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Preface

Rapid formation and development of new theories of systems science have
become an important part of modern science and technology. For ex-
ample, since the 1940s, there have appeared systems theory, information
theory, fuzzy mathematics, cybernetics, dissipative structures, synergetics,
catastrophe theory, chaos theory, bifurcations, ultra circulations, dynamics,
and many other systems theories. Grey systems theory is also one of such
systems theories that appeared initially in the 1980s.
When the research of systems science and the method and technology

of systems engineering are applied in various traditional disciplines, such
as management science, decision science, and various scientific disciplines,
a whole new group of new results and breakthroughs are obtained. Such
a historical background has provided the environment and soil for grey
systems theory to form and to develop rapidly in the past 20-plus years.
More specifically, in 1982, Professor Deng Ju-Long published the first

research paper in the area of grey systems in the international journal
entitled Systems and Control Letters, published by North-Holland Co. His
paper was titled “Control Problems of Grey Systems.” The publication
of this paper signalled the birth of grey systems theory after many years
of e ective research of the founding father. This new theory soon caught
the attention of the international academic community and practitioners
of science. Many well-known scholars, such as Chinese academicians Qian
Xueshen, Song Jian, and Zhang Zhongjun. Professor Roger W. Brockett
of Harvard University, a former editor-in-chief of the journal Systems and
Control Letters, and several formal Soviet academicians, all provided very
positive comments on this new theory and o ered their support.



vi Preface

In the short time period of about two decades, the theory of grey systems
has been developed and is maturing rapidly. It has been widely applied to
analyses, modeling, predictions, decision making, and control, with signif-
icant consequences, of various systems, including, but not limited to, so-
cial, economic, scientific and technological, agricultural, industrial, trans-
portation, mechanical, petrological, meteorological, ecological, hydrologi-
cal, geological, financial, medical, legal, military, etc., systems. Research
papers on grey systems have been cited by many scholars around the
globe and been reviewed by internationally authoritative review period-
icals. Currently, eighty-some universities worldwide, located in countries
such as Australia, China, Japan, Taiwan, and the United States of Amer-
ica, have o ered courses or workshops on grey systems, and hundreds of
graduate students are applying the methodology of grey systems in their
research and their writing of dissertations. There have been many inter-
national conferences listing grey systems as a special topic. All of these
represent the fact that grey systems theory with its strong vitality has al-
ready stood in the forest of scientific theories, and the fact that its position
as a transfield scientific theory has been well established.
Starting in 1982, we have gradually recognized the meaning and value of

the theory of grey systems, and started to learn and to study this theory.
It is no doubt that trudging in any scientific discipline is not easy, and that
it is more di cult to explore and to pioneer in a new theory. To this end,
we have devoted the best years of our lives.
This research has been funded in succession by the China Natural Science

Foundation, Henan Province Natural Science Foundation (China), Soft Sci-
ence Foundation, Science Foundation for Prominent Young Scientists, Na-
tional Science Foundation for Cross-Century Academic Leaders, etc. And,
our work has brought forward new progress and breakthroughs in the areas
of grey sequence operators (including weakening operators and strengthen-
ing operators), generalized degrees of grey incidence (including the absolute
degree of grey incidence, relative degree of grey incidence, and synthetic
degree of grey incidence), finding positioned solutions of linear and non-
linear programming models with grey parameters, G—E combined models,
fixed weight grey clusterings, grey incidence clusterings, measurement of
grey information, etc. All these results have obtained wide acceptance in
the academic community. This book is surely the crystallization of our work
of many years in the past.
During the entire period of creating this book, we have always put our

emphasis on the scientificability, readability, and practical applicability,
tried to present the material in a logical, systematic, and simple structure,
and followed the principle of eliminating all mistakes in our reasoning. This
book contains a total of twelve chapters, covering the theoretical foundation
of grey systems theory, fundamental methods, and the main topics in grey
systems theory, including grey sequence generation, grey systems analysis,
modeling, predictions, decision making, optimization, control, etc. In the
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final chapter, we briefly describe some main topics on numerical computa-
tions of some of the major models presented in the book.
This book can be and most parts of this book have been, in the past

fifteen years, used as a textbook for upper-level undergraduate and grad-
uate students majoring in systems science, economics, and administration,
and as a self-study book for students and scholars in areas such as geo-
science, engineering, agriculture, medicine, meteorology, natural sciences,
bioscience, etc. Best of all, this book can be and most parts of this book
have been used as a reference by state employees, politicians, administra-
tors, planners, and policy-makers in the past years and many years to come.
Here in this book, we have absorbed the research work by Professor Deng
Ju-Long and many others. With its current presentation of this manuscript,
the reader can expect to learn grey systems theory in a systematic fashion.
And, at the finish of this book, he or she can expect to be at the cutting
edge of this new and exciting theory and applications.
Over the years, many people have been involved in the research, discus-

sion, and writing of various parts of this book, including, but not limited to,
Zhu Yongda, Yang Ling, Li Xiuli, Guo Tianbang, Dong Yaoguo, Guo Hong,
Hou Yunxian, Zhao Li, Jia Yong, Donald McNeil, Lin Wen, Zeng Guoqing,
Roman DeNu, Narendra Patel, Liu Quanfeng, Xu Xian, Adnan Mahmood,
Hector Sabelli, Sun Suan, Cao Dianli, Liu Hongbin, Shi Benguang, Kim-
berly Forrest, Achim Sydow, Yang Wanzai, Wang Ziliang, Tan Xuerui,
Zhao Deying, Wang Lianghua, Genti Zaimi, Ye Rongjun, Li Bingjun, Li
Beiyou, Xu Chaozhi, Han Jianjun, Zhang Tao, Rebecca Martin, and Wan
Yagang. Our parents, wives, and children have been patient and sacrificial
in supporting our research and related writing. A great deal of support and
encouragement has been given to us over the years from our colleagues and
the administrators at Henan Agriculture University, International Institute
for General Systems Studies, and Slippery Rock University. Finally, but not
least, the editors and sta members at our publisher and the referees have
done a great deal for the final publication of this book. We would like to
use this opportunity to express our sincere appreciation to all the people,
both listed and not listed above, for their teaching, role models, guidance,
support, and encouragement. Without these people, this book would have
been impossible.

Sifeng Liu, Ph. D.
Nanjing University of Aeronautics and Astronautics, China

and

Yi Lin, Ph. D.
International Institute for General Systems Studies, USA

July 30, 2004
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1
Introduction

1.1 Scientific Background for the Appearance of
Grey Systems Theory

Based on widespread divisions in the activities of scientific research and the
newest development in technology, an obvious tendency has appeared in the
modern spectrum of science and technology. This tendency is strongly in-
dicated by the rapid rise of many crossdisciplinary research activities and
appearance of several important theories. The rise and appearance of these
scientific phenomena surely possess some significant methodological mean-
ings. These crossdisciplinary theories have revealed more profoundly and
essentially some important internal relationships among the traditionally
more or less isolated subjects. These subjects have been studied in vari-
ous superficially unrelated and artificially divided fields. These crossdisci-
plinary studies have deeply promoted the integrative progress of modern
science and technology. With the help of these newly emerging fields, many
complicated problems, unsolvable before, can be resolved successfully, and
a deeper understanding about nature has been brought forward. These
crossdisciplinary theories include, to say a few, systems theory, informa-
tion theory, and cybernetics, which were formulated during the first half of
this century, the theory of dissipative structures, synergetics, and fractals,
which started to be known during the end of the 1960s and the beginning of
the 1970s, ultracircular theory and general and pan-systems theory, which
matured after the late 1970s and 1980s. As the focus of our book here, we
concentrate on one of such theories: grey systems theory. The first piece
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of research on grey systems, entitled “The Control Problems of Grey Sys-
tems,” written by Professor Deng Julong of China, was published in 1982
in the journal Systems and Control Letters. This theory, unlike many of the
other crossdisciplinary theories, turned out to be an important and fruitful
area of research with strong and successful practical (real-life) applications.
From the dialectical materialist point of view of science and technology, it

can be said that each emergence of a new research subject or theory has its
own certainty and fortuity. In general, at a certain period of time or stage in
the development of a new scientific law, innovative research subjects or the-
ories arise in order to meet the needs of the development. However, at this
junction, the work of abandoning relevant old theories and developing new
ones is accomplished by scientists who have insightful intelligence, unusual
courage, and unprecedented resourcefulness. Historically speaking, scien-
tists with all these qualities have appeared by chance. And, they have also
been products of the historical moments within which they lived or within
which they are living. For instance, from the development history of natural
sciences, we can draw the conclusion that some of the greatest thinkers in
the history had established themselves by finding the right new theories at
the right times. At the same time, however, due to the limitations of the
conventional thinking of their times, they were not successful in terms of
crossing over some more monumental thresholds. For example, Ernst Mach,
Hendrik A. Lorentz, and Jules-Henri Poincaré had all contributed a great
deal to the final establishment of one of the greatest theories of mankind,
which was later named and became well-known as the theory of relativity.
Even though they were thought of by historians of the following genera-
tions to be on the threshold of discovering the great theory, they did not
recognize the hidden treasure and, consequently, they did not continue in
that direction. Here, as we all know, Albert Einstein, a young clerk work-
ing at a patent company, was credited for the formal establishment of such
a theory, which turned out to be one of the most famous theories of the
twentieth century. Mach’s critique on Newtonian mechanics, contained in
the book entitled Developing Mechanics, had greatly influenced Einstein.
Interestingly, when young Einstein sent his articles to Mach and called him
the pioneer of the theory of relativity, Mach refused to accept this honor.
Lorentz even thought that the new theory fuzzed the conventional thinking
of the time and felt great pain by saying that “I would rather have been
dead five years before the emergence of the theory of relativity” (for more
details see Song, 1989).
Similarly, the development of modern science and societal needs have

provided the environment and conditions for the development of grey sys-
tems theory. At this very moment in the history of science and technology,
it was Professor Deng Julong who formally established the theory of grey
systems, and it was he and his followers who both developed the theory
and obtained many great successes in practical real-life applications.
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Since graduating in 1955 from Huazhong University of Science and Tech-
nology, one of the finest universities in China, Professor Deng has done his
teaching and research there. His main research interest lies in the area of
control of multivariable systems. In the 1960s, he brought forward “Con-
trol with Abandonment of Multivariable Systems,” one of his high-quality
works. This theory had been accepted as a representative method by the in-
ternational academic community. Starting in the late 1960s, he has worked
on both forecast and control of economic systems and fuzzy systems, dealing
with numerous unascertained systems with partially known and partially
unknown information. The characteristics of these systems can hardly be
described by fuzzy mathematics or probability or statistics. Technically,
fuzzy mathematics mainly deals with problems of the phenomenon with
cognitive uncertainty by experience with the help of a liation functions.
Probability and statistics need special distributions and samples of reason-
able size to draw valid inferences. However, what can we really do, if we are
faced with situations with which we do not have any prior experience, or we
cannot establish any necessary distribution, or we are only provided with
a very small sample? To perform satisfactorily any meaningful research
on these unascertained systems, Professor Deng has pioneered a di cult
and fruitful research. In 1982, when everything seemed to be, to Professor
Deng, “at the end of all hills and streams, beyond which there seems to
be no world,” he was astonished with the finding of “another village with
shading willows and blooming flowers.” Professor Roger W. Brockett of
Harvard University, the editor-in-chief of the journal Systems and Control
Letters, commented on Professor Deng’s first article about grey systems as
follows: “Grey system is an initiative work” and “all the results are new.”

1.2 Fundamental Concepts and Principles of Grey
Systems

1.2.1 Fundational Concepts of Grey Systems

Many systems, such as those that are social, economic, agricultural, indus-
trial, ecological, or biological in nature, are named based on the fields and
ranges to which the research subjects belong. In contrast, the name grey
systems was chosen based on the colors of the subjects under investigation.
For example, in control theory, the darkness of colors has been commonly
used to indicate the degree of clarity of information. One of the most well-
accepted representations is the so-called “black box.” It stands for an object
with its internal relations or structure totally unknown to the investigator.
Here, we use the word “black” to represent unknown information, “white”
for completely known information, and “grey” for that information which
is partially known and partially unknown. Accordingly, we name systems
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with completely known information as white systems, systems with com-
pletely unknown information as black systems, and systems with partially
known and partially unknown information as grey systems, respectively.
In our daily social, economic, and scientific research activities, we of-

ten face situations involving incomplete information. For example, in some
studies of agriculture, even though all the information related to the area
which is planted, the quality of seeds, fertilizers, irrigation, etc., is com-
pletely known, it is still di cult to estimate the production quantity and
the consequent annual income due to various unknown or vague information
related to labor quality, level of technology employed, natural environment,
weather conditions, etc. As for the case of insect control, we might have
known very well the relationship between the special kind of insect of inter-
est and its natural enemies, yet it might still be di cult for us to achieve
the desirable e ects because we do not have enough information regarding
relationships between the insects of our concern and the bait, their natural
enemies and the bait, one natural enemy and other natural enemies, one
kind of insect and other kinds of insects, etc. For each adjustment of a price
system in our economy, decision makers often face the di culty of not hav-
ing definite information on the e ect of the price change on consumers, on
the prices of goods, etc. All liquid pressure systems are di cult to control
due to some immeasurable quantities. Electricity systems are hard to ob-
serve due to the stochastic parameters of the voltage and currents. Such
di culty is caused by not having enough knowledge of motion and para-
meters. In a general social or economic system, it is di cult to analyze
the e ect of the input on the output due to the reasons that there do not
exist clear di erences between the “interior” and the “exterior”, the sys-
tem self and its environment, and that the boundary of the system may be
sometimes easy to tell or on other occasions di cult to clarify. In scholastic
works, the same economic variable could be seen as endogenous by some
scholars and external by some others. The wide range of these phenomena
is due to the lack of modeling information, or because an appropriate sys-
tems model has not been found, or the fact that the right observation and
control variables have not been employed.
Based on the discussion above, there are four possibilities for incomplete

information of systems.

1. The information of elements (or parameters) is incomplete.

2. The information on structure is incomplete.

3. The information on boundary is incomplete.

4. The behavior information of movement is incomplete.

Having “incomplete information” is the fundamental meaning of being
“grey”. In di erent circumstances and from di erent angles, the meaning
of being “grey” can still be extended. For more details, see Table 1.1.
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Table 1.1. Comparison between black, grey and white systems

Black Grey White
Information Unknown Incomplete Known
Appearance Dark Grey Bright
Process New Replace old with new Old
Property Chaos Complexity Order
Methodology Negative Transition Positive
Attitude Indulgence Tolerance Serity
Conclusion No result Multiple solution Unique solution

1.2.2 Fundamental Principles of Grey Systems

During the initial establishment and the consequent development phases,
many important axioms have been proposed by scholars such as Professor
Deng Julong.

Axiom 1.2.1. (Principle of Informational Differences) “Di erence”
implies the existence of information. Each piece of information must carry
some kind of “di erence”.

When we say that object A is di erent from object B, we really mean
that there is some special information about the object A that is not true
with regard to the object B. All the “di erences” existing between natural
objects and events have provided us with the elementary information in
order for us to understand their nature.
If information I has changed our understanding or impression of a com-

plicated matter, then the piece of information I is definitely di erent from
that on which we initially understood the special matter. Great break-
throughs in science and technology have provided us with the necessary in-
formation, which we generally call knowledge and tools, to understand and
change the world around us. This advanced information is surely di erent
from that preliminary information. The more content a piece of information
I contains, the more di erence from the earlier version of the information
the new information I brings.

Axiom 1.2.2. (Principle of Non-Uniqueness) The solution to any
problem with incomplete and nondeterministic information is not unique.

Because of this principle of non-uniqueness, which is a basic law of the
application of grey systems theory, one is set free to look at this problem
with flexibility. With flexibility, one becomes more e ective in reaching his
goals.
Strategically, the principle of non-uniqueness is realized through the con-

cept of grey targets. This concept is a unification of the concept of non-
unique targets and that of non-restrainable targets. For example, if a high
school graduate does not plan to enroll in any university except one specific
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school, then his chance of success in terms of getting into a university is
greatly limited. On the other hand, if a high school graduate, who has a
similar qualification as the one in the previous example, is willing to attend
several additional choices of universities other than the special one, he will
be more likely to succeed in terms of attending a university, because he has
multiple targets with an improved chance of hitting one of the targets.
The principle of non-uniqueness can be seen as a comprehensive realiza-

tion that each target can be approached, that any available information can
be supplemented, that each plan made earlier can be further modified and
improved, that each relationship can be harmonized, that each thinking
logic can be multi-directional, that each understanding can be deepened,
and that each path can be optimized. When faced with the possibility
of multiple solutions, one can locate one or several satisfactory solutions
through deterministic analysis and supplementation of information. There-
fore, the method of finding solutions on the basis of “non-uniqueness” is
one that combines both quantitative analysis and qualitative analysis.
Axiom 1.2.3. (Principle of Minimal Information) One characteristic

of grey systems theory is that it makes the most and best use of the available
“minimal amount of information.”
The “principle of minimal information” can be seen as a dialectic unifi-

cation of “a little” and “a lot.” One advantage of grey systems theory is
its ability to handle such uncertain problems with “small samples” and/or
“poor information.” Its foundation of study is the concept of “spaces of
limited information.” “Minimal amount of information” is the basic terri-
tory for grey systems theory to show its power. The amount of information
acquirable is the dividing line between “grey” and “not grey”. Making
su cient discovery and application of any available “minimal amount of
information” is the basic thinking logic of problem-solving used in grey
systems theory.
Axiom 1.2.4. (Principle of Recognition Base) Information is the foun-

dation on which people recognize and understand (nature).
This principle says that all recognition must be based on information.

Without information, there will be no way for people to know anything.
With complete and deterministic information, people can possibly gain firm
recognition. Based on incomplete and non-deterministic information, peo-
ple can only possibly obtain incomplete and non-deterministic grey recog-
nition.
Axiom 1.2.5. (Principle of New Information Priority) The function

of new pieces of information is greater than that of old pieces of information.
The “principle of new information priority” is the key point of view about

information applied in grey systems theory. That is, by applying additional
weights on newer information, one can achieve a better e ect from grey
modeling, grey prediction, grey analysis, grey evaluation, and grey decision
making. The model of “the new replaces the old” reflects our “principle
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of new information priority.” With new information becoming available,
a basic motivation for the whitenization of grey elements is strengthened.
The “principle of new information priority” is a materialization of the fact
that information in general is time sensitive.

Axiom 1.2.6. (Principle of Absoluteness of Greyness) “Incomplete-
ness” of information is absolute.

Incompleteness and non-determinism of information have their general-
ity. Each completeness of information is relative and temporary. It is the
moment when the original non-determinism had just disappeared, and new
non-determinism is about to emerge soon. Human recognition and under-
standing of the objective world have been elevated time and time again
through continued supplementation of information. With the endless sup-
ply of information, man’s recognition and understanding of the world also
become endless. That is, the greyness of information is absolute and will
never disappear.

1.3 Comparison Between Several Nondeterministic
Methods

Probability and statistics, fuzzy mathematics, and grey systems theory
have been the three most-often applied theories and methods employed
in studies of non-deterministic systems. Even though they study objects
with di erent uncertainties, the commonality of these theories is their abil-
ity to make meaningful sense out of incompleteness and uncertainties. It
is the di erences among the uncertainties studied in these theories that
three areas of scientific study, each of which has its own characteristics, on
uncertainties have been established.
Fuzzy mathematics has its strength in the study of problems with “recog-

nitive uncertainties.” All objects studied using fuzzy mathematics possess
the characteristic of “having a clear intension without a clear extension”.
For example, the concept of “young men” is a fuzzy concept. It is because
all people know the intension of being a “young man”. However, it will be
extremely di cult to define such a definite range of age that within the
range a man is young and out of range a man is not young. The very rea-
son why it is so di cult to introduce such a definition for the concept of
“young men” is that the extension of this concept is not clear. When faced
with this kind of unascertained problem with clear intension and unclear
extension, fuzzy mathematics is the theory and method to use. The main
idea of fuzzy mathematics is based on the so-called membership functions
established based on experiences.
Probability and statistics study those phenomena with “stochastic un-

certainties” with their emphasis placed on statistical patterns existing in
the historical data of the phenomena through observing the chances for
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each possible outcome to occur. The basis for these theories to work and to
produce reliable results consists of samples of large sizes and assumptions
that these samples follow certain given patterns, named distributions.
With fuzzy mathematics, probability, and statistics described earlier,

what we can say here is that grey systems theory is developed to study
problems of “small samples and poor information.” These problems stud-
ied by grey systems theory cannot be handled successfully by using either
probability or statistics. Through coverage of information and generations
of series, grey systems theory looks for realistic patterns based on modeling
based on a few available data. Di erent from fuzzy mathematics, grey sys-
tems theory focuses on such research objects that have clear extension and
unclear intension. For example, the Chinese government plans to control
its national population within the range between 1.5 to 1.6 billion by 2050.
This range “between 1.5 to 1.6 billion” is a grey concept with its extension
clearly laid out without any knowledge about the specific population size.
Based on our discussion above, let us summarize the comparison of these

three theories in the following Table 1.2:

Table 1.2. Comparison between grey systems theory, probability,
statistics, and fuzzy mathematics

Grey systems
theory

Probability
statistics

Fuzzy
mathematics

Objects
of study

Poor information
Uncertainty

Stochastic
Uncertainty

Cognitive
Uncertainty

Basic sets Grey hazy sets Cantor sets Fuzzy sets

Methods
Information
coverage

Probability
distribution

Function of
a liation

Procedure
Grey series
generation

Frequency
distribution

Marginal
sampling

Requirement Any distribution
Typical

distribution
Experience

Emphasis Intention Intention Extension

Objective Laws of reality
Laws of
statistics

Cognitive
expression

Characteristics Small samples Large samples Experience

1.4 Main Contents in Grey Systems Theory

Grey numbers, grey elements, and grey relations are the main subjects of
research in grey systems theory. So, the entire theory of grey systems lies
on the foundation of grey numbers and their operations, grey matrices, and
grey equations. Control problems from industry and grey systems analysis,
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modeling, forecasting, decision making, and control of intrinsic characteris-
tics of social, economic, agricultural, ecological, etc., systems are the main
research tasks of grey systems.
Each study of a grey systems problem often needs a synthesized e ort of

many di erent aspects. For example, to make a long-term development plan
of an administrative district or a business, the current situation needs to be
analyzed and diagnosed first. On this basis, a systems model is established
so that a scientific and reliable prediction of the future can be made. With
a reliable prediction in mind, plans can be made with emphases chosen so
that e ective decision making and control can be performed in order to
reach the object of less input and more output. In the study of food chains
of ecological systems, for example, one has to deal with at the same time
three layers consisting of green plants, herbivorous animals, and carnivorous
animals. When making development plans for livestock farming, one has to
analyze quantified relations among these three layers in order to predict the
development and changes of each layer under human interference. With the
understanding that human interference has a cost and might bring about
some possible benefits, one needs to design a procedure to reduce the cost
and to obtain more benefits, and to have specific implementation schedules
of the procedure. In these examples, the contents of analysis, modeling,
prediction, decision making, and control have all been included.
Grey systems analysis consists mainly of grey incidence analysis, grey sta-

tistics, grey clustering, etc. Grey systems modeling is done mainly through
generations of grey numbers or functions of series operators to find hidden
patterns, if any. Then, the modeling is finished based on the concept of
five-step-modelings. The concept of five-step-modeling consists of

1. Language model;

2. Network model;

3. Quantification of model;

4. Dynamical quantification of model; and

5. Optimization of model.

Grey prediction is a quantitative prediction based on GM(1, 1). Accord-
ing to e ectiveness and characteristics, grey predictions can be classified in
the following six classes:

1. Serial predictions;

2. Interval predictions;

3. Disaster predictions;

4. Seasonal disaster predictions;

5. Stock-market-like predictions; and

6. Systems predictions.

Grey decision making includes grey target decision making; grey inci-
dence decision making, grey statistics, grey clustering decision making, grey
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situation decision making; grey stratified decision making; and grey pro-
gramming. The main contents of grey control cover (1) control problems of
grey systems of intrinsic characteristics, (2) control based on grey systems
methodology, such as grey incidence control, and (3) control of GM(1, 1)
prediction, etc.

1.5 Role of Grey Systems Theory in the
Development of Science

As a new theory with its own characteristics, grey systems theory has
been generally recognized by both the civil and academic communities. In
the name of grey systems, Professor Deng and his followers in the past
two decades have contributed a great deal to the development of science
and technology. For example, successful applications have been found in
a great many areas of human endeavor, including agriculture, industry,
energy resources, transportation, geology, meteorology, hydrology, ecology,
environment, medicine, military science, economy, societal issues, and so
on. Similarly, in manufacturing areas, profits have also been brought for-
ward with successful applications of the new grey systems theory. Promoted
by the theory of grey systems, some other new transfield scientific subjects
have also been brought into the scene of academic activities, such as grey
hydrology, grey geology, grey breeding, grey medicine, grey control theory,
grey chaos, and grey analysis of regional economic systems. For more de-
tails, see the special volume New Methods of Grey Systems, as listed in
Liu’s paper (1993).
At the present time, many (both rookie and established) political and

community leaders in several countries and di erential geographical re-
gions, including, but not limited to, Austria, Australia, Canada, England,
Germany, Hongkong, Japan, Russia, Singapore, Taiwan, and the United
States of America, have been engaging in the research and applications
of grey systems theory. Courses named grey systems have been o ered in
over one hundred universities around the globe. Hundreds of Ph. D. candi-
dates and Master’s Degree candidates have been applying the thinking logic
of grey systems to their scientific research for their academic degrees. At
the time of this writing, in China alone, more than 160 scientific research
projects reflecting the use of grey systems theory have been completed,
142 of which have won awards at Chinese national, provincial, or ministry
levels. New findings on grey systems can be found in 201 di erent national
and international periodicals. Surely, the idea and new results concerning
grey systems have been reported at various international conferences and
gathering places.
According to our incomplete statistics, in recent years, more than five

hundred papers by leading Chinese scholars have been indexed by journals
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such as SCI, EI, ISTP, and MR. A commercial consulting firm has been
established in Germany to collect and to translate papers on grey systems
and to supply advisory services. In summary, during the short period of
time of several years, the theory of grey systems was born, has grown, and
now is standing on its own feet, based on its magnificent and versatile suc-
cesses in the spectrum of modern science and technology as a new transfield
subject matter.

1.6 Positions of Grey Systems Theory in the
Spectrum of Interdisciplinary Sciences

No matter what an object is, di erent people will have di erent views on
the same object. So, there exist di erent ways to divide each subject system
under consideration. Based on human abilities, such as memory, imagina-
tion, and judgment, Francis Bacon concluded that science should be divided
into three parts: history, poetry and art, and philosophy. Later, St. Simon
and George F.W. Hegel put forward their way of dividing science based on
metaphysics and idealism. During the final period of the nineteenth cen-
tury, Friedrich Engels pointed out that subjects of knowledge should be
divided according to their di erent forms of motion of matter and their in-
nate sequences. Therefore, according to Engels, the structure of the science
system can be formed and can lay a foundation for the division of subject
matter. For more details, see Engels’ work (1971).
In modern China, scholars divide science into two parts: liberal arts and

science, or into three parts: natural science, mathematics, and social sci-
ence. And, the foundation of natural science is thought to have six parts:
mathematics, science, chemistry, geography, biology, and meteorology. Pro-
fessor Xuesen Qian (1988) reasoned that the whole system of science should
be divided into natural science, social science, systems science, science of
thinking, science of the human body, and science of mathematics. Each
scientific area should also be divided into three parts named basic science,
technical science, and engineering science. In the book entitled Outline of
Science, published in 1981, Professor Xipu Guan claimed that science and
technology should be divided into three areas: natural science, social sci-
ence, and science of thinking, and that each of the branches was made up
of transfield subjects formed with mutual connections of both infiltrative
subjects and synthetic subjects.
Here, from the point of view of grey systems, we first classify scientific

problems according to complexity and uncertainty, and then point out the
transfield subjects with methodological meanings in terms of the quality
of scientific problems. In doing so, we can correctly position grey systems
theory in the spectrum of all interdisciplinary sciences.
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FIGURE 1.1. A four-leaf graph

We depict our division of science with a Venn diagram, (Figure 1.1),
where the universal set consists of all possible subjects in the world of
learning, and the four circles, labeled A,B,C, and D, stand for aggrega-
tions of simple subjects, complex subjects, certain subjects, and uncertain
subjects, respectively. We can then obtain the four-leaf-graph as shown in
Figure 1.1 providing a di erent way of division of all scientific endeavors.
Each enclosed part of the four-leaf graph represents a scientific endeavor
dealing with problems of the following features:

1. CBD: semi-certain complex problems,

2. ACB: certain semi-complex problems,

3. CAD: semi-certain simple problems,

4. BDA: uncertain semi-complex problems,

5. CB: certain complex problem,

6. BD: uncertain complex problems,

7. AD: uncertain simple problems, and

8. AC: certain simple problems.

Accordingly, with consideration of di erent problem-solving methods, we
can obtain a division of all interdisciplinary sciences as follows:

1. CBD: theory of self-organization,

2. ACB: operations research,

3. CAD: theory of logic and intuition,
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4. BDA: theory of grey systems,

5. CB: theory of general systems,

6. BD: nonlinear science,

7. AD: probability, statistics and fuzzy mathematics, and

8. AC: mathematics.

Therefore, we can draw the following conclusion: Under comparison with
probability, statistics, and fuzzy mathematics, which study simple prob-
lems with uncertainty, the theory of grey systems, which studies uncertain
and semi-complex problems, represents a new height in human learning.
And, problems with complexity and uncertainty will be resolved only with
breakthroughs in nonlinear science.

1.7 Grey Systems in the Content of Uncertain
Information

It has been shown in the scientific literature that when predictions of zero
probability events are concerned, no theoretical methods so far have been
successful. According to recent publications, such a lack of success is mainly
due to how information and consequent uncertainties are handled. In this
section we show how grey systems compare to other concepts of uncertain
information.
Because the problem of unsuccessful applications of traditional scien-

tific theories involving uncertain information occurs mainly in the area of
predictions of zero probability events, let us first look at the concept of
a true historical process. According to George Soros, a legendary investor
and financial guru, a true historical process is a process that leads to either
unexpected outcomes or non-traditional beliefs. Consequently, a brand new
page in human history is created. In each true historical process, the past
creates expectations for all human participants so that predictions about
what will happen in the near future are made. To di erent participants the
expected events are viewed di erently. For example, some wish the expected
to happen whereas the others might like to avoid it as much as possible. So
consequently, various human participants will behave di erently from the
past in order to materialize or to avoid the expectations and predictions.
Consequent to these adjustments in human behavior the expected and pre-
dicted future is in general altered. That is, the expected events in general
do not actually occur in the time frame or in the magnitude expected. That
is, in order to be successful in predicting the outcome of a true historical
process we must be able to handle uncertainties created by either accurate



14 1. Introduction

or inaccurate information. It is because all information, either accurate or
inaccurate, brings forward uncertainties.
Historically, the concept of information has been defined in many dif-

ferent ways. To see clearly how grey systems compare with other kinds
of uncertain information, we establish various information on a common
ground.
A piece of tidings is meant the totality of a special form of objective

motion. It is an objective entity, which reduces a human’s level of ignorance.
For example, the statement that “It will snow today,” is a piece of tidings.
This statement improves our outlook about the weather condition of the
day.
Let A be a piece of tidings; then A A means no tidings, because it

contains the universal description of the tidings A and the opposite A. For
example, let A = the stock market will go up. Then A = the market will go
down or sideways. Now, A A = the stock market will go in some direction.
At the same time the combined tidings A A = the market will not go in
any direction.
We use lowercase letters x, y, z, ... to stand for unknowns, which could be

variables or statements, and A a piece of tidings. The notation A x repre-
sents that the tidings A can make people know the value of the unknown x.
Otherwise we write A x to mean A is a piece of unrelated tidings about
x; for example, given two pieces of tidings,

A = everyone has gone to watch a movie in the theatre;

B = the Dow Jones Industrial Average has gone down 400 points.

Now we are concerned with the unknown x = “where is Joe?” So, A x,
because A provides an answer to x, even though we do not know whether
the answer is true or false. That is, based on A, we know that Joe went
to the theatre. At the same time, B x, because B does not provide any
value and answer to x.
Assume x is an unknown, U a piece of tidings, and S a set of Cantor type.

If U makes people realize x S, U is called a piece of x-position tidings.
Each piece of tidings A U is called a piece of information regarding the
position tidings U , or just information for short. The totality of all pieces
of information of U is called an informational hierarchy.
Each so-called informational uncertainty stands for uncertainties related

to information, or the quality of information. As indicated by Soros’s Re-
flexivity Theory, in a true historic process, all information involved in the
formation of predictions about the future could be very certain and defi-
nite. However, it is the certainty and the definiteness of the information,
and the accuracy and preciseness of the predictions that make the future
di erent and more uncertain. So, informational uncertainties are di erent
from practical uncertainties.
Based on published studies, we have the following types of uncertainties:

1. Grey uncertainty,
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2. Stochastic uncertainty,

3. Unascertainty,

4. Ascertainty,

5. Fuzzy uncertainty,

6. Rough uncertainty,

7. Soros reflexive uncertainty, and

8. Blind uncertainty.

1.7.1 Grey Uncertainties

Suppose A is a piece of grey information defined as follows. Let x be an
unknown, S 6= a set, S0 a subset of S, U = “x belongs to S” and A = “x
belongs to S0 ”. Then the so-called grey uncertainty stands for the uncer-
tainty of which specific value of the unknown x should take. For example,
suppose we are given that U = “x belongs to S”, S = “R is the set of all
real numbers” , S0 = the interval [2,3], and A = “x belongs to S0”. Then
the piece of grey information A brings about the following uncertainty: we
know that x is a number between 2 and 3 inclusive. However, we do not
know which value x really assumes.

Example 1.7.1. In the negotiation process of buying a car, the buyer
knows she would pay no more than $30,000. If x stands for the final negoti-
ated price of the car she likes, then x is a number between $0 and $30,000.
Here, the grey uncertainty is the uncertainty about the final purchase price.

1.7.2 Stochastic Uncertainty

If x is unknown, S a nonempty set, U = “x belongs to S” and A = “x
belongs to S and the possibility for x = e S is e, where 0 e 1
and

P
e S e = 1.” In this case A is called a piece of stochastic information.

When a piece of stochastic information is given, the consequent uncertainty
is called stochastic uncertainty. Such uncertainty is created because the
piece of stochastic information A can only spell out how likely the unknown
x equals a special element e S. This implies that the probability e can
be very close to 1 or equal to 1, however, the large probability does not
guarantee that x = e will definitely be true.

Example 1.7.2. In the business of commodity trading, we can compute
based on the historical price data that the market for the S&P500 has a 90%
chance to go up on a certain Thursday. So some traders would buy in to the
S&P500 futures contracts on Thursday and sell out on the calculated day,
which may be the next Monday or Tuesday. However, the 90% possibility
of a rising S&P500 futures market does not guarantee this time when we
buy on Thursday the market will go up as expected.
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Example 1.7.3. The current commercial weather forecasting business
tends to provide services as follows. The chance of snow for tomorrow is
70%. If it does snow the next day, the weather forecasting service is correct
because they said it would. On the other hand, if it does not snow the next
day, the weather forecasting service is still correct because it only provided
70% likelihood of a forthcoming snow. Now, if the figure 70% is replaced
by 100%, the same thing can be still be said about the weather forecasting
service since the service only stated the chance of snowing was 100%, which
was not a guarantee.

1.7.3 Unascertainty

If in the definition of a piece of stochastic information A, we replace the
condition that X

e S

e = 1

by X
e S

e 1

then A is called a piece of unascertained information.
The main di erence between stochastic and unascertained information

is that the former concept is developed on the assumption that all possible
outcomes of an experiment are known, whereas for unascertained informa-
tion, we assume that only some possible outcomes of the experiment are
known to the researcher.

Example 1.7.4. A group of researchers have a scheduled meeting at
11:30 AM Thursday. However, at around 11:45 AM, Genti, as a key member
of the group, did not show up. So the rest of the group need to decide
where to find him for their urgent business decision making. Now, we face
two possible situations.

Situation 1: The group knows Genti very well. So the members come
up with a definite list of possible places Genti could be at the moment.
Because they know Genti so well, they could also attach a probability to
each place on the list. So, to locate Genti successfully, they only need to
check these places in the order from the largest probability to the smallest
probability. This is an example of stochastic uncertainties.
Situation 2: No member of the group knows Genti well enough to come

up with a list of all possible places and relevant probabilities where Genti
could be at this very moment. This is an example of unascertainties.
The second situation explains that the whereabouts of Genti at the spe-

cial moment was certain because as a living being, he must be at some
place. However, the decision makers did not know the true state of Genti
or relevant information used by Genti in his decision about where to go and
to be at the special moment. That is, the concept of unascertainty deals
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with the situation that no matter whether an objective event is definite or
not, whether it has already occurred or not, it will be “unascertained” as
long as the decision maker does not completely understand the essential
information. ¤

1.7.4 Fuzzy Uncertainty

A piece A of tidings is called a piece of fuzzy information, if A satisfies: x
is an unknown, S a nonempty set, the position tiding U = “x belongs to
S”, and A = “x belongs to S and the degree of the membership for x = e
S is e, 0 e 1.”

Example 1.7.5. Jacklin Ruscitto is an o cial member of many commit-
tees. Due to the nature of these committees, Jacklin does not have enough
time to be involved 100% in all of the committee works and relevant deci-
sion making. Let us look at one committee, say committee A. If Jacklin is
listed as a member but did not ever do anything for the committee, then
her degree of membership in the committee would be very close to zero.
If Jacklin was not listed as a member on the committee and did not do
anything either for the committee then her degree of membership in the
committee is zero. Even though she is not a listed member of the commit-
tee, if she has been involved in activities of the committee, then her degree
of membership in the committee should be greater than zero.
Now, the so-called fuzzy uncertainty will be that for a given piece of

fuzzy information A = “x belongs to S and the degree of membership for
x = e S is e, 0 e 1,” one has no clue on that for a given variable
y, should y be considered with the set S or not, even though he knows the
degree of membership of y in S is e.
For example, Jacklin is listed as an o cial member of Committee A and

has been involved in all committee activities. So her degree of membership
in committee A is 1. Now, the fuzzy uncertainty implies that her degree 1
of membership in Committee A does not guarantee her 100% involvement
or membership in Committee A in the future. On the other hand, even
though John Opalanko is not a listed member of Committee A, it is very
likely that because Committee A is involved in a special project that looks
extremely important in John’s eyes, John may very well get involved in
the project. In this case John’s degree of membership in Committee A
should be more than zero even though his previous degree of membership
in Committee A was zero.

1.7.5 Rough Uncertainty

Let U be a set of elements. And, a subset r p(U), the power set of U , is
called a partition of U , if the following conditions hold true:
1. r = {x : x r} = U ,
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FIGURE 1.2. The given rectangular area U

FIGURE 1.3. The partition r of the area U

2. A,B r, if A 6= B, then A B = .

Let K = (U ,R) be a knowledge base over U , where U is the universal
set of all objects involved in a study, and R is a given set of partitions of
the set U , called a knowledge base over U . A subset X U is called exact
in K, if there exists a P R such that X is the union of some elements
in P. Otherwise, X is said to be rough in K.

Example 1.7.6. Let U be the rectangular area U = {(x,y) : 0 x 5,
0 y 4} (Figure 1.2).
A given partition r of U is defined as follows: each element x in r is a

smaller rectangular area as shown in Figure 1.3
such that (1) if x is not on the bottom row, x includes all interior points

and points on the upper and left borders; (2) if x is on the bottom row,
then x includes all points as described in (1) and those on the bottom
border; (3) if x is located on the far right column but not on the bottom x
contains all points as in (1) and the points on the right border; and (4) if
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FIGURE 1.4. The partition s of the area U

FIGURE 1.5. Rough approximations of the area A

x is located at the lower right corner then x contains all the points within
and on the border of the rectangular area.
Assume that s is another partition of U as shown in Figure 1.4 with

border points classified in a similar way as in the partition of r above.
Then the shaded area of U is an exact subset of U because it is the union

of elements A11, A12, A21, and A22 of the partition r. Now the shaded area
A in Figure 1.5 is considered a rough subset of U , because it does not equal
the union of any combination of elements in r and/or s. It implies that in
order to know more about this rough set A, one has to approximate it in
two di erent ways if the partition s is applied.

1. sA = A11 A12 A21 A22 = {Aij : i, j = 1, 2}.
2. sA = {Aij : i, j = 1, 2} {Bij : i = 1, ..., 4, j = 1, 2}.
If the partition r is applied, the following approximations could be em-

ployed.
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3. rA = A11 A12 A21 A22 = {Aij : i, j = 1, 2}.
4. rA = {Aij : i, j = 1, 2} {Cij : i = 1, ..., 4, j = 1, 2}.
Because elements in s are finer than those in r, approximations 1 and 2

of the rough set A are expected to be more accurate than those of 3 and
4. From this example, one can see that no matter how fine a partition is,
its approximations to a given rough set always contain uncertainty. This
uncertainty is in the area of sA — sA or rA — rA, where

sA sA = {Bij : i = 1, ..., 4, j = 1, 2}
and

rA rA = {Cij : i = 1, ..., 4, j = 1, 2}

1.7.6 Soros Reflexive Uncertainty

Let x be the unknown path a true historic process will eventually take and
S = all possible outcomes of this historical process. Then, a Soros reflexive
uncertain information is defined as follows: U = “x S” and A S is
a piece of information regarding the position of x in S defined by A =
“if it is expected x = e S with a degree of credence e, 0 e 1,
then x = e S has a degree of credence 1 — e.” Now the uncertainty
associated with a piece of Soros reflexive uncertain information is that the
more accurate a prediction about a true historical process is, the more
uncertain the expected future will become.

Example 1.7.7. George Soros started in the early 1960s to apply the
concept of reflexivity to understand finance, politics, and economics. Based
on his success in practice and over 40 years of theoretical study, he drew the
following conclusion: “Statements whose truth value is indeterminate are
more significant than statements whose truth value is known or definite.
The latter constitute knowledge. They help us understand the world as it
is. But the former, expressions of our inherently imperfect understanding,
help to shape the world in which we live.”
Based on his theory of reflexivity, Mr. Soros always looks out for situ-

ations where he sees an investment opportunity di erently from the pre-
vailing wisdom. He assumes all companies and industries to be flawed and
tries to find what the flaws are. As soon as there are signs to show that the
flaws are becoming a problem he will take financial positions so that he puts
himself ahead of the investment game. More specifically, when a company
has a superior market position, competent management, and exceptional
profit margins, the stock may be overvalued. Now, the management may
become complacent and the competitive or regulatory environment may
change. When Soros looks for flaws, he establishes a hypothesis on which
he would invest. Each of his hypotheses satisfies the following conditions.
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(1) The hypothesis has to di er from the widely accepted wisdom. The
greater the di erence is, the greater the profit potential. (2) Each of his
hypotheses does not have to be true in real life to be profitable, as long as
it could be generally accepted. (3) The length of time the beneficial e ects
of the hypothesis can provide depends on whether the underlying flaws are
recognized and corrected.
In 1972, Mr. Soros sensed that a change was about to occur in the bank-

ing industry because banks had the worst reputations at the time. Their
employees were considered stodgy and dull, and few believed that the banks
would rouse themselves from their deep slumber. That was why investors
showed no interest in their stocks. After doing his homework, Soros real-
ized that a new generation of bankers were quietly ready and in place to
act aggressively on behalf of their employers. Because the new generation
of bank managers was using new financial instruments, the banks earnings
performances were looking up. However, the bank stocks were sold at vir-
tually no premium. Many banks had reached their leveraging limits. So,
in order to grow, they needed more equity. When the First National City
Bank hosted a dinner for security analysts in 1972, even though Mr. Soros
was not invited, he sensed the forthcoming aggressive change in the way
banks would conduct their business. So, he wrote a brokerage report argu-
ing that because bank shares had been going nowhere they were about to
take o , contrary to what many others thought. Timing the publication of
his report to coincide with the bank’s dinner he recommended getting be-
hind some of the better-managed banks. As expected, bank stocks began to
rise and he made a handsome 50% profit in a short period of time. The leg-
endary success of Mr. Soros’ lifelong investing has evidenced a widespread
existence of our so-called Soros reflexive uncertainty in real-life situations
with human participants.

Our presentation in this section shows that the study of grey systems is
only the start of an ambitious scientific project: Establish a unified infor-
mation theory. With unascertained information well understood, we expect
that many problems facing scientific practitioners, which have not been ad-
dressed successfully in the past, can be resolved with desirable satisfaction.
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Grey Numbers and Their Operations

2.1 Grey Numbers

Each grey system is described with grey numbers, grey equations, grey
matrices, etc. Here, grey numbers are the elementary “atoms” or “cells”.
A grey number is such a number whose exact value is unknown but a

range within that the value lies is known. In applications, a grey number
in general is an interval or a general set of numbers.
Following are several classes of grey numbers.

1. Grey numbers with only lower limits.

The grey numbers with lower limits but not upper limits are denoted as

[a, ) or (a),

where a represents the lower limit of the grey number , that is a fixed
value. We call [a, ) the value field of the grey number or briefly a grey
field.
For example, the weight of a living tree is a grey number with a lower

limit, because the weight of the tree must be greater than zero. However,
the exact value for the weight cannot be obtained through normal means.
If we use the symbol to represent the weight of the tree, we then have
that [0, ).

2. Grey numbers with only the upper limits.

The grey numbers with only upper limits are written as

( , a] or (a),
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where a stands for the upper limit of the grey number and is a fixed
number.
For example, for an investment opportunity, there always exists a upper

limit representing the maximum amount of money that can be mobilized.
For an electrical equipment, there must be a maximum critical value for the
equipment to function normally. The critical value could be for a maximum
voltage or for a maximum amount of current allowed to be applied to the
equipment. So, the amount of dollars, that can be used for a specific invest-
ment opportunity, the voltage and the current requirements for electrical
equipment are all examples of grey numbers with only upper limits.

3. Interval grey numbers.

A grey number with both a lower limit a and a upper limit a is called
an interval grey number, denoted as [a, a] .
For example, the weight of a seal is between 20 and 25 kg. A specific

person’s height is between 1.8 and 1.9 meters. These two grey numbers can
be respectively written as

1 [20, 25] and 2 [1.8, 1.9] .

4. Continuous grey numbers and discrete grey numbers.

The grey numbers taking on a finite number of values or a countable
number of values in an interval are called discrete grey numbers. And,
those continuously taking values that covers an interval are continuous
grey numbers.
For example, if a person’s age is between 30 and 35, his or her age could

be one of the values 30, 31, 32, 33, 34, 35. So, age is a discrete grey number.
As for a person’s height, weight, etc., they are continuous grey numbers.

5. Black and white numbers.

When (- , ) or ( 1, 2), that is, when has neither an
upper limit nor lower limit, or the upper and the lower limits are all grey
numbers, is called a black number.
When [a, a] and a = a, is called a white number.
For the sake of convenience in our discussion, we treat black and white

numbers as special grey numbers.

6. Essential grey numbers and non-essential grey numbers.

An essential grey number is a grey number that is impossible or tem-
porarily not possible to find a white number to represent. For example, a
general forecast value, the total amount of energy in the universe, an ”age”
with accuracy to seconds or milliseconds, etc., are all examples of essential
grey numbers.
A non-essential grey number is a grey number that can be described

with a white number as its “representative,” where the white number is
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determined by using either previously known information or through some
other means. This white number is called the whitenization (value) of the
relevant grey number, denoted as e . And, (a) is used to stand for the grey
number with a as its whitenization value. For example, we ask somebody to
help buy a snow coat for about $100. This number 100 can be treated as the
whitenization value of the future coat price (100), denoted as e (100) =
100.
Fundamentally, the set of all grey numbers can be divided into three

classes of di erent types.

1. Grey numbers of information type are those whose values cannot
be certain due to temporary shortage of information. For example, an esti-
mate indicates that the summer crop production of a certain region for the
current year is over 100,000 tons. That is, [100,000, ). It is estimated
that a local branch bank would have a total of deposits in dollars some-
where between $700,000 and $900,000. That is, [700, 000, 900, 000].
It is predicted that the maximum temperature in the greater Pittsburgh
area of Pennsylvania in May would not go beyond 102oF. That is,
[0, 120] . In all these examples, we have dealt with some grey numbers of
information type. Due to a temporary shortage of information, we cannot
be certain about the exact values of these grey numbers. However, after a
certain period of time, through addition of new information, the relevant
grey numbers can be whitenized. Specifically, in the previous three exam-
ples, as soon as the time periods involved in the prediction are over, the
grey numbers will all become complete determined numbers.

2. Among all conceptual grey numbers, some are also called grey num-
bers of wish type, that means that these grey numbers are formed based
on people’s wishes and thoughts. For example, a scientist wishes to ob-
tain a research grant of at least $10,000 and the more the better. That is,

[10, 000, ). A manufacturing business has a history of producing 1%
defective products. In the hope of increasing its profit margin, the admin-
istration of the business wishes to reduce the rate and the smaller the rate
the better. So, [0, 0.01] . All these grey numbers are conceptual type.

3. Grey numbers of layer type are those formed by changing layers.
Some numbers are white, if seen from the height of the system’s level.
That is the macrocosmic level, the level of the whole, or the level of cog-
nition. However, they might be grey, if seen at some lower level, say, at a
microcosmic level of the system, the level of parts, or from the depth of
cognition. For example, human height is white if measured in centimeters,
and is grey if measured with the accuracy of 10,000th of a millimeter. Also,
for some numbers, they are white within a small domain, and grey when
considered in a larger range. For example, the number of persons named
Tom could be 1 if one only considers the pool of people in a certain class of
a certain university. It could be between 10 and 25 if the entire university
is considered. So, [10, 25] has already become a grey number. However,
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if we consider the entire world, no one really knows what the answer would
be. That is, [1, ).

2.2 Whitenization of Grey Numbers and Degree of
Greyness

There is a class of grey numbers that vibrate around a base value. This
class of grey numbers can be whitenized relatively easily, because we can
use the base value as the main whitenization value. A grey number with a
base value a can be denoted as

(a) = a+ a or (a) ( , a,+) ,

where a stands for the vibration variable. The whitenization value of this
grey number is (a) = a. For example, the grey number that this year’s
research expense of a small group of scientists from a local university will
be about $10,000 can be expressed as

(10, 000) = 10, 000 +

or
(10, 000) ( , 10, 000,+) ,

whose whitenization value is 10,000.
For a general interval grey number [a, b] , we take its whitenization

value e as e = a+ (1 ) b, [0, 1] .

Definition 2.2.1. The whitenization of the form e = a + (1 ) b,
[0, 1] , is called equal weight whitenization.

Definition 2.2.2. In an equal weight whitenization, the whitenization
value, obtained when taking = 1

2 , is called an equal weight mean whit-
enization.

When the distribution information of an interval grey number is hardly
known, we often use the equal weight mean whitenization.

Definition 2.2.3. Assume that the interval grey numbers 1 [a, b]
and 2 [c, d] have the whitenizations

e1 = a+ (1 ) b, [0, 1]

and e2 = c+ (1 ) d, [0, 1] .
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FIGURE 2.1. The weight function of whitenization for the content of quick-acting
nitrogen in soil

When = , we say that the grey numbers 1 and 2 are synchronous.
When 6= , we say that the grey numbers 1 and 2 are not synchronous.

When the distribution information of a grey number is known, we often
use non-equal weight whitenization. For example, the statement that a
person’s age is possibly between 40 and 60 is a grey number [40, 60] .
Based on some research, it is found that he spent 12 years in pre-college
education, and entered into a university in the mid-1960s. So, it is more
likely that he is about 50 years old. Or, in other words, it is more likely
for him to be between 45 and 55 years old. For this grey number, if one
uses an equal weight whitenization, it is obviously not very reasonable.
Therefore, we employ a whitenization weight function to describe the
degree of preference of a grey number to take values in its range.
For example, the contents of chemical elements nitrogen, phosphorus, and

potassium are all grey numbers. To obtain a normal growing soil condition,
the contents of quick-acting nitrogen should be between 15 to 40 ppm. So,
we can use the weight function of whitenization as shown in Figure 2.1
to describe the content of quick-acting nitrogen in the soil of interest. Here,
the flat top with weight 1, represents the optimal content of quick-acting
nitrogen. The left slope stands for the content of quick-acting nitrogen from
5 to 15 ppm so that the higher the better the e ects would be. The right
slope indicates the content from 40 to 60 ppm such that the higher the
content is the worse the e ect would be on the production of a certain
crop. The curve starts at 5 ppm and ends at 60 ppm, that implies that
content of less than 5 ppm or more than 60 ppm is not allowed for the
production of the crop in the area of consideration.
For grey numbers of conceptual type, representing wishes, their weight

functions of whitenization in general are designed as monotonic increasing
functions. The weight functions of whitenization, contained in Figure 2.2,
represent the grey number of an amount of a loan and related degree of
“preferences”, where the straight line represents the “normal wish” (or the
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FIGURE 2.2. Weight functions of whitenization for loans and preferences

“preference” is proportional to the amount of the loan of concern with the
slope describing the degree of desire to obtain the loan). f1(x) implies that
the desire of obtaining a loan is not very strong with the understanding
that a loan of less than $100,000 is not enough, a loan of around $200,000
is relatively satisfactory, and a loan of $300,000 is enough. Function f2(x)
represents such a strong desire that a loan of $350,000 only carries a 20%
degree of satisfaction. Function f3(x) shows that even for a loan of $400,000,
the satisfaction level is only 10%. However, a loan of $500,000 is enough.
More specifically, this function states that a loan of about $500,000 must
be obtained otherwise there would be no other choices.
In general, the weight function of whitenization of a grey number is de-

signed based on known information and experience of the researcher. It has
no fixed procedure to follow except that the starting and ending points of
the function should have some significance. For example, during an inter-
national business negotiation, there exists a process of change from grey to
white. One country claims that its exporting must be at least, say, $5 bil-
lion, and the other side insists that the importing must be limited to a scale
under $3 billion. So, the final deal successfully agreed upon will be some-
where between $3 billion to $5 billion. The weight function of whitenization
can have a start at $3 billion and an end at $5 billion.

Definition 2.2.4. The continuous functions with fixed starting and end-
ing points and increasing on the left and decreasing on the right are called
typical weight functions of whitenization.

Typical weight functions of whitenization in general looks as shown
in Figure 2.3a, where

y = f1(x) =

L(x), x [a1, b1)

1, x [b1, b2]

R(x), x (b2, a2]

.
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FIGURE 2.3. Typical weight function of whitenization

We call the function L(x) the left increasing function, R(x) the right de-
creasing function, [b1, b2] the peak area, a1 the starting point, a2 the ending
point, and b1 and b2 the turning points.
In applications, for the sake of convenience for computer programming

and calculation, the functions L(x) and R(x) are often simplified as straight
lines (see Figure 2.3b). That is, we have

f(x) =

L(x) =
x x1
x2 x1

, x [x1, x2)

1, x [x2, x3]

R(x) =
x4 x

x4 x3
, x (x3, x4]

.

Theorem 2.2.1. Assume that X is a space of all real numbers, Y
[0, 1] and f : X Y satisfies the conditions of typical weight functions of
whitenization, then f satisfies the following conditions.

1. f(Ø) = Ø;

2. f(X) = Y;

3. A, B X, if A B, then f(A) f(B);

4. if A 6= Ø, then f(A) 6= Ø ;
5. f(A B) = f(A) f(B) ;

6. f(A B) f(A) f(B) .

Definition 2.2.5. Suppose f is a typical weight function of whiteniza-
tion,

Y [0, 1], f 1(y) = {x| f(x) = y}, y Y.

Then f 1 is called the inverse function of f .
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Definition 2.2.6. For the typical weight function of whitenization as
shown in Figure 2.3a, the following

go =
2 |b1 b2|
b1 + b2

+max

½ |a1 b1|
b1

,
|a2 b2|
b2

¾
is called the degree of greyness of the grey number .

The expression of go is a sum of two parts. The first part represents the
e ect of the size of the peak area on the degree of greyness, and the second
part shows the e ect of the size of the areas under the functions L(x) and
R(x) on the degree of greyness. In general, the greater the peak area is and
the greater the areas under the functions L(x) and R(x), the greater go.
When

max{ |a1 b1|
b1

,
|a2 b2|
b2

} = 0,

then

go =
2|b1 b2|
b1 + b2

.

So, the weight function of whitenization becomes a horizontal line.
When

2|b1 b2|
b1 + b2

= 0,

the grey number is such that it has a basic value, that equals b = b1
= b2.
When go = 0, is a white number.

2.3 Operations of Interval Grey Numbers

In this section we discuss various operations of interval grey numbers.
Assume that we have grey numbers

1 [a, b] , a < b

and
2 [c, d] , c < d.

If we use the symbol to represent an operation between 1 and 2, and
if

3 = 1 2,

then 3 should also be an interval grey number. So, we should have

3 [e, f ] , e < f

and for any e1 and e2, e1 e2 [e, f ] .
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Rule 2.3.1. Assume that 1 [a, b] , a < b, and 2 [c, d] , c < d. The
sum of 1 and 2, written 1 + 2, is defined as follows.

1 + 2 [a+ c, b+ d] .

Example 2.3.1. Given 1 [3, 4] and 2 [5, 8], then

1 + 2 [8, 12] .

Rule 2.3.2. Assume that [a, b] , a < b. The negative inverse of ,
written , is defined as follows.

= [ b, a] .

Rule 2.3.3. Assume 1 [a, b], a < b, and 2 [c, d], c < d. The
difference of 1 with 2 is defined as follows.

1 2 = 1 + ( 2) [a d, b c] .

Example 2.3.2. Given 1 [3, 4], and 2 [1, 2], then we have

1 2 [3 2, 4 1] = [1, 3]

2 1 [1 4, 2 3] = [ 3, 1].

Rule 2.3.4. Assume [a, b], a < b, and ab > 0. The reciprocal of ,
written 1, is defined as follows.

1 [
1

b
,
1

a
].

Example 2.3.3. Given [2, 4], we have 1 [0.25, 0.5].

Rule 2.3.5. Assume 1 [a, b], a < b, and 2 [c, d], c < d. The
product of 1 and 2 is defined as follows.

1 · 2 [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}].

Example 2.3.4. For 1 [3, 4], and 2 [5, 10], we have

1 · 2 [min{15, 30, 20, 40},max{15, 30, 20, 40}]

= [15, 40].



32 2. Grey Numbers and Their Operations

Rule 2.3.6. Assume 1 [a, b], a < b, and 2 [c, d], satisfying c < d
and cd > 0. The quotient of 1 divided by 2 is as defined as follows.

1/ 2 = 1 · 1
2 .

That is,
1

2

·
min{a

c
,
a

d
,
b

c
,
b

d
},max{a

c
,
a

d
,
b

c
,
b

d
}
¸
.

Example 2.3.5. For 1 [3, 4], and 2 [5, 10], we have

1

2

·
min{3

5
,
3

10
,
4

5
,
4

10
},max{3

5
,
3

10
,
4

5
,
4

10
}
¸
= [0.3, 0.8].

Rule 2.3.7. Assume that [a, b], a < b, and k is a positive real
number. The scalar multiplication of k and is defined as follows.

k · [ka, kb].

Theorem 2.3.1. Interval grey numbers cannot in general be cancelled
additively or multiplicatively. More specifically, the difference of any two
grey numbers is generally not zero, except in the case that they are iden-
tical. And the division of any two grey numbers is generally not 1 except
in the case when they are identical.

Example 2.3.6. For [2, 5] , we have

= 0, if synchronous

[ 3, 3] , if not synchronous

and
= 1, if synchronous£

2
5 ,

5
2

¤
if not synchronous

.

Definition 2.3.1. Assume that R( ) is a set of grey numbers. If for any
i, j R( ),

i+ j , i j , i · j , i / j

all belong to R( ) (when division is considered, the conditions in Rule
2.3.6 need to be satisfied), then R( ) is called a field of grey numbers.

Theorem 2.3.2. The totality of all interval grey numbers constitutes a
field.

Definition 2.3.2. Assume that E( ) is a set of grey numbers. If for any
i, j and k E( ), the following holds true,
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1. i+ j = j+ i;

2. ( i + j) + k = i+ ( j + k);

3. There exists a zero element 0 E( ) such that i + 0 = i;

4. For any E( ), there exists — E( ) such that

+ ( ) = 0;

5. i · ( j · k) = ( i · j) · k;

6. There exists a unit element 1 E( ) such that 1 · i = i · 1 = i;

7. ( i + j)· k = i · k + j · k; and

8. i · ( j + k) = i · j + i · k,

then E( ) is called a grey linear space.

Theorem 2.3.3. The totality of all synchronous interval grey numbers
constitutes a grey linear space.

2.4 Measures of Grey Numbers

In this section, we discuss the concept of measures or greyness of grey num-
bers. The greyness of a grey number to a certain degree reflects how much
the researcher does not know about the behavioral characteristics of the
grey system of concern. In an earlier section, we have learned the definition
of greyness of interval grey numbers such that their weight functions of
whitenization are known. However, in many practical applications, we will
often face grey numbers with unknown weight functions of whitenization.
For example, it is extremely di cult for the researcher to construct the
weight functions of whitenization for all such grey numbers that are made
up of predictions about behavioral characteristics of a general grey system.
After carefully checking through various cases, it can be seen that the

greyness of a grey number is mainly related to the length of the information
field on that the grey number is defined, and its basic value. For example,
let us consider a grey number near 4000. If we construct two grey number
estimations 1 [3998, 4002] and 2 [3900, 4100] , then it is obvious
that 1 is a more valuable estimate than 2. That is, the greyness of 1

is smaller than that of 2. Now, let us consider another grey number with
its basic value at 4. If we construct a grey number estimate 3 [2, 6]
for this second unknown number, we can easily see that the lengths of the
information fields for 1 and 3 are both 4. However, the greyness of 1

is obviously smaller than that of 3.

Definition 2.4.1. Assume that a grey number is defined on the in-
formation field [a, b] . That is, [a, b] , a < b. Then, ` ( ) = |b a| is
called the length of the information field of .
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It can be seen readily that when two grey numbers have the same basic
value, the grey number with the longer information field will have a greater
greyness than the other grey number with a shorter information field.
Definition 2.4.2. Assume that a given grey number is defined on the

information field [a, b] ; that is, [a, b], a < b.

1. When the weight function of whitenization of is known, b = E ( )
is called the mean-value whitenization (number) of the grey number ,
where E ( ) stands for the expected value of the grey number , if the
grey number is a random variable.
2. When the weight function of whitenization of the grey number is

unknown, (i) if is a continuous grey number, then b = 1
2 (a+ b) is called

the mean-value whitenization (number) of the grey number . (ii) If is
a discrete grey number such that ai [a, b] , for i = 1, 2, ..., are all the
possible values of , then

b =
1
n

Pn
i=1 ai, has a finite number of possible values

limn +
1
n

Pn
i=1 ai, takes a countable number of possible

values

is called the mean-value whitenization (number) of the grey number .

Note. If ai ( ) is also a grey number such that ai ( ) [ai, bi] with
ai < bi, then one can take ai = bai ( ) .

We continue to use go ( ) to represent the greyness of the grey number
. In the following, we establish an axiomatic system for the concept of

greyness of grey numbers.

Axiom 2.5.1. For any grey number [a, b] , a < b, go ( ) 0.

Axiom 2.5.2. When a = b, that is, when ` ( ) = 0, go ( ) = 0; that is,
the greyness of the grey number is zero.

Axiom 2.5.3. When either a or b + , go ( ) ; that is,
the greyness approaches .

Axiom 2.5.4. go (k ) = go ( ) .

This axiom says that when a grey number is multiplied by a real
number k, the greyness of the original grey number is not changed.

Axiom 2.5.5. go ( ) is directly proportional to ` ( ), and inversely
proportional to b .
Definition 2.4.3. Assume that a grey number [a, b] , a < b, is given.

Then,

go ( ) =
` ( )¯̄b ¯̄ (2.1)

is called the greyness of the grey number , where ` ( ) stands for the
length of the information field of and b the mean-value whitenization
value.
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Theorem 2.4.1. The greyness, as defined in Definition 2.4.3, of grey
numbers satisfies the five axioms established for that of grey numbers in
Axioms 2.5.1 to 2.5.5.

Definition 2.4.4. When b = 0, is called a grey number with center
zero.

Proposition 2.4.1. The greyness of any grey number with center zero
equals .

In the following, we look at some results regarding the relationship be-
tween combinations of grey numbers and their greyness.

Theorem 2.4.2. For given grey numbers 1 [a, b] and 2 [c, d]
satisfying a < b, c < d, and either a 0, c 0 or b 0 and d 0, the
following holds true:

go ( 1 + 2) go ( 1) + g
o ( 2) . (2.2)

Proof.

go ( 1 + 2) =
` ( 1 + 2)

|( 1 + 2)|
=

2 |b+ d a c|
|b+ d+ a+ c|
2 |b a|+ |d c|
|b+ d+ a+ c|
2 |b a|
|b+ a| +

2 |d c|
|d+ c|

=
` ( 1)¯̄ b1 ¯̄ +

` ( 2)¯̄ b2¯̄
= go ( 1) + g

o ( 2) . ¤
Theorem 2.4.3. If the grey numbers 1 [a, b] and 2 [c, d] with

a < b, c < d satisfy one of the following conditions.

1. a 0 and c 0,

2. a 0, d 0,

3. b 0, c 0, or

4. b 0, d 0,

then the following hold true,

go ( 1 · 2) go ( 1) , (2.3)

go ( 1 · 2) go ( 2) . (2.4)

Proof. If condition 1 holds true, we have 1 · 2 [ac, bd] . If condition
2 holds true, we have 1 · 2 [bc, ad] . If condition 3 holds true, we have
1 · 2 [ad, bc] . If condition 4 holds true, we have 1 · 2 [bd, ac] . In

the following, we provide a detailed proof for condition 1. The proofs for
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the other cases are similar and omitted. Now, if condition 1 holds true, we
have

go ( 1 · 2) =
` ( 1 · 2)

|( 1 · 2)|
=

2 |bd ac|
|bd+ ac|
2 |bd ad|
|bd+ ad|

=
2 |b a|
|b+ a|

=
` ( 1)¯̄¡b1¢¯̄

= go ( 1) .

Similarly, we have

go ( 1 · 2) =
` ( 1 · 2)

|( 1 · 2)|
=

2 |bd ac|
|bd+ ac|
2 |bd bc|
|bd+ bc|

=
2 |d c|
|d+ c|

=
` ( 2)¯̄¡b2¢¯̄

= go ( 2) . ¤

Theorem 2.4.4. If the grey numbers 1 [a, b] and 2 [c, d] with
a < b, c < d satisfy one of the following conditions,

1. a > 0 and cd < 0;

2. b 0, cd < 0;

3. ab < 0, cd < 0, and |a|
b max

n
|c|
d ,

d
|c|
o
; or

4. ab < 0, cd < 0, and b
|a| max

n
|c|
d ,

d
|c|
o
,

then the following holds true,

go ( 1 · 2) = g
o ( 2) . (2.5)

Proof. For the cases 1 and 4, we have 1 · 2 b [c, d] . For the cases
2 and 3, we have 1 · 2 a [c, d] . So, for all these four cases, we have
1 · 2 = k 2 . Therefore,

go ( 1 · 2) = g
o (k 2) = g

o ( 2) . ¤
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Similarly, one can prove the following Theorem 2.4.5.

Theorem 2.4.5. If the grey numbers 1 [a, b] and 2 [c, d] with
a < b and c < d satisfy one of the following conditions,

1. c > 0 and ab < 0;

2. d 0, ab < 0;

3. ab < 0, cd < 0, and |c|
d max

n
|a|
b ,

b
|a|
o
; or

4. ab < 0, cd < 0, and d
|c| max

n
|a|
b ,

b
|a|
o
,

then the following holds true,

go ( 1 · 2) = g
o ( 1) . (2.6)

Theorem 2.4.6. If the grey numbers 1 [a, b] and 2 [c, d] with
a < b and c < d satisfy one of the following conditions,

1. a 0 and c > 0;

2. a 0, d < 0;

3. b 0, c > 0; or

4. b 0, d < 0,

then the following hold true,

go ( 1 ÷ 2) go ( 1) , (2.7)

go ( 1 ÷ 2) go ( 2) . (2.8)

Proof. For case 1, we have 1÷ 2

£
a
d ,

b
c

¤
. For case 2, we have 1÷ 2£

b
d ,

a
c

¤
. For case 3, we have 1 ÷ 2

£
a
c ,

b
d

¤
. And, for case 4, we have

1 ÷ 2

£
b
c ,
a
d

¤
. In the following, we focus on the proof of case 1o. The

proofs for the other cases are similar and omitted.
When condition 1 holds true, we have

go ( 1 ÷ 2) =
` ( 1 ÷ 2)

| 1 ÷ 2|
=

2
¯̄
b
c

a
d

¯̄¯̄
b
c

a
d

¯̄
=

2 (bd ac)

|bd+ ac|
=

` ( 1 · 2)

|( 1 · 2)|
= go ( 1 · 2) .

Now, from Theorem 2.4.3, it follows that go ( 1 ÷ 2) go ( 1) and
go ( 1 ÷ 2) go ( 2) .¤
Theorem 2.4.7. If the grey numbers 1 [a, b] and 2 [c, d] with

a < b and c < d satisfy one of the following conditions,
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1. ab < 0 and c > 0, or

2. ab < 0, d < 0,

then the following hold true,

go ( 1 ÷ 2) = g
o ( 1) . (2.9)

Proof. For case 1, we have 1÷ 2

£
a
c ,

b
c

¤
. For case 2, we have 1÷ 2£

b
d ,

a
d

¤
. So, in both of these cases, we have

1 ÷ 2 = k 1 .

Therefore,
go ( 1 ÷ 2) = g

o (k 1) = g
o ( 1) . ¤

Theorem 2.4.8. If the grey numbers 1 [a, b] and 2 [c, d] with
a < b, c < d and cd < 0, then

go ( 1 ÷ 2) = . (2.10)

Proof. 1. When a 0, we have 1÷ 2

¡
, ac
¤ £

a
d ,+

¢
. 2. When

b 0, we have 1 ÷ 2

¡
, bd
¤ £

b
c ,+

¢
. And, 3. when ab < 0, we

have 1 ÷ 2 ( ,+ ) . That is, 1 ÷ 2 is either a black number or
a combination of two black numbers. Therefore, go ( 1 ÷ 2) = . ¤

2.5 Information Content of Grey Numbers

Materials, energies, and information have been seen as three elementary
bases for the evolution of the natural world and the development of human
society. Our ability to understand nature increases rapidly with our capa-
bility to better comprehend and control information. During the Civil War
of the United States of America, people used telegrams to transmit infor-
mation. The speed of information transmission was 30 words per minute.
At the time, in order to control an area of the size of 10 square kilometers,
38,830 soldiers were needed. During World War I of the last century, the
functions of telegrams had been improved so that the speed and accuracy
of information transmission had reached a new level. During that period of
time, to control an area of the size of 10 square kilometers, 4040 soldiers
were needed. During World War II, the technology of the telex was so well
understood that 66 words could be transmitted per minute. And, to control
an area of 10 square kilometers, 360 soldiers were needed. During the Gulf
War in 1991, the coalition forces used computers to transmit information
reaching a speed as high as 192,000 words per minute. And, only 23.4 sol-
diers were needed to control an area of 10 square kilometers. It is estimated
that by 2010, with the improvement of computers, the speed of information
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transmission can reach 1,500 billion words a minute. And, 2.4 soldiers will
be able to control an area of 10 square kilometers.
In 1948, C.E. Shannon introduced the following formula for the compu-

tation of information measures on the space made up of random discrete
systems,

I =
nX
i=1

Pi logPi where
nX
i=1

Pi = 1,

that is generally known as Shannon (information) entropy. In 1996, Qishan
Zhang introduced the concept of (information) entropy for the di erence
information sequence X = (x1, x2, ..., xs) using structural image sequence
Y = (y1, y2, ..., ys):

I (X) =
sX
j=1

yj · ln yj . (2.11)

The concept of grey numbers is established to express characteristic be-
haviors of grey systems. The information content contained in grey numbers
reflects the degree of comprehension of the researcher of a specific grey sys-
tem. The measure of the information content cannot be unrelated to the
background on that relevant grey numbers were initially created. For exam-
ple, if there is no explanation on the background and field of definition of
a grey number and no explanation on the grey system about that the grey
number was initially introduced, it will be very di cult for us to discuss the
amount of information content contained in the grey number. For example,
for the given grey number [160, 200], without knowing the background
where it was initially introduced, it is very di cult for anyone to tell the
amount of useful information the grey number actually carries. When we
know that the grey number stands for an estimate of a male adult’s height
in centimeters, its information content is still nearly zero, because the inter-
val [160, 200] coincides almost entirely with the range of male adult heights.
If a criminal is sought by a law enforcement agent, and the only known in-
formation is that the criminal is a male as tall as somewhere between 160
to 200 centimeters, then the law o cer will surely need additional infor-
mation to break the case. On the other hand, if 1 [160, 200] stands
for the blood pressure of a patient, it surely provides quite a bit of useful
information for the patient and his doctor.

Definition 2.5.1. Assume that the background of introduction of a grey
number is with . Then = is called the remanent set
of .

Let µ ( ) be the measure of the field on that the grey number is defined
and I ( ) the information content of the grey number. Then, I ( ) satisfies
the following axioms.

Axiom 2.5.1. 0 I ( ) 1.

Axiom 2.5.2. I ( ) = 0.
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Axiom 2.5.3. I ( ) is directly proportional to µ ( ) and inversely pro-
portional to µ ( ) .

At this junction, Axiom 2.5.1 limits the information content of a grey
number to the range [0, 1] . The closer to zero I ( ) is, the less information
content is contained in the grey number . On the other hand, the closer
to 1 I ( ) is, the more information content the grey number contains.
Axiom 2.5.2 stipulates that the information content of the background
on that a grey number was initially introduced is zero. That is because
in general the background is commonly known to people and covers the
entire field on that the grey number is defined. That is why knowledge of
the background does not provide much, if any at all, useful information
to the researcher. For example, the proposition that “a train is able to pull
more than zero pounds” does not provide much useful information, because
= (0,+ ) represents the background of all possible weights. Axiom 2.5.3

states that when the background is fixed, the larger the measure µ ( )
of the remanent set , the larger is the information content contained in
the grey number . That is, the smaller the measure of the grey number
itselfis, the larger its information content. For example, if a grey number
stands for an estimate for a specific real number value, then when the

reliability is fixed, the smaller the measure of , the more meaningful an
estimate the grey number represents.

Definition 2.5.2. Assume that a grey number is initially introduced
on the background . Then

I ( ) =
µ ( )

µ ( )
(2.12)

is called the information content contained in the grey number .

Theorem 2.5.1. The concept of information content of grey numbers,
as defined in Definition 2.5.2, satisfies Axioms 2.5.1 to 2.5.3, introduced for
the measurement of information content of grey numbers.

Proof. 1. From the fact that and properties of measures, it follows
that 0 µ ( ) µ ( ) . So, we have 0 I ( ) 1.
2. When = , = . So, µ ( ) = µ ( ) = 0. That is, I ( ) = 0.
3. is obvious. ¤
Theorem 2.5.2. If 1 2, then I ( 1) I ( 2) .

Proof. From the assumption that 1 2 and properties of measures,
it follows that µ ( 1) µ ( 2) . So,

µ ( 1) = µ ( ) µ ( 1)

µ ( ) µ ( 2) = µ ( 2) .

Therefore, we have
I ( 1) I ( 2) . ¤
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Because grey numbers can be combined, it is necessary for us to study
the information content of combined grey numbers.

Definition 2.5.3. For grey numbers 1 [a, b] and 2 [c, d] satisfying
a < b and c < d,

1 2 = { | [a, b] or [c, d]} (2.13)

is called the union of the grey numbers 1 and 2.

The concept of union of grey numbers is similar to putting a group of
grey numbers together without any specific order. The consequence of piling
grey numbers together in this fashion is that the more grey numbers one
piles together, the weaker the total information becomes.

Theorem 2.5.3. I ( 1 2) I ( k) , k = 1, 2.

Proof. From the fact that 1 2 k, k = 1, 2, and Theorem 2.5.2,
Theorem 2.5.3 follows readily. ¤
Definition 2.5.4. For grey numbers 1 [a, b] and 2 [c, d] satisfying

a < b and c < d,

1 2 = { | [a, b] and [c, d]} (2.14)

is called the intersection of the grey numbers 1 and 2.

The intersection of grey numbers is like a combination of several grey
numbers through synthetic organization so that useful information can be
extracted and understanding about the background of the grey numbers
can be deepened.

Theorem 2.5.4. I ( 1 2) I ( k) , k = 1, 2.

Proof. From Theorem 2.5.2 and the fact that 1 2 k, k = 1, 2, it
follows that Theorem 2.5.4 holds true. ¤
Theorem 2.5.5. If 1 2, then I ( 1 2) = I ( 2) and I ( 1 2)

= I ( 1) .

Proof. From the assumption that 1 2, it follows that

1 2 = 2

and
1 2 = 1.

Therefore,
I ( 1 2) = I ( 2)

and
I ( 1 2) = I ( 1) . ¤

When two grey numbers 1 and 2 are independent of the measure µ,
we have the following more satisfactory result.
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Theorem 2.5.6. If µ ( ) = 1 and the grey numbers 1 and 2 are
independent of the measure µ, then the following hold true,

1. I ( 1 2) = I ( 1) I ( 2) ; and

2. I ( 1 2) = I ( 1) + I ( 2) I ( 1) I ( 2) .

Proof. 1.From the assumption that µ ( ) = 1, it follows that

I ( 1 2) = µ ( 1 2)

= µ ( 1 2)

= µ ( 1)µ ( 2)

= I ( 1) I 2).

2.
I ( 1 2) = µ ( 1 2)

= µ ( 1 2)

= µ ( 1) + µ ( 2) µ ( 1 2)

= µ ( 1) + µ ( 2) µ ( 1)µ ( 2)

= I ( 1) + I ( 2) I ( 1) I ( 2) . ¤
For example, let us consider rolling a die and recording the number of

dots showing upward. In this case,

= {1, 2, 3, 4, 5, 6} .
Assume that we have two grey numbers 1 {1, 2} and 2 {2, 3, 4} and
µ is the probability measure. Then,

µ ( 1) =
1

3
, µ ( 2) =

1

2
, and µ ( 1 2) =

1

6

satisfy the condition of independence. Also, for this case, we have the fol-
lowing

I ( 1 2) =
1

3
= I ( 1) I ( 2)

and
I ( 1 2) =

5

6
= I ( 1) + I ( 2) I ( 1) I ( 2) ,

that coincide with the results in Theorem 2.5.6.

Theorems 2.5.3 to 2.5.6 can all be generalized to the cases of union
and intersection of n grey numbers, where n can be any arbitrary natural
number.
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Di erent ways on that grey numbers are combined a ect the information
contents and the reliability of the information content of the consequent
grey numbers. In general, when grey numbers are unioned, the consequent
information content decreases and the reliability of the information content
increases. On the other hand, when grey numbers are intersected, the in-
formation content increases and its reliability decreases. When one faces a
practical problem with the necessity to process a large number of grey num-
bers, she can consider combining these grey numbers at di erent levels so
that useful information can be extracted through each level. In the process
of combining the available grey numbers, she can also apply the concepts
of union and intersection across di erent levels so that the final extracted
information can satisfy her desires in terms of reliability and content.



3
Grey Equations and Grey Matrices

3.1 Grey Algebraic Equations and Grey
Di erential Equations

Because applications of grey systems theory in general deal with relations
between grey variables and numbers, in this section, we focus on such basic
concepts as various grey equations.

Definition 3.1.1. Algebraic equations with grey coe cient(s) are called
grey algebraic equations.

Definition 3.1.2. An n-dimensional vector with grey component(s) is
called a grey n-dimensional vector.

An n-dimensional grey vector is denoted as

X( ) = ( 1, 2, ..., n)

In general, white equations containing no grey elements can be solved rel-
atively more easily. For example, the solution of a white linear equation
in one variable is a fixed point on the real number line. And, the solution
of a system of white equations of multivariables also has definite expres-
sions. However, it is relatively complicated to discuss the solution of a grey
equation. Strictly speaking, a grey equation is not simply one equation,
but a symbol for many equations. The number of equations, represented
by a grey equation, is determined by how the grey elements in the equation
take values. If all the grey elements take a finite number of values in a
bounded grey field, then the grey equation represents a finite number of
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white equations. If the grey elements in the grey equation take an infinite
number of values, then the grey equation represents an infinite number of
white equations. For example, the solution of the grey equation

1x+ 2 = 0

is x = 2 · 1
1 . When 1 {1, 2, 4} and 2 = 1, the solution set is

X { 0.25, 0.5, 1}.
When 1 [1, 4] and 2 = 1, the solution set is

X [ 1, 0.25] .

Di erent values of the grey coe cients correspond to di erent values in
the set of solutions. In general, the solution set of a linear grey equation in
one variable consists of a few points or a grey interval on the real number
line. And, each solution of a system of linear grey equations in n variables
is an n-dimensional grey vector. The forms of solutions of other types of
grey algebraic equations are also similar to those of the corresponding white
algebraic equations.

Definition 3.1.3. Grey equations with grey derivative(s) or grey di er-
ential(s) are called grey di erential equations.

Definition 3.1.4. The di erential equations, containing grey coe cient(s)
and white derivative(s), are called white di erential equations with grey
coe cients.

Grey derivatives and grey di erential equations constitute the foundation
for grey systems modeling. We study more detailed concepts and related
problems in Chapter 7. In general, white di erential equations with grey co-
e cients can be solved by going through integration or using characteristic
equations. All details are omitted here.

3.2 Grey Matrices and Their Operations

When a huge amount of values and variables are involved in a study, one
will have to make use of the concepts of matrices and related results.

Definition 3.2.1. Matrices, containing grey entries, are called grey ma-
trices, denoted as A( ). And, the grey entry at the location of the ith row
and the jth column is denoted as ij or (i, j).
For example,

A ( ) =

·
11 a12
a21 a22

¸
represents a 2 × 2 grey matrix with 11 [a11, a11] , a11 < a11; the other
entries a12, a21, and a22 are all white numbers.
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Definition 3.2.2. Assume that A( ) is an n× m grey matrix; G stands
for the number of grey entries contained in the matrix A( ). We then call

=
G

mn G

the absolute grey degree of entries of the grey matrix A( ), and

=
G

mn

the relative grey degree of entries of the grey matrix A( ).

Each relative grey degree takes values in the interval [0, 1] . When =
1, the matrix A( ) contains no white entry; when = 0, A( ) is a white
matrix. Both grey degrees can be used to indicate the numbers of grey
entries appearing in the matrix A( ).
The symbol Gm×n is used to represent the set of all m×n grey matrices.

An m × n grey matrix A( ) with the (i, j) entry ij is written as

A( ) = [ ij ]m×n .

Two grey matrices, satisfying certain conditions, can be added, sub-
tracted, and multiplied, etc. In the rest of this section, we assume that
all grey matrices contain interval grey numbers only as entries.

Definition 3.2.3. Assume that

A( ) = [ ij ]m×n

and
B( ) =

h 0
ij

i
m×n

are two given grey matrices. If all the corresponding entries of A( ) and
B( ) are identical, that is,

ij =
0
ij ,

i = 1, 2, ...,m, j = 1, 2, ..., n, then the matrices A( ) and B( ) are said to
be equal, denoted A( ) = B( ).

Definition 3.2.4. If A( ) and B( ) are the same as defined in Defi-
nition 3.2.3, then

A( ) +B( ) =
h

ij +
0
ij

i
m×n

is called the sum of A( ) and B( ), and

A( ) B( ) =
h

ij
0
ij

i
m×n
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the di erence of A( ) and B( ), and

A( ) = [ ij ]m×n

the additive inverse of A( ).

Proposition 3.2.1. The addition and subtraction of grey matrices sat-
isfy the following,

1. A( ) +B( ) = B( ) + A( );
2. (A( ) + B( )) + C( ) = A( ) + (B( ) + C( ));

3. A( ) B( ) = A( ) + ( B( )).

Definition 3.2.5. Assume that is a grey number and

A( ) = [ ij ]m×n

is given. Then the following

·A( ) = [ · ij ]m×n

is called the scalar multiplication of the grey number and the grey
matrix A( ).

Proposition 3.2.2. Scalar multiplication of grey numbers and matrices
satisfies the following,

1. ( 1 · 2) ·A( ) = 1 · ( 2 ·A ( )) = 2 · ( 1 ·A ( )) ;

2. ( 1 + 2) ·A ( ) = 1 ·A ( ) + 2 ·A ( ) ;

3. · (A( )±B( )) = ·A( )± B( ).

When = —1, ·A ( ) = A ( ) is the additive inverse of A ( ) .

Definition 3.2.6. Assume that two grey matrices

A ( ) = [ ij ]m×s

and
B ( ) =

h 0
ij

i
s×n

are given. Then the following matrix

A ( ) ·B ( ) =
h 00

ij

i
m×n

,

where 00
ij = i1

0
1j + i2

0
2j + is

0
sj

=
sP

k=1
ik

0
kj ,

i = 1, 2, ...,m; j = 1, 2, ..., n, is called the product of the grey matrices A( )
and B( ). It can be shown that the product of an m× s grey matrix and
an s× n grey matrix is an m× n grey matrix.
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It needs to be seen that only when the number of columns of the former
grey matrix equals the number of rows of the latter grey matrix, these two
matrices can be multiplied. The product of a 1 × s grey matrix and an
s × 1 grey matrix is a grey number. Even when both A( ) · B( ) and
B( ) ·A( ) are meaningful, in general, they are not equal. That is to say,
the multiplication of grey matrices is not commutative.

Proposition 3.2.3. When all operations involved are well defined, the
multiplication of grey matrices satisfies the following,

1. (A( ) ·B( )) · C( ) = A( ) · (B( ) · C( ));

2. A( ) · (B( ) + C( )) = A( ) ·B( ) +A( ) · C( ),

and (A( ) +B( )) · C( ) = A( ) · C( ) +B( ) · C( ) ;

3. · (A( ) ·B( )) = ( ·A( )) ·B( ) = A( ) · ( ·B( )).

Definition 3.2.7. Assume that A( ) is a square grey matrix of size n,

Ak( ) = A( ) ·A( ) · · · · ·A( )| {z }
k times

is called the kth power of the grey square matrix A( ).

Proposition 3.2.4. The exponents (or powers) of a square grey matrix
A( ) satisfy the following,

1. Am( ) ·An( ) = Am+n( );

2. (Am( ))
n
= Amn( ).

where m and n are positive integers.

Because the multiplication of grey matrices does not satisfy the law of
commutativity, for A( ) and B( ) Gn×n, in general

(A( ) ·B( ))m 6= Am( ) ·Bm( ).

Definition 3.2.8. Assume the grey matrix

A( ) =

11 12 · · · 1n

21 22 · · · 2n

· · · · · · · · · · · ·
m1 m2 · · · mn

is given. The following grey matrix

A( )T =

11 21 · · · m1

12 22 · · · m2

· · · · · · · · · · · ·
1n 2n · · · mn

is called the transposition of the grey matrix A( ).
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The (i, j) entry of the transposition of a grey matrix equals the (j, i)
entry of the original grey matrix.

Proposition 3.2.5. When all operations involved are well defined, the
transposition of grey matrices satisfies the following,

1. (A( )
T
)
T
= A( );

2. (A( ) +B( ))
T
= A( )T +B( )T ;

3. ( ·A( ))T = ·A( )T ;

4. (A( ) ·B( ))T = B( )T ·A( )T .

3.3 Several Special Grey Matrices

Similar to the case of applying ordinary matrices, one also needs to know
the properties of special matrices well.

Definition 3.3.1. All grey matrices of the form

A( ) =

11

22

. . .

nn

are called diagonal grey matrices, where all unshown entries are assumed
to be zero. Diagonal grey matrices are also written as diag[ 11 22 · · · nn] .

Proposition 3.3.1. All diagonal grey matrices satisfy the following
properties,

1. The sum and di erence of grey diagonal matrices of the same size are
still diagonal.

2. The scalar product of a grey number and a grey diagonal matrix is
still diagonal.

3. The multiplication of two diagonal grey matrices of the same size is
still diagonal and is commutative.

4. Each grey diagonal matrix and its transpose are equal.

Definition 3.3.2. All diagonal grey matrices with diag [1 1 · · · 1] as
their matrix of whitenization, are called unit grey matrices, denoted E( ).

The normal unit matrix is written as E.

E = diag[1 1 · · · 1].

Definition 3.3.3. diag[ · · · ] is called a grey scalar matrix.
Definition 3.3.4. Grey matrices of the forms
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11 12 · · · 1n

22 · · · 2n

· · · ·
· · ·
· ·

nn

and

11

21 22

· · ·
· · · ·
· · · · ·
n1 n2 · · · nn

are called upper triangular and lower triangular grey matrices, respec-
tively. And, they are all called triangular grey matrices.

Proposition 3.3.2. The sum, di erence, and product of two triangular
grey matrices of the same type, are still a triangular matrix of the original
type.

Definition 3.3.5. If A( ) Gn×n satisfies A( )T= A( ), then the
grey matrix A( ) is called a symmetric grey matrix.

It can be readily shown that the entries of a symmetric matrix satisfy
the condition that

ij = ji,

for i, j = 1, 2, ..., n.

Definition 3.3.6. If A( ) Gn×n satisfies the condition that

A( )T = A( ),

then A( ) is called a skew-symmetric grey matrix.

It can be shown easily that the entries of a skew-symmetric matrix satisfy
the condition that

ij = ji,

for i, j = 1, 2, ..., n. Obviously, all the entries on the main diagonal must be
zero.

Proposition 3.3.3. The sum, di erence, and scalar product of sym-
metric (resp., skew-symmetric) grey matrices are still symmetric (resp.,
skew-symmetric). ¤
The product of two symmetric (resp., skew-symmetric) grey matrices

might not be a symmetric (resp., skew-symmetric) grey matrix.

Definition 3.3.7. If a grey matrix A( ) Gn×n satisfies

A( ) ·A( )T = A( )T ·A( ) = E( ),
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then A( ) is called an orthogonal grey matrix.

Proposition 3.3.4. The product of two orthogonal grey matrices is still
orthogonal.

3.4 Singularities of Grey Matrices

When solving systems of equations, one will have to deal with the concept
of singularity. In this section, we focus on this and relevant concepts.

Definition 3.4.1. For a grey matrix A( ) Gn×n, if there exist grey
matrices B( ) and C( ) Gn×n such that

A( ) ·B( ) = E( )

and
C( ) ·A( ) = E( ),

then B( ) is called a grey right inverse matrix of A( ) and C( ) a
grey left inverse matrix of A( ). When B( ) = C( ), the matrix A( )
is said to be invertible and B( ) is called the inverse matrix of A( ),
denoted as A( ) 1.

For a general grey matrix A( ), it is very di cult to find its inverse.
In this section, we discuss singularities of grey matrices with the help of
whitenization matrices of the grey matrix of interest.

Definition 3.4.2. Assume A( ) Gn×n. The matrix, obtained from
A ( ) by whitenizing all grey entries of the matrix A( ), is called a whitenization
(matrix) of A( ), denoted eA( ) =

£e ij¤n×n.
The upper limit matrix A and the lower limit matrix A are special whit-

enization matrices. The set of all whitenization matrices of A( ) is written

as
n eAo .
Definition 3.4.3. For A( ) Gn×n,

1. if for any eA n eAo, it is always true that det eA = 0, then A( ) is

called a singular grey matrix;

2. if for any eA n eAo , it is always true that det eA 6= 0, then A( ) is

called a non singular grey matrix.
Both singular and non-singular grey matrices are all called grey matrices

of determinable singularity. Others are called grey matrices of non-
determinable singularity .

Proposition 3.4.1. For any A( ) Gn×n, A( ) is a grey matrix of

non-determinable singularity, if, and only if, there exist eA1 and eA2 n eAo
such that

det eA1 = 0, det eA2 6= 0.
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Example 3.4.1. Assume that

A( ) =

·
11 1

1 1

¸
,

where 11 [ 2, 1] . Take e11 = 1 or e11 = 1; one can obtain, respec-
tively, eA1 = · 1 1

1 1

¸
and eA2 = · 1 1

1 1

¸
.

So, it is easy to show that det eA1 = 0 and det eA2 6= 0. Therefore, A( ) is a
grey matrix of nondeterminable singularity.

Proposition 3.4.2. Assume that A( ) is a triangular grey matrix. If
all entries of the diagonal of A( ), ii [aii, aii] (i = 1, 2, ..., n) satisfy
aii · aii > 0, then A( ) is a grey matrix of determinable singularity.

Proposition 3.4.3. Let A( ) Gn×n. If all cofactors of grey entries in
A( ) equal zero, then A( ) is a grey matrix of determinable singularity.

Example 3.4.2. Determine the singularity of the following grey matri-
ces, assuming that aij 6= 0.

A1( ) =

·
11 1
1 22

¸
, A2( ) =

·
11 1
1 0

¸
,

A3( ) =
a11 12 0

21 22 a23
a31 32 0

, A4( ) =
a11 12 0
0 a22 0
0 32 a33

.

Solution. 1. For A1( ), 11 and 22 are cofactors of each other and
not equal to zero. So, the conditions in Proposition 3.4.3 are not satisfied.
Consider

detA1( ) =

¯̄̄̄
11 1
1 22

¯̄̄̄
= 11 · 22 1 = 1.

When ii, i = 1, 2, take di erent values, will take di erent values. Hence
det eA1 may be zero and may not be zero. So, A1( ) is nondeterminably
singular.

2. A2( ) contains only one grey entry 11, whose cofactor is zero. From
Proposition 3.4.3, A2( ) is determinably singular. In fact,

detA2( ) =

¯̄̄̄
11 1

1 0

¯̄̄̄
= 1,
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for any eA2 n eA2o , det eA2 never equals zero. So A2( ) is non-singular.

3. For A3( ), because the cofactor of the grey entry 12¯̄̄̄
12 a23

a31 0

¯̄̄̄
= a23a31 6= 0

does not satisfy the conditions in Proposition 3.4.3, consider

detA3( ) = a23

¯̄̄̄
a11 12

a31 32

¯̄̄̄
= a32a11 32 +a23a31 12 .

So, for di erent eA 3

n eA3o , det eA3 may be zero and/or may not be zero.
Therefore, A3( ) is non-determinably singular.

4. A4( ) contains two grey entries, 12 and 32. The cofactor of 12¯̄̄̄
0 0
0 a33

¯̄̄̄
= 0,

and the cofactor of 32 ¯̄̄̄
a11 0
0 0

¯̄̄̄
= 0.

Therefore, A4( ) is a grey matrix of determinable singularity. In fact, for

any eA4 n eA4o , we always have
det eA4 = a11a22a33 6= 0.

So, A4( ) is nonsingular.

3.5 Grey Characteristic Values and Vectors

To prepare for practical applications of grey systems theory, in this section
we look at grey characteristic values and vectors and their properties.

Definition 3.5.1. Assume that A( ) Gn×n, and ( ) is a grey num-
ber. If there is a nonzero grey vector

X( ) = ( 1, 2, ..., n)
T ,

such that
A( ) ·X( ) = ( ) ·X( ),

then ( ) is called a grey characteristic value (or grey eigenvalue) of
A( ) and X( ) a characteristic vector (or eigenvector) of A( ) associ-
ated with ( ).
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Definition 3.5.2. Assume that A( ) Gn×n and ( ) is an unknown
grey number. The grey matrix

( ) ·E A( )

is called the grey characteristic matrix of A( ). Its determinant

| ( ) ·E A( )|

is called the grey characteristic polynomial of A( ), and the equation

| ( ) ·E A( )| = 0

the grey characteristic equation of A( ).

Proposition 3.5.1. Assume A( ) Gn×n. Then ( ) is a grey char-
acteristic value of A( ) and X( ) a grey characteristic vector of A( )
associated with ( ), if, and only if, ( ) is a root of the grey characteristic
equation

| ( ) ·E A( )| = 0
and X( ) is a non-zero solution of the homogeneous system of grey linear
equations

[ ( ) ·E A( )]X( ) = 0.

Proposition 3.5.2. Assume A( ) Gn×n. Then transposition grey
matrices A( )T and A( ) have the same characteristic values.

Definition 3.5.3. Assume A( ) Gn×n such that

A( ) = [ ij ]n×n ,

where ij

£
aij , aij

¤
, and a ij<aij . If

|aii| <
nX

j=1,j 6=i

¯̄
aij
¯̄
,

i = 1, 2, ..., n, then A( ) is called a diagonally favorable grey matrix of
lower limits. If

|aii| <
nX

j=1,j 6=i
|aij | ,

i = 1, 2, ..., n, then A( ) is called a diagonally favorable grey matrix of
upper limits.

Proposition 3.5.3. Assume A( ) Gn×n. Then, the following hold
true,
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1. If A( ) is a diagonally favorable grey matrix of lower limits, then the
matrix A of lower limits of A( ) is non-singular.

2. If A( ) is a diagonally favorable grey matrix of upper limits, then
the matrix A of upper limits of A( ) is non-singular.

3. If A( ) is both diagonally favorable in terms of lower limits and
upper limits, and aiiaii > 0, i = 1, 2, ..., n, then A( ) is non-singular.



4
Generation of Grey Sequences

4.1 Introduction

One of the main tasks facing the theory of grey systems is to seek a math-
ematical relationship among factors, based on behavioral data of social,
economic, ecological, etc., systems. In grey systems theory, each stochas-
tic process is seen as a grey quantity taking values on a certain range or
changing on a certain range of time. And, stochastic processes are treated
as grey processes.
As a matter of fact, when investigating the behavioral characteristics of

a system, the data obtained are often a sequence of definite white num-
bers. It will be essentially the same whether we see the sequence either as
an orbit or reality of a certain stochastic process, or as the whitenization
values of a grey process. However, if the characteristic data of systems’ be-
haviors are used to study the laws of development of the systems, di erent
methodological thoughts will lead to di erent theoretical outcomes.
The theory of stochastic processes is based on prior laws to uncover the

statistical laws, if any, implied by the data. This method is established on
large sets of available data. However, sometimes even with a large quantity
of data, there might not be any statistical laws to be found, because there
are only a few typical distributions employed in theories of probability and
stochastic processes. As for non-typical distributions, it is often di cult to
make much progress.
In the theory of grey systems, it is through organization of raw data that

the researcher must sort out development or governing laws, if any. This
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FIGURE 4.1. A graphical representation of the data set X(0)

is a path of finding out realistic governing laws from the available data.
This path is called a generation of grey sequences. It is believed in the
theory of grey systems that even though objective systems phenomena can
be complicated and related data chaotic, they always represent a whole,
hence, implicitly contain the underlying governing laws. The key for us
to uncover and to make use of these laws is how to choose appropriate
method(s). The randomness of all grey sequences can be weakened to show
its regularities through some processing, also called generation of the given
sequences.
For example, the following sequence

X(0) = (1, 2, 1.5, 3) =
³
x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4

´
is given. It does not clearly show any regularity or pattern. Now, we depict
the data set with the graph in Figure 4.1. From this graph, it can be seen
that the curve of X(0) undulates with relatively large amplitude.
If we apply accumulating generation once to the original data set X(0),

and denote the resultant sequence as X(1), then we have

X(1) = (1, 3, 4.5, 7.5) =
³
x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4

´
,

where for i = 1, 2, 3, 4, x(1)i is given by

x
(1)
i =

iX
j=1

x
(1)
j .

Now, this processed sequence X(1) clearly shows a growing tendency (see
Figure 4.2 for more details).
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FIGURE 4.2. The resultant sequence X(1) with a clear tendency of growth

4.2 Generation Based on Average

When collecting data, often due to some unconquerable di culties, there
appear some blanks in the data sequence collected. There also exist such
data sequences that even though the data are complete, some abnormal
values are included due to dramatic behavioral changes of the system un-
der investigation. These abnormal data values bring more di culties to the
researcher. However, if these abnormal values are deleted, some blanks in
the data sequence will be created. Therefore, how to e ectively fill these
blanks naturally becomes the first problem the researcher has to face when
dealing with sequential data. Here, the method of generation based on av-
erage is commonly used to construct new data values to fill blanks existing
in a given sequence of data, and to generate new sequences.

Definition 4.2.1. Assume that

X = (x(1), x(2), ..., x(k), x(k + 1), ..., x(n))

is a given sequence. Then, x(k) and x(k + 1) are called consecutive neigh-
bors of X, x(k) the predecessor, and x(k + 1) the successor. If x(n) is a
piece of new data (or information), then for any k n 1, x(k) is called
a piece of old data (or information).

Definition 4.2.2. If a sequence X contains a blank at the location k,
then the blank entry is denoted as Ø(k). That is, the sequence X looks
like

X = (x(1), x(2), ..., x(k 1),Ø(k), x(k + 1), ..., x(n)) .

In this case, x(k 1) and x(k + 1) are called limit values of Ø(k) with
x(k 1) being the predecessor limit and x(k + 1) the successive limit.
When Ø(k) = x(k) is generated from x(k 1) and x(k + 1), the value
x(k) is called an internal point of

[x(k 1), x (k + 1)] or [x(k + 1), x(k 1)] .
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Definition 4.2.3. Assume that x(k) and x(k 1) are two consecutive
values in a sequence X. If

1. x(k 1) is a piece of old information and x(k) new information, and

2. x (k) = x(k) + (1 )x(k 1), [0, 1] ,

then x (k) is called a generated value of the new and old information with
generation coefficient (or weight) . When > 0.5, the generation of
x (k) is said to have “emphasis more on new and less on old information.”
When < 0.5, the generation of x (k) is said to have “emphasis more
on old and less on new information.” And when = 0.5, the generation of
x (k) is said to be “no preference.”

The exponential smoothing method widely used when predicting time se-
ries is a generation with emphasis more on old and less on new information.
It is because the smoothing value

s
(1)
k = xk + (1 )s

(1)
k 1

is the weighted sum of new information and the smoothing value of old
information with the value limited between 0.01 and 0.3.

Definition 4.2.4. Assume that

X = (x(1), x(2), ..., x(k 1),Ø(k), x(k + 1), ..., x(n))

is a sequence with a blank Ø(k) at location k. Then the value

x (k) = 0.5x(k 1) + 0.5x(k + 1)

is called a mean generated value of non-consecutive neighborhood val-
ues. The sequence, obtained from using mean generated values of non-
consecutive neighbors to fill blanks, is called a generated sequence of non-
consecutive neighbors.

When x(k + 1) is a piece of new information, the mean generation of
non-consecutive values is an equal weight generation based on both new
and old information. When it is di cult to measure the reliability of new
and old information due to a shortage of needed background information,
the method of generation of equal weight, which is the mean generation, is
often employed.

Definition 4.2.5. Assume that a data sequence

X = (x(1), x(2), ..., x(n))

is given. If
x (k) = 0.5x(k 1) + 0.5x(k),

then x (k) is called a generated mean value of consecutive neighbors.
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In grey systems modeling (GM), we often use the mean generation of
consecutive neighbors. It is a method based on the raw sequence of data to
construct new sequences in order to reveal the underlying pattern, if any.
Assume that

X = (x(1), x(2), ..., x(n))

is an n-tuple, and Z the mean sequence generated using consecutive neigh-
bors of X. Then Z is an (n 1)-tuple

Z = (z(2), z(3), ..., z(n)) .

In fact, we have no way to generate z(1) fromX, because from the definition
of generation of consecutive neighbors, we should have

z(1) = 0.5x(0) + 0.5x(1).

However, x(0) = Ø(0) is a blank in X. If no information expansion is done,
we only have the following three choices,

1. Treat x(0) as a grey number without a definite value;

2. Let x(0) be zero or an arbitrary value; or

3. Let x(0) be a value related to x(1),

where case 2 does not have any scientific background, and “letting x(0)
= 0” in case 2, and cases 1 and 3 do not belong to the category of equal
weight mean generations.

4.3 Operators of Sequences

Due to interference of some uncontrollable shock waves, the data set col-
lected sometimes may show too fast or too slow development tendencies,
which do not reflect the true development tendency of the system under
consideration. If this kind of data is used to build models and to make
predictions without first eliminating the e ect of the uncontrollable in-
terference, the conclusions obtained are often not usable. The purpose of
introducing sequence operators is to eliminate the interference of shock
waves in order to show the true face of the data collected, and, based on
conclusions of qualitative analysis, to strengthen or to weaken the develop-
ment tendency of the raw sequences so that resultant prediction accuracy
can be improved.

Definition 4.3.1. Assume that the sequence of data, representing a
system’s behavior, is given as

X =(x(1), x(2), ..., x(n))

1. X is called a monotonic increasing sequence if k = 2, 3, ..., n, x(k)
x(k 1) > 0;
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2. X is called a monotonic decreasing sequence if k = 2, 3, ..., n, x(k)
x(k 1) < 0;

3. X is called a vibrational sequence if i, j {2, 3, · · ·, n} such that
x(i) x(i 1) > 0 and x(j) x(j 1) < 0. If

M = max {x(k)|k = 1, 2, ..., n}
and

m = min {x(k)|k = 1, 2, ..., n} ,
then M m is called the amplitude of X.

Definition 4.3.2. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data, D is an operator worked on X, and the sequence,
obtained by having D worked on X, is denoted as

XD = (x(1)d, x(2)d, ..., x(n)d) .

Then D is called a sequence operator, and XD the first-order sequence
worked on by the operator D.

A sequence operator can be applied as many times as needed. If D1,D2,
and D3 are all sequence operators, we call D1D2 a second-order sequence
operator and

XD1D2 = (x(1)d1d2,x(2)d1d2, ..., x(n)d1d2)

a sequence worked on by a second-order operator.
D1D2D3 is called a third-order sequence operator, and

XD1D2D3 = (x(1)d1d2d3, x(2)d1d2d3, ..., x(n)d1d2d3)

a sequence worked on by a third order operator. In the same manner,
nth-order sequence operators and sequences worked on by an nth-order
operator can be defined.
Sequence operators and their orders, in applications, can be appropri-

ately chosen and defined based on how much the sequence of the raw data
is interfered with by uncontrollable shock waves.

Axiom 4.3.1. (Axiom of Fixed Points) Assume that

X =(x(1), x(2), ..., x(n))

is a sequence of raw data and D an arbitrary sequence operator. Then D
must satisfy

x(n)d = x(n).

This axiom of fixed points says that under the e ect of a sequence op-
erator of our choice, the last datum in the sequence of the raw data must



4.3 Operators of Sequences 63

be kept unchanged. This axiom is established on the fact or understanding
that x(n) is a starting point or foundation for any future development and
is an objective reality, because it is the last data value collected.
According to conclusions of a qualitative analysis, we can also make sure

that several other entries near x(n) are kept unchanged under the e ect of
a desirable sequence operator, so that more emphasis can be addressed to
weaken any interference of shock waves on early data values in the sequence.
For example, let

x(1)d 6= x(1)

x(2)d 6= x(2)
· · · · · · · · · · ·

x(k 1)d 6= x(k 1)

x(k)d = x(k)

x(k + 1)d = x(k + 1)

· · · · · · · · · · ·
x(n)d = x(n).

Axiom 4.3.2. (Axiom on Su cient Usage of Information) When a se-
quence operator is applied, all the information contained in each datum
x(k), k = 1, 2,..., n, of the sequence X of the raw data should be su -
ciently applied, and any e ect of each entry x(k), k = 1, 2, ..., n, should
also be directly reflected in the sequence resulted from the usage of the
operator.

The axiom on su cient usage of information implies that when we define
a sequence operator in an application, we must build or define the operator
on the foundation of the data available, and not other way around.

Axiom 4.3.3. (Axiom of Analytic Representations) For any k =1, 2,...,
n, x(k)d can be described with a uniform and elementary analytic repre-
sentation in x(1), x(2), ..., x(n).

The axiom of analytic representations requires that the procedure to
obtain a new sequence from the original raw data by applying an oper-
ator is clear, standardized, unified, and simplified as much as possible so
that the actual computation of the new sequence can be relatively easily
implemented on a computer.
Axioms 4.3.1, 4.3.2, and 4.3.3 are jointly called three axioms of bu er

operators. All sequence operators, satisfying these three axioms, are called
buffer operators; and the sequences, obtained by applying first, second,
third, ..., orders of bu er operators, are referred to as a first-, second-,
third-, ..., order bu er sequences, respectively.

Definition 4.3.3. Assume that
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X = (x(1), x(2), ..., x(n))

is a sequence of raw data, D a bu er operator, and

XD = (x(1)d, x(2)d, ..., x(n)d)

a D0s bu er sequence. When X is respectively a monotonic increasing,
decreasing, or vibrational sequence,

1. If the bu er sequence XD increases or decreases more slowly or vi-
brates with a smaller amplitude than the original sequence X, the bu er
operator D is termed a weakening operator;

2. If the bu er sequence XD increases or decreases more rapidly or vi-
brates with a greater amplitude than the original sequence X, the bu er
operator D is termed a strengthening operator.

Theorem 4.3.1. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data, and

XD = (x(1)d, x(2)d, ..., x(n)d)

one of its bu er sequences. When X is a monotonic increasing sequence,
the following hold true,

1. If D is a weakening operator, then x(k)d x(k), k = 1, 2, ..., n;

2. If D is a strengthening operator, then x(k)d x(k), k = 1, 2, ..., n.

That is, the data in a monotonic increasing sequence expand when a weak-
ening operator is applied, and shrink when a strengthening operator is
applied.

Proof: Assume that

r(k) =
x(n) x(k)

n k + 1
,

k = 1, 2, ..., n, represents the average rate of increase from x(k) to x(n) in
the sequence X of raw data, and

r(k)d =
x(n)d x(k)d

n k + 1
,

k = 1, 2, ..., n, the average rate of increase from x(k)d to x(n)d in the bu er
sequence XD. From the condition that

x(n)d = x(n),

it follows that
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r(k) r(k)d =
[x(n) x(k)] [x(n)d x(k)d]

n k + 1

=
x(n) x(k) x(n) + x(k)d

n k + 1

=
x(k)d x(k)

n k + 1
.

1. If D is a weakening operator, then r(k) r(k)d; that is, r(k) r(k)d
0. Therefore, x(k)d x(k) 0; that is, x(k)d x(k).

2. If D is a strengthening operator, then r(k) r(k)d; that is, r(k)
r(k)d 0. Therefore, x(k)d x(k) 0; that is, x(k)d x(k). ¤

Example 4.3.1. The condition that x(k)d x(k), k = 1, 2, ..., n, in The-
orem 4.3.1, 1 is not su cient to guarantee that D is a weakening operator.
To this end, let us look at the following example. For a given increasing pos-

itive sequence X(0) =
³
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

´
, meaning that each entry is posi-

tive, define a sequence operator D as follows. X(0)D =
³
x
(1)
1 , x

(1)
2 , ..., x

(1)
n

´
such that

x
(1)
i =

q
x
(0)
i x

(0)
n , i = 1, 2, ..., n.

It can be checked that x(1)n = x
(0)
n and D is reversible with the inverse given

by

x
(0)
i =

³
x
(1)
i

´2
x
(1)
n

, i = 1, 2, ..., n.

Because x(1)i =

q
x
(0)
i x

(0)
n x

(0)
i , i = 1, 2, ..., n, we have

x
(1)
2 x

(1)
1 =

q
x
(0)
2 x

(0)
n

q
x
(0)
1 x

(0)
n

=

q
x
(0)
n

µq
x
(0)
2

q
x
(0)
1

¶
> x

(0)
2 x

(0)
1 ,

if
q
x
(0)
n >

q
x
(0)
2 +

q
x
(0)
1 . That is, the bu er operator D may not be a

weakening operator.

Example 4.3.2. The condition that x(k)d x(k), k = 1, 2, ..., n, in
Theorem 4.3.1, 2 is not su cient to guarantee that D is a strengthen-
ing operator. That is, there is a monotonically increasing sequence X(0)

=
³
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

´
and bu er operator D such that X(1) = X(0)D =
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ening operator. For instance, ifX(0) is a positive sequence andD the inverse
operator of that as studied in Example 4.3.1; that is,
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That is, D is not a strengthening operator.
Theorem 4.3.2. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data, and

XD = (x(1)d, x(2)d, ..., x(n)d)

one of its bu er sequences. When X is a monotonic decreasing sequence,
the following hold true.

1. If D is a weakening operator, then x(k)d x(k), k = 1, 2, ..., n;

2. If D is a strengthening operator, then x(k)d x(k), k = 1, 2, ..., n.

That is, the data in a monotonic decreasing sequence shrink when a weak-
ening operator is applied, and expand when a strengthening operator is
applied.

The proof of this theorem is similar to that of Theorem 4.3.1 and is
omitted here.
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As suggested by Examples 4.3.1 and 4.3.2, it can be seen that the con-
clusions 1 and 2 in Theorem 4.3.2 cannot be rewritten as necessary and
su cient conditions for D to be a weakening and a strengthening operator,
respectively.
Theorem 4.3.3. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data and

XD = (x(1)d, x(2)d, ..., x(n)d)

one of its bu er sequences. When X is a vibrational sequence, the following
hold true.
1. If D is a weakening operator, then

max
1 k n

{x(k)d} max
1 k n

{x(k)}

and
min
1 k n

{x(k)d} min
1 k n

{x(k)} .
2. If D is a strengthening operator, then

max
1 k n

{x(k)d} max
1 k n

{x(k)}

and
min
1 k n

{x(k)d} min
1 k n

{x(k)} .
The proof is omitted here.
Proposition 4.3.1. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data and

XD = (x(1)d, x(2)d, ..., x(n)d)

one of its bu er sequences, where for any k = 1, 2, ..., n,

x(k)d =
1

n k + 1
[x(k) + x(k + 1) + ...+ x(n)] .

Then when X is a monotonic increasing, a monotonic decreasing, or a
vibrational sequence, D is always a weakening operator.
This proposition is a straightforward consequence of the definition of

x(k)d. The detailed proof is omitted.
The weakening operator D in Proposition 4.3.1 possesses some very good

properties and has been applied widely in modeling and prediction of the
systems with interference of uncontrollable shock waves.
Proposition 4.3.2. For the weakening operator D as defined in Propo-

sition 4.3.1, let
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XD2 = XDD =
¡
x(1)d2, x(2)d2, ..., x(n)d2

¢
and

x(k)d2 =
1

n k + 1
[x(k)d+ x(k + 1)d+ · · ·+ x(n)d] ,

for k = 1, 2, ..., n. Then D2 is always a second-order weakening operator for
monotonic increasing, monotonic decreasing, and vibrational sequences.

Proposition 4.3.3. For a sequence of raw data and one of its bu er
sequences

X = (x(1), x(2), ..., x(n))

and
XD = (x(1)d, x(2)d, ..., x(n)d) ,

where for any k = 1, 2, ..., n 1,

x(k)d =
1

2k 1
[x(1) + x(2) + · · ·+ x(k 1) + kx(k)]

and

x(n)d = x(n),

whenX is either monotonic increasing or monotonic decreasing,D is always
a strengthening operator.

Proposition 4.3.4. For the strengthening operator D as defined in
Proposition 4.3.3, let

XD2 = XDD =
¡
x(1)d2, x(2)d2, ..., x(n)d2

¢
,

where for any k = 1, 2, ..., n 1,

x(k)d2 =
1

2k 1
[x(1)d+ x(2)d+ · · ·+ x(k 1)d+ kx(k)d]

and

x(n)d2 = x(n)d = x(n).

Then D2 is always a second-order strengthening operator for monotonic
increasing and monotonic decreasing sequences.

Example 4.3.3. When a slight modification to the mean generation of
consecutive neighbors as given in Definition 4.2.5 is made, we can obtain a
kind of bu er operator. More specifically, we can define a bu er operator
D as follows,

XD = (x(1)d, x(2)d, ..., x(n)d) ,

where for any k = 1, 2, ..., n 1,
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x(k)d = 0.5x(k + 1) + 0.5x(k)

and
x(n)d = x(n).

It can be seen easily that D is always a weakening operator for monotonic
increasing and monotonic decreasing sequences.
Of course, we can also consider constructing other applicable bu er op-

erators. As a matter of fact from our experience, we know that it is not
an easy matter to construct weakening and strengthening operators with
good and useful properties. Bu er operators can be used not only in grey
systems modeling, but also in a wide range of modeling of various kinds.
Before an actual modeling, based on conclusions of some qualitative analy-
sis, some bu er operators are applied to the original sequence of raw data
to weaken the e ect of any shock vibration in order to achieve desirable
results potentially possible from the consequent modeling.
Example 4.3.4. The overall business revenue of a county, located in

Henan Province of The People’s Republic of China, for the years from 1983
to 1986 was recorded as

X = (10155, 12588, 23480, 35388)

which showed a tendency of rapid growth. The average rate of growth for
these years was 51.6%, and the average rate of growth for the years of 1984
1986 was 67.7%. All those people involved in the economic planning of

the county, including some politicians, scholars, related experts, and res-
idents, commonly believed that the overall revenue of this county could
not keep up with this record speed of growth in the coming years. If these
data were directly used to build models and make predictions, no body
could accept the resultant conclusions. After numerous rigorous analyses
and discussions, all parties involved recognized that the reason for the high
growth rate to have appeared was mainly due to the low baseline, and the
low baseline was a consequence of the fact that in the past, the policies
relevant to private enterprises had been either not in existence, or encour-
aged or applied thoroughly. To weaken the growth rate of the sequence of
the raw data, it is necessary to artificially add all favorable environmental
factors, created from the introduction of the related policies, for the devel-
opment of private enterprise to the past years. With this goal in mind, we
introduced the second-order weakening operator, as defined in Proposition
4.3.3, and obtained the following second order bu er sequence

XD2 = (27260, 29547, 32411, 35388).

Now, the consequent modeling, based on XD2, produced predictions for
the years 1987 2000 for the county’s growth of business revenue. These
predictions indicated an average 9.4% annual growth. When we look back
today, this predicted rate of growth agreed very well with the recorded
values over the time span of our predictions.
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FIGURE 4.3. The curve of a nomotonic increasing and continuous function

4.4 Smooth Sequences

One major characteristic of smooth continuous functions is being di eren-
tiable everywhere. Because sequences of data consist of isolated numbers,
there is no way for us to talk about di erentiability in the traditional sense
as described in calculus. Due to this reason, we cannot use derivatives and
related methods to study the smoothness of data sequences. However, if we
look at the characteristics of smooth continuous functions from a di erent
angle, we may see the following idea: if a sequence of data possesses similar
characteristics to those of smooth continuous functions, the sequence may
be treated as being smooth.
Without loss of generality, let X(t) be a monotonic increasing and con-

tinuous curve, as shown in Figure 4.3.
Partition the interval of consideration into n subintervals with the fol-

lowing points,

t1 < t2 < · · · < tk < tk+1 < · · · < tn+1.
Let tk = tk+1 tk, k = 1, 2, ..., n. Accordingly, the curve X(t) is parti-
tioned into n pieces. Pick an arbitrary point x(k) on the kth piece

[x(tk), x(tk+1)] ,

for k = 1, 2, ..., n so that a sequence of some internal points is obtained

X = (x(1), x(2), ..., x(n)) .

Now, by picking the lower limit points of these small pieces, we obtain a
sequence of lower limit points:

X0 = (x(t1), x(t2), ..., x(tn)) .

If X(t) is a smooth continuous function, then when the partition is rel-
atively fine, we have the following.
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1. Any two sequences of internal points are su ciently close to each other;

2. Any sequence of internal points and the relevant lower limit points are
su ciently close.

Definition 4.4.1. Let [a, b] be an interval on the real number line, which
is generally seen as a window of time, called a time interval. Assume that
this interval is divided into n sub-time-intervals tk, k = 1, 2, ..., n. If the
division satisfies

1. tk = [tk, tk+1] ;

2.
Sn
k=1 tk = [a, b] ;

3. ti tj = Ø, if i 6= j;

then tk (k = 1, 2,..., n) is called a partition of the interval [a, b] .

Based on the previous discussion, a definition in terms of sequences for
smooth continuous functions can be given as follows.

Definition 4.4.2. Assume that X(t) is a continuous function defined on
interval [a, b] . Inserting points into the interval [a, b]

a = t1 < t2 < · · · < tk < tk+1 < · · · < tn+1 = b
gives a partition of the interval [a, b] as follows, tk = [tk, tk+1] , k = 1, 2, ...,
n. At the same time, let us use the same symbol tk to indicate the length
of the interval [tk, tk+1] ,

tk = tk+1 tk,

k = 1, 2, ..., n. Picking a point x(k) in the subinterval [tk, tk+1] gives a se-
quence

X = (x(1), x(2), ..., x(n))

and write
X0 = (x(t1), x(t2), ..., x(tn))

as the sequence of lower limit points. Let t = max
1 k n

{ tk} . Assume that
d is the distance function in the n-dimensional Euclidean space Rn, where

Rn = {(x1, x2, ..., xn) | xi is a real number, 1 i n} ,
and X is a representative sequence of a chosen di erentiable function. If
when t 0, no matter how the time interval [a, b] is partitioned, and
how an internal point is picked from each subinterval, the following always
hold true,

1. for any two sequences Xi and Xj of internal points,

d(X , Xi) = d(X , Xj),
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2. d(X , X) = d(X , X0),

then X(t) is termed as a smooth continuous function.

In the following, we introduce the concept of smooth sequences of data.
When defining smooth continuous functions, we mainly focused on whether
the sequences of internal points and lower limit points agree, and whether
the sequences of internal and lower limit points agree with a sequence of
representative points of a di erentiable function. As for sequences, there
only exist endpoints between which there exist blank spaces. To resolve
this problem, we make use of the method of mean generation to create
internal points from endpoints.

Definition 4.4.3. Assume that

X = (x(1), x(2), ..., x(n), x(n+ 1))

is a sequence, and Z a sequence obtained by mean generation

Z = (z(1), z(2), ..., z(n)) ,

where z(k) = 0.5x(k) + 0.5x(k + 1), k = 1, 2,···, n. Assume again that X is
a representative sequence of a di erentiable function, and d the distance
function in the n-dimensional Euclidean space Rn. If the sequence, obtained
from deleting x(n+ 1) from X, is still denoted as X, and X satisfies

1. When k is su ciently large, x(k) <
k 1P
i=1
x(i);

2. max
1 k n

|x (k) x(k)| max
1 k n

|x (k) z(k)|;
then X is called a smooth sequence.

Definition 4.4.4. Assume that X is a smooth sequence, Z the sequence
of mean generation based on X, X a representative sequence of a fixed
di erentiable function, and d the distance function in the n-dimensional
Euclidean space Rn. If there exists [0, 1] such that

|d(X ,X) d(X ,Z)| ,

then the degree of smoothness of the sequence X is said to be greater than
1 , and

|d(X ,X) d(X ,Z)| 1

is referred to as the degree of smoothnesss of the sequence X, denoted
S(d). When

|d(X ,X) d(X ,Z)| = 0,

that is, when S(d) = , we call X an infinitely smooth sequence.

Proposition 4.4.1. If the data values in a sequence X are distributed
on a straight line, then X is an infinitely smooth sequence.
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4.5 Stepwise and Smooth Ratios

For a given sequence X = (x(1), x(2), ..., x(n)) , when the starting or the
ending entries x(1) or x(n) are blank, that is, x(1) = Ø(1) or x(n) = Ø(n),
there is no way to use the method of mean generation to fill these blank(s).
In this case, other methods will have to be considered to fill the starting
and/or ending blank(s). In this situation, the methods of stepwise ratio
generation and smooth ratio generation are often used.
Definition 4.5.1. Let

X = (x(1), x(2), ..., x(n))

be a sequence. Then

(k) =
x(k)

x(k 1)
,

k = 2, 3, ..., n, are called stepwise ratios of the sequence X, and,

(k) =
x(k)

k 1P
i=1
x(i)

,

k = 2, 3, ..., n, smooth ratios of the sequence X.
Definition 4.5.2. Assume that X is a sequence with blanks at the two

ends. That is,
X = (Ø(1), x(2), ..., x(n 1),Ø(n)) .

If the stepwise ratio (or smooth ratio) of the right-side neighbor of Ø(1)
is used to generate x(1), and the stepwise ratio (or smooth ratio) of the
left-side neighbor of Ø(n) is used to generate x(n), then x(1) and x(n)
are said to be stepwise ratio generated (or smooth ratio generated). The
sequence, with blanks filled by stepwise ratio generation (or smooth ratio
generation), is called a sequence generated with stepwise ratios (or smooth
ratios).
Proposition 4.5.1. Assume that X is a sequence with blank ends.
1. If stepwise ratio generation is applied, then

x(1) =
x(2)

(3)
, x(n) = x(n 1) (n 1).

2. If smooth ratio generation is used, then

x(1) =
x2(2)

x(3) x(2)
, x(n) = x(n 1) (1 + (n 1)) .

Proposition 4.5.2. The following equation establishes the relationship
between stepwise ratios and smooth ratios.

(k + 1) =
(k + 1)

(k)
(1 + (k)) ,
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for k = 2, 3, ..., n.

Proposition 4.5.3. If

X = (x(1), x(2), ..., x(n))

is an increasing sequence, satisfying that

1. For k = 2, 3, ..., n, (k) < 2;

2. For k = 2, 3, ..., n,
(k + 1)

(k)
< 1,

that is, the smooth ratio is decreasing, then for any fixed real number

[0, 1] and k = 2, 3, ..., n, when (k) [0, ] , it must be that (k + 1)
[0, 1 + ] .

Example 4.5.1. Given a sequence of data

X = (2.874, 3.278, 3.337, 3.390, 3.679),

we have

(2) =
x(2)

x(1)
=
3.278

2.874
= 1.14

and
(3) = 1.1017, (4) = 1.1015, (5) = 1.1085

satisfying that for k = 2, 3, 4, 5, (k) < 2.

(2) =
x(2)

x(1)
= 1.14,

(3) =
x(3)

x(1) + x(2)
= 0.5425,

(4) =
x(4)

x(1) + x(2) + x(3)
= 0.3573,

and

(5) =
x(5)

x(1) + x(2) + x(3) + x(4)
= 0.2856,

satisfying that for k = 2, 3, 4, 5,

(k + 1)

(k)
< 1.

If (2) is not seen as a smooth ratio, then when k = 3, 4, 5,

(k) [0, 0.5425] = [0, ],

and (k + 1) [0, 1.085] [0, 1 + ] , k = 2, 3, 4.
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Definition 4.5.3. If a sequence X = (x (1) , x (2) , ..., x (n)) satisfies that
1. For k = 2, 3, ..., n 1,

(k + 1)

(k)
< 1;

2. For k = 3, 4, ..., n, (k) [0, ]; and
3. < 0.5,

then X is said to be a quasi-smooth sequence.
Definition 4.5.4. Assume that X is a sequence with blank entries. If a

new sequence generated based on X satisfies the conditions of being quasi-
smooth, then the related generation is said to be quasi-smooth generation.

4.6 Accumulating and Inverse Accumulating
Generation Operators

The so-called accumulating generation is a method to whitenize a grey
process. It occupies a very important position in the theory of grey sys-
tems. Through accumulation, the development situation and tendency of
a grey quantity can be clearly seen so that special characteristics or laws,
hidden in the chaotic raw data, can be su ciently revealed. For example,
let us consider the total expense of a family. If it is computed daily, there
may not be any obvious pattern. If computed monthly, some patterns of
expenses of the family may well be shown, which may, for example, very
well relate to the family’s monthly income. If we consider the weight of a
single piece of wheat, in general, we might not find any useful information.
That is why people often use the weight of a thousand pieces of wheat to
be an evaluation index. For a manufacturing business of heavy equipment,
because the production of each piece of equipment requires a relatively long
period of time, it will be useless to do daily analysis. On the other hand, it
will be very important to do an annual evaluation on the overall production
and relevant revenue.
The inverse accumulating generation is often used when additional infor-

mation is needed. At the same time, it also plays the role of returning the
data, after an accumulating generation process was applied, to the origi-
nal condition. So, accumulating and inverse accumulating generations are
a pair of inverse sequence operators.
Definition 4.6.1. Assume that X(0) is a sequence of raw data and D a

sequence operator satisfying that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
and

X(0)D =
³
x(0)(1)d, x(0)(2)d, ..., x(0)(n)d

´
,
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where

x(0)(k)d =
kX
i=1

x(0)(i),

for k = 1, 2, ..., n. Then the sequence operator D is called a (first-order)
accumulating generator of X(0), denoted 1-ADO. The rth-order operator
Dr of X(0) is obtained by applying the 1-ADO D r times, denoted r-AGO.

Conventionally, we write

X(0)D = X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
and

X(0)Dr = X(r) =
³
x(r)(1), x(r)(2), ..., x(r)(n)

´
,

where x(r)(k) =
kP
i=1
x(r 1)(i), k = 1, 2, ..., n.

Definition 4.6.2. Assume that X(0) is a sequence of raw data and D is
a sequence operator such that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
and

X(0)D =
³
x(0)(1)d, x(0)(2)d, ..., x(0)(n)d

´
,

where
x(0) (1) d = x(0) (1) , and

x(0)(k)d = x(0)(k) x(0)(k 1),

for k = 1, 2, ..., n. ThenD is called a (first order) inverse accumulating
generator of X(0). The rth order operator Dr is called an (rth-order)
inverse accumulating generator of X(0).

Again, conventionally, we use the following notation:

X(0)D = (1)X(0) =
¡

(1)x(0)(1), (1)x(0)(2), ..., (1)x(0)(n)
¢
,

and

X(0)Dr = (r)X(0) =
¡

(r)x(0)(1), (r)x(0)(2), ..., (r)x(0)(n)
¢
,

where
(r)x(0)(k) = (r 1)x(0)(k) (r 1)x(0)(k 1),

for k = 2, 3, ..., n, and (r)x(0)(1) = (r 1)x(0)(1).
Based on the previous definitions, it is obvious that
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Theorem 4.6.1. The inverse accumulating generator is an inverse op-
erator of the accumulating generator. That is,

(r)X(r) = X(0).

Because of this result, we denote an inverse accumulating generator as
IAGO.

Example 4.6.1. Assume that the annual data records of a grey number
are given in the following sequence

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
.

And, based on the monthly and yearly records, the data values recorded
for the kth year are the sequence

X(0)(k) =
³
x(0)(1, k), x(0)(2, k), ..., x(0)(12, k)

´
.

Now, the data records for the kth year jth month in terms of days are given
in the sequence below:

X(0)(j, k) =
³
x(0)(1, j, k), x(0)(2, j, k), ..., x(0)(30, j, k)

´
.

And, if the data are recorded with such details as to hour, day, month, and
year, then the data for the kth year, jth month, and ith day are given in
the following sequence:

X(0)(i, j, k) =
³
x(0)(1, i, j, k), x(0)(2, i, j, k), ..., x(0)(24, i, j, k)

´
,

where x(0)(h, i, j, k), h = 1, 2, ..., 24, is the record for the hth hour of the
kth year, jth month, and ith day.
Obviously, we have

x(0)(k) =
12X
j=1

x(0)(j, k),

x(0)(j, k) =
30X
i=1

x(0)(i, j, k),

x(0)(i, j, k) =
24X
h=1

x(0)(h, i, j, k),

and

x(0)(k) =
12X
j=1

30X
i=1

24X
h=1

x(0)(h, i, j, k),
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This is called a laminated accumulation. It is not the same as what was
defined as accumulating generation (or time accumulation).

Proposition 4.6.1. Assume that X(0) is a non-negative sequence

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
,

where x(0)(k) 0 and x(0)(k) [a, b] , k = 1, 2, ..., n. If

X(r) =
³
x(r)(1), x(r)(2), ..., x(r)(n)

´
is the sequence of an rth-order accumulating generation of X(0), then for
any > 0, when r is su ciently large, there exists an N such that for any
k satisfying N < k n the following holds true.

x(r)(k)
k 1P
i=1
x(r)(i)

< .

That is to say, for a bounded non-negative sequence, after many applica-
tions of accumulating generations, the resultant sequence can be su ciently
smooth and the smooth ratio (k) 0, as k .

Proposition 4.6.2. Let X(0) be the same as in Proposition 4.6.1. If

X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
is the sequence of the first-order accumulating generation of X (0), and

Z(1) =
³
z(1)(2), z(1)(3), ..., z(1)(n)

´
is the sequence of mean generation of consecutive neighbors of X(1), then
for any 1 2 [0, 1] , there exists a positive integer N = N( 1, 2) such
that for any k with N < k n, the following holds true.

(k) =
x(0)(k)

k 1P
i=1
x(0)(i)

< 1,
x(0)(k)

z(1)(k)
< 2.

Proof. It su ces for us to prove that

z(1)(k)
k 1X
i=1

x(0)(i).

From the definition of mean generation of consecutive neighbors, it follows
that

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1)
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for k = 2, 3, ..., n, and

k 1P
i=1
x(0)(i) = x(1)(k 1)

= 0.5x(1)(k 1) + 0.5x(1)(k 1)

However,

x(1)(k) =
kP
i=1
x(0)(i)

=
k 1P
i=1
x(0)(i) + x(0)(k)

= x(1)(k 1) + x(0)(k)

and x(0)(k) 0, so

z(1)(k)
k 1X
i=1

x(0)(i). ¤

Let us conclude this section with the following statement. Both accumu-
lating generation and mean generation can increase the degree of smooth-
ness of a sequence. Sometimes, after an application of accumulating gener-
ation, a mean generation can also be applied.

4.7 Randomness of Sequences of Accumulating
Generations

In general, the randomness of a non-negative quasi-smooth sequence de-
creases if the accumulating generation procedure is applied. The smoother
the original sequence is, the more clearly an exponential tendency in the
generated sequence would show up. For example, for the retailing of bicycles
in a certain city, we have the sequence of raw data as follows,

X(0) =
©
x(0)(k)

ª6
1

= (50810, 46110, 51177, 93775, 110574, 110524)

whose sequence of the first-order accumulating generation is given by

X(1) =
©
x(1)(k)

ª6
1

= (50810, 96920, 148097, 241872, 352446, 462970).

These sequences are plotted in Figures 4.4 and 4.5.
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FIGURE 4.4. The curve of the sequence X(0)

For the curve X = X(0) in Figure 4.4, it is very di cult to find an
elementary curve to approximate it, whereas for the curve X = X(1) in
Figure 4.5, it is quite like the curve of an exponential function so that it
can be simulated with an exponential function.

Definition 4.7.1. Assume that

X(0) =
¡
x(0)(1), x(0)(2), ..., x(0)(n)

¢
is a sequence of raw data, and

(1)X(0) =
¡

(1)x(0)(1), (1)x(0)(2), ..., (1)x(0)(n)
¢

is the sequence generated by applying the inverse accumulating generator
once on X(0).

1. The sequence X(0) is said to be increasing at the kth step if

(1)x(0)(k) = x(0)(k) x(0)(k 1) > 0,

otherwise, X(0) is said to be decreasing at step k;

2. If for k = 2, 3, ..., n, (1)x(0)(k) > 0 always holds true, then the se-
quence X(0) is said to be non-vibratingly increasing (or stepwise increas-
ing);

3. If for k = 2, 3, ..., n, (1)x(0)(k) < 0 always holds true, then X(0) is
said to be a non-vibratingly decreasing sequence; and

4. If k1, k2 2 such that (1)x(0)(k1) > 0 and (1)x(0)(k2) < 0, then
X(0) is called a stochastic sequence.

Definition 4.7.2. 1. If X(0) is a non-vibrating sequence, and (1)X(0)

is a stochastic sequence, then X(0) is called a weak stochastic sequence of
the first order.
2. If for i = 0, 1, 2, ..., r 1, (i)X(0) is a non-vibrating sequence, and
(r)X(0) is a stochastic sequence, then X(0) is said to be a weak stochastic
sequence of the rth order;
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FIGURE 4.5. The curve of the sequence X(1)

3. If for any r , (r)X(0) is a non-vibrating sequence, then X(0) is
said to be a non-stochastic sequence.

Theorem 4.7.1. Assume that X(0) is a positive sequence, that is, if

X(0) =
¡
x(0)(1), x(0)(2), ..., x(0)(n)

¢
,

then x(0)(k) 0, k = 1, 2, ..., n, and that X(r) is a sequence generated
by applying accumulating generation r times; then X(r) must be a weak
stochastic sequence of the rth order.

4.8 Grey Exponentiality of Accumulating
Generations

In this section, we look at some of the most applied results in the study of
grey information.

Definition 4.8.1. Assume that a continuous function in the form of

X(t) = ceat + b, c, a 6= 0,
is given, where a, b,and c are fixed constants.
1. When b = 0,X(t) is called a homogeneous exponential function;

2. When b 6= 0,X(t) is called a non-homogeneous exponential function.

Definition 4.8.2. Assume that a sequence

X = (x(1), x(2), ..., x(n))

is given.

1. If for k = 1, 2, ..., n, x(k) = ceak, c 6= 0 6= a, then X is called a ho-
mogeneous exponential sequence; and

2. If for k = 1, 2, ..., n, x(k) = ceak + b with c, a, b 6= 0, then X is called
a non-homogeneous exponential sequence.
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Theorem 4.8.1. A sequence X is homogeneously exponential, if, and
only if, for k = 1, 2, · · · , n, the equation (k) = a positive constant always
holds true.

Proof. ). Assume that for any k, x(k) = ceak, c 6= 0 6= a. Then,

(k) =
x(k)

x(k 1)
=

ceak

cea(k 1)
= ea = a positive constant.

). Assume again that for any k, (k) = a positive constant = ea. Then,

x(k) = eax(k 1) = e2ax(k 2) = · · · = x(1)ea(k 1). ¤

Definition 4.8.3. Assume that a sequence

X = (x(1), x(2), ..., x(n))

is given.

1. If for any k, (k) (0, 1], then the sequence X is said to satisfy the
law of negative grey exponent;

2. If for any k, (k) (1, b], for some b > 1, then the sequence X is said
to satisfy the law of positive grey exponent;

3. If for any k, (k) [a, b] with b a = , then X is said to satisfy the
law of grey exponent with the absolute degree of greyness ;

4. When < 0.5, the sequence X is said to satisfy the law of quasi-
exponent.

Theorem 4.8.2. Assume that X(0) is a non-negative quasi-smooth se-
quence. Then the sequence X(1), generated by applying accumulating gen-
eration once on X(0), satisfies the law of quasi-exponent.

Proof.
(1)(k) =

x(1)(k)

x(1)(k 1)

=
x(0)(k) + x(1)(k 1)

x(1)(k 1)
= 1 + (k).

From the definition of quasi-smooth sequences, it follows that for each k,
(k) < 0.5. Hence,

(1)(k) [1, 1.5), < 0.5.

That is, X(1) satisfies the law of quasi-exponent. ¤
Theorem 4.8.2 is the theoretical foundation for grey systems modeling.

As a matter of fact, because all economic systems, ecological systems, agri-
cultural systems, etc., can be seen as general energy systems, in which
the accumulation and release of energies satisfy the law of exponent, the
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exponential modeling of grey systems theory has a very wide range of ap-
plications.

Theorem 4.8.3. Assume that X(0) is a non-negative sequence. If X(r)

satisfies a law of exponent and the stepwise ratio of X(r) is given by (r)(k)
= , then
1. We have

(r+1)(k) =
1 k

1 k 1
;

2. When (0, 1),
lim
k

(r+1)(k) = 1,

and for each k,
(r+1)(k) [1, 1 + ];

3. When > 1,
lim
k

(r+1)(k) = ,

and for each k,
(r+1)(k) ( , 1 + ].

Proof. 1. Because X(r) satisfies a law of exponent and for each k,

(r)(k) =
x(r)(k)

x(r)(k 1)
= ,

for each k, we have that

x(r)(k) = x(r)(k 1)
= 2x(r)(k 2)
= · · ·
= k 1x(r)(1).

So,
X(r) =

³
x(r)(1), x(r)(1), 2x(r)(1), ..., n 1x(r)(1)

´
and

X(r+1) =
¡
x(r)(1), (1 + )x(r)(1), (1 + + 2)x(r)(1), ...,

(1 + + 2 + · · ·+ n 1)x(r)(1)
¢
.

Therefore,

(r+1)(k) =
x(r+1)(k)

x(r+1)(k 1)

=
(1 + + 2 + · · ·+ k 1)x(r)(1)

(1 + + 2 + · · ·+ k 2)x(r)(1)
.
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That is,
(r+1)(k) =

1 k

1
÷ 1

k 1

1
=

1 k

1 k 1
.

2. When 0 < < 1, (r+1)(k) decreases as k increases. When k = 2,

(r+1)(2) =
x(r+1)(2)

x(r+1)(1)
= 1 + .

When k ,

(r+1)(k) =
1 k

1 k 1
1.

So, for each k,
(r+1)(k) (1, 1 + ].

3. When > 1, (r+1)(k) decreases as k increases. When k = 2,

(r+1)(2) = 1 + ;

and when k ,

(r+1)(k) =
1 k

1 k 1
.

So, for each k,
(r+1)(k) ( , 1 + ]. ¤

This Theorem 4.8.3 implies that if a sequence of the rth accumulating
generation of X(0) satisfies an obvious law of exponent, an additional ap-
plication of AGO will destroy the pattern which has been obviously seen.
It tells us that application of accumulating generation needs to be stopped
when necessary. In practical applications, if a sequence of the rth accu-
mulation generation of X(0) satisfies the law of quasi-exponent, we will
generally no longer apply any further generation. From Theorem 4.8.2, it
follows that only one application of accumulating generation is needed for
a non-negative quasi-smooth sequence before establishing an exponential
model.



5
Grey Incidence Analysis

5.1 Introduction

General abstract systems, similar to social systems, economic systems, agri-
cultural systems, ecological systems, education systems, etc., involve many
factors. Some mutual reactions among the factors determine the develop-
ment situation and tendency of the systems. We often want to know:

• Which factors among the many are more important than others?
• Which factors have more e ects on the future development of the
systems than others?

• Which factors actually cause desirable changes in the systems so that
these factors need to be strengthened?

• Which factors hinder desirable development of the systems so that
they need to be controlled?

All these problems are commonly studied in the analysis of systems. For
example, in a system of crop production, it is desired to increase the total
production of food. However, there exist many factors, such as the area
planted, irrigation facilities, fertilizers, soil quality, seeds, labor availability,
weather conditions, farming technologies, and related government policies,
a ecting the desirable outcome. In order to achieve the goal of less input
and more output with as great economic, social, and ecological benefits as
possible, we must make use of the theory of systems analysis.
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Many methods in statistics, such as regression analysis, variance analysis,
and principal component analysis, are all commonly used in the analysis of
systems. However, these methods have the following pitfalls.

1. A large amount of data is required. Otherwise it would be di cult to
draw statistical conclusions with reasonable confidence and reliability.

2. It is required that all samples or populations satisfy certain typical
probability distribution(s), that the relation between the main char-
acteristic variable of the system and factor variables is roughly linear.
These requirements are often di cult to satisfy in real-life practice.

3. Heavy-duty computations are often needed.

4. It often happens that quantitative conclusions may not agree with
qualitative analysis results, causing misunderstandings about the sys-
tems under consideration.

In modern China, for example, due to historical reasons, most govern-
mental and/or private sources have only limited amounts of statistical
records. And, these limited amounts of records, at the same time, con-
tain a great degree of uncertainty. Also, due to some human factors, many
statistical records show fluctuations with large rises and falls without many
typical distribution patterns. Therefore, applying statistical methods can
hardly achieve many useful conclusions.
Now, the so-called grey incidence analysis remedies this defect found in

existing statistics when applied in the content of systems analysis. It can be
applied to cases of various sample sizes and distributions with a relatively
small amount of computation. And, in general, each application of grey
incidence analysis does not result in situations of disagreement between
quantitative analysis and qualitative analysis.
The fundamental idea of grey incidence analysis is that the closeness

of a relationship is judged based on the similarity level of the geometric
patterns of sequence curves. The more similar the curves are, the higher
the degree of incidence between sequences, and vice versa.
When analyzing an abstract system or a phenomenon, what’s most im-

portant is to choose the right sequence of characteristic data to describe
the system’s behavior. This sequence of data is called a mapping quantity
of the special system’s behavior. For example, the number of average years
of education received by citizens can be used to reflect a nation’s level of
literacy. Crime rates can be employed to represent the safety and social or-
der of a community. The number of patient registrations of all hospitals in
a community can be used as an indicator for the level of health of residents
of the community. After the data for the system’s behavioral characteris-
tics and data for related factors are collected, we draw the graphs for all
the data sets, from which some elementary analysis can be conducted. For
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FIGURE 5.1. Graphs of the Xs sequences

example, we have collected the data of a region for its total agricultural
production, denoted as X0, for its total farming production, denoted as
X1, for its total livestock husbandry production, denoted as X2, and for its
total production of rural business enterprises, denoted as X3, for the years
from 1991 to 1996 as follows.

X0 = (18, 20, 22, 35, 41, 46),

X1 = (8, 11, 12, 17, 24, 29),

X2 = (3, 2, 7, 4, 11, 6, ), and

X3 = (5, 7, 7, 11, 5, 10).

The graph of each sequence Xi, i = 0, 1, 2, 3, is given in Figure 5.1. Intu-
itively speaking, the curve representing farming production is very similar
to that representing total agricultural production, whereas the curves for
livestock and business enterprises have relatively obvious geometric dif-
ferences. Therefore, it can be concluded that agriculture in this region is
mainly farming, and that livestock husbandry and rural business enterprises
are still not well developed.

5.2 Grey Incidence Factors and Set of Grey
Incidence Operators

In systems analysis, after the mapping quantities, which describe systems’
behaviors well, have been chosen, we need to clarify all the factors that
e ectively a ect the systems’ behaviors. If quantitative analysis is needed, it
is necessary to process the mapping quantities and e ective factors through
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sequence operators so that these quantities and factors might become non-
dimensional with similar behaviors for negatively correlated factors and
positively correlated factors.

Definition 5.2.1. Assume that Xi is a systems’ factor with the kth
observation value being xi(k), k = 1, 2, · · · , n. Then

Xi = (xi(1), xi(2), ..., xi(n))

is called a behavioral sequence of the factor Xi.

1. If k stands for time, then xi(k) represents an observation of the factor
Xi at the time moment k, and

Xi = (xi(1), xi(2), ..., xi(n))

is called a behavioral time sequence of the factor Xi.

2. If k is an ordinality of some criteria and xi(k) is the observation of
the factor Xi at the criterion k, then

Xi = (xi(1), xi(2), ..., xi(n))

is called a behavioral criterion sequence of the factor Xi; and

3. If k is the ordinal number of the object observed and xi(k) stands for
the observation of the factor Xi of the kth object, then

Xi = (xi(1), xi(2), ..., xi(n))

is called a behavioral horizontal sequence of the factor Xi.

For example, whenXi represents some economic factor, k time, and xi(k)
the observation value of the factor Xi at the time moment k, the sequence

Xi = (xi(1), xi(2), ..., xi(n))

is an economic behavioral time sequence. If k is the ordinality of a criterion,
assuming that the set of all criteria applied is ordered, then the sequence

Xi = (xi(1), xi(2), ..., xi(n))

is an economic behavioral criterion sequence. If k stands for the ordinality of
di erent economic districts, assuming that the set of all economic districts
studied has been ordered, then the sequence

Xi = (xi(1), xi(2), ..., xi(n))

is an economic behavioral horizontal sequence.
No matter which sequence we have, being time, or criterion, or horizontal,

we can always conduct the needed incidence analysis.

Definition 5.2.2. Assume that
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Xi = (xi(1), xi(2), ..., xi(n))

is a behavioral sequence of a factor Xi, and D1 a sequence operator satis-
fying

XiD1 = (xi(1)d1, xi(2)d1, ..., xi(n)d1) ,

where

xi(k)d1 =
xi(k)

xi(1)
,

for k = 1, 2, ..., n. Then D1 is called an initialing operator with Xi as its
preimage and XiD1 as its image, is called the initial image of Xi.

Definition 5.2.3. Let Xi be the same as in Definition 5.2.2 and D2 a
sequence operator such that

XiD2 = (xi(1)d2, xi(2)d2, ..., xi(n)d2) ,

and

xi(k)d2 =
xi(k)

Xi

, Xi =
1

n

nX
i=1

xi(k),

for k = 1, 2, ..., n. Then D2 is called an averaging operator with XiD2 as
its image, called the average image of Xi.

Definition5.2.4. Let Xi be the same as in Definition 5.2.2 and D3 a
sequence operator such that

XiD3 = (xi(1)d3, xi(2)d3, ..., xi(n)d3) ,

where

xi(k)d3 =
xi(k) min

k
{xi(k)}

max
k
{xi(k)} min

k
{xi(k)} ,

for k = 1, 2, ..., n. Then D3 is called an interval operator with XiD3 as its
image, called the interval image of Xi.

Proposition 5.2.1. Initialing operator D1, averaging operator D2, and
interval operator D3 can all transform a behavioral sequence of a system
into a non-dimensional sequence.

In general, the operators D1,D2, and D3 should not be mixed in appli-
cations. And, when analyzing systems factors, a choice among D1, D2, and
D3 can be made based on the practical situation involved.

Definition 5.2.5. Let X i be the same as in Definition 5.2.2 satisfying

xi(k) [0, 1],

for k = 1, 2, ..., n, and D4 a sequence operator such that

XiD4 = (xi(1)d4, xi(2)d4, ..., xi(n)d4) ,
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where
xi(k)d4 = 1 xi(k),

for k = 1, 2,..., n. Then D4 is called a reversing operator with XiD4 as the
image of Xi, called the reverse image of Xi.

Proposition 5.2.2. The interval image of any behavioral sequence has
a reverse image.

Proof. In fact, all data values in an interval image belong to [0, 1] , so a
reversing operator can be defined. ¤
Definition 5.2.6. Let X i be the same as in Definition 5.2.2 and D5 a

sequence operator such that

XiD5 = (xi(1)d5, xi(2)d5, ..., xi(n)d5)

where
xi(k)d5 = 1/xi(k),

for k = 1, 2, ..., n. Then D5 is called a reciprocating operator with XiD5
as the reciprocal image of Xi.

Proposition 5.2.3. If there exists a negative correlation between a sys-
tem factor Xi and a system behavior X0, then the reverse image XiD4
and the reciprocal image XiD5 of the factor Xi have a positive correlation
with X0.

Definition 5.2.7. The following

D = {Di|i = 1, 2, 3, 4, 5}
is called the set of grey incidence operators.

Definition 5.2.8. Assume that X is the set of all factors involved in
a study of a system, and D the set of all grey incidence operators. Then
(X,D) is called the space of grey incidence factors of the system.

5.3 Metric Spaces

The space, consisting of system factors and grey incidence operators, forms
a base for grey incidence analysis. On such a base, comparisons and evalu-
ations can be done in order to study systems’ behaviors of factors.
If each factor in a space of grey incidence factors is seen as a point in the

space without size and volume, and each data value of the factor, observed
at a di erent time moment, di erent index, or di erent object, is seen as the
coordinate of the point, we will be able to study the relationship between
factors or between factors and the system’s characteristics in a special n-
dimensional space. In this way, the relevant degree of grey incidence can
be defined by using the distance function in the n-dimensional space.
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Definition 5.3.1.Assume thatX,Y, and Z are points in the n-dimensional
Euclidean space Rn, and the real number d(X,Y ) satisfies the following.

1. d(X,Y ) 0, d(X,Y ) = 0 X = Y ;

2. d(X,Y ) = d(Y,X);

3. d(X,Z) d(X,Y ) + d(Y,Z).

Then d(X,Y ) is called a distance in the n-dimensional Euclidean space Rn

and d a distance function.

Proposition 5.3.1. Assume that

X = (x(1), x(2), ..., x(n))

and
Y = (y(1), y(2), ..., y(n))

are points in the n-dimensional Euclidean space Rn. Define

d1(X,Y ) = |x(1) y(1)|+ |x(2) y(2)|+ · · ·+ |x(n) y(n)|;

d2(X,Y ) = [|x(1) y(1)|2 + |x(2) y(2)|2 + · · ·+ |x(n) y(n)|2 ] 12 ;

d3(X,Y ) =
d1(X,Y )

1 + d1(X,Y )
;

dp(X,Y ) = [|x(1) y(1)|p + |x(2) y(2)|p + · · ·+ |x(n) y(n)|p ] 1p ;
and

d (X,Y ) = max {|x(k) y(k)||k = 1, 2, ..., n} .
Then d1(X,Y ), d2(X,Y ), d3(X,Y ), dp(X,Y ), and d (X,Y ) are all distances
in the n-dimensional Euclidean space Rn.

Definition 5.3.2. Let

X = (x(1), x(2), ..., x(n))

be a point in the n-dimensional Euclidean space, and

O = (0, 0, ..., 0)

the origin. Then the distance d(X,O) between X and O is called the norm
of the point X, denoted kXk .
Related to the distances in Proposition 5.3.1, we have the following com-

monly used norms.

1. 1-norm: ||X||1 =
nP
k=1

|x(k)|;

2. 2-norm: ||X||2 =
·
nP
k=1

|x(k)|2
¸ 1
2

;
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3. p-norm: ||X||p =
·
nP
k=1

|x(k)|p
¸ 1
p

; and

4. norm : ||X|| = max {|x(k)||k = 1, 2, ..., n} .
Definition 5.3.3. Assume that X(t), Y (t), and Z(t) are continuous func-

tions defined on a set I of numbers. If the real number d(X(t), Y (t)) satisfies
the following,

1. d(X(t), Y (t)) 0, d(X(t), Y (t)) = 0 t,X(t) = Y (t);

2. d(X(t), Y (t)) = d(Y (t),X(t));

3. d(X(t), Z(t)) d(X(t), Y (t)) + d(Y (t), Z(t)),

then d(X(t), Y (t)) is called a distance in the space consisting of all contin-
uous functions defined on I.

Here, we have treated the functions X(t) and Y (t) as two points in the
functional space.

Proposition 5.3.2.Assume that X(t) and Y (t) are continuous functions
defined on interval [a, b] . Define

d1(X(t), Y (t)) =

Z b

a

|X(t) Y (t)|dt;

d2(X(t), Y (t)) = [

Z b

a

|X(t) Y (t)|2dt ] 12 ;

d3(X(t), Y (t)) =
d1(X(t), Y (t))

1 + d1(X(t), Y (t))
;

d4(X(t), Y (t)) =

Z b

a

|X(t) Y (t)|
1 + |X(t) Y (t)|dt;

dp(X(t), Y (t)) =

"Z b

a

|X(t) Y (t)|pdt
# 1
p

;

and
d (X(t), Y (t)) = max {|X(t) Y (t)||t [a, b]} .

Then d1(X(t), Y (t)), d2(X(t), Y (t)), d3(X(t), Y (t)), d4(X(t), Y (t)), dp(X(t),
Y (t)), and d (X(t), Y (t)) are all distances in the functional space of all
continuous functions defined on I.

Similar to notes 1 to 4 beneath Definition 5.3.2, we can define the norm
on the functional space of all continuous functions using distance functions
d1 to d as defined in Proposition 5.3.2. More specifically, we have

Definition 5.3.4. Assume that X(t) is a continuous function defined
on the interval [a, b] , and 0 the zero function defined on the interval [a, b] .
Then d(X(t), 0) is called the norm of the continuous function X(t), denoted
as
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||X(t)|| = d(X(t), 0).

Accordingly, we have the following commonly used norms.

1. ||X(t)||1 =
R b
a
|X(t)|dt;

2. ||X(t)||2 = [
R b
a
|X(t)|2dt ] 12 ;

3. ||X(t)||p = [
R b
a
|X(t)|pdt ] 1p ;

4. ||X(t)|| = max {|X(t)||t [a, b]} .
Besides,

||X(t)|| =
R b
a
|X(t)|dt

1 +
R b
a
|X(t)|dt

and

||X(t)|| =
Z b

a

|X(t)|
1 + |X(t)|dt

are important for us to derive the definition of degree of grey incidences.

5.4 Degrees of Grey Incidences

First, let us idenfity each sequence of data with its graph.

Definition 5.4.1. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of data. Then

X = n 1
k=1{(t, x(k) + (t k)(x(k + 1) x(k))) | t [k, k + 1]}

is called the zigzagged line corresponding to the sequence X.

Here, we have used the same symbol X to represent the original sequence
and its zigzagged line. For the sake of convenience for our discussion, we
do not always distinguish a sequence and its zigzagged line.

Proposition 5.4.1. Assume that sequence X0 of data, describing a sys-
tem’s characteristic behaviors, is increasing, and Xi is a sequence of relevant
factors’ behaviors. Then,

1. When Xi is increasing, Xi and X0 are positively correlated; and

2. When Xi is decreasing, Xi and X0 are negatively correlated.

Because negatively correlated sequences can be transformed into posi-
tively correlated sequences by using a reversing operator or a reciprocating
operator, as defined in Section 5.2, we put our emphasis on the study of
positively correlated relationships.

Definition 5.4.2. Let X = (x(1), x(2), ..., x(n)) be a sequence of data.
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1.The following
= x(k) x(k 1),

for k = 1, 2, ..., n, is called the slope of X on the interval [k 1, k].

2. The following

=
x(s) x(k)

s k
, s > k,

k = 1, 2, ..., n, is called the mean slope of X on the interval [k, s]. And

3. The following

=
1

n 1
[x(n) x(1)]

is called the mean slope of X.

Theorem 5.4.1. Assume that Xi and Xj are non-negative increasing
sequences of data, Xj = Xi + c, where c is a nonzero constant, and D1 is
an initialing operator. Let

Yi = XiD1, Yj = XjD1

be the initial images of Xi and Xj, i and j the mean slopes of Xi and
Xj , and i and j the mean slopes of Yi and Yj , respectively. Then, the
following must hold true.

1. i = j ;

2. When c < 0, i < j . And when c > 0, i > j.

Proof. 1. Assume that

Xi = (xi(1), xi(2), ..., xi(n)) ,

and

Xj = (xj(1), xj(2), ..., xj(n))

= (xi(1) + c, xi(2) + c, ..., xi(n) + c) .

From Definition 5.4.2, it follows that

i =
1

n 1
(xi(n) xi(1))

and

j = 1
n 1 (xj(n) xj(1))

= 1
n 1 (xi(n) + c xi(1) c)

= 1
n 1 (xi(n) xi(1)) = i.
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2. From

Yi = XiD1 =

µ
xi(1)

xi(1)
,
xi(2)

xi(1)
, ...,

xi(n)

xi(1)

¶
and

Yj = XjD1 =

µ
xj(1)

xj(1)
,
xj(2)

xj(1)
, ...,

xj(n)

xj(1)

¶

=

µ
xi(1) + c

xi(1) + c
,
xi(2) + c

xi(1) + c
, ...,

xi(n) + c

xi(1) + c

¶
,

it follows that

i =
1

n 1

µ
xi(n)

xi(1)

xi(1)

xi(1)

¶

=
1

xi(1)(n 1)
(xi(n) xi(1)) =

1

xi(1)
i

and

j =
1

n 1

µ
xi(n) + c

xi(1) + c

xi(1) + c

xi(1) + c

¶

=
1

(xi(1) + c)(n 1)
(xi(n) xi(1)) =

1

xi(1) + c
i.

When c < 0, xi(1) > xi(1) + c, it follows that

1

xi(1)
<

1

xi(1) + c
.

So, i < j . When c > 0, xi(1) < xi(1) + c, it follows that

1

xi(1)
>

1

xi(1) + c
.

So, i > j . ¤
This theorem reflects the following characteristics of increasing sequences.

When the absolute amounts of increase of two increasing sequences are the
same, the sequence with a smaller initial value will increase faster than the
sequence with a greater initial value. In order to keep a same relative rate of
increase, the absolute amount of increase of the sequence with the greater
initial value must be greater than that of the sequence with a smaller initial
value.

Definition 5.4.3. Assume that

X0 = (x0(1), x0(2), ..., x0(n))
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is a sequence of data representing a system’s characteristics, and

Xi = (xi(1), xi(2), ..., xi(n)) , i = 1, 2, ..., n

are sequences of relevant factors. For a given real number (x0(k), xi(k)),
if the real number

(X0,Xi) =
1

n

nX
k=1

(x0(k), xi(k))

satisfies

1. The property of normality

0 < (X0,Xi) 1,

and
(X0,Xi) = 1 X0 = Xi.

2. The property of wholeness

Xi,Xj X = {Xs|s = 1, 2, · · ·m;m 2} ,

we have
(Xi,Xj) 6= (Xj ,Xi), (i 6= j).

3. The property of pair symmetry. For Xi,Xj X, then

(Xi,Xj) = (Xj ,Xi) X = {Xi,Xj} .

4. The property of closeness. The smaller

|x0(k) xi(k)|

is, the larger
(x0 (k) , xi (k)) .

Then (X0,Xi) is called the degree of grey incidence of Xi with respect
to X0, and (x0 (k) , xi (k)) the incidence coe cient of Xi with respect to
X0 at point k.

In the axioms for grey incidences, that is, conditions 1 to 4 in Definition
5.4.3,

1. (X0,Xi) (0, 1] implies that any two behavioral sequences of a
system cannot be absolutely not related;

2. The property of wholeness reflects the influence of the environment on
comparisons of grey incidences. When the environment changes, the degree
of grey incidences also changes accordingly;
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3. The property of pair symmetry implies that when the set of grey
incidence factors contain only two sequences, they satisfy the property of
symmetry; and

4. The property of closeness is a requirement for the quantification of
degree of incidence.

Theorem 5.4.2. Assume that m + 1 behavioral sequences of a system
are given

Xi = (xi(1), xi(2), ..., xi(n)) , i = 0, 1, 2, ...,m.

For (0, 1) , define

0i = (x0 (k) , xi (k))

=

·
min
i
min
k
|x0(k) xi(k)|+ max

i
max
k
|x0(k) xi(k)|

¸

÷
·
|x0(k) xi(k)|+ max

i
max
k
|x0(k) xi(k)|

¸
and

(X0,Xi) =
1

n

nX
k=1

(x0 (k) , xi (k)) .

Then (X0,Xi) satisfies the four axioms for grey incidences, where is
called the distinguishing coefficient.

Proof. 1. The property of normality. If

|x0(k) xi(k)| = min
i
min
k
|x0(k) xi(k)|,

then
(x0 (k) , xi (k)) = 1.

If
|x0(k) xi(k)| 6= min

i
min
k
|x0(k) xi(k)|,

then
|x0(k) xi(k)| > min

i
min
k
|x0(k) xi(k)|.

Therefore,

min
i
min
k
|x0(k) xi(k)|+ max

i
max
k
|x0(k) xi(k)|

< |x0(k) xi(k)|+ max
i
max
k
|x0(k) xi(k)|.

So,
(x0 (k) , xi (k)) < 1.
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It is obvious that for any k, (x0 (k) , xi (k))> 0. Hence,

0 < (X0,Xi) < 1.

2. The property of wholeness. If

X = {Xs|s = 0, 1, 2, ...,m;m 2},
then for any Xs1 ,Xs2 X, in general, we have

max
i
max
k
|xs1(k) xi(k)| 6= max

i
max
k
|xs2(k) xi(k)|.

So, the property of wholeness holds true.

3. The property of pair symmetry. If X = {X0,X1} , then
|x0(k) x1(k)| = |x1(k) x0(k)|

and
max
i
max
k
|x0(k) xi(k)| = max

i
max
k
|x1(k) xi(k)|,

where i = 1 in the left end, and i = 0 on the right end. So,

(X0,X1) = (X1,X0).

4. The property of closeness. It is obvious. ¤
The degree (X0,Xi) of grey incidence is often written as 0i, and the

incidence coe cient (x0 (k) , xi (k)) at point k as 0i(k).
Based on the algorithm described in Theorem 5.4.2, each computation

for the degree of grey incidences can be accomplished by going through the
following steps.

Step 1: Find the initial image (or average image) of each sequence. Let

X
0
i =

Xi
xi(1)

=
³
x
0
i(1), x

0
i(2), ..., x

0
i(n)

´
, i = 0, 1, 2, ...,m.

Step 2: Find di erence sequences. Denote

i(k) = |x00(k) x
0
i(k)|, and

i = ( i(1), i(2), ..., i(n)) , i = 0, 1, 2, ...,m.

Step 3: Find the maximum and minimum di erences. And write

M = max
i
max
k

i(k),m = min
i
min
k

i(k).

Step 4: Find incidence coe cients.

0i(k) =
m+ M

i(k) + M
,



5.4 Degrees of Grey Incidences 99

for (0, 1), k = 1, 2, ..., n; i = 1, 2, ...,m.

Step 5: Compute the degree of incidences.

0i =
1

n

nX
k=1

0i(k), i = 0, 1, 2, ...,m.

Example 5.4.1. In a study, some behavioral data for areas in industry,
agriculture, transportation, and business are provided as follows.

In industry:

X1 = (x1(1), x1(2), x1(3), x1(4)) = (45.8, 43.4, 42.3, 41.9).

In agriculture:

X2 = (x2(1), x2(2), x2(3), x2(4)) = (39.1, 41.6, 43.9, 44.9).

In transportation:

X3 = (x3(1), x3(2), x3(3), x3(4)) = (3.4, 3.3, 3.5, 3.5).

And in business:

X4 = (x4(1), x4(2), x4(3), x4(4)) = (6.7, 6.8, 5.4, 4.7).

Compute the degree of grey incidence by using X1 and X2 as a system’s
characteristic sequences.

Solution. 1. First, we compute the degree of incidence for the case that
X is treated as a system’s characteristic sequence.

Step 1: Compute the initial image. From

X
0
i = Xi/xi(1) =

³
x
0
i(1), x

0
i(2), x

0
i(3), x

0
i(4)

´
,

i = 1, 2, 3, 4, it follows that

X
0
1 = (1, 0.9475, 0.9235, 0.9138),

X
0
2 = (1, 1.063, 1.1227, 1.1483),

X
0
3 = (1, 0.97, 1.0294, 1.0294), and

X
0
4 = (1, 1.0149, 0.805, 0.7).
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Step 2: Compute di erence sequences. From

i(k) = |x01(k) x
0
i(k)|,

i = 2, 3, 4, it follows that

2 = (0, 0.1155, 0.1992, 0.2335),

3 = (0, 0.0225, 0.1059, 0.1146), and

4 = (0, 0.0674, 0.1185, 0.2148).

Step 3: Compute the di erence between the two extremes.

M = max
i
max
k

i(k) = 0.2335, and m = min
i
min
k

i(k) = 0.

Step 4: Compute the incidence coe cients. Take = 0.5. Then we have

1i =
0.11675

i(k) + 0.11675
,

i = 2, 3, 4. Therefore,

12(1) = 1, 12(2) = 0.503, 12(3) = 0.3695, 12(4) = 0.3333;

13(1) = 1, 13(2) = 0.8384, 13(3) = 0.5244, 13(4) = 0.504;

14(1) = 1, 14(2) = 0.634, 14(3) = 0.4963, 14(4) = 0.352.

Step 5: Compute the degree of grey incidences.

12 =
1
4

4P
k=1

12(k) = 0.551,

13 =
1
4

4P
k=1

13(k) = 0.717, and

14 =
1
4

4P
k=1

14(k) = 0.621.

2. For the case when X2 is seen as the system’s characteristic: from

i(k) = |x02(k) x
0
i(k)|,

i = 1, 3, 4, it follows that

1 = (0, 0.1155, 0.1992, 0.2335),

3 = (0, 0.093, 0.0933, 0.1189),

4 = (0, 0.0481, 0.3177, 0.4483).
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So,
M = max

i
max
k

i(k) = 0.4483,

m = min
i
min
k

i(k) = 0.

Now, take = 0.5; we obtain that

2i(k) =
0.22415

i(k) + 0.22415
.

Hence,

21(1) = 1, 21(2) = 0.66, 21(3) = 0.53, 21(4) = 0.489;

23(1) = 1, 23(2) = 0.706, 23(3) = 0.706, 23(4) = 0.653;

24(1) = 1, 24(2) = 0.823, 24(3) = 0.415, 24(4) = 0.333;

and

21 =
1
4

4P
k=1

21(k) = 0.670,

23 =
1
4

4P
k=1

23(k) = 0.766,

24 =
1
4

4P
k=1

24(k) = 0.643.

Combining the result 12 = 0.551 in 1, it is obvious that 12 6= 21,
which is exactly the property of wholeness in Definition 5.4.3.

5.5 Absolute Degree of Grey Incidence

The first result in this section establishes a relationship between behaviors
of a sequence and its zigzagged line.

Proposition 5.5.1. Assume that

Xi = (xi(1), xi(2), ..., xi(n)) ,

stands for a behavioral sequence of data, and that the zigzagged line

(xi(1) xi(1), xi(2) xi(1), ..., xi(n) xi(1))

is denoted as Xi xi(1). Let

si =

Z n

1

(Xi xi(1)) dt.
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Then
1. When Xi is an increasing sequence, si 0;

2. When Xi is a decreasing sequence, si 0; and

3. When Xi is a vibrating sequence, the sign of si is not fixed.

The proof of this proposition is based on definitions of increasing, de-
creasing, and vibrating sequences and properties of integrations. Here, all
the details are omitted.

Definition 5.5.1. Let Xi = (xi(1), xi(2), ..., xi(n)) be the same as in
Proposition 5.5.1 and D a sequence operator

XiD = (xi(1)d, xi(2)d, ..., xi(n)d) , k = 1, 2, ..., n.

where
xi(k)d = xi(k) xi(1).

Then D is called a zero starting point operator with XiD as the image of
zero starting point of Xi, denoted

X0
i =

¡
x0i (1), x

0
i (2), ..., x

0
i (n)

¢
.

Proposition 5.5.2. Assume that the images of the zero starting point
of two behavioral sequences

Xi = (xi(1), xi(2), ..., xi(n)) and Xj = (xj(1), xj(2), ..., xj(n))

are

X0
i =

¡
x0i (1), x

0
i (2), · · ·, x0i (n)

¢
and X0

j =
¡
x0j (1), x

0
j(2), · · ·, x0j (n)

¢
,

respectively. Let

si sj =
R n
1

¡
X0
i X0

j

¢
dt.

Then the following hold true.

1. If X0
i is always above X

0
j , then si sj 0;

2. If X0
i is always underneath X

0
j , then si sj 0; and

3. If X0
i and X

0
j alternate their positions, the sign of si sj is not fixed.

Definition 5.5.2. The sum of time intervals between consecutive obser-
vations of a sequence Xi is called the length of Xi.

It should be noted that two sequences of the same length may not have
the same number of observations. For example,

X1 = (x1(1), x1(3), x1(6)) ,

X2 = (x2(1), x2(3), x2(5), x2(6)) ,

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), x3(6)) .
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Even though these sequences all have 6 as their length, they have di erent
numbers of observation values.

Definition 5.5.3. Assume that two sequences Xi and Xj are of the same
length, and si and sj are defined as in Proposition 5.5.1. Then

ij =
1 + |si|+ |sj |

1 + |si|+ |sj |+ |si sj |
is called the absolute degree of grey incidence of Xi and Xj , or absolute
degree of incidence for short.

At this point, we have only introduced the definition of absolute degree
of grey incidence of same length sequences. As for sequences of di erent
lengths, several methods can be used to define this concept. For example,
one can either delete the extra values of the longer sequence, or employ the
grey modeling method GM(1, 1) (see Chapter 7 for more details) developed
for predictions to prolong the shorter sequence to the length of the longer
sequence so that the absolute degree of grey incidence can be defined.
However, all these methods would lead to di erent values of absolute degree
of grey incidence.

Theorem 5.5.1. The absolute degree of grey incidence

ij =
1 + |si|+ |sj |

1 + |si|+ |sj |+ |si sj |
satisfies the properties of normality, pair symmetry, and closeness, but not
wholeness.

Proof. 1. The property of normality. It is obvious that ij > 0 and
|si sj | > 0. So, ij 1.

2. The property of pair symmetry. From the fact that

|si sj | = |sj si| ,

it follows that ij = ji.

3. The property of closeness: It is obvious.

4. Because the absolute degree of grey incidence is only a measure for
the correlation between the sequences Xi and Xj without involving other
considered factors, there is no problem of wholeness here. ¤
Proposition 5.5.3. Assume that the lengths of two sequences Xi and

Xj are the same. Let

X
0
i = Xi a, X

0
j = Xj b,

where a and b are constants. If the absolute degree of grey incidences of
X

0
i and X

0
j is

0
ij , then

0
ij = ij .
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In fact, when Xi and Xj are moved horizontally, the values of si, sj , and
si sj are not changed. So, ij is not changed.

Definition 5.5.4. If the time intervals of any two consecutive observation
values of a sequence X have the same length, then X is called an equal
time interval sequence.

Lemma 5.5.1. Assume that X is an equal-time interval sequence. If the
time interval length ` 6= 1, then the time axis transformation

t : T T, t 7 t/`

can transform X into an 1-time-interval sequence.

Proof. Under the transformation defined here,

Xi = (xi(`), xi(2`), ..., xi(n`))

is transformed to the following with t changed to t/` and k` changed to
k`/` = k.

X 0
i = (xi(1), xi(2), ..., xi(n)) .

X 0
i is an 1-time-interval sequence. ¤
Lemma 5.5.2. Assume that Xi and Xj are 1-time-interval sequences of

the same length, and

X0
i =

¡
x0i (1), x

0
i (2), ..., x

0
i (n)

¢
and X0

j =
¡
x0j (1), x

0
j(2), ..., x

0
j (n)

¢
are the zero images of Xi and Xj . Then,

|si| =
¯̄̄̄
¯
n 1X
k=2

x0i (k) +
1

2
x0i (n)

¯̄̄̄
¯ ,

|sj | =
¯̄̄̄
¯
n 1X
k=2

x0j (k) +
1

2
x0j (n)

¯̄̄̄
¯ ,

and

|si sj | =
¯̄̄̄
¯
n 1X
k=2

[x0i (k) x0j(k)] +
1

2
[x0i (n) x0j (n)]

¯̄̄̄
¯ .

Proof. We complete our argument with three situations.

1. Xi and Xj are either both increasing or both decreasing sequences,
and the zigzagged lines X0

i and X
0
j do not intersect.

In this case, |si| , |sj | , and|si sj | are determined by areas of the follow-
ing triangles with curvilinear sides, respectively.

X = 0, X = X0
i , and t = n;

X = 0, X = X0
j , and t = n;
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and
X = X0

i , X = X0
j , and t = n.

They are sums of little areas of n 1 small trapezoids of height 1. The little
trapezoids for |si| have their base lengths as follows.

0, |x0i (2)|, |x0i (3)|, ..., |x0i (n)|.

The little trapezoids for |sj | have their base lengths as follows.

0, |x0j(2)|, |x0j (3)|, ..., |x0j (n)|.

And the little trapezoids for |si sj | have their base lengths as follows:

0, |x0i (2) x0j (2)|, |x0i (3) x0j (3)|, · · ·, |x0i (n) x0j (n)|.

So,

|si| = 1
2 |x0i (2)|+ 1

2 [|x0i (2)|+ |x0i (3)|] + · · ·+ 1
2 [|x0i (n 1)|+ |x0i (n)|]

=
n 1P
k=2

|x0i (k)|+ 1
2 |x0i (n)|,

|sj | = 1
2 |x0j (2)|+ 1

2 [|x0j (2)|+ |x0j(3)|] + · · ·+ 1
2 [|x0j (n 1)|+ |x0j (n)|]

=
n 1P
k=2

|x0j (k)|+ 1
2 |x0j(n)|,

and

|si sj | = 1
2 |x0i (2) x0j (2)|+ 1

2 [|x0i (2) x0j (2)|+ |x0i (3) x0j(3)|]

+ · · ·+1
2 [|x0i (n 1) x0j(n 1)|+ |x0i (n) x0j (n)|]

=
n 1P
k=2

|x0i (k) x0j(k)|+ 1
2 |x0i (n) x0j (n)|.

From the assumption that Xi and Xj are either both increasing or both
decreasing and that the zigzagged lines X0

i and X
0
j do not intersect, it

follows that for k = 2, 3, ..., n, all x0i (k)s have the same sign, all x
0
j(k)s

have the same sign and x0i (k) x0j(k)s have the same sign. Therefore, we
have

|si| =
n 1P
k=2

|x0i (k)|+ 1
2 |x0i (n)| =

¯̄̄̄
n 1P
k=2

x0i (k) +
1
2x

0
i (n)

¯̄̄̄
,

|sj | =
n 1P
k=2

|x0j(k)|+ 1
2 |x0j(n)| =

¯̄̄̄
n 1P
k=2

x0j (k) +
1
2x

0
j (n)

¯̄̄̄
,
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and

|si sj | =
n 1P
k=2

|x0i (k) x0j(k)|+ 1
2 |x0i (n) x0j(n)|

=

¯̄̄̄
n 1P
k=2

[x0i (k) x0j (k)] +
1
2 [x

0
i (n) x0j(n)]

¯̄̄̄
.

2. Both Xi and Xj are vibrating sequences and the zigzagged lines X0
i

and X0
j do not intersect. Because X

0
i and X

0
j do not intersect, from the

discussion in 1 it follows that

|si sj | =
¯̄̄̄
¯
n 1X
k=2

[x0i (k) x0j(k)] +
1

2
[x0i (n) x0j (n)]

¯̄̄̄
¯ .

In the following, we look at |si| and |sj | .
Because Xi is a vibrating sequence, si equals the algebraic sum of various

parts, bounded by X = 0,X = X0
i , and t = n while taking the parts above

X = 0 positive and the parts beneath X = 0 negative.
Assume that x0i (k), k = 2, 3, ..., n, changes signs only once, and

(x0i (m), x
0
i (m+ 1))

is the only pair of points where the change of signs occurred. Assume that
x0i (m)> 0 and x

0
i (m+ 1) < 0. Then

for k = 2, 3, ...,m 1, x0i (k) > 0;

for k = m+ 1,m+ 2, ..., n, x0i (k) < 0.

Denote

sim =

Z m+1

m

X0
i dt.

Then
si = 1

2 |x0i (2)|+ 1
2 [|x0i (2)|+ |x0i (3)|]

+ · · ·+ 1
2 [|x0i (m 1)|+ |x0i (m)|] + sim

1
2 [|x0i (m+ 1)|+ |x0i (m+ 2)|]

· · · 1
2 [|x0i (n 1)|+ |x0i (n)|].

We now compute sim. As shown in Figure 5.2, the equation of the straight-
line AB is

X = x0i (m) + (t m)(x0i (m+ 1) x0i (m)).

So, the intersection of AB and X = 0 is

C

µ
m+

x0i (m)

x0i (m+ 1) x0i (m)
, 0

¶
.



5.5 Absolute Degree of Grey Incidence 107

FIGURE 5.2. Graph needed for the computation of sim

Therefore,

sim = 1
2 |x0i (m)| ·

¯̄̄̄
x0i (m)

x0i (m+ 1) x0i (m)

¯̄̄̄
1
2 |x0i (m+ 1)| ·

·
1

¯̄̄̄
x0i (m)

x0i (m+ 1) x0i (m)

¯̄̄̄¸
= 1

2 [|x0i (m)|+ |x0i (m+ 1)|] ·
¯̄̄̄

x0i (m)

x0i (m+ 1) x0i (m)

¯̄̄̄
1
2 |x0i (m+ 1)|.

Because x0i (m) > 0 and x0i (m+ 1) < 0, we have that¯̄̄̄
x0i (m)

x0i (m+ 1) x0i (m)

¯̄̄̄
=

|x0i (m)|
|x0i (m+ 1) x0i (m)|

=
|x0i (m)|

|x0i (m+ 1)|+ |x0i (m)|
.

Hence,

sim =
1

2
|x0i (m)|

1

2
|x0i (m+ 1)|.

Now, by considering ¯̄
x0i (k)

¯̄
= x0i (k),

for k = 2, 3, ..., m, and ¯̄
x0i (k)

¯̄
= x0i (k),

for k = m+ 1,m+ 2, ..., n, it follows that

|si| =
¯̄̄̄
¯
n 1X
k=2

x0i (k) +
1

2
x0i (n)

¯̄̄̄
¯ .
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As for the case with x0i (m) < 0 and x0i (m+1) > 0, a similar argument
can be given.
As for the case with several pairs of points of sign changes, we can con-

sider each pair individually, and obtain the following,

|si| =
¯̄̄̄
¯
n 1X
k=2

x0i (k) +
1

2
x0i (n)

¯̄̄̄
¯ .

Similarly, it can be proven that when Xj is a vibrating sequence, we also
have

|sj | =
¯̄̄̄
¯
n 1X
k=2

x0j (k) +
1

2
x0j (n)

¯̄̄̄
¯ .

3. Xi and Xj are vibrating sequences with intersecting X0
i and X

0
j . From

2 we have already had

|si| =
¯̄̄̄
¯
n 1X
k=2

x0i (k) +
1

2
x0i (n)

¯̄̄̄
¯ ,

and

|sj | =
¯̄̄̄
¯
n 1X
k=2

x0j (k) +
1

2
x0j (n)

¯̄̄̄
¯ .

Now, si sj equals the algebraic sum of various parts bounded by X =
X0
i ,X = X0

j , and t = n, taking the parts with X
0
i on the top of X

0
j positive

and the other parts negative. Similar to 2, it can be proven that

|si sj | =
¯̄̄̄
¯
n 1X
k=2

[x0i (k) x0j (k)] +
1

2
[x0i (n) x0j(n)]

¯̄̄̄
¯ . ¤

Theorem 5.5.2. Assume that Xi and Xj are two sequences of the same
length, same time distances, and equal time interval. Then,

ij = 1 +

¯̄̄̄
n 1P
k=2

x0i (k) +
1
2x

0
i (n)

¯̄̄̄
+

¯̄̄̄
n 1P
k=2

x0j (k) +
1
2x

0
j (n)

¯̄̄̄

÷
½
1 +

¯̄̄̄
n 1P
k=2

x0i (k) +
1
2x

0
i (n)

¯̄̄̄
+

¯̄̄̄
n 1P
k=2

x0j(k) +
1
2x

0
j(n)

¯̄̄̄

+

¯̄̄̄
n 1P
k=2

[x0i (k) x0j (k)] +
1
2 [x

0
i (n) x0j(n)]

¯̄̄̄¾
.

Proof. From Lemma 5.5.1, it can be assumed that Xi and Xj are all
1-time interval sequences. So, from Lemma 5.5.2 and Definition 5.5.3, the
result follows. ¤
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Theorem 5.5.3. Assume that two sequences Xi and Xj have the same
length, and that they have di erent lengths of time intervals or at least
one of them is a non-equal-time-interval sequence. If the method of mean
generation is used to fill in relevant blanks so that the sequences become
sequences with the same relevant time steps and equal-time-intervals, then
the absolute degree ij of grey incidence is unchanged.
Proof. This argument is completed with discussions of several cases.
Case 1. Xi and Xj are sequences with the same corresponding time steps

and non-equal time intervals. Without loss of generality, we can assume that
there is only one pair of points with 2 as their (time) distance and that all
other intervals of consecutive entries have length 1. Assume that the zero
starting point images of Xi and Xj are

X0
i =

¡
x0i (1), x

0
i (2), ..., x

0
i (m), x

0
i (m+ 2), ..., x

0
i (n)

¢
and

X0
j =

¡
x0j(1), x

0
j (2), ..., x

0
j(m), x

0
j(m+ 2), ..., x

0
j (n)

¢
,

respectively. Now, we only need to fill in the gaps x0i (m+1) and x
0
j(m+1).

Define
x0i (m+ 1) =

1

2

£
x0i (m) + x

0
i (m+ 2)

¤
,

and
x0j (m+ 1) =

1

2

£
x0j(m) + x

0
j(m+ 2)

¤
.

Now X0
i and X

0
j are all equal-time-interval sequences. Let

sim =

Z m+2

m

X0
i dt, sjm =

Z m+2

m

X0
j dt

and

sim sjm =

Z m+2

m

(X0
i X0

j )dt.

Before x0i (m+ 1) and x
0
j (m+ 1) are placed in the sequences, we have

sim = x
0
i (m) + x

0
i (m+ 2),

sjm = x
0
j(m) + x

0
j (m+ 2),

and
sim sjm = [x

0
i (m) x0j(m)] + [x

0
i (m+ 2) x0j(m+ 2)].

After x0i (m+ 1) and x
0
j(m+ 1) are placed in the sequences, we have

sim = 1
2 [x

0
i (m) + x

0
i (m+ 1)] +

1
2 [x

0
i (m+ 1) + x

0
i (m+ 2)]

= x0i (m+ 1) +
1
2 [x

0
i (m) + x

0
i (m+ 2)]

= 1
2 [x

0
i (m) + x

0
i (m+ 2)] +

1
2 [x

0
i (m) + x

0
i (m+ 2)]

= x0i (m) + x
0
i (m+ 2).
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Similarly, we can prove that the values for sjm and sim sjm do not
change either. Therefore, |si| , |sj | , and |si sj | do not change, nor does
ij .
Similar to Lemma 5.5.2, it is not di cult to reason that no matter

whether the pairs of points¡
x0i (m), x

0
i (m+ 2)

¢
,¡

x0j (m), x
0
j (m+ 2)

¢
,

and ¡
x0i (m) x0j (m), x

0
i (m+ 2) x0j (m+ 2)

¢
represent sign changes, the conclusion above holds true.

Case 2. Xi and Xj are equal-time-interval sequences of di erent lengths
with unequal corresponding time intervals. Without loss of generality, we
may assume that Xi is a 1-time-interval sequence and Xj a 2-time-interval
sequence. Let the zero starting point images of Xi and Xj be respectively
given as

X0
i =

¡
x0i (1), x

0
i (2), x

0
i (3), ..., x

0
i (2n+ 1)

¢
and

X0
j =

¡
x0j(1), x

0
j (3), x

0
j(5), ..., x

0
j (2n+ 1)

¢
.

We now only need to fill in blanks in X0
j with

x0j (2k) =
1

2

£
x0j(2k 1) + x0j (2k + 1)

¤
,

k = 1, 2, ..., n, to transform X0
i and Xj into equal-time-interval sequences

with corresponding time intervals the same. The rest of the proof is the
same as in Case 1 and is omitted here.

Case 3. Xi and Xj have di erent time intervals and at least one of them
is a non-equal-time-interval sequence. In this case, the method of mean
generations can be used as mentioned in Case 2 to fill in the blanks in
the sequences so that X0

i and X
0
j are transformed into sequences with the

corresponding intervals the same. Now, as in Case 1, the method of mean
generations can be applied to transformX0

i andX
0
j into equal-time-interval

sequences. As for the argument of an unchanging ij , it can be given in a
way similar to that in Case 1.
As for the situation of multiple blanks between two neighboring entries

in the sequences, we can fill in the blanks one after another applying mean
generations. All details are omitted here. ¤
Example 5.5.1. Assume that sequences

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(7)) = (10, 9, 15, 14, 14, 16)



5.5 Absolute Degree of Grey Incidence 111

and
X1 = (x1(1), x1(3), x1(7)) = (46, 70, 98)

are given. Find the absolute degree 01 of incidence of the sequences X0
and X1.

Solution. 1. Transform X1 into a sequence with the same corresponding
time intervals as X0. Let

x1(5) =
1

2
[x1(3) + x1(7)] =

1

2
[70 + 98] = 84,

x1(2) =
1

2
[x1(1) + x1(3)] =

1

2
[46 + 70] = 58,

and

x1(4) =
1

2
[x1(3) + x1(5)] =

1

2
[70 + 84] = 77.

So, we have a new sequence X1 in the place of the original Xi:

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7))

= (46, 58, 70, 77, 84, 98) .

2. Transform X0 and X1 into equal-time-interval sequences. Let

x0(6) =
1

2
[x0(5) + x0(7)] =

1

2
[14 + 16] = 15

and

x1(6) =
1

2
[x1(5) + x1(7)] =

1

2
[84 + 98] = 91.

Then the new sequences X0 and X1 look as follows.

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7))

= (10, 9, 15, 14, 14, 15, 16)

and
X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7))

= (46, 58, 70, 77, 84, 91, 98) .

And, they are all 1-time-interval sequences.

3. Computing zero starting point images of X0 and X1 gives that

X0
0 =

¡
x00(1), x

0
0(2), x

0
0(3), x

0
0(4), x

0
0(5), x

0
0(6), x

0
0(7)

¢
= (0, 1, 5, 4, 4, 5, 6)
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and
X0
1 =

¡
x01(1), x

0
1(2), x

0
1(3), x

0
1(4), x

0
1(5), x

0
1(6), x

0
1(7)

¢
= (0, 12, 24, 31, 38, 45, 52) .

4. Find |s0| , |s1| , and |s1 s0| .

|s0| =

¯̄̄̄
6P

k=2

x00(k) +
1
2x

0
0(7)

¯̄̄̄
= |( 1) + 5 + 4 + 4 + 5 + 1

2 · 6| = 20,

|s1| =

¯̄̄̄
6P
k=2

x01(k) +
1
2x

0
1(7)

¯̄̄̄
= |12 + 24 + 31 + 38 + 45 + 1

2 · 52| = 176,
and

|s1 s0| =

¯̄̄̄
6P

k=2

[x01(k) x00(k)] +
1
2 [[x

0
1(7) x00(7)]

¯̄̄̄
= |13 + 19 + 27 + 34 + 40 + 1

2 · 46| = 156.
5. Compute the absolute degree of grey incidences.

01 =
1 + |s0|+ |s1|

1 + |s0|+ |s1|+ |s1 s0| =
197

353
0.5581.

Theorem 5.5.4. The absolute degree ij of grey incidences satisfies the
following conditions.

1. 0 < ij 1;

2. ij is only related to the geometric shapes of Xi and Xj , and has
nothing to do with the spatial positions of Xi and Xj . Or in other words,
moving horizontally does not change the value of the absolute degree of
grey incidences;

3. Any two sequences are not absolutely unrelated. That is, ij never
equals zero;

4. The more Xi and Xj are geometrically similar, the greater ij ;

5. When Xi and Xj are parallel, or X0
j is vibrating around X

0
i with the

area of the parts with X0
j on top of X

0
i being equal to that of the parts

with X0
j beneath X

0
i , ij = 1;

6. When any one of the data values in Xi or Xj changes, ij also changes
accordingly;

7. When the lengths of Xi and Xj change, ij also changes accordingly;

8. ii = 1, jj = 1; and

9. ij = ji.
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5.6 Relative Degree of Grey Incidence

When the idea of rate of change is considered, we have the following:

Definition 5.6.1. Assume that Xi and Xj are two sequences of the same
length with the initial values being zero, and X

0
i and X

0
j the initial images

of Xi and Xj , respectively. Then, the absolute degree of grey incidence
of X

0
i and X

0
j is called the relative degree of grey incidence, or relative

degree of incidence for short, of Xi and Xj , denoted rij .

The concept of relative degree of grey incidences of sequences Xi and Xj
is a quantitative representation of the rates of change of Xi and Xj relative
to their starting points. The closer the rates of change of Xi and Xj are,
the greater rij is, and vice versa.

Proposition 5.6.1. Assume that Xi and Xj are two sequences of the
same length with non-zero initial values. If Xi = cXj , where c > 0 is a
constant, then rij = 1.

Proof. Assume that

Xj = (xj(1), xj(2), ..., xj(n)).

Then

Xi = (xi(1), xi(2), ..., xi(n)) = (cxj(1), cxj(2), ..., cxj(n)) .

The initial images of Xi and Xj are, respectively,

X
0
j = Xj/xj(1) =

µ
xj(1)

xj(1)
,
xj(2)

xj(1)
, ...,

xj(n)

xj(1)

¶
and

X
0
i = Xi/xi(1) =

µ
xi(1)

xi(1)
,
xi(2)

xi(1)
, ...,

xi(n)

xi(1)

¶

=

µ
cxj(1)

cxj(1)
,
cxj(2)

cxj(1)
, ...,

cxj(n)

cxj(1)

¶

=

µ
xj(1)

xj(1)
,
xj(2)

xj(1)
, ...,

xj(n)

xj(1)

¶
.

So, X
0
i = X

0
j , which implies that their absolute degree of incidence is 1.

Therefore, the relative degree of incidence of Xi and Xj is rij = 1. ¤
Proposition 5.6.2. Assume that Xi and Xj are two sequences of the

same length with non-zero initial values. Then, the relative degree rij of
incidence and the absolute degree ij of incidence of Xi and Xj do not
have to have any connections. When ij is relatively large, rij can be very
small. When ij is very small, rij can also be relatively large.
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Proof. Assume that

Xi = (xi(1), xi(2), ..., xi(n))

and
Xj = (xj(1), xj(2), ..., xj(n)) .

If ij 1, then Xi Xj + c, for some fixed constant c. That is,

Xi (xj(1) + c, xj(2) + c, ..., xj(n) + c) .

The initial images of Xi and Xj are, respectively,

X
0
i

µ
xj(1) + c

xj(1) + c
,
xj(2) + c

xj(1) + c
, ...,

xj(n) + c

xj(1) + c

¶
and

X
0
j =

µ
xj(1)

xj(1)
,
xj(2)

xj(1)
, ...,

xj(n)

xj(1)

¶
.

The value
¯̄̄
s
0
i s

0
j

¯̄̄
relative to X

0
i and X

0
j is

|s0i s
0
j |

¯̄̄̄
n 1P
k=2

·
xj(k)

xj(1)

xj(k) + c

xj(1) + c

¸

+
1

2

·
xj(n)

xj(1)

xj(n) + c

xj(1) + c

¸¯̄̄̄

=

¯̄̄̄
n 1P
k=2

c · [xj(k) xj(1)]

xj(1)[xj(1) + c]
+

1

2

c · [xj(n) xj(1)]

xj(1)[xj(1) + c]

¯̄̄̄
.

So, it is obvious that as long as the absolute values of c and

xj(k) xj(1),

k = 2, 3, ..., n, are su ciently large,
¯̄̄
s
0
i s

0
j

¯̄̄
will be su ciently large.

Therefore, the absolute degree rij of incidence of X
0
i and X

0
j , that is the

relative degree of incidence of Xi and Xj , can be su ciently small.
If rij 1, then Xi c ·Xj for some fixed constant c. That is,

Xi (c · xj(1), c · xj(2), ..., c · xj(n)) ,
and the value |si sj | relative to Xi and Xj is

|si sj |
¯̄̄̄
n 1P
k=2

{[xj(k) xj(1)] c · [xj(k) xj(1)]}

+1
2 {[xj(n) xj(1)] c · [xj(n) xj(1)]} |

= |1 c| ·
¯̄̄̄
n 1P
k=2

[xj(k) xj(1)] +
1
2 [xj(n) xj(1)]

¯̄̄̄
.
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As long as the absolute values of c and

xj(k) xj(1),

k = 2, 3, ..., n, are su ciently large, |si sj | will be su ciently large. There-
fore, the absolute degree ij of Xi and Xj can be su ciently small. ¤
Example 5.6.1. Compute the relative degree of incidence for X0 and

X1 in Example 5.5.1.

Solution. 1. Transformation into same corresponding time intervals. Let

x1(5) =
1

2
[x1(3) + x1(7)] =

1

2
[70 + 98] = 84,

x1(2) =
1

2
[x1(1) + x1(3)] =

1

2
[46 + 70] = 58,

and
x1(4) =

1

2
[x1(3) + x1(5)] =

1

2
[70 + 84] = 77.

So, we have

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7))

= (46, 58, 70, 77, 84, 98) .

2. Transformation into equal-time-intervals. Let

x0(6) =
1

2
[x0(5) + x0(7)] =

1

2
[14 + 16] = 15

and
x1(6) =

1

2
[x1(5) + x1(7)] =

1

2
[84 + 98] = 91.

Then we have the sequences

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7))

= (10, 9, 15, 14, 14, 15, 16)

and
X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7))

= (46, 58, 70, 77, 84, 91, 98) .

are all 1-time-interval sequences.

3. Compute the initial images of X0 and X1.

X
0
0 =

µ
x0(1)

x0(1)
,
x0(2)

x0(1)
,
x0(3)

x0(1)
,
x0(4)

x0(1)
,
x0(5)

x0(1)
,
x0(6)

x0(1)
,
x0(7)

x0(1)

¶
= (1, 0.9, 1.5, 1.4, 1.4, 1.5, 1.6) ,



116 5. Grey Incidence Analysis

and

X
0
1 =

µ
x1(1)

x1(1)
,
x1(2)

x1(1)
,
x1(3)

x1(1)
,
x1(4)

x1(1)
,
x1(5)

x1(1)
,
x1(6)

x1(1)
,
x1(7)

x1(1)

¶
= (1, 1.26, 1.52, 1.67, 1.83, 1.98, 2.13) .

4. Compute the images of zero starting points of X
0
0 and X

0
1.

X
00
0 =

³
x
00
0 (1), x

00
0 (2), x

00
0 (3), x

00
0 (4), x

00
0 (5), x

00
0 (6), x

00
0 (7)

´
= (0, 0.1, 0.5, 0.4, 0.4, 0.5, 0.6) ,

and

X
00
1 =

³
x
00
1 (1), x

00
1 (2), x

00
1 (3), x

00
1 (4), x

00
1 (5), x

00
1 (6), x

00
1 (7)

´
= (0, 0.26, 0.52, 0.67, 0.83, 0.98, 1.13) .

5. Compute
¯̄̄
s
0
0

¯̄̄
,
¯̄̄
s
0
1

¯̄̄
and

¯̄̄
s
0
1 s

0
0

¯̄̄
.

|s00| =

¯̄̄̄
6P

k=2

x
00
0 (k) +

1
2x

00
0 (7)

¯̄̄̄
=
¯̄
( 0.1) + 0.5 + 0.4 + 0.4 + 0.5 + 1

2 · 0.6
¯̄
= 2,

|s01| =

¯̄̄̄
6P
k=2

x
00
1 (k) +

1
2x

00
1 (7)

¯̄̄̄
=
¯̄
0.26 + 0.52 + 0.67 + 0.83 + 0.98 + 1

2 · 1.13
¯̄
= 3.825,

and

|s01 s
0
0| =

¯̄̄̄
6P

k=2

[x
00
1 (k) x

00
0 (k)] +

1
2 [x

00
1 (7) x

00
0 (7)]

¯̄̄̄
=
¯̄
0.36 + 0.02 + 0.37 + 0.43 + 0.48 + 1

2 · 0.53
¯̄
= 1.925.

6. Compute the relative degree of incidence.

r01 =
1 + |s00|+ |s

0
1|

1 + |s00|+ |s01|+ |s01 s
0
0|
=
6.825

8.75
= 0.78.

Proposition 5.6.3. Assume that Xi and Xj are sequences of the same
length with non-zero initial entries, a and b non-zero constants, and the
relative degree of incidence of aXi and bXj is r

0
ij . Then r

0
ij = rij . Or in
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other words, scalar multiplication does not change the relative degree of
incidence.

In fact, the initial images of aXi and bXj are respectively equal to those
of Xi and Xj . So, scalar multiplication does not act in any way under the
function of initialing operators. Hence, r

0
ij = rij .

Proposition 5.6.4. Each relative degree rij of grey incidence satisfies
the following properties.

1. 0 < rij 1;

2. rij is only related to the rate of change of the initial entries of Xi and
Xj , and has nothing to do with the magnitudes of other entries. Or, scalar
multiplication does not change the relative degree of incidences;

3. There always exists some relationship between the rates of change of
any two sequences. That is, rij never equals zero;

4. The closer the individual rates of change of Xi and Xj with respect
to their initial points, the greater rij is;

5. When the rates of change of Xi and Xj with respect to their initial
points are the same, that is, Xi = aXj , or when the images of zero initial
points of the initial images of Xi and Xj satisfy X

00
j waves around X

00
i ,

and the area of the parts with X
00
j above X

00
i equals that of the parts with

X
00
j underneath X

00
i , rij = 1;

6. When an entry in Xi or Xj is changed, rij will change accordingly;

7. When the lengths of sequences change, rij will also change;

8. rii = 1, rjj = 1; and

9. rij = rji.

5.7 Synthetic Degree of Grey Incidence

When the overall relationship of closeness between sequences is considered,
we have the following.

Definition 5.7.1. Assume that Xi and Xj are sequences of the same
length with non-zero initial entries, that ij and rij are the absolute degree
and the relative degree of grey incidence of Xi and Xj , and that [0, 1] .
Then

ij = ij + (1 )rij

is called the synthetic degree of (grey) incidence between Xi and Xj .

The concept of synthetic degree of grey incidence is a numerical index
that well describes the overall relationship of closeness between sequences.
For example, it reflects the similarity between the zigzagged lines Xi and
Xj , and also depicts the degree of closeness of the individual rates of change
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of Xi and Xj with respect to their initial points. In general, we can take
= 0.5. If we are more interested in the relationship between some absolute

quantities, some greater value can be used as . If we are putting more
emphasis on rates of change, some smaller value can be employed for .

Example 5.7.1. Find the synthetic degree of grey incidence of X0 and
X1 in Example 5.5.1.

Solution: From Examples 5.5.1 and 5.6.1, it follows that 01 = 0.5581
and r01= 0.78. Take = 0.5; we have

01 = 01 + (1 )r01

= 0.5 · 0.5581 + 0.5 · 0.78 0.669.

Proposition 5.7.1. The synthetic degree ij of grey incidence satisfies
the following properties.

1. 0 < ij 1;
2. ij is related to not only each observation value in the sequences Xi

and Xj , and also the rate of change of each data value with respect to its
initial point;

3. ij never equals zero;

4. If an entry value in Xi or Xj is changed, ij also changes accordingly;

5. If the length of Xi or Xj changes, ij also changes accordingly;

6.For di erent value, ij is also di erent;

7. When = 1, then ij = ij ; and when = 0, then ij = rij ;

8. ii = 1, jj = 1; and

9. ij = ji.

5.8 Order of Grey Incidences

All the di erent degrees of grey incidence, which we have discussed ear-
lier, are numerical characteristics for the relationship of closeness between
two sequences. For a chosen operator of grey incidences (see Section 5.,2 for
more details), the values of the degree of grey incidence, the absolute degree
of grey incidence and the relative degree of incidence are all unique. When
an operator of grey incidence and a value are all chosen, the synthetic
degree of grey incidence is also unique. This kind of conditional uniqueness
does not a ect our analysis of problems of interest. When analyzing sys-
tems, and studying relationships between systems’ characteristic behaviors
and relevant factors’ behaviors, we are mainly interested in the ordering of
the degrees of incidence between the systems’ characteristic behaviors and
each relevant factor’s behavioral sequence. So, the importance of magni-
tudes of the degrees of incidence is relative.
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Definition 5.8.1. Assume that X is an arbitrary set, and that “ ” is
a binary relation defined on the set X. If “ ” satisfies reflexivity, anti-
symmetry, and transitivity, that is,

1. Reflexivity: For any Xi X,Xi Xi;

2. Antisymmetry: For any Xi,Xj X , if Xi Xj , and Xj Xi,
then Xi = Xj ;

3. Transitivity: For any Xi,Xj ,Xk X, if Xi Xj and Xj Xk,
then Xi Xk,

then “ ” is called a partial order (relation) on the set X. A set X with
a partial ordering “ ” is called a partially ordered set and is denoted as
(X, ).

Definition 5.8.2. Assume that (X, ) is a partially ordered set. If
the ordering relation “ ” satisfies the following, for any Xi ,Xj X,
one of Xi Xj or Xj Xi must be true, then “ ” is called a linear
order(ing) on the set X, and the set with a linear order relation is called
an ordered set.

Definition 5.8.3. Assume that X0 is a sequence of a system’s charac-
teristic behaviors, that Xi and Xj are sequences of two relevant factors’
behaviors, and that is the degree of grey incidence. If 0i 0j , then
the factor Xi is said to be more favorable than the factor Xj , denoted as
Xi Â Xj . The relation “Â ” is called the grey incidence order or the or-
der of grey incidence, induced by the degree of grey incidence. Accordingly,
the orders of incidence, induced by generalized degrees of grey incidence,
are called generalized orders of grey incidence, where the generalized orders
include absolute order of grey incidence, relative order of grey incidence,
and synthetic order of grey incidence.

Theorem 5.8.1. Assume that X0 is a sequence for a system’s char-
acteristic behaviors, and X1,X2, ..., Xm sequences of relevant factors’s
behaviors. Let

X = {X1,X2, ...,Xm} .
Then the order of grey incidences, absolute order of grey incidence, relative
order of grey incidence, and the synthetic order of grey incidence are all
partial orderings on the set X.

Proof. It su ces for us to show the case of absolute order of grey inci-
dence. All other cases can be shown similarly.

1. Reflexivity. For any Xi X, if Xi and X0 have the same length, then
the absolute degree 0i of grey incidence is well defined. From

0i = 0i

it follows that Xi Â Xi.

2. Antisymmetry. Assume that Xi Â Xj and Xj Â Xi. Then 0i 0j

and 0j 0i. So, 0i = 0j . That is, Xi = Xj .
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3. Transitivity. Assume that Xi Â Xj and Xj Â Xk, then 0i 0j and
0j 0k. So, 0i 0k. That is, Xi Â Xk. ¤
Theorem 5.8.2. Assume that X0 is a sequence of a system’s character-

istic behaviors, and X1,X2, ...,Xm behavioral sequences of some factors
with the same length as X0. Let X = {X1,X2, ...,Xm} . Then,
1. The order of grey incidence and absolute order of grey incidence are

linear orders on the set X;

2. If the initial entries of X0,X1,X2, ...,Xm are non-zero, then the rel-
ative order of grey incidence and the synthetic order of grey incidence are
also linear orders on the set X.

Proof. 1. It is obvious to see that the order of grey incidence is linear.
BecauseX1,X2, ...,Xm all have the same length asX0, for anyXi,Xj X,
0i and 0j are well defined, and one of the following inequalities 0i 0j

and 0j 0i must hold true, one of Xi Â Xj and Xj Â Xi must also hold
true. So, the absolute order of incidence is a linear order.

2. If the initial entries of X0,X1,X2, ...,Xm are non-zero, then for any
Xi,Xj X, r0i, r0j and 0i, 0j are well-defined. So, under either the
relative order of grey incidence or the synthetic order of grey incidence, we
can obtain either Xi Â Xj or Xj Â Xi. ¤

5.9 Preference Analysis

The idea of matrices is needed, when two sets of data sequences are in-
volved.

Definition 5.9.1. Assume that Y1, Y 2, ..., Y s are sequences of a system’s
characteristic behaviors, and X1,X2, ...,Xm are behavioral sequences of
relevant factors. If the sequences Y1, Y 2, ..., Y s; X1, X2,..., Xm have the
same length, ij , i = 1, 2, ..., s; j = 1, 2, ...,m, is the degree of grey incidence
of Yi and Xj , then

=
£
ij

¤
=

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm

is called the matrix of grey incidences.

In the matrix of grey incidences, the entries in the ith row, i = 1, 2,
...,s, are the degrees of grey incidence of the sequence Yi of the system’s
characteristic behaviors and the sequences X1,X2, ..., Xm of the relevant
factors. And the entries in the jth column, j = 1, 2, ...,m, are the degrees
of the sequences Y1, Y2, ..., Ys of the system’s characteristic behaviors and
Xj .
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Similarly, we can introduce matrices for various generalized incidences.
For example, the absolute matrix of grey incidences

A = [ ij ]s×m =

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm s×m

,

the relative matrix of grey incidences

B = [rij ]s×m =

r11 r12 · · · r1m
r21 r22 · · · r2m
· · · · · · · · · · · ·
rs1 rs2 · · · rsm s×m

,

and the synthetic matrix of grey incidence

C =
£
ij

¤
s×m =

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm s×m

are well defined. By making use of the various matrices of grey incidences,
we can conduct preference analysis for a system’s behaviors or relevant
factors.

Definition 5.9.2. Let Yi, i= 1, 2, ..., s, and Xj , j = 1, 2, ..., m be the
same as in Definition 5.9.1 and

=
£
ij

¤
s×m =

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm s×m

the matrix of grey incidence. If there exist k and i {1, 2, ..., s} satisfying

kj ij ,

for j = 1, 2, ...,m, then we say that the system’s characteristic Yk is more
favorable than the system’s characteristic Yi, denoted as Yk Â Y i. If for
any i = 1, 2, ..., s, with i 6= k, we always have Yk Â Y i, then Yk is said to
be the most favorable characteristic.

Definition 5.9.3. Let Yi, i = 1, 2, ..., s, Xj , j = 1, 2, ..., m, and

=
£
ij

¤
s×m =

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm s×m
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be the same as in Definition 5.9.1. If there exist ` and j {1, 2, ...,m}
satisfying

i` ij ,

for i = 1, 2, ..., s, then the factor X` is said to be more favorable than the
factor Xj , denoted as X` Â Xj . If for any j = 1, 2, ..., m, j 6= `, we always
have X` Â Xj , then X` is called the most favorable factor.
Definition 5.9.4. Assume that

=
£
ij

¤
=

11 12 · · · 1m

21 22 · · · 2m

· · · · · · · · · · · ·
s1 s2 · · · sm

is the matrix of grey incidence.

1. If there exist k, i {1, 2, ..., s} , satisfying
mX
j=1

kj

mX
j=1

ij ,

then the system’s characteristic Yk is said to be more quasi-favorable than
the characteristic Yi, denoted Yk < Yi.
2. If there exist `, j {1, 2, ...,m} satisfying

sX
i=1

i`

sX
i=1

ij ,

then the factor X` is said to be more quasi-favorable than the factor Xj ,
denoted X` < Xj .

Definition 5.9.5. 1. If there exists a k {1, 2, ..., s} such that for any i
= 1, 2, ..., s, Yk < Y i, then Yk is called a quasi-preferred characteristic
of the system.

2. If there exists an ` {1, 2, ...,m} such that for any j = 1, 2, ..., m,
X` < Xj , then the factor X` is said to be a quasi-preferred factor.

Proposition 5.9.1. In a system with s characteristics and m relevant
factors, there may not exist the most favorable characteristic and the most
favorable factor, but there must be quasi-preferred characteristics and fac-
tors.

Example 5.9.1. Assume that

Y1 = (170, 174, 197, 216.4, 235.8) ,

Y2 = (57.55, 70.74, 76.8, 80.7, 89.85) ,

and
Y3 = (68.56, 70, 85.38, 99.83, 103.4)
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are sequences of a system’s characteristic behaviors,

X1 = (308.58, 310, 295, 346, 367) ,

X2 = (195.4, 189.9, 187.2, 205, 222.7) ,

X3 = (24.6, 21, 12.2, 15.1, 14.57) ,

X4 = (20, 25.6, 23.3, 29.2, 30) ,

and
X5 = (18.98, 19, 22.3, 23.5, 27.655)

behavioral sequences of relevant factors. Do a preference analysis for the
system given.

Solution. 1. Compute the absolute matrix of incidence. For each behav-
ioral sequence, we compute its image of zeroing starting points,

Y 01 = (0, 4, 27, 46.4, 65.8) ,

Y 02 = (0, 13.19, 19.25, 23.15, 32.3) ,

Y 03 = (0, 1.44, 16.82, 31.27, 34.84) ;

X0
1 = (0, 1.42, 13.58, 37.42, 58.42) ,

X0
2 = (0, 5.5, 8.2, 9.6, 27.3) ,

X0
3 = (0, 3.6, 12.4, 9.5, 10.03) ,

X0
4 = (0, 5.6, 3.3, 9.2, 10) ,

and
X0
5 = (0, 0.02, 3.32, 4.52, 8.675) .

Corresponding to the system’s characteristic Y1, we have

|Ys1 | =

¯̄̄̄
4P

k=2

y01(k) +
1
2y
0
1(5)

¯̄̄̄
=
¯̄
4 + 27 + 46.4 + 1

2 · 65.8
¯̄
= 110.3,

|Xs1 | =

¯̄̄̄
4P
k=2

x01(k) +
1
2x

0
1(5)

¯̄̄̄
=
¯̄
1.42 + ( 13.58) + 37.42 + 1

2 · 58.42
¯̄
= 54.47,
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|Xs1 Ys1 | =

¯̄̄̄
4P

k=2

[x01(k) y01(k)] +
1
2 [x

0
1(5) y01(5)]

¯̄̄̄
= |[1.42 4] + [ 13.58 27] + [37.42 46.4]

+
1

2
· [58.42 65.8]| = 55.9,

11 =
1 + |Ys1 |+ |Xs1 |

1 + |Ys1 |+ |Xs1 |+ |Xs1 Ys1 |

=
1 + 110.3 + 54.47

1 + 110.3 + 54.47 + 55.9
=

165.77

221.67
= 0.748;

|Xs2 | =

¯̄̄̄
4P

k=2

x02(k) +
1
2x

0
2(5)

¯̄̄̄
=
¯̄
( 5.5) + ( 8.2) + 9.6 + 1

2 · 27.3
¯̄
= 9.55,

|Xs2 Ys1 | =

¯̄̄̄
4P
k=2

[x02(k) y01(k)] +
1
2 [x

0
2(5) y01(5)]

¯̄̄̄
= |[ 5.5 4] + [8.2 27] + [9.6 46.4]

+
1

2
[27.3 65.8]| = 100.75,

12 =
1 + |Ys1 |+ |Xs2 |

1 + |Ys1 |+ |Xs2 |+ |Xs2 Ys1 |

=
1 + 110.3 + 9.55

1 + 110.3 + 9.55 + 100.75
=

120.85

221.6
= 0.545;

|Xs3 | =

¯̄̄̄
4P

k=2

x03(k) +
1
2x

0
3(5)

¯̄̄̄
= | 3.6 12.4 9.5 1

2 · 10.03| = 30.515,

|Xs3 Ys1 | =

¯̄̄̄
4P

k=2

[x03(k) y01(k)] +
1
2 [x

0
3(5) y01(5)]

¯̄̄̄
= |[ 3.6 4] + [ 12.4 27] + [ 9.5 46.4]

+
1

2
[ 10.03 65.8]| = 140.815,
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13 =
1 + |Ys1 |+ |Xs3 |

1 + |Ys1 |+ |Xs3 |+ |Xs3 Ys1 |

=
1 + 110.3 + 30.515

1 + 110.3 + 30.515 + 140.815
=

141.815

282.63
= 0.502;

|Xs4 | =

¯̄̄̄
4P

k=2

x04(k) +
1
2x

0
4(5)

¯̄̄̄
= |5.6 + 3.3 + 9.2 + 1

2 · 10| = 23.1,

|Xs4 Ys1 | =

¯̄̄̄
4P
k=2

[x04(k) y01(k)] +
1
2 [x

0
4(5) y01(5)]

¯̄̄̄
= |[5.6 4] + [3.3 27] + [9.2 46.4]

+
1

2
[10 65.8]| = 87.2,

14 =
1 + |Ys1 |+ |Xs4 |

1 + |Ys1 |+ |Xs4 |+ |Xs4 Ys1 |

=
1 + 110.3 + 23.1

1 + 110.3 + 23.1 + 87.2
=

134.4

221.6
= 0.606;

|Xs5 | =

¯̄̄̄
4P

k=2

x05(k) +
1
2x

0
5(5)

¯̄̄̄
= |0.02 + 3.32 + 4.52 + 1

2 · 8.675| = 12.1975,

|Xs5 Ys1 | =

¯̄̄̄
4P
k=2

[x05(k) y01(k)] +
1
2 [x

0
5(5) y01(5)]

¯̄̄̄
= |[0.02 4] + [3.32 27] + [4.52 46.4]

+
1

2
· [8.675 65.8]| = 98.1025,

15 =
1 + |Ys1 |+ |Xs5 |

1 + |Ys1 |+ |Xs5 |+ |Xs5 Ys1 |

=
1 + 110.3 + 12.1975

1 + 110.3 + 12.1975 + 98.1025
=

123.4975

221.6
= 0.557.
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Corresponding to the system’s characteristic Y2, we have

|Ys2 | =

¯̄̄̄
4P

k=2

y02(k) +
1
2y
0
2(5)

¯̄̄̄
= |13.19 + 19.25 + 23.15 + 1

2 · 32.3| = 71.74,

|Xs1 Ys2 | =

¯̄̄̄
4P

k=2

[x01(k) y02(k)] +
1
2 [x

0
1(5) y02(5)]

¯̄̄̄
= |[1.42 13.19] + [ 13.58 19.25] + [37.42 23.15]

+
1

2
· [58.42 32.3]| = 17.27,

21 =
1 + |Ys2 |+ |Xs1 |

1 + |Ys2 |+ |Xs1 |+ |Xs1 Ys2 |

=
1 + 71.74 + 54.47

1 + 71.74 + 54.47 + 17.27
=

127.21

144.48
= 0.88;

|Xs2 Ys2 | =

¯̄̄̄
4P

k=2

[x02(k) y02(k)] +
1
2 [x

0
2(5) y02(5)]

¯̄̄̄
= |[ 5.5 13.19] + [ 8.2 19.25] + [9.6 23.15]

+
1

2
· [27.3 32.3]| = 62.19,

22 =
1 + |Ys2 |+ |Xs2 |

1 + |Ys2 |+ |Xs2 |+ |Xs2 Ys2 |

=
1 + 71.74 + 9.55

1 + 71.74 + 9.55 + 62.19
=

82.29

144.48
= 0.57;

|Xs3 Ys2 | =

¯̄̄̄
4P

k=2

[x03(k) y02(k)] +
1
2 [x

0
3(5) y02(5)]

¯̄̄̄
= |[ 3.6 13.19] + [ 12.4 19.25]

+[ 9.5 23.15] +
1

2
· [ 10.03 32.3]| = 102.255,

23 =
1 + |Ys2 |+ |Xs3 |

1 + |Ys2 |+ |Xs3 |+ |Xs3 Ys2 |

=
1 + 71.74 + 30.515

1 + 71.74 + 30.515 + 102.255
=

103.255

205.51
= 0.502;
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|Xs4 Ys2 | =

¯̄̄̄
4P

k=2

[x04(k) y02(k)] +
1
2 [x

0
4(5) y02(5)]

¯̄̄̄
= |[5.6 13.19] + [3.3 19.25] + [9.2 23.15]

+1
2 · [10 32.3]| = 48.64,

24 =
1 + |Ys2 |+ |Xs4 |

1 + |Ys2 |+ |Xs4 |+ |Xs4 Ys2 |

=
1 + 71.74 + 23.1

1 + 71.74 + 23.1 + 48.64
=

95.84

144.48
= 0.663;

|Xs5 Ys2 | =

¯̄̄̄
4P
k=2

[x05(k) y02(k)] +
1
2 [x

0
5(5) y02(5)]

¯̄̄̄
= |[0.02 13.19] + [3.32 19.25] + [4.52 23.15]

+ 1
2 · [8.675 32.3]| = 59.5425,

25 =
1 + |Ys2 |+ |Xs5 |

1 + |Ys2 |+ |Xs5 |+ |Xs5 Ys2 |

=
1 + 71.74 + 12.1975

1 + 71.74 + 12.1975 + 59.5425
=

84.9375

144.48
= 0.588;

Corresponding to the system’s characteristic Y3, we can obtain similarly

31 = 0.907, 32 = 0.574, 33 = 0.503,

34 = 0.675, 35 = 0.594.

Therefore, the absolute matrix of incidences is

A = [ ij ]3×5 =

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

=

0.748 0.545 0.502 0.606 0.557

0.880 0.570 0.502 0.663 0.588

0.907 0.574 0.503 0.675 0.594

.

2. Compute the relative matrix of incidence.
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The initial images of the system’s characteristic behaviors Yi, i = 1, 2,
3, and the behavioral sequences of relevant factors Xj , j = 1, 2, 3, 4, 5, are

Y
0
1 = (1, 1.0235, 1.1588, 1.2729, 1.3871) ,

Y
0
2 = (1, 1.2292, 1.3345, 1.4023, 1.5613) ,

Y
0
3 = (1, 1.0210, 1.2398, 1.4561, 1.5082) ;

X
0
1 = (1, 1.0046, 0.9560, 1.1213, 1.1893) ,

X
0
2 = (1, 0.9719, 0.9580, 1.0491, 1.1397) ,

X
0
3 = (1, 0.8537, 0.4959, 0.6138, 0.5923) ,

X
0
4 = (1, 1.28, 1.165, 1.46, 1.5) ,

and
X

0
5 = (1, 1.0011, 1.1749, 1.2381, 1.4571) .

The images of zero starting points of all Y
0
i , i = 1, 2, 3, and X

0
j , j = 1, 2,

3, 4, 5, are

Y
00
1 =

³
y
00
1 (1), y

00
1 (2), y

00
1 (3), y

00
1 (4), y

00
1 (5)

´
= (0, 0.0235, 0.1588, 0.2729, 0.3871) ,

Y
00
2 =

³
y
00
2 (1), y

00
2 (2), y

00
2 (3), y

00
2 (4), y

00
2 (5)

´
= (0, 0.2292, 0.3345, 0.4023, 0.5613) ,

Y
00
3 =

³
y
00
3 (1), y

00
3 (2), y

00
3 (3), y

00
3 (4), y

00
3 (5)

´
= (0, 0.0210, 0.2398, 0.4561, 0.5082) ;

X
00
1 =

³
x
00
1 (1), x

00
1 (2), x

00
1 (3), x

00
1 (4), x

00
1 (5)

´
= (0, 0.0046, 0.044, 0.1213, 0.1893) ,

X
00
2 =

³
x
00
2 (1), x

00
2 (2), x

00
2 (3), x

00
2 (4), x

00
2 (5)

´
= (0, 0.0281, 0.042, 0.0491, 0.1397) ,

X
00
3 =

³
x
00
3 (1), x

00
3 (2), x

00
3 (3), x

00
3 (4), x

00
3 (5)

´
= (0, 0.1463, 0.5041, 0.3862, 0.4077) ,
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X
00
4 =

³
x
00
4 (1), x

00
4 (2), x

00
4 (3), x

00
4 (4), x

00
4 (5)

´
= (0, 0.28, 0.165, 0.46, 0.5) ,

and

X
00
5 =

³
x
00
5 (1), x

00
5 (2), x

00
5 (3), x

00
5 (4), x

00
5 (5)

´
= (0, 0.0011, 0.1749, 0.2381, 0.4571) .

From

|Y 0
si | =

¯̄̄̄
¯
4X

k=2

y
00
i (k) +

1

2
· y00i (5)

¯̄̄̄
¯ , i = 1, 2, 3;

|X 0
sj | =

¯̄̄̄
¯
4X

k=2

x
00
j (k) +

1

2
· x00j (5)

¯̄̄̄
¯ , j = 1, 2, 3, 4, 5,

|X 0
sj Y

0
si | =

¯̄̄̄
¯
4X

k=2

[x
00
j (k) y

00
i (k)] +

1

2
· [x00j (5) y

00
i (5)]

¯̄̄̄
¯

i = 1, 2, 3; j = 1, 2, 3, 4, 5, and

rij =
1 + |Y 0

si |+ |X
0
sj |

1 + |Y 0
si |+ |X 0

sj |+ |X 0
sj Y 0

si |
,

i = 1, 2, 3; j = 1, 2, 3, 4, 5, it follows that

r11 = 0.7945, r12 = 0.7389, r13 = 0.6046,

r14 = 0.8471, r15 = 0.9973;

r21 = 0.6937, r22 = 0.6571, r23 = 0.5837,

r24 = 0.9738, r25 = 0.8271;

r31 = 0.7300, r32 = 0.6866, r33 = 0.6101,

r34 = 0.9444, r35 = 0.8884.
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So, the relative matrix of incidence is obtained as follows:

B = [rij ]3×5 =

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

=

0.7945 0.7389 0.6046 0.8471 0.9973

0.6937 0.6571 0.5837 0.9738 0.8271

0.7300 0.6866 0.6101 0.9444 0.8884

.

3. Compute the synthetic matrix C of incidence. Take = 0.5, then

C = A+ (1 )B = [ ij + (1 )rij ]

=
£
ij

¤
=

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

=

0.7713 0.6420 0.5533 0.7266 0.7772

0.7869 0.6136 0.5429 0.8184 0.7076

0.8185 0.6303 0.5566 0.8097 0.7412

.

4. Analysis. From the absolute matrix of incidence, it can be seen that
because the rows of A satisfy

3j > 2j 1j ,

j = 1, 2, 3, 4, 5, we have
Y3 Â Y2 Â Y1.

That is, Y3 is the most favorable characteristic, Y2 the second favorable,
and Y1 the last. All columns of A satisfy

i1 > i4 > i5 > i2 > i3,

i = 1, 2, 3. So, we have

X1 Â X4 Â X5 Â X2 Â X3 .

That is, X1 is the most favorable factor, X4 the second, X5 the third, X2
the fourth, and X3 the last.



5.9 Preference Analysis 131

From the relative matrix B of incidence, it can be seen that the elements
in B satisfy

ri4 > ri1 > ri2 > ri3,

i = 1, 2, 3, and
ri5 > ri1 > ri2 > ri3,

i = 1, 2, 3. So, we conclude that

X4 Â X1 Â X2 Â X3

and
X5 Â X1 Â X2 Â X3.

Hence, X3 is the most unfavorable factor of the system. Now let us further
consider

5X
j=1

r1j = 3.9824 >
5X
j=1

r3j = 3.8595 >
5X
j=1

r2j = 3.7354

So, we can conclude that

Y1 < Y3 < Y2.

That is, Y1 is the quasi-preferred characteristic. Because

3P
i=1
ri4 = 2.7653 >

3P
i=1
ri5 = 2.7128 >

3P
i=1
ri1 = 2.2182

>
3P
i=1
ri2 = 2.0826 >

3P
i=1
ri3 = 1.7984,

we have that
X4 < X5 < X1 < X2 < X3.

That is, X4 is the quasi-preferred factor, X5 the next, and X3 the most
unfavorable factor.
From the synthetic matrix C of incidences, it can be seen that entries of

C satisfy
i1 > i2 > i3, i4 > i2 > i3

and

i5 > i2 > i3,

i = 1, 2, 3. So, we have

X1 Â X2 Â X3,X4 Â X2 Â X3

and
X5 Â X2 Â X3.
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That is, X3 is the least preferred. We now further consider

5X
j=1

3j = 3.5563 >
5X
j=1

1j = 3.4704 >
5X
j=1

2j = 3.4694,

So,
Y3 < Y1 < Y2.

That is, Y3 is the quasi-preferred characteristic.
From

3P
i=1

i1 = 2.3767 >
3P
i=1

i4 = 2.3547 >
3P
i=1

i5 = 2.2260

>
3P
i=1

i2 = 1.8859 >
3P
i=1

i3 = 1.6528,

it follows that
X1 < X4 < X5 < X2 < X3.

So, X1 is the quasi-preferred factor, X4 the next, X5 is more favorable than
X2, and X3 is the most unfavorable.
The reason why the conclusions of the three incidence analyses do not

agree with each other is because the absolute order of incidences looks
at relationships from the angle of absolute magnitudes, the relative order
of incidences from the angle of rates of change at each moment of the
observation data with respect to their initial points, and the synthetic order
of incidences from the combined angle of both absolute magnitudes and
rates of change. In practical applications, one of these orders can be chosen
based on the specific information and circumstances given. For the sake
of convenience, when the system’s behavioral sequence and the relevant
factors’ sequences are worked on by a specified operator of grey incidences,
it will be enough to consider the absolute order of incidences.

5.10 Practical Applications

This chapter ends with two of the many real-life projects in which we have
been involved.
Example 5.10.1. In this project, we look at a grey incidence analysis

of such an economy that consists of (non-governmental) enterprises owned
individually and collectively, at Change County, Henan Province, The Peo-
ple’s Republic of China.

In recent years, (non-governmental) enterprises owned individually and
collectively at Change County have developed rapidly. From 1983 to 1986,
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for example, the average annual growth of these non-governmental enter-
prises was 51.6%. These enterprises occupied an important position in the
overall picture of the region’s economic development. In 1986, the revenue
of these enterprises reached 35,388 (10,000 yuan), accounting for 60% of
the total industrial and agricultural revenue of the county. So, it became
a common concern of the county on how to e ectively speed up the devel-
opment of these non-governmental enterprises in order to help the region’s
economy to take o from its historical ground. Based on relevant analysis,
it was known that these enterprises were mainly dominated by four factors:
fixed capital, circulating capital, labor forces, and after-tax profits. The se-
quences of the production revenue and the relevant factors of this county’s
non-governmental enterprises are given in the following Table 5.1.

Table 5.1. Recorded values of variables for the years 1983 to 1986

1983 1984 1985 1986
X0 (production revenue) 10,155 12,588 23,408 35,388
X1 (fixed capitals) 3,799 3,605 5,460 6,982
X2 (circulating capitals) 1,752 2,160 2,213 4,753
X3 (labor forces: person) 24,186 45,590 57,685 85,540
X4 (after-tax profits) 1,164 1,788 3,134 4,478

with 10,000 yuan as the unit.

1. Compute the absolute degree of incidence. Let

X0
i = (xi(1) xi(1), xi(2) xi(1), xi(3) xi(1), xi(4) xi(1))

=
¡
x0i (1), x

0
i (2), x

0
i (3), x

0
i (4)

¢
,

i = 0, 1, 2, 3, 4; then

X0
0 =

¡
x00(1), x

0
0(2), x

0
0(3), x

0
0(4)

¢
= (0, 2433, 13325, 25233) ,

X0
1 =

¡
x01(1), x

0
1(2), x

0
1(3), x

0
1(4)

¢
= (0, 194, 1661, 3183) ,

X0
2 =

¡
x02(1), x

0
2(2), x

0
2(3), x

0
2(4)

¢
= (0, 408, 461, 3001) ,

X0
3 =

¡
x03(1), x

0
3(2), x

0
3(3), x

0
3(4)

¢
= (0, 21404, 33499, 61354) ,

X0
4 =

¡
x04(1), x

0
4(2), x

0
4(3), x

0
4(4)

¢
= (0, 624, 2030, 3314) .

From

|si| =
¯̄̄̄
¯
3X

k=2

x0i (k) +
1

2
x0i (4)

¯̄̄̄
¯ ,
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i = 1, 2, 3, 4, it follows that

|s0| =
¯̄
2433 + 13325 + 1

2 · 25233
¯̄
= 28374.5,

|s1| =
¯̄
194 + 1661 + 1

2 · 3183
¯̄
= 3058.5,

|s2| =
¯̄
408 + 461 + 1

2 · 3001
¯̄
= 2369.5,

|s3| =
¯̄
21404 + 33499 + 1

2 · 61354
¯̄
= 85580,

and
|s4| =

¯̄
624 + 2030 + 1

2 · 3314
¯̄
= 4311.

From

|si s0| =
¯̄̄̄
¯
3X

k=2

[x0i (k) x00(k)] +
1

2
[x0i (4) x00(4)]

¯̄̄̄
¯ ,

i = 1, 2, 3, 4, it follows that

|s1 s0| = 25316, |s2 s0| = 26005,
|s3 s0| = 57205.5, |s4 s0| = 24063.5.

From

0i =
1 + |s0|+ |si|

1 + |s0|+ |si|+ |si s0| ,

i = 1, 2, 3, 4, it follows that

01 = 0.554, 02 = 0.542, 03 = 0.666, 04 = 0.576.

2. Compute the relative degree of incidence. We first compute the initial
images of Xi, i = 0, 1, 2, 3, 4. From

X
0
i =

µ
xi(1)

xi(1)
,
xi(2)

xi(1)
,
xi(3)

xi(1)
,
xi(4)

xi(1)

¶

=
³
x
0
i(1), x

0
i(2), x

0
i(3), x

0
i(4)

´
,

i = 1, 2, 3, 4, it follows that

X
0
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³
x
0
0(1), x
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0(2), x

0
0(3), x

0
0(4)

´
= (1, 1.2396, 2.3051, 3.4848) ,

X
0
1 =

³
x
0
1(1), x

0
1(2), x

0
1(3), x

0
1(4)

´
= (1, 0.9489, 1.4372, 1.8379) ,

X
0
2 =

³
x
0
2(1), x

0
2(2), x

0
2(3), x

0
2(4)

´
= (1, 1.2329, 1.2631, 2.7129) ,
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X
0
3 =

³
x
0
3(1), x

0
3(2), x

0
3(3), x

0
3(4)

´
= (1, 1.8850, 2.3851, 3.5368) ,
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X
0
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0
4(1), x

0
4(2), x

0
4(3), x

0
4(4)

´
= (1, 1.5361, 2.6924, 3.8471) .

The images of Xi, i =0, 1, 2, 3, 4, of zero starting points are given as
follows.
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00
1 (4)

´
= (0, 0.0511, 0.4372, 0.8379) ,

X
00
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00
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i = 1, 2, 3, 4, it follows that

|s00| = 2.7871, |s01| = 0.80505, |s
0
2| = 1.35245,

|s03| = 3.5385, |s04| = 3.65205;
and

|s01 s
0
0| = 1.98205, |s02 s

0
0| = 1.43465,

|s03 s
0
0| = 0.7514, |s04 s

0
0| = 0.86495.
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From

r0i =
1 + |s00|+ |s

0
i|

1 + |s00|+ |s0i|+ |s0i s
0
0|
,

i = 1, 2, 3, 4, it follows that

r01 = 0.6985, r02 = 0.7818, r03 = 0.9070, r04 = 0.8958.

3. Compute the synthetic degree of incidence. Take = 0.5. So, from

0i = 0i + (1 )r0i,

i = 1, 2, 3, 4, it follows that

01 = 0.6263, 02 = 0.6619, 03 = 0.7865, 04 = 0.7359.

4. Final analysis. From

03 > 04 > 02 > 01,

it can be known that
X3 Â X4 Â X2 Â X1,

with X3 being the most favorable factor, X4 the second, X2 the third, and
X1 the last. That is to say, the labor forces have the greatest e ect on pro-
duction revenue of the county, after-tax profits have the second greatest
e ect, and the fixed capital has the least e ect on the revenue. This result
agrees very well with the actual situation in the region, where the non-
governmental enterprises have been mainly (human) labor intensive types
so that production growth has been mainly realized through increases of
labor forces. In the countryside of China, there is an unlimited source of
labor surplus. How to su ciently and e ectively make use of this supply
of labor is the only way for China, with its current and special circum-
stances, to develop its commodity production and to bring about a pros-
perous economy. Therefore, actively developing businesses requiring inten-
sive labor is the main direction for the near future development of Chinese
non-governmental enterprises. As for after-tax profits, they have mainly
been used for improving employees’ fringe benefits and for innovations of
technology. This end has been, stimulating the employees’ enthusiasm for
e ciency and more working hours, and on the other hand, increasing pro-
duction qualities of businesses.

Example 5.10.2. In this example, we look at a grey incidence analysis
for technological innovations in industry in Henan Province, The People’s
Republic of China.

From the years 1986 to 1987, the subcommittee for policies of the com-
mittee on science and technology of Henan Province had organized special
forces to check into the then-current situations in technological innovations
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in state-owned industrial operations in Henan Province. Here, in this ex-
ample, we conduct a grey incidence analysis based on the 89 replies from
the related industrial operations.
We have seven characteristic variables for the system:

1. Y1 — total industrial production output;

2. Y2 — total net industrial production output;

3. Y3 — total sales revenue;

4. Y4 — total volume of profits;

5. Y5 — net amount of production growth caused by technological inno-
vations;

6. Y6 — increased sales revenue caused by technological innovations;

7. Y7 — increase in tax and profits caused by technological innovations;

and nine relevant factors:

1. X1 — year-end value of fixed capital without considering depreciation;

2. X2 — total value of circulating capital;

3. X3 — total number of employees;

4. X4 — numbers of engineers and technicians;

5. X5 — number of people involved in technological innovations;

6. X6 — investment in technological innovations;

7. X7 — investment in fixed capital of the current year;

8. X8 — investment used for new products, new equipment, and technol-
ogy;

9. X9 — the ratio of X8 and X6.

The relevant degrees of incidence between various Yi and Xj are given
in the following matrix.

=
£
ij

¤
7×9 =

0.867 0.912 0.885 0.909 0.577 0.744 0.708 0.760 0.828
0.833 0.877 0.926 0.872 0.566 0.732 0.688 0.734 0.832
0.898 0.942 0.854 0.947 0.578 0.737 0.724 0.778 0.799
0.612 0.624 0.701 0.626 0.501 0.567 0.574 0.569 0.749
0.487 0.478 0.576 0.480 0.397 0.539 0.549 0.922 0.431
0.368 0.365 0.355 0.367 0.423 0.375 0.395 0.376 0.352
0.470 0.458 0.426 0.463 0.424 0.557 0.519 0.518 0.435

.
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From
4P
i=1

i3 = 3.366 >
4P
i=1

i2 = 3.355 >
4P
i=1

i4 = 3.354

>
4P
i=1

i1 = 3.210 >
4P
i=1

i9 = 3.208 >
4P
i=1

i8 = 2.841

>
4P
i=1

i6 = 2.780 >
4P
i=1

i7 = 2.669 >
4P
i=1

i5 = 2.222,

and from the angle of influence on the entire industrial economy, it follows
that

X3 < X2 < X4 < X1 < X9 < X8 < X6 < X7 < X5.
That is, the number X3 of employees is the most favorable factor, and the
next are the circulating capital X2 and the number X4 of engineers and
technicians.
Now, from

7P
i=5

i8 = 1.816 >
7P
i=5

i7 = 1.488 >
7P
i=5

i6 = 1.471

>
7P
i=5

i3 = 1.36 >
7P
i=5

i1 = 1.325 >
7P
i=5

i4 = 1.31

>
7P
i=5

i2 = 1.301 >
7P
i=5

i5 = 1.244 >
7P
i=5

i9 = 1.218,

and from the angle of influence on e ects of technological innovations in
industry, we have that

X8 < X7 < X6 < X3 < X1 < X4 < X2 < X5 < X9.

That is, the investment used in introducing new products, new equipment,
and technology is the most favorable factor, and investments X7 and X6 for
fixed capital and technological innovations are the second most favorable
factors.



6
Grey Clusters and Grey Statistical
Evaluations

6.1 Introduction

Grey cluster is a method, based on matrices of grey incidences or whit-
enization weight functions of grey numbers, to classify observation indices
or observational objects into definable classes. A cluster can be seen as a set
of all observational objects arranged in the same class. In practical appli-
cations, very often each observational object possesses many characteristic
features, which causes di culties in accurate classification of the object.
For example, yin cai shi jiao, meaning to teach students in accordance with
their aptitude, has been debated in the Chinese community of teachers for
many years. Because it is di cult or impossible to classify individual stu-
dents into the right professions where they would potentially succeed, many
of the results of the debate have not been implemented in the actual educa-
tion practice. That is why the classical method of forming classes of groups
of students based on their various di erent talents and interests has still
been widely used in today’s education in China, even though it has been
proven that this method of teaching ruins talent and causes many inconve-
niences for most intelligent people. In business practices, similarly, due to
the di culty of accurately classifying human talents, many opportunities
have been lost.
Grey cluster, in terms of the objects to be clustered, can be divided into

a cluster of grey incidences and a cluster of whitenization weight functions
of grey classes. The cluster of grey incidences is mainly used to classify
factors of the same type in order to simplify complicated systems. Through
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clustering of grey incidences, we can check to see whether there exist some
factors among many with close connections so that we can make use of a
combined index (or criterion) or one of these factors to represent its group
of factors, and at the same time, no information is seriously damaged. It
belongs to the study of the problem of deleting variables of a system without
altering its fundamental characteristics. Before a large-scale research or
investigation is started, through the use of clustering of grey incidences of
data values collected traditionally, the number of variables considered in
the study can be greatly decreased so that the relevant costs of research
will also be reduced. The cluster of whitenization weight functions of grey
classes is mainly applied to check whether an observational object belongs
to a predefined class. Otherwise the object could be treated di erently. In
practice, it is more complicated to use the cluster of whitenization weight
functions of grey classes than the cluster of grey incidences.
Grey statistical evaluation is a method available for the researcher to

check through the whole of the system under consideration and to de-
termine which predefined classes a set of same-class observational objects
belong to, based on a comprehensive evaluation of the objects. It has been
mainly applied to synthetic evaluations of, for example, plans for produc-
tion investments, divisions of agricultural economic districts, community
planning, teaching schedules, etc., or to the final determination of an opti-
mal or satisfactory plan after statistical methods have been applied to the
relevant data.

6.2 Clusters of Grey Incidences

Assume that there exist n observational objects and that m characteristic
data values for each of these objects have been collected. So, we have the
sequences

Xi = (xi(1), xi(2), ..., xi(n)) , i = 1, 2, ...,m.

For all i j, i, j = 1, 2, ..., m, we calculate the absolute degree ij of
incidence of Xi and Xj , and obtain the following upper triangular matrix
A

A =

11 12 · · · 1m

22 · · · 23

· ·
· ·
· ·

mm

,

where ii = 1, i = 1, 2, ...,m.
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Definition 6.2.1. The previous matrix A is called the incidence matrix
of the characteristic variables.

Take a fixed critical value r [0, 1] with the general requirement that r
> 0.5. When ij r, i 6= j, the variables Xi and Xj are treated as those
of the same characteristics.

Definition 6.2.2. The classification of characteristic variables under a
fixed critical value r is called a cluster of r grey incidences.

The value of r can be chosen based on the practical needs involved in the
study. The closer to 1 the value of r is, the finer the classification is with
fewer variables in each class. On the other hand, the smaller the value of
r is, the coarser the classification is with relatively more variables in each
class.

Example 6.2.1. For the qualifications for a certain o ce, the search
committee has proposed 15 criteria:

1. Impression on application package; 2. Academic abilities;

3. Likability by others; 4. Level of self-confidence;

5. Intelligence; 6. Honesty;

7. Ability to sell; 8. Experience;

9. Motivation; 10. Ambition;

11. Physical appearance; 12. Ability to comprehend;

13. Potential for future growth; 14. Interpersonal skills;

15. Adaptability.

Members of the committee admit that some of these 15 criteria could be
well related or mixed and hope that through the study of some sample of
a few data points, these 15 criteria can be classified into fewer categories.
By using the method of scoring to quantify the criteria, 9 observational
objects have been scored according to each of the criteria. The following
matrix gives the scores, where Oi stands for the ith object, i = 1, 2, ..., 9:
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O1 O2 O3 O4 O5 O6 O7 O8 O9
X1 6 9 7 5 6 7 9 9 9
X2 2 5 3 8 8 7 8 9 7
X3 5 8 6 5 8 6 8 8 8
X4 8 10 9 6 4 8 8 9 8
X5 7 9 8 5 4 7 8 9 8
X6 8 9 9 9 9 10 8 8 8
X7 8 10 7 2 2 5 8 8 5
X8 3 5 4 8 8 9 10 10 9
X9 8 9 9 4 5 6 8 9 8
X10 9 9 9 5 5 5 10 10 9
X11 7 10 8 6 8 7 9 9 9
X12 7 8 8 8 8 8 8 9 8
X13 5 8 6 7 8 6 9 9 8
X14 7 8 8 6 7 6 8 9 9
X15 10 10 10 5 7 6 10 10 10

(6.1)

For all i j, i, j = 1, 2, ...,m, we calculated the absolute degree ij

of incidence of Xi and Xj , and produced the following upper triangular
matrix A

A = [ ij ]15×15 =

.
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Applying this matrix can give us a cluster for the criteria, where the value
for r can be di erent based on the requirements involved.
For example, let us take r = 1. Then, all the 15 criteria above belong to

their own classes with each in its own class.
If we take r = 0.80, let us pick out all ij values greater than 0.80 in the

matrix A. So, we have

13 = 0.88, 1,11 = 0.90, 1,12 = 0.88,

1,13 = 0.80; 28 = 0.99; 3,11 = 0.80,

3,13 = 0.90; 6,11 = 0.84, 6,12 = 0.86,

6,14 = 0.81; 7,10 = 0.83, 7,15 = 0.89;

9,10 = 0.81; 10,15 = 0.92; 11,12 = 0.97.

So, we know that

• X3,X11,X12, and X13 belong to the same class as X1;
• X8 belong to the same class as X2;
• X11 and X13 belong to the same class as X3;
• X11,X12, and X14 belong to the same class as X6;
• X10 and X15 belong to the same class as X7;
• X10 belong to the same class as X9;
• X15 belong to the same class as X10;
• X12 belong to the same class as X11.

Let each class be represented with the criterion with the minimum index
contained in the class, and combine the classes, containing X6 and X11,
respectively, with the class, containing X1, put X9 and X10 into the class,
containing X7, and treat X4 and X5 as individual classes. Then, we have
obtained a cluster for our shortened list of criteria as follows,

{X1,X3,X6,X11,X12,X13,X14} ,

{X2,X8} ; {X4} ; {X5} , and {X7,X9,X10,X15} .
If further combination is needed, we can write out the incidence matrix

for the 5 representative criteria, obtained after 0.80 clustering. This matrix
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is shown as follows.

A
0
=

11 12 14 15 17

22 24 25 27

44 45 47

55 57

77

=

1.0 .66 .52 .58 .51
1.0 .51 .53 .50

1.0 .56 .58
1.0 .51

1.0

.

If we take r = 0.58, then in the previous clustering, the classes, containing
X2 and X5, respectively, can be combined into the class of X1, and X4 can
be combined into the same class with X7. So, we obtain the following
relatively coarser clustering,

{X1,X2,X3,X5,X6,X8,X11,X12,X13,X14}

and
{X4,X7,X9,X10,X15} ,

where the class containing X1 reflects the applicants’ ability in character,
personality, experience, etc. It includes the following aspects: committee
members’ impressions on application packages, academic ability, likability
by others, intelligence, honesty, experiences, physical appearance, ability
to comprehend, potential, and interpersonal skills. The class containing
X4 represents applicants’ extrinsic ability, including creativity with five
aspects: degree of self-confidence, ability to sell, motivation, ambition, and
adaptability.

6.3 Clusters with Variable Weights

In this section, let us consider a more general situation than that considered
in the previous section.
Definition 6.3.1. Assume that there exist n objects to be clustered

according to m cluster criteria into s di erent grey classes. The clustering
method based on the observational value of the ith object, i = 1, 2, · · ·, n,
at the jth criterion, j = 1, 2, · · ·, m, the ith object is classified into the
kth grey class, 1 k s, is called a grey clustering.

Definition 6.3.2. All the s grey classes formed by the n objects, de-
fined by their observational values at criterion j, are called the j-criterion
subclasses.

The whitenization weight function of the kth subclass of the j-criterion
is denoted fkj (·).
Definition 6.3.3. Assume that the whitenization weight function fkj ( · )

of a j-criterion kth subclass is shown in Figure 6.1. Then the points xkj (1),
xkj (2), x

k
j (3), and x

k
j (4) are called turning points of f

k
j (·).
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FIGURE 6.1. A typical whitenization function

FIGURE 6.2. A whitenization weight function of lower measure

Definition 6.3.4. 1. If the whitenization weight function fkj ( · ) above
does not have the first and the second turning points xkj (1) and x

k
j (2), as

shown in Figure 6.2, then fkj ( · ) is called a whitenization weight function
of lower measure.
2. If the second xkj (2) and the third x

k
j (3) turning points of the whit-

enization weight function fkj ( · ) as in Figure 6.1 coincide, as shown in
Figure 6.3, then fkj ( · ) is called a whitenization function of moderate (or
middle) measure.
3. If the whitenization weight function fkj ( · ), as in Figure 6.1, does

not have the third and fourth turning points xkj (3) and x
k
j (4), as shown in

Figure 6.4, then fkj ( · ) is called a whitenization weight function of upper
measure.
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FIGURE 6.3. A whitenization weight function of middle measure

Proposition 6.3.1. 1. The typical whitenization weight function as
shown in Figure 6.1 is given by

fkj (x) =

0, x / [xkj (1), x
k
j (4)]

x xkj (1)

xkj (2) xkj (1)
, x [xkj (1), x

k
j (2)]

1, x [xkj (2), x
k
j (3)]

xkj (4) x

xkj (4) xkj (3)
, x [xkj (3), x

k
j (4)].

2. The whitenization weight function of lower measure as shown in Figure
6.2 is given by

fkj (x) =

0, x / [0, xkj (4)]

1, x [0, xkj (3)]

xkj (4) x

xkj (4) xkj (3)
, x [xkj (3), x

k
j (4)].
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3. The whitenization weight function of moderate measure as shown in
Figure 6.3 is given by

fkj (x) =

0, x / [xkj (1), x
k
j (4)]

x xkj (1)

xkj (2) xkj (1)
, x [xkj (1), x

k
j (2)]

1, x = xkj (2)

xkj (4) x

xkj (4) xkj (2)
, x [xkj (2), x

k
j (4)].

4. The whitenization weight function of upper measure as shown in Fig-
ure (6.4) is given by

fkj (x) =

0, x < xkj (1)

x xkj (1)

xkj (2) xkj (1)
, x [xkj (1), x

k
j (2)]

1, x xkj (2).

Definition 6.3.5. 1. For the whitenization weight function of the kth
subclass of the j-criterion, as shown in Figure 6.1, define

k
j =

1

2
[xkj (2) + x

k
j (3)].

2. For the whitenization weight function of the kth subclass of the j-
criterion as shown in Figure 6.2, let

k
j = x

k
j (3).

3. For the whitenization weight functions of the kth subclass of the j-
criterion as shown in Figures 6.3 and 6.4, let

k
j = x

k
j (2).

Then k
j is called the critical value for the kth subclass of the j-criterion.

Definition 6.3.6. Assume that k
j is the critical value for the kth sub-

class of the j-criterion. Then

k
j =

k
j

mP
j=1

k
j
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FIGURE 6.4. A whitenization weight function of upper measure

is called the weight of the j-criterion with respect to the kth subclass.

Definition 6.3.7. Assume that xij is the observational value of object
i with respect to criterion j, fkj (·) the whitenization weight function of the
kth subclass of the j-criterion, and k

j the weight of the j-criterion with
respect to the kth subclass. Then,

k
i =

mX
j=1

fkj (xij) · k
j

is said to be the cluster coefficient of variable weight for object i to
belong to the kth grey class.

Definition 6.3.8. 1. The following

i =
¡

1
i ,

2
i , · · ·, s

i

¢
=

Ã
mP
j=1
f1j (xij) · 1

j ,
mP
j=1
f2j (xij) · 2

j , · · ·,
mP
j=1
fsj (xij) · s

j

!

is called the cluster coefficient vector of object i.

2. The following matrix X
=
£
k
i

¤
n×s

is called the cluster coefficient matrix.

Definition 6.3.9. If
k
i = max

1 k s

©
k
i

ª
,

then we say that object i belongs to the grey class k .

Variable weight clustering is useful to cases of criteria with the same
meanings and dimensions. When the meanings and dimensions of the cri-
teria are di erent and the numbers of observational values of individual
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FIGURE 6.5. The whitenization weight function for the revenue from farming

FIGURE 6.6. The whitenization weight function for the revenue from livestock
husbandry

criteria are greatly di erent from each other, we should not use this method
of clustering.

Example 6.3.1. Assume that we are interested in the study of three
economic districts with the following three cluster criteria: revenue from
farming, revenue from livestock husbandry, and revenue from industry. The
observational values xij, i = 1, 2, 3; j = 1, 2, 3, of the ith economic district
with respect to the jth criterion is given in the following matrix A.

A = [xij ]3×3 =
80 20 100
40 30 30
10 90 60

.

Let us now perform a synthetic clustering based on high, medium, and low
incomes.
Solution. Assume that the whitenization weight functions fkj (·), j = 1, 2,

3; k = 1, 2, 3, of the criteria: the revenues of farming, livestock husbandry
and industry are as shown in Figures 6.5, 6.6 and 6.7.
From these figures and Proposition 6.3.1, it follows that
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FIGURE 6.7. The whitenization weight function for the revenue from industry

f11 (x) =

0, x < 0

x

80
, 0 x < 80

1, x 80

, f21 (x) =

0, x < 0

x

40
, 0 x 40

80 x

40
, 40 < x 80

0, x > 80,

f31 (x) =

0, x < 0

1, 0 x 10

20 x

10
, 10 < x 20

0, x > 20,

f12 (x) =

0, x < 0

x

90
, 0 x < 90

1, x 90,

f22 (x) =

0, x < 0

x

45
, 0 x 45

90 x

45
, 45 < x 90

0, x > 90,

f32 (x) =

0, x < 0

1, 0 x 15

30 x

15
, 15 < x 30

0, x > 30,
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f13 (x) =

0, x < 0

x

100
, 0 x < 100

1, x 100,

f23 (x) =

0, x < 0

x

50
, 0 x 50

100 x

50
, 50 < x 100

0, x > 100,

and

f33 (x) =

0, x < 0

1, 0 x 20

40 x

20
, 20 < x 40

0, x > 40.

Therefore,
1
1 = 80,

1
2 = 90,

1
3 = 100;

2
1 = 40,

2
2 = 45,

2
3 = 50;

3
1 = 10,

3
2 = 15,

3
3 = 20.

So, from

k
j =

k
j

3P
j=1

k
j

,

we obtain that

1
1 =

1
1

3P
j=1

1
j

=
80

270
, 1

2 =
1
2

3P
j=1

1
j

=
90

270
, 1

3 =
1
3

3P
j=1

1
j

=
100

270
;

2
1 =

2
1

3P
j=1

2
j

=
40

135
, 2

2 =
2
2

3P
j=1

2
j

=
45

135
, 2

3 =
2
3

3P
j=1

2
j

=
50

135
;

3
1 =

3
1

3P
j=1

3
j

=
10

45
, 3

2 =
3
2

3P
j=1

3
j

=
15

45
, 3

3 =
3
3

3P
j=1

3
j

=
20

45
.
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And from

k
i =

3X
j=1

fkj (xij) · k
j ,

when i = 1, we have

1
1 =

3X
j=1

f1j (x1j) · 1
j = 0.74,

2
1 =

3X
j=1

f2j (x1j) · 2
j = 0.15,

3
1 =

3P
j=1
f3j (x1j) · 3

j = 0.22.

That is,
1 =

¡
1
1,

2
1,

3
1

¢
= (0.74, 0.15, 0.22) .

When i = 2, we can calculate similarly and obtain the following

1
2 =

3X
j=1

f1j (x2j) · 1
j = 0.37,

2
2 =

3X
j=1

f2j (x2j) · 2
j = 0.74,

3
2 =

3X
j=1

f3j (x2j) · 3
j = 0.22,

so,
2 =

¡
1
2,

2
2,

3
2

¢
= (0.37, 0.74, 0.22) .

When i = 3, we obtain similarly the following

1
3 =

3X
j=1

f1j (x3j) · 1
j = 0.59,

2
3 =

3X
j=1

f2j (x3j) · 2
j = 0.15,

3
3 =

3X
j=1

f3j (x3j) · 3
j = 0.22.

So,
3 =

¡
1
3,

2
3,

3
3

¢
= (0.59, 0.15, 0.22) .

Combining all the results obtained earlier, we have the coe cient matrix
of grey cluster as follows.

X
=
£
k
i

¤
3×3 =

0.74 0.15 0.22
0.37 0.74 0.22
0.59 0.15 0.22

.

From
max
1 k 3

©
k
1

ª
= 1

1 = 0.74, max
1 k 3

©
k
2

ª
= 2

2 = 0.74,
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and

max
1 k 3

©
k
3

ª
= 1

3 = 0.59,

it follows that the second economic district belongs to the medium income
grey class, and the first and the third economic districts belong to the high
income grey class. Furthermore, from the cluster coe cients 1

1 = 0.74 and
1
3 = 0.59, it follows that there still exist some di erences between the first
and the third districts, even though they all belong to the high income grey
class. If the income grey classes are refined, say, we use the five grey classes:
high income, mid-high income, medium income, mid-low income, and low
income, then di erent results can be obtained.

Besides, in general, the whitenization weight function of the j-criterion
k subclasses is determined based on experience. When resolving practical
problems, one can determine the whitenization weight functions from ei-
ther the angle of the objects of the clustering, or looking at all the same
type objects in the whole system, not just the ones involved in the cluster-
ing. For example, in Example 6.3.1, we could determine the whitenization
weight functions not only from the three economic districts in question, but
also from the same level economic districts in a city, a province, or from
around the nation. Therefore, the results of grey cluster evaluations can
only be applied to a certain range, which is the same as the one used in
the determination of relevant whitenization weight functions.

6.4 Clusters with Fixed Weights

When the criteria for clustering have di erent meanings, dimensions, and
sizes of observational data, applying variable weight clusterings may lead
to the problem that some criteria participate in the clustering process very
weakly. There are two ways to resolve this problem: one is to first transform
the sample of data values of the criteria into non-dimensional values by
using either the initiating operator or averaging operator, then cluster the
resultant criteria. In this way, all the clustering criteria will be treated
equally in the clustering process. The other way is to define a weight for each
individual criterion before starting the clustering process. In this section,
we emphasize this second method.

Definition 6.4.1. Assume that xij (i = 1, 2, ..., n; j = 1, 2, · · ·,m) is
the observational value of object i with respect to criterion j, and fkj (·)
(j = 1, 2, ..., m; k = 1, 2, ..., s) the whitenization weight function of the
kth subclass of the j-criterion. If the weight k

j of the j-criterion with
respect to the kth subclass has nothing to do with k, j = 1, 2, ..., m; k = 1,
2, ..., s, that is, for any k1 and k2 {1, 2, ..., s} , one always has that
k1
j = k2

j , then the superscript k in the symbol
k
j will be omitted and

k
j
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written as j instead, j = 1, 2, ...,m. And

k
i =

mX
j=1

fkj (xij) · j

is called the fixed weight cluster coefficient for the object i to belong
to the kth grey class.

Definition 6.4.2. Assume that xij (i = 1, 2, ..., n; j = 1, 2, ...,m) stands
for the observational value of the object i with respect to criterion j, and
fkj (·) (j = 1, 2, ..., m; k = 1, 2, ..., s) the whitenization weight function
of the kth subclass of the j-criterion. If for any j = 1, 2, ...,m, j =

1
m

always holds true, then

k
i =

mX
j=1

fkj (xij) · j =
1

m

mX
j=1

fkj (xij)

is called the equal weight cluster coefficient for the object i to belong to
the kth grey class.

Fixed weight clustering can be performed according to the following
steps:

Step 1: Determine the whitenization weight function fkj (·), j = 1, 2, ...,
m; k = 1, 2, ..., s.

Step 2: Give a cluster weight j to each criterion, j = 1, 2, ..., m, based
on either prior experience or results from a qualitative analysis.

Step 3: Compute all fixed weight cluster coe cients

k
i =

mX
j=1

fkj (xij) · j , i = 1, 2, ..., n; k = 1, 2, ..., s.

from the whitenization weight functions fkj (·) (j = 1, 2, ..., m; k = 1, 2, ...,
s), obtained in step 1, cluster weights j , j = 1, 2, ..., m, obtained in step
2, and the observational values xij of object i with respect to criterion j,
(i = 1, 2, ..., n; j = 1, 2, ..., m).

Step 4: If k
i = max

1 k s

©
k
i

ª
, then one can decide that object i belongs

to the k th grey class.

Example 6.4.1. Let us perform a grey clustering for the ecological adap-
tation of major strains of trees commercially used in China.
China is a huge country with a very complicated ecological environment,

within which di erent strains of trees require some obviously di erent grow-
ing conditions. The area where the trees of a certain strain have been cur-
rently growing to a certain degree reflects the adaptability of the strain
to the ecological environment. We now classify ecological environmental
conditions into four main quantification criteria:
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1. Geographical ecological measure;

2. Temperature ecological measure;

3. Precipitation ecological measure; and

4. Arid ecological measure.

Here, geographical ecological measure is an index representing the geo-
graphical width of the region in which the strain of trees grow. The numer-
ical value of this measure is given by the product of di erences of longitudes
in the directions of east and west and latitudes in the directions of south
and north. The temperature ecological measure indicates the adaptabil-
ity of the strain of trees to various temperatures. Its numerical value is
computed by using the di erence of annual average temperatures of the
southern and the northern bounds of the growing region. The precipitation
ecological measure is the characteristic for the adaptability of the trees to
precipitation conditions. Its numerical value is recorded as the di erence
of the maximum annual average precipitation and the minimum annual
average precipitation of all areas in the growing region. The arid ecological
measure is selected to describe a strain’s adaptability to arid conditions in
the atmosphere. Its value is the di erence of the maximum and the min-
imum annual average aridities1 in di erent areas located in the growing
region.
Some statistics of the four measures for the 17 main strains of trees

planted in China are given in the following Table 6.1,

1Aridity is the ratio of the maximum possible evaporation amount and precipitation.
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Table 6.1. Statistics of the 17 main strains of trees

No.
geo. eco.
measure

temp. eco
measure

prec. eco
measure

arid eco.
measure

1 22.50 4 0 0
2 79.37 6 600 0.75
3 144.00 7 300 0.75
4 300.00 6.1 189 12.0
5 456.00 12 250 12.0
6 189.00 8 700 1.50
7 369.00 8 1300 2.25
8 1127.11 16.2 550 3.0
9 260.00 11 600 1.0
10 200.00 8 600 1.25
11 475.00 10 1000 0.75
12 314.10 8 900 0.75
13 282.80 7.4 1300 0.50
14 240.00 8 1200 0.50
15 160.00 5 1000 0.25
16 270.00 8 1200 0.25
17 900 1 200 0

where the trees are coded as follows.

Table 6.2. Codes of the trees studied
No. Tree No. Tree
1 Camphor pine 10 Chinese white poplar
2 Korean pine 11 Oak
3 Northeast China ash 12 Huashan pine
4 Diversiform-leaved poplar 13 Masson pine
5 Sacsaoul 14 China fir
6 Chinese pine 15 Bamboo
7 Oriental arborvitae 16 Camphor tree
8 White elm 17 Southern Asian pine
9 Dryland willow

Let us do a grey clustering based on wide adaptability, medium adapt-
ability, and narrow adaptability.
Solution. Because the meanings of the criteria are di erent and there

exist great di erences among the values observed, we apply the method of
fixed weight clustering.
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FIGURE 6.8. The whitenization weight function for geographical ecological mea-
sure

FIGURE 6.9. The whitenization weight function for temperature ecological mea-
sure

Step 1: Code the criteria and relative grey classes. Assume that the whit-
enization weight function fkj (·) of the kth subclass of the j-criterion, j =
1, 2, 3, 4, and k = 1, 2, 3, are as shown in Figures 6.8 to 6.11.

FIGURE 6.10. The whitenization weight function for precipitation ecological
measure
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FIGURE 6.11. The whitenization weight function for aridity ecological measure

From Proposition 6.3.1 and Figures 6.8 to 6.11, it follows that

f11 (x) =

0, x < 0

x

300
, 0 x 300

1, x > 300,

f21 (x) =

0, x < 0 or x > 300

x

150
, 0 x 150

300 x

150
, 150 < x 300,

f31 (x) =

0, x < 0 or x > 100

1, 0 x 50

100 x

50
, 50 < x 100,

f12 (x) =

0, x < 0

x

10
, 0 x 10

1, x > 10,

f22 (x) =

0, x < 0 or x > 15

x

7.5
, 0 x 7.5

15 x

7.5
, 7.5 < x 15,



6.4 Clusters with Fixed Weights 159

f32 (x) =

0, x < 0 or x > 8

1, 0 x 4

8 x

4
, 4 < x 8,

f13 (x) =

0, x < 0

x

1000
, 0 x 1000

1, x > 1000,

f23 (x) =

0, x < 0 or x > 1200

x

600
, 0 x 600

1200 x

600
, 600 < x 1200,

f33 (x) =

0, x < 0 or x > 600

1, 0 x 300

600 x

300
, 300 < x 600,

f14 (x) =

0, x < 0

x, 0 x 1

1, x > 1,

f24 (x) =

0, x < 0 or x > 1

x

0.5
, 0 x 0.5

1 x

0.5
, 0.5 < x 1,

f34 (x) =

0, x < 0 or x > 0.5

1, 0 x 0.25

0.5 x

0.25
, 0.25 < x 0.5.

Step 2: Let the weights for the geographical ecological, temperature eco-
logical, precipitation ecological, and aridity ecological measures be

1 = 0.3, 2 = 0.25, 3 = 0.25, 4 = 0.2.
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Step 3: From

k
i =

4X
j=1

fkj (xij) · j , i = 1, 2, · · ·, 17; k = 1, 2, 3,

Table 6.1, and the results in the previous two steps, it follows that:
When i = 1,

1
1 =

4X
j=1

f1j (x1j) · j = 0.12,
2
1 =

4X
j=1

f2j (x1j) · j = 0.18,

3
1 =

4P
j=1
f3j (x1j) · j = 1.

So
1 =

¡
1
1,

2
1,

3
1

¢
= (0.12, 0.18, 1) .

When i = 2,

1
2 =

4X
j=1

f1j (x2j) · j = 0.53,
2
2 =

4X
j=1

f2j (x2j) · j = 0.71,

3
2 =

4X
j=1

f3j (x2j) · j = 0.25.

So,
2 =

¡
1
2,

2
2,

3
2

¢
= (0.53, 0.71, 0.25) .

When i = 3,

1
3 =

4X
j=1

f1j (x3j) · j = 0.54,
2
3 =

4X
j=1

f2j (x3j) · j = 0.75,

3
3 =

4X
j=1

f3j (x3j) · j = 0.31.

So
3 =

¡
1
3,

2
3,

3
3

¢
= (0.54, 0.75, 0.31) .

When i = 4,

1
4 =

4X
j=1

f1j (x4j) · j = 0.70,
2
4 =

4X
j=1

f2j (x4j) · j = 0.28,
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3
4 =

4X
j=1

f3j (x4j) · j = 0.37.

So,
4 =

¡
1
4,

2
4,

3
4

¢
= (0.70, 0.28, 0.37) .

Similarly, we can calculate and obtain

5 =
¡

1
5,

2
5,

3
5

¢
= (0.81, 0.20, 0.25) ,

6 =
¡

1
6,

2
6,

3
6

¢
= (0.76, 0.66, 0.00) ,

7 =
¡

1
7,

2
7,

3
7

¢
= (0.95, 0.23, 0.00) ,

8 =
¡

1
8,

2
8,

3
8

¢
= (0.89, 0.23, 0.04) ,

9 =
¡

1
9,

2
9,

3
9

¢
= (0.86, 0.46, 0.00) ,

10 =
¡

1
10,

2
10,

3
10

¢
= (0.75, 0.68, 0.00) ,

11 =
¡

1
11,

2
11,

3
11

¢
= (0.99, 0.35, 0.00) ,

12 =
¡

1
12,

2
12,

3
12

¢
= (0.91, 0.48, 0.00) ,

13 =
¡

1
13,

2
13,

3
13

¢
= (0.82, 0.48, 0.04) ,

14 =
¡

1
14,

2
14,

3
14

¢
= (0.79, 0.55, 0.00) ,

15 =
¡

1
15,

2
15,

3
15

¢
= (0.59, 0.63, 0.39) ,

16 =
¡

1
16,

2
16,

3
16

¢
= (0.77, 0.39, 0.20) ,

and
17 =

¡
1
17,

2
17,

3
17

¢
= (0.08, 0.13, 1.00) .

Step 4: From the following facts

max
1 k 3

©
k
1

ª
= 1.00 = 3

1, max
1 k 3

©
k
2

ª
= 0.71 = 2

2,

max
1 k 3

©
k
3

ª
= 0.75 = 2

3, max
1 k 3

©
k
4

ª
= 0.70 = 1

4,

max
1 k 3

©
k
5

ª
= 0.81 = 1

5, max
1 k 3

©
k
6

ª
= 0.76 = 1

6,

max
1 k 3

©
k
7

ª
= 0.95 = 1

7, max
1 k 3

©
k
8

ª
= 0.89 = 1

8,

max
1 k 3

©
k
9

ª
= 0.86 = 1

9, max
1 k 3

©
k
10

ª
= 0.75 = 1

10,

max
1 k 3

©
k
11

ª
= 0.99 = 1

11, max
1 k 3

©
k
12

ª
= 0.91 = 1

12,

max
1 k 3

©
k
13

ª
= 0.82 = 1

13, max
1 k 3

©
k
14

ª
= 0.79 = 1

14,
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max
1 k 3

©
k
15

ª
= 0.63 = 2

15, max
1 k 3

©
k
16

ª
= 0.77 = 1

16,

and
max
1 k 3

©
k
17

ª
= 1.00 = 3

17,

it follows that the trees with the numberings 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 16, are strains with wide adaptability. They are diversiform-leaved
poplars, sacsaouls, Chinese pines, oriental arborvitaes, white elms, dryland
willows, Chinese white poplars, oaks, Huashan pines, masson pines, China
firs, and camphor trees. These trees have an extremely strong ability to
adapt themselves to natural ecological environments, and can grow well in
most parts of China, and should be widely introduced. The trees named
Korean pine, Northeast China Ash, and bamboo with numberings 2, 3, and
15, respectively, belong to the grey class of medium adaptability, and can
be introduced to a relatively large area in China. And the trees with the
names camphor pine and Southern Asian pine and numberings 1 and 17,
respectively, belong to the grey class of narrow adaptability, where camphor
pines are found near the northern border of China and southern Asian pines
are mainly located near the Southern border of China.

6.5 Grey Evaluation Based on Triangular
Whitenization Functions

Assume that n objects have been clustered into s di erent grey classes
according to m evaluation criteria. Let xij , i = 1, 2, ..., n, j = 1, 2, ..., m,
be the observational value of object i in terms of criterion j. We need to
apply the values xij , j = 1, 2, ..., m, to evaluate and analyze object i, i =
1, 2, ..., n. To achieve this end, we only need to go through the following
steps.
Step 1. Based on the predetermined number s of grey classes for the

planned evaluation, divide the individual ranges of the criteria into s grey
classes. For example, let [a1, as+1] be the range of the values of criterion j.
Now, divide [a1, as+1] into s grey classes as follows,

[a1, a2] , ..., [ak, ak+1] , ..., [as 1, as] , [as, as+1] ,

where ak, k = 1, 2, ..., s, in general, can be determined based on specific
requirements of a situation or relevant qualitative analysis.
Step 2. Let the whitenization weight function value for (ak + ak+1) /2 to

belong to the kth grey class be 1. When
³
ak+ak+1

2 , 1
´
is connected to the

starting point ak 1 of the (k 1)th grey class and the ending point ak+2
of the (k + 1)th grey class, one obtains a triangular whitenization weight
function fkj (·) in terms of criterion j about the kth grey class, j = 1, 2,
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FIGURE 6.12. Construction of triangular whitenization weight functions

..., m, k = 1, 2, ..., s. For f1j (·) and fsj (·) , the range of criterion j can be
extended to the left and the right to a0 and as+2, respectively (see Figure
6.12 for more details).
For any observational value x of criterion j, one can use the following

fkj (x) =

0, x / [ak 1, ak+2]

x ak 1

k ak 1
, x [ak 1, k]

ak+2 x

ak+2 k
, x [ k, ak+2]

(6.2)

to compute the degree of membership fkj (x) for x to belong to the kth grey

class, k = 1, 2, ..., s, and k =
ak + ak+1

2
.

Step 3. Compute the cluster coe cient k
i for object i, i = 1, 2, ..., n, in

terms of the kth grey class, k = 1, 2, ..., s:

k
i =

mX
j=1

fkj (xij) · j , (6.3)

where fkj (xij) stands for the whitenization weight function for object i to
belong to the kth grey class under criterion j, and j the weight of criterion
j of the clustering.
Step 4. If max

1 k s

©
k
i

ª
= k

i , then object i belongs to the k th grey

class. When more than one object belongs to the k th grey class, one can
further determine the order of preference among these objects based on the
magnitudes of their individual cluster coe cients.
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6.6 Grey Statistics

In this section, let us look at how criteria used in a study can be clustered.
Definition 6.6.1. Assume that there exist n statistical objects and m

statistical criteria, and these criteria will be clustered into s grey classes.
Classifying criterion j into the kth grey class, k = 1, 2, ..., s, based on the
observational values xij , of the n objects with respect to the jth criterion,
i = 1, 2, ..., n, and j = 1, 2, ..., m, is called grey statistics.
Definition 6.6.2. Assume that xij (i = 1, 2, ..., n; j = 1, 2, ..., m) is

the observational value of the ith statistical object with respect to the jth
criterion, fk(·) (k = 1 , 2 , ..., s) the whitenization weight function of the
kth grey class, and i (i = 1, 2 , ..., n) the weight of object i satisfying
nP
i=1

i = 1.

1. When i =
1
n , i =1,2,..., n, then

k
j =

nP
i=1
fk(xij) · i

sP
k=1

nP
i=1
fk(xij) · i

,

j = 1, 2,...,m; k = 1, 2, ..., s, is called the statistical coe cient of equal
weight objects.

2.When there are i1 and i2 {1, 2, ..., n} so that i1 6= i2 , the following

k
j =

nP
i=1
fk(xij) · i

sP
k=1

nP
i=1
fk(xij) · i

,

j = 1, 2, ...,m; k = 1, 2, ..., s, is called the statistical coe cient of unequal
weight objects.
Definition 6.6.3. Let k

j be defined as in Definition 6.6.2. Then

j =
¡

1
j ,

2
j , ...,

s
j

¢
,

j = 1, 2, ...,m, is called the vector of statistical coe cients of the criterion
j.
Definition 6.6.4. The matrix

X
=
£
k
j

¤
m×s =

1
1

2
1 · · · s

1

1
2

2
2 · · · s

2

· · · · · · · · · · · ·
1
m

2
m · · · s

m
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is called the matrix of statistical coe cients.

Definition 6.6.5. If k
j = max

1 k s

©
k
j

ª
, then we say that the jth sta-

tistical criterion, seen from the whole of the system under consideration,
belongs to the grey class k .

Grey statistics can be performed according to the following steps.

Step 1: Construct the observation matrix of the object i with respect to
the criterion j, i = 1, 2, ..., n j = 1, 2, ..., m:

A = [xij ]n×m =

x11 x12 · · · x1m

x21 x22 · · · x2m

· · · · · · · · · · · ·

xn1 xn2 · · · xnm

.

Step 2: Determine statistical grey classes and the whitenization weight
functions fk(·), k = 1, 2, ..., s.
Step 3: Determine the grey statistical weight i for object i, i = 1, 2,

..., n.

Step 4: Compute statistical coe cients.

k
j =

nP
i=1
fk(xij) · i

sP
k=1

nP
i=1
fk(xij) · i

.

Step 5: Construct the statistical vectors

j =
¡

1
j ,

2
j , ...,

s
j

¢
and the matrix of statistical coe cientsX

=
£
k
j

¤
m×s .

Step 6: Decide to which grey class the n statistical objects, seen from
the whole of the system under consideration with respect to the criterion
j, belong. If k

j = max
1 k s

©
k
j

ª
, then the jth criterion belong to the grey

class k .
When the statistical objects under consideration are di erent economic

districts or di erent departments of a government entity related to eco-
nomic development, and the economic criteria are di erent business types,
grey statistics can be applied to analyze and to synthetically evaluate
groups of economic bodies with respect to di erent business types to decide
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FIGURE 6.13. The whitenization weight functions of all grey classes

which business types warrant more attention. When the statistical objects
are di erent sectors of a decision-making unit, and when the statistical cri-
teria are di erent decision-making plans, the relevant grey statistics can
synthesize all di erent ideas from di erent sectors, evaluate all decision-
making plans, and select the optimal plan.

Example 6.6.1. For the three economic districts discussed in Exam-
ple 6.3.1, the observational matrix for the three revenue criteria: farming,
livestock husbandry, and industry, is given as follows,

A = [xij ]3×3 =

80 20 100

40 30 30

10 90 60

.

Perform a grey statistics for the three kinds of revenues of the economic
districts based on the following five grey classes: high income class, mid-
high income class, medium class, mid-low income class, and low income
class.

Solution: Step 1: The observational matrix X has been given.

Step 2: Assume that the whitenization weight functions of all grey classes
are given as in Figure 6.13.
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Combining Figure (6.13) and Proposition 6.3.1, we can obtain that

f1(x) =

0, x < 60

x 60

30
, 60 x 90

1, x > 90,

f2(x) =

0, x / [50, 70]

x 50

5
, 50 x < 55

1, 55 x 65

70 x

5
, 65 < x 70,

f3(x) =

0, x / [35, 55]

x 35

10
, 35 x 45

55 x

10
, 45 < x 55,

f4(x) =

0, x / [15, 45]

x 15

10
, 15 x < 25

1, 25 x 35

45 x

10
, 35 < x 45,

and

f5(x) =

0, x / [0, 25]

1, 0 x 10

25 x

15
, 10 < x 25.

Step 3: Now, we do grey statistical analysis with equal weight objects.
That is, we take i =

1
3 , i = 1, 2, 3.

Step 4: Compute statistical coe cients. From that

k
j =

3P
i=1
fk(xij) · i

5P
k=1

3P
i=1
fk(xij) · i

,

it follows that when j = 1,

3X
i=1

f1(xi1) · i =
2

9
,

3X
i=1

f2(xi1) · i = 0,

3X
i=1

f3(xi1) · i =
1

6
,

3X
i=1

f4(xi1) · i =
1

6
,
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3X
i=1

f5(xi1) · i =
1

3
.

Therefore,

5X
k=1

3X
i=1

fk(xi1) · i =
2

9
+ 0 +

1

6
+
1

6
+
1

3
=
8

9
.

So,
1
1 =

2

9
÷ 8
9
=
1

4
, 2
1 = 0,

3
1 =

1

6
÷ 8
9
=
3

16
,

4
1 =

1

6
÷ 8
9
=
3

16
, and 5

1 =
1

3
÷ 8
9
=
3

8
.

Then

1 =
¡

1
1,

2
1,

3
1,

4
1,

5
1

¢
=

µ
1

4
, 0,

3

16
,
3

16
,
3

8

¶
.

When j = 2, the similar computations can be used to obtain that

3P
i=1
f1(xi2) · i =

1
3 ,

3P
i=1
f2(xi2) · i = 0,

3P
i=1
f3(xi2) · i = 0,

3P
i=1

f4(xi2) · i =
1
2 ,

3P
i=1

f5(xi2) · i =
1
9 .

So,
5X

k=1

3X
i=1

fk(xi2) · i =
17

18
.

Therefore,

1
2 =

6

17
, 2

2 = 0,
3
2 = 0,

4
2 =

9

17
, 5

2 =
2

17

and

2 =
¡

1
2,

2
2,

3
2,

4
2,

5
2

¢
=

µ
6

17
, 0, 0,

9

17
,
2

17

¶
.

When j = 3, we can obtain

3P
i=1
f1(xi3) · i =

1
3 ,

3P
i=1
f2(xi3) · i =

1
3 ,

3P
i=1
f3(xi3) · i = 0,

3P
i=1
f4(xi3) · i =

1
3 ,

3P
i=1
f5(xi3) · i = 0.

So,
5X

k=1

3X
i=1

fk(xi3) · i = 1.
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Therefore,
1
3 =

1

3
, 2

3 =
1

3
, 3

3 = 0,
4
3 =

1

3
, 5

3 = 0,

and

3 =
¡

1
3,

2
3,

3
3,

4
3,

5
3

¢
=

µ
1

3
,
1

3
, 0,

1

3
, 0

¶
.

Step 5: Write down the matrix of statistical coe cients.

X
=
£
k
j

¤
3×5 =

1
4 0 3

16
3
16

3
8

6
17 0 0 9

17
2
17

1
3

1
3 0 1

3 0

.

Step 6: Determine grey classes. From

max
1 k 5

©
k
1

ª
=
3

8
= 5

1, max
1 k 5

©
k
2

ª
=
9

17
= 4

2

and
max
1 k 5

©
k
3

ª
=
1

3
= 1

3 =
2
3 =

4
3,

it follows that among the three economic districts, seen from the whole
of the system, the revenue from farming belongs to the low income class,
the revenue from livestock husbandry belongs to the mid-low income class.
As for the revenue from industry, the conclusion is not unique. Now, we
further consider

1

3
(1 + 2 + 4) =

7

3
,

on the account of

min

½¯̄̄̄
1

7

3

¯̄̄̄
,

¯̄̄̄
2

7

3

¯̄̄̄
,

¯̄̄̄
4

7

3

¯̄̄̄¾
=

¯̄̄̄
2

7

3

¯̄̄̄
,

so, we could take k = 2. That is, from the angle of the whole system, it
can be seen that the revenue from industry belongs to the grey class of
mid-high income.

6.7 Entropy of Coe cient Vector of Grey
Evaluations

For evaluations of clusters of grey incidences, the greyness of their results
is expressed in terms of closeness among degrees i, i = 1, 2, ..., m, or ij ,
i, j = 1, 2, ..., s, of grey incidence. If the degrees i, i = 1, 2, ..., m, or ij ,
i, j = 1, 2, ..., s, are very close to each other, the degree of greyness of the
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outcome of the evaluation will be increased. For evaluations of grey clusters
with either variable weights or fixed weights or those based on triangular
whitenization weight functions, their degrees of greyness are expressed in
terms of the closeness among the cluster coe cients k

i , k = 1, 2, ..., s. For
the sake of convenience, in the following, we use the vector

i =
¡

1
i ,

2
i , ...,

s
i

¢
to represent the result of various chosen grey evaluations. Here, the degree
of greyness of an evaluation result is expressed by the degree of balance
among the components of i. The more balanced the components of i are,
the more greyness the evaluation result. Again, for the sake of convenience
and without loss of generality, let us assume

Ps
k=1

k
i = 1.

Definition 6.7.1. The following sum

I ( i) =
sX

k=1

k
i ln

k
i (6.4)

is called the entropy of the grey evaluation coe cient vector i.

The entropy value I ( i), as defined in equ. (6.4), can be used as a mea-
sure for the degree of balance among the components of the grey evaluation
coe cient vector i. The more balanced the k

i values, k = 1, 2, ..., s, are,
the larger the I ( i) value.
As for a single cluster coe cient k

i , the smaller its value is, the larger¡
ln k

i

¢
, and the larger influence

¡
ln k

i

¢
has on I ( i) . And, at the

same time, the weight of
¡
ln k

i

¢
gets smaller. On the other hand, when

the value of k
i is relatively large, the value of

¡
ln k

i

¢
will be relatively

small with a relatively large weight.
The entropy I ( i) of the grey evaluation coe cient vector i satisfies

the following properties.

Property 6.7.1. (Non-negativeness)

I ( i) 0. (6.5)

Proof. 1. If there exists k0 such that k
0

i = 1, from k
i 0 and

Ps
k=1

k
i

= 1, it follows that for any k = 1, 2, ..., s, when k 6= k0, k
i = 0. Therefore,

I ( i) =
k
0

i ln
k
0

i = 0.

2. If for k = 1, 2, ..., s, k
i 6= 1, then from 0 k

i < 1, it follows that
ln k

i < 0. So

I ( i) =
sX

k=1

k
i ln

k
i > 0. ¤
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In fact, I ( i) = 0 is the special situation where the result of the relevant
grey evaluation is completely white. When some degree of greyness appears
in a result of a grey evaluation, one must have I ( i) > 0.

Property 6.7.2. (Symmetry) If

i =
¡

1
i ,

2
i , ...,

k
i ,

k+1
i , ..., s

i

¢
and

0
i =

¡
1
i ,

2
i , ...,

k+1
i , k

i , ...,
s
i

¢
are two evaluation coe cient vectors with only the positions of the kth and
(k + 1)th components switched, then

I ( i) = I (
0
i) .

Proof. It su ces to show that

k
i ln

k
i

k+1
i ln k+1

i = k+1
i ln k+1

i
k
i ln

k
i .

Based on the property of commutative property of real number addition,
this end is obvious. ¤
This property states that the entropy of each grey evaluation coe cient

vector i is related to the values of the evaluation coe cients 1
i ,

2
i , ...,

s
i and has nothing to do with the order in which these coe cients are
arranged.

Property 6.7.3. (Expendability) If

i =
¡

1
i ,

2
i , ...,

k
i ,

k+1
i , ..., s

i

¢
and

0
i =

¡
1
i ,

2
i , ...,

k
i , 0,

k+1
i , ..., s

i

¢
are two grey evaluation coe cient vectors with a 0 component inserted at
the kth location of i, then

I ( i) = I (
0
i) .

This property states that when a grey class with evaluation coe cient 0
is added, the entropy of the resultant grey evaluation coe cient vector will
not be changed. This property can also be generalized to the following. For
any k

i > 0, if
0
i =

¡
1
i ,

2
i , ...,

k
i , , k+1

i , ..., s
i

¢
, then

lim
0+
I ( 0

i) = I ( i) .

Property 6.7.4. If i =
¡

1
i ,

2
i , ...,

s
i

¢
and i =

¡
1
i ,

2
i , ...,

s
i

¢
are two

grey evaluation coe cient vectors, then

I ( i · i) = I ( i) + I ( i) , (6.6)



172 6. Grey Clusters and Grey Statistical Evaluations

where

i · i =
¡

1
i · 1

i ,
1
i · 2

i , ...,
1
i · s

i ,
2
i · 1

i ,
2
i · 2

i , ...,
2
i · s

i ,
· · · · ··
s
i · 1

i ,
s
i · 2

i , ...,
s
i · s

i

¢
.

Proof. From Definition 6.7.1, it follows that

I ( i · i) =
Ps
j=1

Ps
k=1

j
i · k

i ln
³

j
i · k

i

´
=

Ps
j=1

j
i

³Ps
k=1

k
i

³
ln j

i + ln
k
i

´´
=

Ps
j=1

j
i ln

j
i

Ps
k=1

k
i

Ps
j=1

j
i

Ps
k=1

k
i ln

k
i

=
Ps
j=1

j
i ln

j
i +

Ps
j=1

j
i I ( i)

= I ( i) + I ( i)
Ps
j=1

j
i = I ( i) + I ( i) . ¤

Equation (6.6) indicates that the entropy of the product of two grey eval-
uation coe cient vectors equals the sum of the entropies of the individual
vectors.

Property 6.7.5. (Separability) Assume that

i =
¡

1
i ,

2
i , ...,

k
i +

k+1
i , ..., s

i

¢
, 0

i =
¡

1
i ,

2
i , ...,

k
i ,

k+1
i , ..., s

i

¢
are two grey evaluation coe cient vectors, where the kth entry

¡
k
i +

k+1
i

¢
of i is split into two separate entries in 0

i as the kth and the (k + 1)th
entries. Then, the following holds true,

I ( 0
i) = I ( i)

¡
k
i +

k+1
i

¢
I ( i) , (6.7)

where

i =

Ã
k
i

k
i +

k+1
i

,
k+1
i

k
i +

k+1
i

!
.

Proof. It su ces to show that

k
i ln

k
i

k+1
i ln k+1

i =
¡

k
i +

k+1
i

¢
ln
¡

k
i +

k+1
i

¢
¡

k
i +

k+1
i

¢
I ( i)

(6.8)



6.7 Entropy of Coe cient Vector of Grey Evaluations 173

From

¡
k
i + k+1

i

¢
I ( i) =

¡
k
i +

k+1
i

¢Ã k
i

k
i +

k+1
i

ln
k
i

k
i +

k+1
i

k+1
i

k
i +

k+1
i

ln
k+1
i

k
i +

k+1
i

!

= k
i ln

k
i

k
i +

k+1
i

k+1
i ln

k+1
i

k
i +

k+1
i

= k
i ln

k
i

k+1
i ln k+1

i + k
i ln

¡
k
i +

k+1
i

¢
+ k+1

i ln
¡

k
i +

k+1
i

¢
,

it follows that equ. (6.8) holds true. ¤
The separability property states that if grey clusters are further refined

with the relevant grey evaluation coe cients separated, the entropy of the
grey evaluation coe cient vector will increase.

Property 6.7.6. (Maximum Valuation) When all the components of a

grey evaluation coe cient vector i are equal to the same value
1

s
, the

entropy I ( i) reaches its maximum value ln s. That is,

I ( i) ln s. (6.9)

Proof. Because I ( i) =
Ps
k=1

k
i ln

k
i , let L= I ( i)+

¡
1

Ps
k=1

k
i

¢
.

From
L
k
i

= ln k
i 1 = 0, k = 1, 2, ..., s, we can solve this system

of equations and obtain 1
i =

2
i = · · · = s

i = a constant =
1

s
. Therefore,

max I ( i) =
sX

k=1

1

s
ln
1

s
=
1

s

sX
k=1

ln s = ln s. ¤

Equation (6.9) indicates that when all components of i equal the same

value
1

s
, the entropy I ( i) of i reaches its maximum possible value ln s.

From equs. (6.5) and (6.9) it follows that

0 I ( i) ln s.

When I ( i) = 0, all hard results obtained from the grey evaluation have
maximum reliability. In this case, the evaluation results contain the least
uncertainty so that it is di cult for anyone to draw any soft result. When
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I ( i) 0, the results of the grey evaluation contain a little uncertainty
so that each hard result obtained from the evaluation can be seen with
good reliability. At the same time, there is not su cient evidence to sup-
port any strong soft result. When I ( i) ln s, the results of the grey
evaluation contain a relatively large amount of uncertainty so that the re-
liability of any hard result of the evaluation is not too good. At the same
time, it is relatively easy for one to obtain soft results from the evaluation.
When I ( i) = ln s, the results of the grey evaluation contain the maxi-
mum amount of uncertainty. So, in this case, it is di cult to obtain any
convincing hard result. On the other hand, the researcher can only draw
soft results, if any.

6.8 Practical Examples

In this section, we look at three real-life projects in which we had the honor
to be directly involved.

Example 6.8.1. In this example, we perform a grey evaluation analysis
for the combined strength in the area of science and technology for Henan
Province, The People’s Republic of China.

With the start of reform in the infrastructure of science and technol-
ogy in 1985, the operational mechanism and organizational structure of
the system of science and technology in Henan Province have experienced
a major change. The equipment of various scientific and technological re-
sources has become more feasible. The overall provincial strength in science
and technology has been constantly improving. The relationship between
science and technology and economic and social development has been more
mature and harmonic. In 1995, there were over 957,000 scholars and tech-
nicians in the province, representing an increase of more than 82.6% when
compared to the year 1985. At the same time, the academic quality of
the scientific team was obviously more advanced than before with much
increased funding and a great many new scientific leaders appearing. In
the year of 1995, the total funding allocated to the area of science and
technology surpassed U2,900,000,000. During this ten-year period of time,
over 12,000 major scientific and technological achievements and over 7500
patents had been recorded, which had helped and supported the healthy
economic development of the province. According to relevant statistics, in
the last five years, progress in science and technology has made over a 44%
contribution to the overall economic growth of the province. Based on a
combination of methods of Delphi correspondence and interviews, we have
organized such an index system for evaluating regional strength in the area
of science and technology such as shown in Table 6.3.
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Table 6.3. Index system for evaluating regional strength

in science and technology

Here, all Xi, i = 1, 2, · · ·, 21, are defined as follows. For all input in
terms of science and technology, we have

1. X1 stands for the number of scientists and technicians with 10,000 as
its unit,

2. X2 the average number of scientists and technicians in each popula-
tion of 10,000 people,

3. X3 the concentration of engineers with % as its unit,

4. X4 R&D spending/GDP with 0/00 as its unit,

5. X5 spending in science, technology, and applications with 0/00 as its
unit,

6. X6 average funding available to the individual scientist and/or tech-
nician with U1,000 as its unit,

7. X7 total value of equipment used in scientific research with U1 billion
as its unit,
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8. X8 sale of scientific and technological books with 1 billion as its unit,
and

9. X9 the number of personal computers owned by each 10,000 residents.

For all input in terms of activities related to science and technology, we
have

1. X10 number of existing agencies engaged in activities for scientific
research and applications,

2. X11 number of ongoing scientific research projects with 1000 as its
unit,

3. X12 number of people currently enrolled in a college per 10,000 resi-
dents, and

4. X13 average year of formal education of individual person in the work
force.

In terms of products produced as a consequence of application of progress
in science and technology, we have

1. X14 number of scientific achievements and patents with 1000 as its
unit,

2. X15 number of research papers published in 1000 articles,

3. X16 amount in terms of money of commercial contracts assigned in
the market of technology in U1 billion,

4. X17 amount of increase in terms of money in the area of manufactur-
ing industry in U10 billion,

5. X18 concentration of high tech with % as its unit,

6. X19 amount of taxes collected compared to spending in industry,

7. X20 productivity with U1,000 as its unit, and

8. X21 percent of contribution made by progress in technology.

For the year of 1995, the materialized values of the criteria Xi, i = 1, 2,
..., 21, collected in Henan Province, are given in Table 6.4.
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FIGURE 6.14. The general form of triangular whitenization weight functions

Table 6.4. Materialized values of the criteria Xi

Based on Table 6.3, the general form of triangular whitenization weight
functions for the criteria Xi, i = 1, 2, ..., 21, is shown in Figure 6.14. Here
x0j and x

5
j represent expanded values of the range of values of the criteria

Xj , j = 1, 2, ..., 21. For an observational value x of criterion j, we can use
equ. (6.10) to compute the whitenization weight function value fkj (x) for
the kth grey class, k = 1, 2, 3, as follows.

fkj (x) =

0, x /
£
xk 1
j , xk+2j

¤
x xk 1

j
k
j xk 1

j

, x
h
xk 1
j , k

j

i
xk+2j x

xk+2j
k
j

, x
h

k
j , x

k+2
j

i
.

(6.10)

For example, when j = 1, we expand the range of values for criterion X1:
the number of scientists and technicians, to x01 = 0.5 and x

5
1 = 160. In this

case, x11, x
2
1, x

3
1, and x

4
1 are respectively the threshold values for the three

grey classes: “weak”, “medium”, and “strong”. That is, x11 = 2, x21 = 20,
x31 = 70, and x41 = 110. Now, we let k

1 be the average value of x
k
1 and



178 6. Grey Clusters and Grey Statistical Evaluations

xk+11 . That is,

1
1 =

1

2

¡
x11 + x

2
1

¢
= 11, 2

1 =
1

2

¡
x21 + x

3
1

¢
= 45, 3

1 =
1

2

¡
x31 + x

4
1

¢
= 90.

Now, substituting these specific values into equ. (6.10) leads to the fol-
lowing triangular whitenization weight functions for the case j = 1.

f11 (x) =

0, x / [0.5, 70]

x 0.5

11 0.5
, x [0.5, 11]

70 x

70 11
, x [11, 70] ,

(6.11)

f21 (x) =

0, x / [2, 110]

x 2

45 2
, x [2, 45]

110 x

110 45
, x [45, 110] ,

(6.12)

f31 (x) =

0, x / [20, 160]

x 20

90 20
, x [20, 90]

160 x

160 90
, x [90, 160] .

(6.13)

After substituting x1 = 95.70, the value materialized in 1995 in Henan
Province, into equs. (6.11) through (6.13), we obtain the whitenization
weight values of the criterion X1 in terms of the three grey classes “weak”,
“medium”, and “strong” as follows:

f11 (95.70) = 0, f
2
1 (95.70) = 0.22, f

3
1 (95.70) = 0.919.

From these values, it can be seen that in terms of the number of scientists
and technicians, Henan Province has entered the group of provinces with
relatively strong scientific and technological strength. Table 6.5 lists all the
expanded values for the criteria X1 to X21 and Table 6.4 the relevant whit-
enization weight function values regarding the three grey classes: “weak”,
“medium”, and “strong”.
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Table 6.5. Expanded values for the criteria X1 to X21

Symbol X1 X2 X3 X4 X5 X6 X7
x0j 0.5 40 2 1 1 300 2
x5j 160 800 40 20 18 20,000 60

Symbol X8 X9 X10 X11 X12 X13 X14
x0j 0.20 3 10 11 3 3 300
x5j 12 80 500 20 80 12 6,000

Symbol X15 X16 X17 X18 X19 X20 X21
x0j 1 0.5 20 3 1 1 15
x5j 20 30 1,800 30 15 20 65

Table 6.6. Whitenization weight function values regarding the
three grey classes: “weak”, “medium”, and “strong”

Symbol X1 X2 X3 X4 X5 X6 X7
f1j (x) 0 0.860 0.892 0.636 0.222 0.471 0.112
f2j (x) 0.22 0.204 0.225 1 0.909 0.925 0.86
f3j (x) 0.919 0 0 0.308 0.4 0.208 0.43

Symbol X8 X9 X10 X11 X12 X13 X14
f1j (x) 0 0 0.007 0 0.859 0.25 0
f2j (x) 0.22 0.824 0.755 0.558 0.45 0.857 0.702
f3j (x) 0.863 0.435 0.566 0.814 0 0.5 0.622

Symbol X15 X16 X17 X18 X19 X20 X21
f1j (x) 0 0 0 0.473 0 0.511 0.233
f2j (x) 0.576 0.618 0.596 0.88 0.122 0.822 0.9
f3j (x) 0.785 0.728 0.747 0.175 0.827 0.117 0.433

From equ. (6.3), we can compute the cluster coe cients k
HN , k = 1, 2, 3,

for the provincial strength of Henan in areas of science and technology in
terms of the three grey classes: “weak”, “medium”, and “strong” as follows.

1
HN =

P21
j=1 f

1
j (xj) · j = 26.67,

2
HN =

P21
j=1 f

2
j (xj) · j = 61.261,

and
3
HN =

P21
j=1 f

3
j (xj) · j = 48.157.

From the fact that max
©

k
HN : 1 k 3

ª
= 61.216 = 2

HN , it can be
seen that the comprehensive strength of Henan Province in areas of science
and technology belongs to the grey class of “medium”. However, the value
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of 3
HN = 48.157 is relatively close to the value of 2

HN . We can see that
the overall strength of Henan Province is getting near the grey class of
“strong”. This end discovery agrees well with the fact that in recent years,
Henan Province has been recognized as being above the medium of the
national level in terms of strength in areas of science and technology.
Table 6.6 also shows that the Henan Provincial strength has been mainly

a ected by such factors as X2, X3, X, X12, and X20, which are all about
per capita averages, as well as such factors as X2, that is, the concentration
of high tech. So, in order to strengthen its ranks when compared to other
provinces and major cities in China, Henan Province needs to put its em-
phasis on improving its per capita averages. And, it needs to apply e ective
means to speed up the development of high tech in the province. Henan
Province is the largest province in China in terms of population with a rel-
atively weak foundation in such areas as high tech. In order to improve its
per capita averages and develop high tech manufacturing industry, it will
not be simply a matter of days. It will possibly take years to accomplish
such a goal.

Example 6.8.2. In this example, we look at a topic such as evalua-
tion criteria for regional signature industry. And, then we will look at the
selection of signature industries for Wu Dou County.

Regional signature industry(ies) stands for a group of businesses that
play a leading role in the development of the region’s economy. These busi-
nesses determine the formation and evolution of the region’s economic sys-
tem. In terms of regional economic planning and healthy regional economic
development, it is very critical to (1) correctly evaluate the levels of im-
portance of various types of businesses located at the region of interest,
(2) clearly determine which types of businesses are the key to the local
economy, and (3) rightly depict the relationship between the key types of
businesses and assistant and other types of businesses. On the other hand,
the formation and evaluation of a region’s key types of businesses are, to a
certain degree, influenced by the region’s economic structure, market char-
acteristics, and resources. Therefore, encouraging the development of key
types of businesses should be both the starting and the ending points of
any activity in terms of policy making and regional economic planning. The
ability to correctly define the key types of businesses will directly a ect the
economic growth of any region.
In general, a regional key type of business possesses the following main

characteristics: (1) great potential for development with relatively high
growth rate; (2) strong ability to take large market share; (3) representing
a leader in the progress of technology; (4) having a wide range of influ-
ence with relatively strong forward and backward incidences. In our study,
we employ these main characteristics as our criteria for selecting and de-
termining regional key types of businesses. More specifically, we have the
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following quantitative criteria to determine a regional key type of business.

1. Income elasticity i.

Assume that y stands for the per capita income, xi the demand for the
products or service of the ith type of business. Then, the income elasticity
i of the ith type of business is

i =
y

xi
· xi
y
. (6.14)

2. Growth rate ri.

Assume that x0i stands for the initial demand for the products of the ith
type of business and ri the average growth rate. Then, the demand for its
products at time t is given by

xti = x
0
i (1 + ri)

t . (6.15)

3. Technological improvement i.

Assume that xi stands for the total production value of the ith type of
business, Li its labor input, Ki the capital input, in the Cobb—Douglas
production function

xi = Ae
btLi Ki , (6.16)

b represents technological progress, and
xi
xi

the production growth rate.

Then,

i =
b
xi
xi

(6.17)

describes the amount of contribution made by technological progress in the
production growth of the ith type of business.

4. Degree of business incidence.

The degree of business incidence is divided into forward incidence and
backward incidence. They all stand for the degree of direct or indirect im-
pact caused by changes of the demand of one type of business on the input
and output of other types of businesses. Such impact is also known as a
wave e ect. What is most used here are the concepts of coe cients of sensi-
tivity and of impact. Assume that bij stands for the complete consumption
coe cient in an input and output analysis and n the number of di erent
types of businesses. Then, the coe cient of sensitivity of the ith type of
business is given by

µi =

Pn
j=1 bij

1
n

Pn
i=1

Pn
j=1 bij

(6.18)
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and the coe cient of impact of the jth type of business is given by

j =

Pn
i=1 bij

1
n

Pn
i=1

Pn
j=1 bij

. (6.19)

5. Coe cient of Comparative Advantage i.

Each regional signature type of business should be such a group of de-
veloped enterprises that when compared to other regional businesses or
when compared to its environment, it has its own business advantage. The
relative advantage of the ith type of business can be expressed using the
coe cient of comparative advantage i. Here, this coe cient i of com-
parative advantage can be written as the product of ri1 , the coe cient
of comparative concentration, ri2 , the coe cient of comparative output,
ri3 , the coe cient of comparative productivity, and ri4 , the coe cient of
comparative tax rate. That is, we have

i = ri1 · ri2 · ri3 · ri4 , (6.20)

where

ri1 =
xki/xk
xi/x

, ri2 =
oki/ok
oi/o

, ri1 =
pki/pk
pi/p

, ri1 =
Tki
Ti
. (6.21)

In equ. (6.21), the symbols xki , oki , pki , and Tki represent, respectively,
the production value, amount of production output, overall productivity,
and the tax rate of the production of the ith type of business located in
the kth region. The symbols xk, ok, and pk respectively represent the total
production value, production output, and average productivity of the kth
region. And, xi, oi, pi, and Ti respectively represent the production value,
amount of production output, overall productivity, and the tax rate of the
production of the ith type of business of a larger system within which the
region of concern is located.
All the criteria discussed above are non-dimensional. In order to make our

evaluation easier, we divide all regional business types into three categories
based on their levels of importance in the economic development of their
regions: general type, assistant type, and signature type. Then, through
the use of the Delphi investigation method, we determine the domains of
various categories and the weights of the criteria to be used in the selection
of signature types of businesses. Our results are provided in Table 6.7.
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Table 6.7. Criteria system for evaluating regional businesses

When practically determining regional signature types of businesses,
other than the above standards and criteria, one often needs to develop
a set of general principles for the selection of regional signature types of
businesses based on the specific situations of the region of study. For exam-
ple, one often has to consider such principles as su cient employment, low
energy cost, high addition values, advanced development of “bottle neck”
businesses, and so on.
In the following, we focus on our selection of signature types of industrial

businesses for Wu Dou County, the People’s Republic of China.
Wu Dou County is located on the north shore of the Yellow River and

is a typical agricultural county. In order for the county to compete in the
coming age commercially, it needs to push strongly for development in
modern industries. To this end, the first problem facing county o cials is
to determine the types of signature businesses. Based on the available data
collected at Wu Dou County, we have produced Table 6.8.

Table 6.8. Criteria evaluation data for Wu Dou County

Business Type i ri i µi i i

BT 1 3.03 0.41 0.42 1.07 1.13 5.19
BT 2 1.63 0.22 0.53 2.85 1.16 1.82
BT 3 0.12 0.23 0.39 1.28 1.07 5.55
BT 4 3.99 0.37 0.53 6.89 1.20 5.13
BT 5 7.87 0.33 0.47 0.90 0.98 6.42
BT 6 3.86 0.24 0.52 0.78 0.81 4.82
BT 7 1.97 0.24 0.34 1.30 1.02 3.00
BT 8 1.85 0.21 0.32 1.06 1.10 2.43
BT 9 1.63 0.21 0.44 1.17 0.87 0.11
BT 10 1.05 0.16 0.37 0.88 0.90 2.26
BT 11 3.01 0.23 0.21 0.79 0.82 1.03
BT 12 1.69 0.21 0.42 1.27 1.05 1.19
BT 13 0.00 0.00 0.00 1.04 1.08 1.04
BT 14 0.00 0.00 0.00 0.66 1.15 0.55
BT 15 1.74 0.21 0.31 0.98 0.53 2.06
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Business types are defined as follows.

• BT 1 stands for paper manufacturing and paper related industries,
• BT 2 for chemical industry,
• BT 3 for textile,
• BT 4 for leather,
• BT 5 for food and drinks,
• BT 6 for pharmaceutical,
• BT 7 for machinery,
• BT 8 for metallurgy,
• BT 9 for electricity,
• BT 10 for rubber,
• BT 11 for plastic,
• BT 12 for non-metal,
• BT 13 for electronics,
• BT 14 for instruments and meters, and
• BT 15 for water treatment.
Based on Tables 6.7 and 6.8 and the grey fixed weight clustering method,

we obtain Table 6.9 listing all the evaluation results for the existing indus-
tries located in Wu Dou County.

Table 6.9. Evaluation results for existing industries in Wu Dou County
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it follows that BT 1, BT 2, BT 3, BT 4, BT 5, and BT 6 are leading
industries, and BT 7 and BT 12 are assistant industries with BT 8 to 11
and BT 13 to 15 being general types of businesses. Our research results
here have provided the scientific basis for the economic planning of Wu
Dou County at the time when it was already to welcome the arrival of the
new millennium.

Example 6.8.3. Let us consider a grey evaluation analysis we did for
Henan Province in 1993.

Since the start of the decade of the1990s, with an increased speed of eco-
nomic reforms and rapid development of market economy, Henan Province
entered a new period of time for growth. During the past several years,
the relationship between regional economic systems and external environ-
ment, that between regional economic systems and internal subsystems, and
that between various economic cells and the economic mechanism from the
microscopic level to the macroscopic level gradually reached a relatively
harmonic stability. In 1992, the GDP of the province reached a total of
U1,207 billion, representing an increase of 13.6% over the previous year.
Such a GDP level had materialized to a per capita income of U1,362, a
12.2% increase over the previous year.
In our study, we classified regional economic development into three cat-

egories: basic, comfortable, and wealthy. In fact, the development stages of
the so-called “basic”, “comfortable”, and “wealthy” are all grey concepts.
And, the relevant determination of categories is also grey. In order to rea-
sonably determine the domain and weight of each criterion in terms of the
categories to be employed in our evaluation, we organized three rounds of
Delphi investigation. Based on experts’ recommendations, we produced 16
regional economic evaluation criteria as listed in Table 6.10. And, Table
6.11 lists all the materialized criteria values for the year 1992 as collected
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in Henan Province.

Table 6.10. Criteria system for evaluating a regional economy

Symbol Weight Basic Comfortable Wealthy
E1 8 [500, 1,500) [1,500, 3,000) [3,000, 7,000)
E2 6 [900, 2,600) [2,600, 5,400) [5,400, 10,000)
E3 6 [12, 19) [19, 24) [24, 30)
E4 4 (5, 9] (2.5, 5] (1, 2.5]
E5 6 [320, 370) [370, 400) [400, 450)
ST1 7 [40, 60) [60, 75) [75, 90)
ST2 7 [1, 1.8) [1.8, 2.5) [2.5, 3.6)
ST3 7 [25, 40) [40, 55) [55, 70)
S1 7 [35, 50) [50, 75) [75, 95)
S2 7 [20, 30) [30, 45) [45, 60)
S3 6 [25, 40) [40, 50) [50, 60)
S4 5 [20, 35) [35, 50) [50, 60)
LS1 6 (50, 60] (40, 50] (25, 40]
LS2 6 [4, 8) [8, 11) [11, 14)
LS3 5 [15, 20) [20, 22) [22, 25)
LS4 7 [60, 65) [65, 70) [70, 75)

Five economic criteria, three criteria reflecting science and technology, four
criteria about social structure, and four criteria on life quality are defined
as follows.

1. E1 stands for per capita GDP value with the yuan as its unit,

2. E2 for productivity in yuan per person per year,

3. E3 for tax rate per U10,000 industrial capital in the unit of yuan,

4. E4 for energy cost per U10,000 industrial output in tons, and

5. E5 for food occupation per person in kilograms;

6. ST1 represents percent of adult literacy,

7. ST2 percent of scientific workers and technicians in the labor force,
and

8. ST3 percent of contribution made by progress in science and technol-
ogy;

9. S1 indicates the percent of automation;

10. S2 percent of informationalization,

11. S3 percent of non-farming labor in the totality of the labor force, and
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12. S4 percent of concentration of city residents;

13. LS1 is the Engal coe cient,

14. LS2 average living space size of city residents,

15. LS3 average living space size of country residents, and

16. LS4 average life span of all residents.

In Table 6.10, the intervals for the categories “basic,”“comfortable”, and
“wealthy” are used as follows; for example, when the materialized value
E1 ( ) of criterion E1 falls in between [500, 1500), we talk about achieving
a basic level of life. When the materialized value E1 ( ) falls in the interval
[1500, 3000), we talk about enjoying a comfortable life. When the materi-
alized value E1 ( ) falls in between 3000 and 7000, we have reached a level
of wealthy lifestyle.

Table 6.11. Materialized economic values of Henan Province in 1992

Based on the grey classes as defined in Table 6.10, the general form of
triangular membership functions is given as in equ. (6.10) and shown in
Figure 6.14. For example, for the case of j = 1, we expand the range of
values of our grey number to x01 = 200 and x

5
1 = 10, 000. From x11 = 500,

x21 = 1500, x
3
1 = 3000, and x

4
1 = 7000, it follows that

1
1 =

¡
x11 + x

2
1

¢
/2 = 1000,

2
1 =

¡
x21 + x

3
1

¢
/2 = 2250,

3
1 =

¡
x31 + x

4
1

¢
/2 = 5000.

For the per capita GDP E1 = 1362 for the year 1992, we compute its
membership in the class of “basic” as

f11 (1362) =
(3000 1362)

2000
= 0.819,

its membership in the class of “comfortable” as

f21 (1362) = 0.493

and its membership in the class of “comfortable” as

f31 (1362) = 0.
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Therefore, our results indicate that in terms of per capita GDP, Henan
Province still belongs to the class of “basic”.
Table 6.12 lists all the extended values for each criterion and Table 6.13

provides the membership values for each criterion to belong to one grey
class.

Table 6.12. Expanded fields of evaluation criteria

Symbol E1 E2 E3 E4 E5 ST1 ST2 ST3
x0j 200 400 6 0.7 260 25 0.5 15
x5j 10,000 15,000 35 12 500 98 4.5 80

Symbol S1 S2 S3 S4 LS1 LS2 LS3 LS4
x0j 20 10 15 10 20 2.5 10 15
x5j 97 70 70 80 70 16 30 80

Table 6.13. Memberships of main economic criteria

Therefore, we have

1
i =

16X
j=1

f1j (xij) · j = 55.825,

2
i =

16X
j=1

f2j (xij) · j = 50.466

and

3
i =

16X
j=1

f3j (xij) · j = 19.249.

Frommax
©

k
i : 1 k 3

ª
= 55.825 = 1

1, we conclude that Henan Province
still belonged to the class of “basic” in 1992. However, because 2

i = 50.466
is close to 1

i , we can say that Henan Province was on the edge of entering
the class of “comfortable”. So, with some e ort, it would be possible for
Henan Province to actually enter the class of “comfortable” by the end of
the 20th century.
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From Table 6.13, it can be seen that among the five economic criteria,
the main problem was the low economic value of industrial output. Such
a low value was still a large distance from the economy of the “basic”
class, and any sustained increase in the industrial economy could only be
maintained through high levels of input of both capital and labor. If this
problem was not resolved in time, it would definitely cause serious e ects on
the economic health of the province. On the other hand, the situation with
food production was not too good, either. Henan agricultural business had
a relatively weak level of resistance against natural disasters. Therefore,
mechanisms needed to be introduced in order to prevent and reduce the
number and severity of natural disasters in order to help a stable and
healthy development in agriculture.
Among the criteria of science and technology, science and technology did

not contribute a high percentage to the economic growth. This problem
of low contribution by science and technology was mainly caused by the
blind emphasis on increased input of capital and labor without valuing the
input and commercial e ect of science and technology. The e ect of science
and technology being the first labor force was not e ectively materialized.
Among the criteria of social structure, two problems stood out. One was
the low level of informationalization of the society and the other the low
percentage of non-farming labor. With a large amount of labor restrained
on the limited amount of farmland, its power and economic e ect could
not be released. This had been a chorionic problem hindering economic
development in Henan Province. By su ciently applying market and pol-
icy mechanisms, excess farm labor could be guided to other commercial
endeavors so that these two problems could be resolved at the same time.
Food cost occupied as high as 55% of the total living expense. This was

a relatively standard level for being in the “basic” class. It also explained
the fact that most people still could not correctly allocate their spending
funds among other areas of life, such as clothing, beautification of their
living environment, entertainment, etc. So, it was necessary to help guide
citizens to improve their consuming habits and tastes. However, in order
to achieve a successful outcome along this line, a fundamental increase in
the societal economic levels and standards were necessary.
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Grey Systems Modeling

7.1 The Thought of Five-Step-Modeling

When studying an abstract system, establishing a mathematical model for
the system is a quantitative study of the system with respect to its over-
all functions, synergic functions, incidence relationships among its factors,
causal relationships, and dynamical relationships, etc. In this kind of study,
a qualitative analysis must be first, and the relevant quantitative analysis
must be closely related to the initial qualitative analysis. Therefore, in gen-
eral, the establishment of a system’s model needs to go through five steps:
development of thoughts, factor analysis, quantification, dynamicalization,
and optimization. This is the so-called five-step modeling. More specifi-

cally,
Step 1: Develop thoughts and form concepts. Through an initial quali-

tative analysis and research, one can clarify the research direction, goals,
paths, and how to implement all the foreseeable details. Then, verbally and
precisely describe the results. This is called a language modeling.

Step 2: Examine factors involved and any relationship between the factors
contained in the language model to find causes and e ects a ecting the
development of the system under consideration. Then, construct a diagram
to depict the causal relation. See, for example, Figure 7.1.

Each pair of cause and e ect (or a group of pairs of causes and e ects)
constitutes a link. Each system consists of several or many such links.
Sometimes, a quantity is both a cause of a link and an e ect of another
link. When all such links are connected, one obtains a connected diagram
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FIGURE 7.1. Flow diagram for a causal relation

FIGURE 7.2. Connected diagram with several links

with several links, called network modeling. See Figure 7.2 for more details.

Step 3: Analyze quantitatively the causal relationship of each link and
initially derive conceptual and quantified relations at some low level. This
step is called a quantification modeling.

Step 4: Collect input and output data values of each link to establish a
dynamic grey systems model (GM). This step is called dynamic modeling.
Dynamic modeling is a high-level quantification modeling. It deeply re-

veals an existing quantitative relation or governing law of transformation
from the input to the output. It is the foundation for systems analysis and
optimization.

Step 5: Systemically study the dynamic model obtained in Step 4. Through
adjustments on organizations, mechanisms, and parameters, reorganize the
system in order to optimize allocations so that the goal of improving the
system’s dynamics can be reached. This way of constructing a model is
called optimal modeling.

The entire process of the five-step-modeling is a process of establishing
five models through five di erent steps:

language modeling network modeling quantification modeling

dynamic modeling optimal modeling.

During the process of establishing a model, one needs to constantly feed
back the results obtained in later steps to earlier steps. After many itera-
tions of such feedback, the entire modeling will become more mature and
more adequate.
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The concept of five-step-modeling establishes a bridge connecting the so-
cial and natural sciences, which mathematizes, computerizes, and natural-
scientificalizes research in social science. At the same time, it brings the
research of natural science to a higher level with more abstraction, preci-
sion, and philosophy.
Now, the fundamental idea of grey systems modeling can be summarized

as follows.

1. A qualitative analysis is a prerequisite for modeling.

2. Quantitative modeling is a specialization of the initial qualitative
analysis.

3. Qualitative and quantitative analyses are combined closely to com-
plement each other.

4. Clarifying the system’s factors, relationship between these factors,
and relationship between the factors and the system is the center of
the research of the system.

5. The factor analysis should not dwell on one state. Instead, it should
involve the movement of time and change of states. That is, the re-
search on system behaviors should be dynamicalized.

6. Any relationship between factors and between the factors and the
system is relative, not absolute.

7. In order to generalize the e ective methods and successful results in
control theory to areas such as social science, economics, agriculture,
ecology, etc., systems modeling needs to be controlled.

8. Through models to understand all properties of control of the system,
such as controllability, observability, etc.

9. Through models to diagnose the system under consideration in order
to clarify its current state and hidden problems.

10. From models, one should obtain as much information as possible,
especially about development and change, such as information on
whether the development of the system is permanent or limited; as for
permanently developing systems, whether it is developing monoton-
ically or vibrantly, whether the development is rapid or gradual; as
for systems with limited development, what its limit is, whether it
reaches its limit monotonically or wavelike, whether it reaches its
limit quickly or gradually, and whether there exist shocks in the de-
velopment.
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11. The types of data often used in model building are given in the fol-
lowing,

(1) data of scientific experiments; (2) empirical data;

(3) production data; (4) decision-making data.

12. The fundamental data for grey modeling are sequence generations.

13. For sequences satisfying the conditions for being quasi-smooth, one
can establish GM di erential models. General non-negative sequences
can become quasi-smooth if the accumulating generation is applied.

14. The accuracy of models can be improved through di erent methods
of generation of grey numbers, choice of data values, reorganization
or modification of sequences, and supplements with various levels of
remnant GM models.

15. Grey systems theory employs three di erent methods to check and
to determine model accuracies:

(a) Remnant check. It does point-to-point checks on the accuracy
between model values and values collected in practice;

(b) Incidence degree check. This is done through a comparison be-
tween the model value curve and the sequence curve on which
the model was built;

(c) Remnant distribution check. It is done through the use of sta-
tistical characteristics of the remnant distributions.

7.2 Grey Di erential Equations

Many scientific workers in systems research are interested in di erential
equations with the conviction that di erential equations can deeply de-
scribe the essence of development of things. When faced with discrete data
sequences, people often feel some di culties, because only when the con-
dition of di erentiability is assumed, the concept of di erential equations
can be talked about. In grey systems theory, based on understanding of
di erential and integral calculus, the concept of grey derivatives is intro-
duced so that we can establish models similar to di erential equations for
sequences of discrete data.

Definition 7.2.1. Assume that we have the following di erential equa-
tion,

dx

dt
+ ax = b.
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Then
dx

dt
is called the derivative of the unknown function x, x the back-

ground value of
dx

dt
, and a and b the parameters.

That is, a first-order di erential equation consists of three parts: deriva-
tive, background value, and some parameters.

Definition 7.2.2. Assume that x(t) is a function defined on a time set
T . If when t 0, it is always true that

x(t+ t) x(t) 6= 0,

then we say that the information density of x(t) on T is infinite.

Proposition 7.2.1. A function x(t) satisfying the di erential equation

dx

dt
+ ax = b

satisfies the condition of infinite information density.

Proof. From the definition of derivatives

dx

dt
= lim

t 0

x(t+ t) x(t)

t

the result follows. ¤
Definition 7.2.3. Assume that A and B are sets, and R an operation

between A and B. If for a1, a2 A and b B, the following holds,

a1Rb = a2Rb,

then b is called a horizontal mapping of a1 and a2.

Definition 7.2.4. Assume that R is the operator of absolute di erence.
That is,

aRb = |a b|.
If a1Rb = a2Rb, that is, |a1 b| = |a2 b|, for any a1, a2 A, and a fixed
b B, then the operator R is called an arithmetic horizontal mapping or
simple horizontal mapping.

Definition 7.2.5. Let
dx

dt
+ ax = b,

x(t+ t) and x(t) be two elements in the background set, and

X = {x(t+ t), x(t)} .

1. When
dx

dt
Rx(t+ t) =

dx

dt
Rx(t),
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the derivative and the background elements are said to satisfy the horizontal
mapping relation.

2. If x is a value taken as a background value, satisfying

x(t) 6= x 6= x(t+ t), x(t), x(t+ t) X,

let (t+ t) and (t) be components of

dx

dt
=
x(t+ t) x(t)

t
.

When
(t+ t)Rx = (t)Rx

we say that the background value and derivative components satisfy the
horizontal mapping relation.

Proposition 7.2.2. If x(t) is a positive function, that is, for any t, x(t)
> 0, then the derivative in the equation

dx

dt
+ ax = b

and elements in the background set satisfy the simple horizontal mapping
relation.

Theorem 7.2.1. There are three fundamental conditions to form a dif-
ferential equation:

1. Information density is infinite;

2. Background values are a grey number;

3. The derivative and the background values satisfy the horizontal map-
ping relation.

Definition 7.2.6. Assume that I is a set of units to measure time. If

I = {..., year, month, day, hour, minute, second, ... }

then I is called the set of general time units.

Definition 7.2.7. Assume that 1i and 1j are unit times of the ith level
and the jth level in the set of general time units, respectively. If 1 i < 1j ,
then we say that the ith level time is denser than the jth level time.

Definition 7.2.8. Assume that

X = (x(1i), x(2i), ..., x(ni))

is a sequence of time units at the ith level. Then

d(i) = x(ki) x(ki 1i),
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ki = 1i, 2i, ..., ni, are called the information increments of the time units
at the ith level.

Definition 7.2.9. Assume that X is a time sequence whose time unit
can be infinitely divided, and 1i a unit time at the ith level of time units.
If when 1i 0,

d(i) = x(ki) x(ki 1i) 6= 0.
Then X is said to be a sequence with the intension of di erential equations,
or a grey differential sequence, and

d(i)(ki) = lim
1i 0

[x(ki) x(ki 1i)],

is called the grey derivative of the sequence X. The grey derivative of a
general sequence is written as d(k).

Proposition 7.2.3. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a sequence of raw data values and

X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
the sequence obtained through accumulating generation; that is,

x(1)(k) =
kX
i=1

x(0)(i),

k = 1, 2, ..., n. Then the grey derivative of X(1) is

d(k) = x(0)(k).

Proof. Because the time unit is not divided into smaller units, we have

d(k) = x(1)(k) x(1)(k 1)

=
kP
i=1
x(0)(i)

k 1P
i=1
x(0)(i) = x(0)(k). ¤

7.3 Model: GM(1,1)

In this section, we study the so-called GM(1,1) model. This model has been
widely applied in various areas of practical applications of grey systems
theory.
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Definition 7.3.1. The following

d(i)(ki) + ax
(1)(ki) = b

is called an equation of grey differential type.

Proposition 7.3.1. For the following equation of grey di erential type

x(0)(k) + ax(1)(k) = b

the grey derivative x(0)(k) and elements in the set of background valuesn
x(1)(k), x(1)(k 1)

o
do not satisfy the horizontal mapping relation.

Proof.

|x(0)(k) x(1)(k)| = | x(1)(k 1)| = x(1)(k 1),

but
|x(0)(k) x(1)(k 1)| = |2x(0)(k) x(1)(k)|,

so,
|x(0)(k) x(1)(k)| 6= |x(0)(k) x(1)(k 1)|. ¤

Proposition 7.3.2. If the background value is taken to be the mean of
the entries in X(1), that is, let

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1),

then the background value z(1)(k) and the components x(1)(k) and x(1)(k 1)
of the grey derivative satisfy the arithmetic horizontal mapping relation.

Proof.

|z(1)(k) x(1)(k)| = |0.5x(1)(k) + 0.5x(1)(k 1) x(1)(k)|

= |0.5x(1)(k 1) 0.5x(1)(k)|
and

|z(1)(k) x(1)(k 1)| = |0.5x(1)(k) + 0.5x(1)(k 1) x(1)(k 1)|

= |0.5x(1)(k) 0.5x(1)(k 1)|.
Therefore,

z(1)(k)Rx(1)(k) = z(1)(k)Rx(1)(k 1). ¤
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Definition 7.3.2. If an equation of grey di erential type satisfies the
following conditions,

1. the information density is infinitely large;

2. the sequence possesses the intension of grey di erentiation; and

3. the mapping from the set of background values to the components of
the grey derivative satisfy the horizontal mapping relation,

then this equation of grey di erential type is called a grey differential
equation.

Proposition 7.3.3. The following equation

x(0)(k) + az(1)(k) = b,

where
z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1)

is a grey di erential equation.

Definition 7.3.3. The equation

x(0)(k) + az(1)(k) = b

is called a GM(1, 1) model.

The meaning of the symbol GM(1, 1) is given as follows:

G M (1, 1)

Grey Model First Order One Variable

Theorem 7.3.1. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a non-negative sequence, where x(0)(k) 0, k = 1, 2, ..., n, X(1) the
1-AGO sequence of X(0) with

X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
,

where

x(1)(k) =
kX
i=1

x(0)(i),

k = 1, 2, ..., n, and Z(1) is the mean generated sequence of consecutive
neighbers of X(1) given by

Z(1) =
³
z(1)(1), z(1)(2), · · ·, z(1)(n)

´
,
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where
z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1),

k = 1, 2, ..., n. If a = [a, b]T is a sequence of parameters, and

Y =

x(0)(2)

x(0)(3)
·
·
·
x(0)(n)

, B =

z(1)(2) 1

z(1)(3) 1
· ·
· ·
· ·
z(1)(n) 1

,

then the least squares estimate sequence of the grey di erential equation

x(0)(k) + az(1)(k) = b

satisfies
a =

£
BTB

¤ 1
BTY.

Proof. Substituting all data values into the grey di erential equation

x(0)(k) + az(1)(k) = b,

gives that
x(0)(2) + az(1)(2) = b,

x(0)(3) + az(1)(3) = b,

· · · · · · · · · · · · · · · · ·

x(0)(n) + az(1)(n) = b.

That is,
Y = Ba.

For a pair of evaluated values of a and b, using -az(1)(k)+b to substitute
x(0)(k), k = 2, 3, ..., n, gives the error sequence

= Y Ba.

Let

s = T =
h
Y Ba

iT h
Y Ba

i
=

nP
k=2

[x(0)(k) + az(1)(k) b]2.
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The a and b values making s the minimum should satisfy

s

a
= 2

nP
k=2

[x(0)(k) + az(1)(k) b] · z(1)(k) = 0

s

b
= 2

nP
k=2

[x(0)(k) + az(1)(k) b] = 0.

That is,

nP
k=2

{x(0)(k)z(1)(k) + a[z(1)(k)]2 b · z(1)(k)} = 0

nP
k=2

[x(0)(k) + az(1)(k) b] = 0.

So, solving this system gives that

b =
1

n 1

"
nX
k=2

x(0)(k) + a
nX
k=2

z(1)(k)

#

and

a =

1

n 1

nP
k=2

x(0)(k) ·
nP
k=2

z(1)(k)
nP
k=2

x(0)(k) · z(1)(k)
nP
k=2

[z(1)(k)]2
1

n 1

·
nP
k=2

z(1)(k)

¸2 .

From Y = Ba, it follows that

BTBa = BTY, a =
£
BTB

¤ 1
BTY.

But

BTB =

z(1)(2) 1

z(1)(3) 1
· ·
· ·
· ·
z(1)(n) 1

T

·

z(1)(2) 1

z(1)(3) 1
· ·
· ·
· ·
z(1)(n) 1

=

nP
k=2

[z(1)(k)]2
nP
k=2

z(1)(k)

nP
k=2

z(1)(k) n 1

,
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£
BTB

¤ 1
=

n 1
nP
k=2

z(1)(k)

nP
k=2

z(1)(k)
nP
k=2

[z(1)(k)]2

(n 1)
nP
k=2

[z(1)(k)]2
·
nP
k=2

z(1)(k)

¸2 ,
and

BTY =

z(1)(2) 1

z(1)(3) 1
· ·
· ·
· ·
z(1)(n) 1

T

·

x(0)(2)

x(0)(3)
·
·
·
x(0)(n)

=

nP
k=2

x(0)(k) · z(1)(k)

nP
k=2

x(0)(k)

.

Therefore,

a = [BTB] 1BTY

=

(n 1)
nP
k=2

x(0)(k) · z(1)(k) +
nP
k=2

x(0)(k) ·
nP
k=2

z(1)(k)

nP
k=2

z(1)(k) ·
nP
k=2

x(0)(k) · z(1)(k) +
nP
k=2

x(0)(k) ·
nP
k=2

[z(1)(k)]2

(n 1)
nP
k=2

[z(1)(k)]2
·
nP
k=2

z(1)(k)

¸2

=

1

n 1

nP
k=2

x(0)(k) ·
nP
k=2

z(1)(k)
nP
k=2

x(0)(k) · z(1)(k)
nP
k=2

[z(1)(k)]2 1
n 1

·
nP
k=2

z(1)(k)

¸2
1

n 1

·
nP
k=2

x(0)(k) + a
nP
k=2

z(1)(k)

¸

=
£
a b

¤T
. ¤

Definition 7.3.4. Assume that X(0) is a non-negative sequence, X(1)

the sequence of 1-AGO generated from X(0), and Z(1) the sequence mean
generated with consecutive neighbors of X(1). If

[a, b]T =
£
BTB

¤ 1
BTY,
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then
dx(1)

dt
+ ax(1) = b

is called a whitenization (or image) equation of the grey differential
equation

x(0)(k) + az(1)(k) = b.

Theorem 7.3.2. Assume that B, Y, and a are the same as in Theorem
7.3.1. If

[a, b]T =
£
BTB

¤ 1
BTY.

then the following hold true.

1. The solution (or time response function) of the whitenization function

dx(1)

dt
+ ax(1) = b

is given by

x(1)(t) =

·
x(1)(0)

b

a

¸
e at +

b

a
.

2. The time response sequence of the GM(1, 1) grey di erential equa-
tion

x(0)(k) + az(1)(k) = b

is given by

bx(1)(k + 1) = ·x(1)(0) b

a

¸
e ak +

b

a
, k = 1, 2, ..., n.

3. Let x(1)(0) = x(0)(1), then

bx(1)(k + 1) = ·x(0)(1) b

a

¸
e ak +

b

a
, k = 1, 2, ..., n.

4. The restored values of x(0)(k)s can be given by

bx(0)(k + 1) = (1)bx(1)(k + 1) = bx(1)(k + 1) bx(1)(k),
k = 1, 2, ..., n.

Definition 7.3.5. The parameters ( a) and b in the GM(1, 1)model are
called the development coe cient and grey action quantity, respectively.

The parameter ( a) reflects development states of bX(1) and bX(0). In
general, variables that act upon the system of interest should be exter-
nal or predefined. However, GM(1, 1) is a single sequence modeling, which
makes use of only the system’s behavioral sequence (called output sequence,
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or background values) without considering any external acting sequences
(called input sequences, or driving quantities). The grey action quantity in
GM(1, 1) is a value derived from the background values. It reflects changes
contained in the data and its exact intension is grey. The grey action quan-
tity realizes the extension of the relevant intension. The existence of this
grey action quantity distinguishes grey systems modeling from the gen-
eral input-output modeling (or black box modeling), and is a teststone to
separate the thoughts of grey systems and that of grey boxes.

Theorem 7.3.3. The GM(1, 1) model

x(0)(k) + az(1)(k) = b

can be transformed into

x(0)(k) = x(1)(k 1),

where

=
b

1 + 0.5a
, =

a

1 + 0.5a
.

Proof. By substituting

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1)

into
x(0)(k) + az(1)(k) = b,

we obtain that

x(0)(k) +0.5a
£
x(1)(k) + x(1)(k 1)

¤
= x(0)(k) + 0.5a

£
x(1)(k 1) + x(0)(k) + x(1)(k 1)

¤
= (1 + 0.5a)x(0)(k) + ax(1)(k 1) = b.

So,

x(0)(k) =
b

1 + 0.5a

a

1 + 0.5a
x(1)(k 1);

that is,
x(0)(k) = x(1)(k 1). ¤

Theorem 7.3.4. Assume that

=
b

1 + 0.5a
, =

a

1 + 0.5a

and bX(1) =
³bx(1)(1), bx(1)(2), ..., bx(1)(n)´
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is the time response sequence of the GM(1, 1) model, where

bx(1)(k) = ·x(0)(1) b

a

¸
e a(k 1) +

b

a
,

k = 1, 2, ..., n. Then

x(0)(k) =
h

x(0)(1)
i
e a(k 2).

Proof. From Theorem 7.3.3, it followed that

x(0)(k) = x(1)(k 1).

Substituting the response value bx(1)(k 1) of x(1)(k 1) into the equation
above gives that

x(0)(k) =

·µ
x(0)(1)

b

a

¶
e a(k 2) +

b

a

¸
;

that is,

x(0)(k) =
b

a
+

·
b

a
x(0)(1)

¸
e a(k 2).

Now from
b

a
=

a

1 + 0.5a
· b
a
=

b

1 + 0.5a
= ,

we have
x(0)(k) =

h
x(0)(1)

i
e a(k 2). ¤

Example 7.3.1. Assume that

X(0) =
¡
x(0)(i)

¢5
i=1

= (2.874, 3.278, 3.337, 3.390, 3.679)

is a given sequence of raw data. We use the following three GM models to
simulate X(0) and compare their simulation accuracies.

1. x(0)(k) + az(1)(k) = b;

2. x(0)(k) = x(1)(k 1); and

3. x(0)(k) =
£

x(0)(1)
¤
e a(k 2).

Solution: 1. Step 1: Applying 1-AGO on X(0) gives us

X(1) =
¡
x(1)(i)

¢5
i=1

= (2.874, 6.152, 9.489, 12.879, 16.558) .

Step 2: Perform a quasi-smoothness check on X(0). From

(k) =
x(0)(k)

x(1)(k 1)
,
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it follows that

(3) =
x(0)(3)

x(1)(2)
=
3.337

6.152
0.54,

(4) =
x(0)(4)

x(1)(3)
=
3.390

9.489
0.36,

and

(5) =
x(0)(5)

x(1)(4)
=
3.679

12.879
0.29.

So, (4) < 0.5 and (5) < 0.5. That is, for the case of k > 3, the condition
of being quasi-smooth is satisfied.

Step 3: Check to see whetherX(1) satisfies the law of quasi-exponentiality.
From

(1)(k) =
x(1)(k)

x(1)(k 1)
,

it follows that
(1)(3) =

x(1)(3)

x(1)(2)
=
9.489

6.152
1.54,

(1)(4) =
x(1)(4)

x(1)(3)
=
12.879

9.489
1.36,

and
(1)(5) =

x(1)(5)

x(1)(4)
=
16.558

12.879
1.29.

So, when k > 3, (1)(k) [1, 1.5], = 0.5. That is, the law of quasi-
exponentiality is satisfied. So, we can establish a GM(1, 1) model for X(1).

Step 4: Apply a consecutive neighbor generation to X(1). Let

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k 1).

Then, it follows that

Z(1) =
¡
z(1)(1), z(1)(2), z(1)(3), z(1)(4), z(1)(5)

¢
= (2.874, 4.513, 7.820, 11.184, 14.718) .

Therefore,

B =

z(1)(2) 1

z(1)(3) 1

z(1)(4) 1

z(1)(5) 1

=

4.513 1

7.820 1

11.184 1

14.718 1

,
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Y =

x(0)(2)

x(0)(3)

x(0)(4)

x(0)(5)

=

3.278

3.337

3.390

3.679

;

and

BTB =

4.513 1

7.820 1

11.184 1

14.718 1

T

·

4.513 1

7.820 1

11.184 1

14.718 1

=
423.244 38.236

38.236 4
.

So,

£
BTB

¤ 1
=

423.244 38.236

38.236 4

1

=
0.017317 0.165537

0.165537 1.83236
.

Step 5: Perform a least squares estimate for the parametric sequenceba = [a, b]T . We can obtain that
ba =

£
BTB

¤ 1
BTY

=
0.017317 0.165537

0.165537 1.83236
·

4.513 1

7.820 1

11.184 1

14.718 1

T

·

3.278

3.337

3.390

3.679

;

so,

ba =
0.087385 1.085292

0.030118 0.537861

0.028136 0.019006

0.089335 0.604014

T

·

3.278

3.337

3.390

3.679

=
0.0372

3.06536
.
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Step 6: Determine the model. We have

dx(1)

dt
0.0372x(1) = 3.06536

and the time response sequence

bx(1)(k + 1) =
£
x(0)(1) b

a

¤
e ak + b

a

= 85.276151 · e0.0372k 82.402151.

Step 7: Solve the model obtained in Step 6 for the simulation value of
X(1).

bX(1) =
¡bx(1)(i)¢5

i=1
== (2.8740, 6.1060, 9.4605, 12.9422, 16.5558) .

Step 8: Restore the bX(1)-value to find the simulation value of X(0). From

bx(0)(k) = (1)bx(1)(k) = bx(1)(k) bx(1)(k 1),

it follows that

bX(0) =
¡bx(0)(i)¢5

i=1
= (2.8740, 3.2320, 3.3545, 3.4817, 3.6136) .

Step 9: Evaluate the error. The following Table 7.1 gives the relevant
error values.

Table7.1. Relevant error values
Real
Data

Simulated
Data

Errors
Relative
Errors (%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

| (k)|
x(0)(k)

2 3.278 3.2320 0.0460 1.40
3 3.337 3.3545 -0.0175 0.52
4 3.390 3.4817 -0.0917 2.71
5 3.679 3.6136 0.0654 1.78
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From Table 7.1, we can compute the square sum of the errors:

s = T =

(2)

(3)

(4)

(5)

T

·

(2)

(3)

(4)

(5)

=

0.0460

0.0175

0.0917

0.0654

T

·

0.0460

0.0175

0.0917

0.0654

= 0.01511

and obtain the average relative error:

=
1

4

5X
k=2

k = 1.6025%.

2. From 1, we know that

a = 0.03720 and b = 3.06536.

So,

=
a

1 + 0.5a
=

0.03720

1 + 0.5 · ( 0.0372)
= 0.0379

and

=
b

1 + 0.5a
=

3.06536

1 + 0.5 · ( 0.0372)
= 3.1235,

and it follows that

bx(0)(k) = x(1)(k 1)

= 3.1235 + 0.0379x(1)(k 1).

Therefore,

bX(0) =
¡bx(0)(i)¢5

i=1
= (3.2324, 3.2324, 3.3567, 3.4820, 3.6105) .

Now, we evaluate errors.
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Table 7.2. Computed error values

Real
Data

Simulated
Data

Errors
Relative
Errors (%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

| (k)|
x(0)(k)

2 3.278 3.2324 0.0456 1.39
3 3.337 3.3567 -0.0197 0.59
4 3.390 3.4820 -0.0920 2.71
5 3.679 3.6105 0.0685 1.86

From Table 7.2, we can compute the sum of squares of errors as follows,

s = T = 0.0156

and the average relative error as follows,

=
1

4

5X
k=2

k = 1.6375%.

3. From 2, it follows that

= 0.0379, = 3.1235.

So, we have

bx(0)(k) =
£

x(0)(1)
¤
e a(k 2)

= [3.1235 + 0.0379 · 2.874] · e0.0372(k 2)

= 3.2324246 · e0.0372(k 2).

Therefore,

bX(0) =
¡bx(0)(i)¢5

i=1
= (3.1144, 3.2324, 3.3549, 3.4821, 3.6141) .

Now, we do an error evaluation (see Table 7.3).

Table 7.3. Error evaluations
Real
Data

Simulated
Data

Errors
Relative
Errors (%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

| (k)|
x(0)(k)

2 3.278 3.2324 0.0456 1.39
3 3.337 3.3549 -0.0179 0.54
4 3.390 3.4821 -0.0921 2.72
5 3.679 3.6141 0.0649 1.76
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From Table 7.3, we can compute the sum of squares of errors as follows,

s = T = 0.01509

and the average relative error as follows,

=
1

4

5X
k=2

k = 1.6025%.

4. From the sums of squares of errors and average relative errors of the
three models used, it can be seen that the exponential models

bx(1)(k) = £x(0)(1) b
a

¤
e a(k 1) + b

a

bx(0)(k) = bx(1)(k) bx(1)(k 1)

and bx(0)(k) = h x(0)(1)
i
· e a(k 2)

have relatively high accuracy, whereas the accuracy of the di erence model

bx(0)(k) = x(1)(k 1)

is relatively low.

Theorem 7.3.5. If X(0) is a quasi-smooth sequence, then the develop-
ment coe cient a of the GM(1, 1) model of its 1-AGO sequence X(1) can
be written as

a =

b

x(1)(k 1)
(k)

1 + 0.5 (k)
,

where

(k) =
x(0)(k)

x(1)(k 1)
.

Proof. From
x(0)(k) + az(1)(k) = b,

it follows that

x(0)(k) + a[0.5x(1)(k) + 0.5x(1)(k 1)] = b,

x(0)(k) + a[0.5x(0)(k) + 0.5x(1)(k 1) + 0.5x(1)(k 1)] = b,

x(0)(k) + a[0.5x(0)(k) + x(1)(k 1)] = b.

Therefore,

a =
b x(0)(k)

x(1)(k 1) + 0.5x(0)(k)
,
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and

a =

b

x(1)(k 1)

x(0)(k)

x(1)(k 1)

1 + 0.5
x(0)(k)

x(1)(k 1)

=

b

x(1)(k 1)
(k)

1 + 0.5 (k)
. ¤

From Theorem 7.3.5, it follows that when b is limited and x(1)(k 1) is
su ciently large, the development coe cient ( a) of the GM(1, 1) model
is mainly determined by the smooth ratio (k).
In each GM(1,1) model, Theorem 7.3.1 is the basis for the construction

of such a model. Because the result in Theorem 7.3.1 is established using
vertical distances of data, it is reasonable to expect better simulation results
if true distances of data are applied. To this end, we devote the rest of this
section to establish a new result, similar to Theorem 7.3.1, but based on the
estimate of least sum of squared true distances between data points and a
special exponential curve. To achieve this end, let us first look at how the
concept of di erentiation, as studied in calculus, has been generalized to the
study of discrete time series data. For a fixed whole number r, the derivative

of the sequence Dr(X(0))= X(r), where X(0) =
³
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

´
is a

sequence of raw data and X(r) =
³
x
(r)
1 , x

(r)
2 , ..., x

(r)
n

´
the sequence obtained

by applying the accumulating generator D on X(0) r times, is defined as
follows.

d

dt
X
(r)
(k) = limtime unit minimum

x
(r)
k x

(r)
k 1

time unit

=

Pk
i=1 x

(r 1)
i

Pk 1
i=1 x

(r 1)
i

1
= x

(r 1)
k .

(7.1)

That is, the derivative of X(r) with respect to time is X(r 1).
Assume that one of the exponential (solution) curves of the following

di erential equation
dy

dx
+ y = , (7.2)

where and are some fixed constants, has been used to fit the given set
of data:

(1, x
(1)
1 ), (2, x

(1)
2 ), (3, x

(1)
3 ), ..., (n, x

(1)
n ).

Let (xk, yk) be the point on that special curve such that the distance be-
tween (xk, yk) and (k, x

(1)
k ) is the minimum of all the distances between

points on the special curve of equ. (7.2) and the data point (k, x(1)k ), for k
= 1, 2, ..., n.
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We now consider the sum of squared distances between (xk, yk) and
(k, x

(1)
k ), k = 1, 2, ..., n, as follows.

s2 =
Pn
k=1

·
(xk k)

2
+
³
yk x

(1)
k

´2¸
=
Pn
k=1

³
yk x

(1)
k

´2 Ã
xk k

yk x
(1)
k

!2
+ 1 .

(7.3)

Because the distance between (xk, yk) and (k, x
(1)
k ) equals that between the

point (k, x(1)k ) and the special curve of equ. (7.2), we have

yk x
(1)
k

xk k
=

1

dyk
dx

(7.4)

because the slope yk x
(1)
k

xk k is perpendicular to the tangent of the special
curve of equ. (7.2) at the point (xk, yk).

If the special curve of equ. (7.2) fits the data points {
³
k, x

(1)
k

´
: k = 1, 2,

..., n} well, we should have according to equ. (7.1) the following,

dyk
dx

dx
(1)
k

dt
= x

(0)
k , k = 1, 2, ..., n. (7.5)

Substituting equ. (7.5) into equ. (7.3) provides

s2 =
nX
k=1

³
yk x

(1)
k

´2 ·³
x
(0)
k

´2
+ 1

¸
. (7.6)

Because dyk/dx+ yk = , equ. (7.5) implies

yk =
dyk/dx

=
x
(0)
k . (7.7)

Substituting equ. (7.7) into equ. (7.6) o ers

s2 =
nX
k=1

Ã
x
(0)
k x

(1)
k

!2 ·³
x
(0)
k

´2
+ 1

¸
. (7.8)

Now, we find the estimated values a and b for and such that s2 in equ.
(7.8) will be the minimum possible. By di erentiating s2 with respect to
and , respectively, we have

s2
=
2
3

nX
k=1

³
x
(0)
k

´·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
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and
s2
=
2
2

nX
k=1

·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
.

Assume that when = a and = b, s2 value, as shown in equ.(7.8),
reaches its minimum. Then, = a and = b satisfy the following system
of equations.

Pn
k=1

³
x
(0)
k

´·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
= 0

Pn
k=1

·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
= 0.

(7.9)

By applying the first equation to the second equation in equ. (7.9), we
obtain the following equivalent system.

Pn
k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
= 0

Pn
k=1

·³
x
(0)
k

´2
+ 1

¸ h
x
(0)
k x

(1)
k

i
= 0.

(7.10)

Solving this system for and provides the following.

=

Pn
j,k=1 x

(0)
j

·³
x
(0)
k

´2
+ 1

¸ ·³
x
(0)
j

´2
+ 1

¸ h
x
(0)
k x

(0)
j

i
Pn
j,k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸ ·³
x
(0)
j

´2
+ 1

¸ h
x
(1)
k x

(1)
j

i (7.11)

and

=

Pn
j,k=1 x

(0)
k x

(1)
j

·³
x
(0)
k

´2
+ 1

¸ ·³
x
(0)
j

´2
+ 1

¸ h
x
(0)
j x

(0)
k

i
Pn
j,k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸ ·³
x
(0)
j

´2
+ 1

¸ h
x
(1)
k x

(1)
j

i . (7.12)

For i = 1, 2, · · ·, n, let us define the following matrices:

(0)
i A =

h
1 x

(0)
i

i
1×2

,(r,j)A =

·
j j · · · j

x
(r)
1 x

(r)
2 · · · x

(r)
n

¸
2×n

,

(0)X = diag
h
x
(0)
1 , x

(0)
2 , · · ·, x(0)n

i
=

x
(0)
1 0 · · · 0

0 x
(0)
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · x

(0)
n n×n

,
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(0)A = diag
h
(0)
1 A,

(0)
2 A, · · ·,(0)n A

i

=

1 x
(0)
1 0 0 · · · 0 0

0 0 1 x
(0)
2 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 x

(0)
n n×2n

,

B =
h
(0)
1 A,

(0)
2 A, · · ·,(0)n A

iT
1×2n

=
h
1 x

(0)
1 1 x

(0)
2 · · · 1 x

(0)
n

iT
,

C =

·
(0)
1 A/x

(0)
1

(0)
2 A/x

(0)
2 · · · · · · (0)

n A/x
(0)
n

B

¸T
2×2n

.

Theorem 7.3.6. Assume that the time series X(0) as above is non-
negative. If ba = £

a b
¤T
is the least sum of squared distances estimate

sequence of parameters
£ ¤T

such that a curve satisfying equ. (7.2)
provides the best true distance fit of the time series X(0), then ba satisfies

ba = (1,1)A(0)X(0)AC

·
0 1
1 0

¸
(0,1)A(0)X(0)AB

det((1,1)A(0)X(0)AC)
. (7.13)

Proof. First, let us look at the denominator of equ. (7.13).

det((1,1)A (0)X(0)AC) = det

Ã"
x
(0)
1 x

(0)
2 · · · x

(0)
n

x
(0)
1 x

(1)
1 x

(0)
2 x

(1)
2 · · · x

(0)
n x

(1)
n

#

×

x
(0)
1 + 1/x

(0)
1

³
x
(0)
1

´2
+ 1

x
(0)
2 + 1/x

(0)
2

³
x
(0)
2

´2
+ 1

· ·
· ·
· ·

x
(0)
n + 1/x

(0)
n

³
x
(0)
2

´2
+ 1

= det

Pn
k=1

·³
x
(0)
k

´2
+ 1

¸ Pn
k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸
Pn

k=1 x
(0)
k

·³
x
(0)
k

´2
+ 1

¸ Pn
k=1 x

(0)
k x

(1)
k

·³
x
(0)
k

´2
+ 1

¸

=
Pn

j,k=1 x
(0)
k

·³
x
(0)
k

´2
+ 1

¸ ·³
x
(0)
j

´2
+ 1

¸ h
x
(1)
k x

(1)
j

i
.

(7.14)
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Next, let us look at the numerator of equ. (7.13) in two steps. First, we
compute

(1,1)A(0)X(0)AC

·
0 1
1 0

¸

as follows:

(1,1)A (0)X(0)AC

·
0 1
1 0

¸
=

"
x
(0)
1 x

(0)
2 · · · x

(0)
n

x
(0)
1 x

(1)
1 x

(0)
2 x

(1)
2 · · · x

(0)
n x

(1)
n

#

×

³
x
(0)
1

´2
+ 1

h
x
(0)
1 + 1/x

(0)
1

i
³
x
(0)
2

´2
+ 1

h
x
(0)
2 + 1/x

(0)
2

i
· ·
· ·
· ·³

x
(0)
n

´2
+ 1

h
x
(0)
n + 1/x

(0)
n

i

=

Pn
k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸ Pn
k=1

·³
x
(0)
k

´2
+ 1

¸
Pn
k=1 x

(0)
k x

(1)
k

·³
x
(0)
k

´2
+ 1

¸ Pn
k=1 x

(1)
k

·³
x
(0)
k

´2
+ 1

¸ .

(7.15)
Secondly, we compute (0,1)A(0)X(0)AB as follows.

(0,1)A(0)X(0)AB =
x
(0)
1 x

(0)
2 · · · x

(0)
n³

x
(0)
1

´2 ³
x
(0)
2

´2
· · ·

³
x
(0)
n

´2

³
x
(0)
1

´2
+ 1³

x
(0)
2

´2
+ 1

·
·
·³

x
(0)
n

´2
+ 1

=

Pn
k=1 x

(0)
k

·³
x
(0)
k

´2
+ 1

¸
Pn
k=1

³
x
(0)
k

´2 ·³
x
(0)
k

´2
+ 1

¸ .

(7.16)
When we put equs. (7.14) through (7.16) together, and compare our

result with those in equs. (7.11) and (7.12), we finish our proof. ¤
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7.4 Model: Remnant GM(1,1)

When the accuracy of a GM(1, 1) model is not meeting a predetermined
requirement, one can establish a GM(1, 1) model using the error sequence
to remedy the original model in order to improve the accuracy.

Definition 7.4.1. Assume that X(0) is a sequence of raw data, X(1) the
1-AGO sequence of X(0), and

bx(1)(k + 1) = [x(0)(1) b

a
] · e ak +

b

a

the time response expression of GM(1, 1). Then,

dbx(1)(k + 1) = ( a) · [x(0)(1) b

a
] · e ak

is called the restored value through derivatives.

Proposition 7.4.1. Assume that

dbx(1)(k + 1) = ( a) · [x(0)(1) b

a
] · e ak

k = 0, 1, 2, ..., n 1, are restored values through derivatives, and

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k)
k = 0, 1, ..., n 1, the restored values through inverse accumulating. Then

dbx(1)(k + 1) 6= bx(0)(k + 1).
Proof.

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k)
=

£
x(0)(1) b

a

¤ · e ak + b
a£

x(0)(1) b
a

¤ · e a(k 1) b
a

= (1 ea) · £x(0)(1) b
a

¤ · e ak.

Because

ea = 1 + a+
a2

2!
+
a3

3!
+ · · ·+ a

m

m!
+ · · ·,

we have

1 ea = a
a2

2!

a3

3!
· · · am

m!
· · · 6= a.

Therefore,
dbx(1)(k + 1) 6= bx(0)(k + 1). ¤
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From Proposition 7.4.1, it can be seen that GM(1, 1) is neither a di er-
ential equation nor a di erence equation. However, when |a| is su ciently
small, 1 ea a. So,

dbx(1)(k + 1) bx(0)(k + 1).
This implies that the results of di erentiation and di erence are very close.
Therefore, GM(1, 1) can be seen as both a grey di erential equation and a
grey di erence equation.
Due to the fact that the restored values through derivatives and through

inverse accumulating are not the same, in order to reduce possible errors
caused in reciprocating operations, we often use the errors of X(1) to im-
prove the simulation values of X(1), where

bx(1)(k + 1) = [x(0)(1) b

a
] · e ak +

b

a
.

Definition 7.4.2. Assume that

(0) =
³

(0)(1), (0)(2), ..., (0)(n)
´
,

where
(0)(k) = x(1)(k) bx(1)(k),

is the error sequence of X(1). If there exists k0 satisfying:

1. For any k k0,
(0)(k) has the same sign, and

2. n k0 4, then³
| (0)(k0)|, | (0)(k0 + 1)|, ..., | (0)(n)|

´
is called the error sequence of modelability, which is still denoted as

(0) =
³

(0)(k0),
(0)(k0 + 1), ...,

(0)(n)
´
.

Proposition 7.4.2. Assume that (0)is an error sequence of modelability
with

(1) =
³

(1)(k0),
(1)(k0 + 1), ...,

(1)(n)
´

being its 1-AGO sequence, whose GM(1, 1) time response sequence is given
by b(1)(k + 1) = · (0)(k0)

b

a

¸
· e a (k k0) +

b

a
, k k0.

Then the simulation sequence of the error sequence (0) is given by

b(0) = ³b(0)(k0),b(0)(k0 + 1), ...,b(0)(n)´ ,
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where

b(0)(k + 1) = ( a ) ·
·
(0)(k0)

b

a

¸
· e a (k k0), k k0.

Definition 7.4.3. If (0) is used to modify bX(1), the time response se-
quence after modification

bx(1)(k + 1) =
£
x(0)(1) b

a

¤ · e ak + b
a , k < k0£

x(0)(1) b
a

¤ · e ak + b
a

±a ·
h
(0)(k0)

b
a

i
· e a (k k0), k k0

is called the GM(1, 1) model with error modification, or remnant GM(1, 1)
for short.

Here, the sign of

b(0)(k + 1) = a ×
·
(0)(k0)

b

a

¸
× e a (k k0),

the error modification value, needs to be the same as the error (0).
If a modeling of the error sequence of X(0) and bX(0)

(0) =
³

(0)(k0),
(0)(k0 + 1), ...,

(0)(n)
´

is applied to modify the simulation value bX(0) of X(0), then di erent meth-
ods of restoration from bX(1) to bX(0) can produce di erent time response
sequences of error modification.

Definition 7.4.4. If

bx(0)(k) = bx(1)(k) bx(1)(k 1) = (1 ea) ·
·
x(0)(1)

b

a

¸
· e a(k 1),

then the corresponding time response sequence of error modification

bx(0)(k + 1) =
(1 ea) · £x(0)(1) b

a

¤ · e ak, k < k0

(1 ea) · £x(0)(1) b
a

¤ · e ak

±a ·
h
(0)(k0)

b
a

i
· e a (k k0), k k0

is called the error modification model of inverse accumulating restoration.

Definition 7.4.5. If

bx(0)(k + 1) = ( a) ·
·
x(0)(1)

b

a

¸
· e ak,
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then the corresponding time response sequence of error modification

bx(0)(k + 1) =
( a) · £x(0)(1) b

a

¤ · e ak, k < k0

( a) · £x(0)(1) b
a

¤ · e ak

±a ·
h
(0)(k0)

b
a

i
· e a (k k0), k k0

is called the error modification model of derivative restoration.

In the discussions above, all the error simulation terms in remnant GM(1,
1) have been taken to be the derivative restoration. Of course, they can be
taken to be inverse accumulating restoration. That is, we can take

b(0)(k + 1) = (1 ea ) ·
·
(0)(k0)

b

a

¸
· e a (k k0), k k0.

As long as |a | is su ciently small, the e ects of di erent error restoration
methods on the modified bx(0)(k + 1) are almost the same.
Example 7.4.1. The following sequence of data represents the morbidity

in rape at Yunmeng County of Hubei Province, The People’s Republic of
China,

X(0) = (x(0)(i))13i=1 = (6, 20, 40, 25, 40, 45, 35, 21, 14, 18, 15.5, 17, 15) .

Establishing a GM(1, 1) model produces the following time response se-
quence

bx(1)(k + 1) = 567.999 · e 0.06486k + 573.999.

Applying inverse accumulating restoration gives

bX(0) = {bx(0)(k)}132
= (35.6704, 33.4303, 31.3308, 29.3682, 27.5192, 25.7900,

24.1719, 22.6534, 21.2307, 19.8974, 18.6478, 17.4768).
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To evaluate the accuracy, we obtain Table 7.4 of accuracies.

Table 7.4. Error evaluations for accuracies
Real
Data

Simulated
Values

Errors
Relative
Errors(%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

¯̄̄
(k)

x(0)(k)

¯̄̄
2 20 35.6704 -15.6704 78.3540
3 40 33.4303 6.5697 16.4242
4 25 31.3308 -6.3308 25.3232
5 40 29.3682 10.6318 26.5795
6 45 27.5192 17.4808 38.8642
7 35 25.7901 9.2099 26.3140
8 21 24.1719 -3.1719 15.1043
9 14 22.6534 -8.6534 61.8100
10 18 21.2307 -3.2307 17.9483
11 15.5 19.8974 -4.3974 28.3703
12 17 18.6478 -1.6478 9.6929
13 15 17.4768 -2.4768 16.5120

From this table, it can be seen that the simulation error is relatively
large. Now, we further calculate the sum of squares of errors

s = T = 957.18,

and the average relative error

=
1

12

13X
k=2

k = 30.11%.

The sum of squares of errors is very large with the relevant accuracy
less than 70%. So, it is necessary to apply a remnant model to do some
remedies. Taking k0 = 9 gives error sequence

(0) =
¡
(0)(i)

¢13
i=9

= ( 8.6534, 3.2307, 4.3974, 1.6478, 2.4768) ,

which is an error sequence of modelability. Taking absolute value gives that

(0) = (8.6534, 3.2307, 4.3974, 1.6478, 2.4768) .

Establishing a GM(1, 1) model for (0) produces the time response se-
quence for (1), the 1-AGO sequence of (0), as follows,

b(1)(k + 1) = 24 · e 0.16855(k 9) + 32.7,

whose restored value of derivatives isb(0)(k + 1) = ( 0.16855) · ( 24) · e 0.16855(k 9)

= 4.0452 · e 0.16855(k 9).
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From bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k)
= (1 ea) · £x(0)(1) b

a

¤ · e ak

= 38.0614 · e 0.06486k,

we can obtain the remnant model of inverse accumulating restoration

bx(0)(k + 1) = 38.0614 · e 0.06486k, k < 9

38.0614 · e 0.06486k 4.0452 · e 0.16855(k 9), k 9,

where the sign of b(0)(k + 1) is the same as the original error sequence.
Based on this model, we can modify the four simulation values with k =

10, 11, 12, 13, with improved accuracy listed in Table 7.5.

Table 7.5. Improved error checks

Real
Data

Modified
simulated
values

Errors
Relative
Errors(%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

¯̄̄
(k)

x(0)(k)

¯̄̄
10 18 17.1858 0.8142 4.52
11 15.5 16.4799 0.9799 6.32
12 17 15.7604 1.2396 7.29
13 15 15.0372 0.0372 0.25

From this table, we can compute the sum of squares of errors as follows,

s = T = 3.1611,

and the average relative error

=
1

4

13X
k=10

k = 4.595%.

Here, the simulation accuracy of the remnant GM(1, 1) has been obvi-
ously increased. However, the current error sequence no longer satisfies the
modeling requirement. So, if the improved accuracy is still unsatisfactory,
we will have to consider other models or some appropriate choice of data
to the original sequence.

7.5 Model Group of GM(1,1) Type

In practical modeling, some of the data values in the original sequence may
not be applied to do the modeling. Each sub-sequence of the original data
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values can be used to establish a model. In general, di erent models are
built based on di erent sub-sequences of the original sequence. Even though
we might establish GM(1, 1) models of the same kind, di erent choices of
the sub-sequences will in general give di erent values for the parameters a
and b. These variations are exactly the reflection in modeling of the fact
that di erent circumstances and di erent conditions in the environment
a ect the characteristics of the system under consideration. For example,
for the food production in China, if we use the data values collected since
1949 to establish a GM(1, 1) model, the development coe cient ( a) will
be on the small side, but if only the values collected after 1978 are used, the
corresponding development coe cient ( a) will be obviously increased.

Definition 7.5.1. Assume that the following sequence

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
takes x(0)(n) as the origin of the time axis. Then the time with t < n is
called the past, t = n the present, and t > n the future.

Definition 7.5.2. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a sequence and

bx(0)(k + 1) = (1 ea) ·
·
x(0)(1)

b

a

¸
· e ak

the restored value of the GM(1, 1) time response sequence of X(0). Then

1. When t < n, bx(0)(t) is called a simulation value of the model, or
model simulation (value);

2. When t = n, bx(0)(t) is called a filter value of the model;
3. When t > n, bx(0)(t) is called a prediction (value) of the model.
The main purpose of modeling is to make predictions. So, in order to

improve the accuracy of prediction, we first need to guarantee a su ciently
high accuracy of simulation at the time moment t = n. That is to say, in
general, the data for modeling purposes should be taken as an equal-time-
interval sequence including x(0)(n).

Definition 7.5.3. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a sequence of raw data.

1. The GM(1, 1) model, built on the entire sequence X(0), is called all-
data-GM(1, 1).
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2. For k0 > 1, the GM(1, 1) model, built on the following sub-sequence

X(0) =
³
x(0)(k0), x

(0)(k0 + 1), ..., x
(0)(n)

´
is called a partial-data GM(1, 1).

3. Let x(0)(n+ 1) be the newest piece of information. When x(0)(n+ 1)
is inserted into the sequence X(0), the GM(1, 1) model, built on

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n), x(0)(n+ 1)

´
is called a new information GM(1, 1).

4. The GM(1, 1) model, built on the following new sequence obtained by
inserting x(0)(n+ 1) and deleting x(0)(1),

X(0) =
³
x(0)(2), ..., x(0)(n), x(0)(n+ 1)

´
is called a metabolic GM(1, 1).

Example 7.5.1. Let us use the last four data values of the sequence of
raw data in Example 7.4.1 to build a GM(1, 1) model. We now have

X(0) =
¡
x(0)(i)

¢4
i=1

= (18, 15.5, 17, 15) ,

whose 1-AGO sequence is

X(1) =
¡
x(1)(i)

¢4
i=1

= (18, 33.5, 50.5, 65.5) ,

and the sequence of the mean generation of consecutive neighbors of X(1)

is given by
Z(1) =

¡
z(1)(i)

¢4
i=1

= (18, 25.75, 42, 58) .

So, it follows that

B =

25.75 1

42 1

58 1

, Y =

15.5

17

15

.

So

£
BTB

¤ 1
=

5791.0625 125.75

125.75 3

1

=
0.001923 0.080603

0.080603 3.711922

and

BTY =
1983.125

47.5
.
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Therefore,

ba = £BTB¤ 1 ·BTY =
0.015093

16.47047
.

The GM(1, 1) time response sequence of X(1) is

bx(1)(k + 1) =

·
x(0)(1)

b

a

¸
· e ak +

b

a

= 1073.265487 · e 0.015093k + 1091.265487,

with the following simulated sequencebX(1) = (18, 34.0772, 49.9135, 65.5126) .

Let bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k);
we obtain a simulated sequence of X(0) as follows,bX(0) = (18, 16.0772, 15.8363, 15.5991) .

Here, it can be seen that the accuracy of these simulated values is much
higher than that obtained in Example 7.4.1, where an all-data GM(1, 1)
was used. Especially, for the relative error 13 of the filter value bx(0)(13),
the relevant error value of the all-data GM(1, 1) is four times greater than
that of the partial-data GM(1, 1). This fact implies that filter accuracy can
be improved by appropriately choosing the data to be used in the process
of modeling.
Example 7.5.2. For the sequence of raw data given in Example 7.3.1

X(0) = (2.874, 3.278, 3.337, 3.39, 3.679) ,

let us add a piece of new information x(0)(6) = 3.85. We now establish a
new information and a metabolic GM(1, 1) model, and compare the results.
Solution: 1. The new information model.
The sequence with the new piece of information added is given by

X(0) = (2.874, 3.278, 3.337, 3.39, 3.679, 3.85) .

Now,

B =

1
2 [x

(1)(1) + x(1)(2)] 1

1
2 [x

(1)(2) + x(1)(3)] 1

1
2 [x

(1)(3) + x(1)(4)] 1

1
2 [x

(1)(4) + x(1)(5)] 1

1
2 [x

(1)(5) + x(1)(6)] 1

=

4.513 1

7.82 1

11.184 1

14.7185 1

18.488 1

, Y =

3.278

3.337

3.390

3.679

3.850

,
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and

ba = £BTB¤ 1
BTY =

a

b
=

0.0429

3.02
.

So, we obtain the GM(1, 1) time response sequence as follows,

bx(1)(k + 1) = 73.263569 · e0.0429k 70.3895692

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k)
with the filter value at k = 6:

bx(0)(6) = 3.8126,
error

(6) = x(0)(6) bx(0)(6) = 0.0374,
and relative error

6 =
0.0374

3.85
= 0.97%.

2. The metabolic model.

Inserting a piece of new information and deleting an old piece of infor-
mation give us the modeling sequence

X(0) = (3.278, 3.337, 3.39, 3.679, 3.85) .

Now,

B =

4.9465 1

8.31 1

11.8446 1

15.609 1

, Y =

3.337

3.390

3.679

3.850

,

and

ba = £BTB¤ 1
BTY =

a

b
=

0.0523

3.0392
.

So, the GM(1, 1) time response sequence is

bx(1)(k + 1) = 61.388899 · e0.0523k 58.110899

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k),
with the filter value at k = 6

bx(0)(6) = 3.856,
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error
(6) = x(0)(6) bx(0)(6) = 0.006,

and relative error

6 =
0.006

3.85
= 0.16%.

3. Comparison of accuracies.

Table 7.6. Comparison of errors

Parameter
Filter
Values

Model Type a b bx(0)(5) bx(0)(6)
Old Model -0.0372 3.0653 3.6136
New-Info. Model -0.0429 3.02 3.653 3.8126
Metabolic Model -0.0523 3.0392 3.6595 3.856

Errors
Relative
Errors(%)

Model Type (5) (6) 5 6

Old Model 0.0654 1.78
New-Info. Model 0.026 0.0374 0.71 0.97
Metabolic Model 0.0195 0.006 0.53 0.16

From Table 7.6, for the accuracy of the filter value x(0)(5), both the new
information model and the metabolic model are better than the old model.
This end implies that the new information GM(1, 1) and the metabolic
GM(1, 1) have better prediction abilities than the old model. As a matter
of fact, in the development process of a grey system, there always exist some
stochastic interferences or some driving forces entering the system as time
goes on so that the consequent development of the system is accordingly
a ected. Therefore, when using the GM(1, 1) model to do predictions, high
accuracy can be achieved only for the first or the second data values after
the origin value x(0)(n). In general, the farther away into the future, and the
farther away from the origin data value, the weaker the prediction ability
of GM(1, 1) becomes. In practical applications, one needs to constantly
consider those interferences and driving factors entering the system as time
goes on and promptly add new pieces of information to the original sequence
X(0) and establish consequent new information GM(1, 1) models.
From the accuracy of the filter value x(0)(6), it can be seen that the

metabolic model is better than the new information model. From the angle
of prediction, it can be seen that the metabolic model is the most ideal pre-
diction model. As the system develops further, the significance of the older
data reduces so that at the same time when new data are added, the older
data are deleted promptly, the constantly renewing modeling sequence can
better reflect the current characteristics of the system. Especially, as the
accumulation of quantitative changes increases, a jump or sudden change in
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the system will occur. At this very moment, compared with the older sys-
tem, the current system is completely di erent. Hence, deleting those older
data values is obviously very reasonable. Besides, constantly accepting and
giving can avoid some of the di culty of the huge amount of computa-
tion involved in modeling due to the fact that increased information can
increase computer storage space tremendously.

7.6 GM(1,N) and GM(0,N)

In this section, we look at how to generalize GM(1,1) modeling to other
practical situations.
Definition 7.6.1. Assume that

X
(0)
1 =

³
x
(0)
1 (1), x

(0)
1 (2), ..., x

(0)
1 (n)

´
is a sequence of data of a system’s characteristics,

X
(0)
i =

³
x
(0)
i (1), x

(0)
i (2), ..., x

(0)
i (n)

´
, i = 2, 3, ..., N,

sequences of relevant factors,X(1)
i the 1-AGO sequence of X(0)

i , i = 1, 2, ...,
N , and Z(1)1 the sequence mean generated based on consecutive neighbors
of X(1)

1 . Then

x
(0)
1 (k) + az

(1)
1 (k) =

NX
i=2

bix
(1)
i (k)

is called a GM(1, N) grey di erential equation.

Definition 7.6.2. In a GM(1, N) grey di erential equation, ( a) is
called the development coe cient of the system, bix

(1)
i (k) the driving

term, bi the driving coe cient, and

ba = [a, b2, b3, ..., bN ]T
the sequence of parameters.

Theorem 7.6.1. Assume that X(0)
1 , X(0)

i , i = 2, 3, ..., N , X(1)
i , and Z(1)1

are the same as defined in Definition 7.6.1. Let

B =

z
(1)
1 (2) x

(1)
2 (2) · · · x

(1)
N (2)

z
(1)
1 (3) x

(1)
2 (3) · · · x

(1)
N (3)

· · · · · ·
· · · · · ·
· · · · · ·

z
(1)
1 (n) x

(1)
2 (n) · · · x

(1)
N (n)

, Y =

x
(0)
1 (2)

x
(0)
1 (3)

·
·
·

x
(0)
1 (n)

.
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Then the least squares estimate of the sequence of parameters

ba = [a, b2, b3, ..., bN ]T
satisfies ba = [BTB] 1BTY.

Definition 7.6.3. Assume

ba = [a, b2, b3, ..., bN ]T .
Then

dx(1)

dt
+ ax(1) = b2x

(1)
2 + b3x

(1)
3 + · · ·+ bNx(1)N

is called a whitenization equation (or shadow equation) of the following
GM(1, N) grey di erential equation

x
(0)
1 (k) + az

(1)
1 (k) = b2x

(1)
2 (k) + b3x

(1)
3 (k) + · · ·+ bNx(1)N (k).

Theorem 7.6.2. Assume that X(0)
i ,X

(1)
i , i = 1, 2, ..., N, Z

(1)
1 , B, Y are

all defined as in Theorem 7.6.1, and

ba = [a, b2, b3, ..., bN ]T = [BTB] 1BTY.

Then, we have

1. The solution of the whitenization equation

dx(1)

dt
+ ax(1) =

NX
i=2

bix
(1)
i

is given by

x(1)(t) = e at

·
NP
i=2

R
bix

(1)
i (t) · eatdt+ x(1)(0)

NP
i=2

R
bix

(1)
i (0)dt

¸

= e at

·
x(1)(0) t

NP
i=2
bix

(1)
i (0) +

NP
i=2

R
bix

(1)
i (t) · eatdt

¸
.

2. When all of X(1)
i , i = 2, 3, ..., N , vary slightly,

NX
i=2

bix
(1)
i (k)

is seen as a grey constant. Then the approximate time response sequence
of the GM(1, N) grey di erential equation

x
(0)
1 (k) + az

(1)
1 (k) =

NX
i=2

bix
(1)
i (k)
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is given by

bx(1)1 (k + 1) =
"
x
(1)
1 (0)

1

a

NX
i=2

bix
(1)
i (k + 1)

#
e ak +

1

a

NX
i=2

bix
(1)
i (k + 1),

where x(1)1 (0) is taken to be x
(0)
1 (1).

3. We have the restoration of inverse accumulation:

bx(0)1 (k + 1) = (1)bx(1)1 (k + 1) = bx(1)1 (k + 1) bx(1)1 (k).
4. We also have the GM(1, N) di erence simulation expression:

x
(0)
1 (k) = az

(1)
1 (k) +

NX
i=2

bix
(0)
i (k).

Definition 7.6.4. Assume that X(0)
1 is a data sequence of a system’s

characteristics, X(0)
i , i = 2, 3, ..., N , are sequences of relevant factors, and

X
(1)
i the 1-AGO sequences of X(0)

i , i = 1, 2, ..., n. Then

X
(1)
1 = b2X

(1)
2 + b3X

(1)
3 + · · ·+ bNX

(1)
N + a

is called a GM(0, N) model.

Because GM(0, N) does not contain derivatives, it is a static model. It,
in form, is similar to that of linear regression models, but has some essen-
tial di erences from linear regression models. In general, linear regression
models are built based on the original data sets, and the foundation for
GM(0, N) models is the 1-AGO sequences of the original data.

Theorem 7.6.3. Assume that X(0)
i and X(1)

i are defined the same way
as in Definition 7.6.4, and

B =

x
(1)
2 (2) x

(1)
3 (2) · · · x

(1)
N (2) 1

x
(1)
2 (3) x

(1)
3 (3) · · · x

(1)
N (3) 1

· · · · · · · · · · · · · · ·

x
(1)
2 (n) x

(1)
3 (n) · · · x

(1)
N (n) 1

, Y =

x
(1)
1 (2)

x
(1)
1 (3)

· · ·

x
(1)
1 (n)

.

Then the least squares estimate of the parameter sequence

bb = [b2, b3, · · ·, bN , a]T
is bb = £BTB¤ 1

BTY.
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Example 7.6.1. Assume that

X
(0)
1 =

³
x
(0)
1 (i)

´5
i=1

= (2.874, 3.278, 3.307, 3.390, 3.679)

is a sequence of a system’s characteristics, and

X
(0)
2 =

³
x
(0)
2 (i)

´5
i=1

= (7.04, 7.645, 8.075, 8.530, 8.774)

a data sequence of a relevant factor. We establish a GM(1, 2) and a GM(0,
2) model, respectively.

Solution: 1. Assume that the GM(1, 2) whitenization equation is

dx
(1)
1

dt
+ ax

(1)
1 = bx

(1)
2 .

Performing an 1-AGO to X(0)
1 and X(0)

2 individually gives

X
(1)
1 =

³
x
(1)
1 (i)

´5
i=1

= (2.874, 6.152, 9.459, 12.849, 16.528) ,

and

X
(1)
2 =

³
x
(1)
2 (i)

´5
i=1

= (7.04, 14.685, 22.760, 31.290, 40.064) .

The sequence mean generated based on consecutive neighbors of X(1)
1 is

given as follows.

Z
(1)
1 =

³
z
(1)
1 (i)

´5
i=1

= (2.874, 4.513, 7.8055, 11.154, 14.6885) .

So, it follows that

B =

z
(1)
1 (2) x

(1)
2 (2)

z
(1)
1 (3) x

(1)
2 (3)

z
(1)
1 (4) x

(1)
2 (4)

z
(1)
1 (5) x

(1)
2 (5)

=

4.513 14.685

7.8055 22.760

11.154 31.290

14.6885 40.064

,

Y =
h
x
(0)
1 (2), x

(0)
1 (3), x

(0)
1 (4), x

(0)
1 (5)

iT
= [3.278, 3.307, 3.390, 3.679]

T
,

and

BTB =
421.456748 1181.415309

1181.415309 3317.855021
,
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£
BTB

¤ 1
=

1.280899 0.456100

0.456100 0.162709
,

BTY =

4.513 14.685

7.8055 22.760

11.154 31.290

14.6885 40.064

T

·

3.278

3.307

3.390

3.679

=
132.457454

376.873306
.

Therefore,£
a b

¤T
=
£
BTB

¤ 1
BTY

=
1.280899 0.456100

0.456100 0.162709
·

132.457454

376.873306

=
2.2273

0.9068
.

So, we obtain the estimation model

dx
(1)
1

dt
+ 2.2273x

(1)
1 = 0.9068x

(1)
2 ,

and approximate time response sequence

bx(1)1 (k + 1) =
h
x
(0)
1 (1)

b
ax

(1)
2 (k + 1)

i
· e ak + b

ax
(1)
2 (k + 1)

=
h
2.874 0.4071x

(1)
2 (k + 1)

i
e 2.2273k + 0.4071x

(1)
2 (k + 1).

From this end, it follows that

bx(1)1 (2) = 5.6436, bx(1)1 (3) = 9.1913,
bx(1)1 (4) = 12.7258, bx(1)1 (5) = 16.3082.

From the IAGO restoration:

bx(0)1 (k) = bx(1)1 (k) bx(1)1 (k 1),

we have

bX(0)
1 =

³bx(0)1 (i)´5
i=1

= (2.874, 2.770, 3.548, 3.535, 3.582)
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and the table of errors (see Table 7.7 for more details).

Table 7.7. Computed errors

Origianl
Data

Simulated
Data

Errors
Relative
Errors(%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

¯̄̄
(k)

x(0)(k)

¯̄̄
2 3.278 2.770 0.508 15.5
3 3.307 3.518 -0.241 7.3
4 3.390 3.535 -0.145 4.3
5 3.679 3.582 0.097 2.6

2. Assume that

X
(1)
1 = bX

(1)
2 + a

is the GM(0, 2) model. From

B =

x
(1)
2 (2) 1

x
(1)
2 (3) 1

x
(1)
2 (4) 1

x
(1)
2 (5) 1

=

14.685 1

22.760 1

31.290 1

40.064 1

and

Y =

x
(1)
1 (2)

x
(1)
1 (3)

x
(1)
1 (4)

x
(1)
1 (5)

=

6.152

9.459

12.849

16.528

,

we can obtain a least squares estimate of bb = £ b a
¤T
as follows,

bb = £ b a
¤T
=
£
BTB

¤ 1
BTY.
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That is

bb =

·
b
a

¸

=
3570.455021 113.799

113.799 4

1

·
1417.146962

44.988

=
0.003004 0.085460

0.085460 2.681312
·

1417.146962

44.988

=
0.412435

0.482515
.

So, we have the GM(0, 2) approximation

bx(1)1 (k) = 0.412435x(1)2 (k) 0.482515, k = 1, 2, ..., 5.

And, therefore, it follows that

bx(1)1 (1) = 2.421, bx(1)1 (2) = 5.574, bx(1)1 (3) = 8.905,

bx(1)1 (4) = 12.423, bx(1)1 (5) = 16.042.
From the IAGO restoration:

bx(0)1 (k) = bx(1)1 (k) bx(1)1 (k 1),

we have that

bX(0)
1 =

³bx(0)1 (i)´5
i=1

= (2.421, 3.153, 3.331, 3.518, 3.619)

and the table of errors in Table 7.8.

Table 7.8. Computed errors

Original
Data

Simulated
Data

Errors
Relative
Errors(%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

¯̄̄
(k)

x(0)(k)

¯̄̄
2 3.278 3.153 0.125 3.8
3 3.307 3.331 -0.024 0.7
4 3.390 3.518 -0.128 3.8
5 3.679 3.619 0.060 1.6
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7.7 GM(2,1) and Verhulst Model

GM(1, 1) is useful for sequences almost satisfying the law of exponentiality,
and can only be applied to describe monotonic processes of change. As
for non-monotonic wavelike development sequences, or saturated sigmoid
sequences, we can consider building GM(2, 1) and Verhulst models.

Definition 7.7.1. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
,

is a sequence of raw data, its 1-AGO sequence X(1) is

X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
,

where

x(1)(k) =
kX
i=1

x(0)(i),

k = 1, 2, ..., n, and the 1-IAGO sequence (1)X(0) of X(0) is

(1)X(0) =
³

(1)x(0)(1), (1)x(0)(2), ..., (1)x(0)(n)
´
,

where
(1)x(0)(k) = x(0)(k) x(0)(k 1),

k = 1, 2, ..., n, and the sequence mean generated of consecutive neighbors
of X(1) is

Z(1) =
³
z(1)(1), z(1)(2), ..., z(1)(n)

´
,

where

z(1)(k) =
1

2
[x(1)(k) + x(1)(k 1)],

k = 1, 2, ..., n. Then

(1)X(0) + a1X
(0) + a2Z

(1) = b

is called a GM(2, 1) grey di erential equation.

Definition 7.7.2. The equation

d2x(1)

dt
+ a1

dx(1)

dt
+ a2x

(1) = b

is called a whitenization equation of a GM(2, 1) grey di erential equation.



236 7. Grey Systems Modeling

Theorem 7.7.1. Assume that X(0),X(1), Z(1), and (1)X(0) are defined
the same way as in Definition 7.7.1, and

B =

x(0)(2) z(1)(2) 1

x(0)(3) z(1)(3) 1

· · · · · · · · ·

x(0)(n) z(1)(n) 1

,

Y =

(1)x(0)(2)

(1)x(0)(3)

· · ·
(1)x(0)(n)

=

x(0)(2) x(0)(1)

x(0)(3) x(0)(2)

· · ·

x(0)(n) x(0)(n 1)

.

Then the least squares estimate of the GM(2, 1) parameter sequence

ba = £ a1 a2 b
¤T

is given by ba = £BTB¤ 1
BTY.

Theorem 7.7.2. As for the solution of the GM(2, 1) whitenization equa-
tion, the following hold true.

1. If X(1) is a special solution of

d2x(1)

dt
+ a1

dx(1)

dt
+ a2x

(1) = b

and X
(1)
a general solution of the homogeneous equation

d2x(1)

dt
+ a1

dx(1)

dt
+ a2x

(1) = 0,

then X(1) + X
(1)
is the general solution of the GM(2, 1) whitenization

equation;

2. There are the following three cases for the general solution of the
homogeneous equation above.

(a) When the characteristic equation

r2 + a1r + a2 = 0
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has two distinct real solutions r1 and r2,

X
(1)
= C1e

r1t + C2e
r2t.

(b) When the characteristic equation

r2 + a1r + a2 = 0

has a real solution r of multiplicity 2,

X
(1)
= ert(C1 + C2t).

(c) When the characteristic equation

r2 + a1r + a2 = 0

has two complex conjugate solutions r1 = + i , r2 = i ,

X
(1)
= e t(C1 cos t+ C2 sin t).

3. There exist three possibilities for a special solution of a whitenization
equation:

(a) When zero is not a solution of the characteristic equation,

X(1) = C;

(b) When zero is a solution of multiplicity 1 of the characteristic equation,

X(1) = Cx;

(c) When zero is a multiplicate solution of the characteristic equation,

X(1) = Cx2.

Example 7.7.1. Assume that

X(0) =
¡
x(0)(i)

¢5
i=1

= (2.874, 3.278, 3.337, 3.390, 3.679)

is a sequence of raw data. We now establish a GM(2, 1) grey di erential
equation.

Solution: The 1-AGO and 1-IAGO sequences of X(0) are respectively
given as

X(1) =
¡
x(1)(i)

¢5
i=1

= (2.874, 6.152, 9.489, 12.879, 16.558)
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and

(1)X(0) =
¡

(1)x(0)(i)
¢5
i=1

= (0, 0.404, 0.059, 0.053, 0.289) ,

and the sequence mean generated of consecutive neighbors of X(1)

Z(1) =
¡
z(1)(i)

¢5
i=1

= (2.874, 4.513, 7.820, 11.184, 14.7185) .

Now,

B =

x(0)(2) z(1)(2) 1

x(0)(3) z(1)(3) 1

x(0)(4) z(1)(4) 1

x(0)(5) z(1)(5) 1

=

3.287 4.513 1

3.337 7.820 1

3.390 11.184 1

3.679 14.7185 1

,

and
Y =

£
(1)x(0)(i)

¤T
= [0.404, 0.059, 0.053, 0.289]

T
.

So,

ba =
£
a1 a2 b

¤T
=
£
BTB

¤ 1
BTY = [30.48, 1.04, 92.90]T .

So, the GM(2, 1) whitenization equation

d2x(1)

dt
+ 30.48

dx(1)

dt
1.04x(1) = 92.90

has its characteristic equation

2 + 30.48 1.04 = 0,

which has two distinct real solutions 1 = 0.0341, and 2 = 30.514. So,
the general solution of the homogeneous equation

d2x(1)

dt
+ 30.48

dx(1)

dt
1.04x(1) = 0

of the whitenization equation is

X
(1)
(t) = C1e

0.0341t + C2e
30.514t.

Because zero is not a solution of the previous characteristic equation, we
can easily obtain a special solution of the GM(2, 1) whitenization equation
as follows.

X(1) (t) =
92.9

1.04
= 89.3269.
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Therefore, we have

bX(1)(t) = X
(1)
(t) +X(1) (t)

= C1e
0.0341t + C2e

30.514t 89.3269.

Assume that x(0)(0) = 2.643; then

dx(1)

dt
|t=0 = x(0)(0) = 2.643.

Now, substituting

x(1)(t)|t=0 = x(1)(0) = x(0)(1) = 2.874

and
dx(1)

dt
|t=0 = x(0)(t)|t=0 = x(0)(0) = 2.643

into bX(1)(t) = C1e
0.0341t + C2e

30.514t 89.3269,

we obtain that
2.874 = C1 + C2 89.3269

2.643 = 0.0341C1 30.514C2.

So, it follows that

C1 = 92.107983, C2 = 2.931917.

So, bX(1)(t) = 92.107983e0.0341t + 2.931917e 30.514t 89.3269

Therefore, we obtain the GM(2, 1) time response sequence

bx(1)(k + 1) = 92.107983e0.0341k + 2.931917e 30.514k 89.3269

and

bX(1) =
¡bx(1)(i)¢5

i=1
= (2.874, 5.9761, 9.2820, 12.7026, 16.2418) .

From the IAGO restoration:

bx(0)(k) = bx(1)(k) bx(1)(k 1),

it follows that

bX(0) =
¡bx(0)(i)¢5

i=1
= (2.874, 3.1021, 3.3059, 3.4206, 3.5392) .



240 7. Grey Systems Modeling

Finally, we compute errors and relative errors, as shown in Table 7.9.

Table 7.9. Computed errors

Original
Data

Simulated
Data

Errors
Relative
Errors(%)

No. x(0)(k) bx(0)(k) (k) =
x(0)(k) bx(0)(k) k =

¯̄̄
(k)

x(0)(k)

¯̄̄
2 3.278 3.1021 0.1759 5.4
3 3.307 3.3059 0.0311 0.09
4 3.390 3.4206 -0.0306 0.09
5 3.679 3.5392 0.1399 3.8

Definition 7.7.3. Assume that X(0) is a sequence of original data, X(1)

the 1-AGO sequence of X(0), and Z(1) the sequence mean generated of
consecutive neighbor of X(1). Then

X(0) + aZ(1) = b[Z(1)]r

is called the GM(1, 1) power model.

Definition 7.7.4. The equation

dx(1)

dt
+ ax(1) = b[x(1)]r

is called the whitenization equation of the GM(1, 1) power model.

Theorem 7.7.3. The solution of the whitenization equation of the GM(1, 1)
power model is given by

x(1)(t) =

½
e (1 r)at

·
(1 r)

Z
be (1 r)atdt+ C

¸¾ 1
1 r

.

Theorem 7.7.4. Assume that X(0),X(1), and Z(1) are defined the same
way as in Definition 7.7.3, and

B =

z(1)(2)
£
z(1)(2)

¤r
z(1)(3)

£
z(1)(3)

¤r
· · · · · ·

z(1)(n)
£
z(1)(n)

¤r
, Y =

x(0)(2)

x(0)(3)

· · ·

x(0)(n)

.

Then the least squares estimate of the parameter sequence ba = £ a b
¤T

of the GM(1, 1) power model is given by

ba = £BTB¤ 1
BTY.
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Definition 7.7.5. When r = 2,

X(0) + aZ(1) = b[Z(1)]2

is called the grey V erhulst model.

Definition 7.7.6. The equation

dx(1)

dt
+ ax(1) = b[x(1)]2

is called the whitenization equation of the grey Verhulst model.

Theorem 7.7.5. 1. The solution of the Verhulst whitenization equation
is given by

x(1)(t) =
ax(1)(0)

bx(1)(0) + [a bx(1)(0)]eat
.

2. The time response sequence of the grey Verhulst model is given by

bx(1)(k + 1) = ax(1)(0)

bx(1)(0) + [a bx(1)(0)]eak
.

The Verhulst model is mainly used to describe and to study processes
with saturated states (or say sigmoid processes). For example, this model
is often used in the prediction of human populations, biological growth,
reproduction, economic life span of consumable products, etc. From the
solution of the Verhulst equation, it can be seen that when t , if
a > 0, then x(1)(t) 0; if a < 0, then x(1)(t) a

b . That is, when t is
su ciently large, for any k > t, x(1)(k +1) and x(1)(k) will be su ciently
close. At this time,

x(0)(k) = x(1)(k) x(1)(k 1) > 0.

So, the system approaches extinction.
When resolving practical problems, we often face processes with sigmoid

sequences of raw data. In this case, we can take the sequences of the original
data asX(1) and the 1-IAGO sequence asX(0) to establish a Verhulst model
to simulate X(1) directly.

Example 7.7.2. Study the number of large and medium-sized tractors
used in agriculture in Henan Province from 1978 to 1982. The original data
are given in Table 7.10.

Table 7.10. The original data

Year 1978 1979 1980 1981 1982
Number

(in ten thousand)
4.1299 5.2382 5.9666 6.4590 6.3160

From Figure 7.3, it can be seen that the curve of the original data is similar
to a sigmoid curve.
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FIGURE 7.3. The curve of the original data

Let

X(1) =
¡
x(1)(i)

¢5
i=1

= (4.1299, 5.2382, 5.9666, 6.4590, 6.3160) .

Then the 1-IAGO sequence X(0) of X(1) is

X(0) =
¡
x(0)(i)

¢5
i=1

= (4.1299, 1.1083, 0.7284, 0.4924, 0.1430) ,

and the sequence Z(1) mean generated of consecutive neighbors of X(1) is

Z(1) =
¡
z(1)(i)

¢5
i=1

= (4.1299, 4.68405, 5.6024, 6.2128, 6.3875) .

Now,

B =

z(1)(2)
£
z(1)(2)

¤2
z(1)(3)

£
z(1)(3)

¤2
z(1)(4)

£
z(1)(4)

¤2
z(1)(5)

£
z(1)(5)

¤2
=

4.68405 21.9403

5.6024 31.3869

6.2128 38.5989

6.3875 40.8002

,

Y =
£
x(0)(2), x(0)(3), x(0)(4), x(0)(5)

¤T
= [1.1083, 0.7284, 0.4924, 0.1430]

T
,

and £
BTB

¤ 1
=

132.7263 779.0299

779.0299 4621.045657

1

=
0.716807 0.120842

0.120842 0.020588
,
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BTY =
11.417292

60.350321
.

So, it follows that

ba = a

b
=
£
BTB

¤ 1
BTY =

0.891142

0.137196
.

By taking x(1)(0) = x(1)(1) = 4.1299, we can obtain the Verhulst time
response sequence as follows.

bx(1)(k + 1) = ax(1)(0)

bx(1)(0) + [a bx(1)(0)]eak
;

that is, bx(1)(k + 1) = 3.680327

0.566606 0.324536e 0.891142k
.

Based on this analysis, we can do simulation and prediction for the number
of large and medium-sized tractors used in agriculture in Henan Province
of China as follows.

bx(1)(1) = 4.1299, bx(1)(2) = 5.2597, bx(1)(3) = 5.9244,
bx(1)(4) = 6.2484, bx(1)(5) = 6.3918, bx(1)(6) = 6.4525,

where bx(1)(6) = 6.4525 is the predicted value for the number of large and
medium sized tractors used in agriculture in Henan Province in 1983. The
actual number for the year was x(1)(6) = 6.4389. So, the error of prediction
is

(6) = x(1)(6) bx(1)(6) = 0.0136,

and the relative error is

6 =

¯̄̄̄
(6)

x(1)(6)

¯̄̄̄
=
0.0136

6.4389
= 0.2%.

Our accuracy of prediction has reached 99.8%. The simulation error is

(0) = ( (i))
5
i=2 = ( 0.0215, 0.0422, 0.02106, 0.0758) .

So, we have achieved a very good simulation result.
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Grey Combined Models

From examples and studies presented in the previous chapters, it can be
seen that grey models possess such special abilities that they can weaken
any randomness existing in the original data and uncover patterns of evolu-
tion of the system under investigation. When compared with other models
widely used in practice, grey models seem to have very strong merging and
penetrating capabilities. If one employs grey models in her entire process
of modeling, she could supplement traditional models with the strength of
grey models so that the accuracy of resultant predictions can be greatly
improved. To this end, one can expect improvements in the following two
aspects.

1. Model establishment is the core of systems analysis. When statistical
models are considered, one needs to have large samples and large sets of
observational values. However, in practice, due to various reasons, many
available data sets just simply cannot satisfy these conditions. So, in these
cases, the idea of establishing statistical models is out the window. When
grey systems theory is applied, the ideal grey model is sought based on the
principle that even though the original data need to be respected, one can
employ scientific qualitative analysis to perform necessary modifications to
the original experiment, observations, and statistical records. On the other
hand, the centrally significant model in grey systems theory is the GM(1,1)
model, where one only needs to have four data values to determine the
parameters with a certain degree of accuracy. So, by using the principles
and methodology of grey systems theory with the original observational
data, one can expect to greatly improve the quality of modeling.
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2. Each attempt at establishing a model is only a mapping reflecting
one or several aspects of the subject of interest. Because the evolution of
the system of interest is constantly influenced by many known and un-
known, deterministic and random factors, it will be very limiting if one
only applies one kind of modeling method in the endeavor to uncover the
underlying development law of the system. Among all di erent methods of
modeling, di erent models have their di erent characteristics. And, these
characteristics can be employed to reveal di erent aspects of the subject
under investigation. That is, when GM(1,1) models are applied together
with other models, one can expect to deepen understanding about the sys-
tem of concern and its evolution.
In this chapter, we study the grey econometric G-E model, grey Cobb—

Douglas or production function G—C—D model, grey Markov G—M model,
and grey time series model. In order to compare these grey combined mod-
els with traditional combined prediction models, in the last section of the
chapter, we briefly look at the topic of combined predictions.

8.1 Econometric Models

8.1.1 Choice of Variables to Be Used in Modeling

Because it is very complicated to sort through various factors that a ect
the internal change of a system, the first question one needs to address
before establish a meaningful model for the system is how to appropriately
choose such variables to be applied in the system’s model that they will
eventually illustrate the changes of the system. The choice of variables
depends on one’s understanding of the system. On the other hand, one still
needs to employ quantitative means to analyze the situation. To this end,
the principle of grey incidences can be positively applied in order to resolve
this problem.
Assume that y stands for an internal variable of the system of our study

(for systems with more than one internal variable, these variables can be
studied one by one), and x1, x2, ..., xn the preimages of influencing factors
that are either positively correlated or negatively correlated to y. These
x-variables are seen as illustrating variables for behaviors of y. First, let
us study the degree i of incidence between y and xi, i = 1, 2, ..., n. For
a chosen lower threshold value 0, if i < 0, let us delete xi from the
list of variables of our consideration. In this way, we can delete all those
x-variables that have very weak correlation in terms of degree of incidence
with the internal variable y. Assume that xi1 , xi2 , ..., xim are all the re-
maining variables. Now, we study the degrees ijik of incidence between
these variables, ij , ik = i1, i2, ..., im. For a chosen upper threshold value 0

0,
if ijik

0
0, then the variables xij and xik are seen as the same kind of

variables. In this way, all the remaining x- variables are divided into sev-
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eral subclasses. Now, we choose one variable from each subclass to enter
into our final model building. The consequent result is that the final es-
tablished econometric model can be greatly simplified without losing any
expected power of description. At the same time, we can avoid the di cult
collinearity problem.

8.1.2 Econometric Models

When one needs to estimate parameters of an econometric model, he often
faces with di culties of explaining some phenomena appearing out of his
attempted approximation. For instance, such di culties appear when the
coe cients of some of the main variables are near zero, or when the signs
of the estimated values of some parameters do not agree with the real
life situation, or when slight vibrations in some observational values can
cause several estimations of parameters to change largely, etc. Among the
main reasons underlying these di culties are (1) during the time frame
within which observations are collected, the internal structure of the system
of study has changed dramatically; (2) there exist multiple collinearity
problems between the illustrating variables; and (3) there exist random
fluctuations or noises in the observational values. In terms of the cases (1)
and (2), one needs to re-consider the planned model structure or re-evaluate
and re-organize the illustrating variables. When one is confronted with case
(3), one can consider applying GM(1,1) simulated values of the original data
to build the final model in order to reduce the e ect of random fluctuation
and noises existing in the original data. The consequent model, called a grey
econometric combined model, in general can more adequately reflect the
relationship between the internal variable y and its illustrating variables
xi, i = 1, 2, ..., n. At the same time, when predictions based on GM(1,1)
made for the illustrating variables xi are applied to produce predictions for
the system’s internal variable y of the grey econometric model, the results
will be more scientifically solid. Also, by comparing predicted grey values
made for the system’s internal variable y with predictions obtained from
an econometric model, the reliability of the study can be improved.
Grey econometric models can be applied to not only situations with

known systems structures, but also to situations with the systems structure
waiting to be studied and explored.

Example 8.1.1. Here, we use an example to illustrate how to apply the
idea of grey econometric models to analyze and to make predictions on
the food production of a specific region in the People’s Republic of China.
Here, due to our agreement with the o cials of the region of concern, we
do not reveal the identity of the region.

Based on the idea of grey combined econometric model building, in our
study of that special region’s food production system, we have abstracted
the following 24 factors a ecting the region’s unit area food production.
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The selection of these factors was done based on the results of three rounds
of Delphi investigations conducted by 60 experts.

1. x1: average amount of fertilizer applied per hectare of farmland in
kilograms;

2. x2: average amount of organic fertilizer applied per hectare of farm-
land in 100 kilograms;

3. x3: percent of areas e ectively irrigated;

4. x4: percent of areas with guaranteed harvest in both a drought and
a flood;

5. x5: average number of irrigation wells per 10,000 hectares;

6. x6: average annual capital input per hectare in $10,000;

7. x7: average automatic power applied per hectare in 10 watts;

8. x8: percent of machine-cultivated farmland;

9. x9: average electricity usage per hectare in kilowatt-hour;

10. x10: percent of areas planted with scientifically hybridized seeds;

11. x11: percent of areas planted with proven high-quality seeds;

12. x12: average number of years of formal education received by farm
workers;

13. x13: percent of technicians among all farm workers;

14. x14: number of scientists specialized in agriculture;

15. x15: number of people engaged in research and application in agricul-
ture;

16. x16: percent of capital allocated to food production in the total gov-
ernment budget;

17. x17: area a ected by flood in 100,000 hectares;

18. x18: area a ect by drought in 100,000 hectares;

19. x19: area a ected by disaster and/or insects in 100,000 hectares;

20. x20: area a ected by wind disasters and/or hail in 100,000 hectares;

21. x21: area a ected by frost disasters in 100,000 hectares;

22. x22: rate of idling farmland;
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23. x23: percent of areas planted with machines; and

24. x24: percent of areas harvested with use of machines.

We then computed the degree i of incidence of each of these variables
with the variable of unit area food production. When taking a threshold
value 0 = 0.4, such variables as x6, x12, x16, x19, x20, x21, x22, x23, and x24,
all have a degree i of incidence with the variable of unit area food produc-
tion smaller than 0.4. So, these variables are deleted from our consideration
of illustrating variables a ecting the unit area food production. Next, we
computed the degree ij of incidence between the remaining variables: x1,
x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14, x15, x17, and x18. Now, we take
the threshold value 0

0 = 0.7. When the degrees ij of incidence were com-
pared with this threshold value, we divided the 15 remaining illustrating
variables into the following seven subclasses,

{x1} , {x2} , {x3, x4, x5} , {x7, x8, x9} , {x10, x11, x13, x14, x15} , {x17} , {x18} .
By using x3, x7, and x14 as the representatives of the third, fourth, and the
fifth subclasses, respectively, we obtained seven main illustrating variables
x1, x2, x3, x7, x14, x17, and x18 a ecting the unit area food production.
Before we established a systems model in the form of simple equations for

the summer unit area food production y1 and the autumn unit area food
production y2 in terms of these seven main illustrating variables, we first
applied the data available for the time period from 1949 to 1997 to estimate
our model parameters. The result was that we found several contradictions
in our model development. To avoid these contradictions, we replaced the
data we used earlier by those for the time period of 1957 to 1997. However,
we still ran into some contradictions. Next, we tried to smooth the data
using the exponential method. The result was still not satisfactory. At
last, we applied GM(1,1) simulated values as our basis for the estimate
of our parameters, and obtained the following system consisting of simply
equations,

y1 = 126.4214 + 0.9686x1 + 1.9669x2 + 9.4071x3+

+ 1.0212x7 + 10.5503x14 0.6117x17 0.1853x18 + U1

with the F -test value F1 = 679.2191, R-test value R1 = 0.9799, the stan-
dard error of our estimates S1 = 4.0174, the Durbin—Watson test value
DW1 = 1.3961, and

y2 = 304.5194 + 0.7916x1 + 1.7981x2 + 12.8114x3+

+ 5.3865x7 + 9.1113x14 2.5417x17 3.6313x18 + U2

with the F -test value F2 = 716.3874, R-test value R2 = 0.9871, the stan-
dard error of our estimates S2 = 3.9129, and the Durbin—Watson test value



250 8. Grey Combined Models

DW2 = 2.5346. Here, we have obtained such a result that the illustrating
variables have a clear influence on the unit area food production y1 and
y2 where the explainability has achieved a level of 97.96% and 98.71%,
respectively.
In order to further study the total food production, we still need to

establish a model for the total planted area for the summer and autumn
crops. The following are the main factors a ecting the total planted area.

1. x25: total area of farmland of the region in 100,000 hectares,

2. x26: index of repeated planting,

3. x27: percent of the area planted with grains, and

4. x28: percent of the area planted with summer grains in the total area
planted with grains.

Now, we have the formulas defining the areas y3, indicating the total
area planted for summer crops, and y4, the total area planted for autumn
crops as follows,

y3 = x25 · x26 · x27 · x28

y4 = x25 · x26 · x27 · (1 x28) .

To estimate the internal variable, we need to know the values of the illus-
trating variables. In the study of development patterns of the illustrating
variables, we have applied results of grey systems theory and established
GM(1,1) models for the illustrating variables so that predictions about the
systems internal variable could be made using predicted values of the illus-
trating variables.
The following lists the restored time response sequences for the illus-

trating variables x1, x2, x3, x7, x14, x25, x26, x27, and x28. The predicted
values of x17 and x18 are given by the disaster model (see next chapter for
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details).

bx1 (1994 + k) = 960.42e0.0261k + 1,

bx2 (1994 + k) = 553.41e0.0292k + 2,

bx3 (1994 + k) = 40.06e0.0216k + 3,

bx7 (1994 + k) = 23.16e0.0466k + 7,

bx14 (1994 + k) = 20.84e0.043k + 14,

bx25 (1994 + k) = 70.487e 0.003145k + 25,

bx26 (1994 + k) = 169.00e0.004035k + 26,

bx27 (1994 + k) = 78.71e 0.00455k + 27,

bx28 (1994 + k) = 50.93e0.00561k + 28.

Our predicted results for the three years of 2001, 2005, and 2010 are listed
in Table 8.1. Here the predicted values for x17 and x18 are obtained by
taking the averages of their individual areas a ected by flood and drought
for the relevant years.

Table 8.1. Predicted values for illustrating variables

Symbol 2001 2005 2010bx1 1,152.94 1,279.81 1,458.22bx2 678.92 763.03 882.98bx3 46.60 50.80 56.60bx7 32.09 38.67 48.81bx14 28.16 33.44 41.47bx17 5 1.7 11.7bx18 5 11.7 32.38bx25 68.95 68.09 67.03bx26 173.84 176.67 180.27bx27 76.24 74.87 73.18bx28 52.97 54.17 55.71

Substituting the predicted values for the illustrating variables, as listed
in Table 8.1, into the simplified equations for the summer and autumn unit
area food productions y1 and y2 and the total planted areas for the summer
crops and autumn crops y3 and y4 produces predicted values for these four
variables. All the predicted values for these y-variables are listed in Table
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8.2 as follows.

Table 8.2. Predicted values for y1, y2, y3, and y4
2001 2005 2010by1(kilograms/hectare) 3,342.77 3,733.80 4,282.22by2(kilograms/hectare) 3,433.52 3,806.61 4,247.27by3 (in 100,000 hectares) 48.41 48.79 49.26by4 (in 100,000 hectares) 42.98 41.28 39.16

Therefore, we have obtained predicted values for the total summer food
production y5, total autumn food production y6, and the total annual food
production y for the region. These predicted values are given in Table 8.3
below.

Table 8.3. Predicted food productions in 10,000 tons

2001 2005 2010
Total summer production y5 1,618.23 1,821.72 2,109.42
Total autumn production y6 1,475.73 1,571.37 1,663.23
Total annual production y 3,093.96 3,393.09 3,772.65

All the predicted values in Table 8.3 are obtained by considering the
combined influence of many factors involved in the food production system
of our special region. The importance level of each factor is determined by
analyzing the system’s history and the current situation. As the system
develops and evolves, in the coming years, changes in the structure of the
system might occur. In such a case, some of the main factors might go
through relatively large fluctuations. And some of the minor factors might
evolve into major factors influencing the final output of the system’s pro-
duction of food. In order to improve the reliability of our predictions, in our
original study we further studied annual patterns existing in the production
of each kind of crop and established GM(1,1) models for individual kinds of
crops for their annual production. That is, we had produced predictions for
the region’s annual food production from a di erent angle in order to com-
pare with results obtained from our earlier econometric prediction model.
The following list the restored time sequences from di erent models and
the defining formulas for the total crop productions.

• Total wheat production model:
by15 (1994 + k) = 1, 582.87 exp (0.0192k) + u15;

• Total summer minor grain production model:
by25 (1994 + k) = 28.18 exp (0.0152k) + u25;

• Total rice production model:
by16 (1994 + k) = 193.40 exp (0.02877k) + u16;
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• Total corn production model:

by26 (1994 + k) = 519.66 exp (0.0468k) + u26;
• Total production model for all kinds of potatoes:

by36 (1994 + k) = 210.14 exp (0.0135k) + u36;
• Total soybean production model:

by46 (1994 + k) = 99.83 exp (0.0247k) + u46;
• Total sorghum production model:

by56 (1994 + k) = 17.39 exp (0.0502k) + u56;
• Total millet production model:

by66 (1994 + k) = 30.43 exp (0.0101k) + u66;
• Total production model for all other autumn crops:

by76 (1994 + k) = 21.12 exp (0.0236k) + u76.
• The total summer food production is defined as:

by5 = by15 + by25 ;
• The total autumn food production is defined as:

by6 = by16 + by26 + by36 + by46 + by56 + by66 + by76 ;
and the total food production of the region is defined as:

by = by5 + by6.
Here, minor grains include any grains other than wheat and rice. Based on
these models and definitions, we obtained another set of predicted values
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for the region’s main crop productions (see Table 8.4 for details).

Table 8.4. GM(1,1) predictions for total productions of
major crops (in 10,000 tons)

2001 2005 2010
Wheat production by15 1,810.57 1,955.10 2,152.09
Summer minor grains production by25 31.34 33.31 35.94
Rice production by16 236.55 265.40 306.46
Corn production by26 721.10 869.55 1,098.80
Potato production by36 230.97 243.78 260.81
Soybean production by46 118.67 131.00 148.22
Sorghum production by56 12.23 10.01 7.79
Millet production by66 32.66 34.01 35.77
Other autumn crop production by76 24.91 27.38 30.81
Summer crop production by5 1,841.91 1,988.41 2,188.03
Autumn crop production by6 1,377.09 1,581.13 1,888.66
Annual crop production by 3,219.00 3,569.54 4,076.69

Comparing our two predictions, we see that they represent two di erent
sets of values with di erences in the amount of 4.04%, 5.2%, and 8.06%,
respectively, for our region’s total food production for the years of 2001,
2005, and 2010. These two di erent methods of prediction have produced
such closely matched predictions that it explained that to a good degree,
these prediction models have captured the essence of the objective law of
development of the food production system of our concern. In this case, our
prediction results had been applied as the basis for the government o cials
of the special region to adjust their policies in terms of food production
and allocation. As the system evolves over time, the structure of our pre-
diction model and its parameters need to be adjusted accordingly in order
to adequately reflect the state of the system in di erent time moments in
order to produce accurate and timely predictions in the years to come.

8.2 Cobb-Douglas Model

In this section, as the title suggests, we look at our second model, named
either the Cobb—Douglas or production function model.

Definition 8.2.1. Assume that K stands for the capital input, L the
labor input, and Y the production output. Then,

Y = A0e
tK L

is called the C-D production function model, where stands for the capital
elasticity, the labor elasticity, and the parameter for the progress of
technology.
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Definition 8.2.2. The following

lnY = lnA0 + t+ lnK + lnL

is called the log-linear form of the production function model.

For given time series data for the production output Y , capital input K,
and labor input L,

Y = (y (1) , y (2) , ..., y (n)) ,

K = (k (1) , k (2) , ..., k (n)) ,

and
L = (` (1) , ` (2) , ..., ` (n)) ,

by using multivariate linear regression, one can obtain estimates for the
parameters lnA0, , , and .
When Y , K, and L represent the time series of a special department,

district or business, it is often the case that due to fluctuations existing
in the data, the regressional estimates of the parameters contain serious
errors leading to obviously unusable results. Some of the errors of esti-
mates include near zero or negative value for , the parameter representing
progress in technology, or the values of the elasticities and are out of
their reasonable bounds.
In these circumstances, if one employs GM(1,1) simulated values of the

time series Y , K, and L in place of the original data as the basis for mul-
tivariate regressional estimation, one could to an extent eliminate some of
the random fluctuations existing in the original data. Consequently, the
estimated values of the parameters would be more reasonable and the re-
sultant model would more adequately reflect the relationship between the
capital input, labor input, and progress in technology.

Definition 8.2.3. Assume that

bY = (by (1) , by (2) , ...by (n)) ,
bK =

³bk (1) ,bk (2) , ...,bk (n)´ ,
and bL = ³b̀(1) , b̀(2) , ..., b̀(n)´
are, respectively, GM(1,1) simulated values for Y , K, and L. Then,

bY = A0e t bK bL
is called a grey production function model.

In the grey production function model, no grey numbers appear explic-
itly. However, because it is a combination of a grey systems model and the
C-D production function model, it contains a deep intension of “greyness”,
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and reflects the “principle of non-uniqueness of solutions” and the “prin-
ciple of absoluteness of greyness”. Therefore, one can expect to produce
satisfactory results when such a combined model is applied in a real-life
situation.

Example 8.2.1. Here, we look at how to make predictions about the rate
of contribution made by progress in technology for di erent time frames in
Henan Province, the People’s Republic of China.

For the study of the rate of contribution made by progress in technology,
in an economy, experts tend to apply a modified Cobb-Douglas produc-
tion function model, using Solow’s method of remnant values in the actual
computation.
The formula of Solow’s “remnant values” for calculating the speed of

progress in technology is

A

A
=

Y

Y

K

K

L

L
. (8.1)

If the influence of some non-technology aspects during the computed
time frame of concern is very strong, equ. (8.1) generally does not pro-
duce a reasonable outcome. In this case, one can first apply the principles
and results of grey systems theory to process the original data using bu er
operators. Second, one can establish GM(1,1) models for the processed
data. Thirdly, by using GM(1,1) simulated values one can establish a grey
production function model. After substituting the output of the new pro-
duction function model into equ. (8.1), one will be able to compute the rate
of contribution to the production output made by progress in technology,

EA =

" bAbA ÷
bYbY
#
× 100%. (8.2)

This quantity EA is generally called the rate of contribution in economic
growth made by progress in technology. Similarly, one can solve for the
rates of contribution made by capital input and labor input as follows,
respectively,

EK =

" bKbK ÷
bYbY
#
× 100% (8.3)

and

EL =

" bLbL ÷
bYbY
#
× 100%. (8.4)

In order for us to describe accurately the historical evolutionary char-
acteristics of the rate of contribution made by progress in technology for
Henan Province in di erent time periods, we established grey production
function models

³bY1, bY2, bY3, bY4´ for the GDP of Henan Province for the
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following four time periods: 1952 to 1962, 1962 to 1970, 1970 to 1980, and
1980 to 1995, as follows.bY1 = 0.048 exp (0.0581t) bK0.2131

1
bL0.78691 ,

bY2 = 0.088 exp (0.0072t) bK0.5015
2

bL0.49842 ,bY3 = 0.16 exp (0.0098t) bK0.5101
3

bL0.48993 ,

and bY4 = 0.15 exp (0.0161t) bK0.3316
4

bL0.66844 ,

where bYi stands for the GDP in 1 billion yuan, bKi the fixed capital in 1
billion yuan, bLi the number of people in the total work force, and t the
time variable and i = 1, 2, 3, 4, the four time periods. Table 8.5 lists the
computed speeds of technology progress and the rates of contribution made
by progress in technology in economic growth for the four di erent time
periods using equs. (8.1) and (8.2).

Table 8.5. Rates of contribution by technology for di erent times

Time Period bY /bY bA/ bA EA (%)
“First Five” 0.2131 0.7869 0.3296 0.1942 58.92
“Second Five” 0.2131 0.7869 -0.3833 — —
1963 — 65 0.5015 0.4984 0.4969 0.2480 49.91
“Third Five” 0.5015 0.4984 0.4815 0.1553 32.25
“Fourth Five” 0.5101 0.4899 0.2573 0.0448 17.41
“Fifth Five” 0.5101 0.4899 0.5259 0.1564 29.75
“Sixth Five” 0.3316 0.6684 0.7397 0.2442 33.02
“Seventh Five” 0.3316 0.6684 0.4406 0.1841 41.78
“Eighth Five” 0.3316 0.6684 0.8389 0.3587 42.75

From Table 8.5, it can be seen that during the time period of the “first
five”, the rate of contribution made by progress in technology was the
highest for Henan Province, reaching 58.92%. The reason for such a high
rate was because the establishment of the new China greatly liberated the
productivity of the society, magnifying the “residual value” beyond the
contributions made by capital input and labor input. However, during that
time period, the level of technology was not high. During the “second five”,
Henan Province su ered from severe natural disasters. Combined with hu-
man factors, the GDP in 1962 in Henan dropped 38.33% from the level
of 1957 even though during the period the input of capital and labor had
increased. Here, natural disasters and unrealistic blind leaps had consumed
all the ”residual value” made from progress in technology. During 1963 to
1965, the rate of contribution made by progress in technology was rela-
tively high. As a matter of fact, from looking at Henan’s GDP, the year
of 1965 just recovered to the level of 1957. The relatively high “residual
value” due to progress in technology contained influences of governmental
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economic policy adjustments. During the “fourth five” after the cultural
revolution, both the speed of progress in technology and the rate of con-
tribution made by progress in technology reached their lowest levels. After
the “fifth five”, both the speed of progress in technology and the rate of
contribution made by progress in technology have been in an uptrend and
reached their highest level during the “eighth five”. Because annual statis-
tical data fluctuate widely, it was di cult for us to obtain any meaningful
results from an annual analysis in terms of progress in technology. However,
when we employed longer time periods, such as the ones shown above, our
computed results adequately reflected the history of Henan Province.
Based on equs. (8.3) and (8.4), we also computed the rates of contribution

in the area of production output made by capital input and labor increase,
respectively (See Table 8.6)). From Table 8.6 it can be seen that labor force
increase contributed to the economic growth only slightly. To a degree, this
fact indicates that the economic growth in Henan Province had mainly
been a consequence of increased productivity. From the angles of progress
in technology and amounts of capital input, other than the “first five”,
the three years of adjustment period, and the “seventh five”, the rate of
contribution by capital input had been greater than that by progress in
technology. That implies that in Henan, the relatively high rate of economic
growth had been sustained mainly by high levels of capital injection.

Table 8.6. Contributions due to capital & labor inputs

Time Period bK/ bK bL/bL EK/% EL/%
“First Five” 0.0671 0.0683 20.37 20.71
“Second Five” 0.3541 0.0826 — —
1963 - 65 0.2117 0.0372 42.6 7.49

“Third Five” 0.2553 0.0709 53.02 14.72
“Fourth Five” 0.1287 0.0838 50.02 32.57
“Fifth Five” 0.3258 0.0437 61.95 8.31
“Sixth Five” 0.3606 0.1349 48.75 18.24
“Seventh Five” 0.1490 0.1075 33.82 24.39
“Eighth Five” 0.4110 0.0692 48.99 8.25

8.3 Markov Model

In this section, we study two classes of models named, respectively, grey
moving probability and grey state Markov models.

8.3.1 Grey Moving Probability Markov Model

First, let us look at the class of grey moving probability Markov models.
Definition 8.3.1. Assume that {Xn : n T} is a stochastic process. If

for any integer n T and any states i0, i1, · ··, in+1 I, the following holds
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true,

P (Xn+1 = in+1|Xj = ij , j = 0, 1, ..., n) = P (Xn+1 = in+1|Xn = in) ,
(8.5)

then {Xn : n T} is called a Markov chain.
Equ. (8.5) is known as not having any post-e ect. It represents that each

future state (when t = n+1) of the system has something to do only with
the present state without any influence from any other earlier state (t
n 1).

Definition 8.3.2. For any n T and states i, j I, the following

Pij (n) = P (Xn+1 = j|Xn = i) (8.6)

is called the moving probability of the Markov chain.

Definition 8.3.3. If the moving probability Pij (n) in equ. (8.6) has
nothing to do with n, then {Xn : n T} is called a homogeneous Markov
chain.

For a homogeneous Markov chain, its moving probability pij (n) is often
written as pij . Because we focus on homogeneous Markov chains in this
section, the word “homogeneous” is omitted from here on.

Definition 8.3.4. Assume that pij stands for the moving probability as
defined above. Then, the following

P = [pij ] =
p11 p12 · · · p1n · · ·
p21 p22 · · · p2n · · ·
· · · · · · · · · · · · · · ·

(8.7)

is called the moving probability matrix for the system’s state.

Proposition 8.3.1. The elements of the moving probability matrix P
satisfy the following properties:

1. pij 0, i, j I;

2.
P
j I pij = 1, for any i I.

Property 2 here indicates that the sum of any chosen row of the moving
probability matrix equals 1.

Definition 8.3.5. The following

p
(n)
ij = P (Xm+n = j|Xm = i) , i, j I, n 1,

is called the nth step moving probability of the given Markov chain. And,

P(n) =
h
p
(n)
ij

i
the nth step moving probability matrix.

Proposition 8.3.2. The nth step moving probability matrix P (n) sat-
isfies the following properties:

1. p(n)ij 0, i, j I;
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2.
P
j I p

(n)
ij = 1, for any i I;

3. P (n) = Pn.

Definition 8.3.6. Any Markov chain with its moving probability matrix
containing a grey entry(ies) is called a grey Markov chain.

When solving a real-life problem, due to a lack of information, it is often
di cult to determine the exact value of one or more entries in the moving
probability matrix of a Markov chain. In such a case, the researcher will
have to replace the uncertain entry by a grey interval pij ( ) based on
what is known. When the moving probability matrix is grey, in general
the researcher will require the whitenization matrix eP ( ) =

h ePij ( )
i
to

satisfy:

1. ePij ( ) 0, i, j I;

2.
P
j I

ePij = 1, for any i I.

Proposition 8.3.3. Assume that the initial distribution of a finite state
grey Markov chain is

PT (0) = (p1, p2, ..., pn) ,

and the moving probability matrix is

P ( ) = [Pij ( )] .

Then, the system distribution of the next state is given by

PT (1) = PT (0)P ( ) , (8.8)

the system distribution of the second state is

PT (2) = PT (0)P 2 ( ) , (8.9)

· · · · · · · · · · · · · · ··,
and the system distribution of the s state is

PT (s) = PT (0)P s ( ) . (8.10)

This proposition indicates that as long as one knows the initial distrib-
ution and the moving probability matrix of a system, one will be able to
predict the distribution of the next state, the state after the next, and any
state in the future.

8.3.2 Grey State Markov Model

Assume that X = (x (1) , x (2) , ..., x (s)) is a sequence of raw data andbX = (bx (1) , bx (2) , ..., bx (s)) is the simulated sequence using the GM(1,1)
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model. Then, the curve of bX reflects the trend existing in the original
raw data sequence X. For a instable stochastic sequence X satisfying the
conditions of a Markov chain, if we divide it into n states, then each state
can be expressed as follows.

i =
£e1i, e2i¤ , e i i

with e1i = bx (k) +Ai, e2i = bx (k) +Bi,
for i = 1, 2, ..., n. Because bX is a function of time k, the grey elements e1i
and e2i also change with time.
Definition 8.3.7. If Mij (m) is the size of the sample of data represent-

ing the development from state i to state j through m steps, and Mi

the size of the sample of data for staying at the state i, then

Pij (m) =
Mij (m)

Mi
, i = 1, 2, ..., n, (8.11)

is called the state moving probability.

In practice, the researcher generally only needs to consider one state
moving probability matrix P. Assume that the object to be predicted is
located at k state. Then observe the kth row of P . If

max
j
pkj = pk`

then it will be reasonable to expect that the system will probably develop
next from state k to state `. If two or more probabilities in the kth row
in the matrix P are equal or nearly so, then it will be di cult to determine
to which state the system will develop next. In this case, one needs to
observe the second step or the nth step moving probability matrices P (2)

and P (n), where n 3.

Example 8.3.1. Let us here look at how we did a prediction for the oil-
tea production for Nan Hu Farm located in Zhejiang Province, the People’s
Republic of China.

The historical production data is given in Table 8.7 below.

Table 8.7. 1973—1987 Oil-tea production in 10,000 kilograms

Year 1973 1974 1975 1976 1977
Total production 25.60 14.05 32.75 4.85 6.05

Year 1978 1979 1980 1981 1982
Total production 19.10 16.50 23.80 48.00 28.50

Year 1983 1984 1985 1986 1987
Total production 28.70 12.80 35.20 60.65 3.60
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1. We established a GM(1,1) model as follows.

bx (k) = 480.33796 exp ( 0.0356923k) 454.73796.

2.We then constructed the states. Based on the realistic situation of oil-
tea production as reflected in the data, we established the following four
states,

1: e11 = bx (k) 20, e21 = bx (k) ,
2: e12 = bx (k) 30, e22 = bx (k) 20,

3: e13 = bx (k) , e23 = bx (k) + 20,
4: e14 = bx (k) + 20, e24 = bx (k) + 30,
i =

£e1i, e2i¤ , e i i, i = 1, 2, 3, 4,

where bx (k) stands for the predicted oil-tea production at the time moment
k based on our GM(1,1) model.

3. Next, we obtained the state moving probability matrix. Based on the
state moving probability formula in equ. (8.11), we computed the next stage
state moving probability matrix P as follows.

P =

1
2 0 1

2 0
0 0 1 0
3
6

1
6

1
6

1
6

0 0 1 0

.

In 1987, the oil-tea production was located in state 3. After some de-
velopment for one year, from

max
j
p3j = p31

we predicted that for 1988, the oil-tea production may most probably be
in state 1.¤

8.4 Combined Time Series Model

The GM(1,1) model possesses great strength when used to predict future
development tendency of the system of concern, whereas time series models
have special capability of describing random fluctuations of the system. So,
it is natural to consider using grey time series combined models to study
the governing laws of those systems whose changes are filled with both
fluctuations and tendencies.

Definition 8.4.1. For a long time series {X (t)},

X (t) = Ae a(t 1) +
kX
i=1

ifi + at (8.12)
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is called a grey time series combined model. Here, the first term on the
left-hand side is a part of the GM(1,1) model, which can be seen as the
tendency term. The other two terms are time series model parts, which can
be seen as fluctuation terms.

In this model, the GM(1,1) part is obtained using what has been learned
in Chapter 7: “Grey Systems Modeling.” The fluctuation parts can be ob-
tained by modeling selected orthonormalized mean-value generation func-
tions. The basic steps of such modeling can be described as follows.

1. Standardization of the original time series {X (t)} . Let

X 0 (t) =
X (t) X

, (8.13)

where X and are, respectively, the mean and standard deviation of the
original series.

2. Compute the mean-value generation function f`, ` = 1, 2, · · ·,m, and
the period-expanding matrix F . Specifically, we have the following

F = [f` (i)]n×(m 1) , (8.14)

where

f` (i) =
1

n`

n` 1X
j=0

X 0 (i+ j`) , i = 1, 2, ..., `; 1 < ` m (8.15)

with n being the length of the original time series, m =
¥
n
2

¦
the largest

integer smaller than n
2 , and n` =

¥
n
`

¦
the largest integer smaller than n

` .

3. Apply the Gram—Schmidt process to orthonormalize the mean-value
generation functions obtained above.

First, taking f2 (i) to be the initial vector for the orthonormalization of
the other functions f3 (i) , f4 (i), ..., fm (i) produces the sequence ef2, ef3, ..., efm.
Then, take ef3 to be the initial vector for the of the functions ef4, ..., efm. Af-
ter m 1 steps, the completely orthonormalized functions are denoted as
follows, eF = nef2, ef3, ..., efmo ,m =

jn
2

k
. (8.16)

4. Using f`, ` = 2, 3, ...,m, as independent variables, a linear model can
be established for X 0 (t) as follows:

X 0 (t) =
mX
i=2

ei efi + e (t) , (8.17)

where ei are model coe cients. In the form of vectors and matrices, we
have

X 0
n×1 = eFn×(m 1)

e
(m 1)×1. (8.18)
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5. Evaluate the coe cients ei. Applying the least squares estimate
e = ³ eFT eF´ 1 eFTX 0 (8.19)

produces the coe cient vector e(m 1)×1.
6. Select mean-value generation functions. The magnitude of the absolute

value of the coe cient ei in the linear model represents the level of signifi-
cance of the relevant mean-value generation function. So, all the coe cientsei can be ordered based on the magnitudes of their absolute values, and
the mean-value generation functions ef` will enter the equation according
to the magnitudes of the absolute values of their coe cients ei. The total
number of mean-value generation functions entering the final equation is
determined by using the following coupling score criterion,

CSC2k =
Qk
Qx

+
N

Nk
, (8.20)

where Qk stands for the sum of squared residuals of the model when k
mean-value functions enter into the equation,Qx = 1

n

Pn
i=1

¡
X 0 (t) X 0¢2 ,

k the number of independent parameters in the model, Nk the tendency
score, and the weight of the tendency prediction. When CSC2k reaches
its minimum value and Nk its maximum value, the corresponding model is
optimal. By using this criterion, one determines k-value.

7. Establish the prediction model based on the selection of orthonor-
malized mean-value generation functions. The model coe cients selected
above were determined on the basis of orthonormalized mean-value gen-
eration functions. Therefore, in order to make predictions, one needs to
compute the coe cients in terms of the original mean-value generation
functions f` (t) . Now, by using the multivariate linear regression method,
we establish and solve the following system of equations for the coe cients

1, 2, ..., and k of our model.

r11 1 + r12 2 + · · ·+ r1k k = r1x
r21 1 + r22 2 + · · ·+ r2k k = r2x
· · · · · · · · · · ··
rk1 1 + rk2 2 + · · ·+ rkk k = rkx,

(8.21)

where
rij =

sij
siisjj

, rix =
six
siisxx

,

sij =
nX
t=1

³
fi (t) efi´³fj (t) efj´ ,

six =
nX
t=1

³
fi (t) efi´¡X 0 (t) X 0¢ ,
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sxx =
nX
t=1

¡
X 0 (t) X 0¢2 ,

for i, j = 1, 2, ..., k. Therefore, we obtain the following linear regression
model in terms of the original mean-value generation functions,

cX 0 (t) = 0 +
kX
i=1

ifi (t) . (8.22)

When equ. (8.22) is used to make predictions, as long as the original
mean-value generation functions are extended a few steps into the future,
the following prediction values can be obtained,

cX 0 (n+ q) = 0 +
kX
i=1

ifi (n+ q) , (8.23)

where q = 1, 2, 3, ... are the future time periods of predicted values. On the
basis of GM(1,1) and time series models, combining the restored sequencecX 0 (t), as produced by the time series model, and the GM(1,1) model pro-
duces bX = bX (t) + by (t) = Ae a(t 1) +

kX
i=1

0
ifi + at, (8.24)

where

A =
¡
1 e a

¢ ³
y(0) (1)

u

a

´
, ai = 0 and 0

i = i .

The optimal combined prediction model can be established by optimiz-
ing the model obtained above on the basis that the average error of the
model simulation and the original data is minimum. That is, the following
optimized combined model can be employed in prediction,

bX (n+ q) = Ae a(n+q 1) +
kX
i=1

0
ifi (n+ q) + at. (8.25)

8.5 Combined Predictions

In practice, there are generally many di erent methods that can be applied
to make predictions for the future values of a variable. And sometimes
many models can be employed to describe to a certain degree the patterns
of change existing in the variable. When faced with these many “possible”
models to use and various predicted values to choose from, how can the
forecaster decide on which model to use and which prediction should be
selected?
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As a matter of fact, under this circumstance, each model reflects some
aspects of the given information. Ignoring any of the potentially useful
models means that some valuable information will be disregarded. At the
same time, any single model selected can hardly describe the whole picture
of evolution of the variable. To get around this problem, it is time for the
forecaster to consider the method of combined predictions.
The idea of a combined prediction is about how to organically combine

predictions produced by di erent models into a usable value with added
accuracy. This method can very e ectively employ many useful aspects of
the available information so that the pattern of change of the system un-
der consideration can be more adequately described. Each well-combined
prediction method can not only avoid the pity that each single model will
have to give up some aspects of the available information, but also re-
duce randomness and increase prediction accuracy. Currently, the idea of
combined predictions has been widely employed in the practice of various
predictions. However, the fundamental principle underlying the concept of
combined predictions is di erent from that of grey combined model predic-
tions.

8.5.1 The Combined Prediction Model

Suppose that there are n models potentially useful in the prediction of
the value at time t of a variable. After applying statistical tests and non-
statistical reasoning, m satisfactory models are selected from among the
original n models. Now, a combination of these m models can be written
as the following model.

Y = C {f1 (t) , f2 (t) , ..., fm (t)}
fi (t) = St {y1, y2, ..., yn} ; i = 1, 2, ...,m

s.t.

½
S (yj) S
K (yj) K

; j = 1, 2, ..., n,
(8.26)

where C stands for a combination at time moment t, St a predicted value
at time t, S (yj) the statistical test value of the jth model, S the set of
threshold values selected by the researcher for statistical tests, K (yj) the
knowledge and judgment about the feasibility of prediction model yj , K
the experts’ collective knowledge about feasibility of predictions, and yi the
ith prediction model.
Throughout the process of making a prediction, because the internal

structure of each model system participating in the prediction, may change
over time, the combined prediction process can be classified into two possi-
bilities: combined predictions with either changing structures or fixed struc-
tures.
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8.5.2 Combined Predictions with Changing Structure

In this sub-section, we study combined predictions such that the internal
structure of each model system, participating in the prediction, changes
over time. And, structural changes can be categorized into the following
three situations.

1. The number of models participating in the combined prediction changes
over time;

2. The types of models participating in the combined prediction changes
over time; and

3. The weights of individual models participating in the combined pre-
diction changes over time.

For the first two situations, the forecaster needs to recombine the partic-
ipating models with di erent weights that vary with the changing number
or type of models. In terms of the third situation, the prediction values
fi (t) , i = 1, 2, ..., m, of the m participating models, their weights i (t) ,
i = 1, 2, ..., m, and the combined prediction value f (t) are all functions of
time t. In this case, the combined prediction model is

f (t) =
mX
i=1

[ i (t) fi (t) + i] ,
mX
i=1

i (t) = 1, (8.27)

where i stands for random perturbations. Equation (8.27) is called a com-
bined prediction model with changing weights.
Assume that at time moment t, the observational value is x (t) , t =

1, 2, ..., n. Then, the sum of squared error of the predictions from the com-
bined prediction model in equ. (8.27) with changing weights is given by

J =
nX
t=1

(x (t) f (t))2 =
nX
t=1

e2 (t) . (8.28)

The optimal weights are those that minimize the sum of squared error
J =

Pn
t=1 e

2 (t) of predictions. Denote

(t) = ( 1 (t) , 2 (t) , ..., m (t)) , m = (1, 1, ..., 1) .

And, let

ei (t) = x (t) fi (t) , i = 1, 2, ...,m, t = 1, 2, ..., n,

stand for the prediction error of the ith model at time t. Then,

e =

e1 (1) e2 (1) · · · em (1)
e1 (2) e2 (2) · · · em (2)
· · · · · · · · · · · ·
e1 (n) e2 (n) · · · em (n)
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is called the matrix of prediction errors. And, E = eT e is called the infor-
mation matrix generated by prediction errors.
From

e (t) = x (t) f (t)

=
Pm
i=1 i (t)x (t)

Pm
i=1 i (t) fi (t)

=
Pm
i=1 i (t) [x (t) fi (t)]

=
Pm
i=1 i (t) ei (t) ,

it follows that the problem of optimizing the weight vector (t) can be
reduced to the following problem of nonlinear programming:

minJ = (t)E (t)T

s.t.

½
(t) · T

m = 1

i (t) 0

for i = 1, 2, ...,m, t = 1, 2, ..., n. The optimal solution of equ. (8.28) is

(t) =
E 1 T

m

mE
1 T
m

, (8.29)

which is the optimal weight vector for the combined prediction model with
varying weights. The corresponding sum of squared errors of prediction is

minJ =
1

mE
1 T
m

. (8.30)

8.5.3 Combined Predictions with Fixed Structure

A so-called combined prediction with fixed structure represents a combined
prediction such that its parameters and internal system structure of the
model employed do not change over time. That is, as time moves forward,
the number of models, types of the models, and the weights of the models
participating in the prediction do not change.

Methods of Combined Weights

Assume that f1, f2, ..., fm are prediction values produced from m di erent
models, and i, i = 1, 2, ...,m, stands for the weight of the ith model. Then,

f =
mX
i=1

ifi,
mX
i=1

i = 1 (8.31)

is the so-called combined prediction model with fixed weights.
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The values of the weights i, i = 1, 2, ...,m, in equ. (8.31) can be chosen
in many di erent ways. And each specific choice of these weights leads to
a specially combined model.

1. The Method of Average

Let

i =
1

m
, i = 1, 2, ...,m. (8.32)

By taking the average, all models participating in the grand combined
prediction model are treated equally and evenly. This is a relatively easy
way to decide on the values of the model weights. This method is often used
when the researcher does not have a clue as to which model participating
in the final prediction has more advantage over the others.

2. The Method of Standardized Di erence

Let

i =
s si
s

· 1

m 1
, s =

mX
i=1

si, i = 1, 2, ...,m, (8.33)

where si stands for the standardized di erence of the ith model. When using
this method, the model with the least standardized di erence will have the
largest weight in the combined prediction model. That is, the researcher
employs the ability to predict as the weight of each participating model. As
one can expect, the standardized di erence of the prediction results from
the grand combined prediction model is the smallest among all those from
combined models with other choices of participating models’ weights.

3. The Method of Binomial Coe cients

When using the method of binomial coe cients, more weights are given
to those predicted values in the middle of the predicted sequence of values.
More specifically, first order fi, i = 1, 2, ...,m, from the smallest to the
largest. Without loss of generality, let us assume these values are ordered
as follows,

f1 f2 · · · fm.

Then let

i =
Ci 1
m 1

2m 1
, i = 1, 2, ...,m. (8.34)

4. The Method of Deviation Coe cients

Assume that there are n prediction points, f ji the predicted value at
point j made by model i, i = 1, 2, ..., m, j = 1, 2, ..., n, and f j the average
of the m predicted values at point j, j = 1, 2, ..., n.
Take

i =
d di
d

· 1

m 1
, i = 1, 2, ...,m, (8.35)
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FIGURE 8.1. A graphical representation of the method of AHP

where

di =
1

n

vuut nX
j=1

³
f ji f j

´2
, i = 1, 2, ...,m,

are the deviation coe cients, and

d =
mX
i=1

di.

5. The Method of AHP

The AHP (about high personnel) method is designed to absorb the avail-
able experiences and evaluations of relevant experts in prediction and the
special field of knowledge involved. At first, these relevant experts can delete
those models that are obviously not related to the problem of concern.
Then, they evaluate the remaining models individually according to a set
of predetermined criteria.
When using this method, the level of goals consists of evaluation criteria

employed to check on individual participating models. The level of stan-
dards consists of a set of predefined requirements, including such values
as degrees of acceptance for statistical tests, explainability of participating
models, feasibility of predicted values, and potential realizabilities. In order
to make the experts’ evaluation easier, the set of standards can be further
refined so that the bottom level consists of all the participating models.
After computing and processing the evaluation results, one can determine
the individual weights to be assigned to the participating models. At the
end, the participating model with the largest weight can be employed as
the final prediction model, or these weights can be used to form the grand
combined prediction model, in order to produce the desired comprehensive
predictions. For a graphical representation of the method of AHP, please
see Figure 8.1.

6. The Method of Combined Regions
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Let
a = r

i=1 (ai ± ai) ,

where ai stands for the confidence interval obtained from the ith par-
ticipating model at point T . This method employs the intersection of all
predicted confidence intervals from each participating model as the ulti-
mate result. However, in practice, this intersection is often empty. In this
case, one can delete a predicted maximum and minimum value until the
intersection is no longer empty. If by doing so, the number of remaining ais
is still greater than a predetermined value, such as r

2 , then one can select
the a-value as the final result. Otherwise, one will need to reevaluate each
of the participating prediction models.
When ai does not exist, due to the fact that some participating mod-

els could not produce confidence interval estimates, one can still delete a
maximum and a minimum value one by one until the remaining distribu-
tion of predicted intervals satisfies a set of predetermined requirements. In
this case, the predicted result can be used only if the number of remaining
participating models is greater than a predetermined number.

Example 8.5.1. In this example, we look at how our prediction was
made for the future need for human talent of a special district.

After applying statistical tests and feasibility tests, the remaining pre-
diction models left for us to consider are listed in Table 8.8 below.

Table 8.8. Prediction models and predicted values in 10,000 people

Prediction Model Prediction for 1995 Prediction for 2000
Macroeconomic model 98.22 132.01
Grey model 1 88.29 111.27
Grey model 2 113.41 159.07
Elasticity model 1 105.61 142.96
Elasticity model 2 100.13 143.67
Regression model 99.23 132.90

In the following, we apply each of the methods mentioned earlier to
combine the predicted values.

1. The method of average

In this case, we have i =
1
6 , i = 1, 2, ..., 6. So, we have the following

predictions for 1995 and 2000:

a1995 = 100.74, a2000 = 137.01.

2. The method of binomial coe cients

After ordering the individual model prediction values ai, the values for
the year of 1995 can be written as follows,

(88.29, 98.22, 99.23, 100.13, 105.61, 113.41) ,
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and the values for the year of 2000 can be written as follows,

(111.27, 132.01, 132.90, 142.96, 143.67, 159.07) .

Based on equ. (8.34), it follows that the vector of weights is given as,

= (0.03125, 0.15625, 0.3125, 0.3125, 0.15625, 0.03125) .

Therefore, the predictions out of our combined model are given by

a1995 = 100.38anda2000 = 137.72.

3. The method of deviation coe cients

Based on relevant definitions, we can compute (using the ordering of
models as listed in Table 8.8):

d = (1.8839, 9.5736, 8.6138, 2.4922, 2.2507, 1.7543)

and
= (0.1858, 0.1279, 0.1352, 0.1812, 0.1831, 0.1867) .

So, we have our final predilections as follows,

a1995 = 100.08anda2000 = 137.20.

4. The method of AHP

Let us identify a good statistical test result as requirement C1, good
model explainability as requirement C2, and feasibility of predictions as
requirement C3. In order to simplify our discussion here, let us combine
the two selected grey models as one class of models, two elasticity models
as one, too. So, we have four models A1, A2, A3, and A4 to combine.
More specifically, A1, A2, A3, and A4, respectively, stand for the selected
econometric model, grey model, elasticity model and regressional model.
So now, we can construct our AHP model as follows.
First, we have the following evaluation results

C1 A1 A2 A3 A4
A1 1 7 9 1 0.43
A2 1/7 1 3 1/3 0.08
A3 1/9 1/3 1 1/9 0.04
A4 1 8 9 1 0.45

where C. I. = 0.03,

C2 A1 A2 A3 A4
A1 1 5 2 3 0.49
A2 1/5 1 1/2 1/3 0.09
A3 1/2 2 1 1/2 0.17
A4 1/3 3 2 1 0.25
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where C. I. = 0.04,

C3 A1 A2 A3 A4
A1 1 9 7 2 0.56
A2 1/9 1 1/3 1/5 0.05
A3 1/7 3 1 1/4 0.10
A4 1/2 8 4 1 0.30

where C. I. = 0.03, and

O C1 C2 C3
C1 1 1/5 1/2 0.12
C2 5 1 3 0.65
C3 2 1/3 1 0.23

where C. I. = 0.00.
Next, by combining these evaluation results, we obtain the weights =

(0.50, 0.08, 0.14, 0.29) . Therefore, we have our predictions as follows,

a1995 = 100.33, a2000 = 137.84.

5. The method of combined regions.

Because some models do not produce confidence interval estimates, we
will apply predicted values in our combination. From Table 8.8, it follows
that all extreme values were from grey models. So, let us delete these models
for our further consideration. From the remaining models, the middle values
will be our predictions. That is, we have

a1995 = 101.68, a2000 = 137.84.

Now, we summarize the results of the previous five methods of combina-
tion in Table 8.9.

Table 8.9. Results of di erent combination methods
Criteria Selected Models

Symbol Name A1 A2 A3 A4
C1 Stat. test 0.12 0.43 0.08 0.04 0.45
C2 Explainability 0.65 0.49 0.09 0.17 0.25
C3 Feasibility 0.23 0.56 0.05 0.10 0.30
Final Combination Weights 0.50 0.08 0.14 0.29

This table indicates that after using combined models, all predicted values
converge to a small interval with obviously improved prediction accuracy.
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Grey Prediction

9.1 Test of Grey Prediction Models

Prediction is an action based on discussions and studies of the past to tell
about the future. Grey prediction is based on some theoretical treatment of
the original data and establishment of grey models of the data to discover
and to control the development laws of the system of interest so that scien-
tific quantitative predictions about the future of the system can be made.
All the grey models introduced in Chapter 7 can be employed as predic-
tion models. For each specific problem, which particular model should be
used as the prediction model depends on a su cient usage of conclusions
of relevant qualitative analysis. The choice of models varies from one case
to another. The feasibility and qualification of a model in use need to be
checked with various criteria. Only the models passing all the checks of
di erent criteria can be used as prediction models.

Definition 9.1.1. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´

is a sequence of raw data, the corresponding model simulated sequence is

bX(0) =
³bx(0)(1), bx(0)(2), ..., bx(0)(n)´ ,
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the sequence of errors is

(0) = ( (1), (2), ..., (n))

=
¡
x(0)(1) bx(0)(1), x(0)(2) bx(0)(2), ..., x(0)(n) bx(0)(n)¢ ,

and the sequence of relative errors is

= ( 1, 2, ..., n)

=

µ¯̄̄̄
(1)

x(0)(1)

¯̄̄̄
,

¯̄̄̄
(2)

x(0)(2)

¯̄̄̄
, ...,

¯̄̄̄
(n)

x(0)(n)

¯̄̄̄¶
.

1. For k = 1, 2, ..., n, k =
¯̄̄

(k)
x(0)(k)

¯̄̄
is called the relative simulation

error at point k, and

=
1

n

nX
k=1

k

the mean relative simulation error.

2. The number 1 is called the mean relative accuracy, and 1 n

the filtering accuracy.

3. For a given , when both < and n < hold true, the model is
said to be error-satisfactory.

Definition 9.1.2. Assume that X(0) is a sequence of original data, bX(0)

a corresponding simulated sequence, and the absolute degree of incidence
of X(0) and bX(0). If for any chosen 0 > 0, there exists > 0, then the
model is said to be incidence-satisfactory.

Definition 9.1.3. Assume that X(0) is a sequence of original data, bX(0)

a corresponding model simulation sequence, (0) the error sequence,

x =
1

n

nX
k=1

x(0)(k)

the mean of X(0),

S21 =
1

n

nX
k=1

h
x(0)(k) x

i2
the variance of X(0)

=
1

n

nX
k=1

(k)

the mean error, and

S22 =
1

n

nX
k=1

[ (k) ]2
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the variance of errors.

1. C =
S2
S1

is called the ratio of mean square deviations. For a fixed

C0 > 0, when C < C0, the model is said to be the ratio of mean square
deviation satisfactory.

2. The following

p = P (| (k) | < 0.6745S1)

is called a probability of small error. For a fixed p0 > 0, when p > p0, the
model is said to be small error probability satisfactory.

The previous definitions provide us with three ways to check models in
use. They judge model accuracies through observations on errors. Here,
the smaller the mean relative error and the filtering error are the better;
the greater the degree of incidence the better; the smaller the ratio C
of mean square deviations the better, because small C implies that S2
is smaller than S1. That is, the variance of errors of simulation is small
and the variance of the original data is large. It indicates that simulation
errors are relative centered around a point with small amplitude in data
fluctuation, and that the original data are relatively more scattered with
larger amplitude in data fluctuation. So, in order to obtain good simulation
results, we need to have S2 as small as possible compared to S1. The greater
the small error probability p is the better. For each group of chosen values
of a, 0, C0, p0, a level of simulation accuracy of the established model is
determined. The commonly used levels of accuracy are given in Table 9.1,
which is given here as a reference.

Table 9.1. Definition of critical values and their error checks

In general, the most commonly used are the critical values of relative error.

9.2 Predictions of Sequences

Prediction of sequences is the prediction about future behavior of systems
variables. The most commonly used model in grey systems theory for pre-
dictions of sequences is GM(1, 1). Based on the practical circumstances,
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other grey systems models can also be employed. On the foundation of
qualitative analysis, define appropriate sequence operators and build GM
models on the sequences obtained by applying the sequence operators. With
accuracy checks, the models can be used to make predictions.

Example 9.2.1. Let us look at the prediction on revenues of the non-
governmental enterprises at Changge County, Henan Province, The Peo-
ple’s Republic of China.1

We have the raw data

X(0) =
¡
x(0)(i)

¢4
i=1

= (10155, 12588, 23480, 35388) .

Now, we introduce a second-order weakening operator D2 (for more details,
see Chapter 4),

X(0)D =
³
x(0)(1)d, x(0)(2)d, x(0)(3)d, x(0)(4)d

´
,

where

x(0)(k)d =
1

4 k + 1
[x(0)(k) + x(0)(k + 1) + · · ·+ x(0)(4)],

k = 1, 2, 3, 4; and

X(0)D2 =
³
x(0)(1)d2, x(0)(2)d2, x(0)(3)d2, x(0)(4)d2

´
,

where

x(0)(k)d2 =
1

4 k + 1
[x(0)(k)d+ x(0)(k + 1)d+ · · ·+ x(0)(4)d],

k = 1, 2, 3, 4. Then, we have

X(0)D2 = (27260, 29547, 32411, 35388) ,

which is written as

X(0)D2 = X = (x(1), x(2), x(3), x(4)) .

Now, the 1-AGO sequence of X(0) is

X(1) =
¡
x(1)(i)

¢4
i=1

= (27260, 56807, 89218, 124606) .

Assume
dx(1)

dt
+ ax(1) = b.

1The relevant data came from Changge County Statistics Bureau.
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Based on the least squares method, we obtain the estimated values for a
and b as follows, ba = 0.089995,bb = 25790.28.
So, the resultant GM(1, 1) model is given by

dx(1)

dt
0.089995x(1) = 25790.28,

with its time response sequence being

bx(1)(k + 1) = 313834e0.089995k 286574

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k).
From these results, we obtain the simulated sequence

bX = (bx(i))4i=1 = (27260, 29553, 32337, 35381)
with the sequence of errors

(0) =
¡
(0)(i)

¢4
i=1

= (0, 6, 74, 7) ,

the sequence of relative errors

= ( 1, 2, 3, 4) = (0, 0.0002, 0.00228, 0.0002) ,

the mean relative error

= 1
4

4P
k=1

k =
1
4(0 + 0.0002 + 0.00228 + 0.0002)

= 0.00067 = 0.067% < 0.01,

and the filtering error

4 = 0.0002 = 0.02% < 0.01.

So, the accuracy of our simulation is in level one.
Now, we compute the absolute degree of grey incidences of X and bX.

|s| =

¯̄̄̄
3P

k=2

[x(k) x(1)] + 1
2 [x(4) x(1)]

¯̄̄̄
=
¯̄
2287 + 5151 + 1

2 · 8128
¯̄
= 11502,

|bs| =

¯̄̄̄
3P

k=2

[bx(k) bx(1)] + 1
2 [bx(4) bx(1)]¯̄̄̄

=
¯̄
2293 + 5077 + 1

2 · 8121
¯̄
= 11430.5,
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|bs s| = |
3P
k=2

{[bx(k) bx(1)] [x(k) x(1)]}

+1
2{[bx(4) bx(1)] [x(4) x(1)]}|

=
¯̄{2293 2287}+ {5077 5151}+ 1

2 · {8121 8128}¯̄
=

¯̄
6 + ( 74) + ( 7

2)
¯̄
= 71.5.

So,

=
1 + |s|+ |bs|

1 + |s|+ |bs|+ |s bs| = 0.997 > 0.90.

That is, the degree of incidence is in level one.
Compute the ratio of mean square deviations C:

x =
1

4

4X
k=1

x(k) = 31151.5,

S21 =
1

4

4X
k=1

[x(k) x]2 = 37252465,

S1 = 6103.48,

=
1

4

4X
k=1

(k) = 18.75,

S22 =
1

4

4X
k=1

[ (k) ]2 = 4154.75,

S2 = 64.46.

It follows that

C =
S2
S1
=

64.46

6103.48
= 0.01 < 0.35,

which is in the level one.
Compute the small error probability. From

0.6745S1 = 0.6745 · 6103.48 = 4116.80

and
| (1) | = 18.75, | (2) | = 24.75,

| (3) | = 55.25, | (4) | = 11.75,
it follows that

P (| (k) | < 0.6745S1) = 1 > 0.95,
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which belongs to level one.
So, with our accuracy checks in place, we can apply the grey model

bx(1)(k + 1) = 313834e0.089995k 286574

bx(0)(k + 1) = bx(1)(k + 1) bx(1)(k)
to make predictions. Here, we list five predicted values as follows:

bX(0) =
¡bx(0)(i)¢9

i=5
= (38714, 42359, 46348, 50712, 55488) .

9.3 Interval Predictions

For chaotic data sequences, where no matter which model is used, it is
di cult for the simulation outcome to pass accuracy tests; we will not
be able to produce exact prediction values. In this case, we can consider
deriving a range for the future changes, and predict the interval of possible
values.

Definition 9.3.1. Assume that X(t) is the zigzagged line of a sequence,
and that f`(t) and fu(t) are continuous smooth curves. If for any t, the
following always holds true,

f`(t) X(t) fu(t),

then f`(t) is called a lower bound (function) of X(t), and fu(t) a upper
bound (function) of X(t); and

S = {(t,X(t))|X(t) [f`(t), fu(t)]}

is called the value band of X(t).

Definition 9.3.2. 1. If the lower and upper boundary functions of the
value band S of X(t) are the same kind of function, then S is called a
uniform band.

2.When S is a uniform band with the lower bound function f`(t) and up-
per bound function fu(t) being exponential, the band S is called a uniform
exponential band, or exponential band for short.

3. When S is a uniform band with the lower bound function f`(t) and
upper bound function fu(t) being linear, S is called a uniform linear band,
or linear band for short.

4. If t1 < t2 always implies that

fu(t1) f`(t1) < fu(t2) f`(t2),

then S is called a trumpet-like band.
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FIGURE 9.1. The prediction range of X(1)

Definition 9.3.3. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a sequence of original data with the 1-AGO sequence

X(1) =
³
x(1)(1), x(1)(2), ..., x(1)(n)

´
.

Let
M = max

1 k n
{x(0)(k)}, m = min

1 k n
{x(0)(k)}

and take the lower bound function f`(n+ t) and the upper bound function
fu(n+ t) of X(1) as follows, respectively,

f`(n+ t) = x
(1)(n) + t m,

and
fu(n+ t) = x

(1)(n) + t M .

Then
S = {(t,X(t))|t > n,X(t) [f`(t), fu(t)]}

is called a proportional band.

Proposition 9.3.1. Each proportional band is a straight-line trumpet-
like band.

In fact, the lower bound function and upper bound function of each
proportional band are straight-lines, which are proportionally increasing
with time, with slopes m and M respectively. The prediction range of
X(1) is shown in Figure 9.1.
Let X(0) be a sequence of original data with time variable t. The curves,

one of which connects all the local minimum points and the other connects
all the local maximum points in the zigzagged curve of the sequence X(0),
are called the lower bound curve and the upper bound curve of the sequence
X(0), respectively.
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FIGURE 9.2. How a wrapping band looks like

Definition 9.3.4. Assume that X(0) is a sequence of raw data, X(0)
` the

sequence corresponding to the lower bound curve of X(0), and X(0)
u the

sequence corresponding to the upper bound curve of X(0). If

bx(1)` (k + 1) = ·x(0)` (1) b`
a`

¸
· e a`k +

b`
a`

and bx(1)u (k + 1) =

·
x(0)u (1)

bu
au

¸
· e auk +

bu
au

are, respectively, the GM(1, 1) time response sequences of X(0)
` and X(0)

u ,
then

S =
n
(t,X(t))|X(t) [bx(1)` (t), bx(1)u (t)]

o
is called a wrapping band.

A wrapping band is given here in Figure 9.2.
Definition 9.3.5. Assume that X(0) is a sequence of raw data, m dif-

ferent subsequences of X(0) can be used to establish m di erent GM(1, 1)
models. Assume that the corresponding parameters are

bai = £ ai bi
¤T
, i = 1, 2, ...,m.

Let
M = max

1 k n
{ ai}, m = min

1 k n
{ ai},

and bx(1)` (k + 1) = ·x(0)` (1) bm
am

¸
· e amk +

bm
am
,

bx(1)u (k + 1) = ·x(0)u (1) bM
aM

¸
· e aMk +

bM
aM

.

Then
S =

n
(t,X(t))|X(t) [bx(1)` (t), bx(1)u (t)]

o



284 9. Grey Prediction

is called a development band.

Proposition 9.3.2. Wrapping and development bands are all exponen-
tial bands.

Definition 9.3.6. Assume that

X(0) =
³
x(0)(1), x(0)(2), ..., x(0)(n)

´
is a sequence of raw data, and f`(t) and fu(t) are the lower bound and
upper bound functions of the 1-AGO sequence X(1). Then for any k > 0,

bx(1)` (n+ k) = f`(n+ k)
is called the lowest predicted value,

bx(1)u (n+ k) = fu(n+ k)
is called the highest predicted value, and

bx(1)(n+ k) = 1

2
[f`(n+ k) + fu(n+ k)]

is called the basic predicted value.

Example 9.3.1. The following sequence gives the retailing amounts of
cotton cloth in Henan Province, the People’s Republic of China,

X(0) =
¡
x(0)(i)

¢6
i=1

= (4.9445, 5.5828, 5.3441, 5.2669, 4.5640, 3.6524) ,

where the dimension of x(0)(k) is 0.1 billion meters, x(0)(1) = 4.9445 is the
datum for the year of 1978, and x(0)(2) = 5.5828 for the year of 1979, ....
Make a proportional band prediction based on this set of data.

Solution: Let
M = max

1 k 6
{x(0)(k)} = 5.5828,

and
m = min

1 k 6
{x(0)(k)} = 3.6524.

From

x(1)(k) =
kX
i=1

x(0)(i),

k = 1, 2, ..., 6, we obtain the 1-AGO sequence of X(0) as follows.

X(1) =
¡
x(1)(i)

¢6
i=1

= (4.9445, 10.5273, 15.8714, 21.1383, 25.7023, 29.3547) .
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So
fu(6 + k) = x

(1)(6) + k M = 29.3547 + 5.5828k

and
f`(6 + k) = x

(1)(6) + k m = 29.3547 + 3.6524k.

When k = 1, 2, 3, the highest predicted values are

bx(1)u (7) = fu(6 + 1) = x(1)(6) + 1 · M = 34.9375,

bx(1)u (8) = fu(6 + 2) = x(1)(6) + 2 · M = 40.5203,

bx(1)u (9) = fu(6 + 3) = x(1)(6) + 3 · M = 46.1031;

the lowest predicted values are

bx(1)` (7) = f`(6 + 1) = x(1)(6) + 1 · m = 33.0071,

bx(1)` (8) = f`(6 + 2) = x(1)(6) + 2 · m = 36.6595,

bx(1)` (9) = f`(6 + 3) = x(1)(6) + 3 · m = 40.3119;

and the basic predicted values are

bx(1)(7) = 1
2 [bx(1)u (7) + bx(1)` (7)] = 33.9723,

bx(1)(8) = 1
2 [bx(1)u (8) + bx(1)` (8)] = 38.5899,

bx(1)(9) = 1
2 [bx(1)u (9) + bx(1)` (9)] = 43.2075.

Example 9.3.2. The following sequence gives the data of per capita
consumption of cotton cloths of peasants in Henan Province,

X(0) =
¡
x(0)(i)

¢6
i=1

= (5.43, 3.90, 3.93, 4.43, 3.97, 2.77) ,

where the dimension of x(0)(k) is meter, for k = 1, 2, ..., 6, x(0)(1) = 5.43
is the datum for the year of 1978, x(0)(2) = 3.90 for the year of 1979,
..., x(0)(6) = 2.77 for the year of 1983. Do a wrapping band prediction.

Solution: The zigzagged line X(0), its upper wrapping curve fu(t), and
the lower wrapping curve f`(t) are shown in Figure9.3.
The upper wrapping sequence, corresponding to fu(t), is given as

X
(0)
u =

³
x
(0)
u (i)

´6
i=1

= (5.43, 4.97, 4.67, 4.43, 3.33, 3.90) ,

and its 1-AGO sequence is

X
(1)
u =

³
x
(1)
u (i)

´6
i=1

= (5.43, 10.40, 15.06, 91.50, 23.63, 27.53) .



286 9. Grey Prediction

FIGURE 9.3. A zigzagged line and its upper and lower wrapping functions

GM(1, 1) time response sequence of X(1)
u is

bx(1)u (k + 1) = 84.83 · e 0.06k + 90.26.

So, the inverse accumulating restoration sequence X(0)
u of X(1)

u is

bx(0)u (k + 1) = bx(1)u (k + 1) bx(1)u (k)
= 84.83 · e 0.06k + 84.83 · e 0.06k+0.06

= 84.83 · (e0.06 1) · e 0.06k

= 5.254 · e 0.06k.

So, we obtain the highest predicted values

bx(0)u (7) = 3.66, bx(0)u (8) = 3.45, bx(0)u (9) = 3.25.
The lower wrapping sequence, corresponding to f`(t), is given by

X
(0)
` =

³
x
(0)
` (i)

´6
i=1

= (3.87, 3.90, 3.53, 3.33, 3.07, 3.77) ,

and its 1-AGO sequence X(1)
` is

X
(1)
` =

³
x
(1)
` (i)

´6
i=1

= (3.87, 7.77, 11.30, 14.83, 17.70, 20.47) .

So, we have the GM(1, 1) time response sequence

bx(1)` (k + 1) = 48.33 · e 0.084k + 52.20

bx(0)` (k + 1) = bx(1)` (k + 1) bx(1)` (k).
That is bx(0)` (k + 1) = 4.24 · e 0.084k.
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So, it follows that the lowest predicted values are:

bx(0)` (7) = 2.56, bx(0)` (8) = 2.35, bx(0)` (9) = 2.16.
Therefore, we have the basic predicted values:

bx(0)(7) = 1
2 [bx(0)u (7) + bx(0)` (7)] = 3.112,

bx(0)(8) = 1
2 [bx(0)u (8) + bx(0)` (8)] = 2.90,

bx(0)(9) = 1
2 [bx(0)u (9) + bx(0)` (9)] = 2.705.

Example 9.3.3. Let us see the wrapping GM(1, 1) prediction for the
output of 20 major experimental materials used at Henan Agriculture Uni-
versity.2

The following gives various seasonal output data during 1990 1996 of
20 major experimental materials,

X
(0)
ij =

³
x
(0)
ij (1), x

(0)
ij (2), x

(0)
ij (3), x

(0)
ij (4), x

(0)
ij (5), x

(0)
ij (6), x

(0)
ij (7)

´
,

i = 1, 2, ..., 20; j = 1, 2, 3, 4, where

Table 9.2. The variables defined
Name Unit Code Name Unit Code

Sodium
hydroxide

Bottle X1
100 ml
beaker

Number X11

Sodium
chloride

Bottle X2
250 ml
beaker

Number X12

Hydroch-
loric acid

Bottle X3
500 ml
beaker

Number X13

Sulphuric
acid

Bottle X4
2000 ml
beaker

Number X14

Agar Kg X5 100 ml flask Number X15
Carbon te-
trachloride

Bottle X6
125 ml rea-
gent bottle

Number X16

Bitoluene Bottle X7
500 ml rea-
gent bottle

Number X17

Absolute
alcohol

Bottle X8 60 ml jar Number X18

PH test
paper

Box X9
60 ml drop-
ping bottle

Number X19

Potassium
hydroxide

Bottle X10
9 cm cul-
ture dish

Number X20

2For more details please refer to the work of Zhao, D.Y [1989].
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Find the relevant upper wrapping sequence

X
(0)
iju
=
³
x
(0)
iju
(1), x

(0)
iju
(2), x

(0)
iju
(3), x

(0)
iju
(4), x

(0)
iju
(5), x

(0)
iju
(6), x

(0)
iju
(7)
´
,

i = 1, 2, ..., 20; j = 1, 2, 3, 4, and the lower wrapping sequence

X
(0)
ij`
=
³
x
(0)
ij`
(1), x

(0)
ij`
(2), x

(0)
ij`
(3), x

(0)
ij`
(4), x

(0)
ij`
(5), x

(0)
ij`
(6), x

(0)
ij`
(7)
´
,

i = 1, 2, ..., 20; j = 1, 2, 3, 4, to establish a upper wrapping GM(1, 1) model

bx(1)iju(k + 1) = ·x(0)iju(1) biju
aiju

¸
· e aijuk +

biju
aiju

and a lower wrapping GM(1, 1) model

bx(1)ij` (k + 1) = ·x(0)ij` (1) bij`
aij`

¸
· e aij`k +

bij`
aij`

,

i = 1, 2, ..., 20; j = 1, 2, 3, 4. Their restored values through inverse accumu-
lating are given respectively as follows.

bx(0)iju(k + 1) = bx(1)iju(k + 1) bx(1)iju(k)
and

bx(0)ij` (k + 1) = bx(1)ij` (k + 1) bx(1)ij` (k),
i = 1, 2, ..., 20, j = 1, 2, 3, 4.
Here, there are 160 di erent models. To save some space, the specific

models, the upper and lower wrapping sequences of the output sequences
of the seasonal data of the 20 major experimental materials are omitted
here. Because the basic predicted values

bx(0)ij (k) = 1

2
[bx(0)iju(k) + bx(0)ij` (k)],

i = 1, 2, ..., 20; j = 1, 2, 3, 4, are calculated from those of bx(0)iju(k) and bx(0)ij` (k),
they are also omitted here. We only list the highest and lowest predicted
values for various seasons of the 20 major experimental materials for the
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year 1997 in Table 9.3.

Table 9.3. Predicted high and low values for each variable

Seasons 1 2 3 4
Variables hi lo hi lo hi lo hi lo
X1 20 85 32 70 32 101 15 89
X2 20 45 10 64 6 45 20 60
X3 32 190 61 180 20 200 40 150
X4 112 190 60 160 15 124 18 218
X5 12 76 20 55 5 39 6 89
X6 15 75 8 65 16 60 20 65
X7 12 130 25 110 9 89 12 74
X8 8 48 20 220 32 140 20 132
X9 132 398 126 658 112 626 198 598
X10 6 40 10 33 10 47 5 50
X11 18 331 11 172 36 200 18 126
X12 76 388 35 230 25 74 15 634
X13 94 277 21 215 24 680 30 225
X14 34 81 5 64 10 132 20 61
X15 30 320 27 289 50 250 56 480
X16 11 205 15 238 10 160 8 200
X17 9 366 10 230 8 321 25 227
X18 10 204 12 216 25 362 12 229
X19 12 981 84 1123 71 1411 91 1771
X20 61 500 25 426 22 386 11 72

9.4 Disaster Predictions

Essentially, disaster prediction is a prediction for abnormal values. Then,
the first question is: What kinds of values are abnormal? In general, people
use their experience and subjective criteria to determine what values are
normal and what are not. The task for disaster predictions is to pinpoint
the time moment(s) for one or several abnormal values to occur so that
relevant parties can have enough time to make preparations for disasters
to come.

Definition 9.4.1. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data. For a given upper abnormal (or catastrophe)
value , the sub-sequence of X,

X = (x[q(1)], x[q(2)], ..., x[q(m)])

= {x[q(i)]| x[q(i)] , i = 1, 2, ...,m} ,
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is called an upper catastrophe sequence.

Definition 9.4.2. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data. For a given lower abnormal (or catastrophe)
value , the sub-sequence of X,

X = (x[q(1)], x[q(2)], ..., x[q(`)])

= {x[q(i)]|x[q(i)] , i = 1, 2, ..., `} ,
is called a lower catastrophe sequence.

The upper and lower abnormal sequences are called catastrophe sequences.
Because di erent catastrophe sequences require di erent approaches to
handle related details, in the following discussions, we do not distinguish
between the upper and lower catastrophe sequences.

Definition 9.4.3. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data, and

X = (x[q(1)], x[q(2)], ..., x[q(m)]) X

a catastrophe sequence of X. Then

Q(0) = (q(1), q(2), ..., q(m))

is called a catastrophe date sequence.

The so-called disaster prediction is about finding patterns, if any, through
the study of catastrophe date sequences in order to predict future dates of
occurrences of catastrophes. In grey systems theory, each disaster predic-
tion is realized or done through establishing GM(1, 1) models for relevant
catastrophe date sequences.

Definition 9.4.4. Assume that

Q(0) = (q(1), q(2), ..., q(m))

is a catastrophe date sequence, and its 1-AGO sequence is

Q(1) =
³
q(1)(1), q(1)(2), ..., q(1)(m)

´
,

where

q(1)(i) =
iX

j=1

q(j),
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i = 1, 2, ...,m. The sequence mean generated based on consecutive neigh-
bors of Q(1) is

Z(1) =
³
z(1)(1), z(1)(2), ..., z(1)(m)

´
,

where z(1) (1) = q(1)(1), and

z(1)(i) =
1

2
[q(1)(i) + q(1)(i 1)],

i = 2, 3, ...,m. Then,
q(0)(k) + az(1)(k) = b

is called a catastrophe GM(1, 1) model.

Proposition 9.4.1. Assume that ba = £
a b

¤T
is the least squares

estimate of the parameters in a catastrophe GM(1, 1) model. Then the
GM(1, 1) ordinality response sequence of the catastrophe date sequence is

bq(1)(k + 1) =
£
q(1) b

a

¤ · e ak + b
a

bq(k + 1) = bq(1)(k + 1) bq(1)(k).
That is bq(k + 1) =

£
q(1) b

a

¤ · e ak
£
q(1) b

a

¤ · e a(k 1)

= (1 ea) · £q(1) b
a

¤ · e ak.

Definition 9.4.5. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data with n being the present time moment. For a
given abnormal value , the corresponding catastrophe date sequence is
given as

Q(0) = (q(1), q(2), ..., q(m)) ,

where q(m)( n) represents the date of the last catastrophe that had oc-
curred. Then, bq(m+1) is the predicted date for the next disaster to occur.
For any k > 0, bq(m+ k) is the predicted date for the kth disaster to occur
in the future.

Example 9.4.1. The following sequence gives the annual average pre-
cipitations (in the unit of mm) of a certain region

X = (x(i))17i=1

= (390.6, 412, 320, 559.2, 380.8, 542.4, 553, 310, 561,

300, 632, 540, 406.2, 313.8, 576, 587.6, 318.5),
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where x(1), x(2), ..., x(17) are respectively the data for the years of 1980,
1981, ..., 1996. Take = 320 mm as a lower abnormal (drought) value. Do
a drought prediction for this special region of our study.

Solution: Let = 320. We obtain the following lower catastrophe se-
quence

X = (x(3), x(8), x(10), x(14), x(17))

= (320, 310, 300, 313.8, 318.5) ,

with the corresponding catastrophe date sequence

Q(0) = (q(i))
5
i=1 = (3, 8, 10, 14, 17) ,

and its 1-AGO sequence Q(1)

Q(1) =
¡
q(1)(i)

¢5
i=1

= (3, 11, 21, 35, 52) .

The sequence mean generated based on consecutive neighbors of Q(1) is
given by

Z(1) =
¡
z(1)(i)

¢5
i=1

= (3, 7, 16, 28, 43.5) .

Let
q(0)(k) + az(1)(k) = b.

From

B =

7 1

16 1

28 1

43.5 1

and Y =

8

10

14

17

,

it follows that

ba = £ a b
¤T
=
£
BTB

¤ 1
BTY =

£
0.25361 6.258339

¤T
.

Therefore, the GM(1, 1) ordinality response sequence of the catastrophe
date sequence is

bq(1)(k + 1) = 27.677 · e0.25361k 24.677

bq(k + 1) = bq(1)(k + 1) bq(1)(k);
that is bq(k + 1) = 27.677 · e0.25361k 27.677 · e0.25361(k 1)

= 27.677 · (1 e 0.25361) · e0.25361k

= 6.1998 · e0.25361k.
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So, we can obtain a simulated sequence for Q(0) as follows,

bQ(0) = (bq(i))5i=1 = (6.1998, 7.989, 10.296, 13.268, 17.098) .
From

(k) = q(k) bq(k),
k = 1, 2, 3, 4, 5, we obtain the error sequence as follows,

(0) = ( (i))
5
i=1 = ( 3.1998, 0.011, 0.296, 0.732, 0.098) .

And from

k =

¯̄̄̄
(k)

q(k)

¯̄̄̄
,

k = 2, 3, 4, 5, it follows that the sequence of relative errors is

= ( 2, 3, 4, 5) = (0.1%, 2.96%, 5.1%, 0.6%) .

From this sequence, we calculate the average relative error

=
1

4

5X
k=2

k = 2.19%,

with 1 = 97.81% as the average relative accuracy, and 1 5 = 99.4%
as the filtering accuracy. So, we can use

bq(k + 1) = 6.1998 · e0.25361k
to do our predictions. Because

bq(5 + 1) = bq(6) 22,

and bq(6) bq(5) 22 17 = 5,

we predict that in four years, counting from the time of the last drought,
in 2001 there might be a drought. In order to improve the accuracy of our
prediction, we can take several di erent abnormal values to build various
models to make predictions.

9.5 Seasonal Disaster Predictions

In this section, we look at situations where seasonal patterns exist naturally.
Definition 9.5.1. Assume that = [a, b] is the overall time interval of

a study. If
i = [ai, bi] = [a, b],
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i = 1, 2, ..., s, satisfy

1. =
s

i=1
i;

2. i j =Ø, for any j 6= i,
then each i, i = 1, 2, ..., s, is called a season in , or a time interval or
time zone.

For example, when = [1, 365] represents a year with February 1 as the
starting point 1, then

1 = [1, 89], 2 = [90, 181],

3 = [182, 273], 4 = [274, 365]

would represent the spring, summer, autumn, and winter seasons of a year.
If the starting point 1 is January 1, then

1 = [1, 31], 2 = [32, 59], 3 = [60, 90],

4 = [91, 120], 5 = [121, 151], 6 = [152, 181],

7 = [182, 212], 8 = [213, 243], 9 = [244, 273],

10 = [274, 304], 11 = [305, 334], 12 = [335, 365]

will be the 12 months in a year.

Definition 9.5.2. Assume that i is a season, and

X = (x(1), x(2), ..., x(n)) i

a sequence of raw data. For a fixed abnormal value , the corresponding
catastrophe sequence

X = (x[q(1)], x[q(2)], ..., x[q(m)])

is called a seasonal catastrophe sequence. Accordingly,

Q(0) = (q(1), q(2), ..., q(m))

is called a seasonal catastrophe date sequence.

Proposition 9.5.1. Assume that i = [ai, bi] , ai > 0, and that

X = (x(1), x(2), ..., x(n)) i = [ai, bi]

is a positive sequence of raw data. Let

y(k) = x(k) ai,
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k = 1, 2, ..., n. The distinguishing rate of the data in the sequence

Y = (y(1), y(2), ..., y(n))

is greater than that of the original sequence X.

Proof: Suppose that
x(k), x(k + 1)

are a pair of consecutive neighbors in X and

y(k), y(k + 1)

the corresponding entries in Y. Then¯̄̄̄
y(k + 1) y(k)

y(k)

¯̄̄̄
=

¯̄̄̄
x(k + 1) ai x(k) + ai

x(k) ai

¯̄̄̄
=

¯̄̄̄
x(k + 1) x(k)

x(k) ai

¯̄̄̄
.

From ai > 0, it follows that x(k) ai < x(k). Therefore,¯̄̄̄
y(k + 1) y(k)

y(k)

¯̄̄̄
=

¯̄̄̄
x(k + 1) x(k)

x(k) ai

¯̄̄̄
>

¯̄̄̄
x(k + 1) x(k)

x(k)

¯̄̄̄
.

That is, the relative di erences of entries in Y are greater than those of the
entries in X. So, the distinguishing rate has been improved.

For example, we take i = [500, 520], and a sequence of raw data as

X = (x(i))
5
i=1 = (502, 506, 509, 514, 518) ,

and
Y = (y(i))5i=1 = (2, 6, 9, 14, 18) .

Then ¯̄̄̄
x(3) x(2)

x(2)

¯̄̄̄
=

¯̄̄̄
509 506

506

¯̄̄̄
= 0.0059,

and ¯̄̄̄
y(3) y(2)

y(2)

¯̄̄̄
=

¯̄̄̄
9 6

6

¯̄̄̄
= 0.5.

Similarly, the di erences between other pairs of entries can be discussed.
Seasonal disaster prediction is the study of occurrences of abnormal val-

ues appearing in a specified time interval. Based on Proposition 9.5.1, the
starting point of the season can be simplified as to zero so that one can con-
centrate on the study of the sequence Y with an improved distinguishing
rate between data values.

A seasonal disaster prediction can be conducted according to the follow-
ing steps.

Step 1: Collect the sequence of raw data

X = (x(1), x(2), ..., x(n)) .
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Step 2: Study the range of change of the sequence of raw data, and
determine the season i = [ai, bi] of interest.

Step 3: Let y(k) = x(k) ai, and transform the original sequence into

Y = (y(1), y(2), ..., y(n))

in order to improve the distinguishing rate between the data values.

Step 4: Choose an abnormal value and find the seasonal catastrophe
sequence

Y = (y[q(1)], y[q(2)], ..., y[q(m)])

and the seasonal catastrophe date sequence

Q(0) = (q(1), q(2), ..., q(m)) .

Step 5: Establish the catastrophe GM(1, 1) model:

q(0)(k) + az(1)(k) = b.

Step 6: Test the simulation accuracy and make predictions.

Seasonal disaster prediction can be applied to studying occurrences of
disasters during a certain season of a year. For example, the spring rain in
Yunnan Province, the People’s Republic of China, appears in the spring.
The early frost in Shanxi Province and the Chilly-Dew Wind in the north
area of Guangxi Province appear at the junction of the autumn and the
winter seasons. The Wheat-Dry-Hot Wind of Henan Province comes at the
end of May and early June. The bollworms of Henan Province generally
appear in June. The flood season in southern Henan Province is often in the
summer. What is worth noticing here is that the sequences of raw data in
many disaster predictions are the sequences of dates in the ordinary sense,
and the corresponding catastrophe date sequences are the times when the
abnormalities occur.

Example 9.5.1. Let us look at how we predicted the Wheat-Dry-Hot
Wind in the eastern area of Pingyu County of Henan Province.

Each Dry-Hot Wind is a serious natural disaster that appears near the
time when wheat is almost mature for harvest. This wind can cause the
wheat in the field to dry out too early causing reduced wheat yield by
20% to 40%. If it is possible to predict the occurrence of a Dry-Hot Wind
in advance, some appropriate remedial measures can be applied, such as
planting early-maturing varieties, or spraying in advance anti-wind and
ripening fertilizers, etc., in order to decrease the loss.
In the eastern area of Pingyu County, there are four towns: Yangbu,

Shuangmiao, Gaoyangdian, and Hedian. The dates Dry-Hot Wind occurred
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during the years from 1975 to 1988 are given in the following Table 9.4.

Table 9.4. Dates when Dry-Hot Winds occurred

Date Month Year Date Month Year
3 6 1975 27 5 1982
25 5 1976 4 6 1983
7 6 1977 24 5 1984
1 6 1978 31 5 1985
29 5 1979 28 5 1986
26 5 1980 25 5 1987
5 6 1981 25 5 1988

If an occurrence of a Dry-Hot Wind before May 30 is considered a disaster,
make a prediction based on Table 9.4.
Solution: Step 1: Starting on January 1, we can obtain a sequence of raw

data from Table 9.4 as follows,

X = (x(i))14i=1

= (185, 176, 189, 183, 180, 177, 187,

178, 186, 175, 182, 179, 176, 176).

Step 2: Take = [May 20, June 10] = [171, 192]. Then X .

Step 3: Let y(k) = x(k) 171, k = 1, 2, ..., 14. Then X can be changed to

Y = (y(i))14i=1

= (14, 5, 18, 12, 9, 6, 16, 7, 15, 4, 11, 8, 5, 5).

Step 4: Let = May 29 May 20 = 180 171 = 9 be a lower abnormal
value. So, the seasonal catastrophe sequence is

Y = {y[q(k)]|y[q(k)] 9}

= (y[q(1)], y[q(2)], · · ·, y[q(8)])

= (y(2), y(5), y(6), y(8), y(10), y(12), y(13), y(14)) .

Therefore,

Q(0) = (q(i))
8
i=1 = (2, 5, 6, 8, 10, 12, 13, 14) .

Step 5: Assume that

q(0)(k) + az(1)(k) = b.
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Then

ba = £ a b
¤T
=
£
BTB

¤ 1
BTY =

£
0.1588 5.017

¤T
.

Therefore, the catastrophe GM(1, 1) ordinality response sequence is

bq(1)(k + 1) = 33.59 · e0.1588k 31.59

bq(k + 1) = bq(1)(k + 1) bq(1)(k).
That is,

bq(k + 1) = 33.59 · (1 e 0.1588) · e0.1588k = 4.93 · e0.1588k.

Step 6: From bq(k + 1) = 4.93 · e0.1588k,
it follows that the simulated sequence of Q(0) is

bQ(0) = (bq(1), bq(2), bq(3), bq(4), bq(5), bq(6), bq(7), bq(8))
= (4.93, 5.77, 6.77, 7.93, 9.30, 10.91, 12.78, 14.98) .

From
(k) = q(k) bq(k),

k = 1, 2, ..., 8, it follows that

(0) = ( (1), (2), (3), (4), (5), (6), (7), (8))

= ( 2.93, 0.77, 0.77, 0.07, 0.70, 1.09, 0.22, 0.98) .

Again from

k =

¯̄̄̄
(k)

q(k)

¯̄̄̄
,

k = 2, 3, ..., 8, it follows that

= ( i)
8
i=2 = (0.154, 0.128, 0.009, 0.07, 0.091, 0.017, 0.07)

with the average relative error

=
1

7

8X
k=2

k = 0.077,

the average relative accuracy

1 = 92.3%,
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and the filtering accuracy

1 8 = 93%.

Here, our simulation accuracy is close to the level two. Hence, our model
obtained above can be used to make predictions. By using our models, we
have bq(9) 17, bq(10) 20,

bq(9) q(8) 17 14 = 3,

bq(10) bq(9) 20 17 = 3,

1988 + 3 = 1991, 1991 + 3 = 1994.

That is, in 1991 and 1994, Dry-Hot Wind could become a disaster, (these
prediction results were done before October 1988), and in 1989, there would
not be a Dry-Hot Wind before May 29. The actual record showed that a
Dry-Hot Wind occurred on June 2, 1989. And, so, no disaster was reported.
If combined with methods in meteorology and climatology, the output

and reliability of the method of disaster prediction in grey systems theory
can be further improved.

9.6 Stock-Market-Like Predictions

When the sequence of raw data vibrates widely with a relatively large
amplitude, it is often di cult to find an appropriate simulation model. In
this case, if the prediction on the ranges of change, as described in Section
9.3, are not satisfactory, we can make predictions on the wavy curve of the
future development of the data based on the wavy curve of the known data
sequence. This kind of prediction is called a stock-market-like prediction.

Definition 9.6.1. Assume that

X = (x(1), x(2), ..., x(n))

is a sequence of raw data. Then

xk = x(k) + (t k)[x(k + 1) x(k)]

is called a k-zigzagged line of the sequence X, and

{xk = x(k) + (t k)[x(k + 1) x(k)]|k = 1, 2, ..., n 1}
the zigzagged line of the sequence X, still denoted X. That is,

X = {xk = x(k) + (t k)[x(k + 1) x(k)]|k = 1, 2, ..., n 1} .



300 9. Grey Prediction

Definition 9.6.2. Assume that

M = max
1 k n

{x(k)} , m = min
1 k n

{x(k)} .

1. For any [ m, M ],X = is called -contour (line);

2. The solution (ti, x(ti)) , ( i = 1, 2, ...), of the system of equations

X = {xk = x(k) + (t k)[x(k + 1) x(k)]|k = 1, 2, ..., n 1}

X =

is called a -contour point.

-contour points are the intersection points of the zigzagged line of X
and the -contour line.

Proposition 9.6.1. If there exists an -contour point on the i-zigzagged
line of X, then its coordinates of the point areµ

i+
x(i)

x(i+ 1) x(i)
,

¶
.

Proof: The equation of the i-zigzagged line is

X = x(i) + (ti i)[x(i+ 1) x(i)].

Solving
X = x(i) + (ti i)[x(i+ 1) x(i)]

X =

gives

ti = i+
x(i)

x(i+ 1) x(i)
. ¤

Definition 9.6.3. Assume that

X = (P1, P2, ..., Pm)

is a sequence of -contour points, where Pi is located on the tith zigzagged
line segment with coordinatesµ

ti +
x(ti)

x(ti + 1) x(ti)
,

¶
.

Let

q(i) = ti +
x(ti)

x(ti + 1) x(ti)
,

i = 1, 2, ...,m. Then

Q(0) = (q(1), q(2), ..., q(m))
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is called a sequence of -contour moments.

Establishing a GM(1, 1) for the sequence of -contour moments can pro-
duce predicted values for future -contour moments:

bq(m+ 1), bq(m+ 2), ..., bq(m+ k).
Definition 9.6.4. Assume that

0 = m,

i = m +
i

s
( M m), i = 1, 2, · · ·, s 1,

s = M.

Then X = i, i = 0, 1, 2, ..., s, are called contour lines with equal interval,
and otherwise, called contour lines of non-equal interval.

When taking contour lines, more attention needs to be given to the as-
surance that the sequence of the corresponding contour points satisfies the
requirements for building GM(1, 1) models. In general, we can take either
contour line of the equal interval or contour lines of non-equal intervals,
depending on the situation involved.

Definition 9.6.5. Assume that X = i, i = 1, 2, ..., s, are s di erent
contour lines,

Q
(0)
i = (qi(1), qi(2), ..., qi(mi))

i = 1, 2, ..., s, sequences of contour moments, and

bqi(mi + 1), bqi(mi + 2), ..., bqi(mi + ki)

i = 1, 2, ..., s, GM(1, 1) predicted values for i-contour moments. If there
exist i 6= j such that

bqi(mi + `i) = bqj(mj + `j),

then bqi(mi + `i) and bqj(mj + `j) are called a pair of useless predicted
moments.

Proposition 9.6.2. Assume that

bqi(mi + 1), bqi(mi + 2), ..., bqi(mi + ki),
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i = 1, 2, ..., s, are the GM(1, 1) predicted values for i-contour moments.
Delete all useless moments in

bq1(m1 + 1), bq1(m1 + 2), ..., bq1(m1 + k1);

bq2(m2 + 1), bq2(m2 + 2), ..., bq2(m2 + k2);

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

bqi(mi + 1), bqi(mi + 2), ..., bqi(mi + ki);

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

bqs(ms + 1), bqs(ms + 2), ..., bqs(ms + ks)

and rank the remaining moments from the smallest to the greatest as fol-
lows, bq(1) < bq(2) < · · · < bq(ns),
where ns k1+k2+ · · ·+ks. If X = bq(k) is the contour line corresponding
to bq(k), then the predicted wavy curve of X(0) is

X = bX(0)

=
n

bq(k) + [t bq(k)] · ( bq(k+1) bq(k))|k = 1, 2, ..., n
o
.

Example 9.6.1. Let us look at our stock-market-like prediction done
for the annual runo amount of the upper reaches of Fen River Reservoir
in Shanxi Province, the People’s Republic of China.

The total volume of water that can be kept in the Fen River Reser-
voir, which was built in 1958, is 0.72 billion m3. The upper reaches of the
reservoir include Ningwu County, Jingle County, Lan County, and Loufan
County with a total drainage area of 52680 km2. The curve in Figure 9.4
gives the annual runo amounts from the year 1951 to the year 1980.
Let us take

1 = 2, 2 = 2.5, 3 = 3, 4 = 4, 5 = 5,

6 = 6, 7 = 7, 8 = 8, 9 = 8.5,

with 0.1 billion m3 as the dimension.
Then, the sequences of i-contour moments are given respectively as

follows. For 1 = 2,

Q
(0)
1 = {q1(k)}51 = (15, 21.5, 22.1, 24.4, 25.2) ,
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FIGURE 9.4. Annual runo amounts in upper reaches of Fen River Reservoir

for 2 = 2.5,

Q
(0)
2 = {q2(k)}81 = (13, 14.8, 15.2, 22.1, 22.2, 23.9, 25.6, 29.9) ,

for 3 = 3,

Q
(0)
3 = {q3(k)}131

= (1.7, 2.2, 5, 7.1, 12.4, 13.1, 14.7,

15.5, 20.7, 22.3, 23.7, 26, 29.6),

for 4 = 4,

Q
(0)
4 = {q4(k)}191

= (1, 2.6, 4.8, 5.5, 6.4, 7.4, 9.8, 10.7, 11.4, 13.5,

14.4, 16.1, 17.9, 18.1, 19.9, 22.6, 23.4, 26.4, 29.1),

for 5 = 5,

Q
(0)
5 = {q5(k)}131

= (3, 4.6, 7.8, 9.6, 13.9, 14.1, 16.1,

17.8, 19, 22.8, 23.1, 26.7, 28.4),

for 6 = 6,

Q
(0)
6 = {q6(k)}61 = (3.3, 4.5, 8.1, 9.4, 16.2, 17.7) ,

for 7 = 7,

Q
(0)
7 = {q7(k)}61 = (3.5, 4.3, 8.5, 9.3, 16.3, 17.6) ,
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for 8 = 8,

Q
(0)
8 = {q8(k)}61 = (3.7, 4.2, 8.8, 9, 16.5, 17.5) ,

and for 9 = 8.5,

Q
(0)
9 = {q9(k)}51 = (3.8, 4.1, 9.1, 16.6, 17.4) .

Apply accumulating generation once on Q(0)i , i = 1, 2, ..., 9. Then, the
GM(1, 1) response sequences of Q(1)i , i = 1, 2, ..., 9, are respectively given
as follows. bq(1)1 (k + 1) = 359.86 · e0.06k 344.86,

bq(1)2 (k + 1) = 128 · e0.11k 115.7,

bq(1)3 (k + 1) = 45.65 · e0.13k 43.95,

bq(1)4 (k + 1) = 54.15 · e0.1k 53.15,

bq(1)5 (k + 1) = 68.68 · e0.12k 65.98,

bq(1)6 (k + 1) = 16.1 · e0.3k 12.8,

bq(1)7 (k + 1) = 15.52 · e0.3k 13.02,

bq(1)8 (k + 1) = 16.7 · e0.3k 13,

bq(1)9 (k + 1) = 14.59 · e0.37k 10.79.

Let bqi(k + 1) = bq(1)i (k + 1) bq(1)i (k).

We then can obtain the predicted sequences of i-contour moments, for i =
1, 2, ..., 9, as follows.

bQ(0)1 = (bq1(i))9i=6 = (33.79, 35.79, 37.92, 40.16) ,
bQ(0)2 = (bq2(i))11i=8 = (33.26, 37.2, 41.6, 46.52) ,bQ(0)3 = (bq3(i))16i=14 = (36.91, 42.17, 48.19) ,
bQ(0)4 = (bq4(i))23i=20 = (34.02, 37.59, 41.52, 45.87) ,bQ(0)5 = (bq5(i))17i=14 = (34.17, 38.38, 43.11, 48.42) ,bQ(0)6 = (bq6(7), bq6(8)) = (34.39, 46.47) ,
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FIGURE 9.5. Predicted curve for the annual runo amounts at upper reaches of
Fen River Reservoir

bQ(0)7 = (bq7(7), bq7(8)) = (34.13, 45.96) ,
bQ(0)8 = (bq8(7), bq8(8)) = (33.97, 45.68) ,

and bQ(0)9 = (bq9(6)) = (40.17) .
Based on these predicted values, we can draw the predicted curve for the

annual runo amounts at the upper reaches of Fen River Reservoir (see
Figure 9.5 for more details).

9.7 Systems Predictions

For a system with several mutually related factors and many behavioral
variables, no single model can truly reflect the development pattern of the
system. So, we must consider establishing a system of models in order to
make e ective predictions for the system of interest.

Definition 9.7.1. Assume that

X
(0)
1 ,X

(0)
2 , ...,X(0)

m

are sequences of raw data for the state variables of a system, and

U
(0)
1 , U

(0)
2 , ..., U (0)s
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sequences of data for the control variables of the system. Then,

dx
(1)
1

dt
= a11x

(1)
1 + a12x

(1)
2 + · · ·+ a1mx(1)m +

+b11u
(1)
1 + b12u

(1)
2 + · · ·+ b1su(1)s

dx
(1)
2

dt
= a21x

(1)
1 + a22x

(1)
2 + · · ·+ a2mx(1)m +

+b21u
(1)
1 + b22u

(1)
2 + · · ·+ b2su(1)s

· · · · ·· · · · · · · · · · · · · · · · · · · · · · · · · ·
dx

(1)
m

dt
= am1x

(1)
1 + am2x

(1)
2 + · · ·+ ammx(1)m +

+bm1u
(1)
1 + bm2u

(1)
2 + · · ·+ bmsu(1)s

du
(1)
1

dt
= c1u

(1)
1 + d1

du
(1)
2

dt
= c2u

(1)
2 + d2

· · · · ·· · · · · · · ··
du

(1)
s

dt
= csu

(1)
s + ds

is called a system of prediction models.

In fact, a system of prediction models consists of m GM(1,m+ s) and s
GM(1, 1) di erential equations.

Definition 9.7.2. The matrix form of a system of prediction models is
given as

.

X = AX +BU

.
U = CU +D,

where

X = [x1, x2, ..., xm]
T
,

U = [u1, u2, ..., us]
T
,

A =

a11 a12 · · · a1m

a21 a22 · · · a2m

· · · · · · · · · · · ·

am1 am2 · · · amm

, B =

b11 b12 · · · b1s

b21 b22 · · · b2s

· · · · · · · · · · · ·

bm1 bm2 · · · bms

,
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C =

c1

c2

. . .

cs

, D =

d1

d2
·
·
·
ds

.

with X being the state vector, U the control vector, A the state matrix,
B the control matrix, C the development matrix, and D the grey action
vector.

Proposition 9.7.1. The time response sequences of the system of pre-
diction models as given in Definition 9.7.2 are

bx(1)1 (k + 1) =

(
x
(1)
1 (0) +

1

a11

"
mP
j=2
a1jx

(1)
j (k + 1)

+
sP
i=1
b1iu

(1)
i (k + 1)

¸¾
· ea11k

1

a11

"
mP
j=2
a1jx

(1)
j (k + 1) +

sP
i=1
b1iu

(1)
i (k + 1)

#
,

bx(1)2 (k + 1) =

(
x
(1)
2 (0) +

1

a22

"P
j 6=2
a2jx

(1)
j (k + 1)

+
sP
i=1
b2iu

(1)
i (k + 1)

¸¾
· ea22k

1

a22

"P
j 6=2
a2jx

(1)
j (k + 1) +

sP
i=1
b2iu

(1)
i (k + 1)

#
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··

bx(1)m (k + 1) =

(
x
(1)
m (0) +

1

amm

" P
j 6=m

amjx
(1)
j (k + 1)

+
sP
i=1
bmiu

(1)
i (k + 1)

¸¾
· eammk

1

amm

" P
j 6=m

amjx
(1)
j (k + 1) +

sP
i=1
bmiu

(1)
i (k + 1)

#
,

bu(1)1 (k + 1) = ·u(1)1 (0) + d1c1
¸
· ec1k d1

c1
,
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bu(1)2 (k + 1) = ·u(1)2 (0) + d2c2
¸
· ec2k d2

c2
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··
bu(1)s (k + 1) = ·u(1)s (0) + dscs

¸
· ecsk ds

cs
,

where the response sequences of the state variables are approximate.

Example 9.7.1. Let us look at our prediction model for the grain pro-
duction system of Shanxi Province, the People’s Republic of China.

We have the system state variables,

1. x1 : total grain yield of Shanxi Province (in 0.1 billion kg), and

2. x2 : average yield per mu (0.15 mu = 1 acre) of Shanxi Province (in
kg),

and system control variables

1. u1 : total sown area in Shanxi Province (in 10,000 mu),

2. u2 : average amount of fertilizers applied in eachmu of land in Shanxi
Province (in kg); and

3. u3 : the ratio of irrigated area and the total sown area (%).

According to an analysis done previously, the total grain production has
something to do with the total sown area and average yield per mu of
land. And, the average yield per mu is closely related to the amount of
fertilizers applied and the ratio of irrigated area and the total sown area.
So, we obtain our system of prediction models as follows.

dx
(1)
1

dt
= a11x

(1)
1 + a12x

(1)
2 + b11u

(1)
1

dx
(1)
2

dt
= a22x

(1)
2 + b22u

(1)
2 + b23u

(1)
3

du
(1)
1

dt
= c1u

(1)
1 + d1

du
(1)
2

dt
= c2u

(1)
2 + d2

du
(1)
3

dt
= c3u

(1)
3 + d3.
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From the historical data of x1, x2, and u1, u2, u3, we can obtain the least
squares estimates for the system’s state matrix A, control matrix B, devel-
opment matrix C, and grey action vector D as follows.

bA = 1.97209 0.8118

0 1.52385
, bB = 0.0033 0 0

0 2.09693 8.0016
,

bC =
0.0058 0 0

0 0.0819 0

0 0 0.0014

, bD =

5000.7174

10.1785

28.2795

.

So, the system of prediction models is

dx
(1)
1

dt
= 1.97209x

(1)
1 + 0.8118x

(1)
2 + 0.0033u

(1)
1

dx
(1)
2

dt
= 1.52385x

(1)
2 + 2.09693u

(1)
2 + 8.0016u

(1)
3

du
(1)
1

dt
= 0.0058u

(1)
1 + 5000.7174

du
(1)
2

dt
= 0.0819u

(1)
2 + 10.1785

du
(1)
3

dt
= 0.0014u

(1)
3 + 28.2795

with the response sequences

bx(1)1 (k + 1) = {x(1)1 (0)
1

1.97209
[0.8118x

(1)
2 (k + 1)

+ 0.0033u
(1)
1 (k + 1)]} · e 1.97209k

+
1

1.97209
[0.8118x

(1)
2 (k + 1) + 0.0033u

(1)
1 (k + 1)],
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bx(1)2 (k + 1) = {x(1)2 (0)
1

1.52385
[2.09693u

(1)
2 (k + 1)

+ 8.0016u
(1)
3 (k + 1)]} · e 1.52385k

+
1

1.52385
[2.09693u

(1)
2 (k + 1) + 8.0016u

(1)
3 (k + 1)],

bu(1)1 (k + 1) = ·u(1)1 (0) 5000.7174

0.0058

¸
· e 0.0058k +

7000.7174

0.0058
,

bu(1)2 (k + 1) = ·u(1)2 (0) 10.1785

0.0819

¸
· e0..0819k 10.1785

0.0819
,

bu(1)3 (k + 1) = ·u(1)3 (0) 28.2795

0.0014

¸
· e0.0014k 28.2795

0.0014
.

The predicted values from our system of prediction models are given in
the following Table 9.5.

Table 9.5. Predicted values
1990 1995 2000

u1 4402 4301.15 4178
u2 55.62 83.76 126
u3 29.1 29.3 29.5
x1 98.96 113.72 135.5
x2 225.36 263.19 319.5

When the control variables take di erent values, we can obtain di er-
ent predicted values for the system. For example, when u1 = 4492 in ten
thousand mu, u2 = 32 kg, u3 = 28.6%, or let u1 be 4000, 4250, 4500 in ten
thousandmu, u2 be 50 kg, 75 kg, u3 = 29%, respectively; the corresponding
predicted values for the grain productions are listed in Table 9.6.

Table 9.6. Control values and the relevant predictions

Control Variable State Variable
u1 u2 u3 x1 x2
4492 32 28.6 87.6 87.45 87.45 194.5
4000 97.77 97.7 97.7
4250 50 29 83.18 98.12 98.12 221
4500 98.6 98.53 98.53
4000 111.94 111.86 111.86
4250 75 29 112.35 112.28 112.275 255
4500 112.77 112.70 112.70

From Table 9.6, it can be seen that if the sown area u1 is controlled be-
tween 4000 to 4500 in ten thousandmu, the amount u2 of fertilizers applied
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in each mu is between 50 kg to 75 kg, and the ratio of the irrigated area
u3 is 29%, then the total grain production after 1990 would be stabilized
between 9.77 to 11.2 billion kg.

9.8 Practical Applications

In this final section of this chapter, we use one real-life example to try out
our theory developed in this chapter.
Example 9.8.1. Let us do a grey prediction for flood and drought dis-

asters for Henan Province.

Henan is a province, which, historically, mainly lives on agriculture rev-
enues. The entire province is located in a warm temperature zone and north-
ern Asian tropical zone. Its annual average precipitation is about 600 to
1200 mm, which increases from southeast to northwest. It is mainly a ected
by monsoon climates with a combined characteristic of the south and the
north. There exist great di erences in weather conditions between various
locations in the province. Its climatic conditions are good for the growth of a
great many di erent varieties of agricultural plants. On the other hand, cir-
culations of monsoons bring about a great frequency of disastrous weather
conditions, such as drought, flood, Dry-Hot Wind, sandstorm, hail, frost,
etc., which occur alternatively, causing serious consequences for grain pro-
duction and human’s living in the province. Especially, drought and flood
bring more serious disasters to much greater areas. Here, what is worth
mentioning is drought, which can cover the entire province and occurs al-
most every year. For example, during the time period of 600 plus years from
1300 to 1911, droughts of the province size occurred in 88 years. From 1949
to 1989, a period of 41 years, there appeared major droughts in 13 years,
each of which covered an area of more than 10,000,000 mu (0.15 mu =
1 acre), where in four years, there appeared disastrous droughts a ecting
more than 25,000,000 mu. Even though the disastrous areas of floods have
been smaller than those su ering from droughts, the actual consequences
have not been any less than those of droughts. For example, during the
600 plus years from 1300 to 1911, Henan had su ered from major floods
69 times. During the time period of 41 years from 1949 to 1989, there ap-
peared 13 major floods, covering an area greater than 10,000,000 mu, with
disastrous areas greater than 25,000,000 mu in 6 years. Here, in this ex-
ample, we do a prediction, using the available statistical records of Henan
Province regarding floods, droughts, and related sizes of areas a ected for
the years from 1949 to 1989, about potential occurrences and disastrous
levels of flood and drought for the last 10 years of the 20th century, based
on grey systems methodology and principles of disaster predictions.
By using the sizes of areas a ected by floods and droughts, we divide

floods and droughts into four grey classes:
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• Light disaster: disastrous area is less than 5,000,000 mu;
• Medium disaster: disastrous area is between 5,000,000mu and 10,000,
000 mu;

• Serious disaster: disastrous area is between 10,000,000mu and 25,000,
000 mu;

• Extraordinary disaster: disastrous area is greater than 25,000,000mu.
Here, our task is to predict for medium, serious, and extraordinary dis-

asters. In our catastrophe models, we denote medium, serious, and extra-
ordinary disasters as the third class, the second class, and the first class
disasters, respectively. And, q1i (k), i = 1, 2, 3, is used to stand for the year
when the ith class flood disaster occurred the kth time after 1949, and
q2i (k), i = 1, 2, 3, for the year when the ith class drought disaster occurred
the kth time after 1949. Based on the available statistical records, we have
the following 6 catastrophe sequences.

q11 =
¡
q11(i)

¢6
i=1

= (1956, 1957, 1963, 1964, 1982, 1984) ,

q12 =
¡
q12(i)

¢7
i=1

= (1953, 1954, 1965, 1975, 1976, 1979, 1985) ,

q13 =
¡
q13(i)

¢9
i=1

= (1950, 1952, 1955, 1958, 1960, 1962, 1977, 1980, 1983) ,

q21 =
¡
q21(i)

¢4
i=1

= (1961, 1978, 1986, 1988) ,

q22 =
¡
q22(i)

¢9
i=1

= (1959, 1960, 1962, 1965, 1966, 1981, 1982, 1985, 1987) ,

q23 =
¡
q23(i)

¢6
i=1

= (1968, 1972, 1976, 1977, 1979, 1980) .

In order to improve the distinguishing rates between data values in the
sequences without loss of convenience to compare the actual year, let

dji (k) = q
j
i (k) 1900,

j = 1, 2; i = 1, 2, 3. So, we obtain the following transformed catastrophe
sequences.

d11 =
¡
d11(i)

¢6
i=1

= (56, 57, 63, 64, 82, 84) ,

d12 =
¡
d12(i)

¢7
i=1

= (53, 54, 65, 75, 76, 79, 85) ,

d13 =
¡
d13(i)

¢9
i=1

= (50, 52, 55, 58, 60, 62, 77, 80, 83) ,
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d21 =
¡
d21(i)

¢4
i=1

= (61, 78, 86, 88) ,

d22 =
¡
d22(i)

¢9
i=1

= (59, 60, 62, 65, 66, 81, 82, 85, 87) ,

d23 =
¡
d23(i)

¢6
i=1

= (68, 72, 76, 77, 79, 80) .

By establishing a GM(1, 1) model for each dji , j = 1, 2; i = 1, 2, 3, we
obtain the following restored sequences of the GM(1, 1) ordinality response
sequences for various disasters.

bd11(k + 1) = 50.21 · e0.105k,

bd12(k + 1) = 55.01 · e0.07516k,

bd13(k + 1) = 46.55 · e0.07384k,

bd21(k + 1) = 74.57 · e0.0588k,

bd22(k + 1) = 55.61 · e0.0596k,

bd23(k + 1) = 71.21 · e0.02457k.
After conducting model validity tests, we find that the simulated relative
errors, degrees of incidences, the ratios of mean square deviations, and small
error probabilities all satisfy requirements. Hence, we can use the model as
a prediction model.
From bd11(7) = 94.27, bd11(8) = 104.71,

it follows that

[bd11(7)] = [94.27] = 94, [bd11(8)] = [104.71] = 105.
So,

[bq11(7)] = [bd11(7)] + 1900 = 1994
and

[ bq11(8)] = [ bd11(8)] + 1900 = 2005.
It follows that in the 20th century, there might be an extraordinary flood
disaster in 1994, which would a ect more than 25,000,00 mu of land in
Henan Province. The next occurrence of extraordinary flood disaster would
be in the year of 2005. Similarly, we can obtain predicted years for serious
flood disasters with disastrous areas between 10,000,000 mu to 25,000,000



314 9. Grey Prediction

mu and medium-sized flood disasters with disastrous areas between 5,000,000
mu to 10,000,000 mu as follows.

[ bq12(8)] = [ bd12(8)] + 1900 = 1993,
[ bq12(9)] = [ bd12(9)] + 1900 = 2000,

and
[ bq13(10)] = [ bd13(10)] + 1900 = 1991,
[ bq13(11)] = [ bd13(11)] + 1900 = 1997.

The predicted years for various kinds of drought disasters are given as
follows.

[ bq21(5)] = 1994, [ bq21(6)] = 2000;
[ bq22(10)] = 1995, [ bq22(11)] = 2001;
[ bq23(7)] = 1990, [ bq23(8)] = 1993,
[ bq23(9)] = 1996, [ bq23(10)] = 1998.

All predicted values of our model here are listed in Table 7.7.

Table 9.7. Predicted values of the chosen model
Flood Disaster Drought Disaster

Medium 1991 1997 1990 1993 1996
Serious 1993 2000 1995
Extraordinary 1994 1994 2000

This model and related simulated values have been obtained in the year
1989. The predicted outcomes for the flood and drought disasters for the
year 1994 and the drought disaster for the year 1995 have agreed well
with the actual circumstances in these years. In 1994, the drought a ected
about 60,000,000 mu and the flood about 23,000,000 mu. And in 1995, the
drought a ected about 18,000,000 mu.



10
Grey Decisions

10.1 Introduction

Deciding what actions to take in order to achieve a scheduled target based
on the actual circumstances in the environment is so-called decision mak-
ing. The essential meaning of decision making is to “make a decision” or to
“choose an appropriate reaction.” Decision making is not only an impor-
tant part in various administrative activities at all levels, but also permeates
everyone’s work, study, and life from the start to end. Understanding about
decision making can be divided into two categories, one with a more gen-
eral scope and the other a more narrow scope. Generally speaking, decision
making means the entire process of raising questions, collecting supporting
materials, determining goals, making plans, analyzing and evaluating sit-
uations, choosing plans, implementing, feedback and modifying the plans,
etc. The more narrow category for decision making implies the step and
the only step in the entire decision making process about choosing plans,
which is often known as “having the final say.” There also exist people
who understand decision making as choosing plans under the uncertainty
of known information. In this case, the decision making depends heavily on
the personal experience, attitude, and determination of the decision maker,
who would have to be responsible for certain risks associated with the final
decision. Grey decision making is one where the model in use contains grey
elements, or where a general decision making model is combined with some
grey models. The emphasis of grey decision making is on the study of the
problem of choosing plans.
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In the discussion below, we call the problem of concern, the phenomenon
of focus, the current situation of a system’s behavior, etc., an event, which
will be the start of each of our decision making.

Definition 10.1.1. Events, countermeasures, objectives, and e ects are
called the four key elements of decision making.

Definition 10.1.2. The totality of all events within a range of research
is called the set of events of the research, denoted

A = {a1, a2, ..., an} ,

where ai, i = 1, 2, ..., n, is the ith event. The corresponding totality of all
possible countermeasures is called the countermeasure set, denoted

B = {b1, b2, ..., bm} ,

where bj , j = 1, 2, ...,m, is the jth countermeasure.

Definition 10.1.3. Assume that

A = {a1, a2, ..., an}

is the set of events of a research and

B = {b1, b2, ..., bm}

the countermeasure set. Then, the Cartesian product

A×B = {(ai, bj)|ai A, bj B}

is called the situation set, denoted S = A×B. For any ai A and bj B,
the pair (ai, bj) is called a situation, denoted sij = (ai, bj).

For example, in the decision making on what to plant in agriculture,
weather conditions can be used as the set of events with a normal year
denoted as a1, a drought year as a2, and a flood year as a3. Then, the set
of events is

A = {normal year, drought year, flood year} = {a1, a2, a3} .

And, di erent strains of crops can be seen as countermeasures with corn
denoted as b1, Chinese sorghum as b2, soybeans as b3, sesame b4, potatoes
and yams as b5, · · ·; then the countermeasure set is given as

B = {corn, Chinese sorghum, soybean, sesame, potatos and yams, ...}

= {b1, b2, b3, b4, b5, ...} .
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Therefore, the situation set is

S = A×B

= {s11, s12, s13, s14, s15, ...;

s21, s22, s23, s24, s25, ...;

s31, s32, s33, s34, s35, ...},
where sij = (ai, bj), For example

s11 = (a1, b1) = (normal year, corn) ,

s21 = (a2, b1) = (drought year, corn) ,

s31 = (a3, b1) = (flood year, corn) ,

and
s12 = (a1, b2) = (normal year, Chinese sorghum) .

Here, the events and countermeasures are simple. So, the situations con-
structed are relatively simple too. In a practical decision making, the events
of consideration are often complicated, consisting of many kinds of simple
events, and the countermeasures are complicated too. Hence, the resultant
situations can be extremely complicated.
For now, let us continue to use the previous planting decision making as

our example.
As a matter of fact, the set of events is the organic body consisting of

weather, soil, irrigation, fertilizer, agricultural chemical, work force, tech-
nology, etc. And, the countermeasures are not simply the individual strains
of crops, but various proportional combinations of many di erent strains
of crops. Let us write

• The event: “normal year, loam, 50% e ective irrigation area, fertilizer
and agricultural chemical essentially meet the need, su cient work
force, medium level of technology, etc.” as a1,

• The event: “drought year, black earth, 50% e ective irrigation area,
su cient fertilizer and work force, lack of agricultural chemical, medium
level of technology, etc.” as a2;

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
then, we have the set of events

A = {a1, a2, · · ·} .
Let us write
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• The countermeasure: “30% corn + 10% Chinese sorghum + 20% soy-
beans + 15% sesame + 15% potatoes and yams + 10% others” as b1,
and

• The countermeasure: “10% corn + 20% Chinese sorghum + 30% soy-
beans + 30% sesame + 10% others” as b2;

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
then, we have the countermeasure set

B = {b1, b2, ...} .

Now, the situation s11 = (a1, b1) is that, under the condition of a normal
year, loam, 50% e ective irrigation area, that fertilizer and agricultural
chemical essentially meet the need, su cient workforce, medium level of
technology, etc., plant 30% corn, 10% Chinese sorghum + 20% soybeans +
15% sesame + 15% potatoes and yams + 10% others.
Let us look at the example of teaching scheduling. The collection of

all course o erings of a fixed semester at a certain school can be seen as
the set of events, all teaching faculty of this school, and various teaching
methods, such as laboratory, interns, multimedia, etc., are seen as the set of
countermeasures. Based on the circumstances, one teacher can teach several
courses, or several teachers teach one course together. The work load could
be 100% teaching, or 60% teaching, 20% laboratory, 10% interns, and 10%
work with multimedia and others.
For a fixed situation sij S under a set of prescheduled targets or

objectives, one needs to evaluate the e ects. According to the evaluation,
choices will need to be made. This is the decision making. In the following
sections, we address several di erent grey decision making methods.

10.2 Grey Target Decisions

In this section, let us look at such decision processes where the target of
each decision making is grey.

Definition 10.2.1. Assume that

S = {sij = (ai, bj)|ai A, bj B}

is the situation set, u(k)ij the e ect value of situation sij with objective k,
and R the set of all real numbers. Then,

u(k) : S R

sij 7 u
(k)
ij



10.2 Grey Target Decisions 319

is called the e ect mapping of S with objective k.

Definition 10.2.2. 1. If u(k)ij = u
(k)
ih , then the countermeasures bj and bh

are said to be equivalent with respect to event ai with objective k, denoted
bj = bh, and the set

B
(k)
i = {bj |bj B, bj = bh}

is called the e ect equivalence class of the countermeasure bh with respect
to event ai with objective k.

2. Assume that k is such an objective satisfying that the greater the e ect
value the better. If u(k)ij > u

(k)
ih , then the countermeasure bj is said to be

superior to the countermeasure bh with respect to event ai with objective
k, denoted bj Â bh. The set

B
(k)
ih = {bj |bj B, bj Â bh}

is called the superior class of the countermeasure bh with respect to
event ai with objective k.

Similarly, we can define the concept of superior classes of countermea-
sures for the cases of (1) the closer to a fixed moderate value the e ect
value is the better, and (2) the smaller the e ect value the better.

Definition 10.2.3. 1. If u(k)ih = u
(k)
gh , then the events ai and ag are

said to be equivalent with respect to countermeasure bh with objective k,
denoted ai = ag. The set

A
(k)
h = {ai|ai A, ai = ag}

is called the e ect equivalence class of the event ag with respect to coun-
termeasure bh with objective k.

2. Assume that k is an objective such that the greater the e ect value
the better. If u(k)ih > u

(k)
gh , then the event ai is said to be superior to the

event ag with respect to countermeasure bh with objective k, denoted ai
Â ag. The set

A
(k)
gh = {ai|ai A, ai Â ag}

is called the superior class of the event ag with respect to countermeasure
bh with objective k.

Similarly, we can define the concept of superior classes of events for the
cases of (1) the closer to a fixed moderate value the e ect value is the
better, and (2) the smaller the e ect value the better.

Definition 10.2.4. 1. If u(k)ij = u
(k)
gh , then the situation sij is said to be

equivalent to the situation sgh with objective k, denoted sij = sgh. The
set

S(k) = {sij |sij S, sij = sgh}
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is called the e ect equivalence class of the situation sgh with objective k.

2. Assume that k is an objective satisfying that the greater the e ect
value the better. If u(k)ij > u

(k)
gh , then the situation sij is said to be superior

to the situation sgh with objective k, denoted sij Â sgh. The set

S
(k)
gh = {sij |sij S, sij Â sgh}

is called the effect superior class of the situation sgh with objective k.

Similarly, we can define the concept of superior classes of situations for
the cases of (1) the closer to a fixed moderate value the e ect value is the
better, and (2) the smaller the e ect value the better.

Proposition 10.2.1. Assume that

S = {sij = (ai, bj)|ai A, bj B} 6= Ø

and
U (k) =

n
u
(k)
ij |sij S

o
the e ect set with objective k, and

©
S(k)

ª
is the set of e ect equivalence

classes of situations with objective k. Then, the mapping

u(k) :
©
S(k)

ª
U (k)

S(k) 7 uij(k)

is one-to-one and onto.

Definition 10.2.5. Assume that d(k)1 and d(k)2 are the upper and the
lower threshold values for situation e ects with objective k. Then,

S1 =
n
r|d(k)1 r d

(k)
2

o
is called the grey target of one-dimensional decision making with objective
k, and u(k)ij [d

(k)
1 , d(k)2 ] a satisfactory e ect with objective k, the corre-

sponding sij the desirable situation with objective k, and bj the desirable
countermeasure with respect to event ai with objective k.

Proposition 10.2.2. Assume that u(k)ij is the e ect value of the situation

sij with objective k. If u
(k)
ij S1, that is, sij is a desirable situation with

objective k, then for any s S
(k)
ij , s is also desirable. That is, when sij is

desirable, all situations in its e ect superior class are all desirable.

What is addressed above is about the case of a single objective. Similarly,
we can discuss decision making grey targets of situations with multiple
objectives.
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Definition 10.2.6. Assume that d(1)1 and d(1)2 are the threshold values
of situation e ects for objective 1, and d(2)1 and d(2)2 the threshold values
of situation e ects for objective 2. Then,

S2 =
n
(r(1), r(2))|d(1)1 r(1) d

(1)
2 , d

(2)
1 r(2) d

(2)
2

o
is called a grey target of two-dimensional decision making. If the e ect
vector of the situation sij satisfies uij = (u

(1)
ij , u

(2)
ij ) S2, then sij is

said to be a desirable situation with objectives 1 and 2, bj a desirable
countermeasure of the event ai with objectives 1 and 2.

Definition 10.2.7. Assume that d(1)1 and d(1)2 , d
(2)
1 and d(2)2 , ..., d

(s)
1 and

d
(s)
2 are the threshold values of situation e ects with objective 1, 2, ..., s, re-
spectively. Then, the following region of the s-dimensional Euclidean space

Ss = {(r(1), r(2), ..., r(s))|d(1)1 r(1) d
(1)
2 ,

d
(2)
1 r(2) d

(2)
2 , ..., d

(s)
1 r(s) d

(s)
2 }

is called a grey target of s-dimensional decision making. If the e ect vector
of the situation sij satisfies

uij =
³
u
(1)
ij , u

(2)
ij , ..., u

(s)
ij

´
Ss,

where u(k)ij , k = 1, 2, ..., s, is the e ect value of the situation sij with objec-
tive k, then sij is said to be a desirable situation with objective 1, 2, · · ·, s,
bj a desirable countermeasure of the event ai with objective 1, 2, ..., s.

Grey targets of a decision making are essentially the region for the lo-
cation of desirable e ects in terms of relative optimization. In many cases,
because achieving the absolute optimum is often impossible, we are happy
with reaching a satisfactory result. Of course, according to the need, we can
gradually shrink the grey target for our decision making need until it de-
generates into a point, which is the optimum e ect with the corresponding
situation as the optimum situation, and the corresponding countermeasure
as the optimum countermeasure. Therefore, in the following, our discussion
is around solid spherical targets.

Definition 10.2.8. The following

Rs = {(r(1), r(2), ..., r(s))|(r(1) r
(1)
0 )2 + (r(2) r

(2)
0 )2

+ · · ·+(r(s) r
(s)
0 )2 R2}

is called the s-dimensional spherical grey target with center

r0 = (r
(1)
0 , r

(2)
0 , ..., r

(s)
0 )
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and radius R, and
r0 = (r

(1)
0 , r

(2)
0 , ..., r

(s)
0 )

the optimum e ect vector.

Definition 10.2.9. Assume that

r1 = (r
(1)
1 , r

(2)
1 , ..., r

(s)
1 ) Rs.

Then
|r1 r0| = [(r

(1)
1 r

(1)
0 )2 + (r

(2)
1 r

(2)
0 )2

+ · · ·+(r(s) r
(s)
0 )2]

1
2

is called the bull’s-eye-distance of the vector r1.

The values of bull’s-eye-distances reflect the superiority of e ect vectors.

Definition 10.2.10. Assume that sij and sgh are two di erent situa-
tions,

uij =
³
u
(1)
ij , u

(2)
ij , ..., u

(s)
ij

´
and

ugh =
³
u
(1)
gh , u

(2)
gh , ..., u

(s)
gh

´
are the e ect vectors of the sij and sgh, respectively. If

|uij r0| |ugh r0|,

then the situation sgh is said to be superior to the situation sij , denoted
sgh Â sij . When an equal sign holds true here, the situations sgh and sij
are said to be equivalent, denoted sgh = sij .

Definition 10.2.11. If for any i = 1, 2, ..., n and j = 1, 2, ...,m, it is
always true that uij 6= r0, then we say that the optimum situation does
not exist, or that the event does not have any optimum countermeasure.

Definition 10.2.12. If the optimum situation does not exist, but there
exist g and h such that for any i = 1, 2, ..., n and j = 1, 2, ...,m, it is
always true that

|uij r0| |ugh r0|;
that is, for any sij S, sgh Â sij , then sgh is called a quasi-optimum
situation, ag a quasi-optimum event, and bh a quasi-optimum countermeasure.

For the sake of convenience for our discussion, we can take the origin as
the center or the bull’s-eye of the grey target, which can be done by simply
applying an appropriate transformation to e ect vectors. In this case, the
bull’s-eye-distance is transformed as the 2-norm of e ect vectors of decision
making.
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Theorem 10.2.1. Assume that

S = {sij = (ai, bj)|ai A, bj B}
is the situation set, and

Rs = {(r(1), r(2), ..., r(s))|(r(1) r
(1)
0 )2 + (r(2) r

(2)
0 )2

+ · · ·+(r(s) r
(s)
0 )2 R2}

the s-dimensional spherical grey target. Then, S becomes an ordered set
with “superiority” being the ordering relation.
Theorem 10.2.2. In the situation set (S, Â ), there must exist a quasi-

optimum situation.
Proof. This is a restatement of Zorn’s Lemma in set theory. ¤
Example 10.2.1. Assume that “raining” is event a1, and “using an

umbrella,” “wearing a raincoat,” and “wearing a bamboo hat” are the
countermeasures b1, b2, and b3, respectively. Try to make a grey target
decision with three objectives: e ective, economical, and convenient.
Solution: We denote being e ective as objective 1, being economical as

objective 2, and being convenient as objective 3. So, the three situations

s11 = (a1, b1) = (rain, umbrella),

s12 = (a1, b2) = (rain, raincoat),

s13 = (a1, b3) = (rain, bamboo hat)

will have di erent e ects with di erent objectives.

1. For objective 1, it is to look at the situation from the angle of being
dry, umbrella is the best, raincoat the second, and bamboo hat the
worst. We now define the best e ect as level one, denoted as u(1)11 = 1.
Similarly, we have u(1)12 = 2 and u

(1)
13 = 3.

2. For objective 2, using a bamboo hat is the most economical choice,
umbrella the second, and raincoat the third. So, we have u(2)11 = 2,

u
(2)
12 = 3, and u

(2)
13 = 1.

3. For the objective 3, a bamboo hat is the most convenient, umbrella the
second, and raincoat the last. Therefore, we have u(3)11 = 2, u

(3)
12 = 3,

and u(3)13 = 1.

From these discussions, we have obtained the e ect vectors for the three
situations:

u11 =
³
u
(1)
11 , u

(2)
11 , u

(3)
11

´
= (1, 2, 2) ,

u12 =
³
u
(1)
12 , u

(2)
12 , u

(3)
12

´
= (2, 3, 3) ,
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and
u13 =

³
u
(1)
13 , u

(2)
13 , u

(3)
13

´
= (3, 1, 1) .

Take the center of the spherical grey target as r0 = (1, 1, 1) and the
radius as 2. That is,

R3 = {(r(1), r(2), r(3))|(r(1) 1)2 + (r(2) 1)2 + (r(3) 1)2 2}.

Then u11 R3. That is, u11 is a satisfactory e ect vector, the corresponding
s11 a desirable situation. That is, when raining, using an umbrella is a
desirable countermeasure.
Furthermore, we can compute the bull’s-eye-distances:

|u11 r0| = [(u
(1)
11 r

(1)
0 )2 + (u

(2)
11 r

(2)
0 )2 + (u

(3)
11 r

(3)
0 )2]

1
2

= [(1 1)2 + (2 1)2 + (2 1)2]
1
2 = 2,

|u12 r0| = [(u
(1)
12 r

(1)
0 )2 + (u

(2)
12 r

(2)
0 )2 + (u

(3)
12 r

(3)
0 )2]

1
2

= [(2 1)2 + (3 1)2 + (3 1)2]
1
2 = 3,

|u13 r0| = [(u
(1)
13 r

(1)
0 )2 + (u

(2)
13 r

(2)
0 )2 + (u

(3)
13 r

(3)
0 )2]

1
2

= [(3 1)2 + (1 1)2 + (1 1)2]
1
2 = 2.

Because 2 < 2 < 3, we conclude that s11 Â s13 Â s12. That is, s11 is a
quasi-optimum situation.
If we take the first-level e ects of various objectives as 0, the second

e ects as 1, the third e ects as 2, then we can obtain a spherical grey
target such that its center is located at the origin.
If the event a1 is changed to a complex event such as either raining

and riding a bicycle or raining and carrying a heavy object, etc., then the
situation e ect vectors will change accordingly. Also, the relevant desirable
situations, and quasi-optimum situations can be changed with the definition
of event.
In Example 10.2.1, even though there does not exist an optimum sit-

uation, we have found a desirable quasi-optimum situation. This is the
intelligent meaning or flexibility of grey target decision making. For exam-
ple, a company sends a representative to a distinct location to negotiate
and to sign a contract to buy some products. He or she might be given the
order that “When the total price is around $50,000, the quality, variety,
standards, and prices are appropriate, sign the contract.” Or, he or she can
also be given the order: “You can sign the contract only if the total cost is
$50,000, the products are high-quality brand names, and unit price is ××
dollars.” The first statement gives a grey target, where the representative is
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given some degree of freedom so that he or she will succeed relatively easily
in the negotiation, whereas the second statement describes the bull’s-eye
of the target without giving the representative any room to succeed in the
deal. If for the situation of rain, only the countermeasure of being most
e ective, most economical, and most convenient will be considered, then
staying home will be the only solution.

10.3 Grey Incidence Decisions

The bull’s-eye-distance of a situation e ect vector is a standard measur-
ing the superiority among situations, and the concept of degrees of inci-
dence between a situation e ect vector and optimum e ect vector is another
method to evaluate the superiority of situations.

Definition 10.3.1. Assume that

S = {sij = (ai, bj)|ai A, bj B}

is the situation set, and

ui0j0 =
³
u
(1)
i0j0
, u
(2)
i0j0
, ..., u

(s)
i0j0

´
the optimum e ect vector. If the situation corresponding to ui0j0 satisfies
si0j0 / S , then ui0j0 is called the imagined optimum effect vector, and
the corresponding si0j0 the imagined optimum situation.

Proposition 10.3.1. Assume that

S = {sij = (ai, bj)|ai A, bj B}

is a situation set and the corresponding e ect vector of a situation sij is

uij =
³
u
(1)
ij , u

(2)
ij , ..., u

(s)
ij

´
,

i = 1, 2, ..., n; j = 1, 2, ...,m.

1.When k is an objective satisfying that the greater the e ect value the
better, take

u
(k)
i0j0

= max
1 i n
1 j m

n
u
(k)
ij

o
;

2.When k is an objective satisfying that it is good when the e ect value
is close to a moderate value u0, take

u
(k)
i0j0

= u0;
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3. When k is an objective satisfying that the smaller the e ect value is
the better, take

u
(k)
i0j0

= min
1 i n
1 j m

n
u
(k)
ij

o
.

Then
ui0j0 =

³
u
(1)
i0j0
, u
(2)
i0j0
, ..., u

(s)
i0j0

´
is the imagined optimum e ect vector.

Proposition 10.3.2. Assume that

S = {sij = (ai, bj)|ai A, bj B}
is the situation set,

uij =
³
u
(1)
ij , u

(2)
ij , ..., u

(s)
ij

´
,

the e ect vector of situation sij , i = 1, 2, ..., n; j = 1, 2, ...,m,

ui0j0 =
³
u
(1)
i0j0
, u
(2)
i0j0
, ..., u

(s)
i0j0

´
the imagined optimum e ect vector, and ij , i = 1, 2, ..., n; j = 1, 2, ...,m,
the degree of incidence between uij and ui0j0 . If i1j1 satisfies that for any
i {1, 2, ..., n} with i 6= i1 and j {1, 2, ..., n} with j 6= j1, it is always
true that i1j1 ij , then ui1j1 is said to be a quasi-optimum e ect vector
and si1j1a quasi-optimum situation.

Grey incidence decisions can be performed as follows.

Step 1: Determine the set of events

A = {a1, a2, ..., an}
and the set of countermeasures

B = {b1, b2, ..., bm}
so that the set of situations

S = {sij = (ai, bj)|ai A, bj B}
can be constructed.

Step 2: Choose the objectives 1,2, ..., s for the decision making.

Step 3: Gather the e ect value u(k)ij of the situation sij with objective k,
i = 1, 2, ..., n; j = 1, 2, ..., m. So, it follows that

u(k) = (u
(k)
11 , u

(k)
12 , ..., u

(k)
1m;u

(k)
21 , u

(k)
22 , ..., u

(k)
2m;

· · · · · · · · · · · · ··;u(k)n1 , u(k)n2 , ..., u(k)nm),
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k = 1, 2, ..., s.

Step 4: Compute the average image of the situation e ect sequence u(k)

with objective k. Without loss of generality, we still use

u(k) = (u
(k)
11 , u

(k)
12 , ..., u

(k)
1m;u

(k)
21 , u

(k)
22 , ..., u

(k)
2m;

· · · · · · · · · · · · ·;u(k)n1 , u(k)n2 , ..., u(k)nm),
k = 1, 2, · · ·, s, to represent the average image.
Step 5: Based on the result in Step 4, write out the e ect vector of

situation sij
uij =

³
u
(1)
ij , u

(2)
ij , ..., u

(s)
ij

´
,

i = 1, 2, ..., n; j = 1, 2, ...,m.

Step 6: Compute the imagined optimum e ect vector

ui0j0 =
³
u
(1)
i0j0
, u
(2)
i0j0
, ..., u

(s)
i0j0

´
.

Step 7: Compute the absolute degree of grey incidence ij between uij
and ui0j0 , i = 1, 2, ..., n; j = 1, 2, ...,m.

Step 8: Based on max
1 i n
1 j m

{ ij} = i1j1 , it follows that ui1j1 is a quasi-

optimum e ect vector and si1j1 a quasi-optimum situation .

Example 10.3.1. Let us look at how a grey incidence decision about a
certain city’s reconstruction of main tra c roads is made.

Solution: Step 1: The reconstruction of the main tra c roads is our event
a1. So, the set of events is A = {a1}. And, denote

• The plan of separating the tra c into several roads as countermeasure
b1,

• The plan of building an expressway as countermeasure b2,
• The plan of building a multi-level tra c line as countermeasure b3,

• The plan of building a railway as countermeasure b4,
• Laying a railway track on the current road foundation as counter-
measure b5, and

• The plan of building 3-dimensional tra c as countermeasure b6;

then, we have the set of countermeasures

B = {b1, b2, b3, b4, b5, b6} .
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Now, we have the set of all possible situations as follows.

S = {sij = (ai, bj)|ai A, bj B}

= {s11, s12, s13, s14, s15, s16} .
Step 2: Determine 10 di erent objectives. Denote

• The tra c capacity (%) as objective 1,

• The total project expense (in 10,000 yuan) as objective 2,
• The total dismantling and relocation cost (in 10,000 yuan) as objec-
tive 3,

• Tra c amount (cars/hour) as objective 4,

• Speed of through tra c (km/hour) as objective 5,

• The new construction quality (%) as objective 6,
• Public charges (qualitative) as objective 7,
• Safety (qualitative) as objective 8,
• Synthesized index (no dimension) as objective 9, and
• Di culty level (qualitative) of the project as objective 10.
Step 3: Gather the situation e ect sequence u(k) with the objective k,

for k = 1, 2, ..., 10. For the situation e ect sequence with respect to the
tra c capacity, we have

u(1) =
³
u
(1)
i

´16
i=11

= (88, 36, 62, 36, 36, 62) .

For the situation e ect sequence with respect to the total project expense,
we have

u(2) =
³
u
(2)
i

´16
i=11

= (26550, 46880, 33430, 46160, 44760, 25490) .

For the situation e ect sequence with respect to the total dismantling
and relocation cost, we have

u(3) =
³
u
(3)
i

´16
i=11

= (17700, 2620, 11880, 495, 495, 11800) .

For the situation e ect sequence with respect to tra c amount, we have

u(4) =
³
u
(4)
i

´16
i=11

= (2200, 800, 2000, 800, 800, 3500) .
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For the situation e ect sequence with respect to speed of through tra c,
we have

u(5) =
³
u
(5)
i

´16
i=11

= (25, 60, 30, 80, 60, 50) .

For the situation e ect sequence with respect to the new construction
quality, we have

u(6) =
³
u
(6)
i

´16
i=11

= (0.51, 0.75, 0.58, 0.7, 0.75, 0.63) .

For the situation e ect sequence with respect to public charges, we have

u(7) =
³
u
(7)
i

´16
i=11

= (great, small, very great, very great, very great, great) .

For the situation e ect sequence with respect to safety, we have

u(8) =
³
u
(8)
i

´16
i=11

= (very bad, good, bad, very good, bad, good) .

For the situation e ect sequence with respect to the synthesized index,
we have

u(9) =
³
u
(9)
i

´16
i=11

= (2.25, 3, 2.5, 3.25, 3, 3, ) .

For the situation e ect sequence with respect to the di culty level of the
project, we have

u(10) =
³
u
(10)
i

´16
i=11

= (general, very hard, hard, hardest, very hard, hard) .

We now take the three qualitative objectives 7, 8, and 10 as quantitative
as follows,

u(7) = (0.5, 0.33, 0.67, 0.67, 0.67, 0.5) ,

u(8) = (0.67, 0.33, 0.5, 0.2, 0.5, 0.33) ,

and
u(10) = (0.2, 0.6, 0.4, 0.85, 0.6, 0.4) .

Step 4: Compute the average images of the situation e ect sequences
with objective k, and still use the same symbols to represent the average
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images.
u(1) = (1.66, 0.68, 1.17, 0.68, 0.68, 1.17) ,

u(2) = (0.71, 1.26, 0.90, 1.24, 1.20, 0.69) ,

u(3) = (2.36, 0.35, 1.58, 0.07, 0.07, 1.57) ,

u(4) = (1.31, 0.48, 1.19, 0.48, 0.48, 2.08) ,

u(5) = (0.49, 1.18, 0.59, 1.57, 1.18, 0.98) ,

u(6) = (0.78, 1.15, 0.89, 1.08, 1.15, 0.97) ,

u(7) = (0.89, 0.59, 1.20, 1.20, 1.20, 0.89) ,

u(8) = (1.60, 0.79, 1.19, 0.48, 1.19, 0.79) ,

u(9) = (0.80, 1.06, 0.88, 1.15, 1.06, 1.06) ,

and
u(10) = (0.39, 1.18, 0.79, 1.67, 1.18, 0.79) .

Step 5: From the results in Step 4, the e ect vector uij of the situation
sij can be obtained as follows, i = 1; j = 1, 2, ..., 6.

u11 =
³
u
(i)
11

´10
i=1

= (1.66, 0.71, 2.36, 1.31, 0.49, 0.78, 0.89, 1.60, 0.80, 0.39) ,

u12 =
³
u
(i)
12

´10
i=1

= (0.68, 1.26, 0.35, 0.48, 1.18, 1.15, 0.59, 0.79, 1.06, 1.18) ,

u13 =
³
u
(i)
13

´10
i=1

= (1.17, 0.90, 1.58, 1.19, 0.59, 0.89, 1.20, 1.19, 0.88, 0.79) ,

u14 =
³
u
(i)
14

´10
i=1

= (0.68, 1.24, 0.07, 0.48, 1.57, 1.08, 1.20, 0.48, 1.15, 1.67) ,

u15 =
³
u
(i)
15

´10
i=1

= (0.68, 1.20, 0.07, 0.48, 1.18, 1.15, 1.20, 1.19, 1.06, 1.18) ,
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and

u16 =
³
u
(i)
16

´10
i=1

= (1.17, 0.69, 1.57, 2.08, 0.98, 0.97, 0.89, 0.79, 1.06, 0.79) .

Step 6: Find the imagined optimum e ect vector. Because the objective
of tra c capacity is the stronger the better, we have

u
(1)
i0j0

= max
1 j 6

n
u
(1)
1j

o
= u

(1)
11 = 1.66.

Because the objective of the total project expense is the lower the better,
we have

u
(2)
i0j0

= min
1 j 6

n
u
(2)
1j

o
= u

(2)
16 = 0.69.

Because the objective of the total dismantling and relocation cost is the
less the better, we have

u
(3)
i0j0

= min
1 j 6

n
u
(3)
1j

o
= u

(3)
14 = u

(3)
15 = 0.07.

Because the objective of tra c amount is the greater the better, we have

u
(4)
i0j0

= max
1 j 6

n
u
(4)
1j

o
= u

(4)
16 = 2.08.

Because the objective of speed of through tra c is the greater the better,
we have

u
(5)
i0j0

= max
1 j 6

n
u
(5)
1j

o
= u

(5)
14 = 1.57.

Because the objective of the new construction quality is the higher the
better, we have

u
(6)
i0j0

= max
1 j 6

n
u
(6)
1j

o
= u

(6)
12 = u

(6)
15 = 1.15.

Because the objective of public charges is the smaller the better, we have

u
(7)
i0j0

= min
1 j 6

n
u
(7)
1j

o
= u

(7)
12 = 0.59.

Because the objective of safety is the more the better, we have

u
(8)
i0j0

= min
1 j 6

n
u
(8)
1j

o
= u

(8)
14 = 0.48.

Because the objective of synthesized index is the greater the better, we
have

u
(9)
i0j0

= max
1 j 6

n
u
(9)
1j

o
= u

(9)
14 = 1.15.
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Because the objective of di culty level (qualitative) of the project is the
easier the better, we have

u
(10)
i0j0

= min
1 j 6

n
u
(10)
1j

o
= u

(10)
11 = 0.39.

Therefore, the imagined optimum e ect vector is

ui0j0 =
³
u
(i)
i0j0

´10
i=1

= (1.66, 0.69, 0.07, 2.08, 1.57, 1.15, 0.59, 0.48, 1.15, 0.39) .

Step 7: Compute the absolute degree ij of grey incidence between uij
and ui0j0 i = 1; j = 1, 2, ..., 6. We have that

11 = 0.91, 12 = 0.53, 13 = 0.62,

14 = 0.53, 15 = 0.53, 16 = 0.58.

Step 8: From that

max
1 j 6

{ 1j} = 11 = 0.91,

it follows that u11 is a quasi-optimum e ect vector and s11 a quasi-optimum
situation. That is, for our project of rerouting, the plan of separating the
tra c into several roads is a desirable quasi-optimum countermeasure.

In Example 10.3.1, we have treated all 10 di erent objectives of the
decision making equally. However, in many practical situations, the degrees
of attention given to all the di erent objectives should be di erent. That
is, some objectives will be seen to be more important than others. To
meet this requirement of putting di erent weights on di erent objectives,
in the process of decision making, the subjective willingness of the decision
maker needs to be considered appropriately so that the conclusions of both
quantitative analysis and qualitative analysis can be supplementary to each
other in order to reduce mistakes in the decision making.

Example 10.3.2. For the rerouting project in Example 10.3.1, let us
take a weight k for objective k, k = 1, 2, ..., 10, as follows.

1 = 0.15, 2 = 0.15, 3 = 0.10, 4 = 0.10, 5 = 0.08,

6 = 0.08, 7 = 0.10, 8 = 0.08, 9 = 0.08, 10 = 0.08.
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Applying k · u(k) as the situation e ect vector with objective k gives

1 · u(1) = 0.15 · u(1)

= (0.249, 0.102, 0.1755, 0.102, 0.102, 0.1755) ,

2 · u(2) = 0.15 · u(2)

= (0.1065, 0.189, 0.135, 0.186, 0.18, 0.1035) ,

3 · u(3) = 0.15 · u(3)

= (0.236, 0.035, 0.158, 0.007, 0.007, 0.157) ,

4 · u(4) = 0.1 · u(4)

= (0.131, 0.048, 0.119, 0.048, 0.048, 0.208) ,

5 · u(5) = 0.08 · u(5)

= (0.0392, 0.0944, 0.0472, 0.1256, 0.0944, 0.0784) ,

6 · u(6) = 0.08 · u(6)

= (0.0624, 0.092, 0.0712, 0.0864, 0.092, 0.0776) ,

7 · u(7) = 0.1 · u(7)

= (0.089, 0.059, 0.120, 0.120, 0.120, 0.089) ,

8 · u(8) = 0.08 · u(8)

= (0.128, 0.0632, 0.0952, 0.0384, 0.0952, 0.0632) ,

9 · u(9) = 0.08 · u(9)

= (0.064, 0.0848, 0.0704, 0.092, 0.0848, 0.0848) ,

and

10 · u(10) = 0.08 · u(10)

= (0.0312, 0.0944, 0.0632, 0.1336, 0.0944, 0.0632) .
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Similar to Example 10.3.1, take

1 · u(1)i0j0 = max
1 j 6

n
1 · u(1)1j

o
= 1 · u(1)11 = 0.249,

2 · u(2)i0j0 = min
1 j 6

n
2 · u(2)1j

o
= 2 · u(2)16 = 0.1035,

3 · u(3)i0j0 = min
1 j 6

n
3 · u(3)1j

o
= 3 · u(3)14 = 0.007,

4 · u(4)i0j0 = max
1 j 6

n
4 · u(4)1j

o
= 4 · u(4)16 = 0.208,

5 · u(5)i0j0 = max
1 j 6

n
5 · u(5)1j

o
= 5 · u(5)14 = 0.1256,

6 · u(6)i0j0 = max
1 j 6

n
6 · u(6)1j

o
= 6 · u(6)12 = 0.092,

7 · u(7)i0j0 = min
1 j 6

n
7 · u(7)1j

o
= 7 · u(7)12 = 0.059,

8 · u(8)i0j0 = min
1 j 6

n
8 · u(8)1j

o
= 8 · u(8)14 = 0.0384,

9 · u(9)i0j0 = max
1 j 6

n
9 · u(9)1j

o
= 9 · u(9)14 = 0.092,

and

10 · u(10)i0j0
= min

1 j 6

n
10·u

(10)
1j

o
= 10 · u(10)11 = 0.0312.

So, we have the following imagined optimum situation e ect vector of the
weighted objectives,

ui0j0 = ( i · u(i)i0j0)10i=1

= (0.249, 0.1035, 0.007, 0.208, 0.1256,

0.092, 0.059, 0.0384, 0.092, 0.0312).

The situation e ect vector, corresponding to the situation sij , i = 1;
j = 1, 2, ..., 6, with weighted objectives, is given as follows.

u11 = ( i · u(i)11 )10i=1
= (0.249, 0.1065, 0.236, 0.131, 0.0392,

0.0624, 0.089, 0.128, 0.064, 0.0312),
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u12 = ( i · u(i)12 )10i=1
= (0.102, 0.189, 0.035, 0.048, 0.0944,

0.092, 0.059, 0.0632, 0.0848, 0.0944),

u13 = ( i · u(i)13 )10i=1
= (0.1755, 0.135, 0.158, 0.119, 0.0472,

0.0712, 0.12, 0.0952, 0.0704, 0.0632),

u14 = ( i · u(i)14 )10i=1
= (0.102, 0.186, 0.007, 0.048, 0.1256,

0.0864, 0.12, 0.0384, 0.092, 0.1336),

u15 = ( i · u(i)15 )10i=1
= (0.102, 0.18, 0.007, 0.048, 0.0944,

0.092, 0.12, 0.0952, 0.0848, 0.0944),

and
u16 = ( i · u(i)16 )10i=1

= (0.1755, 0.1035, 0.157, 0.208, 0.0784,

0.0776, 0.089, 0.0632, 0.0848, 0.0632).

Computing the absolute degree ij of grey incidence between uij and
ui0j0 , for i = 1; j = 1, 2, ..., 6, gives

11 = 0.97, 12 = 0.67, 13 = 0.73,

14 = 0.66, 15 = 0.66, 16 = 0.79.

From that
max
1 j 6

{ 1j} = 11 = 0.97,

we can see that u11 is a quasi-optimum e ect vector, and s11 a quasi-
optimum situation. Therefore, our conclusion is still that for our project of
rerouting, the plan of separating the tra c into several roads is a desirable
quasi-optimum countermeasure.
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10.4 Grey Development Decisions

Grey development decisions are performed based on development tenden-
cies existing in the situation of interest or expected future behaviors. This
kind of decision does not emphasize the current e ects of the situation,
while putting attention on development of changes of the situation e ects
with time. The idea of a grey development decision can be applied in de-
cision making of long-term development in such areas as science and tech-
nology, education, economy, social, population, natural ecology, etc., or
practically in such areas as industrial projects and municipal planning. By
looking at problems from the angle of development, we can plan things
feasibly in order to avoid such a situation of constructing today and dis-
mantling tomorrow so that a huge amount of manpower and construction
materials could be saved.
Definition 10.4.1. Assume that

A = {a1, a2, ..., an}
is a set of events,

B = {b1, b2, ..., bm}
a set of countermeasures, and

S = {sij = (ai, bj)|ai A, bj B}
the set of situations. Then,

u
(k)
ij =

³
u
(k)
ij (1), u

(k)
ij (2), ..., u

(k)
ij (h)

´
is called the situation e ect time sequence of sij with objective k.
Previously, we have discussed situations of a fixed time moment. In Defi-

nition 10.4.1, as time moves, the case of constant changing situation e ects
has been addressed.
Proposition 10.4.1. Assume that the situation e ect time sequence of

sij with objective k is given by

u
(k)
ij =

³
u
(k)
ij (1), u

(k)
ij (2), ..., u

(k)
ij (h)

´
,

and ba(k)ij =
h
a
(k)
ij b

(k)
ij

iT
the least squares estimate of the parameters in GM(1, 1) model of u(k)ij .
Then, the restored sequence through inverse accumulating of the GM (1, 1)
time response sequence of u(k)ij is given by

bu(k)ij (`+ 1) = ³1 ea
(k)
ij

´
·
"
u
(k)
ij (1)

b
(k)
ij

a
(k)
ij

#
· e a

(k)
ij `.



10.4 Grey Development Decisions 337

Definition 10.4.2. Assume that the restored sequence through inverse
accumulating of the GM(1, 1) time response sequence of the situation e ect
time sequence u(k)ij of the situation sij with objective k is given by

bu(k)ij (`+ 1) = ³1 ea
(k)
ij

´
·
"
u
(k)
ij (1)

b
(k)
ij

a
(k)
ij

#
· e a

(k)
ij `.

When k is an objective satisfying that the greater the e ect value is the
better,

1. if
max
1 i n
1 j m

n
a
(k)
ij

o
= a

(k)
i0j0
,

then si0j0 is called the optimum situation of development coe cients with
objective k;

2. if
max
1 i n
1 j m

nbu(k)ij (h+ `)o = bu(k)i0j0(h+ `),
then si0j0 is called the optimum situation of predictions with objective k.

Similarly, we can define the concepts of optimum situations of develop-
ment coe cients and predictions for the cases of objectives satisfying that
the smaller the e ect value the better, and that the closer to a moderate
value the e ect value the better, respectively. To this end, for an objective,
satisfying that the smaller the e ect value is the better, “max” in Definition
10.4.2, 1 and 2 needs to be changed to “min”. For an objective k, satisfying
that the closer to a moderate value the e ect value is the better, we can first
take the means of the development coe cients and the predicted values,
respectively, and then define the optimum situation based on the distances
of the development coe cients and predicted values to their means.

Definition 10.4.3. Assume all the conditions are as in Definition 10.4.2,
if k is an objective satisfying that the closer to a moderate value the e ect
value is the better.

1. When

min
1 i n
1 j m

(
[

1

n+m

mP
j=1

nP
i=1
a
(k)
ij ] a

(k)
ij

)

= [
1

n+m

mP
j=1

nP
i=1
a
(k)
ij ] a

(k)
i0j0
,

si0j0 is called the optimum situation of development coe cients with ob-
jective k.
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2. When

min
1 i n
1 j m

(bu(k)ij (h+ `) [
1

n+m

mP
j=1

nP
i=1

bu(k)ij (h+ `)]
)

= bu(k)i0j0(h+ `) [
1

n+m

mP
j=1

nP
i=1

bu(k)ij (h+ `)],
si0j0 is called the optimum situation of predictions with objective k.

Example 10.4.1. Let us look at a grey development decision making
made for a certain industrial company for its technical innovation.

Solution: Assume that the said technical innovation is the event a1. So,
the set of events is A = {a1}. Denote the plan for yearly gradual and partial
innovation as countermeasure b1, innovation by stages as countermeasure
b2, and one-time innovation as countermeasure b3. Then, we have the set
of countermeasures B = {b1, b2, b3}. Hence, we have obtained the situation
set

S = {sij = (ai, bj)|ai A, bj B}

= {s11, s12, s13} .
Define the objective 1 as improving the company’s benefits with net

profits as e ect values (in 10,000 yuan). With the objective 1, the situation
e ect time sequences of sij are given by

u
(1)
11 =

³
u
(1)
11 (i)

´4
i=1

= (32, 43.5, 58.1, 70.2) ,

u
(1)
12 =

³
u
(1)
12 (i)

´4
i=1

= (23.2, 39, 69.4, 82.6) ,

and

u
(1)
13 =

³
u
(1)
13 (i)

´4
i=1

= (12, 13.5, 81, 102.1) .

The least squares estimates of the parameters

ba(1)ij = h a(k)ij b
(k)
ij

iT
of the GM(1, 1) model of u(1)ij are respectively given as follows:

ba(1)11 =
h
a
(k)
11 b

(k)
11

iT
=
£

0.23 32.15
¤T
,

ba(1)12 =
h
a
(k)
12 b

(k)
12

iT
=
£

0.32 29.87
¤T
,
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and ba(1)13 =
h
a
(k)
13 b

(k)
13

iT
=
£

0.58 18.45
¤T
.

Because objective 1 satisfies that the greater the e ect value is the better,
and because

max
1 j 3

n ba(1)1j o = 0.58 = ba(1)13 ,
s13 is the optimum situation of development coe cients with objective 1.
If further consideration of predicted values is needed, we have

bu(1)11 (4 + `) =
³
1 ea

(1)
11

´
·
·
u
(1)
11 (1)

b
(1)
11

a
(1)
11

¸
· e a

(1)
11 (4+` 1)

= 35.296 · e0.23(4+` 1),

bu(1)12 (4 + `) =
³
1 ea

(1)
12

´
·
·
u
(1)
12 (1)

b
(1)
12

a
(1)
12

¸
· e a

(1)
12 (4+` 1)

= 31.916 · e0.32(4+` 1),

and

bu(1)13 (4 + `) =
³
1 ea

(1)
13

´
·
·
u
(1)
13 (1)

b
(1)
13

a
(1)
13

¸
· e a

(1)
13 (4+` 1)

= 19.281 · e0.58(4+` 1).

Let ` = 1. We obtainbu(1)11 (5) = 88.57, bu(1)12 (5) = 114.79, bu(1)13 (5) = 196.20.
So,

max
1 j 3

nbu(1)1j (5)o = 196.20 = bu(1)13 (5).
Therefore, s13 is the optimum situation of predictions with objective 1.
From the angle of long-term development, this company needs to have a
one-time innovation done.
In Example 10.4.1, we have obtained the same optimum situation for

both development coe cients and predictions. Sometimes, one might face
the case that the optimum situations for development coe cients and pre-
dictions are di erent. However, Theorem 10.4.1 below tells us that even-
tually, the optimum situations of development coe cients and predictions
would surely approach a fixed situation.
Theorem 10.4.1. Assume that k is an objective satisfying that the

greater the e ect value is the better, si0j0 the optimum situation of devel-
opment coe cients with objective k, that is,

a
(k)
i0j0

= max
1 i n
1 j m

n
a
(k)
ij

o
,
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and bu(k)i0j0(h+ `+ 1) is the predicted value for the situation e ect of si0j0 .
Then, there must exist an `0 > 0 such that

bu(k)i0j0(h+ `0 + 1) = max
1 i n
1 j m

{bu(k)ij (h+ `0 + 1)}.
That is, in a su ciently distant future, si0j0 will become the optimum
situation of predictions.

Proof: 1. If the situation e ect time sequences with objective k are all
increasing, then for any i {1, 2, ..., n} and j {1, 2, ...,m} , we have
a
(k)
ij > 0. When at least one of i 6= i0 and j 6= j0 holds true, a

(k)
i0j0

>

a
(k)
ij . So, there exists

(k)
ij > 0 such that

a
(k)
i0j0

= a
(k)
ij +

(k)
ij .

Let

c
(k)
ij =

³
1 ea

(k)
ij

´
·
"
u
(k)
ij (1)

b
(k)
ij

a
(k)
ij

#
.

Then,

bu(k)i0j0(h+ `+ 1) = c
(k)
i0j0

· e a
(k)
i0j0

(h+`)

= c
(k)
i0j0

· e a
(k)
ij (h+`)+

(k)
ij (h+`)

= c
(k)
ij · e a

(k)
ij (h+`) · c

(k)
i0j0

c
(k)
ij

· e (k)
ij (h+`)

= bu(k)ij (h+ `+ 1) · c(k)i0j0
c
(k)
ij

· e (k)
ij (h+`).

Based on the assumption that (k)
ij > 0, it follows that there is an `0, such

that
c
(k)
i0j0

c
(k)
ij

· e (k)
ij (h+`0) > 1.

Therefore, bu(k)i0j0(h+ `0 + 1) > bu(k)ij (h+ `0 + 1).
From the arbitrariness of i {1, 2, ..., n} and j {1, 2, ...,m} , it follows
that bu(k)i0j0(h+ `0 + 1) = max

1 i n
1 j m

{bu(k)ij (h+ `0 + 1)}.
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2. If all the situation e ect time sequences with objective k are all de-
creasing, then for any i {1, 2, ..., n} and j {1, 2, ..., m} , we have
a
(k)
ij < 0. Similarly, from a

(k)
i0j0

> a
(k)
ij , we have

(k)
ij > 0 such that

a
(k)
i0j0

= a
(k)
ij +

(k)
ij .

The rest of our discussion is similar to 1 and is omitted here.

For objectives, satisfying either that the smaller the e ect value is the
better or that the closer to a moderate value the e ect value is the better,
it can be shown that similar results as in Theorem 10.4.1 also hold true.
Careful readers might have noticed that Theorem 10.4.1 does not state the
case where there exist some increasing and decreasing sequences among
situation e ect time sequences at the same time. In fact, for objectives
satisfying that the greater the e ect value is the better, there is no need
to consider decreasing situation e ect time sequences. For objectives sat-
isfying that the smaller the e ect value is the better, in discussions, all
increasing situation e ect time sequences need to be deleted in advance.
For the objectives satisfying that the closer to a moderate value the e ect
value is the better, one can consider only either increasing or decreasing
situation e ect time sequences dependent on the circumstances involved.

10.5 Grey Statistical Decisions

The method of grey statistical decision is applicable to the cases of collec-
tive decision making with many decision making units, such as the cases
involving di erent departments, units, or individuals. The function of grey
statistical decisions is to synthesize, to evaluate, and to make final decisions
from among the set of di erent opinions and decision plans of the various
parties involved.

Definition 10.5.1. Assume that ai, i = 1, 2, ..., n, are the units involved
in the decision making process,

A = {a1, a2, ..., an}

the decision making group, bj , j = 1, 2, ...,m, the decision schemes,

B = {b1, b2, ..., bm}

the set of decision schemes, xij , i = 1, 2, ..., n; j = 1, 2, ...,m, the evaluation
value about scheme j of unit i, fk(·), k = 1, 2, ..., s, the whitenization weight
function for grey class k, i, and i = 1, 2, ..., n, the decision weight of unit
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i, satisfying
nP
i=1

i = 1. Then

k
j =

nP
i=1

fk(xij) · i

sP
k=1

nP
i=1
fk(xij) · i

,

j = 1, 2, ...,m; k = 1, 2, ..., s, is called the decision coe cient for scheme j
to belong to grey class k.
Here, all decision units might have the same decision weight. That is, i

=
1

n
, i = 1, 2, ..., n, or they might be di erent.

Definition 10.5.2. The following

j =
¡

1
j ,

2
j , ...,

s
j ,
¢
,

j = 1, 2, ...,m, is called the vector of the decision coe cients of scheme j.
Definition 10.5.3. If

max
1 k s

©
k
j

ª
= k

j ,

then we say that scheme j belongs to grey class k .
A grey statistical decision can be made by going through similar steps

as in Section 6.5.
Example 10.5.1. Let us now look at a grey statistical decision we made

about the “Vitalizing the City through Science and Technology” plan of a
certain city.
The governing body of the city, which, due to an agreement, we cannot

name here, had organized several groups of experts to work out three prac-
tical schemes on how to “Vitalize ××× City through Progress in Science
and Technology.” Each of the schemes had its own characteristics. These
schemes are denoted as b1, b2, and b3, respectively. So, the set of decision
schemes is B = {b1, b2, b3} .
Next, we organized five groups of experts to evaluate the three schemes.

That is, we had decision-making units a1, a2, a3, a4, and a5 and the decision-
making group A = {a1, a2, a3, a4, a5}, the matrix of evaluation values done
by the decision making group A on the decision schemes in B as follows.

C = [xij ]5×3 =

80 60 40

60 50 50

75 70 60

90 80 80

50 70 60

.
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FIGURE 10.1. The whitenization weight functions of the grey classes

Let us in the following do a grey statistical evaluation and decision making
based on the four grey classes: the best, realistic, basically realistic, and
not implementable.

Solution: The whitenization weight function fk(·) of grey class k, k =
1, 2, 3, 4, is given in Figure 10.1.
From the graphs of the whitenization weight functions in Figure 10.1, we

have that

f1(x) =

0, x < 60

x 60

30
, 60 x 90

1, x > 90;

f2(x) =

0, x < 50

x 50

20
, 50 x 70

90 x

20
, 70 < x 90

0, x > 90;



344 10. Grey Decisions

f3(x) =

0, x < 35

x 35

20
, 35 x 55

75 x

20
, 55 < x 75

0, x > 75;

and

f4(x) =

0, x < 0

1, 0 x 20

40 x

20
, 20 < x 40

0, x > 40.

Assume that the decision-making weights of the individual decision units
ai, i = 1, 2, 3, 4, 5, are given as follows,

1 = 0.25, 2 = 0.25, 3 = 0.2, 4 = 0.2, 5 = 0.1.

Then, for scheme 1, when k = 1,

5P
i=1
f1(xi1) · i = f1(80) · 0.25 + f1(60) · 0.25 + f1(75) · 0.2

+f1(90) · 0.2 + f1(50) · 0.1

= 20
30 · 0.25 + 0 · 0.25 + 15

30 · 0.2

+1 · 0.2 + 0 · 0.1 = 0.47;

when k = 2,

5P
i=1
f2(xi1) · i = f2(80) · 0.25 + f2(60) · 0.25 + f2(75) · 0.2

+f2(90) · 0.2 + f2(50) · 0.1

= 10
20 · 0.25 + 10

20 · 0.25 + 15
20 · 0.2

+0 · 0.2 + 0 · 0.1 = 0.4;
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when k = 3,

5P
i=1
f3(xi1) · i = f3(80) · 0.25 + f3(60) · 0.25 + f3(75) · 0.2

+f3(90) · 0.2 + f3(50) · 0.1

= 0 · 0.25 + 15
20 · 0.25 + 0 · 0.2

+0 · 0.2 + 15
20 · 0.1 = 0.2625;

when k = 4,

5P
i=1
f4(xi1) · i = f4(80) · 0.25 + f4(60) · 0.25 + f4(75) · 0.2

+f4(90) · 0.2 + f4(50) · 0.1

= 0 · 0.25 + 0 · 0.25 + 0 · 0.2

+0 · 0.2 + 0 · 0.1 = 0.
So, we have

4X
k=1

5X
i=1

fk(xi1) · i = 0.47 + 0.4 + 0.2625 + 0 = 1.1325.

From that

k
1 =

5P
i=1

fk(xi1) · i

4P
k=1

5P
i=1
fk(xi1) · i

,

k = 1, 2, 3, 4, it follows that

1 =
¡

1
1,

2
1,

3
1,

4
1

¢
= (0.42, 0.35, 0.23, 0) .

For scheme 2, similar calculation can be done to produce that

5P
i=1
f1(xi2) · i = 0.23,

5P
i=1
f2(xi2) · i = 0.525,

5P
i=1
f3(xi2) · i = 0.45,

5P
i=1
f4(xi2) · i = 0,

and
4X

k=1

5X
i=1

fk(xi2) · i = 1.205.
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So,
2 =

¡
1
2,

2
2,

3
2,

4
2

¢
= (0.19, 0.44, 0.37, 0) .

For scheme 3, again we can obtain similarly

5P
i=1
f1(xi3) · i = 0.23,

5P
i=1
f2(xi3) · i = 0.525,

5P
i=1
f3(xi3) · i = 0.45,

5P
i=1
f4(xi3) · i = 0,

and
4X

k=1

5X
i=1

fk(xi3) · i = 0.855.

So,
3 =

¡
1
3,

2
3,

3
3,

4
3

¢
= (0.15, 0.29, 0.56, 0) .

Because
max
1 k 4

©
k
1

ª
= 0.42 = 1

1,

max
1 k 4

©
k
2

ª
= 0.44 = 2

2,

and
max
1 k 4

©
k
3

ª
= 0.56 = 3

3,

we can see that scheme 1 is the best, scheme 2 is realistic and imple-
mentable, and scheme 3 is basically realistic and implementable. Because
all these three schemes are possible to be implemented, it is suggested that
scheme 1 should be used as the foundation, and by merging all desirable
features in schemes 2 and 3, we would obtain a more satisfactory and com-
prehensive plan for “vitalizing the city through science and technology.”

When using the theory of grey statistical decisions, di erent meanings
can be assigned to the decision-making group, decision schemes, and de-
cision grey classes according to the circumstances under consideration.
For example, when a company is making decisions on their products, the
decision-making group consists of all relevant production units, such as
di erent departments, workshops, etc. The decision schemes will include
di erent products. And decision-making grey classes will stand for various
investment requirements. In a decision making on teaching, the decision-
making group can consist of all relevant classes, departments, and admin-
istrative o ces. The decision schemes will mean di erent courses or pro-
grams. And the decision-making grey classes will represent di erent teach-
ing or credit hours or educational goals. In a decision-making about agricul-
tural productions, the decision-making group will consist of relevant farm-
ers, related o ces or organizations about agricultural technology, and/or



10.6 Grey Cluster Decisions 347

relevant administrative organizations or o ces for agricultural productions.
The decision schemes will mean di erent crops. And the decision-making
grey classes will represent various planting areas.

10.6 Grey Cluster Decisions

The thought of grey cluster decision is useful for synthetical evaluations
about some objects based on several di erent criteria so that decisions can
be made about whether an object meets some given standards. Grey cluster
decisions are often applied to an area such as classification of people. For
example, school students can be classified based on their capacity to receive
information, their comprehension ability, and their individual potential so
that di erent teaching methods can be applied and that di erent students
can be enrolled in di erent programs. For example again, employees, tech-
nicians, and/or administrators of a business can be synthetically evaluated
based on di erent sets of standards in order to determine whether they
qualify for a certain o ce or position or rank or promotion, etc.

Definition 10.6.1. Assume that there are n objects, m criteria, and s
di erent decision classes. Let xij, i = 1, 2, ..., n; j = 1, 2, ..., m, be the
observation value of object i with respect to criterion j, fkj (·), j = 1, 2, ...,
m, k = 1, 2, ..., s, the whitenization weight function for criterion j to be
in grey class k, and j , j = 1, 2, ..., m, the synthetic decision weight of

criterion j, satisfying that
mP
j=1

j = 1. Then,

k
i =

mX
j=1

fkj (xij) · j

is called the decision coe cient for object i to be in grey class k.

Definition 10.6.2. The following

i =
¡

1
i ,

2
i , ...,

s
i

¢
,

i = 1, 2, ..., n, is called the vector of decision coe cients of object i.

Definition 10.6.3. If

max
1 k s

©
k
i

ª
= k

i ,

then we say that decision object i belongs to grey class k .

When solving practical problems, we often face a situation such that
many objects belong to the same grey class, and the size of the class is
limited. In this case, decisions can be made on which objects should be
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deleted from the class based on the magnitude of the decision coe cients
of these objects.

Definition 10.6.4. Assume that

max
1 k s

©
k
i1

ª
= k

i1 , max1 k s

©
k
i2

ª
= k

i2 ,

and
k
i1 >

k
i2 .

Then, we say that in grey class k , object i1 is superior to object i2.

Definition 10.6.5. Assume that

max
1 k s

©
k
i1

ª
= k

i1 ,

max
1 k s

©
k
i2

ª
= k

i2 ,

· · · · · · · · · · · · ··
max
1 k s

©
k
ih

ª
= k

ih
,

and
k
i1 >

k
i2 > · · · > k

ih
.

If the size of grey class k is ` objects, then i1, i2, · · ·, i` are called the
objects accepted by grey class k , and i`+1, i`+2, ..., ih the candidates of
grey class k .

Example 10.6.1. A company has six middle-ranked technicians. Their
observational values xij , i = 1, 2, 3, 4, 5, 6; j = 1, 2, 3, 4, 5, with respect to
the following five criteria: community service, work accomplished, level of
mastery of subject matter, research achievements and publications, foreign
language, are given in the following matrix.

C = [xij ]6×5 =

85 100 98 100 90

88 100 60 10 74

90 68 63 10 45

87 89 63 15 56

70 80 79 40 82

75 76 77 32 79

.

Let us make a cluster decision based on the three grey classes: competent,
qualified, not qualified. If two people can be promoted, determine those
who should be promoted.
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FIGURE 10.2. The whitenization weight functions of the five decision criteria
with respect to the three grey classes

Solution: Assume that the whitenization weight functions of the five de-
cision criteria with respect to the three grey classes are shown in Figure
10.2.
From Figure 10.2, it follows that

f1j (x) =

0, x < 70

x 70

20
, 70 x 90

1, x > 90;

f2j (x) =

0, x < 55

x 55

15
, 55 x 70

85 x

15
, 70 < x 85

0, x > 85;

and

f3j (x) =

0, x < 0

1, 0 x 40

65 x

25
, 40 < x 65

0, x > 65,

where j = 1, 2, 3, 4, 5. That is, the whitenization weight functions with
di erent criteria are identical.
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Assume again that the decision weights of the criteria are given as follows:

1 = 0.22, 2 = 0.22, 3 = 0.22, 4 = 0.20, 5 = 0.14.

Then, we have

1
1 =

5P
j=1
f1j (x1j) · j

= f11 (85) · 0.22 + f12 (100) · 0.22 + f13 (98) · 0.22

+f14 (100) · 0.2 + f15 (90) · 0.14

= 15
200 · 0.22 + 1 · 0.22 + 1 · 0.2

+1 · 0.2 + 1 · 0.14 = 0.945;

2
1 =

5P
j=1

f2j (x1j) · j

= f21 (85) · 0.22 + f22 (100) · 0.22 + f23 (98) · 0.22

+f24 (100) · 0.2 + f25 (90) · 0.14 = 0;
and

3
1 =

5P
j=1
f3j (x1j) · j

= f31 (85) · 0.22 + f32 (100) · 0.22 + f33 (98) · 0.22

+f34 (100) · 0.2 + f35 (90) · 0.14 = 0.
Therefore,

1 =
¡

1
1,

2
1,

3
1

¢
= (0.945, 0, 0) .

Similarly, we can obtain

2 =
¡

1
2,

2
2,

3
2

¢
= (0.446, 0.176, 0.244) ,

3 =
¡

1
3,

2
3,

3
3

¢
= (0.22, 0.308, 0.312) ,

4 =
¡

1
4,

2
4,

3
4

¢
= (0.396, 0.127, 0.268) ,

5 =
¡

1
5,

2
5,

3
5

¢
= (0.293, 0.409, 0.20) ,

and
6 =

¡
1
6,

2
6,

3
6

¢
= (0.297, 0.452, 0.20) .
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From
max
1 k 3

©
k
1

ª
= 0.945 = 1

1, max
1 k 3

©
k
2

ª
= 0.446 = 1

2,

max
1 k 3

©
k
3

ª
= 0.312 = 3

3, max
1 k 3

©
k
4

ª
= 0.396 = 1

4,

max
1 k 3

©
k
5

ª
= 0.409 = 2

5, max
1 k 3

©
k
6

ª
= 0.452 = 2

6,

it follows that technicians with codes 1, 2, and 4 belong to the grey class of
being competent, technicians with codes 5 and 6 belong to the grey class
of being qualified, and the technician with code 3 is not qualified for the
job.
Since

1
1 = 0.945 >

1
2 = 0.446 >

1
4 = 0.396,

if there exist only two opportunities for promotion, the people who should
be promoted are technicians coded 1 and 2. Even though number 4 is in
the grey class of being competent, due to the fact that only two can be
promoted, he or she will have to be on the list of candidates.

10.7 Multiple-Target-Situation Decisions with a
Synthesized Target

In this section, we study how to make decisions for multiple-target situa-
tions to meet a synthesized criterion.
Definition 10.7.1. Assume that

A = {a1, a2, ..., an}

is the set of events,
B = {b1, b2, ..., bm}

the set of countermeasures,

S = A×B = {sij = (ai, bj)|ai A, bj B}

the set of situations, and u(k)ij , i = 1, 2, ..., n, j = 1, 2, ...,m, is the observa-
tional e ect value of situation sij S with objective k. Then,

1. The following

r
(k)
ij =

u
(k)
ij

max
i
max
j

n
u
(k)
ij

o
is called an upper effect measure;
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2. The following

r
(k)
ij =

min
i
min
j

n
u
(k)
ij

o
u
(k)
ij

is called a lower effect measure; and

3. The following

r
(k)
ij =

u
(k)
i0j0

u
(k)
i0j0

+ |u(k)ij u
(k)
i0j0
|

is called a moderate effect measure, where u(k)i0j0 is a fixed moderate e ect
value with objective k.

The concept of upper e ect measure reflects the distance of the obser-
vational e ect value from the maximum observational e ect value. The
concept of lower e ect measure indicates the distance of the observational
e ect value from the minimum observational e ect value. And the concept
of moderate e ect measure tells the distance of the observational e ect
value from the fixed moderate e ect value. In multiple-target-situation de-
cisions with a synthesized target, if we need the observational e ect value
to be like “the greater the better”, “the more the better”, etc., we can ap-
ply the concept of upper e ect measure. If we need the observational e ect
value to be like “the smaller the better”, “the fewer the better”, etc., we
can apply the concept of lower e ect measure. If we need the observational
e ect value to be like “not too great, not too small”, “not too many, not
too few”, etc., we can apply the concept of moderate e ect measure.

Proposition 10.7.1. The three e ect measures r(k)ij , i = 1, 2, ..., n, j =
1,2, ..., m, k = 1, 2, ..., s, as given in Definition 10.7.1, satisfy the following.

1. r(k)ij has no dimension;

2. r(k)ij [0, 1]; and

3. The more ideal the e ect is, the greater r(k)ij is.

Definition 10.7.2. The following matrix

R(k) =
h
r
(k)
ij

i
n×m

=

r
(k)
11 r

(k)
12 · · · r

(k)
1m

r
(k)
21 r

(k)
22 · · · r

(k)
2m

· · · · · · · · · · · ·

r
(k)
n1 r

(k)
n2 · · · r

(k)
nm

is called the matrix of uniform effect measures of the situation set S
with objective k.
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Definition 10.7.3. Suppose that sij S; then

rij =
³
r
(1)
ij , r

(2)
ij , ..., r

(s)
ij

´
is called the vector of uniform e ect measures of the situation sij .

Definition 10.7.4. Assume that k, k = 1, 2, ..., s, is the decision weight

of objective k, satisfying
sP

k=1
k = 1. Then,

sX
k=1

r
(k)
ij · k

is called the synthetic effect measure of the situation sij , which is still
denoted as rij . That is,

rij =
sX

k=1

r
(k)
ij · k.

Definition 10.7.5. The following

R = [rij ]n×m =

r11 r12 · · · r1m

r21 r22 · · · r2m

· · · · · · · · · · · ·

rn1 rn2 · · · rnm

is called the matrix of synthetic e ect measures.

Definition 10.7.6. 1. If

max
1 j m

{rij} = rij0 ,

then bj0 is called the optimum countermeasure of the event ai.

2. If
max
1 j m

{rij} = ri0j ,

then ai0 is called the optimum event corresponding to the countermeasure
bj . And

3. If
max
1 i n

max
1 j m

{rij} = ri0j0 ,

then si0j0 is called the optimum situation.

Each multiple-target-situation decision with a synthesized target can be
performed according to the following steps.
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Step 1: Based on the set of events

A = {a1, a2, ..., an}
and the set

B = {b1, b2, ..., bm}
of countermeasures, the following situation set is constructed

S = {sij = (ai, bj)|ai A, bj B} .

Step 2: Determine the objectives k = 1, 2, ..., s.

Step 3: For each objective k = 1, 2, ..., s, find the relevant observational
e ect matrix

U (k) =
h
u
(k)
ij

i
n×m

.

Step 4: Compute the matrix of uniform e ect measures with objective k

R(k) =
h
r
(k)
ij

i
n×m

,

for k = 1, 2, ..., s.

Step 5: Determine decision weights for all objectives: 1, 2, ..., s.

Step 6: From

rij =
sX

k=1

r
(k)
ij · k,

compute the matrix of synthetic e ect measures

R = [rij ]n×m .

Step 7: Determine the optimum situation si0j0 .

Example 10.7.1. In a certain county, there are three economic dis-
tricts. Other than that each of them needs to develop farming, they have
decided to develop individual but cooperative businesses in di erent ar-
eas of “forestry,” “livestock husbandry,” and “industry and services,” with
their own emphasis of development in order to achieve optimum economical
e ects. Here, they have three objectives for their decision making:

Objective 1: average per capita income;

Objective 2: occupied capital of each U100 income; and
Objective 3: occupied labor force of each U100 income.
We use ai, i = 1, 2, 3, to represent the economic districts with a1 =

district 1, a2 = district 2, and a3 = district 3; and bj , j = 1, 2, 3, for
di erent kinds of businesses with b1 = forestry, b2 = livestock husbandry,
and b3 = industry and services. Then, we have obtained the set of events
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A = {a1, a2, a3} ,
the set of countermeasures

B = {b1, b2, b3} ,
and the set of situations

S = {sij = (ai, bj)|ai A, bj B} .

Suppose that u(k)ij is the observational e ect value of situation sij with
objective k, i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3.
For objective 1, the observational e ect matrix is

U (1) =
h
u
(1)
ij

i
3×3

=

0.55 22.4 3.9

0.9 4.4 14

1.14 5.3 4.9

,

where the unit is U100.
For objective 2, the observational e ect matrix is

U (2) =
h
u
(2)
ij

i
3×3

=

0.8 3 3.5

0.6 2 4

0.1 0.9 5

with U100 being its unit.
For objective 3, the observational e ect matrix is

U (3) =
h
u
(3)
ij

i
3×3

=

0.3 1.8 1

0.7 1 1.4

0.9 1.4 0.8

,

whose unit is person.
Because objective 1 is the average per capita income, it satisfies that the

greater the better. So, we employ the upper e ect measure. Because

u
(1)
i0j0

= max
1 i 3

max
1 j 3

n
u
(1)
ij

o
= 22.4,

from

r
(1)
ij =

u
(1)
ij

u
(1)
i0j0

=
u
(1)
ij

22.4
,
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it follows that we can obtain the matrix of uniform e ect measures of
objective 1 as follows.

R(1) =
h
r
(1)
ij

i
3×3

=

0.025 1 0.174

0.040 0.196 0.625

0.051 0.237 0.219

.

Because objective 2 stands for the occupied capital of each U100 income,
it is hoped to satisfy that the less the better. So, we employ the lower e ect
measure. Because

u
(2)
i0j0

= min
1 i 3

min
1 j 3

n
u
(2)
ij

o
= 0.1,

from

r
(2)
ij =

u
(2)
i0j0

u
(2)
ij

=
0.1

u
(2)
ij

,

it follows that we can obtain the matrix of uniform e ect measures of
objective 2 as follows.

R(2) =
h
r
(2)
ij

i
3×3

=

0.125 0.033 0.029

0.167 0.050 0.025

1 0.111 0.020

.

Objective 3 represents the occupied labor force of each U100 income.
Based on the relevant Chinese policies and practical conditions of the
county of our study, requiring appropriately arranging people to work, we
employ the moderate e ect measure. Take the moderate value as u(3)i0j0 = 1.
From

r
(3)
ij =

u
(3)
i0j0

u
(3)
i0j0

+ |u(3)ij u
(3)
i0j0
|
=

1

1 + |u(3)ij 1|
it follows that we can obtain the matrix of uniform e ect measures of
objective 3 as follows.

R(3) =
h
r
(3)
ij

i
3×3

=

0.588 0.556 1

0.769 1 0.714

0.909 0.714 0.833

.

Let the decision weights of objectives 1, 2, and 3 be, respectively,

1 = 0.5, 2 = 0.35, 3 = 0.15
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From

rij =
3X
k=1

r
(k)
ij · k,

we can obtain the matrix of synthetic e ect measures as follows:

R = [rij ]3×3 =

0.144 0.595 0.247

0.194 0.266 0.428

0.512 0.264 0.241

.

For i = 1,
max
1 j 3

{r1j} = 0.595 = r12
the corresponding situation is

s12 = (a1, b2) = (district 1, livestock husbandry).

That is, district 1 should put its emphasis on the development of livestock.
For i = 2,

max
1 j 3

{r2j} = 0.428 = r23
the corresponding situation is

s23 = (a2, b3) = (district 2, industry and services).

That is, district 2 should direct its attention to the development of industry
and service-related businesses.
For i = 3,

max
1 j 3

{r3j} = 0.512 = r31
the corresponding situation is

s31 = (a3, b1) = (district 3, forestry).

That is, district 3 should put its eyes on the development of forestry.
Furthermore, from

max
1 i 3

max
1 j 3

{rij} = 0.595 = r12

it follows that

s12 = (a1, b2) = (district 1, livestock husbandry)

is the optimum situation. That is, among the three business emphases, the
county as a whole, consisting of all three economic districts, should first
support the development of livestock husbandry in district 1.
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10.8 Grey Stratified Decisions

We conclude this chapter by looking at a theory of stratified decision mak-
ing, where each optimum decision is made by synthesizing decisions of
several layers of decision makers.

Definition 10.8.1. A group of decision makers with close and similar
decision intentions is called a decision layer.

Generally, the group of all parties involved in a decision-making process
is divided into the layer of mass, the layer of experts, and the layer of
administrators.These layers are denoted as L1, L2, and L3, respectively.

Definition 10.8.2. 1. Each group of people with relatively small range
of responsibility, scattered information, and a great number of individuals,
is called the layer of mass.

2. Each medium-sized group of people with responsibility for technical
issues and relatively more decision information is called a layer of experts.
And

3. The group of a few people with legislative responsibility and relatively
uniform information on decision criteria is called the layer of administra-
tors.

Definition 10.8.3. The process of decision making, in which the opti-
mum decision is achieved through synthesizing the decision intentions of
di erent layers, is called a grey stratified decision making. According to
Definition 10.8.2, the group of all parties involved in the decision making
is divided into three layers L1, L2, and L3. This kind of decision making is
called a three-layered grey stratified decision making.

In a three-layered grey stratified decision making, grey statistics is often
used to reflect the decision intention of the layer of mass. So, L1 is also called
the grey statistics layer. Because experts tend to look at problems from the
angle of future development, their decision intention is often reflected by
using GM(1, 1) predicted values or GM(1, 1) development coe cients. So,
L2 is also called the grey development layer. The layer of administrators
needs to balance the current situations and to consider all the legislative
restrictions. So, for this layer, grey cluster is the method for its decision
making. Therefore, L3 is also called the grey cluster layer.
Each three-layered grey stratified decision making can be performed by

going through the following steps.

Step 1: Order all situations in the set of situations

S = {sij = (ai, bj)|ai A, bj B}
in the dictionary order. If

A = {a1, a2, ..., an}
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and
B = {b1, b2, ..., bm}

then
S = {sq|q = 1, 2, ..., nm} .

Step 2: Based the method as described in Section 10.5, compute the
statistical decision coe cient k

q for situation sq to be in grey class k, q =
1, 2, ..., nm, k = 1, 2, ..., s, so that we have the vector of statistical decision
coe cients

q =
¡

1
q,

2
q, ...,

s
q

¢
,

q = 1, 2, ..., nm.

Step 3: Uniformly treat the observational e ect time sequences of situ-
ation sq with di erent objectives (for more details, see Section 10.7). Cal-
culate the time sequence of synthetic e ect measures

rq = (rq(1), rq(2), ..., rq(n0))

and the development coe cient aq of the relevant GM(1, 1) model using
least squares estimates, q = 1, 2, ..., nm.

Step 4: Based on the method as described in Section 10.6 (here situations
sq should be seen as decision objects and the objectives in Step 3 as decision
criteria), and a similar division of grey classes as in Step 2, compute grey
cluster decision coe cients k

q for situation sq to be in grey class k so that
the vector of grey cluster decision coe cients

q =
¡
1
q,

2
q, ...,

s
q

¢
,

q = 1, 2, ..., nm, is obtained.

Step 5: Calculate the united decision vector of L1 and L2. Let

=
¡

1, 2, ..., s
¢

=

a1

a2

· · ·

anm

T

·

1
1

2
1 · · · s

1

1
2

2
2 · · · s

2

· · · · · · · · · · · ·
1
nm

2
nm · · · s

nm

.

Step 6: Compute the united decision of L1, L2, and L3. For q = 1, 2, ..., nm,
calculate the degree ( , q) of grey incidence of q and . Assume that

max { ( , q)} = ( , q ).
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Then sq is the optimum situation of the three-layered grey stratified de-
cision making.

Example 10.8.1. Let us look at a three-layered grey stratified decision
making done for a proposed technical innovation of a certain industrial
company.

Step 1: The situation set S is the same as that in Example 10.4.1. That
is,

S = {s11, s12, s13} .

When ordered in a dictionary order, we have

S = {s1, s2, s3} ,

where n = 1,m = 3, so, nm = 3.

Step 2: Assume that the grey statistics layer consists of five workshops,
whose decision weights, based on the numbers of people involved, are given,
respectively:

1 = 0.25, 2 = 0.25, 3 = 0.2, 4 = 0.2, 5 = 0.1.

And, the matrix of quantified evaluations of each workshop about the sit-
uation sq, q = 1, 2, 3, is given by

C =

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

=

80 60 40

60 50 50

75 70 60

90 80 80

50 70 60

.

The whitenization weight functions for the four evaluation grey classes,
best, implementable, basically implementable, and not implementable, are
given, respectively (for more details, see Figure 10.1):

f1(x) =

0, x < 60

x 60

30
, 60 x 90

1, x > 90;
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f2(x) =

0, x < 50

x 50

20
, 50 x 70

90 x

20
, 70 < x 90

0, x > 90;

f3(x) =

0, x < 35

x 35

20
, 35 x 55

75 x

20
, 55 < x 75

0, x > 75;

and

f4(x) =

0, x < 0

1, 0 x 20

40 x

20
, 20 < x 40

0, x > 40.

From

k
q =

5P
i=1

fk(xiq) · i

4P
k=1

5P
i=1
fk(xiq) · i

,

q = 1, 2, 3, k = 1, 2, 3, 4, it follows that

1 =
¡

1
1,

2
1,

3
1,

4
1

¢
= (0.42, 0.35, 0.23, 0) ,

2 =
¡

1
2,

2
2,

3
2,

4
2

¢
= (0.19, 0.44, 0.37, 0) ,

and
3 =

¡
1
3,

2
3,

3
3,

4
3

¢
= (0.15, 0.29, 0.56, 0) .

Step 3: Assume that we have four objectives: production, profit, inno-
vation investment, and production cost, and that the time sequences of
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synthetic e ect measures of situation sq, q = 1, 2, 3, with respect to the
previous four objectives are, respectively:

r1 = (r1(i))
4
i=1 = (0.32, 0.44, 0.58, 0.70) ,

r2 = (r2(i))
4
i=1 = (0.23, 0.39, 0.69, 0.83) ,

and
r3 = (r3(i))

4
i=1 = (0.12, 0.14, 0.81, 0.96) .

The least squares estimates of the GM(1, 1) parameter sequences of rq,
q = 1, 2, 3, are given by

ba1 =
£
a1 b1

¤T
=
£

0.23 0.3215
¤T
,

ba2 =
£
a2 b2

¤T
=
£

0.32 0.2987
¤T
,

and ba3 =
£
a3 b3

¤T
=
£

0.55 0.1974
¤T
.

with the relevant development coe cients being

a1 = 0.23, a2 = 0.32, a3 = 0.55.

Step 4: Determine the decision objects of the situations s1, s2, and s3 with
the objectives listed in Step 3: production, profit, innovation investment,
and production cost, as decision criteria here.
Assume that the matrix of quantified evaluation values of the situations

s1, s2, and s3 with respect to the previous four objectives is

D = [yqj ]3×4 =

420 51 26 0.67

874 93 30 0.61

1035 124 38 0.58

.

Now, the whitenization weight function fkj (·), j = 1, 2, 3, 4, k = 1, 2, 3, 4,
for j criterion to be in grey class k is shown in Figures 10.3 10.6.
From these four figures, it is not hard to see the piecewise definitions

of the whitenization weight functions fkj (·), j = 1, 2, 3, 4, k = 1, 2, 3, 4, for
criterion j to be in grey class k. Assume again that the decision weights of
the four criteria: production, profit, innovation investment, and production
cost, are

1 = 0.3, 2 = 0.3, 3 = 0.2, 4 = 0.2.

From

k
q =

4X
j=1

fkj (yqj) · j ,
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FIGURE 10.3. The whitenization weight functions with respect to the criterion:
production

FIGURE 10.4. The whitenization weight functions with respect to the criterion:
profit
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FIGURE 10.5. The whitenization weight functions with respect to the criterion:
innovation investment

FIGURE 10.6. The whitenization weight functions with respect to the criterion:
production cost
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q = 1, 2, 3, k = 1, 2, 3, 4, it follows that the grey cluster decision coe cients
are

1 =
¡
1
1,

2
1,

3
1,

4
1

¢
= (0, 0.18, 0.65, 0.07) ,

2 =
¡
1
2,

2
2,

3
2,

4
2

¢
= (0.57, 0.12, 0.32, 0.01) ,

and
3 =

¡
1
3,

2
3,

3
3,

4
3

¢
= (0.63, 0.14, 0.06, 0.2) .

Step 5: Compute the united decision vector of the layers L1 and L2 of
the mass and experts. From

a1

a2

a3

T

·

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

=

0.23

0.32

0.55

T

·

0.42 0.35 0.23 0

0.19 0.44 0.37 0

0.15 0.29 0.56 0

= (0.2399, 0.3808, 0.4793, 0) ,

it follows that

=
¡

1, 2, 3, 4
¢
= (0.2399, 0.3808, 0.4793, 0) .

Step 6: Determine the united decision of the three layers L1, L2, and L3.
Calculate the degree of grey incidence between q and , q = 1, 2, 3. We
obtain that

( , 1) = 0.59672,

( , 2) = 0.61725,

and
( , 3) = 0.43475.

From
max { ( , q)} = 0.61725 = ( , 2),

it follows that s2 is the optimum situation of our three-layered grey strati-
fied decision making. That is, an innovation done by stages is recommended.
This is a conclusion obtained after synthesizing the opinions of the three
layers L1, L2, and L3. If it is seen from the angle of a certain layer, then s2
is not an optimum situation. For example, from the decision vector of the
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layer of mass, it can be seen that s2 is an implementable plan. From the
decision coe cient of the layer of experts, it can be seen that the develop-
ment coe cient of s2 is located in the middle, which implies that it is not
the optimum plan. And in the eyes of the layer of administrators, the plan
of innovation by stages is optimum.



11
Grey Programming

11.1 Introduction

The so-called programming essentially belongs to the category of decision
making. It mainly studies under certain constraints how to guarantee the
objective of achieving the possible optimum. In summary, problems studied
in programming are mainly the following kinds.

1. Problems of production plans: Under the condition of limited re-
sources, determine the products and relevant quantities so that the
output values and profits would be the maximum.

2. Problems of management of scientific research: Determine how to al-
locate the limited amount of available funds among various research
disciplines and projects and who should be responsible for the re-
search of what projects so that the productivity and profits of the
research could be the highest.

3. Problems of military commands: Determine how to arrange the lim-
ited size of armed forces to e ectively defeat enemies.

4. Problems of agricultural division into districts: Make decisions on how
to choose di erent economic patterns, based on di erent conditions of
soil, weather, and resources, to determine the sizes of areas of planting
of various crops so that the total e ect would be maximized.
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5. Problems of industrial distribution and urban planning: Determine
how to distribute industries and how to develop cities so that the
overall economy would benefit.

6. Problems of transportation: Determine how to transport goods and
materials from areas of supply to areas of demands in the network
of allocation of goods and materials so that the transportation cost
would be the least while all demands are met.

7. Problems of stocks: Determine the kinds and quantities of products,
and time periods of storage so that under the condition of limited
available spaces, the stocking profits would be maximum.

8. Problems of compounding materials: Determine how much each ma-
terial is needed, under the condition that technological processes,
qualities, etc., are pre-fixed, so that the cost would be minimum.

9. Problems of material-cutting: Determine how to cut materials into
usable pieces so that the rate of usage of the materials would be
maximum or that the number of complete sets is maximum.

10. Other problems: For example, how to allocate investment in adver-
tising and determine methods of advertising so that an optimal e ect
can be reached. Under certain requirements, how to determine the
number of people working so that the minimum number of employees
are hired, etc.

In these problems, if the constraint condition and objective function is
linear, the problems are called linear programming problems. When the
objective function or the constraint condition is a nonlinear function, the
corresponding problem is called a nonlinear programming problem. If we
are solving a problem with a possible answer as “Do it” or “Don’t do it,” or
in the constraint, there appears a phrase like “Either, or”, we denote “Do
it” or “Either this” as 1 and “Don’t do it” or “Or that” as 0. In this way,
the problem we are solving involves two variables 0 and 1 only, which is
consequently called a 0-1 programming problem. Here, linear programming
is one of the most important branches in operations research, which devel-
oped early and matured fast with a wide range of practical applications.
However, the normal linear programming, nonlinear programming, and 0-1
programming all have the following problems.

1. They are all “static” programming, which cannot be used to reflect
the situation of change when the constraints are changing with time;

2. When grey numbers appear in either the programming model or the
constraint, applications will become di cult; and
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3. In theory, each convex function defined on a convex set has a solu-
tion. However, in practical applications, due to technical reasons, the
process of finding the solution cannot be finished.

By using the idea and modeling method of grey systems theory, these
problems with programmings as listed above can be resolved to a certain
degree. In this chapter, we mainly study grey linear programming, grey 0-1
programming, and grey nonlinear programming.

11.2 Linear Programming Models with Grey
Parameters

In this section, we first look at linear programming models.

Definition 11.2.1. Assume that aij , bi, and cj , i =1,2, ...,m, j = 1, 2,
..., n, are all constants, and xj , j = 1, 2, ..., n, are unknown quantities.
Then

max(min)S = c1x1 + c2x2 + · · ·+ cnxn

s.t.

a11x1 + a12x2 + · · ·+ a1nxn (=, )b1

a21x1 + a22x2 + · · ·+ a2nxn (=, )b2

· · · · · · · · · · · · · · · · · · · · · · · · · ··

am1x1 + am2x2 + · · ·+ amnxn (=, )bm

x1 0, x2 0, · ··, xn 0

is called a general mathematical model of linear programming problems,
where

S = c1x1 + c2x2 + · · ·+ cnxn
is called an objective function, and

a11x1 + a12x2 + · · ·+ a1nxn (=, )b1

a21x1 + a22x2 + · · ·+ a2nxn (=, )b2

· · · · · · · · · · · · · · · · · · · · · · · · · ··

am1x1 + am2x2 + · · ·+ amnxn (=, )bm

x1 0, x2 0, · ··, xn 0

the constraint conditions.
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Definition 11.2.2. The following

maxS = CX

s.t.
AX = b

X 0

is called the standardized type of linear programming problems, where

C = [c1, c2, ..., cn] ,

X = [x1, x2, ..., xn]
T ,

A =

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

am1 am2 · · · amn

,

b = [b1, b2, ..., bm]
T

and bi 0, i = 1, 2, ...,m.

Definition 11.2.3. Assume that

X = [x1, x2, ..., xn]
T ,

C = [c1( ), c2( ), ..., cn( )] ,

b = [b1( ), b2( ), ..., bm( )]
T
,

A( ) =

a11( ) a12( ) · ·· a1n( )
a21( ) a22( ) · ·· a2n( )
· · · · · · · · ·
am1( ) am2( ) · ·· amn( )

,

where
cj( ) [c

j
, cj ], c

j
0,

j = 1, 2, ..., n,

bi( ) [b
i
, b i], b

i
0,

i = 1, 2, ...,m, and

aij( ) [a
ij
, aij ], a

ij
0,

i = 1, 2, ...,m, j = 1, 2, ..., n.
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Then
maxS = C( )X

s.t.
A( )X b( )

X 0

is called a problem of linear programming with grey parameters (LPGP ),
and C( ) a grey price vector, A( ) a grey consumption matrix, b( ) a
grey constraints vector for resource, and X the decision vector of the
LPGP .

As a matter of fact, X is a grey vector as well.

Definition 11.2.4. Suppose that j , i, ij [ 0, 1], i = 1, 2, ..., m,
j = 1, 2, ..., n, and let the white values of grey parameters be, respectively,
as follows ecj( ) = jcj + (1 j)cj ,

j = 1, 2, ..., n, ebi( ) = ibi + (1 i)bi,

i = 1, 2, ...,m, and

eaij( ) = ijaij + (1 ij)aij ,

i = 1, 2, ...,m, j = 1, 2, ..., n, where eC( ),eb( ) and eA( ) are, respectively,
the whitenization vector of price, constraints for resources, and the whit-
enization matrix of consumption. Then

maxS = eC( )X

s.t.

eA( )X eb( )

X 0

is called a positioned programming of the LPGP ; and j (j = 1, 2, ...,
n) the positioned coefficients of price vector, i (i = 1, 2, ..., m) the
positioned coe cients of constraint vector for resources, and ij (i = 1, 2,
..., m, j = 1, 2, ..., n) the positioned coe cients of consumption.

In Definition 11.2.4, j is a reflection of price fluctuation of the jth
product. It can be determined by using a market analysis. Less j reflects
a lower expected price of the jth product, and larger j reflects a higher
expected price of the jth product.
The coe cient i is a reflection of market supplies of the ith resource.

Less i expresses short supply of the ith resource, and larger i expresses
su cient supply of the ith resource.
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Similarly, less ij expresses lower consumption of the ith resource to
produce an unit of the jth product, and larger ij expresses higher con-
sumption of the ith resource to produce the same unit of the jth product.

Proposition 11.2.1. The optimal value maxS of the positioned pro-
gramming of a LPGP is a function with n +m +mn variables of j , i

and ij (i = 1, 2, ..., m, j = 1, 2, ..., n).

Therefore from Proposition 11.2.1, the optimal value maxS of the posi-
tioned programming can be marked as follows,

maxS = f
¡
( j , i, ij)| i = 1, 2, ...,m, j = 1, 2, ..., n

¢
.

Similarly, the positioned programming can be marked as follows,

LP
¡
( j , i, ij)| i = 1, 2, ...,m, j = 1, 2, ..., n

¢
.

For the sake of convenience, we first make the following suppositions.

1. Rank( eA( )) = m < n . Here Rank( eA( )) refers to the rank of matrixeA( ), and suppose Rank( eA( )) = m.

2. The set composed of the feasible solution of LP (( j , i, ij)| i = 1,
2, ..., m, j = 1, 2, ..., n) is non-empty.

3. The set n
X| eA( )X eb( ), X 0

o
composed of real vectors is bounded. At the same time, the positioned
programming LP (( j , i, ij)| i = 1, 2, ..., m, j = 1, 2, ..., n) can be
rewritten into the following form,

maxS =
h eCB( ), eCN ( )

i · XB
XN

¸

s.t.

h eB( ), eN( )
i · XB

XN

¸ eb( )

XB 0,XN 0.

That is, the first m columns of the whitenization matrix of consumereA( ) are the basis matrix eB( ); the last n m columns are the non-basis
matrix eN( ). The basis vectors and non-basis vectors corresponding toeB( ) and eN( ) can be written, respectively, as XB and XN . The whit-
enization vectors of price corresponding to XB and XN can be written,
respectively, as eCB( ) and eCN( ). From supposition 3, and noticing the
fact that XN = 0, it is clear that

X = [XB,XN ]
T =

h eB 1( )eb( ), 0
iT
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and
S = eCB( ) eB 1( )eb( ),

and the test vector is

r = eC( ) eCB( ) eB 1( ) eA( ).

Proposition 11.2.2. Suppose that the positioned programming in 3
satisfies the above suppositions 1,2,and 3, and

X = [x1, x2, ..., xn]
T

is the basic solution of the positioned programming in 3. Then,

{xj | j = 1, 2, ..., n}
is bounded.

Proposition 11.2.3. There is at least one basic feasible solution of the
positioned programming LP (( j , i, ij)| i = 1, 2, ..., m, j = 1, 2, ..., n),
which satisfies the suppositions 1, 2, and 3.

11.3 Grey Linear Programming of Prediction Type

In this section, we focus on linear programming problems such that they
can be potentially used to make predictions.

Definition 11.3.1. For the grey linear programming problem in Defin-
ition 11.2.3, first whitenize C( ), and A( ). Assume that

eC = [ec1,ec2, ...,ecn]
and

eA =
ea11 ea12 · · · ea1n
ea21 ea22 · · · ea2n
· · · · · · · · · · · ·

eam1 eam2 · · · eamn
.

Based on the historical data of bi( ), i = 1, 2, ..., m,

bi( ) = (bi(1), bi(2), ..., bi(s)) ,

establish a GM(1, 1) model and solve for its predicted value bbi(s + k) at
the time moment s+ k, for i = 1, 2, ...,m. Denote

bb = hbb1(s+ k),bb2(s+ k), ...,bbm(s+ k)i .
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Then
maxS = eCX
s.t.

eAX = bb
X 0

is called a linear programming problem of grey prediction type.

For a linear programming problem of grey prediction type, we can solve it
according to the method of solving a general linear programming problem.

Example 11.3.1. A manufacturing company produces two products:
Product A and Product B. Each piece of Product A requires 2.5 3.5
work days, 3 5 kilowatt-hours of electricity, and 7 11 tons of coals.
And each piece of Product B requires 8 12 work days, 3.5 6.5 kilowatt-
hours of electricity, and 3 5 tons of coals. The profit from each piece of
Product A is $600 800, and the profit from each piece of Product B is
$900 1500. This company has 300 movable laborers, 360 tons of daily
consumable coals, and the daily electricity supplies are given as in Table
11.1.

Table 11.1. Electricity supply during 1993 to 1996

Year 1993 1994 1995 1996
Daily electricity supply (in kilowhour) 168 174 180 190

For the years of 1997 and 1998, how should the company arrange its daily
production of Products A and B to maximize its profits?

Solution: Assume that the production of Products A andB are x1 and x2,
respectively. Then, we have the following grey linear programming problem.

maxS = c1( )x1 + c2( )x2

s.t.

11x1 + 12x2 b1( )

21x1 + 22x2 b2 = 360

31x1 + 32x2 b3 = 300

x1 0, x2 0,

where
c1( ) [600, 800], c2( ) [900, 1500],

11 [3, 5], 12 [3.5, 6.5],

21 [7, 11, ], 22 [3, 5],
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and

31 [2.5, 3.5], 32 [8, 12].

Mean whitenizing all the grey elements in the objective function and
constraints gives us that

eC = [ec1,ec1] = [700, 1200]
and

eA =
ea11 ea12
ea21 ea22
ea31 ea32

=

4 5

9 4

3 10

.

From Table 11.1, we obtain a sequence of restrained variables b1( ) as
follows,

b1( ) = (b1(i))
4
i=1 = (168, 174, 180, 190) .

Its GM(1, 1) time response sequence is

bb(1)1 (k + 1) = 3829.125 · e0.0442k 3661.125

bb1(k + 1) = bb(1)1 (k + 1) bb(1)1 (k).
From this end, it follows that

bb1(5) 198, (1997),

bb1(6) 207, (1998).

Therefore, the programming model for the year of 1997 is

maxS = 700x1 + 1200x2

s.t.

4x1 + 5x2 198

9x1 + 4x2 360

3x1 + 10x2 300

x1 0, x2 0.

This is a linear programming problem in two variables, which can be
solved by using graphs. The feasible region of this problem is given in
Figure 11.1.
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FIGURE 11.1. The feasible region of the linear programming model for 1997

The point B is the last point intersecting all lines with slope 7
12 parallel

to the objective function S = 700x1 + 1200x2. So, point B is the optimal
point. Solving the system

4x1 + 5x2 = 198

3x1 + 10x2 = 300

gives the optimal solution

x1 = 19.2, x2 = 24.24.

That is, in 1997, in order to maximize profit for the company, the daily
production of Products A and B should be 19.2 pieces and 24.24 pieces,
respectively. The maximum daily profit would be

maxS = 700 · 19.2 + 1200 · 24.24 = 42528
with an annual profit $15,522,720. This problem can also be solved by in-
troducing slack variables to convert to the standard form and then applying
the simplex algorithm.
The programming model for the year of 1998 is

maxS = 700x1 + 1200x2

s.t.

4x1 + 5x2 207

9x1 + 4x2 360

3x1 + 10x2 300

x1 0, x2 0.
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Similarly, we can find the optimal solution as follows:

x1 = 22.8, x2 = 23.16

with the maximum daily profit

maxS = 700 · 22.8 + 1200 · 23.16 = 43752 ($)
and maximum annual profit $15,969,480.
Comparing the programming model of production for the year 1998 with

that of the year 1997, the daily electricity supply is increased by 9 kilowatt-
hours with profit increased by an amount of $1,224, and there is a surplus
supply of coal. For the year 1997, the daily usage of coal is

9 · 19.2 + 4 · 24.24 = 269.76 (ton),
which is 90.24 tons less than the scheduled supply. For the year of 1998,
the daily consumption of coal is

9 · 22.8 + 4 · 23.16 = 297.84 (ton),
which is 62.16 tons less than the scheduled supply. If there is no plan to
devote more manpower and electricity, the scheduled supply of coal can be
reduced appropriately.

11.4 Several Theorems on Positioned Solutions of
LPGP

An LPGP is also called grey drifting linear programming. In reality, a
problem of LPGP is a set composed of some ordinary problems of linear
programming.
In the following proof, we suppose that the whitenization vectors and

the whitenization matrix, given in the following

maxS =
h eCB( ), eCN ( )

i · XB
XN

¸

s.t.

h eB( ), eN( )
i · XB

XN

¸ eb( )

XB 0,XN 0

still keep the property of non-negativity.

Theorem 11.4.1. For a positioned programming of a LPGP, when the
positioned coe cients of the price vector satisfy

j
0
j ,
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j = 1, 2,..., n, we have

maxS = f
¡
( j , i, ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

¢
f
³
(

0
j , i, ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

´
= maxS

0
.

Proof: Because j
0
j , we have

eC( ) eC 0
( ).

Suppose that

eC 0
( ) = eC( ) + eC( ), and eC( ) 0.

There are now the following two cases. Without loss of generality,we assume
that eB( ) is the optimal basis of LP (( j , i, ij)| i = 1, 2, ...,m, j = 1, 2,
..., n).

1. eC 0
( ) eC 0

B( ) eB 1( ) eA( ) 0.

Here, the optimal basis eB( ) of the corresponding positioned program-
ming doesn’t change, nor does the optimum solution

X =
h eB 1( )eb( ), 0

iT
.

Obviously,

maxS
0
= eC 0

B( ) eB 1( )eb( )

= eCB( ) eB 1( )eb( )

+ eCB( ) eB 1( )eb( ) maxS

2. eC 0
( ) eC 0

B( ) eB 1( ) eA( ) > 0.

Suppose that the test number r
0
k( ) > 0, and that eB( ) is not the op-

timal basis of the positioned programming LP ((
0
j , i, ij)| i = 1, 2, ...,m,

j = 1, 2, ..., n). Moreover, suppose that we use the simplex method to work
out its optimal basis eB1( ) and its optimal solutionh eB 1

1 ( )eb( ), 0
iT
.

Notice that h eB 1
1 ( )eb( ), 0

iT
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is the feasible basic solution of the positioned programming LP ((
0
j , i, ij)|

i = 1, 2, ..., m, j = 1, 2, ..., n); it is readily to have

maxS
0
= eC 0

B1
( ) eB 1

1 ( )eb( ) eC 0
B( ) eB 1( )eb( )

= [ eCB( ) + eCB( )] eB 1( )eb( )

= eCB( ) eB 1( )eb( ) + eCB( ) eB 1( )eb( ) maxS. ¤
Theorem 11.4.2. For a positioned programming of a LPGP, when the

positioned coe cients of restriction vectors for resource satisfy the follow-
ing

i

0
i,

i = 1, 2, ...,m, we have

maxS = f
¡
( j , i, ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

¢
f
³
( j ,

0
i, ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

´
= maxS

0
.

Proof: From
i

0
i,

i = 1, 2, ...,m, we know that eb( ) eb0( ).
Suppose that eb0( ) = eb( ) + eb( ), eb( ) 0,

then we have eB 1( )eb0( ) = eB 1( )eb( ) + eB 1( ) eb( ).

Here, eB( ) is the optimal basis of LP (( j , i, ij)| i = 1, 2, ...,m, j = 1,
2, ..., n).
1. Assume eB 1( ) eb( ) 0.

Then eB 1( )eb0( )

= eB 1( )eb( ) + eB 1( ) eb( ) 0.

Hence, eB( ) is still the optimal basis of the positioned programming LP (( j ,
0
i, ij)| i = 1, 2, ...,m, j = 1, 2, ..., n). So

maxS
0
= eCB( ) eB 1( )eb0( )

= eCB( ) eB 1( )eb( ) + eCB( ) eB 1( ) eb( )

= maxS + eCB( ) eB 1( ) eb( ) maxS
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2. Assume eB 1( ) eb( ) < 0.

Suppose that k, xk < 0. Now we discuss the situation in two cases as
follows.

(a) x
0
k = xk + xk 0. Here, eB( ) is still the optimal basis of the

positioned programming LP (( j ,
0
i, ij)| i = 1, 2, ...,m, j = 1, 2, ..., n).

So, the optimal solution of LP (( j, i, ij)| i = 1, 2, ...,m, j = 1, 2, ..., n)
is a feasible basic solution of LP (( j ,

0
i, ij)| i = 1, 2, ...,m, j = 1, 2,

..., n). Therefore, we have

maxS = eCB( ) eB 1( )eb( ) maxS
0
.

(b) x
0
k = xk + xk < 0. Now

[ eB 1( )eb0( ), 0]T

is not the feasible basic solution of LP (( j ,
0
i, ij)| i = 1, 2, ..., m, j = 1, 2,

..., n). But eB( ) is a regular basis. By using the dual simplex method, we
can obtain the optimal solution

X
0
= [ eB 1

1 ( )eb0( ), 0]T

and the optimal basis eB1( ) of LP (( j,
0
i, ij)| i = 1, 2, ...,m, j = 1, 2,

..., n). And, noticing that the optimal solution of LP (( j , i, ij)| i = 1, 2,

...,m, j = 1, 2, ..., n) is a feasible basic solution of LP (( j ,
0
i, ij)| i = 1, 2,

...,m, j = 1, 2, ..., n), we have

maxS = eCB( ) eB 1( )eb( ) maxS
0
. ¤

Theorem 11.4.3. For a positioned programming LP ( ( j , i, ij)| i =
1, 2, ...,m, j = 1, 2, ..., n) of a LPGP , when the positioned coe cients of
consumption satisfy the following

ij

0
ij ,

i = 1, 2, ...,m, j = 1, 2, ..., n, we have

maxS = f
¡
( j , i, ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

¢
f
³
( j , i,

0
ij)| i = 1, 2, ...,m; j = 1, 2, ..., n

´
= maxS

0
.

Proof: From that

ij

0
ij ,
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i = 1, 2, ...,m, j = 1, 2, ..., n, it follows thateA( ) eA0
( ) 0.

Assume the kth column satisfies thatePk( ) eP 0
k( ).

1. ePk( ) is not a basis vector.

When ePk( ) is changed to fP 0
k( ) , the basis eB( ) does not change.

However, the test number

r
0
k = eCk( ) eCB( ) eB 1( )fP 0

k( )

may have been changed.

(a) If r
0
k 0, then the optimal solution of LP ( ( j , i, ij)| i = 1, 2, ...,m,

j = 1, 2, ..., n) is still the optimal solution of LP (( j , i,
0
ij)| i = 1, 2, ...,m,

j = 1, 2, ..., n). And, the optimal value doesn’t change. So,

maxS = maxS
0
.

(b) If r
0
k > 0, then x

0
k, which corresponds to eP 0

k( ), will become a basis
variable. We can obtain the optimal solution

X
0
= [ eB 1

1 ( )eb( ), 0]T

of LP (( j , i,
0
ij)| i = 1, 2, ...,m, j = 1, 2, ..., n) by using the simplex

algorithm. Noticing that

[ eB 1( )eb( ), 0]T

is the feasible basic solution of LP (( j , i,
0
ij)| i = 1, 2, ...,m, j = 1, 2,

..., n), we have

maxS = eCB( ) eB 1( )eb( )

eCB1( ) eB 1
1 ( )eb( ) = maxS

0
. ¤

According to Theorems 11.4.1, 2 and 3, we know that the optimal value of
a positioned programming is an increasing function about the positioned
coe cients j (j = 1, 2, ..., n) of the price vector and the positioned
coe cients i (i = 1, 2, ..., m) of the constraint vector, and a decreasing
function about the positioned coe cients ij (i = 1, 2, ..., m, j = 1, 2,
..., n) of consumption.

Definition 11.4.1. Assume that i = 1, 2, · · ·,m and j = 1, 2, ..., n

j = , i = , ij = .
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Then, the corresponding positioned programming is called a ( , , )-
positioned programming. It is written as LP ( , , ). Its optimal value is
denoted maxS( , , ), called the ( , , )-positioned optimal value.

Theorem 11.4.4. For a positioned programming LP ( , , ), we have
1.When = 0 and = 0 are fixed, if 1 2, then

maxS( 0, 0, 1) maxS( 0, 0, 2).

2. When = 0 and = 0 are fixed, if 1 2, then

maxS( 1, 0, 0) maxS( 2, 0, 0).

3. When = 0 and = 0 are fixed, if 1 2, then

maxS( 0, 1, 0) maxS( 0, 2, 0).

Here, reflects the general price level of n kinds of products; reflects
the general supplying state of m kinds of resources; and is a collective
reflection of the level of manufacturing technique, the quantity of the labor
force, and managerial level applied in production.

11.5 Satisfactory Solutions of Grey Linear
Programming

In this section, we study grey linear programming problems such that not
necessarily the optimal solutions but satisfactory solutions can be practi-
cally reached.

Definition 11.5.1. When = = 1 and = 0, the corresponding
positioned programming LP (1, 1, 0) is called an ideal model of the LPGP.
Its optimal value is written as maxS.

The ideal model stands for an ideal condition such that the highest prices
of its products, the most su cient resource supply, the most developed
manufacturing technique, and the quality of labor force and managerial
level are all at their optimal states. The aim is to demonstrate the feasibility
of a new project. In fact, only a few firms can potentially come up to the
ideal state.

Definition 11.5.2. When = = 0 and = 1, the corresponding
positioned programming LP (0, 0, 1) is called a critical model of the LPGP .
Its optimal value is written as maxS.

The critical model stands for a condition such that the lowest prices,
the shortest resource supply, the less-developed manufacturing technique,
and the lowest quantity of labor force and managerial level are employed.
With such a condition in place, the firm is at the edge of bankruptcy. The



11.5 Satisfactory Solutions of Grey Linear Programming 383

only choice for the firm to take is to change its products, to improve its
production techniques, to find alternative resources, and to reeducate its
management and workers all around.

Definition 11.5.3. When = = = , the corresponding positioned
programming is called a -positioned programming. It is written as LP ( ).
Similarly, its optimal value is written as maxS( ), which is called the -
positioned optimal value.

Especially when = 0.5, the corresponding - positioned programming
LP (0.5) is called the mean whitenization programming. Generally, the
mean whitenization programming is the most typical one for LPGP.

Theorem 11.5.1. , , , [0, 1], we have

1. maxS maxS( , , ) maxS,

and
2. maxS maxS( ) maxS.

Proof: We prove 1. only. The second statement is left to the reader to
prove.
Because

0 1, 0 1, 0 1,

from Theorem 11.4.4, it follows that

maxS maxS(0, 0, 1) maxS( , 0, 1)

maxS( , , 1) maxS( , , ).

Similarly, we can prove that maxS maxS( , , ). ¤
Definition 11.5.4. For fixed , , [0, 1],

µ( , , ) =
1

2

µ
1

maxS

maxS( , , )

¶
+
1

2

maxS( , , )

maxS

is called the pleased degree of the positioned programming LP ( , , ).

The pleased degree of LP ( , , ) reflects the relationship among the
positioned optimal value maxS( , , ), the optimal value maxS of its
critical model, and the optimal value maxS of the ideal model. The nearer
maxS( , , ) approachesmaxS, the bigger µ( , , ) is; the nearermaxS( ,
, ) approaches maxS, the smaller µ( , , ) is.
Similarly, we can define the concept of pleased degree of µ( ) for -

positioned programming LP ( ).

Proposition 11.5.1. , , [0, 1], we have that

0 µ( , , ) 1.
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Definition 11.5.5. Given a grey target D = [µ0, 1], if µ( , , ) D,
then the corresponding optimal solution is called the pleased solution of
the LPGP .

Example 11.5.1. For the grey linear programming problem as shown in
Example 11.3.1, assume that the daily electricity supply b1( ) [150, 235],
daily coal supply b2( ) [280, 360], and movable labor b3( ) [270, 330].
Try to find

1. The ideal optimal value maxS;

2. The critical optimal value maxS;

3. The -positioned optimal value, when = 0.6;

4. The ( , , )-positioned optimal value with = 0.7, = 0.9, = 0.5;
and

5. Study the pleased degrees of these optimal values

of the grey linear programming of the drifting type

maxS = C( )X

s.t.
A( )X b( )

X 0.

Solution: 1. Find the ideal optimal value maxS.
Take = 1, = 1, and = 0. Then

C = [c1, c2] = [800, 1500],

b =
£
b1, b2, b3

¤T
= [235, 360, 330]

T
,

and

A =

a11 a12

a21 a22

a31 a32

=

3 3.5

7 3

2.5 8

.

So, we obtain the ideal model as follows

maxS = 800x1 + 1500x2

s.t.

3x1 + 3.5x2 235

7x1 + 3x2 360

2.5x1 + 8x2 330

x1 0, x2 0,
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FIGURE 11.2. The feasible region of the ideal model

whose feasible region is shown in Figure 11.2.
All the lines parallel to the objective function S = 800x1+1500x2 inter-

sect the last point at the right upper corner of the feasible region at point
B, which is the optimal point. From

2.5x1 + 8x2 = 330

x1 = 0

we obtain the optimal solution

x1 = 0, x2 = 41.25

and the ideal optimal value

maxS = 800 · 0 + 1500 · 41.25 = 61875.

2. Find the critical optimal value maxS.
Take = 0, = 0, and = 1. Then, we have

C = [c1, c2] = [600, 900] ,

b = [b1, b2, b3]
T
= [150, 280, 270]

T
,

and

A =

a11 a12

a21 a22

a31 a32

=

5 6.5

11 5

3.5 12

.
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So, we have the critical model

maxS = 600x1 + 900x2

s.t.

5x1 + 6.5x2 150

11x1 + 5x2 280

3.5x1 + 12x2 270

x1 0, x2 0.

Similarly, we know that the optimal solution is the solution of the system

3.5x1 + 12x2 = 270

5x1 + 6.5x2 = 150.

That is,

x1 = 1.2, x2 = 22.15.

So, the critical optimal value is

maxS = 600 · 1.2 + 900 · 22.15 = 20655.

3. Find the -positioned optimal value maxS(0.6), when = 0.6.

Take = = = = 0.6. Then

ec1( ) = 0.6c1 + 0.4c1 = 0.6 · 800 + 0.4 · 600 = 720,

ec2( ) = 0.6c2 + 0.4c2 = 0.6 · 1500 + 0.4 · 900 = 1260,
so, ec( ) = [ec1( ),ec2( )] = [720, 1260] .

Similarly, we have

eb( ) =
heb1( ),eb2( ),eb3( )

iT
= [201, 328, 306]T

and

eA( ) =

e11 e12
e21 e22
e31 e32

=

4.2 5.3

9.4 4.2

3.1 10.4

.
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Therefore, we obtain the - positioned model as follows

maxS = 720x1 + 1260x2

s.t.

4.2x1 + 5.3x2 201

9.4x1 + 4.2x2 328

3.1x1 + 10.4x2 306

x1 0, x2 0,

whose optimal solution is the solution of the system

3.1x1 + 10.4x2 = 306

4.2x1 + 5.3x2 = 201.

That is, the optimal solution is

x1 = 17.19, x2 = 24.30

with the corresponding 0.6-positioned optimal value

maxS(0.6) = 720 · 17.19 + 1260 · 24.3 = 42994.8.

4. Find the ( , , )-positioned optimal value maxS(0.7, 0.9, 0.5), when
= 0.7, = 0.9, and = 0.5.

From = 0.7, it follows that

ec1( ) = 0.7c1 + 0.3c1 = 0.7 · 800 + 0.3 · 600 = 740,

ec2( ) = 0.7c2 + 0.3c2 = 0.7 · 1500 + 0.3 · 900 = 1320,
so, ec( ) = [ec1( ),ec2( )] = [740, 1320] .

Similarly, we have

eb( ) =
heb1( ),eb2( ),eb3( )

iT
= [226.5, 352, 324]

T

and

eA( ) =

e11 e12
e21 e22
e31 e32

=

4 5

9 4

3 10

.
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Therefore, we obtain the ( , , )-positioned model as follows.

maxS = 740x1 + 1320x2

s.t.

4x1 + 5x2 226.5

9x1 + 4x2 352

3x1 + 10x2 324

x1 0, x2 0.

Studying its feasible region and objective function shows that the optimal
solution is the solution of the system

4x1 + 5x2 = 226.5

3x1 + 10x2 = 324.

That is, the optimal solution is

x1 = 25.8, x2 = 24.66,

and the corresponding ( , , )-positioned optimal value is

maxS(0.7, 0.9, 0.5)

= 740 · 25.8 + 1320 · 24.66 = 51643.2.

5. Take µ0 = 0.5. Then for the 0.6-positioned model, we have

µ =
1

2
·
µ
1

maxS

maxS(0.6)

¶
+

1

2
· maxS(0.6)

maxS

=
1

2
·
µ
1

20655

42994.8

¶
+

1

2
· 42994.8

61875

0.62 > µ0.

So, the optimal solution corresponding to maxS(0.6)

x1 = 17.19, x2 = 24.30

is the pleased solution of the grey linear programming of the drifting type.
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For the ( , , )-positioned model with = 0, 7, = 0.9, and = 0.5,
we have

µ =
1

2
·
µ
1

maxS

maxS( , , )

¶
+

1

2
· maxS( , , )

maxS

=
1

2
·
µ
1

20655

51643.2

¶
+

1

2
· 51643.2

61875

0.72 > µ0.

So, the optimal solution corresponding to maxS(0.7, 0.9, 0.5)

x1 = 25.8, x2 = 24.66

is the pleased solution of the grey linear programming of the drifting type.

11.6 Quasi-Optimal Solutions of Grey Linear
Programming

In the process of solving a linear programming problem, very often the
researcher meets such a situation that the optimal solution cannot be found.
In this case, the researcher may consider using other methods to seek an
approximate optimal solution to the problem. In this section, we mainly
study the method of alternative optimization with decision variables. The
whole process of the method of alternative optimization is described by the
following steps.

Step 1: Determine the positioned programming problem:

maxS = eC( )X

s.t.

eA( )X eb( )

X 0

of the following grey linear programming problem

maxS = C( )X

s.t.
A( )X b( )

X 0.

Step 2: Solve the positioned programming problem using a regular linear
programming method until the calculation cannot be continued. Assume
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the last feasible solution is

X(0) =
³
x
(0)
1 , x

(0)
2 , ..., x

(0)
m

´
.

Step 3: Solve for x(1)1 with the starting point X(0), for fixed x(0)2 , x
(0)
3 ,

..., x
(0)
m . Assume that

X(1) =
³
x
(1)
1 , x

(0)
2 , ..., x

(0)
m

´
is the optimal solution with x(0)2 , x

(0)
3 , ..., x

(0)
m fixed. Second, optimize x2

with starting point X(1). Assume that

X(2) =
³
x
(1)
1 , x

(1)
2 , x

(0)
3 , ..., x

(0)
m

´
is the optimal solution with x(1)1 , x

(0)
3 , x

(0)
4 , ..., x

(0)
m fixed. Third, optimize x3

with the starting point X(2). This process continues until we have found

X(m) =
³
x
(1)
1 , x

(1)
2 , ..., x

(1)
m

´
.

Step 4: With the starting point X(m), we repeat the exploration as de-
scribed in Step 3, and obtain that

X(2m) =
³
x
(2)
1 , x

(2)
2 , ..., x

(2)
m

´
,

X(3m) =
³
x
(3)
1 , x

(3)
2 , ..., x

(3)
m

´
,

· · · · · · · · · · · · · · · · · · · · ··

X(km) =
³
x
(k)
1 , x

(k)
2 , ..., x

(k)
m

´
,

· · · · · · · · · · · · · · · · · · · · ··

until X(km) = X [(k 1)m] or X(km) is su ciently close to X [(k 1)m] and the
corresponding objective function values are su ciently close to each other.

Definition 11.6.1. The final solution out of the method of alternative
optimization

X(km) =
³
x
(k)
1 , x

(k)
2 , ..., x(k)m

´
is called the quasi-optimal solution of the grey linear programming, and
the corresponding objective function value is called the quasi-optimal value.
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Example 11.6.1. Assume that the positioned programming of a certain
grey linear programming is given as follows.

maxS =
5

2
x1 +

1
2x2 + 2x3 + 2x4

s.t.

4x1 + x2 + 2x3 100

x1 + x3 + 2x4 80

1
2x1 + x3 + 2x4 60

0 xj 15, j=1,2,3,4.

Find its quasi-optimal solution.

Solution: Assume that the least feasible solution, obtained by using the
simplex algorithm, is

X(0) =
³
x
(0)
i

´4
i=1

= (12, 10, 10, 5) ,

and the corresponding objective function value is

S(0) =
5

2
x
(0)
1 +

1

2
x
(0)
2 + 2x

(0)
3 + 2x

(0)
4

=
5

2
· 12 + 1

2
· 10 + 2 · 10 + 2 · 5 = 65.

Now, we start the first round of alternative optimization with the point
X(0).
First, we optimize x1 with fixed x

(0)
2 , x

(0)
3 , x

(0)
4 .

Substituting x(0)2 = 10, x
(0)
3 = 10, and x(0)4 = 5 into the constraint

inequalities gives

4x1 + x
(0)
2 + 2x

(0)
3 100

x1 + x
(0)
3 + 2x

(0)
4 80

1

2
x1 + x

(0)
3 + 2x

(0)
4 60

0 x1 15,
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that is,

4x1 100 10 20 = 70

x1 80 10 10 = 60

1

2
x1 60 10 10 = 40

0 x1 15,

it follows that

4x1 17.5

x1 60

x1 80

0 x1 15.

So, x(1)1 = 15 is optimal. Now, use

X(1) =
³
x
(1)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4

´
= (15, 10, 10, 5) ,

as the starting point to optimize x2 with x
(1)
1 , x

(0)
3 , x

(0)
4 fixed. Substituting

x
(1)
1 = 15, x

(0)
3 = 10, and x(0)4 = 5 into the constraint inequalities gives that

x2 100 4x
(1)
1 2x

(0)
3 = 100 60 20 = 30

0 x2 15.

That is,

x2 20

0 x2 15.

So, x(1)2 = 15 is optimal. Now, use

X(2) =
³
x
(1)
1 , x

(1)
2 , x

(0)
3 , x

(0)
4

´
= (15, 15, 10, 5)
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as the starting point to optimize x3 with x
(1)
1 , x

(1)
2 , x

(0)
4 fixed. Substituting

x
(1)
1 = 15, x

(1)
2 = 15, and x(0)4 = 5 into the constraint inequalities gives that

2x3 100 4x
(1)
1 x

(1)
2 = 100 60 15 = 25

x3 80 x
(1)
1 2x

(0)
4 80 15 10 = 55

x3 60 1
2x

(1)
1 2x

(0)
4 60 7.5 10 = 42.5

0 x3 15.

That is,
x3 12.5

x3 55

x3 42.5

0 x3 15.

So, x(1)3 = 12.5 is optimal. Now, use

X(3) =
³
x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(0)
4

´
= (15, 15, 12.5, 5)

as the starting point to optimize x4 with x
(1)
1 , x

(1)
2 , x

(1)
3 fixed. Substituting

x
(1)
1 = 15, x

(1)
2 = 15, and x(1)3 = 12.5 into the constraint inequalities gives

that
2x4 80 x

(1)
1 x

(1)
3 = 80 15 12.5 = 52.5

2x4 60 1
2x

(1)
1 x

(1)
3 = 60 7.5 12.5 = 40

0 x4 15.

That is,
x4 26.25

x4 20

x4 15.

So, x(1)4 = 15 is optimal. Hence, we have obtained the result of the first
round alternative optimization as follows,

X(4) =
³
x
(1)
i

´4
i=1

= (15, 15, 12.5, 15) ,
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the corresponding objective function value is

S(4) =
5

2
x
(1)
1 +

1

2
x
(1)
2 + 2x

(1)
3 + 2x

(1)
4

=
5

2
· 15 + 1

2
· 15 + 2 · 12.5 + 2 · 15 = 100.

Because S(4) > S(0), X(4) is more optimal than X(0). Now, we start the
second round alternative optimization with the starting pointX(4). Because
three of the four decision variables have reached their upper limits and the
other variable x3, which has not reached its upper limit, is also optimal
when the other variables are fixed, we have the result of the second round
alternative optimization

X(8) = X(4).

So,
X(4) = (15, 15, 12.5, 15)

is the quasi-optimal solution, and S(4) = 100 is the quasi-optimal value.

If the quasi-optimal solution is still not satisfactory, then further op-
timization can be done based on the magnitude of the coe cients of the
decision variables in the objective function. For example, in Example 11.6.1,
because eC( ) = (eci( ))4i=1 =

µ
5

2
,
1

2
, 2, 2

¶
,

where ec2( ) =
1

2
< ec3( ) = 2,

so, we conclude that
x
(1)
2 = 15 > x

(1)
3 = 12.5

is not very reasonable. If it is allowed by the constraint conditions, we can
increase the objective function value through decreasing x2 and increasing
x3. Now, substituting x

(1)
1 = 15 and x(1)4 = 15 into the constraint inequali-

ties gives that

x2 + 2x3 100 4x
(1)
1 = 100 60 = 40

0 x2 15

0 x3 15.

Taking x(2)3 = 15 gives

x2 40 30 = 10

0 x2 15.
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So, x(2)2 = 10 is optimal. Hence, it follows that

X(5) =
³
x
(1)
1 , x

(2)
2 , x

(2)
3 , x

(1)
4

´
= (15, 10, 15, 15) .

The corresponding objective function value satisfies

S(5) = 102.5 > S(4) = 100;

that is, X(5) is more optimal than X(4).

11.7 Grey 0-1 Programming

Most typical in 0-1 programming are the so-called assignment problems.
In this section, we mainly discuss how to solve assignment problems of grey
prediction type.

Definition 11.7.1. Let n tasks be assigned to m people. Assume that
each person will finish only one task. When n = m, this kind of assignment
is called a balanced assignment problem.

Definition 11.7.2. In a balanced assignment problem, let

xij =
1, if the ith task is assigned to the jth person

0, if the ith task is not assigned to the jth person.

Assume that cij is the expense for the jth person to accomplish the ith
task, for i, j = 1, 2, ..., n. Then,

minS =
nP
i=1

nP
j=1
cijxij

s.t.

nP
j=1
xij = 1, i = 1, 2, ..., n

nP
i=1
xij = 1, j = 1, 2, ..., n

xij = 0 or 1, i, j = 1, 2, ..., n

is called a mathematical model of the assignment problem.

Here, the constraints
nX
j=1

xij = 1,
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i = 1, 2, ..., n, represent that each task is assigned only to one person, and
the constraints

nX
i=1

xij = 1,

j = 1, 2, ..., n, stand for that each person only accepts one task.

Definition 11.7.3. The square matrix

C = [cij ]n×n

is called an efficiency matrix.

Theorem 11.7.1. If a constant is added to all the entries of a row or a
column of the e ciency matrix C, then the optimal assignment, obtained
from the new e ciency matrix is the same as that obtained from C.

Proof: Assume that ei and tj are constants, and

dij = cij + ei + tj ,

i, j = 1, 2, ..., n. Then, the new objective function is

S
0
=

nP
i=1

nP
j=1

dijxij

=
nP
i=1

nP
j=1
(cij + ei + tj)xij

=
nP
i=1

nP
j=1
cijxij +

nP
i=1

nP
j=1
eixij +

nP
i=1

nP
j=1
tjxij

=
nP
i=1

nP
j=1
cijxij +

nP
i=1
ei

nP
j=1
xij +

nP
j=1
tj

nP
i=1
xij

=
nP
i=1

nP
j=1
cijxij +

nP
i=1
ei +

nP
j=1
tj .

Because
nP
i=1
ei and

nP
j=1
tj are constants, S

0
and S take the minimum value

at the same time. ¤
Definition 11.7.4. When the entries in the e ciency matrix are some

grey predicted values or grey development coe cients of e ciency sequences,
the corresponding 0-1 programming is called grey 0-1 programming.

When the values cij in the original problem are values for benefits, and
the objective function is

maxS =
nX
i=1

nX
j=1

cijxij
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we can take
ci0j0 = max

1 i n
max
1 j n

{cij},
and let

c
0
ij = ci0j0 cij ,

i, j = 1, 2, ..., n. Then, the objective function is converted to

minS =
nX
i=1

nX
j=1

c
0
ijxij .

The solution process of grey 0-1 programming is described as follows.
Step 1: Collect the benefit time sequence

u
(0)
ij =

³
u
(0)
ij (1), u

(0)
ij (2), ..., u

(0)
ij (h)

´
,

i, j = 1, 2, ..., n.

Step 2: Establish the GM(1, 1) time response series

bu(1)ij (k + 1) = ij · e aijk $ij

bu(0)ij (k + 1) = bu(1)ij (k + 1) bu(1)ij (k),
for

u
(0)
ij =

³
u
(0)
ij (1), u

(0)
ij (2), ..., u

(0)
ij (h)

´
i, j = 1, 2, ..., n.

Step 3: Write out the benefit matrix C = [cij ]n×n . Here, we can define

cij = bu(0)ij (h+ s) or cij = aij ,

i, j = 1, 2, ..., n.

Step 4: Compute ci0j0 = max
1 i n

max
1 j n

{cij}.
Step 5: Let

c
0
ij = ci0j0 cij ,

i, j = 1, 2, ..., n. We obtain the following grey 0-1 programming model,

minS =
nP
i=1

nP
j=1
c
0
ijxij

s.t.

nP
j=1
xij = 1, i = 1, 2, ..., n

nP
i=1
xij = 1, j = 1, 2, ..., n

xij = 0 or 1, i, j = 1, 2, ..., n.
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Step 6: Convert the e ciency matrix

C
0
=
h
c
0
ij

i
n×n

.

Subtract the minimum entry of each row and each column of the e -
ciency matrix C

0
so that each row and each column contain at least one

zero entry. If the number of zeros located at di erent rows and di erent
columns equals the rank n of the e ciency matrix, stop the conversion.
Otherwise, repeat the previous conversion until the number of zeros, lo-
cated at di erent rows and di erent columns, equals the rank n of the
e ciency matrix.

Step 7: Add “( )” to the n zero entries located at di erent row and
di erent columns. These zero entries are called independent zero. And let

xij =
1, if there exists an independent zero at (i j) location

0, otherwise.

Then,
X = {xij | i, j = 1, 2, ..., n}

is the optimal solution for which we are looking.

Example 11.7.1. There are three economic districts. All the districts
need to develop farming, but each district needs to have a development
emphasis in one of the three directions: industry and service, livestock
husbandry, and forestry so that the overall benefits of the three districts
will be maximized. Try to do a grey 0-1 programming.

First, we find the solution using predicted values.

Step 1: According to the statistical records available, we obtain the ben-
efit time series for the ith district to develop in the jth business direction:

u
(0)
ij =

³
u
(0)
ij (1), u

(0)
ij (2), u

(0)
ij (3), u

(0)
ij (4)

´
,

i = 1, 2, 3; j = 1, 2, 3, where u(0)ij (1), u
(0)
ij (2), u

(0)
ij (3), u

(0)
ij (4) are, respec-

tively, the benefit values for the years 1993, 1994, 1995, and 1996. Specifi-
cally, we have

u
(0)
11 =

³
u
(0)
11 (i)

´4
i=1

= (4, 4.2, 4.4, 5) ,

u
(0)
12 =

³
u
(0)
12 (i)

´4
i=1

= (5, 6, 8, 12) ,

u
(0)
13 =

³
u
(0)
13 (i)

´4
i=1

= (0.9, 0.8, 2, 3) ;
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u
(0)
21 =

³
u
(0)
21 (i)

´4
i=1

= (3, 4, 4.2, 6) ,

u
(0)
22 =

³
u
(0)
22 (i)

´4
i=1

= (7, 9, 10, 12) ,

u
(0)
23 =

³
u
(0)
23 (i)

´4
i=1

= (0.1, 0.4, 0.5, 0.7) ;

u
(0)
31 =

³
u
(0)
31 (i)

´4
i=1

= (1, 2, 2.5, 3) ,

u
(0)
32 =

³
u
(0)
32 (i)

´4
i=1

= (3, 4.5, 5, 5.8) ,

and

u
(0)
33 =

³
u
(0)
33 (i)

´4
i=1

= (2, 3, 4, 6) .

Step 2: For i = 1, 2, 3, and j = 1, 2, 3, find the GM(1, 1) time response
sequence bu(1)ij (k + 1) = ij · e aijk $ij

bu(0)ij (k + 1) = bu(1)ij (k + 1) bu(1)ij (k);
that is, bu(0)ij (k + 1) = ij · (1 eaij ) · e aijk.

It follows that

bu(0)11 (k + 1) = 3.7736 · e0.0894k, bu(0)12 (k + 1) = 3.9936 · e0.3561k,
bu(0)13 (k + 1) = 0.5797 · e0.5448k; bu(0)21 (k + 1) = 2.9559 · e0.2228k,
bu(0)22 (k + 1) = 7.62 · e0.1472k, bu(0)23 (k + 1) = 0.288 · e0.2883k;bu(0)31 (k + 1) = 1.6489 · e0.1993k, bu(0)32 (k + 1) = 3.9142 · e0.1285k,

and bu(0)33 (k + 1) = 1.9983 · e0.3561k.
Step 3: Based on the predicted values for the year 1997,

bu(0)11 (5) = 5.3958, bu(0)12 (5) = 12.5949, bu(0)13 (5) = 5.1241;
bu(0)21 (5) = 7.2066, bu(0)22 (5) = 13.7299, bu(0)23 (5) = 0.9125;
bu(0)31 (5) = 3.6594, bu(0)32 (5) = 6.5444, bu(0)33 (5) = 8.3037,

take
cij = bu(0)ij (5),
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i, j = 1, 2, 3. So, we obtain the benefit matrix

C = [cij ]3×3 =

5.3958 16.5949 5.1241

7.2066 13.7299 0.9125

3.6594 6.5444 8.3037

.

Step 4:
max
1 i 3

max
1 j 3

{cij} = 16.5949 = c12.
Step 5: Let

c
(0)
ij = 16.5949 cij ,

i, j = 1, 2, 3. We obtain the e ciency matrix

C(0) =
h
c
(0)
ij

i
3×3

=

11.1991 0 11.4708

9.3883 2.865 15.6824

12.9355 10.0505 8.2912

.

Step 6: Convert the e ciency matrix by subtracting the minimum entries
from the entries of their own columns. We have that

min
1 i 3

{c(0)i1 } = c(0)21 = 9.3883,

min
1 i 3

{c(0)i2 } = c(0)12 = 0,

min
1 i 3

{c(0)i3 } = c(0)33 = 8.2912,

C(1) =

c
(0)
11 c

(0)
21 c

(0)
12 c

(0)
12 c

(0)
13 c

(0)
33

c
(0)
21 c

(0)
21 c

(0)
22 c

(0)
12 c

(0)
23 c

(0)
33

c
(0)
31 c

(0)
21 c

(0)
32 c

(0)
12 c

(0)
33 c

(0)
33

=

1.8108 (0) 3.1796

(0) 2.865 7.3912

3.5472 10.0505 (0)

,

where C(1) already contains three zero entries located at di erent rows and
di erent columns.
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Step 7: Corresponding to the independent zeros, let

x12 = 1, x21 = 1, x33 = 1,

and xij = 0 for all other i and j. So, we obtain the optimal solution

X = (x11, x12, x13, x21, x22, x23, x31, x32, x33)

= (0, 1, 0, 1, 0, 0, 0, 0, 1) .

That is, district 1 should put its development emphasis on livestock hus-
bandry, district 2 on industry and services, and district 3 on forestry so
that the overall benefits would be maximized.

In the following, we find the solution based on the development coe -
cients.

From the GM(1, 1) response sequence, we have the development coe -
cients

a11 = 0.0894, a12 = 0.3561, a13 = 0.5448;

a21 = 0.2228, a22 = 0.1472, a23 = 0.2883;

a31 = 0.1993, a32 = 0.1285, a33 = 0.3561.

Take
cij = aij ,

i, j = 1, 2, 3; we obtain the benefit matrix

C = [cij ]3×3 =

0.0894 0.3561 0.5448

0.2228 0.1472 0.2883

0.1993 0.1285 0.3561

,

and
max
1 i 3

max
1 j 3

{cij} = 0.5448 = c13.
Let

c
(0)
ij = c13 cij = 0.5448 cij ;

we obtain the e ciency matrix

C(0) =
h
c
(0)
ij

i
3×3

=

0.4554 0.1887 0

0.3220 0.3976 0.2565

0.3455 0.4163 0.1887

.
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Now, in C(0), all the entries in each column subtract their minimum entry.
From

min{c(0)i1 }
1 i 3

= 0.3220 = c
(0)
21 ,

min{c(0)i2 }
1 i 3

= 0.1887 = c
(0)
12 ,

and
min{c(0)i3 }
1 i 3

= 0 = c
(0)
13 ,

let
c
(1)
i1 = c

(0)
i1 c

(0)
21 = c

(0)
i1 0.3220,

c
(1)
i2 = c

(0)
i2 c

(0)
12 = c

(0)
i2 0.1887,

and
c
(1)
i3 = c

(0)
i3 c

(0)
13 = c

(0)
i3 0 = c

(0)
i3 ,

i = 1, 2, 3. So it follows that

C(1) =
h
c
(1)
ij

i
3×3

=

0.1334 0 0

0 0.2089 0.2565

0.0235 0.2276 0.1887

.

In C(1), all the entries of each row subtract their respective row minimum
entry. We have

C(2) =
h
c
(2)
ij

i
3×3

=

0.1334 0 0

0 0.2089 0.2565

0 0.2041 0.1652

.

Now, there do not appear three zero entries located at di erent rows and
di erent columns in C(2), and the minimum entries of all the rows and
columns are zero. In this case, we can proceed according to the following
steps.

Step 1: Start with the row or the column in C(2) with the least number
of zero entries to select a zero entry as independent zero, and use “()” to
embrace it;

Step 2: Draw a “ ” on the right side of each row in C(2) that does not
contain an independent zero;

Step 3: Draw a “ ” underneath each column of the zero entries in a row
with a check “ ”;
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Step 4: Draw a “ ” on the right side of each row with independent zeros,
located in a column with a check “ ”;

Step 5: Draw a horizontal line over the rows without a check “ ”, and
a vertical line over the columns with a check “ ”;

Step 6: Find the minimum entry among all the entries that have not been
lined out;

Step 7: Subtract this minimum entry from all the entries that have not
been lined out, add this minimum entry to all the entries that have been
lined twice, and keep the rest of the entries unchanged. Then, we obtain a
matrix C(3);

Step 8: If the number of zero entries, located at di erent rows and dif-
ferent columns, equals the rank of C(3), stop the computation. Otherwise
start from Step 1.

As for the matrix in our example,

C(2) =

0.1334 (0) 0

(0) 0.2089 0.2565

0 0.2041 0.1652

we take c(2)12 and c(2)21 as independent zeros, and put a check “ ” on the
right side of the third row. Because there is a zero entry at the first column
of the third row, we put a check “ ” underneath the first column. Because
there is an independent zero at the location (2,1), we put a check “ ” on
the right side of the second row. Draw a horizontal line across the first row
that does not have a check “ ” and a vertical line across the first column
that has a check “ ”. Now, the remaining entries, which have not been
lined out, are c(2)22 , c

(2)
23 , c

(2)
32 , and c

(2)
33 . Because

min{c(2)22 , c(2)23 , c(2)32 , c(2)33 } = c(2)33 = 0.1652,

we subtract c(2)33 from each of the remaining entries c
(2)
22 , c

(2)
23 , c

(2)
32 , and c

(2)
33 ,

add c(2)33 to the entry c
(2)
11 which was lined across twice, and keep the other
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entries unchanged. We obtain that

C(3) =
h
c
(3)
ij

i
3×3

=

c
(2)
11 + c

(2)
33 c

(2)
12 c

(2)
13

c
(2)
21 c

(2)
22 c

(2)
33 c

(2)
23 c

(2)
33

c
(2)
31 c

(2)
32 c

(2)
33 c

(2)
33 c

(2)
33

=

0.2986 (0) 0

(0) 0.0437 0.0913

0 0.0389 (0)

.

There already are three zero entries in C(3) located at di erent rows and
di erent columns. The corresponding optimal solution is

X = (x11, x12, x13, x21, x22, x23, x31, x32, x33)

= (0, 1, 0, 1, 0, 0, 0, 0, 1) ,

which agrees with the solution of prediction type.

11.8 Grey Nonlinear Programming Without
Constraints

Now, in this section, we turn our attention to nonlinear programming prob-
lems.

Definition 11.8.1. Assume that

X = (x1, x2, ..., xn)

is a decision vector, and a set of grey parameters. Then,

max(min)S = f(X, )

is called a grey nonlinear programming problem without constraints,
where f(X, ) is a grey price or consumption functional.

Definition 11.8.2. Whitenizing all grey elements in f(X, ) results in
a programming problem called a whitenized programming of

max(min)S = f(X, )

which is denoted
max(min)S = f(X).
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That is, for grey nonlinear programming problems, one can first whitenize
it and then solve for the solution.

Definition 11.8.3. Assume that f(X) is a di erentiable function, where
X = (x1, x2, ..., xn). Then, the solution of the gradient vector

gradf(X) =
µ

f

x1
,
f

x2
, ...,

f

xn

¶
= 0

is called a stationary point of f(X).

Theorem 11.8.1. Assume that f(X) is second-order di erentiable, and
its Hesse matrix is

H(X) =

2f

x21

2f

x1 x2
· · ·

2f

x1 xn

2f

x2 x1

2f

x22
· · ·

2f

x2 xn

· · · · · · · · · · · ·
2f

xn x1

2f

xn x2
· · ·

2f

x2n

.

If X0 is a fixed point of f(X), then

1. When H(X0) is a positive definite matrix, X0 is a minimum point.

2. When H(X0) is a negative definite matrix, X0 is a maximum point.

3. When H(X0) is semi-positive definite, if there exists a neighborhood
U(X0, ) of X0 such that for any X U(X0, ), H(X0) is semi-positive
definite, then X0 is a minimum point.

4. When H(X0) is semi-negative definite, if there exists a neighborhood
U(X0, ) of X0 such that for any X U(X0, ), H(X0) is semi-negative,
then X0 is a maximum point.

5. When H(X0) is a non-definite matrix, X0 is not an extreme point of
the functional f(X).

Example 11.8.1. Solve the grey nonlinear programming:

maxS = f(X, )

= 1x1 + 2x3 + 3x2x3 x21 x22 + 4x
2
3,

where
1 [0, 2], 2 [1.5, 2.5],

3 [0.5, 1.5], and 4 [ 2, 0].
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Solution: Step 1: Mean whitenizing the grey elements i, i = 1, 2, 3, 4,
gives that e1 = 1, e2 = 2, e3 = 1, e4 = 1.

So, the whitenized programming problem is

maxS = f(X) = x1 + 2x3 + x2x3 x21 x22 x23.

Step 2: Find the gradient vector

gradf(X) =

µ
f

x1
,

f

x2
,

f

x3

¶
= (1 2x1, x3 2x2, 2 + x2 2x3) .

Step 3: Let grad f(X) = 0. From

1 2x1 = 0

x3 2x2 = 0

2 + x2 2x3 = 0

we solve and obtain a stationary point

X0 =
¡
x01, x

0
2, x

0
3

¢
=

µ
1

2
,
2

3
,
4

3

¶
.

Step 4: Determine the Hesse matrix H(X). From

2f

x21
= 2,

2f

x1 x2
= 0,

2f

x1 x3
= 0,

2f

x2 x1
= 0,

2f

x22
= 2,

2f

x2 x3
= 1,

and
2f

x3 x1
= 0,

2f

x3 x2
= 1,

2f

x23
= 2,

it follows that

H(X) =

2 0 0

0 2 1

0 1 2

.

Step 5: Substituting the stationary point

X0 =
¡
x01, x

0
2, x

0
3

¢
=

µ
1

2
,
2

3
,
4

3

¶
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into H(X) gives

H(X0) =

2 0 0

0 2 1

0 1 2

.

Step 6: Compute various leading principal minors (LPM) of H(X0). We
have

the 1st-order LPM = 2 < 0,

the 2nd-order LPM =

¯̄̄̄
¯̄ 2 0

0 2

¯̄̄̄
¯̄ = 4 > 0,

the 3rd-order LPM =
¯̄
H(X0)

¯̄
= 6 < 0.

Because the odd-order leading principal minor is < 0, and the even-order
leading principal minors are > 0, H(X0) is a negative definite matrix and
X0 a maximum point.

Step 7: Compute the maximum value.

maxS =
1

2
+ 2 · 4

3
+
2

3
· 4
3

µ
1

2

¶2 µ
2

3

¶2 µ
4

3

¶2
=
19

12
.

11.9 Grey Nonlinear Programming with
Constraints

In this section, we discuss problems of grey nonlinear programming with
constraints.

Definition 11.9.1. Assume that

X = (x1, x2, ..., xn)

is a decision vector and (1), (j), (i), j = 1, 2, ..., m, i = 1, 2, ..., s, are
sets of grey parameters. Then,

minS = f(X, (1))

s.t.
gj(X,

(j)) 0, j J = {1, 2, ...,m}

hi(X,
(i)) = 0, i I = {1, 2, ..., s}

is called a problem of nonlinear programming with constraints, where f(X,
(1)) is the grey consumption functional, and gj(X, (j)) and hi(X, (i))

are, respectively, grey constraint functionals.
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The whitenized programming problem

minS = f(X)

s.t.
gj(X) 0, j J = {1, 2, ...,m}

hi(X) = 0, i I = {1, 2, ..., s}
of the grey nonlinear programming problem can be solved by following the
steps below.

Step 1: If I 6= Ø, go to Step 2 directly. When I = Ø, that is, when there
does not exist any equation constraint, solve the programming problem as
one without constraints

minS = f(X).

Assume that X(0) is the optimal solution. Let k = 0, go to Step 3.

Step 2: Solve the sub-programming problem (Lagrange multipliers can
be applied):

minS = f(X)

s.t. {hi(X) = 0, i I = {1, 2, · · ·, s}
with equation constraints. Assume that X(0) is the optimal solution. Let
k = 0.

Step 3: Substitute X(k) into the inequality constraints and compute the
index set of inequalities that are not satisfied:

Jk =
n
p|gp(X(k)) < 0, p J = {1, 2, ...,m}

o
.

When Jk = Ø, X(k) is the optimal solution of the original programming
problem. So, stop the calculation. If Jk 6= Ø, go to the next step.
Step 4: Select an arbitrary element p from Jk, introduce non-negative

slack variable y2p, and change the corresponding inequality constraints into
equation constraints. Now, solve the following programming problem with
augmented equation constraints,

minS = f(X)

s.t.
gp(X) y2p = 0, p Jk

hi(X) = 0, i I = {1, 2, ..., s}.

Assume that X(k+1)(y2p) is the optimal solution.

Step 5: Solve the following programming problem without constraints,

minS = f
h
X(k+1)(y2p)

i
.
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Assume that X(k+1) is the optimal solution. Replace k + 1 with k and go
back to Step 3.

Example 11.9.1. Solve the following grey nonlinear programming prob-
lem,

minS = f(X, (1)) = 1x1 + 2x
2
2

s.t.
g1(X,

(2)) = 3 (x1 4)2 + 4x
2
2 0

h1(X,
(3)) = (x1 3)2 + (x2 2)2 + 5 = 0,

where
1 [0.8, 1.2], 2 [ 0.15, 0.15], 3 [12, 17],

4 [ 1.4, 0.9], and 5 [9, 14].

Solution: Step 1: Mean whitenizing the grey elements in the objective
functional, and 0.8-positioning whitenizing the grey elements in the con-
straint functional give that

e1 = 1, e2 = 0, e3 = 16,
e4 = 1, e5 = 13.

Therefore, we have the following whitenized programming problem,

minS = f(X) = x1

s.t.
g1(X) = 16 (x1 4)2 x22 0

h1(X) = (x1 3)2 + (x2 2)2 13 = 0.

Step 2: Solve the following sub-programming problem with an equation
constraint

minS = x1

s.t.
©
(x1 3)2 + (x2 2)2 13 = 0,

and obtain the optimal solution

X(0) =
³
x
(0)
1 , x

(0)
2

´
=
³
3 13, 2

´
.

Step 3: Substituting

X(0) =
³
3 13, 2

´
into the inequality constraint gives that

g1(X
(0)) = 2(1 + 13) < 0,
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which shows that the inequality constraint is not satisfied.

Step 4: Introduce non-negative slack variable y2, and solve the following
sub-programming problem with augmented equation constraints:

minS = x1

s.t.
(x1 3)2 + (x2 2)2 13 = 0

(x1 4)2 + x22 16 y2 = 0.

and obtain the following optimal solution

X(1)(y2) =
³
x
(1)
1 , x

(1)
2

´
=

µ
2

5
(8±

p
64 5y2),

1

5
(8±

p
64 5y2)

¶
.

Step 5: Solving the following sub-programming problem without con-
straints,

minS = f
¡
X(1)(y2)

¢
= x

(1)
1

=
2

5
(8±

p
64 5y2),

gives us y = 0. So, the corresponding optimal solution is

X(2) =
³
x
(2)
1 , x

(2)
2

´
= (0, 0) .

Step 6: Substitute X(2) into the inequality constraint. It is found that
the inequality is satisfied and J2 = Ø, so stop the calculation. Now,

X(2) = (0, 0)

is the optimal solution of the original whitenized programming with the
optimal value

minS = f(X(2)) = 0.

If we solve the grey nonlinear programming problem directly without
first whitenizing the problem, then in general the optimal solution contains
grey parameters. We can study the changes of the optimal solution and the
optimal value based on the fields where the grey parameters take values.
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Example 11.9.2. Solve the following grey nonlinear programming prob-
lem,

minS = f(X, (1)) = x21 + 1x2

s.t.

g1(X) = 1 (x1 + x
2
2) 0

g2(X,
(2)) = 2 x1 x2 0

h1(X,
(3)) = x21 + x

2
2

2
3 = 0,

where
1 [0.9, 1.2], 2 [0.8, 1.4], and 3 [2.5, 3.5].

Solution: Step 1: Solve the following sub-programming problem with an
equation constraint,

minS = x21 + 1x2

s.t. x21 + x
2
2

2
3 = 0.

We obtain the optimal solution

X(0) =
³
x
(0)
1 , x

(0)
2

´
= (0, 3) .

Step 2: Substituting
X(0) = (0, 3)

into the inequality constraints gives that

g1(X
(0)) = 1 2

3.

Because e3 2.5, e23 6.25,

we have
g1(X

(0)) 1 6.25 = 5.25 < 0.

That is,
g1(X

(0)) 0

is not satisfied. Similar discussion tells us that

g2(X
(0), (2)) 0

is satisfied. Therefore, J0 = {1}.
Step 3: Introduce non-negative slack variable y21 , and solve the following

sub-programming problem with augmented equation constraints.

minS = x21 + 1x2

s.t.
g1(X) y21 = 1 (x1 + x

2
2) y21 = 0

h1(X,
(3)) = x21 + x

2
2

2
3 = 0,
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and obtain the following optimal solution

X(1)(y21) = =
³
x
(1)
1 , x

(1)
2

´
= =

µ
1

2
[1

p
4y21 + 4

2
3 3],

2

2

q
1 2y21 +

p
4y21 + 4

2
3 3

¶
.

Step 4: Solving the following sub-programming problem without con-
straints,

minS = f(X(1)(y21)) = [x
(1)
1 ]2 + 1x

(1)
2

= [
1

2
[1

p
4y21 + 4

2
3 3]]2

1 · 2

2

q
1 2y21 +

p
4y21 + 4

2
3 3,

gives that y21 = 0, and the corresponding optimal solution is

X(2) =
³
x
(2)
1 , x

(2)
2

´
=

µ
1

2
[1

p
4 2

3 3],
2

2

q
1 +

p
4 2

3 3

¶
.

Step 5: Substituting X(2) into the inequality constraints provides

g1(X
(2), (2)) = 1

1

2
[1

p
4 2

3 3]

1

2
[1 +

p
4 2

3 3] = 0

and

g2(X
(2), (2)) = 2

1

2
[1

p
4 2

3 3]

+
2

2

q
1 +

p
4 2

3 3.

From the fields of 2 and , it follows that

g2(X
(2), (2)) 0.



11.9 Grey Nonlinear Programming with Constraints 413

That is, all the inequality constraints are satisfied. So, J2 = Ø, and we stop
the calculation. Now,

X(2) =

Ã
1

2
[1

q
4 2

3 3],
2

2

r
1 +

q
4 2

3 3

!

is the optimal solution of the original grey nonlinear programming, and the
corresponding optimal value is

minS = f(X(2), (1)) = [x
(2)
1 ]

2 + 1x
(2)
2

=
1

4

h
1

p
4 2

3 3
i2

1 · 2

2

q
1 +

p
4 2

3 3.

When 1 takes the upper limit and 3 takes the lower limit, we can obtain
the ideal optimal value

minS 1.381.



12
Grey Input and Output

In each macroeconomic analysis, most of all the information contained in
statistical data, typical investigations, laboratory reports, etc., are grey
quantities. Therefore, what is listed in an input-output table inevitably
contains various kinds of grey numbers. Besides, as a dynamic economic
system, various parameters contained in each input-output problem must
be in a state of constant change. So, these parameters are also grey num-
bers with possibly an upper and a lower limit. In this chapter, we learn how
we can combine the methodology of grey systems theory with the study
of input-output systems so that problems of grey input-output can be in-
troduced and studied thoroughly. The main contents here in this chapter
include basic concepts used in grey input and output, the basic theory,
grey input-output optimal models, grey industrial incidence coe cients,
grey dynamic input-output analysis, grey von Neumann model, etc.

12.1 Basic Concepts for Grey Input and Output

In this section, we first look at some of the basic concepts studied in grey
input-output analysis.

Definition 12.1.1. Assume that xij , i, j = 1, 2, ..., n, stands for the total
value of the products of the ith department consumed by the jth depart-
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ment. Then

Q = [xij ]n×n =

x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · ·
xn1 xn2 · · · xnn

is called the flow matrix.

Definition 12.1.2. Assume that xij , i, j = 1, 2, ..., n, is the same as
above, and xj the total output of the jth department. Then

aij =
xij
xj
, i, j = 1, 2, ..., n,

is called the direct consumption coe cient.

The concept of direct consumption coe cients aij reflects the amount of
consumption of the products produced by the ith production department
consumed by the jth production unit. It represents the degree of depen-
dence of the jth department on the ith production unit. The larger the
aij value, the more closely the jth department is dependent on the ith
production unit.

Definition 12.1.3. The matrix

A = [aij ]n×n

is called the direct consumption coe cient matrix.

Proposition 12.1.1. Each entry aij in A satisfies aij 0, i, j =
1, 2, ..., n.

Proof. Because the total output of products of the jth department sat-
isfies xj > 0, the total cost spent by the jth department on the products
of the ith production unit satisfies xij 0. Therefore,

aij 0, i, j = 1, 2, ..., n. ¤

Proposition 12.1.2. The sum of the entries in any row of A is less than
1. That is,

Pn
i=1 aij < 1, j =1, 2, ..., n.

Proof. We prove this result by contradiction. Assume that there is a k
such that

Pn
i=1 aik 1. From aik = aik/xk, it follows that

Pn
i=1 xik xk.

That is, the total output xk of the kth department is less than or equal
to the total cost this department spent on products of all departments.
Therefore, there is no way for the kth department to have its own produc-
tion activities going on. Hence, it is impossible to have that

Pn
i=1 aij

1. From the arbitrariness of k, it follows that
Pn
i=1 aij < 1 holds true for

j = 1, 2, ..., n. ¤
Because of di culties of obtaining information, as a matter of fact, the

total amount of consumption of the jth department of all products pro-
duced by the ith department is a grey number xij ( ) , i, j = 1, 2, ..., n.
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Definition 12.1.4. The following

C = (E A) 1 E

is called a complete consumption coe cient matrix, where E stands for the
identity (unit) matrix of the size of A.

Definition 12.1.5. The following

Q ( ) = [xij ( )]n×n

is called a grey flow matrix.

When the amount of flow is a grey number, obviously the direct con-
sumption coe cient

aij ( ) =
xij ( )

xj
, i, j = 1, 2, ..., n

is also a grey number.

Definition 12.1.6. The following

A ( ) = [aij ( )]n×n

is called a grey direct consumption coe cient matrix.

Proposition 12.1.3. Assume that X = [x1, x2, ..., xn]
T stands for the

total output vector, Y = [y1, y2, ..., yn]
T the ultimate product vector, S =

[s1, s2, ..., sn]
T the newly created value vector, P = [p1, p2, ..., pn]

T the price
vector, and A ( ) = [aij ( )]n×n the grey direct consumption coe cient
matrix. Then, the following hold true.

1. X = [E A ( )] 1 Y ; and

2. P =
£
E AT ( )

¤ 1
S.

Proposition 12.1.4. The statements 1 and 2 in the previous proposition
can be written in equation forms as follows.

1.
Pn
j=1 aij ( )xj + yi = xi, i = 1, 2, ..., n. And

2.
Pn
i=1 aij ( ) pi + sj = pj , j = 1, 2, ..., n.

Proposition 12.1.5. The statements 1o and 2o in the previous propo-
sition can be simplified as follows.

1.
Pn
j=1 xij ( ) + yi = xi, i = 1, 2, ..., n. And

2.
Pn
i=1 xij ( ) + sj = pj , j = 1, 2, ..., n.

The first statement of Proposition 12.1.5 indicates that the total out-
put of the ith department equal the sum of all the products of the ith
department consumed by all departments and the ultimate products of the
ith department. This set of equations is normally known as the distribution
system. The second statement of Proposition 12.1.5 indicates that the total
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values created by the jth department equals the sum of the total consump-
tion of all departments and the newly created value of the jth department.
This set of equations is often known as the production system of equations.

Definition 12.1.7. The following

C ( ) = [E A ( )] 1 E

is called a grey complete consumption coe cient matrix.

The grey input-output model, as described above, reflects the grey rela-
tionships between various production departments, and ultimate products
and the total production, price, and consumption, and between newly cre-
ated values. It is expected to be the foundation for studies on the structure
of production systems and for analysis of development mechanisms of eco-
nomic systems.

12.2 P—F Theorems of Grey Non-Negative
Matrices

The so-called grey flow matrix and grey direct consumption coe cient
matrix, as studied in the previous section, are all non-negative matrices.
Therefore, the study on the spectral radii and characteristic values of grey
non-negative matrices becomes the theoretical foundation for any attempt
to solve grey input-output models. In this section, we provide a proof for
Perron—Frobenius (P—F) theorem of grey non-negative matrices.

Definition 12.2.1. Assume that a grey element [a, a] , a < a, is
given. If

1. is a continuous grey number, then

ba = 1

2
(a+ a)

is called the mean-value whitenization (number) of the grey element ;

2. is a discrete grey number and

ai [a, a] , i = 1, 2, ..., n,

are the values the grey element takes, then

ba = 1

n

nX
i=1

ai

is called the mean-value whitenization (number) of the grey element .
(Note: If ak ( ) is a grey element such that ak ( ) [ak, ak] , ak < ak, let
ak = bak.)
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If we write a grey number as = ba + , then is known as the
perturbation grey element of ba.
Definition 12.2.2. Assume that a grey matrix A ( ) = ( ij) Gn×n

satisfies that each grey element ij = baij+ ij

£
aij , aij

¤
, aij < aij , wherebaij stands for the mean-value whitenization of the grey element ij , and ij

the perturbation grey element of ij on the basis of baij . Then, accordingly,
for the matrix representation of

A ( ) = bA+A
the matrices bA = [baij ]n×n and A = [ ij ]n×n

are, respectively, called the mean-value matrix of the grey matrix A ( )

and perturbation grey matrix of A ( ) on the basis of bA.
Definition 12.2.3. For A ( ) Gn×n, if the mean-value matrix bA 0,

then A ( ) is called a grey non-negative matrix.

Definition 12.2.4. For A ( ) Gn×n, assume that i ( ) = b
i + i, i

= 1, 2, ..., n, is a characteristic value of A ( ) and max
nb

i

o
= bk. Then

(A ( )) = b
k + k is called the spectral radius of A ( ) .

Obviously, in general, the spectral radius of a grey matrix is also a grey
element.

Proposition 12.2.1. If A ( ) Gn×n, then b (A ( )) =
³ bA´ . That

is, the mean-value whitenization of the spectral radius of the grey matrix
A ( ) equals the spectral radius of the mean-value matrix of A ( ) .

Definition 12.2.5. For A ( ) Gn×n, if the mean-value matrix bA =
(baij) of A ( ) satisfies the following conditions,

1. baij 0, i 6= j; and
2. bA 1exists, and bA 1 0,

then A ( ) is called a grey M matrix.

Proposition 12.2.2. If A ( ) Gn×n satisfies that the mean-value
matrix bA 0, then E A ( ) is a grey M matrix, if and only if

³ bA´ < 1.
Definition 12.2.6. If A ( ) = bA + A Gn×n satisfies that det bA(i1,

i2, ..., ik) > 0, k = 1, 2, ..., n, then A ( ) is called a grey P matrix.

Proposition 12.2.3. If A ( ) Gn×n satisfies that baij 0, i 6= j, then
A ( ) is a grey M matrix, if and only if A ( ) is a grey P matrix.

Lemma 12.2.1. Assume that A ( ) is a grey non-negative matrix such
that its mean-value matrix bA is irreducible. Then A ( ) has a grey char-

acteristic value (A ( )) =
³ bA´+ , where

³ bA´ > 0.
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Proof. It su ces to prove that the mean-value matrix bA has a positive
characteristic value. Consider the following set

S =

(
X| X 0,

nX
i=1

Xi = 1

)
.

Then, S is a compact convex set in the n-dimensional Euclidean space.
Define a mapping

f : S S, f (X)½
bAX°°° bAX°°° .

From the assumption of non-negativeness of A ( ) , it follows that
°°° bAX°°°

> 0. Therefore, f : S S is a continuous function. From Brouwer’s fixed
point theorem it follows that there is at least one fixed point for f in the
set S. That is, there exists X S such that f (X ) = X . From this fact,
it follows that bAX°°° bAX°°° = X .

If we let
³ bA´ = °°° bAX°°° , then we have

bAX =
³ bA´X and

³ bA´ > 0. ¤
Lemma 12.2.2. Assume that A ( ) is a grey non-negative matrix such

that its mean-value matrix bA is irreducible. Then any kth order (k < n)
principal submatrix of (A ( ))E A ( ) is a grey P matrix.

Proof. First let us prove that any kth order principal submatrix of

(A ( ))E A ( )

is a grey M matrix. Assume that bAk is an arbitrary principal submatrix ofbA. Construct a matrix B as follows,

B =

· bAk 0
0 0

¸
n×n

.

Evidently, we have bA B 0, (B) =
³ bAk´ and ³ bA´ > (B) .

Therefore, the following principal submatrix of
³ bA´E bA satisfies

³ bA´Ek bAk = ³ bA´ Ek
bAk³ bA´
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and bAk³ bA´ =

³ bAk´³ bA´ < 1.

From Proposition 12.2.2, it follows that
³ bA´Ek bAk ( ) is a grey M

matrix. Now, Proposition 12.2.3 implies that
³ bA´Ek bAk ( ) is a grey

P matrix. ¤
Theorem 12.2.1. (P—F Theorem 1) Assume that A ( ) is a grey non-

negative matrix such that its mean-value matrix bA is irreducible. Then,
the following conclusions are true.

1. A ( ) has a grey characteristic value (A ( )) whose mean-value
whitenization > 0.

2. If X ( ) is a grey characteristic vector corresponding to (A ( ))

and X ( ) = bX +X then its mean-value vector satisfies bX > 0.

3. (A ( )) = (A ( )) .

4. (A ( )) flows in the same direction as the entry ij of A ( ) . And

5. (A ( )) is a characteristic value of A ( ) of multiplicity 1.

Proof. 1. is a direct consequence of Lemma 12.2.1 and Proposition 12.2.1.

2. Let us treat the set S in Lemma 12.2.1 as the set of all mean-value
vectors of the characteristic vectors X ( ) . From bX S, it follows thatbX 0.
Assume that bX > 0 does not hold true. Without loss of generality,

let us assume that bX =
h bX1 , bX2iT , where bX1 > 0 and bX2 = 0. FrombA bX =

³ bA´ bX , it can be seen that we can divide bA into the following
" bA11 bA12bA21 bA22

#" bX1bX2
#
=

³ bA´" bX1bX2
#
.

Therefore, it follows that bA21 bX1 = 0. However, bA21 0 and bX1 > 0.
Hence, bA21 = 0. However, this end contradicts the assumption that bA is
irreducible. This end contradiction implies that we must have bX > 0.

3. Assume that ( ) is an arbitrary characteristic value of A ( ) and
X ( ) the corresponding characteristic vector satisfying ( )X ( ) =
A ( )X ( ) . When written in the form of components, we have

( )Xi ( ) =
nX
j=1

ijXj ( ) , i = 1, 2, ..., n.



422 12. Grey Input and Output

Taking mean-value whitenization on both sides of this equation leads to

b bXi = nX
j=1

baij bXj , i = 1, 2, ..., n.
By taking absolute values, we have¯̄̄b¯̄̄ ¯̄̄ bXi ¯̄̄ nX

j=1

|baij | ¯̄̄ bXj ¯̄̄ = nX
j=1

baij ¯̄̄ bXj ¯̄̄ , i = 1, 2, ..., n.
Denoting bXa = ³¯̄̄ bX1 ¯̄̄ , ¯̄̄ bX2 ¯̄̄ , ..., ¯̄̄ bXn ¯̄̄´T 0 leads to¯̄̄b¯̄̄ bXa bA bXa (12.1)

From the assumptions that A ( ) is non-negative and that bA is irreducible
and by noticing that

³ bAT´ = ³ bA´, it follows that
bAT bX =

³ bA´ bX .

Applying the inner product by bX T to the two sides of equ. (12.1) pro-
vides that bX T

¯̄̄b¯̄̄ bXa =
¯̄̄b¯̄̄ ³ bX T bXa´
bX T bA bXa

=
³ bAT bX ´T bXa

=
³ bA´³ bX T bXa´ .

From bX T bXa > 0, it follows that b ³ bA´ . Because ( ) is arbitrary,

we have that (A ( )) =
³ bA´+ is the spectral radius of A ( ) .

4. It su ces to show that the mean-value whitenization of
³ bA ( )

´
is an increasing function of the mean-value whitenization number of ij .
Assume that A ( ) and A0 ( ) are two grey non-negative matrices such
that their mean-value matrices bA and cA0 are irreducible and bA cA0. From
1 and 2, it follows that the matrices A ( ) and A0 ( ) , respectively, have
grey characteristic values (A ( )) and (A0 ( )) such that their corre-
sponding characteristic vectors X ( ) and X 0 ( ) satisfy³ bA´ > 0, ³cA0´ > 0, bX > 0,cX 0 > 0.
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Now, from bA bX cA0cX 0 and
³ bA´ bX = bA bX , it follows that

³ bA´ bX cA0 bX (12.2)

By applying the inner product to the two sides of equ. (12.2) using bX T

and from the fact that
³cA0T´ = ³cA0´ , it follows that

³ bA´³ bX T bX ´ bX TcA0 bX
=

³cA0 bX ´T bX
=

³cA0´³ bX T bX ´
.

Therefore, bX T bX > 0. So,
³ bA´ < ³cA0´.

5. From 3 and Lemma 12.2.2, it follows that (A ( ))Ek Ak is a grey

P matrix. Therefore, det
³ ³ bA ( )

´
Ek bAk ( )

´
> 0.

Constructing the polynomial f ( ) = det
³
E bA´ and computing its

derivative give us

f 0 ( ) =
X

det
³
Ek bAk´

and

f 0
³b ´ =Xdet

³b Ek bAk´ > 0.
This end shows that (A ( )) is a characteristic value of A ( ) of multi-
plicity 1. ¤
Theorem 12.2.2. (P—F Theorem 2) If A ( ) is a grey non-negative

matrix, then

1. A ( ) has a grey characteristic value (A ( )) = b + whose mean-
value whitenization satisfies b 0.

2. If X ( ) is the characteristic vector corresponding to (A ( )) and
X ( ) = bX + X , then bX 0.

3. (A ( )) = (A ( )).

4.When an element ij of A ( ) flows, (A ( )) either stays the same
or flows in the same direction.

Proof. If the mean-value matrix bA is irreducible, the results are obvious.
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If bA is reducible, then bA can be written as follows:

bA =
bA11 bA22

·
·
· bArr

where bAii is either a square 0 matrix or an irreducible square matrix,
i = 1, 2, ..., r. From

³ bA´ = max1 i r

n ³ bAii´o , statements 1, 3, and 4
follow. In the following, we prove statement 2. Let us construct the following
square matrix, bA = (baij + ) , > 0.

Then bA > 0 and irreducible. Therefore, there exists
³ bA ´

> 0, whose

corresponding characteristic vector bX S = {X| X 0,
Pn
i=1Xi = 1} .

So, we have ³ bA ´ bX = bA bX . (12.3)

Let us take a sequence { i} satisfying that i 0 (i ). Then the

corresponding sequence
n bX

i

o
S. From the compactness of S, it follows

that there exists a subsequencen bX
ik

o
, bX

ik

bX (ik ) , bX S.

Therefore, bX 0.
Without loss of generality, let us assume lim 0

bX = bX . By taking
limits for equ. (12.3), we obtain³ bA´ bX = bA bX
and bX 0. ¤

12.3 Responsibility and Influence Coe cients

12.3.1 Grey Responsibility and Influence Coe cients

In each economy, the development of various business sectors is intercon-
nected. The interdependency and incidence relationship between businesses
can be studied using input-output tables. In this sub-section, we study such
concepts as grey responsibility coe cients, grey influence coe cients, etc.,
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so that input-output tables can be applied in studies of business structures.

Definition 12.3.1. In the grey input-output model

X ( ) = (E A ( ))
1
Y ( ) ,

(E A ( ))
1 is called an inverse matrix coe cient.

Definition 12.3.2. Assume that C ( ) = [E A ( )]
1
E = (cij ( ))

is a grey complete consumption coe cient matrix. Then,

ui ( ) =

Pn
j=1 cij ( )

1
n

Pn
i=1

Pn
j=1 cij ( )

(12.4)

is called the grey responsibility coe cient of the ith department.

Definition 12.3.3. Assume that C ( ) = (cij ( )) is a grey complete
consumption coe cient matrix. Then,

vi ( ) =

Pn
i=1 cij ( )

1
n

Pn
i=1

Pn
j=1 cij ( )

(12.5)

is called the grey influence coe cient of the jth department.

The concept of grey responsibility coe cient ui ( ) of the ith depart-
ment reflects the impact on the output of the ith department caused by
production increases of all departments. And, the concept of grey influence
coe cient vi ( ) of the jth department stands for the impact on the out-
put of all departments caused by a demand increase of the jth department.
With these concepts in place, we are now ready to study the incidence
relationship between di erent departments.

Example 12.3.1. Shown below (Table 12.1) is a price type grey input-
output table for a certain economic district. Here, 11 [8, 12] , 12

[25, 35] , 13 [27, 33] , 14 [37, 43] , and 15 [40, 60] . Compute the
grey direct consumption coe cients, grey complete consumption coe -
cients, grey inverse matrix coe cients, grey responsibility coe cients, and
grey influence coe cients.
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Table 12.1. The price type input-ouput table of a certain

economic district

Solution. Using the concept of the grey input-output coe cient matrix,
we can compute grey direct consumption coe cients. Here, we only list the
mean-value whitenization matrix for the grey direct consumption coe cient
matrix in Table 12.2 below.

Table 12.2. Mean-value whitenization matrix of grey direct

consumption coe cient matrix

Input 1 2 3 4 5
Output Dept A Dept B Dept C Dept D Dept E
1. Dept A 0.020 0.050 0.075 0.100 0.100
2. Dept B 0.080 0.075 0.050 0.125 0.120
3. Dept C 0.100 0.102 0.153 0.050 0.020
4. Dept D 0.060 0.075 0.053 0.025 0.080
5. Dept E 0.080 0.075 0.053 0.025 0.080
6. Goods 0.360 0.375 0.375 0.400 0.380
7. Energy 0.120 0.125 0.100 0.075 0.080
8. Wages, taxes 0.180 0.125 0.150 0.175 0.160

From C ( ) = (E A ( )) 1 E, we can compute the mean-value whit-
enization matrix of the grey complete consumption coe cient matrix (Ta-
ble 12.3 below). Similarly, we can calculate the needed grey inverse matrix
coe cients, grey responsibility coe cients, and grey influence coe cients
(see Table 12.4 below). Now, based on the obtained responsibility and influ-
ence coe cients we can study the incidence relationship between di erent
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departments in economic growth.

Table 12.3. Mean-value whitenization matrix of the grey complete

consumption coe cient matrix

Input 1 2 3 4 5
Output Dept A Dept B Dept C Dept D Dept E
1. Dept A 0.059 0.094 0.116 0.133 0.138
2. Dept B 0.128 0.134 0.098 0.172 0.175
3. Dept C 0.147 0.155 0.209 0.099 0.070
4. Dept D 0.092 0.117 0.085 0.059 0.117
5. Dept E 0.114 0.118 0.087 0.087 0.100
6. Goods 0.564 0.609 0.599 0.606 0.606
7. Energy 0.174 0.187 0.160 0.134 0.142
8. Wages, taxes 0.263 0.221 0.243 0.260 0.254

Table 12.4. Mean-value whitenizations of grey inverse matrix,

grey responsibility, and influence matrices

From Table 12.4, it can be seen that both departments B and C have
relatively high responsibility and influence coe cients, indicating that these
two departments have played a dominant role in the economic development
of the region of our study.

12.3.2 Other Related Coe cients

In grey input-output analysis, one also uses other related coe cients. In
this sub-section, we only list their relevant definitions.

Definition 12.3.4.When the jth department increases its unit ultimate
products, it causes each department to increase its individual production
value. This increased total sum is called a grey impact coe cient, written
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dj and defined by

dj ( ) =
nX
i=1

cij ( ) , (12.6)

where C ( ) = [cij ( )] = (E A ( )) 1 E. So, dj ( ) is the sum of
the entries in the jth column of the complete consumption coe cient ma-
trix. It reflects the leading role played by the jth department on all other
departments.

Definition 12.3.5. In order to achieve the goal that each department
will increase its unit ultimate products, the required production value in-
crease out of the ith department is called a constraint coe cient denoted
zi ( ) . That is, in symbols, we have

zi ( ) =
nX
j=1

cij ( ) , i = 1, 2, ..., n. (12.7)

The constraint coe cient in fact equals the sum of the entries in the ith
row of the complete consumption matrix. It reflects the constraint the ith
department has over all other departments.

Definition 12.3.6.When the jth department increases its unit ultimate
products, it may cause each department to earn increased net production
value. The sum of these increased production values is called a grey induced
economic benefit coe cient, denoted pi ( ) . In symbols,

pi ( ) =
nX
i=1

cij ( ) vi, j = 1, 2, ..., n. (12.8)

where vi stands for the net production value rate of the ith department.

The concept of grey induced economic benefit coe cients reflects the
enticing role played by the ith department through its increased ultimate
goods production.

12.4 Optimal Input-Output Models

In practice, input-output analysis is indeed an indispensable scientific method
used in global systems design and total systems coordination. However,
this analysis cannot guarantee that various proportional relationships as
indicated by the resultant coordination and synthetic equilibrium of the
analysis are the optimal design meeting the practical requirements of the
physical situation. In this section, we employ grey systems theory to es-
tablish optimal grey input-output models that combine the input-output
method, as studied earlier, and linear programming into an organic whole.
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The modeling idea of optimal grey input-output models can be described
as follows. Seek a set X such that the objective function f (X) reaches its
extreme value and the following conditions are satisfied,

(E A ( ))X Y ( )
A ( )X B ( )
X 0.

(12.9)

In equ. (12.9), (E A ( )) stands for Leontief grey matrix, Y ( ) the
grey demand vector, whose components in general are (either continuous
or discrete) interval grey numbers, representing the upper and lower limits
of the societal demands, A ( ) the grey consumption coe cient matrix,
B ( ) a grey constraint vector, and X the decision vector, that is, X =
[x1, x2, ..., xn] .
Each grey input-output optimal model can be established by going through

the following steps.

1. Use a time series to represent the values of the constraint condition.

Through GM(1,1) model predictions, one can obtain a time series rep-
resenting development patterns existing in the values of the constraints.
Then, program based on the predicted values. The optimal grey input-
output programming obtained in this way can not only reflect a certain
(static state) situation of the system under consideration, but also present
the evolutionary development of the constraints. The outcome obtained
from such an optimal model may be either a single answer or a set of
time series values. Such a solution not only reflects the optimal relation-
ship (structure), but also provides a way for the researcher to understand
the development tendency of the optimal relationship.

2. Parameters in the constraints are grey.

In the constraint conditions in equ. (12.9), we have the following grey
matrices and grey vectors.

E A ( ) =

1 11 12 · · · 1n

21 1 22 · · · 2n

· · · · · · · · · · · ·
m1 m2 · · · 1 mn

,

A ( ) =

11 12 · · · 1n

21 22 · · · 2n

· · · · · · · · · · · ·
m1 m2 · · · mn

, ij

£
aij , aij

¤
,

Y ( ) = [ 1, 2, ..., m]
T , i

h
y
i
, yi

i
,

and
B ( ) = [ 1, 2, ..., m]

T , i

£
bi, bi

¤
.
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3. The objective function.

max f (X) = maxK ( )
T ·X

K ( )
£
ki, ki

¤
K ( ) = (k1 ( ) , k2 ( ) , ..., kn ( )) .

(12.10)

4. The method of finding the solution.

After all grey elements appearing in matrices or vectors are whitenized,
one can get on a computer to find the solution. First, she will find the op-
timal solution for the ideal model and the optimal solution for the bound-
ary model. Then, based on pre-determined requirements, she will need to
study several di erent positioned programming problems in order to obtain
enough designs for her final choice. After a comprehensive comparison, she
will be able to find the most satisfactory programming design.

Example 12.4.1. Let us see how an optimal model is established for
the productional structure of a farm of a certain region.

Based on relevant analysis, we obtain the following constraints:

1. Constraints on the demand of the ultimate products:

(E A)X G.

2. Constraints on resources:

Fertilizers:

0.24343x1 +0.21586x2 + 0.22458x3 + 0.20266x4 + 0.1015x5
+0.2935x6 + 0.00439x7 + 0.03733x8 G15.

Electricity:

0.01248x1 +G24x2 + 0.01135x3 +G25x9 +G26x10
+0.00954x11 +G27x12 G16.

Chemicals:

0.01707x1 +0.00757x2 + 0.00364x3 + 0.00468x4
+0.0035x5 + 0.00736x6 G17.

Capitals:

0.38969x1 +0.22343x2 + 0.33457x3 + 0.23069x4
+0.21243x5 + 0.30513x6 + 0.0044x7 + 0.03734x8
+0.09003x9 + 0.6316x10 + 0.20419x11 + 0.07751x12
+0.02016x13 + 0.10133x14 G18.

3. Constraints on goods production abilities.

x7 G19, x8 G20, x13 G21, x14 G22.
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The following is our objective function:

max f (X) = G28x1 + 0.51542x2 + 0.67809x3 + 0.61977x4
+0.76343x5 + 0.49995x6 + 0.93798x7 + 0.91692x8
+0.39947x9 + 0.17217x10 + 0.51828x11 + 0.3051x12
+0.97974x13 + 0.86666x14,

where E stands for the unit matrix, A the direct consumption coe cient
matrix, G the constraint value grey vector, and all the components of X
are given in the following.

• x1 stands for food,
• xx crops for cooking oil,
• x3 teas,
• x4 fruits,
• x5 vegetables,
• x6 miscellaneous,
• x7 bamboo products,
• x8 other forestry products,
• x9 livestock,
• x10 domestic birds and poultry,
• x11 food processing,
• x12 construction materials,
• x13 industry, and
• x14 fishery.

The definition intervals for the grey parameter G are given as follows.

• constraint on food demand G1 (14, 225, 15, 000) ;

• constraint on oil ingredients G2 (965, 1, 000) ;

• constraint on the demand of teas G3 (7, 870, 7, 900) ;

• constraint on the demand of fruits G4 (634, 640) ;

• constraint on the demand of vegetables G5 (8, 936, 9, 000) ;

• constraint on the demand of miscellaneous G6 (215, 220) ;
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• constraint on the demand of bamboo products G7 (297, 300) ;

• constraint on other forestry products G8 (1, 249, 15, 000) ;

• constraint on the demand of livestock G9 (10, 158, 10, 160) ;

• constraint on the demand of domestic birds and poultry G10 (715,
720);

• constraint on the demand of farm products processing G11 (7, 846,
7, 851);

• constraint on the demand of construction materials G12 (9, 045,
9, 052);

• constraint on the demand of industrial products G13 (336, 340) ;

• constraint on the demand of fishery products G14 (97, 100) ;

• constraint on the supply of fertilizers G15 (9, 850, 9, 900) ;

• constraint on the supply of electricity G16 (450, 455) ;

• constraint on the supply of farm chemicals G17 (475, 481) ;

• constraint on the supply of capitals G18 (22, 000, 22, 110) ;

• constraint on production capability of bamboo products G19 (885,
889);

• constraint on production capability of other forestry products G20
(1, 380, 1, 385) ;

• constraint on production capability of industrial products G21
(2, 880, 2, 886);

• constraint on production capability of fishery productsG22 (330, 335) ;

• products consumed when producing a unit of teaG23 (0.054, 0.056) ;

• electricity consumed when producing a unit of oil materials G24
(0.00023, 0.00035);

• electricity consumed when producing a unit of livestock G25 (0.011,
0.012);

• electricity consumed when producing a unit of domestic birds and
poultry G26 (0.0003, 0.0005) ;

• electricity consumed when producing a unit of construction materials
G27 (0.0062, 0.0082) ; and
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• net production value from producing a unit of food G28 (0.2134,
0.3731).

After doing all necessary computations on a computer, we obtained four
optimal plans for the final selection. These four plans were then evaluated
by the region’s politicians, experts, and other relevant personnel, and the
most satisfactory plan was eventually selected (see Table 12.5 below for
more details). On the basis of this selected plan, we established an expanded
sequence of interconnected optimal grey input-output models. Because each
agricultural economic system is huge with many layers, one must establish
a group of models connecting di erent layers in order to realistically reflect
the whole systemwide optimization and to be e ectively implementable.

Table 12.5. Comparison between computer results and

the original programming output in U10,000

In Table 12.5, the theoretical plan is the one produced out of the original
programming model and the comparison is between the satisfactory plan
and the theoretical plan.
From the angle of practical applications, the grey input-output optimal

model has the following special characteristics.

1. It has the ability to supplement many di erent aspects of modeling.
The method of input-output can balance and harmonize the system un-
der consideration. However, it cannot optimize the situation. On the other
hand, the method of linear programming can perform optimization with-
out being able to achieve comprehensive balance. By combining the two
methods, we can use the strength of one to overcome the weakness of the
other.
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2. It is relatively easy to find the solution. Because many parameters
have a range to take their individual values, it is possible to be flexible on
computers and to derive a set of many choices before a satisfactory solution
is reached.

3. It is convenient for grey target decision making. Agricultural economic
systems are always very complicated and grey with many uncertain and
missing parameters. It is extremely di cult for the researcher to obtain
a definite optimal value hitting a specific “target” (objective). Through
qualitative analysis and quantitative tests, it becomes a relatively easy task
for him to determine a grey region within which the development of the
agricultural economic system under consideration falls in the “grey target.”

12.5 Dynamic Input-Output Models

In each analysis of economic systems, it is often necessary to study the
economic structure of the future, especially possible changes in investment
structures and impacts of economic policy changes on the economy. On the
basis of such study, predictions about future economic development can
be made so that decisions about optimal investment scales and investment
structures can be derived. Due to such a need, in this section we introduce
a method that can capture the dynamics of economic systems’ movements.
More specifically, in this section we study the grey dynamic input-output
method.

12.5.1 Dynamic Comprehensively Balanced Model

The so-called grey dynamic input-output model is developed on the basis
of the grey static input-output method. It introduces the concepts of grey
capital coe cients or investment coe cient matrices so that investment
becomes a part of the model. That is, in this new class of study, through
development of a model both production and investment are synchronously
and quantitatively calculated with an introduction of a dynamic concept
such as moving time. With this new model in place, demand for investment
and economic development, the present, and the future are connected to-
gether. And, the relationship between the accumulation of fixed properties
and expanded production can be dynamically considered on the basis of a
given time series. A grey dynamic input-output model reflects the process
of a business expansion and production and is an ideal research tool for
studying problems of investment.
More specifically, a grey dynamic input-output model can be written as

follows,

Xt ( ) At ( )Xt ( ) Bt+1 ( ) [Xt+1 ( ) Xt ( )] = Ct ( ) . (12.11)
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Each so-called grey dynamic comprehensively balanced model is estab-
lished on the grey dynamic input-output model with its emphasis on the
study of such a comprehensive balance relationship that exists in the process
of reproduction of an economy. It describes the dynamic process of produc-
tion and distribution of products of all departments of an economy. The
main balance equation used in a grey dynamic comprehensively balanced
model is given below.

1. The balance equation for production and consumption of products is:

(E A ( ) +B ( ))Xt ( ) B ( )Xt+1 ( ) = Ct ( )
t = 0, 1, ..., T 1

(E A ( )) Xt ( ) = Ct ( ) ,
(12.12)

where A ( ) stands for a grey direct consumption coe cient matrix, B ( )
a grey investment coe cient matrix, Ct ( ) the ultimate net demand grey
vector of the tth year,Xt ( ) the grey production vector of each department
of the tth year, and T the objective number of years.

2. The balance equation for investment demand and supply is:

nX
j=1

bj ( ) [xj (t+ 1) xj (t)] = k (t) , (12.13)

for t = 0, 1, ..., T 1, where bj ( ) stands for the investment coe cient of
the jth department, xj ( ) the production value of the jth department in
the tth year, k (t) the supply of investment capital in the tth year, and n
the number of departments.

3. The balance equation for the demand of labor and supply is:

nX
j=1

Lj ( )xj (t) = L (t) , (12.14)

for t = 0, 1, ..., T, where Lj ( ) stands for demand (for labor) coe cient for
the jth department to produce a unit of production value, and L (t) the
available labor supply of the tth year.

12.5.2 Optimal Dynamic Input-Output Model

The grey dynamic input-output optimal model is a generalization of the
grey static input-output optimal model studied in Section 12.4 above. Its
specific form looks as follows.

maxSX (T )

s.t.
(E A ( ) +B ( ))Xt ( ) B ( )Xt+i ( ) Ct ( )
A ( )Xt ( ) B ( )
Xt ( ) 0.

(12.15)
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Example 12.5.1. Let us see here in this example how a grey dynamic
input-output optimal model for a certain geographic region is established.

Solution.

The objective function: maxSX (T ) .

The constraints:

1. Productional balance constraint:

(E A ( ) +B ( ))Xt ( ) B ( )Xt+i ( ) Ct ( ) ,

for t = 0, 1, 2, ..., T 1;

2. Production value constraint:

Xt+1 ( ) Xt ( ) 0,

for t = 0, 1, 2, ..., T 1;

3. Capital constraint:

E ·B ( ) [Xt+1 ( ) Xt ( )] Kt ( ) ,

for t = 0, 1, 2, ..., T 1;

4. Constraint of water resource:

W ( ) ·Xt ( ) Qt ( ) ,

for t = 0, 1, 2, ..., T ;

5. Constraint of energy:

G ( ) ·Xt ( ) Pt ( ) ,

for t = 0, 1, 2, ..., T ;

6. Constraint of labor force:

L ( ) ·Xt ( ) Rt ( ) ,

for t = 0, 1, 2, ..., T, and

7. Constraint of the environment:

U ( ) ·Xt ( ) Ht ( ) ,

for t = 0, 1, 2, ..., T, where all variables are defined as follows.

• S stands for the vector of net production value coe cients,

• T the length of time period to be planned,
• A ( ) the grey direct consumption coe cient matrix,
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• B ( ) the grey investment coe cient matrix,

• Ct ( ) the net demand grey vector at the end of the tth year,

• Xt ( ) the production value vector of the tth year,

• Kt ( ) the grey vector of capital supply of the tth year,

• W ( ) the grey vector of water consumption per unit production
value of all the departments,

• Qt ( ) the grey vector of available water supply of the tth year,

• G ( ) the grey vector of energy consumption per unit production
value of all the departments,

• Pt ( ) the grey vector of energy supply of the tth year,

• L ( ) the grey vector of labor demand per unit production value of
all the departments,

• Rt ( ) the grey vector of labor supply of the tth year,

• U ( ) the grey vector of pollution coe cients per unit production
value of all the departments,

• Ht ( ) the grey vector of upper limits of total pollution of the tth
year, and

• E stands for the n-dimensional identify matrix.

12.5.3 Von Neumann Model

The so-called grey von Neumann model is a combined model using grey sys-
tems theory and the von Neumann model. The grey von Neumann model
can be employed to study the optimal speed and optimal economic struc-
ture for balanced economic growth of a nation, a region, or a city. It can also
be employed to explore the relationship between the rate of accumulation
and the speed of economic growth.
The specific form of this model is given in the following,

maxPB ( )XT ( )

s.t.
(E A ( ) + B ( ))Xt ( ) B ( )Xt+1 ( )

( )D ( )V ( )Xt ( ) , t = 0, 1, ..., T 1
Xt ( ) 0, t = 0, 1, ..., T,

(12.16)
where all variables are defined as follows.

• A ( ) stands for the grey direct consumption coe cient matrix,
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• B ( ) the grey investment coe cient matrix,

• D ( ) a grey column vector for the ultimate net demand structure,

• Xt ( ) the grey vector of production values of all the departments of
the tth year,

• P a row vector of weights,

• V ( ) a grey row vector of net production value coe cients,

• ( ) the consumption rate and (1 ( )) the accumulation rate,

• T the time span of the planning, and

• V ( ) ·Xt ( ) the grey GDP total.

12.6 Practical Applications

During a time period where currencies still represent value, price, as a
measure of labor content in commercial products, plays a significant role
in the growth of a market economy. The feasibility of a price system is
relative in terms of an optimal productivity strength. Developing such an
optimal price system corresponding to von Neumann optimal productivity
strength that it can guarantee the whole of an economy sustains a high
speed and balanced growth should be the goal of each reform of an existing
price system.
In this section, we apply grey input-output theory to analyze the ten-

dency of the price system reform of modern China. In our example here, we
divide the Chinese economy into four comprehensive departments: agricul-
ture, agricultural processing industry, other industries, and services. In the
department of agriculture, we further have the following five subdivisions:
food crop planting, other crop planting, forestry, livestock husbandry, and
farm industry. Based on the input-output table of Henan Province, the Peo-
ple’s Republic of China, of 1987, and relevant statistics, we predicted the
relevant data values for the economy of the national scale. Considering the
fact that agricultural production contains a lot of uncertain information,
we derived the following grey input matrices for the four comprehensive
departments and five sub-divisions of the agriculture department, respec-
tively,

A ( ) =

11 12 13 14

24.80 67.33 59.04 45.53
90.12 31.98 365.22 66.18
41.52 49.71 135.35 136.68

,
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where 11 [155.00, 164.78], 12 [54.09, 56.09], 13 [25.22, 27.86], and
14 [18.7, 21.1], and

a ( ) =

56.44 26.83 3.66 27.02 6.97

21 22 23 24 25

3.56 2.55 2.42 0.99 0.66
10.54 7.27 1.08 4.38 1.60
5.16 3.44 0.51 1.75 1.24

,

where 21 [6.18, 7.98], 22 [5.97, 7.57], 23 [0.38, 0.76], 24

[1.47, 2.33], and 25 [0.98, 1.40].
And, we also derived the following grey output matrices for the four com-

prehensive departments and five subdivisions of the agriculture department,
respectively,

B ( ) =

11 0 0 0
0 257.65 0 0
0 0 638.32 0
0 0 0 343.01

,

where 11 [388.83, 428.83], and

b ( ) =

89.74 0 0 0 0
0 22 0 0 0
0 0 12.33 0 0
0 0 0 42.90 0
0 0 0 0 17.20

,

where 22 [60.00, 72.16].
Assume that Z , , and P are, respectively, the optimal strength, ex-

pansion rate, and optimal price, of the four comprehensive departments,
and that S , , and V , respectively, are the optimal strength, expan-
sion rate, and optimal price of the five sub-divisions within the agriculture
department. From the following von Neumann models

Z A ( ) Z B ( )
A ( )P B ( )P

Z A ( ) P = Z B ( )P
(12.17)

and
S a ( ) S b ( )
a ( )V b ( )V

S a ( ) V = S b ( )V
(12.18)

after mean-value whitenizing the grey input and grey output matrices, it
is not di cult to find the optimal prices corresponding to the optimal
strengths Z and S and expansion rates and :

P =
³
[pi ]

4
i=1

´T
= [1, 1.6015, 1.7658, 2.3923]T
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and

V =
³
[vi ]

5
i=1

´T
= [1, 0.174, 0.575, 0.404, 0.496]T .

These optimal prices, which may well promote the Chinese national econ-
omy to e ectively develop along the von Neumann high speed track, should
be employed as one of the important bases for making price-related poli-
cies. According to the reasonable price ratios, the prices of the products
of the agricultural processing industry should be 60% higher than those
of agricultural products, the prices of the products of the other industries
should be 77% higher than those of agricultural products, and the prices
of the services area should be 139% higher. However, the reality is that the
prices of agricultural products are extremely low. Its consequence has been
that all input into agricultural production has been dropping annually and
the foundation of the national economy has been greatly weakened. In re-
cent years since China adopted a open door policy and started an economic
reform, the economic market price system has been adjusted systematically
and prices on agricultural products and preliminary mineral products have
increased steadily. However, the problem of unreasonable pricing has not
been resolved from its root level. In 1988, the tax income per U100 in-
vestment IP (investment price) and full-time labor productivity LP (labor
price) for Chinese agriculture, industry, and construction is listed in Table
12.6 below.

Table 12.6. IP and LP data for 1988

Area 1 Area 2 Area 3 Area 4 Area 5
IP 1.84 27.00 24.67 17.03 5.20
LP 1,486 16,008 17,547 12,160 10,345

where areas 1 to 5 stand, respectively, for agriculture, light industry with
agricultural products as its raw materials, light industry with nonfarm
products as its raw materials, heavy industry, and construction.
That is, we have the following market prices in 1988,

IP = (1, 14.7717, 13.4076, 9.2554, 2.8261)

LP = (1, 10.7725, 11.8082, 8.1830, 6.9616) .

It can also be said that the capital price and labor price, contained in the
products of light industry with agricultural products as its raw materials,
are respectively 1,377.17% and 977.25% higher than those contained in
agricultural products. The capital and labor prices, contained in the prod-
ucts of light industry with non-farm products as its raw materials, heavy
industry, and construction, are 1,240.76%, 1,080.82%; 825.54%, 718.30%;
182.61%, 596.16% higher than those contained in agricultural products, re-
spectively. Even when we do not consider the di erences existing in labor
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qualities from di erent business departments, it is still not di cult for us
to see the seriousness of the distorted price relationship.
Similarly, from the angle of von Neumann optimal price relationship

among the sub-divisions within the agriculture department, it can be seen
that the prices of the products of the sub-division of food crop planting
should be higher than those of the products of all other sub-divisions.
However, the fact is exactly the opposite. No matter whether we look at
the benefits of capital input or the benefits of labor input, food crop sub-
division is lower than other sub-divisions. Consequently, it implies that it
is extremely di cult for farmers to get ahead financially if they focus on
planting food crops.
Such double distortions, one appearing in the fact that agricultural prod-

ucts are priced lowest among all products of the four comprehensive eco-
nomic departments, and the other that food products are priced lowest
among agricultural subdivisions, have made maintaining and developing
agricultural and food production extremely expensive in terms of capi-
tal, labor, and supporting materials input without much adequate return.
They have caused low return on agricultural investment and high bene-
fits from industrial capital, food crop planting a low-benefit business and
other crop planting get-rich-quick operations. Consequently, all the eco-
nomic regions, focusing on food crop plantings, have been slow in terms of
economic growth. Such a phenomenon has seriously a ected the motivation
for farmers to produce more food and greatly diminished the attractiveness
of food crop planting. Therefore, it is extremely important for the Chinese
government to consider price reform of the national economic market as
a desperate task on hand. We believe that the starting point of such a
price reform should be increasing the prices of agricultural products. And
within the department of agriculture, the government should first consider
increasing the prices of food crops.
On the other hand, one may ask: if prices for agricultural products and

foods are increased dramatically, will it cause the broad range price index to
jump, bringing hardship to people’s daily living and national stability and
economic development? To this end, we also did some initial research. Our
calculated results indicate that when the prices of agricultural products and
food change in the amounts of P1 and V1, the prices of the products
of the other departments and sub-divisions will, respectively, change in the
amounts of

P = P1 [0.3426, 0.0700, 0.0519]

and

V = V1 [0.0442, 0.0160, 0.3414, 0.0949] .

So, it can be seen that if the prices for agricultural products increase 5%,
10%, 20%, 50%, or even 100%, then
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1. The prices of the products of agricultural processing industry, as af-
fected by increased prices of agricultural products, will increase ac-
cordingly 1.7%, 3.43%, 6.85%, 17.13%, or 34.26%.

2. The prices of the department of other industries will accordingly in-
crease 0.3%, 0.7%, 1.4%, 3.5%, or 7%. And

3. The prices of the department of services will increase accordingly
0.25%, 0.52%, 1.04%, 2.6%, or 5.19%.

Within the department of agriculture, if the prices of food crops increase
5%, 10%, 20%, 50%, or 100%, then

1. The prices of all other crops will increase accordingly 0.2%, 0.44%,
0.88%, 2.21%, or 4.42%.

2. The prices of forestry products will increase accordingly 0.08%, 0.16%,
0.32%, 0.8%, or 1.6%.

3. The prices of the products of the sub-division of livestock husbandry
will increase accordingly 1.7%, 3.4%, 6.8%, 17.07%, or 34.14%. And,

4. The prices of the products of farm industry will increase accordingly
0.47%, 0.95%, 1.9%, 4.7%, or 9.49%.

Therefore, it can be seen that bringing up the prices of agricultural prod-
ucts, other than the agricultural processing industry and livestock hus-
bandry, does not really a ect the prices of other products. That is, even
under the consideration of market price bounces, if the market economy
gradually evolves into maturity, with adequate adjustment on the speed of
reform and increased strength of macroscopic control, the phenomenon of
market-wide landslide price increases can be completely avoided.
We have also studied the impact of changes in price of agricultural and

food products on consumption expense and accumulation expense. Our
results indicate that when the prices of agricultural products change in the
amount of P1, the changes in the consumption expense and accumulation
expense on agricultural products are, respectively, given as follows:

1 =
P1

4.5179 + 1.4941 P1
and 1 =

P1
7.675 + 1.182 P1

.

If the prices of agricultural products are increased 5%, 10%, 20%, 50%,
or 100%, the corresponding consumption expenses on agricultural products
increase, respectively, 1.09%, 2.14%, 4.15%, 9.5%, or 16.63%. And, the
corresponding accumulation expenses increase 0.06%, 1.28%, 2.53%, 6.05%,
or 11.29%, respectively.
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The proportional connections between consumption expenses and accu-
mulation expenses and price changes on foods are given by

0
1 =

V1
7.5957 + 1.1848 V1

and 0
1 =

V1
18.748 + 1.0599 V1

.

If the prices of foods go up 5%, 10%, 20%, 50%, or 100%, the consumption
expenses on foods will increase, respectively, 0.65%, 1.3%, 2.55%, 6.1%,
or 11.39%. And the corresponding accumulation expenses will increase,
respectively, 0.27%, 0.53%, 1.05%, 2.59%, or 5.05%. Therefore, we can say
that the negative impact, if any, of a price increase for foods and other
agricultural products on people’s daily lives and the national economy will
be next to nothing when compared to the consequent economic benefits.
Adjusting the price relationship is an important link facing the current

Chinese economic reform. It is a very complicated systems project. In order
to harmonize the price relationship existing in the Chinese economic price
system so that the national economy can enjoy a sustained and healthy
development, we believe that any potentially successful plan for economic
reform of modern China needs to have increasing prices for agricultural
products as its starting point and basic direction.



13
Grey Control

13.1 Introduction

As a scientific concept, control means that the controlling equipment or
party is imposing a special function or action on the controlled equipment
or party. This special function or action is a purposeful and selected dy-
namic activity. In a control system, there exist at least three parts: con-
trolling equipment, controlled equipment, and a communication tunnel. A
control system, consisting of these three parts only, is called a open loop
control system, which is shown in Figure 13.1. For open loop control sys-

FIGURE 13.1. The flowchart of an open link control system

tems, it is relatively simple to do a needed control, because the output
can be controlled directly by using the input. However, the weakness is
that it is not very robust against disturbances. These control systems with
feedback loops are called closed loop control systems, which are shown in
Figure 13.2. In a closed loop control system, the control is realized through
interactions of the input and the feedback of the output.
An outstanding strength of a closed loop control system is that it is

very robust against disturbances with its output always around the pre-
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FIGURE 13.2. The flowchart for a closed link control system

defined objectives. That is, closed loop control systems possess some kind
of stability.
So-called grey control means the control of essential grey systems, in-

cluding general control systems with grey parameters and controls built on
the analysis, modeling, prediction, and decision making of grey systems.
When compared to traditional control theory, the methodology of grey
control can more deeply reveal the characteristics of the problem under
consideration, and is more beneficial for the realization of the objectives
of control. Human recognition of the physical reality is a process of grad-
ual accumulation and constant deepening of knowledge. We have to study
new topics and new objects with the prerequisite of having received ex-
perience and knowledge from our forefathers. That is to say, what we are
facing is often a grey system where we know to a certain degree about the
structure and function of how it realizes an input-output relation. Con-
trolling the output according to a predetermined objective is the control
problem of essential grey systems. On the other hand, in order to establish
a mathematical model for the system of interest, we must first recognize,
distinguish, and measure the system, and study the structure of the system
and determine the system’s parameters through the records of input and
output data. Due to the fact that there always exist errors in recognition
and measuring, the structure and related parameters of the system contain
a degree of greyness. Selecting input and output data values in di erent
time intervals might also have an impact on the determination of the para-
meters. For example, based on the statistical data of total food production
x(0)(k) of Henan Province, the People’s Republic of China, from 1949 to
1988, which is given in Table 13.1, the following GM(1, 1) model

dx(1)

dt
+ ax(1) = b

can be established so that di erent estimates of the parameters a and b can
be obtained when di erent time intervals are considered.
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Table 13.1. Food production of Henan from 1949 to 1988

Year x(0)(k) Year x(0)(k) Year x(0)(k) Year x(0)(k)
1949 713.5 1959 974.5 1969 1321.5 1979 2134.5
1950 842.0 1960 887.0 1970 1555.5 1980 2148.5
1951 1052.5 1961 684.5 1971 1646.5 1981 2314.5
1952 1007.0 1962 903.0 1972 1627.0 1982 2217.1
1953 1091.0 1963 788.0 1973 1872.0 1983 2904.0
1954 1142.5 1964 950.0 1974 1861.5 1984 2893.5
1955 1250.0 1965 1166.0 1975 1941.5 1985 2710.5
1956 1211.0 1966 1227.5 1976 2122.0 1986 2545.7
1957 1180.0 1967 1382.0 1977 1947.5 1987 2948.4
1958 1264.5 1968 1330.5 1978 2097.5 1988 2663.0

For example, if we take the data values of the years 1949 1952 to
establish a GM(1,1) model, we obtain that

a = 0.0816, b = 795.0283.

If the data values of the years 1949 1956 are used, we obtain that

a = 0.0498, b = 879.8842.

If the data values of the years 1949 1960 are used, we obtain that

a = 0.0055, b = 1051.988.

If the data values of the years 1949 1966 are used, we obtain that

a = 0.0044, b = 1083.621.

If the data values of the years 1949 1969 are used, we obtain that

a = 0.0084, b = 991.1538.

If the data values of the years 1949 1977 are used, we obtain that

a = 0.0319, b = 772.1509.

If the data values of the years 1949 1982 are used, we obtain that

a = 0.0329, b = 759.8184.

If the data values of the years 1949 1988 are used, we obtain that

a = 0.0348, b = 735.3096.
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If we take respectively the time intervals 1971 1978, 1971 1983, 1971
1988, 1979 1983, 1979 1988, and 1984 1988 to establish models,

we obtain, respectively,

a = 0.0331, b = 1655.061;

a = 0.0367, b = 1609.544;

a = 0.0319, b = 1673.111;

a = 0.0945, b = 1767.133;

a = 0.0272, b = 2231.559;

and
a = 0.0095, b = 2638.18.

Therefore, the parameters of the GM(1, 1) model are grey. That is, we have

dx(1)

dt
+ a( )x(1) = b( ),

where
a( ) [ 0.0945, 0.0044]

and
b( ) [772.1509, 2638.18].

When solving practical problems, systems with grey parameters can be
seen everywhere.
The contents of grey control include grey linear systems, grey transfer

functions, typical links, grey incidence control, control with abandonment,
control of grey predictions, etc. In the following sections, we discuss these
topics in detail.

13.2 Grey Linear Control Systems

In this section, let us first look at control problems studied in grey linear
systems.

Definition 13.2.1. Assume that

U = [u1, u2, ..., us]
T

is a control vector,
X = [x1, x2, ..., xn]

T

a state vector, and
Y = [y1, y2, ..., ym]

T
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is the output vector. Then,

.

X = A( )X +B( )U

Y = C( )X

is called the mathematical model of a grey linear control system, where
A( ) Gn×n, B( ) Gn×s, and C( ) Gm×n. Accordingly, A( ) is
called a state grey matrix, B( ) a control grey matrix, and C( ) a grey
output matrix.

Sometimes, to emphasize changes of U, X, and Y with time, that is, the
dynamic characteristics of the system, we also denote the control vector,
state vector, and output vector as U(t), X(t), and Y (t), respectively.
The first class of equations

.
X(t) = A( )X(t) +B( )U(t)

in the mathematical model of grey linear control systems is called the state
equations; the second class of equations

Y (t) = C( )X(t)

is the output equations.

Definition 13.2.3. For a fixed time moment t0 and predetermined accu-
racy requirement, if there exists t1 [t0, ) such that based on the output
Y (t), t [t0, t1], of the system, the system’s state X(t) can be measured
with the desirable accuracy, then the system is said to be observable on the
interval [t0, t1]. If for any t0, t1, the system is observable on the interval
[t0, t1], then the system is said to be observable.

Definition 13.2.3. For a given accuracy requirement and an objective
vector

J = [j1, j2, ..., jm]
T ,

if the controlling equipment and the control vector U(t) can make the
output Y (t) reaches objective J with the desired accuracy through the
control of the input, then the system is said to be controllable.

Definition 13.2.4. When some perturbations are applied to the initial
value of the system,

1. if the amplitude of the response (output) is bounded, the system is
said to be stable;

2. if the response (output) can recover its initial state after a period of
time, then the system is said to be asymptotically stable;

3. if the amplitude of the response becomes unbounded, then the system
is said to be unstable.
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In general, the concept of systems stability means that of asymptotic
stability.

Theorem 13.2.1. For the system
.

X(t) = A( )X(t) +B( )U(t)

Y (t) = C( )X(t),

where
X(t) = [x1(t), x2(t), ..., xn(t)]

T ,

U(t) = [u1(t), u2(t), ..., us(t)]
T ,

Y (t) = [y1(t), y2(t), ..., ym(t)]
T ,

A( ) Gn×n, B( ) Gn×s and C( ) Gm×n. Let

D( ) =

C( )

C( )A( )

C( )A2( )

· · ·

C( )An 1( )

and

L( ) =
£
B( ) A( )B( ) A2( )B( ) · · · An 1( )B( )

¤
.

Then, we have the following.

1. When rank(D( )) = n, the system is observable;

2. When rank(L( )) = n, the system is controllable; and

3. A su cient and necessary condition for the system to be asymptoti-
cally stable is that the upper bounds of the grey elements of the real parts
of the grey characteristic roots of the state grey matrix A( ) are all less
than zero.

Example 13.2.1. Assume that a grey linear system is given as follows,

dx1(t)

dt
= 1x1(t) + 2u1(t) + 3u2(t)

dx2(t)

dt
= 4x1(t)

y(t) = 5x2(t),



13.2 Grey Linear Control Systems 451

where
1 [2, 4], 2 [0.8, 1.2], 3 [1, 3],

4 [0.8, 1.2], 5 [0.8, 1.2].

Discuss the controllability, observability, and stability of this system.

Solution: Write the system in matrix form:

.

X(t) = A( )X(t) +B( )U(t)

Y (t) = C( )X(t),

where
X(t) = [x1(t), x2(t)]

T
, U(t) = [u1(t), u2(t)]

T
,

Y (t) = y(t);

and

A( ) =
1 0

4 0
, B( ) =

2 3

0 0
,

C( ) =
£
0 5

¤
.

1. Controllability. Let

L( ) =
£
B( ) A( )B( )

¤
=

2 3 1 · 2 1 · 3

0 0 4 · 2 4 · 3

.

From
1 · 2 [2, 4] · [0.8, 1.2] = [1.6, 4.8],

1 · 3 [2, 4] · [1, 3] = [2, 12],

4 · 2 [0.8, 1.2] · [0.8, 1.2] = [0.64, 1.44],
and

4 · 3 [0.8, 1.2] · [1, 3] = [0.8, 3.6],
it follows that the determinant of the sub-matrix

det
3 1 · 2

0 4 · 2

= 3 · 4 · 2

[1, 3] · [0.64, 1.44] = [0.64, 4.32]
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can never take zero as its whitenization value. So,

rank(L( )) = 2.

From Theorem 13.2.1, it follows that the system is controllable.

2. Observability. Let

D( ) =
C( )

C( )A( )
=

0 5

5 · 4 0
.

Then
det (D( )) = 5 · 5 · 4 [ 1.728, 0.512],

which will never take zero as its whitenization value. So,

rank(D( )) = 2.

From Theorem 13.2.1, it follows that the system is observable.

3. Stability. We have

det [ ( )E A( )] = det
( ) 1 0

4 ( )

= [ ( ) 1] · ( ).

Solving
det [ ( )E A( )] = 0,

gives that
1( ) = 1, 2( ) = 0.

Because 1 and 0 are real grey characteristic roots, and the lower bound
of 1 is 2, which is greater than 0, the system is unstable.

13.3 Grey Transfer Functions and Special Links

In this section, we show how the concept of Laplace transformations can
be applied to the study of grey control systems.

Definition 13.3.1. Assume that the mathematical model for the nth-
order linear system with grey parameters is

n
dnx

dtn
+ n 1

dn 1x

dtn 1
+ · · ·+ 1

dx

dt
+ 0x = · u(t)

Apply Laplace transformation to both sides of the equation, and denote

L[x(t)] = X(s), L[u(t)] = U(s).
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FIGURE 13.3. Relationship between the drive and response

Then

G(s) =
X(s)

U(s)
=

nsn + n 1sn 1 + · · ·+ 1s+ 0

is called a grey transfer function.

Each grey transfer function is the ratio of the Laplace transformation
of the response x(t) of the nth-order linear grey system and the Laplace
transformation of the driving term u(t). A grey system, which is described
with an equation, is also called a grey link or grey component. When the
transfer function of a certain link is known, the Laplace transformation of
the response term can be solved through

X(s) = G(s) · U(s)

using the Laplace transformation of the driving term. Now, by using in-
verse transformation, the response x(t) can be obtained. The relationship
between the drive and response is shown in Figure 13.3.
In the following, we discuss several typical transfer functions.

Definition 13.3.2. The link or component with the driving term u(t)
and the response term x(t) satisfying

x(t) = K( )u(t)

is called a grey proportional link or component, where K( ) is a grey
amplifying coefficient.
Proposition 13.3.1. The transfer function of a grey proportional link

is given by
G(s) = K( ).

The characteristics of a grey proportional link are that when a jump
occurs in the driving quantity, the response value changes proportionally.
This kind of change and relationship between the drive and response are
shown in Figure 13.4.
Definition 13.3.3. With a unit jump occurring in the drive, if the re-

sponse satisfies
x(t) = K( ) · ¡1 e tT

¢
,

then the link is called a grey inertia link, where T is a time constant of
the link.
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FIGURE 13.4. Relation of change and a relation between drive and response

FIGURE 13.5. Curve of change and block diagram of a grey inertia link

Proposition 13.3.2. The transfer function of a grey inertia link is given
by

G(s) =
K( )

Ts+ 1
.

The characteristics of a grey inertia link are that when a jump occurs
in the driving quantity, the response needs a period of time to reach a
new equilibrium state. Figure 13.5 gives a block diagram and the curve of
change of the response of a grey inertia link when eK( ) = 1.

Definition 13.3.4.When the drive and response satisfy the relationship

x(t) =

Z
K( )u(t)dt,

the link is called a grey integral link.
Proposition 13.3.3. The transfer function of a grey integral link is given

by

G(s) =
K( )

s
.

For grey integral links, when a jump occurs in the drive, the response is

x(t) = K( ) · u · t,
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FIGURE 13.6. The block diagram and the response of a grey integral link with
a drive of jumps

which is shown in Figure 13.6.

Definition 13.3.5. When the drive and response satisfy

x(t) = K( ) · du(t)
dt

,

the link is called a grey differential link.

Proposition 13.3.4. The transfer function of a grey di erential link is
given by

G(s) = K( ) · s.
The characteristics of a grey di erential link are that when a jump occurs

in the drive, the response is an impulse with an infinite amplitude.

Definition 13.3.6.When the drive and response satisfy the relationship

x(t) = u[t ( )],

the link is called a grey postponing link, where ( ) is a constant.

Proposition 13.3.5. The transfer function of a grey postponing link is
given by

G(s) = e ( )·s.

For grey postponing links, when a jump occurs in the drive, it takes a
period of time for the response to have a corresponding change. See Figure
13.7 for more details.
In the previous paragraphs, we only listed some typical and elementary

links, combinations of which many complicated components or systems can
be seen as. For example, a combination of a grey proportional link and a
grey di erential link can be used to construct a grey proportional di er-
ential link. A combination of a grey integral link and grey postponing link
can produce a grey integral postponing link. A second level combination
can also produce a proportional, di erential, integral, and postponing link.
We can study systems problems of stability, controllability, etc., through

the study of extremum points of the relevant grey transfer functions. From
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FIGURE 13.7. The block diagram and relationship between the drive and re-
sponse of a grey postponing link

Theorem 13.3.1 below, it follows that each nth-order grey linear system can
be converted to an equivalent first order grey linear system. Therefore, we
can make use of the results in Section 13.2 to discuss problems of nth-order
grey linear systems.

Theorem 13.3.1. For the nth-order grey linear system given in Defini-
tion 13.3.1, there exists an equivalent first-order grey linear system.

Proof: Assume that an nth-order grey linear system is given in the form

n
dnx

dtn
+ n 1

dn 1x

dtn 1
+ · · ·+ 1

dx

dt
+ 0x = · u(t).

Let

x = x1,
dx

dt
=
dx1
dt

= x2,
d2x

dt2
=
dx2
dt

= x3,

· · ·, d
n 1x

dtn 1
=
dxn 1

dt
= xn.

Then, it follows that

dxn
dt

=
0

n
x1

1

n
x2

2

n
x3 · · · n 1

n
xn +

1

n
u(t).

So, the nth-order system is converted to a first-order system:

.

X(t) = A( )X(t) +B( )U(t),

where

X(t) = [x1, x2, ..., xn]
T , U(t) = u(t),
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and

A( ) =

0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1

0

n

1

n

2

n
· · · n 1

n

,

B( ) =

0

0

· · ·

0

1

n

. ¤

13.4 Matrices of Grey Transfer Functions

Assume that a grey linear control system is given as follows,

.

X(t) = A( )X(t) +B( )U(t)

Y (t) = C( )X(t).

An application of Laplace transformation gives

sX(s) = A( )X(s) +B( )U(s)

Y (s) = C( )X(s).

So, we have
[sE A( )]X(s) = B( )U(s)

Y (s) = C( )X(s).

If
[sE A( )]
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is nonsingular, then we further have

X(s) = [sE A( )] 1B( )U(s)

Y (s) = C( )X(s).

That is,

Y (s) = C( )[sE A( )] 1B( )U(s).

Definition 13.4.1. The m × n matrix

G(s) = C( )[sE A( )] 1B( )

is called the matrix of transfer functions of the grey linear control system,
or grey transfer matrix for short.

Definition 13.4.2. For an nth-order grey linear system, when the state
grey matrix A( ) of the corresponding equivalent first-order system is non-
singular,

lim
s 0

G(s) = C( )A( ) 1B( )

is called a grey gain matrix.

If the grey gain matrix

C( )A( ) 1B( )

is used to approximate the grey transfer matrix G(s), then the system is
simplified to a proportional link.
From

Y (s) = G(s)U(s),

it follows that when m = s = n, if G(s) is nonsingular, we can also obtain

U(s) = G(s) 1Y (s).

Definition 13.4.3. The following

G(s) 1 = B( ) 1 [sE A( )]C( ) 1

is called a grey structure matrix.

Under the condition that the grey structure matrix is known, in order for
the output vector Y (s) to reach or get closer to a predetermined objective
J(s), we can use G(s) 1J(s) to determine the system’s control vector U(s).
We can also discuss the controllability and observability of systems through

uses of grey transfer matrices.



13.5 Control with Abandonment 459

13.5 Control with Abandonment

The dynamical characteristics of grey systems are mainly determined by
the grey transfer matrix G(s). Therefore, in order to control e ectively the
dynamical characteristics of a system, a feasible method will be to modify
and change the transfer matrix or the structure matrix.

Definition 13.5.1. Assume that G(s) 1 is a system’s structure matrix,
and G (s) 1 an objective structure matrix. Then,

1 = G(s) 1 G (s) 1

is called a structural deviation matrix.

From
G(s) 1Y (s) = U(s)

and
G (s) 1 = G(s) 1 + 1,

it follows that £
G (s) 1 1

¤
Y (s) = U(s).

That is,
G (s) 1Y (s) 1Y (s) = U(s).

Definition 13.5.2. The following

1Y (s)

is called a superfluous term. The control through a feedback of 1Y (s)
to cancel the superfluous term is called a control with abandonment.

The system

G(s) 1Y (s) = U(s)

by a feedback of 1Y (s), can be converted to

G(s) 1Y (s) + 1Y (s) = U(s);

that is, £
G(s) 1 + 1

¤
Y (s) = U(s).

Therefore,
G (s) 1Y (s) = U(s)

already has the desirable objective structure.
The number of entries in the structural deviation matrix 1, used in a

control with abandonment, directly a ects the number of components in the
controlling equipment. From the angles of economics, reliability, being easy
to realize technically, etc., under the guarantee that the system will possess
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FIGURE 13.8. Flowchart for the idea of control with abandonment

desirable dynamical characteristics, we always try to keep the number of
entries in the deviation matrix 1 to a minimum. That is to say, in the
objective structural matrix, we should try to keep the corresponding entries
of the original structural matrix.
The concept, embedded in the control with abandonment, can be well

depicted with the block diagram of Figure 13.8.

13.6 Control of Grey Incidences

In this section, we learn how to employ the concept of grey incidences in
problems of grey control.

Definition 13.6.1. Assume that

Y = (y1, y2, ..., ym)
T

is the output vector, and

J = (j1, j2, ..., jm)
T

the objective vector. If the components of the control vector

U = (u1, u2, ..., us)
T
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FIGURE 13.9. The block diagram for grey incidence control systems

satisfy
uk = fk [ (J, Y )] ,

k = 1, 2, ..., s, where (J, Y ) is the degree of grey incidence between the
output vector Y and the objective vector J, then the systems control is
called a grey incidence control.

Grey incidence control systems are obtained by attaching grey incidence
controllers to regular control systems. It determines the control vector U
through the degree of grey incidence (J, Y ) so that the degree of incidence
between the output vector and the objective vector does not go beyond a
certain predetermined range.
Grey incidence control systems are shown graphically in Figure 13.9.

13.7 Control of Grey Predictions

All the controls discussed previously are done through checks to see whether
the system’s behavioral sequence satisfies some predetermined requirements.
There obviously exist the following shortcomings with these after-event
controls.

1. Results cannot be applied to prevent predicted disasters in the future.

2. There is no way to perform an on-time control.

3. Adaptability is not very strong.

The idea of control of grey predictions is used to predict a system’s
future behaviors based on a collection of data regarding the system’s be-
havior in order to uncover the development law, if any, of the system, and
to perform precontrols on relevant controlling decisions, by using the pre-
dicted future development tendency of the system. In this way, it becomes
possible for us to prevent a predicted disaster before it actually occurs,
and to impose controls in a timely fashion. Therefore, this method has a
relatively stronger adaptability in practical applications.
A general grey prediction control system is shown in Figure 13.10.
The principle behind the concept of grey prediction control systems is:

First, through the use of sampling equipment, collect and organize data for
the output vector Y . Second, through the equipment of prediction, establish
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FIGURE 13.10. The flowchart for a general grey prediction control system

a model, from which predicted values after several steps are computed.
Third, check with the objective, determine the control vector U , so that
the future output vector Y will be as close to the objective J as possible.

Definition 13.7.1. Assume that ji(k), yi(k), and ui(k), i = 1, 2, ..., m,
are objective components, output components, and control components at
time moment k, respectively. For i = 1, 2, ..., m, let

ji = (ji(1), ji(2), ..., ji(n)) ,

yi = (yi(1), yi(2), ..., yi(n)) ,

and
ui = (ui(1), ui(2), ..., ui(n)) .

For the control operator

f : [ji( ), yi( )] ui(k),

that is,
ui(k) = f [ji( ), yi( )] ,

we have

1. When k > , the system is an after-event control;

2. When k = , the system is said to be an on-time control; and

3. When k < , the system is said to be a prediction control.

Definition 13.7.2. If the operator f , as defined in Definition 13.7.1,
satisfies

f [ji( ), yi( )] = ji( ) yi( ),

that is,
ui(k) = ji( ) yi( ),

then

1. When k > , the system is said to be an error-afterward control;

2. When k = , the system is said to be error-on-time control; and

3. When k < , the system is said to be error-prediction control.
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Definition 13.7.3. Assume that

yi = (yi(1), yi(2), ..., yi(n)) ,

for i = 1, 2, · · ·,m, is an observational sequence of the output components,
whose GM(1, 1) response sequence is

by(1)i (k + 1) =
h
yi(1)

bi
ai

i
· e aik + bi

ai

by(0)i (k + 1) = by(1)i (k + 1) by(1)i (k).

If the control operator f satisfies

ui(n+ k0) = f
h
ji(k), by(0)i (k)

i
, n+ k0 < k,

i = 1, 2, ...,m, then the system’s control is called a grey prediction control.

In a grey prediction control system, we often apply metabolic models
to do predictions. Hence, the parameters of the prediction equipment vary
with time. When a new data value is collected and is accepted by the sam-
pling equipment, an older data value will be deleted so that a newer model
is established, and a series of new predicted values will appear accordingly.
This end guarantees a strong adaptability of the system.

13.8 Practical Applications

In this section, we look at three examples to see how our theory of grey
control can be practically applied.

Example 13.8.1. Let us look at a grey control with abandonment of a
boring lathe.

The block diagram of the input system of a horizontal precision boring
lathe of the type T618B is shown in Figure 13.11, and the dynamical block
diagram of the system is shown in Figure 13.12.
Based on the work requirements and technical conditions of the boring

lathe, the allowed region for extremum points is given as follows,

S = {(u, v) | < u < , < v < } ,

where | | = 0.2 and | | = 0.3.
Before the system is equipped with additional modifying components,

the characteristic equation is

f(s) = s3 + 2.42 · 102s2 + 5.1 · 103s+ 1.3 · 105 = 0
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FIGURE 13.11. The block diagram of the input system of a horizontal precision
boring lathe of type T618B

FIGURE 13.12. The dynamical block diagram of the input system of a horizontal
precision boring lathe of type T618B
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with characteristic roots

s1 = 10.1821 + 21.9743i,

s2 = 10.1821 21.9743i,

and

s3 = 221.6357.

Obviously, sj / S , for j = 1, 2, 3.
If the closed loop transfer function for prediction, satisfying the require-

ment S , is given as follows,

G (s) =
21.2 · 105

s3 + 3.4 · 104s2 + 2.6 · 104s+ 1.3 · 105 ,

from the principle of control with abandonment, it then follows that the
treated control with abandonment is

0.023s

1 + 0.045s
=
us
uD
.

After adding an appropriate term, the system’s characteristic equation be-
comes

f (s) = s4 + 0.2 · 103s3 + 5 · 103s2+

+5.2 · 103s+ 27.5 · 103 = 0

with characteristic roots

s1 = 0.42 + 2.35i, s2 = 0.42 2.35i,

s3 = 170.92, and s4 = 28.24.

Obviously, sj S , for j = 1, 2, 3, 4. So, the system possesses all the
desirable properties.
Now, let us look at the rotation system of the main shaft, where there

exist relatively large di erences between the parameters and the input sys-
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tem; see Table 13.2 more details.

Table 13.2. Comparison between the rotation and the input systems

Before the control of abandonment is applied, the characteristic equation
of the main shaft system is

f(s) = s3 + 167.2878s2 + 2667.6s+ 70393.37 = 0,

with characteristic roots

s1 = 7.2198 + 20.209i, s1 = 7.2198 20.209i,

s3 = 152.848.

After applying the controller transfer function with abandonment

0.023s

1 + 0.045s
,

which is identical to that of the input system, and applying control with
abandonment, the characteristic equation is converted to

f (s) = s4 + 0.1674 · 103s3 + 2.6916 · 103s2+

+2.4224 · 103s+ 10.1353 · 103 = 0
with characteristic roots

s1 = 0.343 + 1.9547i, s2 = 0.343 1.9547i,

s3 = 149.5, and s4 = 17.2.

Obviously, sj S , for j = 1, 2, 3, 4.
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FIGURE 13.13. The dynamical responses of the main shaft system and the input
system

Even though the parameters in the main shaft system and the input
system are di erent, satisfactory properties are obtained by applying the
same controller with abandonment. Their dynamical responses are shown
in Figure 13.13.
In Figure 13.13, 1o stands for the input system, with extra adjustment

amount of about 150 rotations per minute, and the adjustment time t1
being approximately 0.8 second. The curve 2o represents the main shaft
system, with extra adjustment amount of about 140 rotations per minute
and adjustment time t2 being approximately 0.9 seconds. ¤

Example 13.8.2. Let us look at a control of our biological prevention
system of cotton aphids.

Cotton aphids are injurious insects to cotton production. Ladybugs are
a natural enemy of cotton aphids. By planting rape in cotton fields, an
existing biological prevention system of cotton aphids can be e ectively
controlled.
Ladybugs eat not only cotton aphids, but also rape aphids. At first, plant

rape in cotton fields so that rape aphids can grow so that ladybugs will fly,
stay, and be reproduced with the rape. When the growth of ladybugs has
reached a certain level, cotton and cotton aphids start to grow. At this
time, cut down the planting of the rape so that the ladybugs have to turn
their attention to the cotton aphids to realize the objective of destroying
the cotton aphids.
Suppose that x1(k), x2(k), and x3(k) stand for the numbers of ladybugs,

rape aphids, and cotton aphids at the kth time phase, respectively. Then,
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these three numbers satisfy the following relation

x1(k + 1) = a11x1(k) + a12x2(k)

x2(k + 1) = a21x1(k) + a22x2(k) + 23x3(k)

x3(k + 1) = a31x1(k) + 32x2(k) + a33x3(k).

That is,
X(k + 1) = A( )X(k),

where

X(k + 1) =

x1(k + 1)

x2(k + 1)

x3(k + 1)

, X(k) =

x1(k)

x2(k)

x3(k)

and

A( ) =

a11 a12 0

a21 a22 23

a31 32 a33

.

By taking k = 0, we have

X(1) = A( )X(0).

When k = 1, we have

X(2) = A( )X(1) = A( )2X(0).

If we need to eliminate cotton aphids in the second phase, let x3(2) = 0.
From the preceding equation, it follows that

x3(2) = [a31a11 + a21 32 +a31a33]x1(0)+

+[ a31a12 + a22 32 +a33 32]x2(0)

+[ 32 23 +a
2
33]x3(0).

So,
[a31a11 + a21 32 +a31a33]x1(0)+

+[ a31a12 + a22 32 +a33 32]x2(0)

+[ 32 23 +a
2
33]x3(0) = 0.
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Let

13(0) =
x1(0)

x3(0)
and 23(0) =

x2(0)

x3(0)
,

and take 32 = 0. Then, it follows that

13(0) =
a233

a31(a11 + a33)

a31a12
a31(a11 + a33)

23(0).

Therefore, we can choose the ratio of ladybugs and cotton aphids to
satisfy

13

·
a233 a31a12 23(0)

a31(a11 + a33)
,

a233
a31(a11 + a33)

¸
.

Here 13 is a control quantity of our biological prevention system of
cotton aphids. It is a grey number with the following lower limit

13 =
a233 a31a12 23(0)

a31(a11 + a33)
,

and the following upper limit

13 =
a233

a31(a11 + a33)
.

If we let µ be the ratio of the production capacity of ladybugs and that
of cotton aphids, that is, µ =

a11
a33
, then

13 =
a33

a31(1 + µ)
.

Obviously, the greater µ is, the smaller 13 will be. When µ is fixed, the
greater a33 is, the greater 13 will be. When a33 and µ are fixed, the greater
a31 is, the smaller 13 will be. In general, we take 13 = 13. Then, it is
assured that in the second phase, all cotton aphids will be eliminated.

Example 13.8.3. Let us now look at a grey prediction control for a
boiler water supply system.

The block diagram for the system control is shown in Figure 13.14, where
grey prediction controlling components are applied to the controller of flow
and the water level controller so that models can be established quickly with
sensitive responses to stochastic disturbances appearing in the environment
and the parameters and with strong self-adaptability.
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FIGURE 13.14. The block diagram of the system control for the boiler water
supply system

In Figure 13.14,

W : Location signal D : Steam flow

H :Water level G : Input water flow

1 : (Electrical) potential shifter 2 : Execution component

3 : Location shifter 4 : Flow shifter

5 : GM(1, 1) controller 6 : Proportional decision maker

7 :Water level shifter 8 : GM(1, 1) controller

9 : Proportional decision maker J : Objective

The properties and characteristics of this system are obviously superior to
those of the PID system, which was ranked number one by the Electricity
Bureau of Hubei Province. For more details, see Table 13.3.

Table 13.3. Di erences between the adjustment times of PID
and a grey controller
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0-1 programming, 368, 395

accuracy
filtering, 276
mean relative, 276

after-event control, 462
agriculture, 438
all-data GM(1,1), 223
alternative optimization, 390
annual precipitation, 291
annual runo amount, 302
antisymmetry, 119
assignment problem, 395
average image, 89
axiom

analytic representations, 63
fixed points, 62
su cient usage of information,

63

background value, 195
balanced assignment problem, 395
balanced economic growth, 437
basic predicted value, 284
black number, 24

boring lathe, 463
bull’s-eye-distance, 322

capital elasticity, 254
capital input, 256
characteristic

most favorable, 121
quasi-favorable, 122
quasi-preferred, 122
variable, 141

characteristic vector, 54
choice of variables, 246
coe cient

cluster, of variable weight, 148
constraint, 428
decision, 342, 347
development, 203
direct consumption, 416
equal weight cluster, 154
fixed weight cluster, 154
generation, 60
grey amplifying, 453
grey evaluation, 170
grey impact, 427
grey influence, 425
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grey responsibility, 425
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inverse matrix, 425
statistical, 164

combined model
grey time series, 263

combined prediction model
with fixed weight, 268

condition
infinite information density,

195
consecutive neighbor, 59
constraint condition, 369
contour line, 300
contour moment, 301
contour point, 300
control of grey predictions, 461
control vector, 307
control with abandonment, 459
cotton aphid, 467
countermeasure, 316
countermeasure set, 316
criterion subclass, 144
critical value, 147
crop planting, 438

decision layer, 358
decision making, 316
degree

grey incidence, 96
greyness, 30
smoothness, 72

derivative, 195
desirable countermeasure, 320
desirable situation, 320
development band, 284
di erentiability, 70
disaster prediction, 289
distance, 91
distance function, 72
drought disaster, 311
drought prediction, 292
dry-hot wind, 296

ecological adaptation, 154

economic reform, 185
e ect, 316
e ect equivalence class, 319
e ect mapping, 319
eigenvector, 54
enterprise

nongovernmental, 132
entropy

evaluation coe cient vector,
170

information, 39
Shannon, 39

entry
absolute grey degree of, 47
relative grey degree of, 47

equal grey matrices, 47
equation

GM(1,N) grey di erential, 228
GM(2,1) di erential, 235
grey algebraic, 45
grey characteristic, 55
grey di erential, 46, 199
grey di erential type, 198
image, 203
shadow, 229
whitenization, 203, 229

equivalent situation, 322
error sequence

modelability, of, 218
error-afterward control, 462
error-on-time control, 462
error-prediction control, 462
event, 316
experimental material, 287
exponential band, 281
external environment, 185

farm industry, 438
feedback loop, 445
filter value, 223
flood disaster, 311
fluctuation term, 263
food production, 247
forestry, 438
function
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distance, 91
grey transfer, 453
homogeneous exponential, 81
inverse, 29
mean-value generation, 263
smooth continuous, 72
typical weight, 28

fuzzy mathematics, 7

general time unit, 196
generalized order, 119
generation

quasi-smooth, 75
smooth ratio, 73
stepwise ratio, 73

generator
accumulating, 76
inverse accumulating, 76
nth order, 76

Gram-Schmidt process, 263
grey

number, 23
grey 0-1 programming, 396
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grey action vector, 307
grey characteristic value, 54
grey clustering, 144
grey control, 446
grey derivative, 46
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grey di erential link, 455
grey eigenvalue, 54
grey evaluation analysis, 174
grey incidence
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absolute matrix of, 121
absolute order, 119
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matrix of, 120
order, 119
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grey incidence analysis, 86
grey incidence control, 461
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grey Markov chain, 260
grey matrix, 46
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determinable singularity, 52
diagonal, 50
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inverse, 52
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non-determinable singularity,
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non-singular, 52
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power of, 49
product of, 48
right inverse, 52
scalar, 50
scalar multiplication of, 48
skew symmetric, 51
sum of, 47
symmetric, 51
transposition of, 49
triangular, 51
unit, 50

grey nonlinear programming, 404
grey number, 23

conceptual, 25
continuous, 24
di erence of, 31
discrete, 24
essential, 24
field of, 32
greyness of, 34
informational type, 25
intersection, 41
interval, 24
layer type, 25
negative inverse of, 31
non-essential, 24
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not synchronous, 27
product of, 31
quotient of, 32
reciprocal of, 31
scalar multiplication, 32
sum of, 31
synchronous, 27
union of, 41
with only lower limits, 23
with only upper limits, 23
with zero center, 35

grey postponing link, 455
grey prediction control, 463
grey proportional link, 453
grey statistics, 164
grey stratified decision making, 358
grey target, 320

homogeneous Markov chain, 259
human talent, 271

imagined optimum e ect vector,
325

imagined optimum situation, 325
independent zero, 398
information, 14

density, 195
fuzzy, 17
grey, 15
increment, 197
new, 59
old, 59
Soros reflexive uncertained, 20
stochastic, 15
unascertained, 16

information content, 40
informational

hierarchy, 14
uncertainty, 14

initial image, 89
input-output table, 424
intention

di erential equation, 197
internal point, 59
internal subsystem, 185

interval image, 89

k-zigzagged line, 299
knowledge base, 18

labor elasticity, 254
labor input, 256
Laplace transformation, 452
Law

grey exponent, 82
law

negative grey exponent, 82
positive grey exponent, 82
quasi-exponent, 82

layer of administrators, 358
layer of experts, 358
layer of mass, 358
length

information field, 33
levels of accuracy, 277
limit value, 59
line

zigzagged, 93
linear band, 281
linear order, 119
linear programming, 369

grey drifting, 377
standardized type, 370

livestock husbandry, 438
log-linear form, 255
lower bound, 281
lower e ect measure, 352

main tra c, 327
mapping

arithmetic horizontal, 195
horizontal, 195

market economy, 185
Markov chain, 259
matrix

cluster coe cient, 148
complete consumption coef-

ficient, 417
control, 307
development, 307
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direct consumption coe cient,
416

e ciency, 396
flow, 416
grey characteristic, 55
grey consumption, 371
grey flow, 417
grey gain, 458
grey M, 419
grey non-negative, 419
grey P, 419
grey structure, 458
grey transfer, 458
incidence, 141
mean-value, 419
moving probability, 259
nth step moving probability,

259
objective structure, 459
perturbation grey, 419
state, 307
statistical coe cient, 165
structural deviation, 459
synthetic e ect measures, of,

353
uniform e ect measures, of,

352
mean slope, 94
mean-generated value

consecutive neighbors, 60
nonconsecutive neighbors, 60

metabolic GM(1,1), 224
method

AHP, of, 270
average, of, 269
binomial coe cients, of, 269
combined regions, of, 271
deviation coe cients, of, 269
exponential smoothing, 60
standardized di erence, of, 269

model
catastrophe GM(1,1), 291
Cobb—Douglas, 254
combined prediction, 266
comprehensively balanced, 435

critical, 382
error modification, 219, 220
error-satisfactory, 276
general mathematical, 369
GM(0,N), 230
GM(1,1), 199
GM(1,1) power, 240
grey dynamic input-output,

434
grey econometric, 247
grey production function, 255
grey state Markov, 260
grey Verhulst, 241
grey von Neumann, 437
ideal, 382
incidence-satisfactory, 276
input-output optimal, 435
optimal grey input-output, 429
production function, 254
remnant GM(1,1), 219
small error satisfactory, 277

model simulation, 223
modeling

five-step, 191
grey systems, 193

moderate e ect measure, 352
modern China, 438
morbidity in rape, 220
most favorable factor, 122
moving probability, 259

new data, 59
new information GM(1,1), 224
norm, 91

continuous function, 92

objective, 316
objective function, 369
oil-tea production, 261
old data, 59
on-time control, 462
operator

averaging, 89
bu er, 63
grey incidence, 90
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initialing, 89
interval, 89
reciprocating, 90
reversing, 90
strengthening, 64
weakening, 64
zero starting point, 102

optimal economic structure, 437
optimum countermeasure, 353
optimum e ect vector, 322
optimum event, 353
optimum situation, 353
origin of time axis, 223
orthonormalization, 263

parameter, 195
partial order, 119
partial-data GM(1,1), 224
partially ordered set, 119
partition, 17

interval, 71
per capita consumption, 285
Perron—Frobenius Theorem 1, 421
Perron—Frobenius Theorem 2, 423
perturbation grey element, 419
pleased degree, 383
pleased solution, 384
polynomial

grey characteristic, 55
positioned coe cient, 371
positioned optimal value, 383
positioned programming, 371
predecessor, 59
predecessor limit, 59
prediction control, 462
prediction value, 223
preimage, 89
price system, 438
Principle of

Absoluteness of Greyness, 7
informational di erences, 5
Minimal Information, 6
New Information Priority, 6
Non-Uniqueness, 5
Recognition Base, 6

probability, 7
processing industry, 438
productional structure, 430
programming, 367
progress in technology, 254
property

closeness, 96
expendability, 171
maximum valuation, 173
non-negativeness, 170
normality, 96
pair symmetry, 96
separability, 172
symmetry, 171
wholeness, 96

proportional band, 282

quasi-favorable factor, 122
quasi-optimal solution, 390
quasi-optimum countermeasure, 322
quasi-optimum event, 322
quasi-optimum situation, 322
quasi-preferred factor, 122

ranking technician, 348
rate of accumulation, 437
rate of contribution, 256
reciprocal image, 90
reflexivity, 119
regional signature industry, 180
relation

horizontal mapping, 196
remnant set

Shannon, 39
restored value

through derivative, 217
through inverse accumulating,

217
retail, 284
reverse image, 90

satisfactory e ect, 320
search committee, 141
season, 294
selection of signature industry, 180
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sequence
behavioral, 88
behavioral criterion, 88
behavioral horizontal, 88
behavioral time, 88
catastrophe date, 290
equal time interval, 104
errors, 276
first order, 62
generated with smooth ratios,

73
generated with stepwise ra-

tios, 73
grey derivative of, 197
grey di erential, 197
homogeneous exponential, 81
infinitely smooth, 72
length, 102
lower catastrophe, 290
monotonously decreasing, 62
monotonously increasing, 61
non-dimensional, 89
non-homogeneous exponential,

81
non-stochastic, 81
non-vibratingly decreasing, 80
non-vibratingly increasing, 80
operator, 62
parameters, of, 228
quasi-smooth, 75
relative errors, 276
representative, 72
seasonal catastrophe, 294
seasonal catastrophe date, 294
situation e ect time, 336
smooth, 72
smooth ratio, 73
stepwise increasing, 80
stepwise ratios, 73
upper catastrophe, 290
vibrational, 62
weak stochastic, 80

services, 438
set of events, 316
simulation error

mean relative, 276
relative, 276

simulation value, 223
situation, 316
situation set, 316
slope, 94
Solow’s remnant value, 256
space

Euclidean, 71
grey incidence factors, 90
grey linear, 33

spectral radius, 419
speed of economic growth, 437
speed of progress, 256
spherical grey target, 321
stachastic process, 57
state equation, 449
state moving probability, 261
state vector, 307
state-owned industry, 137
stationary point, 405
statistics, 7
stock-market-like prediction, 302
successive limit, 59
successor, 59
superfluous term, 459
superior class, 319
superior event, 319
superior object, 348
superior situation, 322
synthetic e ect measure, 353
system

asymptotically stable, 449
biological prevention, 467
boiler water supply, 469
closed loop control, 445
controllable, 449
development coe cient of, 228
grain production, 308
grey linear control, 449
observable, 449
open loop control, 445
prediction models, of, 306
regional economic, 185
stable, 449



508 Index

unstable, 449
systems prediction, 305

technical innovation, 338
technological innovation, 136
tendency term, 263
theory of

reflexivity, 20
tidings, 14
time zone, 294
tractors in use, 241
transitivity, 119
true historical process, 13
trumpet-like band, 281
turning point, 144

uncertainty
fuzzy, 17
grey, 15
rough, 17
stochastic, 15

uniform band, 281
upper bound, 281
upper e ect measure, 351

value band, 281
vector

cluster coe cient, 148
decision, 371
decision coe cients, of, 342,

347
grey constraints, 371
grey n-dimensional, 45
grey price, 371
statistical coe cient, 164
uniform e ect measures, of,

353
vitalization of a city, 342

weight of criterion, 148
white number, 24
whitenization

equal weight, 26
equal weight mean, 26
equation, 203, 229

matrix, 52
mean-value, 34
triangular, function, 162
typical weight function, 28
value, 26
weight function, 27

whitenization weight function
lower measure, 145
middle measure, 145
moderate measure, 145
upper measure, 145

whitenized programming, 404
window of time, 71
wrapping band, 283

zigzagged line, 299




