an epitope
residue is returned for each residue. The server is available at
http: //beell.whu.edu.cn.
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Predict

Sequence Name (* Required) (Letter or Number allowed , length <= 10)
Chain Name (* Required) (Letter or Number allowed , length <= 10)
E-mail Address (* Required) (Please enter your email to receive the result via email)

Sequence:(Uppercase letter allowed , Example: AVT TYKLVINGKTLKGET TTKAVDAETAEK)

Guide to the submission and result (click here!l)

Predict ( Clear |

Fig. 3 The web page of the server

Result:

0 A 0. 4933333333333334
1 v 0. 6533333333333332
2 T 0. 2866666666666667
3 T 0. 24666666666666667
4 Y 0. 263525434170393

5 K 0. 31678109640819324
6 L 0. 08668649400409438

Fig. 4 An example of the returned result

In the web page of prediction (shown in Fig. 3), users can
enter an antigen sequence and its information (sequence name and
chain name). In addition, the e-mail address should be specified to
receive the prediction result. A typical task (a sequences of 30 resi-
dues) takes about 15-20 min. The running time depends on the
length of the submitted sequence. In the returned result (shown in
Fig. 4), the first column is the residue id; the second column is the
residue name; and the third column is the probability for the resi-
due to be the epitope residue.

5 Conclusion

This chapter introduces the data resources and computational
methods related with the conformational B-cell epitope prediction,
especially our sequence-based conformational epitope prediction
method and the public server. The above-discussed methods
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have large potential for the practical use. The publicly available
servers will assist immunologists in identifying potential vaccine

candidates.

6

Notes

1. As far as we know, some structure-based methods are trained

and evaluated on the bound dataset (DiscoTope, SEPPA,
Epitopia), and others are constructed and tested on the
unbound dataset (EPSVR, EPCES). CBTOPE and our ensem-
ble method are developed by using antigen sequences.

. The sequence-based ensemble learning method has some

advantages. First, the ensemble model provides a flexible frame
that incorporates individual feature-based classifiers. Second,
the ensemble model can select the features by itself and inte-
grate them based on the discriminative power. According to
the optimal weights, we can approximately know the compo-
nents of the ensemble model. Therefore, this ensemble model

is easy to not only implement but also explain.
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Computational Prediction of B Cell Epitopes
from Antigen Sequences

Jianzhao Gao and Lukasz Kurgan

Abstract

Chapter 11

Computational identification of B-cell epitopes from antigen chains is a difficult and actively pursued
research topic. Efforts towards the development of method for the prediction of linear epitopes span over
the last three decades, while only recently several predictors of conformational epitopes were released. We
review a comprehensive set of 13 recent approaches that predict linear and 4 methods that predict confor-
mational B-cell epitopes from the antigen sequences. We introduce several databases of B-cell epitopes,
since the availability of the corresponding data is at the heart of the development and validation of com-
putational predictors. We also offer practical insights concerning the use and availability of these B-cell

epitope predictors, and motivate and discuss feature research in this area.

Key words B-cell epitope, Linear epitope, Conformational epitope, Antigen, Immunotherapeutic,

Vaccine, Prediction, Database

1 Introduction

One of the key aspects of an immune system is the antibody-
mediated ability to identify foreign, infectious objects, such as bac-
teria and viruses. This is implemented through binding of the
antibodies and antigens (e.g., proteins from the pathogenic entity)
at sites known as B-cell epitopes. Ability to identify these binding
areas in the antigen sequence or on its surface is important for the
development of vaccines and immunotherapeutics [1]. The B-cell
epitopes are categorized into two classes: linear/continuous and
conformational /discontinuous. The former B-cell epitope is a
short segment in the corresponding amino acid sequence (Fig. 1a).
Majority of the B-cell epitopes are conformational, which means
that they are distributed over multiple segments in the protein
chain that are located in close proximity in the folded three-dimensional

structure (Fig. 1b) [2].

Although several experimental techniques can be used to iden-
tify the B-cell epitopes [3], they are relatively time consuming and
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Fig. 1 Example linear and conformational epitopes. Panel (a) shows linear epitope for the B-lymphocyte anti-
gen CD20 from H. sapiens (IEDB ID: 161083I; PDB ID: 3PP4:P). Panel (b) gives conformational epitope for the
voltage-gated potassium channel from S. /ividans (IEDB ID: 142362; PDB id: 1K4D:C). Annotations of epitopes
were extracted from the Immune Epitope DataBase (IEDB) [8] and the protein structures were collected from
the Protein Data Bank PDB [24]. Red color denotes localization of the B-cell epitope on the surface of the
antigen protein and red and bold font shows the epitope in the corresponding sequence

expensive, particularly when considering to do that on large,
genomic scale. Computational methods are a viable alternative to
provide a fast and cost-effective way to predict the B-cell epitopes
[4]. A fairly large number of computational B-cell epitope predic-
tors, which are characterized by varying degrees of success and
scope, have been developed over the last three decades [4-7].
Although progress has been accomplished in the context of the
development and applications of these computational methods,
much remains to be done, particularly considering modest predic-
tive performance of these approaches (se¢ Note 1). In parallel, a
few efforts to collect, annotate, and deposit B-cell epitopes into
publicly accessible databases are currently under way [8-10] and
integrated resources that provide access to multiple tools for pre-
diction and analysis of epitopes are available [11, 12]. Such efforts
should make these technologies more accurate (more data allows
for building more accurate predictive models) and more conve-
nient (freely available and integrated) for the end users.

The algorithms that predict the B-cell epitopes are classified into
sequence based and structure based. The structure-based methods use
the three-dimensional structure of the antigen to perform the predic-
tion, while the sequence-based methods utilize only the sequence of
the antigen. While the structure-based predictors usually provide
higher predictive performance when directly compared with the
sequence-based methods [13-15], they are constrained to a relatively
small set of targets for which the structure is available. They also suffer
from a limited availability of the annotated data. Recent years have
witnessed a revival of the development of the sequence-based meth-
ods, which currently are capable of finding both linear and conforma-
tional epitopes. To this end, we overview major relevant databases and
summarize a comprehensive set of 17 sequence-based predictors of
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the B-cell epitopes, which expands over the coverage of recent predic-
tors oftered by the prior reviews [4, 6].

2 Databases of B-Cell Epitopes

2.1 AntiJen

2.2 I[EDB

Several databases that store experimentally annotated B-cell epit-
opes were developed over the last decade. They differ in scope and
sources of data. These databases provide data that are used to
develop and evaluate new and improved predictors of B-cell epit-
opes (see Note 2). We briefly summarize, in chronological order,
six publicly available databases.

This repository was developed in 2001 at the Edward Jenner
Institute for Vaccine Research in the UK [16]. It was later updated
to version 2.0 [10, 17]. It stores experimental thermodynamic
binding data concerning the interaction of peptides including
B-cell receptors, T-cell receptors, major histocompatibility com-
plexes (MHGCs), TAP transporters, and immunological protein—
protein interactions. The B-cell and T-cell epitopes are also
included. As of January 2013, there were total of 24,000 entries in
this database, and according to [17] 816 entries were related to
B-cell epitopes. Users can search for the relevant data utilizing
BLAST [18] and a variety of specialized search options that allow
defining specific experimental conditions and molecules. Based on
the Web of Knowledge as of June 2013, this resource accumulated
211 citations across the three publications.
Availability. http: //www.ddg-pharmfac.net/antijen/.

IEDB (Immune Epitope DataBase) was established in 2004 at the
La Jolla Institute of Allergy and Immunology in San Diego
[19, 20] and it was recently upgraded to version 2.0 [8]. This
comprehensive resource provides integrated access to experimen-
tally characterized B-cell epitopes, T-cell epitopes, and data on the
MHC binding. The data are extracted from epitope-related articles
available in PubMed and from direct submissions from scientists.
The database includes epitope sequence and structure, source anti-
gen and organism from which the epitope is derived, and details
concerning experiments describing recognition of an epitope and
related assays including MHC ligand elution assays and MHC
binding assays. Users can conveniently query the database through
a web interface utilizing a variety of criteria, such as the source
antigen, source organism, epitope structure, immune recognition
context, and host organism. Based on the Web of Knowledge as of
June 2013, this database is highly cited with the combined number
of citations for the three articles totaling to 332.
Availability: http: //www.iedb.org.
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2.3 Bcipep

24 CED

2.5 Epitome

2.6 SEDB

This resource was developed in 2004 at the Institute of Microbial
Technology, Chandigarh, in India [21]. It provides access to experi-
mentally determined linear B-cell epitopes, which were extracted
from literature in PubMed and collected from other publicly avail-
able databases. As of January 2013, it contained 3,031 entries
including 539 entries from bacteria, 2,046 from viruses, 236 from
protozoa, 53 from fungi, and 157 from other organisms. Users can
search the database through a variety of options including keywords
related to the relevant publications, sequence, entry number, and
source organism, by utilizing sequence similarity with BLAST, and
by scanning through the associated protein structures.
Availability: http: //www.imtech.res.in /raghava/bcipep/.

CED (Conformational Epitope Database) was built in 2005 by
Huang and Honda at the University of Electronic Science and
Technology in China [22]. This database focuses on the conforma-
tional epitopes. The entries were extracted from peer-reviewed
journal articles collected from PubMed and ScienceDirect. CED
provides the location of the epitope in the sequence and structure,
immunological properties of the epitope, source antigen, and cor-
responding antibody. The database can be browsed or searched
using keywords through a website interface. As of January 2013,
CED included 293 entries.
Availability: http: //immunet.cn/ced /.

This database was established in 2005 by Rost Group at the
Columbia University [23]. Epitome provides access to a collection
of antigen—antibody complex structures, including annotation and
visualization of residues that are involved in the interactions and
information concerning certain structural characteristics of the
binding regions. The entries were collected from Protein Data
Bank (PDB) [24]. User can search the database utilizing keywords
with options to specify chain and certain structural properties of
antigen and antibody, and also by finding similar sequence with
BLAST. This resource contains 142 antigens from protein—
antibody complexes [23].
Availability: http: //www.rostlab.org/services /epitome /.

Structural Epitope Database (SEDB) was developed in 2011 at
the Pondicherry University in India [9]. It provides access to a
comprehensive set of structures of B-cell, T-cell, and MHC
binding proteins. The data was collected from PDB, PDBsum
[25], MHCBN [26], IMGT/3D [27], Bcipep, and IEDB
databases. SEDB includes information concerning epitope sequ-
ence and position, antigen—antibody interacting residues, and
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corresponding taxonomic identifiers, and is cross-linked to relevant
databases such as IEDB, UniprotKB [28], PDB, and NCBI [29].
The database can be either browsed or searched by finding, using
BLAST, similar chains. It currently includes 614 entries with
273 B-cell epitopes.

Availability: http: //sedb.bicpu.edu.in/.

3 Sequence-Based Predictors of Linear B-Cell Epitopes

Prediction of linear B-cell epitopes from the antigen sequences
dates back to 1980s. The trailblazing methods were fairly simple
and utilized a single propensity (flexibility, solvent accessibility,
etc.) of the underlying chain or chain fragment [2, 30-35]. A new
generation of methods that combined multiple physicochemical
propensities to predict B-cell epitopes has surfaced in 1990s. They
include PREDITOP [36], PEOPLE [37], BEPITOPE [38],
BceePred [39], and LEP-LP [40] predictors. Predictive quality of
these approaches was questioned in 2005 in a study by Blythe and
Flower [41]. They analyzed predictive performance of close to 500
amino acid propensity scales on 50 antigens and determined that
these propensities performed only slightly better than random.
Since then this field has observed a revival that resulted in the
development of more sophisticated knowledge-based methods,
particularly in the context of the predictive models that they uti-
lize. The considered models included a neural network in ABCpred
[42], hidden Markov model in BepiPred [43], and naive Bayes
that was used in Epitopia [13, 14]. The dominant model used in
recent years is the support vector machine (SVM), which was
applied in a wide range of methods, such as AAP [44], BCPred
[45], FBCPred [46], COBEpro [47], BayesB method [48],
BROracle [49], LEPS [50], SVMTriP [51], and LBtope [52].
These approaches differ in the formulation and scope of informa-
tion extracted from the input antigen sequence, in the size of data
that were used to compute the SVM model, and in the type of
SVM kernel function used. Table 1 summarizes methods that were
developed since 2005 and includes one representative older
method, BEPITOPE (see Note 3). COBEpro can also predict con-
formational epitopes and thus it is discussed later in this chapter.
Several predictors of linear B-cell epitopes are widely cited in the
literature, relative to when they were published. Based on the Web
of Knowledge as of June 2013, ABCpred and BepiPred that were
published in 2006 were already cited 139 and 145, respectively.
The AAP method that was published in 2007 was cited 106 times,
and the newer articles for BCPred and Epitopia that were released
in 2008 and 2008 already accumulated 54 and 47 (for the two
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Table 1
Summary of sequence-based predictors of linear B-cell epitopes

Method Year Model Type®  Input® Availability

BEPITOPE 2003 Scoring function SP SC By contacting the authors

ABCpred 2006 Neural network WS SC http: //www.imtech.res.in /raghava/

abepred/

BepiPred 2006 Hidden Markov WS+SP MC http: //www.cbs.dtu.dk /services/
model BepiPred/

AAP 2007 Support vector WS+SP SC http: //ailab.cs.iastate.edu,/bepreds /
machine

LEP-LP 2008 Scoring function WS Unknown http://biotools.cs.ntou.edu.tw/lepd_

antigenicity.php®

BCPred 2008 Support vector WS+SP SC http: //ailab.cs.iastate.edu/bepreds /
machine

FBCPred 2008 Support vector WS+SP SC http: //ailab.cs.iastate.edu/bepreds /
machine

Epitopia 2009 Naive Bayes WS+SP SC http: //epitopia.tau.ac.il

BayesB 2010 Support vector WS SC http: //www.immunopred.org,/bayesb/
machine

BROracle 2011 Support vector  SP Unknown https: //sites.google.com/site /
machine oracleclassifiers /¢

LEPS 2011 Support vector WS SC http://leps.cs.ntou.edu.tw
machine

SVMTriP 2012 Support vector WS SC http: //sysbio.unl.edu/SVMTriP
machine

LBtope 2013 Support vector WS MC http://crdd.osdd.net/raghava /Ibtope /
machine

The methods are sorted chronologically

8P stand-alone program, WS web server

*SC method predicts a single chain, i.c., prediction has to be restarted for each chain, MC multiple chains can be pre-
dicted at the same time

A given predictor is currently unavailable

publications combined) citations, respectively. Most of the above-
mentioned recent sequence-based linear B-cell epitope predictors,
except BROracle, are available as convenient web servers that
require the end user only to provide an input antigen sequence.
Five methods, BepiPred, AAP, BCPred, FBCPred, and Epitopia,
can also be downloaded as stand-alone applications, which would
appeal to the users who would like to incorporate such tools into
their computational pipelines. Following, we summarize the 13
predictors from Table 1 in the chronological order.
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3.3 BepiPred
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BEPITOPE was published in 2003 by Pellequer’s group at the
Centre de Marcoule at CEA in France [38]. BEPITOPE utilizes a
scoring function that combines information from over 30 selected
physicochemical propensities including hydrophilicity, flexibility,
propensity to form beta turns, and surface accessibility. User can
define sequence motifs to filter the predictions.

Inputs. Protein sequence in FASTA format or accession
number.

Outputs: Numerical profile over the input chain where putative
epitopes are indicated by peaks.

Architecture: Scoring function.

Availability: This program is available for free for academic use
and has to be requested from the authors. User is required to sign
a license agreement before receiving a copy of the software. Web
server is not available.

ABCpred was developed in 2006 by Raghava’s group at the
Institute of Microbial Technology, Chandigarh, in India [42]. This
method was one of the first to use a more sophisticated, machine
learning-based prediction model. This model is a recurrent neural
network that has a single hidden layer with 35 neurons. It utilizes
a segment of 16 consecutive residues to perform prediction.

Inputs: Amino acid sequence using since-letter encoding. User
can also set values of several parameters including threshold to
identify epitopes and segment length. Default values are used in
case if user does not want to set parameter values.

Outputs. Starting position and numeric score for predicted
epitope(s).

Avrchitecture: Recurrent neural network.

Availability: Web server at http: //www.imtech.res.in/raghava/
abepred/.

BepiPred was created in 2006 by Lund’s group at the Technical
University of Denmark [43]. This is the first and so far the only
method that utilizes hidden Markov model. This model combines
multiple physicochemical propensities including antigenicity,
hydrophilicity, hydrophobicity, solvent accessibility, and second-
ary structure, which are preprocessed using a running mean
window.

Inputs: Protein sequence or a set of sequences (up to 2000) in
FASTA format. Each sequence has to have at least 10 and no more
than 6,000 amino acids. User can also set value of threshold to
identify epitopes; default value (0.35) is used otherwise.

Outputs: Numeric score for each residue in the query protein
sequence. The predicted epitope is composed of residues with
scores higher than the threshold.

Avrchitecture: Hidden Markov model.
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3.4 AAP

3.5 LEP-LP

3.6 BGPred

Availability: Web server at http: //www.cbs.dtu.dk /services/
BepiPred/. Stand-alone version for UNIX platform is also avail-
able at this website.

AAP (amino acid pair antigenicity) predictor was developed in
2007 at the Shanghai Jiaotong University in China [44]. This is
the first method that utilizes the SVM-based prediction model.
The authors introduced antigenicity propensity scale, which was
empirically shown to improve over previously used physicochemi-
cal propensities, that was utilized to convert the query sequence
into numerical inputs for the SVM.

Inputs: Amino acid sequence using since-letter encoding. User
can also select the length of the epitope to be predicted, with
default value set to 20 and allowed values of 12, 14, 16, 18, 20,
and 22.

Outputs: Predicted epitope segments with the predefined
length.

Avrchitecture: Support vector machine with RBF kernel.

Availability: The authors do not provide the software.
However, a web server that is a part of BCPREDS platform can
be found at http: //ailab.cs.iastate.edu/bcpreds/. Stand-alone ver-
sion is also available at this website.

LEP-LP was released in 2008 by Tun-Wen Pai’s group at the
National Taiwan Ocean University [40]. The authors utilized
mathematical morphology to extract local peaks from a numerical
profile that implements combination of several weighted physico-
chemical propensity scales, such as hydrophilicity, solvent accessi-
bility, polarity, flexibility, antigenicity, and secondary structure.

Inputs: Amino acid sequence using since-letter encoding.

Outputs: Ranked putative epitope segments with the associ-
ated numeric scores.

Avrchitecture:  Scoring function based on mathematical
morphology.

Availability: Web server at http://biotools.cs.ntou.edu.tw/
lepd_antigenicity.php (currently unavailable).

BCPred was published in 2008 at the Iowa State University [45].
This is the second method that applied SVM-based prediction
model; however this model is customized to use string kernel. The
authors utilized a specific type of the string kernel, subsequence
kernel, which considers a feature (input) space generated by a set
of k-mer subsequences of the input chain.

Inputs: Amino acid sequence using since-letter encoding. User
can also select the length of the epitope to be predicted, with default
value set to 20 and allowed values of 12, 14, 16, 18, 20, and 22.
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Outputs: Predicted epitope segments with the predefined length
and with the associated numeric scores.

Avwchitecture: Support vector machine with string kernel.

Availability: Web server at http: //ailab.cs.iastate.edu/bepreds /.
Stand-alone version is also available at this website.

FBCPred was developed in 2008 at the Iowa State University [46].
Similar to BCPred, this method also uses SVM model with the
subsequence kernel. FBCPred targets prediction of linear B-cell
epitopes of variable length, in contrast to BCPred that assumes
fixed (user-defined) length.

Inputs: Amino acid sequence using since-letter encoding. User
can also select the length of the epitope to be predicted, with
default value set to 14.

Outputs. Predicted epitope segments with the predefined
length and with the associated numeric scores.

Avwchitecture: Support vector machine with string kernel.

Availability. Web server at http: / /ailab.cs.iastate.edu/bepreds /.
Stand-alone version is also available at this website.

This predictor was published in 2009 by Tal Pupko group at the
Tel Aviv University in Israel [13, 14]. Epitopia predicts linear
B-cell epitopes from either a protein structure or sequence; here
we focus on the sequence-based version. This method uses naive
Bayes classifier by considering a small sliding window of seven resi-
dues. The inputs for the classifier are generated from this window
by using 14 physicochemical propensities including polarity, flexi-
bility, antigenicity, hydrophilicity, solvent accessibility, secondary
structure, and ratio between the frequency of selected amino acid
in the window and the remaining part of the sequence.

Inputs. Protein sequence in FASTA format and an e-mail
address of the user.

Outputs: Numeric immunogenicity score and corresponding
probability for each amino acid in the query protein sequence. The
immunogenicity scores are used to derive a ranked list of epitope
segments.

Avwchitecture: Naive Bayes classifier.

Availability: Web server at http://epitopia.tau.ac.il. Stand-
alone version for LINUX platform is also available at this website.

This method was created in 2010 at the National University of
Singapore [48]. BayesB utilizes the SVM model and employs Bayes
feature extraction that is based on differences in the frequency of
occurrence of amino acid types at each position in a predefined
(training) set of epitopes and non-epitope segments.

Inputs: Protein sequence in FASTA format or using since-
letter encoding. User can also select the length of the epitope to be
predicted, with default value set to 20.
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3.10 BROracle

3.11 LEPS

3.12  SVMTriP

Outputs. Predicted epitope segments with the predefined
length.

Avwchitecture: Support vector machine with RBF kernel.

Availability. Web server at http://www.immunopred.org/
bayesb/.

B-Cell Epitope Oracle (BROracle) method was developed in 2011
at the Dana-Farber Cancer Institute [49]. This predictor is imple-
mented using SVM model. The input to the model were generated
from the sequence and a variety of sequence-derived characteristics
including evolutionary information calculated from PSI-BLAST
output [53], secondary structure predicted with PSI-PRED [54],
solvent accessibility predicted with ACCpro [55], disorder predicted
with VSL.2 algorithm [56], and sequence complexity computed with
SEQG algorithm [57].

Inputs: Protein sequence.

Outputs: Unknown.

Avrchitecture: SVM classifier with polynomial kernel.

Availability: Stand-alone program at https: //sites.google.com/
site /oracleclassifiers/ (currently unavailable). Web server is not
available.

LEPS (Linear Epitope prediction based on Propensities scale and
SVM) was created in 2011 by Tun-Wen Pai’s group at the National
Taiwan Ocean University [50]. This method extends the LEP-LP
predictor by the same group. First, candidate epitopes are pre-
dicted with LEP-LP. Next, SVM model is used to remove less
probable candidates utilizing their amino acid sequences.

Inputs: Protein sequence in FASTA format or using since-letter
encoding. The user has an option to adjust 32 parameters related to
the setup of the propensities considered in LEP-LP. Default param-
eter values are used in case if user does not want to set parameter
values.

Outputs: Ranked list of predicted epitope segments.

Avrchitecture: Support vector machine with RBF kernel.

Availability: Web server at http: //leps.cs.ntou.edu.tw.

SVMTriP was created in 2012 by Chi Zhang’s group at the
University of Nebraska, Lincoln [51]. This predictor is based on
SVM model that utilizes similarity, calculated with Blosum62
matrix, and frequency of tripeptides (3-mers) from the input
antigen chain.

Inputs: Protein sequence in FASTA format or using since-
letter encoding. User can select the length of the epitope to be
predicted, with default value set to 20.
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Outputs. Predicted epitope segments with the predefined
length and with the associated numeric scores.

Avwchitecture: Support vector machine with string kernel.

Availability. Web server at http: //sysbio.unl.edu/SVMTriP.

3.13 LBtope LBtope was published in 2013 by Raghava group at the Institute
of Microbial Technology, Chandigarh, in India [52]. This method
converts the antigen chain into numerical features (descriptors)
that are based on dipeptide (2-mer) profiles. These features are fed
into the SVM model that predicts epitopes.

Inputs: Protein sequence or a set of sequences, in FASTA
format. User can also select model type, using fixed size epitope
fragments (20 residues long) or variable length epitopes (user-
defined between 5 and 30); default value (variable length with 15
residues segment) is used otherwise.

Outputs: Predicted epitope segments with the predefined
length and with the associated numeric scores.

Avrchitecture: Support vector machine with undisclosed type of
kernel.

Availability: Web server at http://crdd.osdd.net/raghava/
Ibtope/.

4 Sequence-Based Predictors of Conformational B-Cell Epitopes

A few methods were recently developed to predict the conforma-
tional B-cell epitopes from protein chains. This is a challenging
problem given the fact that the corresponding epitopic residues are
potentially distributed over an entire protein chain, without neces-
sarily being clustered into longer segments. The prediction meth-
ods score each amino acid in an input protein chain (using a numeric
or a binary value) to indicate whether it is part of an epitope.
A drawback of this prediction is that these programs do not group
the predicted epitopic residues into the corresponding epitopes,
which could be an issue if a given chain contains more than one
epitope. The sequence-based predictors of conformational epit-
opes, which are summarized in Table 2, include COBEpro that was
designed to predict linear epitopes and extended to predict confor-
mational epitopes [47], CBTOPE [58], BEST[15],and Bprediction
[59] (see Note 4). The first three methods apply the SVM model,
while the most recent Bprediction is based on the random forest
model, which utilizes a set of decision trees. Based on the Web of
Knowledge as of June 2013, the oldest sequence-based predictor
of conformational B-cell epitopes, COBEpro, which was published
in 2009, was already cited 30 times. The other methods are
too recent to accumulate citations. COBEpro, CBTOPE, and
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Table 2
Summary of sequence-based predictors of conformational B-cell epitopes

Method Year Model Type® Input® Availability
COBEpro 2009 Support vector WS SC http: //scratch.proteomics.ics.uci.edu
machine

CBTOPE 2010 Supportvector WS+SP MC  http://www.imtech.res.in/raghava/cbtope /

machine

BEST 2012 Support vector SP MC  http://biomine.ece.ualberta.ca/BEST/
machine

Bprediction 2012 Random forest WS SC http://bcell.whu.edu.cn

The methods are sorted chronologically
8P stand-alone program, WS web server

*SC method predicts a single chain, i.c., prediction has to be restarted for each chain, MC multiple chains can be

predicted at the same time

4.1 COBEpro

4.2 CBTOPE

Bprediction are available to the end users via web servers. Two of
the methods, CBTOPE and BEST, are provided as stand-alone
software that the end users would install and use on their comput-
ers. Next, we summarize these four predictors in the chronological
order.

COBEpro was published in 2009 by Baldi’s group at the University
of California [47]. COBEpro has a two-tier architecture where the
first layer applies SVM to predict short segments (5-18 residues
long) in the input chain utilizing information based on their simi-
larity to epitopic segments in a training database, and secondary
structure and solvent accessibility predicted with SSpro [60, 61]
and ACCpro [55], respectively. The second layer is used to com-
bine the above predictions to calculate epitopic propensity score
for each amino acid. This allows COBEpro to be used for the pre-
diction of discontinuous B-cell epitopes.

Inputs: Protein sequence or a set of sequences, using since-
letter encoding, and an e-mail address of the user.

Outputs: Ranked (according to propensity) list of most likely
predicted epitopes, including their predicted secondary structure
and solvent accessibility, and numeric propensity scores for each
amino acid in the query protein sequence.

Avwchitecture: Support vector machine with Gaussian kernel.

Availability: COBEpro is incorporated into the SCRATCH
web server suite at http: //scratch.proteomics.ics.uci.edu/.

CBTOPE was released in 2010 by Raghava’s group at the Institute
of Microbial Technology, Chandigarh, in India [58]. This method
applies a sliding window (a segment of 19 residues that is moved
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along the input antigen sequence) to predict the epitopic score for
the residues in the middle of a given window. CBTOPE computes
amino acid composition, which is represented using a binary vec-
tor, of the residues in the window and these values are inputted
into the SVM model that predicts epitopic propensity.

Inpurs: Protein sequence in FASTA format or using since-
letter encoding. User can select a threshold for the output scores
from the predictor, with a default value set to -0.3. Residues with
scores above the threshold are assumed to be epitopic.

Outputs: Numeric propensity scores for each amino acid in the
query antigen chain. The scores are integers between 0 and 9,
where higher value denotes a higher likelihood of a given residue
to be in an epitope.

Avrchitecture: Support vector machine with Gaussian kernel.

Availability: Web server at http: //www.imtech.res.in /raghava/
cbtope /. Stand-alone version for Windows operating system is also
available at this website.

BEST (B-cell Epitope prediction using Support vector machine
Tool) was published in 2012 by Kurgan’s group at the University
of Alberta in Canada [15]. This method utilizes SVM model and a
comprehensive set of sequence-derived characteristics of the anti-
gen chain. BEST is implemented using a two-layer architecture;
see Fig. 2. In the first layer, the input antigen sequence is processed
using sliding widows of 20 amino acids. Each 20-mer segment is
encoded by a numerical feature vector that utilizes sequence
conservation computed based on Weighted Observation Percentage

A
\ sliding|window J PSI-BLAST
slidil g‘wmdow ““““ N )
sTdng[window residue|  Predicted secondary]
— conservation| Structure and solvent
. . : ;
Yy A A E
feature-based feature-based feature-based &
representation of | [ representation of [ - representation of
the 1st 20-mer the 2n 20-mer the last 20-mer
[ svMmodel | [ svMmodel | SVM model
' ' X
| distance-based scheme to combine SVM scores | o
5
propensity of each input amino acid to form a B-cell epitope V_

Fig. 2 Architecture of the BEST predictor of conformational B-cell epitopes. SVM stands for support vector

machine
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4.4 Bprediction

(WOP) matrix generated with PSI-BLAST [53], similarity to
training epitopes based on measure proposed in [47], and second-
ary structure and relative solvent accessibility predicted with SPINE
[62, 63]. This vector is inputted into SVM model and the predic-
tions from SVM are combined to generate the epitopic propensities
in the second layer.

Inputs: Protein sequence or a set of sequences, in FASTA
format.

Outputs: Numeric propensity scores for each amino acid in the
query protein sequence.

Avrchitecture: Support vector machine with RBF kernel

Availability: Stand-alone software for Linux platform is avail-
able at http: //biomine.ece.ualberta.ca/BEST /. Web server is not
available.

Bprediction was made available in 2012 by Zhang’s group at the
Wuhan University in China [59]. This predictor has a two-level
design and applies an ensemble of random forest models that take
a set of numerical features computed from sliding windows of
size 9 (9-mers) generated over the antigen chain as their inputs.
The inputs are divided into nine sets, where each set is utilized
by a different random forest model, which include (1) physico-
chemical propensities including flexibility, hydrophilicity, solvent
accessibility, polarity, and propensity for formation of beta turns;
(2) amino acid composition of the residues in the window represented
using binary vectors and (3) real-valued vectors; (4) composition
of' amino acid sets defined based on their R-groups; (5) values from
the position-specific scoring matrix (PSSM) generated by PSI-
BLAST [53]; (6) composition of dipeptides (2-mers) in the win-
dow; and (7) secondary structure and (8) relative solvent
accessibility predicted with SABLE [64]. The second level gener-
ates the output propensity scores by computing weighted average
of normalized, based on z scores, values of predictions from these
nine models; see Fig. 3.

Inputs: Protein sequence using since-letter encoding and an
e-mail address of the user.

Outputs: Numeric propensity scores for each amino acid in the
query protein sequence.

Avchitecture: Ensemble of random forests.

Availability. Web server at http: //bceell. whu.edu.cn.

The overall architectures of the two most recent conforma-
tional B-cell epitope predictors, BEST and Bprediction, are rela-
tively similar (Figs. 2 and 3). Both utilize the two-layered design
and use multiple sequence alignments computed with PSI-BLAST
and predictions of secondary structure and solvent accessibility. The
main differences are in the fact that they use different prediction
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Fig. 3 Architecture of the Bprediction method for the prediction of conformational B-cell epitopes. FS; refers to

th feature set,

where i=1 (physicochemical propensities), 2 (binary amino acid composition), 3 (real-valued

amino acid composition), 4 (composition of amino acid sets), 5 (composition of dipeptides), 6 (PSSM values),

7 (predicted se

condary structure), 8 (predicted relative solvent accessibility). RF stands for random forest

models (SVM vs. ensemble of decision forests) and several different
inputs (similarity scores vs. physicochemical propensities and vari-
ous amino acid compositions). In spite of utilizing these relatively
sophisticated architectures, the predictive performance of these
and other predictors of conformational epitopes is at modest levels
(see Note 1). This calls for more research towards the development
of more accurate methods (see Note 5).

5 Notes

1. We sampled recent publications that evaluated predictive per-
formance of the current B-cell epitope predictors. For simplic-
ity we concentrate on the area under the ROC curve (AUC)
measure [4]. AUC values range between 0.5 and 1, with 0.5
denoting a random prediction and higher values correspond-
ing to better predictive performance. Five methods that pre-
dict epitopes from antigen sequences were compared side by
side in [15] and were shown to achieve AUC between 0.52
and 0.57 on a benchmark dataset consisting of 149 antigens.
In another study, six and two methods that predict epitopes
from antigen structures and sequences, respectively, were eval-
uated on a small dataset with 19 antigens; their AUC values
were in the 0.57-0.63 range [59]. A recent review of predic-
tors that utilize antigen structure demonstrates that AUC
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values for the prediction of conformational epitopes range
between 0.57 and 0.64 [5]. Overall, these results reveal that
further research is needed to improve the currently modest
levels of predictive performance.

. One of the reasons behind relatively low predictive perfor-

mance of B-cell epitope predictors is a relatively small size of
the currently available annotated data. Most of the current and
more successful methods are knowledge based, which means
that they utilize annotated, with the location of epitopes,
structures or sequences of antigens to calculate and optimize
their predictive models. Availability of additional annotated
data would likely result in an improved performance of predic-
tors, as the data used to build them would be more representa-
tive of the complete population of epitopes.

. When testing sequence-based predictors of linear B-cell epit-

opes we found that two of them, LEP-LP and BROracle, were
no longer available. The web server implementations of the
remaining methods allow predictions for a single chain. In case
a user wants to predict a set of chains, he or she has to supply
and predict them one at a time. The two exceptions are
BepiPred and LBtope that simultaneously process prediction
of multiple chains, with a limit of up to 2,000 sequences for a
single run of BepiPred. Moreover, the BayesB predictor can-
not predict peptides shorter than 25 residues.

. Three sequence-based predictors of conformational B-cell epi-

topes are available to the end users as web servers and two as
stand-alone applications. Two of them, COBEpro and
Bprediction, are limited in the sense that they can predict only
one sequence at the time. The other two, BEST and CBTOPE,
are capable of predicting multiple chains in a single run. A fur-
ther limitation of COBEpro is that it can be used to predict
chains shorter than 1,500 residues.

. There are potentially many ways to pursue the development of

more accurate predictors of the B-cell epitopes. One possibility is
to utilize a consensus of different predictors. Although
Bprediction already implements a consensus approach, it is lim-
ited to the same predictive models and the same prediction flow.
Instead, the consensus should consider combining outputs of
multiple methods that use different models and flows, say BEST,
Bprediction, BCTOPE, and COBEpro. Similar attempts were
shown to be successful for related prediction tasks, such as pre-
diction of MHC class 11 peptide binding [65] and T-cell epitopes
[66]. Another potential direction is to find new and useful
sources of information that are helpful in identifying epitopic
regions. Examples include predicted disordered regions and flex-
ible residues, predicted regions involved in protein—protein inter-
actions, and results generated through homology modeling.
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Chapter 12

Machine Learning-Based Methods for Prediction
of Linear B-Cell Epitopes

Hsin-Wei Wang and Tun-Wen Pai

Abstract

B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test,
disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the
performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to
increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based
algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we
have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It
should be noticed that a combination of selected propensity scales and statistics of epitope residues with
machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction
systems. It is also observed from most of the comparison results that the kernel method of support vector
machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter,
except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and
SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical
features and amino acid combinations is illustrated in details.

Key words B-cell epitope, Machine learning, Support vector machine, Propensity scale, Kernel
function

1 Introduction of B-Cell Epitopes

The immune system is a collection of organs, tissues, cells, and
molecules that work together to protect the body from various
foreign pathogens such as bacteria, viruses, parasites, and fungi.
This defense system against pathogens has been divided into two
main strategies in vertebrates: innate immunity and adaptive immu-
nity mechanisms. The innate immune system is considered as the
first defending process against invading pathogens, while the adap-
tive immune system of the second defending layer creates immu-
nological memories after an initial response to a specific pathogen
and induces an enhanced response to subsequent encounters
regarding the same pathogen. The latter adaptive immunity is clas-
sified into two branches of immune responses including cellular
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immunity mediated by T-cell lymphocytes that eliminate infected
cells and humoral immunity mediated by B-cell lymphocytes
secreting antibodies which neutralize pathogens in the body fluid.
Epitopes or antigenic determinants are defined as clusters of amino
acid segments located on the surface of an antigen that bind to
antigen-specific membrane receptors on lymphocytes or to secreted
antibodies, and which elicit either cellular or humoral immune
response and are recognized by specific antibodies [1]. Due to
expensive and time-consuming factors of biomedical and immuno-
logical experiments, in silico epitope prediction and analysis prior
to biological experiments become practical and standard strategies
tor both biomedical researchers and immunologists regarding vari-
ous immunology-related applications such as epitope-based vac-
cine design and disease prevention, diagnosis, and treatment.
There are several good review articles for both T-cell and B-cell
epitope prediction analysis based on computational approaches as
well as several useful epitope databases [2-8]. Among all published
papers, epitope prediction methods can be simply categorized into
four major types: sequence-based, structure-based, hybrid of
sequence-based and structure-based, and consensus methods. It is
in general expected that the prediction accuracy could be improved
if an antigen structure has been determined. This is mainly due to
casy validation of the surface characteristics of candidate epitopes
on an antigen from the resolved structure. Hence, combination of
sequence and structure features simultaneously should provide
better prediction results than using sequence-based or structure-
based along methods. Furthermore, combining several prediction
methods and summarizing all individual prediction result through
a voting mechanism could be anticipated to achieve an even better
prediction accuracy since each prediction method held its own
strength. Nevertheless, due to limited numbers of determined
antibody—antigen complex structures and integrating difficulties
for various computational limitations, there is yet no such a suc-
cessfully integrated system for both B-cell and T-cell epitope pre-
diction. Most of the prediction systems still focus on identifying
one specific type of epitope according to its own characteristics.
T-cell epitopes are defined as peptide sequences presented on
the surface of an antigen-presenting cell, and they are bound to
major histocompatibility complex (MHC) class I and II molecules.
Known as a structural basis for peptide binding to MHC mole-
cules, T-cell epitopes are typically composed by continuous amino
acids ranging from 9 to 11 in length for MHC class I binding and
a length ranging from 13 to 25 amino acids for MHC class II bind-
ing [9, 10, 4]. For B-cell epitopes, it is generally categorized into
two types: linear epitope (LE), a segment composed of a continu-
ous stretch of amino acid residues, and conformational epitope
(CE) constituted by several sequentially discontinuous segments
that are dispersed among discontinuous regions, but become
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Fig. 1 Length distribution of linear B-cell epitopes and non-epitopes collected from IEDB database (version 2.4)

aggregated on the protein surface [11, 12]. Compared to
continuous T-cell epitopes, linear B-cell epitopes possess signifi-
cantly various peptide lengths from 2 to 829 residues from verified
LE data statistics (IEDB: http://www.ciedb.org/) [13]. Length
distribution of verified linear B-cell epitopes from IEDB database
is shown in Fig. 1. Near 95 % of verified linear B-cell epitopes pos-
sess flexible lengths ranging from 6 to 30 residues. Even several
annotated epitopes are with lengths larger than 100 residues.
It was also reported that the proportion of LEs is considered with
only 10 % of all B-cell epitopes [11], while the majority of B-cell
epitope belongs to the discontinuous CE type with epitope size
ranging from 6 to 29 residues [14]. However, in contrast to less
complex features of T-cell epitope prediction systems and superior
achievement for T-cell epitope prediction, the performance of pre-
dicting B-cell epitopes is yet to be satisfied and all proposed
approaches still face a lot of challenges in computational immunol-
ogy. Besides, only a small set of verified CEs are curated, a small set
of resolved antibody—antigen complex structures, and not many
convincible CE prediction systems are available. Therefore, in this
chapter, we mainly discuss most of the published linear B-cell epi-
tope prediction methods, and demonstrate how to adopt machine
learning-based approaches for linear B-cell epitope prediction. It is
also noticed that the support vector machine (SVM)-based learn-
ing method is one of the most popular approaches in recent reports.
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In addition, the SVM-based system provided better performance
compared to other machine learning methods. To demonstrate the
usage of in silico prediction on linear B-cell epitopes through
machine learning approaches, we choose to introduce the SVM
classifier and hope that readers can fully understand the complete
procedures and fundamental knowledge of linear B-cell epitope
prediction.

Currently, various computational approaches and software for
linear B-cell epitope prediction have been boomingly proposed in
the last decade. Table 1 shows available methods, applicable web-
sites, and kernel methods applied for LE prediction in a chrono-
logical order.

Most of the LE prediction focused on sequence contents and
their corresponding propensity scales including surface accessibility
[35], hydrophilicity [36], flexibility [37], and secondary structure
[38] have been heavily considered in epitope predictive algorithms.
The distinguishing characteristics among currently available pro-
grams such as BEPITOPE [17], PEOPLE [16], and BcePred [18]
are mainly dealing with computation of different weighting scales
over a sliding window along a query protein sequence. However,
Blythe and Flower hypothesized that “single-scale amino acid pro-
pensity profiles cannot be used to predict epitope locations reli-
ably” [39], a conclusion based on the observation that in the field
of epitope prediction, even the best combinations of physicochem-
ical propensity scales were not accurate enough to estimate and
predict qualified B-cell epitopes. Therefore, several methods inte-
grating the concept of amino acid propensity scales with machine
learning technologies were proposed. For example, Saha and
Raghava used recurrent artificial neural networks based on amino
acid sequence information in ABCPred [19]; Larsen employed
hidden Markov model (HMM) in BepiPred [20]; Chen et al.
adopted SVM classifier on amino acid pairs [22 ]; S6llner and Mayer
utilized a molecular operating environment with the decision tree
and nearest neighbor approaches [21]; El-Manzalawy et al. devel-
oped BCPred [23] and FBCPred [24 ] employing SVM with a sub-
sequence kernel for both fixed and flexible length epitopes;
Sweredoski and Baldi developed COBEpro [26]; Wang et al.
designed LEPS [30]; and Gao et al. presented BEST [31]; the last
three approaches applied an SVM classifier in a two-step system to
predict LEs based on an improved propensity scale approach; simi-
larly, the BEEPro system designed by Lin et al. [33] and the
LBtope system provided by Singh et al. [34] also adopted SVM
classifiers by combining different propensity scales to enhance the
prediction accuracies.

In the ABCPred system, two artificial neural network methods
were developed, feed-forward (FNN) and recurrent neural network
(RNN), for the prediction of continuous B-cell epitopes. Both FNN
and RNN networks were used to achieve B-cell epitope prediction



Table 1

Linear B-cell epitope prediction methods

Name URL Method Year Reference
Antigenic http: //www.emboss.bioinformatics.nl/ Physicochemical 1990 [15]
cgi-bin/emboss/antigenic properties, occurrence
of amino acid residues
PEOPLE n/a Physicochemical 1999 [16]
properties
BEPITOPE Stand-alone program can be obtained Physicochemical 2003 [17]
freely to academics jlpellequer@cea.fr properties
BcePred http: //www.imtech.res.in /raghava / Physico-chemical 2004 [18]
beepred/ properties
ABCpred http: //www.imtech.res.in /raghava / ANN 2006 [19]
abepred/
BepiPred http: //www.cbs.dtu.dk /services / HMM 2006 [20]
BepiPred/
Sollner n/a MOE, KNN, Decision 2006 [21]
tree
Chen n/a SVM, AAP 2007 [22]
BCPred http: //www.ailab.cs.iastate.edu/bepreds/ SVM, String kernel 2008 [23]
FBCPred http: //www.ailab.cs.iastate.edu/bepreds/ SVM, String kernel 2008 [24]
LEPD http: //www.lepd.cs.ntou.edu.tw/ Physicochemical 2008 [25]
properties,
mathematical
morphology
COBEpro  http://www.ics.uci.edu/~baldig/ SVM 2009 [26]
scratch /index.html
Epitopia http: //epitopia.tau.ac.il Naive Bayes classifier 2009 [27,28]
BayesB http: //www.immunopred.org/bayesb/  SVM, Bayes feature 2010 [29]
index.html extraction
LEPS http: //leps.cs.ntou.edu.tw/ Physicochemical 2011 [30]
properties,
mathematical
morphology, SVM
BEST http: //biomine.ece.ualberta.ca/BEST / SVM 2012 [31]
SVMTriP http: //sysbio.unl.edu/SVMTriP/ SVM, tripeptide 2012 [32]
similarity and
propensity
BEEPro n/a Physicochemical 2013 [33]
properties, SVM,
PSSM
LBtope http: //crdd.osdd.net/raghava/Ibtope/  SVM, binary profile, 2013 [34]

dipeptide
composition, AAP

ANN artificial neural network, HMM hidden Markov model, MOE molecular operating environment, KNN k-nearest
neighbor, PSSM position-specific scoring matrix, #/4 not applicable
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using different window lengths from 10 to 20 amino acids, and the
best performance of 66 % accuracy evaluated on a dataset of 700
B-cell epitopes and 700 non-epitopes was obtained by adopting an
RNN trained on peptides of 16 amino acids in length. The BepiPred
combined two amino acid propensity scales and an HMM trained on
LEs to gain a slightly improved prediction accuracy rate over the
propensity scale only-based methods by Parker et al. and Levitt et al.
on the Pellequer dataset of 14 proteins and 83 epitopes. In Chen’s
approach, the observed certain amino acid pairs (AAPs) tend to
appear more frequently in known B-cell epitopes than in non-epitope
peptides. They utilized an AAP propensity scale based on such
observation and trained with an SVM classier to increase an improved
prediction accuracy rate of 71 % from the datasets of 872 B-cell epi-
topes and 872 non-epitopes. In the method of Sollner and Mayer,
each epitope is represented using a set of propensity scales, neigh-
borhood matrices, and respective probability and likelihood values.
This approach combined several parameters previously associated
with antigenicity, and included novel parameters based on frequen-
cies of amino acids and amino acid neighborhood propensities. In
their report, the best performance of 72 % was achieved utilizing a
nearest-neighbor classifier with feature selection from datasets of
1,211 B-cell epitopes and 1,211 non-epitopes. For the BCPred
developed by El-Manzalawy et al., they applied five different kernel
methods to evaluate SVM classifiers on a homology-reduced dataset
of 701 linear B-cell epitopes and 701 non-epitopes, and they dem-
onstrated that the BCPred outperformed the ABCPred and Chen’s
methods. In addition to BCPred, El-Manzalawy et al. also devel-
oped another FBCPred for predicting flexible length linear B-cell
epitopes using the subsequence kernels. Two machine learning
approaches were adopted in their study: one approach utilized four
sequence kernels for determining a similarity score between any arbi-
trary pair of variable length sequences, and the other approach
applied four different methods of mapping a variable length sequence
into a fixed length feature vector. The FBCPred was demonstrated
with an improved performance of 73 % accuracy rate on the homol-
ogy-reduced dataset of flexible length linear B-cell epitopes. In the
COBEpro system, Sweredoski applied SVM to make predictions on
short peptide fragments within the query antigen sequence and cal-
culated an epitopic propensity score for each residue based on the
fragment predictions. The accuracy rates and AUC values of
COBEpro possessed better performance than Chen, BCpred, and
BepiPred regarding different benchmark datasets. The LEPS system
designed by Wang et al. combined improved propensity scale
method, local high antigenicity profile, occurring frequencies of
amino acid segments (AASs), and SVM classifier to predict LEs with
flexible length. Using several benchmark datasets, LEPS has shown
its competitive performance comparing to BepiPred, ABCPred,
BCPred, and FBCPred. For the BEEPro developed by Lin et al.,
authors have claimed that both linear and conformational epitopes
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could be predicted by the SVM-based system which employed the
features mainly based on evolutionary information, amino acid ratio
propensity scale, and 14 specifically selected physicochemical pro-
pensity scales. The results have shown a superior performance com-
pared to BepiPred, ABCPred, BCPred, FBCPred, and LEPS. For
the BEST system presented by Gao et al., authors constructed an
SVM training architecture based on features of averaging selected
propensity scores by a 20-mer sliding window, sequence similarity
score, predicted secondary structure, and solvent accessibility. The
prediction performance was compared to Chen, BCPred, COBEpro,
BayseB, and CBTOPE with an accuracy rate around 74 % for
fragment-based LE prediction. For the latest LBtope system, authors
provided five various training datasets, and they emphasized on
experimentally verified non-epitope datasets compared to previously
random peptides used in other studies. In this study, they applied
SVM and K-nearest-neighbor learning models using various physi-
cochemical propensity scales and amino acid composition-transition-
distribution properties, and the LBtope prediction system obtained
accuracy rates ranged from 54 to 86 % on the created datasets. Since
most of machine learning-based approaches applied SVM classifiers
to improve the performance of B-cell epitope prediction and the
results showed that SVM-based methods possessed a better perfor-
mance than other approaches, here we will briefly introduce basic
theories of SVM in the next section for readers interested in related
fields. An example of prediction system will also be applied to illus-
trate the combination of propensity scales and machine learning ker-
nel method for LE prediction.

2 A Supervised Learning Method: SVM Classifier

Machine learning is a subfield of applied statistics, which trains on
a collected sample dataset and generalizes rules from previous
experiences. The training data with unknown probability distribu-
tion is usually applied to extract some general principles and per-
haps the distribution for future predictions on new testing data.
There are several types of machine learning algorithm based on
trained inputs or desired outcomes, such as supervised, unsuper-
vised, semi-supervised, and reinforcement learning mechanisms.
Recently, one of the most popular computer algorithms for a vari-
ety of biological applications including epitope prediction is the
SVM kernel method, a supervised learning model and learned by
known epitope contents to predict novel epitopes within a query
protein sequence [40]. To build an epitope prediction model,
users have to provide a set of training examples including two
classes, named as true epitopes and non-epitopes. The constructed
SVM model is a representation of the trained examples as points
in the selected feature space, and these sample points are divided
by a hyperplane with a separable margin as wide as possible.
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2.1 The Hyperplane
of an SVM Model

Query protein sequence segments are then mapped into the same
feature space and assigned to one of the two defined categories
based on the locations of the testing segment.

Figure 2a shows a simple example of mapped points in a two-
dimensional feature space. In this example, it is assumed that each
peptide was calculated and mapped into a corresponding feature
point by two selected feature values: secondary structure (confor-
mation parameter for beta turn) and hydrophilicity (Parker’s
parameters [36]). The feature profile of each known epitope or
non-epitope peptide is calculated according to the residue contents
and the feature values are mapped into the two-dimensional space
and represented by triangle and circle objects, respectively. In this
case, it is quite easy to draw a line between two clusters geometri-
cally, and an unknown data point could be predicted easily accord-
ing to the query feature point falling on the epitope or the
non-epitope sides of this separating line. If we add one more dif-
ferent feature such as Janin’s accessible area to classify a peptide
into two clusters, the feature space becomes a three-dimensional
space, and we need a plane to divide the space into two parts as
shown in Fig. 2b. Definitely, similar procedures could be extended
to higher dimensions by adding more features. Hence, the original
straight line in two-feature space can be extended to a hyperplane
in a higher dimensional space which represents the border line to
separate two clusters.
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Fig. 3 An example of applying degree-2 polynomial kernel on all data points. (a) One-dimensional feature
space and hard to find a single line to separate all data into two classes. (b) Applying square operation on all
data points, and a clear hyperplane could separate all data points into two classes

2.2 Maximum It is obvious that the hyperplanes are not unique in an SVM model.
Margins How to select an optimal hyperplane between two clusters is the
of a Hyperplane main goal of adopting SVM predictor and it serves as the key factor

of a successful SVM classifier. Based on general statistical assump-
tions and the definition of a margin as the distance between the
hyperplane to the nearest points (support vectors) within one clus-
ter, the SVM model could find an optimal hyperplane possessing
the maximal margin from any one of the training data points within
two clusters. Hence, the selected hyperplane could maximize the
performance of the SVM classifier to predict query samples.
Nevertheless, several outlier data points might reside in wrong
clusters from real applications and are called misclassified samples,
and it might be solved by introducing an e-insensitive loss function
[41] which balances the number of hyperplane violations and the
size of the margin.

2.3 Selection Sometimes a tolerant margin could not support to find an optimal
of Kernel Functions hyperplane to separate two clusters since the data points are crossly
distributed in a feature space. In that case, there might exist a ker-
nel function which provides a solution by adding an additional
dimension for the data points. The original points could be trans-
ferred by a kernel function in order to find a better hyperplane to
separate two clusters in a higher dimensional feature space. For an
example shown in Fig. 3, the one-dimensional feature points could
apply a simple square operation to transfer all data points into a
two-dimensional space, and therefore an optimal hyperplane could
be observed clearly. There are several frequently applied standard
kernel functions, such as linear, polynomial, radial basis function
(RBF), and sigmoid which can help to transfer the data points into
a higher dimension to find a better hyperplane [42, 43]. However,
it should be noticed that a very high-dimensional kernel function
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may cause overfitting problems and generally lead poor predictive
performance. To avoid too many irrelevant dimensions, the selec-
tion of types and degrees of kernel functions should be carefully
considered. Nevertheless, the traditional way to find a better kernel
function is usually achieved b