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Foreword

Quantum physics is certainly one of the most astonishing intellectual constructions
ever achieved. Its Rosetta stone consisted in some unexplained regularities in the
fluorescence light of simple elements, such as hydrogen or helium atoms. The next
building block was the radiation emitted by an oven in thermal equilibrium, the
famous blackbody problem. From these mere facts and some strokes of genius,
quantum theory was built. Quite rapidly the intuition of the founding fathers
became a well-established theory, still full of surprises and paradoxical conclusions,
but entirely consistent and with an unprecedented range of validity. Quantum
theory applies to microscopic objects like nuclei, atoms, molecules, as well as to
macroscopic systems such as superconductors and superfluids, and even astro-
physical objects. Quantum physics is simultaneously a framework where uncer-
tainty is included at the core of the theory, and a method of calculation that agrees
with experimental facts with an outstanding precision, at the level of 10−12 for some
observables, like the gyromagnetic ratio of the electron.

The present book explains how to use the quantum formalism in order to address
the dynamics of molecular systems, and it provides a nice illustration of the
diversity of the quantum world. I had the chance to have one of its four authors,
Fabien Gatti, in my quantum mechanics class about twenty years ago, and it is a
real pleasure to see how some simple ideas that we had been discussing at that time
have flourished in such a fruitful manner. The book is organized in a remarkably
progressive way, starting with simple systems like the hydrogen molecule, and then
moving towards notably more complex molecular edifices. This smooth progres-
sion is quite valuable for readers with a physics background like me, who were
taught by A. Schawlow, 1981 physics Nobel Prize winner, that “a diatomic
molecule is a molecule with one atom too many”! This statement illustrates the fear
that potential readers could have had in front of the subject if they were not properly
guided. To tell the whole truth, Schawlow himself knew a lot about
“non-monoatomic molecules” and he performed outstanding experiments in
molecular spectroscopy.
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When reading through “Application of Quantum Dynamics in Chemistry”, one
realizes the wealth of phenomena that can occur in the dynamics of two- or
several-atom molecules. With well-conceived lab sessions, the authors guide the
reader through key molecular processes such as photo-dissociation, simple chem-
ical reactions and coherent control. The key notion is the concept of molecular
wave-packets, created and probed using ultra-short pulses of light. This is at the
basis of the rapidly developing field of femto-chemistry initiated by the late Ahmed
Zewail, 1999 chemistry Nobel Prize winner, whose major discoveries were
acknowledged in both the chemistry and the physics communities. With femto-
chemistry it is now possible to manipulate chemical reactions, using proper light
pulses that influence the breaking of particular molecular bonds.

An appealing aspect of this book is that it will ring many bells in the mind of
physicists, in addition of course to the chemistry community towards which it is
targeted at first. Fundamental notions like quantum coherence revealed by inter-
ferences between various quantum paths, atomic or molecular states dressed with
laser light, are very dear to a physicist’s heart. These physicists will thus find in
many instances a renewed playground for such notions, which illustrates once more
the universality of quantum concepts. For instance, the authors discuss the Berry
phase accumulated when travelling along a path around in a conical intersection;
the essence of this phenomenon is very similar to what is found for the properties of
graphene in condensed matter physics, or in quantum gas physics, when atoms
move in an optical lattice with Dirac points in the Brillouin zone. In a different, but
related perspective, the Multi-Configuration Time-Dependent Hartree (MCTDH)
package that is intensively exploited here to address the dynamics of molecular
edifices can be used to approach other problems emerging in quantum many-body
physics. This is notably the case for the non-linear Schrödinger equation that
governs the evolution of light beams in non-linear materials, or of interacting Bose–
Einstein condensates, two research domains that have been also very active
worldwide over the last two decades.

Overall I am convinced that F. Gatti, B. Lasorne, H.-D. Meyer and A. Nauts
have produced a very useful text, with a clear orientation towards solving practical
problems. All the necessary background is presented in a pedagogical manner, with
numerous illustrations. Molecular spectra now replace the hydrogen fluorescence
lines deciphered by the founding fathers, but the desire to understand complex
phenomena from simple microscopic modeling is still present. I am convinced that
the material developed in the book will constitute a perfect guide for the reader who
wishes to start a fruitful journey in the rapidly developing field of Quantum
Molecular Dynamics.

Paris, France
November 2016

Jean Dalibard
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Chapter 1
Introduction

The main goal of this book is to illustrate how the concept of a wavepacket becomes
central in quantum mechanics when turning to concrete applications, for instance
in molecular physics and chemistry. In other words, the Schrödinger equation in its
time-dependent form provides the central framework here. This book is not a text-
book: the foundations of quantum mechanics have been detailed in many seminal
references (see for instance [1, 2]). More recently, D. Tannor has given a compre-
hensive description of the time-dependent perspective in quantum mechanics [3].

Here, our approach is different and complementary. Indeed, the most original
aspect of the present book is to propose lab-sessions using the Heidelberg Multi-
ConfigurationTime-DependentHartree (MCTDH)package. The latter is freely avail-
able and can be easily installed. MCTDH can be seen as an algorithm to solve
the time-dependent Schrödinger equation (i.e. to propagate wavepackets) for mul-
tidimensional dynamical systems consisting of distinguishable particles [4–9]. The
present book and the lab-sessions have two levels: one more dedicated to Master’s
students, typically for advanced courses on quantum mechanics for physicists or
on theoretical chemistry for chemists. The teachers and the students can then use
MCTDH as a black box to visualize the time evolution of quantum systems and
observe pure quantum effects, on which special emphasis will be placed. At a higher
level, the book may come in useful for thematic schools for Ph.D. students and
postdocs in different fields of quantum physics or computational chemistry. Here,
we offer the possibility to have a look at the input files, the users can even change
themselves the characteristics of the wavepackets they propagate. The lab-sessions
should also be helpful for any scientist who wishes to learn how to use the MCTDH
package.

The processes presented as illustrations correspond to realistic situations involv-
ing several degrees of freedom. Most of the examples have been chosen so that the
students can compare their results with data that have been measured experimen-
tally (photoabsorption spectra, cross sections, etc.). The systems studied in this book
are all molecular systems, i.e. we apply quantum physics (more precisely quantum

© Springer International Publishing AG 2017
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2 1 Introduction

dynamics) to chemistry. However, the concepts developed in the present book can be
easily transferred to applications in physics and even in biology. Generally speaking,
quantum dynamics is a very diverse field ranging from entangled photons to biolog-
ically relevant response to laser light, cold atoms and molecules, etc. In this context
it is worth noting that MCTDH has been extended to treat the dynamics of fermions
(MCTDHF) or bosons (MCTDHB) and is commonly used to study Bose-Einstein
condensates [10–13] and the dynamics of electrons in solid-state physics, atomic
physics or in the context of attophysics [14–20].

The authors of the present book are all researchers in the field of “molecular
quantum dynamics”, an emerging field at the border between quantum physics and
chemistry. We do not intend to give a general introduction to this field here and we
refer the readers to a previous book edited in 2014 in the series “physical chemistry in
action” by Springer [21]. We just remind that, from the point of view of a physicist, a
molecule can be viewed as a quantum-mechanical aggregate composed of electrons
and nuclei. However, chemistry is rarely taught within a full quantum-mechanical
perspective. In particular, an elementary chemical process is generally not described
as the evolution of a quantum system. However, very early within the advent of
quantum mechanics, it became clear that the wave aspects of electrons could not be
neglected as well as the quantization of the electronic states. This led to the field
known as quantum chemistry with the concepts of molecular orbitals and potential
energy surfaces. On the other hand, the motion of the nuclei, which is crucial in
chemistry since there is no chemical process if the nuclei in molecules do not change
their relative arrangement (the reaction coordinate describes a collective motion of
the nuclei), is often conceived classically.

However, there is growing evidence that a significant number of chemical reactions
are impacted by strong quantum-mechanical effects involving both the electrons and
the nuclei. Let us simply consider two examples. Chemical reaction rates, when light
particles such as protons, hydrogen atoms, and hydride ions are exchanged, can be
greatly enhanced by quantum tunnelling, namely by the fact that particles can tunnel
through a barrier that they classically cannot surmount [22–25]. Another quantum
effect is the involvement of quantum resonances in reactivity. Resonant states are
metastable states, the nuclei being temporarily trapped during a reactive collision.
The presence of resonances can change a chemical reaction decisively, in particular
at low temperatures [26–28].

Perhaps even more important is the fact that such quantum effects can be used
to create a radically new chemistry at a higher level of efficiency and selectivity.
For instance, lasers are sources of coherent light. After absorption of the latter by a
molecular system, a coherent superposition of quantum eigenstates can be produced,
i.e., a molecular wavepacket. Indeed, we know that, in quantum mechanics, a sys-
tem can be in a coherent superposition of different quantum states. The different
components of the quantum superposition can interfere, yielding new properties that
can be measured and that have no classical counterpart. The exact definitions of a
wavepacket and quantum coherence will be given in Chap.2. We just mention here
that experimentalists can now produce vibrational wavepackets in a systematic way.
In addition, time-resolved pump-probe laser techniques allow them to study chemi-

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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cal processes on the femtosecond time scale (10−15 s), i.e., on the scale of a typical
period of molecular vibrations [29–31]. This was at the origin of the development of
femtochemistry that earned Ahmed Zewail the 1999 Nobel Prize in Chemistry. This
technique allows one to follow the motion of the nuclei in real time: when chemical
bonds break, form, or change geometrically. Moreover, the quantum coherence itself
can be exploited to change and guide the reactivity [32, 33]. The quantum coherence
can be preserved during a time that is sufficient to drastically modify the reactivity
of complex systems even when they are embedded in an environment (in general,
since a system is never isolated, it interacts with its environment that dissipates quan-
tum coherence). In particular, recent experiments provided observation of long-lived
electronic quantum coherence, after excitation by laser pulses, for energy transfer
processes in light-harvesting complexes of biological systems such as photosynthetic
systems at ambient temperature and in the condensed phase [34].

Since the advent of femtochemistry, remarkable and decisive progress has been
achieved on the experimental front with the possibility to align molecules with lasers
[35, 36] and study electron motion using tools from the new field of attophysics [37–
40]. In other words, it is now feasible to create rotational, vibrational, and electronic
wavepackets and to control all the different aspects of a chemical elementary act. In
particular, we are close to what some already call the field of attochemistrywhere, at
each step of a molecular process, the coupled motion of electrons and nuclei could
be controlled on its natural time scale [41]. This will clearly lead, on the long term, to
a major breakthrough: a new chemistry working at an elementary microscopic level
and based on the systematic use of quantum phenomena. It is thus not surprising that
molecular quantum dynamics and the description of molecular systems in terms of
wavepackets has become an enormously active field of research.

As we will show in the present book, for a theoretician, a wavepacket has a
broader significance than a quantum state created in a molecule after absorption of
the light produced by a laser. Most of the wavepackets that we will encounter in
the different chapters can be considered as “artificial” wavepackets, in the sense that
their utility is often independent of whether these wavepackets can be created or not
experimentally. From their mathematical properties, wavepackets can be exploited
to obtain indirectly observable data including all the quantum effects involved in the
process. We will see, for instance in the applications and in the corresponding lab-
sessions, that the propagation of wavepackets can provide access to photoabsorption
spectra of molecules or to cross sections of collisions.

The book is divided into two parts: Part I, Concepts andMethods; Part II, Applica-
tions. Some parts of the book are labelled as advanced topics, indicated by a asterisk
in the table of contents. They can be skipped for teaching at theMaster’s level. In Part
I, Chap.2 is a very brief reminder of themain concepts of quantummechanics that are
essential to the understanding of the book: eigenstate, wavepacket, coherent super-
position, quantum decoherence, etc. Chapter 3 presents the molecular Hamiltonian
operator along with the Born-Oppenheimer separation, i.e. the separation of the elec-
tronic and nuclear motions. The cases where the Born-Oppenheimer approximation
fails are described in detail by the introduction of the diabatic representation and of
conical intersections. Chapter 6 is dedicated to the derivation of the nuclear kinetic

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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energy operator in any set of coordinates and we provide examples of operators for
several molecular systems. In Chap.5, we address the major issue of the choice of
the set of nuclear coordinates used to describe molecular processes. Again several
examples are given. The last chapter of Part I (Chap. 8) contains a rather thorough
description of the numerical methods used to solve the Schrödinger equation for the
nuclei. Special emphasis is placed on the MCTDH algorithm.

Part II focuses on illustrations of the theoretical background described in the first
Part. At the end of each chapter, we propose a lab-session using theMCTDHpackage
that allows one to visualize the evolution of wavepackets for realistic systems. The
input files and a version of the code are provided as supporting material. As they
are conceived, the lab-sessions are rather adapted to Ph.D. students and postdocs.
However, teachers can easily simplify the lab-sessions (by removing some parts of
the text) so that Master’s students can use MCTDH as a “black box”. It is worth
noting that Sect. 9.6 explains how to install the code.

For each chapter of application, there is a preliminary part explaining the physical
context with several figures.We have tried to present a wide variety of processes from
infrared spectroscopy (Chap. 9) to photodissociation processes (Chap. 10); from non-
adiabatic (or non-Born-Oppenheimer) couplings (Chap.12) to reactive collisions
(Chap. 11). To recall that wavepackets are not only “artificial” tools for theoreticians,
and that they can also be produced and measured in experiments, we conclude the
book with applications in the field of coherent control by laser pulses (Chap.13).
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Chapter 2
Quantum Mechanical Background

Quantum mechanics is certainly one of the most successful theories in science. It
has deeply influenced many areas of pure and applied physics and pervades many
branches of science, from physics, matter sciences, computer science to chemistry
and even to molecular biology. However, quantum mechanics has to face several
conceptual difficulties of which most relate to the process of quantum measurement
and its randomness so that, almost one century after its birth, a complete consensus has
still not been reached concerning the interpretation of the theory and its foundations.

Quantum mechanics is also known to be counter-intuitive and to lead to repre-
sentations of physical phenomena very different from our daily experience, such as
superposition, entanglement and non-locality. To pinpoint this microscopic “quan-
tum strangeness”, the fathers of the quantum theory, especially Einstein and Bohr,
resorted to “thought experiments” involving the manipulations of isolated particles.
These experiments, which were believed to remain virtual, have now been performed
(see “Exploring the Quantum” byHaroche and Raimond [1]) andmay help shed light
on the conceptual difficultiesmentioned above. In their turn, theymay also raise other
intriguing issues such as, for instance, the connection between quantum and classical
physics. Indeed, macroscopic systems, i.e. systems directly accessible to our senses,
never display non-locality and other strange features of quantum mechanics such as
state superposition (Schrödinger’s cat) or quantum interference.

A nice, lively and non-technical overview of themajor interpretations and strange-
ness of quantum mechanics can be found in “Beyond measure” by Baggot [2]. More
in-depth and technical discussions are given in “Do we really understand Quantum
Mechanics?” by Laloë [3].

It is perhaps also worth mentioning that, by casting doubts on fundamental con-
cepts such as space, material objects, and causality quantum mechanics demands
serious reconsideration of most of traditional philosophy and has become a cen-
tral issue in the realm of the philosophy of science. A huge amount of literature
exists on the subject and we will only mention here two examples: “On Physics
and Philosophy” by d’Espagnat [4] and “Making Sense of Quantum Mechanics”
by Bricmont [5].

© Springer International Publishing AG 2017
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10 2 Quantum Mechanical Background

Nevertheless, in spite of all these conceptual difficulties, the extraordinary feature
of quantum mechanics is that, although we do not understand it nor know how to
interpret it, we can apply it and, by means of the rules of calculation it inspires,
compute properties of matter with unparalleled accuracy. However, in the present
book, we will adopt what can be viewed as a pragmatic approach in which quantum
mechanics is regarded as an operational theory designed to predict the outcomes of
measurements on physical systems under well-defined conditions.

The purpose of the present chapter is not to provide a general and detailed intro-
duction to quantum mechanics, which is available in most textbooks, e.g. Refs.
[6–15]. Our purpose here is merely to provide a quantum mechanical background
with emphasis on the concepts and rules needed for the various topics covered in
the book. (for a lively and pedagogical further reading see “Lectures on Quantum
Mechanics” by Basdevant [16].)

2.1 General Principles

2.1.1 Wavefunctions

In quantum mechanics, the state of a system, at a given time t , parametrized by a
set of coordinates R, is completely determined by a complex wavefunction, �(R, t)
[10]. In our case, the system will often be a molecular system in the wider sense of
the term, and the coordinates R, a set of generalized or curvilinear coordinates well-
adapted to the description and the evolution in time of the molecular and chemical
processes under consideration. According to the standard interpretation of quantum
mechanics, the square of the modulus of �(R, t),

|�(R, t)|2 = ��(R, t)�(R, t) , (2.1)

has the meaning of a probability density. The probability of finding the system in the
volume dR around the point R at time t , is given by

dP(R, t) = |�(R, t)|2dR . (2.2)

The wavefunction�(R, t) is also called the probability amplitude of finding the sys-
tem at point R. It is square integrable and, in view of the probabilistic interpretation,
must be normalized to unity1:

∫
|�(R, t)|2dR = 1 . (2.3)

1In the following,
∫
denotes the integral over the complete domain of definition.
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2.1.2 Superposition Principle

Another property of wavefunctions, regarded as a fundamental principle of quantum
mechanics, is the superposition principle: it means that, if �1(R, t) and �2(R, t)
describe possible states for the system, any linear combination

�(R, t) = c1�1(R, t) + c2�2(R, t), (2.4)

where c1 and c2 are arbitrary complex coefficients, also represents a possible state.
The additivity of probability amplitudes is at the origin of interference phenomena
in quantum mechanics (see Eq. (2.38) below). Moreover, from a more theoretical
perspective, this additivity property hints to the fact that the set of all the possible
wavefunctions of a given system has the properties of a linear vector space E (see
below).

The non-classical aspect of the superposition principle is illustrated by
Schrödinger’s famous cat, which can be alive and dead simultaneously. In other
words, Schrödinger’s cat can be in a coherent superposition of both a dead state and
an alive state. These two states can interfere to create new behaviors that cannot be
observed for a cat that is either alive or dead. For instance, let us consider an assembly
of, let us say, one thousand Schrödinger’s cats. This assembly is not constituted of
cats that are either dead or alive but of one thousand cats where the dead and alive
aspects interact to create a completely different behavior. Schrödinger’s cat can be
seen as a paradox only because the cat is a large-scale system and creating a coherent
superposition for a cat is not realistic.

2.1.3 Measurements of Physical Quantities

One of themost intriguing features of quantummechanics is, as indicated by its name,
the hypothesis of quantization. This notion implies that, under particular conditions,
physical observables measured experimentally can only take certain discrete values.
More precisely, in quantummechanics, physical quantities measured experimentally
can only take a restricted set of values that can be discrete or continuous or a mixture
of both.

This is the reason why, whereas in classical mechanics the physical observables
are represented by functions of time such as position, in quantum mechanics, to
each physical quantityA, we associate an observable Â, which is a linear Hermitian
operator acting in the space E of wavefunctions called a Hilbert space.

More explicitly, let us define in the space E a Hermitian scalar product2 of two
wavefunctions �(R) and �(R) as follows

2Equation (2.5) is also known as the overlap between the wavefunctions �(R) and �(R).
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∫
��(R)�(R)dR = 〈�|�〉 , (2.5)

where the so-calledDirac bracket notation is introduced. This bracket notation is very
elegant and allows, among other things, to avoid to explicitly specify the coordinates,
R, their conjugate momenta P, or any other set of coordinates, used to describe the
system.Combinedwith the superpositionprinciple, this leads naturally to considering
|�〉, called a “ket”, as a vector of space E , and 〈�| called a “bra” as a linear form3

that acts on the ket |�〉 to yield the “bracket” 〈�|�〉, which, being a scalar product,
is generally a complex number.

|�〉 and |�〉 are quantum state vectors corresponding to the “R representation”
wavefunctions �(R) and �(R). The normalization condition of Eq. (2.3) now reads

〈�|�〉 = 1 , (2.6)

and the orthogonality condition

〈�|�〉 =
∫

��(R)�(R)dR = 0 (2.7)

may be regarded as an extension of the geometrical notion of orthogonality to state
vectors and wavefunctions.

An operator Â transforms any given vector |�〉 into another vector |� ′〉 =
| Â�〉 = Â|�〉. When acting on a vector α|�〉 + β|�〉, where α and β are com-
plex numbers, such as

Â(α|�〉 + β|�〉) = α Â|�〉 + β Â|�〉 . (2.8)

the operator is called a linear operator. We will work only with linear operators.
Matrix elements of an operator Â are written as

〈�| Â|�〉 = 〈�| Â�〉 =
∫

��(R) Â�(R)dR . (2.9)

3In a finite Hermitian space C
n , the “kets” are the column matrices |u〉 =

⎡
⎢⎢⎢⎣

u1
u2
.
.
.

un

⎤
⎥⎥⎥⎦ and the “bra” are

the row matrices 〈v| = [
v�
1v

�
2 . . . v�

n

]
so that 〈v|u〉 = ∑n

i=1 v�
i ui is a matrix product.
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The product of two operators Â and B̂ is defined as ( Â B̂)|�〉 = Â(B̂|�〉). It is
interesting to note that multiplying a ket by a bra, |�〉〈�| is an operator.4 Indeed,
applied to a vector |ϕ〉, it yields another vector: |�〉〈�|ϕ〉 = 〈�|ϕ〉|�〉, where 〈�|ϕ〉
is a complex number. In particular, �̂� = |�〉〈�| is the projection operator onto
|�〉, since

�̂2
� = |�〉〈�|�〉〈�| = |�〉〈�| = �̂� (2.10)

holds, which shows that �̂� is a projector, and since

�̂� |�〉 = |�〉〈�|�〉 = |�〉 (2.11)

holds, which shows that the projector projects onto |�〉. Note that a normalized |�〉
is assumed.
The commutator of two operators Â and B̂ is defined as

[
Â, B̂

]
= Â B̂ − B̂ Â . (2.12)

When
[
Â, B̂

]
= 0, which implies Â B̂ = B̂ Â, the two operators are said to commute.

For each linear operator Â, there exists an adjoint operator,, Â†, defined as fol-
lows:

〈�| Â†|�〉 = 〈 Â�|�〉 = 〈�| Â|�〉� (2.13)

or, in integral form, with wavefunctions

〈�| Â†|�〉 =
∫

��(R) Â†�(R)dR =
∫

( Â�(R))��(R)dR

=
(∫

��(R) Â�(R)dR
)�

= 〈�| Â|�〉� . (2.14)

An operator Â is Hermitian if
Â† = Â . (2.15)

If Â is Hermitian, its expectation value, i.e. 〈�| Â|�〉 for a given state vector |�〉, is
real. Indeed, in view of Eq. (2.14) and since Â† = Â

〈�| Â|�〉� = 〈�| Â†|�〉 = 〈�| Â|�〉 . (2.16)

4In a finite Hermitian space C
n , |u〉〈v| =

⎡
⎢⎢⎢⎣

u1
u2
.
.
.

un

⎤
⎥⎥⎥⎦

[
v�
1v

�
2 . . . v�

n

]
=

⎡
⎢⎢⎢⎣

u1v�
1 u1v�

2 . . . u1v�
n

u2v�
1 u2v�

2 . . . u2v�
n

.

.

.
.
.
.

.

.

.
.
.
.

unv�
1 unv�

2 . . . unv�
n

⎤
⎥⎥⎥⎦, which

is a (n × n) matrix, i.e. an operator in Cn .
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A nonzero vector |ϕk〉 is said to be an eigenvector of an operator Â if

Â|ϕk〉 = ak |ϕk〉 , (2.17)

and ak is the eigenvalue associated with this eigenvector. The set {ak} is called the
spectrum of Â. For simplicity, we assume the spectrum to be discrete and non-
degenerate (i.e. there are no two or more equal eigenvalues).

If Â isHermitian , the eigenvaluesak are real and the eigenvectors corresponding to
different eigenvalues are orthogonal. Thus, taking eigenvectors normalized to unity,
we have

〈ϕk |ϕl〉 = δkl , (2.18)

where δkl is the Kronecker delta. In addition, the set {ϕk} of normalized eigenvectors
forms a complete set of orthonormal basis vectors (spectral theorem), i.e. any state
vector |�〉 can be expanded as follows

|�〉 =
∑
k

ck |ϕk〉 , (2.19)

or, in terms of wavefunctions,

�(R) =
∑
k

ckϕk(R) , (2.20)

where the ck are complex coefficients. In fact,

ck = 〈ϕk |�〉 =
∫

ϕ�
k(R)�(R)dR , (2.21)

and, since �(R) is normalized to unity, i.e. 〈�|�〉 = 1,

∑
k

|ck |2 = 1 . (2.22)

If two observables commute, there exists a basis of eigenvectors common to the two
operators.

To summarize: to each physical quantity A corresponds an observable Â that is a
Hermitian linear operator acting in the space of wavefunctions E , and characterized
by its spectrum, i.e. the set {ak} of its eigenvalues and the set {ϕk(R)} of the corre-
sponding normalized eigenfunctions, which constitute an orthonormal basis set of E
(spectral theorem).
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We are now ready to state5 the measurement principles of quantum mechanics:
(a) In the measurement of a physical quantity A, the only possible results of the

measurement are the eigenvalues ak of the corresponding observable Â (it is also
known as the quantization principle).

(b) Owing to the spectral theorem, the wavefunction before the measurement can
be expressed in terms of the normalized eigenfunctions of Â:

�(R) =
∑
k

ckϕk(R) . (2.23)

When the measurement occurs, the probability of finding the value ak as result is

P(ak) = |ck |2 = |〈ϕk |�〉|2 . (2.24)

The above equation is also known as Born’s probability rule.
(c) Immediately after the measurement of the physical quantity A has been per-

formed and has given the result ak , the new state wavefunction of the system is the
(normalized) eigenfunctionϕk(R). This “instantaneous” change from�(R) toϕk(R)

is known as the reduction of the wavepacket or wavefunction collapse. According to
the standard interpretation of quantum mechanics, this wavefunction collapse is due
to the interaction between the system and the measuring apparatus.6

As already briefly mentioned, for a given wavefunction �(R), the expectation
value of any physical quantity A is given by

∫
��(R) Â�(R)dR = 〈�| Â|�〉 . (2.25)

Introducing Eq. (2.23) into Eq. (2.25) yields

∫
��(R) Â�(R)dR =

∑
k

∑
l

c�
kcl

∫
ϕ�
k(R) Âϕl(R)dR

=
∑
k

∑
l

c�
kcl

∫
ϕ�
k(R)alϕl(R)dR

=
∑
k

∑
l

c�
kclal

∫
ϕ�
k(R)ϕl(R)dR

=
∑
k

∑
l

c�
kclalδkl , (2.26)

5We do it mainly in terms of wavefunctions since the “R representation” will be predominantly
used in the present book.
6The mechanism and meaning of the wavepacket collapse is a difficult and much debated topic in
quantum mechanics. For an introduction see, for instance Chap.8 of Ref. [3].
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so that
〈�| Â|�〉 =

∑
l

|cl |2al =
∑
l

P(al)al , (2.27)

which is the usual definition of the expectation value in standard probability the-
ory. As pointed out in Chap.9 of Ref. [3], in the majority of experiments, what is
really observed is the sum over a very large number of particles of one individual
microscopic observable (sum of atomic dipoles for instance), which is accurately
described by the average value of this observable, i.e. the expectation value (see Eq.
(2.27)).

2.1.4 Time Evolution Principle and Schrödinger Equation

As long as the system does not undergo any observation, its time evolution is postu-
lated to be given by the time-dependent Schrödinger equation (TDSE):

Ĥ(t)�(R, t) = i�
∂�(R, t)

∂t
, (2.28)

with� = h
2π , the reducedPlanck constant. Theoperator Ĥ (t) is the energyobservable

or Hamiltonian operator, which may or may not depend on time.
If theHamiltonian operator is time-independent, i.e. if the system is isolated, one

may solve the eigenvalue equation

Ĥ�n(R) = En�n(R) , (2.29)

which is known as the time-independent Schrödinger equation (TISE).
Equation (2.28) can then be formally solved as:

�(R, t) = e−i Ĥ t/��(R, t = 0) , (2.30)

where e−i Ĥ t/� is known as the evolution operator.
Then, two cases must be distinguished:
(i) At a time of reference, say t = 0, the wavefunction is equal to one of the

eigenfunctions given by Eq. (2.29):

�(R, t = 0) = �n(R) . (2.31)

Inserting Eq. (2.31) into Eq. (2.30) yields

�(R, t) = e−i En t/��n(R) . (2.32)
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The time dependence of such a state is periodic, with angular frequency ωn = En/�.
As regards the probability density,

|�(R, t)|2 = ��(R, t)�(R, t)

= ei Ent/���
n(R)e−i En t/��n(R)

= ��
n(R)�n(R) = |�n(R)|2 . (2.33)

Thus, the probability density does not depend on time. In otherwords, the systemdoes
not evolve and is said to be in a stationary state. To each stationary state corresponds
a definite value of the energy of the system, En .

(ii) At t = 0, the wavefunction is a linear combination of the eigenfunctions given
by Eq. (2.29). Such a linear combination is often called a coherent superposition or
also a wavepacket.

In other words,
�(R, t = 0) =

∑
n

cn�n(R) , (2.34)

in the discrete case and

�(R, t = 0) =
∫

c(E)�E (R)dE , (2.35)

in the continuous case. For systems with both discrete and continuous portions in
their spectra the expression is a sum of Eqs. (2.34) and (2.35).

In Eq. (2.34),

cn =
∫

��
n(R)�(R, t = 0)dR , (2.36)

is the overlap between the wavefunction and the eigenfunction �n(R) (see Eq.
(2.21)).

Equation (2.34) can be seen as a particular case of the aforementioned superposi-
tion principle. The physical situation described by the wavefunction of Eq. (2.34) has
no classical counterpart. In classical mechanics, the system has a single well-defined
energy. On the other hand, if the energy of the quantum system described by Eq.
(2.34) is measured, several different outcomes, En , are possible. Quantum mechan-
ics can only predict the probability of measuring the value En ,which is equal to |cn|2
(see Eq. (2.24) the Born probability rule). As already explained, if the energy is mea-
sured and if the value En′ is obtained, it means that the wavefunction

∑
n cn�n(R)

has been reduced to �n′(R). Thus, the quantum system described by Eq. (2.34) has
no well-defined energy. However, the expectation value of the Hamiltonian operator,
〈�|Ĥ |�〉, gives the mean energy that is constant over time for an isolated system
(law of energy conservation).
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Now, inserting Eq. (2.34) into Eq. (2.30), we obtain

�(R, t) = e−i Ĥ t/�
∑
n

cn�n(R) ,

=
∑
n

cne
−i Ĥ t/��n(R) ,

=
∑
n

cne
−i En t/��n(R) . (2.37)

This wavefunction is no longer stationary and the probability density |�(R, t)|2
exhibits an interference pattern. Indeed

|�(R, t)|2 = ��(R, t)�(R, t)

= (
∑
l

c�
l e

i El t/���
l (R))(

∑
n

cne
−i En t/��n(R))

=
∑
l

∑
n

c�
l cne

−i(En−El )t/���
l (R)�n(R)

=
∑
n

|cn|2|�n(R)|2 +
∑
n

∑
l,l �=n

c�
l cne

−i(En−El )t/���
l (R)�n(R) .

(2.38)

Equation (2.38) has thus two terms:
– The first term, which does not depend on time.
– The second one called the “interference term” is the result of the interferences

between the different eigenstates. The probability density now depends on time and
does so through the second term only. Again, this originates from having a coherent
superposition of eigenstates with different energies. Such a wavefunction is often
referred to as a wavepacket. In practice, a wavepacket often corresponds to a wave-
function that is localized in space.

Creating experimentally such a coherent superposition and preserving it is a dif-
ficult task. Since a system is never isolated, it interacts with its environment that
dissipates the quantum coherence: thus, a loss of coherence between the different
quantum states occurs and is called quantum decoherence. The quantum interfer-
ence terms vanish locally, i.e. in the system, and the latter is formally equivalent
to a classical statistical mixture or an “incoherent” mixture of states rather than a
single coherent quantum superposition of them. The effect of the environment is not
included in the Hamiltonian operator introduced above and for which the eigenstates
have been defined.

Let us return to our assembly of one thousand Schrödinger’s cats. After interac-
tion with the environment the assembly of one thousand cats simply corresponds
to a statistical assembly of roughly five hundred cats that are dead and five hun-
dred cats that are alive. The different states do not interact or “interfere” together
to create non-classical behaviors. Since a cat is a large-scale system, the interaction
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with the environment will occur extremely fast. Therefore, even if it were possible
to generate such a quantum superposition of cats, the quantum decoherence would
be so fast that it would be impossible to measure the corresponding quantum prop-
erties. The difficulty and the importance of creating a quantum superposition has
been emphasized by the 2012 Nobel prize in Physics awarded to Serge Haroche and
David Jeffrey Wineland. For instance, Serge Haroche was able to create a coherent
state of light in a cavity cooled to 0.8K and perform a step-by-step measurement of
the wavefunction collapse by interaction with circular Rydberg atoms of Rubidium,
i.e. excited atoms with electrons that have very high principal quantum numbers.
He produced actual movies of the decoherence process in progress until the sys-
tem became a Fock state of well-defined energy with a definite number of photons
[17, 18].

The systematic control of quantum coherence is seen as one of themain challenges
in basic energy sciences since such a control may lead to highly desirable materials
and devices such as quantum computers [19]. In the samemanner, the exploitation of
this quantumcoherence inmolecular processesmay lead to amore efficient chemistry.
Indeed, in traditional chemistry, the quantum states involved in the chemical process
are, in general, populated in a incoherentway described as a “mixed state” in quantum
statisticalmechanics. Since the invention of lasers,which emit light coherently thanks
to the process of stimulated emission, it is possible to create coherent superpositions
of molecular quantum states. Such coherent superpositions are called a “pure state”
in quantum statistical mechanics and their systematic use might strongly increase
the efficiency and the control of the corresponding chemical processes and at a much
lower energy cost. In practice, quantum coherence can be preserved during a time that
is sufficient for a complete rearrangement of the molecular system. In this context
and as aforementioned in the introduction, it is worth noting that recent experiments
provided observation of long-lived electronic quantum coherence, after excitation by
laser pulses, for energy transfer processes in light-harvesting complexes of biological
systems such as photosynthetic systems at ambient temperature and in the condensed
phase [20].

These coherent superpositions correspond to what we called a wavepacket above.
The central object of study in this book is the use of wavepackets in the context
of chemistry. As explained, molecular wavepackets can be created by lasers and
exploited to guide chemical processes. In addition, from their intrinsic mathemati-
cal nature, wavepackets are very efficient tools for theoreticians to compute several
physical observables, independently of the possibility to create the former experi-
mentally. In simulations, artificial molecular wavepackets can be generated with the
MCTDH package for instance. Their propagations can lead to quantities such as
absorption spectra or cross sections including all the most subtle quantum effects
that may occur in molecular processes.
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2.2 Observables and Correspondence Principle

We have seen in the previous section that, in order to treat quantum mechanically a
physical quantityA pertaining to a given system, we have to rely on a corresponding
observable Â, which is a Hermitian linear operator acting on the wavefunctions
that define the states of the system. What are the rules to be used to carry out the
correspondence A → Â?

2.2.1 Observables Corresponding to Common Physical
Quantities

Let us begin by considering a particle of massm, of (Cartesian) position coordinates
r = (x, y, z) and classical momentum P = (Px , Py, Pz). Concerning the corre-
sponding position observable r̂ = (x̂, ŷ, ẑ), it is simply a multiplication of the wave-
function by r = (x, y, z). Concerning the momentum properties, the corresponding
momentum observable is7

P̂ = (P̂x , P̂y, P̂z) = (−i�
∂

∂x
,−i�

∂

∂y
,−i�

∂

∂z
)

= −i�∇ . (2.39)

Concerningother physical properties that in classicalmechanics are functions A(r,P)

of the position and momentum variables, a correspondence principle is introduced,
which consists in choosing for quantum mechanics the same functions of the posi-
tion and momentum observables. So, to the classical quantity A(r,P) corresponds
the observable Â(r̂, P̂). See Table2.1 for the expressions of the observables corre-
sponding to common physical quantities. For instance, the observable corresponding
to the classical angular momentum8 L = r × P is given by L̂ = −i�r × ∇ that is

L̂ x = −i�(y
∂

∂z
− z

∂

∂y
) , (2.40)

and the cyclic permutations

L̂ y = −i�(z
∂

∂x
− x

∂

∂z
)

L̂ z = −i�(x
∂

∂y
− y

∂

∂x
) . (2.41)

7∇ denotes the gradient operator, which here is defined as a row vector. See also Sect. 3.2.3 for a
more comprehensive definition of gradient operators.
8In the present book, × denotes the vector product.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Table 2.1 Observables corresponding to common physical quantities [12, 13]

Physical quantity A Observable Â

Position x, y, z, r Multiplication by x, y, z, r

Momentum Px , Py, Pz,P P̂x = −i� ∂
∂x , P̂y = −i� ∂

∂y , P̂z = −i� ∂
∂z ,

P̂ = −i�∇ (gradient)

Kinetic energy T = 1
2m (P2

x + P2
y + P2

z ) T̂ = − �
2

2m ( ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
)

T = 1
2m P2 T̂ = − �

2

2m ∇2 = − �
2

2m � (Laplacian)

Potential energy V (r) Multiplication by V (r)

Total energy E = T + V (r) Hamiltonian Ĥ = − �
2

2m � + V (r)

Angular momentum L = r × P L̂ = r̂ × P̂ = −i�r × ∇

Let us notice and recall that the position and momentum observables, r̂ and P̂, do
not commute. Indeed,

x̂ P̂x� = x̂(P̂x�) = −i x�
∂�

∂x
, (2.42)

and

P̂x x̂� = P̂x (x̂�) = −i�
∂

∂x
(x�) = −i x�

∂�

∂x
− i�� . (2.43)

Introducing the commutator of two operators Â and B̂ defined above

[
Â, B̂

]
= Â B̂ − B̂ Â , (2.44)

we see that [
x̂, P̂x

]
= x̂ P̂x − P̂x x̂ = i� Î , (2.45)

where Î is the identity operator.Moreover, it is clear that x̂ and P̂y commute.Denoting
the components of r̂ and P̂ by x̂i and P̂i , i = 1, 2, 3, we obtain the well-known
fundamental commutation relations:

[
x̂i , x̂ j

] =
[
P̂i , P̂j

]
= 0 , (2.46)

and [
x̂i , P̂k

]
= i�δik . (2.47)

Owing to these fundamental commutation relations, it is worth noting that the cor-
respondence between physical quantities and operators is simple when the quantity
is a function of either the position or the momentum alone. In contrast, when the
quantity is a function of both r̂ and P̂, some care has to be taken since products of
(non commuting) operators depend in general on the order in which they are written.
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The correspondence principle is rather easily extended to the case of a collection of
particles such asmolecular systemsmade up of nuclei and electrons.Wewill describe
these systems with the help of a set R of well-adapted curvilinear coordinates and
their canonical conjugate momenta P. Particular attention will be paid to the way of
applying the correspondence principle to T (R,P), the classical Hamiltonian kinetic
energy, where the ordering problem for R̂ and P̂ mentioned above will crop up.

The properties and explicit expressions of the momentum operators P̂, corre-
sponding to the classical momenta conjugate to the generalized coordinates R will
be detailed in Chap. 6. Concerning the energy observable, the Hamiltonian operator
Ĥ(R) = T̂ (R) + V̂ (R) describing a confined system, i.e. a bound system, has a dis-
crete spectrum. In contrast, for unbound systems, the energy spectrum is continuous.

2.2.2 Angular Momentum Operators

Wenow recapitulate some properties of the angular momentum operators. For amore
detailed account see for instance Refs. [7, 9, 10, 13].

The angular momentum observable of a particle according to the correspondence
principle (see Table2.1) is

L̂ = −i�r × ∇ . (2.48)

The three components L̂ x , L̂ y , L̂ z of this (vector) observable, given by Eqs. (2.40)
and (2.41), do not commute. Indeed, after a simple calculation, one obtains

[
L̂ x , L̂ y

]
= i�L̂ z[

L̂ y, L̂ z

]
= i�L̂ x[

L̂ z, L̂ x

]
= i�L̂ y , (2.49)

which can be summarized as
L̂ × L̂ = i�L̂ . (2.50)

For systems of N particles with position and momentum operators r̂i , P̂i with i =
1, . . . , N , the total angular momentum is

Ĵ =
N∑
i=1

L̂i =
N∑
i=1

r̂i × P̂i . (2.51)

http://dx.doi.org/10.1007/978-3-319-53923-2_6
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Ĵ also satisfies the three commutation relations (Eq. (2.50)), which leads to take them
as a definition of an angular (vector) observable Ĵ with the following fundamental
commutation relations between its components

Ĵ × Ĵ = i�Ĵ . (2.52)

The observable Ĵ
2 = Ĵ 2

x + Ĵ 2
y + Ĵ 2

z , which is associated to the square of the angular

momentum, commutes with each component of Ĵ. Thus, the two operators Ĵ
2
and Ĵz

must have common eigenfunctions, denoted� jm , that obey the eigenvalue equations

Ĵ
2
� jm = j ( j + 1)�2� jm , (2.53)

and
Ĵz� jm = m�� jm , (2.54)

with eigenvalues, j ( j + 1)�2 and m�, respectively. j is called the angular momen-
tum quantum number and m is called (for historical reasons) the magnetic quantum
number. Let us also introduce the two operators

Ĵ+ = Ĵx + i Ĵy , (2.55)

and

Ĵ− = Ĵx − i Ĵy . (2.56)

It can be shown that their action on � jm is

Ĵ+� jm = �

√
j ( j + 1) − m(m + 1)� j,m+1 , (2.57)

and
Ĵ−� jm = �

√
j ( j + 1) − m(m − 1)� j,m−1 . (2.58)

For obvious reasons, Ĵ+ is called raising operator and Ĵ− lowering operator. Through
purely algebraic manipulations, Dirac was able to show the following quantization
of j and m:

• j is a positive (or zero) integer or half integer:

j = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . (2.59)
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• m is an integer or half integer, and for a given j , the only possible values of m are
the 2 j + 1 numbers:

m = − j,− j + 1, . . . , j − 1, j . (2.60)
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Chapter 3
Molecular Hamiltonian Operators

In the present book, we will consider molecular systems either isolated or in inter-
action with external electromagnetic fields. In a bottom-up approach, which we will
try to follow here, a molecule, or more generally a molecular system, is regarded as
a collection of electrons and nuclei in interaction with each other and possibly with
external fields.

Ideally, the motion of charged particles in the presence of electromagnetic fields
is described by quantum electrodynamics [1]. In practice, the problem has to be
simplified and several approximations are in order. First, we assume that the motions
of the particles under study do not affect the external fields, which thus appear as
driving fields. This corresponds to the first-order term in the perturbative treatment
of electrodynamics (with the Coulomb gauge condition) [1, 2]. At higher orders, the
dynamics of particles and fields are inextricably mixed [1–3] and these higher orders
are usually neglected in non-relativistic quantum chemistry and molecular physics
by introducing the Coulomb Hamiltonian, which is an effective Hamiltonian derived
from electrodynamics by integrating out some effects of the radiation vacuum field.

In the following, except in Chap.6, an operator Â will be denoted simply A to
ease notations.

3.1 The Non-relativistic Coulomb Hamiltonian Operator

For a collection of N nuclei and n electrons, let R = (R1, . . . ,Rα, . . . ,RN ) and r =
(r1, . . . , ri , . . . , rn) denote the position vectors of the coordinates of the nuclei and
the electrons, respectively. The so-called non-relativistic Coulombmolecular Hamil-
tonian operator may be written as (see the correspondence principle in Sect. 2.2):

Hmol(r,R) = V el−el(r) + V nu−nu(R) + V nu−el(r,R) + T el(r) + T nu(R) . (3.1)

© Springer International Publishing AG 2017
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The various terms occurring are

• the electrostatic repulsion between the electrons,

V el−el(r) =
n∑

j>i

e2

4πε0||ri − r j || , (3.2)

with:

– e, the elementary charge, i.e. the opposite of the electric charge carried by a
single electron,

– ε0, the vacuum permittivity,
– ||ri − r j ||, the distance between electrons i and j ;

• the electrostatic repulsion between the nuclei,

V nu−nu(R) =
N∑

β>α

ZαZβe2

4πε0||Rα − Rβ || , (3.3)

with Zα and Zβ the atomic numbers of nucleiα and β, and ||Rα −Rβ || the distance
between them;

• the electrostatic attraction between the electrons and the nuclei, which is respon-
sible for the stability of molecules,

V nu−el(r,R) = −
n∑

i

N∑

α

Zαe2

4πε0||Rα − ri || ; (3.4)

• the kinetic energy operator for the electrons,

T el(r) = − �
2

2me

n∑

i

(
∂2

∂x2i
+ ∂2

∂y2i
+ ∂2

∂z2i
) , (3.5)

with:

– me, the electron mass,
– xi , yi , zi , the Cartesian coordinates of ri in the (Galilean) axis system fixed in
the laboratory, also called the Laboratory-Fixed (LF) frame;

• the kinetic energy operator for the nuclei,

T nu(R) = −
N∑

α

�
2

2Mα
(

∂2

∂X2
α

+ ∂2

∂Y 2
α

+ ∂2

∂Z2
α

) , (3.6)

with Mα, the mass of nucleus α and Xα, Yα, Zα the Cartesian coordinates of Rα

in the LF frame.
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The molecular Hamiltonian operator in Eq. (3.1) is the quantum-mechanical
observable corresponding to the Coulomb part of the classical Hamiltonian of a set
of N nuclei and n electrons in the Coulomb gauge.1 In particular, it is assumed that
the electrostatic interaction between the charges is instantaneous and that the kinetic
energy operator corresponds to the quantum-mechanical counterpart of the non-
relativistic kinetic energy. In addition, only the electrostatic interactions between the
particles are taken into account (since the electrons and nuclei move, some magnetic
forces are also present but will not be considered here).

Obviously, the present approach is notwell-suited to treat strong relativistic effects
but has the great advantage that the Coulomb potential energy clearly separates out
[1]. For the slow-moving particles in bound states, which are studied in molecular
physics, this Coulomb Hamiltonian operator is an excellent approximation, and
relativistic and magnetic effects can be treated as corrections. For instance, it may
be necessary to add relativistic corrections when considering electrons in atoms
with high atomic numbers since, in that case, electrons, especially the core electrons
close to the nucleus, may reach relativistic velocities. These relativistic corrections
can be derived from the Dirac equation, which describes the motion of the electrons
in a coherent way with both the principles of quantum mechanics and the theory
of special relativity [3]. For instance, it may be necessary to add spin-orbit terms
describing the interactions between the electron spin and themagnetic field generated
by the electron orbit around the nucleus [4]. This may be important when considering
electronic states with a total spin that is different from zero. For free radicals, even
in the electronic ground state, the spin-orbit coupling may not be negligible.

The time-independent Schrödinger equation corresponding to the molecular
Hamiltonian reads (a discrete spectrum being assumed, see Eq. (2.29) of Sect. 2.1.4),

Hmol(r,R)�mol
l (r,R) = El�

mol
l (r,R) . (3.7)

It provides a prescription for getting the molecular eigenenergies, El , and eigenfunc-
tions, �mol

l (r,R).
The corresponding time-dependent Schrödinger equation reads (see Eq. (2.28) of

Sect. 2.1.4)

Hmol(r,R)�mol(r,R, t) = i�
∂�mol(r,R, t)

∂t
. (3.8)

It provides a prescription for describing the evolution in time of a molecular wave-
function.

These equations are extremely difficult to solve and several approximations and
separations of variables are required tomake them easier to handle and to understand.
Moreover, the molecular Hamiltonian operators as given in Eq. (3.1) correspond to
mere shapeless heaps of nuclei and electrons, with nuclear and electronic coordi-
nates referred to a LF frame. They do not involvemolecular parameters such as bond

1See the correspondence principle in Sect. 2.2.

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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lengths and angles, and the only quantities occurring are the masses and the charges
of the nuclei and the electrons that make up the molecular system. Such seemingly
harmless concepts as electronic state,molecular orbital,molecular shape and poten-
tial energy surface, rotational and internal motion, Coriolis coupling come about
because of approximations and separation of variables (Ref. [5]) that will be stud-
ied in more detail in the following sections. However, let us first sketch the most
important one i.e. the separation of the electronic and nuclear motions.

3.2 Separation of the Electronic and Nuclear Motions

3.2.1 General Overview

Let us split the molecular Hamiltonian operator of Eq. (3.1) as follows:

Hmol(r,R) = T nu(R) + Hel(r;R) , (3.9)

where

Hel(r;R) = V el−el(r) + V nu−nu(R) + V nu−el(r,R) + T el(r) (3.10)

denotes what is traditionally called, in spite of the presence of the repulsion potential,
V nu−nu(R), the electronic Hamiltonian for a given nuclear configuration R. For this
Hamiltonian, the nuclear positions are considered simply as parameters since the
nuclear kinetic energy term T nu(R) has been left out. For this reason, this electronic
Hamiltonian is often called the clamped-nucleusHamiltonian. This can be seen as an
attempted separation of the electronic and nuclear motions based on the (classical)
physical picture that the rapidly moving light electrons instantaneously follow the
slowly moving heavy nuclei. ‘‘Clamping the nuclei” can be regarded as a way to
introduce “by hand” the shape of the molecular systems but, although intuitively
plausible, it may lead to some subtle conceptual problems concerning the structure
of molecules [6, 7]. Some attempts to extract elements of molecular structure from
all-particle (nuclei and electrons) wave functions have been realized [8].

Let us now turn to the solution of the time-dependent molecular Schrödinger
equation Eq. (3.8). Using an orthonormal basis set of nuclear functions, {ϕnu

λ (R)},
and an orthonormal basis set of electronic functions, {�el

m(r;R)}, we express the
solution as a standard expansion

�mol(r,R, t) =
∑

m

∑

λ

dmλ(t)ϕnu
λ (R)�el

m(r;R) , (3.11)
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with
∫

ϕnu
λ

�
(R)ϕnu

μ (R)dR = δλμ , (3.12)

and2

∫
�el

m
�
(r;R)�el

n (r;R)dr = 〈�el
m;R|�el

n ;R〉r = δmn , (3.13)

for each nuclear configuration R. Note that the electronic basis functions, �el
m(r;R),

as for now quite general, are however parametrized by the nuclear coordinates, R.
This reflects the asymmetric treatment of the electrons and the nuclei alluded to
above and will enable a drastic reduction of the number of electronic functions to be
used as shown below.

We rewrite Eq. (3.11) as follows3:

�mol(r,R, t) =
∑

m

�m(R, t)�el
m(r;R) , (3.14)

with

�m(R, t) =
∑

λ

dmλ(t)ϕnu
λ (R) . (3.15)

In this approach, the time dependence of the molecular wavefunction, �mol(r,R, t),
is carried by the nuclear wavefunctions, �m(R, t), associated with the electronic
basis function �el

m(r;R).

Next, introducing Eq. (3.14) into the time-dependent Schrödinger equation (3.8),
multiplying, on the left, both sides of this equation by �el �

n (r;R) and integrating
over the coordinates of the electrons, yields4

∑

m

〈�el
n ;R|Hmol(R)�m(R, t)|�el

m;R〉r =

i�
∑

m

〈�el
n ;R|�el

m;R〉r ∂�m(R, t)

∂t
. (3.16)

In view of the orthonormality of the electronic basis functions (Eq. (3.13)) we obtain
the following system of coupled differential equations

2A bracket notation 〈|〉r is used to indicate an integration over the electronic coordinates, r, alone.
3Also known as the Born expansion (see Eq. (3.56)).
4As in Eq. (3.13) a Dirac bracket notation 〈|〉r has been used for the integration over the electronic
coordinates, r, which have thus been left out in Hmol , �el

m and Hel .
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∑

m

〈�el
n ;R|Hmol(R)|�el

m;R〉r �m(R, t) = i�
∂�n(R, t)

∂t
. (3.17)

Now, substituting into the previous equation the expression of Hmol(r,R) as given
in Eq. (3.9), we obtain the time-dependent Schrödinger equation in the form of
the following system of coupled differential equation (in bracket notation for the
electronic functions),

∑

m

(Tnm(R) + Vnm(R))�m(R, t) = i�
∂�n(R, t)

∂t
, (3.18)

with5

Tnm(R)�m(R, t) = 〈�el
n ;R|T nu(R)| �el

m;R〉r�m(R, t)

=
∫

�el �
n (r;R)T nu(R)�el

m(r;R)dr�m(R, t) .

(3.19)

and
Vnm(R) = 〈�el

n ;R|Hel(R)|�el
m;R〉r . (3.20)

In order to highlight the general structure of these coupled equations (see Eq. (3.17)),
we will, occasionally, write them out in matrix form. So, for instance, if we restrict
ourselves to only two electronic states, i.e.

�mol(r,R, t) = �1(R, t)�el
1 (r;R) + �2(R, t)�el

2 (r;R) , (3.21)

we obtain for the time-dependent Schrödinger equation:

[
T11(R) + V11(R) T12(R) + V12(R)

T21(R) + V21(R) T22(R) + V22(R)

] [
�1(R, t)
�2(R, t)

]
= i�

∂

∂t

[
�1(R, t)
�2(R, t)

]
.

(3.22)

As regards the time-independent Schrödinger equation, the eigenfunction�mol
l (r,R)

associated with the molecular energy El , can also be expanded in the same nuclear
and electronic basis sets, {ϕnu

λ (R)} and {�el
m(r;R)}:

5In order to avoid all ambiguities and misunderstanding, it is worth noting that, in spite of its
appearance, the matrix element Tnm(R) is not a purely multiplicative operator (i.e. a pure number)
but still contains differential operators with respect to R, acting on the nuclear functions �m(R, t).
On the contrary, since Hel (r;R) does not contain differential operators with respect toR, the matrix
element Vnm(R) is a pure multiplicative operator.
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�mol
l (r,R) =

∑

m

∑

λ

dm
λ, l ϕ

nu
λ (R)�el

m(r;R) , (3.23)

which parallels the expansion given in Eq. (3.11), except that the time-dependent
coefficients, dmλ(t), are to be replaced by the time-independent coefficients, dm

λ, l ,
since for each molecular eigenfunction, �mol

l (r,R), indexed by l, a different expres-
sion is needed. This implies that Eqs. (3.15) and (3.14) have to be rewritten, respec-
tively, as

�l
m(R) =

∑

λ

dm
λ, lϕ

nu
λ (R) , (3.24)

and
�mol

l (r,R) =
∑

m

�l
m(R)�el

m(r;R) . (3.25)

Now, for two electronic states only, say states 1 and 2, we obtain

[
T11(R) + V11(R) T12(R) + V12(R)

T21(R) + V21(R) T22(R) + V22(R)

] [
�l

1(R)

�l
2(R)

]
= El

[
�l

1(R)

�l
2(R)

]
.

(3.26)

3.2.2 The Adiabatic Electronic Basis Set

Let us now define a specific electronic basis set frequently used in molecular physics
and quantum chemistry, where the electronic basis functions are the eigenfunctions
of Eq. (3.10). They are called adiabatic electronic states and form the so-called
adiabatic basis set. They are denoted �

el/ad
m (r;R) and thus, by definition,

Hel(r;R)�el/ad
m (r;R) = Eel

m (R)�el/ad
m (r;R) , (3.27)

which entails that

V ad
nm (R) = 〈�el/ad

n ;R|Hel(R)|�el/ad
m ;R〉r

= δnm E
el
m (R) , (3.28)

in view of Eq. (3.27) and the orthonormality relation Eq. (3.13). It is worth noting
that the electronic energy, Eel

m (R), is a function of the nuclear coordinates, R, and
as such, is commonly regarded as a potential energy surface (PES) for the nuclear
motion. For a detailed discussion of the notion of PES see Refs. [6] and [7].
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The expansion of the time-dependent molecular wavefunction (Eq.3.14) particu-
larizes into6

�mol(r,R, t) =
∑

m

�ad
m (R, t)�el/ad

m (r;R) , (3.29)

with

�ad
m (R, t) =

∑

λ

dad
mλ(t)ϕnu

λ (R) . (3.30)

So that the system of coupled differential equations (3.18) becomes

∑

m

(T ad
nm (R) + δnm E

el
m (R))�ad

m (R, t) = i�
∂�ad

n (R, t)

∂t
, (3.31)

with
T ad
nm (R) = 〈�el/ad

n ;R|T nu(R)|�el/ad
m ;R〉r . (3.32)

In particular, Eqs. (3.22) and (3.26) become, respectively,

[
T ad
11 (R) + Eel

1 (R) T ad
12 (R)

T ad
21 (R) T ad

22 (R) + Eel
2 (R)

] [
�ad

1 (R, t)
�ad

2 (R, t)

]
= i�

∂

∂t

[
�ad

1 (R, t)
�ad

2 (R, t)

]
,

(3.33)

and

[
T ad
11 (R) + Eel

1 (R) T ad
12 (R)

T ad
21 (R) T ad

22 (R) + Eel
2 (R)

] [
�

l, ad
1 (R)

�
l, ad
2 (R)

]
= El

[
�

l, ad
1 (R)

�
l, ad
2 (R)

]
.

(3.34)

The use of the adiabatic basis set allows one to introduce the notion of a PES and
simplifies the coupled differential equations by suppressing the potential couplings:
see Eq. (3.28). Nevertheless, a main drawback remains, i.e. the equations are still
coupled through the adiabatic coupling terms, T ad

nm (R) (for n �= m). The next step
in our attempt to solve the molecular Schrödinger equations and to develop a more
physically-intuitive picture of molecular systems is to see under what circumstances
the adiabatic kinetic coupling terms can be approximately neglected.

6Equations (3.29) and (3.30) clearly show that the nuclear wavefunction �ad
m (R, t) depends on the

choice of the electronic basis functions, in particular here the adiabatic electronic basis set.
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3.2.3 The Born-Oppenheimer and Adiabatic Approximations

The Born-Oppenheimer (BO) approximation is amilestone in the theory of molecules
and, even in cases where it fails, it remains a reference to which we compare and
in terms of which we discuss this failure [9]. This approximation takes advantage of
the great difference in masses of electrons and nuclei. Because of this difference, it
is assumed that the nuclei move relatively slowly and may be treated as stationary
while the electrons can respond almost instantaneously to the motion of the nuclei.

To understand more clearly the mathematical conditions corresponding to the
BO approximation, let us first remark that the nuclear kinetic energy operator is
essentially a second derivative with respect to the nuclear variables R,

T nu(R) = − �
2

2M

∂2

∂R2 , (3.35)

where
∂

∂R
=∇R is the gradientwith respect to nuclear coordinates andM corresponds

to a nuclear mass (for the discussion, we do not need to specify anything about its
actual value). For a given (Cartesian) coordinate vector, R = (X,Y, Z), the gradient
operator is defined as

∂

∂R
= ∇R = (

∂

∂X
,

∂

∂Y
,

∂

∂Z
) (3.36)

and the scalar products as

∂

∂R1
· ∂

∂R2
= ∇R1 · ∇R2 = ∂2

∂X1∂X2
+ ∂2

∂Y1∂Y2
+ ∂2

∂Z1∂Z2
(3.37)

and
∂2

∂R2 = ∇R · ∇R = ∇2
R = ∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2
. (3.38)

The action of T nu(R) on a product �ad
m (R, t)�el/ad

m (r;R) results in three terms,

T nu(R)(�ad
m (R, t)�el/ad

m (r;R)) = − �
2

2M
(�el/ad

m (r;R))(
∂2

∂R2 �ad
m (R, t))

− �
2

M
(

∂

∂R
�el/ad

m (r;R)).(
∂

∂R
�ad

m (R, t))

− �
2

2M
(

∂2

∂R2 �el/ad
m (r;R))(�ad

m (R, t)) .

(3.39)

Now, in mathematical terms, the fact that the nuclei move relatively slowly while the
electrons respond almost instantaneously to the motion of the nuclei implies that,
very often, we can assume
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∂�
el/ad
m (r;R)

∂R
≈ 0 , (3.40)

and

∂2�
el/ad
m (r;R)

∂2R
≈ 0 , (3.41)

In view of Eq. (3.39), the above conditions also imply that

T nu(R)�el/ad(r;R) ≈ �el/ad(r;R)T nu(R) . (3.42)

Obviously, the fact that the nuclei are much heavier than the electrons does not
guarantee that Eqs. (3.40) and (3.41) are satisfied for all nuclear configurations, R.
More explicitly, as we will see in Sect. 3.2.5, when the adiabatic electronic states
are close in energy, i.e.

Eel
n (R) ≈ Eel

m (R) , (3.43)

the coupling elements, T ad
nm (R), diverge.

Now, assuming that the BO approximation is strictly valid, i.e.

T nu(R)�el/ad(r;R) = �el/ad(r;R)T nu(R) , (3.44)

implies that

T nu(R)�ad
m (R, t)�el/ad

m (r;R) = �el/ad
m (r;R)T nu(R)�ad

m (R, t) , (3.45)

so that, inserting Eq. (3.45) into Eq. (3.32) yields

T ad/BO
nm (R)�ad

m (R, t) = 〈�el/ad
n ;R|�el/ad

m ;R〉r T nu(R)�ad
m (R, t) , (3.46)

or, in view of the orthonormality of the (adiabatic) electronic basis functions,

T ad/BO
nm (R) = δnm T nu(R) . (3.47)

In addition, as already pointed out (see Eq. (3.28))

V ad
nm (R) = δnm Eel

m (R) . (3.48)

Thus, by means of Eq. (3.47), the BO approximation decouples the systems of the
(still) coupled differential equations (3.18), (3.33) and (3.34) as follows:

• Equation (3.18) becomes
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(T nu(R) + Eel
m (R))�ad

m (R, t) = i�
∂�ad

m (R, t)

∂t
(m = 0, 1, . . .) , (3.49)

where m labels the electronic states.
• Equation (3.33) becomes

(T nu(R) + Eel
1 (R))�ad

1 (R, t) = i�
∂�ad

1 (R, t)

∂t

(T nu(R) + Eel
2 (R))�ad

2 (R, t) = i�
∂�ad

2 (R, t)

∂t
. (3.50)

Equation (3.50) clearly highlights the fact that, within the BO approximation, the
electronic states are decoupled and the adiabatic nuclear wavefunctions,�ad

1 (R, t)
and �ad

2 (R, t) evolve separately on either Eel
1 (R) or Eel

2 (R), which are potential
energy surfaces (PES) provided by the electrons through the electronic Schrödinger
equation (3.27). It follows that the solution of the time-dependent Schrödinger
equation can be written in a product form:

�el/ad
m (r;R)�ad

m (R, t) . (3.51)

Figure3.1 shows an illustration of the evolution of a nuclear wavefunction
�ad

m (R, t) within the Born-Oppenheimer approximation (here for m = 0, i.e. the
electronic ground state).

• Similarly, Eq. (3.34) becomes

Fig. 3.1 Evolution of a wavepacket in an electronic state within the Born-Oppenheimer approxi-
mation
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Fig. 3.2 Example of
potential energy surface of
the electronic ground state,
Eel
0 (R), and of the first three

vibrational levels El0
0 in the

electronic ground state for a
system such as H2. R is the
distance between the two
nuclei

(T nu(R) + Eel
1 (R))�

l1, ad
1 (R) = El1

1 �
l1, ad
1 (R)

(T nu(R) + Eel
2 (R))�

l2, ad
2 (R) = El2

2 �
l2, ad
2 (R) . (3.52)

In view of the decoupling of Eq. (3.34), the set of total eigenvalues {El, (l =
0, 1, . . .)} is worth splitting into {El1

1 , (l1 = 0, 1, . . .)} and {El2
2 , (l2 = 0, 1, . . .)}.

1 and 2 are, of course, electronic indices whereas l1 and l2 are nuclear indices,
for instance, indices labeling rovibrational levels of a molecule within a given
electronic state. The solutions of the time-independent Schrödinger equation can
also be written in product forms:

�el/ad
m (r;R)�lm , ad

m (R) . (3.53)

In Fig. 3.2, we present an example of a potential energy surface: Eel
0 (R) is a

Morse function that could describe, for instance, the potential energy surface of
the electronic ground state of H2. In the latter case, R is the distance between the
two hydrogen nuclei. E0

0 corresponds to energy of the vibrational ground state in
the electronic ground state and E1

0 and E2
0 to the energies of the first and second

excited vibrational states. We will discuss the example of H2 in detail in Sect. 3.5. In
particular, Eq. (3.169) will give an approximate expression of �

el/ad
0 (r;R) around

the equilibrium geometry of the molecules, Eq. (3.172) an approximate expression
of Eel

0 (R) and Eq. (3.177) approximate values of the purely vibrational levels El0
0 .

In the low-energy domain, Eel
0 (R) can be considered as harmonic. The vibrational

eigenfunctions of an harmonic potential are the Hermite functions. Figure3.3 gives
thefirst three vibrational eigenfunctions,�l, ad

0 (R),within a harmonic approximation.
At this point, it is worth mentioning that the adiabatic approximation, which is

close to the BO approximation to the point that it is often confused with it, consists
in writing the molecular wavefunction as a single product from the onset

�mol
ml (r,R) = �l

m(R)�el/ad
m (r;R) , (3.54)
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Fig. 3.3 Examples of
vibrational eigenfunctions
�

l0, ad
0 (R) in the case of a

harmonic potential

and
�mol

m (r,R, t) = �m(R, t)�el/ad
m (r;R) , (3.55)

where the first equation applies to the time-independent picture with l denoting a
(ro-)vibrational state, and the second equation is for a time-dependent wavepacket.
Introducing these single-products of nuclear and electronic functions into the cor-
responding Schrödinger equations automatically yields the decoupled equations of
Eqs. (3.50) and (3.52), except that T nu(R) is replaced by T ad

mm(R), which, as will be
seen in the next section, is a minor difference with respect to the BO approximation.

3.2.4 Breakdown of the Born-Oppenheimer Approximation *

We will show that the Born-Oppenheimer approximation breaks down when the
electronic states are close in energy, i.e. if Eel

n (R) ≈ Eel
m (R), because T ad

nm (R) (in
the adiabatic basis) diverges, which we now discuss in more detail. This singular
behavior reflects the presence of strong vibronic couplings between both electronic
states n and m through the nuclear motion (this may, of course, concern more than
one pair of states).

If the Born-Oppenheimer approximation is not valid, the molecular states can no
longer be written as single products of nuclear and electronic contributions. This
applies to both eigenstates and time-dependent wavefunctions. In contrast, we must
write them as so-called Born expansions (see Eqs. (3.14) and (3.29)),

�(r,R, t) =
∑

m

�el/ad
m (R, t)�el/ad

m (r;R) . (3.56)

The vibrational parts are thus solutions of a system of coupled differential equations
as shown in Eq. (3.18).
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Let us now detail the expression of T ad
nm (R). Let us start from Eq. (3.39) and sum

overm, overlap with the electronic state n, and remove the nuclear wavepacket. This
yields

T ad
nm (R) = δnmT

nu(R) + �
2�nm(R) , (3.57)

where the so-called non-adiabatic couplings�nm(R) describe the dynamical interac-
tion between the electronic structure and the nuclear motion (note that some authors
define �nm(R) with a minus sign and/or containing �

2). They split into a derivative
operator and a multiplicative operator,

�nm(R) = −Fnm(R).
1

M

∂

∂R
− 1

2M
Gnm(R) . (3.58)

where the first-order non-adiabatic couplings, which are in the nuclear coordinate
space, are defined as

Fnm(R) = 〈
�el/ad

n ;R∣∣ ∂

∂R
�el/ad

m ;R〉
r , (3.59)

and the second-order non-adiabatic scalar couplings as

Gnm(R) = 〈
�el/ad

n ;R∣∣ ∂2

∂R2 �el/ad
m ;R〉

r . (3.60)

As a consequence, the coupled equations can be recast as

(T nu(R) + Eel
n (R))�n(R, t) +

∑

m

�
2�nm(R)�m(R, t) = i�

∂�n(R, t)

∂t
. (3.61)

This shows that neglecting �nm(R) is equivalent to the Born-Oppenheimer approx-
imation (see Eq. (3.49)). Neglecting �nm(R) for n �= m while keeping �nn(R) is
equivalent to the adiabatic approximation mentioned in the previous section.

3.2.5 The Off-Diagonal Hellmann-Feynman Theorem *

The diagonal Hellmann-Feynman theorem is widely used in practice to calculate
forces (slopes in the PES) analytically in quantum chemistry. The off-diagonal
Hellmann-Feynman theorem is a natural extension that provides analytic relation-
ships for the first-order non-adiabatic couplings, for n �= m,

Fnm(R) =
〈�el/ad

n ;R| ∂

∂R
Hel(R)|�el/ad

m ;R〉r
Eel
m (R) − Eel

n (R)
, (3.62)



3.2 Separation of the Electronic and Nuclear Motions 39

where Em(R) − En(R) is the energy gap between the two states. This shows that
T ad
nm (R) diverges when the electronic states become degenerate.
The derivation of this formula is not complicated, it relies on the assumption that

the electronic states are the exact eigenstates of Hel(R). Let us first write, for the
first two electronic adiabatic states,

Hel(r;R)�
el/ad
1 (r;R) = Eel

1 (R)�
el/ad
1 (r;R) , (3.63)

and
Hel(r;R)�

el/ad
2 (r;R) = Eel

2 (R)�
el/ad
2 (r;R) . (3.64)

In other words,
Eel
1 (R) = 〈�el/ad

1 ;R|Hel(R)|�el/ad
1 ;R〉r , (3.65)

Eel
2 (R) = 〈�el/ad

2 ;R|Hel(R)|�el/ad
2 ;R〉r , (3.66)

0 = 〈�el/ad
1 ;R|Hel(R)|�el/ad

2 ;R〉r . (3.67)

Applying the gradient,
∂

∂R
, to the off-diagonal element gives 0, since 〈�el/ad

1 ;R|Hel

(R)|�el/ad
2 ;R〉r is identically zero for all R. In other words,

0 = ∂

∂R
〈�el/ad

1 ;R|Hel(R)|�el/ad
2 ;R〉r . (3.68)

We thus obtain

0 = 〈 ∂

∂R
�

el/ad
1 ;R|Hel(R)|�el/ad

2 ;R〉r + 〈�el/ad
1 ;R| ∂

∂R
Hel(R)|�el/ad

2 ;R〉r

+ 〈�el/ad
1 ;R|Hel(R)| ∂

∂R
�

el/ad
2 ;R〉r . (3.69)

Using the hermiticity of the Hamiltonian operator, we get

0 = Eel
2 (R)〈 ∂

∂R
�

el/ad
1 ;R|�el/ad

2 ;R〉r

+ Eel
1 (R)〈�el/ad

1 ;R| ∂

∂R
�

el/ad
2 ;R〉r + 〈�el/ad

1 ;R| ∂

∂R
Hel(R)|�el/ad

2 ;R〉r .
(3.70)

On the other hand we have

∂

∂R
〈�el/ad

1 ;R|�el/ad
2 ;R〉r = 〈 ∂

∂R
�

el/ad
1 ;R|�el/ad

2 ;R〉r+〈�el/ad
1 ;R| ∂

∂R
�

el/ad
2 ;R〉r ,

(3.71)
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and
∂

∂R
〈�el/ad

1 ;R|�el/ad
2 ;R〉r = 0 , (3.72)

since the eigenfunctions are orthogonal for all R. Thus,

〈 ∂

∂R
�

el/ad
1 ;R|�el/ad

2 ;R〉r = −〈�el/ad
1 ;R| ∂

∂R
�

el/ad
2 ;R〉r . (3.73)

This leads to

0 = (Eel
1 (R) − Eel

2 (R))〈�el/ad
1 ;R| ∂

∂R
�
el/ad
2 ;R〉r + 〈�el/ad

1 ;R| ∂

∂R
Hel (R)|�el/ad

2 ;R〉r .

(3.74)
Making use of Eq. (3.59) for the special case n = 1 and m = 2, the above equations
can be written as

F12(R) =
〈�el/ad

1 ;R| ∂

∂R
Hel(R)|�el/ad

2 ;R〉r
Eel
2 (R) − Eel

1 (R)
. (3.75)

which proves Eq. (3.62), having set n = 1 and m = 2.

3.2.6 The Electronic Basis Sets: An Overview

The molecular Hamiltonian matrix in the electronic basis set, �el
n (r;R), can be split

into two terms: one corresponding to the kinetic energy operator for the nuclei (kinetic
energy operator matrix):

Tnm(R) = 〈�el
n ;R|T nu(R)|�el

m;R〉r , (3.76)

and one for the electronic Hamiltonian (potential energy operator matrix):

Vnm(R) = 〈�el
n ;R|Hel(R)|�el

m;R〉r . (3.77)

For the sake of simplicity, let us consider the case of two electronic states only.
The coupled equations read

[
T11(R) + V11(R) T12(R) + V12(R)

T21(R) + V21(R) T22(R) + V22(R)

] [
�1(R, t)
�2(R, t)

]
= i�

∂

∂t

[
�1(R, t)
�2(R, t)

]
.

(3.78)

Now, three cases must be clearly distinguished (the structure of the Hamiltonian
matrix is summarized in Table 3.1):
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Table 3.1 Hamiltonianmatrix for two electronic states in different electronic basis sets and different
approximations (the matrix for the adiabatic approximation is not given)

General case:

⎡

⎢⎢⎢⎣
T11(R) + V11(R) T12(R) + V12(R)

T12(R) + V12(R) T22(R) + V22(R)

⎤

⎥⎥⎥⎦

with

Tnm(R) = 〈�el
n ;R|T nu(R)|�el

m ;R〉r

and

Vnm(R) = 〈�el
n ;R|Hel (R)|�el

m ;R〉r

Adiabatic basis set:

⎡

⎢⎢⎢⎣
T ad
11 (R) + Eel

1 (R) T ad
12 (R)

T ad
21 (R) T ad

22 (R) + Eel
2 (R)

⎤

⎥⎥⎥⎦

Adiabatic basis set with BO approximation:

⎡

⎢⎢⎢⎣
T nu(R) + Eel

1 (R) 0

0 T nu(R) + Eel
2 (R)

⎤

⎥⎥⎥⎦

Diabatic basis set:

⎡

⎢⎢⎢⎣
T nu(R) + V dia

1 (R) V dia
12 (R)

V dia
21 (R) T nu(R) + V dia

2 (R)

⎤

⎥⎥⎥⎦
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• In the adiabatic basis set and without the Born-Oppenheimer approximation, the
coupled equations read

[
T ad
11 (R) + Eel

1 (R) T ad
12 (R)

T ad
21 (R) T ad

22 (R) + Eel
2 (R)

] [
�ad

1 (R, t)
�ad

2 (R, t)

]
= i�

∂

∂t

[
�ad

1 (R, t)
�ad

2 (R, t)

]
,

(3.79)

with Eel
1 (R) and Eel

2 (R) the potential energy surfaces of states 1 and 2 that can be
calculated with quantum chemistry methods. T ad

12 (R) diverges when the potential
energy surfaces are degenerate.

• In the adiabatic basis set and within the adiabatic approximation, T ad
12 (R) is

assumed to be equal to 0 and the equations are no longer coupled. They read

[
T ad
11 (R) + Eel

1 (R) 0
0 T ad

22 (R) + Eel
2 (R)

] [
�ad

1 (R, t)
�ad

2 (R, t)

]
= i�

∂

∂t

[
�ad

1 (R, t)
�ad

2 (R, t)

]
.

(3.80)

• In the adiabatic basis set and within the Born-Oppenheimer approximation,
T ad/BO
nn (R) is assumed to be equal to T nu(R). The uncoupled equations read

[
T nu(R) + Eel

1 (R) 0
0 T nu(R) + Eel

2 (R)

] [
�
ad/BO
1 (R, t)

�
ad/BO
2 (R, t)

]
= i�

∂

∂t

[
�
ad/BO
1 (R, t)

�
ad/BO
2 (R, t)

]
.

(3.81)

• We will see in Chap.4, especially in Sect. 4.3, when the coupling between the
electronic functions can no longer be neglected, one cannot work in the adia-
batic electronic basis set due to the divergence of the kinetic couplings. One then
switches to a basis set of diabatic electronic functions, �

el/dia
n (r;R). There is a

unitary transformation between the adiabatic and diabatic basis functions and in
the diabatic basis set we assume that

T dia
12 (R) = T dia

21 (R) = 〈�el/dia
1 ;R|T nu(R)|�el/dia

2 ;R〉r ≈ 0 , (3.82)

and T dia
11 (R) = T dia

22 (R) ≈ T nu(R) so that the set of coupled equations becomes

[
T nu(R) + V dia

1 (R) V dia
12 (R)

V dia
21 (R) T nu(R) + V dia

2 (R)

] [
�dia

1 (R, t)
�dia

2 (R, t)

]
= i�

∂

∂t

[
�dia

1 (R, t)
�dia

2 (R, t)

]
.

(3.83)

The functions V dia
1 (R), V dia

2 (R) and V dia
12 (R) are obtained by a diabatization

procedure: an example is given in Sect. 4.4. Let us just notice here that diabatic
states vary smoothly as functions of the nuclear coordinates and often have a clear
interpretation from a chemical point of view.

http://dx.doi.org/10.1007/978-3-319-53923-2_4
http://dx.doi.org/10.1007/978-3-319-53923-2_4
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3.3 Molecular Coordinates

The aim of the present section is to describe in some detail coordinate changes that
facilitate the separation of variables, in particular, the separation of the total cen-
ter of mass (Sects. 3.3.1 and 3.3.2), the description of the shape and the rotation of
a molecular system by means of internal and orientation coordinates, respectively,
(Sect. 3.3.3) and the notion of potential energy surface (PES) (Sect. 3.3.4). We will
also revisit the separation of the electronic and nuclear motions and, at the same time,
discuss the approximations which support some common and closer-to-the-intuition
concepts and parameters used in chemistry and molecular physics and alluded to at
the end of Sect. 3.1. In this respect, an important result of the present section is Eq.
(3.129), where a clear separation of the nuclear kinetic energy, expressed in terms
of shape and rotation coordinates, and the electronic kinetic energies is obtained
subject to two (small) approximations. It is worth noting here that two methods exist
for changing coordinates in a Hamiltonian operator:

(1) Starting from the quantumHamiltonian operator in Cartesian coordinates and
changing to generalized curvilinear coordinates using the chain rule.

(2) Starting from the classical Hamiltonian expressed in generalized curvilinear
coordinates and using the quantum mechanical postulates to change to the corre-
sponding quantum Hamiltonian operator.

The first procedure will be mainly used in the present chapter, while the second
one, as well as a mix of both procedures, will be developed in Chap.6.

3.3.1 Separation of the Total Center of Mass and Internal
Motions of the Molecular System *

Let us consider again the non-relativistic Coulomb Hamiltonian operator for a mole-
cular system regarded as a collection of N nuclei and n electrons (see Eq. (3.1)). We
follow rather closely Ref. [4]. For a careful approach see Ref. [10].

Given an arbitrary laboratory-fixed (LF) Cartesian axis system (XLF ,YLF , ZLF )

assumed to be Galilean, let the coordinates of all particles (N nuclei plus n electrons)
be denoted collectively as

R̃LF = (R̃
1
LF , . . . , R̃

r
LF , . . . , R̃

NT =N+n
LF )

= (X̃1
LF , Ỹ 1

LF , Z̃1
LF , . . . , X̃ r

LF , Ỹ r
LF , Z̃ r

LF , . . . , X̃ NT
LF , Ỹ NT

LF , Z̃ NT
LF ) .

(3.84)

http://dx.doi.org/10.1007/978-3-319-53923-2_6
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If we want to distinguish between electrons and nuclei, the position variables, R̃
r
LF

(r = 1, . . . , N , N + 1, . . . , NT = N + n), may be split up into two sets, one set
consisting of N coordinate vectors, Rα

LF (α = 1, . . . , N ) describing the nuclei and
the other set of n coordinate vectors, riLF (i = 1, . . . , n) describing the electrons
as in the previous sections. Thus, the total non-relativistic kinetic operator given by
T el(r) + T nu(R) of Eq. (3.1) can now be written as

T (R̃LF ) = −�
2

2

NT∑

r=1

1

mr
(

∂2

∂ X̃ r 2
LF

+ ∂2

∂Ỹ r 2
LF

+ ∂2

∂ Z̃ r 2
LF

) , (3.85)

with mr the mass of particle r .
Using the gradient operator notation (see Eq. (3.36)), we have

T (R̃LF ) = −�
2

2

NT∑

r=1

1

mr
∇2

R̃
r
LF

. (3.86)

An explicit separation of the total center of mass and the internal motions is
possible because the Coulomb interactions are translationally invariant and various
choices of equivalent internal coordinates are possible. A usual way to proceed is
to introduce a space-fixed (SF) axis system (XSF ,YSF , ZSF ) with origin at the total
molecular center of mass (CM) and axes parallel to (XLF ,YLF , ZLF ), so that

R̃
r
SF = R̃

r
LF − RCM

LF (r = 1, . . . , NT )

(3.87)

where

RCM
LF = 1

MT

NT∑

r=1

mr R̃
r
LF (3.88)

is the coordinate vector of the (total) center of mass in the LF axis system and

MT =
NT∑

r=1

mr (3.89)

is the total mass of the molecular system. To separate the translational kinetic energy,
we have to write the total LF kinetic energy operator in terms of the 3NT coordinates

R̃SF = (R̃
CM
LF , R̃

2
SF , . . . , R̃

NT

SF ) , (3.90)

where the coordinates of particle 1, for instance, have been eliminated upon using
the center of mass relation
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R̃
1
SF = − 1

m1

NT∑

r=2

mr R̃
r
SF . (3.91)

Therefore, applying to the total LF kinetic energy operator (Eq. (3.86)) the chain
rule (we refer to complement Sect. 3.6.3 for a quick reminder concerning the chain
rule) for the LF → SF coordinate transformation

(R̃
1
LF , R̃

2
LF , . . . , R̃

NT

LF ) → (R̃
CM
LF , R̃

2
SF , . . . , R̃

NT

SF ) , (3.92)

yields, after a slightly tedious but straightforward calculation, the following expres-
sion for the total kinetic energy operator

T Tot = TCM(RCM
LF ) + T 0(R̃

2
SF , . . . , R̃

NT

SF ) + T ′(R̃
2
SF , . . . , R̃

NT

SF ) , (3.93)

where:

TCM(RCM
LF ) = − �

2

2MT
∇2

RCM
LF

, (3.94)

T 0(R̃
2
SF , . . . , R̃

NT

SF ) = −�
2

2

NT∑

r=2

1

mr
∇2

R̃
r
SF

, (3.95)

and

T ′(R̃
2
SF , . . . , R̃

NT

SF ) = + �
2

2MT

NT∑

r,s=2

∇R̃
r
SF

· ∇R̃
s
SF

. (3.96)

Moreover, the electrostatic potential energy given by

V (RSF ) =
NT∑

r=1,r<s

CrCse2

4πε0||R̃r
SF − R̃

s
SF || , (3.97)

with Cr=α = Zα for nucleus α and Cr=i = −1 for the electrons, is translationally
invariant so that the Hamiltonian operator7

HSF
rve = T 0 + T ′ + V (3.98)

also called the spin-free rovibronic Hamiltonian [4] is translationally invariant and
gives rise to the rovibronic Schrödinger equation

Hrve�rve = Erve�rve . (3.99)

7rve stands for rotational, vibrational, electronic.
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The total center of mass of the molecular system has now been separated but as
a result of this coordinate change, the kinetic energy operator (3.93) is no longer
diagonal in the particle indices owing to the presence of T ′ (see Eq. (3.96)) where
the indices are mixed, which means that nuclear and electronic motions are coupled.
In order to highlight the structure of the kinetic energy operators, we refer to Sect.
3.6.1 where a simple example of a molecular system made of two electrons and three
nuclei is given, together with matrix expressions that clearly bring out the coupling
terms.

3.3.2 Nuclear Center of Mass Coordinates *

Let all particles, electrons and nuclei, be referred to the nuclear center of mass and
space-fixed (NSF) axis system (XNSF ,YNSF , ZNSF ) parallel to the (XSF ,YSF , ZSF )

system but with the origin at the nuclear center of mass, so that

R̃
r
N SF = R̃

r
SF − RNCM

SF (r = 2, . . . , NT ) , (3.100)

where

RNCM
SF = 1

MN

N∑

α=1

mαRα
SF (3.101)

is the coordinate vector of the nuclear center of mass in the SF frame and

MN =
N∑

α=1

mα (3.102)

is the total nuclear mass of the molecular system. By the very definition of the total
center of mass, we have in the SF frame

−
N∑

α=1

mαRα
SF = me

n∑

i=1

riSF , (3.103)

or in view of Eq. (3.101)

− RNCM
SF = me

MN

n∑

i=1

riSF . (3.104)

So that Eq. (3.100) may be written as
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R̃
r
N SF = R̃

r
SF + me

MN

n∑

i=1

riSF (r = 2, . . . , NT ) . (3.105)

Distinguishing between nuclei and electrons, we obtain

Rα
NSF = Rα

SF + me

MN

n∑

i=1

riSF (α = 2, . . . , N ) , (3.106)

and

riN SF = riSF + me

MN

n∑

i=1

riSF (i = 1, . . . , n) . (3.107)

Applying to theSpace-Fixed and spin-free rovibronicHamiltonian, HSF
rve = T 0+T ′+

V (See Eqs. (3.95)–(3.98)), the chain rule (again we refer to complement Sect. 3.6.3
for the chain rule) for the SF → NSF coordinate transformation

(R̃
2
SF , . . . , R̃

NT

SF ) → (R2
NSF , . . . ,RN

NSF , r1NSF , . . . , rnN SF ) = (RNSF , rNSF ) (3.108)

yields

HNSF
rve (RNSF , rNSF ) = T nu(RNSF ) + T el(rNSF ) + V (rNSF ,RNSF ) (3.109)

with

T nu(RNSF ) = −�
2

2

N∑

α=2

1

mα
∇2

Rα
NSF

+ �
2

2MN

N∑

α,β=2

∇Rα
NSF

· ∇Rβ
NSF

, (3.110)

T el(rNSF ) = − �
2

2me

n∑

i=1

∇2
riN SF

− �
2

2MN

n∑

i, j=1

∇riN SF
· ∇r jN SF

, (3.111)

and

V (rNSF ,RNSF ) =
n∑

j>i

e2

4πε0||riN SF − r jN SF || −
n∑

i

N∑

α

Zαe2

4πε0||Rα
NSF − riN SF ||

+
N∑

β>α

ZαZβe2

4πε0||Rα
NSF − Rβ

NSF || . (3.112)
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From these Eqs. (3.109–3.111), it is obvious that the kinetic energies of the nuclei and
the electrons are separated. The second term on the right-hand side of Eq. (3.111)
often called the mass polarization it term, gives rise to coupling of the electronic
motions but this kinetic energy correlation term is a nuclear mass dependent contri-
bution and can be neglected in all but the most precise works in spectroscopy.

The second term on the right-hand side of Eq. (3.110) gives rise to coupling of
the nuclear motions but, unlike the above electronic mass polarization terms, cannot
be systematically neglected but can nevertheless be reduced and even eliminated by
a clever choice of nuclear curvilinear coordinates (see next Sect. 3.3.3).

Henceforth, the electronic mass polarization term is left out, so that the com-
mon expression of the NSF spin-free rovibronic Hamiltonian operator is given by
Eqs. (3.109), (3.110), and (3.112), the electronic kinetic energy operator being the
diagonal expression

T el(rNSF ) = − �
2

2me

n∑

i=1

∇2
riN SF

. (3.113)

Finally, we refer to Sect.3.6.2 where the SF → NSF coordinate change is explicitly
given in the case of a molecular system made of two electrons and three nuclei.

3.3.3 Internal (Shape/Deformation) and Rotational
Coordinates *

In order to describe the rotation and deformation of the molecular system, motions
supposed to be carried by the nuclei only, it is necessary to introduce a Body-Fixed
(BF) frame, i.e. a BF axis system (XBF ,YBF , ZBF ), with origin at the nuclear center
of mass, and with an orientation relative to the nuclear axis system (NSF), this
orientationbeing defined by the positions of the nuclei only. These axes should be
called nuclear axes but they have come to be called Body-Fixed (BF) axes. Again,
their orientation is determined by the coordinates of the nuclei only, the coordinates
of the electrons being not involved. This is called defining or embedding a frame
fixed in the body and a usual way to proceed is to consider the BF nuclear coordinates
(Xα

BF ,Y α
BF , Zα

BF ) related to the NSF nuclear coordinates (Xα
NSF ,Y α

NSF , Zα
NSF ) by

⎡

⎣
Xα

BF
Y α
BF

Zα
BF

⎤

⎦ =
⎡

⎣
CXX CXY CXZ

CY X CYY CY Z

CZX CZY CZZ

⎤

⎦

⎡

⎣
Xα

NSF
Y α
NSF

Zα
NSF

⎤

⎦ , (3.114)

where α = 2, . . . , N and C is an orthogonal matrix, the elements of which are direc-
tion cosines connecting the BF and NSF axes. These matrix elements are functions
of three Euler angles� = (α,β, γ), which are the orientation variables defining the
position of the BF frame with respect to the NSF frame.
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There are twelve ways of specifying Euler angles and we use here the one of Zare
[11] where α and β are the ordinary spherical angles of the eBFz vector in the frame
and γ is the angle measuring a clockwise rotation about eBFz . In other words, for a
given vector R, the relation between the SF- and BF-components of this vector is
given by

⎡

⎣
XBF

YBF

ZBF

⎤

⎦ =
⎡

⎣
cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎤

⎦ ×
⎡

⎣
cosβ 0 − sin β
0 1 0

sin β 0 cosβ

⎤

⎦

×
⎡

⎣
cosα sinα 0

− sinα cosα 0
0 0 1

⎤

⎦

⎡

⎣
XNSF

YNSF

ZNSF

⎤

⎦ .

(3.115)

The corresponding transformation from the NSF frame to the BF frame is shown
in Fig. 3.4. The first two Euler angles, α and β, are the two spherical angles of any
vector parallel to the zBF axis. α corresponds to a rotation about the zNSF axis, α
∈ [0, 2π[ and the frame obtained from this rotation only and starting from the NSF
frame can be called the E1 frame (for one Euler angle). β corresponds to a rotation
about the yE1 axis and β ∈ [0,π]. This rotation starting from the E1 frame leads to
the E2 frame (for two Euler angles). We note that yE1 = yE2 by construction. Finally,
the angle γ corresponds to a rotation about the zE2 axis. γ ∈ [0, 2π[. By definition,
we thus have zBF = zE2.

Fig. 3.4 Definition of the
three Euler angles that
determine the BF frame with
respect to the NSF frame
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As mentioned above, we require that the matrix C be specified entirely in terms
of the nuclear coordinates RNSF , i.e.

C = C̃(�(RNSF )) = C(RNSF ) . (3.116)

Moreover, since the RBF = (R2
BF ,R3

BF , . . . ,RN
BF ) are fixed in the body, not all

their 3N − 3 components are independent for there must be three relations among
them. Hence, the Cartesian coordinates Xα

BF , Y
α
BF , and Zα

BF (α = 2, . . . , N )

must be expressible in terms of 3N − 6 independent internal shape coordinates
q = {q1, . . . , q3N−6}.

Similarly, the BF electronic Cartesian coordinates xiBF , yiBF , ziBF (i = 1, . . . , n)

are related to the NSF electronic Cartesian coordinates by

⎡

⎣
xiBF
yiBF
ziBF

⎤

⎦ = C(RNSF )

⎡

⎣
xiN SF
yiN SF
ziN SF

⎤

⎦ , (3.117)

with i = 1, . . . , n and where C(RNSF ) is, of course, the same orthogonal matrix as
in Eqs. (3.115) and (3.116).

To change the coordinates in themolecularHamiltonianoperator from (R2
NSF , . . . ,

RN
NSF , r1NSF , . . . , rnN SF ) to the internal (shape), rotational and BF electronic coordi-

nates (q,�, rBF ) = (q1, . . . , q3N−6,α,β, γ, x1BF , . . . , znBF ), we can apply the chain
rule to express the derivatives of the Rα

NSF and riN SF in terms of these new coor-
dinates. The transformation from (RNSF , rNSF ) to (q,�, rBF ) is assumed to be
(locally) invertible so that, together with the specific role of the nuclei as carrying
the deformation and rotation motions of the molecular system, we may write

q = q(RNSF ) , (3.118)

� = �(RNSF ) , (3.119)

rBF = rBF (RNSF , rNSF ) , (3.120)

this last expression resulting from Eq. (3.117).
Using the chain rule and a rather obviousmatrix notation, we canwrite the expres-

sions of
∇RNSF = (∇R2

NSF
, . . . ,∇RN

NSF
) , (3.121)
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and

∇rNSF = (∇r1NSF
, . . . ,∇rnN SF

) , (3.122)

in terms of ∇q,∇�,∇rBF as follows

⎡

⎢⎢⎣

∇RNSF

∇rNSF

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

∂q
∂RNSF

∂�
∂RNSF

∂rBF
∂RNSF

0 0 ∂rBF
∂rNSF

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇q

∇�

∇rBF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.123)

since ∂q
∂rNSF

= 0 and ∂�
∂rNSF

= 0 in view of Eqs. (3.118) and (3.119). In addition,
owing to Eq. (3.117)

∂riBF
∂riN SF

= C , (3.124)

so that, substituting

∇riN SF
= ∂riBF

∂riN SF

· ∇riBF
= C · ∇riBF

(3.125)

into the electronic kinetic energy (without the mass polarization terms),

T el(rNSF ) = − �
2

2me

n∑

i=1

∇2
riN SF

, (3.126)

yields

T el(rBF ) = − �
2

2me

n∑

i=1

∇2
riBF

. (3.127)

Concerning the nuclei, since ∂rBF
∂RNSF

�= 0, we see from Eq. (3.123) that deriva-
tives with respect to the electronic coordinates are introduced into the expression of
∇RNSF and hence in the expression for T nu . In other words [4], although by using
(XNSF ,YNSF , ZNSF ) coordinates, we achieve a complete separation of the electronic
and nuclear coordinates in the kinetic energy operator T el + T nu , when we change
to (XBF ,YBF , ZBF ) coordinates (in order to introduce the rotation and deformation
coordinates), we introduce the electronic coordinates back into T nu . The effect of the
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nuclear-electronic coupling terms introduced into T nu is, however, generally small
and these terms are generally neglected in the rotation-deformation Hamiltonian that
is obtained by using a BF frame and (q,�, rBF ) coordinates.

From a mathematical point of view, we see that the derivatives with respect to
electronic coordinates occur in T nu because the rBF coordinates of the electrons
depend on the RNSF coordinates of the nuclei through the dependence of the matrix
C on the nuclear coordinates (see Eqs. (3.117) and (3.120)).

From a physical point of view, we are now referring the electrons to the BF frame
that rotates with the nuclei so that the electrons are subject to centrifugal and Coriolis
forces in this axis system. A fully detailed and careful derivation of the Hamiltonian
has been given by Sutcliffe [10].

As mentioned above for the simplification of the rotation-deformation Hamil-
tonian, it is well-worth neglecting the coupling between electrons and nuclei, i.e.
neglecting in Eq. (3.123) the matrix ∂rBF

∂RNSF
, so that

[∇RNSF

] =
[

∂q
∂RNSF

∂�

∂RNSF

] [ ∇q

∇�

]
. (3.128)

If the coupling between electrons and nuclei as well as the polarization terms
are neglected, the coordinate change from (RNSF , rNSF ) to (q,�, rBF ) yields the
following expression for the molecular Hamiltonian operator

Hmol(rBF , q,�) = T nu(q,�) + T el(rBF )

+ V el−el(rBF ) + V nu−nu(q) + V nu−el(rBF , q) ,

(3.129)

with T el(rBF ) given by Eq. (3.127).
T nu(q,�) can be derived by substituting Eq. (3.128) into Eq. (3.110), i.e. by

using the chain rule straightforwardly (first procedure for changing coordinates in
a Hamiltonian operator). T nu(q,�) can also be obtained by applying the second
procedure for changing coordinates in a Hamiltonian operator to the coordinate
change (RNSF ) → (q,�), starting from the classical nuclear kinetic energy8

T nu = 1

2

N∑

α=1

mαṘ
α
NSF · Ṙα

NSF , (3.130)

with the constraints
∑

α mαRα
NSF = 0 since the NSF axis system has origin at the

nuclear center of mass.

8The second procedure may equivalently be applied to the coordinate change
(R1

LF , . . . ,Rα
LF , . . . ,RN

LF ) → (RNCM
LF , q,�) starting from the classical nuclear kinetic energy in

the LF frame: T nu = 1
2

∑N
α=1 mαṘ

α
LF · Ṙα

LF .
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The separation of the electronic and nuclear motions can be taken up again and
Eqs. (3.9) and (3.10) be rewritten in terms of the coordinates (q,�, rBF ) by splitting
the molecular Hamiltonian operator as follows

Hmol(rBF , q,�) = Hel(rBF ; q) + T nu(q,�) , (3.131)

with

Hel(rBF ; q) = V el−el(rBF ) + V nu−nu(q) + V nu−el(rBF , q) + T el(rBF )

(3.132)

the electronic Hamiltonian for a given set of relative nuclear positions given by q.
Now Eqs. (3.14), (3.18), (3.19) and (3.20) can be recast in a more explicit way

�(rBF , q,�, t) =
∑

m

∑

λ

dmλ(t)ϕ
nu
λ (q,�)�el

m(rBF ; q)

=
∑

m

�m(q,�, t)�el
m(rBF ; q) , (3.133)

and

∑

m

(Tnm(q,�) + Vnm(q))�m(q,�, t) = i�
∂�n(q,�, t)

∂t
, (3.134)

with

Tnm(q,�) = 〈�el
n ; q|T nu(q,�)|�el

m; q〉rBF , (3.135)

and

Vnm(q) = 〈�el
n ; q|Hel(q)|�el

m; q〉rBF . (3.136)

3.3.4 The Potential Energy Surface and the Nuclear
Hamiltonian Operator

Let us now examine more closely the concept of potential energy for the nuclear
motion. As already pointed out, non-adiabatic couplings can be neglected when the
energy gap between electronic states is large (adiabatic and BO approximation).
In this situation, it is legitimate to use the adiabatic representation introduced in
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Sect. 3.2.2, which corresponds to the eigenfunctions of the electronic Hamiltonian.
Due to the invariance of theCoulomb potentials of Eq. (3.1)with respect to any global
rotation and translation of the molecule, it appears that the adiabatic electronic ener-
gies (the eigenvalues of the electronic Hamiltonian) depend only on 3N-6 internal
coordinates9 that describe the shape of themolecule (themolecular geometry), q, i.e.

Hel(rBF ; q)�el/ad
m (rBF ; q) = Eel

m (q)�el/ad
m (rBF ; q) . (3.137)

for a given electronic state labeled10 m. In practice, one gives a value to q and
computes the corresponding electronic energy, Eel

m (q), at a certain level of theory
(see Sect. 3.5.5)with a quantumchemistry package such as, for example,GAUSSIAN
[12] or MOLPRO [13]. In other words, the electronic Schrödinger equation must be
solved repeatedly, as many times as there are values of q (molecular geometries) to
be explored.

Up to this point, q has played the role of a parameter with respect to the electronic
Hamiltonian and its eigensolutions. Connecting the electronic energies (eigenvalues)
smoothly with respect to continuous variations of q turns Eel

m (q) effectively into a
function of q now considered as a variable. This function, usually referred to as the
potential energy surface plays the role of a potential energy for the nuclear motion,
as the operator Hel(rBF ; q) has been replaced by a function of q to be added to the
nuclear kinetic energy operator within the BO approximation (see Eq.3.49):

(T nu(q,�) + Eel
m (q))�ad

m (q,�, t) = i�
∂�ad

m (q,�, t)

∂t
. (3.138)

To emphasize this identification, we will write Eel
m (q) as V (q) in the following (or

Vm(q) when the label of the adiabatic electronic state is to be specified). The poten-
tial energy surface, V (q), is thus a function of the 3N − 6 internal nuclear coordi-
nates only.

3.4 Interaction with External Fields

In this book, a semi-classical approach is adoptedwhereby the particlesmaking up the
molecule (nuclei and electrons) are subjected to the rules of quantummechanicswhile
the external radiation fields are taken to be classical. In other words, the Hamiltonian
of a molecule in interaction with a radiation can be split into two terms [2]:

H = Hmol(r,R) + Hext . (3.139)

where Hmol(r,R) is the molecular Hamiltonian operator introduced in the previous
sections, which depends on the coordinates of the electrons, r, and of the nuclei, R,

9For diatomicmolecules (N = 2), the number of internal nuclear coordinates is equal to 3N−5 = 1.
10Traditionally, m = 0, 1, 2, . . . and m = 0 corresponds to the ground state.
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but not on the external electromagnetic fields, and Hext is an operator describing
the interaction of classical electromagnetic fields with charged particles. This semi-
classical approach compared to fully quantum electrodynamics theories virtually
gives identical results provided that the external fields are strong enough for any
reciprocal influence on them by the molecular system to be negligible [2]. However,
this semi-classical approach cannot describe processes such as spontaneous emission.

The usual way to tackle the semi-classical approach is to start from the clas-
sical Hamiltonian expression of the interaction of an electromagnetic field with a
charged particle and to apply the correspondence rule to obtain a quantum interac-
tion operator (see e.g. Chaps. 11 and 12 in Bransden and Joachain [14], Chap. 13 in
Cohen-Tannoudji et al. [15] and Chap.5 in Schatz and Ratner [16]). Next, partic-
ularizing to the case of a monochromatic plane wave and taking into account the
fact that the wavelength of the radiation is much larger than the size of the mole-
cule, the interaction operator can be written, after some manipulations and further
approximations, as a dipole interaction with the electric field, the so-called dipole
approximation. In this approach, the electric and magnetic fields must be expressed
in terms of scalar and vector potentials and well-chosen gauges are to be used.

However, the dipole approximation can also be obtained more straightforwardly
as follows (see, e.g. Chap. 3 in Levine [17]). For a monochromatic light wave of
frequency ν and wavelength λ, traveling in the z direction and linearly polarized in
the xy plane, the space and time variations of the electric field E and the magnetic
field B are

E(z, t) = iξx (z, t) = iξ0x cos (ωt − kz) , (3.140)

and
B(z, t) = jBy(z, t) = jB0

y cos (ωt − kz) , (3.141)

where i and j are unit vectors along x and y, ξ0x and B0
y are the maximummagnitudes

of E and B, ω = 2πν is the angular frequency and k = 2π
λ
is the wavenumber.

Thewavelength λ is the distance between successive crests ofE and the frequency
ν is the number of crests that pass a fixed point in space each second.

Thus, we have
λν = c , (3.142)

where c is the speed of light.
In addition, from Maxwell’s equations of electromagnetism it can be shown that

B0
y

ξ0x
= 1

c
, (3.143)

in International System of Units (SI) and the radiation intensity is given by S =
cε0
2 (ξ0x)

2 in SI units (Watt/m2).
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The electric and magnetic fields of the radiation will interact with the molecular
electrons and nuclei giving a time-dependent perturbation. In classical electromag-
netism a charged particle, for instance an electron of velocity v moving in electric
and magnetic fields experiences the Lorentz force

F = −e(E + v × B) , (3.144)

in SI units. From this equation and in view of Eq. (3.143), the ratio of the magnetic
to the electric force is v

c .
For the ground-state hydrogen atom the electron velocity is v = αc = c

137 where α
is the fine structure constant. This is also the order of magnitude for valence electrons
of other atoms and also for electrons in molecules. The nuclei being heavier their
velocities are even smaller and thus to a good approximation, we can ignore the
interaction between B and the electrons and nuclei of a molecule, and consider only
the effect of E.

In order for the radiation to be correctly described by means of a time-dependent
perturbation approach, the effect of the radiation electric fieldmust be a small addition
to the molecular Hamiltonian. To estimate the internal electric field acting on an
electron in an atom, let us calculate the field at a distance of 1 Bohr:

ξ = 1

4πε0

e

a20
∼ 1011

V

m
, (3.145)

inSI units. Ifwe convert this field into a radiation intensity,weobtain 400×1018W/m2

or 400×1014 W/cm2, which is an enormous laser flux. Thus, provided we do not use
high-power lasers,we are justified in considering the radiation as a small perturbation.
The potential energy of interaction between a system of charged particles and the
electric field is

V = −
∑

i

qi xiξx , (3.146)

where xi and qi are the x coordinates and charges of the particles (nuclei and elec-
trons). We thus have for the perturbation part of the Hamiltonian

Hext (t) = −ξ0x
∑

i

qi xi cos (ωt − 2πzi
λ

) . (3.147)

One last step before reaching the dipole approximation is to introduce the long-wave
approximation. Indeed, for transitions e.g. between different molecular electronic
states, the wavelengths usually lie in the ultraviolet, typically λ ≈ 103 Å. For vibra-
tional and rotational transitions thewavelengths are even larger. The size ofmolecules
is about 10–100 Å, so that the wave length is usually much larger than the size of
the molecules and the space variation of the electric field is negligible: zi

λ
≈ 0. With

this further approximation, Eq. (3.147) becomes
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Hext (t) = −ξ0x
∑

i

qi xi cosωt . (3.148)

Now, noticing that μx = ∑
i qi xi is the x component of the dipole moment operator

and ξx (t) = ξ0x cosωt is the x component of the external electric field, using the
vector notation, assuming that the molecular system is neutral and reverting to a
separate notation for electrons and nuclei as used previously, we may write Hext (t)
in the dipole approximation quite generally as

Hext = −µ(r,R) · E , (3.149)

with µ(r,R) the dipole vector of the molecule, and E the external field.
In a molecule, the dipole moment can be split into two parts, one corresponding

to the electrons, µ el(r), and one corresponding to the nuclei, µ nu(R). The electric
dipole moment vector of the molecule thus reads

µ(r,R) = −e
∑

i

ri + e
∑

α

ZαRα

= µ el(r) + µ nu(R) . (3.150)

Let us now integrate over the adiabatic states introduced in Sect. 3.2.2:

〈�el/ad
n (R)|µ(R)|�el/ad

l (R)〉r = µnl(R) = µ el
nl (R) + δnl µ

nu
n (R) .

(3.151)

In the previous equation, µ el
nl (R) and µ nu

n (R) are vectors. The orientation of these
vectors depend on the Euler angles that describe the overall rotation of the system.
However, the components of the vectors themselves depend on the 3N − 6 internal
nuclear coordinates q only, i.e.

µ el
nl (R) = µ el

nl (q) ,

µ nu
n (R) = µ nu

n (q) . (3.152)

Several remarks can be made on Eq. (3.151):

• If n �= l, the matrix elements will induce transitions between different electronic
states.11 In view of (3.151), it is clear that only the contribution coming from
the electrons, i.e. from µel(r), will play a role in these transitions. In addition,
the fact that the µ el

nl (q) matrix elements are functions of q comes only from the
adiabatic electronic states depending on the nuclear coordinates. Now, the deriv-
atives of �

el/ad
n (r;R) with respect to R are often small. In particular, in the Born-

11These transitions generally correspond to wavelengths in the ultraviolet-visible domain.
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Oppenheimer approximation, these derivatives are assumed to be equal to zero (see
Eqs. (3.40) and (3.41)). This allows us to make approximations, e.g. to assume
that µ el

nl (q) is independent on q. Starting from the vibrational ground state in the
electronic ground state,12 when considering the electronic transition to state l, we
can assume thatµ el

0l (q) ≈µ el
0l (qeq), qeq corresponding to the equilibrium geometry

of the molecule in the electronic ground state. This approximation is called the
Condon approximation.

• If n = l, the matrix elements will induce transitions between different vibrational
states.13 For those transitions, both nuclei and electrons contribute. Here, µ nu

n (q)
and µnn(q) cannot be assumed to be constant.

Let us be more specific and let us assume that �mol
i (r,R) and �mol

f (r,R) are two
solutions of the molecular time-independent Schrödinger equation (see Eq. (3.7)).
When the molecule is in interaction with an external field E, the coupling between
�mol

i (r,R) and �mol
f (r,R) is given by the matrix element:

∫
�mol �

f (r,R) (−µ(r,R) · E)�mol
i (r,R)drdR

= −
(∫

�mol �
f (r,R)µ(r,R)�mol

i (r,R)drdR
)

· E . (3.153)

Thus, for a given external field, the coupling between the two eigenfunctions is
proportional to

d f i =
∫

�mol �
f (r,R)µ(r,R)�mol

i (r,R)drdR , (3.154)

which is the transition dipole moment between initial state i and final state f . Using
first order perturbation theory, one can show that the square of the magnitude of this
transition dipole moment,

∣∣∣∣
∫

�mol �
f (r,R)µ(r,R)�mol

i (r,R)drdR

∣∣∣∣
2

, (3.155)

is proportional to the intensity of the transition between initial state i and final state
f 14: see Eq. (9.35) in Sect. 9.5.
Thus, there is resonant absorption of light by the molecule if the energy of the

photon corresponds to the energy difference between two eigenvalues of themolecule.
The efficiency of this absorption is linked to the transition dipole moment between the

12We assume that the ground state potential energy surface has at least one local minimum.
13These transitions generally correspond towavelengths in the infrared domain. Thematrix elements
can also induce transitions between rotational states corresponding to wavelengths in themicrowave
domain.
14See, for instance, Chap.13 in Ref. [15].

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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two corresponding eigenstates. In particular, if for symmetry reasons the transition
dipole moment is equal to zero, the transition is forbidden.

Within the Born-Oppenheimer approximation, the eigenfunctions of the molec-
ular Hamiltonian operator can be written as a product: �

el/ad
m (r;R)�l

m(R). Let us
assume that the molecule is first in the vibrational ground state of its electronic
ground state: �el/ad

0 (r;R)�0
0 (R). Two case must be distinguished:

• First, the final state is a vibrational state, let us say state f , of the electronic ground
state. We thus consider purely (ro)vibrational transitions. The corresponding tran-
sition dipole moment reads

d(0 f )(00) =
∫

�
el/ad �

0 (r;R)�
f �

0 (R)µ(r,R)�
el/ad
0 (r;R)�0

0 (R)drdR ,

=
∫

�
f �

0 (R)

(∫
�

el/ad �

0 (r;R)µ(r,R)�
el/ad
0 (r;R)dr

)
�0

0 (R)dR ,

=
∫

�
f �

0 (R)〈�el/ad �

0 (R)|µ(R)|�el/ad
0 (R)〉r�0

0 (R)dR ,

=
∫

�
f �

0 (R)
(
µ el

00(R) + µ nu
0 (R)

)
�0

0 (R)dR ,

=
∫

�
f �

0 (R)µ00(R)�0
0 (R)dR . (3.156)

Wewill see inChap.9 (more precisely in Sect. 9.5), that propagating thewavepack-
ets μλ

00(R)�0
0 (R), with μλ

00 (λ = x, y, z) the Body-Fixed components of the dipole
vector, will allow us to obtain the infrared spectrum of the molecule.

• Second, the final state is a vibrational state, let us say state f , in another electronic
state, let us say electronic state 1. The corresponding transition dipole moment
reads

d(1 f )(00) =
∫

�
el/ad �

1 (r;R)�
f �

1 (R)µ(r,R)�
el/ad
0 (r;R)�0

0 (R)drdR

=
∫

�
f �

1 (R)

(∫
�

el/ad �

1 (r;R)µ(r,R)�
el/ad
0 (r;R)dr

)
�0

0 (R)dR

=
∫

�
f �

1 (R)〈�el/ad �

1 (R)|µ(R)|�el/ad
0 (R)〉r�0

0 (R)dR

=
∫

�
f �

1 (R)µ el
10(R)�0

0 (R)dR

=
∫

�
f �

1 (R)µ10(R)�0
0 (R)dR . (3.157)

Since µ10(R) is a vector, the transition dipole moment has three components:

http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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dλ
(1 f )(00) =

∫
�

f �

1 (R)μλ
10(q)�

0
0 (R)dR , (3.158)

with λ = x, y, z. If we assume μλ
01(q) ≈ μλ

01(qeq), qeq corresponding to the
equilibrium geometry of the molecule in the electronic ground state (Condon
approximation), we obtain

dλ
(1 f )(00) = μλ

01(qeq)
∫

�
f �

1 (R)�0
0 (R)dR . (3.159)

We will see in Chap.10, that propagating the wavepacket15 �0
0 (R) on the elec-

tronic state 1 will lead to the photoabsorption spectrum from state 0 to state 1.
| ∫ �

f �

1 (R)�0
0 (R)dR|2 are called Franck-Condon factors .

3.5 Illustration with the H2 Molecule

Let us now give some examples of the electronic basis functions �
el/ad
m (r;R) of

Sect. 3.2.2, the potential energy surfaces Vm(q) of Sect. 3.3.4 and the rovibrational
levels of a molecule within a given electronic state Em

l1
of Sect. 3.2.3. For this, let us

consider the smallest neutral molecule. The dihydrogen molecule, H2, is a four-body
system made of two nuclei and two electrons. There is no exact analytical solution
to the corresponding Schrödinger equation. However, the Born-Oppenheimer (BO)
approximation can be used to first separate the electronic problem from the nuclear
one. Second, as regards the resolution of the electronic Schrödinger equation, Eq.
(3.137), the simplest approximation consists in ignoring explicit electron correla-
tion upon treating electron repulsion as a mean field for each electron. Two-electron
wavefunctions (at any fixed geometry) can thus be written as so-called Hartree prod-
ucts of one-electron wavefunctions called molecular orbitals (MOs). This is known
as the orbital (one-electron) approximation and yields the concept of electronic con-
figuration. Further, owing to the fermionic character of electrons, Hartree products
must be antisymmetrized with respect to permutation of the space and spin vari-
ables of the electrons. This is readily formulated in terms of Slater determinants
built on spin-orbitals. In this context, applying the variational principle to such an
ansatz corresponds to mathematically finding the best solution with the correspond-
ing form. In other words, the variational principle guarantees that the final result
is as close as possible to the exact solution. Technically, the optimal MOs can be
obtained as solutions of Fock equations using a self-consistent-field (SCF) proce-
dure. This description is known as the Hartree-Fock (HF) approximation. In most
practical applications, theMOs are expanded in terms of atomic orbitals (AOs), using
the approach known as linear combination of atomic orbitals (LCAO). Solving Fock

15�0
0 (R) is an eigenstate for theHamiltonian operator of the electronic ground state but awavepacket

for the Hamiltonian operator of the electronic state 1.

http://dx.doi.org/10.1007/978-3-319-53923-2_10
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equations in this representation, produces what are known as the Roothaan equations
for the expansion coefficients. Finally, a single Slater determinant may prove to be
a poor description. More sophisticated (post-Hartree-Fock) treatments should thus
be used, whereby electron correlation is recovered upon mixing several Slater deter-
minants in the electronic wavefunction (configuration-interaction methods reflecting
the multiconfigurational or multideterminental character of the electronic wavefunc-
tion) or by accounting for their influence perturbatively. We refer to textbooks on
quantum chemistry for further details (e.g., Ref. [19]). In what follows, we will illus-
trate such concepts qualitatively by applying this methodology to the valence states
of H2, i.e. the first solutions, �

el/ad
m (rBF ; q), of Eq. (3.137).

3.5.1 Atomic Orbitals

Qualitative descriptions often limit the set of atomic orbitals (AOs) to valence orbitals
only: in our case a 1s (n = 1, l = 0,m = 0) on each H atom. For a single H atom,
the 1s orbital is represented as a function of the position vector of the electron with
respect to the nucleus, r. Its expression in terms of spherical coordinates centered at
the nucleus reads

�1s(r, θ,ϕ) = Y 0
0 (θ,ϕ)R10(r) , (3.160)

where

Y 0
0 (θ,ϕ) = 1√

4π
,

R10(r) = 2

a3/20

exp (− r

a0
) , (3.161)

are the normalized angular and radial parts, and a0 is the Bohr constant that plays the
role of the atomic unit (a.u.) of length (a0 = 0.529177Å).A plot of the corresponding
wavefunction is shown on Fig. 3.5.

The optimal AOs used to expand the MOs of H2 within the LCAOmethod are not
identical to the AOs of a single H atom. They now must account for the repulsion
between both electrons in an average manner. Various kinds of AO basis sets have
been developed over the years (for further details, we refer to textbooks on quantum
chemistry, e.g., Ref. [19]).Here, let us consider Slater-type orbitals,where the nuclear
charge, Z , is replaced by an effective reduced parameter, ζ = Z−σ

a0
, that accounts

for the average effect of the other electron through the Slater shielding constant, σ.
Let a and b label the two nuclei, such that ra or rb denote the position vectors of
a single electron originating from either Ha or Hb, respectively. The corresponding
AO functions read, in their own spherical coordinates,
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Fig. 3.5 1s AO of a single H atom as a function of the electron-nucleus distance

�1sa (ra, θa,ϕa) = 1√
π

ζ3/2 exp−ζra ,

�1sb(rb, θb,ϕb) = 1√
π

ζ3/2 exp−ζrb . (3.162)

Here, Z = 1 and we use a typical value σ = 0.30 for the shielding of a 1s electron
on another 1s electron (hence, ζ = 0.70 a−1

0 ).

3.5.2 Molecular Orbitals

Let us now expand the valence MOs in terms of the 1sa and 1sb AOs using the
LCAO approach. Only two independent combinations can be generated and each
must belong to an irreducible representation of the symmetry point group of the
molecule: here, D∞h. In this case, there are only two choices for the MOs: the nor-
malized sum (totally symmetric),�σg

, and the normalized difference (antisymmetric
with respect to inversion), �σu ,

�σg
= �1sa + �1sb√

2(1 + S)
,

�σu = �1sa − �1sb√
2(1 − S)

. (3.163)
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TheMO σg is bondingwhereas σu is anti-bonding between the two nuclei. One easily
checks that the MOs form a pair of orthonormal wavefunctions16:

〈σg|σg〉 = 〈1sa|1sa〉 + 〈1sb|1sb〉 + 〈1sa|1sb〉 + 〈1sb|1sa〉
2(1 + S)

= 1 ,

〈σu |σu〉 = 〈1sa|1sa〉 + 〈1sb|1sb〉 − 〈1sa|1sb〉 − 〈1sb|1sa〉
2(1 − S)

= 1 ,

〈σg|σu〉 = 〈σu |σg〉 = 〈1sa|1sa〉 − 〈1sb|1sb〉 − 〈1sa|1sb〉 + 〈1sb|1sa〉
2
√
1 − S2

= 0 ,

(3.164)

using 〈1sa|1sa〉 = 〈1sb|1sb〉 = 1 (note that only real-valued orbitals are considered
here). S is the overlap between the two 1s AOs,

S = 〈1sa|1sb〉 = 〈1sb|1sa〉 . (3.165)

It depends parametrically on R, the bond length (distance between the two nuclei). At
the equilibrium geometry, R = 0.741 Å = 1.40 a0 [20]. Such values yield S = 0.86
for the Slater-type orbitals considered here.

In the previous expressions of the AOs, ra was originated fromHa and rb fromHb.
However, cylindrical coordinates are more balanced to describe the relative positions
of the particles in the molecule. Let us define z as the inter-nuclear axis, such that
za = −R/2 and zb = +R/2. The azimuthal angle, ϕ, is unchanged. The other
coordinates satisfy

z = r cos θ = ra cos θa − R/2 = rb cos θb + R/2 ,

ρ = r sin θ = ra sin θa = rb sin θb . (3.166)

The MOs read thus

�σg (ρ, z, ϕ) = 1√
π

ζ3/2
exp (−ζ

√
ρ2 + (z + R/2)2) + exp (−ζ

√
ρ2 + (z − R/2)2)√

2(1 + S)
,

�σu (ρ, z, ϕ) = 1√
π

ζ3/2
exp (−ζ

√
ρ2 + (z + R/2)2) − exp (−ζ

√
ρ2 + (z − R/2)2)√

2(1 − S)
.

(3.167)

The AOs and MOs are plotted on Figs. 3.6 and 3.7 along z for ρ = 0, respectively.
The bonding and anti-bondingMOs are represented on Figs. 3.8 and 3.9, respectively,
over the (ρ, z)-plane for any arbitrary value of ϕ. Their energetic representation is
shown on Fig. 3.10.

16In this section, we have dropped the subscript r on brackets, as there no ambiguity: integration is
performed over the electronic coordinates, r. In other words 〈· · · | · · · 〉 implicitly means 〈· · · | · · · 〉r.
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Fig. 3.6 Right and left 1s AOs along the internuclear axis of the H2 molecule

Fig. 3.7 Bonding (yellow) and antibonding (yellow and purple) MOs along the internuclear axis
of the H2 molecule

3.5.3 Electronic Configurations

The concept of electronic configuration is an approximate description of the many-
electron wavefunction, whereby each MO can be occupied by zero, one, or two
electrons, according to the Pauli exclusion principle. The distribution of electrons
in orbitals is expected to minimize the energy of the ground state upon filling the
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Fig. 3.8 Bonding MO over any plane containing the internuclear axis. Isocontours are spaced at
0.02 a−3/2

0 . A negative value of ρ is defined as the absolute value of ρ with ϕ changed for ϕ + π

lowest-energy MOs first, or to reflect the nature of the excited states where one or a
few electrons are promoted to higher-energy MOs that are vacant in the ground-state
configuration (single, double excitations, etc.).

As a first approximation, the square modulus of an MO occupied by an electron
gives the density of probability of finding this electron in space. In Fig. 3.8, we
observe that the corresponding electron density is high between the two nuclei. This
is the reason why it is said to be bonding: a configuration with a pair of electrons
in this MO will lead to some significant shielding of the repulsion between the
nuclei, which is at the origin of the σ chemical bond in H2. A classical picture would
describe this situation as the alternation of a positive charge (the first nucleus), a
pair of negative charges (the two electrons), and another positive charge (the second
nucleus). In contrast, Fig. 3.9 shows that occupying the anti-bonding MO with an
electron would yield a small negative-charge density in the region between the two
positive charges, no longer large enough to prevent their repulsion to dominate over
the electron shielding.

Around the equilibrium geometry, the ground state of H2 is well-represented with
σ2

g , i.e., two electrons in the bondingMO. This is the prototype of a covalent σ-bond.
Electronic configurations are often represented on the so-called MO diagram (see
Fig. 3.10): the valence electrons are shown in the outer region of the diagram as
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Fig. 3.9 Anti-bonding MO over any plane containing the internuclear axis. Isocontours are spaced
at 0.02 a−3/2

0 . A negative value of ρ is defined as the absolute value of ρ with ϕ changed for ϕ + π

occupying the valence AOs of the separate atoms, while in the inner region they fill
the MOs according to the configuration under consideration.

At this stage, the ground-state energy at the equilibrium geometry, V0(Re) =
Eel
0 (Re), hence the energetic stabilization due to the creation of a σ chemical bond,

can be estimated semi-empirically using the extended Hückel method, for instance
[18]. In this, approximate MOs and their energies are obtained as eigensolutions of
a simplified Fock operator involving semi-empirical integrals as parameters, and the
total energy is expressed ultimately as a sum of such terms arising from occupied
orbitals. This qualitative approach is often used as a starting point for generating a
guess for further ab initio calculations in quantum chemistry.

3.5.4 Electronic Wavefunctions

A more rigorous description of the electronic states must account for the spin of the
electrons. As electrons are fermions, total (spin and space) electronic wavefunctions
must be antisymmetric with respect to the permutation of any two electrons. A con-
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Fig. 3.10 MO diagram of H2 with electron filling corresponding to a σ2
g configuration

venient way of achieving this condition is obtained when using Slater determinants
built on spin-orbitals.

First, each MO is associated to a pair of spin-orbitals,

�α
σg/u

(r,σ) = �σg/u (r)α(σ) ,

�β
σg/u

(r,σ) = �σg/u (r)β(σ) , (3.168)

where α(σ) and β(σ) are the eigenfunctions of the one-electron spin operators, s2

and sz with eigenvalues s(s + 1)�2 and ms� (s = 1
2 ; ms = + 1

2 and ms = − 1
2 ,

respectively). Then, Slater determinants are built on spin-orbitals according to elec-
tronic configurations. When the Hartree-Fock method is adequate for an electronic
wavefunction, it means that it is well-approximated with a single Slater determinant.
For example, around the equilibrium geometry, a good approximation of the ground
electronic state of H2 is obtained as17:

�
el/ad
0 (r1,σ1, r2,σ2) ≈ �σg

(r1)�σg
(r2)

α(σ1)β(σ2) − β(σ1)α(σ2)√
2

, (3.169)

17Note that this spin function is an eigenfunction of the total spin operator for eigenvalue zero
(singulet). The separation of an electronic wavefunction into a symmetric (antisymmetric) spa-
tial part and a antisymmetric (symmetric) spin part is in general only possible for two-electron
wavefunctions.
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with �σg
coming from Eq. (3.163). Note that the parametric dependence of �

el/ad
0

on R is not explicitly indicated here to simplify the notations.
In practice, applying the variational principle to the Schrödinger equation yields

the Fock equations that are solved using a self-consistent-field procedure. This cor-
responds mathematically to finding the best solution with the form of Eq. (3.169).
In other words, the variational principle guarantees that the final result is as close as
possible to the exact solution. As a consequence, this level of description can provide
a correct solution only if the exact wavefunction is well-approximated with a single
Slater determinant. However, this is never really true and, in general, the Hartree-
Fock approach gives quantitative results for the electronic ground state around the
equilibrium geometry only.

In much the same way as for the ground state, the second excited valence state is
well-represented with a σ2

u configuration, which corresponds to

�
el/ad
2 (r1,σ1, r2,σ2) ≈ �σu (r1)�σu (r2)

α(σ1)β(σ2) − β(σ1)α(σ2)√
2

. (3.170)

In contrast, the configuration associated with the first excited valence state is an
open-shell, σ1

gσ
1
u . Now, this situation corresponds to four possible Slater determi-

nants that must be combined in order to build electronic wavefunctions of well-
defined total spin. Such spin-adapted combinations of Slater determinants are called
configuration-state functions. The singlet state is well-approximated with the fol-
lowing combination of two Slater determinants, which after expansion reads

�
el/ad
1(S) (r1,σ1, r2,σ2) ≈ �σg (r1)�σu (r2) + �σu (r1)�σg (r2)√

2

α(σ1)β(σ2) − β(σ1)α(σ2)√
2

.

The related triplet state corresponds to the following three components,

�
el/ad
1(T−)(r1,σ1, r2,σ2) ≈ �σg

(r1)�σu (r2) − �σu (r1)�σg
(r2)√

2
β(σ1)β(σ2) ,

�
el/ad
1(T0)

(r1,σ1, r2,σ2) ≈
�σg

(r1)�σu (r2) − �σu (r1)�σg
(r2)√

2

α(σ1)β(σ2) + β(σ1)α(σ2)√
2

,

�
el/ad
1(T+)(r1,σ1, r2,σ2) ≈ �σg

(r1)�σu (r2) − �σu (r1)�σg
(r2)√

2
α(σ1)α(σ2) .

(3.171)

As already mentioned, the expressions given in Eqs. (3.169), (3.5.4), (3.170), and
(3.171) are correct around the equilibrium geometry. However, Slater determinants
are over-constrained when the bond distance is increased. At infinity (dissociation),
they correlate to mixtures of the ionic and neutral eigenstates of the separate atoms.
This problem is known as a lack of left-right static correlation in the Hartree-Fock
ansatz. Configuration-interaction methods can be used to write electronic wavefunc-
tions asmixtures of several configurationswith coefficients that dependon the nuclear
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coordinates. In addition, we only considered valence states here, whereas Rydberg
states may correspond to lower energies, depending on the bond distance. Their
description requires additional orbitals. In summary, quantitative results, especially
for excited electronic states, often require basis sets that are larger than simply the
set of valence orbitals and post-Hartree-Fock methods where the multideterminental
character of the wavefunction is accounted for.

3.5.5 Potential Energy Surfaces

Once a level of theory is determined as adequate for the problem under consideration,
electronic energies can be calculated at various molecular geometries. These are
directly identified with the potential energy surfaces for the nuclear motion Vm(q) of
Sect. 3.3.4. As an example, the potential energy curves of the three singlet valence
states and the triplet valence state of H2, V0(R), V1(S)(R), V2(R), and V1(T )(R), are
shown on Fig. 3.11. These were obtained using a configuration-interaction (post-
Hartree-Fock) method such that both the equilibrium geometry and the dissociation
limit are described adequately. The curve giving the Hartree-Fock energy of the
ground state is also shown for comparison: the description is correct around the
equilibrium geometry but lies between the ground state and the excited states at
infinity.

Fig. 3.11 Potential energy curves of H2 against the internuclear distance calculated with a
configuration-interaction (post-Hartree-Fock) method (blue ground state; red triplet valence state;
green first excited singlet valence state; yellow second excited singlet valence state; dashed cyan
ground state calculated with the Hartree-Fock method shown for comparison). Eh denotes the
Hartree constant that plays role of the atomic unit (a.u.) of energy (Eh = 27.2114 eV)
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3.5.6 Vibrational Eigenstates in the Electronic Ground State

A closer look at the ground-state potential energy curve (see Fig. 3.11) shows three
characteristic regions: a short-range repulsive wall where the internuclear repulsion
dominates; a long-range dissociative asymptote that becomes an attractive slope
when the two nuclei get closer due to the formation of the chemical bond by the
paired electrons; a stable well characterized by an optimal distance when both effects
equilibrate. This kind of spoon-shaped curve is often represented analytically with
a Morse function. The Morse curve shown on Fig. 3.12 was obtained from a three-
parameter fitting procedure based on the equilibrium distance, Re, the curvature
(force constant) at this point, ke, and the energy difference between the asymptote
and the minimum, De, such that

V Morse(R) = De(1 − e
−

√
ke
2De

(R−Re)
)2 . (3.172)

When only small vibrations around the equilibrium position are to be described, a
cruder approximation can be considered upon expanding the potential energy func-
tion to second order,

V harm(R) = ke
2

(R − Re)
2 . (3.173)

This is known as a harmonic approximation. The corresponding curve is the approx-
imating parabola of the Morse curve at R = Re (see Fig. 3.12).

Fig. 3.12 Ground-state potential energy curves of H2 against the internuclear distance (blue refer-
ence calculated with a configuration-interaction (post-Hartree-Fock) method—see Fig. 3.11; green
Morse approximation; red harmonic approximation)
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BothMorse and harmonic oscillators are problems for which exact quantum solu-
tions are known analytically. In both cases, the fundamental angular frequency is
obtained as

ωe =
√
ke
μ

, (3.174)

where μ = MH/2 is the reduced mass of the system. Experimentally, ν̄e = ωe
2πc =

4401.213 cm−1 [21]. The energies of the harmonic levels (v = 0, 1, 2, . . .) are given
as

Eharm
v = �ωe(v + 1

2
) , (3.175)

with no upper bound, whereas those of the Morse oscillator read

EMorse
v = �ωe(v + 1

2
) − (�ωe(v + 1

2 ))
2

4De
. (3.176)

Here, there is amaximum to the vibrational quantum number18: vmax =  2De
�ωe

�, where
. . .� is the floor function (integer part). For v > vmax, Eq. 3.176 becomes invalid
because the condition EMorse

v > EMorse
v−1 is no longer satisfied. The energy spectrum

is continuous for E ≥ De, thus reflecting the property that levels are quantized
(bound states) below the dissociation limit only (EMorse

0 < · · · < EMorse
vmax

< De).
The energy spacing between levels is now uneven, which is an effect known as

anharmonicity. Usually, a vibrational spectrum obtained from infrared and Raman
experiments is fitted to the following anharmonic form [20],

Eanharm
v = �ωe(v + 1

2
) − �ωexe(v + 1

2
)2 + �ωe ye(v + 1

2
)3 + · · · , (3.177)

where ωexe, ωe ye, etc. are referred to as anharmonicity constants. For H2, ν̄exe =
ωexe
2πc = 121.336 cm−1 and ν̄e ye = ωe ye

2πc = 0.8129 cm−1 [21]. Within a Morse
approximation, one obtains ye = 0 and

xe = �ωe

4De
. (3.178)

Using this relationship yields an estimate of the dissociation energy, De = 4.95 eV
= 0.182 Eh (in good agreement with more accurate experimental determinations).
With these values, we can determine vmax = 18.1� = 18 (see Fig. 3.13).

The values given by Eq. (3.177) correspond to approximate values of the purely
vibrational levels El0

0 of Eq. (3.52) of the H2 molecule within its electronic ground
state.

18If 2De
�ωe

occurs to be an integer, vmax = 2De
�ωe

− 1, because EMorse
vmax+1 = EMorse

vmax
, and only the first of

the two seemingly-degenerate levels is physical. This is unlikely in actual cases but could happen
when considering a numerical model.
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Fig. 3.13 Ground-state potential energy curves of H2 against the internuclear distance and vibra-
tional energy levels (greenMorse approximation, v = 0–18; red harmonic approximation, v = 0–
9). The potential energy functions correspond to the experimental data: Re = 1.40 a0, De = 0.182
Eh, �ωe = 0.0201 Eh

Fig. 3.14 Space fixed frame
for a system with three
nuclei, A, B, and C, and two
electrons, for instance H+

3 .
CMT denotes the total center
of mass and O the origin of
the LF frame

3.6 Complements to Chapter 3

3.6.1 Example of Space-Fixed (SF) Coordinates *

We illustrate the general structure of the kinetic energy operators introduced in
Sect. 3.3.1 by explicit calculations in the case of a molecular system consisting of
three atoms A, B and C and two electrons: see Fig. 3.14. Using a matrix notation, we
express the coordinate change R̃LF → R̃SF , i.e. from Eq. (3.84) to (3.90) as
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃
1
SF = RCM

LF

R̃
2
SF = RB

SF

R̃
3
SF = RC

SF

R̃
4
SF = r1SF

R̃
5
SF = r2SF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mA
MT

mB
MT

mC
MT

me
MT

me
MT

− mA
MT

1 − mB
MT

− mC
MT

− me
MT

− me
MT

− mA
MT

− mB
MT

1 − mC
MT

− me
MT

− me
MT

− mA
MT

− mB
MT

− mC
MT

1 − me
MT

− me
MT

− mA
MT

− mB
MT

− mC
MT

− me
MT

1 − me
MT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RA
LF = R̃

1
LF

RB
LF = R̃

2
LF

RC
LF = R̃

3
LF

r1LF = R̃
4
LF

r2LF = R̃
5
LF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.179)

or

R̃
T
SF = ASF←LF · R̃T

LF . (3.180)

Applying the chain rule for this change of coordinates yields19

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇RA
LF

∇RB
LF

∇RC
LF

∇r1LF

∇r2LF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ASF←LF T ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇RCM
LF

∇RB
SF

∇RC
SF

∇r1SF

∇r2SF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.181)

or

∇T
R̃LF

= ASF←LF T · ∇T
R̃SF

.

(3.182)

Rewriting the LF-frame kinetic energy operator of Eq. (3.86) as

T (R̃LF ) = −�
2

2
∇R̃LF

· m−1 · ∇T
R̃LF

, (3.183)

19See Eqs. (3.203) and (3.204) in Sect. 3.6.3.
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where

m−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
mA

0 0 0 0

0 1
mB

0 0 0

0 0 1
mC

0 0

0 0 0 1
me

0

0 0 0 0 1
me

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.184)

and inserting Eq. (3.182) into (3.183) yields the following expression for the SF-
frame kinetic energy operator

T (R̃SF ) = −�
2

2
∇R̃SF

· ASF←LF · m−1 · ASF←LF T · ∇T
R̃SF

, (3.185)

with

ASF←LF · m−1 · ASF←LF T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
MT

0 0 0 0

0 1
MB

− 1
MT

− 1
MT

− 1
MT

− 1
MT

0 − 1
MT

1
MC

− 1
MT

− 1
MT

− 1
MT

0 − 1
MT

− 1
MT

1
me

− 1
MT

− 1
MT

0 − 1
MT

− 1
MT

− 1
MT

1
me

− 1
MT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.186)

Equation (3.185) is the matrix expression of Eqs. (3.93)–(3.96) in the particular
case of a molecular system with three nuclei and two electrons. The structure of
matrix (3.186) clearly indicates that the motion of the center of mass is separated,
but also that the nuclear and electronic motions are coupled.

3.6.2 Example of Nuclear Space-Fixed (NSF) Coordinates *

Let us illustrate the expressions of the kinetic energy operators in a nuclear-center-
of-mass frame, once again in the case of amolecular system consisting of three atoms
A, B and C and two electrons. As in the previous example (see Sect. 3.6.1) MT is the
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total mass of the system. Here, in addition, we introduce MN = MA +MB +MC , the
total mass of the nuclei. Let us start by writing in matrix form the coordinate change
SF → NSF given by Eq. (3.100) together with RCM

LF , the LF coordinate vector of the

total center of mass regarded as the first NSF vector, R̃
NSF
1 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃
1
NSF = RCM

LF

R̃
2
NSF = RB

NSF

R̃
3
NSF = RC

NSF

R̃
4
NSF = r1NSF

R̃
5
NSF = r2NSF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 me
MN

me
MN

0 0 1 me
MN

me
MN

0 0 0 1 + me
MN

me
MN

0 0 0 me
MN

1 + me
MN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RCM
LF = R̃

1
SF

RB
SF = R̃

2
SF

RC
SF = R̃

3
SF

r1SF = R̃
4
SF

r2SF = R̃
5
SF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.187)

or

R̃
T
NSF = ANSF←SF · R̃T

SF . (3.188)

Substituting Eq. (3.180) into Eq. (3.188) yields

R̃
T
NSF = ANSF←SF · ASF←LF · R̃T

SF , (3.189)

or

R̃
T
NSF = ANSF←LF · R̃T

SF , (3.190)

with

ANSF←LF = ANSF←SF · ASF←LF =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mA
MT

mB
MT

mC
MT

me
MT

me
MT

− mA
MN

1 − mB
MN

− mC
MN

0 0

− mA
MN

− mB
MN

1 − mC
MN

0 0

− mA
MN

− mB
MN

− mC
MN

1 0

− mA
MN

− mB
MN

− mC
MN

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.191)
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Applying the chain rule gives

∇T
R̃LF

= ANSF←LF T · ∇T
R̃NSF

.

(3.192)

AbbreviatingANSF←LF inA and substituting this equation into Eq. (3.183) yields the
following expression for the kinetic energy operator in Cartesian NSF coordinates

T (R̃NSF ) = −�
2

2
∇R̃NSF

· A · m−1 · AT · ∇T
R̃NSF

, (3.193)

with

A · m−1 · AT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
MT

0 0 0 0

0 1
mB

− 1
MN

− 1
MN

0 0

0 − 1
MN

1
mC

− 1
MN

0 0

0 0 0 1
me

+ 1
MN

1
MN

0 0 0 1
MN

1
me

+ 1
MN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.194)

Equation (3.193) is the matrix form of Eqs. (3.110) and (3.111) in the particular case
of amolecular systemwith three nuclei and two electrons. The structure of thematrix
(3.194) clearly indicates that the motion of the total center of mass separates from
the internal motions, that the motions of the nuclei are separated from those of the
electrons but unfortunately that mass polarization terms containing the inverse of
MN , the total mass of the nuclei, crop up in the kinetic energy of the electrons. If the
mass polarization terms are neglected, Eq. (3.194) reduces to

A · m−1 · AT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
MT

0 0 0 0

0 1
mB

− 1
MN

− 1
MN

0 0

0 − 1
MN

1
mC

− 1
MN

0 0

0 0 0 1
me

0

0 0 0 0 1
me

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.195)
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3.6.3 Chain Rule

To explain the chain rule let us consider the coordinate change from the coordinates
(Q1, . . . , Qn) to the coordinates (q1, . . . , qn) where qi = fi (Q1, . . . , Qn). By this
coordinate change, a function �(Q1, . . . , Qn) becomes

�̃(q1, . . . , qn) = �( f1(Q1, . . . , Qn), . . . , fn(Q1, . . . , Qn)) , (3.196)

so that
∂�

∂Q j
=

∑

i

∂�̃

∂qi

∂ fi
∂Q j

, (3.197)

hence the chain rule
∂

∂Q j
=

∑

i

∂qi
∂Q j

∂

∂qi
(3.198)

In the interesting particular case of a linear coordinate change such as

qi =
∑

j

Ai j Q j ,

∂qi
∂Q j

= Ai j , (3.199)

the chain rule particularize into

∂

∂Q j
=

∑

i

Ai j
∂

∂qi
. (3.200)

It is sometimes convenient to write these relations in a matrix form. Thus, for the
coordinate change

⎡

⎢⎢⎢⎣

q1
q2
...

qn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann

⎤

⎥⎥⎥⎦ ·

⎡

⎢⎢⎢⎣

Q1

Q2
...

Qn

⎤

⎥⎥⎥⎦ , (3.201)

or
qT = A · QT . (3.202)

The matrix form of the chain rule reads
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⎡

⎢⎢⎢⎢⎣

∂
∂Q1
∂

∂Q2

...
∂

∂Qn

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...

A1n A2n · · · Ann

⎤

⎥⎥⎥⎦ ·

⎡

⎢⎢⎢⎢⎣

∂
∂q1
∂

∂q2
...
∂

∂qn

⎤

⎥⎥⎥⎥⎦
, (3.203)

or
∂

∂Q

T

= AT · ∂

∂q

T

. (3.204)
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Chapter 4
Vibronic Couplings

Photoinduced processes (photochemical and photophysical) often involve vibronic
couplings that are responsible of ultrafast radiationless decay processes from an
excited electronic state to a lower-energy one (typically, internal conversion, between
same-spin electronic states, or intersystem crossing for different spins; note that cor-
responding light-emitting processes are called fluorescence and phosphorescence,
respectively). In such a situation, the excess energy first given to the molecule
through light absorption is converted into electronic excitation and then transformed
into vibrational excitation. Chemiluminescence occurs in the reverse situation, when
vibrational excitation (heat) is transformed into electronic excitation through inter-
nal conversion to a higher-energy electronic state that further relaxes upon light
emission. Such processes are governed by so-called non-adiabatic couplings (inter-
actions between the electronic structure and the nuclear motion) that are, by defi-
nition, beyond the Born-Oppenheimer (adiabatic) approximation (see Sect. 3.2.4).
As proved from the off-diagonal Hellmann-Feynman theorem (see Eq. (3.75)), their
effect becomes significant when the energy difference between two electronic states
is small, that is to say of the same order of magnitude as vibrational energies. The
non-adiabatic coupling elements even diverge when the energy difference vanishes,
i.e., when two electronic states are degenerate at what is called a conical intersec-
tion (the generalization of a Jahn-Teller crossing to a lesser-symmetrical situation).
For a comprehensive treatment and for references to the extensive literature on such
concepts, one may refer the reader to the following selected list of books and reviews
[1–21].

4.1 Conical Intersections

Conical intersections (see Fig. 4.1) are special topographic features that occur in
potential energy surfaces at geometries where two electronic states are degenerate.
As their name indicates, the local shape of the two surfaces in the vicinity of the
intersection point is a double cone. This will be justified in what follows.
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F. Gatti et al., Applications of Quantum Dynamics in Chemistry,
Lecture Notes in Chemistry 98, DOI 10.1007/978-3-319-53923-2_4

81

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3


82 4 Vibronic Couplings

Fig. 4.1 Generic conical
intersection between two
potential energy surfaces V1
(lower one) and V2 (upper
one). The (q1, q2)-plane is
spanned by two specific
nuclear displacements called
branching-space vectors,
further discussed below

Conical intersections can occur for symmetry reasons (for instance in the case of
a Jahn-Teller crossing between states belonging to a degenerate irreducible repre-
sentation of E-type; see Chap.7 and some details in the next section) or simply be
accidental [18]. For the sake of simplicity, we will restrict our discussion to the pro-
totypical case of a two-state problem (this is the most usual situation in non-adiabatic
photochemistry).

Before going further, let us consider the Hellmann-Feynman expression of the
first-order non-adiabatic coupling (see Sect. 3.2.5 and Refs. [15, 22]), here in terms
of internal coordinates, q = (..., q j , ...), and corresponding vector components,

Fj (q) = 〈�el/ad
1 ; q|∂ j�

el/ad
2 ; q〉 = 〈�el/ad

1 ; q|∂ j Hel(q)|�el/ad
2 ; q〉

V2(q) − V1(q)
, (4.1)

where ∂ j (...)(q) stands for the value of the partial derivative at q,
[

∂
∂q j

(...)
]
q
. F(q)

diverges when V2(q) = V1(q), that is if q is the locus of a conical intersection
(note, however, that the numerator is finite). To simplify notations, integration over
the electron coordinates, r, is implicitly assumed in the present chapter when using
Dirac’s bracket notations. Also, F simply denotes F12, as there is no ambiguity in
the two-state case, and electronic states and energies, �el/ad and V , are considered
in the adiabatic (Born-Oppenheimer) representation. The above equation shows that
the non-adiabatic coupling term becomes large (infinite) when the energy difference
becomes small (zero). This is the reason why the Born-Oppenheimer approxima-
tion breaks down when approaching geometries where electronic states get close in
energy. Conical intersections are thus points that are representative of regions where
significant probability of transfer of electronic population can occur through ultra-
fast radiationless decay. As such, these points are keys for describing non-adiabatic
photochemical mechanisms.

Let us now examine in more detail the local shape of the potential energy surfaces
in the vicinity of a conical intersection. For a two-state problem there are two adia-
batic eigenstates of interest to be considered, |�el/ad

1 ; q〉 and |�el/ad
2 ; q〉. The matrix

representation of Hel(q) in the adiabatic basis set is, by definition, diagonal,

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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V(q) =
[
V1(q) 0
0 V2(q)

]
= �(q)1 +

[−�(q) 0
0 �(q)

]
, (4.2)

where

�(q) = V1(q) + V2(q)
2

, (4.3)

�(q) = V2(q) − V1(q)
2

≥ 0 . (4.4)

Note thatwe are considering a labelling convention such that V2(q) ≥ V1(q), whereas
the reverse one is sometimes found in the literature. Separating the half-trace part,

�(q)
[
1 0
0 1

]
, and the traceless part, �(q)

[−1 0
0 1

]
, is a common trick when diago-

nalising a (2 × 2)-matrix, the use of which will become more apparent below.
Let us now consider as a working basis set a pair of electronic states, |�1; q〉

and |�2; q〉, which are assumed to span the same Hilbert space at any q as the two
adiabatic eigenstates of interest, |�el/ad

1 ; q〉 and |�el/ad
2 ; q〉. Thematrix representation

of Hel(q) in this basis set,H(q), is not necessarily diagonal.1 If the states are chosen
real-valued, the Hamiltonian matrix is real symmetric. Again, separating the half-
trace and the traceless parts yields

H(q) =
[
H11(q) H12(q)
H21(q) H22(q)

]
= S(q)1 +

[−D(q) W (q)
W (q) D(q)

]
, (4.5)

where

S(q) = H11(q) + H22(q)
2

, (4.6)

D(q) = H22(q) − H11(q)
2

, (4.7)

W (q) = H12(q) = H21(q) . (4.8)

Diagonalising H(q) can be achieved as a similarity transformation involving a
rotation of the states through an angle ϕ(q), such that

|�el/ad
1 ; q〉 = cosϕ(q)|�1; q〉 + sinϕ(q)|�2; q〉 , (4.9)

|�el/ad
2 ; q〉 = − sinϕ(q)|�1; q〉 + cosϕ(q)|�2; q〉 . (4.10)

In other words, both matrices are related through

1Throughout this chapter, the matrix H(q) will refer exclusively to the representation of the elec-
tronicHamiltonian Hel (q). It should not be confusedwith thematrix representation of themolecular
Hamiltonian. The two quantities differ by the nuclear KEOmatrix (including the non-adiabatic cou-
plings and corrections, i.e., T nu1 + � (see Sect. 3.2.4 for the definition of �).

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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V(q) = U†(q)H(q)U(q) , (4.11)

where the unitary (here, real orthogonal) matrix

U(q) =
[
cosϕ(q) − sinϕ(q)
sinϕ(q) cosϕ(q)

]
, (4.12)

is such that its columns give the adiabatic states into the working basis set andU†(q)
is the adjoint matrix (here, its transpose) characterizing the inverse transformation.
As the identity matrix is unaffected (U†(q)1U(q) = 1), the half-trace is preserved
trough this transformation, such that

S(q) = �(q) . (4.13)

Only the traceless part is to be transformed in practice. From

�(q)
[−1 0

0 1

]
= U†(q)

[−D(q) W (q)
W (q) D(q)

]
U(q) , (4.14)

one gets two independent equations (adiabaticity conditions) in the following form,

�(q) = cos 2ϕ(q)D(q) − sin 2ϕ(q)W (q) , (4.15)

0 = sin 2ϕ(q)D(q) + cos 2ϕ(q)W (q) , (4.16)

where we used cos2 ϕ(q) − sin2 ϕ(q) = 1 and 2 sinϕ(q) cosϕ(q) = sin 2ϕ(q).
Explicit solutions are then readily obtained,

cos 2ϕ(q) = D(q)
�(q)

, sin 2ϕ(q) = −W (q)
�(q)

, (4.17)

with
�(q) =

√
D2(q) + W 2(q) . (4.18)

The eigenvalues thus read

V1,2(q) = �(q) ± �(q) = S(q) ±
√
D2(q) + W 2(q) . (4.19)

Note that the minus sign in the sine expression comes from assuming V2(q) ≥ V1(q)
(the reverse convention thus yields a formula with a plus sign, as sometimes found
in the literature).

Wewill now showmore preciselywhy geometrieswhere two adiabatic eigenstates
are degenerate are called conical intersections. Let us consider q = qX as a point
where |�el/ad

1 ; qX〉 and |�el/ad
2 ; qX〉 are degenerate. In otherwords,V2(qX) = V1(qX),

i.e., �(qX) = 0. Achieving this condition implies the fulfillment of two a priori
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Fig. 4.2 Conical shape of
� = √

D2 + W 2

represented as a function of
D and W

independent mathematical conditions: D(qX) = 0 and W (qX) = 0. Lifting degen-
eracy means increasing the value of �(q), which is thus achieved upon increasing
either the values of D(q) or W (q), or both together, as illustrated on Fig. 4.2 when
plotting � in the (D,W )-frame. We can already notice that � and −2ϕ behave
formally as the polar coordinates (radius and angle2) to be associated to D and W
viewed as Cartesian coordinates. This will be made more explicit in the next section
on the prototypical case of a Jahn-Teller crossing.

From an intuitive perspective, we can already understand that lifting degeneracy
from a conical intersection requires constraints involving at least two independent
degrees of freedom. Doing so to first order in q from qX will thus correspond to
releasing the constraints D(qX) = 0 and W (qX) = 0 upon following the local
gradients of D(q) andW (q) at q = qX.When they describe two linearly-independent
directions (which is the most common situation), the energy difference increases
linearly within the two-dimensional plane spanned by these two gradients. This
plane is called the branching plane or branching space of the conical intersection
(more precisely, the branching plane is tangent to the branching space at the conical
intersection). As a consequence, degeneracy can be preserved locally along the
remaining 3N − 8 degrees of freedom (where N > 2 is the number of atoms)
that define the so-called intersection space or seam [11, 12, 14]. From a global

2Often, the equation defining the angle is simply given as

ϕ(q) = −1

2
arctan

W (q)
D(q)

.

However, some information is missing regarding the relative signs of D(q) and W (q) and the
corresponding domains of variation of the angle. A constant value should be added according to
the corresponding quadrants if a continuity condition is required. A more accurate formulation is

ϕ(q) = −1

2
Arg(D(q) + iW (q)) .

where −π < Arg(x + iy) ≤ π is the principal value of the argument of the complex number
x + iy. The corresponding function is sometimes denoted atan2(y, x) and this is how it is known
in computer programming.
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Fig. 4.3 Typical shape of an avoided crossing between two adiabatic potential energy curves (plain
lines), V2 (upper one) and V1 (lower one), along a nuclear coordinate q1. The dashed lines represent
the diabatic energies curves while the blue arrow corresponds to twice the value of the off-diagonal
diabatic coupling term at the crossing point (the orange and green color code refers to the diabatic
states; see below for further details on the diabatic representation). The (2 × 2)-matrices are a
pictorial representation of the electronic Hamiltonian in both basis sets that illustrates how the
adiabatic representation is related to the diabatic representation along q1

perspective, this subspace3 is in general curved and can be made of one or several
open or closed sets depending on the case. Each point within the seam corresponds
to a specific conical intersection with its own branching plane defined locally as the
plane orthogonal to the seam at this point. In theoretical photochemistry, one usually
optimises the lowest-energy point within the seam [17], as this minimum-energy
conical intersection is the most likely to be accessed, hence the most representative
of the process under study. For diatoms (N = 2), there is a single degree of freedom
(the bond length) and potential energy curves cannot cross unless the coupling is
zero for symmetry reasons (this is referred to as the Wigner non-crossing rule). In
that case, the shape of the curves is known as an avoided crossing (see Fig. 4.3).
This pattern can be found also in polyatomic molecules when considering a pathway
along which the states become near degenerate (in general, such an avoided crossing
is the signature of a conical intersection nearby).

Note that the Wigner non-crossing rule (which, again, should concern diatoms
exclusively) has led tomanymisinterpretations of curve crossings and corresponding
photochemical mechanisms in polyatomic systems. This made conical intersections
viewed as unusual singularities for quite a while. In fact, conical intersections are
now perceived as the rule rather than the exception. This is even more often the

3Note that two hypersurfaces that depend on 3N − 6 degrees of freedom can, in principle, intersect
along a (3N − 7)-dimensional hyperline. In contrast, two adiabatic potential energy surfaces can
only intersect along the (3N − 8)-dimensional seam, which is a direct consequence of the possible
coupling between the degenerate states along certain directions.
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case when excited electronic states are considered, where conical intersections are
more likely to occur due to state congestion in terms of energy (the density of states
increases with the energy).Ground-state thinking tends to give prevalence to avoided
crossings, as they correspond to the lower-energy pathways (transition barriers that
are typical of electron redistribution between the reactant and the product). How-
ever, most photochemical mechanisms directly involve conical intersections that act
as funnels through which the reaction path can go. In addition to this, we should
mention that Jahn-Teller crossings, mostly encountered in small and/or very sym-
metrical systems, have induced some prejudice about the understanding of conical
intersections. Although it is true that symmetry may induce degeneracy (in E-type
electronic states for example), this does not mean that accidental conical intersec-
tions are unlikely. In contrast, they are very common in photochemical reactivity,
even when there is no symmetry at all. This said, interpreting them in the context of
a more symmetrical prototype (often related to some typical Jahn-Teller crossing) is
useful, as this provides some rationale for two states to be degenerate (see, e.g., Ref.
[18]).

A first-order description of the local behavior of the functions V1(q) and V2(q)
around qX raises specific mathematical issues. The common half-trace function,
S(q) = �(q), can be assumed to be regular in most situations and will not be further
discussed. However, the function �(q) is singular: it cannot be differentiated at qX
because of the square-root.4 In other words, the local derivative, ∂ j�(qX), is ill-
defined. The shapes of the potential energy surfaces in the vicinity of qX show a
two-dimensional cusp at qX, which cannot be described mathematically in terms
of ordinary local derivatives. An important remark must be made at this stage: the
singular behaviors of both ∂ j�(q) and Fj (q) (see Eq.4.1) at a conical intersection
are due to the fact that the lower-energy state (number 1) and the higher-energy state
(number 2) abruptly swap their respective chemical natures when q varies smoothly
across a conical intersection.

A rigorous formulation of this apparent issue can be derived from a generalisation
of the Hellmann-Feynman theorem to degenerate situations [15] or, similarly, within
the framework of degenerate perturbation theory [22]. Here, we will adopt a more
intuitive picture that conveys the same basic ideas. As already pointed out, achieving
�(qX) = 0 implies two simultaneous conditions: D(qX) = 0 and W (qX) = 0. If so,
the Hamiltonian matrix is diagonal when using the working basis set at this point,

H(qX) = S(qX)1 = �(qX)1 = V(qX) . (4.20)

4Here, ill-defined local derivatives must be replaced by well-defined directional derivatives. Let us
consider a first-order, two-dimensional case: �(x, y) = √

(ax)2 + (bx)2. This function satisfies
�(0, 0) = 0, �(x, 0) = |ax |, and �(0, y) = |by|. It behaves as a two-dimensional absolute-
value function and is represented by an elliptic cone in the (x, y)-frame, the apex of which is
located at (0, 0). The left- and right-derivatives arewell-defined and satisfy limε→0+ �(ε,0)−�(0,0)

ε =
− limε→0− �(ε,0)−�(0,0)

ε = |a| and limε→0+ �(0,ε)−�(0,0)
ε = − limε→0− �(0,ε)−�(0,0)

ε = |b|. They
are opposite on both sides. However, limε→0

�(ε,0)−�(−ε,0)
2ε = limε→0

�(0,ε)−�(0,−ε)
2ε = 0, which

shows that a two-point formula is inadequate here: the local derivatives are ill-defined because of
the cusp at the origin.
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In other words, both |�1; qX〉 and |�2; qX〉 form a possible pair of degenerate orthog-
onal eigenstates. The transformation angle ϕ(qX) is then arbitrary and can take any
value. This simply reflects the property that any linear combination of two degener-
ate eigenstates also is an eigenstate. Now, although the local derivatives of �(q) are
ill-defined at qX, wewill assume in what follows that both D(q) andW (q) are regular
at this point. Since the operator Hel(q) has no physical reason not to be regular with
respect to variations of q, this means that |�1; q〉 and |�2; q〉 are specifically chosen
so as to vary smoothly with q around qX, as opposed to |�el/ad

1 ; q〉 and |�el/ad
2 ; q〉

that change brutally by construction.
Let us clarify this point upon considering that a specific pair of degenerate orthogo-

nal eigenstates is knownat qX with no ambiguity (for example as the result of an actual

quantum-chemistry calculation) and denote them |�el/ad
1 ; qX〉 and |�el/ad

2 ; qX〉. The
bar is here to remind us that they correspond to a well-determined choice of states,
while any other pair of rotated eigenstates (for an arbitrary angle ϕref, now fixed and
not to be confused with ϕ(qX)) would work just as well,

|�el/ad
1 ; qX〉 = cosϕref|�el/ad

1 ; qX〉 + sinϕref|�el/ad
2 ; qX〉 , (4.21)

|�el/ad
2 ; qX〉 = − sinϕref|�el/ad

1 ; qX〉 + cosϕref|�el/ad
2 ; qX〉 . (4.22)

The adiabatic states that are known (with the bar) thus correspond here toϕref = 0 by
convention (note thatϕref = π yields equivalent states up to an unphysical sign5).We
have already proved that theworking states are eigenstates at qX.Wecan thus consider
a well-determined pair of working states upon making the following identification:

|�1; qX〉 = |�el/ad
1 ; qX〉 and |�2; qX〉 = |�el/ad

2 ; qX〉 (again, the bar reminds us that
the arbitrary mixing angle between degenerate states, ϕref, is conventionally fixed
to zero for the reference eigenstates). It must be stressed that the working states,
|�1; q〉 and |�2; q〉, are eigenstates at q = qX but not necessarily elsewhere. The
only requirement is that they vary smoothly with q around qX such that the functions
entering the corresponding Hamiltonian matrix, H(q), are regular.

We now make the strong hypothesis that |�1; q〉 and |�2; q〉 do not vary with q to
first order around qX. In other words, for any q = qX + δq (where δq is a first-order
infinitesimal displacement), we get |�1; q〉 ≡ |�1; qX〉 and |�2; q〉 ≡ |�2; qX〉.
Such states are often referred to as crude adiabatic, as they are adiabatic states
(eigenstates) for q = qX only and fixed elsewhere (here, to first order only but this
concept can be extended to any value of q). In the spirit of first-order perturbation
theory, they play the role of zero-order states such that the local gradients of D(q)
and W (q) at qX can be expressed with no difficulty as

∂ j D(qX) = 〈�2; qX|∂ j Hel(qX)|�2; qX〉 − 〈�1; qX|∂ j Hel(qX)|�1; qX〉
2

,

∂ jW (qX) = 〈�1; qX|∂ j H
el(qX)|�2; qX〉 . (4.23)

5This apparent double-valuedness issue is related to what is known as the geometrical Berry phase
(see Refs. [7, 16, 23, 24] for further details).
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It must be noted that the above formulae reflect the fact that the crude adiabatic states
do not vary with q (at least not to first order from qX).

6 Indeed,

∂ j H
(αβ)

(qX) = ∂ j 〈�α; qX|Hel(qX)|�β; qX〉 (4.24)

= 〈∂ j�α; qX|Hel(qX)|�β; qX〉︸ ︷︷ ︸
=0

+ 〈�α; qX|∂ j H
el(qX)|�β; qX〉

+ 〈�α; qX|Hel(qX)|∂ j�β; qX〉︸ ︷︷ ︸
=0

= 〈�α; qX|∂ j H
el(qX)|�β; qX〉 .

Such expressions are regular by construction and similar in form to Hellmann-
Feynman derivatives (and calculated as such in practice). At this stage, we have
what we need to express a well-defined linear expansion of H(q) around qX. Let us
denote

x (1)
j = ∂ j D(qX) , (4.25)

and
x (2)
j = ∂ jW (qX) . (4.26)

We get, to first order,

H(qX + δq) ≈ (S(qX) +
∑
j

∂ j S(qX)δq j )1 +
∑
j

[
−x (1)

j x (2)
j

x (2)
j x (1)

j

]
δq j . (4.27)

The corresponding adiabatic matrix to first order reads thus

6In fact, the same result can be obtained with a less restrictive hypothesis. It is enough to consider
that both |�1; q〉 and |�2; q〉 vary smoothly with q around qX such that 〈�α; qX|∂ j�β; qX〉 take
finite values (as opposed to 〈�el/ad

1 ; q|∂ j�
el/ad
2 ; q〉 that diverges when q tends to qX). Using a

Hellmann-Feynman-like formula, we get

∂ j H
(αβ)

(qX) = (Vα(qX) − Vβ(qX))︸ ︷︷ ︸
=0

〈�α; qX|∂ j�β; qX〉 + 〈�α; qX|∂ j H
el (qX)|�β; qX〉 ,

where we used, first, the fact that �-type states coincide with the eigenstates at qX and, second, that
they are assumed to be orthonormal,

〈∂ j�α; qX|�β; qX〉 + 〈�α; qX|∂ j�β; qX〉 = ∂ j 〈�α; qX|�β; qX〉 = 0 .

In addition, it is worth noticing that, for α,β = 1, 2 (restriction to two states), there is no
explicit involvement of the other possible eigenstates (there are no couplings 〈�1; qX|∂ j�γ; qX〉 or
〈�2; qX|∂ j�γ; qX〉 for γ ≥ 3 in the above expressions). This holds to first order but a second-order
expansion would require considering such terms.
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Fig. 4.4 Linearised double
cone represented in the
branching space

V(qX + δq) ≈ (�(qX) +
∑
j

∂ j�(qX)δq j )1 +
[−�(1)(δq) 0

0 �(1)(δq)

]
, (4.28)

where

�(1)(δq) =
√

(
∑
j

x (1)
j δq j )2 + (

∑
j

x (2)
j δq j )2 , (4.29)

and �(qX) = S(qX) and ∂ j�(qX) = ∂ j S(qX) (preservation of the trace to all
orders). The expression of the linearised energy half-difference, �(1)(δq), involves
both gradient-type vectors, x(1) and x(2), usually called gradient difference and deriv-
ative coupling. They span the so-called branching space (or branching plane) over
which degeneracy is lifted to first order in q from qX. �(1)(δq) increases only if
the displacement δq contains some contribution over one or both of them, whereas
orthogonal directions preserve degeneracy and are thus tangent to the seam.We have
now proved more formally that the local shape of both potential energy surfaces
within the branching space is a double cone the apex of which is at qX, hence the
name conical intersection (see Fig. 4.4). Note that some authors [16] denote them
g = x(1) and h = x(2) and thus call the branching space the gh-plane.

A legitimate question could be raised at this stage: the above expression of
�(1)(δq) has been obtained from the vectors x(1) and x(2) corresponding to some
specific choice of mixing angle (namely, ϕref = 0), while the value of this angle
should be unphysical. In fact, we will show that the angle is irrelevant indeed. The
original crude adiabatic states can be mixed arbitrarily to form another, but equiva-
lent, working basis set with no bar (rotated through ϕref with respect to the reference
ones) at q = qX: |�1; qX〉 = |�el/ad

1 ; qX〉 and |�2; qX〉 = |�el/ad
2 ; qX〉. Keeping this

angle constant at other points, we then have

|�1; q〉 = cosϕref|�1; q〉 + sinϕref|�2; q〉 , (4.30)

|�2; q〉 = − sinϕref|�1; q〉 + cosϕref|�2; q〉 , (4.31)
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and both Hamiltonian matrices are related through

H(q) = U†
refH(q)Uref , (4.32)

where

Uref =
[
cosϕref − sinϕref

sinϕref cosϕref

]
. (4.33)

As the angle is constant (q-independent), the functions that defineH(q) are as regular
as those involved in H(q). Further,

|�el/ad
1 ; q〉 = cosϕ(q)|�1; q〉 + sinϕ(q)|�2; q〉 , (4.34)

|�el/ad
2 ; q〉 = − sinϕ(q)|�1; q〉 + cosϕ(q)|�2; q〉 , (4.35)

where
ϕ(q) = ϕ(q) + ϕref . (4.36)

Similarly, we can define

U(q) = UrefU(q) =
[
cosϕ(q) − sinϕ(q)
sinϕ(q) cosϕ(q)

]
, (4.37)

such that

V(q) =
U

†
(q)︷ ︸︸ ︷

U†(q)U†
refH(q)

U(q)︷ ︸︸ ︷
Uref︸ ︷︷ ︸

H(q)

U(q) (4.38)

The resulting branching-space vectors (with no bar) now read

x (1)
j = ∂ j D(qX)

= 〈�2; qX|∂ j Hel(qX)|�2; qX〉 − 〈�1; qX|∂ j Hel(qX)|�1; qX〉
2

, (4.39)

x (2)
j = ∂ jW (qX)

= 〈�1; qX|∂ j H
el(qX)|�2; qX〉 . (4.40)

Using [
−x (1)

j x (2)
j

x (2)
j x (1)

j

]
= U†

ref

[
−x (1)

j x (2)
j

x (2)
j x (1)

j

]
Uref , (4.41)

they are obtained from the original ones according to

x (1)
j = cos 2ϕrefx

(1)
j − sin 2ϕrefx

(2)
j , (4.42)
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x (2)
j = sin 2ϕrefx

(1)
j + cos 2ϕrefx

(2)
j . (4.43)

When ϕref = 0 (or π), we get the original branching-space vectors, x (1)
j = x (1)

j and

x (2)
j = x (2)

j . It is straightforward to show that the trigonometric functions of ϕref

actually disappear when considering the expression of the linearised energy half-
difference, which can equally be expressed with the rotated vectors (with no bar)
as

�(1)(δq) =
√

(
∑
j

x (1)
j δq j )2 + (

∑
j

x (2)
j δq j )2 . (4.44)

This, again, shows that degeneracy is lifted to first order from qX along any direction
contained within the two-dimensional plane spanned by the branching-space vectors
for any value ofϕref.7 We have defined the branching-space vectors from a derivation
based on crude adiabatic �-states as formal intermediates playing the role of zero-
order states in the context of degenerate perturbation theory. From an operational
point of view, x (1)

j and x (2)
j are simply determined from Hellmann-Feynman-type

formulae based on a specific pair of degenerate adiabatic �
el/ad

-states (the states
actually calculated and for which we have set ϕref = 0 by convention). In other
words, they are obtained in practice from

x (1)
j = 〈�el/ad

2 ; qX|∂ j Hel(qX)|�el/ad
2 ; qX〉 − 〈�el/ad

1 ; qX|∂ j Hel(qX)|�el/ad
1 ; qX〉

2
,

x (2)
j = 〈�el/ad

1 ; qX|∂ j H
el(qX)|�el/ad

2 ; qX〉 . (4.45)

7Theworking basis set (with the bar)was chosen as a pair of crude adiabatic states forwhichϕref = 0
corresponded by convention to a specific pair of degenerate adiabatic states obtained from an actual
calculation. This arbitrary angle occurs to get fixed implicitly from symmetry considerations when
both degenerate states potentially belong to different irreducible representations (see Chap.7).
However, in a general situation, the value of ϕref can be fixed for convenience through an extra
constraint according to context. For example, it can be used tomake the two branching-space vectors
orthogonal. Alternatively, it may be convenient to fix the value of ϕref to change from the original
H(q) to an equivalentH(q) according to a condition such that the off-diagonal term is zero at some
reference geometry, q = qref, where the states are not degenerate (often, the Franck-Condon point).
This ensures coincidence with the adiabatic representation at this point in addition to coincidence at
the conical intersection qX. The entries of both equivalent Hamiltonian matrices are related through

D(q) = cos 2ϕrefD(q) − sin 2ϕrefW (q) ,

W (q) = sin 2ϕrefD(q) + cos 2ϕrefW (q) .

Setting W (qref) = 0 with D(qref) = �(qref) > 0 thus yields

cos 2ϕref = D(qref)
�(qref)

, sin 2ϕref = −W (qref)
�(qref)

.

This is also useful in the context of degenerate perturbation theory in order to identifyV(qX+δq) to
H(qX+δq) defined as the the result of the diagonalisation ofH(qX+δq) upon setting qref = qX+δq.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
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The gradient difference is often expressed as x (1)
j = ∂ j V2(qX)−∂ j V1(qX)

2 = ∂ j�(qX),
as if local derivatives were well-behaved with no further prescription. However,
as we just stressed, there are hidden subtleties behind the actual meaning of the
adiabatic gradient difference and first-order non-adiabatic coupling when both states
are degenerate. Let us consider an infinitesimal displacement q = qX + δq → qX
(i.e., δq → 0), such that �(q) → �(qX) = 0 and the transformation angle giving
the adiabatic �el/ad -states in terms of the reference �-states is fixed, ϕ(q) = ϕ(q)+
ϕref ≡ ϕref (i.e., ϕ(q) ≡ 0 with respect to the rotated �-states). Then, the adiabatic
derivatives along this direction satisfy

∂ j�(q) → cos 2ϕrefx
(1)
j − sin 2ϕrefx

(2)
j = x (1)

j , (4.46)

2�(q)Fj (q) → sin 2ϕrefx
(1)
j + cos 2ϕrefx

(2)
j = x (2)

j , (4.47)

where x (1)
j and x (2)

j are obtained from x (1)
j and x (2)

j via a rotation through −2ϕref. In
other words, in the vicinity of qX, the actual adiabatic gradient difference and the
numerator of the first-order non-adiabatic coupling depend on the value of the polar
angle within the branching plane and rotate with it, as illustrated in Fig. 4.5. Again,
this can be formulated rigorously within the framework of degenerate perturbation
theory (considering

∑
j ∂ j Hel(qX)δq j as the perturbation to be diagonalised first). In

any case, the important result of this derivation is that none of the two vectors makes

Fig. 4.5 Gradient difference (white arrow) and non-adiabatic coupling (green arrow) rotating
within the branching space. Four different origins are considered in the vicinity of the conical
intersection at the center. Contour plots correspond to increasing values of �(q)
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sense on its own. The only meaningful quantity is the branching plane spanned by
the pair of them, which is well-defined as long as both vectors are not parallel.

Now, let us examine in more detail the local shape of the double cone and its
implications on photochemical reactivity. Conical intersections are often classified
into two main types: sloped or peaked (and intermediate cases in between). Intu-
itively, this concept is easy to grasp if one considers two parabolas that cross along a
single coordinate. A sloped pattern is usually observed when both minima occur on
the same side of the crossing, whereas a peaked pattern corresponds typically to the
situation where there is a minimum on one side and a minimum on the other side.
Each minimum belongs to a different adiabatic surface in the sloped case, while in
the peaked case they both belong to the lower-energy adiabatic surface. This is illus-
trated on Fig. 4.6. When considering a full-dimensional picture, the sloped/peaked
character is determined upon comparing the relative direction of the energy gradi-
ents at the crossing point. Roughly speaking, almost-parallel gradients yield a sloped
topography, and almost-antiparallel gradients, a peaked topography. For a more rig-
orous definition and a detailed analysis, we refer to Ref. [14]. The consequence of
the topography on the photochemical reactivity is, again, quite intuitive: a sloped
pattern tends to drive the system back to its original position because both gradients
are similar. This ultimately favours photostability (regeneration of the reactant in the
ground state, once the excited state is depopulated). In contrast, a peaked pattern
allows some branching between the reactant (original minimum) and the photoprod-
uct in the ground state (additional minimum). In the latter case, the photochemical
reaction path from reactant to product through the conical intersection may be an

Fig. 4.6 Conical
intersections with sloped or
peaked topographies
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alternative route for a chemical reaction that would be impossible or difficult to
achieve thermally.

4.2 The Jahn-Teller Prototype *

The Jahn-Teller effect is well-known in inorganic and organometallic chemistry but
occurs also in organic chemistry when dealing with open-shell systems (radicals,
ions, or excited states). It is encountered when degenerate orbitals are not fully occu-
pied. In such a situation, if the electronic state is degenerate, breaking the symmetry
to lift the degeneracy of the orbitals lowers the energy of the system, which means—
somewhat counterintuitively—that the structure with less symmetry is more stable.
There are many famous examples of such situations. The simplest one is H + H2

(with three electrons), but many examples have been reported in the literature [5, 6].
A prototypical example is the benzene cation for which the Jahn-Teller effect takes
place in D6h symmetry between the degenerate electronic ground state, 2E1g , and
the four 2E2g twofold-degenerate normal modes of vibration (see, e.g., Ref. [25]). In
this situation, the lower surface shows three equivalent minima connected through
three equivalent transition structures. This typical threefold shape is often referred to
as the warped Mexican hat8 as shown on Fig. 4.7. In fact, this reflects the occurrence
of a Jahn-Teller crossing at the high-symmetry point, which is the archetypal case of
conical intersection induced by symmetry for a twofold-degenerate irreducible rep-
resentation in a non-Abelian point group (a point group with degenerate irreducible
representations; see Chap. 7).

In what follows, we will consider a two-dimensional description that will help to
clarify some general aspects involved in the description of the branching space in
terms of polar coordinates. Let us consider a specific pair of branching-space vectors,
x(1) and x(2), q1 and q2 displacements along them from the conical intersection where
q1 = q2 = 0 (they are to be considered as two distinct components of an irreducible
representation of E-type). We assume that they can be discriminated in an Abelian
subgroup (with only non-degenerate irreducible representations; see Chap. 7) where
q2
1 and q

2
2 are totally symmetric while q1q2 is not. The prototypical two-dimensional

quadratic expansion of H(q1, q2) reads

H(q1, q2) = d1+a(q2
1 +q2

2 )1+b

[−q1 q2
q2 q1

]
+c

[−(q2
1 − q2

2 ) −2q1q2
−2q1q2 q2

1 − q2
2

]
, (4.48)

where a, b, c, and d are four real numbers. The corresponding eigenvalues are
obtained as

8The Mexican hat model is similar but simpler: the lower surface is isotropic around the apex of
the cone, as further discussed below.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
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Fig. 4.7 Typical ground-state potential energy surface (contour plot) for a warped Mexican hat-
type Jahn-Teller case. The white arrows denote directions leading from the apex of the cone to the
three equivalent minima

V1,2(q1, q2) = d+a(q2
1 +q2

2 )±
√
b2(q2

1 + q2
2 ) + 2bcq1(q2

1 − 3q2
2 ) + c2(q2

1 + q2
2 )

2 .

(4.49)
These have a threefold symmetry in the (q1, q2)-plane, which is more obvious when
using polar coordinates,

q1 = ρ cos θ , (4.50)

q2 = ρ sin θ , (4.51)

such that

H(ρ, θ) = d1 + aρ21 + bρ

[− cos θ sin θ
sin θ cos θ

]
+ cρ2

[− cos 2θ − sin 2θ
− sin 2θ cos 2θ

]
, (4.52)

and
V1,2(ρ, θ) = d + aρ2 ± ρ

√
b2 + 2bcρ cos 3θ + c2ρ2 . (4.53)

Note that a partially-linear expansion (when c = 0) yields isotropic eigenvalues,
which is called the Mexican hat model, as opposed to the threefold warped Mexican
hat model.

Let us now focus on the fully-linear prototype: a = c = 0. We can also set d = 0
for simplicity and assume b > 0. The corresponding Hamiltonian matrix now reads
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H(q1, q2) = b

[−q1 q2
q2 q1

]
. (4.54)

We define the underlying crude adiabatic states |�1〉 = |�el/ad
1 ; 0, 0〉 and |�2〉 =

|�el/ad
2 ; 0, 0〉 (as already pointed out, a first-order description does not require explicit

knowledge of their behaviours with respect to variations of the nuclear coordinates,
as long as they are regular, so that they can be considered as fixed). In the adiabatic
representation, in the vicinity of (q1, q2) = (0, 0), the adiabatic states |�el/ad

1 ; q1, q2〉
and |�el/ad

2 ; q1, q2〉 yield

V(q1, q2) = b

⎡
⎣−

√
q2
1 + q2

2 0

0
√
q2
1 + q2

2

⎤
⎦ . (4.55)

Both basis sets are related by a rotation through an angle ϕ(q1, q2) (modulo 2π, a
priori),

U(q1, q2) =
[
cosϕ(q1, q2) − sinϕ(q1, q2)
sinϕ(q1, q2) cosϕ(q1, q2)

]
, (4.56)

such that

|�el/ad
1 ; q1, q2〉 = cosϕ(q1, q2)|�1〉 + sinϕ(q1, q2)|�2〉 , (4.57)

|�el/ad
2 ; q1, q2〉 = − sinϕ(q1, q2)|�1〉 + cosϕ(q1, q2)|�2〉 , (4.58)

which yields

cos 2ϕ(q1, q2) = q1√
q2
1 + q2

2

, sin 2ϕ(q1, q2) = − q2√
q2
1 + q2

2

. (4.59)

We can thus make a correspondence with the previously-defined polar coordinates

in the (q1, q2)-plane: ρ =
√
q2
1 + q2

2 and θ = −2ϕ(q1, q2) (modulo 2π). Note
that ϕ(q1, q2) and ϕ(q1, q2) + π actually correspond to the same point in space (θ
is transformed into θ − 2π). Using polar coordinates, the electronic Hamiltonian
matrices can be recast as

H(ρ, θ) = b

[−ρ cos θ ρ sin θ
ρ sin θ ρ cos θ

]
, (4.60)

and

V(ρ, θ) = b

[−ρ 0
0 ρ

]
. (4.61)
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The gradient of H(q1, q2) satisfies at any point

∇H(q1, q2) = b

[−u1 u2
u2 u1

]
, (4.62)

wherewe introduced the unit vectors in the (q1, q2)-plane9: u1 = ∇q1 and u2 = ∇q2.
Differentiating the adiabaticity conditions,

q1 cos 2ϕ(q1, q2) − q2 sin 2ϕ(q1, q2) =
√
q2
1 + q2

2 , (4.63)

q1 sin 2ϕ(q1, q2) + q2 cos 2ϕ(q1, q2) = 0 , (4.64)

yields (at any point but the origin),

2∇ϕ(q1, q2)︸ ︷︷ ︸
=−∇θ=− 1

ρ uθ

(−q1 sin 2ϕ(q1, q2) − q2 cos 2ϕ(q1, q2))︸ ︷︷ ︸
=0

+u1 cos 2ϕ(q1, q2) − u2 sin 2ϕ(q1, q2)︸ ︷︷ ︸
=∇ρ=uρ

= ∇
√
q2
1 + q2

2︸ ︷︷ ︸
=∇ρ=uρ

, (4.65)

2∇ϕ(q1, q2)︸ ︷︷ ︸
=−∇θ=− 1

ρ uθ

(q1 cos 2ϕ(q1, q2) − q2 sin 2ϕ(q1, q2))︸ ︷︷ ︸
=
√

q2
1+q2

2=ρ

+u1 sin 2ϕ(q1, q2) + u2 cos 2ϕ(q1, q2)︸ ︷︷ ︸
=ρ∇θ=uθ

= 0 , (4.66)

where the polar unit vectors satisfy

uρ = ∇ρ = q1√
q2
1 + q2

2

u1 + q2√
q2
1 + q2

2

u2 = cos θu1 + sin θu2 , (4.67)

uθ = ρ∇θ = − q2√
q2
1 + q2

2

u1 + q1√
q2
1 + q2

2

u2 = − sin θu1 + cos θu2 . (4.68)

For such vectors to be defined when approaching the pole implies to make ρ tend
to zero for a given value of θ (directional derivative instead of local derivative, as
aforementioned). The adiabatic gradient difference (with no bar) thus satisfies

x(1) = b∇ρ = buρ , (4.69)

9This notation reflects that ∂q1q1 = 1 and ∂q2q1 = 0 while ∂q1q2 = 0 and ∂q2q2 = 1.
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which thus rotate in the (q1, q2)-plane depending on the value of θ. Note that
�(ρ, θ) = bρ and

∂�(ρ, θ)

∂ρ
= b ,

∂�(ρ, θ)

∂θ
= 0 , (4.70)

which shows that the energy difference behaves as an isotropic two-dimensional cone
of radial slope b. The first-order non-adiabatic coupling vector is obtained from

|∇�
el/ad
2 ; q1, q2〉 = −∇ϕ(q1, q2)(cosϕ(q1, q2)|�1〉 + sinϕ(q1, q2)|�2〉)

= −∇ϕ(q1, q2)|�el/ad
1 ; q1, q2〉 , (4.71)

such that

〈�el/ad
1 ; q1, q2|∇�

el/ad
2 ; q1, q2〉 = −∇ϕ(q1, q2) = 1

2
∇θ = 1

2ρ
uθ . (4.72)

Note that

〈�el/ad
1 ; q1, q2| ∂

∂ρ
�

el/ad
2 ; q1, q2〉 = 0 , 〈�el/ad

1 ; q1, q2| ∂

∂θ
�

el/ad
2 ; q1, q2〉 = 1

2
,

(4.73)
which shows that the mixing between both states does not depend on the radius
and depends uniformly on the angle (and the half value shows that the states turn
half more slowly than the polar angle). The partial derivatives expressed in polar
coordinates are regular, but there is a still singularity of the total gradient at the pole.
Indeed,

∇ = ∂

∂q1
u1 + ∂

∂q2
u2 = ∂

∂ρ
uρ + 1

ρ

∂

∂θ
uθ . (4.74)

In summary, the branching-space vectors in the crude adiabatic representation
(chosen as a conventional reference) are fixed and read

x(1) = bu1 , (4.75)

x(2) = bu2 , (4.76)

while in the adiabatic representation (states allowed to mix around the apex of the
double cone), they depend on θ,

x(1) = buρ = cos θx(1) + sin θx(2) , (4.77)

x(2) = buθ = − sin θx(1) + cos θx(2) , (4.78)

A similar treatment in terms of polar coordinates can be applied to any type of conical
intersection, provided the branching-plane coordinates q1 and q2 are duly scaled and
expressed along vectors x(1) and x(2) rotated so as to be orthogonal.
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Jahn-Teller crossings are very specific types of conical intersections induced by
symmetry. However, many molecules that present conical intersections involved in
their photochemical reactivity can be understood upon making a comparison with a
Jahn-Teller analogue involving the same number of electrons (see, e.g., Ref. [18]).

4.3 Diabatic Representations

Up to now, we have considered as a working basis set a pair of electronic states,
|�1; q〉 and |�2; q〉, with only three requirements: they are orthogonal, span the same
Hilbert space as the two adiabatic eigenstates of interest, |�el/ad

1 ; q〉 and |�el/ad
2 ; q〉,

and vary smoothly with q (in particular around a conical intersection where they also
are eigenstates by construction). We shall now be more specific upon introducing the
concept of diabatic states.

As already mentioned above,�(q) exhibits a two-dimensional cusp when q is the
locus of a conical intersection. In addition, the components of the first-order non-
adiabatic coupling vector, F(q), diverge. Solving the Schrödinger equation for the
nuclear wavepackets requires the various quantities entering the Hamiltonian oper-
ator to be represented as explicit functions of q (and corresponding first and second
derivatives) that will be involved in integrals over qwhen evaluatingmatrix elements.
As a consequence, although the adiabatic representation is uniquely-defined and is a
good starting point, it is impractical as such for quantum dynamics simulations when
the effect of a conical intersection and non-adiabatic couplings are to be considered.
Smoother functions, easier to handle numerically, can be obtained upon considering
an alternative electronic basis set called diabatic. Transformations from adiabatic
states to diabatic states are called diabatisations.

Formally, diabatic states are defined such that the corresponding kinetic-coupling
operators,

�dia
nm (R) = − 1

M

〈
�el/dia

n ;R∣∣ ∂

∂R
�el/dia

m ;R〉r. ∂

∂R

− 1

2M

〈
�el/dia

n ;R∣∣ ∂2

∂R2 �el/dia
m ;R〉r ≈ 0 (4.79)

(see Sect. 3.2.4), vanish.
Instead, the electronic Hamiltonian matrix is no longer diagonal, as the diabatic

states are not eigenstates. The couplings between the electronic states are now rep-
resented by the off-diagonal entries

Hdia
αβ (q) = 〈�el/dia

α ; q| Hel(q)|�el/dia
β ; q〉 . (4.80)

For this reason, they are called potential couplings, as opposed to the kinetic cou-
plings that arise in the adiabatic representation. This concept was introduced in 1935

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Fig. 4.8 Avoided crossing in
the cyclobutadiene molecule.
The diabatic potentials are in
green and orange: they
follow the evolution of the
molecular orbitals shown on
the figure. On the other hand
the adiabatic potential energy
surfaces imply a complete
change of the dominant
electronic configurations
around the transition state

by Polanyi [26] and Hellmann and Syrkin [27] and further generalised by Smith
and Baer [28–30]. Originally used essentially in the context of inelastic scattering
in molecular physics, diabatic states have gradually become essential tools in non-
adiabatic photochemistry.

As opposed to adiabatic states, diabatic states are not eigenstates of any operator
in particular. Their definition is not unique and, as shown by Mead and Truhlar [31],
the diabaticity criterion (see below), which is a local condition, cannot be achieved
globally (except for a diatom or for the ideal case of a finite Hilbert space). In
the general case, a complete (thus infinite) basis set of electronic states is required
for integrating the condition of diabaticity over the whole space spanned by the
nuclear coordinates. However, it is possible to find states that make the non-adiabatic
couplings negligible and with no significant effect on the dynamics of the molecule;
such states are called quasidiabatic and often referred to as diabatic for simplicity. On
the other hand, diabatic states often have a clear interpretation from a chemical point
of view: this is illustrated by the avoided crossing in the cyclobutadiene molecule
shown on Fig. 4.8. The diabatic potentials correspond to the curves in green and
orange. The lower adiabatic potential has two minima corresponding to a distortion
of themolecule that stabilizes theπmolecular orbitals depicted in Fig. 4.8:we see that
the diabatic functions follow the evolution of the molecular orbitals and correspond
to one dominant electronic configuration. On the other hand, the adiabatic functions
imply a deep change in the dominant electronic configuration around the geometry
corresponding to the transition state.

Formally, the diabatic and adiabatic basis sets can be considered both as orthonor-
mal and spanning the sameHilbert space at all q (at least to a given order around some
reference geometry). They are thus transformed into each other through a unitary
transformation, Udia(q),

Udia†(q)Udia(q) = Udia(q)Udia†(q) = 1 , (4.81)
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such that both Hamiltonian matrices are related through a similarity transformation,

V(q) = Udia†(q)Hdia(q)Udia(q) , (4.82)

where V(q) is diagonal. In this definition, the columns of Udia(q) correspond to the
components of the adiabatic states in the diabatic basis set. F j (q) is the j-th vector
component of the first-order non-adiabatic coupling matrix in the adiabatic basis set
and f diaj (q) the same quantity in the diabatic basis set. They transform into each other
according to

F j (q) = Udia†(q)f diaj (q)Udia(q) + Udia†(q)∂ jUdia(q) . (4.83)

The diabaticity criterion reads
f diaj (q) ≈ 0 , (4.84)

so that the unitary transformation must fulfill (assuming that the first-order non-
adiabatic coupling is known)

F j (q) ≈ Udia†(q)∂ jUdia(q) . (4.85)

As already mentioned, in a two-state problem, the unitary transformation can be
chosen as a real rotation,

Udia(q) =
[
cosϕdia(q) − sinϕdia(q)
sinϕdia(q) cosϕdia(q)

]
, (4.86)

where

|�el/ad
1 ; q〉 = cosϕdia(q)|�el/dia

1 ; q〉 + sinϕdia(q)|�el/dia
2 ; q〉 , (4.87)

|�el/ad
2 ; q〉 = − sinϕdia(q)|�el/dia

1 ; q〉 + cosϕdia(q)|�el/dia
2 ; q〉 . (4.88)

The first derivative is simply obtained as

∂ jUdia(q) = −∂ jϕ
dia(q)

[
sinϕdia(q) cosϕdia(q)

− cosϕdia(q) sinϕdia(q)

]
, (4.89)

such that

Udia†(q)∂ jUdia(q) = −∂ jϕ
dia(q)

[
0 1

−1 0

]
. (4.90)

The condition of diabaticity is thus achieved if the mixing angle, ϕdia(q), satisfies at
all q,

Fj (q) ≈ −∂ jϕ
dia(q) . (4.91)
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where we recall that F now simply stands forF12 (two-state problem). This differen-
tial relationship has led to methods for determining ϕdia(q) based on the integration
of the coupling vectorF(q) [32]. This kind of explicit procedure is tractable for small
systems but becomes rapidly tedious as the size of the system increases. However,
for semiclassical dynamics, it is still interesting, as the integration can be achieved
along the one-dimensional path followed by a trajectory q(t) [33].

The development of various diabatisation formalisms was an active field of
research in the 1980s and has recently become central again with the advent of quan-
tumdynamicsmethods able to treat largemolecular systems.Manyapproaches, based
on different criteria, have been proposed to build quasidiabatic states and/or Hamil-
tonians. Some were formulated in terms of effective Hamiltonians in the framework
of quasidegenerate perturbation theory, within a model subspace of states having
the same eigenvalues as the targeted adiabatic ones [34–40]. Other methods were
based on the construction of states yielding mathematical or physical properties that
are smooth functions of q [41, 42]. A detailed review of diabatisation methods is
beyond the scope of this chapter. We shall concentrate here on the approach called
diabatisation by ansatz, which is an energy-based diabatisation. Vibronic-coupling
Hamiltonian models [13, 19, 20] are typical examples that have been used with suc-
cess in concert with MCTDH calculations to produce absorption and photoelectron
spectra in molecules made of about ten atoms.

4.4 Diabatisation by Ansatz

The energy-based approach named diabatisation by ansatz relies on the construction
of a Hamiltonian matrix, Hdia(q), made of smooth and simple analytic functions
of q. The values of the various parameters involved in these functions are adjusted
through a fitting procedure so that the eigenvalues ofHdia(q) are as close as possible
to the ab initio adiabatic energies over a sample of relevant molecular geometries.
The non-adiabatic couplings are not used from the onset in a diabatisation by ansatz.
However, they will be correct by construction around a conical intersection if the
double cone is described correctly to first order in the model. In other words, the
physical information carried by the couplings is contained in the local topography
of the conical intersection. Indeed, as already shown, when q → qX the adiabatic
gradient difference and first-order non-adiabatic coupling span the branching plane:
∂ j�(q) → x (1)

j and 2�(q)Fj (q) → x (2)
j to first order in q (see above). This ensures

that the effect of the non-adiabatic couplings will be treated adequately in regions
where they are significant (around conical intersections). In addition, even if there is
no direct check of how much diabatic the states are, the smoothness and simplicity
of the entries of Hdia(q) as functions of q guarantee indirectly that the underlying
states vary as little as possible with q.

Let us now illustrate this approach with a two-dimensional model,

Hdia(x, y) = [
Hdia

αβ (x, y)
]

, (4.92)
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where we assume a real symmetric matrix, i.e., Hdia
αβ (x, y) = Hdia

βα (x, y). The func-
tions entering the diabatic Hamiltonian matrix are regular by construction. This
implies that they can be expanded as Taylor series around some reference geometry,
(x0, y0),

Hdia
αβ (x, y) = Hdia

αβ (x0, y0) +
(

∂Hdia
αβ

∂x

)

0

(x − x0) +
(

∂Hdia
αβ

∂y

)

0

(y − y0)

+ 1

2

(
∂2Hdia

αβ

∂x2

)

0

(x − x0)
2 + 1

2

(
∂2Hdia

αβ

∂y2

)

0

(y − y0)
2

+
(

∂2Hdia
αβ

∂x∂y

)

0

(x − x0)(y − y0) + ... , (4.93)

The values of Hdia
αβ (x0, y0) and of the local derivatives at the reference point,(

∂Hdia
αβ

∂x

)
0
,
(

∂Hdia
αβ

∂y

)
0
, etc. are then adjusted self-consistently until the eigenvalues10 of

Hdia(x, y) fit the adiabatic energies (in general calculated ab initio with a quantum
chemistry method) within some tolerance threshold over a representative sample of
values of (x, y). The quality of the fitted model is measured with the root-mean-
square deviation (least-square procedure) between the model and the data. Some-
times, the parameters are further readjusted to reproduce experimental data obtained
from spectroscopy.Alternatively to a Taylor expansion truncated to some given order,
it is possible to use predetermined analytic expressions such as, e.g.,Morse functions,
repulsive exponentials, or periodic functions, according to the nature of the coordi-
nates and whether the state is bound or dissociative. Again, such functions depend
parametrically on a set of characteristic numbers (dissociation asymptote, harmonic
curvature, anharmonic constant, period, etc.) that are to be adjusted through a fitting
procedure. The typical shapes of diabatic and adiabatic surfaces around a conical
intersection is illustrated schematically on Fig. 4.9. Note that a cut along x for a
non-zero value of y implies that the off-diagonal coupling term, Hdia

12 , is not zero,
which corresponds to an avoided crossing such as shown on Fig. 4.3.

When the entries ofHdia(q) are expressed as truncated Taylor expansions around
the Franck-Condon point (typically, as linear or quadratic functions of normal coordi-
nates originated from the ground-state equilibrium geometry), this matrix is referred
to as a vibronic-coupling Hamiltonian model [13, 19, 20]. Let us first consider a
simple example in the form of a two-state, two-mode model (q1 and q2 will be con-
sidered as a pair of dimensionless normal coordinates below) with quadratic diagonal
entries and linear off-diagonal entries. Typically, the various terms are separated as
follows,

10Note that, as already shown, a two-state problem gets explicit solutions for the eigenvalues but this
is no longer the case for problems involving more states. If so, the eigenvalues are to be calculated
numerically using some diagonalisation procedure (for example the Jacobi algorithm).
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Fig. 4.9 Shapes of diabatic (H ; the superscript dia has been dropped for notation simplicity), and
adiabatic (V ) surfaces along two coordinates x and y spanning the two-dimensional branching
space of a conical intersection (linear model)

Hdia(q1, q2) =
(

�ω1

2
q2
1 + �ω2

2
q2
2

)
1 +

[
ε1 0
0 ε2

]
+

[
κ(1)q1 λq2
λq2 κ(2)q1

]
. (4.94)

The parameters are related to the derivatives according to

Hdia(0, 0) =
[

ε1 0
0 ε2

]
, (4.95)

(
∂Hdia

∂q1

)

0

=
[

κ(1) 0
0 κ(2)

]
,

(
∂Hdia

∂q2

)

0

=
[
0 λ
λ 0

]
, (4.96)

(
∂2Hdia

∂q2
1

)

0

= �ω11 ,

(
∂2Hdia

∂q2
2

)

0

= �ω21 ,

(
∂2Hdia

∂q1∂q2

)

0

= 0 . (4.97)

If κ(1) = κ(2) = 0, we have two equivalent paraboloids centred at the origin and
with harmonic angular frequencies ω1 and ω2. Non-zero parameters κ(1) and κ(2)

characterize the slopes at the origin when q1 is varied (hence, the shift of bothminima
with respect to the origin). The energy difference ε2 − ε1 is the vertical transition
energy at the origin. The parameter λ characterises the strength of the coupling when
q2 is varied. The first coordinate is called the tuning mode and the second coordinate
the coupling mode. The eigenvalues read

V1,2(q1, q2) = �ω1

2
q2
1 + �ω2

2
q2
2 + ε1 + ε2

2
+ κ(1) + κ(2)

2
q1

±
√(

ε2 − ε1

2
+ κ(2) − κ(1)

2
q1

)2

+ (λq2)
2 . (4.98)
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The off-diagonal term vanishes at the origin, such that we can consider that
the adiabatic and diabatic states coincide. Assuming ε2 > ε1, we can identify
|�el/dia

1 ; 0, 0〉 = |�el/ad
1 ; 0, 0〉 and |�el/dia

2 ; 0, 0〉 = |�el/ad
2 ; 0, 0〉. In other words,

ϕdia(0, 0) = 0. This yields

V(0, 0) =
[

ε1 0
0 ε2

]
, (4.99)

(
∂V
∂q1

)

0

=
[

κ(1) 0
0 κ(2)

]
,

(
∂V
∂q2

)

0

= 0 , (4.100)

(
∂2V

∂q2
1

)

0

= �ω11 ,

(
∂2V

∂q2
2

)

0

= �ω21 + 2
λ2

ε2 − ε1

[−1 0
0 1

]
,

(
∂2V

∂q1∂q2

)

0

= 0 .

(4.101)
The zero- and first-order diagonal parameters can thus be directly identified to the
ab initio energies and gradients. The second derivatives are equal along the tuning
mode but are altered along the coupling mode with a term involving the square of
the coupling constant added to the diabatic curvature of the higher state and removed
from the diabatic curvature of the lower state. In cases where �ω21 − 2 λ2

ε2−ε1
is

negative (i.e., 2 λ2

ε2−ε1
> �ω2, which occurs when the coupling is strong and/or the

energy difference is small), the origin exhibits a negative curvature along q2, such
that a double-well pattern can occur in the lower-energy surface,11 as shown on
Fig. 4.10. This is known as a second-order Jahn-Teller effect [5, 6]. This simple
example also allows us to locate the conical intersection easily. It must correspond
to Hdia

12 (q1, q2X) = 0, hence q2X = 0. Further, Hdia
22 (q1X, 0) = Hdia

11 (q1X, 0) yields
q1X = − ε2−ε1

κ(2)−κ(1) (note that κ(2) = κ(1) implies parallel curves that never cross).

The branching-space vectors can be taken as x(1) =
[

κ(2)−κ(1)

2 , 0
]
and x(2) = [0,λ]

upon assuming that ϕref is determined so as to correspond to the direction from the
conical intersection to the origin (as already mentioned, one can calculate the value
ofϕref from qref = 0, the Franck-Condon point, to rotate the branching-space vectors
obtained from an actual calculation, x(1) and x(2), with the bar, in order to produce the
effectively-used x(1) and x(2), with no bar). Again, let us stress that the values of the
parameters can also be fitted numerically such that the eigenvalues of Hdia(q1, q2)
are as close as possible to V1(q1, q2) and V2(q1, q2) over a selected sample of points.

In most application cases treated with a vibronic-coupling Hamiltonian model,
point-group symmetry (see Chap. 7) was used to simplify the procedure determin-
ing which parameters vanish for symmetry reasons. A prototypical example is the
butatriene cation, C4H

+
4 , for which such a model was used in MCTDH calculations

to calculate a photoelectron spectrum in good agreement with experiments [43].

11This situation looks similar to an avoided crossing with respect to the adiabatic curves, see
Fig. 4.3, except that now the strongly-coupled diabatic states produce curves that do not cross but
rather coincide with the adiabatic ones at the origin; a π

4 -rotation, sometimes referred to as a Nikitin
transformation, would generate alternative diabatic states that cross and are weakly coupled. This
would swap the roles of q1 and q2 as tuning and coupling modes, respectively.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
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Fig. 4.10 Typical shape of a
second-order Jahn-Teller
effect in the strong-coupling
regime for two adiabatic
potential energy curves
(plain lines), V2 (upper one)
and V1 (lower one), along a
nuclear coordinate q2. The
dashed lines represent the
diabatic energies curves (the
orange and green color code
refers to the diabatic states)

The corresponding 18-dimensional vibronic-coupling Hamiltonian model is given
in Chap.7 where details about how point-group symmetry is to be applied to this
case are provided.

Finally, let us again notice that diabatic states often have a clear interpretation
from a chemical point of view. In the case of the butatriene cation, the dominant
configurations of X2B2g(D0) and A2B2u(D1) at the Franck-Condon point are [closed
shells]b22ub

1
2g and [closed shells]b12ub

2
2g , respectively. The corresponding molecular

orbitals are depicted on Fig. 7.9 in Chap.7. The two diabatic states are chosen such
that |�el/dia

1 ; q〉 and |�el/dia
2 ; q〉 coincide with the adiabatic ones, X2B2g(D0) and

A2B2u(D1) at the Franck-Condon point (q = 0) and keep belonging to the B2g

Fig. 4.11 Conical intersection, molecular orbitals, and dominant configurations involved in the
diabatic 1B3u and 1B2u excited states of pyrazine (the convention for the body-fixed axes of D2h
are such that at the ground-state equilibrium geometry the molecule lies in the (y, z)-plane, with
both nitrogen atoms on the z-axis)

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
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and B2u irreducible representations, respectively, for other geometries q as long as
D2h symmetry is preserved. This means that they preserve their dominant electronic
configurations [closed shells]b22ub

1
2g and [closed shells]b12ub

2
2g at all geometries.

Anotherwell-knownexample is pyrazine [44] forwhich the photoabsorption spec-
trum is affected by a conical intersection between the 1B3u and 1B2u excited states.
Their dominant configurations are [closed shells]n1π∗1 and [closed shells]π1π∗1,
respectively, where the n molecular orbital corresponds to lone pairs on the N-nuclei
while the π and π∗ molecular orbitals involve the π-system of the conjugated ring.
This is summarised on Fig. 4.11.
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Chapter 5
Choosing the Set of Coordinates
for the Nuclei

Once the potential energy surfaces have been calculated, the Schrödinger equation
for the nuclei has to be solved. Within the Born-Oppenheimer approximation, the
nuclear Hamiltonian operators simply reads:

H = (T nu(q,�) + Vm(q)) , (5.1)

with T nu(q,�) the nuclear kinetic energy operator and Vm(q) the PES of the work-
ing electronic state. T nu(q,�) and Vm(q) were defined in Chap.3. If the Born-
Oppenheimer approximation is no longer valid, several coupled electronic states
have to be taken into. As explained in Sect. 4.3, an electronic diabatic representation
must be introduced and the potential coupling, V dia

12 , must be included. In the case
of two electronic states only, the nuclear Hamiltonian operator thus reads

H = T nu(q,�) 1 +
[
V dia
1 V dia

12
V dia
12 V dia

2

]
. (5.2)

Before solving the nuclear Schrödinger equations, one key issue in molecular quan-
tum dynamics is the choice of the 3N -6 internal nuclear coordinates, q, and the three
Euler angles, �, introduced in Chap.3. q describe the shape of the molecule (the
molecular geometry) and � parametrize the BF frame and thus the overall rotation
of the molecule.

Awell-adapted set of coordinates leads to a nuclearHamiltonian operator that is as
separable as possible, i.e. that reduces asmuch as possible the coupling terms between
the coordinates [1]. If one set of coordinates tends to increase these coupling terms,
the number of basis functions used to solve the nuclear Schrödinger equation will
increase dramatically. In practice, a set of coordinates that makes the Hamiltonian
operator completely separable is rarely found. We present in this chapter several
families of nuclear coordinates often used in quantum dynamics.
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5.1 Normal Coordinates

We first show that when only small-amplitude motions occur around a given equi-
librium geometry, molecules can be considered as vibrating in a quasi-harmonic
way. The well-known rectilinear normal coordinates [2] then make the Hamiltonian
operator almost separable (it is exactly separable for infinitesimal displacements).
Thus, simple harmonic motions can serve as a mathematical model to describe the
vibrations of the molecule and the use of normal coordinates will be optimal in this
low-energy domain.

For an N -atom molecular system let m̃α , and X̃α , Ỹ α , and Z̃α (α = 1, . . . , N )

be, respectively, the mass and the Laboratory-Fixed (LF) Cartesian coordinates
of the α-th atom. Let us define μ and Xμ as follows: (μ = 1, . . . , 3N ) and for
(α = 1, . . . , N )

Xμ = X̃α ; if μ = 3α − 2 ,

Xμ = Ỹ α ; if μ = 3α − 1 ,

Xμ = Z̃α ; if μ = 3α , (5.3)

and mμ = mμ+1 = mμ+2 = m̃α .
Let us work within the Born-Oppenheimer approximation and in the electronic

ground state and assume that there is an equilibrium geometry. For small values of the
displacements around this equilibrium geometry, the potential energy surface of the
electronic ground state, V , may be expressed as a Taylor series in the displacements
Xi :

V = V0 + 1

2

3N∑
i, j=1

(
∂2V

∂Xi∂X j

∣∣∣∣
0

) Xi X j + higher order terms. (5.4)

Xi denote the ordinary 3N Cartesian coordinates of the N nuclei referred to a
laboratory-fixed frame minus their values at the equilibrium geometry. If we choose
the zero of energy so that the energy of the equilibrium configuration is zero, V0 can
be eliminated. Let us now introduce the mass weighted coordinates, xi , such as

xi = √
mi Xi , (5.5)

with mi the mass of the nucleus being displaced along Xi because the weighted
coordinates simplify the expression for the kinetic energy. For sufficiently small
amplitudes of vibration, the higher terms in the potential energy surface can be
neglected, and the Hamiltonian operator can be written as:

H = 1

2

3N∑
i, j=1

(
∂2V

∂xi∂x j

∣∣∣∣
0

) xi x j − �
2

2

3N∑
i=1

∂2

∂x2i
. (5.6)
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Thedifficult termswhen solving the time-independent or time-dependentSchrödinger
equation are the cross terms in the potential, i.e. the termswith i �= j .However,within
the harmonic approximation it is possible to find a linear combination of Cartesian
coordinates that leads to a Hamiltonian operator in which there are no cross terms.
Indeed, diagonalising the matrix F, where

Fi j = (
∂2V

∂xi∂x j

∣∣∣∣
0

) = (
1

mim j
)1/2 (

∂2V

∂Xi∂X j

∣∣∣∣
0

) (5.7)

gives 3N eigenvalues λl and 3N eigenvectors {(c1l , . . . , c3Nl); l = 1, . . . , 3N } defin-
ing 3N new coordinates: Ql = ∑3N

i=1 cil xi . For non-linear molecules, six eigenval-
ues are zero and correspond to the overall translation and the overall rotation of the
molecule (for linear molecules, only five eigenvalues are equal to zero). If we remove
the terms corresponding to overall translation and overall rotation, the Hamiltonian
operator has the following form in terms of the 3N -6 (3N -5 for linear molecules)
remaining eigenvectors [3]:

H = 1

2

3N−6∑
l=1

λl Q
2
l − �

2

2

3N−6∑
l=1

∂2

∂Q2
l

. (5.8)

λl is also equal to ( ∂2V
∂Q2

l

∣∣∣
0
). This new expression of the operator has the important

property to be separable in the set of coordinates Ql with l = 1, . . . , 3N −6, i.e. it is
a sum of one-dimensional operators. Ql are said to be the normal coordinates of the
system. The corresponding normalmodes of vibration, thus vibrate in an independent
way. As for any separable Hamiltonian operator, the eigenfunctions,�vib

m are simply
a product of the eigenfunctions of each mode:

�vib
m =

3N−6∏
l=1

�vl (Ql) , (5.9)

with1

(
1

2
λl Q

2
l − �

2

2

∂2

∂Q2
l

)�vl (Ql) = Evl�vl (Ql) . (5.10)

Equation (5.10) corresponds to the well-known harmonic oscillator problem with
the eigenvalues Evl = �ωl(vl + 1

2 ) and ωl = λ
1/2
l . vl = 0, 1, 2, . . . is the vibrational

quantum number. The eigenfunctions are the Hermite functions. The total vibrational
energy is the sum over the eigenvalues of the one-dimensional problems, i.e.

Evib
m = E(v1, v2, v3, . . .) = �ω1(v1 + 1

2
) + �ω2(v2 + 1

2
) + �ω3(v3 + 1

2
) + . . . . (5.11)

1This equation appears as a very particular case of Eq. (3.52) of Sect. 3.2.3.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Normal coordinates are optimal coordinates for small vibrations since they lead
to a Hamiltonian operator without any cross term between the coordinates such as
Ki j Qi Q j with i �= j , i.e. without any correlation between the coordinates. The (3N -
6) quantummechanical problem simplifies into 3N -6 quantummechanical problems
of one dimension. The same would be true for the time-dependent Schrödinger
equation: the solution of the latter with the Hamiltonian operator of Eq. (5.8) is
also a product of one-dimensional time-dependent functions. Solving the vibrational
Schrödinger equation (time-dependent or time-independent) using Cartesian coor-
dinates as in Eq. (5.6) would be much more complicated. We arrive at the important
conclusion that a set of coordinates that makes the Hamiltonian operator as separa-
ble as possible greatly simplifies the resolution of the Schrödinger equation. Such a
set of coordinates is said to be “adapted to the physics of the problem”.

Formost physical situations, it is not possible to find a set of coordinates thatmakes
the Hamiltonian operator separable. However, the “correlation”, i.e. the numerical
amplitude of the cross terms, can be much larger in one set of coordinates compared
to another. The former is said to be an unsuitable set of coordinates since it leads
to artificial correlation and will drastically complicate the numerical resolution
of the Schrödinger equation. At this level, the reader could think that the solution
would be to find for each process the “optimal” set of coordinates that minimizes
correlation. Unfortunately, the situation is more complicated since the “optimal” set
of coordinates can lead to a kinetic energy operator that is so complicated or to a
number of terms in the potential that is so large that the advantage of using this set
of coordinates is lost. Thus, in practice, one simply tries to find a set of coordinates
that leads to moderate correlation.

Some rules of thumb can be brought up. As already said, the normal coordinates
are optimal in the low-energy domain of systemswith awell-defined singleminimum
and this is the reasonwhy normal coordinates play a central role in traditional infrared
spectroscopy [2, 4, 5]. But at higher excitation energies, vibrations become more
marked by anharmonicity. Thus, under these conditions it is no longer possible to
neglect the “higher terms” in the Taylor expansion of Eq. (5.4). The anharmonicity
can be treated first as a perturbation of the harmonic model and a description in
normal coordinates remains pertinent as a “zero-order” description: in particular,
some additional terms can be added to Eq. (5.11) [5]. In a normal mode of vibration,
all the atoms of the molecules often move in a concerted way. In other words, the
normal mode generally does not correspond to the vibration of, let us say, only two
atoms, but of all the atoms at the same time.

5.2 Examples of Valence and Jacobi Coordinates
for Tri-atomic Systems

Higher in energy, the situation can change and some chemical bonds may vibrate
in a more independent way: some vibrations are more localized and this situation is
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Fig. 5.1 Valence coordinates for HCN. R1 is the length of the CH bond, R2 is the length of the CN
bond and θ is the angle between the two chemical bonds

sometimes referred to as the local-mode regime2 [6]. In the latter case, the distances
between the atoms and the angles between the chemical bonds may describe more
naturally the physical situation than normal coordinates [7]. It is thus necessary to
switch from a description in terms of rectilinear coordinates, i.e. coordinates that
are linear combinations of Cartesian coordinates such as normal coordinates, to a
description in terms of curvilinear coordinates, i.e. coordinates involving angles
and that cannot be expressed as linear combinations of Cartesian coordinates (with
coefficients that are constant). More generally speaking, it is natural to think that
curvilinear coordinates are better-adapted to describe motions of large amplitudes.
For instance, it is natural to think that a rotation within a molecule is better-described
with angles than with Cartesian coordinates. The coordinates involving the distances
between the atoms and the angles between the chemical bonds are often called
internal or valence coordinates. The curvilinear coordinates have the disadvantage
that they lead to complicated expression of the nuclear kinetic energy operator (See
Chap.6).

Now even higher in energy the molecular system can explore two or several min-
ima. For those cases, valence coordinates may no longer be adapted and Jacobi
coordinates that describe the motion of one atom or the center of mass of a group
of atoms with respect to the center of mass of another group of atoms can be more
adapted. Let us consider an example to illustrate our point: the molecule of hydrogen
cyanide as shown on Fig. 5.1. The depicted geometry corresponds to the most stable
isomer. Low in energy, normal coordinates are optimal but, higher in energy and
below the transition state between the two isomers, the description with the curvi-
linear valence coordinates of Fig. 5.1 is more adapted: R1 is the length of the CH
bond, R2 is the length of the CN bond and θ is the angle between the two chemical
bonds. The introduction of the angle θ allows us to describe in a more natural way
the bending vibration of the system when the harmonic approximation becomes too
crude. Now, even higher in energy, the HCN/CNH isomerization can occur and the
descriptions in normal and curvilinear valence coordinates become inadequate to
the dynamics on the CNH side. Generally speaking, describing isomerizing species
must allow the localization of certain atoms or centers of mass of atomic groups with
respect to one another. For HCN/CNH, such coordinates are the (curvilinear) Jacobi
ones as shown in Fig. 5.2: R2 is the length of the CN vector but R1 is now the length
of the vector joining the center of mass of CN to the H atom and θ is now the angle

2We will describe in detail the transition from the normal-mode regime to the local-mode regime
in H2O in Chap.9.

http://dx.doi.org/10.1007/978-3-319-53923-2_6
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 5.2 Jacobi coordinates
for HCN/CNH. R2 is the
length of the CN vector, R1
is the length of the vector
joining the center of mass of
CN to the H atom. θ is the
angle between these two
vectors

between these two vectors. Such a set of coordinates is less adapted to describe the
vibrations in the HCN or the CNH potential wells but is globally more adapted to
describe the motion of the H atom from one isomer to the other.

The description of the vibrations low in energy in the CNH potential well would
also require normal coordinates but the latter are different from the normal coordi-
nates for the HCN potential since the two sets of coordinates are not defined with
respect to the same geometry. In the same manner, higher in energy but below the
isomerization barrier, the valence coordinates linking the nitrogen atom to the car-
bon atom and to the H atom would be more adapted. In other words, we would use
valence coordinates that are different from those depicted in Fig. 5.1 since the latter
link the carbon atom to the nitrogen atom and to the H atom. Again, only Jacobi
coordinates allow us to adequately describe the isomerization from one well to the
other. The different sets of coordinates for HCN/CNH are summarized on Fig. 5.3.

Another example may be helpful. The description of the vibrations of NOCl in
its electronic ground state is similar to the HCN case. However, high in energy, the
molecule does not isomerize but dissociates into NO + Cl. In the same manner, the
first electronic excited singlet state, S1, is purely dissociative, i.e. after absorption of
light in the 650–420 nm domain, the transition from the electronic ground state to
S1 leads again to NO + Cl. The study of the vibrations of NOCl may be achieved
in normal coordinates, low in energy, or in valence coordinates, higher in energy,
but a set of Jacobi coordinates as shown in Fig. 5.4 fits much better the motion of
dissociation since it describes the motion of Cl with respect to the center-of-mass of
NO and then to NO globally and to the nitrogen atom only. After the breaking of the
NCl bond, referring the motion of Cl with respect to the nitrogen atom is artificial
and will lead to more numerical correlation in the Hamiltonian operator.

Another example of valence coordinates is depicted in Fig. 5.5 for water. As
aforementioned the valence coordinates are well-adapted to describe the vibrations
of the system especially above the low-amplitude region.

A third example of Jacobi coordinates is given in Fig. 5.6 for theH +H2 scattering.
Wedenote the threeH atomsH(a), H(b) andH(c) to distinguish them.The three internal
coordinates are the two lengths of the vectors and the angle between the two vectors.
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Fig. 5.3 Different sets of coordinates for HCN/CNH: low in energy the normal coordinates are
optimal. They are different for HCN and for CNH. Higher in energy, in the local-mode regime, the
valence coordinates are better adapted. The valence coordinates are different in the two potential
wells. For the description of the isomerization, the Jacobi coordinates can be used. In particular, θ ,
provides a reaction coordinate for the isomerization process

Fig. 5.4 Jacobi coordinates
for NOCl dissociation: �R1
(R1 in the text) is the vector
joining the N atom to the O
atom, �R2 (R2 in the text) is
the vector joining the center
of mass of NO to the Cl atom

The beginning of the collision H(a) + H(b)H(c) is perfectly described by the set
of Jacobi coordinates of Fig. 5.6a since the corresponding coordinates are adapted
to the description of the motion of H(a) with respect to H(b)H(c). Indeed, vector R1

describes the rotation and the vibration of theH(b)H(c) molecule andR2 parameterizes
the relative position of H(a) with respect to the H(b)H(c) molecule. R2 provides a
single “reaction” coordinate. However, if H(a) + H(b)H(c) leads to H(a)H(b) + H(c)

the first set of coordinates will yield artificial correlation in the corresponding exit
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Fig. 5.5 Valence coordinates for water. �R1 (R1 in the text) and �R2 (R2 in the text) are the valence
vectors joining the oxygen atom to the two H atoms. The three internal coordinates are the angle
between the two vectors, θ , and the two bond lengths R1 and R2. θ ∈ [0, π ]

Fig. 5.6 Two sets of Jacobi
coordinates for describing
the collision H + H2. In (a)�R2 starts from the center of
mass of H(b)H(c) (at the
middle of H(b)H(c)); in (b)
�R2 starts from the center of
mass of H(a)H(b) (at the
middle of H(b)H(c)). The first
set of coordinates, a is
well-adapted for a inelastic
scattering H(a) + H(b)H(c) →
H(a) + H(b)H(c). However, if
a reactive collision leads to
H(a)H(b) + H(c), the second
set of Jacobi coordinates, b is
better-adapted to describe the
corresponding exit channel

channel. The set of coordinates of Fig. 5.6b would be better to describe this exit
channel. If the collision leads to H(a)H(c) + H(b), the best set of Jacobi coordinates
would be the third one, i.e. with R1 joining H(a) to H(c) (not shown). We see that
no single set of Jacobi coordinates can describe all the different channels without
strong artificial correlation. Several solutions have been proposed to overcome this
difficulty such as using a set of “hyperspherical” coordinates that treat all the different
channels in a more symmetric way and partly reduce artificial correlation [8]. In
practice, the resolution of the Schrödinger equation for the nuclei and the dynamics
is often performed in the set of Jacobi coordinates of Fig. 5.6a since, for such small
systems,modern computers allow one to converge the cross sections evenwith strong
couplings in the exit channels.
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Fig. 5.7 Jacobi coordinates for the inelastic H2 + H2 scattering. �R3 is the vector from the center
of mass of the first H2 molecule to the center of mass of the second H2 molecule. The six internal
coordinates are R1, R2, R3, θ1, θ2 and the dihedral angle ϕ (not shown on the Figure) between the
( �R3, �R1) and ( �R3, �R2) half-planes. θ1 and θ2 ∈ [0, π ] and ϕ ∈ [0, 2π [

5.3 Examples of Internal Coordinates for Tetra-atomic
Systems

For a tetra-atomic system, the six internal coordinates could be the three lengths of
the vectors, the two angles between one vector and the other two such as θ1 and θ2
in Figs. 5.7 and 5.9. The sixth coordinate could be a dihedral angle between the two
half-planes (R3, R1) and (R3, R2). For non-reactive tetra-atomic AB + CD collisions,
a very natural set of coordinates [9, 10] are the Jacobi ones depicted in Fig. 5.7 for
H2 + H2. The vectorsR1 andR2 are adapted to describe the rotation and the vibration
of the two diatomic molecules and the third vector, R3, parameterizes the relative
position of onemolecule with respect to the other.When themolecules are separated,
theHamiltonian operator becomes separable. The correlation appears onlywhen they
enter into collision and the coordinateR3 provides a single “reaction” coordinate. The
situation is more intricate when the collision becomes reactive [11–14]: for instance,
OH + H2 → H2O + H. Then, several dissociation channels are accessible as in the
case of H + H2. To overcome this difficulty, it has been proposed to use several sets
of coordinates depending on the region of space: R1, R2 and R3 of Fig. 5.8a for the
reactant region of space and R1, R4 and R5 of Fig. 5.8a for the product region of
space, with A = O, C = H, B = H, and D = H [15, 16]. However, since it is rather
difficult to switch from one set of coordinates to the other in the resolution of the
Schrödinger equation for the nuclei, the dynamics is often performed in the set of
coordinates R1, R2 and R3 of Fig. 5.8a only.

Let us now conclude with the trans-cis isomerization of HONO. The system
explores two minima with a transition state between them. However, contrarily to
the isomerization of HCN, the Jacobi coordinates are not the right solution for the
problem since the system moves from one isomer to the other through a twisting
motion that is better described by the torsion angle between the three successive
chemical bonds. In particular, the Jacobi vectors as in Fig. 5.7 are no longer adapted:
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Fig. 5.8 Four sets of Jacobi
vectors for a tetra-atomic
system: �R1, �R2 and �R3 or �R1,�R4 and �R5 for both figures
(a) and (b) (the vectors �Ri
appear in bold face Ri in the
text). In the present Figure,
A is heavier than C and D is
heavier than B. a �R3 is the
vector from the center of
mass of AC, GAC , to the
center of mass of BD, GBD ;�R4 is the vector from B to
the center of mass of AC; �R5
is the vector from D to the
center of mass of ABC,
GABD . b �R3 is the vector
from the center of mass of
AB, GAB , to the center of
mass of CD, GCD ; �R4 is the
vector from AB, GAB , to the
center of mass of CD, GCD ;�R5 is the vector from the
center of mass of ABC,
GABC , to the D atom. The
directions and the order of
the vectors can be changed

the corresponding dihedral angle would not provide the angle between the three suc-
cessive chemical bonds. It becomes necessary to switch to a set of valence coordinates
as depicted in Fig. 5.9. Indeed, the valence coordinates describe more correctly the
chemical bonds in the system. The dihedral angle, ϕ, is now the angle between the
(R3,R1) and (R3,R2) half-planes. The dihedral angle is the required angle since it is
very similar to the reaction coordinate leading from one isomer to the other.
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Fig. 5.9 Valence coordinates for the cis-trans isomerization of HONO. �R3 is the vector from the
central O1 atom to the N atom, �R1 is the OH vector and �R2 is the final NO2 vector. As for H2 +
H2, the six internal coordinates are R1, R2, R3, θ1, θ2, and the dihedral angle ϕ (not shown on the
Figure) between the ( �R3, �R1) and ( �R3, �R2) half-planes. θ1 and θ2 ∈ [0, π ] and ϕ ∈ [0, 2π [

5.4 Vector Parametrization of N-atom Molecular Systems

In the previous sections, several Jacobi or valence “vectors” have been introduced. Let
us be more general and present the so-called “vector parametrization” of a molecular
system that will be very useful to obtain kinetic energy operators in Chap.6. As
explained in Sect. 3.3.1, the configuration of a molecular system with N atoms can
be described by (N − 1) relative position vectors, R1, R2, . . ., RN−1. Adding the
total LF center-of-mass vector, RCM

LF , these N vectors can be connected to the N
LF-position vectors r1LF , r

2
LF , . . ., r

N
LF by the following matrix relation3

⎡
⎢⎢⎢⎢⎢⎣

R1

R2
...

RN−1

RCM
LF

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣ A

m
M

m2
M · · · mN

M

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣
r1LF
r2LF
...

rNLF

⎤
⎥⎥⎥⎦ , (5.12)

wheremα (α = 1, . . . , N ) are themasses of the atoms,M = ∑N
α=1 mα andA = [

Ai
α

]
(i = 1, . . . , N − 1, α = 1, . . . , N ) is an (N − 1) × N mass-dependent constant
matrix satisfying the following constraints:

N∑
α=1

Ai
α = 0 (i = 1, . . . , N − 1) (5.13)

required to ensure the translational invariance of the relative position vectors.
To illustrate such a vector parametrization, we consider examples of valence and

Jacobi vectors introduced before. It must be clear that other sets of vectors could
be introduced, although Jacobi and valence vectors are the most frequently used.
The valence vectors are sets of vectors that join one atom to another such as R1 and
R2 for HCN and H2O in Figs. 5.1 and 5.5 or R1, R2 and R3 for HONO in Fig. 5.9.

3Note that r does not refer to electronic coordinates here as in Sect. 3.

http://dx.doi.org/10.1007/978-3-319-53923-2_6
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Fig. 5.10 Two sets of Jacobi vectors for a tri-atomic system (in red and blue). �R2 is the vector from
the center of mass of AB to the C atom. �R4 is the vector from the center of mass of BC to the A
atom. In the present picture, B is heavier than A and C is heavier than C. The corresponding three
internal coordinates would be the angles between the two vectors in red or in blue and the lengths
of the vectors

The definition of the Jacobi vectors is less straightforward and several “clustering”
schemes are possible. Let us just consider the tri- and tetra-atomic cases to understand
the schemes for constructing Jacobi vectors.

In Fig. 5.10, two sets of Jacobi vectors are depicted for a tri-atomic system: one
Jacobi vector joins one atom to another and the second vector joins the center of mass
of the first two atoms to the third one. The directions of the vectors can be changed.
The corresponding three (= 3N -6) internal coordinates could be the angle between
the two vectors and the lengths of the two vectors. Figure5.8 presents four sets of
Jacobi vectors but for a tetra-atomic system. The first Jacobi vector, R1, joins one
atom to the other. Then only two possibilities may occur: if the second vector, R2,
joins the two remaining atoms then the third one, R3, must join the center of mass
of the first diatomic system to the second one such as R1, R2, and R3 in Fig. 5.8a, b.
Instead the second vector can join the third atom to the center of mass of the first
diatomic system. Then the third Jacobi vector must be the vector joining the last atom
to the center of mass of the triatomic system such as R1, R4, and R5 in Fig. 5.8a, b.
Of course, these schemes can be generalized to any number of atoms [17].

We will see in Chap.6 that Jacobi vectors, contrarily to valence vectors, lead to a
simpler expression of the kinetic energy. Let us consider two examples of matrix A
in Eq. (5.12). First, let us consider H2 + H2 parametrized by the set of three Jacobi
vectors of Fig. 5.7, which is similar to the vectors R1, R2, and R3 of Fig. 5.8b. Let
rA, rB , rC , and rD be the position vectors from the center of mass G of the atoms
A, B, C, and D. Then, we have

R1 = rB − rA
R2 = rD − rC (5.14)

R3 = mC

mC + mD
rC + mD

mC + mD
rD − mA

mA + mB
rA − mB

mA + mB
rB .

http://dx.doi.org/10.1007/978-3-319-53923-2_6
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As regards valence coordinates, we choose as an example the HONO molecule
as depicted in Fig. 5.9. We can use the following definitions (see Fig. 5.9):

R1 = rO1 − rH
R2 = rO2 − rN
R3 = rN − rO1 . (5.15)

This results in six internal coordinates, R1, R2, R3, θ1, θ2, and the dihedral angle
ϕ. These coordinates are well-adapted to describe the cis/trans isomerization of the
system aswell as the other vibrations in each of the two potential wells corresponding
to the two isomers.

5.5 Examples of BF Frames

In Sect. 3.3.3, the BF frame has been introduced in a general context. The explicit
choice of the BF frame for a given molecular system is a difficult task. In princi-
ple, the BF frame, as the internal coordinates, must lead to moderate correlation in
the Hamiltonian operator. More precisely, the BF frame must reduce numerically
the “Coriolis coupling”, i.e. the coupling between the Euler angles and the inter-
nal degrees of freedom. The minimization of the Coriolis coupling can be obtained
systematically by the so-called “Eckart conditions” [18, 19]. However, the Eckart
conditions are valid around one very specific geometry and the molecular system
can display motions of large amplitude and explore large domains of space. In prac-
tice, as for the choice of the internal coordinates, one tries to find a BF frame that
yields moderate Coriolis coupling. Two examples are provided in Fig. 5.11. Gener-
ally speaking, if zBF is parallel to one of the N −1 vectors introduced in the previous
section, it is often advantageous to take the vector with the largest associated reduced
mass, since it can be proved that the Coriolis coupling is proportional to the inverse
of this reduced mass.

In each case, the origin of the BF frame is the center of mass of the system, G.
For HONO (see Fig. 5.11a), zBF is parallel to R3, i.e. to the central ON bond. The
(x BF , zBF ), with x BF > 0, half-plane contains R2 and thus the NO double bond.
The atoms that play a role in the definition of the BF frame, i.e. the nitrogen atom
and the oxygen atoms, are relatively heavy. Choosing R1 to define zBF would result
in a strong Coriolis coupling since the hydrogen atom is lighter. In other words, the
rotation of the system is mainly carried by the ONO structure and it is thus logical
to define the BF frame with respect to this subsystem. For the H + H2 collision, see
Fig. 5.11b, zBF is parallel to R2, the Jacobi vector with the largest reduced mass and
R1 is parallel to the (x BF , zBF ), with x BF > 0, half-plane.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Fig. 5.11 Two possible
definitions of the body-fixed
frame for the isomerization
of HONO (a) and for the
H + H2 collision (b). For
HONO, the zBF axis is
parallel to the central ON
bond and �R2 lies parallel to
the (x BF , zBF ), with x BF >

0, half-plane. For H + H2,
the zBF axis is parallel to �R2
and �R2 lies parallel to the
(x BF , zBF ), with x BF > 0,
half-plane
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Chapter 6
The Kinetic Energy Operator in Curvilinear
Coordinates

As seen in the previous chapter, generalized curvilinear coordinates well-adapted to
the description of a molecular process play an important role in molecular quantum
dynamics. The present chapter is intended as a rather in-depth introduction to the clas-
sical kinetic energy and the quantumkinetic energy operator for the nuclei, denoted T
and T̂ , respectively, in the following. The positions of the particles will be described
by means of generalized curvilinear coordinates. By curvilinear coordinates we refer
to coordinates that cannot be written as linear combinations of Cartesian coordinates
with fixed coefficients. In the following sections, we follow the rather pedantic nota-
tion of the “upper” and “lower” indices as used in tensor analysis. Later on, however,
this notational convention will be relaxed to avoid cumbersome expressions.

In Sect. 6.1, we recall the basic expressions, both Lagrangian and Hamiltonian,
of the kinetic energy in generalized curvilinear coordinates. Section6.2 is devoted to
the non-relativistic quantum kinetic energy operators (KEO) and the various ways of
writing them, with some emphasis on the less common topics of normalization con-
ventions of the wave functions (Sect. 6.2.2) and a discussion of the quasi-momentum
operators (Sect. 6.2.3). In the next four Sects. (6.3, 6.4, 6.5 and 6.6) applications to
molecular physics are given, in particular to polyspherical coordinates, which play
a central role in the present book. Finally, in the complements, some aspects of the
adjoint operators are further developed and simple illustrations in the case of polar
coordinates are given.

6.1 Classical Kinetic Energy

6.1.1 Classical Lagrangian Kinetic Energy

For a molecular system made of N atoms, the classical kinetic energy for the nuclei
in Cartesian coordinates reads

© Springer International Publishing AG 2017
F. Gatti et al., Applications of Quantum Dynamics in Chemistry,
Lecture Notes in Chemistry 98, DOI 10.1007/978-3-319-53923-2_6
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T = 1

2

N∑

α=1

m̃α((
˙̃Xα)2 + (

˙̃Y α)2 + (
˙̃Zα)2) , (6.1)

or

T = 1

2

3N∑

μ=1

mμ(Ẋ
μ)2 , (6.2)

where m̃α and X̃α, Ỹ α and Z̃α (α = 1, . . . , N ) are, respectively, the mass and the
Laboratory-Fixed (LF) Cartesian coordinates of the α-th atom, and μ and Xμ are
defined in Eq. (5.3) of Sect. 5.1, i.e.

Xμ = X̃α ; if μ = 3α − 2 ,

Xμ = Ỹ α ; if μ = 3α − 1 ,

Xμ = Z̃α ; if μ = 3α . (6.3)

and
mμ = mμ+1 = mμ+2 = m̃α (6.4)

Let us now express these Cartesian coordinates in terms of 3N generalized curvilin-
ear coordinates q = (q1, . . . , qi , . . . , q3N ) such that

Xμ = Xμ(q1, . . . , qi , . . . , q3N ) (μ = 1, . . . , 3N ) , (6.5)

in short,
X = X(q) , (6.6)

together with the inverse relations

qi = qi (X1, . . . , Xμ, . . . , X3N ) (i = 1, . . . , 3N ) , (6.7)

in short,
q = q(X) . (6.8)

The (3N × 3N ) Jacobian matrix corresponding to the coordinate change X → q is

JX→q = [∂X
μ

∂qi
] (μ, i = 1, . . . , 3N ) , (6.9)

μ and i being, respectively, the row and column indices and let

JX→q = |Det JX→q | , (6.10)

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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denote the absolute value of its determinant. Since the coordinate change is assumed
to be invertible, JX→q �= 0.

Of course, the Jacobian matrix corresponding to the inverse coordinate transfor-
mation q → X is

Jq→X = [ ∂qi

∂Xμ
] (i,μ = 1, . . . , 3N ) , (6.11)

μ and i being, respectively, the column and row indices. It is a well-known property
of the Jacobian matrices that

Jq→X = J−1
X→q , (6.12)

and

Jq→X = |Det Jq→X | = 1

|Det JX→q | = J−1
X→q . (6.13)

Now, using the chain rule (see complement 3.6.3 for a quick reminder concerning
the chain rule) for the time derivatives, the expressions of the Cartesian velocities
Ẋ = (Ẋ1, . . . , Ẋμ, . . . , Ẋ3N ) in terms of the generalized curvilinear velocities q̇ =
(q̇1, . . . , q̇ i , . . . , q̇3N ), read

Ẋμ =
3N∑

i

∂Xμ

∂qi
q̇i (μ = 1, . . . , 3N ) , (6.14)

or in matrix form
Ẋ

T = J · q̇T . (6.15)

Inserting Eq. (6.14) into Eq. (6.2) yields the classical Lagrangian expression of the
kinetic energy in terms of the generalized velocities

T (q, q̇) = 1

2

3N∑

i, j=1

gi j (q)q̇ i q̇ j , (6.16)

where

gi j (q) =
3N∑

μ=1

mμ(
∂Xμ

∂qi
)(

∂Xμ

∂q j
) (i, j = 1, . . . , 3N ) , (6.17)

are the covariant components of the metric tensor. In matrix form

g(q) = [
gi j

] = JT
X→q · m · JX→q , (6.18)

with

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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m =

⎡

⎢⎢⎣

. . .

mμ

. . .

⎤

⎥⎥⎦ (6.19)

and, in addition,

g(q) = |Detg| = (�3N
μ mμ) J

2
X→q . (6.20)

In matrix form, the Lagrangian kinetic energy reads

T (q, q̇) = 1

2
q̇ · g · q̇T . (6.21)

In order to avoid any mistake or misunderstanding, it is important to point out that
mass-weighted Cartesian coordinates, defined as

xμ = √
mμ Xμ (μ = 1, . . . , 3N ) (6.22)

are often used to simplify the notation (see Eq. (5.5) in Sect. 5.1). The coordinate
changes and their inverses then read, respectively,

x = x(q) , (6.23)

and
q = q(x) . (6.24)

The corresponding 3N × 3N Jacobian matrices and determinants are

[(Jx→q)
μ
i ] = [∂x

μ

∂qi
] , (6.25)

Jx→q = |Det Jx→q | , (6.26)

[(Jq→x )
i
μ] = [ ∂qi

∂xμ
] , (6.27)

Jq→x = |Det Jq→x | , (6.28)

together with the corresponding well-known properties

Jx→q = J−1
q→x , (6.29)

and
Jx→q = J−1

q→x . (6.30)

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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The (3N × 3N ) matrix of the covariant components of the metric tensor can now
be written as

g(q) = [
gi j

] = JT
x→q · Jx→q , (6.31)

and
g(q) = |Detg| = J 2

x→q . (6.32)

After this little digression on notational problems, we now focus our attention on the
Lagrangian function defined as

L = T − V , (6.33)

where V is the interaction potential. In terms of generalized curvilinear coordinates,
we obtain for the Lagrangian function

L(q, q̇) = T (q, q̇) − V (q) , (6.34)

where
V (q) = V (X(q)) . (6.35)

6.1.2 Classical Hamiltonian Kinetic Energy

The momenta, Pi , conjugate to the generalized coordinates, qi (i = 1, . . . , 3N ) are
by definition

Pi = ∂L(q, q̇)
∂q̇ i

= ∂T (q, q̇)
∂q̇ i

(i = 1, . . . , 3N ) , (6.36)

since the potential function does not depend on the generalized velocities. Inserting
into Eq. (6.36) the expression of the kinetic energy as given in Eq. (6.16), yields

Pi =
3N∑

j=1

gi j (q)q̇ j (i = 1, . . . , 3N ) , (6.37)

which, substituted in its turn into Eq. (6.16), leads to the following invariant form of
the kinetic energy

T (q̇,P) = 1

2

3N∑

i=1

Pi q̇
i . (6.38)

Now, since the Jacobian matrices JX→q and Jx→q are invertible and in view of Eqs.
(6.18) and (6.29), it is possible to invert g = [

gi j (g)
]
as well. Let us define
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G(q) = [
Gi j (q)

] = g−1(q) , (6.39)

and invert Eq. (6.37) to obtain

q̇ i =
3N∑

j=1

Gi j Pj (i = 1, . . . , 3N ) . (6.40)

On substitution into (6.38), we obtain theHamiltonian kinetic energy, i.e. the kinetic
energy expressed in terms of the generalized coordinates q and their conjugate
momenta P

T (q,P) = 1

2

3N∑

i, j

Gi j (q)Pi Pj , (6.41)

or, in matrix form,

T (q,P) = 1

2
P · G · PT . (6.42)

TheGi j (i, j = 1, . . . , 3N ) are known as the contravariant components of themetric
tensor.

From Eq. (6.18) and the usual rules of matrix inversion

G(q) = g−1(q) = J−1
X→q · m−1 · (J−1

X→q)
T

, (6.43)

or still, in view of Eq. (6.31) when mass-weighted Cartesian coordinates are used

G = g−1 = J−1
x→q · (J−1

x→q)
T . (6.44)

Taking the square root of the absolute value of the determinants of the matrices of
Eqs. (6.43) and (6.44) leads to

√
G = √|DetG| = 1√

g
= 1

Jx→q
= 1

�3N
μ mμ JX→q

. (6.45)

So, when starting from the coordinate changes

X = X(q) or x = x(q) (6.46)

named x(q) approach, the inversion of a 3N × 3N matrix seems unavoidable, i.e.
direct inversion of g or JX→q or Jx→q .

However, when starting from the inverse relations

q = q(X) or q = q(x) , (6.47)
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named q(x) approach and in view of Eqs. (6.12) and (6.29), Eqs. (6.43) and (6.44)
can be rewritten as, respectively,

G = [
Gi j

] = g−1 = (Jq→X )T · m−1 · (JT
q→X ) , (6.48)

with

Gi j =
3N∑

μ=1

1

mμ
(

∂qi

∂Xμ
)(

∂q j

∂Xμ
) (i, j = 1, . . . , 3N ) , (6.49)

or still
G = [

Gi j
] = g−1 = Jq→x · JT

q→x , (6.50)

with

Gi j =
3N∑

μ=1

(
∂qi

∂xμ
)(

∂q j

∂xμ
) (i, j = 1, . . . , 3N ) , (6.51)

without having to resort to the inversion of a 3N × 3N matrix, inversion which is
often the bottleneck for obtaining the contravariant components of the metric tensor,
required for the classical Hamiltonian expression of the kinetic energy and, more
importantly in our case, also required for the expression in curvilinear coordinates
of the quantum kinetic energy operator (see next section).

A word of caution: the Eqs. (6.48)–(6.51) give the impression that the explicit
knowledge of q(X) or q(x) suffices to calculate Gi j . This is not entirely correct and
there is a drawback. Indeed, ∂qi

∂xμ and ∂qi

∂Xμ are functions of x and X, respectively,
whereas the contravariant components, Gi j , of the metric tensor are to be expressed
as functions of q. In other words, when the “q(x)” approach is used, matrix inversion
is sidestepped but then the functions x(q) or X(q) must be known explicitly. We refer
to Sect. 6.7.3 for some simple examples of the metric tensors introduced above and
their calculation in the x(q) and q(x) approaches, in the case of polar coordinates.

6.2 The Non Relativistic Quantum Kinetic Energy
Operator

6.2.1 General Expressions

If one tries to derive the quantum kinetic energy operator from the expression of
twice1 the classical Hamiltonian kinetic energy (see previous section)

1It is more compact to write twice the kinetic energy.
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2T (q,P) =
3N∑

i, j=1

Gi j (q)Pi Pj , (6.52)

bymeans of the usual correspondence rules between classical quantities and quantum
operators, a well-known problem arises from the ambiguity related to the ordering
of the operators (see Sect. 2.2.1).

However, in Cartesian coordinates, twice the kinetic energy reads (see Table2.1)

2T̂ = −�
2

3N∑

μ=1

1

mμ

∂2

∂Xμ2
, (6.53)

which, in mass-weighted Cartesian coordinates (see Eq. (6.22)), transforms into

2T̂ = −�
2

3N∑

μ=1

∂2

∂xμ2
. (6.54)

A straightforward and safe way to obtain the quantum energy operator in generalized
curvilinear coordinates, q, is to apply the standard coordinate transformation x → q
to the 3 N -dimensional Laplacian operator

� =
3N∑

μ=1

∂2

∂xμ2
. (6.55)

The explicit expression of the Laplacian operator depends on the normalization
convention used for thewavefunctions (see Sect. 6.2.2). If the standard normalization
condition of a wavefunction �(x), given by

∫
��(x)�(x)dx = 1 , (6.56)

with
dx = dx1dx2 . . . dx3N , (6.57)

transforms, under the coordinate change x → q, into

∫
��(q)�(q)dτ = 1 , (6.58)

with
dτ = J (q)dq1 . . . dq3N , (6.59)

where (see Eqs. (6.25), (6.26) and (6.32))

http://dx.doi.org/10.1007/978-3-319-53923-2_2
http://dx.doi.org/10.1007/978-3-319-53923-2_2
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J (q) = Jx→q = |Det[∂x
μ

∂qi
]| = √

g(q) , (6.60)

the standard expression of a 3N Laplacian operator in curvilinear coordinates yields
the following kinetic energy operator [1–4]

2T̂ = −�
2

3N∑

i, j=1

1√
g

∂

∂qi

√
g Gi j ∂

∂q j
, (6.61)

or, in view of Eq. (6.60),

2T̂ = −�
2

3N∑

i, j=1

J−1 ∂

∂qi
J Gi j ∂

∂q j
, (6.62)

where Gi j (i, j = 1, . . . , 3N ) are the contravariant components of the metric tensor
defined in the previous section.

Now, introducing the momentum operators (see Sect. 2.2.1)

P̂i = −i�
∂

∂qi
, (i = 1, . . . , 3N ) , (6.63)

and their adjoints (Sects. 2.1.3 and 6.7.2)

P̂†
i = −i�J−1 ∂

∂qi
J , (i = 1, . . . , 3N ) , (6.64)

it is straightforward to rewrite Eq. (6.62) as

2T̂ =
3N∑

i, j=1

P̂†
i Gi j P̂j , (6.65)

which brings out the analogy with the classical Hamiltonian kinetic energy (see Eq.
(6.52)). With

P̂ = (P̂1, . . . , P̂i , . . . , P̂3N ) , (6.66)

and
P̂
† = (P̂†

1 , . . . , P̂†
i , . . . , P̂†

3N ) , (6.67)

the kinetic energy operator reads in matrix form

2T̂ = P̂
† · G · P̂ . (6.68)

http://dx.doi.org/10.1007/978-3-319-53923-2_2
http://dx.doi.org/10.1007/978-3-319-53923-2_2
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Equation (6.65) is the key formula of this chapter. Indeed, it can be rewritten,
developed and implemented in a variety of ways as well as easily adapted to many
applications.

(1) Of course, Eq. (6.65) can be used as it stands. So, for example, in the case
of polyspherical coordinates (Sect. 6.4) the classical SF (Space-Fixed) Hamil-
tonian kinetic energy as given by Eq. (6.140) is straightforwardly turned into
the corresponding kinetic energy operator, Eq. (6.141). These two equations are
particular instances of Eqs. (6.52) and (6.65).

(2) The variety of ways of writing the momentum operators and their adjoints, the
possibility of changing the normalization convention (Sect. 6.2.2) and introduc-
ing quasi momentum operators (Sect. 6.2.3), entail that Eq. (6.65) gives rise to
a variety of strictly equivalent ways of writing the kinetic energy operators; for
a rather extensive list of these operators see [3].

(3) A useful and common way of rewriting Eq. (6.65) goes as follows. Since (see
Eqs. (6.190), (6.193) and (Sect. 6.7.2))

P̂†
i � = J−1 P̂i J�

= P̂i� + (J−1 P̂i J )� , (6.69)

the adjoint operator may be written as

P̂†
i = P̂i + �i , (6.70)

where

�i = (J−1 P̂i J ) = (P̂i ln J ) (6.71)

is a purely multiplicative operator, i.e. a number. In the remainder of this section as
well as in Sects. 6.3.1 and 6.3.2, in order to avoid any ambiguity in the writing of
the operators, the following parentheses convention is used: if a differential oper-
ator appears in an expression within parentheses, it does not operate beyond the
parentheses.2

In view of Eq. (6.70) and taking this convention into account, it is straightforward
to develop Eq. (6.65) as

2T̂ =
3N∑

i, j=1

Gi j P̂i P̂j + +
3N∑

j=1

(

3N∑

i=1

[
�i + P̂i

]
Gi j )P̂j , (6.72)

and reverting to partial derivatives

2Incidentally, we will also tacitly use the convention that operators act beyond square brackets [ ]
and curly brackets { }.
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2T̂

(
q,

∂

∂q

)
= −�

2

⎡

⎣
3N∑

i, j=1

Gi j (q)
∂2

∂qi∂q j
+

3N∑

j=1

3N∑

i=1

Gi j (q)

(
∂ ln J (q)

∂qi
+ ∂Gi j (q)

∂qi

)
∂

∂q j

⎤

⎦ .

(6.73)

It is interesting to notice that this last expression turns out to have the following
structure

2T̂

(
q,

∂

∂q

)
= −�

2

⎡

⎣
3N∑

i, j=1

f i j (q)
∂2

∂qi∂q j
+

3N∑

j=1

f j (q)
∂

∂q j

⎤

⎦ .

(6.74)

Of course,
f i j (q) = Gi j (q) , (6.75)

and

f j (q) =
3N∑

i=1

Gi j (q)
(

∂ ln J (q)
∂qi

+ ∂Gi j (q)
∂qi

)
. (6.76)

It is worth noticing that a straightforward “brute force” application of the “chain
rule” leads to an expression of T̂ with the structure highlighted in Eq. (6.74). This
approach can be regarded as a “q(x)” approach, which implies that both q(x) and
x(q) must be available (See Sect. 6.7.1).

It is also important to mention a numerical approach. Indeed, the analytical cal-
culation of the functions f i j (q) = Gi j (q) and f j (q) given by Eqs. (6.75) and (6.76),
often turns out to be awfully tedious and complex. Therefore, numerical algorithms
have also been developed for computing these functions without resorting to analyt-
ical expressions [5–11]. So, for instance, with the help of the TNUM algorithm [9],
the kinetic energy operator T̂ (q, ∂

∂q ), can be calculated for a given value of the 3N
generalized coordinates q. This calculation only requires the exact numerical values
of X(q) and their derivatives, so that the functions f i j (q) and f j (q) can be evaluated
numerically and exactly for a given value of q, e.g. at a grid point.

6.2.2 Change of Normalization Convention *

So far, all operators, Â, in particular the kinetic energy operator, T̂ , are designed for
acting on wavefunctions �(q) that are normalized with the help of the Euclidean
volume element given in Eq. (6.59) (see also Eq. (6.58)). The Euclidean volume ele-
ment dτ (E) = J (q)dq1 . . . dq3N , however, is not always adapted and another volume
element is often introduced

dτ (ρ) = ρ(q)dq1 . . . dq3N , (6.77)
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where ρ(q) is a real (positive) weightfunction. In this case, the wavefunction � and
any operator, Â, must be replaced by, respectively, [3]

� → �(ρ) = J
1
2 ρ− 1

2 � , (6.78)

Â → Â(ρ) = J
1
2 ρ− 1

2 Âρ
1
2 J− 1

2 , (6.79)

in order to preserve

• the normalization condition

∫
�(ρ)�(q)�(ρ)(q)dτ (ρ) =

∫
��(q)�(q)dτ (E) = 1 , (6.80)

• the values of the matrix elements

A12 =
∫

�
(ρ)

1

�
(q)( Â(ρ)�

(ρ)

2 (q))dτ (ρ) =
∫

��
1(q)( Â�2(q))dτ (E) .

(6.81)

Of course, if �1 = �2 = �, Eq. (6.81) reduces to preserving the mean value of the
operator Â

〈 Â(ρ)〉 =
∫

�(ρ)�(q)( Â(ρ)�(ρ)(q))dτ (ρ) =
∫

��(q)( Â�(q))dτ (E) = 〈 Â〉 .

(6.82)

If, in addition, Â is the identity operator, Eq. (6.81) reduces to the normalization
condition (6.80).

As far as the kinetic energy operator is concerned, it can be shown, straightfor-
wardly but slightly tediously, that

2T̂ (ρ) = 2J
1
2 ρ− 1

2 T̂ρ
1
2 J− 1

2

=
3N∑

i, j

Gi j P̂i P̂j +
3N∑

j

(
3N∑

i

[
�

(ρ)

i + P̂i
]
Gi j

)
P̂j + 2V̂ (ρ) , (6.83)

where
�

(ρ)

i = (P̂i ln ρ) , (6.84)

and
V̂ (ρ) = (J

1
2 ρ− 1

2 T̂ρ
1
2 J− 1

2 ) . (6.85)

This latter expression, though intrinsically of kinetic energy origin, is a purely multi-
plicative extrapotential term. It is interesting to note that, when an Euclidean normal-
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ization convention is used, i.e. ρ = J , we obtain V̂ (J ) = 0,�(J )
i = �i and T̂ (J ) = T̂ ,

as expected.
Reverting to partial derivatives, Eq. (6.83) becomes

2T̂ (ρ)(q,
∂

∂q
) = −�

2

⎡

⎣
3N∑

i, j

Gi j (q)
∂2

∂qi∂q j
+

3N∑

j

3N∑

i

(
Gi j (q)

(
∂

∂qi
ln ρ(q)

)
+ ∂Gi j

∂qi

)
∂

∂qi

⎤

⎦

+ 2V̂ (ρ)(q) . (6.86)

Here again, a numerical algorithm can be used to calculate Gi j (q), f j (q) =
∑3N

i

(
Gi j (q)( ∂

∂qi ln ρ(q)) + ∂Gi j

∂qi

)
and V̂ (ρ)(q).

6.2.3 Quasi-Momentum Operators

As is often the case in quantum mechanics, the physically relevant momentum oper-
ators are not of the type P̂i = −i� ∂

∂qi but some linear combinations of such partial
derivatives (e.g. the components of the total angular momentum are linear combi-
nations of the partial derivatives with respect to the Eulerian angles, times −i�: see
Eq. (6.114)). We call them quasi-momentum operators3 and write them as

P̂K =
3N∑

i=1

Bi
K (q)P̂i (K = 1, . . . , n ≥ 3N ) , (6.87)

where

B = [
Bi
K (q)

]
, (6.88)

is a real rectangular (square, if K = 3N ) matrix depending on the generalized curvi-
linear coordinates q only, i and K being, respectively, the row and column indices.

Unlike the conjugate momentum operators P̂i , which commute since they are
essentially partial derivatives, the quasi-momentum operators do not commute, their
commutation rules being either standard (as for angular momentum operators) or
unusual [3, 12, 13].

Moreover, the fact that the number of quasi-momentum operators may be larger
than the number of “true” momentum operators is not uncommon (see for instance
Eq. (6.144)) but it entails that matrix B may be rectangular and thus noninvertible,
so that some caution will be required in the derivation of the quantum mechanical
expressions.

3To avoid all misunderstanding, it is worth noting that the usual angular momentum operators are
particular cases of the quasi-momentum operators as defined here.
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To determine the expression of the quantum kinetic energy operators in terms of
quasi-momentum operators as defined by Eqs. (6.87) and (6.88), it is important to
notice that, alternatively to the usual classical Hamiltonian kinetic energy in terms
of “true” conjugate momenta (see Eq. (6.41))

T (q,P) = 1

2

3N∑

i, j=1

PiG
i j (q)Pj , (6.89)

the expression of the same classical kinetic energy in terms of classical quasi-
momenta is often known from classical mechanics theory

2T (q,P) =
n∑

K ,L=1

PK GK L PL , (6.90)

where

PK =
3N∑

i=1

Bi
K (q)Pi , (6.91)

is the classical quasi-momentum corresponding to Eq. (6.87).
Since the two expressions, Eqs. (6.89) and (6.90) of the classical kinetic energy

must be equal, after substitution of Eq. (6.91) into Eq. (6.90) and comparing with
Eq. (6.89) one obtains

Gi j =
n∑

K ,L=1

Bi
KGK L B j

L (i, j = 1, . . . , 3N ) . (6.92)

Now, the adjoint of P̂K is given by [3]

P̂†
K =

3N∑

i=1

P̂†
i B

i
K (q) , (6.93)

so that the quantum counterpart of the classical expression of the kinetic energy Eq.
(6.90), is given by

2T̂ =
n∑

K ,L=1

P̂†
K GK L P̂L . (6.94)

Indeed, inserting Eqs. (6.87) and (6.93) into Eq. (6.94) yields
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2T̂ =
3N∑

i, j=1

P̂†
i Gi j P̂j . (6.95)

Thus, both expressions (6.94) and (6.95) can be used to obtain the kinetic energy
operator in generalized curvilinear coordinates and, as will be seen in Sects. 6.3, 6.4
and 6.5, using quasi-momentum operators improves physical insight and greatly sim-
plifies the ways of obtaining the quantum expressions of the kinetic energy operators.

It is also interesting to consider some particular cases:

(a) If B = [
Bi
K (q)

]
(i, K = 1, . . . , 3N ) is a square invertible matrix, and

A = [
AK
i (q)

] = [
Bi
K (q)

]−1
, (6.96)

Eq. (6.91) can be inverted

P̂i =
3N∑

K=1

AK
i (q)P̂K (i = 1, . . . , 3N ) , (6.97)

so that

GK L =
3N∑

i, j=1

AK
i G

i j AL
j (K , L = 1, . . . , 3N ) . (6.98)

(b) If
[
Bi
K (q)

] =
[

∂qi

∂QK

]
, (6.99)

i.e. an ordinary Jacobian matrix of the coordinate transformation qi → QK . In
viewofEqs. (6.91) and (6.87),PK and P̂K reduce to “true”momenta andmomen-
tum operators conjugate to the generalized coordinates {QK , K = 1, . . . , 3N }.

6.3 Applications in Molecular Physics

In Chap.3, several molecular frames have been introduced to separate the translation,
overall rotation and internal motions of a molecular system. In the present section,
we will neglect the coupling between electrons and nuclei in the BF frame as well as
the mass polarization terms (Sect. 3.3.3), which results in the separation of nuclear
and electronic kinetic energy operators (see Eq. (3.129)). In addition, the nuclear
center of mass of the molecule (NCM) will be identified with the total center of mass
of the molecule (CM) and the NSF frame with the SF frame (Sect. 3.3).

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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It is important to note that in practice, we use themasses of the atoms instead of the
masses of the nuclei in the final expressions of T̂ . Using atomic masses rather than
nuclear masses in the expression of the kinetic energy operator is somewhat related to
the effect of second-order non-adiabatic corrections (diagonal terms); see for example
Ref. [14]. In short, considering atomic masses means that electrons are implicitly
assumed to follow instantaneously the motion of the nuclei. As a consequence, the
effective mass of a nucleus dressed with electrons that behave adiabatically is the
atomicmass. This approximation has a small effect, exceptwhen dealingwith highly-
accurate rovibrational spectra of light diatoms such as, for example, H2 and LiH. A
more accurate description is then achieved when introducing a coordinate-dependent
reduced mass that makes it possible to account for possible electron redistribution
depending on the distance between the two nuclei.

6.3.1 General Case

We restrict ourselves to the kinetic energy of N nuclei and focus our attention on
nuclear coordinate changes which particularize the coordinate change given by Eq.
(6.5) as follows:

Xμ
LF = Xμ

LF (q1, . . . , q3N−6,α,β, γ, XCM
LF ,YCM

LF , ZCM
LF )

= Xμ
LF (q,�,RCM

LF ) (μ = 1, . . . , 3N ) , (6.100)

where (see Fig. 6.1)

(i) q = (q1, . . . , q3N−6)4 are the internal or shape coordinates;
(ii) � = (α,β, γ) are the three Euler angles that parametrize the orientation of the

BF frame with respect to the SF frame;
(iii) RCM = (XCM

LF ,YCM
LF , ZCM

LF ) are the LF Cartesian coordinates of the center of
mass.

The coordinate change (6.100) can be written more explicitly as (see Fig. 6.2)

⎡

⎣
Xμ=3α−2

LF (q,�,RCM
LF )

Xμ=3α−1
LF (q,�,RCM

LF )

Xμ=3α
LF (q,�,RCM

LF )

⎤

⎦ =
⎡

⎣
X̃α

LF (q,�,RCM
LF )

Ỹ α
LF (q,�,RCM

LF )

Z̃α
LF (q,�,RCM

LF )

⎤

⎦

=
⎡

⎣
XCM

LF
YCM
LF

ZCM
LF

⎤

⎦ + CT (�)

⎡

⎣
X̃α

BF (q)
Ỹ α
BF (q)

Z̃α
BF (q)

⎤

⎦ (α = 1, . . . , N ) ,

(6.101)

4In the present section q denotes the 3N − 6 internal coordinates only and not the 3N generalized
coordinates.
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Fig. 6.1 Schematic reprsentation in 2D of an N-atom system in three reference frames. The dashed
lines emphasize the Cartesian coordinates in these three frames (i) LF frame (ii) SF frame (iii) BF
frame. � = (α,β, γ) are the three Euler angles that orient the BF frame with respect to SF frame.
CM denotes the molecular center of mass (see Eq. (6.101))

where C(�) is the (Euler) rotation matrix defined in Sect. 3.3.3 (Eqs. (3.114) and
(3.115)).5

In Eq. (6.101), the 3N Cartesian BF coordinates are expressed as functions of the
(3N − 6) internal coordinates

(X̃α
BF (q), Ỹ α

BF (q), Z̃α
BF (q);α = 1, . . . , N ) , (6.102)

so that the molecular system, viewed in the BF frame, is subjected to six constraints
whereas it is physically not constrained at all, which implies that the 3N functions of
Eq. (6.102) given above completely determine the BF frame. Of the six constraints,
three are the center-of-mass constraints

5The transpose CT (�) is used here because it corresponds to a BF → SF transformation, whereas
Eqs. (3.114) and (3.115) corresponds to a (N)SF → BF transformation.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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N∑

α=1

m̃α X̃
α
BF = 0

N∑

α=1

m̃αỸ
α
BF = 0

N∑

α=1

m̃α Z̃
α
BF = 0 , (6.103)

the three others being axial constraints that implicitly determine the orientation of
the BF frame with respect to the SF frame.

By introducingEq. (6.101) inEq. (6.17), oneobtains straight forwardly but slightly
tediously, the following nicely factorized “covariant” tensor,

g̃ =
⎡

⎣
1(3N−6)×(3N−6) 0 0

0 �3×3(�) 0
0 0 13×3

⎤

⎦ ×
⎡

⎣
S(q) CT (q) 0
C(q) I(q) 0
0 0 M 13×3

⎤

⎦

×
⎡

⎣
1(3N−6)×(3N−6) 0 0

0 �T
3×3(�) 0

0 0 13×3

⎤

⎦ , (6.104)

where S(q), C(q) and I(q) are respectively, the internal deformation matrix, the
Coriolis matrix, and the inertia tensor (for explicit expressions see Ref. [3]). M is
the total mass of the molecular system.�3×3(�) is the 3 × 3 matrix relating the time
derivatives of the Euler angles to the BF components of the angular velocities ωx ,
ωy and ωz (of the BF frame),6 i.e.

ωT = �T (�) · �̇
T

, (6.105)
⎡

⎣
ωx

ωy

ωz

⎤

⎦ =
⎡

⎣
− sin β cos γ sin γ 0
sin β sin γ cos γ 0
cosβ 0 1

⎤

⎦

⎡

⎣
α̇

β̇
γ̇

⎤

⎦ . (6.106)

Leaving out the total center of mass, we obtain from Eq. (6.21)7 the following
classical (Lagrangian) kinetic energy

T (q, q̇,�, �̇) = 1

2

[
q̇ �̇

] · g(q,�) ·
[
q̇T

�̇
T

]
, (6.107)

with

6Introducing the (quasi) angular velocities arises quite naturally from the factorization of g.
7In this equation q denotes the 3N generalized coordinates while in the present section q denotes
the (3N − 6) internal coordinates.
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g(q,�) =
[
1(3N−6)×(3N−6) 0

0 �(�)

]
×

[
S(q) CT (q)
C(q) I(q)

]

×
[
1(3N−6)×(3N−6) 0

0 �T (�)

]
, (6.108)

or still, in view of Eq. (6.106)

T (q, q̇,ω) = 1

2

[
q̇ ω

] ·
[
S(q) CT (q)
C(q) I(q)

]
·

[
q̇T

ω

]
. (6.109)

The kinetic energy can thus be split as follows

T Def ormation(q, q̇) = 1

2
q̇ · S(q) · q̇T , (6.110)

T Rotation(q,ω) = 1

2
ω · I(q) · ωT , (6.111)

TCoriolis(q, q̇,ω) = 1

2
(q̇ · CT · ωT + ω · C · q̇T ) . (6.112)

6.3.2 Nuclear Angular Momentum

Let us now introduce the total angular momentum for the nuclei, J, which is a
quasi-momentum conjugate to the angular velocities defined as follows

JT = �−1(�)PT
� , (6.113)

or

⎡

⎣
Jx
Jy
Jz

⎤

⎦ =
⎡

⎣
− cos γ

sin β
sin γ cot β cos γ

sin γ
sin β

cos γ − cot β sin γ

0 0 1

⎤

⎦

⎡

⎣
Pα

Pβ

Pγ

⎤

⎦ , (6.114)

where Jx , Jy and Jz are the BF components of the (nuclear) total angular momentum
and Pα, Pβ and Pγ the momenta conjugate to the Euler angles.

The Hamiltonian kinetic energy is given by (see Eq. (6.90))

T (q,Pq, J) = 1

2

[
Pq J

] · G(q) ·
[
PT
q

JT

]
, (6.115)

where Pq are the momenta conjuguate to the internal coordinates q and
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G(q) =
[
S(q) CT (q)
C(q) I(q)

]−1

=
[

�(q) �T (q)
�(q) μ(q)

]
.

(6.116)

The corresponding quantum kinetic energy operator (KEO) is given by
(see Eq. (6.94))

2T̂ (q,�) =
[
P̂
†
q , Ĵ

†
] [

�(q) �T (q)
�(q) μ(q)

] [
P̂
T
q

Ĵ
T

]
, (6.117)

where

P̂qi = −i�
∂

∂qi
= P̂i , (6.118)

and

⎡

⎣
Ĵx
Ĵy
Ĵz

⎤

⎦ = −i��−1(�)

⎡

⎢⎣

∂
∂α
∂
∂β
∂
∂γ

⎤

⎥⎦ , (6.119)

Ĵx , Ĵy and Ĵz are the BF components of the (nuclear) total angular momentum
operator and they satisfy the anomalous commutation rules:

[
Ĵx , Ĵy

]
= −i� Ĵz

[
Ĵy, Ĵz

]
= −i� Ĵx

[
Ĵz, Ĵx

]
= −i� Ĵy . (6.120)

For further details concerning anomalous and unusual commutation rules see [12,
13, 15].

As in the classical case (see Eqs. (6.110–6.112)) the quantum kinetic energy
operator (Eq. (6.117)) can be expressed as a sum of three terms, the deformation
part, T̂De f , the Coriolis part, T̂Cor , and the rotational part, T̂Rot :

T̂ (q,�) = T̂De f + T̂Cor + T̂Rot , (6.121)

where:

T̂De f (q) = 1

2
P̂
†
q · �(q) · P̂T

q , (6.122)

T̂Cor (q,�) = 1

2

[
Ĵ
† · �(q) · P̂T

q + P̂
†
q · �(q)Ĵ

T
]

, (6.123)
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T̂Rot (q,�) = 1

2
Ĵ
† · μ(q) · ĴT

. (6.124)

If the volume element used in normalizing the wavefunctions is of the form

dτρ = ρ(q)dq sin βdγdα , (6.125)

where ρ(q) is a weight function depending on the internal coordinates only, it has
been shown [3] that

Ĵ †
x = Ĵx

Ĵ †
y = Ĵy

Ĵ †
z = Ĵz . (6.126)

Reverting to partial derivatives, the quantum KEO can then be expressed, rather
straightforwardly, as

T̂ (ρ)(q,�) = T̂ (ρ)

Def + T̂ (ρ)

Cor + T̂ (ρ)

Rot , (6.127)

where

T̂ (ρ)

Def (q) = −�
2

2

3N−6∑

i, j=1

1

ρ(q)
∂

∂qi
ρ(q)�i j (q)

∂

∂q j
+ V̂extra(q) , (6.128)

or still

T̂ (ρ)
Def (q) = −�

2

2

⎡

⎣
3N−6∑

i, j=1

�i j (q)
∂2

∂qi∂q j
+

3N−6∑

i, j=1

(
∂

∂qi
�i j (q) + �i j (q)

∂

∂qi
ln (ρ(q))

∂

∂q j

⎤

⎦

+ V̂extra(q) , (6.129)

T̂ (ρ)
Cor (q,�) = −i�

∑

α′=(x,y,z)

Jα′

⎡

⎣
3N−6∑

i=1

1

2
(

∂

∂qi
�α′ j (q) + �α′ j (q)

∂

∂qi
ln (ρ(q))) + �α′ j (q)

∂

∂q j

⎤

⎦ ,

(6.130)

T̂ (ρ)
Rot (q, �) =

∑

α′,β′=x,y,z

μα′β′
(q) Ĵα′ Ĵβ′ , (6.131)

V̂ (ρ)
extra(q) = ( J̃

1
2 ρ− 1

2 T̂ρ
1
2 J̃− 1

2 ) . (6.132)

To avoid any misinterpretation of the above formulae, we emphasize again that
differential operators do not act beyond parentheses.

In the present section, we have introduced the total nuclear angular momentum,
Ĵ, sometimes called the total nuclear orbital angular momentum. The latter must be
clearly distinguished from the total angular momentum of the molecule, although
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we will assume that Ĵ can be taken as the total angular momentum for practical
applications in this book. Besides the total nuclear orbital momentum, there exist in
a molecule [16]:

• the total nuclear spin angular momentum, Î,
• the total electron spin angular momentum, Ŝ,
• the total electronic orbital angular momentum, L̂.

It is the sum of these three angular momenta plus the total nuclear orbital momen-
tum that gives the total angular momentum of the molecule, ĴT , which is a constant
of the motion for an isolated system. The nuclear spin angular momenta play a very
important role in specific fields, for instance in nuclear magnetic resonance or when
the presence of spin nuclear isomers imposes restrictions on the possible rotational
states of isomers such as H2 (the elective occupation of rotational states that stems
from the presence of the nuclear spins and the Pauli principle is called “nuclear sta-
tistics”). However, the coupling of the nuclear spin angular momentumwith the other
angular momenta is often very small (this coupling gives rise to the “nuclear hyper-
fine effects”) and the role of the nuclear spin angular momentum can be separated
from the rest.

The total electron spin and the total electronic orbital angular momentum differ
from one electronic state to another for a given molecule: see the example of H2 in
Sects. 3.5.4 and 3.5.5 for the different spin states. But for a singlet state, this angular
momentum is equal to zero. For a closed-shell electronic state, i.e. an electronic
state without unpaired electrons, the total electronic orbital angular momentum and
the electron spin angular momentum are equal to zero (singlet state). Therefore, for
many molecules in the electronic ground state, we can consider Ĵ only and take the
corresponding quantum number, J , as a constant of the motion. However, many free
radicals in their electronic ground states, and also many excited electronic states of
molecules with closed-shell ground states, have electronic structures in which both
electronic orbital and electronic spin angular momentum is present. It then may be
necessary to replace Ĵ by ĴT − L̂ − Ŝ in T̂ and to add to the molecular Hamiltonian
the terms corresponding to the spin-orbit coupling for instance. There are caseswhere
the rotational, vibrational, spin of electrons, and electronic contributions can all be
intrinsically mixed in molecular eigenstates, e.g. the Renner-Teller effect that may
appear in linear molecules [17–20]. But we will not consider such cases here for the
sake of simplicity and assume that J is a good quantum number.

6.4 Polyspherical Coordinates

From now on, we do not take into account the “parentheses convention” any more,
i.e. the operators may operate beyond parentheses.

Depending on the set of coordinates chosen to describe the dynamics of the system,
the KEO can be derived analytically using the previous equations, i.e. by using the
“chain rule” as illustrated in Sect. 6.7.1.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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However, for an important family of coordinates, called “polyspherical coordi-
nates”, the KEO can be obtained using existing general expressions [21–27]. Since
all the curvilinear coordinates used in the present book correspond to polyspherical
coordinates, we briefly describe them here.

As explained in Sect. 5.4, a molecular system with N atoms can be described by
(N − 1) relative position vectors, R1, R2, . . ., RN−1. The transformation between
the LF-position vectors of the atoms to the relative position vectors (plus the vector
from the origin of the frame to the center of mass of the system) is given by Eq.
(5.12). In view of Eq. (6.11), it is easy to obtain the Jacobian matrix:

JR→rLF =
⎡

⎣
A

m1
M

m2
M . . . mN

M

⎤

⎦ , (6.133)

so that Eq. (6.48) particularizes into

GR→rLF = JR→rLF · m−1 · JT
R→rLF =

[
A · m−1 · AT 0

0 1
M

]
,

(6.134)

where the constraints (5.13) have been taken into account. If, instead of LF position
vectors, SF position vectors r1SF , r

2
SF , . . ., r

N
SF are used, we see from Eq. (6.11) that

RCM
SF = 0 and, of course, in that case, leaving out the center of mass,

GR→rSF = A · m−1 · AT . (6.135)

Let us now use the following notation: A · m−1 · AT =M.
The classical SF Hamiltonian kinetic energy, relative to the center of mass, is

simply given by

2T =
λ=x,y,z∑

i, j=1,...,N−1

Pi λSF Mi j Pj λSF , (6.136)

where Pi is the momentum associated with Ri
SF .

It can be proven that for some families of vectors such as Jacobi vectors, this
matrixM is diagonal. For other sets of vectors such as valence vectors, this matrix is
not diagonal and the kinetic energy will have more terms. This is the reason why the
Jacobi coordinates are said to be orthogonal coordinates and the valence coordinates
are said to be non-orthogonal coordinates. The number of terms in the kinetic energy
is rather limited for orthogonal coordinates even for large systems. On the other hand,
for non-orthogonal coordinates, the number of terms may increase dramatically with
the number of atoms.

The exact quantum counterpart of Eq. (6.136) is given by

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
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2T̂ =
λ=x,y,z∑

i, j=1,...,N−1

P̂†
i λSF M

i j P̂j λSF , (6.137)

with

P̂i λSF = −i�
∂

∂Ri λSF
, (6.138)

and

P̂†
i λSF = P̂i λSF + �i , (6.139)

with �i given by Eq. (6.71).
As already explained, in order to separate out overall rotation from internal defor-

mation, a body fixed (BF) frame with origin at the nuclear center of mass is intro-
duced. The classical kinetic energy can be recast as follows,

2T SF =
λ=x,y,z∑

i, j=1,...,N−1

Pi λBF Mi j Pj λBF , (6.140)

where Pi λBF are the Cartesian components of the SF frame (and not BF) conjugate
momenta in the BF frame or, in other words, the projections of the SF conjugate
momenta onto the BF frame axes. The exact quantum counterpart of this equation is
given by

2T̂ =
λ=x,y,z∑

i, j=1,...,N−1

P̂†
i λBF M

i j P̂j λBF . (6.141)

In addition, we have for each relative vector

P̂i = P̂R iei − ei × L̂i

Ri
. (6.142)

where eRi = Ri/Ri denotes a unit vector, Ri = ||Ri || a vector length, P̂R i = eRi · P̂i

= −i� ∂
∂Ri

a radial momentum, and L̂i the angular momentum associated with Ri .
Let us now define the polyspherical coordinates. First, we choose a particular

definition of the BF frame: the BF frame is oriented such that zBF is parallel to the
relative vector RN−1 and such that RN−2, x BF and zBF lie in the same half-plane.
Let us now parameterize the relative vectors by spherical coordinates. The spherical
coordinates in the BF frame are defined as (see Fig. 6.28)

8Reprinted with permission from [27]. Copyright 2009. Licence number 3816530113208. Licence
date Feb 26, 2016. Elsevier.
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Fig. 6.2 Definition of the
polyspherical coordinates:
the N−1 vector lengths
Ri ∈ [0,∞[, N−2 (BF)
planar angles θBFi ∈ [0,π],
and N−3 (BF) dihedral
angles ϕBF

i ∈ [0, 2π[

Ri x BF = Ri sin θBF
i cosϕBF

i

Ri yBF = Ri sin θBF
i sinϕBF

i

Ri zBF = Ri cos θBF
i , (6.143)

with 0 ≤ θBF
i ≤ π and 0 ≤ ϕBF

i < 2π. With our definition of the BF frame,
θBF
N−1,ϕ

BF
N−1,ϕ

BF
N−2 are equal to zero.

9

Now, the expressions of BF projections of the angular momenta of Eq. (6.142)
can be obtained with few calculations. For instance, the angular momenta Li (i =
1, ..., N − 3) associated to the rotating vectors Ri (i = 1, ..., N − 3) not involved in
the definition of the BF frame. They are characterized by the usual formula [12]

⎡

⎢⎢⎢⎢⎢⎣

L̂ i x BF

L̂ i yBF

L̂ i zBF

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

− sinϕBF
i −cosϕBF

i cot θBF
i

cosϕBF
i −sinϕBF

i cot θBF
i

0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣

�

i
∂

∂θBF
i

�

i
∂

∂ϕBF
i

⎤

⎥⎦ .

(6.144)

The expressions for L̂N−1 and L̂N−2 are a little more complicated. The expressions
for L̂N−2 are

9In fact, ϕBF
N−1 is not defined and we can use ϕBF

N−1 = 0 in all the equations.
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⎡

⎢⎢⎢⎢⎢⎣

L̂ N−2 x BF

L̂ N−2 yBF

L̂ N−2 zBF

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

− cot θBF
N−2( ĴzBF − ∑N−3

i=1 L̂ i zBF )

−i� ∂
∂θBF

N−2

ĴzBF − ∑N−3
i=1 L̂ i zBF

⎤

⎥⎥⎥⎥⎥⎦
. (6.145)

Instead of using L̂N−1, we replaced it by Ĵ -
∑

i=1,...,N−2 L̂i so that the total angular
momentum and the overall rotation can be introduced simply.

Combining Eqs. (6.141) and (6.142) with the expression of the BF projections
of the angular momenta gives a general expression that can be obtained for many
systems, whatever the number of atoms and the nature of the vectors (Jacobi, valence,
etc.) All the operators given below can be obtained from this general expression, i.e.
without using the chain rule.

6.5 Examples

Let us give several examples of nuclear kinetic energy operators. Let us first consider
NOCl in terms of the Jacobi coordinates of Fig. 5.4. If we express the classical kinetic
energy in terms of the conjugate momenta associated with the two Jacobi vectors
such as in Sect. 5.4, we get

2T SF =
2∑

i, j=1

PSF
i Mi j PSF

j , (6.146)

with the matrixM, which reads

M =
[

1
mN

+ 1
mO

0
0 1

(mN+mO )
+ 1

mCl

]
. (6.147)

The corresponding kinetic energy operator reads:

2T̂ =
2∑

i=1

P̂
†
i M

ii P̂i =
2∑

i=1

P̂
†
i · P̂i

μRi

, (6.148)

with μRi = 1/Mii , the reduced masses associated with the two vectors. In view of
Eq. (6.147), the reduced masses are the following:

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
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μR1 = mOmN

mO + mN
,

μR2 = (mO + mN )mCl

mO + mN + mCl
. (6.149)

To obtain the kinetic energy operator explicitly in terms of the internal coordinates, it
could be possible to start with the Cartesian components of the momenta associated
with the two vectors in Eq. (6.148) and to apply equations such as Eq. (6.73), i.e.
to make a coordinate transformation from the Cartesian coordinates to the internal
ones. The explicit coordinate transformation using Eq. (6.73) is rather tedious and,
as explained in the previous section, since the set of coordinates is a particular case
of polyspherical coordinates, the KEO can be obtained without any calculation. The
KEO of NOCl for J = 0 in terms of the Jacobi coordinates of Fig. 5.4 reads

T̂J=0 = 1

2μR1

P̂†
R1
P̂R1 + 1

2μR2

P̂†
R2
P̂R2

+
(

1

2μR1R
2
1

+ 1

2μR2 R
2
2

)
P̂†

θ P̂θ

= − �
2

2μR1

1

R1

∂2

∂R2
1

R1 − �
2

2μR2

1

R2

∂2

∂R2
2

R2

−�
2

(
1

2μR1R
2
1

+ 1

2μR2 R
2
2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ
. (6.150)

This operator must be used with the following Euclidean volume element:

dV = sin θ R2
1 R

2
2 dθ dR1 dR2 . (6.151)

Using Eq. (6.190), we obtain

P̂†
R1

= P̂R1 − 2i�

R1
,

P̂†
R2

= P̂R2 − 2i�

R2
,

P̂†
θ = P̂θ − i� cot θ . (6.152)

For practical reasons, it is more convenient to work with the non-Euclidean volume
element

dV ′ = sin θ dθ dR1 dR2 . (6.153)

since it makes the conjugate momenta P̂R1 and P̂R2 Hermitian. Changing the volume
element comes down to changing the “convention of normalization” of the wave-
function [3, 27] (see also Sect. 6.6). In other words, the wavefunction, �, and the
kinetic energy operator are replaced by

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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� ′ = R1 R2 � , (6.154)

and
T̂ ′ = R1 R2 T̂ R−1

1 R−1
2 . (6.155)

It is rather straightforward to show that

T̂ ′
J=0 = 1

2μR1

P̂2
R1

+ 1

2μR2

P̂2
R2

−�
2

(
1

2μR1R
2
1

+ 1

2μR2 R
2
2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ

= − �
2

2μR1

∂2

∂R2
1

− �
2

2μR2

∂2

∂R2
2

−�
2

(
1

2μR1R
2
1

+ 1

2μR2 R
2
2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ
, (6.156)

which is to be usedwith the volume element of Eq. (6.153).We arrive at the important
conclusion that the KEO of Eq. (6.156) has no cross terms, i.e. no terms proportional
to ∂2

∂R1R2
for instance. This is due to the fact that we are using Jacobi coordinates.

Even for much larger systems, the KEO in Jacobi coordinates will not include cross
terms involving the conjugate momenta of the lengths of vectors. However, cross
terms mixing the angles will crop up for systems with more than three atoms ever
for Jacobi coordinates.

If J = 0, the kinetic energy operator for the H+H2 system is identical to the one
of Eq. (6.156) except that the reduced masses are different:

μR1 = mHmH

mH + mH
= mH

2
,

μR2 = (mH + mH )mH

mH + mH + mH
= 2

3
mH . (6.157)

Now, to calculate the cross sections of the collision H + H2, it becomes necessary
to include the cases with J > 0. We use the definition of the BF frame of Fig. 5.11b
and the coordinates of Fig. 5.6a. We recall that for any angular momentum L̂+ =
L̂ x + i L̂ y and L̂− = L̂ x – i L̂ y . In the following equations, x and y will refer to the
corresponding BF axes. The KEO reads

T̂ J = − �
2

2μR1

∂2

∂R2
1

− �
2

2μR2

∂2

∂R2
2

+ ĵ2

2μR1R
2
1

+ ĵ2

2μR2 R
2
2

+ 1

2μR2 R
2
2

[
Ĵ
2 + 2

∂2

∂γ2
− Ĵ+ ĵ− − Ĵ− ĵ+

]
, (6.158)

with

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
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ĵ2 = −�
2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂γ2

)
, (6.159)

and

ĵ± = ∓i�
∂

∂θ
+ i�

∂

∂γ
cot θ . (6.160)

In addition, we have

Ĵ± = i� exp∓iγ

[
− cot β

∂

∂γ
+ 1

sin β

∂

∂α
∓ i

∂

∂β

]
, (6.161)

and

Ĵ
2 = �

2

[
− ∂2

∂β2
− cot β

∂

∂β
− 1

sin2 β
(

∂2

∂α2
+ ∂2

∂γ2
− 2 cosβ

∂2

∂α∂γ
)

]
.

(6.162)

We also add that

Ĵz = −i�
∂

∂γ
, (6.163)

and thus

Ĵ 2
z = −�

2 ∂2

∂γ2
, (6.164)

where z denotes the zBF axis. If J = 0, the KEO of Eq. (6.162) reduces to the KEO
of Eq. (6.156) with the reduced masses of the H+H2 system (see Eq. (6.157)).

Let us now consider a tri-atomic molecule in valence coordinates: the water
molecule with the coordinates of Fig. 5.5. If we express the classical kinetic energy
in terms of the conjugate momenta associated with the two valence vectors, we get

2T SF =
2∑

i, j=1

PSF
i Mi j PSF

j , (6.165)

with the matrix M, which reads

M =
[

1
mH

+ 1
mO

1
mO

1
mO

1
mH

+ 1
mO

]
. (6.166)

As for Jacobi vectors, we can define a reduced mass to each vector μRi = 1/Mii .
Here, μR1 = μR2 = mOmH

mO+mH
. The corresponding kinetic energy operator is given by

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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2T̂ =
2∑

i, j=1

P̂
†
i M

ii P̂ j , (6.167)

and, if we explicitly express the operator in terms of the coordinates, we obtain for
J = 0

T̂J=0 = 1

2μR1

P̂†
R1
P̂R1 + 1

2μR2

P̂†
R2
P̂R2 + (

1

2μR1R
2
1

+ 1

2μR2 R
2
2

)P̂†
θ P̂θ

− (P̂†
R1
sin θ P̂θ + P̂†

θ sin θ P̂R1)

2mO R2
− (P̂†

R2
sin θ P̂θ + P̂†

θ sin θ P̂R2)

2mO R1

+ (P̂†
R1
P̂R2 + P̂†

R2
P̂R1) cos θ

2mO
− P̂†

θ cos θ P̂θ

2mO R1R2
.

(6.168)

This kinetic energy operator must be used with the volume element given by Eq.
(6.151) and the adjoints of the conjugate momenta are given by Eq. (6.152). Com-
paring Eqs. (6.156) and (6.168), we see that the kinetic energy operator for H2O has
new terms compared to the kinetic energy operator of NOCl. All these new terms are
proportional to 1/mO and thus result from the non-diagonal elements in thematrix of
Eq. (6.166). This is the reasonwhy valence coordinates are said to be non-orthogonal
and lead to a more complicated kinetic energy. On the other hand, Jacobi coordinates
are said to be orthogonal because the matrix of Eq. (6.147) is diagonal.

Now, if we want to use the volume element of Eq. (6.153), we have to transform
the kinetic energy operator of Eq. (6.168) according to Eq. (6.155). This yields

T̂ ′
J=0 = 1

2μR1

P̂2
R1

+ 1

2μR2

P̂2
R2

+ (
1

2μR1R
2
1

+ 1

2μR2 R
2
2

)P̂†
θ P̂θ

− (P̂R1 sin θ P̂θ + P̂†
θ sin θ P̂R1)

2mO R2
− (P̂R2 sin θ P̂θ + P̂†

θ sin θ P̂R2)

2mO R1

+ P̂R1 P̂R2 cos θ

mO
− P̂†

θ cos θ P̂θ

2mO R1R2
− �

2 cos θ

mO R1R2
. (6.169)

The last term in the previous equation, − �
2 cos θ

mO R1R2
, is called “extrapotential” term

(see Eq. (6.85), Sect. 6.3.2) since it is a purely multiplicative operator. It crops up
only because we use a non-Euclidean convention of normalization (see Eq. (6.153)).
Finally, reverting to partial derivatives, the kinetic energy operator of water in valence
coordinates of Eq. (6.169) can be recast as
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T̂ ′
J=0 = − �

2

2μR1

∂2

∂R2
1

− �
2

2μR2

∂2

∂R2
2

− �
2

(
1

2μR1 R
2
1

+ 1

2μR2 R
2
2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ

− �
2

mO
cos θ

∂2

∂R2∂R1
+ �

2

mO R2

∂2

∂R1∂θ
sin θ + �

2

mO R1

∂2

∂R2∂θ
sin θ

+ �
2

2mO R1R2
[( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
) cos θ + cos θ(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
sin θ)] − �

2 cos θ

mO R1R2
.

(6.170)

For very large systems, the number of terms may increase dramatically. In this
context, it is worth noting that the program TANA developed by M. Ndong, D.
Lauvergnat and co-workers provides automatically the explicit expression of the
KEO in polyspherical coordinates whatever the number of atoms [28, 29].

6.6 The Problem of Singularities in the KEO *

If curvilinear coordinates are used, some operators may become singular for specific
geometries when the Euclidean volume element is equal to zero. This is the case for
operators such as

ĵ2 = −�
2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
,

ĵ± = �e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
, (6.171)

that appear in the kinetic energy operator of Eq. (6.158) (see Eqs. (6.159) and (6.160),
θ ∈ [0,π] and φ ∈ [0, 2π]). These operators are singular for θ = 0 or π since sin θ
tends to zero when θ tends to zero or π. These “singularities” appear because the
Euclidean volume element, dV = sin θdθdφ vanishes for the corresponding geome-
tries.

The singularity appears only in coordinate space, all matrix elements are non-
singular when an appropriate basis set, e.g. the spherical harmonics Ylm(θ,φ), are
used. The spherical harmonics are given by

Ylm(θ,φ) = P̃m
l (cos θ)

eimφ

√
2π

, (6.172)

with

P̃m
l (cos θ) = (−1)m

√
(2l + 1)(l − m)!

2(l + m)! Pm
l (cos θ) , (6.173)

the normalized associated Legendre functions. In fact,
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ĵ2Ylm(θ,φ) = �
2l(l + 1)Ylm(θ,φ)

ĵ±Ylm(θ,φ) = �

√
l(l + 1) − m(m ± 1)Yl,m±1(θ,φ) . (6.174)

In particular, after integration over the functions, eimφ√
2π
, we see that the operator j2 is

diagonal in this basis set of φ and that the corresponding matrix element reads

ĵ2δmn = −�
2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ

)
δmn ,

(6.175)

and

l(l + 1) f (cos θ) =
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ

)
f (cos θ) ,

(6.176)

corresponds to the general Legendre equation with y = f (x) and x = cos θ. The
associatedLegendre polynomials, Pm

l (x), are the canonical solutions of this equation.
Two points must be emphasized at this level: (i) the basis set of spherical harmonics
of Eq. (6.172) is not a direct product basis, because P̃m

l (cos θ) depends on both l
and m. In other words, θ and φ are intrinsically linked together in the basis set. (ii)
The choice of this direct product basis guarantees that the functions have the correct
asymptotic behavior when θ tends to zero or π, i.e. that the matrix elements are
non-singular. If the chosen basis functions do not have such an asymptotic behavior,
the convergence of the matrix elements with respect to the number of basis functions
will be very poor and the basis set is said to be incomplete for the corresponding
mathematical problem.

On the other hand, if for physical reasons (e.g. because of potential barriers) the
geometries corresponding to | sin θ|  1 can not be reached, a direct product basis
set such as

P̃l(cos θ)
eimφ

√
2π

,

(6.177)

with P̃l(cos θ)= P̃0
l (cos θ) being normalizedLegendre polynomials that are restricted

to an interval smaller than [0,π], can be employed. Now, if we use x = cos θ, the vol-
ume element becomes dV = dxdϕ and the well-known particle-in-a-box functions
(i.e. the sin nπx

L functions with L the interval) can also be used instead of the Legen-
dre polynomials for x . Such systems, where potential barriers exclude the singular
regions, are called “semi-rigid”. Note that, the H+H2 system mentioned in Sect. 6.5
is not semi-rigid since the H2 molecule rotates freely before collision. Thus, the



6.6 The Problem of Singularities in the KEO * 159

geometries near zero or π can be reached. For this system, it is then necessary to use
a non direct product basis set such as the spherical harmonics.

6.7 Complements to Chapter 6

6.7.1 Chain Rule and Laplacian Operator

To apply the chain rule to the Laplacian in Cartesian coordinates

	 =
∑

α

∂2

∂xα∂xα
, (6.178)

we start from
∂

∂xα
=

∑

i

∂qi

∂xα

∂

∂qi
, (6.179)

and

∂

∂xα

∂

∂xα
= ∂

∂xα

∑

i

∂qi

∂xα

∂

∂qi

=
∑

i

(
∂2qi

∂xα∂xα
)

∂

∂qi
+

∑

i, j

(
∂qi

∂xα
)(

∂q j

∂xα
)

∂2

∂qi∂q j
, (6.180)

so that

	 =
∑

i, j

∑

α

(
∂qi

∂xα
)(

∂q j

∂xα
)

∂2

∂qi∂q j
+

∑

i

∑

α

(
∂2qi

∂xα∂xα
)

∂

∂qi
. (6.181)

Comparing Eq. (6.181) with Eq. (6.75), we have

f i j (q) = Gi j (q) =
∑

α

(
∂qi

∂xα
)(

∂q j

∂xα
) , (6.182)

which is the expression of the contravariant components of the metric tensor in the
q(x) approach and

f i (q) =
∑

α

∂2qi

∂xα∂xα
. (6.183)

Obviously, x(q) has to be used in Eqs. (6.182) and (6.183).
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6.7.2 Adjoint Operator P̂†
i of the Momentum Operator

P̂i = −i� ∂
∂qi

The adjoint of an operator Â is defined as follows (see Eq. (2.14), Sect. 2.1.3). For
all functions � and 
:

〈 Â�|
〉 =
∫

( Â�)�
dV =
∫

��( Â†
)dV

= 〈�| Â†|
〉 , (6.184)

where dV = dτ (E) = dx1 . . . dx3N = Jx→q dq1 · · · dq3N is the volume element in
Cartesian space. The parentheses in Eq. (6.184) indicate that Â does not operate
beyond the parentheses.

For simplicity, Jx→q will be denoted J and dq1 . . . dq3N by dq, so that Eq. (6.184)
reads

∫
( Â�)�
Jdq =

∫
��( Â†
)Jdq , (6.185)

where �, 
 and J are functions of the 3N curvilinear coordinates q = (q1 . . . q3N ).
In addition, the product J��
 is assumed to vanish on the boundaries of the range
of variation of the coordinates q. Particularizing to the momentum operator P̂i =
−i� ∂

∂qi , we obtain successively

〈P̂i�|
〉 =
∫

(−i�
∂

∂qi
�)�
Jdq . (6.186)

Integrating by parts yields

∫
(i�

∂

∂qi
��)
Jdq = i�

[
��
J

]∞
−∞ − i�

∫
��(

∂

∂qi
J
)dq . (6.187)

Since J��
 vanishes on the boundaries and inserting J and J−1, we obtain

∫
(−i�

∂

∂qi
�)�
Jdq =

∫
��(J−1(−i�)

∂

∂qi
J
)Jdq , (6.188)

or still, reverting to the momentum operator P̂i = −i� ∂
∂qi ,

∫
(P̂i�)�
Jdq =

∫
��(J−1 P̂i J
)Jdq . (6.189)

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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Comparing Eqs. (6.189) and (6.184) obviously leads to the following expression for
the adjoint of the momentum operator in curvilinear coordinates10

P̂†
i = J−1 P̂i J (i = 1, . . . , 3N ) . (6.190)

Now,

P̂†
i � = J−1 P̂i J� = P̂i� + (J−1 P̂i J )� , (6.191)

or still

P̂†
i = P̂i + �i , (6.192)

where

�i = (J−1 P̂i J ) = (P̂i ln J ) . (6.193)

Parenthesis convention: When an operator appears in an expression in parenthe-
ses, it is always assumed not to operate beyond the parentheses. Thus, J−1 P̂i J �=
(J−1 P̂i J ). The left hand side is an operator while the right hand side is a number.

6.7.3 Metric Tensor for Polar Coordinates

x(q) approach

x(r, θ) = r cos θ

y(r, θ) = r sin θ . (6.194)

The Jacobian matrix corresponding to the coordinate change from the Cartesian
coordinates to the polar coordinates reads

J =
[

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
. (6.195)

The absolute value of the Jacobian determinant is

J = |Det J | = r . (6.196)

The matrix of the covariant components of the metric tensor reads

10When Cartesian coordinates are used J = 1 and the well-known result P̂†
i = P̂i is obtained.
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g =
[

grr grθ
gθr gθθ

]
= JT · J =

[
cos θ sin θ

−r sin θ r cos θ

] [
cos θ −r sin θ
sin θ r cos θ

]

=
[
1 0
0 r2

]
. (6.197)

We see that Detg = r2 = J 2. The matrix of the contravariant components of the
metric tensor reads

G =
[

grr grθ

gθr gθθ

]
= g−1 =

[
1 0
0 1

r2

]
, (6.198)

or still, since

J−1 = 1

r

[
r cos θ r sin θ
− sin θ cos θ

]
, (6.199)

G = J−1 · (J−1)T =
[
cos θ sin θ

− sin θ
r

cos θ
r

] [
cos θ − sin θ

r
sin θ cos θ

r

]

=
[
1 0
0 1

r2

]
, (6.200)

q(x) approach

r =
√
x2 + y2

θ = arctan
y

x
, (6.201)

J−1 =
[

∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

]
=

[
x

(x2+y2)
1
2

y

(x2+y2)
1
2

− y
x2+y2

x
x2+y2 .

]
,

which is obviously a function of the Cartesian coordinates (x, y). Replacing by
x = r cos θ and y = r sin θ i.e. reverting to x(q), gives

J−1 =
[

r cos θ
r

r sin θ
r− r sin θ

r2 − r cos θ
r2

]
=

[
cos θ sin θ

− sin θ
r

cos θ
r

]
,

and

|Det J−1| = 1

r
= J−1 . (6.202)

Thus,

G =
[
Grr Grθ

Gθr Gθθ

]
=

[
1 0
0 1

r2

]
,
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and

|DetG| = 1

r2
= J−2 . (6.203)

When the metric tensors are diagonal, the curvilinear coordinates are called orthog-
onal coordinates.

6.7.4 Computation of the Laplacian Operator in Polar
Coordinates

In the case of the polar coordinates of Sect. 6.7.3, the expression (6.62) particularizes
as follows

	 = −2T/�
2 = J−1[ ∂

∂r
JGrr ∂

∂r
+ ∂

∂r
JGrθ ∂

∂θ

+ ∂

∂θ
JGθr ∂

∂r
+ ∂

∂θ
JGθθ ∂

∂θ
] , (6.204)

with

J = r

Grr = 1

Gθθ = 1

r2

Grθ = Gθr = 0 , (6.205)

so that we obtain the well-known result

	 = −2T/�
2 = 1

r

[
∂

∂r
r

∂

∂r
+ ∂

∂θ

1

r

∂

∂θ

]

= 1

r

∂

∂r
r

∂

∂r
+ 1

r2
∂2

∂θ2

= 1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2
∂2

∂θ2
. (6.206)

Or still, Eq. (6.73) particularizes as follows
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	 = −2T/�
2 = Grr ∂2

∂r2
+ Grθ ∂2

∂r∂θ
+ Gθr ∂2

∂θ∂r
+ Gθθ ∂2

∂θ2

+ (Grr ∂ ln J

∂r
+ ∂

∂r
Grr )

∂

∂r

+ (Grθ ∂ ln J

∂r
+ ∂

∂r
Grθ)

∂

∂θ

+ (Gθr ∂ ln J

∂θ
+ ∂

∂θ
Grθ)

∂

∂r

+ (Gθθ ∂ ln J

∂θ
+ ∂

∂θ
Gθθ)

∂

∂θ
. (6.207)

Using Eq. (6.205), we obtain of course the same result

	 = −2T/�
2 = ∂2

∂r2
+ 1

r2
∂2

∂θ2
+ (

∂ ln r

∂r
)

∂

∂r

= 1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2
∂2

∂θ2
. (6.208)

If we change the normalization convention and use the volume element dτ (ρ) =
ρ(r, θ)drdθ instead of dτ (E) = Jdrdθ = rdrdθ, we obtain from Eq. (6.86) and
using Eq. (6.205)

	(ρ) = −2T (ρ)/�
2 = ∂2

∂r2
+ 1

r2
∂2

∂θ2
+ (

∂ ln ρ

∂r
)

∂

∂r
+ (r1/2ρ−1/2	ρ1/2r−1/2) . (6.209)

In (r1/2ρ−1/2	ρ1/2r−1/2), the parentheses indicate that the derivative operators do not
operate beyond them. In other words, (r1/2ρ−1/2	ρ1/2r−1/2) is purely multiplicative.

For instance, for ρ(r, θ) = 1, ln ρ = 0 and

	(ρ=1) = ∂2

∂r2
+ 1

r2
∂2

∂θ2
+ 1

4r2
. (6.210)

Indeed, it is easy to check that

(r1/2[1
r

∂

∂r
+ ∂2

∂r2
+ 1

r2
∂2

∂θ2
]r−1/2) = 1

4r2
, (6.211)

which is a multiplicative operator.
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Chapter 7
Group Theory and Molecular Symmetry

In various chapters of this book,wehavementionedhowagroup-theoretical approach
could be applied to molecular symmetry and help in the context of vibrational and
vibronic problems. In the present chapter, we shall give further information on
three examples addressed elsewhere: the harmonic vibrations of water (see Sect. 9.3
in Chap.9); the vibronic Hamiltonian of the butratriene cation (see Sect. 12.2 in
Chap.12); the umbrella inversion of twice-deuterated ammonia (see Sects. 13.3–13.5
in Chap.13).

Note that applications of group theory to the treatment of angular momenta (rota-
tions and spins of electrons and nuclei) and of their various compositions require
an involved formalism that is beyond the scope of the present book. Our discussion
will thus be limited to vibronic variables. In practice, we shall consider transfor-
mations of nuclear displacements and atomic orbitals to define symmetry-adapted
combinations (vibrational modes and molecular orbitals) to be used ultimately for
building vibrational and electronic wavefunctions belonging to well-defined sym-
metry species (because the invariances of the molecular Hamiltonian are transferred
to the Hessian and Fock matrices). The positions of the electrons and the nuclei of
a molecular system will be represented either in a space-fixed frame or in a body-
fixed frame (assuming coincidence between the molecular and the nuclear centres
of mass). They will be denoted (X, Y, Z) or (x, y, z), respectively, throughout the
present chapter for notational simplicity.

7.1 Introduction

Group theory is a powerful branch of mathematics with many applications in physics
and chemistry. It is often used as a practical “tool” to predict—before any formal
derivation or numerical calculation—that the value of an observable should be zero
for symmetry reasons, which is related to the structural properties of the object under
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study and subsequent invariance laws. This is how and why, for example, selection
rules in molecular spectroscopy are able to tell us in advance that a given transition
between two levels is allowed or forbidden and should thus be observed or not
in the experimental spectrum. However, if a transition is not symmetry-forbidden,
predicting its magnitude still requires solving the relevant equations derived from
the fundamental laws of physics or making relevant approximations to determine
whether there are some physical reasons that should make the intensity large or
small.

A group-theoretical analysis thus provides formal relationships that reflect invari-
anceproperties under particular transformations affecting the space and spinvariables
of the electrons and nuclei in a molecular system. In the practical case of a molecule
with several identical nuclei (or in situations of coplanar or collinear arrangements
where there are intrinsic symmetries with respect to the three-dimensional space),
the “shape” of the system (determined from the relative positions of the nuclei)
occurs to be invariant under some geometrical transformations (symmetry opera-
tions, such as axial rotations, planar reflections, permutations of identical nuclei,
etc.). If so, the geometry of the molecule, in other words its structure, is said to have
non-trivial symmetry. In addition, identical fermions or bosons are characterised by
wavefunctions that are antisymmetric or symmetric, respectively, with respect to the
permutations of both their space and spin coordinates (note that the density of prob-
ability of presence—the square-modulus of the wavefunction—is symmetric in both
cases, as expected for indistinguishable particles).

The set of such transformations forms an algebraic structure known in mathemat-
ics as a symmetry group. This set is closed under composition (sequential action of
two transformations), has a neutral element (the identity), and each transformation
has an inverse (reversing the effect of the transformation). Representation theory is
then used to determine what are known as the irreducible representations of the sym-
metry group (also called symmetry species) that are typical of the group structure.
Each is characterised by a specific behaviour, called a character, under all trans-
formations (for example odd or even). The corresponding list of such characters is
called the character table of the symmetry group. Molecular properties that depend
on the geometry can thus be rationalised according to the irreducible representations
to which they belong. From this knowledge, it is then possible to understand why
a physical quantity is zero at some geometry in much the same way as why a one-
dimensional odd function is zero at the origin and gives rise to a vanishing integral
over a symmetric domain orwhy an even function corresponds to a horizontal tangent
at the origin, etc.

When used in chemistry, group theory is often derived from the geometrical shape
of the equilibrium structure of the molecule under study (for example, the shape
of the methane molecule is that of a regular tetrahedron). In other words, because
identical nuclei are indistinguishable, an internuclear arrangement that exhibits some
symmetry is either geometrically-invariant or turned into its enantiomeric partner
under a set of rotations and/or reflections (possibly combined together). In this, the
geometry of this arrangement is identified to a “solid” object of the same shape
(i.e., a sphere, a cylinder, a cone, or some type of polyhedron), irrespectively of
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the labelling pattern of identical nuclei. In mathematical terms, this implies that the
point group (the set of such symmetry operations) that characterises this geometric
structure can be used to determine how the properties of the molecule are affected
under these operations. We will refer to this treatment as the “standard” point-group
approach hereafter.

From a more rigorous perspective, group theory applied to a molecular system
should reflect the invariances of the molecular Hamiltonian with respect to trans-
formations acting on the spin and space variables of the particles. Essentially, the
molecular Hamiltonian (see Chap. 3) is unchanged if the positions and spins of indis-
tinguishable particles are permuted or if the position of each particle is inverted in
space through the centre of mass of the molecule. This description is often referred
to as the molecular-symmetry approach.

Point-group symmetry thus concerns geometrical invariance while molecular
symmetry deals with energetic invariance. Using one for the other could seem para-
doxical at first glance. However, it occurs that both approaches are intimately related.
This is the reason why they are often mixed up, as they provide equivalent results in
most application cases where only small-amplitude deformations (vibrations) from
a single equilibrium structure are to be considered. In contrast, the standard point-
group approach becomes inadequate in situations where a large-amplitude deforma-
tion (contortion) connecting two distinct equilibrium structures is to be considered
(this will be illustrated in the last section of this chapter).

Let us now clarify some of the fundations of the molecular-symmetry approach.
As mentioned in Chap.3, a molecular system is a collection of electrons and nuclei,
in other words a chemical formula that uniquely determines the general expres-
sion of the molecular Hamiltonian according to the number of electrons and the
numbers and natures of the various nuclei (in this, different isotopes of the same
element are distinguishable, as they have different masses). A given chemical for-
mula often corresponds to several possible isomers (in a general sense: local minima
of the potential energy surface or asymptotic minima when considering fragmented
species). Each isomer is characterised by its structural formula determined by the
relative arrangement of the nuclei. They all belong to the same energy landscape
(for a given electronic state) and may or may not be interconverted among each
other under feasible transformations according to the energy available in the sys-
tem and the relative barrier heights between minima. In addition, considering all
possible ways of labelling the nuclei may yield a set of identical conformers that
can be interconverted through barriers between multiple but equivalent wells. Such
dynamical processes are not chemical reactions as such (because the reactant and the
product are identical species), but they may have spectroscopic consequences (for
example, vibrational tunnelling splitting). In addition to this permutational invari-
ance, we must consider the consequences of the chirality of the three-dimensional
space (a Cartesian frame can be right-handed or left-handed). For example, a pair
of R and S enantiomers such as CHFClBr corresponds to two structures that are
energetically degenerate but geometrically different despite their apparent equiva-
lence. They are mirror images of each other and cannot be interconverted under any
rigid-body rotation. The symmetry operation that relates them is called parity trans-

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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formation1 or space inversion and denoted E∗. It turns the laboratory- or space-fixed
Cartesian coordinates of all the electrons and nuclei in the molecular system into
their negatives, (X, Y, Z) → (−X,−Y,−Z), and thus inverses left/right chirality.
Such considerations imply that there is a more global symmetry in the system than
simply indicated by the geometrical shape of a particular isomer.2

More specifically, the full set of variables entering the definition of the molecular
Hamiltonian is made of the laboratory-fixed space coordinates and spin variables
of all electrons and nuclei. Note that identical particles are labelled arbitrarily but
unambiguously in the expression of the Hamiltonian. Indistinguishability is further
ensured when considering the eigenstates of the Hamiltonian, which are made sym-
metric or antisymmetric according to the fermionic (half-integer spin) or bosonic
(integer spin) natures of the particles. The full symmetry group of the Hamiltonian
of the isolated molecular system should thus reflect all possible invariances: the
position of the frame origin (space uniformity), the orientation of the frame axes
(space isotropy), the space and spin permutations of identical particles (indistin-
guishability), and the space inversion of all particles through the frame origin (parity
conservation). Electronic permutations (spin and space) can be treated separately,
when generating electronic wavefunctions so as to be antisymmetric with respect to
such operations. Further removing translational and rotational invariances yields the
so-called complete nuclear-permutation inversion (CNPI) group. It is made of all
permutations of identical nuclei together with the space inversion of all electrons and
nuclei; such operations could be defined with respect to a laboratory-fixed frame but
are more conveniently applied in a space-fixed frame so as to separate overall trans-
lations from the onset (the treatment of overall rotations in this context is more subtle
and will not be addressed in the present chapter; see Ref. [1] for further details). As
already pointed out, electrons are fermions, and it is well-established that the elec-
tronic wavefunction must be made antisymmetric with respect to their permutations
(see Sect. 3.5 in Chap.3). Not doing so yields a significant error on the total energy.
Nuclei are either bosons or fermions depending on their spins. In contrast with elec-
trons, making the nuclear wavefunction symmetric or antisymmetric, according to
the case, has a small effect on the total energy within the range of vibrational tran-
sitions (infrared). As a consequence, they are often omitted from a description in
terms of CNPI group, unless specifically required (for example, when nuclear-spin
statistics must be accounted for in the selection rules of rotational spectra).

In practice, the operations of the CNPI group (space and spin permutations of
identical nuclei with and without space inversion) are transformations that fall into

1Charge conjugation (C), parity transformation (P), and time reversal (T) form together the famous
CPT symmetry under which all physics laws are assumed to be invariant.
2These aspects are sometimes explained using the concept of version. The various versions of a
structural formula are produced upon permuting the labels of identical nuclei in all possible ways.
Versions are considered distinct if they cannot be interconverted under amere rigid-body rotation. In
some cases, the set of permutational versions may get doubled upon further considering the image
of each under space inversion (two enantiomers of the same isomer are considered as two distinct
versions). As a result, a degenerate set of distinct versions corresponds to equivalent but distinct
multiple wells in the energy landscape.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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three types: (i) transformations that correspond to mere rigid-body rotations, hence
with no activation barrier; (ii) feasible transformations between permutationally-
equivalent isomers or between enantiomers (i.e., which can be achieved dynamically
along a continuous deformation going across a superable activation barrier according
to the energy given to the system and the time required for observing its effect); (iii)
unfeasible transformations between permutationally-equivalent isomers or between
enantiomers (i.e., of no observable consequence because the barrier is not supera-
ble in any reasonable time3). Discarding unfeasible transformations from the CNPI
group yields the so-called molecular-symmetry group, which is an invariance sub-
group of the full symmetry group of the molecular Hamiltonian with respect to the
spin and space variables of the particles, irrespectively of any specific internuclear
arrangement. For a single isomer, the molecular-symmetry group is isomorphic to
the corresponding point group. contrast, when a process connects several isomers,
each characterised by its own point group, the molecular-symmetry group is larger
than any of them.

For amore comprehensive overview, we propose a selection of seminal references
about the foundations of group theory and its applications to molecular physics
and chemistry [1–8]. In what follows, we will address three examples that illus-
trate how group theory can help in the context of molecular quantum dynamics for
classifying vibrational and electronic states. Two application cases (the water mole-
cule and the butatriene cation) will be treated within the framework of point-group
theory, adapted to small geometrical deformations around a single minimum (vibra-
tions), while the third one (the twice-deuterated ammonia molecule) will make use of
molecular-symmetry (nuclear-permutation inversion) group theory to consider large-
amplitude deformations (contortions) connecting two equivalent minima through a
barrier (symmetric double well). The latter formalism is less widely-used in chem-
istry than the former but is, in fact, a generalisation of it, as already mentioned above
(this aspect is carefully explained in the comprehensive book of Bunker and Jensen
[1]). For clarification, a comparison between both approaches will be made first in
the case of the water molecule.

7.2 The Harmonic Vibrations of Water

In this section, we start with a standard point-group treatment where the character
table can be used quite readily to determine the symmetry properties of the harmonic
vibrations of water (see Sect. 9.3 in Chap.9). We then make a more rigorous connec-
tion with molecular symmetry to illustrate how both approaches are related. Finally,
we show how the ground-state dipole moment behaves to first order as a function

3From a quantum-mechanical perspective, an unfeasible transformationmeans that tunnelling is too
weak to be detected experimentally. When so, the unsuperable barrier between two equivalent wells
can be considered as infinite and this structural degenerescence can be omitted from the description.

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 7.1 Water molecule: body-fixed axes (Mulliken’s convention) and curvilinear coordinates
(here, the x-axis is perpendicular to the representation plane and points towards the opposite side of
the reader sight; the signs of the axes are such that the H-nucleus with label 2 (corresponding to the
OH bond length R2 on the right-hand side) is on the positive side of the y-axis and the O-nucleus
on the negative side of the z-axis)

of the nuclear coordinates to derive vibrational selection rules and how the potential
energy surface can be expanded as a quadratic form of the nuclear coordinates.

7.2.1 Standard Point-Group Treatment

The equilibrium geometry of the water molecule (H2O) in its electronic ground
state is V-shaped and corresponds to an isosceles triangular prism when viewed as a
solid object; see Fig. 7.1 (the molecule is planar and both H-nuclei are at the same
distance from the O-nucleus, which implies that they are permutationally-equivalent:
permutating them yields the same nuclear positions, up to a rigid-body rotation). This
structure thus exhibits three symmetry elements: a twofold rotation axis (bisecting
the H–O–H sector) and two mirror planes containing this axis (the molecular plane
and the orthogonal plane intersecting it along the rotation axis). They all intersect
through a common point at least (here an axis), hence the name point group, which
is the molecular centre of mass (assumed here to coincidence with the nuclear centre
of mass). Each symmetry element generates symmetry operations defined such that
they leave the shape of the molecule unchanged, irrespectively of the labelling of
identical nuclei: a half-turn rotation around the axis (denoted C2) and two reflections
with respect to each mirror plane (both denoted σv). Note that, as usual, symmetry
elements and symmetry operations are referred to with the same symbols.

A symmetry-adapted body-fixed Cartesian frame must be such that the three
directions are invariant under the symmetry operations, which means that the signed
axes are transformed into plus or minus themselves under the various rotations and
reflections (see Table7.1).4 For symmetry reasons, these three axes are parallel to

4In this chapter, we will limit our discussion to non-degenerate cases, whereby body-fixed axes are
turned into themselves or their negatives. However, degenerate cases may involve transformations
that mix pairs of equivalent axes together.
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Table 7.1 Behaviours of the body-fixed axes under the C2v point-group operations (in the standard
point-group treatment, the right-handed frame becomes left-handed under reflections)

E C2(z) σv(yz) σv(xz)

x −x −x x

y −y y −y

z z z z

the eigenvectors of the inertia tensor of the molecule and, as such, are also called
principal axes of inertia. Using Mulliken’s convention5 [4, 5] for labelling them
yields z as the rotation axis, x as the axis perpendicular to the molecular plane, and
y as the remaining axis orthogonal to the other two; see Fig. 7.1. In other words,
C2 corresponds to z and both σv to (xz) and (yz), the latter being the molecular
plane. Further, the sign of each axis must be specified according to some body-fixed
constraints (for example, on Fig. 7.1, the H-nucleus with label 2 corresponds to the
positive side of the y-axis).

The three aforementioned symmetry operations,C2(z), σv(yz), and σv(xz), along
with the identity, E , form a point group named C2v. These four distinct operations
commute and the group is thus said to be Abelian. As a consequence, it can be rep-
resented with four non-degenerate (one-dimensional) irreducible representations,
which are denoted A1, A2, B1, and B2. A1 is the totally-symmetric irreducible rep-
resentation. A2 is even with respect to the rotation and odd with respect to both
reflections. B1 and B2 are both odd with respect to C2(z); B1 is odd with respect to
σv(yz) and even with respect to σv(xz), and the reverse for B2. According to their
definitions, the z-axis behaves as A1, the x-axis as B1, and the y-axis as B2 (see
Table7.1).

The definitions of the irreducible representations of C2v are summarised in its
character table (see Table7.2). As usual, the last columns indicate the behaviours of
the first- and second-order monomials of x , y, and z, along with those of Rx , Ry ,
and Rz , which denote the infinitesimal generators of rigid-body rotations around the
body-fixed axes (fromapractical point of view, they can be pictured as circular arrows
around the corresponding axes). The properties of x , y, and z indicate how body-
fixed coordinates and the body-fixed components of vectors behave (for example, the
infinitesimal generators of rigid-body translations, Tx , Ty , and Tz , or the components
of the dipole moment, μx , μy , and μz). The properties of xx , xy, etc. indicate how
the body-fixed components of symmetric second-order tensors behave (for example,
the components of the polarizability tensor, αxx , αxy , etc.). Finally, the properties of
Rx , Ry , and Rz indicate how the body-fixed components of pseudovectors behave.6

5Note that alternative conventions are sometimes found in the literature. The x- and y-axes are often
swapped, for example. Or, in Ref. [1], the x-axis is defined as the rotation axis while the y-axis is
perpendicular to the molecular plane.
6Pseudovectors (or axial vectors), as opposed to true vectors (or polar vectors) actually are
antisymmetric second-order tensors for which the three independent components are gathered
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Table 7.2 Character table of the C2v point group
C2v E C2(z) σv(yz) σv(xz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy

B1 1 −1 −1 1 x , Ry xz

B2 1 −1 1 −1 y, Rx yz

Table 7.3 Direct-product table of the C2v point group
⊗ A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Another useful tool is the direct-product table of all irreducible representations
(see Table7.3). Each entry is obtained by first multiplying the characters of both
irreducible representations and then determining to what belongs the result. One
shows easily that A2 ⊗ B1/2 = B2/1 and B1 ⊗ B2 = A2.

The description of molecular vibrations within the framework of point-group the-
ory consists in determining the list of irreducible representations (their natures and
numbers of occurrence) that characterise the harmonic normal modes (see Sect. 5.1
in Chap.5) of a given equilibrium structure. Such irreducible representations cor-
respond to the point group of this geometry. This treatment is based on the infini-
tesimal nuclear displacements from the equilibrium position of each nucleus. They
are combined collectively and classified into three types: rigid-body translations (all
nuclei shift together along an axis7), rigid-body rotations (all nuclei rotate together
around an axis), and vibrations (small-amplitude motions that change the shape or
size of the molecule8). For an N -atom system with 3N nuclear coordinates, there
are three translations, three rotations, and 3N − 6 vibrations (except for a diatom
or if the equilibrium geometry is collinear, in which cases there are two rotations
and 3N − 5 vibrations). The fact that vibrations can be classified according to their

(Footnote 6 continued)
as vectors. They usually are the results of vector products (cross products) of two true vectors. If
an operation turns true vectors into their negatives, it leaves pseudovectors unchanged: u × v →
(−u) × (−v) = u × v. Angular momenta are typical examples of pseudovectors.
7In fact, an infinitesimal translation expressed in terms of body-fixed coordinates reflects the con-
straint that the body-fixed frame keeps being centred at the centre of mass when the nuclei move.
It thus corresponds to displacements multiplied by masses rather than a collective translation that
would shift the centre of mass with respect to its original position in the laboratory-fixed frame.
8The treatment of large-amplitude deformations (contortions) able to connect two equivalent iso-
mers (for example in the case of a symmetric double well) will be treated in the last section of this
chapter.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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symmetries is a result of the harmonic approximation, whereby the eigenvectors of
the mass-weighted Hessian matrix (second derivatives of the potential energy with
respect tomass-weighted nuclear coordinates) at the equilibriumgeometry, called the
normal modes, belong to specific irreducible representations to preserve the totally-
symmetric property of the potential energy function (see for example the book of
Wilson, Decius, and Cross for a comprehensive overview of this aspect [6]).

The first step in this treatment consists in determining the behaviours of all infin-
itesimal displacements of the nuclei along the body-fixed axes from the equilibrium
geometry. Here, there are nine linearly-independent variations to consider (three per
atom): �xO, �yO, �zO, �xH1, �yH1, �zH1, �xH2, �yH2, and �zH2 (here, 1 and
2 are the labels of the two H-nuclei on the left- and right-hand sides of Fig. 7.1,
respectively). The total representation thus generated, �tot, is nine-dimensional and
reducible (in mathematical terms, it is a direct sum of nine one-dimensional irre-
ducible representations, some of which occurring several times). �tot contains the
three-dimensional representation made of the three infinitesimal generators of rigid-
body translations,�trans, the three-dimensional representationmade of the three infin-
itesimal generators of rigid-body rotations, �rot, and the three-dimensional represen-
tation made of the three infinitesimal generators of vibrations, �vib, which reads
�tot = �trans ⊕ �rot ⊕ �vib.

As already mentioned the irreducible representations of Tx , Ty , and Tz behave as
x , y, and z, and can be found in the character table: B1, B2, and A1, respectively. The
same applies to those of Rx , Ry , and Rz : B2, B1, and A2, respectively. Thus,

�trans = A1 ⊕ B1 ⊕ B2 , (7.1)

�rot = A2 ⊕ B1 ⊕ B2 . (7.2)

�vib will be obtained by subtracting them from�tot, which is thus to be determined. To
this end, onemust nowexamine in detail howeach infinitesimal displacement behaves
under all operations. The equilibrium position of the O-nucleus does not move, such
that �xO, �yO, and �zO simply behave as x , y, and z, respectively. However, the
equilibrium positions of both H-nuclei are permuted under C2(z) and σv(xz), which
must be accounted for, in addition to how the three Cartesian coordinates behave.
This is summarised in Table7.4.

When an infinitesimal displacement is unchanged, it accounts for a character 1.
When it is turned into its negative, it accounts for a character−1. When it is changed
for another, the corresponding character is 0. Summing all characters gives 9 for E ,
−1 for C2(z), 3 for σv(yz), and 1 for σv(xz).

Sets of characters of different irreducible representations can be viewed as orthog-
onal vectors. Their square-lengths are equal to the number of operations in the group,
here four. The decomposition of a reducible representation is thus achieved from an
orthogonal-projection technique where the result is to be divided by four. Hence,
A1 occurs 9−1+3+1

4 = 3 times, A2
9−1−3−1

4 = 1 time, B1
9+1−3+1

4 = 2 times, and B2
9+1+3−1

4 = 3 times. This yields �tot = 3A1 ⊕ A2 ⊕ 2B1 ⊕ 3B2.
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Table 7.4 Behaviours of the nine infinitesimal displacements of the nuclei under the C2v point-
group operations

E C2(z) σv(yz) σv(xz)

�xO −�xO −�xO �xO
�yO −�yO �yO −�yO
�zO �zO �zO �zO
�xH1 −�xH2 −�xH1 �xH2
�yH1 −�yH2 �yH1 −�yH2
�zH1 �zH2 �zH1 �zH2
�xH2 −�xH1 −�xH2 �xH1
�yH2 −�yH1 �yH2 −�yH1
�zH2 �zH1 �zH2 �zH1

From the reductions of�trans and�rot derived above and considering the following
decomposition,

�tot = (�trans ⊕ �rot) ⊕ �vib = (A1 ⊕ A2 ⊕ 2B1 ⊕ 2B2) ⊕ �vib , (7.3)

we thus get
�vib = 2A1 ⊕ B2 . (7.4)

This reduction of �vib means that the three-dimensional space that characterises
the possible vibrations of the water molecule can be described in terms of three
linearly-independent degrees of freedom: a symmetric-stretching-type mode, ν1,
and a bending-type mode, ν2, that belong to A1 (they are both totally symmetric
and preserve the C2v point group) and an antisymmetric-stretching-type mode, ν3,
that belongs to B2 (it breaks the equivalence between both H-nuclei and lowers the
symmetry to the Cs subgroupmade of E and σv(yz) only). The corresponding normal
modes are plotted on Fig. 7.2 (see also Fig. 9.5 in Chap.9).

Fig. 7.2 The three normal modes of vibration of the water molecule. Normal coordinates (denoted
q1, q2, and q3) are the amplitudes of the collective nuclear displacements along the directions of
the normal modes (labelled ν1, ν2, and ν3)

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 7.3 Simultaneous
action of C2(z) on the
molecule, the B2 vibrational
mode, the y-axis, and a b2
molecular orbital, all
considered as solid objects
irrespectively of the labels of
the H-nuclei (standard
point-group treatment)

Using the standard approach of point-group theory (see Fig. 7.3), one can deter-
mine the symmetry of each vibrational mode upon applying the symmetry operations
to the molecule and the arrows representing the nuclear displacements as if they
moved together as a solid object. For example, applying the rotation C2(z) to the B2

vibrational mode results in a permutation of the two arrows such that each arrow is
turned into its negative. The same approach can be used for a b2 molecular orbital
considered as a solid object: it behaves as if it were attached to the y-axis and rotated
with it to be turned into its negative (note that orbitals are usually labelled from their
irreducible representations using non-capitalised letters).

Note that vibrational modes and molecular orbitals can be defined more easily in
terms of symmetry-adapted linear combinations of nuclear displacements and atomic
orbitals:

• A1: {�zO,�yH1 − �yH2,�zH1 + �zH2}; a1: {2sO, 2pzO, 1sH1 + 1sH2};
• A2: {�xH1 − �xH2};
• B1: {�xO,�xH1 + �xH2}; b1: {2pxO};
• B2: {�yO,�yH1 + �yH2,�zH1 − �zH2}; b2: {2pyO, 1sH1 − 1sH2}.

The relative weights of contributions belonging to the same irreducible represen-
tation in a vibrational mode or in a molecular orbital are to be determined from a
calculation, except in some trivial cases: for example, �xH1 − �xH2 is the only A2

displacement and obviously corresponds to Rz , the infinitesimal generator of rotation
around the z-axis.
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7.2.2 Rigorous Molecular-Symmetry Treatment *

When examined more closely, the standard approach to point-group theory used
above raises three paradoxes: (i) point-group symmetry operations concern the shape
of the molecule viewed as a solid object rather than the invariances of the molecular
Hamiltonian and yet brings the same information for a rigid non-linear molecule;
(ii) reflections seem to turn the original right-handed body-fixed frame into a left-
handed image; (iii) when rotating the arrows representing a vibrational mode or a
molecular orbital together with the molecule (see Fig. 7.3), the comparison is made
in the observer-fixed frame but there actually is no change within the body-fixed
frame.

These issues disappear when using a rigorous formulation in terms of molecular-
symmetry groups such as exposed in Ref. [1]. Let us illustrate this on the water
molecule. For this system, the indistinguishability of the two H-nuclei and the par-
ity transformation yield four permutation-inversion operations: the identity, E , the
space inversion, E∗, the permutation of both H-nuclei, denoted (12), and the com-
position of E∗ and (12), denoted (12)∗. In this simple case, there are no unfeasible
transformations to be removed from the CNPI group, which can thus be identified to
the molecular-symmetry group of water. It is isomorphic to C2v and, as such, called
C2v(M). Its character table is provided in the last section of the present chapter. Note
that nuclear and electronic spins will be omitted here for simplicity.

The effects of the four operations on the space-fixed Cartesian coordinates of the
three nuclei and of an electron are given in Table7.5. These are not only valid for
a C2v geometry but can be applied to any distorted arrangement of the nuclei. We
recall here that (12) permutes the nuclei but does not act on the electrons. However,

Table 7.5 Effects of the C2v(M) molecular-symmetry operations on the space-fixed Cartesian
coordinates of the three nuclei and of an electron

E (12) E∗ (12)∗

XO XO −XO −XO

YO YO −YO −YO

ZO ZO −ZO −ZO

XH1 XH2 −XH1 −XH2

YH1 YH2 −YH1 −YH2

ZH1 ZH2 −ZH1 −ZH2

XH2 XH1 −XH2 −XH1

YH2 YH1 −YH2 −YH1

ZH2 ZH1 −ZH2 −ZH1

Xe Xe −Xe −Xe

Ye Ye −Ye −Ye

Ze Ze −Ze −Ze
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Table 7.6 Effects of the C2v point-group operations on the body-fixed Cartesian coordinates of the
three nuclei and of an electron (rigourous molecular-symmetry treatment)

E C2(z) σv(yz) σv(xz)

xO = xeqO + �xO xO = xeqO − �xO xO = xeqO − �xO xO = xeqO + �xO
yO = yeqO + �yO yO = yeqO − �yO yO = yeqO + �yO yO = yeqO − �yO
zO = zeqO + �zO zO = zeqO + �zO zO = zeqO + �zO zO = zeqO + �zO
xH1 = xeqH1 + �xH1 xH1 = xeqH1 − �xH2 xH1 = xeqH1 − �xH1 xH1 = xeqH1 + �xH2
yH1 = yeqH1 + �yH1 yH1 = yeqH1 − �yH2 yH1 = yeqH1 + �yH1 yH1 = yeqH1 − �yH2
zH1 = zeqH1 + �zH1 zH1 = zeqH1 + �zH2 zH1 = zeqH1 + �zH1 zH1 = zeqH1 + �zH2
xH2 = xeqH2 + �xH2 xH2 = xeqH2 − �xH1 xH2 = xeqH2 − �xH2 xH2 = xeqH2 + �xH1
yH2 = yeqH2 + �yH2 yH2 = yeqH2 − �yH1 yH2 = yeqH2 + �yH2 yH2 = yeqH2 − �yH1
zH2 = zeqH2 + �zH2 zH2 = zeqH2 + �zH1 zH2 = zeqH2 + �zH2 zH2 = zeqH2 + �zH1
xe −xe −xe xe
ye −ye ye −ye
ze ze ze ze

E∗ inverses through space both the nuclei and the electrons. As a consequence, both
E∗ and (12)∗ turn space-fixed electronic coordinates into their negatives, whereas E
and (12) leave them unchanged.

Let us now clarify the connection between both approaches. The molecular-
symmetry operations of C2v(M) are defined in the space-fixed frame (see Table7.5).
In contrast, the point-group operations of C2v are defined in the body-fixed frame
and act on vibronic coordinates: body-fixed electronic coordinates (according to
the transformations given in Table7.1) and body-fixed components of nuclear dis-
placements from their equilibrium positions (see Table7.4). At this stage, it must be
stressed that point-group operations are defined, rigorously speaking, such that they
keep the equilibrium positions of the nuclei unchanged and thus do not move the
body-fixed axes. What they really change are body-fixed coordinates and body-fixed
vector components. This is summarised in Table7.6.

At this stage, we understand better the actual meaning of Table7.1. It does not
really give the results of the point-group operations acting on the body-fixed axes
but rather on the body-fixed components of vectors affected by such operations. The
behaviours of body-fixed electronic coordinates, (xe, ye, ze), are identical to those of
(x, y, z) (see Table7.1) and a comparison of Table7.6 with Table7.4 shows that the
effect on nuclear displacements is identical to what we derived using the standard
approach.

Moving the equilibrium positions of the nuclei with respect to the space-fixed
frame is further achieved under rigid-body rotations around the body-fixed axes
that change the values of the Euler angles. The body-fixed frame is thus rotated
according to the new space-fixed positions of labelled nuclei. Applying point-group
operations and rigid-body rotations sequentially yields the effect of the permutation-
inversion operations of themolecular-symmetry group. In otherwords, the operations
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Table 7.7 Effects of the molecular rotation-group operations on the body-fixed axes with respect to
the original ones (in this rigorous picture, all transformed frames now stay right-handed as expected)

R0 Rπ(z) Rπ(x) Rπ(y)

x −x x −x

y −y −y y

z z −z −z

of C2v(M) are compositions of point-group operations of C2v together with rigid-body
rotations around the body-fixed axes: (12) has the same effect as C2(z) followed by
a rigid-body rotation around z through π turning (x, y, z) into (−x,−y, z); E∗ has
the same effect as the reflection σv(yz) followed by a rigid-body rotation around
x through π turning (x, y, z) into (x,−y,−z); (12)∗ has the same effect as the
reflection σv(xz) followed by a rotation around y through π turning (x, y, z) into
(−x, y,−z). In summary,

E = R0E , (7.5)

(12) = Rπ(z)C2(z) , (7.6)

E∗ = Rπ(x)σv(yz) , (7.7)

(12)∗ = Rπ(y)σv(xz) , (7.8)

where R0 is the identity rotation9 and Rπ(ξ) is a rotation through π around ξ (where
ξ = x, y, z); seeTable7.7.Wenowseewhy the standard interpretation of point-group
operations as involving rigid-body rotations is somewhat misleading but works in
practice, as the rigid-body rotations are accounted for implicitly. This is illustrated
on Fig. 7.4, to be compared with Fig. 7.3.

Defining how these various operations act on electronic coordinates requires
some care. Let us examine the example shown on Fig. 7.4. The nuclear permuta-
tion (12) does not involve E∗ and thus leaves the space-fixed electronic coordinates,
(Xe, Ye, Ye), unchanged (see Table7.5). However, the body-fixed electronic coordi-
nates, (xe, ye, ze), behave as (x, y, z) (see Tables7.1 and 7.2). They are thus turned
into (−xe,−ye, ze) under C2(z) (see Table7.6). This is compensated by Rπ(z) that

9Following Ref. [1], a conceptual distinction must be made between the molecular point group
of a rigid non-linear molecule and the point group of a solid object of the same shape. Using
the properties of the point group in place of the molecular point group (what we have called the
standard approach above) is less rigorous butworks in practice because both yield the same results as
long as vibronic coordinates are concerned. The molecular-symmetry group is made of operations
composed of operations belonging to: (i) the molecular point group; (ii) the molecular rotation
group, K(mol); and (iii) the nuclear-spin-permutation group. For the water molecule, K(mol) is
made of R0, Rπ(x), Rπ(y), and Rπ(z) whereby the three axes are distinguishable, as expected for
an antisymmetric top molecule (it thus identifies to the point group D2). Because the molecular
point group concerns vibronic coordinates in the body-fixed frame, it is sometimes calledmolecular
vibronic group, although the latter concept is more general and also applies to the case of non-rigid
molecules (see last section).
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Fig. 7.4 Action of
(12) = Rπ(z)C2(z) on the
molecule, the B2 vibrational
mode, the body-fixed frame,
and a b2 molecular orbital,
represented in the
space-fixed frame (let us
recall here that the y-axis is
body-fixed with respect to
the nuclei in such a way that
the H-nucleus with label 2 is
on the positive side)

turns the body-fixed axes, (x, y, z), into (−x,−y, z) in the space-fixed frame (see
Table7.7), consistently with the fact that (12) has no effect on the space-fixed elec-
tronic coordinates.

In practice, when considering electrons, it is more practical to apply group the-
ory to their representation in terms of atomic orbitals rather than in terms of their
spatial coordinates. From the transformations of body-fixed electronic coordinates
under point-group operations, one readily deduces the behaviours of their various
monomials,10 hence of atomic orbitals or symmetry-adapted combinations of them.
An atomic orbital centred on O (for example, 2pyO on Fig. 7.4) behaves as y and thus
belongs to B2. For an atomic orbital centred on one of the H-nuclei, one must con-
sider an additional aspect: if the point-group operation under consideration changes

10Such monomials appear in the expressions of the real and imaginary parts of the spherical
harmonics. When considered as origin-centred (or centred on a nucleus that does not move),
s-orbitals behave as pure numbers and thus belong to the totally-symmetric irreducible repre-
sentation, (px , py, pz)-orbitals behave as (x, y, z), and d-orbitals behave as linear combinations
of second-order monomials of x , y, and z (for example, dx2−y2 -orbitals behave as x2 − y2). For
f -orbitals and beyond, the behaviours of higher-order monomials are obtained upon further con-
sidering the direct product table to generate them (see Table7.3).
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the body-fixed coordinates of the electron it then swaps the distances between the
electron and both nuclei. For example, 1sH1 is expressed as a function of the distance
between the electron and H number 1 (i.e., 1sH1 is an atomic orbital centred on H1);
1sH2 has the same expression, except that it is centred on H2. C2(z) turns (xe, ye, ze)
into (−xe,−ye, ze), which means that it rotates the electron around z, from one side
to the other side. The distance between the electron and H number 2 is now equal
to what it was between the electron and H number 1 before the rotation. In practical
terms, this means that C2(z) swaps 1sH1 and 1sH2, such as shown on Fig. 7.4. In brief,
this means that atomic orbitals behave much as nuclear displacements with respect
to nuclear labelling: if a point-group operation moves a nuclear displacement from
a nucleus to another nucleus it also moves an atomic orbital centred on the former to
make it centred on the latter. Once the behaviour of atomic orbitals is determined, one
can generate symmetry-adapted combinations for building molecular orbitals, elec-
tronic configurations, and, ultimately, electronic states that belong to well-defined
symmetry species.

7.2.3 Ground-State Dipole Moment and Potential Energy
Surface

Let us now consider the infrared vibrational spectroscopy of water. First-order tran-
sition intensities are obtained from the matrix elements of the permanent dipole
moment between two vibrational states (with final integration performed over the
internal nuclear coordinates). The permanent dipole moment, µ(q), is first obtained
upon integrating the total dipole moment over the electronic coordinates for the elec-
tronic ground state, as mentioned in Sect. 3.4 of Chap.3.11 If overall rotations are not
considered, q is the collection of internal nuclear coordinates. Here, q = (q1, q2, q3)

where, within the harmonic approximation, q1, q2, and q3 are the normal coordi-
nates12 of water (see Fig. 7.2).

The origin, q = 0, corresponds to the C2v equilibrium geometry. A normal coor-
dinate belongs to the same irreducible representation as the normal mode that it
describes: q1 and q2 are A1 while q3 is B2. Each body-fixed Cartesian component,
μξ(0) (where ξ = x, y, z), belongs to the same irreducible representation as the ξ-
axis (first-order monomials in the character table). For μξ(0) to be a finite number,
it must transform as A1 (a constant is not affected by any symmetry operation and is
thus totally-symmetric). As a consequence, only μz(0) is not zero, as expected intu-
itively for a C2v geometry (partial charges are equally distributed on both H-nuclei).

11Thus, in this section µ(q) corresponds to µ00(q) in Sect. 3.4 of Chap.3.
12The terms normal mode and normal coordinate are often used in place of one another in the
literature. Strictly speaking, a normal mode is the set of rectilinear directions followed collectively
by the nuclei for a given vibration and the normal coordinate is the amplitude of the corresponding
displacement. For a one-dimensional motion along an axis, the mode would be the direction of the
axis and the coordinate would be the position along this axis.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_3
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In contrast, μx (0) = μy(0) because they belong to B1 and B2, respectively, which
are not totally-symmetric.

This approach can be extended in the vicinity of the C2v point. Both q1 and q2

are A1, which implies that distortions along them from the origin preserve C2v. If so,
μz(q1, q2, 0) is still A1, which means that there is no restriction for its finite value
to stay finite and to vary with q1 and q2. In contrast, q3 is B2, hence not totally-
symmetric. Any linear function of q3 is thus odd. As a consequence, in order for
μz(0, 0, q3) to stay A1, it can only be an even function of q3 and must be at least
quadratic (B2 ⊗ B2 = A1). In contrast, as μy(q) is B2 at the origin, it can be an odd
function of q3: it is zero at the origin but can vary linearly with q3 to first order.
This is consistent with the fact that the new point group obtained for q3 �= 0 is Cs,
in which B2 correlates with the totally-symmetric irreducible representation of this
subgroup: μy(0, 0, q3) being now totally-symmetric can take a finite value. However,
the x-component is zero to all orders because there is no monomial of q1, q2, and
q3 that could belong to A1 (all powers of A1 and B2 are either A1 or B2, hence,
never B1). This reflects the fact that the molecular plane is always preserved for a
triatom (the smallest possible group of any triatom is Cs, and cannot be the trivial
group C1 made of the identity only, for which there would no longer be any symmetry
restriction). In practice, expanding μξ(q) around the origin involves only monomials
of the coordinates that belong to the irreducible representation of ξ determined at the
origin. One can thus determine the expression of the first-order expansion of each
component,

μx (q) = 0 , (7.9)

μy(q) ≈ [
∂q3μy

]
0 q3 , (7.10)

μz(q) ≈ μz(0) + [
∂q1μz

]
0 q1 + [

∂q2μz
]
0 q2 . (7.11)

Now, to determine the intensity of a (ν j )
1
0 transition (where j = 1, 2, 3), as

explained in Sect. 3.4 of Chap.3, we must evaluate an integral over q1, q2, and q3

involving the vibrational ground-state (an even function with respect to all internal
coordinates; approximately a three-dimensional Gaussian function within the har-
monic approximation) and the first excited state with respect to mode ν j (with a node
for this mode, thus an odd wavefunction with respect to q j but even for the other
two coordinates). For the integral over q j not to vanish, it thus must involve an odd
term in one of the components of the dipole moment to compensate the odd product
of both vibrational wavefunctions, �1(q) and �0(q). As a consequence, (ν1)

1
0 and

(ν2)
1
0 transitions involving A1 modes are induced to first order by variations of μz(q)

from μz(0) with q1 and q2, respectively (i.e., by
[
∂q1μz

]
0 q1 and

[
∂q2μz

]
0 q2), while

the (ν3)
1
0 transition involving the B2 mode is induced to first order by a variation of

μy(q) from μy(0) with q3 (i.e.,
[
∂q3μy

]
0 q3). All (ν j )

1
0 transitions are thus active in

the infrared but they are not polarised along the same body-fixed axes.
Let us now turn to the expression of the ground-state potential energy function of

water, V (q). This quantity is totally-symmetric with respect to infinitesimal varia-
tions of q from 0 (this reflects the property that the electronic Hamiltonian operator

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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is totally-symmetric with respect to all symmetry operations). In practice, this means
that expanding V (q) around the origin q = 0 should only involve A1 terms. In par-
ticular, there can only be even powers of the B2 normal coordinate q3, hence no
gradient component for this coordinate. However, there may be some gradient along
the totally-symmetric coordinates q1 and q2 (in other words, the gradient operator
is totally-symmetric, the potential energy function is totally-symmetric, hence the
gradient of the potential energy is totally-symmetric and each component along q j

transforms as q j ). Again, this is quite intuitive: there is no physical reason for the
force driving the nuclear motion to make any distinction between both equivalent
H-nuclei (a non-zero component along q3, the normal coordinate associated to the
antisymmetric stretching mode, would induce the lengthening of one bond and the
shortening of the other).

As q = 0 was chosen as the equilibrium geometry (a minimum, but this would
also be true for any type of stationary point such as a saddle point), there is no gradient
by definition. The expression of V (q) around this point involves second-order terms
and higher. Restricting it to a quadratic expansion (harmonic approximation) reads

V (q) ≈ V (0) + 1

2

[
∂2

q1 V
]
0

q2
1 + 1

2

[
∂2

q2 V
]
0

q2
2 + 1

2

[
∂2

q3 V
]
0

q2
3 + [

∂q1∂q2 V
]
0 q1q2 .

(7.12)
There is no cross term between A1 and B2 coordinates because V (q) transforms as

A1. This implies that the Hessian matrix (second derivatives) is block-diagonal with
respect to the various irreducible representations of the point group corresponding
to the origin. In fact, if q1, q2, and q3 are normal coordinates, this further implies that
the corresponding Hessian matrix has been diagonalised, such that the symmetry-
allowed cross term

[
∂q1∂q2 V

]
0 is also zero by construction. Note that third-order

anharmonicity along a given coordinate (a cubic term) could only be due to q1 or q2

(totally-symmetric), whereas q3 (non-totally-symmetric) can only bring even powers,
hence fourth-order anharmonicity (a quartic term) or higher.

Finally, in this example, defining symmetry-adapted curvilinear coordinates from
normal coordinates is quite obvious. From the internal valence coordinates depicted
on Fig. 7.1 (bond lengths and planar angle), one can identify R+ = R1+R2

2 and θ as A1

coordinates (symmetric stretching and bending) and R− = R1−R2
2 as a B2 coordinate

(antisymmetric stretching). Let us set (R0+, θ0, R0−) as a point corresponding to any
C2v geometry (not necessarily the equilibrium geometry). If so, R0− = 0 by construc-
tion. Again, expanding V (R+, θ, R−) around (R0+, θ0, 0) should only involve A1

terms. In particular, there can only be even powers of R− (which is consistent with
not having any gradient component along this non-totally-symmetric coordinate). To
second order, this reads

V (R+, θ, R−) ≈ V (R0
+, θ0, 0) (7.13)

+ [
∂R+ V

]
(R0+,θ0,0) (R+ − R0

+)

+ [∂θV ](R0+,θ0,0) (θ − θ0)
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+ 1

2

[
∂2

R+ V
]
(R0+,θ0,0)

(R+ − R0
+)2

+ 1

2

[
∂2

θ V
]
(R0+,θ0,0) (θ − θ0)2

+ 1

2

[
∂2

R− V
]
(R0+,θ0,0)

R2
−

+ [
∂R+∂θV

]
(R0+,θ0,0) (R+ − R0

+)(θ − θ0) ,

where there is no cross term involving R− in the second-order terms.

7.3 The Vibronic Hamiltonian of the Butratriene Cation

Regarding the electronic states and their energies as functions of the nuclear coor-
dinates (i.e., the potential energies for the nuclei), group theory is not limited to
the description of the ground state, as was the case in the previous example. It can
also be used in a non-adiabatic context where several electronic states and their cou-
plings must be considered. If the vibronic Hamiltonian is represented in a basis set of
electronic states that have a well-defined symmetry at some chosen reference geom-
etry, the rules of point-group symmetry can be applied to the entries of the matrix
representation of the electronic Hamiltonian, which also belong to the irreducible
representations of the point group at the origin. This is useful to determine the behav-
iours of such matrix elements when considering small-amplitude deformations from
this point. Here, we will provide further details on the construction of the vibronic
Hamiltonian model of the butatriene cation, C4H

+
4 , already mentioned in Sect. 4.4

of Chap.4. Note that another, but similar, type of use of point groups concerns the
behaviour of the transition dipole between two electronic states of a neutral system
(see, e.g., an application to the photoabsorption spectrum of pyrazine in Ref. [9]).

The vibronic Hamiltonian model of the butatriene cation presented in Ref. [10]
was built to calculate a photoelectron spectrum. The initial state of the molecule,
before photoionisation, was assumed to be the vibrational ground state of the neutral
molecule centred at the equilibrium geometry of the electronic ground state. This
Franck-Condon point, whichwill serve as our reference in the following, corresponds
to a planar geometry of D2h symmetry (see Fig. 7.5). This point group is associated

Fig. 7.5 Butatriene
molecule: body-fixed axes
(Mulliken’s convention;
here, the x-axis is
perpendicular to the
representation plane and
points towards the reader
sight)

http://dx.doi.org/10.1007/978-3-319-53923-2_4
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Table 7.8 Character table of the D2h point group

D2h E C2(z) C2(y) C2(x) i σv(xy) σv(xz) σv(yz)

Ag 1 1 1 1 1 1 1 1 x2, y2,
z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy

B2g 1 −1 1 −1 1 −1 1 −1 Ry xz

B3g 1 −1 −1 1 1 −1 −1 1 Rx yz

Au 1 1 1 1 −1 −1 −1 −1

B1u 1 1 −1 −1 −1 −1 1 1 z

B2u 1 −1 1 −1 −1 1 −1 1 y

B3u 1 −1 −1 1 −1 1 1 −1 x

to the shape of a rectangular prism (all orthogonal faces with three different edge
lengths). It can also be viewed as the merging of two C2v V-shaped objects within the
same plane and along their common rotation axis to form a sort of X-shaped object.
There are now seven symmetry elements: an inversion centre (at the geometric centre
of themolecule, which coincides with the centre ofmass), three twofold rotation axes
and three mirror planes, each orthogonal to one of the rotation axes. Again, they all
intersect through a common point: the centre of mass.

The corresponding symmetry operations are the inversion of all nuclei through
the inversion centre (denoted i), three half-turn rotation around the axes (all denoted
C2) and three reflections with respect to each mirror plane (all denoted σv).

As for water, there is some ambiguity for labelling the axes of the symmetry-
adapted body-fixed frame. Using Mulliken’s convention13 yields z as the rotation
axis going through the greatest number of nuclei (here, the four C-nuclei), x as the
axis perpendicular to the molecular plane, and y as the remaining axis orthogonal to
the other two. The molecular plane is thus (yz); see Fig. 7.5. Again, these three axes
are the principal axes of inertia for symmetry reasons.

The eight symmetry operations of D2h (the seven aforementioned ones, along
with the identity, E) all commute and this point group is thus Abelian and made
of eight non-degenerate irreducible representations given in the following character
table (see Table7.8), along with the behaviours of Rx , Ry , and Rz as well as those of
the first- and second-order monomials of x , y, and z. The integer labels in B1u , B2u ,
and B3u correspond to z, y, and x , respectively. The g or u labels indicate even or
odd (gerade or ungerade in German) with respect to i . The direct-product table of
all irreducible representations is also provided (see Table7.9).

Again, the 24-dimensional reducible representation generated by the infinitesimal
displacements of the eight nuclei,�tot, can be decomposed into�tot = �trans ⊕ �rot ⊕
�vib. From the character table, we have

13As in the case of C2v, an alternative convention is sometimes found in the literature, whereby x
and y are swapped. In fact, there are six possible conventions here because there are three axes of
same degree.
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Table 7.9 Direct-product table of the D2h point group

⊗ Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u

B1g B1g Ag B3g B2g B1u Au B3u B2u

B2g B2g B3g Ag B1g B2u B3u Au B1u

B3g B3g B2g B1g Ag B3u B2u B1u Au

Au Au B1u B2u B3u Ag B1g B2g B3g

B1u B1u Au B3u B2u B1g Ag B3g B2g

B2u B2u B3u Au B1u B2g B3g Ag B1g

B3u B3u B2u B1u Au B3g B2g B1g Ag

�trans = B1u ⊕ B2u ⊕ B3u , (7.14)

�rot = B1g ⊕ B2g ⊕ B3g . (7.15)

The reduction of �tot is made easier upon noticing that only four operations leave
some of the nuclear displacements on their original nuclei, namely, E ,C2(z), σv(xz),
and σv(yz). From Table7.10, we get (24,−4, 4, 8) as the corresponding characters
of �tot. Note that there is no actual need here to specify the labels of the nuclei.
Using the same orthogonal-projection technique as for the water molecule (where
we now must divide by 8, the total number of symmetry operations), we obtain that
Ag and B1u (1, 1, 1, 1) occur 24−4+4+8

8 = 4 times, B1g and Au (1, 1,−1,−1) occur
24−4−4−8

8 = 1 time, B2g and B3u (1,−1, 1,−1) occur 24+4+4−8
8 = 3 times, and B3g

and B2u (1,−1,−1, 1) occur 24+4−4+8
8 = 4 times. In other words,

�tot = 4Ag ⊕ B1g ⊕ 3B2g ⊕ 4B3g ⊕ Au ⊕ 4B1u ⊕ 4B2u ⊕ 3B3u . (7.16)

As a result, the 18 vibrational modes of butatriene can be classified according to their
irreducible representations as

�vib = 4Ag ⊕ 2B2g ⊕ 3B3g ⊕ Au ⊕ 3B1u ⊕ 3B2u ⊕ 2B3u . (7.17)

As forwater, the vibrational subspace is spanned by infinitesimal displacements of
the nuclei along collective directions called normal modes (see Sect. 5.1 in Chap.5).

They are obtained as the eigenvectors of the Hessian matrix of the ground-state
potential energy at the equilibrium geometry. Their respective symmetries are consis-
tent with the reduction of �vib into its irreducible representations. The descriptions,
labels, and irreducible representations of the 18 normal modes are given on Figs. 7.6,
7.7 and 7.8 (see also Ref. [10]). In what follows, q will denote the collection of

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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Table 7.10 Characters of the 24 infinitesimal nuclear displacements and of the total representation
under the four D2h point-group operations that leave some of the nuclear displacements on their
original nuclei

E C2(z) σv(xz) σv(yz)

�xC1 1 −1 1 −1

�yC1 1 −1 −1 1

�zC1 1 1 1 1

�xC2 1 −1 1 −1

�yC2 1 −1 −1 1

�zC2 1 1 1 1

�xC3 1 −1 1 −1

�yC3 1 −1 −1 1

�zC3 1 1 1 1

�xC4 1 −1 1 −1

�yC4 1 −1 −1 1

�zC4 1 1 1 1

�xH1 1 0 0 −1

�yH1 1 0 0 1

�zH1 1 0 0 1

�xH2 1 0 0 −1

�yH2 1 0 0 1

�zH2 1 0 0 1

�xH3 1 0 0 −1

�yH3 1 0 0 1

�zH3 1 0 0 1

�xH4 1 0 0 −1

�yH4 1 0 0 1

�zH4 1 0 0 1

�tot 24 −4 4 8

18 dimensionless (frequency-mass-weighted) normal coordinates14 (q = 0 corre-
sponding to the ground-state equilibrium geometry). Setting V (0) = 0 as the energy
origin, the harmonic approximation of the ground-state potential energy surface of
the neutral molecule thus reads

V (q) ≈
18∑

j=1

�ω j

2
q2

j , (7.18)

14Dimensionless normal coordinates q j are scaled (frequency-mass-weighted) upon multiplying

lengths by the factor
√

μ j ω j
�

, where μ j is the reduced mass of mode ν j and �ω j is the corresponding
quantum of vibrational energy.
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Fig. 7.6 Ag , Au , and B2g neutral-butatriene normal modes (geometries displaced from the equi-
librium geometry along the normal modes—arrows—are depicted in the last column for the sake
of clarity)
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Fig. 7.7 B3g and B1u neutral-butatriene normal modes (geometries displaced from the equilibrium
geometry along the normal modes—arrows—are depicted in the last column for the sake of clarity)

where ω j are the harmonic vibrational (angular) frequencies of the normal modes.
Note that a quadratic expansion with no symmetry at all would yield 18×19

2 = 171
independent parameters (second derivatives in theHessianmatrix). Considering sym-
metry yields a block-diagonal Hessian matrix (according to the irreducible represen-
tations involved in�vib) with 4×5

2 + 0 + 2×3
2 + 3×4

2 + 1×2
2 + 3×4

2 + 3×4
2 + 2×3

2 = 35
terms. Further diagonalising the Hessian removes the cross terms to produce a sum
made of 18 quadratic terms (again, this final reduction is not due to symmetry but to
the definition of normal modes as the eigenvectors of the Hessian matrix).



7.3 The Vibronic Hamiltonian of the Butratriene Cation 191

Fig. 7.8 B2u and B3u neutral-butatriene normal modes (geometries displaced from the equilibrium
geometry along the normal modes—arrows—are depicted in the last column for the sake of clarity)

We now need to determine the irreducible representations of the electronic states
in the context of point-group theory. Rather than considering transformations acting
on electronic coordinates, one can directly consider the behaviours of atomic or
molecular orbitals under symmetry operations, as already pointed out in the case
of the water molecule. In practice, the first step for determining the irreducible
representation of an electronic state consists in determining the most representative
electronic configuration for the state of interest (note that, for symmetry reasons,
other configurations belong to the same irreducible representation as the dominant
one). Molecular orbitals can be vacant or occupied once or twice. When a non-
degenerate orbital is twice-occupied, it accounts for a totally symmetric contribution
(the same applies for a fully-occupied set of degenerate orbitals when there are
degenerate irreducible representations in the point group). Such so-called closed
shells can thus be ignored. As a result, only singly-occupied orbitals (or non-fully
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Fig. 7.9 Singly-occupiedmolecular orbitals in the dominant configurations of the first two diabatic
electronic states of the butatriene cation and cuts of the potential energy surfaces along coordinate
q14 (mode ν14 is Ag and describes the stretching of the central C–C bond)

occupied degenerate sets) are determining. Let us consider as an example an open-
shell electronic configuration: [closed shells]a1b1. If orbitals a and b belong to �a

and �b, respectively, the irreducible representation of the electronic configuration is
�a ⊗ �b. The determination of �a and �b is then obtained upon determining how
orbitals a and b transform under the various symmetry operations of the point group.
Again, this can be achieved upon considering a standard point-group approach where
orbitals are viewed as solid objects that move and are transformed into themselves
or their negatives15 under symmetry operations.

Let us now turn to the butatriene cation. As mentioned in Sect. 4.4 of Chap.4, the
first two adiabatic electronic states are denoted X2B2g(D0) and A2B2u(D1). Their
symmetry species are given with respect to the ground-state equilibrium geometry
(Franck-Condon point)where their dominant configurations are [closed shells]b2

2ub1
2g

and [closed shells]b1
2ub2

2g , respectively. In otherwords, as a good approximation, state
X2B2g(D0) is obtained from the ground-state neutral molecule upon removing an
electron from the highest-occupied molecular orbital (b2g), whereas A2B2u(D1) is
obtained upon removing an electron from the highest-minus-one-occupied molecu-
lar orbital (b2u). These molecular orbitals are depicted on Fig. 7.9. Their symmetry
species can be determined quite easily upon noticing that molecular orbitals b2u and
b2g are similar to molecule-centred atomic orbitals py(B2u) and dxz(B2g), respec-
tively.

These two states are known to be well-separated in energy from the higher-excited
states of the cation. However, they interact strongly together, as there is a conical

15As already pointed out, we have limited our discussion to non-degenerate cases, whereby body-
fixed axes are turned into themselves or their negatives and the same for orbitals. Degenerate cases
may involve transformations that mix pairs of equivalent orbitals together.

http://dx.doi.org/10.1007/978-3-319-53923-2_4
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intersection near the Franck-Condon point, with consequences on the photoelectron
spectrum. The two (quasi)diabatic states underlying the vibronic-coupling Hamil-
tonian model proposed in Ref. [10] are chosen such that states 1 and 2 coincide with
X2B2g(D0) and A2B2u(D1) at the Franck-Condon point (q = 0) and keep belong-
ing to the B2g and B2u irreducible representations, respectively, for other geometries
q �= 0 as long as D2h symmetry is preserved. For α,β = 1, 2, the entries of the
diabatic Hamiltonian matrix, Hdia(q), read

H dia
αβ (q) = 〈�dia

α ;q|H el(q)|�dia
β ;q〉 . (7.19)

As H el(q) is Ag (totally-symmetric), H dia
αβ (q) transforms as �α ⊗ Ag ⊗ �β = �α ⊗

�β . The diagonal entries are totally symmetric terms, B2g ⊗ B2g = B2u ⊗ B2u = Ag ,
while the off-diagonal entries belong to B2g ⊗ B2u = Au . Expanding this matrix as a
quadratic form in terms of q around the origin q = 0 involves first- and second-order
monomials of normal coordinates that can be classified into four sets, as follows,
where we use the mode labelling given in Figs. 7.6, 7.7 and 7.8.

G1 is the set made of the four normal coordinates q j that have Ag symmetry:

• Ag: j = 8, 12, 14, 15 → 4 q j .

G2 is the set of pairs of normal coordinates (q j , qk) the products of which, q j qk ,
have Ag symmetry (� j ⊗ �k = Ag). From the direct-product table (Table7.9), this
is achieved only if both modes belong to the same irreducible representation.
This amounts for a total of 4×5

2 + 0 + 2×3
2 + 3×4

2 + 1×2
2 + 3×4

2 + 3×4
2 + 2×3

2 = 35
unordered pairs as indicated in the following list,

• (Ag, Ag): ( j, k) = (8, 8), (8, 12), (8, 14), (8, 15),
(12, 12), (12, 14), (12, 15), (14, 14), (14, 15), (15, 15) → 10 q j qk ;

• (B2g, B2g): ( j, k) = (4, 4), (4, 7), (7, 7) → 3 q j qk ;
• (B3g, B3g): ( j, k) = (3, 3), (3, 9), (3, 18),

(9, 9), (9, 18), (18, 18) → 6 q j qk ;
• (Au, Au): ( j, k) = (5, 5) → 1 q j qk ;
• (B1u, B1u): ( j, k) = (11, 11), (11, 13), (11, 16), (13, 13),

(13, 16), (16, 16) → 6 q j qk ;
• (B2u, B2u): ( j, k) = (1, 1), (1, 10), (1, 17),

(10, 10), (10, 17), (17, 17) → 6 q j qk ;
• (B3u, B3u): ( j, k) = (2, 2), (2, 6), (6, 6) → 3 q j qk .

G3 is the set made of the sole normal coordinates q j that has Au symmetry:

• Au : j = 5 → 1 q j .

G4 is the set of pairs of normal coordinates (q j , qk) the products of which, q j qk ,
have Au symmetry (� j ⊗ �k = Au). From the direct-product table (Table7.9), this is
achieved with Au ⊗ Ag = Au , B1u ⊗ B1g = Au , B2u ⊗ B2g = Au , and B3u ⊗ B3g =
Au . This amounts for a total of 1 × 4 + 0 + 3 × 2 + 2 × 3 = 16 unordered pairs as
indicated in the following list,
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• (Au, Ag): ( j, k) = (5, 8), (5, 12), (5, 14), (5, 15) → 4 q j qk ;
• (B2u, B2g): ( j, k) = (1, 4), (10, 4), (17, 4),

(1, 7), (10, 7), (17, 7) → 6 q j qk ;
• (B3u, B3g): ( j, k) = (2, 3), (2, 9), (2, 18),

(6, 3), (6, 9), (6, 18) → 6 q j qk .

Using this convention, the diabatic Hamiltonian matrix (see also Sect. 4.4 of
Chap.4) reads

Hdia(q) =
18∑

j=1

�ω j

2
q2

j 1 +
[

ε1 0
0 ε2

]
(7.20)

+
∑

j∈G1

[
κ(1)

j 0

0 κ(2)
j

]

q j +
∑

( j,k)∈G2

[
γ(1)

jk 0

0 γ(2)
jk

]

q j qk

+
∑

j∈G3

[
0 λ j

λ j 0

]
q j +

∑

( j,k)∈G4

[
0 μ jk

μ jk 0

]
q j qk .

where ω j are the harmonic vibrational (angular) frequencies of the neutral ground
state (see above). We recall that q j , here, are dimensionless (frequency-mass-
weighted) normal coordinates. Modes belonging to G1 induce a first-order energy
shift (due to κ(1)

j �= κ(2)
j ) and are called tuningmodes. The one belonging to G3 (here,

the single Au mode, ν5, spanned by coordinate q5) induces a first-order interstate cou-
pling (due toλ j �= 0) and is called couplingmode.G2-modes further induce “second-
order tuning” (γ(1)

jk �= γ(2)
jk ) and G4-modes “second-order coupling” (μ jk �= 0).

This matrix involves 18 ω j -parameters, 2 εα-parameters, 2 × 4 = 8 κ(α)
j -

parameters, 2 × 35 = 70 γ(α)
jk -parameters, 1 λ j -parameter, and 16 μ jk-parameters

(whereα = 1 or 2). The total number of non-zero parameters is thus 115. In contrast,
not using point-group symmetry would have yielded 18 + 2 × (1 + 18 + 18×19

2 ) +
18 + 18×19

2 = 587 parameters to be determined. In other words, 472 parameters van-
ish for symmetry reasons. This illustrates how group theory is helpful in order to
determine in advance the parameters that are zero, before any numerical treatment.
In practice, this can turn out to be crucial to save time and/or memory but also to
avoid numerical instabilities when optimising the values of the parameters (those that
should be zero would introduce “noise” and disturb the convergence of the fitting
procedure).

7.4 The Umbrella Inversion of Twice-Deuterated Ammonia

As mentioned in the previous sections, a description of the internuclear motion in
terms of normal modes and their behaviours in terms of irreducible representations
of the point group determined at some equilibrium geometry is sufficient for charac-

http://dx.doi.org/10.1007/978-3-319-53923-2_4
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terising small-amplitude deformations (vibrations) from this reference point. In this
context, the equilibrium geometry corresponds to a single minimum at the bottom
of a given potential-energy well in the energy landscape. Point-group theory proves
useful if this structure shows non-trivial symmetry (when the point group is larger
than C1).

As already pointed out, in the case of water, there is a single permutational isomer
for each internuclear arrangement because permuting the position of both H-nuclei
can be achieved dynamically via a barrierless rigid-body rotation. In particular, the
ground-state equilibrium geometry corresponds to a unique well within the energy
landscape. Using either C2v (point group) or C2v(M) (molecular-symmetry group)
thus yields vibronic descriptions that are equivalent. In contrast, in the case of ammo-
nia, the ground-state equilibrium geometry has C3v symmetry and corresponds to two
distinct permutational isomers (theywould be enantiomers if the threeH-nuclei were
distinguishable). The deformation between both distinct versions (the umbrella inver-
sion, characterised by a double well in the energy landscape) is feasible dynamically,
as it gives rise to significant tunnelling with observable consequences on the infrared
spectrum. In this context, this large-amplitude deformation is sometimes called a
contortion, as opposed to a vibration. We will now illustrate this on NHD2, which
also yields significant tunnelling, as illustrated in Refs. [11, 12] (this isotopologue of
ammonia is somewhat simpler because its treatment does not involve non-degenerate
irreducible representations; see below).

The equilibrium geometry of NHD2 is similar to that of NH3: a trigonal pyramid
(“umbrella”); see Fig. 7.10 (see also Fig. 13.1 in Chap.13). Because of isotopic sub-
stitution, the corresponding point group is not C3v as in ammonia but Cs. As already
mentioned, the umbrella inversion is a feasible contortion. It is characterised by a
symmetric double well with a small transition barrier of about 1800 cm−1 (here,

Fig. 7.10 Double well of the umbrella inversion of twice-deutared ammonia

http://dx.doi.org/10.1007/978-3-319-53923-2_13
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Table 7.11 Character table of the C2v(M) and G4 molecular-symmetry groups and equivalence
with the C2v point group
C2v(M)/G4 E (12) E∗ (12)∗

C2v E C2(z) σv(yz) σv(xz)

A1/A+ 1 1 1 1 z x2, y2, z2

A2/A− 1 1 −1 −1 Rz xy

B1/B− 1 −1 −1 1 x , Ry xz

B2/B+ 1 −1 1 −1 y, Rx yz

small means that tunnelling splitting is observed experimentally; see Refs. [11, 12]).
The transition structure, midway between both minima, is trigonal and flat (point
group C2v; D3h for ammonia).

The relevant molecular-symmetry group that connects continuously16 the two
equivalent but distinct Cs minima through the C2v transition structure is denoted
G4, also known as MS4. It is made of the identity, E , the parity transformation,
E∗, the permutation of both D-nuclei, denoted (12), and the composition of E∗
and (12), denoted (12)∗. The corresponding character table is given in Table7.11.
In G4, A/B denote whether irreducible representations are even/odd with respect
to (12) and +/− whether they are even/odd with respect to E∗. These operations
are the same as those that define C2v(M) (the aforementioned molecular-symmetry
group of water) and both molecular-symmetry groups are thus isomorphic. As a
consequence, G4 also is isomorphic to the point group C2v such that the labels of
both types of irreducible representations can be used for convenience, according to
the one-to-one correspondence indicated in the character table. As is often the case,
the molecular-symmetry group corresponding to a feasible deformation involving a
symmetric double well is isomorphic to the point group of the transition structure
(here, C2v), which is more symmetrical than both equivalent minima (here, Cs).

Using Mulliken’s convention as in the case of the water molecule, the body-fixed
axes (x, y, z) of the transition structure of NHD2 are such that z is the rotation axis
parallel to NH and (yz) is the molecular plane. These axes can be kept to describe the
two equivalent Cs minima on both sides of the C2v transition structure, for example if
both D-nuclei wagging together across the (yz) plane are described symmetrically
with respect to (xz) with NH fixed along z. Following the nomenclature given in
Ref. [13], the six vibrational modes of both Cs minima are:

• ν1: NH stretching mode (A′);
• ν2: NHD2 pyramidalisation mode (A′);
• ν3a : symmetric ND stretching mode (A′);

16The molecular-symmetry group is valid for any relative arrangement of the nuclei, as opposed to
the point group that characterises a specific arrangement. This is why the former can be considered
as “containing” all possible subgroups that can be connected dynamically during the course of
a reactive process. Molecular-symmetry groups are sometimes called dynamical groups for this
reason.
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• ν3b: antisymmetric ND stretching mode (A′′);
• ν4a : symmetric HND bending mode (A′);
• ν4b: antisymmetric HND bending mode (A′′).

At the C2v transition structure, they become:

• ν1: NH stretching mode (A1);
• ν2: umbrella-inversion mode (B1);
• ν3a : symmetric ND stretching mode (A1);
• ν3b: antisymmetric ND stretching mode (B2);
• ν4a : symmetric HND bending mode (A1);
• ν4b: antisymmetric HND bending mode (B2).

In other words, mode ν2 can be spanned by a large-amplitude coordinate, q2, that
connects both minima through the transition structure (see Fig. 7.10). This umbrella-
inversion coordinate is B1 in C2v(M) (i.e., B− in G4). The remaining small-amplitude
coordinates are essentially vibrations that can be described in terms of normal modes
that barely change along this reaction path.

The irreducible representation of mode ν2 treated as a contortion can be deter-
mined inC2v(M). The left (L),q2 < 0, and right (R),q2 > 0,minima can be viewed as
resulting from nuclear displacements with respect to the transition structure, q2 = 0.
If the transition barrier were too high for tunnelling to be observed, we would have
degenerate (L) and (R) vibrational states for each single well (mode ν2 would thus
be treated as a vibration around a Cs minimum). Such local states can be used as zero-
order states to build the first vibrational-contortional states of NHD2. To this end, we
must consider plus and minus combinations. For example, the first two vibrational
states read approximately

�s
0(q) ≈ �L

0 (q) + �R
0 (q)√

2
, (7.21)

�a
0 (q) ≈ �L

0 (q) − �R
0 (q)√

2
. (7.22)

The symmetric and antisymmetric wavefunctions, �s
0(q) and �a

0 (q), correspond
to the vibrational energy levels labelled (0)s and (0)a , respectively (see Table13.1
in Chap.13). The fact that q2 is B1 implies that either (12) or E∗ turn �L

0 (q) into
�R

0 (q) and�R
0 (q) into�L

0 (q) because such operations swap the (L) and (R) minima
that correspond to opposite values of q2 (q2 = 0 being the position of the barrier
that corresponds to the C2v transition structure). As shown in Table7.12, �s

0(q) is
A1/A+ while �a

0 (q) is B1/B−. From a more intuitive perspective, �s
0(q) has no

node along q2 and �a
0 (q) has one node at q2 = 0 (see Fig. 13.1 in Chap.13). When

the number of quanta increases in mode ν2, it is possible to consider symmetric and
antisymmetric combinations of zero-order states. Plus andminus signs depend on the
phase convention chosen for them. However, there is no ambiguity when considering
the number of nodes: an even number corresponds to a symmetric state (A1/A+)

http://dx.doi.org/10.1007/978-3-319-53923-2_13
http://dx.doi.org/10.1007/978-3-319-53923-2_13
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Table 7.12 Behaviours of the first two (L) and (R) zero-order vibrational states and their symmetric
and antisymmetric combinations

E (12) E∗ (12)∗

�L
0 (q) � R

0 (q) � R
0 (q) �L

0 (q)

� R
0 (q) �L

0 (q) �L
0 (q) � R

0 (q)

�s
0(q) �s

0(q) �s
0(q) �s

0(q)

�a
0 (q) −�a

0 (q) −�a
0 (q) �a

0 (q)

while and odd number to an antisymmetric state (B1/B−). As a consequence, the
levels ordered by increasing energy are:

• no node: (0)s (A1/A+);
• one node: (0)a (B1/B−);
• two nodes: (21)s (A1/A+);
• three nodes: (21)a (B1/B−);
• four nodes: (22)s (A1/A+);
• five nodes: (22)a (B1/B−);
• etc.

Above the barrier, the number of quanta in mode ν2 based on (L) and (R) zero-
order vibrational states gradually becomes meaningless and should be changed for
the global number of nodes of the wavefunctions that are delocalised over the double
well as if it were a single well.

Other states occur as tunnellingdoublets in thevibrational spectrum(seeTable13.1
in Chap.13). They involve (0)s and (0)a with extra vibrational quanta in the other
modes. For example, ν1, ν3a , and ν4a are A1/A+, so that (11)s , (31a)

s , and (41a)
s are

A1/A+, whereas (11)a , (31a)
a , and (41a)

a are B1/B−. In contrast, ν3b and ν4b are
B2/B+, so that (31b)

s and (41b)
s are B2/B+, whereas (31b)

a and (41b)
a are A2/A−

(because B1 ⊗ B2 = A2, i.e., B− ⊗ B+ = A−).
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Chapter 8
Introduction to Numerical Methods

The present chapter is dedicated to the numerical methods for solving the time-
dependent Schrödinger equation for the nuclei.1

We first introduce a variational principle for the time-dependent Schrödinger
equation (Sect. 8.1.1) and then discuss primitive basis sets used to build matrix-
elements associated to operators (Sects. 8.1.2 and 8.1.3). The primitive basis set can
be a Discrete variable representation (DVR), adapted to the potential since in the
DVR representation any multiplicative operator is represented by a diagonal matrix.
On the other hand, a Finite Basis Representation (FBR) is adapted to derivative
operators which appear in the kinetic energy since the action of derivative operators
on FBR basis functions is analytical.

Several numerical time propagation algorithms (Split Operator, Lanczos, etc.) can
be used to propagate a wavepacket expanded in a fixed primitive basis set (so called
standard method), are described in Sect. 8.1.6. Since the size of a primitive product
basis set increases exponentially with the number of degrees of freedom, we intro-
duce intermediate time-dependent basis functions that lead to a much more compact
description of the systems: after having sketched the Time-Dependent Hartree (TDH)
approach in Sect. 8.2, we present in detail the MultiConfiguration Time-Dependent
Hartree (MCTDH)method in Sect. 8.3. More details about the use of the propagation
algorithms in MCTDH are given in Sect. 8.3.8. We explain briefly that MCTDH can
also be utilized to solve the time-independent Schrödinger equation (see Sect. 8.4).
Next, we present in Sect. 8.5 complex absorbing potentials that allow reflections to
be prevented that otherwise occur at the boundaries of the domain of definition of the
coordinates. Then, in Sect. 8.6, we discuss the flux analysis algorithm, which can be
used to extract reaction probabilities or (integral) cross sections from a propagated

1A large part of this chapter is taken form the MCTDH lecture notes of H.-D. Meyer written by
Daniel Pelaez-Ruiz. The authors sincerely thank Dr. Pelaez for letting them use his script.
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wavepacket- Finally, we discuss in Sect. 8.7 how a compact and efficient represen-
tation of operators, in particular of the PES, can be achieved. In the present section,
atomic units are used, in particular, �=1.

8.1 The Standard Method

8.1.1 Variational Principle

In a mathematically-rigorous formulation of quantum mechanics, the possible quan-
tum states are represented by state vectors residing in an infinite Hilbert space [1].
However, for numerical resolutions of the Schrödinger equation, it is necessary to
truncate the basis set to some finite dimension [2]. Now, given a particular mathemat-
ical expression of the wavefunction depending on several parameters (see Eqs. (8.7),
(8.96), and (8.151) for the standard, TDH and MCTDH expressions, respectively),
the approximate solution of the time-dependent Schrödinger equation (TDSE) can
be obtained from a variational principle. This guarantees that the parameters in the
wavefunction are chosen such that the wavefunction is as close as possible to the
exact solution of the time-dependent Schrödinger equation. Here, we use the so-
called Dirac-Frenkel [3, 4] principle that reads (see Appendix A of Ref. [5] for a
discussion on different variational principles for the time-dependent Schrödinger
equation):

〈
δ�
∣∣H − i

∂

∂t

∣∣�
〉 = 0 , (8.1)

where δ� denotes a variation of the wavefunction generated by varying the parame-
ters, δ� =∑ ∂�/∂λk · δλk , where λk formally denote the parameters of the model
wavefunction.

The equations of motion derived from the Dirac-Frenkel variational principle
conserve both norm and mean energy, if the Hamiltonian is Hermitian and time-
independent, ∂

∂t H = 0, and if the model wavefunction � itself is contained in the
space of the allowed variations: � ∈ {δ�}.

In order to prove this important result, let us first derive an expression for the time
derivative of the expectation value of the nth moment of the Hamiltonian:

d

dt
〈� | H n | �〉 = 〈�̇ | H n | �〉 + 〈� | H n | �̇〉

= 2Re 〈� | H n | �̇〉 = 2Re 〈H n� | ∂

∂t
| �〉 , (8.2)
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and since 2 Re(a) = − 2 Im(−ia), we obtain

d

dt
〈� | H n | �〉 = −2 Im 〈H n� | −i

∂

∂t
| �〉 .

(8.3)

Now, since 〈� | H n+1 | �〉 is real and thus Im〈H n� | H | �〉 = 0, this yields

d

dt
〈� | H n | �〉 = −2 Im 〈H n� | H − i

∂

∂t
| �〉 . (8.4)

For n = 0, Eq. (8.4) proves the conservation of the norm:

d

dt
〈� | 1 | �〉 = −2 Im 〈� | H − i

∂

∂t
| �〉 = 0 , (8.5)

as Eq. (8.1) ensures that 〈� | H − i ∂
∂t | �〉 vanishes because δ� = � is an allowed

variation from the assumption � ∈ {δ�}. This assumption is valid if the model
ansatz for � contains a parameter which controls its length, e.g. if there are linear
parameters. This is true for both TDH and MCTDH.

The case n = 1 demonstrates the conservation of the energy:

d

dt
〈� | H | �〉 = −2 Im 〈H� | H − i

∂

∂t
| �〉

= −2 Im
[〈 (

H − i
∂

∂t

)
�

∣∣∣
(

H − i
∂

∂t

)
�
〉
+
〈
i

∂

∂t
�

∣∣∣H − i
∂

∂t

∣∣∣�
〉]

= 2Re
〈 ∂

∂t
�

∣∣∣H − i
∂

∂t

∣∣∣�
〉

= 0 , (8.6)

since δ� = ∂
∂t � is always an allowed variation, �̇ ∈ {δ�}, because �̇ =∑ λ̇k ∂�/

∂λk .
All approaches we will discuss, such as the standard, TDH, and the MCTDH

methods, conserve norm and mean energy. If in an actual calculation these quantities
are not conserved, this must be due to numerical errors, in particular to the use of
finite integrator step sizes. If norm and energy conservation is insufficient, one has
to increase the integrator accuracy.

8.1.2 The Standard Method in the Finite Basis Set
Representation (FBR)

The most direct way to solve the TDSE is to expand the wavefunction (WF) into a
product of time-independent (TI) basis set. This iswhat is called the standardmethod:
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�(q1, q2, . . . , q f , t) =
N1···N f∑

j1··· j f

C j1··· j f (t) χ(1)
j1

(q1) · · · χ( f )

j f
(q f ) , (8.7)

where theχ j are orthonormal primitive basis functions. The basis set must be numer-
ically complete for the problem. The choice of the basis set is dictated by the physics
of the system, the volume element, the boundary conditions and also the possible
presence of singularities in the kinetic energy operator as explained in Sect. 6.6. For
numerical applications, the number of primitive functions is finite and N denotes
the number of these functions. The corresponding basis set is called a Finite Basis
Representation or FBR [6–14]. Several examples are listed below:

• The particle-in-a-box eigenfunctions as a basis: the box boundaries are x0 and
xN+1, and L = xN+1 − x0 denotes the length of the box. The basis functions are
thus

χ j (x) =
{√

2/L sin ( jπ(x − x0)/L) for x0 ≤ x ≤ xN+1

0 elsewhere
. (8.8)

Here, j starts from 1. These functions are equal to zero at x0 and xN+1. They are
very often used for degrees of freedom with a constant volume element dV = dx
and if the wavefunction vanishes at finite boundaries.

• The Hermite functions that are the solutions of the one-dimensional harmonic
oscillator problem that can be considered as a zero-order Hamiltonian for many
systems:

χ j (x) = (2 j j !)−1/2
(mω/π)1/4 Hj

(√
mω (x − x0)

)
e−mω(x−x0)

2/2 , (8.9)

where j = 0, . . . , N − 1, x0 is the equilibrium position,ω the oscillator frequency,
and m its mass. Here again, dV = dx . These functions are typically used for
vibrational modes, for instance when normal coordinates or lengths of chemical
bonds are utilized as coordinates.

• Normalized Legendre polynomials that are eigenfunctions of
j2 = − 1

sin θ
∂
∂θ

sin θ ∂
∂θ

with the volume element dV = sin θ dθ:

χl+1(θ) =
√
2 l + 1

2
Pl(cos θ) , (8.10)

l starts from zero and θ ∈ [0,π]. They are often used for planar angles (i.e. the
polar θ angles in spherical coordinates).

• Periodic exponential functions (Fourier):

χ j (x) = L−1/2 exp (2iπ j (x − x0)/L) , (8.11)

with −n � j � n and L = xN − x0. The wavefunctions to be represented satisfy
periodic boundary conditions, ψ(x0) = ψ(xN ). Here, N = 2n + 1 and dV = dx .

http://dx.doi.org/10.1007/978-3-319-53923-2_6
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These functions are typically used for dihedral angles (i.e. the azimuthal ϕ angles
in spherical coordinates with ϕ ∈ [0, 2π[) or for the coordinates that describe the
translations of an atom or a molecule on a periodic surface of a solid.

If the kinetic energy operator displays some singularities as explained in Sect. 6.6,
it may be necessary to use non-direct product basis sets, i.e. functions that depend
on more than one degree of freedom. The two most important examples are listed
below.

• The two-dimensional spherical harmonics:

Y jm(θ,ϕ) = (−1)m
√

2 j+1
4π

( j−m)!
( j+m)! Pm

j (cos θ) eimϕ f orm ≥ 0. (8.12)

The relation
Y jm(θ,ϕ) = (−1)m Y j−m(θ,ϕ)

provides spherical harmonics for negative m.
The matrix elements of the angular momentum operators

j 2 =−
(

1
sin θ

∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

)
, j± = e±iϕ

(
± ∂

∂θ
+ i cot θ ∂

∂ϕ

)
, and jz = 1

i
∂
∂ϕ

are then given by simple formulas (see Eq. (6.173)) and the corresponding matrix
elements are non-singular. Here, dV = sin θ dθ dϕ and |m| ≤ j .

• Three-dimensional rotational Wigner functions D
j
m,k(α,β, γ) that are defined as:

D
j
m,k(α,β, γ) =

√
2 j + 1

8π2
D j

m,k(α,β, γ) , (8.13)

with
D j

m,k(α,β, γ) = e−imαd j
m,k(β)e−ikγ . (8.14)

They are used to describe the three-dimensional rotation of a body: α, β, γ are the
three Euler angles as shown on Fig. 3.4 of Sect. 3.3.3. d j

m,k(β) is a Jacobi function
[15]. The matrix elements of the projections of the total angular momentum onto
the axes of the SF and BF frame in this basis set are non-singular and analytical
[15]. Here, dV = sin β dα dβ dγ and |m|, |k| ≤ j .

In theHeidelbergMCTDHpackage [16], thewavefunction is not expanded in an FBR
but in the corresponding Discrete Variable Representation (DVR) as explained in
Sect. 8.1.3. More precisely, the wavefunction and the matrix of the potential operator
(or of any multiplicative operator) are expressed on a grid representation, i.e. in the
DVR. The corresponding FBR basis is only used to generate matrix representations
of derivative operators.

As regards the FBR, we arrive at the following important results: in the FBR, the
action of the derivative operators is simple and analytical. For instance, the operator
∂2

∂x2 is diagonal in the basis set of particle-in-a-box eigenfunctions,
√
2/L sin( jπ

(x − x0)/L). In the same manner, j2 = − 1
sin θ

∂
∂θ

sin θ ∂
∂θ

is diagonal in the basis set

http://dx.doi.org/10.1007/978-3-319-53923-2_6
http://dx.doi.org/10.1007/978-3-319-53923-2_6
http://dx.doi.org/10.1007/978-3-319-53923-2_3


206 8 Introduction to Numerical Methods

or Legendre polynomials,
√

2 l+1
2 Pl(cos θ) and j 2 = −

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

)

is diagonal in the basis set of spherical harmonics.
Let us go back to the resolution of the time-dependent Schrödinger equation with

the standard approach. The parameters to be optimized by the variational principle of
Eq. (8.1) are the coefficients C . To derive the equations of motion for the coefficients
C , we employ the Dirac-Frenkel variational principle. This approach is similar to a
full Configuration Interaction (CI) method in quantum chemistry where the primitive
functions are the atomic orbitals. Since the objects to be varied here are just numbers,
the variation is a partial differentiation:

δ� =
∑

l1···l f

∂�

∂Cl1···l f

δCl1···l f =
∑

l1···l f

χ(1)
l1

(q1) · · · χ( f )

l f
(q f ) δCl1···l f , (8.15)

and
�̇ =

∑

j1··· j f

Ċ j1··· j f χ(1)
j1

· · · χ( f )

j f
. (8.16)

Because the variations are independent one may set

δCl1···l f =
{
1 for l1 · · · l f = l(0)1 · · · l(0)f

0 else .

From
〈
δ�
∣∣H − i ∂

∂t

∣∣�
〉 = 0, and replacing l(0)κ with lκ, we obtain

〈
χl1 · · · χl f

∣∣
∑

j1··· j f

C j1··· j f Hχ j1 · · · χ j f

〉 =

i
〈
χl1 · · · χl f

∣∣
∑

j1··· j f

Ċ j1··· j f χ j1 · · · χ j f

〉
. (8.17)

or ∑

j1··· j f

〈
χl1 · · ·χl f

∣∣H
∣∣χ j1 · · · χ j f

〉
C j1··· j f = i Ċl1···l f , (8.18)

Defining composite indices J = ( j1, . . . , j f ) and configurations χJ =∏ f
κ=1 χ jκ ,

one arrives at the compact expression

i ĊL =
∑

J

〈
χL

∣∣H
∣∣χJ
〉

CJ . (8.19)

This is a simple first-order differential equation with constant coefficients. It has the
formal solution (for time-independent Hamiltonians):

C(t) = e−i H t C(0) , (8.20)
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where the bold faces shall indicate the vector and matrix form of coefficients and
Hamiltonian, respectively. This system of differential equations is difficult to solve,
because the number of coupled equations, its dimension, is large.

In general one needs at least 10 basis functions per degree of freedom.Hence, there
are about 10 f coupled equations to be solved. Consider a molecule with 6 atoms,
then there are f = 3N − 6 = 12 degrees of freedom, and 1012 coupled equations.
This is not doable. In general only up to 4 atom systems (6D) may be treated by the
standard method with today’s computers. One hence has to resort to cleverer, but also
more approximate methods. But before this, we will introduce the Discrete Variable
Representation.

8.1.3 Discrete Variable Representation (DVR)

As aforementioned, a function on a computer, such as the wavefunctions � or H�,
has to be represented by a finite set of numbers, i.e. by a discrete vector. For the sake
of simplicity, we concentrate here on one-dimensional systems. We have introduced
in the previous section the FBRs. In an FBR approach, the wavefunction is expressed
as

� =
N∑

j=1

a jφ j with a j = 〈φ j |�
〉
, (8.21)

where the φ j functions correspond to the functions introduced above (Hermite,
Legendre functions, etc.). In a vector notation, we obtain

� → a = (a1, a2, . . . , aN )T . (8.22)

However, it is often an advantage to express the wavefunction on a grid of points

xα, α = 1, . . . , N . (8.23)

Thus we have

�(x) → (�(x1), . . . , �(xN ))T = (�1, . . . , �N )T = {�α} . (8.24)

The great advantage of grid methods is that the application of the, in general com-
plicated, potential operator is very simple [6–10, 12–14, 17, 18]

(V �)α = (V �)(xα) = V (xα)�(xα) . (8.25)

In other words, on the grid representation, the potential and any multiplicative oper-
ator is diagonal. For evaluating matrix-elements by quadrature over the grid, one
needs weights in addition. Within a quadrature approximation, we have
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〈�|�〉 ≈
N∑

α=1

wα�∗(xα)�(xα) . (8.26)

In general, it is not obvious how to find optimal points and weights to be used in the
previous equation.

In addition, a difficult problem for a grid representation are the differential oper-
ators, because there is no differentiable function any more. If one interpolates the
points locally, one arrives at the finite-difference formulas, e.g.

� ′′(xα) ≈ 1

h2
(�(xα+1) − 2�(xα) + �(xα−1)) , (8.27)

(local quadratic interpolation on an equidistant grid, where h is the grid spacing).
Unfortunately, finite differences are not very accurate and this is the reason why one
switches back to the FBR to evaluate the matrix elements for differential operators
(see below).

But what exactly is a DVR? ADVR, as a basis representation, is a global approxi-
mation of high accuracy. There is a unitary transformation from the FBR to the DVR.
Thus, the two representations are mathematically equivalent. We refer the reader to
Refs. [2, 5, 8, 14] for a comprehensive discussion of the DVR theory. Here, we just
mention that one way to arrive at a DVR is to diagonalize the matrix representation of
the coordinate operator in the FBR. Indeed, we want to obtain a new representation
that makes multiplicative operators diagonal. Thus, we build the matrix [5, 19]

Q jk = 〈ϕ j |x |ϕk
〉
, (8.28)

whereϕ j are theFBR functions. The diagonalization provides the eigenvectormatrix,
U , where:

Q = U X UT , (8.29)

and an eigenvalue matrix:

Xαβ = xαδαβ , (8.30)

where the eigenvalues, xα, are taken as grid points. Here, two possibilities may occur:

(i) Q is tri-diagonal, then the weights are given as

w1/2
α = Uk,α

ϕ∗
k(xα)

, (8.31)

where the right-hand side can be shown [20] to be independent of k. We know not
only the points but also the weights as we have a quadrature rule (see Eq. (8.26)) to
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be used in Eq. (8.26) to calculate matrix-elements and the DVR is said to be a proper
DVR [5];

(ii) Q is not tri-diagonal and we cannot define weights in a systematic way and the
DVR is said to be an improper DVR.

We will assume in the following that our DVR is a proper DVR and for the DVRs
associated with the FBRs introduced above (sine, Legendre, Hermite, etc., it can be
shown that the corresponding DVRs are proper2). We just emphasize that it is not
always the case. Now, if we have a proper DVR then we have a quadrature rule, and
the matrix elements

〈
ϕ j

∣∣ϕk
〉 =

N∑

α=1

wα ϕ∗
j (xα) ϕk(xα) = δ jk , (8.32)

〈
ϕ j

∣∣x
∣∣ϕk
〉 =

N∑

α=1

wα ϕ∗
j (xα) xα ϕk(xα) = Q jk , (8.33)

are exactly computed by quadrature for j , k ≤ N . Equation (8.32) is called discrete
orthonormality. From the unitary conditionU†U = 1 follows discrete completeness:

N∑

j=1

(wαwβ)
1
2 ϕ∗

j (xα) ϕ j (xβ) = δαβ . (8.34)

Next we introduce DVR-functions defined as

χα(x) =
N∑

j=1

ϕ j (x) U jα . (8.35)

The DVR functions are orthonormal

〈
χα

∣∣χβ

〉 = δαβ , (8.36)

and they behave like δ-functions on the grid

χα

(
xβ

) = w−1/2
α δαβ . (8.37)

The DVR functions are very localized around one of the grid points, xα, see Fig. 8.1
and below for examples. Potential matrix elements are now simple

2The quadrature rule defined through a proper DVR, i.e. defined by Eqs. (8.30) and (8.31), is of
Gaussian type, i.e. it yields an exact result for polynomials of degree 2n − 1 or less.
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Fig. 8.1 First two sine DVR functions (solid and dashed lines) centered at two consecutive DVR
points. Note that the functions are strictly zero at all DVR points (black dots) but the one that labels
the function

〈
χα

∣∣V
∣∣χβ

〉 =
N∑

γ=1

wγ χ∗
α(xγ) V (xγ) χβ(xγ)

=
N∑

γ=1

wγ w−1/2
α w

−1/2
β δαγ δβγ V (xγ)

= V (xα) δαβ . (8.38)

We arrive at the very important result: in the DVR, the potential (and any multiplica-
tive operator) is assumed to be diagonal. This is the DVR approximation. It is an
approximation because the matrix element is done by quadrature, not exactly: the
integral is replaced by a discrete sum. Similarly, the equation

〈
χα

∣∣�
〉 =

N∑

γ=1

wγ χ∗
α(xγ) �(xγ) = w−1/2

α �(xα) , (8.39)

connects grid and basis set representations. However, Eq. (8.39) is strictly valid only
if � lies entirely in the space spanned by the basis.

We now represent the wavefunction (WF) by its values at the grid points times
square roots of weights

�(x) → � = (w1/2
1 �(x1), . . . , w

1/2
N �(xN )

)T
, (8.40)
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which is both, a grid and a spectral representation (see Eq.8.39, pseudo-spectral
methods). Integrals are now simple

〈
�
∣∣�
〉 =

N∑

α=1

wα �∗
α(xα) �(xα) =

N∑

α=1

�∗
α �α = �∗ · � . (8.41)

In fact, one almost never needs the weights, as they are built into the WF. Weights
are required only for plotting a WF or generating an initial WF from an analytic
expression.

To derive the kinetic energy operator for the DVR-grid representations, we start
considering its basis set representation (finite basis representation, FBR).

T FBR
jk = 〈ϕ j

∣∣T
∣∣ϕk
〉
, (8.42)

where we assume that the matrix elements can be obtained analytically.
The DVR-representation is then given by a unitary transformation

T DVR
αβ = 〈χα

∣∣T
∣∣χβ

〉 = (U† TFBR U
)
αβ

. (8.43)

Remarks:

(i) aDVRmust be consistentwith the volumeelement to be used:dr , r2dr , sinθ dθ,
etc.

(ii) a DVR must be consistent with the applied boundary conditions.
(iii) the potential should be smoother than the WF to ensure that the DVR error

is small, (no hard walls). The variational property is destroyed because the
potential matrix elements are not evaluated exactly, i.e. computed eigenvalues
are not necessarily upper bounds to the exact ones.

(iv) for smooth potentials and not too few grid points, the DVR error (Cf. Eq. (8.38))
is in general smaller or of the same order as the basis set truncation error.

Let us now consider two examples.

The Sine-DVR
In most cases one cannot derive the DVR grid points, weights, etc. analytically,
because this requires the diagonalization of a matrix. For the sine-DVR, however,
one can do everything analytically. The underlying basis functions are the “particle
in a box” functions (see Fig. 8.2 for the first two functions).

ϕ j (x) =
{√

2/L sin( jπ(x − x0)/L) for x0 ≤ x ≤ L

0 else ,
(8.44)

with L = xn+1 − x0. The following matrix elements can be obtained exactly.
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Fig. 8.2 First two
particle-in-a-box functions

X0 Xn+1

〈ϕ j |ϕk〉 = δ jk ,

〈ϕ j | ∂

∂x
|ϕk〉 = mod( j − k, 2)

4

L

jk

j2 − k2
for j �= k ,

〈ϕ j | ∂2

∂x2
|ϕk〉 = −

(
jπ

L

)2

δ jk . (8.45)

The matrix 〈ϕ j |x |ϕk〉 is not tri-diagonal. But after transforming the coordinate

f (x) = cos(π(x − x0)/L) , (8.46)

one finds

Fjk = 〈ϕ j | f (x)|ϕk〉 = 1

2
(δ j,k+1 + δ j,k−1) = 1

2

⎛

⎜⎜⎜
⎝

0 1 0 · · ·
1 0 1 · · ·
0 1 0 · · ·
...

...
...

. . .

⎞

⎟⎟⎟
⎠

. (8.47)

This matrix is diagonalized analytically:

U jα =
√

2

n + 1
sin

(
jαπ

n + 1

)
, (8.48)

with eigenvalues

fα = cos

(
απ

n + 1

)
. (8.49)
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This yields the DVR grid-points

xα = f −1( fα) = x0 + L

π
arccos( fα) = x0 + α

L

n + 1
= x0 + α�x , (8.50)

with α = 1, 2, . . . , n and�x = L
n+1 . Note that x0 and xn+1 do not belong to the grid.

The wavefunction is vanishing there anyway. The weights are constant.

w1/2
α = U jα/ϕ j (xα) =

√
L

n + 1
= √

�x , (8.51)

hence wα = �x , as it is to be expected for an evenly spaced grid.
The FBR derivative matrices are to be transformed to DVR. For the second deriv-

ative matrix, this can be done analytically (see Eq. (B.65) of Ref. [5]). The sum
χα(x) =∑n

j=1 ϕ j (x)U jα can also be done analytically and one obtains

χα(x) = 1

2
√

L(n + 1)

{
sin
[

π
2 (2n + 1) x−xα

L

]

sin
[

π
2

x−xα

L

] − sin
[

π
2 (2n + 1) x+xα

L

]

sin
[

π
2

x+xα

L

]

}

, (8.52)

as the expression of the DVR-functions.

Two-Dimensional Spherical Harmonics DVR
If one uses spherical coordinates θ and φ, there will appear operators like

j2 = −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
,

j± = e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
. (8.53)

These operators are singular for θ = 0 or π. The singularity appears only in coordi-
nate space, all matrix elements are non-singular when an appropriate basis set, e.g.
the spherical harmonics Ylm , are used. In fact,

j2Ylm = l(l + 1)Ylm ,

j±Ylm = √l(l + 1) − m(m ± 1)Yl,m±1 . (8.54)

However, rather than a basis set, we would like to use a DVR. To this end, let us
introduce the normalized associated Legendre functions

P̃m
l (cos θ) = (−1)m

√
(2l + 1)(l − m)!

2(l + m)! Pm
l (cos θ) . (8.55)



214 8 Introduction to Numerical Methods

The spherical harmonics are then given by

Ylm(θ,ϕ) = P̃m
l (cos θ)

eimφ

√
2π

. (8.56)

This is not a product basis, because P̃m
l depends onm. Form = 0, we obtain the usual

Legendre functions Pm=0
l = Pl , which are polynomials in x = cos θ. The associated

functions Pm
l are not polynomials as they contain the factor (1 − x2)|m|/2. For the

Legendre polynomials, there exist a Gauss-Legendre quadrature and hence a proper
DVR for the coordinate θ.

Cory, Tromp, and Lemoine (see Ref. [21]) have noticed that the Gauss-Legendre
quadrature can be used for the m �= 0 case as well. They showed that

〈P̃m
l | cosk θ|P̃m

l ′ 〉 =
n∑

α=1

wα P̃m
l (cos θα) cosk θα P̃m

l ′ (cos θα) , (8.57)

is exact for l + l ′ + k ≤ 2n − 1. We define lmax = n − 1 and restrict l and l ′ to 0 ≤
l ≤ lmax, and we find that all matrix elements are exact by quadrature for k = 0
and 1. This looks like a proper DVR. However, for m �= 0, there are fewer basis
functions than grid points, because l ≥ |m| while we keep the grid points built from
m = 0. Before we proceed, let us change the nomenclature and substitute l, m by
j, k. Furthermore, we replace the angleφ by the discrete angular-momentum variable
k via a Fourier transform.

ψ(θ,φ) = 1√
2π

∑

k

ψ(θ, k)eikφ ,

ψ(θ, k) = 1√
2π

∫ 2π

0
ψ(θ,φ)e−ikφ dφ . (8.58)

The associated operators now read

j2 = −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
− k2

sin2 θ

)
,

j± = ± ∂

∂θ
− k cot θ and k → k ± 1 ,

j2 P̃k
j = j ( j + 1)P̃k

j ,

j± P̃k
j = √ j ( j + 1) − k(k ± 1)P̃k±1

j . (8.59)

To introduce a DVR, called extended Legendre DVR [22], we define transformation
matrices Uk for each value of k individually:

U k
jα = w1/2

α P̃k
j (cos θα) . (8.60)
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The rows of Uk are orthonormal as long as j ≤ jmax ≡ n − 1. This follows imme-
diately from Eq. (8.57). However, if one restricts j to j ≤ jmax, there are only
jmax + 1 − |k| rows but n = jmax + 1 columns. To make Uk square and unitary,
we let j run from |k| to jmax + |k| and successively Schmidt-orthogonalize the rows
jmax + 1, . . . , jmax + |k| to the lower ones. This ad hoc procedure for building unitary
matrices works well, because only the high j-states, which should be only weakly
populated, are modified.

Let us analyze what we have done. Schmidt-orthogonalization is equivalent to
QR-decomposition, i.e. decomposition of a matrix in a unitary and a triangular one.
In our case, it reads

w1/2
α P̃k

j (cos θα) =
∑

j ′
Rk

j j ′U k
j ′α , (8.61)

with

Rk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 · · · 0 · · ·
0 1 0 0 · · · 0 · · ·
...

. . .
...

0 · · · 0 1 0 0 · · ·
∗ ∗ · · · ∗ 1 0 · · ·
∗ ∗ · · · ∗ ∗ 1 · · ·
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (8.62)

where the stars ∗ denotes (in general small) non-zero entries of Rk . The upper-left
(n − k) × (n − k) corner of Rk is a unit matrix. Keeping P̃k

j (cos θ) as a basis, we
define DVR-functions as:

χk
α(θ) =

∑

j

P̃k
j (cos θ)U k

jα = w1/2
α

∑

j j ′
P̃k

j (cos θ)(R−1)k
j j ′ P̃k

j ′(cos θα) . (8.63)

The χ’s are orthonormal, as they are generated by a unitary transformation of the
orthonormal P̃ , but theχ’s are not discrete orthonormal, and they do not obey the dis-
crete δ-property. This introduces an additional error on topof theDVR-approximation
when evaluating potential matrix elements. Note, however, that the kinetic energy
operators are represented exactly. To arrive at working equations for the kinetic
energy operators we define the tensors

j2(α,β, k) =
jmax+|k|∑

j=|k|
U k

jα j ( j + 1) U k
jβ ,

j+(α,β, k) =
jmax+min(|k|,|k+1|)∑

j=max(|k|,|k+1|)
U k+1

jα

√
j ( j + 1) − k(k + 1) U k

jβ ,

j−(α,β, k) = j+(β,α, k − 1) , (8.64)



216 8 Introduction to Numerical Methods

and the operations of the angular momentum operators in grid space is given through
these tensors by

( j2ψ)(θα, k) =
n∑

β=1

j2(α,β, k)ψ(θβ, k) ,

( j±ψ)(θα, k ± 1) =
n∑

β=1

j±(α,β, k)ψ(θβ, k) . (8.65)

8.1.4 The Primitive Basis Set: A Summary

In practice, one expresses the wavefunction in the DVR or the FBR. In the MCTDH
package, the wavefunction is expressed in the DVR. In the later, all the multiplicative
operators are diagonal. There is a unitary transformation between DVR and FBR. It
is thus very easy to switch back and forth between the two representations. Starting
from the DVR, one switches to the FBR to calculate the action of derivative operators
which is analytical in the FBR. The procedure is summarized in Table8.1.

8.1.5 Contracted Intermediate Basis Set Functions

The number of primitive functions increases drastically with the number of degrees
of freedom due to the large correlation, or coupling, between the nuclear coordinates.
The problem of correlation is well-known in quantum chemistry for the electrons
but this correlation is much stronger for the nuclei due to their large masses. The
large masses make the energy difference between the vibrational eigenstates smaller
compared to the difference between the electronic eigenstates. In practice, one often
has to deal with very highly excited states in molecular quantum dynamics and
thus with a huge correlation. To try to reduce the size of the basis set, a contracted
intermediate basis set is often used. The contracted functions, ξ(i)

jκ
(qi ) are written as

linear combinations of the primitive functions:

ξ(i)
jκ

(qi ) =
Ni∑

ji =1

D jκ
ji
χ(i)

ji
(qi ) . (8.66)

Now, the wavefunction can be expressed in the new intermediate basis set:

�(q1, q2, . . . , q f , t) =
n1···n f∑

j1··· j f

B j1··· j f (t) ξ(1)
j1

(q1) · · · ξ( f )

j f
(q f ) . (8.67)
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Table 8.1 Discrete Variable Representation (DVR) and Finite Basis Representation (FBR) repre-
sentations. Example of the sine FBR and DVR

We hope that the contracted intermediate basis functions have been defined in an
intelligent way so that n1 · · · n f are smaller that N1 · · · N f .

Many strategies have been defined to construct these intermediate functions. One
simple way is to define a one-dimensional operator for each degree of freedom such
as

− 1

2μ

∂2

∂q2
+ Vef f (q) . (8.68)
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In other words, only the most important term is kept in the kinetic energy operator
for the coordinate q (for angles, the expression can be more complicated). For the
potential, one can fix all the other degrees of freedom to their values at a reference
geometry or minimize the potential for each value of q with respect to the other
degrees of freedom.

The one-dimensional operator can then be diagonalized in the FBR representation.
Since the new functions take into account the form of the potential (in an approximate
way), the eigenfunctions of high energy can be removed. A new basis set is obtained
(using the eigenvectors) that is expressed in the original FBR. The position operator,
q, can be diagonalized in this new, smaller, basis set of functions. NewDVR functions
andDVRgrid points are extracted. Their number is smaller but they are better adapted
to the potential. This approach allows one to easily obtain a smaller basis set and the
newDVRis called aPotential-OptimizedDiscreteVariableRepresentation (PODVR)
[19, 23].

More efficient multidimensional contraction schemes have been devised [24–31].
Contraction schemes based on the systematic use of a variational principle to opti-
mize the contracted functions have also been used (Self-Consistent Field (SCF),
Configuration-Interaction Self-Consistent Field (CI-SCF) [32–34], vibrational mul-
ticonfiguration self-consistent field [35–37] methods).

We will see in Sect. 8.3 that MCTDH also uses intermediate contracted functions
that are obtained by a time-dependent vibrational multiconfiguration self-consistent
field approach:

ϕ(i)
jκ

(qi , t) =
Ni∑

ji =1

c( jκ)

ji
(t) χ(i)

ji
(qi ) , (8.69)

where we allow the functions ϕ(i)
jκ

(qi , t) to be time-dependent. These functions are
optimized by a variational principle.

The global strategy is summarized in Fig. 8.3: the primitive basis set creates a huge
primitive mathematical space represented by square (a) on Fig. 8.3. The contraction
scheme extracts a much smaller active space (square (b) on Fig. 8.3) in which the
Schrödinger equation for the nuclei is solved. In the MCTDH method, this active
space changes with time.

8.1.6 Integrators for the Time-Dependent Schrödinger
Equation

In this section we discuss three popular integrator algorithms designed for
solving large sets of ordinary first order differential equations, in particular the
time-dependent Schrödinger equation treated within the standard method. The time-
dependent Schrödinger equation,
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Fig. 8.3 In the numericalmethod used to solve the Schrödinger equation for the nuclei, the primitive
functions build a mathematical space (a) that becomes very large with the number of degrees of
freedom. In general an intermediate basis set is used: a basis set of contracted functions that builds
a smaller active subspace (b) in which the Schrödinger equation is solved. In MCTDH, the active
space changes with time

i
d|ψ(t)〉

dt
= H |ψ(t)〉 , (8.70)

has, for time-independent Hamiltonians, the formal solution

|ψ(t)〉 = e−i Ht |ψ(0)〉 . (8.71)

Once the initial wavefunction |ψ(0)〉 is known, the behavior of the wavefunction is
also known via evaluating the time-evolution operator e−i Ht operating on |ψ(0)〉.
This procedure of evaluating the time-dependent wavefunction is also known as
propagation.

Using the standard method of Sect. 8.1.2, the equations of motions are formally
identical to Eq. (8.70). The differential equation to be solved is, according to Eq.
(8.19),

i Ċ = H C , (8.72)

where C denotes the vector of coefficients, and H a matrix representation of the
Hamiltonian in the primitive basis. A formal solution is given by Eq. (8.20). The first
order linear differential equation (8.72), allows to derive more efficient integrator
algorithms, which are specifically adapted to solving Eq. (8.72). In the following,
we will, for the sake of simplicity, replace C with � but remind the reader that, in
numerical applications, � will be a vector, not a function.

We refer the reader to Sect. 11.7 of Ref. [2] for a more exhaustive presentation of
the different approaches and to Ref. [38] for a systematic comparison between the
different propagation schemes. Here, we present only a few examples to explain how
the problem can be solved.
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A first possibility would be to expand the wavepacket as a linear combination of
eigenstates and use the expression of Eq. (2.37) of Sect. 2. However, this approach
requires to know accurately the eigenstates and is then limited to small systems. The
advantage of a propagationmethod is precisely that we do not need to know explicitly
all the eigenstates, the number of which can be very large for realistic problems.

Split Operator *
The split operator (SOP) propagator has been developed by Feit and Fleck [39,
40]. Its spirit is to separate the kinetic energy operator and the potential operator
the exponential form and evaluate them individually, i.e. ei Ht ∼ eiT t eiV t . However,
separating the two operators in the exponent introduces errors to the original operator
since T and V do not commute and we expect the error to be proportional to the
commutator [T, V ]. The error can be minimized by dividing a long propagation time
t to multi-step short propagation times. For example, Trotter (1959) proposed

e−β(T +V ) = (e−β(T +V )/n
)n = lim

n→∞
(
e−βT/ne−βV/n

)n
. (8.73)

Replacing β by i t , we immediately obtain the working equation for the propagation.
Defining τ = t/n, we would have the propagated wavefunction at time t as the
following

|ψ(t)〉 � (e−iT τ e−iV τ
)n |ψ(0)〉 . (8.74)

In practice,we cannot taken to infinity, butwe can estimate the error that is introduced
to the propagation. The Baker-Campbell-Hausdorff formula reads

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [[A,B]B]+··· . (8.75)

Therefore, the effective time-evolution operator reads

e−iT τ e−iV τ = e−i Heff τ = e−i(T +V )τ− 1
2 τ 2[T,V ]+τ 3··· . (8.76)

The first term in the exponent is the system Hamiltonian, and the rest are the errors
introduced by the split operator (SOP) propagator. As we already mentioned, the
larger the τ , the larger the error.

This method can be improved by symmetrization. If we separate the exponent
according to H = V/2 + T + V/2, applying the Baker-Campbell-Hausdorff for-
mula gives the effective time-evolution operator under symmetrization.

e−iV τ/2e−iT τ e−iV τ/2 = e−i Heff τ = e−i Hτ+ iτ3

24 [H,[T,V ]]+τ 4··· . (8.77)

In this case, the error starts with the third order of τ . We obtain one order more by
symmetrization and we will always refer to the symmetrized form when mentioning
the split operator propagator hereafter. The effective Hamiltonian reads

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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Heff = H − τ 2

24
[H, [T, V ]] + O

(
τ 3
)

. (8.78)

It is Hermitian and hence secures norm conservation. However, the effective Hamil-
tonian does not commute with the original system Hamiltonian. The energy is not
conserved. How to estimate the error term for the SOP propagator is discussed in the
following three examples.

General One-Dimensional Problem
Given a kinetic energy operator T = − 1

2m
∂2

∂x2 and a general potential V (x), the
leading error term can be estimated by evaluating [H, [T, V ]]. First we evaluate
[T, V ].

[T, V ] = T V − V T = − 1

2m

(
V ′′ + 2V ′ d

dx

)
. (8.79)

Then we continue to evaluate the following commutators.

[V, [T, V ]] = 1

m
(V ′)2 ;

[T, [T, V ]] = 1

4m2

(
V ′′ d2

dx2
+ 2

d

dx
V ′′ d

dx
+ d2

dx2
V ′′
)

. (8.80)

The error term [H, [T, V ]] is just the sum of these two terms. From these equations
follows that, when 1

m → 0, the propagation by SOP will be exact (Heff = H ). Thus
the SOP exhibits some semi-classical behavior, although it is not exact for harmonic
Hamiltonians. However, as 1

m �= 0, the propagation is not exact and 〈E〉 is not con-
served ([Heff, H ] �= 0).

Harmonic Oscillator
Given a harmonic oscillator potential V (x) = 1

2mω2x2, based on Eqs. (8.80) and
(8.77), the leading error term of the propagator reads

[H, [T, V ]] = 2ω2

(
1

2
mω2x2

)
+ 2ω2

(
1

2m

d2

dx2

)
= 2ω2 (V − T ) . (8.81)

In addition, we have |〈V − T 〉| < 〈H〉 = (n + 1
2

)
ω. Thus, the SOP error term can

be bound by:

Err(SPO) <

(
n + 1

2

)

12
ω3τ 3 . (8.82)

In contrast, the error introduced when using a Taylor expansion of the exponential
to second order reads

τ 3H 3

3! =
(
n + 1

2

)3

6
ω3τ 3 , (8.83)

which is much larger than the SOP error, when n > 1.
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The SOP propagator is usually combined with the Fast Fourier Transform (FFT)
algorithm in computations. The idea is to exponentiate both potential and KEO in
their own eigenspaces such that both representations are diagonal (see Ref. [6]).
The procedure is as such: one first obtains

(
e−iV (x)τ/2ψ(x, t)

)
in the x-space and

then performs a Fourier transform to the p-space, multiplies with e−i P2

2m τ and then
performs an inverse Fourier transform and multiplies with e−iV (x)τ/2, i.e.

ψ(x, t + τ ) = e−iV (x)τ/2F−1
(

e−i P2

2m τ F
(
e−iV (x)τ/2ψ(x, t)

))
. (8.84)

The propagator is stable, i.e. it conserves the norm, even in the region where the
potential is high or the wavefunction is highly oscillating. On the other hand, SOP
requires performing e−iV τ/2 and e−iT τ exactly. The latter exponentiation becomes
problematic if one uses generalized coordinates, because then T ceases to be diagonal
in momentum representation.

Second Order Difference (SOD) *
Previously we illustrated the propagators that involve only single time steps, i.e.
evaluating |ψ(t + τ )〉 based only on |ψ(t)〉. There are also methods to propagate a
wavefunction by making use of the wavefunction at several previous times. Second-
order difference (SOD) is one of those multi-step integrators. Suppose we have the
wavefunctions |ψ(t − τ )〉 ,|ψ(t)〉, and |ψ(t + τ )〉:

|ψ+〉 := |ψ(t + τ )〉 = e−i Hτ |ψ(t)〉 ,

|ψ0〉 := |ψ(t)〉 ,

|ψ−〉 := |ψ(t − τ )〉 = ei Hτ |ψ(t)〉 .

(8.85)

The wavefunction difference is given by

|ψ+〉 − |ψ−〉 = (e−i Hτ − ei Hτ )|ψ0〉 = −2isin(Hτ )|ψ0〉 . (8.86)

The exact propagation is given by multi-steps, i.e. |ψ+〉 depends on |ψ−〉 and |ψ0〉.

|ψ+〉 = |ψ−〉 − 2isin(Hτ )|ψ0〉 . (8.87)

However, when performing the propagation, one usually uses an approximated form
by linearizing the sine function,

|ψ+〉 = |ψ−〉 − 2i Hτ |ψ0〉 . (8.88)

This working equation, Eq. (8.88), can be viewed as using an effective Hamiltonian
Heff in Eq. (8.87). The effective Hamiltonian has the following expression:
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sin(Heffτ ) = Hτ ,

Heff = 1

τ
arcsin(Hτ ) . (8.89)

Note that Heff is Hermitian and the norm of the wavefunction is conserved only if
the operator norm (Hilbert norm) of Hτ satisfies ‖Hτ‖H < 1, because otherwise the
arcsin function becomes complex and Heff hence non-Hermitian. It can be shown that
the norm of the wavefunction will explode suddenly when ‖Hτ‖H > 1, i.e. when
the absolute largest eigenvalue of H is larger than 1/τ .

The Lanczos and the Lanczos-Arnoldi Integrators *
We briefly review the Short Iterative Lanczos (SIL) integration scheme [41], and
discuss two different error estimates for the SIL method. We consider here the com-
plex Lanczos, or Lanczos-Arnoldi, algorithm [42–44], which includes the Hermitian
Lanczos as a special case.

In the Lanczos scheme the exact Hamiltonian H is approximated by the reduced
Hamiltonian HL = PL H PL , where PL denotes the projector on the Krylov space
spanned by the set of vectors H kψ(t), k = 0, . . . , L . The Lanczos-Arnoldi recur-
sion,

χ(0)
j+1 = Hψ j , (8.90)

for i = 0, . . . , j : χ(i+1)
j+1 = χ(i)

j+1 − βi jψi with βi j = 〈ψi | χ(i)
j+1〉

ψ j+1 = χ
( j+1)
j+1 /β j+1, j with β j+1, j = ‖ χ

( j+1)
j+1 ‖ ,

constructs an orthonormal basis ψ0, . . . ,ψL , starting from a normalized state ψ0, in
which the reduced Hamiltonian HL is a complex upper Hessenberg matrix:

〈ψ j | HL | ψk〉 =
{

β jk for j ≤ k + 1
0 else

, j, k = 0, . . . , L . (8.91)

(If H is Hermitian, then matrix (8.91) becomes symmetric, i.e. tridiagonal.) The
Lanczos-Arnoldi algorithm requires L + 1 evaluations of H | ψ〉.

The SIL integrator approximates the propagated wavefunction ψ(t + τ ) by

| ψ(t + τ )〉 = e−i HL τ | ψ(t)〉 = ‖ ψ(t) ‖
L∑

k=0

a(L)
k | ψk〉 , (8.92)

with

a(L)
k =

L∑

j=0

Tk j e−iλ j τ
(
T −1
)

j0 , (8.93)

and ψ0 = ψ(t)/ ‖ ψ(t) ‖. The λ j specify the eigenvalues and T the eigenvector
matrix of the small, and hence easy to diagonalise, upper Hessenberg matrix (8.91).
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The Lanczos recurrence in its standard form is in so far inefficient as the vector
ψL+1 as well as the matrix element βL+1,L are determined but never used. A slight
modification of the SIL algorithm can circumvent this. It has been suggested [45]
that one may increase the SIL order to L ′ = L + 1 by adding a further, approximate,
column to the Lanczos matrix. To this end we set βL ′ L ′ = βL L , βL ,L ′ = βL ′,L , and
β j,L ′ = 0 for j < L . The upper Hessenberg matrix is then an L ′ × L ′ matrix, and the
summation in Eqs. (8.92) and (8.93) extends to L ′ rather than L . The wavefunction
propagated with this modified algorithm is correct up to an order τ L ′

, while it is only
accurate up to an order τ L in the conventional Lanczos scheme.

For the conventional SIL integrator there exists a very convenient estimate for the
difference �ψ of the propagated and the exact wavefunction [41], namely

‖ �ψ ‖≈ β10 . . . βL+1,L

(L + 1)! τ L+1 , (8.94)

which may be used to adjust either the step size τ or the order L . For the modified
SIL integrator one could use the same formula but replace L by L ′. However, βL ′+1,L ′

is unknown, and instead of estimating it we prefer to use Eq. (8.94) as it is. Since for
any one-step method, such as Lanczos, the order of the global discretisation error
is a power one lower than that of the local error [46], the error estimate therefore
controls the global rather than the local error.

Turning again to the conventional Lanczos integrator we note that the error esti-
mate (8.94) is correct to an order of L + 1, yet the true error also contains contri-
butions from higher orders of τ . These contributions depend not only on the sub-
diagonal but on all elements of matrix (8.91). Despite these higher contributions, the
error formula (8.94) is remarkably accurate for small step sizes. However, it may
grossly overestimate the error when the integrator is running at high order and thus
taking large step sizes [47].

A more reliable error estimate for the (modified) Lanczos integrator is given by
[47]

‖ �ψ ‖ = ‖ a(L ′) − a(L ′−1) ‖ , (8.95)

where a zero is appended to the shorter of the two vectors, a(L ′−1). This criterion
thus takes as an error estimate the norm of the difference between the wavefunctions
propagatedby theSILmethodof order L ′ and L ′ − 1.The accuracyof the propagation
can be controlled by increasing the SIL order L ′ until the predicted error (8.95)
becomes smaller than the prescribed error tolerance.

The improved error estimate is predominantly determined by the error of the
solution obtained with an order of L ′ − 1. Hence the propagated wavefunction is
one order in τ more accurate than the error estimate indicates. This is very much in
the spirit of what has been discussed above, namely using Eq. (8.94) for the modified
Lanczos integrator as well. Equation (8.95) seems to be rather costly because it
requires the diagonalisation of matrix (8.91) after each SIL iteration. However, for
large systems the evaluation of the matrix-vector product H | ψ〉 needs so much
numerical effort that the effort for the error estimation remains negligible. For large
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step sizes the improved error measure (8.95) estimates the SIL integration error more
accurately than the standard estimate (8.94), while for small step sizes both estimates
are equally accurate [47].

In the MCTDH package, the SIL method is often used to solve the EOM of the
A-coefficients in Eq. (8.206) because this is a linear differential equation.

8.2 The Time-Dependent Hartree (TDH) Approach

As aforementioned, the standard method of quantum dynamics scales exponentially
with molecular size and thus renders simulations with more than four nuclei chal-
lenging, even with present-day computer hardware. One of the simplest alternative
propagationmethods is the TDHapproach [48, 49]. Thewavefunction is expressed as
a simple product of one-dimensional functions but the latter are now time-dependent
[5, 50]:

�(q1, q2, . . . , q f , t) = a(t) ϕ1(q1, t) · · · ϕ f (q f , t) . (8.96)

The functions ϕ1(q1, t), · · · , ϕ f (q f , t) are called single-particle functions (SPF),
which are, of course, expressed in a time-independent basis set, the primitive basis:

ϕ(κ)
jκ

(qκ, t) =
Nκ∑

iκ=1

c(κ, jκ)

iκ
(t) χ(κ)

iκ
(qκ) , (8.97)

where χ(κ)
iκ

(qκ) is a primitive basis function for the κ-th degree of freedom.
The representation (8.96) is not unique because

ϕ1 · ϕ2 = (
ϕ1

b
) · (ϕ2 · b) , (8.98)

holds for any complex constant b �= 0. The additional factor a(t) increases the redun-
dancy, but because of this coefficient there is now a free factor for each function ϕκ.
All SPFs are now treated on the same footing. To arrive at unique equations ofmotion
one has to introduce constraints, which remove the non-uniqueness but do not narrow
the variational space. If a function changes in time by a complex factor only, then
this is equivalent to a time derivative which is in the direction of the function itself

ϕ̇ ∝ ϕ . (8.99)

To see this more explicitly, let us write

ϕ = αϕ̃ with ‖ϕ̃‖ = 1 ,

ϕ̇ = α̇ ϕ̃ + α ˙̃ϕ , (8.100)
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and 〈
ϕ
∣∣ϕ̇
〉 = α∗α̇ + ∣∣α∣∣2〈ϕ̃∣∣ ˙̃ϕ〉 . (8.101)

This shows that we can prescribe
〈
ϕ
∣∣ϕ̇
〉
any value, such a prescription will merely

determine α̇. Hence, we propose the constraints:

i
〈
ϕκ(t)

∣∣ϕ̇κ(t)
〉 = gκ(t) , (8.102)

for some set of functions gκ(t). Note again that this constraint, by construction, does
not further restricts possible values for �̇.

Of course, the SPFs should be normalized. Their change in norm is given by

d

dt
‖ϕκ‖2 = d

dt

〈
ϕκ

∣∣ϕκ

〉

= 〈ϕ̇κ

∣∣ϕκ

〉+ 〈ϕκ

∣∣ϕ̇κ

〉

= 2Re
〈
ϕκ

∣∣ϕ̇κ

〉 = 2I m gκ , (8.103)

which implies that the norm is conserved if the constraints gκ are real.

8.2.1 TDH Equations *

In the TDH approach, the wavefunction is expressed as

�(q1, q2, . . . , q f , t) = a(t)
f∏

κ=1

ϕκ(qκ, t) = a(t)�(t) , (8.104)

with the constraints:
i
〈
ϕκ(t)

∣∣ϕ̇κ(t)
〉 = gκ(t) , (8.105)

and with gκ real, but otherwise arbitrary. Later, we will choose gκ such that the EOM
become as simple as possible. Without restriction we may choose the initial SPFs
ϕκ(t = 0) to be normalized and Eq. (8.103) then tells us that they stay normalized
for all times.

We are now ready to perform the variation.

�̇ = ȧ(t)
f∏

κ=1

ϕκ(qκ, t) + a(t)
f∑

κ=1

ϕ̇κ

f∏

ν �=κ

ϕν = ȧ(t) � + a
f∑

κ=1

ϕ̇κ �(κ) , (8.106)

and

δ� = (δa)� + a
f∑

κ=1

(δϕκ) �(κ) , (8.107)
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where we have used the definitions

� =
f∏

κ=1

ϕκ and �(κ) =
f∏

ν=1
ν �=κ

ϕν . (8.108)

From the variational principle (VP) of Eq. (8.1) follows

〈
δa �

∣∣H
∣∣a �

〉− i
〈
δa �

∣∣ȧ � + a
∑

κ

ϕ̇κ �(κ)
〉

+
f∑

κ=1

{〈
δϕκ a �(κ)

∣∣H
∣∣a �

〉− i
{〈

δϕκ a �(κ)
∣∣ȧ � + a

∑

κ′
ϕ̇κ′ �(κ′)〉} = 0 .

(8.109)

Since δa and all δϕκ are independent of each other, each line has to vanish individ-
ually.

For δa:
(δa)∗ a

〈
�
∣∣H
∣∣�
〉 = i(δa)∗ ȧ + i(δa)∗ a

∑

κ

〈
�
∣∣ϕ̇κ �(κ)

〉
. (8.110)

Since

i
〈
�
∣∣ϕ̇κ �(κ)

〉 = i
〈
ϕ1 · · ·ϕκ · · ·ϕ f

∣∣ϕ1 · · · ϕ̇κ · · · ϕ f
〉 = i

〈
ϕκ

∣∣ϕ̇κ

〉 = gκ (8.111)

follows

i
ȧ

a
= 〈�∣∣H ∣∣�〉−

∑

κ

gκ , (8.112)

or, introducing

E = 〈�∣∣H ∣∣�〉 =
〈
�
∣∣H
∣∣�
〉

〈
�
∣∣�
〉 , (8.113)

it follows

i ȧ = (E −
f∑

κ=1

gκ) a . (8.114)

On the other hand, by varying a particular ϕκ, we obtain

〈
(δϕκ) a �(κ)

∣∣H
∣∣a �

〉 = i
〈
(δϕκ) a �(κ)

∣∣ȧ �
〉+

i
〈
(δϕκ) a �(κ)

∣∣a
f∑

ν=1

ϕ̇ν �(ν)
〉
. (8.115)
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Now

〈
(δϕκ) a �(κ)

∣∣H
∣∣a �

〉 = |a|2 〈(δϕκ) �(κ)
∣∣H
∣∣ϕκ �(κ)

〉

= |a|2 〈(δϕκ)
∣∣〈�(κ)

∣∣H
∣∣�(κ)

〉∣∣ϕκ

〉

= |a|2 〈(δϕκ)
∣∣H(κ)

∣∣ϕκ

〉
, (8.116)

with the definition
H(κ) = 〈�(κ)

∣∣H
∣∣�(κ)

〉
. (8.117)

H(κ) is called a mean field. Note that it is an operator on the κ-th degree of freedom.
The second term of the Eq. (8.115) is transformed to

i
〈
(δϕκ) a �(κ)

∣∣ȧ �
〉 = i ȧa∗ 〈δϕκ

∣∣ϕκ

〉 = |a|2 (E −
f∑

ν=1

gν)
〈
δϕκ

∣∣ϕκ

〉
, (8.118)

and the third term of (8.115) to

i
〈
(δϕκ) a �(κ)

∣∣a
f∑

ν=1

ϕ̇ν �(ν)
〉 = i |a|2 〈δϕκ

∣∣ϕ̇κ

〉+ i |a|2
∑

ν �=κ

〈
δϕκ ϕν

∣∣ϕ̇ν ϕκ

〉

= i |a|2 〈δϕκ

∣∣ϕ̇κ

〉+ i |a|2 〈δϕκ

∣∣ϕκ

〉 ·
∑

ν �=κ

〈
ϕν

∣∣ϕ̇ν

〉

= i |a|2 〈δϕκ

∣∣ϕ̇κ

〉+ |a|2 〈δϕκ

∣∣ϕκ

〉∑

ν �=κ

gν . (8.119)

Using (8.116) = (8.118) + (8.119) and dividing by |a|2 yields
〈
(δϕκ)

∣∣H(κ)
∣∣ϕκ

〉 =

(E −
f∑

ν=1

gν)
〈
δϕκ

∣∣ϕκ

〉+ i
〈
δϕκ

∣∣ϕ̇κ

〉+
∑

ν �=κ

gν

〈
δϕκ

∣∣ϕκ

〉
, (8.120)

or
i
〈
δϕκ

∣∣ϕ̇κ

〉 = 〈δϕκ

∣∣H(κ)
∣∣ϕκ

〉− (E − gκ)
〈
δϕκ

∣∣ϕκ

〉
. (8.121)

Since δϕκ is arbitrary, we finally arrive at

i ϕ̇κ = (H(κ) − E + gκ) ϕκ ,

i ȧ = (E −
f∑

κ=1

gκ) a .
(8.122)

Everything may be time-dependent.



8.2 The Time-Dependent Hartree (TDH) Approach 229

If we multiply the first of the EOM by
〈
ϕκ

∣∣ we see that the constraint is obeyed,

i
〈
ϕκ

∣∣ϕ̇κ

〉 = 〈ϕκ

∣∣H(κ)
∣∣ϕκ

〉− E + gκ = gκ , (8.123)

because

〈
ϕκ

∣∣H(κ)
∣∣ϕκ

〉 = 〈ϕκ �(κ)
∣∣H
∣∣ϕκ �(κ)

〉 = 〈�∣∣H ∣∣�〉 = E . (8.124)

We now have to decide what to use for gκ. Remember any function gκ(t) can be
chosen as long as it is real. The simplest choice is gκ ≡ 0. This yields:

a(t) = a(0) · exp
(− i

∫ t

0
E(t ′) dt ′) ,

i ϕ̇κ = (H(κ) − E) ϕκ

= (1 − ∣∣ϕκ

〉〈
ϕκ

∣∣)H(κ) ϕκ .

(8.125)

The very last line is introduced because of its similarity with the MCTDH EOM. It
holds because of (8.124).

For Hermitian time-independent Hamiltonians the Dirac-Frenkel variational prin-
ciple ensures that the norm and the mean energy of the wavepacket (WP) are con-
served. Hence E(t) is real and time-independent. For Hermitian time-dependent
Hamiltonians E will become time-dependent but stays real. For non-Hermitian
Hamiltonians E will become both complex and time-dependent.

Hence for Hermitian Hamiltonians there are two other meaningful choices for gκ,
namely

gκ = E , (8.126)

and
gκ = E/ f . (8.127)

Then

a(t) = a(0) · exp
(
i( f − 1)

t∫

0

E(t ′) dt ′) ,

iϕ̇κ = H(κ) ϕκ ,

(8.128)

and

a(t) = a(0) ,

iϕ̇κ = (H(κ) −
(

f − 1

f

)
E(t)

)
ϕκ .

(8.129)
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Hence the various choices of gκ merely shift phase-factors from a to ϕκ and vice
versa.

The derivation of the EOM of the TDH method is now concluded. The TDH
solution is approximate because of the very restricted form of the wavefunction.
To investigate the quality of a TDH solution, we adopt the idea of an effective
Hamiltonian:

i�̇ = Heff � , (8.130)

where � denotes the TDH solution. Using the last set of EOM and remembering
(since ȧ = 0 there)

�̇ = a
∑

κ

ϕ̇κ �(κ) , (8.131)

one readily finds

Heff = (

f∑

κ=1

H(κ)) − ( f − 1) E . (8.132)

The TDH solution is the exact solution of the TDSE using Heff as the Hamiltonian.
To proceed, we split the Hamiltonian into separable and non-separable terms.

H =
f∑

κ=1

h(κ) + Vcorr , (8.133)

where h(κ) operates only on the κ-th degree of freedom. Vcorr denotes the correlated
part of the potential. The separable potential terms as well as the kinetic terms, which
for the sake of simplicity are assumed to consist of 1D-terms only, are included in
h(κ).

The mean fields and the effective Hamiltonian can now be evaluated somewhat
more explicitly

H(κ) = 〈�(κ)
∣∣H
∣∣�(κ)

〉

= h(κ)
〈
�(κ)

∣∣�(κ)
〉+
∑

ν �=κ

〈
�(κ)

∣∣h(ν)
∣∣�(κ)

〉+ 〈�(κ)
∣∣Vcorr

∣∣�(κ)
〉
,

(8.134)

or more compactly
H(κ) = h(κ) +

∑

ν �=κ

E (ν)
uncorr + w(κ) , (8.135)
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with

w(k)(xk) = 〈ϕ1 · · · ϕk−1ϕk+1 · · · ϕ f

∣∣Vcorr (x1, . . . , x f )
∣∣ϕ1 · · ·ϕk−1ϕk+1 · · ·ϕ f

〉
,

(8.136)
i.e. one averages the potential over the other degrees of freedom. In addition,

E (ν)
uncorr = 〈�(κ)

∣∣h(ν)
∣∣�(κ)

〉 = 〈ϕ(ν)
∣∣h(ν)

∣∣ϕ(ν)
〉
, (ν �= κ) ,

Euncorr = 〈�∣∣
∑

ν

h(ν)
∣∣�
〉 =
∑

ν

E (ν)
uncorr , (8.137)

and

Ecorr = 〈�∣∣Vcorr

∣∣�
〉 =

〈
�
∣∣Vcorr

∣∣�
〉

〈
�
∣∣�
〉 . (8.138)

Hence
E = 〈�∣∣H ∣∣�〉 = Euncorr + Ecorr . (8.139)

Next we derive the equation for the mean fields

H(κ) = h(κ) + w(κ) + Euncorr − E (κ)
uncorr . (8.140)

Thus,
f∑

κ=1

H(κ) =
f∑

κ=1

(
h(κ) + w(κ)

)+ ( f − 1) Euncorr , (8.141)

and

Heff =
f∑

κ=1

H(κ) − ( f − 1) E =
f∑

κ=1

(
h(κ) + w(κ)

)− ( f − 1) Ecorr , (8.142)

and

H − Heff = Vcorr −
f∑

κ=1

w(κ) + ( f − 1) Ecorr

= (Vcorr − Ecorr) −
f∑

κ=1

(w(κ) − Ecorr) . (8.143)

This makes it clear that TDH is exact, i.e. H = Heff, if Vcorr ≡ 0, in other words, if
the Hamiltonian is separable.
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8.2.2 TDH Equations: 2-Dimensional Case

To investigate the errors introduced by the TDH approximation let us assume that
the Hamiltonian has the form:

H = − 1

2m

∂2

∂x2
1

− 1

2m

∂2

∂x2
2

+ V1(x1) + V2(x2) + W1(x1)W (x2) . (8.144)

A two-dimensional potential energy can always be written in the form V (x1, x2) =∑
i W1,i (x1)W2,i (x2) but keeping only the terms V1(x1), V2(x2), and W1(x1) W2(x2)

is sufficient for the discussion that follows. Now, we obtain

Ecorr = 〈ϕ1

∣∣W1

∣∣ϕ1
〉〈
ϕ2

∣∣W2

∣∣ϕ2
〉 ≡ 〈W1

〉〈
W2
〉
. (8.145)

In addition
w(1)(x1) = W (x1)

〈
W2
〉
, (8.146)

and
w(2)(x2) = W (x2)

〈
W1
〉
, (8.147)

and

Heff = − 1

2m

∂2

∂x21
− 1

2m

∂2

∂x22
+ V1(x1) + V2(x2) + W (x1)

〈
W2
〉+ W (x2)

〈
W1
〉− 〈W1

〉〈
W2
〉
,

(8.148)
and

H − Heff = W1(x1) W2(x2) − W2(x2)
〈
W1
〉− W1(x1)

〈
W2
〉+ 〈W1

〉 〈
W2
〉
. (8.149)

This yields

H − Heff = (W1(x1) − 〈W1
〉)(

W2(x2) − 〈W2
〉)

. (8.150)

Hence the TDH-error is small if W1(x1) and W2(x2) are almost constant over
the width of the wavepacket. What is the physical meaning of W1(x1) W2(x2)?
This term includes the correlation within the potential between the two coordi-
nates x1 and x2. If W1(x1) W2(x2) = 0, the Hamiltonian is said to be separable
and the variation of the potential along x2 does not depend on x1 and vice versa.
If
(
W1(x1) − 〈W1

〉)(
W2(x2) − 〈W2

〉)
is small, the form of the potential along x2

smoothly depends on x1 as in Fig. 8.4 for the NOCl potential (here x1 = rd is the
dissociative Jacobi coordinate and x2 = rv is the vibrational Jacobi coordinate which
connects N and O). If the shape of the potential along x2 rapidly changes with x1,(
W1(x1) − 〈W1

〉)(
W2(x2) − 〈W2

〉)
becomes large. This happens in Fig. 8.5 (here x1

= rd and x2 = rv) for the reactive H+H2 molecular system when the H-atom comes
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Fig. 8.4 A contour plot of the S1 excited electronic state PES of NOCl as a function of two Jacobi
coordinates (rd , the distance between the center of mass of NO and Cl, rv the NO bond length) is
shown for θ = 127◦, θ being the angle between the two Jacobi vectors. Superimposed are contours of
a numerically exact wavepacket (averaged over all angles) for t = 0, 12, 24, 36, and 48 fs describing
the photodissociation into NO + Cl starting from a Franck-Condon transition. In a Franck-Condon
transition, the vibrational ground state of the electronic ground state S0 is vertically moved to the
potential energy surface of the excited electronic state (here the S1 state)
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Fig. 8.5 A contour plot of the electronic ground state PES of H+H2 as a function of two Jacobi
coordinates (rd , the distance between the center ofmass ofH2 andH, rv theH2 bond length) is shown
for θ = 0◦ (collinear geometry), θ being the angle between the two Jacobi vectors. Superimposed
are contours of a wavepacket (averaged over all angles) at t = 20 fs describing the reactive H+H2
collision
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close to the H2 molecule, i.e. for rd < 4.0 a.u. and especially around the transition
state (rd ≈ 2.8 a.u., rv ≈ 1.8 a.u.), and in the reactive exit channel (rv > 2.5 a.u.).

TDH reduces an f -dimensional equation to a set of f one-dimensional equations.
That is an enormous simplification. Assume we have 20 basis functions per DOF and
12 degrees of freedom. Then there are 2012 = 4 · 1015 coupled differential equations
to be solved for the standard method but only 12 · 20 = 240 equations for TDH. The
first problem is undoable, the latter very simple. However, for many problems, for
instance for the H+H2 molecular system, the TDH approach cannot describe even
qualitatively the physics of the problem [51], as several configurations are required.
Note also that in the (semi-)classical limit, when the wavefunction converges towards
a δ-function, TDH becomes exact (Eq. (8.150)).

8.3 The Multi-configuration Time-Dependent Hartree
Method

8.3.1 MCTDH Fundamentals

To overcome the limitations of TDH, we turn to a multiconfigurational ansatz [52]
and write the WF as [5, 53, 54]

�(q1, . . . , q f , t) =
n1∑

j1

· · ·
n f∑

j f

A j1... j f (t)
f∏

κ=1

ϕ(κ)
jκ

(qκ, t) . (8.151)

The number of configurations, or Hartree products, is given by the product n1 . . . n f .
The SPFs, ϕ(κ)

jκ
(qκ, t), are, as in the TDH approach, expressed in a time-independent

basis set:

ϕ(κ)
jκ

(qκ, t) =
Nκ∑

iκ=1

c(κ, jκ)

iκ
(t) χ(κ)

iκ
(qκ) , (8.152)

whereχ(κ)
iκ

(qκ) is a primitive basis functions, in general a DVR function, that depends
on coordinate qκ. If one sets in Eq. (8.151) n1 = n2 = · · · = n f = 1, one returns to
the TDH approach. On the other hand, if n1 = N1, n2 = N2, . . ., n f = N f , MCTDH
is equivalent to the standard approach since there is a unitary transformation between
the primitive and SPF basis sets. Contrarily to the standard method, both the coeffi-
cients and the basis functions are time-dependent. Both are optimized using a varia-
tional principle. The SPFs adapt along the propagation of the wavepacket and since
n1, n2, . . . , n f are, in general, smaller than N1, N2, . . . , N f , the number of equations
to be solved is smaller and it is possible to treat larger systems. We are performing
a contraction of the basis set since we have extracted a much smaller active space
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from the original space built by the primitive functions. MCTDH can be compared to
the MultiConfigurational Self-Consistent Field (MCSCF) methods used in quantum
chemistry to solve the time-independent electronic Schrödinger equation [55, 56].
MCTDH is anMCSCFmethod but for the nuclear coordinates and time-dependent. If
one uses MCTDH to solve the time-independent Schrödinger equation as discussed
in Sect. 8.4, the algorithm will generate vibrational orbitals similar to the molecular
orbitals for the electrons in quantum chemistry [57]. Since we are solving the time-
dependent Schrödinger equation here, we call the contracted basis functions SPFs
rather than orbitals. Note that, contrarily to the quantum chemistry methods, there is
no exchange operator since we do not have to antisymmetrize the wavefunction. The
wavefunction is antisymmetrized only if MCTDH is applied to a system of fermions
as in the MCTDHF method [58]. In the same manner, if MCTDH is applied to a
system of bosons, the wavefunction must be symmetrized leading to the MCTDHB
method [59].

As in TDH, this ansatz is not unique. One may perform linear transformations
among the SPFs (orbitals) and the inverse transformations on the coefficients (A-
vector). Defining transformed SPFs and coefficients as

ϕ̃(κ)
jκ

=
∑

lκ

U (κ)
jκlκ

ϕ(κ)
lκ

,

Ã j1... j f =
∑

l1···l f

Al1...l f (U
(1))−1

l1 j1
· · · (U ( f ))−1

l f j f
, (8.153)

whereU (κ) denotes an arbitrary regular matrix, one obtains an unchanged total wave-
function

� =
∑

j1... j f

Ã j1... j f ϕ̃ j1 · · · ϕ̃ j f . (8.154)

As in TDH, we need constraints to lift the ambiguity. As constraints we choose

i
〈
ϕ(κ)

l

∣∣ϕ̇(κ)
j

〉 = 〈ϕ(κ)
l

∣∣g(κ)
∣∣ϕ(κ)

j

〉
, (8.155)

with some arbitrary constraint operator g(κ). The operator g(κ) defines the trans-
formation matrix U (κ). In fact, after the equations of motion are derived, one can
show

i U̇
(κ) = g(κ)T

U (κ) , (8.156)

where
(g(κ))l j = 〈ϕ(κ)

l

∣∣g(κ)
∣∣ϕ(κ)

j

〉
, (8.157)

A formal solution is hence

U (κ)(t) = T exp
(− i

∫ t

0
g(κ)T

(t ′) dt ′) , (8.158)
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where T is the time-ordering operator, and U (κ) is the transformation matrix from
the SPFs computed with g(κ) ≡ 0 to those computed with g(κ).

It is of great advantage if the SPFs are orthonormal. This is not a restriction as
one can always find a transformation U (κ) that orthogonalizes the SPFs. The overlap
matrix is given by (dropping κ for the sake of simplicity)

Sl j = 〈ϕl

∣∣ϕ j
〉
, (8.159)

and
Ṡl j = 〈ϕl

∣∣ϕ̇ j
〉+ 〈ϕ̇l

∣∣ϕ j
〉 = −i (gl j − g∗

jl) = −i (g − g†)l j .

Hence,
Ṡ = 0 if g = g† , (8.160)

and thus we require Hermitian constraint operators. If the initial WF, �(0), is built
on orthornomal SPFs

S(κ)
l j (0) = 〈ϕ(κ)

l (0)
∣∣ϕ(κ)

j (0)
〉 = δl j , (8.161)

then it follows that the SPFs stay orthonormal at all times, because Ṡ
(κ) = 0 and,

hence, S(κ)(t) = 1.
Before we derive the MCTDH equations of motion we have to introduce some

notations:

• Composite indices:

J ≡ ( j1, . . . , j f ) ,
AJ ≡ A j1··· j f .

• Configuration or Hartree product:

�J ≡∏ f
κ=1 ϕ(κ)

jκ
,

which allows us to write the MCTDH wavefunction in a compact form

� =
∑

J

AJ �J . (8.162)

Next, we introduce single-hole functions. The WF � lies, of course, in the space
spanned by the Hartree product of SPFs and we can make use of completeness

� =
nκ∑

l=1

∣∣ϕ(κ)
l

〉〈
ϕ(κ)

l

∣∣�
〉
κ

=
nκ∑

l=1

ϕ(κ)
l �

(κ)
l . (8.163)

To make this clear, we write the single-hole function �
(κ)
l for the first DOF κ = 1
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�
(1)
l = 〈ϕ(1)

l

∣∣�
〉 =

n2∑

j2=1

· · ·
n f∑

j f =1

Al j2··· j f ϕ(2)
j2

· · ·ϕ( f )

j f
. (8.164)

For a general definition, we need an extended nomenclature:

• Jκ ≡ ( j1, . . . , jκ−1, jκ+1, . . . , j f ) ,
• Jκ

l ≡ ( j1, . . . , jκ−1, l, jκ+1, . . . , j f ) ,
• �Jκ ≡∏ f

ν=1
ν �=κ

ϕ(ν)
jν

.

Then
�

(κ)
l =

∑

Jκ

AJκ
l
�Jκ . (8.165)

The single-hole functions allow us to introduce mean fields

〈
H
〉(κ)

jl = 〈�(κ)
j

∣∣H
∣∣�(κ)

l

〉
. (8.166)

Note that we have not only one mean field for each degree of freedom, but a matrix
of mean fields. Next, we introduce the density matrix:

ρ(κ)
kl = 〈�(κ)

k

∣∣�(κ)
l

〉
. (8.167)

As the SPFs are orthonormal, the integrations are readily performed to yield

ρ(κ)
kl =

∑

Jκ

A∗
Jκ

k
AJκ

l
.

Note that 〈
�
∣∣�
〉 =
∑

J

A∗
J AJ = ‖A‖2 , (8.168)

again due to the orthonormality of the SPFs. Hence,

Tr [ρ(κ)] =
nκ∑

j=1

ρ(κ)
j j = ‖�‖2 . (8.169)

We are now ready to derive the MCTDH-EOM. But before doing so, let us make
some remarks on densities.

8.3.2 Remarks on Densities *

We show here that the MCTDH density matrix is the transposed of the well-known
one-particle reduced density matrix.
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The density matrix of a mixed state reads

ρ =
∑

n

pn

∣∣�n
〉〈
�n

∣∣ ,

where pn ≥ 0 denote statistical weights. The density matrix of a pure state is given
by:

ρ = |�〉〈�∣∣ .

A reduced density is obtained by tracing out unwanted DOFs

ρred = Trace
unwanted dofs

{|�〉〈�∣∣} ,

and the trace of an operator is given by

Trace {A} =
∑

n

〈
n
∣∣A
∣∣n
〉
,

for any complete orthonormal basis
∣∣n
〉
.

Choosing
∣∣q
〉
as the basis one obtains the one-particle reduced densities

ρ
(κ)
red(qκ, q ′

κ) =
∫

�(q1 · · · qκ · · · q f ) �∗(q1 · · · q ′
κ · · · q f ) dq1 · · · dqκ−1dqκ+1 · · · dq f ,

and

〈
ϕ(κ)

j

∣∣ρ(κ)
red

∣∣ϕ(κ)
l

〉 =
∫

ϕ(κ)∗
j � �∗ ϕ(κ)

l dqκ dq ′
κ dq1 · · · dqκ−1dqκ+1 · · · dq f

=
∫

�
(κ)
j �

(κ)∗
l dq1 · · · dqκ−1dqκ+1 · · · dq f

= 〈�(κ)
l

∣∣�(κ)
j

〉 = ρMCTDH
l j . (8.170)

Hence (
ρ(κ)
red

) = (ρ(κ)
MCTDH

)T
, (8.171)

and the operator ρ(κ)
red reads

ρ(κ)
red =

∑

jl

∣∣ϕ(κ)
j

〉(
ρ(κ)
red

)
jl

〈
ϕ(κ)

l

∣∣

=
∑

jl

∣∣ϕ(κ)
j

〉(
ρ(κ)

MCTDH

)
l j

〈
ϕ(κ)

l

∣∣

=
∑

jl

∣∣ϕ(κ)
j

〉(
ρ(κ)

MCTDH

)∗
jl

〈
ϕ(κ)

l

∣∣ . (8.172)
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Note that the transformation to natural orbitals reads:

∣∣ϕ(κ,nat)
k

〉 =
∑

j

∣∣ϕ(κ)
j

〉
T ∗

jk , (8.173)

where T denotes the eigenvector matrix of ρ(κ)
MCTDH

The diagonal values, qκ = q ′
κ, of the reduced density are given by

ρ(κ)(qκ, qκ) ≡ ρ(κ)(qκ) =
∫ ∣∣�(q1 · · · q f )

∣∣2dq1 · · · dqκ−1dqκ+1 · · · dq f . (8.174)

These diagonal densities are frequently plotted as they conveniently highlight how
a wavepacket moves in time along a coordinate κ.

8.3.3 MCTDH Equations of Motion (MCTDH-EOM) *

Toderive theMCTDH-EOM,wefirst repeat theMCTDHansatz for thewavefunction

�(q1, . . . , q f , t) =
n1∑

j1

· · ·
n f∑

j f

A j1... j f (t) ϕ(1)
j1

(q1, t) · · · ϕ( f )

j f
(q f , t)

=
∑

J

AJ �J

=
nκ∑

j=1

ϕ(κ)
j �

(κ)
j , (8.175)

where the last equation holds for any κ = 1, . . . , f . The variations with respect to
coefficients and SPFs yield configurations and single-hole functions, respectively,

δ�

δAJ
= �J , (8.176)

and
δ�

δϕ(κ)
j

= �
(κ)
j . (8.177)

And the time differentiation is given by

�̇ =
∑

J

ȦJ �J +
f∑

κ=1

nκ∑

j=1

ϕ̇(κ)
j �

(κ)
j . (8.178)
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We first consider variations with respect to the coefficients only. For δAJ follows:

〈
δ�
∣∣H
∣∣�
〉 = 〈�J

∣∣H
∣∣�
〉

=
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL (8.179)

i
〈
δ�
∣∣�̇
〉 = i

〈
�J

∣∣�̇
〉

= i
∑

L

〈
�J

∣∣ ȦL�L
〉+ i

∑

κ

∑

l

〈
�J

∣∣ϕ̇(κ)
l �

(κ)
l

〉

= i ȦJ + i
∑

κ

∑

l

〈
ϕ(κ)

jκ

∣∣ϕ̇(κ)
l

〉 〈
�Jκ

∣∣�(κ)
l

〉

= i ȦJ + i
∑

κ

∑

l

(− i g(κ)
jκl

)
AJκ

l
. (8.180)

The Dirac-Frenkel VP sets Eqs. (8.179, 8.180) equal, and solving for Ȧ yields

g(κ)
jκl ≡ 〈ϕ(κ)

j

∣∣g(κ)
∣∣ϕ(κ)

l

〉 = i
〈
ϕ(κ)

j

∣∣ϕ̇(κ)
l

〉
, (8.181)

which holds because

〈
�Jκ

∣∣�(κ)
l

〉 =
∑

Lκ

〈
�Jκ

∣∣ALκ
l
�Lκ

〉 = AJκ
l
, (8.182)

and

i ȦJ =
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL − i
f∑

κ=1

nκ∑

l=1

g(κ)
jκl AJκ

l
. (8.183)

Next we consider variations with respect to the SPFs. For δϕ(κ)
j follows:

〈
δ�
∣∣H
∣∣�
〉 = 〈�(κ)

j

∣∣H
∣∣�
〉

= 〈�(κ)
j

∣∣H
∣∣
∑

l

�
(κ)
l ϕ(κ)

l

〉

=
nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l (8.184)

i
〈
δ�
∣∣�̇
〉 = i

∑

L

〈
�

(κ)
j

∣∣�L
〉

ȦL

︸ ︷︷ ︸
part 1

+ i
∑

L

〈
�

(κ)
j

∣∣
f∑

ν=1

nν∑

l=1

ϕ̇(ν)
l �

(ν)
l

〉

︸ ︷︷ ︸
part 2

. (8.185)
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For the sake of simplicitywe set g(κ) ≡ 0 in the following. ThenEq. (8.183) simplifies
to

i ȦL = 〈�L

∣∣H
∣∣�
〉 =
∑

K

〈
�L

∣∣H
∣∣�K

〉
AK , (8.186)

and Eq. (8.185) part 1 reads

i
∑

L

〈
�

(κ)
j

∣∣�L
〉
ȦL =

∑

L

〈
�κ

j

∣∣�L
〉 〈

�L

∣∣H
∣∣�
〉
, (8.187)

which, with
�L = �Lκ ϕ(κ)

lκ
, (8.188)

and
�

(κ)
j =

∑

Jκ

AJκ
j
�Jκ , (8.189)

can be turned into

(part1) =
∑

Lκ,lκ

A∗
Lκ

j

∣∣ϕ(κ)
lκ

〉〈
ϕ(κ)

lκ
�Lκ

∣∣H
∣∣�
〉 = P (κ)

〈
�

(κ)
j

∣∣H
∣∣�
〉
, (8.190)

where we have introduced the MCTDH projector

P (κ) =
nκ∑

j=1

∣∣ϕ(κ)
j

〉〈
ϕ(κ)

j

∣∣ . (8.191)

Hence for part 1 of Eq. (8.185) we arrive at

i
∑

L

〈
�

(κ)
j

∣∣�L
〉

ȦL = P (κ)
〈
�

(κ)
j

∣∣H
∣∣�
〉 = P (κ)

nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l . (8.192)

Next, we turn to part 2 of Eq. (8.185)

i
〈
�

(κ)
j

∣∣
f∑

ν=1

nν∑

l=1

ϕ̇(ν)
l �

(ν)
l

〉 = i
〈
�

(κ)
j

∣∣
∑

l

ϕ̇(κ)
l �

(κ)
l

〉 = i
∑

l

ρ(κ)
jl ϕ̇(κ)

l . (8.193)

Here we have used 〈
ϕ(κ)

j

∣∣ϕ̇(κ)
l

〉 = 0 , (8.194)

which holds for any j and l because g(κ) ≡ 0 is assumed. Only when ν = κ there is
no SPF with which ϕ̇ is to be overlapped.



242 8 Introduction to Numerical Methods

Using again the Dirac-Frenkel VP and equate Eq. (8.184) with the sum of Eqs.
(8.192) and (8.193) we have

nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l = P (κ)

nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l + i

∑

l

ρ(κ)
jl ϕ̇(κ)

l , (8.195)

or
iϕ̇(κ)

j =
∑

k,l

(
ρ(κ)−1)

jk

(
1 − P (κ)

) 〈
H
〉(κ)

kl ϕ(κ)
l . (8.196)

Hence for g(κ) ≡ 0 we have the following set of EOM:

i ȦJ =
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL ,

iϕ̇(κ)
j = (1 − P (κ)

) nκ∑

k,l=1

(
ρ(κ)−1)

jk

〈
H
〉(κ)

kl ϕ(κ)
l .

(8.197)

(8.198)

Introducing vectors of SPFs

ϕ(κ) = (ϕ(κ)
1 · · ·ϕ(κ)

nκ

)T
, (8.199)

we can write the last equation more compactly

iϕ̇(κ) = (1 − P (κ)
)
ρ(κ)−1 〈

H
〉(κ)

ϕ(κ) . (8.200)

In full generality the EOM are derived in the complement, Sect. 8.8. They read

i ȦJ =
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL −
f∑

κ=1

nκ∑

l=1

g(κ)
jκl AJκ

l
,

iϕ̇(κ) = (g(κ) 1
)
ϕ(κ) + (1 − P (κ)

){
ρ(κ)−1 〈

H
〉(κ) − g(κ) 1

}
ϕ(κ) .

(8.201)

The last equation may be written as

iϕ̇(κ) = P (κ) g(κ) ϕ(κ) + (1 − P (κ)
)

ρ(κ)−1 〈
H
〉(κ)

ϕ(κ) , (8.202)

or
iϕ̇(κ) = {g(κ)T + (1 − P (κ)

)
ρ(κ)−1 〈

H
〉(κ)}

ϕ(κ) , (8.203)
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As

P (κ) g(κ) ϕ(κ)
j =

∑

l

∣∣ϕ(κ)
l

〉〈
ϕ(κ)

l

∣∣g(κ)
∣∣ϕ(κ)

j

〉

=
∑

l

∣∣ϕ(κ)
l

〉
g(κ)

l j

=
∑

l

g(κ)
l j ϕ(κ)

l = (gT ϕ
)

j . (8.204)

Defining
Hg = H −

∑

κ

g(κ) , (8.205)

one arrives at the EOM

i ȦJ =
∑

L

〈
�J

∣∣Hg

∣∣�L
〉

AL ,

iϕ̇(κ) = {g(κ) 1 + (1 − P (κ)
)
ρ(κ)−1 〈

Hg
〉(κ)}

ϕ(κ) .

(8.206)

To prove Eq. (8.206), we note:

〈
�J

∣∣H
∣∣�L
〉 = 〈�J

∣∣Hg +
∑

κ

g(κ)
∣∣�L
〉 = 〈�J

∣∣Hg

∣∣�L
〉+
∑

κ

g(κ)
jκlκ

δJκ Lκ , (8.207)

where the previous last term cancels the last term of the i Ȧ equation. And similarly

〈
H
〉(κ)

jl
= 〈Hg +

∑

κ

g(κ)
〉(κ)

jl

= 〈�(κ)
j

∣∣g(κ)
∣∣�(κ)

l

〉+
∑

ν �=κ

〈
�

(κ)
j

∣∣g(ν)
∣∣�(κ)

l

〉+ 〈Hg
〉(κ)

jl

= g(κ) ρ(κ)
jl + ε jl + 〈Hg

〉(κ)

jl , (8.208)

which defines the matrix ε jl . The EOM for the SPF hence reads

iϕ̇(κ) = g(κ) ϕ(κ) + (1 − P (κ)
){

ρ−1 [〈Hg
〉(κ) + ε + g(κ) ρ

]− g(κ)
}
ϕ(κ)

= g(κ) ϕ(κ) + (1 − P (κ)
)
ρ−1

〈
Hg
〉(κ)

ϕ(κ) , (8.209)

as ε ϕ(κ) is annihilated by the projector (1 − P (κ)). This finishes the proof.
The two most obvious choices for constraint operator are either

g(κ) ≡ 0 , (8.210)
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or
g(κ) = h(κ) , (8.211)

where h(κ) denotes an operator acting on the κ-th DOF only, such that

H =
∑

κ

h(κ) + HR , (8.212)

i.e. the
∑

h(κ) term stands for the separable part of H , and HR for the non-separable
or residual part.

With the arguments just given (replacing g(κ) with h(κ) and Hg with HR in Eqs.
(8.206, 8.208)), we find for g(κ) ≡ 0

i ȦJ =
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL ,

iϕ̇(κ) = (1 − P (κ)
) {

h(κ) 1 + ρ(κ)−1 〈
HR
〉(κ)}

ϕ(κ) ,

(8.213)

whereas for g(κ) = h(κ) we arrive at

i ȦJ =
∑

L

〈
�J

∣∣HR

∣∣�L
〉

AL ,

iϕ̇(κ) = {h(κ) 1 + (1 − P (κ)
)

ρ(κ)−1 〈
HR
〉(κ)}

ϕ(κ) .

(8.214)

In the MCTDH package one may switch between those two sets of EOM with the
keywords proj-h, and h-proj with obvious meaning.

It is illustrative to study the separable case H =∑κ h(κ), i.e. HR ≡ 0. For g(κ) ≡ 0
one obtains:

i ȦJ =
∑

L

∑

κ

〈
�J

∣∣h(κ)
∣∣�L
〉

AL

=
f∑

κ=1

nκ∑

l=1

〈
ϕ(κ)

jκ

∣∣h(κ)
∣∣ϕ(κ)

lκ

〉
AJκ

l
, (8.215)

iϕ̇(κ)
j = (1 − P (κ)

)
h(κ)ϕ(κ)

j (8.216)

and for g(κ) = h(κ):
i ȦJ = 0 ,

iϕ̇(κ)
j = h(κ) ϕ(κ)

j .
(8.217)

This suggests that the choice g(κ) = h(κ) is of advantage, at least if HR is small
compared to the separable part

∑
h(κ). However, for the sake of simplicity, we will

assume g(κ) = 0 in the following, if not stated otherwise.
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8.3.4 Examples

Let us go back to the discussion of the end of Sect. 8.2.1 and consider theHamiltonian
operator of the 2D model defined by Eq. (8.144). We saw that the quality of the
TDH approximation was linked to the correlation between the two coordinates x1
and x2, i.e. to the term W (x1)W (x2) (see Eq. (8.144)). In the same manner, the
number of configurations in the MCTDH expansion will be linked to the correlation
between the coordinates. If (W1 − 〈W1〉)(W2 − 〈W2〉) remains small, the number
of configurations will be small and even the TDH approximation (i.e. one single
configuration only) can provide a qualitatively correct description of the physics. On
the other hand, if terms like W (x1)W (x2) become large, the number of configurations
will increase accordingly.

For the dissociation of NOCl on the electronic state S1, Fig. 8.4 displays a numer-
ically exact propagation of the wavepacket with MCTDH. Since the wavepacket
remains rather localized and the shape of the potential along rv varies slowly with
rd , the correlation effects coming from terms of the form (W1 − 〈W1〉)(W2 − 〈W2〉)
should remain rather weak. The problem should be optimally suited for the Hartree-
type description. Indeed, in Ref. [54] it has been shown that with one SPF in each
degree of freedom (TDH approximation), a structureless photodissociation spectrum
can already be obtained that correctly describes the center and the width of the exact
spectrum. With two SPFs in each degree of freedom (8 configurations since there
are three internal degrees of freedom), structures corresponding to transitions to the
NO-vibration (mainly to v = 1 and 2) are found. With 3 SPFs (27 configurations), a
nearly quantitative agreement between the MCTDH and the exact result is reached.
For 125 configurations (5 SPFs in each degree of freedom), the MCTDH and exact
results become identical within graphical resolution. The number of primitive func-
tions is equal3 to 36 × 24 × 60 = 51840 to be compared with the number of SPFs
(125): the subspace built by the SPFs is 414 times smaller than the original primitive
space. For NOCl, fast convergence is found when increasing the number of SPFs
and few configurations provide the main physical content of the problem.

The H+H2 reaction in Jacobi coordinates displays much stronger correlation
effects. The potential energy is depicted in Fig. 8.5. The terms such as (W1 −
〈W1〉)(W2 − 〈W2〉) become very large when the H-atom reaches the transition state
and the TDH approximation cannot even qualitatively describe the fact that one part
of the wavepacket can react (from H(1)+H(2)H(3) to H(1)H(2)+H(3)) (see Ref. [60]).
Few configurations cannot correctly reproduce the reaction probability as a function
of the energy. Convergence is obtained [61] for 3024 configurations (18 SPFs in rd ,
14 in rv , and 12 in θ), i.e. one order of magnitude larger than for the spectrum of

3For the primitive basis set of each coordinate, we use a DVR (see Sect. 8.1.3), more precisely HO
DVR for R1 and a sine DVR for R2 with R1 ∈ [3.8, 5.6] a.u. and an unrestricted Legendre DVR
for θ. Here, N1 = 36 for rd , N2 = 24 for rv , and N3 = 60 for θ.
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NOCl. The number of primitive functions is equal4 to 68 × 48 × 31 = 101,184 (see
the caption of Fig. 8.5) to be compared with the number of SPFs (3024): the subspace
built by the SPFs is 33.5 times smaller than the original primitive space. For H+H2,
the Jacobi coordinates do not provide a single reaction coordinate that describes
the chemical process. Both rd and rv play the role of a reaction coordinate in one
of the two channels resulting in strong correlation around the saddle point and in
particular in the reactive exit channel, because here “wrong” Jacobi vectors, namely
those of the entrance channel, are used (see the discussion in Sect. 5.2). Of course,
the separability of the Hamiltonian operator and hence the correlation depends upon
the set of coordinates. In particular, it is well-known that a set of so-called hyper-
sherical coordinates leads to a more separable form of the potential energy for a
system such as H+H2 (see Refs. [62–64] and Sect. 12.7 of Ref. [2] for the definition
of hyperspherical coordinates). However, hypersherical coordinates lead to a com-
plicated, singular KEO, which is difficult to handle. To conclude, the convergence
of MCTDH is related to the correlation between coordinates. In addition, a set of
inappropriate coordinates can easily introduce some strong artificial correlation and
it is this effect that slows down the convergence of MCTDH. This is exemplified by
the study of the H+H2 system where the coordinates become inappropriate when
the wavepacket reaches the exit channel.

8.3.5 Mode Combination

There is no prescription for SPFs to depend on a single coordinate, and they may
depend on several coordinates. Several physical coordinates can be regrouped into
one logical coordinate, also called particle or combined mode

Qκ ≡ (qκ,1, qκ,2, . . . , qκ,d
)
, (8.218)

ϕ(κ)
j (Qκ, t) = ϕ(κ)

j (qκ,1, qκ,2, . . . , qκ,d , t) . (8.219)

The MCTDH wavefunction is now expanded as

�(q1, . . . , q f , t) ≡ �(Q1, . . . , Q p, t) =
∑

j1··· jp

A j1··· jp (t)
p∏

κ=1

ϕ(κ)
j (Qκ, t) , (8.220)

and the SPFs themselves are expanded as:

ϕ(κ)
j (Qκ, t) =

∑

i1···id

C (κ, j)
i1···id

(t) χ(κ,1)(qκ,1) · · · χ(κ,d)(qκ,d) . (8.221)

4For the primitive basis set of each coordinate, we use a DVR (see Sect. 8.1.3), more precisely a
sine DVR for R1 and R2 with R1 ∈ [0.6, 6.24] and 48 functions and R2 ∈ [1.0, 9.04] a.u. and 68
functions, and a Legendre DVR for θ with 31 functions.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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In addition, the number of SPFs per particle required for convergence will increase
with mode combination. If ñ = nd held, there would be no gain, the A-vector length
would not change. Luckily one finds as a rule of thumb:

ñ ≈ d · n , (8.222)

sometimes even less. Here, ñ denotes the number of SPFs required for convergence
when mode-combination is used, while n is the corresponding number of SPFs
without mode-combination. For sake of simplicity it is assumed that nκ = n for all
κ, and similarly for ñ, N , and Ñ . Note that now all correlations between the DOFs
within a particle is taken care of at the SPF level. Only the correlation between
particles has to be accomplished by the A-vector.

The usefulness ofmode-combination originates from the fact that the size of the A-
vector is reduced, but the usefulness is limited by the fact that nowmulti-dimensional
SPFs have to be propagated. If one “over-combines”, the propagation of the SPFswill
take more effort than the propagation of the A-vector and efficiency is lost. However,
we know a method that efficiently propagates multi-dimensional wavefunctions:
MCTDH! One hence may think of propagating the SPFs of an MCTDH calculation
with MCTDH. This idea has led to the development of the multi-layer MCTDH
(ML-MCTDH) algorithm.

8.3.6 Summary and Multi-layer MCTDH

Let us summarize the standard andMCTDHmethods and introduce theML-MCTDH
method. The latter represents an extension of the standard MCTDH approach that
gives access to quantum dynamics simulations for significantly larger systems. The
key factor for this powerful extension is the more flexible way of representing the
overall wavefunction in the ML-MCTDHmethod. ML-MCTDH has been explained
elsewhere in great detail [65–72]. To explain the basics ofML-MCTDHwhile avoid-
ing clumsy notations we confine ourselves here to considering a three-dimensional
case, q1, q2, q3 denoting the three degrees of freedom. In the standard wavepacket
method, the wavefunction is written as:

�(q1, q2, q3, t) =
N1∑

i1=1

N2∑

i2=1

N3∑

i3=1

Ci1,i2,i3(t)χ
(1)
i1

(q1)χ
(2)
i2

(q2)χ
(3)
i3

(q3) . (8.223)

χ(1)
i1

(q1), χ(2)
i2

(q2), and χ(3)
i3

(q3) are time-independent primitive basis set functions.
Thus, only the expansion coefficients vary during the time evolution. In contrast, the
MCTDH ansatz (without mode combination) can be written as:
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�(q1, q2, q3, t) =
n1∑

j1=1

n2∑

j2=1

n3∑

j3=1

A j1, j2, j3(t)ϕ
(1)
j1

(q1, t)ϕ(2)
j2

(q2, t)ϕ(3)
j3

(q3, t) , (8.224)

where

ϕ(1)
j1

(q1, t) =
N1∑

i1=1

c(1, j1)
i1

(t)χ(1)
i1

(q1) , (8.225)

ϕ(2)
j2

(q2, t) =
N2∑

i2=1

c(2, j2)
i2

(t)χ(2)
i2

(q2) , (8.226)

and

ϕ(3)
j3

(q3, t) =
N3∑

i3=1

c(3, j3)
i3

(t)χ(3)
i3

(q3) . (8.227)

Now, both the expansion coefficients and the SPFs are time-dependent. They evolve
according to the variation principle and the SPFs adapt along the propagation. This
greatly reduces the number of parameters compared to standard wavepacket prop-
agation methods since, in general, n1, n2, and n3 are smaller than N1, N2, and N3.
However, the scalability to very large systems of the MCTDH method is limited
since the SPFs are expanded in terms of time-independent basis functions. It is thus
natural to exploit the possibility of applying the basic MCTDH strategy also at the
level of the configurations/SPFs. This is the multilayer ML-MCTDH theory. Le us
consider an example. A ML-MCTDH ansatz with three layers5 could be:

�(q1, q2, q3, t) =
n12∑

j12=1

n3∑

j3=1

A j12, j3(t)ϕ
(12)
j12

(q1, q2, t)ϕ(3)
j3

(q3, t) , (8.228)

where

ϕ(12)
j12

(q1, q2, t) =
n1∑

k1=1

n2∑

k2=1

B(12, j12)
k1,k2

(t)ξ(1)
k1

(q1, t)ξ(2)
k2

(q2, t) , (8.229)

ξ(1)
k1

(q1, t) =
N1∑

i1=1

c(1,k1)
i1

(t)χ(1)
i1

(q1) , (8.230)

5A two-layers ML-MCTDH is identical to standard MCTDH
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and

ξ(2)
k2

(q2, t) =
N2∑

i2=2

c(1,k2)
i2

(t)χ(2)
i2

(q2) . (8.231)

ϕ(3)
j3

(q3, t) is expressed as in Eq. (8.227). In other words, for a combined SPF, one
can use a new, additional MCTDH expansion instead of the primitive basis. Thus,
using this approach, deeper layer schemes can be constructed [69, 71, 72]. All the
time-dependent functions are optimized at the same time according to the variational
principle. Finally, as a crude rule of thumb, we note that mode combination usu-
ally becomes important if there are 5 or more DOFs and the multi-layer approach
usually outperforms standard MCTDH if there are more than 10 DOFs. For large
systems ML-MCTDH can be much faster than MCTDH, and it can treat systems
of sizes undoable for MCTDH. Systems with several hundreds of DOFs have been
successfully treated with ML-MCTDH [71, 73, 74].

8.3.7 Electronic States

If theWF is to be propagated on several electronic states, i.e. when vibronic couplings
become important, the WF may be written as follows:

∣∣�
〉 =

n1∑

j1

· · ·
n f∑

j f

ns∑

α=1

A j1··· j f α ϕ(1)
j1

(q1, t) · · · ϕ( f )

j f
(q f , t)

∣∣α
〉
. (8.232)

This is the so-called single-set formalism. It is called single-set because there is
one set of SPFs for all electronic states. The single-set formalism closely follows
the MCTDH philosophy. In contrast, the multi-set formulation uses different sets of
SPFs for each state

∣∣�
〉 =

ns∑

α=1

ψα(q1, . . . , q f , t)
∣∣α
〉
, (8.233)

where each component ψα is expanded in MCTDH form

ψα(q1, . . . , q f , t) =
nα
1∑

jα
1

· · ·
nα

f∑

jα
f

A(α)
jα
1 ··· jα

f
(t)ϕ(1,α)

j1
(q1, t) · · · ϕ( f,α)

jα
f

(q f , t) . (8.234)
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The equations of motion must be generalized

i Ȧ(α)
J =

ns∑

β=1

∑

L

K(α,β)

J L A(β)

L , (8.235)

i ϕ̇(κ,α)
j = (1 − P (κ,α)

) nα
κ∑

k=1

(
ρ(κ,α)

)−1
jk

ns∑

β=1

nβ
κ∑

l=1

H(κ,α,β)

kl ϕ
(κ,β)

l , (8.236)

with the obvious definitions:

K(α,β)

J L = 〈�(α)
J

∣∣H (α,β)
∣∣�(β)

L

〉
, (8.237)

H(κ,α,β)

jl = 〈�(κ,α)
j

∣∣H (α,β)
∣∣�(κ,β)

l

〉
, (8.238)

where H (α,β) denotes the electronic (α,β)-block of the full Hamiltonian. The single-
set formalism is of advantage if the dynamics in the different electronic states is
similar, e.g. when the surfaces are almost parallel. The more complicated multi-set
formalism is more efficient when the dynamics on the various diabatic states is rather
different. There is then one set of single-particle functions for each electronic state. In
most casesmulti-set is the preferred scheme.Note that the SPFs of different electronic
states are no longer orthogonal to each other, which complicates the algorithm.

8.3.8 Propagation in MCTDH *

As shown above, the MCTDH equations of motion (for g ≡ 0 and H =∑κ h(κ) +
HR) using

KJ L = 〈�J

∣∣H
∣∣�L
〉

and
〈
HR
〉(κ)

kl =
s∑

r=1

H(κ)
rkl h(κ)

r ,

read

i ȦJ =
∑

L

KJ L AL ,

iϕ̇(κ)
j = (1 − P (κ)

){
h(κ)ϕ(κ)

j +
nκ∑

k,l=1

(
ρ(κ)
)−1

jk

〈
HR
〉(κ)

kl ϕ(κ)
l

}
.

(8.239)

This set of non-linear coupled differential equations can be solved by a stan-
dard all-purpose integrator such as the Runge-Kutta or Adams-Bashforth-Moulton
integrators. (The latter have not been described in Sect. 8.1.6.) This strategy is
called the variable mean-field (VMF) approach. The problem is that the mean-fields
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matrices H(κ)
rkl and the K-matrix KJ L have to be built at every time step. The time

steps, however, have to be small as one has to describe an oscillating function.
Formally � is given by

�(t) =
∑

n

an�ne−i En t , H�n = En�n . (8.240)

To integrate e−i En t one needs step sizes of the order

�t � 1

|En| . (8.241)

Hence the step size is determined by the absolute largest eigenvalue of the matrix
representation of the Hamiltonian.

The mean fields, on the other hand, are not that strongly oscillating. It is hence
tempting to set the mean-fields constant over a larger update time step τ and to
integrate the A-vector and the SPFs with much smaller time steps. This is called the
constant mean-field (CMF) approach. Keeping the mean-fields constant yields

i ȦJ =
∑

L

K̄J L AL ,

iϕ̇(1)
j = (1 − P (1)

){
h(1)ϕ(1)

j +
∑

ρ̄(1)−1

jk

∑

r

H̄(1)
rkl h(κ)

r ϕ(1)
l

}
,

...

iϕ̇( f )

j = (1 − P ( f )
){

h( f )ϕ
( f )

j +
∑

ρ̄
( f )−1

jk

∑

r

H̄( f )

rkl h(κ)
r ϕ

( f )

l

}
. (8.242)

Note that all the differential equations decouple! The bar indicates that the quantities
are kept constant over the update time step τ . As the equations decouple, one can
use different time steps and in fact different integrators for each set of equations.
The EOM for the A-vector is linear and now time-independent, thus one may use
an adapted integrator such as Short Iterative Lanczos (SIL). The EOM for the SPFs
are still non-linear because of the projector P (κ). But the main gain is of course that
the mean fields must be built less often.

The scheme outlined above is too simple. One needs at least a second-order
scheme, i.e. one in which the error for one step scales like ‖�ex − �‖ ∼ τ 3. In the
present scheme, the error scales like τ 2.

A higher-order scheme is displayed in Fig. 8.6:
Note that there is an additional propagation of the SPFs from t = 0 to t = τ/2

(second line). The additional backward propagation of the coefficients (A(τ/2) →
Ã(0)) (last line) is done for error estimation only. This step is virtually cost free,
because the Krylov-space, built for the previous forward propagation of A, is used.
(The SIL integrator introduced in Sect. 8.1.6 is used for A-propagation). A slightly
different CMF-scheme has recently been discussed by Manthe [75].
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Fig. 8.6 Second-order CMF scheme

The error of the propagation scheme of Fig. 8.6 is given in lowest-order by

‖� − �̃‖2 = ‖�A‖2 +
f∑

κ=1

tr
(
�O · ρ(κ)

)
, (8.243)

where

�A = A(0) − Ã(0) ,

�ϕ j = ϕ j (τ/2) − ϕ̃ j (τ/2) ,

�O jl = 〈�ϕ j

∣∣�ϕl
〉
. (8.244)

This allows for an automatic step-size control. One sets an error limit and the algo-
rithm searches for an appropriate value of τ .

To demonstrate that the scheme on Fig. 8.6 gives an improved scaling of the error,
let us consider a one-dimensional differential equation. The Taylor expansion of the
solution propagated over one step reads:

y(τ ) = y(0) + y′(0) · τ + 1

2
y′′(0) · τ 2 + 1

6
y′′′(0) · τ 3 + . . . (8.245)

The previous scheme, Eq. (8.242), is equivalent to a Euler integrator

yapp(τ ) = y(0) + y′(0) · τ , (8.246)

which has an error

error : (yapp − y)(τ ) = −1

2
y′′(0) · τ 2 + . . . (8.247)
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To investigate the error introduced by the scheme shown on Fig. 8.6 for the SPFs,
we first note that the time derivative at a half step reads

y′(τ/2) = y′(0) + y′′(0) · τ/2 + 1

2
y′′′(0) · (τ/2)2 .

The one-step propagated solution, using this mid-step derivative, reads

yapp(τ ) = y(0) + y′(τ/2) · τ = y(0) + y′(0) · τ + y′′(0) · τ 2/2 + y′′′(0) · τ 3/8 ,

(8.248)
and has the error

error : (yapp − y)(τ ) = (1
8

− 1

6

)
y′′′(0) · τ 3 = − 1

24
y′′′(0) · τ 3 . (8.249)

Similarly for the propagator of the A-vector, we obtain

yapp(τ ) = y(0) + y′(0) · (τ/2) + y′(τ ) · (τ/2) ,

= y(0) + y′(0) · τ + y′′(0) · (τ 2/2)
1

4
y′′′(0) · τ 3 , (8.250)

and the error

error : (1
4

− 1

6

)
y′′′(0) · τ 3 = 1

12
y′′′(0) · τ 3 . (8.251)

Hence the error done in one step scales like τ 3. The total error then scales like τ 2 as
the number of steps scales like τ−1 (Fig. 8.7).

Fig. 8.7 Graphical interpretation of the numerical integration. The bold line (middle) shows the
exact solution of a differential equation. Taking the initial derivative y′(0) throughout the propaga-
tion leads to a rather large error at t = τ ; see upper straight line. Using y′(τ/2) rather than y′(0)
provides a much better solution; see the lowest straight line. And using y′(0) for the first half-step
and y′(τ ) for the second half-step also provides a good approximate solution
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To understand why CMF works, let us consider a separable case

H =
f∑

κ=1

h(κ) , (8.252)

hence HR = 0 and H(κ) = 0 and the mean fields
〈
H
〉(κ)

reduce to h(κ). These are
obviously constant but what is with KJ L? In the following we allow for a general
constraint operator g(κ), although CMF is usually performed with g(κ) ≡ 0. The K
matrix is then given (cf. Eq. (8.201)) by

KJ L = 〈�J

∣∣H −
∑

κ

g(κ)
∣∣�L
〉 =

f∑

κ=1

〈
ϕ(κ)

jκ

∣∣h(κ) − g(κ)
∣∣ϕ(κ)

lκ

〉
δJκ Lκ . (8.253)

The EOM for the ϕ’s read (we drop κ for simplicity):

iϕ̇ j = g ϕ j + (1 − P
) · (h − g

)
ϕ j . (8.254)

From this follows:

d

dt

〈
ϕ j
∣∣h − g

∣∣ϕl
〉 =

i
〈
g ϕ j + (1 − P)(h − g)ϕ j

∣∣h − g
∣∣ϕl
〉− i

〈
ϕ j
∣∣h − g

∣∣g ϕl + (1 − P)(h − g) ϕl
〉
,

= i
〈
ϕ j
∣∣g†(h − g) + (h† − g†)(1 − P)(h − g) − (h − g)g − (h − g)(1 − P)(h − g)

∣∣ϕl
〉
,

{
g†=g

}

= i
〈
ϕ j
∣∣(h† − h)(1 − P)(h − g)

∣∣ϕl
〉+ i

〈
ϕ j
∣∣gh − hg

∣∣ϕl
〉
, (8.255)

hence

d

dt
KJ L = 0 if h(κ) = h(κ)† ,

and
[
h(κ), g(κ)

] = 0 . (8.256)

The commutator vanishes for g(κ) ≡ 0 and g(κ) = h(κ), the standard choices! For
non-Hermitian h(κ) one may be tempted to choose g(κ) = h(κ) as this will ensure
a constant K. However, the choice g(κ) = h(κ) is only allowed for Hermitian h(κ)

because the constraint operators have to be Hermitian.
The CMF integrator can take arbitrarily large update steps τ if the Hamiltonian

is Hermitian and separable. In a scattering problem, the Hamiltonian often becomes
almost separable when the colliding partners are far apart from each other. However,
when the scattered particle is finally absorbed by a Complex Absorbing Potential
(CAP) the separable Hamiltonian becomes non-Hermitian and the CMF-integrator
is forced to take small steps. But our analysis has clearly shown that the assumption
of constant mean fields is violated by the non-separable (and non-Hermitian) terms
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of the Hamiltonian. These terms are usually much smaller than the separable ones,
which justifies the assumption that the mean fields can be taken as constant over a
small update time τ , which, however, is much larger than the integration steps used
to propagate the SPFs.

The CMF integrator scheme violates energy conservation which should hold for
constant Hermitian Hamiltonians. Only for τ → 0 energy conservation is strictly
obeyed. If an MCTDH calculation shows an energy deviation which is too high
to be acceptable, one must increase the integrator accuracy, in particular the CMF
accuracy.

8.4 Relaxation and Improved Relaxation *

The MCTDH algorithm can also be used to solve the time-independent Schrödinger
equation. This is a convenient approach to obtain eigenstates or quantum resonances
with high accuracy.

For this purpose, we combine iteratively a propagation in imaginary time, a
relaxation, of the SPFs with a diagonalisation of the Hamiltonian matrix (using the
Davidson algorithm) to determine the A-coefficients. This procedure is essentially a
vibrational Multi-Configuration Self-Consistent-Field (MCSCF) algorithm. In other
words, the procedure converges to one or several eigenstate(s) that are expanded as
linear combinations of products of SPFs. The latter may be viewed as vibrational
orbitals. Both the orbitals and the coefficients in the expansion are optimized with a
time-independent variational procedure as in the MCSCF method in quantum chem-
istry.

8.4.1 Propagation in Imaginary Time

The ground-state wavefunction can be obtained by a time-dependent method via a
relaxation, i.e. a propagation in negative imaginary time. The Schrödinger equation
is then turned into

�̇ = −H� . (8.257)

To see its effect, we expand the WF in terms of eigenstates and obtain

�(t) =
∑

n

an e−Ent�n . (8.258)

We now have decaying exponential functions. The state with the lowest energy (usu-
ally E0) will thus dominate as time increases. Of course, the norm must be restored.
To accomplish norm conservation, one may change the Schrödinger equation to
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�̇(t) = −(H − E(t)
)
�(t) , where E(t) = 〈�(t)

∣∣H
∣∣�(t)

〉
. (8.259)

Then,
〈
�(t)|�̇(t)

〉 = 0 ⇒ d

dt
‖�‖2 = 0 . (8.260)

The energy E can be interpreted as a Lagrange parameter introduced to keep the
norm of � constant (we assume � to be normalized). Differentiation of E(t) leads
to

Ė = −2
〈
�(t)|(H − E(t))2|�(t)

〉
. (8.261)

Hence the energy decreases with relaxation time and converges if the variance van-
ishes, i.e. if the wavefunction becomes an eigenstate of H . Usually this will be the
ground state. Only if the initial state is orthogonal to the ground state, the algorithm
will converge to an excited state.

Relaxation is effective when the initial state � has a reasonable overlap with the
ground state and when the ground state is well separated energetically from excited
states. However, relaxation may converge slowly if the energy of the first excited
state, E1, is close to the ground state energy E0. To damp out the contribution of the
excited state one needs a propagation time that satisfies (E1 − E0) · t ≈ 10 − 30�.
The relaxation can be accelerated, and excited states can be computed as well, if
the MCTDH A-vector is not determined by relaxation but by diagonalization. This
method is called improved relaxation.

8.4.2 Improved Relaxation: An MCSCF Procedure *

The improved relaxation algorithm [76, 77] can be derived via a standard time-
independent variational principle δ

{〈
�
∣∣H
∣∣�
〉− constraints

} = 0, i.e.

δ
{〈

�
∣∣H
∣∣�
〉− E

(∑

J

A∗
J AJ − 1

)−
f∑

κ=1

nκ∑

j,l=1

ε(κ)
jl

(〈
ϕ(κ)

j |ϕ(κ)
l

〉− δ jl
)} = 0 .

(8.262)
This approach is thus similar to the MCSCF method in quantum chemistry.

The first Lagrange parameter, E , ensures that the A-vector is normalized and the
ε(κ)

jl ensure that the SPFs stay orthonormal. We note that

〈
�
∣∣H
∣∣�
〉 =
∑

J K

A∗
J HJ K AK , with HJ K = 〈�J

∣∣H
∣∣�K

〉
. (8.263)

Varying A∗
J yields secular equations
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∑

K

HJ K AK = E AJ . (8.264)

Hence the coefficient vector is obtained as an eigenvector of the Hamiltonian matrix
represented in the basis of the SPFs. To obtain the coefficients we use the Davidson
algorithm described in Sect. 8.4.3.

Now, for the SPFs, using

〈
�
∣∣H
∣∣�
〉 = 〈

∑

j

�
(κ)
j ϕ(κ)

j

∣∣H
∣∣
∑

l

�
(κ)
l ϕ(κ)

l

〉 =
∑

j,l

〈ϕ(κ)
j |〈H 〉(κ)

jl |ϕ(κ)
l 〉 , (8.265)

and varying 〈ϕ(κ)
j | yields

nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l =

nκ∑

l=1

ε(κ)
jl ϕ(κ)

l . (8.266)

Projecting this equation onto ϕ(κ)
k leads to

ε(κ)
jk =

∑

l

〈
ϕ(κ)

k

∣∣〈H
〉(κ)

jl

∣∣ϕ(κ)
l

〉
, (8.267)

and from that follows
(
1 − P (κ)

) nκ∑

l=1

〈
H
〉(κ)

jl ϕ(κ)
l = 0 . (8.268)

As this equation holds for any j , it must hold for any linear combination as well. To
arrive at a form similar to the MCTDH equations of motion we insert the inverse of
the density operator

ϕ̇(κ)
j := −(1 − P (κ)

) ∑

k,l

(
ρ(κ)−1)

jk

〈
H
〉(κ)

kl
ϕ(κ)

l = 0 , (8.269)

with

ϕ̇ = ∂ϕ

∂τ
, τ = −i t . (8.270)

We thus obtain the updated SPFs simply by relaxation.
In fact, one can show that, when the SPFs are relaxed, the energy changes accord-

ing to

Ė = −2
f∑

κ=1

nκ∑

l=1

‖
nκ∑

j=1

(
ρ(κ)1/2

)
l j ϕ̇(κ)

j ‖2 ≤ 0 . (8.271)
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This implies that that the orbital relaxation will always lessen the energy. As the
energy cannot decrease indefinitely it follows ‖ϕ̇‖ → 0 for τ → ∞, hence Eq.
(8.269) will be satisfied for a sufficiently long relaxation.

Proof of Eq. (8.271): The A-vector is kept constant during the SPF-relaxation,
i.e. we use a constant mean-field (CMF) approach as described in Sect. 8.3.8. The
time derivative of the energy thus reads

Ė = 2 Re
〈
�̇
∣∣H
∣∣�
〉

= 2 Re
〈∑

κ

∑

j

ϕ̇(κ)
j �

(κ)
j

∣∣H
∣∣�
〉

= 2 Re
∑

κ

∑

j,l

〈
ϕ̇(κ)

j �
(κ)
j

∣∣H |ϕ(κ)
l �

(κ)
l

〉

= 2 Re
∑

κ

∑

j,l

〈
ϕ̇(κ)

j

∣∣〈H
〉(κ)

jl

∣∣ϕ(κ)
l

〉

= 2 Re
∑

κ

∑

j,l

〈
ϕ̇(κ)

j

∣∣(1 − P (κ)
)〈

H
〉(κ)

jl

∣∣ϕ(κ)
l

〉
, (8.272)

where the projector P (κ) could be inserted, because
〈
ϕ̇(κ)

j

∣∣ϕ(κ)
l

〉
= 0 is the adopted

constrained (see Eq. (8.155)). As

−
∑

k

ρ(κ)
jk ϕ̇(κ)

k = (1 − P (κ)
)∑

l

〈
H
〉(κ)

jl ϕ(κ)
l , (8.273)

we have

Ė = −2 Re
∑

κ

∑

j,k

〈
ϕ̇(κ)

j

∣∣ϕ̇(κ)
k

〉
ρ(κ)

jk

= −2 Re
∑

κ

∑

j,k,l

〈(
ρ(κ)1/2

)
l j ϕ̇

(κ)
j

∣∣(ρ(κ)1/2)lkϕ̇
(κ)
k

〉

= −2
∑

κ

∑

l

‖
∑

j

ρ(κ)1/2

l j ϕ̇(κ)
j ‖2 . (8.274)

�
Improved relaxation proceeds as follows: first, an initial state has to be defined.

This state should have a reasonable overlap with the target state. Then the matrix
representation of the Hamiltonian, HJ K , is built and diagonalized by a Davidson
routine: see Sect. 8.4.3. Actually HJ K is never explicitly built as a full matrix but
applied term by term to the A-vector (see Sect. 8.7.1). Then the mean fields are built
and the SPFs are relaxed until their time derivatives are sufficiently small. After that,
HJ K is built in the space of the new SPFs and the whole process is iterated until
convergence: this is an MCSCF iterative procedure.
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If the ground state is computed, the selection of the eigenvector of theHamiltonian
is simple: one takes the eigenvector of lowest energy. When excited states are to be
computed, that eigenvector is taken that corresponds to the wavefunction that has the
largest overlap with the initial state.

An MCTDH propagation always provides a result, whatever the number of SPFs.
If there are too few configurations, the propagation will be less accurate but usually
still describes the overall features correctly. This contrasts with improved relaxation,
where the diagonalisation/relaxation iteration loop fails to converge when the config-
uration space is too small. There is never a problem in computing the ground state,
but converging to excited states becomes more difficult the higher the excitation
energy or, more precisely, the higher the density of states.

The improved relaxation algorithm may be used in a block form [78], i.e. one
may start with a block of initial vectors, which then converges collectively to a set of
eigenstates. Formally the different wavefunctions are treated as electronic states of
one “superwavefunction”.As the single-set algorithm is used, there is one set of SPFs
for all wavefunctions. The mean fields are hence state-averaged mean fields and the
Davidson routine is replaced by a block-Davidson one. The block form of improved
relaxation is more efficient than the single-vector one, when several eigenstates are
to be computed. However, the block form requires considerably more memory.

Improved relaxation has been applied quite successfully to a number of problems.
For 4-atoms systems (6D) it is in general possible to compute all eigenstates of interest
(the lowest 150, say). For a system as large as H5O

+
2 (15D) it was, of course, only

possible to converge the first few low-lying states [79, 80].

8.4.3 The Davidson Algorithm *

The diagonalization of the Hamiltonian matrix to obtain the A-coefficients of Eq.
(8.264) is never performed in the full SPF basis set, which is often far too large. It is
performed by targeting one or a group of eigenstates and with an efficient algorithm
that avoids large matrices, such as the Davidson algorithm. The latter is an iterative
diagonalization method. Starting from an initial subspace, the algorithm looks for
residue vectors that contain, at least partly, the parts that aremissing in the eigenstates
we are looking for.

The Davidson algorithm will not be described in full detail here, and we refer to
Ref. [81] for the description of the algorithm.Let us first separate the exact eigenstates
and the exact eigenenergies into an approximate and an error term:

�i = ϕi + δi ,

Ei = ρi + εi . (8.275)
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�i and Ei denote the target eigenstate and the eigenvalue, ϕi and ρi are the corre-
sponding approximate values that are used as initial guesses. ρi = 〈ϕi |H |ϕi 〉. Since
ϕi is not an exact eigenstate, we have:

Hϕi = ρiϕi + ri , (8.276)

where ri is called the residual vector. It is given by

ri = (H − ρi )ϕi . (8.277)

Since

H�i = Ei�i , (8.278)

we have

H(ϕi + δi ) = (ρi + εi )(ϕi + δi ) , (8.279)

and thus

(H − ρi − εi )δi = −(H − ρi − εi )ϕi

= −ri + εϕi . (8.280)

Finding δi , i.e. what is missing in the guess to obtain the eigenstate, and appending it
to the subspace is the essence of the Davidson method. Equation (8.280) is formally
solved as

δi = (H − ρi − εi )
−1(−ri + εiϕi ) . (8.281)

Davidson proposed first to neglect εi and second to replace H by an approximate
operator H 0, called preconditioner. Thus we have

δi ≈ −(H 0 − ρi )
−1 ri . (8.282)

In general, H 0 is the diagonal part of the Hamiltonian matrix. Better approximate
H 0 can be used for instance by taking a block of H with lowest diagonal energies
and keeping for the rest the diagonal approximation. Furthermore, the correction
vector, δ can be improved with the so-called Olsen correction [82]. Both options are
implemented in the Heidelberg MCTDH package.

In concrete terms, the iterative process is as follows. We want to obtain an
eigenvector for which we have a first guess �0

i that should have a decent over-
lap with the eigenstate one wants to compute. We then calculate the residue vector
r0i = (H − ρ0i )ϕ

0
i . We calculate δ0, orthogonalize it to �0

i and add the new vector
to the one-dimensional subspace. We diagonalize the 2 × 2 Hamiltonian matrix.
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We take the new eigenstate, �1
i , with the largest overlap with �0

i and calculate the
residue vector r1i = (H − ρ1i )ϕ

1
i . We calculate δ1, orthogonalize it to�1

i and add the
new vector to the two-dimensional subspace. We then diagonalize the 3 × 3 Hamil-
tonian matrix. The process is repeated iteratively. We stop if ||rn

i || is smaller than
a tolerance criterion. If this is not the case, we calculate δn , orthogonalize it to the
previous subspace and append the orthogonalized correction vector to the previous
vector and repeat the iteration from the construction of the Hamiltonian matrix until
convergence is achieved.

To detect which new eigenstate,�n
i , is the onewe are looking for, there are several

possibilities. For instance, the procedure can take the eigenvector that is the closest
to the initial wavefunction �0

i . Another possibility is to take �n
i as the closest to

�n−1
i .

8.4.4 Conclusion *

In the context of improved relaxation, the fact that the Davidson algorithm has
achieved convergence does not mean that we have obtained the eigenstate. It means
that we have successfully solved Eq. (8.264) for a given set of SPFs. To achieve full
convergence, we need to solve Eqs. (8.264) and (8.269) self-consistently. This is the
reason why we then relax, i.e. propagate in imaginary time, the SPFs as explained
in Sect. 8.4.2. Relaxation in imaginary time improves the quality of the basis func-
tions by eliminating the components of the space that are higher in energy. Step by
step, the procedure converges to the optimal MCSCF basis functions with respect to
the eigenstate, �i , we are looking for. At the end, it becomes possible to obtain the
eigenstate with a high accuracy although the size of the matrix that is diagonalized is
small compared to the size of the underlying primitive basis. There exist a complex,
non-Hermitian form of improved relaxation, which can be used to converge quantum
resonances with complex energies (energy position and width). For this, one has to
add a complex absorbing potential (CAP) [83] to the Hamiltonian operator following
the approach proposed by Jolicard and Austin [84–86]. The CAP parameters must be
chosen carefully since energy position and width of the resonance should not depend
on them.

8.5 Complex Absorbing Potentials (CAPs)

When dealing with a bound system, there is no problem with grids. Turning to study
dissociation or scattering processes one notices that some of the grids may become
very long. The minimal propagation time is determined by the time needed for the
slow components of the WF to leave the interaction region. Within this time interval
the fast components of the WP may have travelled a long distance requiring a long
grid.
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A solution to this problem is provided by complex absorbing potentials (CAP)
[83–92]. A CAP is a negative imaginary potential, usually written as

−iηW (r) = −iη
(
r − rc

)n
θ
(
r − rc

)
,

where W (r) is a non-negative real function, often of the indicated monomial form,
n is 2, 3, or 4, η is a strength parameter, rc denotes the position where the CAP is
switched on, and θ denotes a step function, which ensures that the CAP vanishes for
r ≤ rc.

Let us investigate how a CAP changes the norm

d

dt
‖�‖2 = d

dt

〈
�
∣∣�
〉 = 〈�̇∣∣�〉+ 〈�∣∣�̇〉

= 〈− i H�
∣∣�
〉+ 〈�∣∣− i H�

〉

= i
〈
�
∣∣H † − H

∣∣�
〉
, (8.283)

with

H = H0 − iηW H0 = H †
0

H † = H0 + iηW W = W † , (8.284)

follows

d

dt
‖�‖2 = −2η

〈
�
∣∣W
∣∣�
〉
, (8.285)

or

d

dt
‖�‖ = −η

〈
�
∣∣W
∣∣�
〉

‖�‖ . (8.286)

Hence the norm of the WF decreases when the wavepacket enters the CAP region.
Wewant to inspect inmore detail how the CAP annihilates the wavepacket. Using the
split operator ideas (see Sect. 8.1.6), we write the formal solution of the Schrödinger
equation as

�(t + τ ) = e(−i H0−ηW )τ �(t)

= e−i H0
τ
2 e−ηWτ e−i H0

τ
2 �(t) + O(τ 3) , (8.287)

i.e. in the middle of each time step, the WF is multiplied by e−ηWτ , a half Gaussian
when W ∼ r2 (Fig. 8.8).

When is it legitimate to use a CAP? Of course, it is legitimate to annihilate the
outgoing parts when they do not enter in the computation of desired observables. For
instance, when computing the autocorrelation function
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Fig. 8.8 Decrease of the norm of a wavepacket being annihilated by a CAP starting at rc

Fig. 8.9 Example of the
correct location of a CAP

a(t) = 〈�(0)
∣∣�(t)

〉
, (8.288)

then it is clear that those parts of�(t)which do not overlap with�(0) and will never
return to overlap with �(0) may be annihilated (Fig. 8.9).

What happens, if we do not introduce a CAP but still work with a small grid? At
the end of the grid one automatically introduces a wall, i.e. a grid or a finite basis set
has a similar effect as putting the system into a box. Due to the wall, the outgoing
part of the WP will be reflected and will overlap again with �(0). This destroys
the correctness of the autocorrelation function. However, the CAP does not only
annihilate a WF, but also induces some artificial reflections.

The origin of the reflection is easy to understand. It is related to the Heisenberg
uncertainty principle. We change the form of the WF, i.e. its coordinate distribution.
But this implies that one also changes the momentum distribution which is just the
Fourier transform of the coordinate representation and this means reflection. To see
this, let us turn to the time-independent picture (Fig. 8.10).
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Fig. 8.10 Undesired behavior of a CAP

At energy E the WF must be a linear combination of eikx and e−ikx where E =
k2/2m. Hence

�(x) ∼ eikx − Re−ikx for x < 0 , (8.289)

and
�(x) ∼ T eikx for x > L , (8.290)

where R and T denote the reflection and transmission coefficients, respectively. If we
put an infinite wall at x = 0, we have total reflection (R = 1) and zero transmission
(T = 0):

�(x) ∼ eikx − e−ikx ∼ sin kx �(0) ≡ 0 . (8.291)

The wavefunction, which when undisturbed is proportional to eikx , has thus com-
pletely lost its form by reflection from the end of the grid.

Using scattering theory and semiclassical arguments, approximate but very reli-
able formulas for the transmission and reflection coefficients of a CAP have been
derived in Ref. [90]. (These formulas are evaluated when running theMCTDH script
plcap.) For the following discussion, we give a simplified form of the lengthy equa-
tions of Ref. [90]:

|R|2 = ∣∣ n!
2n+2

∣∣2 · η2

E2 · k2n
= ∣∣ n!

2n+2

∣∣2 · ( 1

2m

)n · η2

En+2

|T |2 = exp
(− ηLn+1 · 2m

k(n + 1)

) = exp
(− ηW (L)

E
· k · L

n + 1

)
. (8.292)

Of course one wants to achieve |T |2 + |R|2 � 1. To keep the reflection small, one
needs a weak CAP (small η), in particular when the energy is low. To achieve a small
transmission, for a given CAP-strength η, one needs a long CAP (L large).

Note that k · L = 2π is equivalent to saying that L equals one de-Broglie wave-
length. A CAP should be at least two de-Broglie wavelengths long. Hence, when a
particle enters the CAP with very low energy, e.g. at a threshold for opening a new
channel, then a CAP is likely to produce unwanted reflections.
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8.6 Flux Analysis

In general there is not much interest in the propagated wavefunction �(t) as such,
the quantities of interest are observables like spectra or cross-sections. Spectra are
conveniently generated by a Fourier transform of the autocorrelation function, see
Sect. 9, and cross-sections can be computed by a flux-analysis of the time evolved
wavefunction.

Consider a reactive scattering event, e.g. A + BC → AB + C. There are hence
two reaction channels, the educt channel A + BC and the product channel C + AB.
We assume that the scattering energy is small enough such that a three-body breakup
is not possible, AB must be bound when the distance between AB and C becomes
large. For simplicity we also ignore the reaction channel AC + B.

We want to know the probability with which an initial wavepacket, which starts
in the educt channel, ends up in the product channel. This reaction probability is
defined as

Preact = lim
t→∞

∫ ∞

Rc

d R
∫

dq |�(R, q, t)|2 , (8.293)

where R denotes the dissociative coordinate and q all remaining coordinates, the
latter describing bound motion. The separation, reaction coordinate versus bound
coordinates, depends on the reaction channel considered.6 The interpretation of Eq.
(8.293) is clear. The reaction probability is given by that part of the probability density
|�|2 that for large times is separated from the AB fragment by a distance larger than
Rc. The value of Rc must be large enough to ensure that a particle, which has passed
the coordinate space dividing surface defined by R = Rc, will never again assume
distances smaller than Rc. The time limit can be replaced by a time integral over a
time derivative7 and the lower bound of the R-integration by a step function θ

Preact =
∫ ∞

0
dt
∫ ∫

θ(R − Rc)
∂

∂t

(
�∗(R, q, t)�(R, q, t)

)
d R dq

= i
∫ ∞

0
dt
∫ ∫

(H�∗)θ� − �∗θH� d R dq

= i
∫ ∞

0
dt
(〈H�|θ|�〉 − 〈�|θH |�〉)

= i
∫ ∞

0
〈�|[H, θ]|�〉 dt

=
∫ ∞

0
〈�(t)|F |�(t)〉 dt (8.294)

6Actually, we are considering the wavefunction of a particular total angular momentum J (that
makes the dissociate coordinate R one-dimensional). Hence � should be replaced with � J , but for
the sake of simplicity we suppress the total angular momentum label J .
7The initial state is assumed to have no density beyond Rc, i.e. θ(R − Rc)|�(R, q, t = 0)|2 ≡ 0.

http://dx.doi.org/10.1007/978-3-319-53923-2_9


266 8 Introduction to Numerical Methods

where we have introduced the flux operator

F = i[H, θ] . (8.295)

The reaction probability is hence defined by summing the quantum flux passing
through the plane defined by the step function, i.e. by R = Rc. As the step function
commutes with the potential, the Hamiltonian H in Eq. (8.295) can be replaced with
the KEO. When the KEO assumes for the dissociative coordinate the simple form
−1/2μ · ∂2/∂R2, the flux operator becomes

F = −i

2μ

(
∂

∂R
δ(R − Rc) + δ(R − Rc)

∂

∂R

)
. (8.296)

The flux through a surface is independent of the detailed shape of the surface.
This is an important point because it allows us to choose the dividing surface (i.e. the
surface where θ jumps from zero to one) quite arbitrarily as long as it separates the
educt from the product channel. All following equations involving the flux operator
remain valid for any such dividing surface.

It is now convenient to switch to a time-independent picture for a short while.
For each reaction channel γ there exist a separate set of coordinates (Rγ, qγ), where
Rγ is the distance between the center of mass of the molecular fragment and the
leaving atom (or, for larger systems, the distance between the centers of mass of
the two molecular fragments of channel γ). The exact scattering wavefunction with
outgoing scattering boundary conditions [93] reads

�+
Eαν(Rγ, qγ)

Rγ→∞−→ �−
Eαν(Rα, qα) δαγ

−
∑

ν ′
Sγν ′,αν(E)�+

Eγν ′(Rγ, qγ) (8.297)

�±
Eγν(Rγ, qγ) = χ±

Eγν(Rγ) ξγν(qγ) (8.298)

χ±
Eγν(Rγ) =

√
μγR

2πkγν
e±ikγν Rγ , (8.299)

where ξγν is a ro-vibrational eigenstate of the fragment molecule of channel γ,
and ν denotes collectively all quantum numbers of this state. The channel momen-
tum kγν , which appears in the definition of the plane waves χ±

Eγν(Rγ), is given

by kγν = √2μγR(E − Eγν) with Eγν being the energy eigenvalue of the fragment
wavefunction ξγν . Sγν ′,αν denotes the S-matrix [93] describing a transition from the
initial reaction channel α and initial quantum numbers ν to a final reaction channel
γ and final quantum numbers ν ′. The upper indices + and − refer to outgoing and
ingoing scattering boundary conditions, respectively. The fragment states ξ are L2

normalized eigenfunctions of the internal fragment Hamiltonian, and the scattering
states are normalized to δ-functions.
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〈χ±
Eγν |χ±

E ′γν〉 = δ(E − E ′)

〈�±
Eγν |�±

E ′γν ′ 〉 = δ(E − E ′) δνν ′

〈�+
Eαν |�+

E ′αν ′ 〉 = δ(E − E ′) δνν ′ (8.300)

It is now easy to compute the expectation value of the flux operator with respect
to the exact scattering state. For γ �= α follows

〈�+
Eαν | Fγ | �+

Eαν〉 = 1

2π

∑

ν ′

∣∣Sγν ′,αν(E)
∣∣2 , (8.301)

where we have used, Cf. Eq. (8.296), that

〈χ±
Eγν |Fγ |χ±

Eγν〉 = ± 1

2π
(8.302)

holds. The sum over the internal states may be removed by employing projectors
onto these states,

Pγν = | ξγν〉〈ξγν | , (8.303)

yielding8

〈�+
Eαν | Pγν ′ Fγ Pγν ′ | �+

Eαν〉 = 1

2π
| Sγν ′,αν(E) |2 . (8.304)

The integral cross-section can be computed from the |S|2 elements. For this we
have to remember that, for the sake of simplicity, we have suppressed the total angular
momentum index J from wavefunctions and the S-matrix.9 All equations above are
diagonal in J . Re-introducing J we can write the integral cross-section as

σγν ′←αν = π

k2
αν

∞∑

J=0

(2J + 1)|S J
γν ′,αν(E)|2 , (8.305)

where kαν denotes the initial momentum with which the two fragments collide.
Summing over all final quantum numbers ν ′ one obtains the initial state selected
total cross section

σγ←αν =
∑

ν ′
σγν ′←αν

= 2π2

k2
γν

∞∑

J=0

(2J + 1)〈� J+
Eαν | Fγ | � J+

Eαν〉 . (8.306)

8Actually Pγν commutes with Fγ . Thus Pγν Fγ = Fγ Pγν = Pγν Fγ Pγν . The extra projector is
added for symmetry reasons only.
9We have also suppressed some J -dependent phase factors in Eqs. (8.297, 8.299). They are irrele-
vant, because here we consider only the modulus of the S-matrix elements.
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Note that the flux formalism automatically sums over all final states if there is no
projection.

Turning to a time-dependent approach one starts with an initial wave packet �0,
which is a superposition of infinitely many exact scattering states. Formally �0 is
written as

�0 =
∑

ν

∫
cν(E)�+

Eαν d E (8.307)

This wavepacket may then be propagated. But in the end one is not interested in the
time evolved wavepacket �(t), not even in its reaction probability Eq. (8.293), in
general one is interested to compute energy resolved quantities. For this we define
the flux function

Fγ(E, �0) = 2π〈�0|δ(H − E) Fγ δ(H − E)|�0〉 , (8.308)

or, state resolved

Fγ(E, ν, �0) = 2π〈�0|δ(H − E) Pγν Fγ Pγν δ(H − E)|�0〉 . (8.309)

Before we continue with the flux analysis, let us study the action of the δ-function
on the initial wavepacket

δ(H − E)�0 =
∑

ν

∫
cν(E) δ(H − E)�+

E ′αν d E ′ =
∑

ν

cν(E)�+
Eαν , (8.310)

and introduce the energy density function

|�(E)|2 := 〈�0| δ(H − E) |�0〉 =
∑

ν

|cν(E)|2 , (8.311)

where the last equation follows from Eqs. (8.300, 8.310).
Next we want to discuss the flux analysis of a direct dissociation process, e.g

photodissociation of NOCl as discussed in Sect. 10.1. Then there is only one channel
and we suppress the channel index γ in the following discussion. Using Eqs. (8.310,
8.302), the flux-function takes the form

F(E, �0) = 2π
∑

ν

∑

ν ′
c∗
ν(E) cν ′(E) 〈�+

Eαν | F |�+
Eαν ′ 〉

= 2π
∑

ν

|cν(E)|2 〈χ+
Eν |F |χ+

Eν〉

=
∑

ν

|cν(E)|2 , (8.312)

http://dx.doi.org/10.1007/978-3-319-53923-2_10
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or, state resolved
F(E, ν, �0) = |cν(E)|2 . (8.313)

Hence, in this case the unprojected flux reproduces the energy density function, i.e.
the power spectrum. The latter is more easily computed by a Fourier transform of
the autocorrelation function. However, the projected flux provides more information,
namely the dissociation probability for leaving the fragment molecule (here NO) in
a particular ro-vibrational state ν.

Turning back to reactive scattering, it is now easy to show that

Fγ(E, �0) =
∑

ν,ν ′
|cν(E)|2 |Sγν ′,αν(E)|2 , (8.314)

and
Fγ(E, ν ′, �0) =

∑

ν

|cν(E)|2 |Sγν ′,αν(E)|2 . (8.315)

When the initial state, as usual for reactive scattering calculations, is pure in the
internal quantum state ν, the sum over ν drops out. In this case the modulus of the
S-matrix element is given by

|Sγν ′,αν(E)|2 = Fγ(E, ν ′, �0ν)/|�(E)|2 (8.316)

where we have replaced �0 with �0ν to indicate that this initial state is an eigenstate
with quantum number ν with respect to the internal degrees of freedom. Compare
with Sect. 11 for more details.

What is left to be done is to define a stable and efficient method to evaluate the
flux-function. After the wavepacket has passed the surface defined by R = Rc it is
no longer needed and can be absorbed by a CAP that starts at R = Rc. The R-grid
then ends at Rc + L , where L is the length of the CAP. We know from Eq. (8.285)
that the speed of annihilation is proportional to the matrix element of the CAP, hence
it should be possible to express the flux by such a matrix element. Indeed, let us
introduce the CAP augmented Hamiltonian

H̃ = H − iW , (8.317)

where H is Hermitian and W a real, non-negative, continuous function10 of R, which
vanishes for R ≤ Rc. Hence W commutes with the flux defining step function, i.e.
θW = Wθ = W . The flux operator may now be written as (Cf. Eq. (8.295))

F = i Hθ − iθH = 2W + i H̃ †θ − iθH̃ . (8.318)

10Here the strength parameter η is included in the definition of W , in contrast to Sect. 8.5.

http://dx.doi.org/10.1007/978-3-319-53923-2_11
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Turning to the reaction probability Preact of Eqs. (8.293, 8.294) one obtains

Preact =
∫ ∞

0
〈�(t)|F |�(t)〉 dt

=
∫ ∞

0
〈�(t)|2W |�(t)〉 dt

+
∫ ∞

0

d

dt
〈�(t)|θ|�(t)〉 dt , (8.319)

where the last term can be understood by noting that ∂t 〈�(t)| = i〈�(t)|H̃ †, and
∂t |�(t)〉 = −i H̃ |�(t)〉. This last line vanishes, because 〈�(t)|θ|�(t)〉 = 0 for both
t = 0 and t = ∞. Initially � has no contributions for R ≥ Rc and finally that part
of �, which has entered the reaction channel, has vanished because of the CAP.
However, in practice one does not propagate to infinite times but stops the propagation
at some final time T . In this case it is useful to keep the second term, which is trivial
to integrate. The working equation thus reads

Preact = 2
∫ T

0
〈�(t)|W |�(t)〉 dt + 〈�(T )|θ|�(T )〉 . (8.320)

The first part accounts for the density which is annihilated by the CAP and the second
part stands for the density which still exists on the interval [Rc, Rc + L]. If one runs
flux84 of the MCTDH package, then these two terms and their sum are written to
the file iwtt at every output time step.

We want to use the technique developed here to derive working equations for
the flux function Fγ(E, �0). We re-introduce the channel index γ, there will be
a CAP, −iWγ , in each reaction channel. The δ-functions are expressed in Fourier
representation

δ(H − E) = 1

2π

∫ ∞

−∞
e−i(H−E)t dt (8.321)

Inserting this equation into Eq. (8.308), replacing H with H̃ , and making use of
Eq. (8.318) one obtains

Fγ(E, �0) = 1

2π

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′〈�0|e−i(H̃ †−E)t Fγe−i(H̃−E)t ′ |�0〉

= 1

2π

∫ ∞

0
dt
∫ ∞

0
dt ′〈�(t)|2Wγ |�(t)〉e−i E(t−t ′)

+ (
d

dt
+ d

dt ′ )〈�(t)|θγ |�(t ′)〉e−i E(t−t ′) , (8.322)

where�(t) = exp(−i H̃ t)�0 is used andwhere again the lower limits of the integrals
could be safely replaced with zero, because for negative times the wavepacket cannot
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reach the CAP region of the γ’s reaction channel. We now replace the upper integral
limits with the final propagation time T and first evaluate the second term

Fγ,θ(E, �0) = 1

2π

∫ T

0
dt 〈�(t)|θγ |�(T )〉ei E(T −t)

+ 1

2π

∫ T

0
dt ′ 〈�(T )|θγ |�(t ′)〉e−i E(T −t ′)

= 1

π
Re
∫ T

0
dt 〈�(t)|θγ |�(T )〉ei E(T −t)

= 1

π
Re
∫ T

0
dτ 〈�(T − τ )|θγ |�(T )〉ei Eτ , (8.323)

where we used the substitution τ = T − t .
To evaluate the first term of Eq. (8.322) we substitute t ′ = t + τ

Fγ,W (E, �0) = 1

π

∫ T

0
dτ

∫ T −τ

0
dt 〈�(t)|Wγ |�(t + τ )〉ei Eτ

+ 1

π

∫ 0

−T
dτ

∫ T

−τ

dt 〈�(t)|Wγ |�(t + τ )〉ei Eτ . (8.324)

With the substitutions τ → −τ and then t → t + τ the second integral turns into

1

π

∫ T

0
dτ

∫ T −τ

0
dt 〈�(t + τ )|Wγ |�(t)〉e−i Eτ (8.325)

which is just the complex conjugate of the first integral of Eq. (8.324). Hence

Fγ,W (E, �0) = 2

π
Re
∫ T

0
dτ

∫ T −τ

0
dt 〈�(t)|Wγ |�(t + τ )〉 ei Eτ . (8.326)

In practice we define the auxiliary function g(τ )

g(τ ) =
∫ T −τ

0
〈�(t)|Wγ |�(t + τ )〉 dt + 1

2
〈�(T − τ )|θγ |�(T )〉 . (8.327)

The flux, Fγ = Fγ,W + Fγ,θ, is then given by the Fourier integral

Fγ(E, �0) = 2

π
Re
∫ T

0
g(τ ) ei Eτ dτ . (8.328)

Of course one can make use of projectors here as well. For this one merely replaces
Wγ and θγ in Eq. (8.327) with PγνWγ Pγν and Pγνθγ Pγν , respectively.
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Finally we note that if no projectors are used, the dissociative coordinate may be
any coordinate which separates the fragments, it does not have to be Jacobian-like.
If projectors are used, one needs a Jacobian-like dissociation coordinate, because
otherwise an internal channel Hamiltonian Hγ cannot be defined.

If there is no reaction but inelastic scattering, e.g. ro-vibrational excitation in
non-reactive H2 +D2 scattering [94–98], then there exist an alternative to the flux
formalism, the Tannor-Weeks method [99–101]. Note that within this approach there
is no summation over non-projected states, only state-to-state probabilities can be
computed.

8.7 Representation of the Hamiltonian Operator

8.7.1 The Product Form

We have already mentioned the quadrature problem. At each time step we have to
compute the matrix representation of the Hamiltonian

HJ K = 〈�J

∣∣H
∣∣�K

〉
, (8.329)

and the mean fields, 〈
H
〉(κ)

jl = 〈�(κ)
j

∣∣H
∣∣�(κ)

l

〉
. (8.330)

If one were to calculate these integrals by straightforward quadrature over the prim-
itive grid, one would have to run over N f grid points for potential-like operators and
N 2 f points for non-diagonal operators. For example

VJ K = 〈�J

∣∣V
∣∣�K

〉 =
N1∑

i1=1

· · ·
N f∑

i f =1

ϕ(1)∗
j1

(q(1)
i1

) · · · ϕ( f )∗
j f

(q( f )

i f
)V (q(1)

i1
, . . . , q( f )

i f
)ϕ(1)

j1
(q(1)

i1
) · · · ϕ( f )

j f
(q( f )

i f
) ,

(8.331)

and this integral has to be calculated for each J and K , hence n2 f times.

Example:

Let us take f = 6, n = 6 and N = 32. We obtain for one integral: N f = 326 = 109

operations and a number of integrals equal to n2 f = 612 = 2 × 109, hence ≈ 1018

operations in total. This is impossible!
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The trick is to write the Hamiltonian as a sum of products

H =
s∑

r=1

cr h(1)
r · · · h( f )

r , (8.332)

where h(κ)
r operates on the κ-th DOF.

If we now calculate the integral we find:

HJ K =
s∑

r=1

cr
〈
ϕ(1)

j1

∣∣h(1)
r

∣∣ϕ(1)
j1

〉 · · · 〈ϕ( f )

j f

∣∣h( f )
r

∣∣ϕ( f )

j f

〉
, (8.333)

i.e. a sum of products of one-dimensional integrals.11 Calculating all the HJ K inte-
grals we can re-use the

〈
h(κ)

r

〉
integrals. There are

s · f · n2 (8.334)

1D integrals to be calculated. Hence, considering potential-like operators, i.e. diag-
onal operators

s · f · N · n2 (8.335)

multiplications, have to be performed.
The final summation is a negligible amount of work. This is to be compared

with the work of calculating the integrals directly, i.e. n2 f · N f . Going back to our
example: f = 6, n = 6 and N = 32, and assuming a rather large number of terms
s = 14,000, we find: s · f · N · n2 ≈ 108 and n2 f · N f ≈ 1018. Hence, we gain 10
orders of magnitude!

The question is, how realistic is a product form of the Hamiltonian? Fortunately,
KEOs are almost always of product form. For example, in the case of NOCl with the
definition of the coordinates of Fig. 5.4, the KEO reads (see Eq. (6.155)):

TJ=0
′ = − 1

2μR1

∂2

∂R2
1

− 1

2μR2

∂2

∂R2
2

−
(

1

2μR1 R2
1

+ 1

2μR2 R2
2

)
1

sin θ

∂

∂θ
sin θ

∂

∂θ
, (8.336)

Potentials are sometimes given as polynomials or Fourier series. E.g., for NOCl,

V (R1, R2, θ) =
∑

i, j,k

Ci, j,k
(
R2 − Re

2

)i (
R1 − Re

1

) j
cos(kθ) . (8.337)

11Of course, mode combination can be used. Then h(κ)
r operates on the κ-th particle in Eq. (8.333)

and the integrals become low-dimensional rather than one-dimensional ones.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_6
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Hence the product form is not as unusual as it may look at first glance. In the general
case, however, one needs an algorithm which brings a general potential to product
form. POTFIT is such an algorithm.

8.7.2 The POTFIT Algorithm *

The most direct way to achieve a product form is an expansion of the potential in a
product basis:

V app(q1, . . . , q f ) =
m1∑

j1=1

· · ·
m f∑

j f =1

C j1... j f v
(1)
j1

(q1) · · · v( f )

j f
(q f ) . (8.338)

(This looks like an MCTDH expansion of a WF!) The expansion orders, mκ, have
to be chosen such that the representation of the potfitted potential, V app, is on the
one hand as small as possible but on the other hand of sufficient accuracy. As we use
DVRs, we must know the potential only at the grid points.

Let q(κ)
i denote the position of the i-th grid point of the κ-th grid. Then we define

Vi1,...,i f = V (q(1)
i1

, . . . , q( f )

i f
) , (8.339)

i.e. Vi1,...,i f denotes the value of the potential at the grid points. The approximate
potential on the grid is given by

V app
i1,...,i f

=
m1∑

j1=1

· · ·
m f∑

j f =1

C j1... j f v
(1)
i1 j1

· · · v( f )

i f j f
, (8.340)

where
v

(κ)
iκ jκ

= v
(κ)
jκ

(q(κ)
iκ

) , (8.341)

are called the single-particle potentials (SPPs). The SPPs are assumed to be
orthogonal on the grid

Nκ∑

i=1

v
(κ)
i j v

(κ)
il = δ jl . (8.342)

Throughout this section i and k label grid points and j and l label SPPs. We can, of
course, usemode combination. Then the SPPs are defined onmulti-dimensional grids
and the number of DOFs, f , is to be replaced by the number ofMCTDH-particles, p.
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To find the optimal coefficients and the optimal SPPs, we minimize

�2 =
N1∑

i1=1

· · ·
N f∑

i f =1

(
Vi1...i f − V app

i1...i f

)2 =
∑

I

(VI − V app
I )2 . (8.343)

Minimizing �2 by varying only the coefficients yields:

C j1··· j f =
N1∑

i1=1

· · ·
N f∑

i f =1

Vi1...i f v
(1)
i1 j1

· · · v( f )

i f j f
, (8.344)

hence the coefficients are given as overlaps (as expected).
Plugging this into the expression for �2 yields:

�2 = ‖V‖2 − ‖C‖2 =
∑

I

V 2
I −

∑

I

C2
I . (8.345)

Therefore, one has to optimize the (orthonormal) SPPs such that ‖C‖2 becomes
maximal. The solution of this variational problem is difficult. It is numerically very
demanding and likely to converge to a local minimum.

We take a shortcut and define potential density matrices as:

�(κ)
nm =

N1∑

i1=1

· · ·
Nκ−1∑

iκ−1=1

Nκ+1∑

iκ+1=1

· · ·
Np∑

i p=1

Vi1...iκ−1niκ+1...i p Vi1...iκ−1miκ+1...i p . (8.346)

We then diagonalize the densities ρ(κ) and take the eigenvectors with the largest
eigenvalues as SPPs. (Note that ρ(κ) is positive semi-definite. Hence all eigenvalues
are non-negative). The procedure is known to yield the optimal SPPs for a two-
dimensional case [102]. For higher dimensions the representation is not optimal but
sufficiently close to optimal.

8.7.3 Contraction in POTFIT *

Contraction over onemode is another very useful trick to reduce the numerical effort.
We can perform one sum once and for all. Let us, for the sake of simplicity, contract
over the first DOF:

Di1 j2··· j f :=
N1�m1∑

j1=1

C j1··· j f v
(1)
i1 j1

. (8.347)
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The potential is then given by

V app
i1,...,i f

=
m1∑

j2=1

· · ·
m f∑

j f =1

Di1 j2... j f v
(2)
i2 j2

· · · v( f )

i f j f
. (8.348)

Hence, rather than s = m f terms we have only s = m( f −1) terms. Moreover, if we
increase m1 to N1, which increases the accuracy, one notices that C of that index is
a unitary transformation of V , which is then transformed back. Hence there is no
transformation at all and D is given by

Di1 j2... j f =
∑

i2···i f

Vi1···i f v
(2)
i2 j2

· · · v( f )

i f j f
. (8.349)

Turning to a coordinate representation, we write the contracted potential as

V app(q1, . . . , q f ) =
m2∑

j2=1

· · ·
m f∑

j f =1

D j2... j f (q1)v
(2)
j2

(q2) · · · v( f )

j f
(q f ) . (8.350)

Of course, we can contract over any degree of freedom, not necessarily over the first
one. In general one will contract over that mode κ that otherwise has the smallest
expansion efficiency Nκ/mκ. Note that when using contraction, the coefficient vector
C and the SPPs of the contracted mode are not computed, see Eq. (8.349).

8.7.4 Error Estimate *

Letting ν denote the contracted mode, the error can be bounded by [5, 103]

�

f − 1
≤ �2

opt ≤ �2 ≤ �, (8.351)

where

� =
f∑

κ=1
κ�=ν

Nκ∑

j=mκ+1

λ(κ)
j , (8.352)

andwhere�2 denotes the potfit L2-error and�2
opt the L2-error onewould obtain after

a full optimization of the SPPs. Note that the error is determined by the eigenvalues
of the neglected SPPs while ignoring those of the contracted mode ν. In particular,
for mκ = Nκ one recovers the exact potential on the grid.
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The last inequality of Eq. (8.351) tells us how to choose the expansion orders,
mκ, for a given error to be tolerated.12 The inequality in the middle is trivial and the
last inequality shows that the error bound � is at most ( f − 1) times larger than the
optimal error �2

opt. For the two-dimensional case, f = 2, one obtains �2
opt = �2 =

�, hence, as already noted, POTFIT is optimal in this special case.

8.7.5 Weights *

The inclusion of weights is often important, because one does not need a uniform
accuracy. The accuracy may be low when the potential is high, simply because the
wavefunction does not go there. On the other hand, we need a high accuracy near
the minimum and at transition states (saddle points). Hence, we want to minimise:

�2
w =

∑

I

w2
I (VI − V app

I )2 . (8.353)

The inclusion of separable weights

wI = w
(1)
i1

. . . w
( f )

i f
(8.354)

is very simple. One simply potfits wI · VI and then divides the SPPs by the weights

v
(κ)
i → v

(κ)
i /w

(κ)
i . (8.355)

However, separable weights are in general not very helpful. The inclusion of non-
separable weights is very difficult. There appear matrices such as

〈
v

(1)
j1

. . . v
( f )

j f

∣∣w
∣∣v(1)

j1
. . . v

( f )

j f

〉
, (8.356)

which have to be inverted. As their dimension is the full total grid size, this is
impossible for most cases.

There is a nice trick to emulate non-separable weights. Assume there is a reference
potential V ref such that

(
VI − V app

I

)
w2

I = V ref
I − V app

I (8.357)

holds. Then, we simply potfit V ref and hence minimize

∑

I

(
V ref

I − V app
I

)2
, (8.358)

12Note that the root-mean-square error is given by rmse = √�2/Ntot, where Ntot is the total number
of grid points.
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which in turn is equal to ∑

I

w2
I

(
VI − V app

I

)2
, (8.359)

i.e. the weighted sum that we want to minimize! Obviously, V ref is given by

V ref
I = w2

I VI + (1 − w2
I )V app

I . (8.360)

However, as V app
I is unknown, we have to use an iterative process13:

(1) V app (0)
I = potfit(V)

(2) for k = 1, . . . , kmax do

V ref (k)
I = w2

I VI + (1 − w2
I ) V app (k−1)

I ,
V app (k) = potfit(V ref (k)

I ) ,

(3) next k

The question is, of course, does this process converge? In fact, one may multiply wI

by some positive constant. The final converged result must not change. One can show
that for sufficiently small wI the iteration will always converge and for sufficiently
large wI it will always diverge.

For defining the weights, we adopted the concept of a relevant region, i.e.

wI = w(qI ) =
{
1 if qI ∈ relevant region ,

0 else .

The relevant region is often defined by an energy criterion

wI = w(qI ) =
{
1 if VI ≤ Erel ,

0 if VI > Erel .

but it may contain restrictions on the coordinate as well. We also tried to replace
wI with α · wI . The iterative process always converges for 0 < α ≤ 1 and always
diverges for α > 2. The convergence is slower for smaller α. An improved conver-
gence speed can be obtained for α ≈ 1.5.

8.8 Complement to Chapter 8: MCTDH-EOM
for g(κ) �= 0 *

We want to re-derive the EOM but this time for the general case g(κ) �= 0. For part
1 of the Eq. (8.185) we obtain (see also (8.190)):

13Actually, we loop over the modes and update V ref after each new SPP(k).
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i
∑

L

〈
�

(κ)
j

∣∣�L
〉

ȦL =

∑

L

〈
�

(κ)
j

∣∣�L
〉 〈

�L

∣∣H
∣∣�
〉−

f∑

ν=1

nν∑

k=1

∑

L

〈
�

(κ)
j

∣∣�L
〉

g(ν)
lνk ALν

k
=

P (κ)
〈
�

(κ)
j

∣∣H
∣∣�
〉−
∑

lκ,k

ρ(κ)
jk g(κ)

lκk ϕ(κ)
lκ

− D (8.361)

where
D =

∑

ν �=κ

∑

L

∑

k

〈
�

(κ)
j

∣∣�L
〉
g(ν)

lκk ALν
k

(8.362)

The term ν = κ yields

∑

k

∑

Lκ

∑

lκ

〈
�

(κ)
j

∣∣�Lκ ϕ(κ)
lκ

〉
g(κ)

lκk ALκ
k
=

∑

klκ

〈
�

(κ)
j

∣∣�(κ)
k

〉
ϕ(κ)

lκ
g(κ)

lκk =
∑

klκ

ρ(κ)
jk g(κ)

lκk ϕ(κ)
lκ

(8.363)

which proves Eq. (8.361). Part 2 of Eq. (8.185) now reads

i
〈
�

(κ)
j

∣∣
f∑

ν=1

nν∑

l=1

ϕ̇(ν)
l �

(ν)
l

〉 = i
∑

l

ρ(κ)
jl ϕ̇(κ)

l + D′ (8.364)

where
D′ =

∑

ν �=κ

∑

l

〈
�

(κ)
j

∣∣ϕ̇(ν)
l �

(ν)
l

〉
g(ν)

lκk ALν
k

(8.365)

We will show later that D = D′. Hence adding part 1, Eq. (8.361), and part 2, Eqs.
(8.364), (8.185) turns into

∑

l

〈
H
〉(κ)

jl ϕ(κ)
l =

P (κ)
∑

l

〈
H
〉(κ)

jl ϕ(κ)
l −

∑

lκk

ρ(κ)
jk g(κ)

lκk ϕ(κ)
lκ

− D + i
∑

l

ρ(κ)
jl ϕ̇(κ)

l + D′

or, assuming D = D′

i
∑

l

ρ(κ)
jl ϕ̇(κ)

l = (1 − P (κ)
) ∑

l

〈
H
〉(κ)

jl ϕ(κ)
l +

∑

lκk

ρ(κ)
jk g(κ)

lκk ϕ(κ)
lκ

(8.366)

Writing
ϕ(κ) = (ϕ(κ)

1 · · · ϕ(κ)
nκ

)T
(8.367)
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and multiplying by ρ−1 yields

iϕ̇(κ) = (g(κ)T + (1 − P (κ)
)
ρ(κ)−1 〈

H
〉(κ))

ϕ(κ) (8.368)

As (
g(κ)T

ϕ(κ)
)

j =
∑

l

∣∣ϕl
〉〈
ϕl

∣∣g(κ)
∣∣ϕ j
〉 = P (κ) g(κ) ϕ(κ)

j (8.369)

Hence we also have

iϕ̇(κ) = (P (κ) g(κ) + (1 − P (κ)
)
ρ(κ)−1 〈

H
〉(κ))

ϕ(κ) (8.370)

and from this all other forms follow.
Finally, we use again the separation

H =
∑

κ

g(κ) + Hg

yielding 〈
�J

∣∣H
∣∣�L
〉 = 〈�J

∣∣Hg

∣∣�L
〉+
∑

κ

∑

lκ

g(κ)
jκlκ

δJκ Lκ (8.371)

and

i ȦJ =
∑

L

〈
�J

∣∣Hg

∣∣�L
〉

AL +
∑

κ

∑

lκ

g(κ)
jκlκ

AJκ
lκ

−
∑

κ

∑

l

g(κ)
jκlκ

AJκ
l

(8.372)

Hence
i ȦJ =

∑

L

〈
�J

∣∣Hg

∣∣�L
〉

AL +
∑

κ

∑

l

g(κ)
jκlκ

AJκ
lκ

=
∑

L

〈
�J

∣∣H −
∑

κ

g(κ)
∣∣�L
〉

AL

(8.373)

We still have to show that D = D′.

D =
∑

ν �=κ

∑

L

∑

k

〈
�

(κ)
j

∣∣�L
〉
g(ν)

lκk ALν
k

D′ = i
∑

ν �=κ

∑

l

〈
�

(κ)
j

∣∣ϕ̇(ν)
l �

(ν)
l

〉

We insert P (ν) in the equation for D′ and, given that
〈
�

(κ)
j

∣∣P (ν) = 〈�(κ)
j

∣∣ for ν �= κ,
we obtain
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D′ = i
∑

ν �=κ

∑

l

〈
�

(κ)
j

∣∣
∑

lν

∣∣ϕ(ν)
lν

〉〈
ϕ(ν)

lν

∣∣ϕ̇(ν)
l

〉
�

(ν)
l

〉

=
∑

ν �=κ

∑

l

∑

lν

g(ν)
lν l

〈
�

(κ)
j

∣∣ϕ(ν)
lν

∑

Lν

ALν
l
�Lν

〉

=
∑

ν �=κ

∑

l

∑

L

〈
�

(κ)
j

∣∣�L
〉

g(ν)
lν l ALν

l
= D (8.374)

In summary, we again display the EOM in various forms

i ȦJ =
∑

L

〈
�J

∣∣H
∣∣�L
〉

AL −
f∑

κ=1

nκ∑

l=1

g(κ)
jκl AJκ

l

=
∑

L

〈
�J

∣∣H −
∑

κ=1

g(κ)
∣∣�L
〉

AL (8.375)

iϕ̇(κ) = {g(κ) 1(κ) + (1 − P (κ)
) [

ρ(κ)−1 〈
H
〉(κ) − g(κ) 1

]}
ϕ(κ)

= P (κ) g ϕ(κ) + (1 − P (κ)
)
ρ(κ)−1 〈

H
〉(κ)

ϕ(κ)

= [(g(κ)
)T + (1 − P (κ)

)
ρ(κ)−1 〈

H
〉(κ)]

ϕ(κ)

= {g(κ) 1
)T + (1 − P (κ)

)
ρ(κ)−1 〈

H −
∑

κ′
g(κ

′
)
〉(κ)}

ϕ(κ) (8.376)
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Chapter 9
Infrared Spectroscopy

9.1 Introduction

Molecular quantum dynamics has given rise to many applications of relevance for
astrophysics, astrochemistry and atmospheric chemistry. In the interstellar medium
or in the atmosphere of planets, including the Earth, molecules are generally in
the gas phase. Many accurate spectroscopic data are collected by astrophysicists:
absorption lines, for instance, which must be identified by comparison with theo-
retical simulations. Such data provide crucial information about the composition of
interstellar media, the atmosphere of planets in the solar system, or of exoplanets.
They also allowus to quantify processes related to essential environmental issues such
as the greenhouse effect or ozone depletion. In this context, much theoretical effort
is directed toward computing spectra of small molecules. For instance, in 2012, the
HighResolution Transmission (HITRAN) database that focuses on the description of
transmission and emission of light in the atmosphere contained 7,400,447 identified
spectral lines for 47 different molecules, including 120 isotopomers [1]. The most
studied molecules are H2O, CO2, O3, CH4, CO, or O2. A quantum-mechanical treat-
ment is unavoidable, because the vibrational and rotational states are quantized and
this must be taken into account. Indeed, the observed absorption lines are discrete
and correspond to energy differences between specific rovibrational levels. For an
Overview of High-resolution Spectroscopy see, for instance [2].

9.2 The Time-Dependent Approach

In Sect. 9.2.1, we introduce the autocorrelation function of a wavepacket and show
that its Fourier transform gives the power spectrum. Such a property will allow us to
find the vibrational energies of amolecule and its infrared spectrum after introduction
of the dipole moment operator.

© Springer International Publishing AG 2017
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9.2.1 The Autocorrelation Function and Its Properties

Let us return to the time-evolution of the wavepacket given by Eq. (2.37).A quantity
that plays a major role in the treatment of spectroscopy and reactive scattering in
molecular physics is the autocorrelation function of a wavepacket,

A(t) = 〈�(0)|�(t)〉 =
∫

��(R, t = 0)�(R, t)dR . (9.1)

At t = 0, the wavepacket reads

�(R, t = 0) =
∑
n

cn�n(R) , (9.2)

with
H�n(R) = En�n(R) , (9.3)

Using Eq. (2.37), i. e.1

�(R, t) =
∑
n

cne
−i En t�n(R) , (9.4)

(with cn = ∫
��

n(R)�(R, t = 0)dR) leads to

A(t) =
∑
n

∑
m

c�
ncme

−i Em t 〈�m |�n〉 ,

=
∑
n

|cn|2e−i En t . (9.5)

If the initial wavefunction is equal to an eigenstate, there is a single term in the sum
and the modulus of the autocorrelation function is constant and equal to one.

The Fourier transform of the autocorrelation function, 1
2π

∫ +∞
−∞ ei Et A(t) dt , has

important properties that will be useful for many applications. Let us integrate over
a finite time T :

1

2π

∫ +T

−T
ei Et A(t) dt =

∑
n

|cn|2 1

2π

∫ +T

−T
ei(E−En)t dt ,

=
∑
n

|cn|2 1

2π

[
e(i(E−En)T ) − e(−i(E−En)T )

i(E − En)

]
,

=
∑
n

|cn|2 sin ((E − En)T )

π(E − En)
. (9.6)

1Here, we adopt the atomic units system, in particular � = 1.

http://dx.doi.org/10.1007/978-3-319-53923-2_2
http://dx.doi.org/10.1007/978-3-319-53923-2_2
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Fig. 9.1 The cardinal sine
function

Let us divide the previous expression by T and note that sin (x)
x is the cardinal sine

function. sin ((E−En)T )

(E−En)T
is depicted in Fig. 9.1.We see that 1

2πT

∫ +T
−T ei Et A(t)dt is a sum

of cardinal sine functions centered on the energies of the eigenstates that appear in the
wavepacket. Thewidth of the central peak of the cardinal sine function is proportional
to 1/T . Thus, if the time propagation is long enough, 1

2π

∫ +T
−T ei Et A(t)dt provides the

actual values of the eigenenergieswith sufficient accuracy. This link between the time
propagation and the accuracy of the energy is a direct consequence of the Heisenberg
time-energy uncertainty principle. When T tends to infinity, sin ((E−En)T )

π(E−En)
tends to the

Dirac delta function δ(E − En). The heights of the main peaks are then proportional
to the squares of the overlaps between the wavepacket and the eigenstates, |cn|2.
In other words, the propagation of the wavepacket yields information about the
eigenstates that constitute it: their eigenvalues and their amplitudes, cn , in the linear
combination.

More precisely, when T tends to infinity we obtain,

σ(E) = lim
T→∞

1

2π

∫ +T

−T
ei Et A(t)dt ,

= 1

2π

∫ +∞

−∞
ei Et A(t)dt , (9.7)

and thus
σ(E) =

∑
n

|cn|2δ(E − En) . (9.8)

σ(E) is often called the power spectrum of the wavepacket.
The integration over negative time is cumbersome, but can be avoided easily. If

the Hamiltonian is Hermitian, one shows

A(−t) = 〈
�

∣∣eiHt
∣∣�〉 = 〈

e−i Ht �
∣∣�〉 = 〈

�
∣∣e−i Ht

∣∣�〉∗ = [A(t)]∗ . (9.9)
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Thus

∫ 0

−T
ei Et A(t) dt =

∫ T

0
e−i Et A(−t) dt =

∫ T

0

[
ei Et A(t)

]∗
dt , (9.10)

and

1

2π

∫ T

0

( [
ei Et A(t)

]∗ + ei Et A(t)
)
dt = 1

π
Re

∫ T

0
eiEt A(t) dt . (9.11)

Additional tricks are possible if the initial state is real

A(t) = 〈
�

∣∣e−i Ht
∣∣�〉

,

= 〈
eiH

†t/2 �
∣∣e−i Ht/2 �

〉
,

= 〈(
e−i H †∗ t/2 �∗)∗∣∣e−i Ht/2 �

〉
,

= 〈
�(t/2)∗

∣∣�(t/2)
〉
, (9.12)

where the last step requires a real initial state (�∗ = �) and a real-symmetric Hamil-
tonian

H = HT = H †∗
. (9.13)

This so-called t/2-trick [3–6] is very useful because it provides an autocorrelation
function over a duration that is twice as long as the propagation time. In general,
one wants to use both Eqs. (9.11) and (9.12). This requires a real-symmetric Hamil-
tonian.2

9.2.2 The Window Functions

Now, rather than using the upper integral limit T , we introduce a window function
g(t). The previous Fourier transform can be written as

σg(E) = Re

π

∫ ∞

0
ei Et g(t) A(t) dt = 1

2π

∫ ∞

−∞
ei Et g(t) A(t) dt , (9.14)

and we require

0 ≤ g(t) ≤ 1, g(0) = 1, g(t) = 0 for |t | > T, g(t) = g(−t) . (9.15)

2Note, however, that the t/2-trick can still be applied to real-symmetricHamiltonians plus a complex
absorbing potential (see Sect. 8.5). This is because the imaginary part of the complex absorbing
potential has to change signwhen propagating in negative times, in order to absorb the wavefunction
when t tends to −∞.

http://dx.doi.org/10.1007/978-3-319-53923-2_8


9.2 The Time-Dependent Approach 293

As is well known, the Fourier transform of a product of two functions is equal to the
convolution (indicated by a star “*”) of the Fourier transforms of the two functions,
i.e.

σg(E) = (σ ∗ g̃)(E) ,

=
∫

σ(ε) g̃(E − ε) dε ,

=
∫

σ(E − ε) g̃(ε) dε ,

where

g̃(ε) = 1

2π

∫ ∞

−∞
eiεt g(t) dt .

The proof is simple: we use

δ(τ − t) = 1

2π

∫
ei(τ−t)ε dε , (9.16)

and

σg(E) = 1

2π

∫ ∞

−∞
ei Et g(t) A(t) dt ,

= 1

2π

∫ ∫
ei Et g(τ ) A(t) δ(τ − t) dt dτ ,

= 1

(2π)2

∫ ∫ ∫
ei Et A(t) e−iεt eiετ g(τ ) dτ dt dε ,

= 1

2π

∫ ∫
ei(E−ε)t A(t) g̃(ε) dt dε ,

=
∫

σ(E − ε) g̃(ε) dε . (9.17)

We now have to specify the analytic form of the window function g(t). In particular,
we consider four window functions

gk(t) = cosk
(

πt

2T

)
θ
(
T − |t |) , (9.18)

with3 k = 0, 1, 2, 3. These are displayed in Fig. 9.2. k = 0 corresponds to the case
described in Sect. 9.2.1.

Fourier-transforming the (time) window functions gk yields the energy window
functions g̃k

3The symbol θ
(
x
)
denotes the Heaviside step function.
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Fig. 9.2 Window functions
g0, g1, g2, g3, and, to be
discussed below, g′

0 and g′
1.

The straight line is g′
0

whereas g′
1 is the lowest

curve in the plot

Fig. 9.3 Energy window
functions. Reduction of the
Gibbs phenomenon by
application of time window
functions: (i) g̃0, green; (ii)
g̃1, red line; (iii) g̃2, blue
line. The duration of the
autocorrelation function is
T = 100 fs
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g̃0(ω) = sin(ωT )

πω
,

g̃1(ω) = 2T cos(ωT )

(π − 2ωT ) (π + 2ωT )
,

g̃2(ω) = π sin(ωT )

2ω (π − ωT )(π + ωT )
,

g̃3(ω) = 12π2T cos(ωT )

(π − 2ωT ) (π + 2ωT )(3π − 2ωT ) (3π + 2ωT )
. (9.19)

The oscillations caused by the box-filter (k = 0) are knownas theGibbs phenomenon.
To avoid or at least lessen those we use in general g1 or g2. As shown in Fig. 9.3 the
better filter leads to broader lines. The energy window functions g̃k are normalized4

4
∫

g̃(ω)dω = 1
2π

∫
eiωtg(t)dtdω = ∫

δ(t)g(t)dt = g(0) = 1.
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Table 9.1 FWHM values of the window functions g̃k times the duration of the autocorrelation
function. Remember that the duration of the autocorrelation function is twice the propagation time,
if the t/2-trick, Eq. (9.12), is used

g̃0 g̃1 g̃2 g̃3 g̃′
0 g̃′

1 Unit

2.49 3.38 4.14 4.78 3.66 4.91 eV fs

20.1 27.3 33.2 38.6 29.5 39.6 cm−1 ps

as
∫

g̃k(ω) dω = 1. For better visibility, however, they are re-scaled in Fig. 9.3 at
their maxima.

For the convenience of the reader we provide the full widths at half maximum
(FWHM) of the window functions g̃k . (The filter functions g̃′ will be discussed
below.) The entries in Table9.1 are to be divided by the duration of the autocorrelation
function to yield the FWHM.

As is well known, the Fourier transform of the convolution of two functions equals
the product of the Fourier transforms of the functions (Cf. Eqs. (9.16) and (9.17)).
The self-convolution of a filter function thus leads to a filter in ω-space, which is a
square and hence non-negative, a very desirable property. We define

g′(t) = a

2T

∫
g(τ )g(2t − τ )dτ , (9.20)

where a is a normalization factor to be chosen such that g′(0) = 1, i.e. a =
2T/

∫
[g(τ )]2 dτ . One has to use 2t rather than t as shift to ensure that the new

function, g′, has again the support [−T, T ]. The Fourier transform reads

g̃′(ω) = aπ

2T

[
g̃(

ω

2
)
]2

, (9.21)

where the appearance of ω/2 is a consequence of the use of 2t in Eq. (9.20). This
doubles the width of the filter, but the squaring reduces the widths and the overall
increase in width is about

√
2. Applying the procedure just described to g0 and g1

yields

g′
0(t) = (1 − |t |/T ) θ(T − |t |) , (9.22)

g′
1(t) =

[(
1 − |t |

T

)
cos(

πt

T
) + 1

π
sin(

π|t |
T

)

]
θ(T − |t |) , (9.23)

and their Fourier transforms read

g̃′
0(ω) = T

2π

sin2(ωT/2)

(ωT/2)2
(9.24)
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Fig. 9.4 Energy window
functions, second set. (i) g̃3,
solid line; (ii) g̃′

0, dotted line;
(iii) g̃′

1, dashed line. For g̃3
and g̃′

1 the wings of the filters
are also shown 20 times
enlarged. The duration of the
autocorrelation function is
T = 100 fs

g̃′
1(ω) = 4πT cos2(ωT/2)

(π − ωT )2 (π + ωT )2
. (9.25)

It should be emphasized again, that the g̃′ filters are non-negative. In particular, g̃′
1 is

an almost ideal filter with only very small wing-oscillations. See Fig. 9.4 However,
it is the broadest of all filters discussed.

In conclusion, let us assume that we have a discrete spectrum with H�m(R) =
Em�m(R). The Fourier transform of the autocorrelation function, A(t), associated
with the wavepacket�(R, t = 0) = ∑

m cm�m(R)multiplied by a window function
g(t) is given by

1

2π

∫ ∞

−∞
ei Et g(t) A(t) dt =

∑
n

|cn|2g̃(E − En) , (9.26)

In particular, Eq. (9.6) corresponds to Eq. (9.26) for the choice g(t) = g0(t). Sev-
eral functions g can be employed to analyze the power spectrum depending on the
accuracy we want to reach and the propagation time one wants to consider.

9.3 Application to the Vibrations of the Water Molecule

Let us first focus on the electronic ground state within the framework of the Born-
Oppenheimer approximation. The Hamiltonian operator for the nuclear problem is
given by

H = T nu + V0 , (9.27)
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with V0, the PES of the adiabatic electronic ground state and T nu , the KEO for the
nuclei. The total angular momentum of the molecule, J , is a constant of the motion
and can thus be fixed in the calculations. We will consider the J = 0 case only for
the sake of simplicity but all the calculations below could be performed for other
values of J . If J = 0, the nuclear KEO no longer depends on the Euler angles. The
corresponding vibrational eigenstates satisfy (see Sect. 3.2.3)

(T nu(q) + V0(q))�n
0 (q) = En

0�
n
0 (q) , (9.28)

where q denotes the 3N -6 internal degrees of freedom, N being the number of atoms.
We assume here that the system stays below the dissociation energy and thus that

the spectrum is discrete. For a given initial vibrational wavepacket:

�(q, t = 0) =
∑
n

cn�
n
0 (q) , (9.29)

with

cn =
∫

�n �
0 (q)�(q, t = 0)dq , (9.30)

the Fourier transform of the autocorrelation function of the wavepacket for a finite
propagation time, T , is given by

σ(E) =
∑
n

|cn|2g̃(E − En
0 ) , (9.31)

with g̃, the Fourier transform of the window function, g(t) (Eq. (9.26)).
Let us consider an example, the water molecule. The spectrum of water vapor is

of fundamental importance for many reasons [7]. For instance, water plays a major
role in the absorption and retention of sunlight in the Earth atmosphere, mainly in
the infrared region where water shows strong absorption [8].Without the greenhouse
effect of water that provides some 30K of heating (the majority of the greenhouse
effect!), life on Earth would not be possible, since our planet would be in a permanent
ice age. In addition,water is the thirdmost abundantmolecule in the universe (afterH2

and CO) and plays an important role in the formation of stars [8]. Understanding the
lines and levels of water is crucial to describe comets, planets, exoplanets, interstellar
clouds [9].

Here, we consider only the vibrations of the molecule in its electronic ground
state. Water is a nonlinear triatomic molecule and its electronic ground state gives an
equilibrium structure with C2v point group symmetry: we refer the reader to Sect. 7.2
of Chap.7 for a description of this point group symmetry.

The three internal coordinates are chosen as the three valence coordinates R1, R2

and θ as depicted on Fig. 9.5a. The corresponding KEO is given by Eq. (6.169) of
Sect. 6.5.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_6
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Fig. 9.5 The three normal
modes of vibration of water:
a symmetric stretching,
b antisymmetric stretching,
and c bending. The three
valence coordinates R1, R2,
and θ are given in (a). R1
and R2 are the distances
between the oxygen atom
and the two hydrogen atoms

The molecule has three normal modes of vibration that are shown on Fig. 9.5: (a)
a symmetric stretching mode that changes the lengths of the two chemical bonds
symmetrically, (b) an antisymmetric stretching mode that changes the lengths of the
two chemical bonds antisymmetrically, and (c) a bending mode that changes the
angle between the two bonds. These three normal coordinates have been calculated
with the method described in Sect. 5.1 but, again, we do not use normal coordinates
in the following calculations. We use valence coordinates for the dynamics.

We used here the PES of Ref. [10] that has been obtained by fitting the parameters
in the potential in order to reproduce many experimental rovibrational levels of H2O.
In other words, this is a semi-empirical PES calibrated by comparison with available
experimental data.5 A cut through the potential is shown on Fig. 9.6, where the angle

5The PES has been re-expressed in a product form using the POTFIT approach described in
Sect. 8.7.2. θ is the contracted degree of freedom (see Sect. 8.7.3) and we used 12 single particle
potentials (SPPs) for R1 and 12 also for R2. The SPPs are the first eigenvectors of the density
matrices of Eq. (8.346). At the end, we have thus 144 terms in the fit (see Eq. (8.350) with three
degrees of freedom). We used 20 iterations to improve the relevant region defined as the geometries

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 9.6 Cut of the
three-dimensional PES of
H2O taken from Ref. [10].
The coordinates are the
valence coordinates of
Fig. 9.5a. Here, θ, the angle
between the two chemical
bonds is fixed at 1.79 rad
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θ is fixed at 1.79 rad. We see that there is a minimum for R1 = R2 ≈ 1.8 a.u. Around
this equilibrium geometry the PES can be approximated by harmonic functions. Thus
the PES is an elliptic paraboloid (more precisely a paraboloid of revolution since R1

and R2 play a symmetric role). For higher values of R1 and R2, the chemical bonds
tend to break. If we fix R1 at 1.8 a.u., the corresponding one-dimensional curve along
R1 looks like a Morse function (similar to the blue curve in Fig. 3.12 of Sect. 3.5.6).
Note that we have added a energy cutoff at 0.5 hartree (≈ 13.9 eV). This is the reason
why the potential is flat above the cutoff. These regions are physically inaccessible
and correspond to R1 and R2 being very small. It is always very important to cut
the potential because very high potential values drastically slow down the numerical
integrators (the latter are described in Sect. 8.1.6).

The actual equilibrium values of the coordinates are R1 eq = R2 eq = 1.84 a.u. and
θeq = 1.83 rad. Let us propagate wavepackets with the following initial form:

�(R1, R2, θ, t = 0) = N e
− (R1−R1, 0)2

4�R1
2 e

− (R2−R2, 0)2

4�R2
2

× e− (θ−θ0)2

4�θ2 , (9.32)

i.e. a product of three Gaussian functions, N being a normalization constant. For the
first wavepacket WP1 (see Table9.2), we take R1, 0 = R2, 0 = R1, eq , θ0 = θeq . For
the widths of the Gaussian functions, we take �R1 = �R2 = 0.13 a.u. and �θ =
0.16 rad. The parameters of WP1 have been chosen such that this wavepacket is as

(Footnote 5 continued)
corresponding to a potential energy below2 eVabove theminimum (see Sect. 8.7.5). This guarantees
a root-mean-square (rms) error of 0.0355 meV on the relevant region and thus a very high accuracy.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Table 9.2 Parameters for the different initial wavepackets. They all refer to the expression of
Eq. (9.32). The angles are given in radian and the distances in a.u. The last column shows the mean
energy in cm−1 with the energy of the vibrational ground state (ZPE) subtracted

Parameters R1, 0 R2, 0 θ0 �R1 �R2 �θ 〈H〉
WP1 1.84 1.84 1.83 0.13 0.13 0.16 41

WP2 1.84 1.84 2.4 0.13 0.13 0.2 3775

WP3 1.84 1.84 2.8 0.13 0.13 0.2 7765

WP4 2.1 2.1 1.83 0.18 0.18 0.2 5399

WP5 2.1 1.65 1.83 0.15 0.10 0.16 5516

WP6 2.1 1.84 2.3 0.16 0.13 0.17 6222

WP7 2.8 1.84 1.82 0.18 0.18 0.18 19,557

close as possible to the vibrational ground state. The previous wavefunction is not the
vibrational ground state since the latter cannot be written as a simple product of one-
dimensional functions. Even for the vibrational ground state, the three coordinates are
correlated due to the presence of cross terms in the Hamiltonian operator, i.e. to the
fact that the Hamiltonian operator is not separable. Using normal coordinates would
reduce this correlation for the vibrational ground state since the latter corresponds
to small vibrations around the equilibrium geometry. However, even with normal
coordinates, the vibrational ground state is not exactly a product of one-dimensional
functions, since the potential is not purely harmonic. The probability density of the
wavepacket starting from the initial condition of Eq. (9.32) will thus depend on time
according toEq. (2.38).Wewill not useEq. (2.37) to obtain its time evolution since the
latter requires the accurate knowledge of several eigenstates andwedo not know them
at this stage. The propagation of the wavepacket is performed using the Heidelberg
MCTDH package, i.e. by solving Eqs. (8.151) and (8.201). This approach gives the
time evolution of the wavepacket without the need of knowing the eigenstates. The
wavepacket is here written as

�(R1, R2, θ, t) =
n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

A j1 j2 j3(t)ϕ j1(R1, t)ϕ j2(R2, t)ϕ j3(θ, t) . (9.33)

In the following, we use, n1 = n2 = 7 and n3 = 8. Each single particle function is
expressed in a “primitive”, time-independent basis set. For the primitive basis set of
each coordinate, we use aDVR,more precisely a sineDVR for R1 and R2 with R1 and
R2 ∈ [1.0, 3.475] a.u. (this DVR is described in detail in Sect. 8.1.3) and a Legendre
DVRfor θ restricted between0.5 and3.2 rad.6 Here, inEq. (8.152) N1 = N2 = 34 and
N3 = 50 and we propagate the wavepacket during 150 fs. The average energy value

6The Legendre DVR is similar to the DVR in θ introduced for the two-dimensional spherical
harmonics DVR in Sect. 8.1.3 withm = 0 in Eq. (8.55). It corresponds to the proper DVR associated
with Legendre polynomials.

http://dx.doi.org/10.1007/978-3-319-53923-2_2
http://dx.doi.org/10.1007/978-3-319-53923-2_2
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 9.7 Fourier transform of the autocorrelation function for a propagation time T = 150 fs of the
wavepacket WP1. In a 1

2π

∫ +T
−T ei Et A(t) dt is used. In b 1

2π

∫ +T
−T cos2

(
πt
2T

)
ei Et A(t) dt is used. The

Y-axis is in arbitrary unit

of the wavepacket, 〈H〉 is equal to 4676cm−1, a little bit higher than the “zero point
energy” (ZPE), i.e. the absolute value of energy of the vibrational ground state that is
equal to 4635cm−1 (the zero in energy is the minimum of the PES). The modulus of
the autocorrelation function varies little and remains close to one (not shown here).
In Fig. 9.7a, we show the Fourier transform of the autocorrelation function over a
finite propagation time of T = 150 fs: 1

2π

∫ +T
−T ei Et A(t) dt (i.e. k = 0 in Eq. (9.18)).

One observes a peak located around 4635cm−1 corresponding to the eigenvalue of
the vibrational ground state. As discussed in Sect. 9.2.1, the Fourier transform has
the form of the cardinal sine function. In other words, g̃(E) in Eq. (9.31) is a cardinal
sine function that is centered on the energy of the ground state. There are other peaks
since the wavepacket is not identical to the vibrational ground state but they are very
small and hidden within the oscillations of the cardinal sine function.

In Fig. 9.7b the Fourier transform is depicted again over 150 fs, but with a win-
dow function cos2

(
πt
2T

)
(i.e. k = 2 in Eq. (9.18)). Here, g̃(E) in Eq. (9.26) is equal to

π sin(ET )

2E (π−ET )(π+ET )
. The shape of g̃(E) can be seen on Fig. 9.3. There are lower oscilla-

tions due to the presence of the window function but there are still wiggles in the tails
of the peak due to the Gibbs phenomenon as explained in Sect. 9.2.2. By comparison
of Fig. 9.7a, b, we see that the Gibbs phenomenon is attenuated by the presence of
the window function. Note, however, that the price to pay is the broadening of the
peak that leads to a loss of accuracy for the determination of the eigenvalue. If we
propagate longer, the width of the peak will become smaller as predicted by the
time-energy uncertainty principle.

Let us now consider wavepacket WP2 with the expression of Eq. (9.32) and the
parameters given in Table9.2. In other words, the Gaussian function in θ is centered
at a larger angle and with a larger width in θ: we create artificially a wavepacket
with more energy in the bending mode of vibration. The average energy value of
the new wavepacket, 〈H〉, is equal to 8410 cm−1, which is 3775 cm−1 above the
ZPE. The propagation time is equal to 300 fs and the numbers of SPFs are slightly
increased: n1 = n2 = 9 and n3 = 10. The modulus of the autocorrelation function
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Fig. 9.8 Propagation of a wavepacket WP2 over 300 fs for H2O, i.e. with some excitation of the
bending motion. a Modulus of the corresponding autocorrelation function. b Fourier transform
of the autocorrelation function (arbitrary unit). The peaks correspond to the first eigenvalues of
the bending mode of water (the Y-axis is in arbitrary unit). c Expectation value 〈θ〉 in radian.
d Expectation value 〈R1〉 in a.u.

is given in Fig. 9.8a. Since the initial function is real and the Hamiltonian operator
is Hermitian, we can use Eq. (9.12) and obtain the autocorrelation function up to
600 fs, i.e. twice the propagation time. By visual inspection of Fig. 9.8a, we see
that the autocorrelation now oscillates, indicating that the wavepacket is moving
in the potential well. This motion corresponds mainly (but not only) to a bending
motion. The propagation with the MCTDH package presents some oscillations of
the wavepacket in θ. In particular, some nodes appear in the one-particle θ-density
(i.e. some values in θ for which the wavepacket is equal to zero7), indicating that the
wavefunction does not remain Gaussian. Figure9.9 provides the two-dimensional
densities (with R2 being integrated out) of the corresponding wavepacket at different
times. The short propagation time in Fig. 9.9a exhibits a simple oscillation from the
startingwavefunction at t = 0 fs around θ =2.4 in red andmoving to smaller values of
θ: around 1.8 rad at 6 fs in purple, around 1.4 rad at 12 fs in black. Thewavepacketwill
then continue oscillating, moving back, first, to larger values of θ. The wavefunction
is a Gaussian function in θ at time equal to 0 fs and a Gaussian wavepacket has the
essential property to remain Gaussian in the presence of a harmonic potential [11,

7What we call “nodes” corresponds to geometries for which the one-dimensional density is very
small and not necessarily equal to zero.
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Fig. 9.9 Two-dimensional densities along θ and R1 starting fromWP2. a The density at 0 (red), 6
(purple), and 12 fs (black). b The density at 80 fs

12]. In other words, the center of the Gaussian wavefunction moves and its width
increases and decreases but the wavefunction remains Gaussian. As a consequence,
the center of the Gaussian function is the expectation value 〈θ〉 that is depicted
in Fig. 9.8c. Since the potential is approximately harmonic in θ in the low-energy
domain, we see on the short propagation times (Fig. 9.9a) that the density along θ
keeps a Gaussian form and simply oscillates. But, due to the anharmonicity of the
potential in θ, the density loses its Gaussian shape rapidly and, in particular, several
maxima and nodes crop up as shown for t = 80 fs in Fig. 9.9b.

By visual inspection of Fig. 9.9b, we can see that the maxima and nodes are rather
well localized along θ only and, thus, that the coupling with the stretching modes is
small. The propagation also shows some small vibrations of R1 and R2 due to the fact
that the bending motion is slightly coupled to the stretching modes of vibration. This
is confirmed by the expectation values 〈θ〉 and 〈R1〉 in Fig. 9.8c, d: we see that the
average value of θ strongly oscillates, whereas 〈R1〉 oscillates very little (we obtain
exactly the same picture for 〈R2〉, since R1 and R2 play a symmetric role).

The Fourier transform of the autocorrelation function with the window function
cos

(
πt
2T

)
is given on Fig. 9.8b. As often in spectroscopy, we have taken the ZPE (here,

4635cm−1) as the reference energy, i.e. we give the energy differences with respect
to the vibrational ground state. In the power spectrum, we see seven main peaks. The
first one is centered at zero and corresponds to the vibrational ground state, the one
that was at the origin of the large peak in Fig. 9.7. The other peaks are rather regularly
spaced and thus correspond to vibrational levels with one, two, three, four, five, and
six quanta in the bending mode of vibration. The peaks corresponding to modes of
stretching of the O-H bonds are too small to be distinguished at this level. Note that
the most intense peak lies around 3151cm−1, not far from the average value of the
energy, which is equal to 3775cm−1. We have thus been able to define an initial
wavepacket that is almost entirely a superposition of vibrational bending states with
very small contributions from the other (stretching) vibrations.
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In Fig. 9.10a, we present the Fourier transform of the autocorrelation function
starting from WP3, i.e. with the same parameters as for WP2 except θ0 = 2.8 rad.
The spectrum is shifted to higher energy values, i.e. to eigenvalues corresponding
to more quanta in the bending mode. Several small peaks crop up, corresponding
to eigenstates with quanta in the stretching modes. They indicate that the coupling
between the bending mode and the stretching modes becomes a little bit larger. By
comparison of Figs. 9.8b and 9.10a, we see that the height of the peaks is artificial
and directly linked to the initial wavepacket we have chosen. On the other hand, the
eigenvalues that appear in both spectra are identical.

In Fig. 9.10b, we give the Fourier transform of the autocorrelation function of
wavepacket WP4. We have now stretched the O-H bonds in a symmetric way. Logi-
cally, a progression of symmetric stretching vibrations is observed. However, there
are smaller peaks corresponding to symmetric-stretching/bending combination lines.
Note that for this symmetric stretch excitation the eigenvalues corresponding to odd
antisymmetric stretching excitations are forbidden by symmetry, but even excitations
are possible: the v = 2 antisymmetric stretching excitation appears at 7445cm−1

with a small intensity. In Fig. 9.10c, we give the Fourier transform of the autocorre-
lation function of wavepacket WP5. The symmetry between the two O-H bonds has
been broken and a progression of antisymmetric stretching vibrations is observed.
Finally, in Fig. 9.10d,we present the Fourier transformof the autocorrelation function
of wavepacket WP6 with an excitation of all the modes of vibration.

At this stage, several conclusions can be drawn: (i) with this approach the level of
accuracy, limited by thewidths of the peaks, is directly linked to the propagation time.
Experimental data can be very accurate; this computational approach would require
very long propagations to reach such a high accuracy; (ii) this approach provides the
eigenvalues but not the eigenstates; (iii) the heights of the peaks depend on the initial
wavepacket. Each line corresponds to the energy of a photon that could be absorbed
to create a transition between two eigenstates. To obtain the absorption spectrum, an
important information is missing: the efficiency of the absorption of the photon, i.e.
the efficiency of the interaction between light and the molecule for a given transition.
This information is linked to the dipole moment operator. But, before introducing it,
let us first calculate the eigenstates of water with a time-independent method.

9.4 The Time-Independent Approach

The first eigenstates and their eigenvalues were calculated with the improved relax-
ation method of Sect. 8.4. The eigenvalues are given in Tables9.3 and 9.4 in cm−1.
The observed experimental values are also given, taken from Ref. [9]. In Tables9.3
and 9.4 are also given the labels proposed by the experimentalists to assign the eigen-
states. As usual in spectroscopy [13], the conventional picture in terms of normal
modes is adopted. In other words, the labels are given in the form (v1v2v3) where
v1, v2, v3 are the numbers of quanta in the three normal modes. The corresponding
symmetric stretching normal coordinate is called q1 and depicted in Fig. 9.5a; the

http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 9.10 Propagation of wavepackets starting fromWP3, WP4, WP5 and WP6 (see Table9.2 and
the text) over 300 fs for H2O in its electronic ground state. Given are the Fourier transforms of
the autoco(rrelation functions of WP3 (a), WP4 (b), WP5 (c), and WP6 (d) in arbitrary unit. The
window function g′

1 (if, Eqs. (9.23, 9.25)) is used here

bending normal coordinate is called q2 and depicted in Fig. 9.5c; the antisymmetric
stretching coordinate is called q3 and depicted in Fig. 9.5b. We thus use Eqs. (5.9),
(5.10) and (5.11), with 3N − 6 = 3, as a “zero-order” description of the vibrations
of water. Such a description is excellent for this molecule in the low-energy domain.

The vibrational ground state bears, of course, the label (000) and its eigenvalue
serves as the reference in energy (ZPE). Indeed, only transitions and, thus, energy dif-
ferences between the eigenvalues are observed experimentally. The two-dimensional
reduced density over R1 and R2 associated with the eigenfunction (000) is depicted
in Fig. 9.11a.8 The ground state looks like a two-dimensional Gaussian function
centered at the equilibrium geometry.

Low in energy, the description in terms of normal modes is perfectly adapted.
For instance, the level at 3657.157cm−1 bears the label 100. The corresponding
two-dimensional reduced density is depicted on Fig. 9.11b: we clearly see one node
along the direction corresponding to the stretching mode, i.e. the bisector in the (R1,
R2) plane. For the level at 3755.809cm−1 with the label 001, we see on Fig. 9.11c
one node now along the antisymmetric stretching mode of vibration (the diagonal
perpendicular to the previous direction). The level 101 at 7249.792cm−1 has one node
along the stretching mode and another node along the antisymmetric mode as shown

8The reduced density are obtained by integrating |�|2 over all the other coordinates, here over θ.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
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Table 9.3 The first vibrational excitation energies for water in cm−1: theoretical values calculated
with the improved relaxation ofMCTDH (“Theory”) andwith the PES of Ref. [10] and experimental
values taken from Ref. [9] (“Exp.”). The theoretical absolute eigenvalue of the vibrational ground
state, or “zero point energy” (ZPE), is equal to 4634.7499cm−1. The labels correspond to the
assignment proposed by the experimentalists based on a normal mode description of the vibrations
of the system. v1, v2, v3 denote the numbers of quanta in the symmetric stretching mode (ν1), the
bending mode (ν2), and the antisymmetric stretching mode (ν3)

Number Theory Label Exp.

0 0.000 000 0.00

1 1594.671 010 1594.75

2 3151.510 020 3151.63

3 3657.157 100 3657.05

4 3755.809 001 3755.93

5 4666.854 030 4666.79

6 5234.965 110 5234.98

7 5331.344 011 5331.27

8 6133.101 040 6134.01

9 6775.212 120 6775.09

10 6871.536 021 6871.52

11 7202.163 200 7201.54

12 7249.792 101 7249.82

13 7444.710 002 7445.06

14 7536.656 050 7542.37

15 8273.860 130 8273.98

16 8373.924 031 8373.85

17 8761.747 210 8761.58

18 8806.734 111 8807.00

19 8851.331 060 8869.95

20 9000.076 012 9000.14

on Fig. 9.11d. Let us return to the discussion of the spectrum given in Fig. 9.10b.
The second strong peak corresponds to the transition to 100. The following strong
peak corresponds to the transition to 200 at 7202.163cm−1 and the smaller peak on
its right corresponds to the transition to 002. The transition to 101 is hidden by the
transition to 200. In the samemanner, the second high peak in Fig. 9.10c corresponds
to the transition to 001. Again, the transition to 101 is too small to be observed on
this spectrum. The peaks between 7100 and 7600cm−1 correspond to the transitions
to 200 (the smaller peak) and to 022 (the higher peak on the right). On Fig. 9.10d,
the two transitions to 100 and 001 appear just below 4000cm−1. A zoom around
7250cm−1 would show that there are two lines that are not completely resolved,
corresponding to the transitions to 101 and 200.
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Table 9.4 First vibrational eigenvalues for water in cm−1 (continued)

Number Theory Label Exp.

21 9720.134 140

22 9832.644 041 9833.58

23 10,044.452 070

24 10,284.542 220 10,284.36

25 10,328.428 121 10,328.73

26 10,521.781 022 10,521.76

27 10,600.699 300 10,599.69

28 10,613.675 201 10,613.36

29 10,868.470 102 10,868.87

30 11,032.605 003 11,032.40

31 11,067.700 150

32 11,215.268 080 11,254.00

33 11,237.358 051 11,242.78

34 11,766.707 230 11,767.39

35 11,812.515 131 11,813.21

36 12,007.815 032 12,007.77

37 12,139.554 310 12,139.32

38 12,151.130 211 12,151.25

39 12,324.354 090

40 12,406.796 112 12,407.66

Similarly to Figs. 9.11, 9.12a–c display the two-dimensional densities along θ and
R1 for the levels 010 (1594.671cm−1), 020 (3151.510cm−1) and 050
(7536.656cm−1), respectively. They present one, two and five nodes along θ, i.e.
they correspond to eigenstates with one, two and five quanta in the bending mode of
vibration. All the corresponding transitions can be clearly seen on the spectra shown
in Figs. 9.8b and 9.10a. Note that the transition to 010 is small on Fig. 9.10a. These
transitions appear also on Fig. 9.10d: the first two large peaks after the ground state
correspond to the transitions to 010 and 020.

Higher in energy, the situation becomes more complex and the assignment of
the vibrational states by counting minima (nodal lines) in the density plots becomes
questionable. For instance, the state presented in Fig. 9.12d is labeled 090 by the
experimentalists. But one does not clearly see on Fig. 9.12d nine nodes along θ.
In other words, the nodes and maxima are not perfectly aligned along θ for the
same values of R1. Some local maxima correspond to higher values of R1 indicating
that there is a coupling between the bending mode and the stretching mode. In the
normal mode picture, the bending mode and the stretching modes are supposed to
be decoupled but in this energy domain around 12,000 cm−1 above the ZPE, it is
known, for water, that there is a coupling, a Fermi resonance between the bending
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Fig. 9.11 Two-dimensional densities along R1 and R2. The reduced densities are obtained by
integrating |�|2 over θ. a The vibrational ground state 000, b the state 100 at 3657.157cm−1, c the
state 001 at 3755.809cm−1, and d the state 101 at 7249.792cm−1 (see Table9.3)

mode and the symmetric stretching mode. They start to vibrate in a correlated way
and the corresponding eigenstates mix the vibrations along θ, R1, and R2. This Fermi
resonance is due to the fact that the harmonic frequency of the stretching mode is
roughly twice the frequency of the bending mode inducing an interaction between
the corresponding harmonic oscillators.9 The description in terms of normal modes
starts to become inadequate, although such a description is a very good starting point
for water as opposed to other molecules where Fermi resonances may complicate the
spectrum even for the very first excited states, such as for H5O

+
2 that will be studied

in Sect. 9.5.
Another coupling is very interesting inwater. Asmentioned above, the description

in terms of normal modes works very well for the first excited states of the stretching
modes: look at the reduced densities for 100, 001 and 101 on Fig. 9.11b–d and

9The interaction between the zero-order levels associatedwith the normalmodes can be rationalized
by a two-state quantum system: in second-order perturbation theory, it can be shown that the strength
of the interaction is proportional to the strength of the coupling divided by the energy difference
between the zero-order levels.
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Fig. 9.12 Two-dimensional densities along R1 and θ. The reduced densities are obtained by inte-
grating |�|2 over R2. a State 010 at 1594.671cm−1 (see Table9.3), b state 020 at 3151.510cm−1,
c state 050 at 7536.656cm−1, and d state 090 at 12324.354cm−1

for 201 on Fig. 9.13a. However, the situation is different higher in energy. For the
states labeled 300, 102 given on Fig. 9.13b, c, the distribution of the nodes is no
longer regular. For the state 300 on Fig. 9.13b, we would expect three nodes and four
maxima along the diagonal corresponding to the symmetric stretching motion, such
as in Fig. 9.11b, but with three nodes instead of one. However, this is not exactly
what is observed: the presence of two local maxima on the right side of the figure
clearly indicates that there is a coupling with the antisymmetric mode of vibration.
In the samemanner, we would expect for 102 of Fig. 9.13c a distribution of the nodes
similar to 201 of Fig. 9.13a, with only a permutation of the role of the symmetric
and antisymmetric motions. This is not what is observed. The coupling between the
symmetric and antisymmetric stretching modes is not specific to water and occurs
in many molecules: this is what is called a Darling-Dennison resonance. Such a
coupling leads to a profound change of regime in the dynamics: the emergence of
local modes of vibration [14].

We have already explained in Sect. 5 that, low in energy, the vibrations are often
dominated by the normal-mode regime but higher in energy the situation can change:

http://dx.doi.org/10.1007/978-3-319-53923-2_5


310 9 Infrared Spectroscopy

Fig. 9.13 Two-dimensional densities along R1 and R2: a the state 201 at 10,613.675cm−1, b the
state 300 at 10,600.699cm−1, c the state 102 at 10,868.470cm−1 (see Table 9.3), and d the state
500 at 16,904.898cm−1 (not given in Tables9.3 and 9.4)

some chemical bonds may vibrate in a more independent way. Some vibrations are
more localized and this situation is referred to as the local-mode regime [15, 16].
In this context, Fig. 9.13d is very interesting. The corresponding state has the label
500 but some of the nodes are clearly localized along the R1 and R2 directions and
not along the symmetric and antisymmetric motions that are linked to the diagonal
directions on the figures. This is quite clear for the nodes for R1 or R2 > 2.0 a.u. on
Fig. 9.13d. The vibrations start to be localized along the bond lengths. This means
that the chemical bonds start to vibrate independently, as expected in the local-
mode regime. For the vibrations along R1 and R2, a zero-order description based
on the eigenstates of one-dimensional Morse functions along R1 and R2 becomes
better-adapted than a zero-order description based onboth one-dimensional harmonic
oscillators along the normal coordinates (i.e. along the symmetric and antisymmetric
stretching motions) [16].

This is illustrated in a more vivid way on Fig. 9.14a, b. Figure9.14a corresponds
to the two-dimensional density of WP4 at 91 fs. We see a clear delocalization of
the motion along the symmetric direction. For other times, we see nodes appearing
along the antisymmetric direction (not shown). Figure9.14b corresponds to WP7 at
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Fig. 9.14 Two-dimensional densities along R1 and R2 at t = 91 fs for the initial wavepacketsWP4
(a) and WP7 (b)

91 fs. WP7 corresponds to a strong stretching of R1 alone: R1 0 = 2.8 a.u. We see
that the wavepacket remains delocalized along R1 only. This holds during the whole
propagation. This shows that in this energy domain (about 20,000cm−1 above the
ZPE), the chemical bonds are almost not coupled together. Of course, if we stretch
even more R1, we will break the chemical bond.10 A symmetric stretching, with R1 0

= 2.8 a.u. and R2 0 = 2.8 a.u., would lead to complex dynamics, with nodes along R1

and R2 and not along the two diagonals as forWP4. The dynamics ofWP4 in a lower
energy domain (around 5400cm−1) shows that the two chemical bonds always move
in a concerted way. If we had stretched R1 only in this energy domain (by taking R1 0

= 2.1 a.u. and R2 0 = 1.8 a.u. for instance), we would have seen, first, a localization
of the nodes along R1, but after a certain time a delocalization of the nodes along
R2 (not shown here), exemplifying that there is a strong coupling between R1 and
R2 in the local-mode regime, in sharp contrast with the dynamics of WP7 in the
local-mode regime.

Until now, we have only explained how to obtain the eigenstates and the eigen-
values but not how to obtain the infrared spectrum (the intensities). For this purpose,
we need to further introduce the dipole moment of the molecule.

9.5 Calculation of the Infrared Spectrum

The interaction of a molecule with an external electric field is given by the term
−µ · E(t), where µ is the dipole moment operator and E the external electric field
(see Sect. 3.4). However, the dipole operatorµ is expressed in the BF-frame, whereas
the electric field and its polarisation is known in the LF frame. A correct theoretical
description hence requires to rotate the wavefunction from the BF frame to the LF

10The dissociation energy above the ZPE is estimated at D0 ≈ 41,128cm−1 [17].

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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frame. The resulting theory is rather complicated, but correctly accounts for the fact
that the molecule changes its total angular momentum state (from J = 0 to J = 1,
say) after absorption of a photon.

Here, we take a simpler but approximate route. As the orientations of a mole-
cule in free space are statistically distributed, one averages over the three Cartesian
components of the dipole operator, and ignores a change in total angular momen-
tum. Furthermore, we assume a sudden approximation with respect to the external
field, E(t) = eδ(t). A δ-function of time is a superposition with equal weights of
all frequencies. Due to the linearity of the Schrödinger equation, this approach is
hence equivalent to applying a series of fields, one after the other, of well-defined
frequency. The latter is the way experiments are usually done.

Assuming a weak field, the IR absorption cross section is given, from first-order
perturbation theory, as

I (E) = πE

3 c ε0

∑
λ=x,y,z

∑
n

|
∫

�n �
0 (q)μλ

00(q)�0
0 (q)dq|2 δ(E + E0 − E0

n), (9.34)

where �0
n is the n-th exact eigenstate for total angular momentum J = 0, μλ

00 is the
λ-th Cartesian component of the electronic ground state dipole operator, E0 is the
ground state energy, and E the photon energy.

We arrive to the following important result: applying the three components of the
dipole moment vector along the x, y, and z directions on the vibrational ground state
gives three wavepackets. The sum of the three corresponding wavepacket spectra
multiplied by E is proportional to the infrared absorption spectrum of the molecule.

It is now clear, how to proceed in the time-dependent picture. One defines the
autocorrelation functions:

Aλ(t) = 〈μλ
00�

0
0 |e−i Ht |μλ

00�
0
0 〉 , (9.35)

i.e. one has to propagate the initial states μλ
00�

0
0 . For λ = x, y, z,

σλ(E) = 1

π
Re

∫ ∞

0
ei Et Aλ(t)dt , (9.36)

where, as discussed before, an appropriate window function g(t) should be added to
allow for a finite propagation time with suppressed Gibbs artifacts. Then one obtains

I (E) = πE

3 c ε0

∑
λ=x,y,z

σλ(E) . (9.37)

Let us consider an example: the protonated water dimer, H5O
+
2 , i.e. two water

molecules with a proton in between. The incentive for studying this system exceeds
the sole description of this small cluster, since hydrated protons are ubiquitous in
nature [18]. For instance, hydrogen cations abound in liquid water but only in the
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form of complexes and H5O
+
2 is one of the most important of them. The accurate

description of this system thus contributes to the understanding of how protons are
transported through liquid water. In particular, the protonated dimers are important
for environmental reasons since, for instance, they take part in acid-base reactions that
cause acid rain; they are important also for biological processes, etc. [18]. Describing
correctly the vibrational quantum dynamics of this system has thus implications
beyond IR-spectroscopy.

We have seen in the previous section, that for a single molecule of water, the
description of the vibrations is very well described by the normal-mode picture at
lowenergy. In the case ofH5O

+
2 , the situation is completely different. First, the system

is more anharmonic for the modes of vibration corresponding to the vibrations of the
proton between the two water molecules and for the other intermolecular vibrations.
It is natural to think that a description in terms of normal modes that are defined as
linear combinations of Cartesian coordinates is not adapted to describe the relative
motions of rotations of the molecules of water (this is particularly clear for the
internal torsion) and that a description by means of angles for these “motions of
large amplitude” is better-adapted. In other words, this system is said to be “floppy”,
and a description in terms of “curvilinear” coordinates is required, as explained in
Sect. 5.2 for smaller systems. The exact definition of the coordinates is not given
here. We simply mention the fact that they lead to a complicated KEOwith hundreds
of terms [19, 20]. We refer here to the 15-dimensional PES and the three dipole
moment surfaces of Ref. [21].

Second, and more importantly, the system is impacted by strong couplings
between the most important modes of vibration, i.e. strong Fermi resonances play
a dominant role even for the first vibrational eigenstates. We have already observed
these Fermi resonances for water: the resonance between the bending mode and the
symmetric stretching mode and the Darling-Dennison coupling, but their effects
appear rather high in energy, at least not in the low-energy domain. Again, for
H5O

+
2 , these resonances play a role even for low-lying eigenvalues, and H5O

+
2 is

a good example of a molecular system for which the conventional picture in terms
of normal modes is inadequate.

The system has seven atoms and thus 15modes of vibration. Let us assume that all
the nuclei are in the same plane as shown on Fig. 9.15. The vibrations of the system
can be classified in terms of the following 15 vibrational modes11:

• Three intramolecular vibrations for each molecule of water. They are similar to
the modes of the isolated molecule of water described in Fig. 9.5: the symmetric
stretching mode, the antisymmetric stretching mode and the bending mode. Since
there are twomolecules of water, this yields six intramolecular modes of vibration.

• The proton transfer corresponding to the motion of the proton along the Oxygen-
Oxygen axis.

11Thesemodes of vibration do not correspond exactly to the normalmodes of the system.As already
pointed out, the normal mode description is not adapted for this system anyway. However, these 15
modes of vibration can be seen a natural first-order descriptions of the vibrations of the system.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
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Fig. 9.15 The H5O
+
2

system: geometry
corresponding to all the
nuclei in the same plane

• The two out-of-axis proton motions corresponding to the motions of the proton
perpendicular to the Oxygen-Oxygen axis.

• The Oxygen-Oxygen stretching mode.
• The two wagging motions of the molecules of water: they correspond to the out-
of-plane motions of the two molecules of water.

• The two rocking motions of the molecules of water: they correspond to rotations
of the molecules of water in the plane.

• The internal rotation corresponding to the rotation of one molecule of water with
respect to the other (torsion along O–O).

As aforementioned, it is necessary to use curvilinear coordinates due to the strong
anharmonicity of the system, but the modes of vibration listed above fail also to
describe qualitatively the nature of the first eigenstates due to the presence of strong
“Fermi resonances”. In particular, when the proton moves to the molecule on the
right, the latter goes out of the plane and a pyramidal H3O+ appears whereas the
other molecule of water remains in the plane: see Fig. 9.16. Of course, if the proton
goes back and moves to the molecule of water on the left, the molecule on the right
will go back to the plane. Then, the molecule on the left will go out of the plane
and create another pyramid with the proton. In other word, through this process of
“pyramidalization”, there is a very strong coupling between the mode corresponding
to the proton transfer and the wagging modes of vibration of the molecules of water.
But that is not all: when H3O+ forms a pyramid the HOH angle in the molecule
of water changes. There is thus a strong coupling also with the bending mode of

Fig. 9.16 The H5O
+
2 system: starting from Fig. 9.15, the proton moves to the molecule of water

on the right side. The molecule of water goes out of the plane and the H3O+ subsystem forms a
pyramid whereas the other molecule of water remains in the original plane
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Fig. 9.17 Comparison of the
MCTDH spectrum with the
available experimental
spectrum for H5O

+
2

vibration of the water molecule. In this system, and contrarily to the water dimer
[22, 23], there is a strong coupling between the intermolecular modes of vibration
(the proton transfer and the wagging modes) and the intramolecular vibrations (the
bending modes of vibration of the molecules of water). In addition, the O–O distance
changes in the process and thus theO–O stretchingmode is also coupled to themodes
that are at the origin of the pyramidalization. Another strong coupling exists between
the water bending and the proton motion along the O–O axis [24, 25].

The IR predissociation spectrum of the cation has been measured under neon- and
argon-solvated [26] conditions. It is expected that the photodissociation spectrum of
the H5O

+
2 ·Ne1 complex is close to the infrared absorption spectrum of the bare cation

[26]. Due to experimental conditions, the observed peaks have a natural width and
the reproduction of the spectrum does not require a very high accuracy contrarily
to many cases in infrared spectroscopy. The problem is thus ideally adapted for a
time-dependent approach. Starting from the 15D vibrational ground state, �0

0 , the
MCTDH method has been used to propagate the wavepackets μx

00�
0
0 , μ

y
00�

0
0 and

μz
00�

0
0 . They have been propagated over 500 fs, giving an autocorrelation length of

over 1 ps by using the t/2-trick of Eq. (9.5). The simulated spectrum is obtained by
Fourier transforming the autocorrelation functions of the wavepackets as explained
above. This provides a resolution of 30cm−1 with a full width at half maximum
(FWHM) similar to the resolution of the experiments.

The calculated and experimental spectra between 700 and 1900cm−1 are pro-
vided in Fig. 9.1712: the excellent agreement reveals the very high quality of the PES
and dipole moment surfaces of Bowman and coworkers Ref. [21]. The calculated
spectrum covers a larger domain from zero cm−1 (corresponding to the vibrational
ground state) to 3700cm−1: see Ref. [27]. However, we present here only a zoom
between 700 and 1900cm−1 because, first, there is available experimental data only
in this domain and, second, because this corresponds to the vibrational eigenvalues
that combine the modes forming the pyramidalization of H3O+. In particular, the

12Reprinted with permission from [24]. Copyright 2007, American Institute of Physics.
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doublet at about 1000cm−1 is mainly due to the strong coupling between the proton
transfer and the waggingmotion of themolecules of water. It is also due to a coupling
between the two previous modes, the bending modes, and the O–O stretching mode.
No assignment of the corresponding eigenstates can be done without a quantitative
simulation. We realize here the sharp difference with the water molecule where it
was possible to attribute a definite number of quanta in the normal modes to the
low-lying peaks.

It is possible to perform the same simulations for the main isotopologues of
the system: D(D2O)

+
2 , H(D2O)

+
2 and D(H2O)

+
2 just by changing the masses in the

KEO. Dramatic differences are found between the spectra [25, 28]. In particular, the
couplings between the four modes leading to the pyramidalization is even stronger
for H(D2O)

+
2 . On the other hand, these couplings are much smaller in D(H2O)

+
2 . We

see how difficult it may be to predict the nature of the different peaks in a system
such as H5O

+
2 and its isotopologues since no qualitative chemical interpretation can

be invoked to explain them. The position and the nature of the peaks originate from
the values of the different frequencies associated with the modes of vibration and
from the possible resonances between them.Only a quantitative quantum-mechanical
treatment could disentangle the spectrum.

9.6 Installing MCTDH

Before starting with the lab-session, one has to download and install the Hei-
delberg MCTDH package. Please write an e-mail to Hans-Dieter.Meyer@pci.uni-
heidelberg.de and ask for access to the code. You may also wish to visit the
MCTDH web-site http://mctdh.uni-hd.de. Please download the current 84-version
mctdh84.x.tgz (with a suitable integer value for x), as well as the files addsurf.tgz
and lab-session.tgz from the page http://mctdh.uni-hd.de/packages/. This page is
password protected: you will receive the password together with an extended instal-
lation instruction when asking for the MCTDH package.

All the input files for the lab sessions and a version of the code are also provided
as supporting material of the present book.

It is most convenient to create a directory called MCTDH and store the downloaded
files there, then un-tar them. An alternative way, and in fact the recommended one,
is to use SUBVERSION (svn) to download the package-code, the addsuf, and the
lab-session directories. When you ask for the package, you will receive a description
of how to use svn. Alternatively, onemay download all files needed from the Springer
web-server http://install_mctdh.

The next step is to run “./install_mctdh” while being in the
$MCTDH_DIR/install directory. ($MCTDH_DIR denotes the path of your
MCTDH directory). The installation will be easy on amodern Linux system. If you are
running on Apple OSX, installation should also be painless. However, one first has to
install xcode and then download and install gfortran and gnuplot. Please see
the HTML documentation under “Installation and Compilation”/“Installation prob-

http://mctdh.uni-hd.de
http://mctdh.uni-hd.de/packages/
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lems” for more details on OSX installation.
(http://www.pci.uni-heidelberg.de/tc/usr/mctdh/doc.84/mctdh/gen.html)

If you do not want to download the most recent version but rather like to use an
already installed one, please make sure that you are using version 8.4.12 or higher
(or 8.5.5 and higher). Older versions do not support all options of some analysis
routines used here.

In this session, we begin with studying the dynamics of the water molecule.
However, no water PES is included by default in the MCTDH package. To include
it please run “mklinks h2o”, after having successfully installed the package
and the addsurf directory. If running mklinks does not work, because some
environment variables may not be set, please copy the file addsurf/h2o.f to
$MCTDH_DIR/source/surfaces. To include the surface one has to re-compile
potfit: compile -i h2o potfit . Try compile -h for a better understand-
ing of what you are doing. All MCTDH programs and scripts know the help-option
-h, use it!

Now we are ready to run MCTDH. Move to the directory lab-session. It
contains the file lab-session.pdf, which provides a description of the lab-
session, and the directory lab-inputs. Copy the directory lab-inputs to some
appropriate location, where you want to perform the calculations. Then follow the
instructions below.

9.7 Lab-Session I: H2O, Computing Vibrational
Eigenstates (J = 0)

For our studies we will use the PJT2 PES for H2O by Polyansky, Jensen and Ten-
nyson. See JCP 105, 6490-6497 (1996) and JCP 101, 7651 (1994) for details. As
MCTDH requires a product form for the Hamiltonian, the PES has to be potfit-
ted first. After that we will generate the vibrational ground state by improved
relaxation, and then vibrational excited states by three sequential block im-
proved relaxations. Thepresent example,H2O, is actually too small to release
the full power of MCTDH. However, one can learn a lot by studying this system and
all calculations will be fast.

To do the calculations please move to lab-inputs/relax and type
“./run-rlx”13. Please inspect the script first. One may submit the commands
individually, but it is more convenient to run the script. Depending on your computer
installation, running the script will take between 1 and 4min. Before we inspect
the results we will discuss the input files. The POTFIT input file h2o.pfit.inp
starts with a RUN-SECTION where the directory is specified to which all results
are written (we call this the name-directory). The next line states that 20 itera-
tions should be performed to improve the fit and the following line ensures that
some error measures are written to the file iteration. The PES is selected in the

13run-rlx is an executable file. Make it executable if necessary.

http://www.pci.uni-heidelberg.de/tc/usr/mctdh/doc.84/mctdh/gen.html
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OPERATOR-SECTION where additionally a potential-cut-off is defined. Note that
when no unit is specified, atomic units (a.u.) are assumed. It is very important to “cut”
a potential, because very high potential values will slow down the integrators. On
the other hand, a wavepacket does not go to regions where the potential is very high,
hence cutting the potential at some reasonable value is safe. As we are not interested
in energies above 3eV, a cut at 13.6eV (0.5 a.u.) is reasonable. In the next section,
NATPOT-BASIS-SECTION, the number of natural potentials is specified. Here 12
natural potentials are used for r1 and r2, i.e. thenatpot consists of 144 terms. There
is a contraction over the theta-DOF, note that one alwaysmust contract over onemode.
ThePRIMITIVE-BASIS-SECTION specifies theDVRs, see theHTMLdocumen-
tation for details. (Accessfile://$MCTDH_DIR/doc/index.htmlwith your
preferred browser). Finally, theCORRELATED-WEIGHT-SECTION determines the
so-called relevant region. During the iterations POTFIT tries to improve the repre-
sentation on the relevant region while the fit may deteriorate elsewhere. All grid
points with a potential energy below 2eV are defined as relevant regions. Since the
vibrational energy is distributed over three degrees of freedom, this value is sufficient
for calculating vibrational states up to a total energy of 3eV.

After running potfit84 we want to inspect the PES. Move to the directory
relax/h2o.pfit and run showpot84. A menu will appear, but first simply
accept the default values by typing “1” three times. A blank input will bring back
the menu. Next, we may switch to an eV scale (type “90” and then “ev”) and to a
3D view (type “160”). Then again accept the defaults. As long as showpot84 is
running one can rotate the figure with the mouse.With menu point 20 one can change
the coordinate selection. Type “20” and then “x 1.8 1.9”. A cut through the potential
along r1 for r2 = 1.8 a.u. and θ = 1.9 rad is shown. With menu point 150 one may
switch on grid lines and with menu point 10 we may select another plot task, e.g.
displaying the difference Vexact − Vfit. The effect of the iterative improvement of the
fit can be seen by running “plpit -G ur” and “plpit -G mr” which show the
root-mean-square and the maximum error, respectively, of the fit within the relevant
region.

Next,we inspect the inputfile for the relaxation to theground state,h2o.gs.inp.
In the RUN-SECTION we specify the name-directory, give some descriptive text as
a title, and request an improved relaxation to the ground-state (relaxation=0)
while using a preconditioner and the Olsen-correction. The setting of the times for
improved relaxation is a bit unusual (as compared to propagation). The meaning of
tfinal is clear and tout=all lets the program produce an output after every
update step, rather than at fixed time intervals. The keyword tpsi is used here to
set an upper limit to the enlargement of the update time. The meaning of the next
two lines as well as of the next three sections should be clear. For details see the the
HTML documentation, which is part of the package. The INTEGRATOR-SECTION
needs some explanation, as again it is rather different from one for propagation. The
initial update time and the CMF accuracy is set in the first line. Note that the CMF
accuracy can be rather low. The accuracies of the integrators for both the SPFs and
the A-vector (the latter is not an integrator but a diagonalizer), are rather high. The
next statement overwrites the default setting (1.d-8) of the regularization parame-
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ter (see, for instance the MCTDH-review [6], Eq. (82) for its definition), and the
last line requests a transformation to natural orbitals after each update step. In the
INIT_WF-SECTION an initial wavefunction is built, which is a Hartree product of
three Gaussian functions.

Now move to the name-directory h2o.gs and there type “rdrlx”. This script
reads the rlx_info file and prints it in a better readable form. The last section of
this output consists of several columns. The first column gives the relaxation time (in
fs), the second the number of Davidson iterations. In the second row there appears a
star (*), indicating that here the Davidson diagonalizer did not converge, because in
the input file the maximal number of iterations was limited to 20. It is legitimate if
non-convergence happens at low relaxation times, but if it appears later, one cannot
trust the results! The column beta displays the overlap (times 1000) of an A-vector
with the previous one. If this overlap is very close to unity, the difference to 1 is
printed. The next column shows the energy. The first row, characterized by a nega-
tive time, displays the expectation value of the initial wavefunction. The second row,
characterized by time zero, shows the energy after diagonalization but without relax-
ation of the SPFs. The following rows give the energy after SPF relaxation followed
by diagonalization of the Hamiltonian in the basis of the SPFs. (See e.g. Sect. 8.4.1
for a brief description of improved relaxation). The final wavefunction is written to
the restart file and a large amount of information on the computation is written
to theASCIIfileslog, op.log, speed, steps, timing, update, and
output. Onemay inspect those. Here we discuss only the last block of the output
file and concentrate on the natural weights. All first three natural weights are very
close to unity (≈0.998) and all forth three natural weights are negligible. Hence,
the ground-state wavefunction of water, represented in valence coordinates, is only
weakly correlated. A single Hartree product could be a good approximation. In fact,
if one performs a normal relaxation14 with only one SPF for each DOF, one obtains
a ground-state energy of 0.576282eV, which should be compared with 0.574636eV,
the value obtained with improved relaxation, i.e. the numerically exact value for the
given PES. The difference is merely 1.6meV or 13cm−1.

Wenow turn to block improved relaxations and inspect the input fileh2o.1.inp.
It is quite similar to h2o.gs.inp, except that there is the new line packets=35,
single-set in the SPF-BASIS-SECTION and the line autoblock in the
INIT_WFSECTION. The packet keyword requests that there are now 35 states
which are simultaneously relaxed, and the autoblock keyword enables the creation of
a block of orthogonal initial A-vectors. Moreover, the numbers of SPFs and the size
of the preconditioner are enlarged. Running rdrlx in the directory h2o.1 prints
the lowest 35 eigenenergies of our H2O Hamiltonian. Note that the ground-state
energy is already subtracted,15 hence shown are the 34 lowest excitation energies.
Higher excitations are calculated by running h2o.2.inp and h2o.3.inp. Here

14For normal relaxation replace relaxation=0 precon=100,olsen with relaxation,
set tfinal=20, and remove theINTEGRATOR-SECTION, a default integratorwill then be taken.
15This is accomplished by the line “rlxunit=cm-1,4634.749881” which converts the computed
energies to the unit cm−1 and subtracts 4634.749881cm−1 from all computed energies.

http://dx.doi.org/10.1007/978-3-319-53923-2_8
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the keywordrlxeminguarantees that higher states are computed. It is nowof advan-
tage to read the initial SPFs from the previous block improved relaxation (keyword
block-SPF), rather than to build them.

The computed eigenenergies are compiled in the file eigenval together with
experimentally measured eigenenergies. For the lowest 13 excitations the agreement
is excellent, better than 1cm−1. This shows the high quality of the PES. A stick spec-
trum is shown by running “plgen -z 0 -y 1600 eigenval 2:3 -i” and
the number of states up to a given excitation energy is displayedwhen typing “plgen
-G eigenval 2:1” while being in the directory relax. However, the excitation
energies alone are often not enough: one needs to assign them to fundamental vibra-
tions. For this one requires the wavefunctions. Due to the keyword split-rst
the block wavefunction is split into individual ones stored in the files rst000 to
rst034. To visualize these wavefunctions, more precisely, their 2D reduced densi-
ties, move to h2o.1 and submit the commands:

showsys84 -rst -f rst001 ! 20: x 0 y (bend(v=1)
showsys84 -rst -f rst002 ! 20: x 0 y (bend v=2)
showsys84 -rst -f rst003 ! (sym str)
showsys84 -rst -f rst004 ! (asym str)
showsys84 -rst -f rst005 ! 20: x 0 y (bend v=3)
showsys84 -rst -f rst006 ! (sym str + bend)
showsys84 -rst -f rst007 ! (asym str + bend)

The exclamation mark (!) and everything after is a comment and should not appear
on the command line. The comment “20: x 0 y” is to be interpreted as going
to menu point 20 and then typing “x 0 y”, by which one chooses r1 and θ as
coordinates of the plot. The coordinates not assigned an x or y are integrated over to
obtain reduced densities. Note that menu point 20 requires as input exactly as many
entries as there are DOFs. The DOFs not to be plotted must be assigned a number.
The value of this number is irrelevant when reduced densities are plotted, however,
these numbers define the location of a cut when cuts are plotted. After one is satisfied
with the setting of the menu points, one should type “1” to select ’plot to screen’ and
then enter again twice a “1” to accept the default plot parameters (or modify them to
ones convenience). To get acquainted with showsys84 please try the menu points
240 and 245 which switch off (or on) the keys and the title, respectively. Try also
menu points 150 and 160 which switch on (or off) grid lines and a 3D depiction,
respectively. When the GNUPLOT picture appears it can be rotated with the mouse.
This is most useful when the surface is toggled on (menu point 160). However, when
one inputs something at the showsys84 command line, the plot will freeze.

The 2D-density plots make it clear that the states are to be assigned to bend(v=1),
bend(v=2), symmetric stretch, antisymmetric stretch, and so on. (Simply count the
number of nodal lines.) The last two showsys84 runs from the list above should be
done with and without “20: x 0 y”. One may inspect and assign higher excited
states as well. An assignment of the first 43 states is listed in the eigenval file. The
assignment agrees perfectly with the one provided by the experimentalists, except
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for state No. 40. The assignment is easy and clear, because the H2O molecule in
valence coordinates is not strongly coupled, at least at lower excitation energies. For
highly excited states (or for more strongly correlated systems), the assignment may
become ambiguous. (Inspect e.g. states 27 and 29 with showsys84).

9.7.1 H2O : Wavepacket Propagation (J = 0)

To study wavepacket propagation move to the directory propagate and either run
the script run-prop, or run the individual commands by hand. The computations
should take 10–30min, depending on your hardware. First a potfit is done. Smaller
numbers of natural potentials are used here, because, when propagating, one does
not aim at such high accuracy as when computing eigenenergies. This results in a
slightly less accurate but a three times more compact potential representation.

The Ground State

The first propagation is done with the input file h2o.prop.inp. The main differ-
ence to the relaxation inputs is found in the INTEGRATOR-SECTION. The setting
shown here is rather typical for a propagation run. Next, an initial wavefunction
is built as a Hartree product of Gaussian functions, where the parameters of the
Gaussian functions are chosen to resemble the ground state most closely. During
the propagation the autocorrelation function A(t) =<�(0)|�(t)> is computed16

from which the power spectrum can be obtained by Fourier transforming it. To do
so move to the directory h2o.prop and run “plspec -G -g2 3000 9000
cm-1”. (See file propagate/commands). One observes a single peak located at
the ground-state energy of 4635 cm−1. The wiggles in the tails of the peak are due
to the Gibbs phenomenon, i.e. to the finite length of the autocorrelation function.
These “false” structures can be attenuated with the aid of a window function. For a
comprehensive discussion on window functions see Sect. 9.2. The different window
functions are selected by the -g option, -g0, -g1, ..., -g5. (g4 and g5 correspond
to g′

0 and g′
1 of Sect. 9.2.2). If none is given, -g1 is taken as the default. Run plspec

with different window functions to observe the effect they have on the spectrum. The
Gibbs structures can be strongly attenuated by using a window function, but the
price to be paid is a broadening of the peaks. If the spectrum consists of individual
well resolved lines, the windows -g2 or -g5 are recommended, whereas for less
structured spectra -g1 is often a better choice.

As the autocorrelation function is known on discrete time-points only, the
Fourier transform is actually a discrete Fourier transform that replicates the spec-
tra infinitely. To show this behavior type “plspec -G -g2 -q 5000 -40000
50000 cm-1”. One observes three peaks the spacing of which is given by 2π/�t ,

16Actually, the formula A(t) =<�(t/2)∗|�(t/2)> is used because this delivers an autocorrelation
function twice as long as the propagation. However, this trick can only be applied if the initial state
is real and the Hamiltonian symmetric. See Sect. 9.2.
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where the time spacing of the autocorrelation data points, �t , is in general defined
by the MCTDH keyword tout. If tout is chosen too large such that the replicated
spectra overlap, the result cannot be trusted. The “true” spectrum out of the series of
replicated spectra is the one the central energy of which agrees with the total energy
printed in the output file.

The initial wavefunction, a simple Hartree product of Gaussian functions, is cer-
tainly not an eigenstate. Hence, there should be more than one state appearing in the
spectrum. In fact, running “plspec -y 1.6 -z -0.05 -G -g5 -q 5000
2500 30000 cm-1” one observes several excited states, the populations ofwhich,
however, are about three orders ofmagnitude smaller than the one of the ground state.
This again demonstrates the fact that the vibrational ground state of theH2Omolecule
(in valence coordinates) is only weakly correlated.

Bending Vibrations

To compute the IR absorption spectrum one should multiply the ground-state wave-
function with the dipole moment surface and then propagate the dipole-operated
ground state. Here we proceed differently and propagate an initial Hartree product
where some coordinates are shifted from their ground-state values. The input file
bend.inp is very similar to h2o.prop.inp, except that there are now slightly
more SPFs and that the Gaussian function of the θ-DOF is centered at larger angles
and has a wider width than in h2o.prop.inp. The Gaussian functions of the
r -DOFs are centered at slightly smaller distances, because for larger angles the
r -equilibrium distances shrink.

To inspect the spectrum move to the directory bend and run
“plspec -z 0 -e -4634.743 cm-1 -G -q 4000 -g5 -500 15000
cm-1”
where the option “-e -4634.743 cm-1” shifts the spectrum by the ground-state
energy such that the ground-state peak appears at zero energy. (One may copy the
command from the file propagate/commands). One clearly observes a progres-
sion of bend vibrations. Other vibrational states are excited—if at all—with very low
intensity. To see them add the option “-y 8” to plspec, i.e. run
“plspec -y 8 -z 0 -e -4634.743 cm-1 -G -q 4000 -g5 -500
15000 cm-1”. Most of the now visible small peaks are noise. The noise appears
in the vicinity of large peaks because of the Gibbs phenomenon. For energies above
9000 cm−1, where no large peaks exist, the small peaks seem to be real.

To assign the peaks we compare them with the eigenenergies computed in the
previous section. To this end we have to separate Fourier transforming and plotting.
The Fourier transformation is performed by running
“autospec84 -lin -q 5000 -e -4634.743 cm-1 -500 15000
cm-1 0”
and the result is written to the file spectrum.pl. The spectrum and the eigenen-
ergies are then plotted by running “plgen -n -G -a -500 -x 14000 -y
850 -z 0 spectrum.pl 1:4 ../eigenval 2:3 -i”. The peak loca-
tions agree excellently with the computed eigenenergies. Next run “plgen -n -G
-a 8000 -x 14000 -y 8 -z -2 spectrum.pl 1:4 ../eigenval
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2:3 -i”. The agreement of the peak locations with the computed eigenenergies
may indicate that these structures are real. But remember that all these structures are
more than three orders of magnitude smaller than the largest peak, which is assigned
as (0, 2, 0). Hence we have been able to define an initial wavepacket which is almost
entirely a superposition of vibrational bend states with negligible contributions from
other vibrations.

Let us remark that the script plspec simply calls autospec84 and then
gnuplot. The script plgen is a gnuplot wrapper. For better understanding see
“plspec -h”, “plgen -h”, and “autospec84 -h”, as well as the HTML
documentation, which comes with the package.

Finally, we want to inspect the wavepacket as it moves in time. To this end run
“showd1d84 -a -y 3.5 -G f3”. Shown is the one-dimensional reduced den-
sity for the θ-DOF. Each pressing of “enter” moves the wavepacket one time-step
further. Repeated pressing of “enter” can be avoided by setting the option -M. For
times smaller than 50 fs the wavepacket (more precisely the 1D reduced density)
remains roughly Gaussian and oscillates back and forth with roughly the expected
time period of 2π/ωbend = 20.92 fs. However, for larger times the wavepacket looses
its Gaussian shape and its movement looks somewhat erratic. This is the typical
behavior of a wave packet moving in an anharmonic well.

The r -motion can be inspected by replacing the argument f3 of showd1d84
with f1. But in this case the motion is rather uninteresting. Similar as in Sect. 9.7 one
can show two-dimensional reduced densities by running showsys84, but this time
without the option -rst, because we want to make use of the psi file rather than
of the restart file. Use the menu point 20 to select the (r1, θ) pair and repeatedly
press “enter” to proceed to the next time-step. In this case the 2D-plots are not much
more enlightening than the 1D-plots, but this will change when we discuss stretch
vibrations.

Rather than showing the reduced densities, we may investigate the coordinate
expectation values. These numbers contain less information as compared to the den-
sities, but can be shown for all times at once. Running “plqdq -G 1 3” shows
the expectation value of θ. Very clear oscillations are shown,which, however, are
damped for larger times. This damping is not an indication of loss of energy (e.g. to
other vibrational modes), but a consequence of the already mentioned decoherence
caused by the anharmonicities. After pressing “enter”, plqdq will show the vari-
ance or width <dq>= √

<q2> − <q>2. Over the first 100 fs the width roughly
doubles.

Next, we may run “plqdq -G 1 1” to inspect the expectation value and vari-
ance of the r1-DOF, but more instructive is to run “plqdq -G 1 0”, which shows
the expectation values of all DOFs in one graph. One clearly observes that the
r -coordinates oscillate with an amplitude that is about an order of magnitude smaller
than that of the θ-oscillation. However, this is not a vibrational r -motion, as this
would occur with a more than twice higher frequency, it is an adiabatic following of
the r -coordinates with the θ-vibration. If the bend angle is small, the r -coordinates
take slightly larger values, whereas for large bend angles the r -distances are slightly
compressed.
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Symmetric and Antisymmetric Stretch Vibrations

In the input file sym.inp we have enlarged both r -distances to excite symmetric
stretch vibrations. The width of the Gaussian functions is also slightly enlarged, as—
due to anharmonicity—the Gaussian functions should be wider for larger distances
and narrower at compressed positions. Move to the directory sym and submit similar
commands as when studying bend vibrations. (See file propagate/commands).
A progression of symmetric stretch vibrations is seen, aswell as bend and symmetric-
stretch/bend combination lines at much lower intensity. To observe the latter, enlarge
the ordinate scale by setting the option -y 100 or even -y 10 when running
plspec. Odd antisymmetric stretch excitations are forbidden by symmetry, but
even excitations are possible and in fact one observes the v = 2 antisymmetric stretch
excitation, (0, 0, 2), as a weak line at 7445cm−1.

Next, we investigate the time-dependent 1D-densities by running showd1d84.
The r -densities show the expected oscillatory motion, but they quickly loose their
simple Gaussian form due to anharmonicities. The θ-density, however, performs a
breathing motion. If one runs plqdq as before, one observes an amazing similarity
between the r -expectation value (first picture of plqdq -G 1 1) and the θ-width
(second picture of plqdq -G 1 3). To investigate this further, run “rdcheck84
1 1” in order to create the file qdq.pl, which contains the expectation values.
Then run “plgen -G qdq.pl 1:2 - ’1:($7*12)’”. The θ-width (here 12
times enlarged) agrees almost perfectlywith the r -expectation value. The θ-breathing
motion is hence not caused by a bend excitation, but is an adiabatic following of the
r -motion, similar to the opposite case discussed previously when studying bend
vibrations.

The 1D-density plots cannot distinguish between symmetric and antisymmetric
motions. Here 2D-density plots are essential. Run showsys84 and observe that
the wavepacket clearly move along the symmetry axis r1 = r2. To avoid repeatedly
pressing “enter” one may choose the menu point 280.

In the input fileasym.inpwe have enlarged the r1- and shortened the r2-distance
to excite antisymmetric stretch vibrations. Move to the directory asym and submit
similar commands as when studying symmetric stretch vibrations. A progression
of antisymmetric stretch vibrations is seen, and, at lower intensity, various other
lines., e.g. (0, 1, 1) at 5331 cm−1, (2, 0, 0) at 7202 cm−1, (0, 1, 2) at 9000 cm−1, or
(2, 0, 1) at 10614 cm−1.

Inspect, as before, the time dependence of the 1D- and 2D-densities with
showd1d84 and showsys84, respectively.

In conclusion we note that by defining a suitably chosen initial state one can excite
selectively, or at least with strong predominance, vibrations of a particular type. This
procedure can be used as an alternative way for assigning states.

Exciting All Vibrations

Finally, we propagate a wavepacket with more general dislocations, such that all
modes are excited. The propagation time of this run, h2o.all.inp, is doubled
to ensure that the now dense lying peaks are resolved. Here we can again discuss
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window functions. Running autospec84 (in h2o.all directory) with and with-
out the options -lin -o linspec but otherwise with the usual options, cre-
ates the files linspec.pl and spectrum.pl. The latter contains the spec-
tra computed with the window functions g0, g1, and g2, and the former the
windows g3, g4, and g5. (Remember, g4 and g5 stand for g′

0 and g′
1,

respectively).Running “plgen -G -a 10100 -x 10500 -y 350 -z -50
spectrum.pl 1:3 spectrum.pl 1:4 linspec.pl 1:4” shows a dou-
ble peak computed with the windows g1, and g2, and g5. The double peak structure
is best resolved using the g1 window but more washed out when the g5 window is
applied. This comparison becomes even more vivid if one reduces the length of the
autocorrelation function from 1200 fs to 800 fs by adding the option -t 800 to the
two autospec84 commands above. The spectrum obtained with the g5 window
shows a single peak, whereas the spectra of the g1 and g2 filters still resolve the
double peak. However, g1 and g2 introduce false negative intensities.

To demonstrate the importance of being converged with respect to the
numbers of SPFs, the same calculation was re-run but with smaller numbers of SPFs.
See all.small.inp. Move to the directory all.small, run autospec84
there and then “plgen -n -G -a 8000 -x 12000 -z -40 linspec.pl
1:4 ../h2o.all/linspec.pl 1:4 - 1:4”. The new spectrum is very
noisy and this noise does not originate from the Gibbs phenomenon, but is caused by
a less accurate autocorrelation function. The new spectrum is not only noisy but is
also not able to resolve double peak structures, e.g. near 8800cm−1 and 10300cm−1,
although the width of the peaks is small enough to allow resolution. On the other
hand, the inaccurate spectrum shows all main features reasonably well. To see this
run “plgen -n -G -a -300 -x 14000 linspec.pl 1:4
../h2o.all/linspec.pl ’1:(-$4)’ ”, which shows the accurate spec-
trum inverted. This again is a demonstration that MCTDH may be used in a “quick
and dirty” modus. The main features of the results are often already obtained while
running in low accuracy. Note that the small, inaccurate propagation is more than 7
times faster than the large, accurate one.

Onemay run additional propagations with various sets of SPFs to observe the con-
vergence of the spectrum. One also should inspect the natural populations by running
“rdcheck84 0”—or, more vividly, “plnat”—in the different name directories.

9.7.2 H2O : Computing Ro-vibrational Eigenstates with J>0

In the previous sections we have considered the case of vanishing total angular
momentum, J = 0, exclusively. Now we will compute ro-vibrational eigenstates
for J >0. We will do so for three different coordinate systems and as they have
different grids, we have to run POTFIT three times. See h2o.KLeg.pfit.inp,
h2o.sr.pfit.inp, and h2o.jac.pfit.inp. But similarly as before it is
convenient to run the script “./run-rlxJ” while being in the directory rlxJ.
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This time, the computations are more elaborate and the script should run for 20–
60min, depending on your hardware.

Valence Coordinates

We first use, as done before, valence coordinates. However, as we now also consider
the overall rotation of the molecule, there appears the Euler angle γ as an additional
coordinate. (The other twoEuler angles,α andβ, can be removed due to the existence
of two constants of motion, J 2 and Jz). As γ appears only in the KEO but not in
the PES it is convenient to switch to a momentum representation of this DOF and
use the discrete variable k instead. Note that k is the projection of the total angular
momentum J on the BF z-axis. The angular motion is now represented by the so
called KLeg-DVR, which is a DVR representation of a spherical harmonics basis
set. See the files h2o.KLeg.inp and h2o.KLeg.op and compare them with the
corresponding input files for the J = 0 case.

The present calculation, stored in the name directory h2o.KLeg, is performed
for the total angular momentum J = 5, hence there are 2J + 1 = 11 rotational states
on top of each vibrational state. Running rdrlx displays the computed excitation
energies. The first eleven energies (0–10) are those of rotational states of the vibra-
tional ground state, the second eleven energies (11–21) belong to rotations of the first
bend state, and the last two energies are those of the lowest two rotational excitations
on top of the second vibrational bend state. To inspect the wave function submit the
command “showsys84 -rst -f rst0xx” where xx is to be replaced with the
number of the wavefunction to be plotted. When changing the coordinate selection
(menu point 20), one must now give four entries, e.g. “0 x y 0” for plotting the
(r2, θ) density, or “0 0 0 x” for plotting the k-distribution. In the latter case it is
advised to set themenu point 260 in order to switch to a stick representation. Remem-
ber that there are 2J+1 overall rotational states on top of the vibrational states. Hence
the states rst000 - rst011 differ only marginally in their r1, r2, θ distributions,
but strongly in their k-distributions.

Valence Coordinates, Semi-rigid

In the previous section the two-dimensional KLeg-DVR was used to represent the
internal (θ,φ)motion. As this special DVR is build on the spherical harmonics func-
tions Ym

l , it is singularity-free, i.e. the singular terms, sin(θ)−1 and sin(θ)−2, which
appear in a coordinate representation of a KEO, do not lead to singular DVR matrix
elements.However, in the present case ofwater, the PEShinders themolecule to reach
geometries with sin(θ) ≈ 0, at least for the vibrational energies considered. Systems,
for which singular points of a KEO are avoided, because of potential barriers, are
called semi-rigid. For semi-rigid systems there is no need to use the two-dimensional
KLeg-DVR, one may as well use ordinary one-dimensional DVRs for θ and k sepa-
rately. Moreover, here we replace the variable θ with u = cos θ because this leads to
a Wilson normalization of the wavefunction, i.e. the differential element sin θdθ is
replaced with the simple differential element du. All this will speedup the numerical
calculations.
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Move to the name directory h2o.sr and run rdrlx. The computed ro-
vibrational energies are virtually identical to the ones obtained using the KLeg-DVR.
The small differences, all below 0.012 cm−1, are due to the different grids and differ-
ent potfits. Next, we may inspect the wavefunctions by running showsys84. But
more interesting is to compare the files *.inp, *.op, and timing of the two runs
h2o.KLeg and h2o.sr. Note that the calculation using the semi-rigid representation
is about 3.5 times faster than the one using a KLeg representation.

Jacobi Coordinates

As a last example we will study H2O in Jacobi coordinates, which are depicted
in Fig. 9.18. Jacobi coordinates are so-called orthogonal coordinates, and, as such,
they lead to a much simpler expression for the KEO than the non-orthogonal valence
coordinates. This featuremakes them very attractive. Compare h2o.KLeg.opwith
h2o.jac.op. Moreover, for scattering problems Jacobi coordinates are often the
most convenient coordinates. However, for a purely vibrational problem, Jacobi coor-
dinates are rarely a good choice. In fact, we will show that the computation of the
ro-vibrational energies of water is much less efficient in Jacobi coordinates compared
to valence coordinates.

Move to the name directory h2o.jac and run rdrlx. Again, the computed
ro-vibrational energies are virtually identical with the ones of the h2o.KLeg run.
(All differences are smaller than 0.035cm−1). Next run “showsys84 -rst -f
rst012” and use menu point 20 to select various cuts. Due to the different coordi-
nate sets, the 2D-density plots have a different appearance than the ones in valence
coordinates. The vector r connects the two H-atoms, whereas the vector R connects
the H2 center of mass with the O-atom. The angle θ is the angle between these two
vectors. Hence the bend vibration is mainly described by the r -coordinate, the sym-
metric stretchmainly by R, and the antisymmetric stretchmainly by θ. The (r, R)-cut
shows a clear nodal line, indicating that this is the first excited bend vibrational state.
On top of this one observes a correlation between the r and R motions. Because the

Fig. 9.18 Jacobi
coordinates. The vectors r
and R meet at the center of
mass of the AB-subsystem.
For water: A=H, B=H, C=O,
for NOCl: A=N, B=O, C=Cl,
and for D + H2 : A=H, B=H,
C=D
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HO-distance remains almost constant during the bend vibration, the R-distance has
to shrink when the r -distance enlarges. This correlation is the main reason why one
needs more SPFs in Jacobi coordinates compared to valence coordinates. Note that
the bend excited state shows almost no correlation between r and θ, or R and θ.

Finally, we compare the timing file of the h2o.jac name directory with those
from h2o.KLeg and h2o.sr. The run using Jacobi coordinates and a KLeg repre-
sentation takes about 9 times more CPU time than the valence-KLeg run, and about
33 times more CPU time than the valence-semi-rigid run. This again emphasizes the
importance of determining a good coordinate system and representation.
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Chapter 10
Photodissociation Spectroscopy

In the previous chapter, we have considered transitions induced by absorption of
light between vibrational states in the electronic ground state only. In the present
chapter, we stay within the framework of the Born-Oppenheimer approximation but
we consider transitions from the electronic ground state to another electronic state
that is dissociative. In other words, the absorption of the electromagnetic energy of
light, typically in the ultraviolet (UV) domain, induces a fragmentation of a bound
molecule. Photodissociations of small polyatomicmolecules are themotors formany
important chain reactions determining the complex chemistry of the atmosphere and
the starting points for many chemical lasers [1]. We consider here two examples: the
photodissociations of NOCl and ozone.

10.1 Direct Photodissociation

Let us consider a transition from the electronic ground state to an isolated excited
electronic state that is dissociative as shown on Fig. 10.1. The Hamiltonian operator
for the nuclear problem in the electronic excited state 1 is given by

H 1 = T nu + V1 , (10.1)

with V1, the PES of the electronic excited state and T nu the KEO for the nuclei. We
consider the J = 0 case only.

If the excited state were bound, the corresponding vibrational eigenstates would
satisfy

(T nu(q) + V1(q))�n
1 (q) = En

1�
n
1 (q) . (10.2)

However, for dissociative electronic states, there is no quantization of the energy and
the set of eigenstates is no longer discrete:

© Springer International Publishing AG 2017
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Fig. 10.1 Transition from
the electronic ground state to
one isolated excited
electronic state that is
dissociative

(T nu(q) + V1(q))�E
1 (q) = E�E

1 (q) , (10.3)

where E now varies continuously. The wavefunction �E
1 is no longer square-

integrable, but may be normalized to δ-functions 〈�E
1 |�E ′

1 〉 = δ(E − E ′).
Let us start from the vibrational ground state in the electronic ground state, �0

0 .
This wavefunction is a eigenfunction of the Hamiltonian operator for the nuclear
problem in the electronic ground state (Eq. 9.28). On the other hand, �0

0 is a
wavepacket and not an eigenstate with respect to H 1. In particular, we can write1:

�0
0 (q) =

∫ +∞

0
c(E)�E

1 (q)dE , (10.4)

with

c(E) =
∫

�E �
1 (q)�0

0 (q)dq , (10.5)

Thus, awavefunction can be either a wavepacket or an eigenfunction according to
a Hamiltonian operator and not per se. In particular, the status of the wavefunction,
i.e. the fact that it is a eigenfunction or a wavepacket, can change depending on the
physical situation. The Hamiltonian reflects the physical situation and can change if
the molecule, which is first isolated, interacts with another molecule or an external
field for instance.

The absorption spectrum is given by an equation similar to Eq. (9.35) except
that we now have to sum over the eigenstates of the electronic excited state with
coefficients with the following expression

|
∫

�E �
1 (q)μλ

10(q)�0
0 (q)dq|2 , (10.6)

1E = 0 corresponds to the dissociation limit.

http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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with μλ
10(q) the matrix element of the dipole moment corresponding to the transition

from the electronic ground state to the electronic state 1 (Eq. 3.158). The discrete
sum in Eq. (9.5) is replaced by an integral if the excited state is dissociative since
there is no longer any quantization.

We have mentioned in Sect. 3.4 that the dependence on q of µnl(q) = µ el
nl (q), if

n �= l, is, in general, weak. Thus, it is possible to make the following approximation:

μλ
10(q) ≈ μλ

10(qeq) , (10.7)

with qeq corresponding to the equilibrium geometry in the electronic ground state,
also called the Franck-Condon geometry. Then, we have

|
∫

�E �
1 (q)μλ

10(q)�0
0 (q)dq|2 ≈ (μλ

10(qeq))
2 |

∫
�E �

1 (q)�0
0 (q)dq|2 ,

(10.8)

also called the Condon approximation. This approximation would not be valid for
the transitions between the vibrational states within a single electronic state. The
quantity

|
∫

�E �
1 (q)�0

0 (q)dq|2 , (10.9)

is called Franck-Condon factor
Now, the Franck-Condon factors are the squares of the overlaps of Eq. (10.5).

Thus, if �0
0 (q) is propagated on the electronic excited state and the resulting auto-

correlation function is Fourier-transformed, a power spectrum (see Eq. 9.32) will be
obtained with the overlaps of Eq. (10.5). The propagation of the vibrational ground
state of the electronic ground state on the electronic excited PES yields a power
spectrum proportional to the absorption spectrum from the electronic ground state
to the electronic excited state in the limit of the Franck-Condon approximation. If
the latter approximation is no longer valid, μλ

10(q)�0
0 (q) instead of �0

0 (q) must be
propagated to obtain the spectrum.

Let us consider the dissociation of NOCl to NO + Cl induced by the S0 → S1
electronic transition as an example. S1 is the first singlet excited electronic state of
the molecule. For the nuclear degrees of freedom of NOCl, we use the three Jacobi
coordinates of Fig. 5.4: R1 is the distance between the N and the O nuclei, R2 is the
length of the vector joining the center of mass of NO to the Cl nucleus and θ is the
angle between the two Jacobi vectorsR1 andR2. The KEO for J = 0 is given by Eq.
(6.155) of Sect. 6.5. We use the PESs of Ref. [2]. The PES of the electronic ground
state, S0, is qualitatively similar to the PES of the electronic ground state of H2O:
see Fig. 9.6. The vibrational ground state, �0

0 (q), looks similar to the one for H2O
in Fig. 9.11a.

The PES of the electronic excited state, S1, is dissociative and leads to NO+Cl.
A two-dimensional cut of this PES is shown on Fig. 10.2. The PES looks like a

http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_3
http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_6
http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 10.2 Cut of the
three-dimensional PES of the
electronic excited state S1 of
NOCl taken from Ref. [2, 3].
The coordinates are the
Jacobi coordinates of
Fig. 5.4. Here, R1 is the
distance between the N and
the O atoms, R2 is the length
of the vector joining the
center of mass of NO to the
Cl atom and θ, the angle
between the two Jacobi
vectors, is fixed at 2.1 rad

“gutter” since the potential decreases along R2. The dissociation of NOCl is a direct
photodissociation,2 i.e. the molecule dissociates immediately after the photon has
promoted it to the excited electronic state.

Let us start from the vibrational ground state,�0
0 (q), and place this wavepacket on

the PES of the excited state, S1. The propagation has been performedwithMCTDH.3

For the primitive basis set, HO DVR for R1, a sine DVR for R2 with R1 ∈ [3.8, 5.6]
a.u. and a Legendre DVR for θ are used.4 For the SPF basis set, n1 = n2 = n3 = 5
have been used. As explained in Sect. 8.3.4, the convergence ofMCTDHwith respect
to the number of SPFs is very fast for this system.5 A complex absorbing potential
(CAP) has been added to the Hamiltonian operator to avoid a long grid.6

The modulus of the autocorrelation function decreases very fast as shown on
Fig. 10.3a. There is nevertheless a slight recurrence due to the vibrational motion in
the NO stretching coordinate around 30 fs almost invisible in Fig. 10.3a. An approx-
imate treatment can show that the width of the autocorrelation function is inversely
proportional to the steepness of the potential: the steeper the potential, the faster the
autocorrelation function decreases [1].

The evolution of the two-dimensional density in R1 and R2 is shown at several
instants on Fig. 8.4 in Sect. 8.2: the wavepacket “glides” along R2 but some oscilla-
tions along R1, the NO distance, are also observed. This explains why the average
value, 〈R1〉, oscillates as depicted on Fig. 10.3b.

2See Chap.6 in Ref. [1].
3See Ref. [4] for the first calculation with MCTDH.
4For HO DVR, we use an equilibrium geometry at 2.134 a.u., a frequency of 0.272 eV and a mass
of 7.4667 atomic mass unit.
5The PES has been re-expressed in a product form without using POTFIT: see Ref. [4].
6See Sect. 8.5 for a discussions about CAPs.

http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 10.3 a The modulus of the autocorrelation function for the NOCl dissociation, b average
value of 〈R1〉, the NO distance, in a.u. c Fourier transform of the autocorrelation function over
100 fs in arbitrary unit, d projection of the exit “flux” onto the vibrational states of the molecule
of NO: vibrational ground state, v = 0 (green), first vibrational excited state, v = 1 (blue), second
vibrational excited state, v = 2 (purple), third vibrational excited state, v = 3 (turquoise). In red is
the total flux that is identical to the power spectrum of (c). Here, the zero point of the energy scale
is the minimum of the S0 PES. The photon energy is obtained by subjecting the S0 ground state
energy of 0.1688 eV from the total energy displayed in Fig. 10.3c and d

The Fourier transform of the autocorrelation function,7 is given in Fig. 10.3c. It is
proportional to the absorption spectrum, provided that we use the approximation of
Eq. (10.7). The power spectrum is continuous due to the dissociation of the molecule
contrarily to the cases introduced in Chap.9. More precisely, it shows very diffuse
vibrational structures consisting of a main peak with two shoulders at its high-energy
side.

For a direct dissociation, as in our case, the spectrum can be obtained approxi-
mately by the so-called “reflection principle”.8 Let usfirst consider a one-dimensional
dissociative system (as if we were considering only the coordinate R1 for NOCl).
For the one-dimensional problem, the reflection principle states that the absorp-
tion spectrum reflects the coordinate distribution of the molecule in the electronic
ground state, with the reflection being mediated by the upper-state potential [1].

7Since the autocorrelation function decreases very fast, the choice of the window function does not
have a strong impact on the spectrum. This is one of the rare cases where the window function g0
is a good choice.
8See Chap.6 of Ref. [1].

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Since the vibrational ground state �0
0 (q) is approximately a Gaussian function in

R1 and since the Fourier transform of a Gaussian function yields another Gaussian
function, an approximate treatment of the dynamics would show that the absorption
cross section is a Gaussian function in energy. The center of the Gaussian function
corresponds to the energy of the electronic excited state at the equilibrium geome-
try.9 The width of the spectrum is proportional to the width of the original coordinate
distribution mapped to energies by reflection from the dissociating PES [1]. The
spectrum becomes broader with increasing steepness of the S1 – PES. In the NOCl
case, we expect thus a spectrum with approximately a Gaussian structure and this
is what we see for the “main band” that also corresponds to the curve in green in
Fig. 10.3d.

But NOCl is a three-dimensional nuclear system. However, since the PES of the
excited state is rather flat around the Franck-Condon geometry and since the coupling
between the three vibrational degrees of freedom is rather weak, the spectrum can be
easily interpreted using an “adiabatic” picture with respect to the vibration of NO,
the shoulders corresponding to vibrational structures [3]. A more detailed analysis
of the spectrum can be obtained by calculating reaction probabilities. The latter can
be extracted by evaluating the quantum flux of the wavepacket as a function of the
energy. This flux can be obtained from the average value of the “flux operator” [5,
6]: see Sect. 8.6 of Chap.8. The quantum flux through the dissociative channel of
the wavepacket�0

0 (q)will give the power spectrum of Fig. 10.3c. Now, the quantum
flux can be projected onto the different vibrational eigenstates of the isolated NO
molecule providing the “parts” of the spectrum corresponding to the different vibra-
tional eigenstates of NO also called the vibrational cross sections. Dividing the cross
section for a given vibrational state by the power spectrum gives the probability to
obtain the vibrational state as a function of the energy that has been absorbed by the
molecule. More details about the flux operator and how to use it in conjunction with
MCTDH can be found in Sect. 8.6 of Ref. [7] or in Sect. 6.5 of Ref. [8].

The result is presented in Fig. 10.3d, which shows fluxes projected onto different
vibrational states: the curve in green corresponds to the quantum flux leading to the
vibrational ground state of NO (v = 0, v being the quantum number associated with
the NO oscillator). The projection onto the first vibrational excited state, v = 1, the
second vibrational excited state, v = 2, and the third vibrational excited state, v = 3
are in blue, purple and turquoise, respectively. The projection onto v = 3 is almost
invisible and corresponds to the very small shoulder around 1.7 eV. In other words,
exciting by light in the firstmaximumof the absorption spectrumyields preferentially
NO (v = 0), excitation in the first shoulder produces mainly NO (v = 1), etc. The
fact that the different contributions are rather well separated is linked to the fact that
the potential is rather flat around the Franck-Condon geometries leading to several
contributions with approximately Gaussian shapes and rather small widths. If the
potential had been steeper, the widths of the cross sections would have been larger
and the spectrum would have been structure-less, i.e. without shoulders. In addition,

9More precisely, the energy of the electronic excited state at the equilibrium geometry minus the
ZPE of the ground state.

http://dx.doi.org/10.1007/978-3-319-53923-2_8
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the fact that we can distinguish the different contributions clearly is linked to the very
weak coupling between the dissociation mode and the vibrational mode of NO: the
system dissociates in an adiabatic way with respect to the vibrations of NO [3]. The
spectrum can be viewed as the different contributions of the NO vibrational states
as in Fig. 9.8b for the bending states of H2O. But instead of having resolved peaks
as in Fig. 9.8b, the peaks are “convoluted” by approximately Gaussian functions
due to the dissociative channel. We have, thus, to first order a sum of Gaussian
functions, the heights of the Gaussian functions being linked to the overlap between
the wavepacket,�0

0 (q), and the vibrational eigenfunctions of NO. The analysis could
be pursued further by projecting the quantum flux on the rotational states of NO. We
could then distinguish for each vibrational cross section the different contributions
of j the angular momentum of NO (see Sect. IV in Ref. [3]).

Here, two approximations were made in addition to Eq. (10.7): the Born-
Oppenheimer approximation was used and only the J = 0 case was considered.
In these two approximations, the first one is perhaps the most questionable. Indeed,
the experimental spectrum consists of several overlapping electronic bands [9]. How-
ever, the peaks labeled D and C by the experimentalists can be assigned to the S0 →
S1 electronic transitions and to the band NO (v = 0) and NO (v = 1), i.e. to the
green and blue curves on Fig. 10.3d. They appear in the 2.4–3.1 eV domain, thus
in the visible spectrum. The agreement between the spacing between the two peaks
and the ratio of the two peak intensities are rather well reproduced on Fig. 10.3d
[2, 3]. The ratio is overestimated, i.e. the shoulder corresponding to v = 1 is higher
experimentally. But this discrepancy is mainly due to a small error in the theoretical
equilibrium value of R1 and can be easily corrected [2].

10.2 Indirect Photodynamics

Let us now consider the more complex situation shown in Fig. 10.4.10 The latter cor-
responds to a cut along one of the O–O bond lengths through the three 3-dimensional
diabatic PESs of ozone (O3), V0, V1, and V2, corresponding to X, the ground state, B,
a weakly-bound excited electronic state, and R, a purely dissociative excited state,
respectively. The X, B, and R states are labelled 0, 1, and 2, respectively, in the equa-
tions below. The ground state is well isolated and we can work within the framework
of the Born-Oppenheimer approximation for this state, i.e. V0 is also an adiabatic
PES. The states B and R are coupled together and the Born-Oppenheimer approxi-
mation is no longer valid for these two states: the R-state intersects the B-state close
to its minimum. The transition from the ground state to the R state is not dipole-
allowed. On the other hand, the matrix element of the dipole moment vector µ01

10This section is based mainly on Steve Ndengué’s PhD work [10]. The authors gratefully thank
him for his contribution and his help. Very helpful discussions with R. Jost are also gratefully
acknowledged.

http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 10.4 One-dimensional cut through the X (red), B (green), and R (blue) PESs of ozone along
one of the O–O bond lengths. In the text, the X, B and R states are denoted 0, 1 and 2, respectively.
The other bond length is fixed to its equilibrium value in the electronic ground state: 1.278 Å. The
angle between the two chemical bonds is also fixed to its equilibrium value: 116.8◦. The X and
R PESs lead to O+O2 with the oxygen atom and the dioxygen molecule both in a triplet state
(spin equal to one for both species). On the other hand the B state leads to an oxygen atom and the
molecule both in a singlet state (spin equal to zero)

Fig. 10.5 The Hartley band
of ozone corresponding to
the transition from the
ground state X to the B state
(see Fig. 10.4). Both the
theoretical (black) and
experimental (red) spectra
are shown

corresponding to the electronic transition to the B state is very large resulting in a
very intense absorption (210–310nm), called the Hartley band shown on Fig. 10.5.11

The presence of this intense absorption band explains why ozone is the main filter
of the UV radiation in the atmosphere.12 The presence of ozone in the stratosphere,
i.e. between 10 and 50km, acts as a shield to protect the Earth surface from the

11Reprinted with permission from [11]. Copyright 2010, American Chemical Society.
12Together with O2 that absorbs very strongly between 100 and 210nm. Ozone also absorbs also
above 310 nm but less strongly.
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harmful UV radiation of the sun. Ozone in this region is commonly known as the
“ozone layer”. The experimental and theoretical absorption spectra corresponding to
the Hartley band are shown on Fig. 10.5: the theoretical spectrum has been calculated
with MCTDH. Ozone, is a bent molecule, with C2v symmetry (similar to the water
molecule, see Sect. 7.2 of Chap.7). We choose “valence” coordinates for ozone as
for water (See Fig. 9.5a): R1 and R2 are the two O–O bond lengths and θ is the
angle between the two chemical bonds. We use the diabatic PESs from Ref. [12]
and the KEO is the same as for H2O except that the masses are different. We have
considered the J = 0 case only: several calculations have proved that the effect of
rotation13 smoothens the cross sections without significantly altering the envelope
of the cross section or the superimposed vibronic structure. This is true not only
for the Hartley band [13] but also for the Huggins band that will be discussed later
[14]. To obtain the theoretical spectrum of Fig. 10.5, we start from the vibrational
ground state in the electronic ground state, �0

0 . For ozone, the approximation of Eq.
(10.7) is too crude. The matrix element of the dipole moment vector µ01 must thus
be applied before propagating the wavepacket on the B state. It can be shown that
the modulus of the dipole moment vector ||µ01|| can be used to reproduce correctly
the spectrum.14

In otherwords, ||µ01||�0
0 is placedonto theBstate andpropagated.The eigenstates

are given by the Schrödinger equation involving two coupled electronic states15:

[
T nu(q) + V1(q) V12(q)

V12(q) T nu(q) + V2(q)

] [
�E

1 (q)

�E
1 (q)

]
= E

[
�E

1 (q)

�E
2 (q)

]
,

(10.10)

where V12 is the potential coupling between the two diabatic states. For propagating
the wavepacket, we have to solve

[
T nu(q) + V1(q) V12(q)

V12(q) T nu(q) + V2(q)

] [
�1(q, t)
�2(q, t)

]
= i

∂

∂t

[
�1(q, t)
�2(q, t)

]
,

(10.11)

starting from the initial condition:

�1(q, t = 0) = ||µ01(q)||�0
0 (q)

�2(q, t = 0) = 0 . (10.12)

13Including (nuclear) spin statistics.
14More rigorously, it would be necessary to define aBody-Fixed frame and to apply each component
of the dipole moment vector onto �0

0 and to propagate the corresponding wavepackets on the B
state. We would obtain three spectra and their sum would provide the absorption spectrum.
15For the B (or 1) state, the spectrum is discrete below the dissociation limit.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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To rationalize the discussionof the results, let usfirst assume that the twoelectronic
states are not coupled. V1 displays two minima.16 The dissociation energy is not
very high but there are nevertheless several bound states in the potential wells. If
there were no coupling, the absorption spectrum would have a discrete part for low
energies that would be followed by a broad continuous band corresponding to a direct
photodissociation. The continuous band is only a little bit affected by the presence
of the R state. However, the presence of the R state has a stronger effect on the part
of the band associated with the potential well of V1 since the corresponding bound
states become metastable states as explained below.

The combined presence of the potential well and the R state leads to an indirect
photodissociation. In the low energy domain, V1 is binding with bound states �n

1 (q)

and the corresponding eigenvalues En
1 ,whileV2 is repulsivewith outgoing continuum

states�E
2 (q). In this kind of situation, it is convenient to simplify the general picture

by assuming that the photodissociation separates into two consecutive steps (see
Chap.7 inRef. [1]). First, the light promotes themolecule from the vibrational ground
state,�0

0 (q), to the vibrational states�n
1 (q). Second, the�n

1 (q) states are coupled to
the continuum states,�E

2 (q), and the system eventually dissociates. An approximate
treatment of the problem shows that the coupling to the continuum states broadens the
discrete absorption lines [1]. The discrete spectrum becomes a continuous spectrum
with peaks. The centers of the peaks are not exactly the eigenvalues En

1 : the peaks
are slightly shifted due to the coupling with the continuum. Each absorption peak
has the shape of a Lorentzian with a width that is linked to the coupling of the bound
state and the the continuum states [1].

If the coupling were zero, the bound states would live forever but since the cou-
pling is not equal to zero, the populations of the initially excited bound states decay
exponentially. The corresponding quantum states are continuum states but possess
some bound state characteristics such as locality.17 They have a lifetime associated
with the exponential decay and do not have a specific energy since the corresponding
peaks have a width. These states are called “resonances” and are inherently quantum
effects [15]. Physically, they can be seen as metastable states embedded in a con-
tinuum. These quantum resonances can be measured experimentally as explained
below.

For ozone, the presence of theses resonances results in a highly structured part
of the absorption spectrum in Fig. 10.618 called the Huggins band between 310 and
370nm.19 TheHuggins band appears below31,000cm−1 in Fig. 10.5 but the structure
of the band cannot be distinguished on it.A zoom in this energy domain is presented in
Fig. 10.6. The experimental cross section was obtained at 218 K. At this temperature,
all the peaks corresponding to the resonance overlap due to the presence of many
rotational states but also to the fact that there aremany resonanceswithwidths that are

16A single minimum appears in Fig. 10.4 since only a one-dimensional cut is displayed.
17In the potential well of V1 for ozone.
18Reprinted with permission from [16]. Copyright 2012, American Chemical Society.
19The distinction between the Hartley and Huggins bands is somehow artificial, the Huggins band
being actually the “tail” of the Hartley band in the low energy domain.



10.2 Indirect Photodynamics 341

Fig. 10.6 The theoretical Huggins band of ozone in blue corresponding to the tail of the Hartley
band (in red here) for low energies. The present figure is a zoom of Fig. 10.5 for low energies. The
experimental band is in black

Fig. 10.7 Quantum resonant
state of ozone corresponding
to 2 quanta in the
“long-bond” stretching and
three quanta in the bending
and thus to the label (2, 3, 0).
r2 is one of the two O–O
bond lengths and θ is the
angle between the chemical
bonds

rather large. However, we clearly see a structure that is the signature of the quantum
resonances.

Figures10.7 and 10.820 present two bound states, ψn
1 (q), of the diabatic state B.

The first eigenstates are generally labeled using a local-mode terminology, i.e. the
long-bond stretchingmode that describes vibration along the dissociation coordinate,
i.e., O2-O, the short-bond stretchingmode that describes the vibration of theO2 entity
and the bending mode [14]. The first states are well-labeled using this terminology,
for example the state depicted in Fig. 10.7 corresponds to two quanta in the long-bond

20Reprinted with permission from [16]. Copyright 2012, American Chemical Society.
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Fig. 10.8 Quantum resonant state of ozone corresponding to a “horseshoe” state. r2 is one of the
two O–O bond lengths and θ is the angle between the chemical bonds

stretching and three quanta in the bending and thus to the label (2, 3, 0). We saw
for water in Sect. 9.2 that the labeling of the vibrational states can change depending
on the energy regime: starting from the normal-mode description, the local-mode
regime appears due to the Darling-Dennison coupling between the symmetric and
antisymmetric stretching modes. For ozone, the coupling between the long-bond
stretching mode and the bending mode makes a new family of states emerge higher
in energy, several states corresponding to “horseshoe” states such as the one shown in
Fig. 10.8. This new type of eigenstates has no excitation in the short-bond mode but
cannot be interpreted in terms of long-bond and bending vibrations. Instead, their
wavefunctions are elongated along a new type of motion toward the dissociation
channel.

Due to the facts that the ozone layer is vital for life on Earth and that chlorine-
containing source gases produced by the industry tend to create holes in this layer
especially over the South Pole (the famous “ozone hole”), its composition has been
studied in great detail. In this context, it has been noticed that the ozone layer presents
anomalous isotopologue ratios. At natural abundance, besides the main isotopo-
logue 16O3 (noted 666), ozone has four relevant isotopologues, 16O17O16O (676),
16O18O16O (686), 16O2

17O (667), 16O2
18O (668). The others are very rare. In the

stratosphere, the corresponding isotopologue ratios do not correspond to the natural
ones and this anomaly has not been fully explained yet. It reveals that there must be
a very specific equilibrium between the formation process and the photolysis of the
isotopologues in the stratosphere.

Let us focus on the photolysis process. Figures10.5 and 10.6 correspond to the
absorption spectra of ozone 666 only. The ratios between the absorption bands of

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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Fig. 10.9 Ratios of the absorption bands for different isotopologues

676, 686, 667 and 668 with the absorption band of 666 are given on Fig. 10.921

between 28,000 and 42,000cm−1.
By visual inspection of Fig. 10.9, we see that the Hartley band varies very little

from one isotopologue to another: the ratios are very close to one above 37,000cm−1

and the same feature is observed higher in energy (not shown here) [17]. On the other
hand, as regards the Huggins band, the eigenvalues, E1

m , and thus the positions of the
peaks of the resonances and the structure of the Huggins band strongly depend on the
isotopologues [16]. Thus, the efficiency of the photolysis process that destroys the
molecules is different for each species leading to a change in the isotopic ratios. We,
indeed, see that the ratios are smaller than one below 37,000cm−1 on Fig. 10.9. This
means that, for a given photon in this energy domain, the isotopologues 676, 686,
667 and 668 dissociate less than 666. A lower efficiency of the dissociation process
leads to an isotopic enrichment in the atmosphere.

It can be argued that the absorption in the Huggins band is much less intense than
in the Hartley band. However, the concentration of UV photons (“actinic flux”) with
different energies varies strongly with the altitude in the atmosphere. In particular,
almost all the photons that correspond to the Hartley band are absorbed by ozone in
the highest part of the stratosphere. Below 40km, the photons that correspond to the
Hartley band have almost completely disappeared.22 Thus, the role of the Huggins
band becomes dominant for altitudes between 20 and 40km and this band plays an

21Reprinted with permission from [16]. Copyright 2012, American Chemical Society.
22See Fig. 5 in Ref. [17] that shows the concentration of photons for a given energy as a function
of the altitude.
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Fig. 10.10 Isotopic
enrichment with altitude due
to the photodissociation
process. Thick lines
enrichment taken from Ref.
[18]. With markers more
accurate MCTDH
calculations taken from Ref.
[17]

important role in the anomalous isotopic ratios in the ozone layer [17] leading to
a strong isotopic enrichment around 35km as shown on Fig. 10.10.23 In the latter
figure, the evolution of concentration of photons with the altitude has been taken
into account together with the relative absorption spectra of Fig. 10.9. To explain
completely the anomalous isotopologue ratios of ozone in the atmosphere, it would
be necessary to include also the influence of the formation process, which is not
shown in Fig. 10.10.

To conclude, the role of the photolysis process in the anomalous isotopologue
ratios in the ozone layer is an illustration of the presence and role of quantum reso-
nances in an indirect photodissociation process.

10.3 Lab-Session II: Photodissociation of NOCl

The photodissociation of NOCl is a simple photochemical reaction. After excitation
from the ground to the first excited state, S0 → S1, the chlorine atom dissociates on a
femtosecond time scale. This results in a broad band for the absorption spectrum.We
will generate the spectrum by wavepacket propagation and Fourier transformation
of the autocorrelation function, similarly to what was done for water (Sect. 9.7.1).
The spectrum will be further analyzed with a flux method.

23Reprinted with permission from [17]. Copyright 2014, American Geophysical Union.

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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10.3.1 Absorption Spectrum

The calculation consists in two stages. First, the ground-state wavefunction is gen-
erated from energy relaxation of an initial guess wavefunction on the ground-state
surface (S0 state). Assuming the Condon approximation, the second stage then places
this wavepacket vertically on the excited-state surface (S1 state), leading to photodis-
sociation. The system is described by three Jacobi coordinates as shown in Fig. 9.18.

To perform the calculations please move to lab-inputs/NOCl and type
“mctdh84 -mnd nocl0”.24 This will generate the vibrational ground state S0
surface by standard relaxation, i.e. propagation in negative imaginary time. Here a
potfit of the PES was not needed, because the PES is given in a sum-of-product
form. The PES is defined through the file nocl0um.srf which is simply included
in the operator file nocl0.op via the srffile command. Please inspect the files
nocl0.inp, nocl0.op, and nocl0um.srf for the details of the calculation.
Next, we move (cd) to the nocl0 directory, open the output file and inspect
the natural weights at final time. One notices that the vibrational ground state is
very little correlated. The wavepacket itself, more precisely its reduced density, can
be inspected with showsys84 -rst. See Sect. 9.7 for details on the use of this
program. Try in particular the menu points 20, 150, 160, and 240.

To visualize the PES we cannot run showpot84 as in the water study, because
there is no natpot file. However, one can create a so-called pes file and visual-
ize it with showsys84. To this end return to the parent directory NOCl and run
“mctdh84 -pes nocl0”. TheWARNINGmessage that appears can be ignored,
it merely tells that the option -pes has overwritten some keywords of the input file.
Then move again to the nocl0 directory and run “showsys84 -pes”. The han-
dling of the program is similar to before, but the numbers entered for menu point 20
now have a meaning, they define the location of the cut. Try different cuts. One also
may plot 1D cuts by entering “x” and two numbers.

More interesting is, of course, the propagation on the excited-state surface (S1
state). Return to the NOCl directory and run first “mctdh84 -mnd nocl1” and
then “mctdh84 -pes nocl1”. Let us begin with inspecting the dissociative
motion along rd (In Fig. 9.18 this coordinate is called R), i.e. run “showd1d84
-a -G -y 5.0 f1” in the nocl1 directory. Each pressing of “Enter” advances
the reduced density by one fs. The electronically-excited molecule is unbound, hence
thewavepacketwill finally reach the end of the grid and there it is artificially reflected.
Thiswill destroy the quality of the propagatedwavefunction. To avoid this, a complex
absorbing potential (CAP) is artificially added to Hamiltonian. The CAP annihilates
the wavepacket before it reaches the end of the grid and thus avoids reflection. The
CAP used here is defined as W (q) = −iη θ(q − qc)(q − qc)n , where the symbol θ
denotes the Heaviside step function and qc is the point where the CAP is switched
on, i.e. qc and the end of the grid determine the length of the CAP. In our case the
CAP parameters are chosen as CAP-strength η = 0.03 a.u., starting point of the CAP

24Hint: one may copy most of the commands from the file commands and paste them to the
command line. One may even copy and paste whole blocks of commands.

http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_9
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qc = 5.0 a.u., exponent n = 3, and q = rd (compare with nocl1.inp). The length
of the CAP is 1 a.u. because the grid ends at 6 a.u. The script plcap is quite helpful
for determining reasonable CAP parameters. Because the CAP starts very slowly,
as a third power in distance, a markedly absorption begins only at 5.2 a.u. This is
clearly seen in the showd1d plots. Up to t = 20 fs there is virtually no absorption.
But at t = 30 fs the wavepacket appears clearly distorted, indicating that some part
at the right hand side of the wavepacket is annihilated. The loss of norm is shown by
running “plstate -G -z 0.9”. In general, plstate plots the electronic state
populations of a multi-set run. As here there is only one electronic state, plstate
merely plots the squared norm of the wavefunction.

Actually, for computing the spectrum the inclusion of aCAP is not really necessary
here. The reflected part of the wavepacket does not reach the initial wavepacket, and
hence does not contribute to the autocorrelation function, within the rather short time
interval of propagation. This short propagation time is sufficient, as can be shown
by inspecting the modulus of the autocorrelation function. Run “plauto” or, for
more details, “plauto -l -G -z 1.e-4”. The behavior of the autocorrelation
function is rather uninteresting. There is a fast decrease to almost zero within the
first 30 fs, and a small recovery (due to rd motion) near 50 fs. Remember, that due
to the t/2-trick (see footnote of Sect. 9.7.1) the autocorrelation function is twice as
long as the propagation time. It may be tempting to assume that an autocorrelation
duration of 30 fs (i.e. 15 fs propagation time) would be sufficient. In fact, such a
short autocorrelation function will reproduce the spectrum rather closely, but some
fine details, namely the steps at the high energy side, are a bit washed out. After 60
fs, however, the autocorrelation drops to insignificantly small values and a longer
propagation does not influence the spectrum.

To demonstrate that the inclusion of a CAP indeed becomes essential when prop-
agating for a longer period, we may edit the input file nocl1.inp by removing
the CAP, setting tfinal to 100 fs, and changing the name of the name-directory
to e.g. nocl1.nocap. After running mctdh84 with this input and moving to the
new name-directory, run “plauto -G -y 0.1” and observe that there appears a
non-negligible contribution at large times. This false contribution introduces some
spurious oscillations in the spectrum. The false contribution is caused by the reflected
part of the wavepacket. This can be seen by running “showd1d84 -a f1”. Re-
introducing a CAP, the false part will not appear.

Turning to the spectrum please move back to the nocl1 directory and run
“plspec -g0 -G 0.7 2.2 ev”. The spectrum consists of a broad peak with
some shoulders at the high energy side. At higher energies these shoulders turn into
peaks, which can be observed by running “plspec -g0 -G 1.6 2.4 ev”.
Note that here we have used the box-filter g0, i.e. no filter function at all. Because
the autocorrelation function virtually has vanished at final time, a more sophisticated
filter is not needed. In fact, using e.g. the g2 filter would smear out the spectrum a
bit, but not improve it otherwise.

The shoulders in the photoabsorption spectrum appear at energies where a new
channel opens, namely the dissociation into Cl and vibrationally excited NO. We
will investigate this more carefully when discussing flux analysis. But before doing

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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so, we shall visualize the motion of the wavepacket in 2D. As already discussed,
showsys can plot both 2D potential cuts and 2D reduced wavefunction densities.
But it can do more: it can plot the density on top of a PES cut, which provides a vivid
picture of the dynamics. To produce such a plot type “showsys84” and then go
to menu point 10, and change the plot task to 2=plot pes (type 2). The default
coordinate selection is in this case rd=x rv=y theta=1.545 (see menu point
20). Hence a 2D plot of the PES will be produced for the coordinates (rd, rv) while
keeping θ fixed at the value θ = 1.545 rad. One may view this PES cut by entering
“1” three times, try different menu points (e.g. 160, 240), or different coordinate
selections. When you are done, please make sure that the surface and the keys are
both off (menu points 160, 240). Then go tomenu point 20 and change the coordinate
selection to x y 2.1, because the wavepacket is located near θ = 2.1 rad. (One
may run “showd1d84 -a f3” or “plqdq 1 3” to check this.) Now use menu
point 5. You will be asked for a file name. Chose any convenient name, e. g. xyz.
The plot data is then written to the file xyz for later use.

Next, we want to inspect the wavefunction. Go to menu point 10 and chose
5=plot reduced density. The density, i.e. |�|2 integrated over all coordi-
nates, except those specified by x and y (that is integrated over the angle in the
present case), will be shown. Because we want to show the wavepacket density on
top of the potential, choose menu point 400 (overlay plots) and then 410 and then
enter the name of the file which contains the PES data, here xyz. Then input “1”
five times and you will see the initial density. Pressing RETURN will display the
density propagated by one time step, and so on.

10.3.2 Flux Analysis

To further analyze the photoabsorption spectrum and to better understand its struc-
ture, we will perform a flux analysis. The program flux84 measures the energy
resolved quantum flux going through a plane defined by rd=constant. By default
this plane is located at the starting point of the CAP, but it can be moved to another
position with the -s option. flux84 is a rather complicated program, for a com-
prehensive description of its use please see the HTML documentation and the
guide, (both come with the package). For a description of the flux algorithm see
the MCTDH-review, the MCTDH-book, or Sect. 8.6.

Before running flux84 one has to propagate the wavepacket for a longer time
to ensure that the wavepacket has passed the dividing plane. Rather than starting
a propagation anew, we may perform a continuation run. Hence type “mctdh84
-c -tfinal 70 nocl1” while being in the directory NOCl, or alternatively
type “mctdh84 -c -tfinal 70 -I.” while being in the name-directory
nocl1. Read the output of “mctdh84 -h” to understand what you are doing.
The wavepacket is now propagated up to the final time of 70 fs. Run “plstate -l
-G -z 1.e-3” to observe that thewavepacket is now almost completely absorbed,

http://dx.doi.org/10.1007/978-3-319-53923-2_8
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only 0.6% of the population has remained. One also may run showd1d84 to view
the absorption process.

We will perform several flux calculations, and in order not to overwrite their
outputs, we will store those in separate directories. Type “mkdir fxall fx0
fx1 fx2 fx3 fx4” and then run “flux84 -o fxall 0.7 2.0 ev rd”.
To visualize the output run “plflux -f fxall/flux”. The plot shows the spec-
trum that we already know. To prove that we have indeed reproduced the old spec-
trum run “autospec84 0.7 2.0 ev 0” and then “plgen fxall/flux
spectrum.pl”. The two lines agree. We have hence found another way of com-
puting the spectrum, which, however, is more elaborate than simply Fourier trans-
forming the autocorrelation function. The flux approach reproduces the power spec-
trum because the molecule decays completely into a single channel only. However,
flux84 can do more than measuring the total flux, it can operate or project the
wavepacket before measuring the flux. We will project onto the first five vibrational
states of the NO fragment. For this, run
“flux84 -P 2 eigenf rvib 1 % -o fx0 0.7 2.0 ev rd”,
and
“flux84 -P 2 eigenf rvib 2 % -o fx1 0.7 2.0 ev rd”,
and so on till
“flux84 -P 2 eigenf rvib 5 % -o fx4 0.7 2.0 ev rd”.
Here we have added a projector for the second degree of freedom, rv, which projects
onto the eigenstates of the operator “rvib”, defined in nocl1.op. Note that the
counting of the eigenfunctions generated via the keyword eigenf starts with 1.
Hence the second eigenfunction represents the first excited state. The resulting spec-
tra are best shown in comparison with the unprojected one. Type
“plgen -G -a 0.8 -x 1.8 -z 0 -u 1:2 fxall/flux fx0/flux

fx1/flux fx2/flux fx3/flux”,
and to better visualize the high energy part
“plgen -G -a 1.4 -x 2.0 -z 0 -u 1:2 fxall/flux fx0/flux

fx1/flux fx2/flux fx3/flux fx4/flux”,
or even
“plgen -G -a 1.7 -x 2.0 -z 0 -u 1:2 fxall/flux fx1/flux

fx2/flux fx3/flux fx4/flux”.
It is now clear that the main peak near 1.1 eV is due to the vibrational v = 0 channel,
the shoulder near 1.3 eV is caused by the opening of the v = 1 channel, and so on.

The flux algorithm sums over all internal states, but by projecting one can select
an individual state or a group of states.When projecting on a vibrational state one still
sums over all rotational states. However, because vibration cannot be separated from
rotation, there are no “universal” vibrational states, they depend on the rotational
quantum number through a centrifugal potential. Fortunately, the vibrational eigen-
function depends only weakly on the rotational quantum number j . (This is not true
for the eigenvalue, but the latter is unimportant for the projection). We simply have
set j = 30 in the Hamiltonian rvib (see nocl1.op), because this choice resembles
roughly the maximum of the final j-distribution. (One may replace rvib with vib
in the flux commands above, and observe that the dependence on the rotational state
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is indeed very weak. See nocl1.op for the definitions of the Hamiltonians rvib
and vib.)

To project onto final rotational states, but sum over vibrational ones, run “mkdir
fxr20 fxr30 fxr40 fxr30v0 fxr30v1”,
“flux84 -P 3 leg 20 % -o fxr20 0.7 2.0 ev rd”,
“flux84 -P 3 leg 30 % -o fxr30 0.7 2.0 ev rd”,
“flux84 -P 3 leg 40 % -o fxr40 0.7 2.0 ev rd”,
“plgen -G -a 0.8 -x 1.8 -z 0 -u 1:2 fxr20/flux
fxr30/flux fxr40/flux”. Maxima now appear: it is thus the rotational
motion that has smeared out the peaks and turned them into shoulders.

Finally, we may project on an internal quantum state of NO.
“flux84 -P 2 eigenf rvib 1 % -P 3 leg 30 % -o fxr30v0
0.7 2.0 ev rd”,
“flux84 -P 2 eigenf rvib 2 % -P 3 leg 30 % -o fxr30v1
0.7 2.0 ev rd”,
“plgen -G -a 0.8 -x 1.8 -z 0 -u 1:2 fxr30/flux fxr30v0/
flux fxr30v1/flux.
The computed rotational distributions are not very accurate. This is because the
angular dependence of the PES at rd = 5 a.u.—the starting point of the CAP—is
still quite strong and continues to cause rotational transitions when the wavepacket
is propagated to larger rd-distances. A longer rd-grid (e.g. 10.0 a.u.) is required
to fully converge the rotational transitions. The vibrational distributions, however,
are converged with the current grid, and to compute the spectrum by Fourier
transforming the autocorrelation function, even a shorter grid suffices. (See e.g.
$MCTDH_DIR/inputs/nocl1.inp).
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Chapter 11
Bimolecular Reactions

11.1 Introduction

In Chaps. 9 and 10, we have given several examples of photoabsorption spectra of
molecules. In other words, we have addressed the question of howmolecules interact
with light. The absorption of light can lead to unimolecular reactions when the
molecule dissociates for instance as shown in Chap. 10. Another class of important
elementary processes in chemistry are bimolecular processes, i.e. processes where
twomolecules collide and exchange energy, atomsor groups of atoms.Understanding
these elementary processes at their most fundamental level is a challenging task of
tremendous practical importance for industrial reasons, if the elementary process is
the rate determining step of an important industrial chemical reaction. For instance,
the endothermic reaction H + O2 → OH + O is considered as the “most important
combustion reaction” since it is a dominant molecular-dioxygen-consuming step in
hydrogen-oxygen and methane-oxygen combustion mechanisms [1].

11.2 The H + H2 → H2 + H Reaction

Let us focus on the prototypical H + H2 → H2 + H reaction in the electronic ground
state. We stay within the Born-Oppenheimer approximation. Even though this is the
simplest neutral bimolecular reaction, its physics is very rich due to the importance
of tunneling and the presence of quantum resonances. We use Jacobi coordinates to
describe the process as those depicted in Fig. 5.6a with R1 the distance between the
two hydrogen atoms in the initial diatomic molecule, R2 the distance between the
center of mass of H2 and the colliding hydrogen atom, and θ the angle between the
two Jacobi vectors. T nu , the KEO for J = 0, is given by Eq. (6.155) with the masses
of Eq. (6.156). The reaction is collinearly-dominated, i.e. with the minimum-energy
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Fig. 11.1 Cut through the
three-dimensional PES of H
+ H2 taken from Refs. [2–4].
R1 is the distance between
the two hydrogen atoms in
the initial diatomic molecule
and R2 is the distance
between the center of mass
of H2 and the colliding
hydrogen atom. θ, the angle
between the two
corresponding Jacobi
vectors, is fixed at 0.0 rad
(collinear geometries)

path along the collinear geometry. For the primitive basis set of each coordinate, a
sine DVR for R1 an FFT DVR for R2 and a Legendre DVR for θ are used.1

Here, V0, is the “lsth” PES [2–4] and the potential has been re-expressed in a direct
product form using the POTFIT algorithm described in Sect. 8.7.2 A cut through the
PES is shown on Fig. 11.1, where the angle θ is fixed at 0.0 (collinear geometry). The
PES is purely repulsive and has a transition barrier of 0.36 eV above the asymptote.

Let us propagate wavefunctions with the following initial form:

�(R1, R2, θ, t = 0) = N e
− (R2−R2, 0)2

4�R2
2 eip0(R2−R2 0)

× ϕ j0 v0(R1)Pj0(cos θ) , (11.1)

where Pj0(cos θ) is a Legendre polynomial, ϕ j0 v0(R1) a vibrational eigenfunction
of the isolated H2 molecule. j0 is the angular momentum and v0 the vibrational
quantum number of H2. p0 is the initial momentum given to the H atom: if p0 < 0,
the hydrogen atom will collide with the molecule.

The Hamiltonian operator is H = T nu + V0. The wavefunctions of Eq. (11.1) are
wavepacketswith respect to this operator.Note that the functionsϕ j0 v0(R1) Pj0(cos θ)
are eigenfunctions of the diatomic part of the operator when R2 is very large.

Two complex absorbing potentials have been added to absorb the wavepackets
for large values of R1 and R2. As for ozone and NOCl, we have calculated the

1R1 ∈ [0.6, 6.60], R2 ∈ [1.0, 9.80] a.u., 51, 81, and 31 functions are used for R1, R2, and θ,
respectively.
2R2 is the contracted degree of freedom andwe used 12 single particle potentials (SPPs) for R2 and 7
also for θ. At the end,wehave thus 84 terms in thefit (seeEq. (8.350z))with three degrees of freedom.
We used 16 iterations to improve the relevant region defined as the geometries corresponding to a
potential energy below 4 eV above the minimum. This guarantees a root-mean-square (rms) error
of 3.84 meV on the relevant region.

http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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“flux” of the wavepacket. More precisely, we have calculated two fluxes: one for
large values of R2 after collision corresponding to the “part” of the wavepacket that
returns without reacting and another flux for the large values of R1 that correspond
to the “part” of the wavepacket that has reacted to form a new molecule of H2. Let
us consider j0 = 0, v0 = 0, R2, 0 = 4.8 a.u., p0 = − 7.5 a.u., and �R2 = 0.25 a.u.
In Fig. 11.1, the initial wavefunction is thus located around R2 0 = 4.5 a.u. and R1

= 1.448 a.u. The wavepacket has been propagated using MCTDH. As explained in
Sect. 8.3.4, the convergence of the SPF basis set is more difficult than for NOCl due
to the strong coupling that occurs after reaction especially because of the fact that
the Jacobi coordinates are not well adapted to describe the reactive channel (see
also the discussion of Sect. 5.2). The MCTDH convergence is obtained with 3024
configurations (18 SPFs in R2, 14 in R1, and 12 in θ). The reduced density is given
on Fig. 8.5 for t = 20 fs: we clearly see that the wavepacket on the left, corresponding
to large values of R1, reacts.3

A Gaussian function ϕ(x) ∝ exp(((x − x0)/2σ)2 + i p0(x − x0)) has the energy
distribution |�(E)|2 ∝ exp(−4μσ2[√E − √

E0]2)/
√
E . The energy distribution

for the Gaussian function in R2 is given on Fig. 11.2 in green.4 It corresponds to the
relative kinetic energy distribution of the collidingH atom. The parameters have been
chosen so that the energy distribution covers the energies where the cross sections
have to be calculated.

Figure11.2agives also thefluxcorresponding to the reactive part of thewavepacket
(in red). For each energy, the flux is smaller than the initial distribution. Dividing the
flux by the initial distribution gives the reaction probability for a given initial kinetic
energy and for the initial conditions j0 = 0 and v0 = 0. The probability does not
depend on the initial kinetic energy distribution, provided that the propagation has
been correctly converged. The total reaction probability is given in red on Fig. 8.5b.

This reaction probability has several properties that cannot be explained classi-
cally. The potential has a barrier of 0.36 eV. If there were no tunneling, we should
observe an increase of the probability for initial energies larger than 0.36 eV corre-
sponding to the energy that is necessary to surmount the barrier. On the contrary, the
probability curve as a function of the energy rises smoothly from zero as the collision
energy increases and the reaction starts below the transition barrier of 0.36 eV. This
is a clear indication of quantum tunneling effects.5

In addition, the reaction probability presents oscillatory structures due to the
presence of quantum resonances, i.e. to quantum metastable states as those already
encountered for ozone [1]. In otherwords, for specificdomains of collisional energies,
the system remains trapped during a certain time around the saddle point although
the potential is purely repulsive. For these energies, there is a resonant transfer to the
vibrational mode of the H2 molecule and the hydrogen atom has no sufficient energy

3In Fig. 8.5 rd and rv correspond to R2 and R1, respectively.
4The formula given for |�(E)|2 is valid only for a vanishing potential. In practice, |�(E)|2 is
computed numerically by incorporating the tail of the potential.
5The presence of the zero point energy of H2, which changes along the reaction coordinate, can
also impact the process in a way that has no classical counterpart.

http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 11.2 a Kinetic energy
distribution of the initial
wavepacket (green) for H +
H2 and j0 = 0, v0 = 0 and
the flux corresponding to the
reactive part of the
wavepacket (red). b The
corresponding reaction
probability obtained by the
ratio of both quantities. The
transition state lies at 0.36
eV above the dissociation
limit (dashed line)
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to leave the H3 complex. However, after a certain time, the energy in the vibrational
mode of H2 is transferred back to the hydrogen atom that can either go back or snatch
one of the two atomsof hydrogen in themolecule. The resonances that are present inH
+ H2 are particular cases of what is called Feshbach resonances. Generally speaking,
for a Feshbach resonance, the energy associated with the scattering coordinate (here
R2) is temporarily depleted through the coupling with other degrees of freedom (here
R1 and θ).

The reaction probability cannot be measured experimentally. The quantities that
can bemeasured by the experimentalists are cross sections. They involve a summation
over all the values of the total angular momentum J and of its projection onto a BF
axis K . The initial-state-selected cross sections for H + H2 are given by

σv0 j0 = π

k2v0 j0

j0∑

|K |

Jmax∑

J≥K

(2J + 1)P J K
v0 j0(E) , (11.2)
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Fig. 11.3 Comparison of the
theoretical (solid line) and
experimental cross sections
for H + D2(v = 0) cross
sections. The experimental
values are given by filled
circles, squares and triangles
(see Ref. [8]). The boxes
indicate error bars in both
energy and cross-section.
The open circles represent
results of a time-independent
calculation [11]

where E is the energy and kv j0 =
√
2mR(E − Ev0 j0) the “local momentum”, Ev0 j0 is

the initial energy of H2 andmR = 2/3mH . Jmax is the maximum value of J necessary
to converge the cross section for a given energy domain and P J K

v0 j0
(E) is the reaction

probability for given values of J and K . The line of Fig. 11.2b corresponds to P0 0
0 0 (E).

Even if there are quantum resonances, the summation in Eq. (11.2) tends to average
out their contributions and masks their effect. The corresponding cross sections
increase monotonically with the energy.

Several cross sections have been measured for the H + D2 collision [5–7]. The
use of isotopes allows experimentalists to easily distinguish the products from the
reactants. The cross section calculated withMCTDH (see Ref. [8]) for v = 0 is given
on Fig. 11.36 for an initial Boltzmann distribution of the rotational levels of D2 at
temperatureT =300K.Theboxes and the bars give the estimated experimental errors.
We clearly see that the oscillations due to the quantum resonances are quenched by
the different summations in the calculation of the cross sections. This quenching of
the effects of quantum resonances is often observed in cross sections and in reaction
rate constants [9, 10].

11.3 Quantum Resonances and Cold Chemistry

In the previous example, the effect of the quantum resonances was quenched in
the experimental data. It is now possible to detect experimentally these effects of
quantum resonances in molecular processes. Exploiting these effects could lead to a
completely different chemistry.

In traditional chemistry, the usual way to explain reaction rates is mainly based
on transition-state theory [12]. Let us consider the energy profile of Fig. 11.4 for the

6Reprinted with permission from [8]. Copyright 1999, American Institute of Physics.
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Fig. 11.4 Energy profile for the F + H2 →HF +H reaction as a function of a “reaction coordinate”,
inspired from Refs. [13, 14]. The physical process indicated by the red arrow is very different from
what is expected in transition state theory

F + H2 → HF + H reaction as a function of a reaction coordinate. As for the H +
H2 reaction, the potential is purely repulsive in the interaction region. In transition-
state theory, the important criterion is that colliding molecules must have sufficient
energy to surmount the potential-energy barrier to react. The transition state is the
unstable transitory complex that occurs at a potential-energy maximum along the
reaction coordinate at the energy Eb in Fig. 11.4. Within transition state theory, it is
assumed that if the system reaches the activation energy and goes in the direction of
the products, it will not reach the transition state again.

However, the message conveyed by recent measurements of differential cross sec-
tions for this system is another one: the system can tunnel below the transition state
energy, for the energy Ec in Fig. 11.4. For certain energies, the system remains tem-
porarily trapped due to the presence of quantum resonances [13, 14]. The “trapping
region” is shown in yellow on Fig. 11.4. As explained by Z. Sun, D.-H. Zhang and
coworkers [13, 14], for the F + HD system, the cross sections display several peaks
that have been clearly assigned to very specific Feshbach resonances as for H + H2

in the previous section.
At normal temperatures, the effect of these metastable states is often masked as in

Fig. 11.3 at T = 300 K for H + H2 but, at lower temperatures, the picture can be very
different. In this context, it should be stressed that, on the experimental front, decisive
progress has been achieved to reach low temperatures. In particular, “ultracold”
chemistry is emerging as a very important field of research [15–20]. Measuring and
controlling the reactivity of “cold” (1 mK < T < 1 K) and “ultracold” (T < 1
mK) molecules is now possible [21, 22]. At these temperatures, quantum effects are
strongly amplified. For instance, even two atoms with a large mass such as Cesium
can be combined through tunneling to form Cs2 at around 300 μK [23–25].
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As explained for H + H2 and F + H2, chemical reactions at low energies can
occur along pathways that deviate significantly from the minimum-energy path. The
resulting chemistry could give rise to many applications that are not possible other-
wise. In particular, it is conceivable to target the resonant states [26] and to guide
the chemical reactions in a way that is completely different from chemistry at higher
temperature [27].

11.4 Lab-Session III: Reactive Scattering: D + H2 →
DH + H

The computation of cross sections of a reactive scattering event is at the center of
quantum molecular dynamics. However, the description of reactive scattering is a
difficult task numerically when state-to-state cross sections are to be computed. For
the definition of a state-specific initial state one has to use reactant coordinates,
whereas for the projection onto state-specific final states, product coordinates are
required. Hence a coordinate transformation must be performed. The wavefunction
is expanded on the full product grid, interpolated and evaluated on the product grid
of the other coordinate system. Employing the full product grid is somehow against
the “philosophy” of MCTDH, but recently very important advantages have been
brought forward for computing state-to-state cross sections with MCTDH [28–30].
Here, however, we will avoid a coordinate transformation, use reactant coordinates
throughout, and compute initial-state-selected total reaction cross sections. Hence,
we are specific with respect to the initial state, but sum over all final states and
integrate over all scattering angles of the product. We use Jacobi coordinates, shown
in Fig. 9.18, with A = H, B = H, and C = D. A product Jacobi coordinate system
would correspond to A = H, B = D, and C = H. In this figure R is the dissociative
coordinate, in the following called rd, and r is the internal vibrational coordinate, in
the following called rv.

After the reaction, the wavefunction is described with an unsuitable coordinate
system, which leads to artificial correlation. To avoid this problem, the reactive part
of the wavefunction is absorbed as early as possible by a CAP and the reaction prob-
ability is determined from flux analysis. Complex absorbing potentials (CAPs) and
the flux program are already discussed in Sect. 10.3 when studying the photodis-
socation of NOCl.

For our investigation we will use the lsth potential energy surface and the first
step is, as usual, to potfit the analytic potential. Run “potfit84 -mnd lsth”
to generate a natpot file. As usual, all commands are listed in a commands file,
see lab-inputs/reaction/commands. Inspect the input file lsth.inp.
Here we use not only correlated weights but also separable weights and subtract the
H2 curve (oned_rv keyword), because we want to arrive at a reasonable fit with
only few potential terms. As several propagations have to be performed to cover

http://dx.doi.org/10.1007/978-3-319-53923-2_9
http://dx.doi.org/10.1007/978-3-319-53923-2_10
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a range of total angular momenta, the propagations should be fast. See the HTML
documentation of Potfit and Chap.12 of the guide to understand the input in detail.

To visualize the PES run “showpot84” and choose in coordinate section (menu
point 20) x y 0 to plot the PES in collinear configuration, θ = 0. Then input “1”
three times to accept the defaults. One observes a tilted L-shaped form (ignore the
upper left corner, it describes an nonphysical situation where the D-atom has passed
the first H-atom). There is an entrance channel near rv = 1.4 a.u. and rd>4.0 a.u.,
a transition point near rd = 2.7 a.u. and rv = 1.7 a.u., and an exit channel for large
rv. Clearly, there is little correlation between rd and rv in the entrance channel, but
considerable correlation between rd and rv in the exit channel, because the contour
lines near the exit channel are parallel to neither the rd nor the rv axis. To visualize
the perpendicular configuration, θ = π/2, choose again menu point 20 and type x y
1.57. Then, again, input “1” three times to accept the defaults. From the contour
lines shown we may be led to the conclusion that the lower rd boundary, 1.0 a.u.,
is chosen too large. However, the transition point near rd = 1.75, rv = 2.0 a.u. lies
more than 2 eV above the energy of the entrance channel. Hence, a perpendicular
approach of the particle towards the molecule does not lead to reaction, at least not
for the low energy region studied here. One may study different potential cuts and
use menu point 160 to switch to a 3D visualization.

Now, we can start the propagation. Run “mctdh84 -mnd dh2-0 &”, and
while it is running, inspect the input file dh2-0.inp. The keyword normstop=
0.02 let the propagation stop when the norm (not its square) is below 0.02. Then
there are two CAPs, one for rd, one for rv. The former is an automatic CAP, called
ACAP. It is switched on when the intensity at the beginning of the CAP increases,
but here not before 6.5 fs propagation time, as given by the last entry of the ACAP
bracket. As a primitive basis for rd we use an FFT-DVR. Often we prefer to use a sin-
DVR, because an FFT is subject to periodic boundary conditions. Here we do not use
an FFT because of the (small) increase in computational speed, but because an FFT
allows to plot the momentum distribution of the 1D reduced density. (Remember,
the number of grid points on an FFT grid must be a product of powers of 2, 3, and 5,
otherwise the performance is slow). For rv we use a sin-DVR. Usually a HO-DVR
is more appropriate for vibrational motion, but here the rv coordinate visits regions
of the potential which are far from harmonic. The angular degree of freedom, θ, is
represented by a Legendre DVR with even symmetry. This means that the DVR is
built from Legendre functions with l = 0, 2, 4, . . .. Due to a symmetry operation that
exchanges the two H atoms, even angular momentum states couple only with even
ones and odd states only with odd ones. Which one of the two situations is realized
depends on the nuclear spin. As well know, the two realizations are called para- and
ortho-hydrogen. In MCTDH it is in general difficult to make use of symmetry, and
symmetry is often ignored. Here it is easy to account for symmetry, because it can
be expressed in terms of symmetry-adapted primitive basis functions.

As an initial SPF for the rd-DOF we choose a Gaussian function augmented with
an in-goingmomentum. The initial wavepacket should bewell localized in both coor-
dinate and momentum spaces, hence a Gaussian function is a natural choice. Often
one uses an even more localized initial state, such that its momentum distribution,

http://dx.doi.org/10.1007/978-3-319-53923-2_12
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and thus the initial kinetic energy range covered, becomes wider. However, a wider
energy distribution requires more SPFs for convergence. For specific cases, we have
used two different but slightly overlapping initial energy distributions and run two
separate sets of calculations to cover a wider energy range [31, 32]. For the present
calculations we have set the input parameters such that initial kinetic energies up to
1 eV are covered. Note that the initial wavepacket has to be carefully designed, as
the weight of positive (out-going) momenta should be negligible. We will return to
this point later.

The initial SPF of the rv-DOF is chosen as the vibrational ground state of
the H2 potential curve, the latter is given by the lsth PES for rd → ∞. Finally,
the initial SPF of the θ-DOF is an angular momentum state with j0 = 0 and
m0 = 0. The MCTDH program will evaluate the energy distribution of the initial
wavepacket. To this end the keyword correction=dia is given. A Gaussian
function ϕ(x) ∝ exp(((x − x0)/2σ)2 + i p0(x − x0)) has the energy distribution
|�(E)|2 ∝ exp(−4μσ2[√E − √

E0]2)/
√
E . (This distribution is plotted by running

the script “pledstr”). Here μ is the reduced mass, and σ and p0 are the width and
momentum of the Gaussian function as given in input. However, we do not use this
formula as this would require to place the initial wavepacket far outside where the
potential has essentially vanished. To be able to place the initial wavepacket much
closer to the scattering center, which obviously reduces the propagation time, we
compute the energy distribution numerically with a correction scheme. Now, the
condition on the initial location of the wavepacket is that on the interval (x0, ∞) the
interaction potential does not change the ro-vibrational state of the wavepacket when
propagated from infinity to the initial location x0.

Also inspect the operator file dh2-0.op. It is a typical one for a three-atom
molecule in Jacobian coordinates with vanishing total angular momentum. There is
a second Hamiltonian-Section for computing the eigenstates of H2.

After having discussed the input files we move to the dh2-0 name directory,
open the log file for reading, and inspect the
*** (A)Diabatic Corrections ***
section. The zero point of the lsth PES is reachedwhen all three particles are infinitely
apart from each other. But in our case H2 is in a bound state and when rd goes to
infinity there remains the binding energy of H2 in its particular initial state. As one
usually wants to present the data versus initial kinetic energy rather than total energy,
one has to shift the energy scale. The shift is printed to thelogfile. The line of interest
reads:
Energy shift (E_total - E_kinetic) : -4.4777478 eV
This energy is to be subtracted and in the following we will simply use 4.4777
which is of sufficient accuracy. First let us view the translational mean field, which
is the potential averaged over the internal coordinates where the average is weighted
by the density of the initial state. Type “plenerd -G -t -E 4.4777”. The
averaged 1D potential shows a boring appearance, it seems to be simply repulsive.
(The decrease in slope for rd<1.5 a.u. originates from cutting the potential at 0.0 eV
before the shift, i.e. at 4.4777 eV after the shift.) But a closer look, “plenerd -G
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-a 5.5 -t -E 4.4777”, shows that there is a weak van-der-Waals minimum
at rd > 6.0 a.u.

To view the energy distribution type “plenerd -G -x 1.2 -E 4.4777”.
One sees that energies up to 1 eV are covered. Finally we inspect the momentum
distribution of the initial state. Type “showd1d84 -a -G -sm -pop2 f1”.
The momentum distribution seems to look perfect as at t = 0 the distribution does
not cover positive momenta.7 However, a closer look, “showd1d84 -a -G -sm
-l -pop2 f1” shows that there are positive momenta in the distribution, albeit at
negligible intensities.

To study the reaction dynamics, run showd1d84 for all three DOFs. Type
“showd1d84 -a -G -y 1.2 f1” to observe that the rd-densitymoves towards
the scattering center and is reflected back. The point of closest approach appears near
18 fs. Likewise type “showd1d84 -a -G -y 0.25 -pop2 f1” to see that
the rd momentum distribution moves from negative values to positive ones. Near t
= 18 fs the average momentum is zero. Next type “showd1d84 -a -G -y 0.3
f2” to observe that part of the vibrational density dissociates. Or run “showd1d84
-a -G f3”. Initially the angular distribution is constant, as for a j = 0 rotational
state all directions are equally probable. However, when the D-projectile approaches
the H2 fragment, a collinear arrangement is preferred, as indicated by the strong peak
at small θ-values, which is formed in particular between 18 and 40 fs. One also may
inspect the expectation values by running plqdq.

We now run the flux analysis. Type “mkdir frv frd” to create two directories
that will contain the output data of the flux calculations. There are two CAPs, one
on the rd-DOF, the other on the rv-DOF. Hence we shall discuss two fluxes. Run
“flux84 -e 4.4777 eV -lo 9 -o frv 0. 1. ev rv” and “flux84
-e 4.4777 eV -lo 9 -o frd 0. 1. ev rd”. Then move to frv and
type “plflux -G”. The lower line shows the energy resolved flux that has been
absorbed by the CAP. The upper line is the energy distribution that we have already
seen before. The quotient of these two lines provides the reaction probability. To
show it, type “plflux -G -r”. Below 0.2 eV there is no reaction and between
0.3 and 0.4 eV one observes a sharp increase in reaction probability, which is fol-
lowed by a slower increase at higher scattering energies. At 1 eV 63.5% of the initial
flux is reactive.

One may move to the frd directory and investigate the rd-flux in a similar
manner. Then move back to the name-directory dh2-0 and submit the command
“sumspec84 frv/flux 1.0 frd/flux 1.0”. By this the two fluxes are
summed. With “plgen -z 0.96 -G sumspec.pl 1:4” the sum of reactive
and non-reactive probability is shown, which, of course, should add up to 1. In fact,
the plot shows a line that deviates by less than 1% from 1 in the interval 0.1–1.0 eV
and even by less than 0.5% in the interval 0.2–0.94 eV. The larger deviations at low
energy are unimportant, because there is no reaction below 0.2 eV. In fact, a time-
dependent method will always have difficulties to converge reaction probabilities at

7Here and for the following plot we are only interested in the t = 0 figure. Hence do not press
‘enter’ to advance the wavepacket. Type ‘Ctrl C’ to exit.
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very low energies, because the low energy parts of a wavepacket move very slowly
and thus require very long propagation times for convergence.

The nice agreement of the summed probabilities with unity demonstrates the
accuracy of the calculations. In practice, however, one will not compute the rd-flux,
the rv-flux alone provides the desired reaction probability. But this is still not a
measurable quantity, the quantity of interest is the reaction cross section, which, for
the present initial conditions, j0 = 0 and v0 = 0, reads

σ(Ekin) = π

2μrd Ekin

∞∑

J=0

(2J + 1)PJ (Ekin)

where μrd is the reduced mass of the rd-DOF, Ekin the collisional energy, and PJ

the reaction probability. For formulas that are valid for general initial conditions,
see e.g. Refs. [33, 34]. The sum converges, since PJ vanishes for large J , as the
centrifugal potential hinders a reaction. To evaluate the cross section, σ, one has to
perform several propagations with different total angular momenta, J .

To converge the cross section for scattering energies up to 1 eV, one has to include
reaction probabilities for total J up to 28. To avoid running 28 propagations, we
will compute reaction probabilities on a rather coarse J -grid and obtain the missing
ones by interpolation. To this end we generate a directory FLUX which shall contain
all the computed flux files; “mkdir ../FLUX”. Before we copy the flux file
of the J = 0 calculation to FLUX, we will re-do the flux calculation for the energy
interval 0.2–1.0 eV, because we know that there is no reaction for scattering energies
below 0.2 eV. Hence type “flux84 -e 4.4777 eV -lo 9 -o frv 0.2
1.0 ev rv”. The flux calculation is now very fast because the flux84 program
notices that there already exists a so-called gtau file, which contains the matrix
elements of the CAP. Thus flux84 performs only the Fourier transform anew.
Next copy the flux file to FLUX, “cp frv/flux ../FLUX/flux000” and
move back, “cd ..”. Thefirst two zeros of flux000 stand for the initial conditions
j0 = 0 and k0 = 0, and the last zero indicates J = 0.

Next, we will submit propagations for J = 5, 10, 15, 20, 25, and 28. To avoid a
considerable amount of typing, we will make use of environment variables.
Define: “cmd1=’(mctdh84 -mnd dh2-’ ”,
“cmd2=’&& cd dh2-’”,
“cmd3=’&& mkdir frv&& flux84-e 4.4777 eV -lo 9 -o frv’”,
“cmd4=’ev rv >/dev/null && cp frv/flux ../FLUX/flux00’”
and “J=5”. Then type
“echo"$cmd1$J $cmd2$J $cmd3 0.2 1.1 $cmd4$J )&" ”
and you will read:
(mctdh84 -mnd dh2-5 && cd dh2-5 && mkdir frv &&
flux84-e 4.4777 eV-lo 9-o frv 0.2 1.1 ev rv >/dev/null
&& cp frv/flux ../FLUX/flux005 )& .
Hence, when this command is submitted, mctdh84 will run with the dh2-5.inp
input file. After the run is completed, one moves to the dh2-5 name-directory,
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creates there a frv directory, and runs flux84. The screen-output of flux84 is
directed to/dev/null to avoid that one is disturbed by this output when inspecting
the input files. (No information is lost as the redirected data can also be found on
flux.log). Finally the flux file is copied to the FLUX directory, while renaming
it to flux005. The final energy of the flux evaluation, 1.1 eV, is chosen slightly
larger than the energy windowwe are interested in, because the interpolation process
works better on a slightly extended energy interval. The set of commands is bracketed
to let it run in a separate shell, and the final and puts the command to background.
To actually execute the command submit
“eval"$cmd1$J $cmd2$J $cmd3 0.2 1.1 $cmd4$J )&" ”.
And to run the computations for the other J values, type
“J=10; eval"$cmd1$J $cmd2$J $cmd3 0.2 1.15 $cmd4$J )&" ”.
“J=15; eval"$cmd1$J $cmd2$J $cmd3 0.3 1.2 $cmd4$J )&" ”.
“J=20; eval"$cmd1$J $cmd2$J $cmd3 0.4 1.2 $cmd4$J )&" ”.
“J=25; eval"$cmd1$J $cmd2$J $cmd3 0.5 1.3 $cmd4$J )&" ”.
“J=28; eval"$cmd1$J $cmd2$J $cmd3 0.6 1.3 $cmd4$J )&" ”.
Note that the energy interval for flux evaluation shifts to higher energies with increas-
ing J because the centrifugal barrier increases the reaction threshold with growing J .

While the propagations are running (a single propagation takes between 10 and 20
min, depending on your hardware and on the particular J value), one should study the
*.inp and *.op files. For J > 0 there appears an additional dynamical variable, k,
which is the projection of the total angular momentum J onto the body-fixed z-axis.
It is also the Fourier transform of the third Euler angle γ. To treat the dynamics
correctly we combine θ and k into one mode and employ the extended Legendre
DVR, KLeg. See the appendix of Ref. [33] for a description of KLeg. The input files,
e.g. dh2-5.inp for J = 5, are similar to the J = 0 case, dh2-0.inp, except, of
course, for the additional definition of the k-DOF. The range of k values is restricted
to |k| ≤ J , but for larger J values a smaller k range suffices. As |k| ≤ j likewise
holds, the initial k value, k0, must be zero, because the initial angular momentum of
the H2 fragment, j0, was chosen to be zero.

For larger J , the centrifugal potential shifts the reaction threshold to higher values,
namely to about 0.5, 0.7, and 0.8 eV for J = 20, 25, and 28, respectively. To put more
emphasis on the high energy region, we slightly increased the initial momentum from
p0 = 7.5 a.u. to 7.8 a.u. when J ≥25.

After all propagations are finished,8 we generate themissing reaction probabilities
by interpolation using jinpol84. Try “jinpol84 -h”. A description of the
algorithm is given in the appendix of Ref. [34]. To reduce the amount of typing we
again make use of environment variables, define
“jpl=’jinpol84 -f flux -o fx -ef flux000’”,
move to the directory FLUX, and run
“eval $jpl -j1 0 -j2 5 -e1 0.2 -e2 1.0”
“eval $jpl -j1 5 -j2 10 -e1 0.2 -e2 1.0”
“eval $jpl -j1 10 -j2 15 -e1 0.2 -e2 1.0”

8Submit the command “ps -r” to check which jobs are still running.
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“eval $jpl -j1 15 -j2 20 -e1 0.3 -e2 1.1”
“eval $jpl -j1 20 -j2 25 -e1 0.4 -e2 1.1”
“eval $jpl -j1 25 -j2 28 -e1 0.6 -e2 1.2”
The first option, -f flux, tells the program to search for files flux extension as
input, -o fx let the program write the output to fx extension, and through the -ef
flux000 option, the energies are taken from the file flux000. The options -j1
and -j2 define the range of J values to be interpolated, and -e1 and -e2 define an
energy range used to fit some parameters of the interpolating scheme. For larger J we
avoided energies for which the reaction probability vanishes, but slightly increased
the upper range. To visualize the result, type “plgen -G -n -x 1.0 fx00*”.
All 29 reaction probabilities appear on one plot. To check how well the interpolation
works, we may run propagations while setting J = 3, 7, 12, or 27 (the input files
for these J values are provided). Then run e.g. “plgen -G -a 0.2 -x 1.0
flux0012 1:4 fx0012 1:2” to observe the differences.

Next, we have to sum the reaction probabilities weighted with 2J +1. For this we
use sumspec84 and to avoid much typing we generate the input of sumspec84
with a bash script. Type
“J=0, unset list”
“while ["$J" -lt 29 ]; do nn=$((2*$J + 1)); list="$list
fx00$J $nn"; J=$(($J + 1)); done”
To see what we got, run “echo $list”. Next run “sumspec84 -o fxall
$list”. The weighted sum of reaction probabilities looks rater boring, “plgen
-G fxall”. But this is not the required reaction cross section, to obtain this one
has to multiply with some constant and divide by Ekin as explained in the equation
above. The arithmetics can be performed with plgen. Type
“plgen -G fxall ’1:($2∗0.0065177/$1)’”,
where the factor 0.0065177 stands for π/2μrd and for the conversion factors ’eV to
a.u.’ and ’a.u. to angstroem-squared’. A nicer plot is generated by the command
“plgen -t ’D + H2 total reactive cross section for
initial state
j=0,v=0’-X ’E-kin[eV]’-Y’Sigma [Angstroemˆ2]’-n-G fxall
’1:($2∗0.0065177/$1)’”

One may run similar calculations for initial conditions with j0 > 0 or v0 > 0.
Note, if j0 > 0, one must average the cross section over all m0 states with |m0|≤ j0.
The initial value for k is to be set to m0. In fact k=m holds throughout, because in
the body-fixed frame �z = 0 holds, and thus jz = Jz . See for example Refs. [33, 34]
for further explanations.



364 11 Bimolecular Reactions

References

1. Zhang JZH (1999) Theory and application of quantum molecular dynamics. World Scientific,
Singapore

2. Siegbahn P, Liu B (1978) An accurate three-dimensional potential energy surface for H3. J
Chem Phys 68:2457

3. Truhlar DG, Horowitz CJ (1978) Functional representation of Liu and Siegbahn’s accurate ab
initio potential energy calculations for H+H2. J Chem Phys 68:2466

4. Truhlar DG, Horowitz CJ (1979) Erratum: Functional representation of Liu and Siegbahn’s
accurate ab initio potential energy calculations for H+H2. J Chem Phys 71:1514

5. Johnston GW, Katz B, Tsukiyama K, Bersohn R (1987) Isotopic variants of the H+H2 reaction.
1. Total reaction cross sections of theH+D2 andH+HD reactions as a function of relative energy.
J Chem Phys 91:5445

6. Levene HB, Phillips DL, Nieh J-C, Gerrity DP, Valentini JJ (1988) Measurement of absolute
partial reaction cross sections for the hydrogen exchange reaction. Chem Phys Lett 143:317

7. Brownsword RA, Hillenkamp M, Laurent T, Volpp H-R, Wolfrum J, Vatsa RK, Yoo H-
S (1998) Excitation function and reaction threshold studies of isotope exchange reactions:
H+D2 →D+HD and H+D2O→D+HOD. J Phys Chem A 101:6448

8. Jäckle A, Heitz M-C, Meyer H-D (1999) Reaction cross sections for the H+D2(ν = 0, 1)
system for collision up to 2.5 eV: A multiconfiguration time-dependent Hartree wave-packet
propagation study. J Chem Phys 110:241

9. MillerW, Zhang J (1991) How to abserve the elusive resonances in H or D+H2 →H2 or HD+H
reactive scattering. J Phys Chem 95:12

10. MillerWH (2006) Including quantum effects in the dynamics of complex (i.e., large) molecular
systems. J Chem Phys 125:132305

11. CharutzDM,Last I, BaerM(1997)TheToeplitz approach to treating three-dimensional reactive
exchange processes: Quantum mechanical cross sections and rate constants for the D+H2 and
H+D2 reactions. J Chem Phys 106:7654

12. Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys
Chem 100:12771

13. Qiu M, Ren Z, Che L, Dai D, Harich SA, Wang X, Yang X, Xu C, Xie D, Gustafsson M,
Skoedje RT, Sun Z, Zhang D-H (2006) Observation of Feshbach resonances in the F+H2 →
HF+H reaction. Science 311:1440

14. Sun Z, Zhao B, Liu S, Zhang D-H (2014) Reactive scattering and resonance. In: Molecular
quantum dynamics, Gatti F (ed). Springer, Heidelberg

15. Dulieu O, Krems R, Weidemüller M, Willitsch S (2011) Physics and chemistry of cold mole-
cules. Phys Chem Chem Phys 13:18703

16. Quéméner G, Julienne PS (2012) Ultracold molecules under control!. Chem Rev 112:4949
17. Jin DS, Ye J (2012) Introduction to ultracoldmolecules: new frontiers in quantum and chemical

physics. Chem Rev 112:4801
18. Baranov MA, Dalmonte M, Pupillo G, Zoller P (2012) Condensed matter theory of dipolar

quantum gases. Chem Rev 112:5012
19. Narevicius E, Raizen MG (2012) Toward cold chemistry with magnetically decelerated super-

sonic beams. Chem Rev 112:4879
20. Stuhl BK, Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J (2012) Evaporative cooling of

the dipolar hydroxyl radical. Nature 492:396
21. Hutson JM (2000) Ultracold chemsitry. Science 327:788
22. Lang F, Winkler K, Strauss C, Grimm R, Hescher J (2008) Denschler. Ultracold triplet mole-

cules in the rovibrational ground state. Phys Rev Lett 101:133005
23. Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seuuws F, Pillet P (1998) Formation

of cold Cs2 molecules through photoassociation. Phys Rev Lett 80:4402
24. Vatasescu M, Dulieu O, Amiot C, Comparat D, Drag C, Kokooline V, Masnou-Seeuws F,

Pillet P (2000) Multichannel tunneling in the Cs2 O(−)
(g) photoassociation spectrum. Phys Rev

A 61:044701



References 365

25. DionCM,DragC, DulieuO, Torla BL,Masnou-Seuuws F, Pillet P (2001) Resonant coupling in
the formation of ultracold ground state molecules via photoassociation. Phys Rev Lett 86:2253

26. Althorpe SC (2010) Setting the trap for reactive resonances. Science 327:1460
27. Yang X, Minton TK, Zhang D-H (2012) Rethinking chemical reactions at hyperthermal ener-

gies. Science 336:1650
28. Welsch R, Huarte-Larrañaga F, Manthe U (2012) State-to-state reaction probabilities within

the quantum transition state framework. J Chem Phys 136:064177
29. Zhao B, Zhang DH, Lee S-Y, Sun Z (2014) Calculation of state-to-state cross sections for

triatomic reaction by the multi-configuration time-dependent Hartree method. J Chem Phys
140:164108

30. Manthe U, Welsch R (2014) Correlation functions for fully or partially state-resolved reactive
scattering calculations. J Chem Phys 140:244113

31. Gatti F, Otto F, Sukiasyan S, Meyer H-D (2005) Rotational excitation cross sections of para-H2
+ para-H2 collisions. A full-dimensional wave packet propagation study using an exact form
of the kinetic energy. J Chem Phys 123:174311

32. Otto F, Gatti F, Meyer H-D (2012) Rovibrational energy transfer in collisions of H2 with D2.
A full-dimensional wave packet propagation study. Mol Phys 110:619

33. Sukiasyan S, Meyer H-D (2001) On the effect of initial rotation on reactivity. A multi-
configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H+D2
and D+H2 reactive scattering systems. J Phys Chem A 105:2604

34. Sukiasyan S, Meyer H-D (2002) Reaction cross section for the H+D2(ν0 = 1) → HD+D and
D+H2(ν0 = 1) → DH+H systems. A multi-configuration time-dependent Hartree (MCTDH)
wave-packet propagation study. J Chem Phys 116:10641



Chapter 12
Vibronic Coupling

12.1 Introduction

Photons in the ultraviolet-visible region can promote molecules to electronic excited
states. If no photodissociation occurs, an excited molecule can release its excess
energy and return to the electronic ground state through spontaneous light emission:
fluorescence from a singlet state or phosphorescence from a triplet state if the ground
state is a singlet state. However, in many cases, the light emission is quenched by
a much faster radiationless process that is due to the presence of a non-adiabatic
couplings between electronic states (see Fig. 12.1). Typical phenomena associated
with such situations are the radiationless relaxation of electronic excited states to the
ground state, indirect photodissociations as introduced in Sect. 10.2, and isomeriza-
tion processes of polyatomic molecules [1].

In polyatomicmolecules, non-Born-Oppenheimer processes occur mainly around
topographical features joining different PESs, known as conical intersections [1–3]
and introduced in Chap.4. A conical intersection induces strong couplings between
electrons and nuclei. It acts as a funnel through which a new chemical reaction can
occur and enables rapid conversion of the excess electronic energy into nuclear
motion [4]. Thus, conical intersections are a central paradigm for understanding
reactionmechanisms in photochemistry and photobiology, as important as transitions
states in thermal chemistry [5].

The presence of conical intersections gives rise to new effects that cannot be
described classically. First, the fact that a system can be transferred from one quan-
tized state to another is per se a quantum effect. Second, the electronic states can
remain coherent with respect to each other during a non-negligible period of time,
leading to new quantum interference effects.

© Springer International Publishing AG 2017
F. Gatti et al., Applications of Quantum Dynamics in Chemistry,
Lecture Notes in Chemistry 98, DOI 10.1007/978-3-319-53923-2_12

367

http://dx.doi.org/10.1007/978-3-319-53923-2_10
http://dx.doi.org/10.1007/978-3-319-53923-2_4


368 12 Vibronic Coupling

Fig. 12.1 Schematic illustration of the physical situation where the molecular system is first in its
electronic ground state (in blue) and after absorption of light is promoted to an bound electronic
excited that is in turn coupled through a conical intersection to another electronic bound state. The
curves in green and red correspond to the potential energies of the two diabatic excited states

Fig. 12.2 The experimental
spectrum of butatriene (see
Ref. [7])

12.2 Photoelectron Spectrum of the Butatriene Molecule

Awell-known striking evidence of the presence of a conical intersection is the photo-
electron spectrumof the butatrienemolecule shown on Fig. 7.5 in Sect. 7.3 of Chap.7.
The calculation of the ionization potentials indicates that only two electronic states,
called B2g and B2u , due to their symmetry, are present up to 11eV [6]. The symmetry
of butatriene is explained in detail in Sect. 7.3 of Chap.7. In 1974, the spectrum was
measured for the first time [7] and three electronic bands were observed in the ioniza-
tion energy range from 9 to 10 eV. The experimental spectrum is given in Fig. 12.21:
the two bands predicted by the calculation of the ionization potentials are centered
around 9.3 and 10.1 eV. The band between 9.4 and 9.9 eV does not correspond to
any identified electronic state and was called for that reason the mystery band of

1Reprinted with permission from [8]. Copyright 2001, American Institute of Physics.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
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Fig. 12.3 The adiabatic potential energy surfaces of the two excited electronic states of butatriene
obtained with the vibronic model of Ref. [8]

butatriene. It was later established by Cederbaum et al. that the mystery band repre-
sents a vibronic effect, i.e. a strong non-adiabatic coupling between the two electronic
states [9].

A one-dimensional schematic illustration of the physical situation is depicted on
Fig. 12.1. The system is first in the vibrational ground state of the electronic ground
state. There is then absorption of light that promotes the system to an excited bound
electronic state that is coupled through a conical intersection to another bound excited
electronic state. In the case of the photoelectron spectrum of the butatriene molecule,
the systems is first in the ground state of the molecule and the two “excited” states
are electronic states of the cation. In fact, the first “excited” state is the electronic
ground state of the cation but we will continue to call it the first excited state for
the photoionization process. The chemical interpretation of the two excited states
of butatriene in terms of molecular orbitals can be seen on Fig. 7.9 in Sect. 7.3 of
Chap.7. A 2D plot of the adiabatic potential energy surface is shown in Fig. 12.3. In
the following, we assume that the ejection of the electron during the photoionization
is instantaneous (sudden approximation).

The Hamiltonian operator for the nuclear problem in the electronic ground state
0 is given by

H 0 = T nu + V0 . (12.1)

We use the normal modes of the butatriene molecule in the electronic ground state
and a harmonic approximation for the potential energy operator. The system has 8
atoms and thus 18 modes of vibration. Using mass- and frequency-scaled normal
modes (see Eq. 5.8 in Chap.5 for the definition of the normal modes), H 0 resorts to

H 0(q) =
18∑

l=1

wl

2

(
q2
l − ∂2

∂q2
l

)
. (12.2)

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_5


370 12 Vibronic Coupling

The normal vibrations are given in Tables7.6–7.8 in Sect. 7.3. The corresponding
vibrational eigenstates satisfy

H 0(q)�m
0 (q) = Em

0 �m
0 (q) . (12.3)

The �m
0 are products of 18 one-dimensional solutions of the quantum harmonic

oscillator since H 0 is separable. To obtain the theoretical spectrum, we start from
the vibrational ground state in the electronic ground state, �0

0 and use the Condon
approximation of Eq. (10.7). Since we also assume that the ionization is instanta-
neous, we simply have to place �0

0 onto one of the two diabatic states and propagate
it. We do the same with the second diabatic state. As for ozone in Sect. 10.2, the
eigenstates are given by the Schrödinger equation involving two coupled diabatic
electronic states:

[
T nu(q) + V1(q) V12(q)

V12(q) T nu(q) + V2(q)

] [
�n

1 (q)

�n
2 (q)

]
= En

[
�n

1 (q)

�n
2 (q)

]
,

(12.4)

where, V12 is the potential coupling between the two diabatic states. However, con-
trarily to ozone, the set of eigenstates is now discrete since the two electronic states
do not lead to dissociation in the energy domain of interest. The expression of the
potential terms are given in Sect. 7.3 of Chap.7: see Eq. (7.20). The molecular eigen-
states can no longer be written as a direct product form, they correspond to a sum of
two products:

�n
1 (q)�

el/diab
1 (r;q) + �1

2 (q)�
el/diab
2 (r;q) , (12.5)

where�
el/diab
1 and�

el/diab
2 denote the diabatic electronic functions of states one and

two, respectively.
In Eq. (12.4), T nu is identical to the kinetic energy operator in Eq. (12.2). For the

diabatic potential matrix, we use a vibronic coupling model as described in Sect. 4.4:
we use a second-order Taylor expansion around the equilibrium geometry of V1, V2

and V12.
Starting from the initial condition

�mol(r;q, t = 0) = a1�1(q, t = 0)�el/diab
1 (r;q) + a2�2(q, t = 0)�el/diab

2 (r;q) ,

(12.6)

where a1 and a2 are complex numbers, the values of which depends on details of the
ionization process. Assuming that the phases of a1 and a2 randomize over a sample of
ionization processes, cross-terms are averaged out and one can study the ionization to
the B2g and B2u of C4H

+
4 separately. Thus, one can perform individual propagations

of �1 and �2 and adds the resulting spectra while weighting them with |a1|2 and
|a2|2, respectively. In the following, we assume that populating the two ionic states
is equally probable and set a1 = a2 = 1. We hence set the initial wavefunctions to

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_10
http://dx.doi.org/10.1007/978-3-319-53923-2_10
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_4
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�1(q, t = 0) = �0
0 (q) ,

�2(q, t = 0) = 0 , (12.7)

for B2g: it corresponds to the transition with the yellow arrow Fig. 7.9 in Sect. 7.3 of
Chap.7; or

�1(q, t = 0) = 0 ,

�2(q, t = 0) = �0
0 (q) , (12.8)

for B2u : it corresponds to the transition with the purple arrow in Fig. 7.9 in Sect. 7.3
of Chap.7.

Thepropagationhas beenperformedwithMCTDH(seeRef. [8]). For the primitive
basis set of each coordinate, we use a Harmonic oscillator DVR for each degree of
freedom (see Sect. 8.1.3).

The wavefunction has two nuclear components �1(q, t) and �2(q, t). They are
obtained by solving the following coupled equations of motion with MCTDH:

[
T nu(q) + V1(q) V12(q)

V12(q) T nu(q) + V2(q)

] [
�1(q, t)
�2(q, t)

]
= i

∂

∂t

[
�1(q, t)
�2(q, t)

]
.

(12.9)

The MCTDH expressions �1(q, t) and �2(q, t) are given by Eq. (8.233) of
Sect. 8.3.7. Here, we use five combined modes (see Sect. 8.3.5 for the definition
of the combined modes):

�α(q1, . . . , q18, t) =
nα
1∑
jα1

. . .
nα
5∑
jα5

A(α)

jα1 ... jα5
(t) ϕ

(1,α)

jα1
(Q1, t) . . . ϕ

(5,α)

jα5
(Q5, t) ,

(12.10)

with Q1, . . . , Q5 corresponding to (q15, q16, q17, q18, q11, q13), (q1, q4, q7), (q2,
q3, q6), (q5, q14, q8), and (q9, q10, q12), respectively. Here, n11 = 7, n12 = 9, n13 =
9, n14 = 11, n15 = 9, n21 = 6, n22 = 9, n23 = 9, n24 = 11, and n25 = 8. We use almost
6× 1016 DVR functions2 to converge the calculation. The number of SPFs functions
is much smaller: 56,133 for �1(q, t) and 42,768 for �2(q, t). We see that a calcu-
lation in the primitive basis set (as in Eq. 8.7), i.e. the DVR, would be impossible
since the number of DVR functions is far too large. It is the MCTDH algorithm, i.e.
the use of the variational principle to build the optimized SPFs functions, that makes
the calculation feasible.

2For an HO DVR, since we use mass- and frequency-weighted normal coordinates, the equilib-
rium geometries are at 0, the frequencies and the masses are fixed to 1. The number of DVR
functions in the MCTDH expansion is given by N1 = 19, N2 = 16, N3 = 18, N4 = 9,
N5 = 34, N6 = 9, N7 = 8, N8 = 9, N9 = 7, N10 = 7, N11 = 5, N12 = 6, N13 = 5, N14 = 10,
N15 = 5, N16 = 5, N17 = 5, and N18 = 6. Note that most of the figures below are generated with
a 5D model of butatriene as in lab-session IV.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 12.4 Adiabatic and diabatic electronic populations and autocorrelation functions for the cal-
culation of the photoelectron spectrum of butatriene. a and c starting from diabatic state B2g (Eq.
12.7), b and d starting from diabatic state B2u (Eq. 12.8). For (a) and (b), the populations of the
B2g and B2u diabatic states are in blue and indigo, respectively. The populations of the lowest and
highest adiabatic states are in red and green, respectively

The electronic populations, i.e.
∫ |�(α)(q1, . . . , q18, t)|2, are given in Fig. 12.4a

with the wavepacket starting from electronic (diabatic) state B2g (condition of Eq.
12.7) and in Fig. 12.4b with the wavepacket starting from electronic (diabatic) state
B2u (condition of Eq. 12.8). The populations of the B2g and B2u diabatic states are
in blue and indigo, respectively. The populations of the lowest and highest adiabatic
states are in red and green, respectively.

For the B2g state, the adiabatic population is close to one for the lowest electronic
state. It means that the non-adiabatic coupling is small is this case. The spectrum
will be almost purely vibrational (and not vibronic) for B2g . On the other hand, for
B2u , we see that the two electronic states are strongly coupled since the adiabatic
population of the highest adiabatic states deviates from one very rapidly and is close
to 0.1 before 10 fs! This is due to the presence of the conical intersection.

The corresponding autocorrelation functions are shown on Fig. 12.4c and d. The
autocorrelation function of Fig. 12.4c is rather regular and is rather similar to the
autocorrelation functions corresponding to the vibrations of the H2O molecule as
in Fig. 9.8a. On the other hand, the autocorrelation function of Fig. 12.4d is charac-
teristic of the autocorrelation function of a wavepacket that explores two electronic

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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states: it decreases very fast because of the rapid transfer from one electronic state
to the other. If there is a transfer from the initially populated state to the other, the
transferred part of the wavepacket does not overlap with the initial state and does not
contribute to the autocorrelation function, because the two electronic states are ortho-
normal. Again, the transfer is due to the presence of the conical intersection close to
the initial geometry and occurs in less than 10 fs. Contrarily to the autocorrelation
function for the photodissociation of NOCl shown on Fig. 10.3a, the autocorrelation
function of Fig. 12.4d does not tend to zero since the system is bound. Instead, it
oscillates but less regularly and with smaller maxima than in (c). The comparison
between the B2g and B2u spectra indicates that the B2u initial wavepacket decays into
many more states as compared to the B2g one.

The Fourier transform of the autocorrelation functions using

Re

π

∫ ∞

0
ei Et g(t) A(t) dt , (12.11)

with

g(t) = e−(t/τ) cos2
(

π t

2T

)
θ
(
1 − |t |

T

)
, (12.12)

is given in Fig. 12.5 for T = 100 fs. The damping function, e−(t/τ) with τ = 55 fs
has been added to the window function to mimic the experimental line broadening.
The latter is due to the presence of many rotational states but also to the experimental
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resolution. In Fig. 12.5, the spectrum starting from state B2g is in red and the spectrum
starting from state B2u is in green. The two spectra have been shifted by the ZPE
of the eletronic ground state quantity to lower energy values to compare with the
experiment. The spectrum in red is mainly purely vibrational since the adiabatic
population of the lowest electronic state is close to one. On the other hand, the effect
of the non-adiabatic coupling is non-negligible and explains the small intensities
above 9.8 eV. The spectrum in green is strongly impacted by the non-adiabatic
coupling. The peaks in the mystery band correspond to absorption to states that have
high components on the two electronic states at the same time.

It is assumed that both electronic states are ionized by photon impact with the
same probability. As discussed above, the total spectrum is thus the sum of the two
individual spectra. This sum is shown in blue on Fig. 12.5. The comparison with the
experimental spectrum (see Fig. 12.2) is excellent.

For the sake of completeness, we have also performed the dynamics on the two
adiabaticPESswithout any non-adiabatic coupling, i.e.using theBorn-Oppenheimer
approximation. The result is shown on Fig. 12.6. The spectrum for the lowest adi-
abatic state is in red, the one for the highest state is in green and the sum in blue.
We see now two different spectra. As expected the mystery band has almost com-
pletely disappeared. For instance, we see nothing around 9.8 eV and the small peaks
between 9.4 and 9.8 eV clearly correspond to highly excited vibrational states of the
lowest electronic adiabatic state. The spectra in red in Figs. 12.5 and 12.6 are not
very different confirming that the B2g spectrum is almost purely vibrational. On the
other hand, the spectra in green are very different since there is now nothing below
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lower energy values to compare with the experiment



12.2 Photoelectron Spectrum of the Butatriene Molecule 375

the first peak and the spectrum of the higher adiabatic uncoupled state does no longer
contribute to the mystery band. This definitively proves that this spectrum reflects a
strong vibronic effect.

12.3 Importance of Interferences Around Conical
Intersections

Conical intersections lead not only to non-adiabatic transitions but also to strong
interferences in the molecular wavefunction. This is very well illustrated by the
appearance of the so-called geometric phase or Berry phase effect in both electronic
and nuclear wave-functions [10, 11]. The Berry phase leads to interference effects.3

The conical nature of the PES topography leads to a sign change of the electronic
wavefunctionwhenever the point of degeneracy is encircled in a closed loop.This sign
change in the electronic wavefunction must be compensated by a sign change in the
corresponding nuclear wavefunction in order to preserve the single-valued character
of the total wavefunction [3, 12, 13]. In other words, if the adiabatic nuclear function
encircles a conical intersection, it changes sign and this is expected even when the
encirclement is very far from the CI. The latter can thus have a strong impact on the
dynamics even if it is not reached during the nuclear motion. For instance, in the case
of the H+H2 collision discussed in Sect. 11.2, the cross sections between 3.5 and
4.4 eV4 are strongly impacted by the geometric phase although the non-adiabatic
transitions are very small [14]. In this energy domain, the reaction probabilities can
be calculated employing just the the ground-state adiabatic surface but if and only
if the geometric phase is included in the dynamics [14]. This is particularly true for
the differential cross sections.

Let us return to the butatriene cation. Several snapshots of the two-dimensional
reduceddensity alongq5 andq14 of thewavepacket corresponding to theB2u spectrum
on the upper adiabatic surface are shown on Fig. 12.7. In other words, Fig. 12.7
shows several snapshots of the reduced density with the initial condition of Eq.
(12.8) projected onto the upper adiabatic electronic state. Since the position of the
conical intersection in the (q5, q14) plane depends on the values of the other degrees
of freedom and since the latter are not fixed for the reduced density (the reduced
density is obtained by integrating over the other degrees of freedom), the conical
intersection does not correspond to one single well-defined geometry in Fig. 12.7.
However, we can say that the conical intersection is located approximately on the
middle of the figures. At 6 fs, the wavepacket displays a maximum at roughly q5 = 0
and q14 = 2.8. At 10 fs, we see that it starts to encircle the conical intersection. At 18
fs, the processes goes on and we see a important result: the wavepacket vanishes for
the geometries corresponding to q5 = 0. There are two maxima for approximately

3It must be clear that other strong interference effects may appear around conical intersections that
are not linked to the Berry phase.
4This corresponds to energies higher than in Fig. 11.2.

http://dx.doi.org/10.1007/978-3-319-53923-2_11
http://dx.doi.org/10.1007/978-3-319-53923-2_11


376 12 Vibronic Coupling

Fig. 12.7 Snapshots for 6, 10, 18 and 50 fs of the time-dependent wavepacket evolving on the upper
adiabatic surface of butatriene. The conical intersection is located approximately on the middle of
the figures

q14 = −1.8 and q5 = −3.5 and 3.5. Thus, from 6 to 18 fs, there is an destructive
interference that explains why starting from a maximum for positive values of q14
and q5 = 0, we observe a density that is zero for negative values of q14 and q5 = 0
after encirclement of the conical intersection. This is due to the geometric phase that
leads to a sign change in the nuclear wavefunction. At 50 fs, we see again that for
q5 = 0, there is a maximum for positive values of q14 and nothing on the other side
of the conical intersection for negative values of q14. Here, the interference effect is
clear: the wavefunction on the left has a different sign than the wavefunction on the
right. When the two wavefunctions meet the corresponding destructive interference
prevents the system to reach the geometries at the bottom of Fig. 12.7.
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The destructive interference generated by the geometric phase can have a strong
impact on the dynamics: it may make a reaction possible or prevent it [13, 15, 16]. It
is suspected that this effect is preserved even if the system is embedded in a complex
environment [13, 15, 16]. Thus, neglecting this phenomenon even for low energy
nuclear dynamics on the electronic ground state around a conical intersection even
if the latter is much higher in energy can result in qualitatively wrong predictions
[17]. Note that the geometric phase effect is automatically included when, as done
here, working in a diabatic representation.

The example of the Berry phase illustrates the importance of quantum interfer-
ences that may occur due to the presence of a non-adiabatic effect. Only quantum
mechanics can correctly describe these effects.

12.4 Photoabsorption Spectrum of the Pyrazine Molecule

The previous vibronic coupling mechanism that is at the origin of the mystery band
in butatriene can be qualitatively described by a model involving two normal modes
only. In other words, the other (16) modes of vibration do not significantly contribute
to the mechanism. In addition, the experimental spectrum can be interpreted rather
easily with two bands corresponding to the B2g and B2u states and a third band, the
mystery band, linked to the vibronic coupling. The situation is more complex for
the pyrazine molecule [18, 19]. The molecule is shown on Fig. 12.8. The system has
10 atoms and thus 24 modes of vibration. The experimental spectrum corresponding
to the absorption from the ground state S0 to the S1(π , π
) yields a set of discrete
lines as expected for a an excitation to a single bound electronic state. The chemical
interpretation of the two excited states in terms of molecular orbitals can be seen on
Fig. 4.11 of Sect. 4.4 inChap.4. On the other hand, the excitation to the S2(n,π
) state
results in a broad band with little structure [20, 21] indicating a fast relaxation due to
the presence of a conical intersection between the S2 and S1 states [22]. Contrarily
to the butatriene case, here all the 24 modes of vibration are strongly coupled [18]

The wavefunction has two nuclear components

�α(q1, . . . , q24, t) , (12.13)

Fig. 12.8 The pyrazine
molecule

http://dx.doi.org/10.1007/978-3-319-53923-2_4
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with α = 1, 2. The system is described by the 24 normal coordinates of the electronic
ground state. Here, eight combined modes were used to propagate the wavepacket
[18]

�α(q1, . . . , q24, t) = =
nα
1∑

jα1

. . .

nα
8∑

jα5

A(α)

jα1 ... jα8
(t) ϕ

(1,α)

jα1
(Q1, t) . . . ϕ

(5,α)

jα8
(Q5, t) ,

(12.14)

with Q1, . . . , Q8 corresponding to (using the notations of Ref. [18]) (q10a, q6a),
(q1, q9a, q8a), (q2, q6b, q8b), (q4, q5, q3), (q16a, q12, q13), (q19b, q18b), (q18a, q14,
q19a, q17a), and (q20b, q16b, q11, q7b), respectively. Here, n11 = 14, n12 = 8, n13 = 6,
n14 = 6, n15 = 4, n16 = 7, n17 = 5, n18 = 3, n21 = 11, n22 = 7, n23 = 5, n24 = 4, n25 =
5n26 = 7, n27 = 5, and n28 = 4. For the primitive basis set, the following values have
beenused [18]: N10a = 40, N6a = 32, N1 = 20, N9a = 12, N2 = 4, N6b = 8, N8b =
24, N4 = 24, N5 = 8, N3 = 8, N16a = 24, N12 = 20, N13 = 4, N19b = 72, N18b =
80, N18a = 6, N14 = 20, N19a = 6, N17a = 6, N20b = 6, N11 = 6, and N7b = 4.
This results in more than 1.27 × 1027 primitive functions. Thanks to the variational
principle, only 2,771,440 SPFs are used in Eq. (12.14) to converge the theoretical
spectrum depicted in Fig. (12.9) along with the experimental one [18]. The dense
structure of the spectrum is due to the strong coupling between all the modes of
vibration and due to the fact that the whole S2 absorption spectrum is essentially
influenced by nonadiabatic effects.

To demonstrate the power of the ML-MCTDH approach (see Sect. 8.3.6) we
discuss a very small ML-MCTDH calculation on pyrazine, as outlined in Ref. [23].
Only 2,3 or 4 SPFs were used, depending on the position in the ML-tree. This leads
to a total of only 22,444 coefficients describing the wave function. Remember, the
underlying product grid consists of 1.27 × 1027 points, the standard method would
thus describe the wave function by 1.27 × 1027 parameters.

The resulting ML-MCTDH propagation is extremely fast, it took only 7 min on
a standard 2.7 GHz PC. This is to be compared with 70 hours, which are needed for
a typical MCTDH propagation on pyrazine. The ML-MCTDH wave function is not
of very high quality, but it reproduces the spectrum amazingly well, except for some
wiggles on the highenergy tail. Larger deviations can be observed when comparing
state populations. But keeping in mind the enormous speed of the 24DML-MCTDH
calculation, these deviations are fully acceptable. Of course, as discussed inRef. [23],
with more computational effort highly accurate ML-MCTDH propagations can be
performed as well.

This example demonstrates the high efficiency of the ML-MCTDH approach for
propagating high dimensional wave functions. As a crude rule of thumb one may say
that ML-MCTDH outperformsMCTDH if there are more than 9 degrees of freedom.
Moreever, ML-MCTDH becomes very fast, if a high accuracy is not needed.

http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Fig. 12.9 Theoretical
spectrum of the pyrazine
molecule calculated with
MCTDH in full line versus
experimental spectrum in
dotted line. The experimental
spectrum is taken from Ref.
[20]. The wavepacket was
propagated during 150 fs
[18]

12.5 Importance of Non-adiabatic Effects

After absorption in the UV domain corresponding to the spectrum of Fig. 12.9, the
molecule of pyrazine will simply return to the electronic ground state through flu-
orescence [24] or through an internal conversion via a conical intersection with the
electronic ground state [25]. For many other cases, a photochemical reaction such as
a photo-isomerization or a photodissociation may occur after deactivation through a
conical intersection. Since conical intersections lead to very fast and efficient trans-
fers, it is suspected that they have been selected by evolution in important biological
processes such as vision [26, 27] and photosynthesis [28].

The processes induced by conical intersections can be classified in photoreactive
and photostable processes. Generally, photoreactive processes involve conical inter-
sections with a peaked topology as shown in Fig. 12.10 (see also Fig. 4.6 in Sect. 4.1).
The first step of vision is taken as an example: after a ππ
 excitation induced by
absorption in the visible, the molecule of retinal encounters a conical intersection
with a peaked topology. The molecule can then isomerize initiating the process of
vision. Peaked conical intersections can lead to photoproducts as one of the two
gradients leads to a new reactive channel [4].

On the other hand, Fig. 12.11 shows a photostable process that may explain the
photostability of DNA with respect to damage by the harmful UV components of
sunlight. Here, the 2-aminopyridine dimer is used to model a Watson-Crick base
pairs in DNA. A ππ
 excitation through absorption of UV light leads the system
from the ground state (GS) to a locally excited ππ
 (LE) state. There is then an
electron-proton transfer through a conical intersection with a peaked topology from
LE to the charge transfer ππ
 (CT) state. However, the system encounters a second
conical intersection with a sloped topology forcing the system to go back to GS
(see also Fig. 4.6 in Sect. 4.1 for a sloped topology). As we see, sloped conical
intersections tend to favor regeneration of the starting material because both excited-
state and ground-state gradients point toward the reactant side of the potential energy
surfaces [4].

http://dx.doi.org/10.1007/978-3-319-53923-2_4
http://dx.doi.org/10.1007/978-3-319-53923-2_4
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To conclude, it is worth noting that the presence of a solvent can have a drastic
influence on the topography around a conical intersection. In particular, a polar
solvent can stabilize the electronic states with a polar nature. On the other hand, it
will have little influence on non-polar electronic states. If the conical intersection
couples a polar state with a non-polar one, the presence of a polar solvent can change
the position of the CI and strongly modify the non-adiabatic transfer.

12.6 Lab-Session IV: Vibronic Coupling

The Born-Oppenheimer approximation breaks down in the vicinity of a conical
intersection. As the non-adiabatic coupling elements diverge at the conical point, the
adiabatic picture is numerically inadequate and a diabatic description is in general
used. The vibronic couplingHamiltonian (VCH)model will be used here. It is ideally
suited forMCTDH because it is expressed in the requested sum-of-products from the
onset. Despite its simplicity, the VCHmodel often describes non-adiabatic dynamics
with amazing accuracy.

Fig. 12.10 Schematic illustration of a photoreactive process through internal conversion via a
conical intersection. The first step of vision is used as a paradigmatic example: after absorption of
light in the visible (arrow in yellow), the molecule of retinal can isomerize (arrow in grey). The
cis-trans isomerization perturbs the active site of the protein and initiates the process of vision (in
green). The conical intersection is said to be peaked
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Fig. 12.11 Schematic illustration of a photostable process through a conical intersection. The
absorption of Watson-Crick base pairs in DNA is used as a paradigmatic example. The process
can be studied in the model compound 2-aminopyridine dimer. The system is first in its electronic
ground state (GS). After a ππ
 excitation due to absorption of UV light (arrow in yellow), there is
an electron-proton transfer through a conical intersection with a peaked topology from the locally
excited ππ
 (LE) state to the charge transfer ππ
 (CT) state. However, the system encounters a
second conical intersection with a sloped topology forcing the system to go back to GS (arrow in
grey). The presence of the sloped topology prevents the DNA bases from damage by the harmful
UV components of sunlight

12.6.1 Photoionisation Spectrum of Butatriene

The outstanding importance that vibronic coupling effects may have on photoion-
isation and photoabsorption spectra was first recognized when theoretically inves-
tigating the photoionisation spectrum of butatriene. It was well known that in the
considered energy range, 9–11 eV, there are only two ionic potential energy sur-
faces. But the measured spectrum seemed to show three bands, the one in the middle
was called “mystery band”; see Fig. 12.12.5 It was later shown [9] that the mys-
tery band is created by vibronic coupling effects. Here we will thus investigate the
vibronic coupling effects in butatriene. We assume a linear vibronic coupling (LVC)
model where, due to symmetry, only five modes are active. In the quadratic vibronic
coupling (QVC) model this restriction is lifted and there are non-vanishing coupling
constants for all 18 modes. Those who are interested in the QVCmodel of butatriene
may run the corresponding input files from the MCTDH inputs directory. Here

5Reprinted with permission from [8]. Copyright 2001, American Institute of Physics.
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Fig. 12.12 Measured
photoelectron spectrum of
butatriene (see Ref. [7]). The
band between 9.5 and 9.8 eV
is called the mystery band

we concentrate on the LVC model because these calculations are much faster than
the QVC ones.

Move to the directory lab-inputs/butatriene. You may source the
commands file, “.commands”, and most of the calculations will be executed by
this script. But it may be more instructive to submit the commands “by hand”. Type
“mctdh84 -mnd C4H4.B2g” and “mctdh84 -mnd C4H4.B2u”. While
these calculations are running, you should inspect the input file C4H4.B2g.inp.
The B2u input file is virtually identical, except that there are slightly more SPFs and,
of course, that the second electronic state rather than the first one is now populated
initially. As mass and frequency scaled normal mode coordinates are used, the mass
and frequency parameters are set to 1.0 in both primitive-basis-section and init_WF-
section. The LVC Hamiltonian is defined in the operator file butatriene.op.
Note that q5 is the coupling mode, which is responsible of the interstate coupling.
All the other modes are tuning modes of which q14 has the largest coupling con-
stant. There are six additional Hamiltonians for measuring the vibrational energy
and twice the kinetic energy, respectively. For those, all constants are multiplied
with the conversion factor from a.u. to eV. The output data will thus be in eV for
easier interpretation.

When the runs are finished submit “mctdh84 -pes C4H4.B2g” and
“mctdh84 -pes C4H4.B2u”.The two runs produce (identical)pes-files,which
are used when visualizing the PES and when computing adiabatic quantities. Next,
move to the name-directory C4H4.B2g and submit there the command “adpop84
&”. This produces the file adp, which contains the adiabatic and diabatic state-
populations. (Remember, to visualize the diabatic populations alone we may simply
run plstate, running adpop84 is then not needed). While adpop84 is running,
one should inspect the PES. Type “showsys84 -pes” and use menu point 20 to
selectq5 andq14 as coordinates to beplottedwhile settingvalues of the coordinates not
to be shown to zero. Usemenu point 160 to toggle between 2D and 3D visualizations,
and usemenu point 10 to select an adiabatic (default) or diabatic representation of the
PES. Use menu point 60 to select plotting of both PESs simultaneously. Remember
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that one can do 1D plots as well; these are often more informative. Compare the
adiabatic and diabatic 1D graphs along q5 and q14, respectively.

Before leaving this directory please run, for later use,
“adproj84 -noproj &”,
“autospec84 -q 3000 -lin -o ../fine-B2g 9 11 ev 0”, and
“autospec84 -o ../coarse-B2g 9 11 ev 50 2”.
The first command computes the adiabatic PESs from the provided diabatic ones,
and the latter two commands compute the spectrum in high and low resolution,
respectively.

Next, we move to the C4H4.B2u name-directory, “cd ../C4H4.B2u”, and
submit there the command “adpop84 Q5,Q14 &”. This will again compute the
adiabatic populations, but this time, in addition, the adiabatic 2D reduced densities
for coordinates q5 and q14. While the program is running, we can inspect the auto-
correlation functions for comparison. Type
“plgen -G -u 1:4 auto ../C4H4.B2g/auto”.
Putting the initial Gaussian function on the first electronic state, B2g, yields an auto-
correlation function, which on average is about a factor of 2.5 larger than the one
of the second state, B2u. This indicates that the B2u initial wavefunction decays
into many more states as compared to the B2g one. (For a more precise analysis run
probsq84 and see the HTML documentation of probsq84). This is understand-
able, because the wavepacket, which initially is placed on the B2u surface, is more
energetic, by 0.544 eV, compared to the one starting on the B2g surface. Compare
the total energies of the two runs, which are printed in the output files. Finally, we
compute, as before, high- and low-resolution spectra:
“autospec84 -q 3000 -lin -o ../fine-B2u 9 11 ev 0”, and
“autospec84 -o ../coarse-B2u 9 11 ev 50 2”.
To proceed we move back to the butatriene directory, “cd ..”, and, for later
use, submit “mctdh84 -mnd rlx &” and “mctdh84 -mnd uncoup.B2g
&” and “mctdh84 -mnd uncoup.B2u &”. Now we turn to discuss the spectra.
It is assumed that both electronic states, B2g and B2u, are ionized by photon impact
with the same probability. The total photoelectron spectrum is thus the sum of the
two individual spectra. To perform the sum, type
“sumspec84 -o fine.pl fine-B2g.pl 1.0 fine-B2u.pl 1.0”
and “sumspec84 -o coarse.pl coarse-B2g.pl 1.0 coarse-B2u.
pl 1.0”. This produces the files fine.pl and coarse.pl while the files
fine-B2g.pl etc. have been created previously by runningautospec84. To plot
the high-resolution spectra, type “plgen -z 0 -G fine-B2g.pl’1:($4+
400)’ fine-B2u.pl ’1:($4+800)’ fine.pl 1:4”.The summed spec-
trum is on the bottom whereas the B2g and B2u spectra are vertically shifted
by 400 and 800 units, respectively. Please note that the B2u spectrum exhibits
intensities at energies much below the minimum of the B2u surface, in fact at
energies as low as exhibited by the B2g spectrum. This, of course, is due to
vibronic coupling. The summed spectrum, however, does not look similar to the
experimental one, Fig. 12.12, which is much less structured. To reproduce the
experimental spectrum we thus convolute the computed one with a Gaussian
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function. To do so, we multiply the autocorrelation function with exp(−(t/τ)2)

before Fourier transforming it. Here we have chosen τ = 50 fs (the number before
last of the autospec84 command), which leads to a resolution of 0.044 eV
FWHM. (The conversion factor from damping time to energy width is, in atomic
units, 4 ln(2), which amounts to 2.2 eV fs. The high resolution spectrum has
a resolution of about 0.0082 eV FWHM, see Table9.1). To plot the low res-
olution spectrum type “plgen -z 0 -G coarse-B2g.pl’1:($4+150)’
coarse-B2u.pl ’1:($4+300)’ coarse.pl 1:4”. Again the B2u, B2g,
and summed spectra are shown in comparison. The computed summed spectrum is
now indeed very close to the experimental one, Fig. 12.12. The broadening of the
computed spectrum can be justified by the finite experimental resolution, as well as
by the neglect of 13 of the in total 18 DOFs and by the neglect of the overall rotation
(the computation is for J = 0). However, experimental resolution seems to be the
most prominent contribution to the broadening.

The time-dependent method is very suitable for simulating photoelectron spectra,
because the experimental resolution is in general not very high, when electrons rather
than photons are detected. Note that for generating low resolution spectra a typical
propagation time of 100 fs or even only 50 fs (rather than the previously used 300 fs)
is sufficient. This makes the propagation calculations faster. However, it is instructive
to try the time-independent approach aswell.We have already submitted an improved
relaxation run for computing the lowest 25 vibronic states. To inspect the eigenen-
ergies type “rdrlx rlx/ | tail -n 32”. The energy spacing is rather dense
and the first 25 states go up in energy to only 9.446 eV and thus span an energy
interval of only 0.3 eV. If one wants to compute all eigenenergies up to 11 eV one
would need to converge very many states as the density of states increases strongly
with the energy. The line intensities are given by | < �n|�(0) > |2, where �n

denotes the nth eigenstate and �(0) the initial wavefunction. The intensities may be
computed with the command “crosscorr84 -o no -R -f rlx/rst000
C4H4.B2g/psi”. Here rst000 stands for �0 and we may use other restart files,
rst000...rst024, to overlap with other eigenstates. Also C4H4.B2g may be
exchanged with C4H4.B2u to compute the intensities that originate from putting
the initial Gaussian function on the B2u diabatic state. For the convenience of the
reader we have compiled the energies and intensities in the file stickspec. Just
type “less stickspec” to read them. The data show that each eigenstate over-
laps with only one initial state, either the one of B2g or the one of B2u. (An intensity
below 10−10 is numerical noise and should be read as zero). It is instructive to com-
pare the energies and intensities of the time-independent approach with the spectra of
the time-dependent one. The spectra of the propagation calculations give the inten-
sities as areas under the peaks when the energy unit is a.u. To compare both types
of spectra we scale down the continuous one by a factor 3000, which is roughly the
inverse peak width in a.u. Please type
“plgen -z 0 -a 9.1 -x 9.45 -T fine-B2g.pl’1:($4/3000)’
stickspec 1:2 -i”
and
“plgen -z 0 -a 9.1 -x 9.45 -T fine-B2u.pl’1:($4/3000)’

http://dx.doi.org/10.1007/978-3-319-53923-2_9
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stickspec 1:3 -i”.
The two types of spectra nicely agree. If one turns to the summed spectrum, “plgen
-z 0 -a 9.1 -x 9.45 -T fine.pl’1:($4/3000)’
stickspec 1:2 -i - 1:3 -i”,
one notices that one peak often covers two states, one originating from the B2g, the
other from the B2u initial state.

In passing we note that the density of states increases strongly when turning from
theLVC to theQVCmodel, because the latter includes all 18 degrees of freedom.This
makes the computation of the spectrum by improved relaxation rather cumbersome.
The time-dependent approach then shows its power.

To investigate the vibronic coupling effect further, we study the vibrational ener-
gies on the two diabatic states. It is difficult to unambiguously split the total energy
in an electronic and vibrational part. Here we make use of the kinetic energy, which
clearly is purely vibrational. According to the virial theorem, the average of twice the
kinetic energy equals the total vibrational energy. This can be nicely seen by turning
to the uncoupled propagations, where the interstate coupling constant lambda is
set to zero and the electronic energy becomes constant and can easily be subtracted.
See the supplementary Hamiltonians vib and kin on butatriene.op. Type
“plgen -G uncoup.B2g/expectation 1:4 - 1:7” and
“plgen -G uncoup.B2u/expectation 1:5 - 1:8”.

The numbers correspond to the columns of the expectation file, run
“head uncoup.B2g/expectation” to see the labels of the columns. Hence
we are plotting the expectation values of the operators vib1 and kin1 for B2g
and vib2 and kin2 for B2u. In the uncoupled case the vibrational energy on each
electronic surface stays constant, and we use these plots to demonstrate that the
expectation value of twice the kinetic energy oscillates around its average value,
which is the total vibrational energy. These average energy values are 0.57016 and
0.74824 eV when placing the ground state wavefunction on the B2g and B2u state,
respectively. Note that these are also the initial vibrational energies for the coupled
case. To study the latter, type
“plgen -G C4H4.B2g/expectation 1:6 - 1:7 - 1:8”.
As the B2u state is not populated initially, its vibrational energy is zero initially (see
the lowest of the three lines). In the following, theB2u kinetic energy follows roughly
the B2u population, investigated earlier. The middle line shows the kinetic energy of
the B2g state and the top line the total kinetic energy. The average energy displayed
by this line is about 0.74 eV which should be compared with the initial vibrational
energy of 0.57 eV. (The kinetic energy expectation values discussed here are always
doubled, as noted above). Hence, about 0.17 eV is transferred from electronic to
vibrational energy when populating the B2g state initially. One may wonder that
electronic energy is transferred to vibrations as we started on the lower B2g surface.
However, this is the diabatic one, the first adiabatic surface is still lower.

More interesting is to study the B2u excitation. Type
“plgen -G C4H4.B2u/expectation 1:6 - 1:7 - 1:8”.
Now the B2g state is initially unpopulated and hence has vanishing kinetic energy
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initially. However, its kinetic energy raises quickly and already after 12 fs it surpasses
the B2u kinetic energy. The total kinetic energy has an average of about 1.3 eV and
is thus 0.55 eV higher than its initial value of 0.75 eV. Hence, in this case a quite
substantial amount of electronic energy, 0.55 eV, is converted to vibrational energy.

In additionwemay study the expectation values of the vib supplementaryHamil-
tonians, which appear on columns 3, 4, and 5 of the expectation file. However,
these values are more difficult to interpret.

Next, we investigate the spectra of the uncoupled propagation, where the interstate
coupling parameter lambda is set to zero. Type
“plspec -G -z 0 -g5 -q 3000 -f uncoup.B2g/auto 9. 11. ev” and
“plspec -G -z 0 -g5 -q 3000 -f uncoup.B2u/auto 9. 11. ev”.
These spectra are much less structured as compared to the ones of the full, coupled
calculations. In particular, the spectrum of the uncoupled B2u calculation has no
intensity below 9.7 eV, whereas the coupled one reaches down to 9.15 eV. The
mystery band has disappeared in the spectrum of the uncoupled calculation.

Next, we investigate adiabatic and diabatic state populations. Type
“plgen -G C4H4.B2g/adp 1:2 - 1:3 - 1:4 - 1:5” and
“plgen -G C4H4.B2u/adp 1:2 - 1:3 - 1:4 - 1:5”.
The first plot shows the populations when initially populating the B2g state. The
diabatic B2g and B2u populations start at 1.0 and 0.0 and then oscillate around 0.7
and 0.3, respectively. The adiabatic populations, however, are amazingly close to
1.0 and 0.0, respectively. The lower state adiabatic population starts initially at 0.86,
grows within the first 10 fs to 0.98 and then continues to vary between 0.95 an 1.0. As
the lower adiabatic state population is always large, we may wonder if an adiabatic
treatment would give reasonable results. In fact, as will be shown below, this is the
case.

Turning to the second plot where the B2u state is initially populated, one notices
that the diabatic populations are near 0.5. The population of the lower adiabatic state
now starts at 0.14 and increases rapidly, within the first 10 fs, to 0.93 and then varies
between 0.80 and 0.98. The decay from the upper to the lower adiabatic state is thus
very fast. Here an adiabatic treatment cannot work because one does not stay on
either of the adiabatic states.

To verify our assumption on the validity of the adiabatic picture, we will perform
propagations on uncoupled adiabatic surfaces. The adiabatic surfaces have already
beengeneratedon the total product gridwhen runningadproj84. Tobring them into
a suitable form one has to potfit these data files. Run “potfit84 -mnd ad1fit”
and “potfit84 -mnd ad2fit” and then theMCTDHpropagations “mctdh84
-mnd C4H4.adiab1” and “mctdh84 -mnd C4H4.adiab2”. Next, we need
to Fourier transform the autocorrelation functions
“autospec84 -f C4H4.adiab1/auto -o adiab1 9 11 ev 50 2”
“autospec84 -f C4H4.adiab2/auto -o adiab2 9 11 ev 50 2”
and sum the spectra “sumspec84 -o adiab.pl adiab1.pl 1.0
adiab2.pl 1.0”The spectra are plottedby typing “plgen -z 0-G adiab1.
pl’1:($3+200)’ adiab2.pl’1:($3+400)’ adiab.pl 1:4”.
The upper state spectrum is on top, the lower state one in the middle, and the
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summed spectrum at the bottom. Note that the upper state spectrum shows no
intensity below 9.85 eV and thus does not contribute to the so-called mystery
band. The summed spectrum looks quite different from the experimental one.
To compare the spectra of the uncoupled adiabatic approach with the ones of
the coupled diabatic calculations, run “plgen -G -z 0 -u 1:4 -x 10.2
adiab1.pl coarse-B2g.pl”. As expected, both spectra are similar and the
adiabatic approximation is not totally off when initially populating the lower surface.
On the contrary, for the upper state, “plgen -G -z 0 -u 1:4 adiab2.pl
coarse-B2u.pl”, the adiabatic approach is unreliable.

Finally we want to discuss a geometric phase effect. In the adiabatic picture there
appears a so-called geometric phase that let the wavefunction changes sign when
a conical intersection is circumcircled. A wavepacket that encircles a conical point
will have a nodal line which is crossed when going along a loop. To show this,
run “pladpop -G -c C4H4.B2u/adp_Q5_Q14”, which produces a gnuplot
file from the already computed (by adpop84) reduced 2D adiabatic densities (The
option -c stores the gnuplot file. If you want to re-run the plot, type “gnuplot
C4H4.B2u/adp_Q5_Q14.pl”). As usual, pressing “Enter” increases the time
by one step. The clearest figure is probably the one at 9 fs, for times above 30 fs the
wavepacket shows a strongly fractionated pattern.

12.6.2 Photoabsorption Spectrum of Pyrazine

The computation of the photoabsorption spectrum of pyrazine including all 24 vibra-
tional modes established the first breakthrough of the MCTDH approach [18]. We
thus want to discuss this molecule here briefly too. If one wants to study the original
24DQVCmodel, one may run the input file p24+.inp from theMCTDH inputs
directory. This, however, will take about 70h on a single core. If you have access to a
multi-core machine, you may try parallelization. (See the HTML documentation and
the guide). Here we will discuss reduced dimensionality LVC models of pyrazine.
However, some 24D data are provided for comparison.

In contrast to butatriene, pyrazine is very strongly coupled vibronically. The con-
ical intersection of pyrazine lies close to the Frank-Condon region and is thus easily
accessible. This strong coupling leads to a spectrum that consists of a broad peakwith
only little structure. In contrast to butatriene, the pyrazine molecule is photo-excited
to an S1/S2 manifold, but not ionized. Selection rules make the S1 state dark, and
only the S2 state can be photo-excited. As before, this is accomplished by taking an
initial state where the S0 ground-state wavepacket is vertically placed on the diabatic
S2 state.

Move to the directory lab-inputs/pyrazine. As before, all the commands
to be executed below can be taken (copied/pasted) from the commands file. Type
“(mctdh84 -mnd pyr4 && mctdh84 -pes pyr4 && cd pyr4 &&
adpop84)&”
The first command starts a propagation run. Due to the && construct, the second
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command, generation of a pes file, waits till the propagation is finished success-
fully. After the pes file is generated, a move (cd) to the pyr4 name-directory is
performed and adpop84 is started. The brackets “()” let the commands run in a
separate shell & the final and puts the execution of all commands to the background.
Next submit a similar command for the second model to be investigated. Type
“(mctdh84 -mnd pyr6 && mctdh84 -pes pyr6 && cd pyr6 &&
adpop84)&”.

To discuss the 4D model move (cd) to the pyr4 name-directory. Inspect the
input file. It describes a 4D model of pyrazine. Check if the stop file still exist.
If it does, the propagation run has not yet finished and one has to wait for a few
seconds. Run “showsys84 -pes” to inspect the surfaces. Use menu point 60 and
input “2” and then “1 2” to enable to simultaneous plotting of both electronic PESs.
Use menu point 160 to enable 3D plotting (surface on) and type “1” three times to
accept the default settings. A 2D cut of the adiabatic surfaces is shown along the
coupling mode (ν10a) and the most important tuning mode (ν6a). One may rotate
the figure with the mouse. But more instructive is to look at a 1D cut of the diabatic
surfaces. Use again menu point 160 to toggle surface off, use menu point 10 to switch
to a diabatic PES-representation (type “2”), use menu point 150 to toggle grid lines
on, and use menu point 20 to select a cut along ν6a (type “0× 0 0”). Then type “1”
to plot to screen. A wavepacket located at the Frank-Condon point (ν6a = 0) will
slide towards the conical point, which is easily reachable, because it lies only slightly
higher than the Frank-Condon point. The population transfer will hence be fast. To
see this, quit showsys84 (type “q”), and type “plstate -G”. After 40 fs, 80%
of the population is transferred from state 2 to state 1. Between 80 and 90 fs there
is a recurrence and the population of the S2 state reaches 0.48. Another, but weaker,
recurrence appears near 145 fs.

To visit the spectrum type “plspec -G -0.5 1.5 ev”. One sees traces of
individual lines. Because the model is of so low dimensionality, it cannot reproduce
a quasi-continuum as observed experimentally. The structures below 0.4 eV are of
no interest here, they are created by vibrational states that live (almost) entirely on
the lower state and are not subject to vibronic coupling. Hence to concentrate on the
main part of the spectrum type “plspec -G 0.4 1.4 ev”. To mimic the influ-
ence of the 20 ignored vibrational modes we artificially broaden the spectrum by
convoluting it with a Gaussian function. Type “plspec -G 0.4 1.4 ev 40
2”. As we will see later, there is now some similarity with the correct spectrum.
(Remember that a Gaussian damping of the autocorrelation function with τ = 40 fs is
equivalent to a convolution with a Gaussian function of 55 meV FWHM). For later
use we generate a spectrum file by running “autospec84 -o spec40.pl -e
-0.687485 eV -0.4 0.8 ev 40 2” Here we have shifted the spectrum by
its mean energy (taken from the output file) such that the spectrum is centered
at zero. This is done to make spectra of different model Hamiltonians comparable.
Also for later use please run
“rdcheck84 -on no”. This produces the chk.pl file, which contains the dia-
batic populations.
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Next move to the pyr6 directory, “cd ../py6”, and run
“autospec84-o spec80.pl-e-1.030635 eV-0.4 0.8ev 80 2”,and
“rdcheck84 -on no”. This is for comparison with the pyr4 data. But, first, let
us inspect the spectrum: “plspec -G 0.6 2.0 ev”. Due to the addition of two
vibrational modes, the spectrum is much denser but still far from a quasi-continuum.
With autospec we have just generated a spectrum which is convoluted with a
Gaussian function with 27.5 meV FWHM due to a damping time of τ = 80 fs. Due
to the higher density of states of the 6D model, as compared to the 4D one, the
broadening width could be reduced by a factor of two. The energy shift 1.030635 eV
is the mean energy taken from the output file. To compare both spectra type “plgen
-G -u 1:4 spec80.pl ../pyr4/spec40.pl”. Although the original 4D
and 6D spectra are very different, the broadened or smeared out ones are quite similar.

Because a propagation with the full 24D QVC Hamiltonian takes too long for a
lab session, we have compiled themost important output files from such a calculation
in the directory p24+. To compare all three spectra type
“plgen -G -u 1:4 spec80.pl ../pyr4/spec40.pl ../p24+/spec120.pl”,

and, to see the differences more clearly, youmay compare only the 4D spectrumwith
the full 24D one and similarly for the 6D spectrum. The 24D spectrum is very dense
and individual lines cannot be identified. The additional broadening via a damping
of τ = 120 fs, resulting in 18.33 meV FWHM, changes the spectrum only little. Run
“plgen -G -u 1:4 ../p24+/spec.pl ../p24+/spec120.pl”
to observe the differences.

Next, we discuss the autocorrelation functions of the different models. Type
“plgen -G -u 1:4 auto ../pyr4/auto ../p24+/auto”, or, to
ignore the first 20 fs, “plgen -a 20 -G -u 1:4 auto ../pyr4/auto
../p24+/auto”. The autocorrelation function (actually its absolute value)
becomes the smaller themore vibrationalmodes are involved. If the electronic energy,
released by vibronic coupling, is distributed over more modes, then the wavefunc-
tion becomes less similar to the initial one, �(0), and the autocorrelation function,
<�(0)|�(t)> becomes smaller. Note that the 24D autocorrelation function shows
almost no recurrences, after 40 fs its absolute value always stays below 0.05. The
4D and 6D autocorrelation functions, however, show pronounced recurrences even
at larger times, e.g. near 175 and 235 fs.

Let us define theweight that an exact vibronic eigenstate�n has in the initialwave-
function�(0) as pn = |<�(0)|�n > |2. By completeness of the eigenstates we have∑

n pn = 1. In addition, the sum of p2n can be computed from the autocorrelation

function. One can show S := ∑
n p2n = limT→∞ 1

T

∫ T
0 |c(t)|2dt , where c(t) denotes

the autocorrelation function. As we know the autocorrelation function only for finite
times, we can evaluate S only approximately. To improve the accuracy one can apply
filter functions and start the evaluation of the integral at some offset to avoid the large
values of |c(t)| near t = 0. If one assumes pn = p for n = 1 . . . N and pn = 0 for n >

N then it follows N = 1/S. Hence 1/S is a roughmeasure of the number of stateswith
non-negligible weight in which the initial state decays. Run “probsq84 -a 20”.
The first 20 fs of the autocorrelation function are ignored due to the option -a 20.
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Printed to screen is the result obtainedwith four different filter functions. The SIN fil-
ter is probably the most reliable one (compare with HTML documentation). Next run
“probsq84 -a 20 -i ../pyr4/auto” and “probsq84 -a 20 -i ..
/p24+/auto”. The so obtained numbers of relevant decay states are 217, 696, and
3037 for the 4D, 6D, and 24Dmodel, respectively. As expected, the number of states
increases strongly with dimensionality. As the spectrum is about 1 eV wide, these
numbers give also the density of states (per eV). Note, however, that – in particular
for the 24D case—the real density of states is much higher, because there are many
states with very small intensities.

We close this section by discussing the diabatic and adiabatic populations. To visit
the diabatic population of the S2 state type
“plgen -G -x 150 -u 1:3 chk.pl ../pyr4/chk.pl ../p24+/chk.pl”
The diabatic state populations of the 4D and 6D models are very similar, except that
the 6D one consistently lies below the 4D one, as expected. Both populations exhibit
recurrences near 85 and 145 fs. Surprisingly the 24D model provides a diabatic
state population that is most of the time larger then the ones of the other models.
However, the initial decay is faster and the recurrences are less pronounced. We
attribute this different behavior to the use of different kinds of models. Remember
that the 4D and 6D models are of LVC type, whereas the 24D model is a QVC one.
This example shows that discussing diabatic state populations is less meaningful,
and the adiabatic state populations are more relevant. The calculation of the latter,
however, is expensive and we could not do that for the 24D model. To view the
adiabatic state populations type
“plgen -G -x 150 -u 1:3 adp ../pyr4/adp”. For times above 20 fs
the adiabatic populations are considerably smaller than the corresponding diabatic
ones, and the adiabatic population of the 6D model is considerably smaller than
the one of the 4D model. The recurrences near 85 and 145 fs are much weaker in
the adiabatic representation. To compare diabatic with adiabatic populations while
suppressing the less interesting initial part, type
“plgen -a 20 -x 150 -y 0.5 -G adp 1:3 - 1:5 ../pyr4/adp 1:3 - 1:5”.

For times above 40 fs the adiabatic population of the 6D model is already very
small, smaller than 0.05. For the 24D model one expects even smaller values. The
non-adiabatic transition occurs mainly during the first 20 fs and is completed after
40 fs.

Note: If the plotting of the adiabatic curves stops before t = 150 fs then the
calculation of the adiabatic populations is still running. For the 6D model adpop84
takes about 3h to finish. A much faster way, less than 3min CPU time, is provided
by the adproj84 program. This way, however, requires to write several input
files and is hence more cumbersome to use. If you want to try adproj84, please
copy the directory ADPROJ from lab-inputs/pyrazine to pyr6. Read the
ADPROJ/README file and execute the commands listed there.
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Chapter 13
Control of Molecular Processes

13.1 Introduction

In the previous applications, we have considered only “artificial” wavepackets, i.e.
wavepackets that generally do not correspond to any realistic experimental situation.
The mathematical properties of the wavepackets allowed us to obtain absorption
spectra and cross sections including all the quantumeffect that can impact amolecular
process. All the systems were assumed to be isolated and no quantum decoherence
occurred during the propagations of the wavepackets. However, wavepackets are not
only mathematical tools to obtain some measured physical quantities, they can be
created experimentally. Since the advent of lasers, coherent sources of light can be
produced that can in turn create coherent superpositions of molecular states and thus
molecular wavepackets. Quantum coherence will finally be dissipated by interaction
with the environment but, before this, quantum coherence may be preserved during
a time that is sufficient to trigger a new type of chemical process.

It is now well-established that quantum phenomena can yield states of matter
with remarkable properties such as superfluidity and superconductivity. It is also
thought that quantum computers that exploit quantum superposition, and thus quan-
tum coherence, will be able to solve certain problems much faster than any classical
computers. In the same manner, a systematic use of the quantum coherence created
by laser pulses could lead to a much higher level of control and efficiency of chemical
processes [1–4]. In this context, decisive progress has been achieved with the ability
to use time-resolved pump-probe laser methods to study chemical processes on the
femtosecond time scale (10−15 s), i.e., the typical period of molecular vibrations
[5–7]. The promise of this coherent control is to create the right quantum interfer-
ences to guide the molecule to the desired product1 [3, 4, 14].

1One method to create the right interferences is to optimize the laser pulse in a systematic way
in order to guide the molecule to the desired product. The theory to optimize the laser pulses is
called optimal control theory [8–10]. Note that iterative algorithms for optimal control have been
implemented in the Heidelberg MCTDH package [11–13].
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One of the main problems of coherent control of chemical reactions is, as for
quantum computers, the problem of decoherence. Even if the molecule is isolated
the quantum coherence can lose its efficiency because of the rapid intramolecular
energy redistribution (IVR) into the numerous vibrational degrees of freedom. In
addition to that, since molecules rotate freely in the gas phase there is a blurring of
the control due to random orientations.

However, more recently, possibilities have emerged to generate sub-femtosecond
or attosecond laser pulses [15–17] for observing and guiding electrons on their natural
time scale. These techniques open the door to guiding the reactivitymuch before IVR
can dissipate quantum coherence. One can speak about the advent of “attochemistry”
by extension of the research area known nowadays as femtochemistry [18]. Another
major advance has been the possibility to orientate or align molecules, which allows
one to excite molecular systems with laser pulses in a much more efficient way
[19–22].

The theoretical description of a molecular system in interaction with an external
field is a difficult task. As explained in Chap.3, in our approach, the external fields
are treated classically, i.e. they are not quantized. But the external field is not only a
“driving force” that allows themolecule to go fromone state to another. If the external
field is intense, it also changes the state of the molecule during the interaction. It is
thus necessary to develop a theoretical framework based not only on the quantum
states of the isolated molecular system but on the “light dressed” quantum states of
a molecular system in interaction with an intense field.2

In the present chapter, we use atomic units. In particular, � =1.

13.2 The Light Dressed States *

13.2.1 Periodic Fields *

We briefly present here the Floquet theory that provides a rigorous framework for
describing the dynamics of a quantum system in interaction with a periodic radiation
[25–27]. This formalism can be generalized to more realistic situations where the
quantum system is in interaction with laser pulses with slowly varying envelopes,
frequencies or polarization directions [23, 28–31]. In the latter case, the formalism
is called the adiabatic Floquet theory [29]. In this section, we do not give all the
demonstrations that can be found in several publication by S. Guérin et al. (see Ref.
[29] for a review) and we follow the presentation given byM. Sala in his Ph.D. thesis
[23, 24].

The Floquet theory makes a clear link to the purely quantum description of a
situation where both the system and the field are quantized [32] (the “theory of

2This chapter is based mainly on Matthieu Sala’s PhD work [23, 24]. The authors gratefully thank
him for his contribution and his help. The authors also thank S. Guérin for having read and corrected
this chapter.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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dressed states in a cavity”). A classical field can be understood as a coherent statewith
a very large number of photons. In the Floquet theory, the processes are interpreted
in terms of a precise number of photons that are absorbed or emitted by the system
and thus taken from or given to the field [23].

An isolated molecular system is described by a Hamiltonian operator H0(q). H0

could be one of the operators used in the previous chapters. Now, the dynamics of
the system in interaction with a periodic field E(t) = A0 cos (ωt + θ) is given by
the time-dependent Schrödinger equation:

H(t)�(q, t) = i
∂

∂t
�(q, t) , (13.1)

and
H(t) = H0(q) − μ(q) · A0 cos(θ + ωt) (13.2)

is the Hamiltonian operator describing the system in interaction with the field. Here,
θ is 2π-periodic and corresponds physically to the phase of the field at t = 0 but
must be also understood as a dynamical variable that will allow us to transform the
time-dependent problem to a time-independent problem [23]. We now introduce the
square integrable functions eikθ, k being an integer and θE[0, 2π[. These functions
build a new Hilbert space L.

The eigenfunctions of H0, are given by (a discrete spectrum is assumed),

H0(q)�0
l (q) = E0

l �
0
l (q) . (13.3)

The products �0
l (q) ⊗ eikθ create an enlarged Hilbert space K = H ⊗ L, with H

the usual Hilbert space, in which acts the Floquet Hamiltonian (or quasi-energy
Hamiltonian):

K (q, θ) = −iω
∂

∂θ
+ H0(q) − μ(q) · A0 cos(θ) . (13.4)

At this level, a link with the theory of dressed states in a cavity [32], where both the
system and the light are quantized, can be made. Starting from the theory of dressed
states in a cavity, it can be proven [33] that K represents the Hamiltonian of the
molecule interacting in free space (limit of an infinite cavity volume) with a field
containing a large number of photons (limit of a large photon number average).3 In
other words, in this limit, the Hamiltonian operator including the quantization of the
fields resorts4 to K . In the samemanner [33], in the limit of a large number of photons,
the operator Nr = −iω ∂

∂θ
can be interpreted as the relative photon number operator.

The variation of the average of Nr in the Floquet formalism gives the number of
photons absorbed from (or emitted to) the laser field. This number is linked to the

3The photon density must be taken constant.
4More precisely, the Hamiltonian operator including the quantization of the fields gives K up to an
additive constant.
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quantum number k in the functions eikθ. For instance, k = −1 corresponds to a
photon absorbed by the molecule at the end of the process if one starts with k = 0.

It can be proven [23, 29] that the dynamics given by Eq. (13.1) is equivalent to
the dynamics given by

K (q, θ)�K (q, θ; t) = i
∂

∂t
�K (q, θ; t). (13.5)

The advantage is that the Floquet Hamiltonian is now time-independent, leading to
the simple propagator

UK (t, t0; θ) = e−i K (t−t0) , (13.6)

verifying
�K (q, θ; t) = UK (t, t0, θ)�K (q, θ; t0) . (13.7)

The link between the “Floquet wavefunction”, �K (q, θ; t), and the wavefunction of
the system,5 ψ(q, θ, t), is obtained by a phase translation [23]:

ψ(q; θ, t) = �K (q, θ + ωt; t) . (13.8)

The eigenstates of the Floquet Hamiltonian are given by

K (q, θ)�ν(q, θ) = λν�ν(q, θ) , (13.9)

and are called the Floquet states. By analogy with the theory of the dressed states in
a cavity, the Floquet states are sometimes referred to as the (light) dressed states.

Let us assume that the system at t = 0 is described by the wavefunction�(q; t =
0). Expanding �(q; t = 0) ⊗ 1L in terms of the eigenfunctions of K , we arrive at

ψ(q, θ; t) =
∑

ν

cνe
−iλν t�ν(q, θ + ωt) , (13.10)

where the coefficients cν can be expressed as

cν =
∫

dq
∫

dθ

2π
�∗

ν(q, θ)ψ(q, t = 0) ,

=
∫

dq�∗
ν(q)ψ(q, t = 0) , (13.11)

where �ν(q) = ∫
dθ
2π �ν(q, θ) is the average of �ν(q, θ) over the phase.

The eigenfunctions of the Floquet Hamiltonian have a periodic structure, i.e.
�ν(q, θ) ≡ �n,k(q, θ) = �n,0(q, θ)eikθ and λν ≡ λn,k = λn,0 + kω, where the

5ψ(q; θ, t) depends parametrically on θ. Here, θ is not a variable but the phase in the field at t = 0,
since we use the expression E(t) = A0 cos (ωt + θ). In practice, this phase is often set to zero.
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index n refers to the Hilbert space H. It must be clear that, in general, there is no
direct link between the sets of the �n,0(q, θ) and the sets of the eigenfunctions of
H0(q), �0

l (q). However, if there is no coupling between the system and the external
field, we have �l,0(q, θ) = �0

l (q) ⊗ 1L and λl,0 = E0
l .

Thus, the Floquet eigenstates can be classified in families labeled by n with
individual elements of a given family distinguished by the index k. This property
allows one to simplify the expansion in terms of the eigenstates of the Floquet
Hamiltonian by considering only a single member of each family, e.g. the k = 0
member, as shown below. Eq. (13.10) can be recast as

ψ(q, θ; t) =
∑

n,k

cn,ke
−i(λn,0+kωt)�n,0(q, θ + ωt)eik(θ+ωt) ,

=
∑

n,k

cn,ke
−iλn,0t�n,0(q, θ + ωt)eikθ ,

=
∑

n

c̃n(θ)e
−iλn,0t�n,0(q, θ + ωt) , (13.12)

with c̃n(θ) = ∑
k cn,keikθ. In addition, it can be proven that [23, 29]

c̃n(θ) = 〈�n,0(q, θ)|ψ(q; t = 0)〉H . (13.13)

By comparison with Sect. 2.1.4, we see that there is a complete analogy between the
eigenfunctions for the isolated molecule and the Floquet states for the molecule in
interaction with a field.

We arrive at the very important following property: the role of the Floquet states in
systems driven by a periodic electric field is analogous to that of energy eigenstates
in time-independent systems [27].

13.2.2 Adiabatic Picture *

In practice, the field is never periodic since is has finite start and end times. How-
ever, as aforementioned, the Floquet formalism can be extended to the study of the
interaction of quantum systems with laser pulses with slowly varying parameters
[23, 28, 29].

Now A0 can depend on time, i.e. E(t)= A0(t) cos (ωt + θ)= eA0(t) cos (ωt + θ).
The unit vector e describes the polarization direction of the linearly-polarized laser
field. The total Hamiltonian operator of the system reads

H(θ,ω(t), A0(t)) = H0 − μ · e A0(t) cos(θ + g(t)), (13.14)

where. A0(t) and g(t) = ωt are the time-dependent envelope and phase frequency,
respectively.

http://dx.doi.org/10.1007/978-3-319-53923-2
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The Floquet Hamiltonian reads then, similarly to Eq. (13.4),

K η(q, θ) = −i ġ(t)
∂

∂θ
+ H0(q) − μ(q) · A0(t) cos(θ) , (13.15)

where the vector η gathers the time-dependent parameters η = [A0(t), ġ(t)]. One
remarks that the relevant frequency appears as the derivative of the phase.

At this level, it is convenient to introduce a characteristic time τ for the slow
parameters [23, 28, 29]. τ can be interpreted as the pulse duration. The adiabatic
limit corresponds to τ → +∞. Gathering the slow parameters in a vector η(s), with
s = t/τ , the above Floquet theory can be recast adding η(s) as a parameter. For
the sake of simplicity, we consider here that only the envelope of the pulse, A0, can
change in time, i.e.η(s)= A0(sτ )= Ã0(s). The polarization of the field and the carrier
frequency, ω = ġ, are taken constant. The corresponding adiabatic Floquet states can
be written as�n,0(q, θ; s)eikθ. The system can be treated using an adiabatic approxi-
mation, i.e. by studying the instantaneous eigenfunctions of the Floquet Hamiltonian
as a function of the slowparameters. In otherwords, one defines quasienergy surfaces
as the instantaneous eigenvalues (eigenvalues at fixed time of the slow parameters of
the field) of a Floquet Hamiltonian, λm( Ã0(s)) = λn,k( Ã0(s)) = λn,0( Ã0(s)) + kω.
λn,k( Ã0(s)) is called a quasienergy surface that depends on parameters Ã0(s). At
t = 0, when the field is off, �n,0(q, θ; t/τ = 0) = �0

n (q) ⊗ 1L. In the adiabatic
picture, the Floquet states will thus connect to the eigenstates of H0 at t = 0 and then
change adiabatically due to the action of the field. When the field is off, let us say at
t f inal , the Floquet states again connect to the eigenstates of H0. But starting from one
Floquet state, let say�0,0(q, θ; t/τ = 0) =�0

0 (q)⊗1L, the Floquet state can contin-
uously connect to another eigenstate of H0, for instance �0,0(q, θ; t/τ = t f inal/τ )

= �0
1 (q)e−iθ. The process from �0,0(q, θ; t/τ = 0) to �0,0(q, θ; t/τ = t f inal/τ ) =

�0
1 (q)e−iθ corresponds to a population transfer from�0

0 (q) to�0
1 (q) after absorption

of one photon (k = −1).
It is worth noting that there is an analogy between the Floquet theory and the

Born-Oppenheimer approximation introduced in Sect. 3.2.3. The role of the elec-
tronic potential energy surfaces is played by the quasienergy surfaces in the adiabatic
Floquet theory. If the parameters of the laser field vary slowly enough in time, the
dynamics of the system can be interpreted as a trajectory on a single quasienergy
surface, which depends on the (time-dependent) parameters of the laser pulse. The
slowly varying quantities, s, defining the pulsed laser field become parameters in
the Floquet states like the nuclear coordinates in the adiabatic electronic states. The
non-adiabatic transitions between one Floquet state to another can occur if the cor-
responding quasienergies become close to one another during the interaction with
the field. This is analogous to the non-adiabatic transitions between the adiabatic
electronic states when the corresponding potential energy surfaces are close to one
another for certain nuclear configurations.

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Let us be more explicit. The Floquet Schrödinger equation (see Eq. (13.5)) can
be recast as

K (q, θ; Ã0(s))�K (q, θ; τs) = i

τ

∂

∂s
�K (q, θ; τs). (13.16)

Let
{
�m(q, θ; Ã0(s))

}
be an orthonormal basis of instantaneous eigenvectors of the

FloquetHamiltonianwith the associated eigenvaluesλm( Ã0(s)). The time-dependent
wavefunction can be expanded in the basis of the instantaneous eigenfunctions of
the Floquet operator

�K (q, θ, τs) =
∑

m

cm(t)�m(q, θ; Ã0(s)). (13.17)

Introducing Eq. (13.17) into Eq. (13.16) leads to a system of coupled differential
equations

cn(t)λn( Ã0(s))− i

τ

∑

m

cm(t)〈�n(q, θ; Ã0(s))| ∂

∂s
|�m(q, θ; Ã0(s))〉 = i

τ

∂cn(τs)

∂s
,

(13.18)
with non-adiabatic coupling terms − i

τ
〈�n(q, θ; Ã0(s))| ∂

∂s |�m(q, θ; Ã0(s))〉 with
n 	= m. In the adiabatic limit τ → ∞, these terms can be neglected and one obtains

[
λn( Ã0(s)) − i

τ
〈�n(q, θ; Ã0(s))| ∂

∂s
|�n(q, θ; Ã0(s))〉

]
cn(τs) = i

τ

∂cn(τs)

∂s
,

(13.19)
or equivalently

[
λn(A0(t)) − i〈�n(q, θ; A0(t))| ∂

∂t
|�n(q, θ; A0(t))〉

]
cn(t) = i

∂cn(t)

∂t
. (13.20)

In the adiabatic limit, when the non-adiabatic coupling can be neglected, we obtain:
cn(t) = cn(0)e−i

∫ t
0 λn(A0(s))ds . For physical reasons, it may be interesting to create

an adiabatic transition between one quantum state, for instance �0
0 (q) to another

quantum state �0
1 (q). Then, it is necessary to choose the parameters of the pulse

such that we will avoid the regions where the quasienergy λ0,0( Ã0(s)) is close to
the other quasienergies. Using the vocabulary of non-adiabatic electronic transitions,
we need to avoid “light-induced conical intersections” between the quasienergies. In
principle, this is always possible by using parameters that vary slowly, for instance
a long envelope and thus a long pulse [34]. One way to test the robustness of the
parameters is to calculate the non-adiabatic couplings to check whether there are
close to zero or not. It is even possible to minimize them by appropriately choosing
the parameters of the pulse [35].
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On the other hand, a “diabatic” transition may be preferred. In this case, we want
to populate another Floquet state �n,k(q, θ; Ã0(s)) with n and k different from 0.
Then, it may be necessary to choose parameters of the field to induce a fast transition
through a light-induced conical intersection. Even in this case, the adiabatic Floquet
picture can serve as a framework to rationalize the process. Again there is complete
analogy with the Born-Oppenheimer picture that serves as a starting point even
to describe the non-adiabatic transitions. Note that if non-adiabatic transitions are
induced, the wavefuntion at the end is not necessarily an eigenstate�0

l (q) but can be
a linear combination of eigenstates and thus awavepacket. To conclude, the adiabatic
Floquet picture can serve as a reference provided that the parameters of the pulse
are not changed abruptly, in particular provided that the laser is not switched on
and off abruptly.

13.2.3 The Rotating Wave Approximation (RWA) *

Let us consider two eigenstates only of H0: �0
0 and �0

1 with eigenvalues E
0
0 and E0

1 ,
respectively. The Hamiltonian operator of Eq. (13.2) reads in matrix form

H(t) =
[

E0 �(t) cos (ωt + θ)
�(t) cos (ωt + θ) E1

]
, (13.21)

where
�(t) = −A0(t)〈�0

1 |μ|�0
0 〉 · e , (13.22)

is called the Rabi frequency. Note that we allow the envelope, A0(t), to be time-
dependent. We now introduce the rotating or resonant wave approximation (RWA)
that is often used to rationalize processes involving near-resonant laser pulses (in our
caseω ≈ E1−E0). More precisely, this approximation is valid when the pulsation of
the electric field is close to the resonance |E2−E1−ω| � |�(t)|. Using the Floquet
picture, the RWA corresponds to considering only one photon processes involving
only the resonant transition, i.e. the transition between �0

0 (q) and �0
1 (q). Formally,

RWA consists in neglecting the anti-resonant terms, corresponding to applying the
approximation in the upper right term of Eq. (13.21):

cos (ωt + θ) = 1

2
(ei(ωt+θ) + e−i(ωt+θ)) ≈ 1

2
ei(ωt+θ) . (13.23)

If we now consider the Floquet operator of Eq. (13.4), applying the RWA amounts
to keeping only the two functions6 �0

0 (q) × 1L and �0
1 (q) × e−iθ.

6Considering �0
0 (q) × eikθ and �0

1 (q) × ei(k−1)θ with any value of k would give the same results.
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Thus, the Floquet operator reads using the RWA and in matrix form

K (t) =
[

E0 �(t)/2
�(t)/2 E1 − ω

]
− iω

∂

∂θ
, (13.24)

since
∫

dθ
2π cos θe−iθ = 1/2 and

∫
dθ
2π e

iθ(−iω ∂
∂θ

)e−iθ = −ω.
� constant corresponds to the well-known Rabi problem [36]. � = E1 − E0 −ω

is called the detuning from the resonance.

Within the RWA, we assume � ≈ 0. If we take E0 = 0, Eq. (13.24) resorts to

K (t) =
[

0 �(t)/2
�(t)/2 0

]
− iω

∂

∂θ
. (13.25)

To obtain the Floquet states, we must diagonalize K (t)

T †
1 K (t)T1 = D(t) − iω

∂

∂θ
(13.26)

with

D(t) =
(− 1

2�(t) 0
0 1

2�(t)

)
(13.27)

using the time-independent transformation

T1 =
(− 1√

2
1√
2

1√
2

1√
2

)
. (13.28)

The two states in the initial basis set are �0
0 (q) and �0

1 (q)e−iθ. Therefore, the two
Floquet states are (within the RWA)

�1(q, θ) = 1√
2
(−�0

0 (q) + �0
1 (q)e−iθ) ,

�2(q, θ) = 1√
2
(�0

0 (q) + �0
1 (q)e−iθ) . (13.29)

Generally speaking, the evolution of the wavefunction of the system, ψ(q, θ, t) is
given by Eq. (13.10) if the envelope, �, is constant. Since � depends on time, the
time evolution of the “Floquet” wavefunction is given by

i
∂

∂t
�K (q, θ, t) = D(t)�K (q, θ, t) , (13.30)
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and thus

�K (q, θ, t) = ie(−i
∫ t
0 D(t ′)dt ′)�K (q, θ, t = 0) . (13.31)

Eq. (13.8) leads to

ψ(q, θ, t) =
∑

ν

cνe
−i

∫ t
0 λν (t ′)dt ′�ν(q, θ + ωt) . (13.32)

In our particular case, the initial wavefunction is �0
0 (q) with c1 = − 1√

2
, c2 = 1√

2
,

which corresponds to a superposition of the two Floquet states in which we apply
the adiabatic principle:

ψ(q, θ, t) = c1e
i/2

∫ t
0 �(t ′)dt ′�1(q, θ + ωt) + c2e

−i/2
∫ t
0 �(t ′)dt ′�2(q, θ + ωt)

= 1

2
(ei/2

∫ t
0 �(t ′)dt ′(�0

0 (q) − �0
1 (q)e−i(θ+ωt)

+ e−i/2
∫ t
0 �(t ′)dt ′(�0

0 (r,R) + �0
1 (q)e−i(θ+ωt)))

= �0
0 (q) cos (

∫ t

0

1

2
�(t ′)dt ′) − i�0

1 (q) sin (

∫ t

0

1

2
�(t ′)dt ′)e−i(θ+ωt) .

(13.33)

We can remark that for the resonant two-level problem, the non-adiabatic coupling
is exactly 0. The above result is thus exact. If the initial phase of the field is equal to
zero, i.e. θ = 0, we obtain

�(q, t) = �0
0 (q) cos (

∫ t

0

1

2
�(t ′)dt ′) − i�0

1 (q) sin (

∫ t

0

1

2
�(t ′)dt ′)e−iωt ,

(13.34)

and the probability to find the system in state �0
1 (q) at time t is given by

|〈�0
1|�(t)〉|2 = sin2

(∫ t

0

�(t ′)
2

dt ′
)

. (13.35)

If �(t) is a constant �0, the result is a particular case of the Rabi formula [36]

P2(t) = �2
0

�2
0 + �2

sin2
(√

�2
0 + �2

t

2

)
. (13.36)
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A general, two-level model, with an arbitrary expression for the Rabi frequency
�(t) and the (time-dependent) detuning �(t), is not analytically solvable. However,
there exist models with specific expressions for �(t) and �(t), for with analytical
solutions of the time-dependent Schrödinger equation are known [37].

13.3 Application of the RWA to the Enhancement
of Tunneling in NHD2 *

NHD2, as its isotopologue ammonia, is a prototype for systems with a double-well
type potential energy leading to a non-negligible tunneling splitting even for the
vibrational ground state. NHD2 has six internal degrees of freedom. A schematic
illustration of the cut along the “umbrella” or inversion mode is shown on Fig. 13.1.
The vibrational symmetric ground state is shown schematically in red and the first
vibrational excited is the antisymmetric function shown in green. There are both
delocalized on the two wells. The fact that the wavefunctions are not equal to zero
in regions that are classically forbidden (when the potential is higher than the eigen-
value) is a clear sign of the presence of tunneling, see for instance the function in red
at the geometry corresponding to the transition state. The assignment is explained in
Sect. 7.4 of Chap.7. As explained in Sect. 7.4 of Chap.7, due to the presence of the
double well, the relevant molecular-symmetry group for NHD2 is not the point group
at the equilibrium geometry. The relevant molecular-symmetry group connects con-
tinuously the two equivalent but distinctCs minima through theC2v transition structure
is the nuclear-permutation inversion group G4, also known as MS4.

The Heidelberg MCTDH program and the PES of Ref. [38, 39] are used to calcu-
late the 6-dimensional vibrational states of themolecule [40]. The system is described
by six valence-type coordinates7 q (similar to the coordinates for water of Fig. 5.5
but with one more vector).

Several theoretical eigenvalues for J = 0 are given in Table13.18 along with
the experimental ones. The PES gives a inversion barrier at 1781 cm−1. The first
antisymmetric state, �a

0 (with the label (0)a in Table13.1), that corresponds to the
function in green in Fig. 13.1, lies 0.159 cm−1 above the ground state, �s

0 (with the
label (0)s in Table13.1), that corresponds to the function in red in Fig. 13.1. This
energy difference is due to tunneling (the corresponding experimental value is 0.171
cm−1).

In our model, we assume themolecule being “ideally oriented” [44], i.e. the mole-
cule experiences a three-dimensional alignment during the excitation process.Molec-
ular orientation is a current active research field [20, 45–51]. This could be achieved,

7More precisely, “Radau” coordinates [40] are used. The Radau coordinates will not be defined
in the present book. We briefly mention that they are close to the valence coordinates but have
the advantage of being orthogonal coordinates and thus lead to a simpler KEO (see Sect. 5.4 for a
discussion about orthogonal and non-orthogonal coordinates).
8Reprinted with permission from [40]. Copyright 2012, American Institute of Physics.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_5
http://dx.doi.org/10.1007/978-3-319-53923-2_5
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Fig. 13.1 Schematic illustration of the double-well type potential in NHD2. In red is the vibrational
symmetric ground state, �s

0(q), in green the first (antisymmetric) vibrational excited state, �a
0 (q).

The splitting in energy between the two levels is due to tunneling

for instance, using simultaneously an adiabatic pulse, that has been switched on
before the excitation and is switched off after the excitation [52]. This model allows
us to assume that a linearly polarized laser pulse is parallel to one of the Body-Fixed
axes. The definition of the Body-Fixed plane is given on Fig. 13.29 and we choose a
polarization of the laser parallel to the y-axis.

Let us assume that the molecule is initially localized on the left side of Fig. 13.1
and is a linear combination of the symmetric and antisymmetric ground states. Math-
ematically, the initial wavefunction is thus given by

�(q, t = 0) = 1√
2
(�s

0(q) + �a
0 (q)) . (13.37)

It is well known [36] that the system with such an initial condition can tunnel to the
right side with the linear combination:

�(q) = 1√
2
(�s

0(q) − �a
0 (q)) . (13.38)

9Reprinted with permission from [40]. Copyright 2012, American Institute of Physics.
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Table 13.1 Several theoretical low-lying 6D vibrational eigenvalues compared with available
experimental values (in cm−1). Assignment in terms of C2v(M) normal modes and symmetry labels
in the G4 permutation-inversion symmetry group are given. The assignment is explained in Sect. 7.4
of Chap.7. EMCT DH correspond to the calculated values of Ref. [40] using the improved relaxation
method of Sect. 8.4, “Exp.” to the experimental values

level sym. (C2v(M)/G4) EMCT DH Exp.

(0)s A1/A+ 0.00 0.00

(0)a B1/B− 0.159 0.171 [41]

(21)s A1/A+ 808.81 810.23 [41]

(21)a B1/B− 817.68 819.56 [41]

(41a)
s A1/A+ 1235.67 1233.27 [42, 43]

(41a)
a B1/B− 1238.11 1235.89 [42, 43]

(22)s A1/A+ 1450.38 –

(41b)
s B2/B+ 1461.55 1461.79 [42, 43]

(41b)
a A2/A− 1461.72 1461.99 [42, 43]

(22)a B1/B− 1575.56 –

(23)s A1/A+ 1957.55 –

(23)a B1/B− 2360.99 –

(31a)
s A1/A+ 2435.87 2430.80 [42, 43]

(31a)
a B1/B− 2437.49 2434.62 [42, 43]

(31b)
s B2/B+ 2564.05 2559.81 [42, 43]

(31b)
a A2/A− 2564.16 2559.96 [42, 43]

(11)s A1/A+ 3406.08 3404.24 [42, 43]

(11)a B1/B− 3406.15 3404.32 [42, 43]

Fig. 13.2 Definition of the
BF frame. The x-axis is
parallel to the NH bond and
the y-axis lies in one of the
two NHD planes

with a tunneling time given by (using c = 2.9979 1010 cm s−1 and�E = 0.159 cm−1)

τtunnel = 1/(2 (�E) c) ≈ 105 ps . (13.39)

Our goal is here to induce a full population inversion between the two localized
superpositions by a laser pulse in a time much smaller than the field-free tunneling
time of 105 ps. Mathematically, this corresponds to replacing the “+” sign by a “−”
sign in the linear combination. One possibility is to create a phase of π in the linear
combination by achieving a complete Rabi oscillation between the �a

0 state with
an intermediate state. The latter must be well isolated (if not, other states can be
populated and interfere in the process), and not coupled to the �s

0 state since we
want to keep �s

0 unchanged.

http://dx.doi.org/10.1007/978-3-319-53923-2_7
http://dx.doi.org/10.1007/978-3-319-53923-2_8
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Table 13.2 Calculated transition dipole moments (in ea0 unit where e is the elementary charge
and a0 is the Bohr radius) of the selected low-lying vibrational eigenstates with the two tunneling
components of the fundamental eigenstate. Values smaller than 10−4 ea0 are not given. μx1 =
〈(0)s |μx |χi 〉, μx2 = 〈(0)a |μx |χi 〉, μy1 = 〈(0)s |μy |χi 〉, μy2 = 〈(0)a |μy |χi 〉, μz1 = 〈(0)s |μz |χi 〉,
μz2 = 〈(0)a |μz |χi 〉
level μx1 μx2 μy1 μy2 μz1 μz2

(0)s 0.3278 – 0.5562 – – 0.3028

(0)a – 0.3279 – 0.5561 0.3028 –

(21)s −0.0151 – 0.0448 – – −0.0381

(21)a – −0.0150 – 0.0448 −0.0375 –

(41a)
s −0.0270 – 0.0086 – – 0.0188

(41a)
a – 0.0275 – −0.0094 −0.0188 –

(22)s −0.0065 – 0.0079 – – 0.0046

(41b)
s – – −0.0114 – – 0.0199

(41b)
a – – – 0.0114 −0.0199 –

(22)a – 0.0045 – −0.0058 −0.0045 —

(23)s −0.0017 – 0.0019 – – 0.0001

(23)a – – – 0.0005 −0.0021 –

(31a)
s 0.0058 – −0.0247 – – −0.0150

(31a)
a – 0.0061 – −0.0253 −0.0153 –

(31b)
s – – 0.0084 – – −0.0147

(31b)
a – – – 0.0085 −0.0147 –

(11)s – 0.0382 – −0.0030 −0.0014 –

(11)a 0.0381 – −0.0031 – – −0.0014

Table13.210 gives the transition moments between the first two vibrational states,
�s

0 and �a
0 , and several excited states. They are given for the three axes of the

body-fixed frame.
Table13.2 shows that a field polarized along the z-axis couples stateswith different

symmetries with respect to the inversion and this is what we want to avoid since we
do not want to alter the �s

0 state. On the other hand, a field polarized along the
other two axes couples only states of the same parity. We choose here the state with
the label (22)a corresponding to the energy E1 = 1575.56 cm−1 since (22)a is well
isolated. In addition, we choose a polarization along the y-axis since the transition
moment between �s

0 and �a
22 is larger along y than along x . Let us now consider a

resonant transition between �s
0 and �a

22 the state with the label (22)a : the transition
is shown with a blue arrow on Fig. 13.3.11

Let us consider the three eigenstates �0
s , �0

a , and �a
22 only. The Hamiltonian

operator reads in matrix form in this basis set:

10Reprinted with permission from [40]. Copyright 2012, American Institute of Physics.
11Reprinted with permission from [40]. Copyright 2012, American Institute of Physics.
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Fig. 13.3 The blue arrow
features the resonant
2π-pulse

H(t) =
⎡

⎣
Es
0 0 0
0 Ea

0 �(t) cos (ωt + θ)
0 �(t) cos (ωt + θ) Ea

22

⎤

⎦ , (13.40)

with
�(t) = −A0(t)〈�a

0|μy|�a
22〉 . (13.41)

The quantity A0(t) is defined as in Eq. (13.2). The transitions between�s
0 and�a

0 and
between �s

0 and �a
22 are zero by symmetry. If we now consider the Floquet operator

of Eq. (13.5), applying theRWAamounts to keeping only the three functions�s
0×1L,

�a
0 × 1L and �a

22 × e−iθ. Thus, the Floquet operator reads within the RWA and in
matrix form

K (t) =
⎡

⎣
Es
0 0 0
0 Ea

0 �(t)/2
0 �(t)/2 Ea

22 − ω

⎤

⎦ , (13.42)

Now, within the RWA, we assume Ea
22 − Ea

0 ≈ ω and if we put Es
0 = 0 and Es

0 − Ea
0

= δ, we obtain

K (t) =
⎡

⎣
δ 0 0
0 0 �(t)/2
0 �(t)/2 0

⎤

⎦ . (13.43)

To obtain the Floquet states, we must diagonalize K (t),

T †
1 K (t)T1 = D(t) , (13.44)
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with

D(t) =
⎛

⎝
δ 0 0
0 − 1

2�(t) 0
0 0 1

2�(t)

⎞

⎠ . (13.45)

Therefore, the three Floquet states are (within the RWA)

�s
0(q, θ) = �s

0(q) ,

�a
0(q, θ) = 1√

2
(−�a

0 (q) + �a
22(q)e−iθ) ,

�3(q, θ) = 1√
2
(�a

0 (q) + �a
22(q)e−iθ) , (13.46)

with the three quasienergies

λ1 = δ ,

λ2 = −1

2
�(t) ,

λ3 = 1

2
�(t) . (13.47)

In our particular case, the initial “Floquet” wavefunction is

1√
2
(�s

0(q) + �a
0 (q)) . (13.48)

Thus, the evolution of the wavepacket is given by

ψ(q, θ, t) = c1e
−i

∫ tp
0 δdt ′�s

0(q, θ + ωt)

+ c2e
(i/2)

∫ tp
0 �(t ′)dt ′�a

0(q, θ + ωt) + c3e
−(i/2)

∫ tp
0 �(t ′)dt ′�a

22(q, θ + ωt) ,

= 1√
2
e−iδtp�s

0(q) − 1

2
ei A(tp)/2(

1√
2
(−�a

0 (q) + �a
22(q)e−iθ)

+ 1

2
e−i A(tp)/2(

1√
2
(�a

0 (q) + �a
22(q)e−iθ) , (13.49)

with A(tp) = ∫ tp
0 �(t ′)dt ′ and tp the pulse duration. Thus, we obtain

ψ(q, θ, tp) = 1√
2
e−iδtp�s

0(q) + 1√
2
cos (A(tp)/2)�

a
0 (q)

+ i√
2
sin (A(tp)/2)e

−iθ�a
22(q) . (13.50)
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A complete tunneling inversion corresponds to

ψ(q, θ, tp) = 1√
2
(�s

0(q) − �a
0 (q)) , (13.51)

From these equations, one can see that the tunneling inversion probability is close to
unity if the conditions

∫ tp

0
|�(t)| dt = A(tp) = 2π, δtp � π , (13.52)

are fulfilled.
The first condition defines a relation between the duration tp and the peak ampli-

tude E0 of the pulse. If we assume a sin2 pulse envelope:

E0

∣∣μ(0)a/(22)a
∣∣
∫ tp

0
sin2

(
πt

tp

)
dt = 2π , (13.53)

i.e.

tp = 4π

E0

∣∣μ(0)a/(22)a
∣∣ . (13.54)

We then set the peak amplitude at E0 = 10−2 Eh/ea0. This amplitude is high enough
to lead to a relatively short duration of tunneling, and low enough to avoid detrimental
effects such as ionization and to guarantee a negligible influence of the electronic
polarizability (not included in our model). With this constraint, the parameters found
within our model are

E0 = 10−2 Eh/ea0 ,

ω = 1575.56 × 2πc cm−1 ,

tp = 5280 fs .

(13.55)

The simulations show that the population transfer is improved by slightly detuning ω
from the transition frequency. In particular, a six-dimensional simulation with ω =
1574×2πc cm−1 yields afinal populationof the target superpositionof approximately
0.995 [40].

The fact that the frequency must be detuned is called the Stark effect. We cannot
predict this value in our model since we have calculated the Floquet states and the
quasienergies using three states only. The Stark effect is due to the presence of the
other vibrational states. An exact calculation of the quasienergies would show that
λa
22 would slightly decrease with respect to λa

0 when the intensity increases.12 To
obtain those quasienergies it would be necessary to diagonalize the Floquet operator
numerically since no analytical solution could be found any more.

12I.e., λa
22

− λa
0 decreases with A0, all the other parameters being fixed.
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13.4 Application of the RWA to the Destruction
of Tunneling in NHD2 *

In the previous section, we have induced a population inversion of 0.995 after 5.28
ps. Here, our goal is the opposite, i.e. to achieve a coherent destruction of tunneling
(CDT).

The tunneling splitting for the ground state is equal to

Ea
0 − Es

0 = 0.159 cm−1 .

Since our goal is to prevent the system from tunneling, we must find the parameters
of a laser pulse such that the first two quasienergies have the same value:

λa
0 − λs

0 ≈ 0 cm−1 .

The laser field is linearly polarized along the z-axis of the BF frame (see Fig. 13.2
for the definition of the BF axes). The CDT is achieved in the situation where the
system remains in the state defined by Eq. (13.37). We first consider a quasi-resonant
regime, the frequency of the laser field (featured by the red arrow in Fig. 13.413) is
close to the transition between�a

0 and�s
21 . Since the field is parallel to the z BF axis,

for symmetry reasons, �a
0 is coupled with �s

21 and not with �a
21 and �s

0 is coupled
with �a

21 and not with �s
21 . In addition, because the frequency of the laser field is

much higher than the energy difference between the eigenvalues of �a
0 and �s

0, a
laser driven transition between these two states can be neglected.

The Floquet operator in the basis
{
�s

0 × 1L, �a
0 × 1L, �s

21 × e−iθ, �a
21 × e−iθ

}

reads in the framework of the RWA

K RWA =

⎛

⎜⎜⎝

Es
0 0 0 �(0)s ,(21)a (t)/2
0 Ea

0 �(0)a ,(21)s (t)/2 0
0 �(0)a ,(21)s (t)/2 Es

21 − ω 0
�(0)s ,(21)a (t)/2 0 0 Ea

21 − ω

⎞

⎟⎟⎠ .

(13.56)
For the electric field, we turned on the laser field adiabatically and then an envelope
that is constant:

E(t) =
{
A0 sin2

(
πt

2tramp

)
cos(ωt) for t ≤ tramp

A0 cos(ωt) for t > tramp

, (13.57)

where tramp the duration of the ramp of the electric field. A ramp of fifty optical cycles
is considered, i.e tramp = 100π/ω.

For t > tramp, �(0)s ,(21)a (t)/2 and �(0)a ,(21)s (t)/2 can be considered as fixed, and
diagonalising the matrix of (13.56) gives for the first two quasienergies

13Reprinted with permission from [53]. Copyright 2014, American Institute of Physics.



13.4 Application of the RWA to the Destruction of Tunneling in NHD2 * 411

Fig. 13.4 Energy diagram
illustrating the two laser field
frequency regimes
considered for the coherent
destruction of tunneling in
NHD2. The blue (red) arrow
features the non-resonant
(quasi-resonant) regime

λs
0 = 1

2
(Ea

0 + Es
21 − ω) − 1

2

√
(Es

21 − ω − Ea
0 )

2 + �2
(0)a ,(21)s , (13.58)

and

λa
0 = 1

2
(Es

0 + Ea
21 − ω) − 1

2

√
(Ea

21 − ω − Es
0)

2 + �2
(0)s ,(21)a . (13.59)

The quasienergies λs
0 and λa

0 are continuously connected to Ea
0 and Es

0. They are
shown as functions of the amplitude of the electric field and for three different field
frequencies of 795, 800, and 805 cm−1 in Fig. 13.5.14 These frequencies are close to
resonance between the (0)a and the (21)s states at 808.65 cm−1. The results obtained
from the RWA model using Eqs. (13.58) and (13.59) are shown in blue dashed lines
and the results obtained from the “exact” numerical diagonalization of the Floquet
Hamiltonian in black full lines (taken from Ref. [53]). The comparison between the
numerical and analytical values proves the validity of the RWA for the frequencies
considered here. The differences increase with intensity and are mainly due to the
Stark effect as explained in the previous section.

In Fig. 13.5, we see that the quasienergies show a single crossing. The parameters
of the pulses must correspond to these crossing points since the levels are degenerate

14Reprinted with permission from [53]. Copyright 2014, American Institute of Physics.
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Fig. 13.5 Quasienergies λs
0 and λa

0 plotted as a function of the laser field amplitude for three
different frequencies a ω =795 cm−1, b 800 cm−1, and c 805 cm−1. The results obtained from the
model using Eqs. (13.58) and (13.59) are shown in red dotted lines and the results obtained from
the numerical diagonalization of the Floquet Hamiltonian are shown in black full lines

when there is no tunneling: for instance ω = 800 and A0 = 4.17 × 10−4. The
population of the initial state, 1√

2
(�s

0(q) + �a
0 (q)), located on the left side of the

double-well shows oscillations (not shown here). The minimum of the oscillations
remains above 0.95 even after 10 ps [53].

13.5 Destruction of Tunneling in NHD2: Non-resonant
Regime *

We now consider a non-resonant regime where the frequency of the laser field (fea-
tured by the blue arrow in Fig. 13.4) is much larger than the ground-state splitting of
0.159 cm−1 but much smaller than the transition frequencies with the other vibra-
tional states. As in the previous section, the laser field is linearly polarized along the
z-axis of the BF frame (see Fig. 13.2 for the definition of the BF axes).

The Floquet operator in the basis
{
�s

0 × eikθ, �a
0 × eikθ

}
, reads

K (t) = −iω
∂

∂θ
+

(
Es
0 �(t) cos θ

�(t) cos θ Ea
0

)
. (13.60)

If we assume that the frequency of the laser field is much higher than the tunneling
splitting, ω � Ea

0 − Es
0, the diagonalization of the matrix of Eq. (13.60) has analytic

solutions (see Sect. III A 1 of Ref. [53]). In addition, the Stark effect, i.e. the influence
of the other states on the first two quasienergies, λs

0 and λa
0, can be calculated by
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Fig. 13.6 Quasienergies λs
0 and λa

0 (k = 0) plotted as functions of the laser field amplitude for
three different frequencies a ω =50 cm−1, b 80 cm−1, and c 100 cm−1. The results obtained from
the two-level model are shown in red dotted lines, the results obtained from the perturbative model
including the Stark shifts are shown in blue dashed lines and the results obtained from the numerical
diagonalization of the Floquet operator are shown in black full lines

applying second-order stationary perturbation theory [53]. We do not give the ana-
lytical expressions here. Instead, λs

0 and λa
0 for k = 0 are presented in Fig. 13.615 as

functions of the amplitude of the electric field. The results with the two-level model
are shown in dotted red lines, the results obtained from the perturbative model are
shown in blue dashed lines. The results obtained by numerical diagonalization of the
Floquet operator are shown in black full lines.

13.6 Control of the ππ� Excitation of Pyrazine by the
Stark Effect *

As a last example, we present the control of the non-radiative decay after a ππ�

excitation of pyrazine using a mechanism based on the dynamic Stark effect induced
by a strong non-resonant laser pulse [54, 55]. The Stark effect corresponds to a
non-resonant two-photon process where one photon is absorbed by the molecule and
another photon is emitted by the molecule. Here, we use an effective Hamiltonian
involving the electronic polarisability of the molecule. This effective Hamiltonian
could be derived from the Floquet theory but this derivation is not given here. The
molecule is depicted in Figs. 12.8 and 13.7.16

15Reprinted with permission from [53]. Copyright 2014, American Institute of Physics.
16Reprinted with permission from [54]. Copyright 2014, American Institute of Physics.

http://dx.doi.org/10.1007/978-3-319-53923-2_12
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Fig. 13.7 Representation of
the four normal modes
included in the model for
pyrazine: q6a , q1, q9a and
q10a

For theBF frame,we use the principal axes of inertiawith the following definition:
at the ground-state equilibrium geometry the molecule lies in the yz-plane, with both
nitrogen atoms on the z-axis. The molecule is planar at the equilibrium geometry in
the electronic ground state and has a D2h point group symmetry. Three electronic
states are included in the present study: the ground state and the vibronically coupled
diabatic B3u(nπ∗) and B2u(ππ∗) states, hereafter noted S0, S1 and S2. The chemical
meaning of the two excited states in terms of molecular orbitals can be seen on
Fig. 4.11 of Sect. 4.4 in Chap.4.

We adopt a description in terms of the normal coordinates of the electronic ground
state. The molecule has N = 10 atoms and thus 3N − 6 = 24 normal coordinates.
For the sake of simplicity, we consider a model including the four most important
vibrational normal modes only [56–60]: q6a , q1, q9a and q10a . They are depicted
in Fig. 13.7. q6a , q1, q9a are the totally symmetric normal modes and q10a has B1g

symmetry.
As explained in Sect. 12.4, after a transition from the electronic ground state to

the B2u(ππ∗), there is a very fast transfer to the B3u(nπ∗) state due to a conical
intersection. The electronic transition to S2 could be induced experimentally by a
relatively weak resonant “pump pulse”. We have seen in Sect. 12.5 that the physics
induced by the presence of a conical intersection is linked to the topography around
the latter. In order to modify the non-adiabatic transfer, it is thus natural to try to
change this topography. A polar solvent could modify this topography but here we
stay in the gas phase and use a second laser pulse that is a strong non-resonant
laser pulse, hereafter referred to as “control pulse”, that shapes the PESs via what is
called the “Stark effect”. In our simulations, the pump pulse is polarized along the
y-direction while the control pulse is polarized along the z-direction.17

Thus, the term describing the interaction between the molecule and the resonant
(pump) pulse simply reads in the diabatic representation

17We thus assume that the molecule is oriented in 3D space and thus does not rotate freely.

http://dx.doi.org/10.1007/978-3-319-53923-2_4
http://dx.doi.org/10.1007/978-3-319-53923-2_4
http://dx.doi.org/10.1007/978-3-319-53923-2_12
http://dx.doi.org/10.1007/978-3-319-53923-2_12
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Hr
int(t) = −

⎛

⎝
0 μ

y
01(q) μ

y
02(q)

μ
y
01(q) 0 0

μ
y
02(q) 0 0

⎞

⎠ Er (t) , (13.61)

with Er (t) the resonant external field and μ
y
nl are y-components of the dipole matrix

elements, as defined in Sect. 3.4, in the diabatic basis set.
For the term corresponding to the interaction between themolecule and the control

pulse, we use the following effective operator in the diabatic representation:

Hc
int(t) = −1

2

⎛

⎝
αzz
00(q) 0 0
0 αzz

11(q) αzz
12(q)

0 αzz
12(q) αzz

22(q)

⎞

⎠ E2
c (t) , (13.62)

where αzz
nl are the (z, z)-component of the electronic static polarisability matrix in

the diabatic basis set and Ec(t) the control external field. Several terms have been
neglected, for instanceαzz

01. They could be added but their role in the dynamics would
be very small.

Thus, in the the diabatic representation, theHamiltonian of the systemas a function
of the four dimensionless normal modes reads

H(q, t) = H gs(q)

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ +
⎛

⎝
0 0 0
0 V11(q) V12(q)

0 V12(q) V22(q)

⎞

⎠

−
⎛

⎝
0 μ

y
01(q) μ

y
02(q)

μ
y
01(q) 0 0

μ
y
02(q) 0 0

⎞

⎠ Er (t)

− 1

2

⎛

⎝
αzz
00(q) 0 0
0 αzz

11(q) αzz
12(q)

0 αzz
12(q) αzz

22(q)

⎞

⎠ E2
c (t) , (13.63)

where H gs(q) = ∑4
i=1

ωi
2

(
− ∂2

∂q2
i

+ q2
i

)
is the ground electronic state Hamiltonian

in the harmonic approximation, V (q) is the potential matrix.
For the resonant laser pulse that drives the electronic transition and a non-resonant

control pulse, we take the expression

Er,c(t) = εr,c(t) cos (ωr,ct) = ε0r,c�r,c(t) cos (ωr,ct) , (13.64)

where the envelope �r,c(t) is chosen to be a sine-squared function �r,c(t) =
sin2

(
πt
tr,cp

)
, and tr,cp is the pulse duration. The values trp = 100 fs and t cp = 500

fs have been used. The control pulse is turned on at t = −150 fs. The pump pulse
is turned on at t = 0 and ends when the control pulse reaches its peak intensity at
t = 100 fs. The corresponding dynamics was obtained using MCTDH, the initial
wavefunction being the vibrational ground state in the electronic ground state. The

http://dx.doi.org/10.1007/978-3-319-53923-2_3
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Fig. 13.8 Adiabatic
populations of the S1
(dashed lines) and S2 (full
lines) states for the pump
pulse photon energies 4.6 eV
(blue), 4.7 eV (red), and 4.8
eV (green) and for the
control pulse intensities
I = 0 (a), I = 10 TW/cm2

(b), I = 20 TW/cm2 (c),
I = 30 TW/cm2 (d), I = 40
TW/cm2 (e), and I = 50
TW/cm2 (f)
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adiabatic populations of the S1 and S2 states are reported for various control pulse
intensities and pump pulse photon energies in Fig. 13.818: when there is no control
pulse (I = 0) the S2 state is populated by the pump pulse and we observe a very fast
transfer to the S1 state due to the presence of the conical intersection in agreement
with the discussion of Sect. 12.4.

The dynamics of the molecule in the presence of a control pulse of 10 TW/cm2

peak intensity (Fig. 13.8b) is hardly different from the dynamics without control
pulse, when the intensity is further increased, a substantial fraction of the population
remains in S2 and decays at a slightly slower rate to S1 between t = 100 fs and
t = 200 fs. There is thus a trapping effect of the system in S2 that is more and more
pronounced (Fig. 13.8d–f). At the highest intensity (I = 50 TW/cm2), the most part
of the population excited to S2 remains trapped up to t = 200 fs.

The impact of a non-resonant laser field on the topography of the PESs around the
conical intersection that couples the S1 and S2 states can be analyzed in an effective
way in terms of “dressed” PESs [61, 62]. The latter are obtained as the eigenvalues
of the matrix:

18Reprinted with permission from [54]. Copyright 2014, American Institute of Physics.

http://dx.doi.org/10.1007/978-3-319-53923-2_12
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Fig. 13.9 S1 (green) and S2 (red) diabatic potentials plotted as functions of the q6a and q10a normal
coordinates (a) in the field-free case and (b) dressed by a control field of intensity I = 50 TW/cm2.
q1 = 1.83 and q9a = −0.15 in the field-free case and q1 = 2.42 and q9a = 0.13 in the presence of
a control field of intensity I = 50 TW/cm2

1

2

4∑

i=1

ωi q
2
i

(
1 0
0 1

)
+

(
V11(q) V12(q)

V12(q) V22(q)

)

− 1

2

(
αzz
11(q) αzz

12(q)

αzz
12(q) αzz

22(q)

)
ε0c

2
. (13.65)

Two dimensional cuts of the dressed S1 and S2 PESs as a function of q6a and q10a are
shown in Fig. 13.919: (a) in the field-free case, here the dressed PESs are identical to
the PESs of the isolated molecule, (b) in the presence of a control field of intensity
I = 50 TW/cm2. They show that the the non-resonant pulse induces a “Stark shift” of
the potentials thatmoves the conical intersection away from the equilibriumgeometry
of the electronic ground state: in Fig. 13.9b, the CI lies higher in energy. Thus, one
expects a trapping of the wavepacket on the S2 PES for a much longer time than the
natural S2 lifetime since the CI is more difficult to reach.

13.7 Lab-Session V: Coherent Control by Laser Pulses

In the present lab-session, we follow Sects. 13.3–13.6 closely. Simplified Hamil-
tonian operators have been used to speed up the calculations: a one-dimensional
analytical expression has been devised to describe the two-well potential energy of
NHD2 and twomodes only have been used for pyrazine (instead of four in Sect. 13.6):
ν10a and ν6a (see Fig. 13.7 for their definition and the molecule of pyrazine).

19Reprinted with permission from [54]. Copyright 2014, American Institute of Physics.
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13.7.1 Enhancement of Tunneling in NHD2

We work in the directory lab-inputs/control/NHD2/enh_tun. As usual,
all commands are listed in a commands file, see lab-inputs/control/NHD2/
enh_tun/commands. We can inspect the operator file enh_field.op: there is
only one internal coordinate qinv corresponding to the inversion of NHD2 (see
Fig. 13.1). The analytical expression of the potential has been chosen to mimic
approximately a cut through the potential of ammonia along the inversion mode.
However, the Hamiltonian operator depends now on time (column Time): the sys-
tem is in interaction with an external field of frequency ome = 1572.0 cm−1, ampli-
tude ampl = 0.01 a.u. and a pulse duration of tp = 5400.0 fs. The dipole moment
is approximated as 0.714(1 − exp(−1.655 q)). The parameters of the pulse that
enhances the tunneling effect are close to those chosen in Sect. 13.3.

By typing “mctdh84 -mnd gen_gss”, we converge the symmetric ground
state (similar to the red state in Fig. 13.1). By typing “mctdh84 -mnd gen_gsa”,
we converge the antisymmetric ground state (similar to green red state in Fig. 13.1).

“sumrst84 -mnd sum_l” and “sumrst84 -mnd sum_r” make the dif-
ference and the sum of the two states creating wavepackets localized on the left side
or on the right side of the potential, respectively.

“mctdh84 -mnd gen_exc generates an excited state corresponding to the
state targeted by the laser pulse: see Fig. 13.3.

Let us assume that we start with a wavepacket localized on the right side of the
double well. Without an external field, the system should tunnel to the left side in
roughly 104 ps. But we have added a external field to enhance the tunneling process.

By typing “mctdh84 -mnd prop_tun &”, we propagate the wavepacket
in the presence of the external field. By typing “mctdh84 -pes prop_tun”,
we generate the potential surface. Already during the calculation we can enter the
directory prop_tun: “cd prop_tun”.

The command “showsys84 -pes allows us to plot the one-dimensional poten-
tial. The parameters can be optimized to zoom on the bottom of the potential by
changing the coordinate bounds. It is also possible to change the unit of the
potential (change Y-axis units).

“showd1d84 -M -a -G -y 3.0 f1 gives the “movie” of the wavepacket:
the transfer from the right to the left side is already completed after 5.4 ps. To speed
up the movie one may additionally set the option -n 4 by which only every fourth
picture is displayed.

When the calculation is finished, we can see the evolution in time of the overlap
of the wavepacket with three eigenstates: the symmetric and antisymmetric excited
states and the excited state targeted by the laser pulse. This can be done by typing.

“crosscorr84 -r ../gs_s/restart”
“crosscorr84 -r ../gs_a/restart”
“crosscorr84 -r ../exc/restart”
“plgen -u 1:5 cross_gs_s cross_gs_a cross_exc”.
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The first three commands compute the overlap of the propagated wavefunction
with the symmetric antisymmetric and excited states. The last command plots the
absolute value squared of these overlaps. We see that we start from a linear combina-
tion of the symmetric and antisymmetric ground states. During the first half process
the antisymmetric ground state is depopulated and the excited state is populated,
while the symmetric ground state is only marginally affected. During the second
half of the process the excited state is depopulated and the antisymmetric state is
repopulated but with a minus sign (the sign cannot be seen on this figure).

We can also overlap the wavepacket with the wavefunctions localized on the left
and right sides:

“crosscorr84 -r ../sup_r/restart”
“crosscorr84 -r ../sup_l/restart”
“plgen -u 1:5 cross_sup_r cross_sup_l”

We see that we start from a system localized on the right side that goes to the left
through tunneling.

13.7.2 Destruction of Tunneling in NHD2: Quasiresonant
Regime

We work in the directory lab-inputs/control/NHD2/cdt_qr/ We use
essentially the same commands as above (they are listed in lab-inputs/
control/NHD2/cdt_qr/commands). As only the operator file is different, the
generated initial or reference states, (i.e. symmetric, antisymmetric, excited, right,
left) are identical to the previous example.

We use parameters of a pulse similar to those of Sect. 13.5 (see the file
cdt_field.op). The laser pulse is quasiresonant with an excited state. The
dynamics is rather uninteresting since the system remains at its place and almost
no tunneling occurs. The small oscillations observed in the population of the anti-
symmetric ground state are due to a slight population of excited states.

13.7.3 Destruction of Tunneling in NHD2: Non-resonant
Regime

We work in the directory lab-inputs/control/NHD2/cdt_nr/ We
use again essentially the same commands as above (they are listed in
lab-inputs/control/NHD2/cdt_nr/commands).

We use parameters of a pulse similar to those of Sect. 13.6 (see the file
cdt_field.op). The laser pulse is nonresonant with any excited state.



420 13 Control of Molecular Processes

Again, the system remains at its place and almost no tunneling occurs. The destruc-
tion of tunneling is more efficient here but we need a higher intensity.

13.7.4 Control of the ππ� Excitation of Pyrazine by Stark
Effect

We work in the directory

lab-inputs/control/Stark_pyrazine/

We have here three electronic states: the ground state, and two electronic states,
B2u(ππ∗) and B3u(nπ∗), the latter are strongly coupled due to the presence of a
conical intersection. We start from the system in the vibrational ground state of the
electronic ground state. A resonant laser excites the system in the B2u(ππ∗) state,
i.e. it induces a ππ� excitation of the system.

The corresponding dynamics (here with two degrees of freedom only) is per-
formed by typing

“mctdh84 -mnd no_Stark”

The operator is in no_Stark.op: we use a model with two degrees of freedom
v10a and v6a. the column el appears since we have three diabatic electronic states
denoted “1” (the ground state), “2”, and “3”. The term followed byS2&3 corresponds
to the potential coupling between states “2” and “3”. Because of the presence of an
external field there is a term that depends on time. The laser couples the ground
state (state “1”) with the ππ∗ excited state (state “3”), that is why the symbol S1&3
appears for the electronic degree of freedom. The frequency of the pulse ome = 4.7
eV and its amplitude Er = 0.005 a.u.

The potential energy surfaces are generated by

“mctdh84 -pes no_Stark

The corresponding dynamics is in directory no_Stark . Type

“cd no_Stark”

and use showsys84 to plot the potential surfaces and the reduced density. Use the
menupoint “60” (change state selection) to select the electronic potentials
or nuclear densities to be displayed. Use the menu point “10” to select the plot task.
In particular when the diabatic PES is to be plotted, it will be useful to switch to a
3D visualization (menu point 160). After you have viewed the PES and the reduced
densities, close showsys84 and type:

“plstate”
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to study the diabatic populations. At the beginning only the ground state is populated,
then the laser field populates state “3”. After population of the latter, there is a very
fast transfer to state “2” due to the presence of a conical intersection.

Now, we can perform the same dynamics but with a second non-resonant pulse
that modifies the potential energy surfaces. We distinguish three cases here. They all
correspond to a non-resonant laser pulse of frequency 1.8 eVbutwith laser-intensities
of 10, 20, and 30 TW/cm2, respectively. Return to the parent directory (“cd ..”)
and inspect Stark.op. Then run the propagations:

“mctdh84 -mnd Stark”
“mctdh84 -mnd -D Stark_2 -p Field 20.0 Stark”
“mctdh84 -mnd -D Stark_3 -p Field 30.0 Stark”

(In the first run we did not have to give -D Stark_1 -p Field 10.0 because
these are set as defaults in input and operator files). We can now compare carefully
the different populations given by plstate and see the effect of the non-resonant
pulse. The transfer from state “3” to state “2” becomes weaker and weaker with
increasing intensity of the Stark laser. In other words, the non-resonant pulse traps
the system in state “3” and slows down the non-adiabatic process. To see this, type

“plstate -i no_Stark”
“plstate -i Stark_1”
“plstate -i Stark_2”
“plstate -i Stark_3”

A clearer picture is provided by

“plstate -a 150 -G -y 0.35 -i no_Stark”
“plstate -a 150 -G -y 0.35 -i Stark_1”
“plstate -a 150 -G -y 0.35 -i Stark_2”
“plstate -a 150 -G -y 0.35 -i Stark_3”

To compare the populations of a selected state at different laser intensities, one
has first to generate the state-population data files. Type:

“rdcheck84 -on no -oq no -oc st_0 -i no_Stark”
“rdcheck84 -on no -oq no -oc st_1 -i Stark_1”
“rdcheck84 -on no -oq no -oc st_2 -i Stark_2”
“rdcheck84 -on no -oq no -oc st_3 -i Stark_3”

and then

“plgen -u 1:3 -a 150 -G st_0.pl st_1.pl st_2.pl st_3.pl”

This plot shows the populations of the first excited state (nπ∗) for the four different
field strengths. To inspect the populations of the ground and second excited state,
replace -u 1:3 with -u 1:2 and -u 1:4, respectively.
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