

ADVANCED SOFTWARE ENGINEERING:
EXPANDING THE FRONTIERS OF
SOFTWARE TECHNOLOGY

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

ADVANCED SOFTWARE
ENGINEERING:
EXPANDING THE
FRONTIERS OF
SOFTWARE
TECHNOLOGY

IFIP 19th World Computer Congress, First
International Workshop on Advanced Software
Engineering, August 25, 2006, Santiago, Chile

Edited by

Sergio F. Ochoa
Department of Computer Science
Universidad de Ctiile

Santiago, Chile

Gruia-Catalin Roman
Department of Computer Science and Engineering
Washington University in St. Louis
St Louis, Missouri, LISA

Springer

Library of Congress Control Number: 2006928498

Advanced Software Engineering: Expanding the Frontiers of Software Technology

Edited by S. Ochoa and G. Roman

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736/ I86I-2288 (Internet)
ISBN: 10: 0-387-34828-X
ISBN: 13: 9780-387-34828-X
elSBN: 10: 0-387-34831-X

Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1
springer.com

Preface

On behalf of the Organizing Committee for this event, we are glad to
welcome you to IWASE 2006, the First International Workshop on Advanced
Software Engineering. We hope you will enjoy the traditional Chilean
hospitality and, of course, please tell us how we can make your visit a
pleasant and useful experience.

The goal of this Workshop is to create a new forum for researchers,
professionals and educators to discuss advanced software engineering topics.
A distinctive feature of this Workshop is its attempt to foster interactions
between the Latin-American software engineering community and computer
scientists around the world. This is an opportunity to discuss with other
researchers or simply to meet new colleagues. IWASE 2006 has been
organized to facilitate strong interactions among those attending it and to
offer ample time for discussing each paper.

IWASE 2006 attracted 28 submissions from 14 countries, 8 of them
outside Latin-America. Each of the 28 articles was reviewed by at least three
members of the Program Committee. As a result of this rigorous reviewing
process, 13 papers were accepted: nine fiill papers and four work-in-progress
papers. These papers were grouped in four tracks; software architecture,
software modeling, software development process and experiences in
software development.

Several people have worked in the preparation of the event. We would
like to thank Hernan Astudillo, Cecilia Bastarrica, Yadran Eterovic, Andres
Neyem and Marcela Varas for their enthusiastic support and hard work as
members of the Organizing Committee. We want to thank John Atkinson,
Ramon Puigjaner and Mauricio Solar for the support to this workshop. Also,
we are gratefiil to the student volunteers whom have helped with many
details. We wish to mention two institutions and a company which aided to
make this event possible. The institutions are Universidad de Chile and
Washington University in St. Louis, which provided their support. The
company supporting this event is Microsoft Chile.

Please get involved!

Sergio F. Ochoa
Gruia-Catalin Roman
Conference Chairs, IWASE 2006

Advanced Software Engineering: Expanding the Frontiers of Software Technology

Program Committee

Bemhard K. Aichemig, TU Graz, (Austria)
Roberto Aldunate, University of Illinois at Urbana-Champaign (USA)
Pedro Antunes, University of Lisboa (Portugal)
Hernan Astudillo, Universidad Tecnica Federico Santa Maria (Chile)
Felix Bachmann, Carnegie Mellon University (USA)
Doo-Hwan Bae, KAIST, (South Korea).
Federico Balaguer, University of Illinois at Urbana-Champaign (USA)
Cecilia Bastarrica, Universidad de Chile (Chile)
Marcos Borges, Universidade Federal do Rio de Janeiro (Brazil)
Mariano Cilia, Darmstadt University of Technology (Germany)
Yadran Eterovic, Pontificia Universidad Catolica de Chile (Chile)
Jesiis Favela, CICESE (Mexico)
Eduardo Fernandez, Florida Atlantic University (USA)
George Fernandez, RMIT University (Austraha)
Cristina Gacek, University of Newcastle (England)
Alejandra Garrido, University of Illinois at Urbana-Champaign (USA)
Luis A. Guerrero, Universidad de Chile (Chile)
Claudia Marcos, UNICEN (Argentina)
Gabriel Moreno, Carnegie Mellon University (USA)
Jaime Navon, Pontificia Universidad Catolica de Chile (Chile)
Mario Piattini, Universidad de Castilla - La Mancha (Spain)
Claudia Pons, Universidad Nacional de La Plata (Argentina)
Karl Reed, La Trobe University (Austraha)
Guilherme H. Travassos, Universidade Federal do Rio de Janeiro (Brazil)
Hongji Yang, De Montfort University (England)
Marcela Varas, Universidad de Concepcion (Chile)
Marcello Visconti, Universidad Tecnica Federico Santa Maria (Chile)

Organizing Committee

Hernan Astudillo, Universidad Tecnica Federico Santa Maria, (Chile).
Cecilia Bastarrica, Universidad de Chile, (Chile).
Yadran Eterovic, Pontificia Universidad Catolica de Chile, (Chile).
Andres Neyem, Universidad de Chile, (Chile).
Sergio F. Ochoa, Universidad de Chile, (Chile).
Marcela Varas, Universidad de Concepcion, (Chile).

Table of Contents

Session 1: Software Architecture

1. A Meshing Tool Product Line Architecture 1
Maria Cecilia Bastarrica, Nancy Hitschfeld-Kahler, Pedro O. Rossel.

2. A Model for Capturing and Tracing Architectural Designs 16
M. Luciana Rolddn, Silvio Gonnet, Horacio Leone.

3. Multidimensional Catalogs for Systematic Exploration of
Component-Based Design Spaces 32
Claudia Lopez, Herndn Astudillo.

Session 2: Software Modeling

4. Practical Verification Strategy for Refinement Conditions in
UML Models 47
Claudia Pons, Diego Garcia.

5. A Cognitive Model of User Interaction as a Guideline for
Designing Novel Interfaces 62
Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos.

6. An Empirical Evaluation for Business Process Tools 77
Erika M. Nieto-Ariza, Guillermo Rodriguez-Ortiz,
Javier Ortiz-Hernandez.

1. Integration Ontology for Distributed Database 85

Ana Munoz, Jose Aguilar, Rodrigo Martinez.

Session 3: Software Development Process

8. SSP: A Simple Software Process for Small-Size Software
Development Projects 94
Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos.

9. A Method for Collaborative Requirements Elicitation and Decision-
Supported Requirements Analysis 108
Michael Geisser, Tobias Hildenbrand.

10. Defining Security Requirements through Misuse Actions 123
Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie,
Shihong Huang.

Advanced Software Engineering: Expanding the Frontiers of Software Technology x

Session 4: Experiences in Software Development

11. Experiences in Portable Mobile Application Development 138
Antti Kantee, Heikki Vuolteenaho.

12. Adapting Aspect-Oriented Applications: A Trial Experience 153
Claudia Marcos, Jane Pryor.

13. Building a 3D Meshing Framework Using Good Software
Engineering Practices 162
Nancy Hitschfeld, Carlos Lillo, Ana Cdceres, M. Cecilia Bastarrica,
M. Cecilia Rivara.

2

A Meshing Tool Product Line Architecture

Maria Cecilia Bastarrica-'^, Nancy Hitschfeld-Kahler-'-, Pedro O. Rossel^'^

^ Computer Science Department, FCFM, Universidad de Ciiile
Blanco Encalada 2120, Santiago, Chile

Departamento de Computacion e Informatica, Universidad Catolica del Maule
Avenida San Miguel 3605, Talca, Chile

{cecilialnancy IprosselJQdcc .uclii le.cl

Abstract . Meshing tools are extremely complex pieces of software.
Traditionally, they have been built in a one by one basis, without sys
tematically reusing already developed parts. The area has matured so
that we can currently think of building meshing tools in a more in
dustrial manner. Software product lines is a trend in software devel
opment that promotes systematic reuse. We propose a layered product
line architecture for meshing tools that can be instantiated with differ
ent algorithms, ways of implementing basic concepts, and even for two
or three dimensional meshing tools. We specify it formally using xADL
and we show that the architecture is compatible with a series of already
built tools. This work is the beginning of a domain analysis that has
the potential to go beyond the sometimes rigid descriptions provided
by architectural description languages.

1 Introduction

Meshes are used for numerical modeling, visualizing and/or simulating objects
or phenomena. A mesh is a discretization of a certain domain geometry. This
discretization can be either composed by a unique type of element, such as tri
angles, tetrahedra or hexahedra, or a combination of different types of elements.
Meshing tools generate and manage these discretizations.

Meshing tools are inherently sophisticated software due to the complexity
of the concepts involved, the large number of interacting elements they man
age, and the application domains where they are used. Meshing tools need to
accompUsh specific functionality while still having an acceptable performance.
Managing thousands and even millions of elements with a reasonable use of
computational resources -mainly processor time and storage- becomes a must
if the tool is to be usable at all. Lately, however, other qualities related to
modifiability have become relevant in meshing tool development.

There are many application domains where meshing tools are used, ranging
from mechanics design to medicine [12]. Each domain requires slightly different
functionality. For this reason, a variety of meshing tools have been built differing
on the functionality included, the algorithms used for implementing their func
tionality, the way data is represented, or the format of the data used as input or

Please use the following format when citing this chapter:

Bastarrica, M.C., Hitschfeld-Kahler, N., Rossel, P.O., 2006, in IFIP International Federation for Infor
mation Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software
Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 1-15.

2 Bastarrica et al.

output. Also depending on the application domain, it may be required to have
one, two or three dimensional meshes, each one maybe using different types
of basic modeling elements. For example, analyzing the tree rings requires 2D
meshes generated from an image, simulating tree growth uses surface meshes,
and modeling brain shift during surgery requires 3D meshes.

Developing any complex software from scratch in a one by one basis is expen
sive, slow and error prone, but this is the way meshing tools have traditionally
been built. If this development task is not performed in a systematic way using
good software engineering practices, it may easily get out of control making it
almost impossible to debug and even more difficult to modify. There have been
some efforts lately applying software engineering concepts in meshing tool de
velopment, mainly building general purpose libraries that facilitate reuse. Also
object-orientation and design patterns have the potential of enhancing software
reuse at the code and design levels, and there is some experience in using these
techniques for developing meshing tools.

The software architecture is one of the main artifacts developed during the
software life cycle [15] because it determines most of the non-functional charac
teristics the resulting software will have, and it is also one of the most difficult
documents to change once the software is deployed [2]. Architectural patterns [7]
are used as guidelines for architectural design by reusing design knowledge at
a high level of abstraction. Different architectural patterns promote different
non-functional characteristics. In this way, for example, by using component
and connector patterns such as client-server or repository, runtime properties
can be modeled. Or using module patterns such as decomposition or layers,
properties related to maintainability can be modeled [8].

Software product lines is a trend for planned massive reuse of software as
sets [9]. The most typical reusable assets are software components, but we can
also reuse the product line architecture (PLA), software requirement documen
tation, and test cases, among others. The PLA is an important reusable asset
because all software products in the family share the same design [6]. There
fore, the PLA design should be carefully approached making sure it will produce
software that complies with the desired requirements.

In this paper we present the product line architecture for a family of mesh
ing tools. Its design is based on the general architecture of pubHshed meshing
products, as well as our own experience in building this type of tools. We in
tended to provide a PLA that would promote flexibility and extensibility, so
that existing algorithms, data structures, data formats and visualizers could be
combined in different ways to produce a variety of meshing tools appropriate
for diverse application domains, sharing the software structure. The PLA is
modeled following the layered architectural pattern [7]. This module view type
is used for promoting modifiability, reusability and portabihty. Sometimes it is
argued that layered architectures may penalize performance, but we have found
that performance does not necessarily degrade significantly using the proposed
PLA [19]. In [17] it is reported that a tool implementing this layered architec-

A Meshing Tool PLA 3

ture performs almost as fast as TetGen [26], a widely used open source meshing
tool.

We formally define the PLA using xADL 2.0, an XML-based ADL specially
designed to support the description of architectures as explicit collections of
components and connectors [18]. There are graphical tools that make it eas
ier to specify software architectures using xADL. xADL has also shown to be
appropriate to specify product lines architectures [10].

We show how the proposed PLA can be instantiated for generating different
meshing tools. In particular we show how already implemented tools can be seen
as instantiations of our product family, independently of the methods followed
for generating the meshes and the dimensions of the managed mesh.

The paper is structured as follows. In Section 2 we present and discuss
concepts such as software architecture and software product lines and how they
have been used in the development of meshing tools. We also present some
efforts in developing meshing tools. Section 3 presents the proposed layered
architecture for our product family of meshing tools, and Section 4 shows a
series of different instantiations of this PLA to produce different meshing tools.
Finally, in Section 5 we present some conclusions and describe our work in
progress.

2 Related Work

There is a variety of meshing tools developed for different purposes [25]. How
ever, the use of software engineering principles in meshing tool design has spread
only in the last five years. Some examples include the design of generic extensible
geometry interfaces between CAD modelers and mesh generators [21,23,27,30],
the design of object-oriented data structures and procedural classes for mesh
generation [22], and the computational geometry algorithm library CGAL [14].
Also recently it was publish a discussion on the usage of formal methods for im
proving reliability of meshing software [13]. There have also been some attempts
in using software product family concepts for building meshing tools [3,28].

Software product lines (SPL) is a modern approach towards software de
velopment based on planned massive reuse. The idea is to provide a reuse in
frastructure that supports a family of products, and to spend the resources in
such a way that a high return of investment and reduce time-to-market can be
achieved [29]. All elements subject to reuse are called core assets of the SPL. So,
an SPL is a set of products that are built using core assets in a planned manner
and that satisfy the needs of a market segment [9]. One of the most important
assets in a SPL is the product line architecture (PLA). Opportunistic reuse does
not usually work [6]; thus, assets in a SPL should be developed in such a way
that reuse is promoted. This development process is longer and more expensive
than developing one product at a time, but if assets are reused enough times, it
is still cost-effective. Experience has shown that the costs of developing reusable
assets is paid off after the second or third product is built [33]. The strategy for

4 Bastarrica et al.

building software product lines is to identify commonalities, variabilities and
optional modules.

To our knowledge, SPL has neither been widely used as an approach for
developing meshing tools, nor have architectural patterns been considered as
a basis for designing any particular meshing tool architecture. Product line
architectures must, by definition, be flexible to foster all products in the SPL,
and promote modifiability so that variabilities could be incorporated. Therefore,
it results natural to use module view type patterns [8], and more particularly
a layered architectural pattern [7] as a guideline for designing the PLA.

There are several different architecture description languages (ADLs) [20],
but not all of them are good for specifying PLAs.

In [5], an integrated notation for specifying software architectures in three
levels of abstraction is proposed: structure, behavior and domain specific ab
stract data types. In [4] it is shown how to use this notation for defining a PLA.
The notation helps in the process of identifying and localizing variations, but
this it is not only non-standard for architecture specification, but also it has
Uttle tool support.

Koala is a software component model designed for creating software product
lines for a large variety of products [31,32]. Koala handles variation using com
position, where selection of reusable components is bound in different ways to
obtain different products. Koala was specifically created for modeling embed
ded systems. Mae is a technique, along with a supporting toolset, to formally
specify, analyze, and evolve software architectures. It uses xADL 2.0 as an ex
tensible notation to model the PLA as we do. We may use Mae in the future
to face other development stages.

UML has become a standard notation for documenting software design.
With the new UML 2.0 standard, some modeling elements specifically for soft
ware architectures were incorporated, but there are still no primitives for doc
umenting connectors or architectural styles. However, there have been some
efforts to extend UML in order to be able to use it as an ADL [24]. To our
knowledge, UML has not been widely used for defining PLA. xADL improves
on the UML approach in two significant ways: features and extensibility. With
respect to features, xADL 2.0's type system and product-line support are abil
ities not present in UML 2.0 [10].

A Meshing Tool PLA 5

3 Product Line Architecture

Independently of the application domain, any meshing tool may provide certain
general functionality:

- read the domain geometry and physical values
- generate an initial mesh
- refine, derefine, improve or smooth a mesh according to a quality criterion

within a specified region
- evaluate the quality of a resulting mesh
- store the mesh into a file possible with different formats
- visualize the mesh

The specification of the input geometry and the physical values can be
generated by different CAD programs or by other mesh generation tools. That is
why there should be a component in charge of managing input/output formats.

It may be required to follow different algorithms for generating an initial
mesh. These algorithms receive the domain geometry, and generate a mesh that
represents an initial discretization of the domain.

Modeling different problems may require different point distributions in the
mesh, thus a variety of refinement strategies have been proposed. A refinement
strategy consists of dividing coarse elements into smaller ones until a set of
refinement criteria within a specified region is fulfilled. Improvement is a special
kind of refinement where the quality of the mesh elements is improved, not
necessarily dividing existing elements.

Smoothing and derefinement processes are also applied according to some
criteria and over different domain regions. Smoothing moves point locations in
order to improve the local quality of the mesh elements. And refinement is the
inverse process of refinement, making the mesh coarser again.

The evaluation process lets the user know the real quality of the mesh, in
terms of percentage of good and bad elements.

The tools that form part of the family may include some or all of these
processes. The PLA determines the product line scope limiting what products
can be built, but at the same time it should be flexible enough to allow designers
to build all desired tools. Flexibility and interchangeability are two of the non
functional requirements that guide our PLA design; this is why we chose a
module view type architecture, and more precisely a layered architecture.

Figure 1 shows the structure of the meshing tool PLA. This architecture
is specified using ArchStudio [1]. For simplicity we only include the connectors
between layers and not those among modules within a layer even though they
exist and they may be quite complex. Table 1 includes a general description of
each type of component included in the PLA shown in Fig. 1.

The architecture is composed by four layers: User Interface, Algorithms,
Model and Input Output. In the User Interface layer there is only one mod
ule: Selector. The Algorithms contains the modules corresponding to all typical
mesh processes. The Model layer includes the representation of all entities used

Bastarrica et al.

iw.!C.-:p:i'

lU.-..™.,

Fig. 1. Meshing Tool PLA

for modeling the mesh as well as the processes for input and output the corre
sponding data. Finally, in the Input Output layer there are modules for reading
mesh data and/or visualizing it. In xADL, each layer is defined as a structure.
Figure 2 shows the xADL specification of the complete Meshing Tool PLA.
Figure 3 shows the xADL specification of the Refine module. This module is
included in the Algorithms structure.

Refine and/or improve represent the core functionality of a meshing tool.
In our PLA, both are presented as optional even though it may seem counter

A Meshing Tool PLA

Layer

User
Interface

Algorithmf

Model

Input
Output

C o m p o n e n t
T y p e

Selector

Format

Initial

Refine

Improve

Derefine

Smooth

Final

Evaluate

Criterion

Region

Output

Mesh

Vertex
Edge

Face

Element

Input

Visualizer

InputFile

Descr ip t ion

Menu for choosing the process to execute in the fol
lowing step
Translates the input geometry (domain) specified in
any of the accepted formats in a normalized format
Generates an initial mesh of the domain
Divides the mesh elements that do not satisfy the
refinement criterion in the specified region
Improves the mesh quahty by dividing or reorganizing
its elements according to the criterion in the specified
region
Eliminates mesh elements according to a criterion in
the specified region
Improves the quahty ot the elements by moving mesh
points according to some criterion in the specified re
gion
Applies a post-process to the complete mesh
Generates statistics ot the current mesh according to
a quality criterion
Represents a geometric or physical quality that an
element must fulfill. For example, the minimum angle
of each element must be greater than 25° and/or the
maximum edge length must be less than 2
Represents the pari ot the domain where the selected
algorithm is applied to any element that does not
fulfill the specified criterion
Gets the domain discretization and physical at
tributes and stores it in the required format
Gontams the discretization ot the domain. It is com
posed of elements, faces (only in 3D), edges and ver
tices
Represents a point of the discretization
Represents a connection between two vertices
Represents the connections on an element surface. A
triangular face is the one defined by three vertices
or edges, and a rectangular face is defined by four
vertices or edges
Represents a discretization ceil. It can be a triangle or
rectangle in 2D, or a tetrahedron or an hexahedron,
among others, in 3D
Reads the domain description in a specific format and
stores it as part of the mesh
Tool that allows the visualization of the domain dis
cretization and physical attr ibutes
Gontains the domain description m a format gener
ated by a CAD tool

Table 1. Component types

intuitive. Actually, at least one of them must be included in any tool instan-

8 Bastarrica et al.

tiation. Though they represent different concepts, there are certain algorithms
that perform both, so there are meshing tools that provide both functionalities
only including one of them. There are other tools that prefer to use different al
gorithms for each one. This is why we give the opportunity of choosing different
configurations. The Face module in the Model layer is also defined as optional.
For all 3D tools there must exist a Face module, but it is meaningless for 2D
tools.

+ <types:archStructure types:id= "Meshing Tool"
xsi:type= "types: ArchStructure" >

+ <types:archStructure types:id="User Interface"
xsi:type= "types: ArchStructure" >

+ <types:archStructure types:id= "Algorithms"
xsi:type= "types: ArchStructure" >

+ <types:archStructure types:id= "Model"
xsi:type= "types: ArchStructure" >

+ <types:archStructure types:id= "Input Output"
xsi:type= "types: ArchStructure" >

Fig. 2. Structures used in Meshing Tool Architecture

As we can see in Figs. 1 and 3, Refine exposes two interfaces, called Re
fine.Top and Refine.Bottom, respectively. The former has the direction in, and
the latter has the direction out; this means that this component can be used by
any component in the upper layer, and Refine may use other modules contained
in the lower layer, following the rules of the layered architectural pattern [7].

According to the graphical specification in Fig. 1 where Refine is defined as
optional, the xADL includes the options:optional tag indicating optionality.

4 Product Instantiation

In order to show the consistency of the proposed PLA, we present some products
that may be part of the SPL.

The process of designing meshing products using the proposed PLA has
two stages: component type selection and implementation selection. First, the
component types that are to be included must be chosen; here some of the op
tional component types may not be included. In the second stage, a particular
implementation needs to be chosen for every selected component type. In this
way, different meshing tools may differ in their functionality (component types
included) or in their implementation (concrete component implementation as
signed to each component type).

A Meshing Tool PLA

- <types:component types:id= "Refine" xsi:type="types:Component">
<types:description xsi:type= "instance:Description">

Refine module</types:description>
- <types:interface types:id="Refine.Top" xsi:type="types:Interface">

<types:description xsi:type="instance:Description" >
Top interface</types:description>

<types:direction xsi:type="instance:Direction" > in</types:direction>
</types:interface>
- <types:interface types:id= "Refine.Bottom" xsi:type="types:Interface">

<types:description xsi:type= "instance:Description" >
Bottom interface< /types:description>

<types:direction xsi:type="instance:Direction" > out</types:direction>
</types:interface>
+ <options:optional xsi:type="options:Optional">

< /typesxomponent >

Pig. 3. Refine Module Specification

Our SPL is oriented towards building tools for the generation of meshes
required for numerically solving partial differential equations. The most widely
used numerical methods for solving these equations are: finite differences, con
trol volumes, and finite elements. Typically mesh generators have been imple
mented using Delaunay algorithms, octree or advancing front. Meshes satisfying
the Delaunay condition are those that provide the most equilateral partition of
a set of 2D points. Octrees and advancing front are specific techniques for mesh
generation. In Section 4.1 we present tools for generating finite element meshes
and in Section 4.2 we present control volume meshes; in each case we present
one example for 2D meshes and another one for 3D meshes.

4.1 Finite Element Meshes

For a large range of problems using the finite element method, isotropic meshes
are required. The isotropy is measured based on the geometrical properties of
each mesh element, e.g. more equilateral elements are considered better than
elements with too small or too large angles.

Simple 2D Triangulation Tool 2D triangulations require some of the com
ponent types identified as part of the Algorithms layer of the PLA in Fig. 3.
In particular, a tool that generates Delaunay triangulations where all triangles
have the minimum angle greater than a threshold value specified by the user,
requires the component types described as part of Table 2. 2D triangulations
do not require the Face component type, but all other component types in the
Model layer must be included.

10 Bastarrica et al.

C o m p o n e n t
T y p e

Selector

Initial
Improve
Criterion

Region

Descr ip t ion

After generating the initial mesli, only the improvement algorithm
can be selected letting the user to provide the minimum angle for
the criterion to be applied
Delaunay.a lgor i thm is used for generating the initial mesh
Delamiay_improvement_algorithm is used for improving
Minimum-angle is used as a general criterion
Whole_geometry is used as the region where the improvement algo
rithm is applied

Table 2. 2D triangulation meshing tool (taken from

Even t h o u g h the Format componen t t ype is no t op t iona l , in th is case it has

a d u m m y functionali ty since t h e mesh is a l ready read in its required format .

3 D T e t r a h e d r a l M e s h e s In Table 3 t he a lgor i thms included in a pa r t i cu la r
3D finite e lement mesh genera to r t a k e n from [19] are described. Th i s meshing
tool allows t h e genera t ion of 3D De launay a n d non-Delaunay meshes wi th a
user specified point dens i ty and element quality. It also u n d e r s t a n d s different
i npu t a n d o u t p u t d a t a formats . All componen t types included in t h e Model
layer mus t also be realized as p a r t of t h e tool , including F a c e since it is a 3D
tool .

C o m p o n e n t
T y p e

Descr ip t ion

After generating the initial mesh, the Refine and Improve compo
nents ca.n he chosen several times

Selector

Initial GMVDelaunay generates a Delaunay mesh
translates the Off and Mesh formats into the appropriate format un-
derstandable by the meshing tool using Of f Format and MeshFormat.
respectively

Format

LeppBisect ion refines generally according to the longest edge cri
terion, or any other refinement criterion
LeppDelaunay improves the mesh with the CircumRadiusEdgeRatio
criterion, or any other improvement criterion

Refine

Improve

A set of different eligible criteria tor refinement and improvement
e.g. LongestEdge, CircumRadiusEdgeRatio, VolvimeEdgeRatio

Criterion

the
Region Region where the algorithm is applied; e.g. WholeGeometry, Cube,

Sphere

Table 3 . 3D finite element mesh generator (taken from [19])

A Meshing Tool PLA 11

4.2 Control Volume Meshes

For the simulation of semiconductor devices using the control volume method,
it is required to have anisotropic Delaunay conforming meshes where no part
of a Voronoi region of an internal point is outside the domain [11]. In 2D, this
requirement is fulfilled if there is no obtuse angle opposite to boundary/interface
edges. In 3D, for each boundary face the center of the smallest circumsphere
must be inside the domain. In addition, too large angles in the interior of the
domain and too high vertex edge connectivity must be avoided.

2D Triangulations In [3], a tool for the simulation of semiconductor devices
is described. Here the mesh is read already in the format the tool is able to
understand, so the Format component is assumed to have a dummy function
ality. This tool is essentially used for improving and post-processing a mesh
already generated and refined by another meshing generator. The specific com
ponent types chosen and their particular implementations are those described
in Table 4.

Component
Type

Description

Allows to enter a specitic improvement region and criterion, and also
to choose the following algorithm to be applied (either Improve or
Final)

Selector

Initial Reads the already generated Delaunay mesh

Improve Applies the Delauiiay_improvement_algorithm to the specified re
gion with a particular criterion

'ost-processes the mesh eliminating obtuse angles opposite to the
boundary (Non_obtuse_boimdary.algorithm Final

Improvement criteria such as Maximum-edge-vertex_connectivity
and Maximum_angle

Criterion

the Region where tne improvement is applied; in the example only
Vfhole_geometry is used, but it may also be Circle or Rectangle

Region

Table 4. 2D control volume mesh (taken from

3D Mixed Element Meshes A tool for 3D semiconductor simulation is de
scribed in [16]. In this case, the mesh is composed of different types of elements,
i.e. cuboides, prisms, pyramids and tetrahedra. The implementation is based on
a modified octree approach. Even though this application was not developed
with the product line concepts in mind, it fits within the PLA structure with
little effort. The components included as part of the tool are described in Ta
ble 5.

12 Bastarrica et al.

Component
Type

Description

Allows to enter a list of criteria and their associated regions, and
then the whole process is invoked

Selector

Reads the device geometry and generates a Krst coarse mixed ele
ment mesh (Fit-Device-Geometry)

Initial

Divides element in order to ht physical and geometric parameter
values (Ref ine-Grid)

Refine

Improves elements in order to fulfill tHi Voronoi region
requirement and generates the final mixed element mesh
Make-IrregTilar_Leaves_Splittable

Final

Region Regions where the refinement is applied, e.g. cuboid or rectangle,
among others
Doping-Difference and Longest-Edge as the main refinement cri
teria

Criterion
fp

Outputs the mesh In a format understandable Ey
the visualizer (Write-Geometrical-Inf ormation and
Write-Doping-Information)

Format

Table 5. 3D control volume mesh (taken from [16])

5 Conclusion

Meshing tool construction has not generally been approached using modern
software engineering techniques, even though being sophisticated pieces of soft
ware makes them an appropriate application area.

The software product line approach intends to reuse all the artifacts that
are built during software development in new products that fall within the
SPL scope. The PLA is one of the most important assets in a SPL because
it determines the non functional properties the resulting software will have.
Having a well defined architecture allows us to integrate components, either in
house developed, commercial or open source, such as the visualizer in our SPL
case.

We proposed a layered PLA for a meshing tool SPL and we showed that a
variety of diverse meshing tools are consistent with the proposed structure. By
formally specifying the PLA using xADL, we were also able to iterate until we
designed an architecture that was simple enough to be easily understood, while
general enough to be able to capture the abstractions behind a wide variety of
meshing tools. Having an integrated graphical and textual modeling tool such
ArchStudio, greatly helped in this process.

The proposed PLA can be used as a road map to build almost any meshing
tool. Different dimensions, algorithms, strategies and criteria will determine the
concrete implementation of the component types identified as part of the PLA
that will be part of each different meshing tool. We plan to build a more com
plete set of different implementations of the component types in the PLA and
a software framework based on the PLA structure as a "meshing tool factory"

A Meshing Tool PLA 13

for designing different tools t h a t may be au tomat ica l ly buil t by combining the

chosen implemen ta t ion for each componen t t ype .

T h e r e are current ly some as t ronomical appl ica t ions being developed based

on t h e proposed P L A , mainly using the proposed layered s t ruc tu r e as a guide

line.

Acknowledgments

T h e work of Nancy Hitschfeld-Kahler was par t ia l ly suppo r t ed by Fondecyt P r o j

ect N°1061227. T h e work of P e d r o O. Rossel was par t ia l ly suppor t ed by g ran t

No. U C H 0109 from M E C E S U P , Chile.

References

1. ArchStudio 3. Architecture-Based Development Environment. Insti
tute for Software Research, University of California, Irvine, 2005.
ht tp: / /www.isr .uci .edu/projects/archstudio/ .

2. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
SET Series in Software Engineering. Addison-Wesley, 2'"' edition, 2003.

3. Maria Cecilia Bastarrica and Nancy Hitschfeld-Kahler. Designing a product family
of meshing tools. Advances in Engineering Software, 37(1):1-10, January 2006.

4. Maria Cecilia Bastarrica, Marcelo Lopez, Sergio F. Ochoa, and Pedro O. Rossel.
Using the Integrated Notation for Defining a Product Line Architecture. In
Proceedings of the First Conference on the PRInciples of Software Engineering,
PRISE'04, Buenos Aires, Argentina, November 2004.

5. Maria Cecilia Bastarrica, Sergio F. Ochoa, and Pedro O. Rossel. Integrated No
tation for Software Architecture Specifications. In Proceedings of the XXIV In
ternational Conference of the Chilean Computer Science Society, SCCC'04, pages
26-35, Arica, Chile, November 2004. IEEE Computer Society.

6. Jan Bosch. Design and Use of Software Architectures. Adopting and Evolving a
Product Line Approach. Addison Wesley, first edition. May 2000.

7. Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. Pattern
Oriented Software Architecture: A System of Patterns. John Wiley & Son Ltd.,
August 1996.

8. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafi'ord. Documenting Software Architectures.
Views and Beyond. SEI Series in Software Engineering. Addison Wesley, 2002.

9. Paul Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley, first edition, August 2001.

10. Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. A Comprehen
sive Approach for the Development of Modular Software Architecture Descrip
tion Languages. ACM Transactions on Software Engineering and Methodology,
14(2):199-245, 2005.

11. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry. Algorithms and Applications. Springer, second edition, 1998.

14 Bastarrica et al.

12. Rod W. Douglass, Graham F. Carey, David R. White, Glen A. Hansen, Yannis
Kallinderis, and Nigel R Weatherill. Current views on grid generation: summaries
of a panel discussion. Numerical Heat Transfer, Part B: Fundamentals, 41:211-
237, March 2002.

13. Ahmed H. ElSheikh, W. Spencer Smith, and Samir E. Chidiac. Semi-formal
design of reliable mesh generation systems. Advances in Engineering Software,
35(12):827-841, 2004.

14. Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schonherr. On the design of CGAL a computational geometry algorithms library.
Software - Practice and Experience, 30(11):1167-1202, 2000.

15. Martin Fowler. Who Needs an Architect? IEEE Software, 2 0 (5) : 1 H 3 , 2003.
16. Nancy Hitschfeld, Paolo Conti, and Wolfgang Fichtner. Mixed Element Trees:

A Generalization of Modified Octrees for the Generation of Meshes for the Sim
ulation of Complex 3D Semiconductor Device Structures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 12(11):1714-1725,
November 1993.

17. Nancy Hitschfeld-Kalher, Carlos Lillo, Ana Caceres, Maria Cecilia Bastarrica,
and Maria Cecilia Rivara. Building a 3D Meshing Framework Using Good Soft
ware Engineering Practices. In Proceedings of the J"* International Workshop on
Advanced Software Engineering, Santiago, Chile, August 2006.

18. Rohit Khare, Michael Guntersdorfer, Peyman Oreizy, Nenad Medvidovic, and
Richard N. Taylor. xADL: Enabling Architecture-Centric Tool Integration with
XML. In 34^ Annual Hawaii International Conference on System Sciences
(HICSS-34), Maui, Hawaii, January 2001. IEEE Computer Society.

19. Carlos Lillo. Analysis, Design and Implementation of an Object-Oriented System
that allows to Build, Improve, Refine and Visualize 3D Objects. Master's thesis,
Departamento de Ciencias de la Computacion, Universidad de Chile, 2006. (in
Spanish).

20. Nenad Medvidovic and Richard Taylor. A Classification and Comparison Frame
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26(1), January 2000.

21. Silvio Merazzi, Edgar Gerteisen, and Audrey Mezentsev. A generic CAD-mesh
interface. In Proceedings of the P"* Annual International Meshing Roundtable,
pages 361-370, October 2000.

22. Anton V. Mobley, Joseph R. Tristano, and Christopher M. Hawkings. An Object-
Oriented Design for Mesh Generation and Operation Algorithms. In Proceedings
of the l(f^ Annual International Meshing Roundtable, Newport Beach, California,
U.S.A., October 2001.

23. Malcolm Panthaki, Raikanta Sahu, and Walter Gerstle. An Object-Oriented Vir
tual Geometry Interface. In Proceedings of the 6"' Annual International Meshing
Roundtable, pages 67-81, Park City, Utah, U.S.A., 1997.

24. Sunghwan Roh, Kyungrae Kim, and Taewoong Jeon. Architecture Modeling Lan
guage based on UML 2.0. In Proceedings of the 11th Asia-Pacific Software En
gineering Conference (APSEC 2004), pages 663-669, Busan, Korea, November
2004. IEEE Computer Society.

25. Robert Schneiders. Meshing software, 2006. h t t p : / / w w w - u s e r s , i n f o r m a t i k . -
r w t h - a a c h e n . d e / r o b e r t s / s o f t w a r e . h t m l .

26. H. Si and Klaus Gartner. Meshing Piecewise Linear Complexes by Constrained
Delaunay Tetrahedralizations. In Proceedings of the I4* International Meshing
Roundtable, September 2005.

A Meshing Tool PL A 15

27. R. Bruce Simpson. Isolating Geometry in Mesh Programming. In Proceedings
of the 5'* International Meshing Roundtable, pages 45-54, South Lake Tahoe,
California, U.S.A., October 1999.

28. Spencer Smith and Chien-Hsien Chen. Commonality Analysis for Mesh Gener
ating Systems. Technical Report CAS-04-10-SS, Department of Computing and
Software, McMaster University, October 2004.

29. Anne Taulavuori, Eila Niemela, and Paivi Kallio. Component documentation—
a key issue in software product lines. Information and Software Technology,
46(8):535-546, 2004.

30. Timothy J. Tautges. The common geometry module (CGM): A generic, extensi
ble, geometry interface. In Proceedings of the 5*'' Annual International Meshing
Roundtable, pages 337-347, New Orleans, U.S.A., October 2000.

31. Rob C. van Ommering. Building product populations with sofware components. In
Proceedings of the 22rd International Conference on Software Engineering, ICSE
2002, pages 255-265, Orlando, Florida, USA, May 2002. ACM.

32. Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The
Koala Component Model for Consumer Electronics Software. IEEE Computer,
33(3):78-85, 2000.

33. David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A
Based Software Development Process. Addison-Wesley, 1999.

A Model for Capturing and Tracing
Architectural Designs

M. Luciana Roldan, Silvio Gonnet, Horacio Leone
CIDISI, Universidad Tecnologica Nacional

INGAR, Universidad Tecnologica Nacional, CONICET
Avellaneda 3657, 3000, Santa Fe, Argentina

{Iroldan, sgonnet, hleone}@ceride.gov.ar

Abstract. Software architecture constitutes the primary design of a software
system. Consequently, architectural design decisions involved in architecture
design have a key impact on the system in such aspects as future maintenance
costs, resulting quality, and timeliness. However, the applied knowledge
employed and the design decisions taken by soihvare architects are not
explicitly represented in the design despite their important role; consequently,
they remain in the mind of designers and are lost with time. In this work, a
model for capturing and tracing the products and architecmral design decisions
involved in software architecture design processes is proposed. An operational
perspective is considered in which design decisions can be modelled by means
of design operations. The basic ontology of situation calculus is adopted to
formally model the evolution of a software architecture.

1 Introduction

Software Architecture Design Process (SADP) involves several activities such as
exploration, evaluation and composition of design alternatives which make it a
difficult, complex process [1]. In order to address those activities, the research
community has been working intensively in the achievement of modelling languages
[2, 3], design methods [4] and computer environments for architect assistance [1,5].
Those tools are basically focused on assisting designers in generating a software
architecture design to satisfy a set of requirements. However, documentation of
associated rationale, design decisions, and applied knowledge are often omitted.
Such omissions stem from the fact that such information may be intuitive or obvious
to the architects involved in the design process, or from the lack of adequate
computer-aided environments that allow support design processes. Thus, most

Please use the following format when citing this chapter:

Roldan, M.L., Gonnet, S., Leone, H., 2006, in IFIP International Federation for Information Processing,
Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds.
Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 16-31.

A Model for Capturing and Tracing Architectural Designs 17

architectural design knowledge and architectural design decisions taken through
SADP remain in the minds of experienced designers, and are lost with time.
Consequently, capturing design decisions is of great importance to capitalize
previous designs and to provide the foundations for learning and training activities.
Precisely, this latter issue has been the goal of other contributions [6, 7] which
recognise that the design rationale should be incorporated into the SADP.

Therefore, this work introduces a model for capturing and tracing the SADP and
its products. Its goals are to make explicit the states of the SADP and the way in
which they were generated. The model is based on a generic Process Version
Administration Model (PVAM) [8], which provides mechanisms for capturing and
managing versions generated during the course of an engineering design project.

In the next section a conceptual model is presented, introducing the extensions
for making PVAM applicable to SADP. After that, the operation capturing system is
described, where the products and operations of the SADP are represented. The
proposed model is illustrated in Section 4 with a case study about the design of a
monitoring system for an industrial process. Finally, conclusions and future research
guidelines are discussed.

2 A Conceptual Model for Capturing Architectural Design
Processes

The proposed scheme considers the SADP as a sequence of activities operating
on the products of the design process, which are called design objects. Examples of
design objects are components and connectors of the architecture being designed, or
functional and quality requirements and scenarios to be met. Naturally, these objects
evolve as the SADP takes place, giving rise to several versions. In order to maintain
these versions, the previously proposed PVAM [8] is considered. The general
scheme employed in such approach represents a design object at two levels, the
repository and the versions level. Each model version is generated from views of a
repository that keeps all the objects that have been created and modified due to the
model evolution during a design project. The elements constituting the repository are
called versionable objects. A versionable object represents the artifact that can
evolve during a design project, whose history is desirable to be kept during the
modelling process. Furthermore, relationships among the different objects are
maintained in the repository.

At the versions level, the evolution of versionable objects contained in the
repository is explicitly represented. A model version consists of a set of instances of
object versions which represent the versions of the objects that compose a given
model at a time point. The relationships between a versionable object and one of its
object versions is represented by the version{v, o) predicate. Therefore, a given
versionable object keeps a unique instance in the repository and the versions it
assumes in different model versions belong to the versions level.

Based on that scheme, the model evolution is posed as a history made up of
discrete situations. The situation calculus [9] is adopted for modelling such version
generation process. A new model version m„ is generated when an activity a is

M. Luciana Roldan, Silvio Gonnet, Horacio Leone

executed. An activity a is materialised by a sequence of operations ^ and the new
model version m„ is the result of applying such sequence ^ to the components of a
previous model version rrip. In the context given by the design process, it is possible
to assimilate each new generated model version with a situation and each action with
a sequence of operations which is applied on a precedent model version. Therefore,
the new model version m„ is achieved by performing the following evaluation:
apply{(l), Mp) = m„.

The primitive operations that were proposed to represent the transformation of
model versions are add, delete, and modify. By using the add(v) operation, an object
version that did not exist in a previous model version can be incorporated into a
successor model version. Conversely, the deletefv) operation eliminates an object
version that existed in the previous model version. Also, if a design object has a
version Vp, the modify(Vp, vj operation creates a new version v^ of the existing design
object, where Vj is a successor version of Vp. Thus, an object version v is added after
applying the sequence of operations ij) to model version m when the new version v is
created by means of an add or modify operation (Expression 1). On the other hand,
the Expression 2 represents the fact that an object version v is deleted after applying
the sequence of operations (p to model version m when the version v is deleted by the
delete or modify operation.

V, m) addiy) e (?! v (3v^) modify(Vp, v) e (/)=> added{v, apply{(j>, m)) (1)

(V^, V, m) delete(v) s ^v (3vJ modify{v, v^) £ (zi=> deleted(v, apply{<p, m)) (2)

From these definitions, and using the format of successor state axioms proposed
by [9], a formal specification of the cases in which an object version belongs to a
model version is presented. In Expression 3, the predicate belong(v, m) is true when
object version v belongs to model version m. Thus, an object version v belongs to a
model version that arises after applying the sequence of operations ^ to model
version m, if and only if one of the following conditions is met: (i) v is added when
the new version is created (added(v, apply{^, m))); or (ii) v already belonged to the
previous model version m {belong(v, m)) and it is not deleted when (j) is applied to it
(-^deleted{v, apply{^, m))).

(y (p, V, m) belong(v, apply((p, m)) <»
(belong(v, m) v added(v, apply{^, m))) A (-ndeleted(v, apply(^, m))) (3)

From this expression, the object versions belonging to a model version can be
determined. Then, it is possible to reconstruct a model version mj+i by applying all
operation sequences from the initial model version mp.

Once the versions belonging to a model version are defined, the relationships
existing among object versions have to be specified. First, it should be noted that in
this proposal, object versions belonging to a model version are not explicitly
associated to other versions belonging to the same model version. These links are
represented at the repository level. Consequently, the relationship existing between
two object versions must be inferred from the relationship established between the
versionable objects that have been versioned by them. This fact is represented in

A Model for Capturing and Tracing Architectural Designs 19

Expression 4, in which an association at is inferred between two object versions v;
and V2 belonging to the same model version m {mferredAssociation(ak, v;, V2, m)), if
and only if there exists an association a^ between the two versionable objects o; and
02 (association(a/c, O/, 02)), of which V; and V2 are versions, respectively {version(vi,
Oi) and version{v2, 02)).

(V Vi, V2, m, at) inferredAssociation{at, V;, V2, m) «>
(3 Oi, 02) belongiv], m) A belongiy2, m) A versioniyi, Oj) A version(v2, 02) A

association{aic, Oj, 02) (4)

The primitive operations add, delete, and modify introduced are not enough to
capture and trace a SADP execution. Then, PVAM must be extended in terms of the
suitable operations for this design domain, like the ones listed in Table 1. This
operations range from the most basic to the most complex ones:
• Basic: operations that allow creating and deleting basic design objects (like

components and connectors);
• Special: more complex operations that involve object refinement or delegation;
• Styles/Mechanisms application: these operations generate a new set of design

objects which have a configuration based on an architectural style; or even if they
do not modify the model structure, they affect certain design objects properties.

Table 1. Possible Operations for the Software Architecture Design Domain

Basic Operations
addComponent
addConnector
addFunctionalRequirement
addPort
addProperty
addQualityRequirement
addResponsibility
addRole

addScenario
addTypeComponent
addXypeConnector
deleteComponent
deleteConnector
deleteFunctionalRequirement
deletePort
deleteProperty

deleteQualityRequirement
deleteResponsibility
deleteRole
deleteScenario
deleteTypeComponent
deleteTypeConnector

Special Operations
refineComponent
refineResponsibility

delegateResponsibility
delegateScenario

verifyScenario

Styles/Mechanisms application
apply IntermediaryBlackboarc
applyControlLoop

applyRuleEngine
applyClientServer

applyPoolOfConnections

These operations are defined in terms of primitive operations as add{c), and non-
primitive ones (see Table 1), as addPort(c, p). The execution of one of these
operations implies that a sequence of primitive operations add, delete, and/or modify
are applied to a previous model version, which results in a new model version. From
this, it is possible to express these operations in terms of added and deleted
predicates introduced in Expressions 1 and 2. For illustration purposes, let us
consider the addComponent(s, c, l^esps, Ipons) operation. It adds a component c to a
system s. Therefore, if it is applied to a model version m, then a version of a

20 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

component c having a set of responsibilities r and ports p, will belong to the
successor model version (apply(^, m)), as it is defined in Expression 5.

(V (p, s, c, iResps, Iporis, m) addComponertt{s, c, Z^^ ĵ, Ip^ns) e (|) =>
added{c, apply{(j), m)) A added{rel(s,c), apply{(j), mj) A

((V r e l/iesps) added{r, apply{^, m)) A added(rel{c,r), apply{(j), m))) A
{{y p e Iports) addedip, apply{(j), m)) A added{rel{c,p), apply{<p, m)))

(5)
Similarly to Expression 5, the definition of new operations allows enlarging the

set of operations. This can be done without modifying the successor state axiom
(Expression 3).

The precondition for applying the addComponent operation is specified in
Expression 6, where the poss{op, m) predicate expresses that an operation op is
applicable to a given model version m.

(V S, C, l/iesps, Iporls, f^) pOSS{addCompOnent{s, C, hesp, I Ports), fft) <=>

belong(s, w) A —i belongic, m) A
(V r e Ipesps) -1 belong(r, m)/\{y p & lp„ts) -< belongip, m) (6)

3 The Version Support System for Capturing Architectural
Design Processes

3.1 Defining the Operations Model

The class diagram illustrated in Fig. 1 shows the main concepts of PVAM
introduced in the previous section. The relationship between a versionable object and
one of its object versions is represented by the version relationship. Furthermore, it is
assumed that design objects are identified and classified according to the different
types (see Section 3.2). The design object type is represented by ModellingConcept
class (Fig. 1).

A Model for Capturing and Tracing Architectural Designs 21

Activity Versions

History

5:
predecessor!.

Version

Model Hi story predecessor] p 3:
ModelVersion belong

AttribValue

o1. .*
ObjectVersion

RBpbsitory
attribute Type

Domain
obiecl

° S a VersionableObJect
instance

objectTvpe

Association aSsocktionTvpe

IWodellingConcept

Jpart

DonnainRelationship

jL Attribute

: -Operation
{from Operalions)

As outlined before, each transformation operation applied to a model version
incorporates the necessary information to trace a model evolution. This information
is represented by history relationships between the object versions to which the
operation is applied and the ones arising as the result of its execution (Fig. 1). In
order to represent architecture evolution, a model version has zero or more successor
model versions (noted by * cardinality at successor role of History association
shown in Fig. 1).

PVAM must be capable of extending in terms of the suitable operations for
SADP domain. Subsequently, in this section the operation model is presented, which
allows specifying and instantiating specific domain operations.

Operations are associated with a modelling concept and are defined as ordered
sets of commands (Fig. 2). Those commands can hs primitives or operations that can
be used to define other operations. Primitives encapsulate the semantics defined by
Expressions 1, 2 and 3. The execution of an operation generates one or more results,
which can be a set of versions. Furthermore, history class is instantiated, linking the
predecessor with the successor versions.

22 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

Operations

The operation definition is represented using the basic structure of the Abstract
Syntax Kernel Metamodel for Expressions defined by the UML 2.0 OCL
Specification [10]. To implement operations, the well-known Command design
pattern was used [11]. Therefore, a command abstract class is introduced into the
Operations package illustrated in Fig. 2. An operation is defined as a macro
command (MacroCommand class), a subclass of command that simply executes a
sequence of commands. Therefore, when an operation is specified, it is necessary to
define both the arguments and the body of the operation. The commands that
constitute its body are some other already defined commands, which are available for
use in the specification (primitives, loop, variable assignment, or other operations).
Note that the modelling concept over which an operation is applied must be
explicitly indicated. Furthermore, there are other concrete classes that specialise the
command class, and that can be part of a macro command. One of them is the
LoopCmd, which represents a loop construct over a collection variable and has a
body that is executed for each element in the collection. Another valid command is
VariableAssignment that represents the assignment of a value to a variable of a given
type.

As shown in Fig. 2, every command has one or more data typed arguments.
Arguments are considered as a kind of variable. A variable can be also declared and
used in the body of an operation and has a given type. The types described by the
model are grouped by the abstract class DataType. DataType subclasses are
PrimitiveDataType, CollectionType, and ModellingConcept. PrimiteDataType
includes Integer, Float, String and Boolean types. Collection describes a list of
elements of a particular given type that are ordered, have no duplicates and are
parameterized with an element type. ModellingConcept is imported from Domain
Package and enables specifying arguments that explicit the type of an expected
object version to be added during the execution of an aJc/primitive.

As regards VariableAssignment, it denotes the mapping between a Variable and a
RunTimeValue. This interface is not defined to specify operations. It is included to

A Model for Capturing and Tracing Architectural Designs 23

represent the run time values during the execution of an operation. RunTimeValue
can be realized by different values like literal, object version, modelling concept, or
Attrib Value (value of an attribute of an object version, Fig. 2), depending on the
variable type.

3.2 Products of SADP

In order to capture the versions generated during a SADP, the PVAM must be
extended according to the particular design objects produced by that process. To this
purpose, the Domain Package shown in Fig. 1 must be extended with concepts of the
SADP domain. The products that constitute the design object types are taken from
the Attribute-Driven Design Method (ADD) proposed in [4], and the architectural
description language ACME [2]. The class diagram shown in Fig. 3 introduces these
concepts and their relationships. This model is implemented by the instantiation of
the classes of Domain package (Fig. 1). The classes presented in Fig. 3 are going to
be instances of ModellingConcept and their properties are going to be instances of
Attribute. Finally, the relationships of Fig. 3 will be instantiated from
DomainRelationship in Domain package.

The ADD method is based on a recursive decomposition process where
architectural patterns (or styles) are chosen at each stage to fulfil a set of quality
scenarios. Then, component and connector types provided by architectural patterns
are instantiated and functionality is allocated to them. The input to ADD is a set of
requirements {functional and quality requirements). The quality requirements are
expressed as a set of system specific quality scenarios, and the functional
requirements are translated into a set of responsibilities [4]. Quality scenarios and
responsibilities can be delegated to other components when the original component
is refined. When the method iteration is finished, the designer verifies scenarios and
sets an assessment.

o

Property Type

nent lype

Port -

Atta
,_ Role "

~ Constrai

~ Property

chmi

It

f'
—<^

o Component

Connector

Connector Type

System Requirement

-̂
Functional Requirement

Y Responsibility

Quality Requirement

Assessment

Quality Scenario

Fig. 3. Domain model for architecture based design

In ADD, the different model versions are represented using various types of
views. Only the component view is considered within the scope of this work in order
to describe the architecture. Accordingly, ACME [2] has been chosen as the
architectural description language. ACME defines a component as a computational
element and data store of a system. A component may have multiple interfaces, each
of which is termed port. The connectors represent interactions among components
and have interfaces that are defined by a pair of roles. The systems comprise
components and connectors, establishing attachments between roles and ports. In

24 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

Fig. 3, the attachment concept is not considered as a modelling concept but as a
relationship. Moreover, ACME proposes elements to document extra-structural
properties of a system's architecture, as Properties. Furthermore, it is possible to
attach constraints to design elements. With the aim of providing a more powerful
language, ACME defines component, connector, and property type building blocks.
On the basis of these modelling concepts, it is possible to define Families or Styles.
They are defined by a set oiproperty, component, and connector types and a set of
constraints.

3.3 Architectural Operations Specification

As it was outlined in Section 3.1, PVAM must be extended in terms of the
suitable operations for the SADP domain, like the ones listed in Table 1.

Fig. 4 presents functional specifications for some of the basic operations defined
in Table 1. The other operations are defined in a similar way, but they are not shown
due to lack of space. As seen in Fig. 4, the operation addComponent{s, c, Iftesps, Ipons)
is carried out by a series of operations. First, a version of component c is added
{add(c)). After that, a set of responsibilities (specified by list /^j^) and ports (detailed
by list Ipori^ are inserted. These operations are carried out by the addResponsibility(c,
r) and addPort{c, p) operations. Finally, a relationship between the new component c
and an existing system .? is included. This last operation is performed by the add
primitive operation {add{rel(s, c))). These operation specifications are implemented
as instances of the Operation model introduced in Fig. 2.

In the same way as for basic operation, it is possible to define the special
operations. Fig. 5 presents some examples. A function with a ' ? ' symbol at the end
indicates that it is interactive; thus, the user is asked about how to proceed. The
interactive commands can be implemented as a special case of VarAssignment
command (Fig. 2).
addComponent (3, c, IRCSPS/Iports) deleteCon^onent (s, c)

add{c) Iports = getPorts(c}
for each r in Inesps for each p in l?orts

addResponsibility(c,r) deletePort(c, p)
end for end for
for each p in Iports delete {rel (s, c))

addPort(c, p) delete(c)
end for
add(rel(s, c))

addPort(c, p) deletePort(c, p)
add{p) // port deletion implies deletion
add(rel{c, p)) // of connector attached to it

deleteConnector(getConnector(getRol(p)))
delete(rel(c, p))
delete(p)

addResponsibility (c, r) deleteResponsibility (c, r)
add(r) delete(rel(c, r))
add(rel(c, r)) delete(r)

Fig. 4. Specifications of basic operations

The delegateResponsibility(ci, c)̂ operation enables delegating a responsibility
of component ci to component C2. Thus, if a given responsibility is assigned to a
component c; in a model version m and a delegateResponsibility{ci, C2) operation is
included in the sequence of operations applied to m, then the resulting model version

A Model for Capturing and Tracing Architectural Designs 25

shows that the responsibilities delegated to C2 will not be assigned to C/. In a similar
way, the operation delegateScenario proceeds.

delegateResponsibility (ci, C2) delegateScenario(Ci, C2)
IRSSPS = getResponsibility (Ci) Iscens = getScenario (Ci)
for each r in laesps fo^ each s in Iscens

if (delegate? (c^, r)) if {delegate? (c^, s))
delete (rel (ci, r)) delete (rel (ci, s))
add(rel(c2, r)) add(rel{c2, s))

end if end if
end for end for

r e f i n e C o m p O n e n t (C , Icomps* l l P o r t s ^ l-Resps / Iconns/ l lRo le s* l l A t t s)
i = 0
for each cc in Iĉ mps

Ir = liResps (i) / / CO r e s p o n s i b i l i t i e s l i s t i
Ip = liPDrts(i) / / cc p o r t s l i s t i
a'ddComponent (getSystem (c) , cc, 1̂ / Ip)
i++

end for
i = 0
for each en in Icoms

Ir = liRoies(i) // en roles list^.
la = liAttsii) // port list which should attach en roles
addConnector{getSystem(c), en, 1^, IJ
i++

end for
// delegate scenarios and responsibilities to new components
// {interactive)
for each cc in Icomps

delegateScenario{c, cc)
delegateResponsibility(c, cc)

end for
// create new connections between internals and external components
// (interactive)
Ip = getPorts(c)
for each p in Ip

np =- PortMap? ()
r = getRol{p)
delete(rel(p, r))
add (rel (np, r))

end for
deleteComponent(getSystem(c),c)

Fig. 5. Specifications of special operations

The refmeComponent(c, Icomps. hports, huesps, konns, hRoies. lum) operation, another
example of special operation (Fig. 5), decomposes a component c into one or more
components given by the list Icomps- The ports and responsibilities of the new
components are given by the lists Iworts and Imesps, respectively. Furthermore, a set of
cormectors among the new components is added. These connectors are specified by
^conns whose rolcs are given by the Ust Imoies and the attachments by the list lutts-

The operations that apply an architecture style [12], or an architectural pattern
[13], refine a preexistent component with a new set of components and coimectors
that are instantiated from an architectural style/pattern. They interact with the
designer asking for the responsibilities and scenarios delegation, as well as
connectors mapping between external components and refined components. An
example of applyStyle operation is defined in Fig. 6. In this case, the
applyControILoop operation is specified. This style proceeds from the process
control paradigm and defines the architecture to activate various monitoring policies
when different events coming from sensors are produced [14]. The monitoring
policies may in turn produce other events or actions in response to predefined

26 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

situations. Note that this operation can be considered as a specialization of
refineComponent operation. The knowledge on how to proceed in the refinement of
component c is given by the control loop style. Therefore, a series of addComponent
operations is performed. The addComponentis, {Diagnosis, TDiagnosis), [P/.P^])
operation indicates that a component and two ports must be created. The component
is called Diagnosis, whose modelling concept is TDiagnosis, an instance of
ComponentType (see Fig. 3), and the ports are denominated Pi and P^.

applyControlLoop(c)
s = getSystem{c)
addComponent(s,{Diagnosis, TDiagnosis}, [P1,P6])
addComponent(s,{PolicyManager, TPolicyManager}, [P2,P3]}
addComponent{s,{Reactor, TReactor}, [P4, P5])
addConnector(s,{CDgnPMgr,TCDgnPMgr},[R1,R2],[PI,P2])
addConnector(s,(CPMgrRct,TCPMgrRct),[R3,R4],[P3,P4])
delegateScenario{c. Diagnosis)
delegateScenario(c,PolicyManager)
delegateScenario(c. Reactor)
delegateResponsibility(c,Diagnosis)
delegateResponsibility(c,PolicyManager)
delegateResponsibility{c,Reactor)
// Set mappings between previous connector and new components
Ip = getPorts(c)
for each p in Ip
np = PortMap?(p) // Ask the user the port to map
r -= getRol (p)
delete(rel{p, r))
add(rel(np, r))

end for
deleteComponent(s, c)

Fig. 6. Specification of applyControlLoop operation

4 Case Study: Monitoring System for an Industrial Process

The following case study describes the design of a monitoring system for an
industrial process (see Fig. 7). It is based on classical case studies presented in other
contributions [1, 4]. Monitoring activities are focused on the two core distillation
columns: an extractive distillation column and a solvent stripping one, working
together in a highly integrated manner. The system should monitor control loops and
temperature sensors, by continued acquisition of real-time process data, tracking set-
point values, alarm conditions and outputs of valves, and comparing them with
normal pattern behaviour. The system should also monitor process state, using real
time process data previously processed in combination with expert knowledge in
order to maintain process stability and performance. Further fiinctionalities are
control flowrate sensors and validate material balances. In order to meet all these
functional requirements, the system should be connected to input and output devices.
Input devices allow the system to get the real time data from the process equipment
and output devices are used by the system to inform the plant operator about process
anomalies, like: solvent inventory buildup, sensor fault, abnormal process pattern,
etc. The main fijnctions considered in designing the monitoring system include:
administration of users (process operator, plant supervisor, etc.) and permissions,

A Model for Capturing and Tracing Architectural Designs 27

configuration of input/output devices, priority-based event management, process
diagnosis, specification of warning and process protective actions.

'-^H
4

Input-Outp utlievh:es_Al!xL. r*

J
-f^

Fig. 7. Monitoring system for an industrial process

For reasons of space, only a sequence of operations of the model evolution is
analyzed. Let us consider an intermediate model version i (see Fig. 8) where the
main components are: Control&Diagnosis (with responsibilities in priority based
event management, protective actions execution, warning launch, input/output
devices configuration); Userlnterface (with responsibilities related to user interaction
issues: set parameters values, show information, rule administration);
SensorActuatorLayer (with responsibilities like sending out commands to actuators,
receiving information from sensors); and Configuration. From this model version,
the designer chooses to refine the Control&Diagnosis component by applying the
applyControlLoop operation. This operation creates three new components:
Diagnosis, Policy Manager, and Reactor. The applyControlLoop operation (see Fig.
6) asks the necessary information for delegating responsibilities, and for
reconnecting previous connections to the new configuration.

Fig. 8 shows a partial view of the Version and Repository levels from which
model version views can be inferred. This figure is focused on the version of
Control&Diagnosis evolution to a set of versions of components and connectors due
to applyControlLoop operation. A view of a model version is obtained from the
knowledge in the Version and Repository levels. The object versions belonging to a
model version are inferred by the belong(v, m) predicate (Expression 3). Fig. 8 shows
some object versions that belong to model version i (Control&DiagnosiSyj,
PlC&Dyj, P2C&Dyj, P3C&Dyj). Given an object version (Control&DiagnosiSyj),
it is possible to know its versionable object (Control&DiagnosiSo), which is linked
with its design object type (modelling concept component, defined in Domain). All
this information makes possible to reconstruct the elements of a model version view,
as it is the Control&Diagnosis component which is obtained from object version
Control&DiagnosiSyj and versionable object Control&DiagnosiSo. On the other
hand, the expression 5 enables to retrieve the relationships among the object versions
that belong to a given model version. Control&DiagnosiSg has three ports named
P1C&D„, P2C&D„, and P3C&D„ which have their respective object versions
PlC&Dyj, P2C&Dyj, and PJC&Dyj. Therefore, component Control&DiagnosiSyj
has ports PlC&Dy,, P2C&Dyj, and P3C&Dyj.

28 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

F i g - ^ " ^ '• . rcomponent 1 [j "port V - (componentV[component | : i f co
/ ^ • ' i 1 \) [TDiagnosis j [TPolicyManagerj : \ T

j component
TReactor

The applyControlLoop operation is applied on Control&Diagnosis component
(Control&DiagnosiSyj object version). This operation is traced by an instance of the
history link (Fig. 1) which associates the previous object version
(Control&DiagnosiSyi) with the successor object versions {Reactor^i, Diagnosis^!,
PolicyManageryj,PlReactyj,PlDiagyj,PlPMgryj,P2PMgryj in Fig. 8). PlC&Dyj,
P2C&Dyj, and PSC&Dyj object versions belong to both model version i and model
version i+1 because they were delegated from the original component
(Control&Diagnosis) to the newer ones by applyControlLoop operation.

Additionally, other operations were applied on model version i to obtain model
version /+/ that are not illustrated in Fig. 8 at version and repository levels. One of
them arises due to the need of associating PolicyManager and Configuration
components, so a new connection and their roles objects are added, applying
addConnector operation. Using again operation addConnector, a new connection
between PolicyManager and SensorActuatorLayer is added. It enables
PolicyManager to receive information from, and send information to,
SensorActuator (see Fig. 8, View of model version i+1).

It is important to note that the proposed extension of PVAM enables applied
operations on SADP's products (Fig. 3) to be captured. For example, responsibilities
are refined using refineResponsibility operation. The RDiagl responsibility (Fig. 8,
view of model version i) was refined on the following responsibilities: i) listening
notifications of situations coming from SensorActuator (RDiagl. I); ii) getting

A Model for Capturing and Tracing Architectural Designs 29

devices information {RDiagl.2); iii) probing device {RDiagl.3) (Fig. 8, view of
model version i + 1).

4.1 Retrieving the History of Architectural Design Processes

The model introduced allows tracing and recovering the history of the
architectural design activities carried out by the designer during SADP. It is possible
to ask about the history of model versions in terms of operation sequences that have
generated a given model version, and also consult on the history of a particular
object version, which allows to know how the evolution took place through the
different versions. Fig. 9 shows an example of a history query to perform on the
hypothetical monitoring system designed in current section. An actor would whish to
know the sequence of operations that originated model version /+/ from the
precedent model version /. The applied operations were applyControlLoop,
refmeResponsibility and addConnector, which can be seen in Fig. 8 of the case
study. The resulting information allows knowing who carried out the operations, at
what time and date, their arguments, the new elements incorporated to the design, the
set of elements eliminated and what kind of modelling concepts they were. As shown
in Fig. 9, additional information can be obtained, like the suboperations implied at
the execution of the current one. Knowing which were the operations that gave rise
to model version i+1 is useful for understanding the rationale associated with such a
step because the architect knows the semantic of the operation and the intent.

5 Conclusions

The model proposed in this paper, an extension of PVAM, captures the
operations that generate each design product during the SADP. Furthermore, it also
offers an explicit mechanism to manage the different model versions generated
during the SADP. Thus, it allows the tracing of the SADP and its resulting products,
setting the grounds for learning and future reuse of the design process. This is a
fundamental step towards the development of computational tools to support the
SADP and to guide designers in the different activities of a design project. A related
work [6] proposes a set of requirements which such tools should satisfy in order to
adequately support the evolution of software architectures. The approach presented
in this work meets a wide spectrum of those requirements: (i) First class
architectural concepts, represented by the extensible domain model proposed; (ii)
First class architectural design decisions, enabling specification of adequate
operations for software architecture design representing design decisions made by
the architect; (iii) Under-specification and incompleteness, allowed by the model
evolution through discrete situations (model versions) increasing the level of
abstraction; (iv) Explicit architectural changes, allowing capturing, managing and
tracing of products of SADP, using explicit history links between different versions,
which means that the operations applied through the design process are saved and,
therefore, it is possible to reconstruct the history from an initial model version; (v)
Support for modification, subtraction, and addition type changes, implemented by

30 M. Luciana Roldan, Silvio Gonnet, Horacio Leone

the primitive operations add, delete and modify. Those operations are also used in
the definition of higher level operations representing more complex design
operations like refining or styles application.

Model Version; Mode! Version i+l
Precedent Model Version: Model Version i
Applied Operations:

Operation: applyControlLoop
Model Version; Model Version i Actor
Arguments:

Argument Name
Source Version

Value
Control&Diaqnosis

; Arctiitecti

Data Type
Component

Results;
Object Version

PolicyManaqerv i
Reactor vi

RPMqr l , ,

Modelling Concept
Component TPoiicyManaqer
Component TPoiicyManaqer

Responsibility

Date Time
01-06-2006 10:56
01-06-2006 10:56

01-06-200610:56
Deleted versions:

Object Version
Control&Diaqnosis ^ i

Rel C&D Diag.1

Modelling Concept
Component

Relation

Date Time
01-06-2006 10:56

01-06-2006 10:56
SubOperations:

(+) deieqaleResponsibilitv
(+) delegateResponsibiliiy

Operation: refineResponsibility
Model Version: Model Version i Actor Arohitecti

Operation: addConneotor
Model Version: Model Version i Actor: Arohitecti
W

Fig. 9. Partial view of the sequence of operations applied to model version i

Situation calculus, the formal background of the framework, allows us to
represent the activities carried out during a SADP, and therefore, it enables the
designer to get a better understanding of the information on how the various design
objects (systems, components, connectors, functional requirements, qualify
requirements, quality scenarios, assessment, etc.) have been obtained. Thus, the
history of operations performed on versions of design objects can be kept. Besides,
this conceptual framework also provides the foundations for the proposal of formal
means for detecting potential conflicts.

The framework could incorporate extensions to the Domain package, integrated
to the version administration model, defining other characteristics not included by
ADD or ACME. Furthermore, it uses an operational perspective where design
decisions can be modelled by means of design operations. This approach is
employed in other contributions [1, 4]. The structure of the conceptual framework
allows the easy definition of specific design operations, like applyControlLoop, by
instantiating the Operation model (Fig. 2). This extension is possible without
modifying the successor state axiom (Expression 3).

A Model for Capturing and Tracing Architectural Designs 31

References

1. A. Diaz Pace, A Planning-Based approach for the exploration of Quality-Driven design
alternatives in Software Architectures, Tesis Doctoral (UNICEN, 2004).

2. D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems, edited by G.T. Leavens and M.
Sitaraman (Cambridge University Press, 2000), pp. 47-68.

3. N. Medvidovic, D. Rosenblum, D. Redmiles, J. Robbins, Modeling Software Architectures
in the Unified Modeling Language, ACM Transaction on Software Engineering and
Methodology, 11(1), 2-57 (2002).

4. L. Bass, P. Clements, R. Kazraan, Software Architecture in Practice: Second Edition
(Addison-Wesley, 2003).

5. F. Bachmann, L. Bass, M. Klein, Preliminary Design of ArchE: A Software Architecture
Design Assistant, Carnegie Mellon University, Technical Report CMU/SEI-2003-TR-021,
2003.

6. A. Jansen, J. Bosch, Evaluation of Tool Support for Architectural Evolution, in:
Proceedings of the 19th IEEE International Conference on Automated Software
Engineering (2004), pp. 375-378.

7. A. Tang, J. Han, Architecture Rationalization: A Methodology for Architecture
Verifiability, Traceability and Completeness, in: 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (2005), pp. 135-144.

8. S. Gormet, Un modelo integrado para la captura y administracion del proceso de diseho,
Tesis Doctoral (UNL, 2003).

9. R. Reiter, Knowledge in Action: Logical Foundation for Describing and Implementing
Dynamical Systems (The MIT Press, 2001).

10.Object Management Group, OCL 2.0 Specification (2005), 2005-06-06.
I I.E. Gamma, R. Helm, R. Johnson, K. Vlissides, Design Patterns. Elements of Reusable

Object-Oriented Software (Addison-Wesley, 1995).
12.M. Shaw, D. Garlan, Software Architecture, Perspectives on an Emerging Discipline

(Prentice-Hall, 1996).
13. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software

Architecture. A System of Patterns (John Wiley & Sons, 1996).
14.M. Shaw, Beyond Objects: A Software Design Paradigm Based on Process Control,

Carnegie Mellon University, Technical Report CMU-CS-94-154, 1994.

Acknowledgments
The authors wish to acknowledge the financial support received from CONICET, Universidad
Tecnologica Nacional and Agencia Nacional de Promocion Cientifica y Tecnologica (PICT
12628).

Multidimensional Catalogs for Systematic
Exploration of Component-Based Design Spaces

Claudia Lopez and Hernan Astudillo

Universidad Tecnica Federico Santa Maria, Departamento de Informatica
Avenida Espafia 1680, Valparaiso, Chile

clopez Qinf.utfsm.cl, hernan ®inf.utfsm.cl

Abstract. Most component-based approacJies to elaborate software re
quire complete and consistent descriptions of components, but in practi
cal settings components information is incomplete, imprecise and chang
ing, and requirements may be likewise. More realistically deployable are
approaches that combine exploration of candidate architectures with
their evaluation vis-a-vis requirements, and deal with the fuzzyness of
available component information. This article presents an approach to
systematic generation, evaluation and re-generation of component as
semblies, using potentially incomplete, imprecise, unreliable and chang
ing descriptions of requirements and components. The key ideas are
representation of NFRs using architectural policies, systematic reifica-
tion of policies into mechanisms and components that implement them,
multi-dimensional characterizations of these three levels, and catalogs of
them. The Azimut framework embodies these ideas and enables trace-
ability of architecture by supporting architecture-level reasoning, and
allows architects to engage into systematic exploration of design spaces.
A detailed illustrative example illustrates the approach.

1 Introduction

Component-based software development proposes building systems by using
pre-existing components, to reduce development time, costs and risks and to
improve product quality; achieving these goals requires an adequate selection
of components to reuse. Current methods of component evaluation and selec
tion are not geared to support human specialists in the systematic exploration
of design spaces because they require complete and consistent descriptions of
components behavior, connections and prerequisites. In the real-world software
architects have at hand incomplete, imprecise and changing component infor
mation, and requirements may be likewise.

This article presents a process and tool to support software architects in the
exploration of design spaces by enabling generation, evaluation and regeneration
of component assemblies. The Azimut framework deals with the fuzzyness of
component information using incomplete "characterizations" of available com
ponents and allowing the regeneration of assemblies when better information
about components is obtained.

Please use the following format when citing this chapter:

Lopez, C, Astudillo, H., 2006, in IFIP International Federation for Information Processing, Volume 219,
Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds. Ochoa, S., Roman,
G.-C, (Boston: Springer), pp. 32-46.

Systematic Exploration of COTS Design Spaces 33

The reminder of this article is structured as follows: Section 2 provides a
brief overview of related work; Section 3 introduces the process of generation,
evaluation and regeneration of component assemblies, and the concepts of ar
chitectural policies and mechanisms; Section 4 describes the structure of the
multi-dimensional catalogs, and illustrates the approach with an example; Sec
tion 5 describes the automation of derivation process and its implementation
in a prototype; Sections 6 and 7 discuss ongoing work and conclusions.

2 Systematic Processes for Selecting Components

Component-Based Software Development (CBD) [19] suggests reusing existing
components to build new systems, attending to benefits like shorter develop
ment times, lower costs and higher product quality. Thus, a key ingredient of
CBD is component selection.

Some proposed techniques for component evaluation and selection [2-9] iden
tify reuse candidates using criteria such as functionality, non-functional require
ments (NFRs) or architectural restrictions that each component and/or the
whole system must satisfy. Some of these proposals [5-8] give semi-automated
support to the selection process using multi-criteria decision support techniques,
such as AHP (Analytic Hierarchy Process) [12] or WSM (Weighted Scoring
Method).

Most approaches [2-9] require complete and consistent descriptions of com
ponent behavior, connections and prerequisites, but in practice architects have
at hand incomplete, imprecise and changing component information. Accepting
this fuzzyness and dealing with it is a key step to supporting the actual COTS
selection process.

Also, several proposals [2-7] only explore the space of available compo
nents without recourse to alternative designs at intermediate abstraction levels.
These approaches force architects to deal with a big gap between the com
ponent and requirement spaces, and to describe exhaustively the relationships
between them. Working with intermediate abstraction levels enables dealing
with smaller gaps and searching smaller spaces. CRE [8] and CARE/SA [9]
use the NFR Framework [10] to derive more specific requirements or design
solutions when considering quality attributes or NFRs; unfortunately, the NFR
Ftamework does not explicitly distinguish requirements more detailed than the
design solutions that satisfy them, and the derivation process among them de
pends on the architect's knowledge of possible refinements, without recourse to
a systematic and possible automated derivation support.

3 Exploration, Generation and Evaluation of Component
Assemblies

Our larger research goal is supporting iterative exploration of design spaces by
human architects, and keeping traceability of the resulting architectural deci-

34 Claudia Lopez and Hernan Astudillo

sions. The Azimut project focuses on enabling architects to generate component
assemblies [15] for some given requirements; evaluate and compare these assem
blies regarding their requirements satisfaction and some higher-order criteria
(e.g. economic, risk); and regenerate assemblies when new or better informa
tion is available.

The conceptual vocabulary underlying our approach is description of se
lection decisions using the concepts of architectural policies and architectural
mechanisms.

3.1 Architectural Policies and Mechanisms

Architects may reason about the overall solution properties using architectural
policies, and later refine them (perhaps from existing policy catalogs) into ar
tifacts and concepts that serve as inputs to software designers and developers,
such as component models, detailed code design, standards, protocols, or even
code itself. Thus, architects define policies for specific architectural concerns
and identify alternative mechanisms to implement such policies. For example,
an availability concern may be addressed by fault-tolerance policies (such as
master-slave replication or active replication) and a security concern may be
addressed by access control policies (such as identification-, authorization- or
authentication-based) [16].

Each reification yields ever more concrete artifacts; thus, architectural de
cisions drive a process of successive reifications of NFRs that end with imple
mentations of mechanisms that do satisfy these NFRs.

To characterize such reifications, we use a vocabulary taken from the dis
tributed systems community [14], duly adapted to the software architecture
context:

Architectural Policies: The first reification from NFRs to architectural con
cepts. Architectural policies can be characterized through specific concern
dimensions that allow describing NFRs with more details.

Architectural Mechanisms: The constructs that satisfy architectural policies.
Different mechanisms can satisfy the same architectural policy, and the
differences between mechanisms is the way in which they provide certain
dimensions.

As a brief example (taken from [24]), consider inter-communication among
applications. One architectural concern is the communication type, which might
have the dimensions of sessions, topology, sender, and integrity v/s timeli
ness [18]; to this we add synchrony. Then, the requirement send a private
report to subscribers by Internet might be mapped in some project (in archi
tectural terms) as requiring communication 'asynchronous, with sessions, with
1:M topology, with a push initiator mechanism, and priorizing integrity over
timeliness'. Based on these architectural requirements, an architect (or auto
mated tool!) can search a catalog for any existing mechanisms or combination
thereof that provides this specified policy; lacking additional restrictions and

Systematic Exploration of COTS Design Spaces 35

using well-known software, a good first fit as mechanism is SMTP (the standard
e-mail protocol), and thus any available component that provides it.

3.2 Systematic Generation of Component Assemblies

To illustrate how these concepts relate and are used in practice consider the
following example (see Figure f. The derivation process starts from qual
ity attribute that may be associated to specific architectural concerns (e.g.
access control for s ecur i ty requirements, r e p l i c a t i o n for a v a i l a b i l i t y) .
Architectural concerns can be characterized through dimensions, which are
discriminating factors among policies (e.g. authenticat ion type [16] in ac
cess control, update pro pagation type [17] for repUcation). Each dimen
sion can be satisfied by some architectural policies (e.g. authenticat ion
based-on-something-that-the-user-knows, operations-based update pro
pagation). Each policy may be satisfied by several architectural mechanisms
(e.g. SMTP-AUTH for authentication based-on-something-that-the-user-knows,
act ive r e p l i c a t i o n for repUcation with state-based update propagation). Fi
nally, mechanisms may be provided by one or more available components, which
in turn may implement several mechanisms (e.g.SendMail v8.1 and later for
SMTP-AUTH; LifeKeeper for active SMTP server repUcation en Linux).

Quaiity
Attribyte

ffe/atetf Metric
Availability

A vaHability^dS, 9%

Architectural
Concern

{Dimensionl
-Replication

Security

Architectural
Policies

ateless
fUpdate ,,'^-?*f.^.
gati

|Propagation^.,_43ush

Propagation|\^^jJfjj,gjjQ,,

[C o n s i s t e n c y l ^ r i r r g l i ^ ^

-Access Control
^ ^ s e r groups

(Authori^ationJ'^-User roles
^individuals

Something the
'Itser is

(Authenfioattoni .^Something ttie
user has

\Something the
user knows

Architectural
Mechanisms

tetivs Replication •

Passive Replication

-ingerprint

Personal pas-sword

5MTP-Aijth

COTS

jteKeeper

-SendMai! 8.1

Fig. 1. Example of Systematic Generation of Component Assemblies

The selected components are organized in alternative assemblies that aim
to satisfy all the systemic properties at once. Assemblies are later subject to
evaluation choose among them using some system-wide criteria (e.g. cost, or
smallest number of suppliers). This process is described in Figure 2.

36 Claudia Lopez and Hernan Astudillo

4 Identify Mechanisms J^Characterize Mechanisms j—?(Explore the Mechanism Space J

[M; latch Mechanisms

''>(7denlify COTs) ^Characterize COTs'' ^Explore the COTS Space)

(MatchCOTs)

I Select Assemblies ;

(̂ Evaluate the Alternative COTS Assemblies^

[configure COTS assemblies)

Fig. 2. Generation and Evaluation of Component Assemblies

3.3 Systematic Exploration of Des ign Spaces

Architects repeatedly perform derivations from systemic properties to possible
solutions, identifying and evaluating those that each architectural mechanisms
provides, as well as each selected component. These alternative solutions and
reifications are the design space that the architect must explore, and which is
currently done in an intuitive manner. As shown in Figure ??, after identifying
potential architectural mechanisms ('Match Mechanisms') comes an exploration
of the components space to determine which ones implement them. The result
is a set of alternative components ('Match COTS') from which the alternate
component assemblies are generated to be evaluated. Notice that the solution
space is generally quite large, highly changing and in constant growth, mainly
due to the dynamic components marlcet. In an open market of independent com
ponent developers, the set of possible combinations is not known to any of the
involved parties [19]. The architect's knowledge of architectural mechanisms
and available components (held a priori or acquired in the ongoing selection
process) is the basis for reasoning that justifies selection decisions. Thus, keep
ing in catalogs information about which mechanisms satisfy which policies and
which components implement which mechanisms allows sharing this valuable
knowledge; and identifying derivation rules allows supporting, and perhaps even
semi-automating, the exploration process performed by architects.

Alternative assemblies can be evaluated to select the one that best fits the
specified requirements, matches the platform restrictions, and meets the non
technical selection criteria, such as minimal cost, minimal number of suppliers,
and maximal suppliers' reliability.

Systematic Exploration of COTS Design Spaces 37

When new information becomes available, or when requirements change,
regeneration of component assemblies is called for. New assemblies may include
other mechanisms and/or new components, or in fact drop some and consolidate
others. To support these generation, evaluation and regeneration processes, and
the consequent design space exploration, we deploy multi-dimensional catalogs
to characterize policies, mechanisms and components, and systematic derivation
rules among these levels, as shown in Figure 3 and explained in Section 4.

4 Multi-dimensional Catalogs

Budding pTDce.-js of muHidimeDSiOnaS catal
P J identify Ooncsms j •— -,.

^1 Idenfify Difn^nhiotis t-

f^piteiss Catalog *"~

-^, Onaiariinze pojicies J -

''--/; •4 Add infomstron about poiiaes j

\ >(Tdentify '̂!tscb?tnlS^ns K^'Chawcte'ize Mechan!s'n&\

M Ada mfomatign about the mechanism sp^

\
-^iidBntif/COTSJ-

C O r e Caalog

-j{c)l3taois,-ize COTS j ~

• ^ Add infomiaijon at>out the COrS space

\ ». : J
.'— — — r\

I • '

f ; Cofiftgurs COTS assetnbi.es] |

Pig. 3. Multidimensional Catalogs for Exploration, Generation and Evaluation of
Component Assemblies

Catalogs store architects' knowledge about architectural policies, mecha
nisms and components, as well as the derivation rules among them. Thus, they
are the key to reusing information about previous selection processes; improv
ing knowledge quality about design spaces and components insofar as better
descriptions are stored; and supporting architects in the exploration of these
design spaces.

Figure 3 describes the two roles that catalogs fulfill: as repositories of infor
mation necessary to generate, evaluate and regenerate component assemblies;
and as actively maintained descriptions of the components available in a given
milieu. The parallelism and mutual feedback of these two processes allow to use
catalog information and derivation rules for selection decisions, and to add in
formation to the catalog when some ongoing selection process gathers additional
data.

38 Claudia Lopez and Hernan Astudillo

This section will illustrate the deployment and use of catalogs with a running
example. Consider propagation of stock prices information, and the requirement
'the system shall send a report to each customer according to his stocks portfolio;
this service must have 99.9% availability and provide access security.'

4.1 Policy Catalogs

The policy catalogs gathers platform-independent architectural policies and
stores dimensions for each concern and policies that have different values for
each dimension. The catalog incorporates knowledge for each architectural con
cern, and the dimensions themselves are collected from authoritative sources
of the relevant discipline (e.g. Tanenbaum [17] for replication, Britton [18] for
middleware communication, and Firesmith [16] for security). Figure 4 shows a
partial content of the policies catalog.

Choosing among the policies shown in Figure 4, we notice that the system
requires Asynchronous Communication Type, with 1:M topology, with Push
initiator, and communication must privilege Integrity over Timeliness.
Security is focused on Access Control, and the usual policies are Individual
Authorization and Authentication based on something the user knows
[20]. Availability is represented by several architectural concerns, .such as Repli
cation. Recovery and Failure Monitoring; here, we'll use only Replica
tion. To meet the availability requirement, we define replication policies with
Persistent State and Replicated Write Consistency.

Independently of the suggested use of catalogs as stepping stones in larger
derivation chains, it should be noticed that even a stand-alone catalog of archi
tectural policies (however incomplete) would be useful to help in representing
(and thus negotiating and validating) quality attributes, as long as the relevant
concerns, dimensions and policies are present.

4.2 Mechanism Catalogs

The mechanism catalog records known architectural mechanisms, which are
implementation-independent design-level constructs that satisfy architectural
policies. This catalog indicates which mechanisms satisfy which policies, and
characterizes each mechanism with the values of each concern dimension that
it can satisfy. A given mechanism may implement several policies for a same
concern, or policies across several concerns; similarly, a given policy may be im
plemented by several mechanisms. Figure 5 shows partial content of the mech
anisms catalog.

In real-world deployment situations, the catalog preparators might not
know or not be certain whether a given mechanism supports a certain pol
icy. To account for this uncertainty, the mechanisms catalog allows five de
grees of certainty regarding support for a given poUcy: 'supports '(l), 'proba
bly supports'(0,6),'probably does not support'(0,3), 'does not support'(O), and

Systematic Exploration of COTS Design Spaces 39

Qual i ty
AttribMte

FuncKcmalil'

Security

Availability

Arch i tsc Jural
Concern

3oinmunicaiion

Access CiOntrcii

•Jode Rsplication

Drmonsion Arch l tec lma i Poi ictes

,synr.hronnus
ynchronous

1;f«1 (1-to many)
M.1 fmsiiy-to-1)

'2P (peer-So-peerj
'ush

Pull
^Integrity/
T imsh ies*

__^^,—liilegoty over liiiwiirMss»s,
^^-^Tjpr iel iness ijvfcti intogrf'/
, ĵ̂ ^^—-Session

^ ^ ^ s e r groups
:Uthorizaiion i ^ — U s e r rotes

aniatfi(ng the «s«r IR
•Sonethlng the uasr has

pCRieltiJfMj Ui« user knows
>Brsisteiu Slate

^Auiienl icaBon

State ^^—-SI

Update
''Propagation

^PfopagaUort
Kind

— - « e

•StatSi'ess
•State
-Operation

iollfttsjtion
'ush
>ull

mary-based
tepliGated-Write

Fig. 4. Partial Content of Policies Catalog

'unknown'(empty) (since absence of knowledge differs from knowledge of ab
sence). Incidentally, current work is using fuzzy optimization techniques on
these uncertainty-rich descriptions to evaluate and regenerate component as
semblies.

r.c
(i^iy

/ / ,

^fchitectural
Meeharttsm^
StTh • '

Utrp

W:i
pop Aun
ftiiAFA3r
p.(±~tn Rfriicari^.r

!#i££j<ffiilii

f i i ya rp i n t

<f v<f ̂ -̂ <j, j | 5^ '

1

n:

o*"6

Fig. 5. Partial Content of Mechanisms Catalog

40 Claudia Lopez and Hernan Astudillo

The catalog shown in Figure 5 sugggests that the architect has several op
tions to satisfy the specified policies: Communication Type may me reified with
the NNTP protocol (used to post subscription-based "news") or SMTP (used
to send e-mail). The Access Control policies might be satisfied with a personal
password mechanism. The protocols SMTP-Auth, POP-Auth, IMAP-Auth and
Personal Password do satisfy the requirements of Access Control. The replica
tion policies can be satisfied with active replication.

4.3 Components Catalog

The component catalog describes the space of components. A software compo
nent [19] is multiple-use, non-context-specific, composable with other compo
nents, encapsulated (i.e., non-investigable through its interfaces) and a unit of
independent deployment and versioning. In Azimut, components are charac
terized according to the architectural mechanism(s) that implement. A given
component may implement several mechanisms; similarly, a given mechanism
may be implemented by several components. Besides mechanism support, the
components catalog has four dimensions:

- Uncertainty Just Similarly to the mechanisms catalogs, the components
catalog allows five degrees of certainty regarding support for a given mecha
nism: 'supports', 'probably supports', 'probably does not support', 'does not
support', and 'unknown'.

- Available platforms Platform(s) under which the component can be de
ployed (e.g. Windows, Linux, Solaris).

- Market issues Component selection requires using non-technical criteria to
distinguish among otherwise equivalent alternate components and assemblies.
The catalog includes some key characteristics: Supplier; Market Share [11];
Supplied Reliability [6] (valued from 1 to 5, with higher values for higher
reliability); Initial Cost [11]; Integration Cost [11]; and Support Cost.

- Description credibility An important criterion is the credibility degree [5]
of the component description, which quantifies confidence regarding descrip
tions. We follow Philips and Polen [5] in assigning credibility values for de
scriptions: (1) user- or supplier-provided, or seen in third-party literature; (2)
seen but not studied; (3) witnessed in personalized demos; and (4) verified
hands-on " in-house".

Figure 6 shows partial content of a components catalog relevant to the run
ning example.

Several mechanism configurations are possible, and in fact some components
do implement each desired mechanism. Components that implement mecha
nisms that satisfy all required quality attributes are LifeKeeper and SendMail
(v8.1 and later; notice that earlier versions might also be recorded in the catalog);
or SurgeMail (Cluster). Choosing among them means having an additional
goal function: if it is minimizing number of components (to reduce complexity),
the optimal solution is SurgeMail (Cluster), but if it is minimizing costs,

Systematic Exploration of COTS Design Spaces 41

Atcrtitectyrrfl
Mechanisms * . ; ^ ; • . ^ ^ < ; •

.<; , V

5?17if, \\ - 1 I * 1
C , -^tf-l.-c.-.e- h ,
burocy-i '•: V
t N , - . , , • • i c ' i
i - . - ' l jTd i , 0 ! U

rs'»-i-:riA"'5i..v=r \{,-,-
U^K^^pi'" Tt"^
S •:..4<-'.i.rij.= .n* ! ' 0

. , | u v'

Trto~t
)"p;
! 1
1 \C<

cTT
•!! c,
''•̂ 1 •

1
'.

i
i

'.n
•- i . . . ,) 6
, 0 .

" • IL'xHV-
^ 'JZRJA"

" •'

<;

w i-

i)

u
s. r.

. _

_ j _

i i

t .

. n . j i ^ i . ' " ' e
, | n . - , . 6 '

i

1

0

r"

11

,

L'

Fig. 6. Partial Contents of Components Catalog

the other option is better. Other alternatives are looking for additional infor
mation (and enrich the catalogs); considering ad-hoc implementation of passive
replication; or outsourcing the replication service and defining in the SLA an
availability target of 99.9%. At this point, active exploration of design spaces by
the architect should ensue.

Another difference between catalogs is the global and authoritative nature
of the policies and mechanisms catalog versus the local nature of the component
catalog in each organization. In fact, there might be sub-catalogue suppliers for
a global component information repository.

4.4 Recording Feedback into Catalogs

A better evaluation could inject some new information to the selection process
as well: new descriptions (characterizations) of components and mechanisms to
increase the knowledge of solutions spaces, or new policies to better describe
some requirements; or it might suggest renegotiation of requirements if impos
sible to find any assemblies that satisfy all given requirements (see Figure 3).

Thus, an additional advantage of these catalog-based process is that explo
ration of mechanisms and components feeds back into the catalog construction
process (see Figure 3).

5 Automation of Derivation Process

Based on the several platform abstraction levels, we can identify derivation
rules among them (the relationships 'provides' among mechanisms and policies,
and 'implements' among components and mechanisms), as well as combination
restrictions. Automating these derivation rules allows proposing components
and assemblies dynamically to the architect. Currently, we are at work in two
alternative approaches to achieving automation: one rule-based (herein shown).

42 Claudia Lopez and Hernan Astudillo

and one based on combinatorial optimization algorithms [?]. Both approaches
try to avoid the complexity of assigning weights to the influence of each solution
element (mechanism, component) on each goal, unlike AHP (the multi-criteria
decision technique used by several CBD methods [5^8]).

Combinatorial optimization techniques have allowed us to explore some very
interesting problems, like treatment of fuzzy data (such as 'probably supports'),
information variability at the level of both requirements and components, treat
ment of conflict among mechanisms or components as restrictions, and incom
patible combinations.

Azimuy possibly uses incomplete, imprecise, unreliable and changing de
scriptions of architectural policies, mechanisms and components. As mentioned
above, these characteristics allow using the catalogs even during early definition
stages, to help with requirements definition and validation.

Later on, assemblies that are proposed in the absence of full knowledge
(i.e. catalogs with several 'unknown' entries) may turn out to be sub-optimal
regarding number of components or some other criterion, but new information
will not necessarily invalidate it (unless it generates a conflict).

Fuzzy information is a normal situation in architecture development, since
incomplete and imprecise information is what most architects actually have at
hand. Accepting this fuzzyness and dealing with it is a key step to supporting
actual architects elaborating actual software systems.

5.1 Rule-based Prototype

We have developed a prototype to validate the feasibility of this approach. Rules
[27] describe the "characterizations" of policies, mechanisms, and components,
and relationships among them and the other attributes. Using these rules, the
system generates component assemblies that satisfy the required policies. The
prototype deals with fuzzyness by showing first solutions based on 'supports'
and 'implements', and later the fuzzy attributes, but currently it optimizes for
simples non-technical attributes (e.g. minimum number of components, or total
cost). Examples of these rules are shown in Table 1.

Figure 7 shows the output given by the prototype when you search assem
blies satisfying the policies of our example.

6 Ongoing and Future Work

Work in progress includes expanding the kinds of recorded information in cata
logs; identifying further derivation rules; implementing algorithms to treat fuzzy
information [25]; and managing conflicts among mechanisms or components.

Also, some computationally hard problems are being studied jointly with
combinatorial optimization researchers to analyze trade-offs among several se
lection criteria; what-if analysis to quantify the impact of requirements changes;
and reverse questioning, i.e. determining satisfiable requirements given a set of
components.

Systematic Exploration of COTS Design Spaces 43

Table 1. Rules

satisfies (smtp, [asynchronous,sy nchrony,conimunication_ty pe]).
satisfies(smtp, [1 :m,topology,communication_type]).
satisfies (smtp, [push ,receiver ,communication_type]).
satisfies(smtp, [integrity _over_timeliness,integrity/timeliness,communication_type]).
satisfies(active_replication,[persistent_state,state,node_replication]).
satisfies(active_replication, [replicated write,consistency,node-replication]).
satisfies(smtp_auth, [individuals,authorization,access-control]).
satisfies(smtp_auth,[something-the-user-knows,authentication,access.control]).
satisfies (rss, [asynchronous ,synchrony,communicat ion.type]).
satisfies(rss,[l:m,topology,communicatin_type]).
satisfies(rss, [pull,receiver,communication_type]).
probablySatisfies(nntp,[push,receiver,communication.type]).
satisfies(nntp, [integrity-over-timeliness,integrity/timeliness,communication_type]).

implements(sendMail,smtp). implements(sendMaiLv8_l,smtp).
implements(sendMaiLv8_l,smtp_auth). implements(surgeMailCluster,smtp).
implements(dNews,nntp). implements(leafNoad,nntp).
probably Implements(lifeKeeper,active_replication).
probablyImplements(lifekeeper,passive-replication),
probably Implements(surgeMailCluster,smtp_auth).
probablyImpIements(surgeMailCluster,active_repIication).

notRelatedCots(lifeKeeper,dNews). notRelatedCots(lifeKeeper,leafNoad).
notRelatedCots(lifeKeeper,surgeMailCluster).

»iS*I-Prolog(«ulti.«irei>!i«l,version5.6.(1) " "" ̂" ' ' ^jPiQ'

M
Are supported by the mechanism assembly active_replication,5mlp sxii-p̂ auth

and the cOMpanent assemblies implemetitiiig them are li£eKeeper,3endMail_u8_l,SBiidMail_v8_l

surgeMailCluster.surgeKailCluster.siargeHailCluster,,

Are supported by the mechanism assembly: active_replicatiaii,si!ttp,fyersoiial_pciSSMord.

But there are not component assemblies implementing mechanisms and satisfying combination constraints.

Are supported by the mechanism assembly: actiye_replication,nntp,personal„password.

But there-are not component assemblies implementing mechanisms and-satisfying combination constraints.

Pig. 7. Prototype: Output for the example

6.1 A p p l i c a t i o n : M D A

Model-Driven Arch i tec ture (MDA) [21] aims to de r ive /genera te software sys

t e m s t h r o u g h sys temat ic t r ans format ions from high-level models . Some projects ,

such as CoSMIC [22] and UniFrame [23], implement M D A t o genera te componen t -

based sys tems, b u t use formal componen t specification languages t o describe

44 Claudia Lopez and Hernan Astudillo

the available components, and from these descriptions (consistent and precise)
they automate the component selection and integration process.

However, in most systems without strong constraints like hard real-time,
the cost of using formal specifications is difficult to justify; thus, we aim to
integrate incomplete, imprecise, unreliable and changing descriptions into MDA
techniques. Current systematic techniques to select components are hard to
integrate with MDA due to the lack of explicit mappings among PIM-level
concepts of analysis and design, and PSM-level constructs such as components.

We have deployed the described approach and techniques in the Azimut
framework [24], which extends MDA to automate architectural decisions from
NFRs through components. The prototype is described in [26].

7 Conclusions

The described process to generate, evaluate and regenerate component assem
blies, combined with the multi-dimensional catalogs that support it, allows ar
chitects to engage in iterative exploration of design spaces. A key goal of this
exploration is finding the "best" combination of components that not only sat
isfy the given requirements, but also fit some non-technical second-order criteria
(such as minimal cost or maximal supplier reliability), but accepting the fuzzy
nature of available component information.

The underlying concepts are representation of quality attributes using archi
tectural policies, their systematic reification into architectural mechanisms, and
reification of mechanisms into components that implement them. The main op
erational feature of the approach are catalogs for three abstraction levels (poli
cies, mechanisms and components); these abstractions are "characterize" with
possibly incomplete, imprecise, unreliable and changing data, and are multi
dimensional in including technical data but also higher-order information (e.g.
cost, supplier). Thus, keeping in catalogs information about which mechanisms
satisfy which policies and which components implement which mechanisms al
lows sharing this valuable knowledge; and identifying derivation rules allows
supporting, and perhaps even semi-automating, the exploration process of de
sign spaces performed by architects.

References

1. Sihem Ben Sassi, Lamia Labed Jilani, Henda Hajjami Ben Ghezala: "COTS Char
acterization Model in a COTS-Based Development Environment." APSEC 2003,
p. 352.

2. Ncube, C , Maiden, N. "PORE: Procurement-Oriented Requirements Engineering
Method for the CBSE Development Paradigm." International Workshop on CBSE,
May 1999.

Systematic Exploration of COTS Design Spaces 45

3. Alves, C , Finlcelstein, A.: "Challenges in COTS-Making: a Goal-Driven Require
ments Engineering Perspective." Proc. 14th Intl. Conf. on Software Engineering
and Knowledge Engineering (SEKE'02), Italy (July 2002).

4. Ochs, M.: "A COTS Acquisition Process: Definition and Application Experience."
11th ESCOM Conference, Shaker, Maastricht, 2000.

5. Philips, B., Polen, S.: "Add Decision Analysis to Your COTS Selection Process."
The Journal of Defense Software Engineering, Software Technology Support Center
Crosstalk, April 2002.

6. Kontio, J.: "A case study in applying a systematic method for COTS selection."
Proceedings ICSE 1996, p. 201-209.

7. Kunda, D., Brooks, L.: "Applying Social-Technical Approach to COTS Selection."
Proceedings 4th UKAIS Conference, Abril 1999.

8. Alves, C , Castro, J.: "CRE: A Systematic Method for COTS Components
Selection." 15th Brazilian Symposium on Software Engineering (SBES), Rio de
Janeiro, Brazil (Oct 2001).

9. Chung, L., Cooper, K.: "COTS-Aware Requirements Engineering and Software
Architecting." Proceedings IWSSA 2004

10. Chung, L.,Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publisher, 2000.

11. Chin Yeoh, H., Miller, J.: "COTS Acquisition Process: Incorporating Business
Factors in COTS Vendor Evaluation Taxonomy." METRICS 2004, pp. 84-95.

12. Saaty, T.: "The Analytic Hierarchy Process". New York: McGraw-Hill, 1990.
13. Albin, S.: The Art of Software Architecture: Design Methods and Techniques.

Wiley, Mar 2003.
14. Policy and Mechanism Definitions. h t t p : / / w i k i . cs .uiuc.edu/MFA/Policy+and+

Mechanism
15. Vitharana, P.,Fatemah "Mariam" Zahedi, Jain, H.: "Design, retrieval, and assem

bly in component-based software development." Commun. ACM (46)11, Nov 2003,
p.97-102.

16. Firesmith, D.: "Specifying Reusable Security Requirements." Journal of Object
Technology, 3(1), pp.61-75 (Jan-Feb 2004). h t t p : / / w w w . j o t . f m / i s s u e s / i s s u e _
2004_01/column6

17. Tannenbaum, A., van Steen, M.: Distributed Systems Principles and Paradigms.
Prentice Hall (2002).

18. Britton, C , Bye, P.: IT Architectures and Middleware: Strategies for Building
Large, Integrated Systems (2nd Ed). Addison-Wesley Professional (2004).

19. Szyperski, C : Component Software (2nd Edition). Addison-Wesley Profes-
sional(2002).

20. Authentication Mechanisms. h t t p : / / s a r w i k i . i n f o r m a t i k . h u - b e r l i n . d e /
Authentication_Mechanisms

21. MDA Guide Version 1.0.1. Object Management Group (June 2003). h t tp : / /www.
omg.org /cg i -b in /doc?omg/03-06-01

22. Gokhale, A., Balasubramanian, K., and Lu, T. "CoSMIC: Addressing Crosscut-
ting Deployment and Configuration Concerns of Distributed Real-Time and Em
bedded Systems." OOPSLA 2004, ACM Press, p. 218-219.

23. Cao, F., Bryant, B., Raje, R., Auguston, M., Olson, A., Burt. C: "A Component
Assembly Approach Based on Aspect-Oriented Generative Domain Modeling."
ENTCS 2005, pp.119-136.

46 Claudia Lopez and Hernan Astudillo

24. Lopez, C , Astudillo, H.: "Explicit Architectural Policies to Satisfy NFRs using
COTS." Workshop NfC 2005 in MoDELS'2005, Oct 2005. In: Satellite Events at
the MODELS 2005 Conference, Bruel, Jean-Michel (Ed.), LNCS 3844, pp. 227 -
236, Springer (Jan 2006).

25. Astudillo, H., Pereira, J., Lopez, C : "Evaluating Alternative COTS Assemblies
from Unreliable Component Information." Technical Report DI-2006/05, Depar-
tamento de Informatica, Universidad Tecnica Federico Santa Maria, Valparaiso,
Chile (2006).

26. Montenegro, A., Astudillo, H.: "Generation of hybrid code+COTS systems."
Technical Report DI-2006/06, Departamento de Informatica, Universidad Tecnica
Federico Santa Maria, Valparaiso, Chile (2006).

27. SWI Prolog Documentation, h t t p : / / w w w . s w i - p r o l o g . o r g /

Practical Verification Strategy for Refinement
Conditions in UML Models

Claudia Pons ''̂ and Diego Garcia''

'LIFIA - Facultad de Informatica, Universidad Nacional de La Plata
^CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas)

'UTN (Universidad Tecnologica Nacional)
La Plata, Buenos Aires, Argentina

{cpons,dgarcia}@sol.info.unlp.odu.ar

Abstract. This paper presents an automatic and simple method for creating
refinement condition for UML models. Conditions are fully written in OCL,
making it unnecessary the application of mathematical languages which are in
general hardly accepted to software engineers. Besides, considering that the
state space where OCL conditions are evaluated might be too large (or even
infinite), the strategy of micromodels is applied in order to reduce the search
space. The overall contribution is to propitiate the performing of verification
activities during the model-driven development process.

1. Introduction

The stepwise refinement technique facilitates the understanding of complex
systems by dealing with the major issues before getting involved in the details. The
system under development is first described by a specification at a very high level of
abstraction. A series of iterative refinements may then be performed with the aim of
producing a specification, consistent with the initial one, in which the behavior is
fully specified and all appropriate design decisions have been made.

Stepwise software development can be fully exploited only if the language used to
create the specifications is equipped with formal refinement machinery, making it
possible to prove that a given specification is a refinement of another specification, or
even to calculate possible refinements from a given specification. Robust refinement
machinery is present in most formal specification languages such as Object-Z [21], B
[11], and the refinement calculus [2], and even in some restricted forms of
programming languages [4]. However, the widely-used standard specificahon
language UML [15] lacks for a well-defined notion of refinement.

To alleviate this problem most research on the formalization of UML refinements
adhere to the approach of mapping the graphical notation into a formal domain where
properties are defined and analyzed. For example the works presented in [1], [5], [7],
[10], [12], [13] and [22] among others, belong to this group. They are appropriate to
discover and correct inconsistencies and ambiguities of the graphical language, and in
most cases they allow us to verify and calculate refinements of (a restricted form of)

Please use the following format when citing this chapter:

Pons, C, Garcia, D., 2006, in IFIP International Federation for Information Processing, Volume 219, Ad
vanced Software Engineering: Expanding the Frontiers of Software Technology, eds. Ochoa, S., Roman,
G.-C, (Boston: Springer), pp. 47-61.

48 Claudia Pons, Diego Garcia

UML models. However, such approaches are non-constructive (i.e., they provide no
feedback in terms of UML), they require expertise in reading and analyzing formal
specifications and generally, properties that should be proved in the formal setting are
too complex or even undecidedly.

In [18] and [19] we explored an alternative approach, as a complement to the
former; well founded refinement structures in the Object-Z formal language were
used to discover refinement structures in the UML, which are (intuitively) equivalent
to their corresponding Object-Z inspiration sources. A similar proposal was presented
in [3], where Boiten and Bujorianu explore refinement indirectly through unification;
the formalization is used to discover and describe intuitive properties on the UML
refinements. On the other hand, Liu, Jifeng, Li and Chen in [14] use a formal
specification language to formalize and combine UML models; then, they define a set
of refinement laws of UML models to capture the essential nature, principles and
patterns of object-oriented design, which are consistent with the refinement definition.

In this article we work further on those proposals by enriching such refinement
patterns with refinement conditions written in OCL (Object Constraint Language)
[16]. The advantage of this approach is that refinement conditions get completely
defined in terms of OCL, making it unnecessary the application of languages which
are usually hardly accepted by software engineers. OCL is a more familiar language
and it has a simpler syntax than Object-Z and other formal languages. Additionally,
OCL is part of the UML 2.0 standard and it will probably form part of most modeling
tools in the near future.

Furthermore, after defining refinement conditions, the next step is to evaluate such
conditions. Ordinary OCL evaluators are unable to determine whether a refinement
condition written in OCL holds in a UML model because OCL formulas are evaluated
on a particular instance of the model, while refinement conditions need to be
validated in all possible instantiations. Therefore, in order to make the evaluation of
refinement conditions possible, we extract from the UML model a relatively small
number of small instantiations, and check that they satisfy the refinement conditions
to be proved. This strategy, called micromodels of software was proposed by Daniel
Jackson in [9] for evaluating formulas written in Alloy. Later on, Martin Gogolla and
colleges in [8] developed a usefiil adaptation of such technique to verify UML and
OCL models. Here we adapt such micromodels strategy to verify refinement
conditions.

The structure of this document is as follows: sections 2 serves as a brief
introduction to the issue of refinement specification in Object-Z and UML 2.0; section
3 describes the method for creating OCL refinement condition for UML refinement
patterns; section 4 explains how the micromodels strategy is applied to verify
refinements; finally, the paper closes with a presentation of conclusions and future
directions.

2. Refinements Specification in Object-Z and UML

In Object-Z [21], a class is represented as a named box with zero or more generic
parameters. The class schema may include local type or constant definitions, at most

Practical Verification Strategy for Refinement Conditions in UML Models 49

one state schema and an initial state schema together with zero or more operation
schemas. These operations define the behavior of the class by specifying any input
and output together with a description of how the state variables change. Operations
are defined in terms of two copies of the state: one undecorated copy which represents
the before-sate and a primed copy representing the after-state.

For example, figure 1 illustrates the specification of a simple class called Flight,
having a state (consisting of two variables) and only one operation.

Flight

f (freeSeats, reserve)

freeSeats: ^
canceled: B

freeSeats=300
canceled=false

reserve
A(freeSeats)

freeSeats>0 A -.canceled
freeSeats'=freeSeats-1

Figure 1: simple Object-Z schema.

Object-Z is equipped with a schema calculus, that is to say a set of operators
provided to manipulate Object-Z schemas. The schema calculus makes it possible to
create Objects-Z specifications describing properties of other Object-Z specifications.
To deal with refinements we need to apply at least the following operators:

- Operator STATE denotes the set of all possible states (i.e., snapshots or bindings)
of the system under consideration. For example, Flight.SxATE = {4freeSeats=x,
canceled=t?> | 0<x<300 A te {true, false}}

- Operator INIT denotes the initial states of a given schema. For example,
FHght.lNiT= {<]freeSeats=300 , canceled=falsel> | }}

- Operator pre returns the precondition of an operation schema; that is to say the set
of all states where the operation can be applied. For example, pre reserve =
{<!freeSeats = x, canceled=false) \ 0<x<300}

- The conjunction of two schemas S and T (SAT) results in a schema which
includes both S and T (and nothing else).

- Schema implication (S :^ T) denotes the usual logical implication.

In [6] refinement is formally addressed in the context of Object-Z specifications as
follows: an Object-Z class C is a refinement (through downward simulation) of the
class A if there is a retrieve relation R on A.STATEAC.STATE so that every visible
abstract operation A.op is recasted into a visible concrete operation Cop thus the
following holds:

50 Claudia Pons, Diego Garcia

(Initialization) VC.STATE • C.lNIT ^ (3 A . S T A T E • A.lNIT A R)

(Applicability) VA.SXATE • VC.STATE* R => (pre A.op => pre Cop)
(Correctness) VA.STATE»VC.STATE* VC.STATE'*

R A pre A.op A Cop => 3.A.STATE'* R' A A.op

This definition allows preconditions to be weakened and non-determinism to be
reduced. In particular, applicability requires a concrete operation to be defined
wherever the abstract operation was defined, however it also allows the concrete
operation to be defined in states for which the precondition of the abstract operation
was false. That is, the precondition of the operation can be weakened. Correctness
requires that a concrete operation be consistent with the abstract one whenever it is
applied in a state where the abstract operation is defined. However, the outcome of
the concrete operation only has to be consistent with the abstract, but not identical.
Thus if the abstract operation allowed a number of options, the concrete operation is
free to use any subset of these choices. In other words, non-determinism can be
solved.

On the other hand, the standard modeling language UML [15] provides an artifact
named Abstraction (a kind of Dependency) with the stereotype « r e f i n e » to
explicitly specify the refinement relationship between UML named model elements.
In the UML metamodel an Abstraction is a directed relation from a client (or clients)
to a supplier (or suppliers) stating that the client (the refinement) depends on the
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping
designated to record the abstraction/implementation mappings (i.e., the counterpart to
the Object-Z retrieve relation), which is an explicit documentation of how the
properties of an abstract element are mapped to its refined versions, and on the
opposite direction, how concrete elements can be simplified to fit an abstract
definition. The mapping contains an expression stated in a given language that could
be either formal or not. The definition of refinement in the UML standard [15] is
formulated using natural language and it remains open to numerous contradictory
interpretations.

3. Verification strategy for UML refinement patterns

UML refinement patterns [18] [19] document recurring refinement structures in
UML models. In this section we describe one of those patterns, the state refinement
pattern; then we present an algorithm that can be applied on UML models that
contain such a pattern in order to automatically create an OCL refinement condition to
verify its applicability and correctness. Similar processes were defined to create
refinement condition for other patterns in the catalog, but they are not described here
due to space limitations.

Practical Verification Strategy for Refinement Conditions in UML Models 51

3.1. The state refinement pattern

A State Refinement takes place when the data structures which were used to
represent the objects in the abstract specification are replaced by more concrete or
suitable structures; operations are accordingly redefined to preserve the behavior
defined in the abstract specification.

An instance of the pattern's structure:

Let Ml be the UML model in figure 2, which is compliant with the structure of the
state refinement pattern [19]. Ml contains information about a flight booking system
where each flight is abstractly described by the quantity of free seats in its cabin; then
a refinement is produced by recording the total capacity of the flight together with the
quantity of reserved seats. In both specifications, a Boolean attribute is used to
represent the state of the flight (open or canceled). The available operations are
r e s e r v e to make a reservation of one seat and c a n c e l to cancel the entire flight.
A refinement relationship connects the abstract to the concrete specification. The
OCL language [16] [20] has been used to specify initial values, operation's pre and
post conditions and the mapping attached to the refinement relationship.

© FlightA
a canceled : Boolean
a fieeSeats : Integer

*» iieserve ()
»» cancel ()

©FlightC
a canci^kd ; Boolean
E reservedSeats : Integer
a capacity ; Integer
» cancel ()
leserve {)

Context FlightA ::
freeSeats
canceled
reserve{)

cancel()

init
init:
pre:
post
pre:

300
false
freeSeats>0
freeSeats=f

not canceled

and not cance
reeSeatsSpre
post: cance

led
-1
led

flightA.freeSeats = flightC.capacity ~
flightC.reservedSeats
and flightA.canceled ^ flightC.canceled

Context FlightC ::
capacity init: 300
reservedSeats init: 0
canceled init: false
reserve()
pre: capacity-reservedSeats>0

and
post:reservedSeats
cancel{) pre: not

not canceled
=reservedSeat£
canceled post.

@pre+l
canceled

Figure 2: an instance of the state refinement pattern

An instance of the pattern's refinement condition:

Object-Z refinement conditions - Fl - for UML classes FlightA and FlightC via
some retrieve relation R are automatically generated from the generic refinement

52 Claudia Pons, Diego Garcia

condition established by the pattern [19], based on the definition of downward
simulation in Object-Z described in [6]. Figure 3 shows the formula Fl.

Initialization
VFlightC.STATE .FlightCJN7T =>(3 FlightA.STATE •FlightA./N/T A R)

Applicability (of operation reserve)
VFIightA.STATE«VFlightC.STATE .R ^ (pre FlightA.reserve ^ pre

FlightC .reserve)

Correctness (of operation reserve)
VFlightA.STATE •VFlightC.STATE • VFlightC.STATE'*

RApre FlightA.reserve A FlightC.reserve => 3.FlightA.STATE' ' R ' A
FlightA.reserve

Figure 3: an instance of the refinement condition for the state refinement pattern

The transformation process from Object-Z to OCL:

Then, Object-Z refinement condition - Fl - is automatically transformed into OCL
expression - FT - by applying the transformation Tin the context of a UML model
MI. Apart from producing an OclExpression, Treturns an OclFile containing
additional definitions, which are created during the transformation process (see the
appendix). The main features of the transformation are as follows,

Highlight #1: the Object-Z retrieve relation R is replaced by its OCL counterpart.

Graphically, the abstraction mapping (i.e., the retrieve relation) describing the
relation between the attributes in the abstract element and the attributes in the
concrete element is attached to the refinement relationship; however, OCL
expressions can only be written in the context of a Classifier, but not of a
Relationship. On the Z side, the context of the abstraction mapping is the combination
of the abstract and the concrete states (i.e., A.STATE A C.STATE); however, a
combination of Classifiers is not an OCL legal context. Our solution consists in
translating the mapping into an OCL formula in the context of the abstract classifier,
in the following way:

Context flightA:FlightA def :
mapping(flightC : FlightC):Boolean =
flightA.freeSeats= flightC.capacity -
flightC.reservedSeats and
flightA.canceled= flightC.canceled

Practical Verification Strategy for Refinement Conditions in UML Models 53

As a convention, class names in lower case are used to denote instances. It is worth
mentioning that the mapping definition could alternatively have been translated into a
formula in the context of the concrete classifier.

Highlight #2: Object-Z expression INIT is expressed in terms of an OCL boolean
operation is In it () .

A query operation i s l n i t () is automatically built from the specification of the
attribute's initial values included in the UML class diagram. It returns true if all of the
instance's attributes satisfy the initialization conditions. For example:

context FlightA def: islnit (): Boolean =
self.freeSeats = 300 and self.canceled = false

context FlightC def: islnit (): Boolean =
self.capacity=300 and self.canceled=false and
self.reservedSeats=0

Highlight #3: expressions containing the Object-Z operator "pre" are translated
into the corresponding OCL pre conditions from the UML model.

For example, the Object-Z expression "pre FlightA. rese rve" is translated
into"flightA.freeSeats>0 and not f l ightA.canceled"

While, the expression "pre F l ightC. reserve" is translated into
" f l igh tC .capac i ty - f l igh tC . rese rvedSea t s>0 and not
f l igh tC.cance led"

Highlight #4: Object-Z expressions containing operation's invocations are
translated to OCL post conditions from the UML model.

In Object-Z, elements belonging to the pre-state are denoted by undecorated
identifiers, while elements in the post-state are denoted by identifiers with a
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite
direction, that is to say, undecorated names refer to elements in the post-state. Then,
in order to be consistent with the rest of the specification, a decoration (i.e., "_post")
is added to each undecorated identifier in the post condition and the original
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the
following definition:

Context flightA:FlightA::reserve()
post: flightA.freeSeats= flightA.freeSeats@pre -1

is renamed in the following way;

Context flightA:FlightA::reserve()
post: flightA_post.freeSeats= flightA.freeSeats -1

54 Claudia Pons, Diego Garcia

Highlight #5: logic connectors and quantifiers are translated to OCL operators.

The Z expression VS.SL4TE»exp is translated to S . a l l l n s t a n c e s () ->
f o r A l l (s I T (e x p r)) . The Z expression 3S . STATE«exp is translated to
S.alllnstances () -> e x i s t s (s | T (expr)) .

Notice that the name of the class, in lower case, is used to name the iterate
variable. Finally, the symbol => is translated to implies and the symbol A is
translated to and.

The appendix contains the formal definition of transformations T from Object-Z
refinement conditions to OCL expressions. On top of that formalization the
transformation process was fijlly automated. Table I shows the formula FT that is the
result of applying the transformation T on both the UML model Ml (figure 2) and the
Object-Z refinement conditions Fl (figure 3).

Table 1: OCL refinement conditions for an instance of the state refinement pattern.

O C L refinement condition

•g FlightC.alllnstances ()->foriUl(f lightC I f lightC. islnit ()
:§ implies (FlightA.alllnstances()-> exists(flightAI
•| flightA.isInitOaiid flightA.mapping (flightC))))

J FlightA.allInstances-> forAll{flightAi
1̂ FlightC.allInstances-> forAll(flightC|
"g, flightA.mapping (flightC) implies (flightA. freeSeats>0 and
•5" not flightA. canceled implies flightC. capacity-

flightC.reservedSeats>0
and not flightC.canceled)))

FlightA.alllnstances()-> forAll(flightA!
FlightC.alllnstances0 -> forAlli flightC1
FlightC.alllnstances0-> forAll(flightC_post|
flightA.mapping(flightC)and (flightA.freeSeats>0 and
not flightA.canceled) and (flightC_po3t.reservedSeats =
flightC.reservedSeats+1) implies FlightA.alllnstances()->
exists{ flightA_postI flightA_post.mapping(flightC_post)
and flightA_post.freeSeats= flightA.freeSeats -1))))

Practical Verification Strategy for Refinement Conditions in UML Models 55

4. Micromodels for evaluating refinement conditions

Generally, UML models specify an infinite number of instances; even little models
such as the one described in figure 2 (i.e., there is an infinite number of instances of
the type FlightA and an infinite number of instances of the fype FlightC); thus to
decide whether a certain property holds or not in the model results generally
unfeasible.

In order to make the evaluation of refinement conditions viable, the technique of
micromodels (or micro-worlds) of software is applied by defining a finite bound on
the size of instances and then checking whether all instances of that size satisfy the
property under consideration (i.e., the refinement condition):

- If we get a positive answer, we are somewhat confident that the property holds in
all instantiations. In this case, the answer is not conclusive, because there could be a
larger instantiation which fails the property, but nevertheless a positive answer gives
us some confidence.

- If we get a negative answer, then we have found an instantiation which violates
the property. In that case, we have a conclusive answer, which is that the property
does not hold in the model.

Jackson's small scope hypothesis [9] states that negative answers tend to occur in
small worlds already, boosting the confidence we may have in a positive answer.

For example, we will consider micro-worlds of the UML model in figure 2
containing only three instances of Integer and one instance of Boolean, Then we will check
whether all micro-worlds of that size satisfy the refinement condition, that is to say:

Applicability Condition for operation reserveQ:

Set{ <0,f>,<l,f>,<2,f> }-> foxAll (flightAI
Set{<0,0,f>,<0,l,f>,<0,2,f>,<l,0,f>,<l,l,f>,<l,2,f>,<2,0,f>,

<2,l,f>,<2,2,f>} ->forAII(flightC|
flightA.mapping(flightC) implies
(flightA.freeSeats>0 and not flightA.canceled
Implies flightC.capacity-flightC.reservedSeats>0 and

not flightC.canceled)))

This expression can be easily evaluated by an ordinary OCL evaluator, returning a
positive answer, which gives us some confidence that the property holds.

Lets explore a case where the refinement conditions are not satisfied; lets consider
for example that preconditions were strengthened in class FlightC,

Context flightC:FlightC :: reserve!)
pre: flightC.capacity- flightC.reservedSeats>2

and not flightC.canceled

Then, the property to be checked is as follows,

Set{ <0, f> ,<l , f> ,<2, f> }-> forAll (flightAI
Set{<0,0,f>,<0, l , f > , < 0 , 2 , f > , < l , 0 , f > , < l , l , f > , < l , 2 , f > , < 2 , 0 , f > ,

<2 , l , f> ,<2 ,2 , f>} ->forAlI(fl ightC1

56 Claudia Pons, Diego Garcia

flightA.mapping(flightC) implies
(flightA.freeSeats>0 and not flightA.canceled
In^lles flightC.capacity-flightC.reservedSeats>2 and

not flightC.canceled)))

which evaluates false in any micro-world such that flightA=<2,i> and
flightC=<2,0,£> because of the fact that:

flightA.mapping (flightC) holds,
(f l ightA. freeSeats>0 and not f l ightA. canceled) holds,
(f l ightC. capaci ty - f l ightC . reservedSeats > 2) doesnothold.

Thus, the presence of such micro-worlds gives us the conclusive answer that the
refinement property does not hold in the UML model.

6. Conclusion

Abstraction is a cognitive means by which software engineers deal with
complexity. The idea promoted by most software development methodologies is to
use models at different levels of abstraction; a series of transformations are performed
starting from an abstract platform-independent model with the aim of making the
model more specific at each step. Each transformation step should be amenable to
formal verification in order to guarantee the correctness of the final product.

However, verification activities require the application of forma! modeling
languages with a complex syntax and semantics and need to use complex formal
analysis tools; therefore they are rarely used in practice.

To facilitate the verification task we developed an automatic method for creating
refinement conditions for UML models, written in the friendly and well-accepted
OCL language. The inclusion of verification in ordinary software engineering
activities will be propitiated by avoiding the application of unfamiliar languages and
tools.

To complement such method, we adapted a strategy for reducing the search scope
in order to make the evaluation of refinement conditions feasible. Since the satisfiable
formulas that occur in practice tend to have small models, a small scope usually
suffices and the analysis is reliable.

7. References

[1] Astesiano E., Reggio G. An Algebraic Proposal for Handling UML Consistency",
Workshop on Consistency Problems in UML-based Software Development. UML
Conference (2003).

[2] Back, R. & von Wright, J. Refinement calculus: a systematic introduction, Graduate texts in
computer science, Springer Verlag. (1998)

Practical Verification Strategy for Refinement Conditions in UML Models 57

[3] Boiten E.A. and Bujorianu M.C. Exploring UML refinement through unification.
Proceedings of the UML'03 workshop on Critical Systems Development with UML, J.
Jurjens, B. Rumpe, et al., editors -TUM-I0323, Technische Universitat Munchen. (2003).

[4] Cavalcanti A, and Naumann D. Simulation and Class Refinement for Java. In proceedings
of ECOOP 2000 Workshop on Formal Techniques for Java Programs. (2000).

[5] Davies J. and Crichton C. Concurrency and Refinement in the Unified Modeling Language.
Electronic Notes in Theoretical Computer Science 70,3, Elsevier, 2002.

[6] Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced
Applications. FACIT, Springer, (2001)

[7] Engels G., Kuster J., Heckel R. and Groenewegen L. A Methodology for Specifying and
Analyzing Consistency of Object Oriented Behavioral Models. Procs. of the IEEE Int.
Conference on Foundation of Software Engineering. Vienna. (2001).

[8] Gogolla , Martin, Bohling, Jo"m and Richters, Mark. Validation of UML and OCL Models
by Automatic Snapshot Generation. In G. Booeh, P.Stevens, and J. Whittle, editors, Proc.
6th Int. Conf Unified Modeling Language (UML'2003). Springer, Beriin, LNCS 2863,
(2003).

[9] Jackson, Daniel, Shlyakhter, I. and Sridharan. A micromodularity Mechanism. In
proceedings of the ACM Sigsoft Conference on the Foundation of Software Engineering
FSE'01.(2001).

[10] Kim, S. and Carrington, D., Formalizing the UML Class Diagrams using Object-Z,
proceedings UML'99 Conference, Lecture Notes in Computer Sciencie 1723 (1999).

[11] Lano,K. The B Language and Method. FACIT. Springer, (1996).

[12] Lano,K., Biccaregui,J., Formalizing the UML in Structured Temporal Theories, 2° .
ECOOP Workshop on Precise Behavioral Semantics, TUM-I9813, Technische U. Munchen
(1998).

[13] Ledang, Hung and Souquieres, Jeanine. Integration of UML and B Specification
Techniques: Systematic Transformation from OCL Expressions into B. Procs. of IEEE
Asia-Pacific Software Engineering Conference 2002. December 4-6, (2002).

[14] Liu, Z., Jifeng H., Li, X. Chen Y. Consistency and Refinement of UML Models. 3er,
Workshop on Consistency Problems in UML-based Software Development III, event of the
UML Conference, (2004).

[15] UML 2.0. The Unified Modeling Language Superstructure version 2.0 - OMG Final
Adopted Specification., http://www.omg.org. August 2003

[16] OCL 2.0. OMG Final Adopted Specification. October 2003.

[17] Pons C, Giandini R., Perez G., et al. Precise Assistant for the Modeling Process in an
Environment with Refinement Orientation. In "UML Modeling Languages and
Applications: Satellite Activities". Lecture Notes in Computer Science 3297. Springer,
(2004).

[18] Pons Claudia. Heuristics on the Definition of UML Refinement Patterns. 32nd
International Conference on Current Trends in Theory and Practice of Computer Science.
SOFSEM (SOFtware SEMinar). January 21-27 , 2006 . Merin, Czech Republic. Published
in the Springer LNCS (Lecture Notes in Computer Science) by Springer-Verlag. (2006)

[19] Pons Claudia. On the definition of UML refinement patterns. Workshop MoDeVa at
ACM/IEEE 8th Int. Conference on Model Driven Engineering Languages and Systems
(MoDELS) Jamaica. October 2005.

58 Claudia Pons, Diego Garcia

[20] Richters, Mark and Gogolla, Martin. OCL-Syntax, Semantics and Tools, in Advances in
Object Modelling with the OCL. Lecture Notes in Computer Science number 2263.
Springer. (2001).

[21] Smith, Graeme. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers. ISBN 0-7923-8684-1. (2000)

[22] Van Der Straeten, R., Mens,T., Simmonds, J. and Jonckers,V. Using description logic to
maintain consistency between UML-models. In Proc. 6th International Conference on the
Unified Modeling Language. Lecture Notes in Computer Science number 2863. Springer.
(2003).

APPENDIX: transformation from Object-Z to OCL refinement
conditions

Grammar for Z refinement expressions:

This section describes the grammar for Z refinement expressions, which is a subset
of Object-Z grammar presented in [21].

The grammar description uses the EBNF syntax, where terminal symbols are
displayed in bold face. Optional constructs are enclosed by slanted square brackets [].

P r e d i c a t e : : =

Predicatel:

SchemaText::=

className::=

operationName:

relationName::

Word

Decoration: : =

3 SchemaText* Predicate

I V SchemaText • Predicate

I Predicatel

className .INIT

I pre operationName

I operationName

I relationName

I Predicatel A Predicatel

I Predicatel ^ Predicatel

I (Predicate)

className.STATE [Decoration]

Word

className.Word

Word [Decoration]

category for undecorated names

Definition for the Transformation:

Practical Verification Strategy for Refinement Conditions in UML Models 59

This section contains the specification of function T that takes a refinement
condition written in Object-Z and returns the corresponding refinement condition
written in OCL. Function T is apphed in the context of a UML model M containing
all the elements which are referred to in the Z expressions. Apart from producing an
OclExpression, function T returns an OclFile containing additional definitions that
are created during the transformation.

UML elements are retrieved form M by using standard lookup operations on its
environment as it is defined in [16].

T: Model -> Predicate -> (OclExpression, OclFile)

r M (P r e d i c a t e l A P r e d i c a t e 2) = (e,<I))

Where

T M (P r e d i c a t e l) = (e l , <51)

T „ (P r e d i c a t e 2) = (e2,<D2)

e= e l "and" e2

<J> = Ol merge 02

r M (P r e d i c a t e l =* P r e d i c a t e 2) = (e.O)

Where

TM(Predicatel)= {el,<Dl)

TM(Predicate2)= (e2,(D2)

e= el "implies" e2

<D = Ol merge <J)2

TM(V className.STATE • P r e d i c a t e) = (e,<I>)
Where

TM (Predicate)= (el, (t)

e=className".alllnstances()->forAll
("iteratorName"I"el")"

iteratorName= toLowerCase(className)

TM(V className. STATE' "Predicate) = (e,(D)

Where

TM (Predicate)= (el,*)

e=className".alllnstances ()->forAll
("iteratorName"I"el")"

iteratorName= toLowerCase(className) "_post"

TM(3 className.STATE • Predicate) = (e,*)

Where

60 Claudia Pons, Diego Garcia

TM (Predicate)= (el,0)

e=className".alllnstances()->exists
("iteratorName"|"el")"

iteratorName= toLowerCase(className)

TM(3 className.STATE' • Predicate) = (e,<5)

Where

TM(Predicate)= (61,0)

e=className".alllnstances ()-
>exists("iteratorName"|"el")"

iteratorName= toLowerCase(className) "_post"

TM (className.INIT) =(6,0)

Where

e= toLowerCase (className) ".isInitO"

O = "Package" packageName

"context" className "def: isInitO: Boolean ="

propertyNamei" = "expi"and" . . . "and"propertyNamen" = "expn

"endPackage"

Where

packageName = class.package.name

class=M.getEnvironmentWithParents().lookup(className)

Properties = class.allProperties()->select

(pip.initialValue->notEmpty())

Vj«l<j<properties->size()•

propertyNamej = properties->at(j).name

expj = properties->at (j) .initialValue.body

ITM (pre className.operationName) = (e, 0)^

Where:

e = operation.precondition.specification.body

Where:

operation : UMLOperation =

M.getEnvironmentWithParents0 .lookup(className).

getEnvironmentWithParents()

.lookupImplicitOperation(operationName, Sequence{})

TM (className.operationName)= (e, 0)

Where:

In this document the symbol 0 is an abbreviation denoting the empty package.

Practical Verification Strategy for Refinement Conditions in UML Models 61

e =

operation.postcondition.specification.body.renamed()

Where:

operation : UMLOperation =

M.getEnvironmentWithParents0 .lookup(className).

getEnvironmentWithParents()

.lookupImplicitOperation(operationName,Sequence{})

Where:
function renamed() is applied on an OclExpression returning a copy of the

expression where any undecorated name v has been renamed as v_post and any
decorated name v@pre has been renamed as v.

ITji (relationName) = (e,*)

Where:

relationName G Word -- it is an undecorated name

e = abslnstance ".mappingC reflnstance ") "

<!' = "Package" packageName

"Context" abslnstance ":" AbstractClass "def:"

"mapping("reflnstance":"RefinedClass "):Boolean ="
exp "endPackage"

Where:

packageName = d.package.name

d : Abstraction =

M.getEnvironmentWithParents().lookup(relationName)

AbstractClass = d.supplier.name

RefinedClass = d.client.name

abslnstance = toLowerCase(AbstractClass)

reflnstance = toLowerCase(RefinedClass)

exp = d.mapping.body

I'M (relationName') = (e,0)

Where:

e = abslnstance ".mapping(" reflnstance ") "

Where:

d : Abstraction =

M.getEnvironmentWithParents().lookup(relationName)

AbstractClass = d.supplier.name

RefinedClass = d.client.name

abslnstance = toLowerCase(AbstractClass) "_post"

reflnstance = toLowerCase(RefinedClass) "_post"

A cognitive model of user interaction as a
guideline for designing novel interfaces

Felipe Aguilera', Rosa A. Alarcon ,̂ Luis A. Guerrero', Cesar A. Collazos^

' Department of Computer Science, Universidad de Chile
Av. Blanco Encalada 2120, Santiago, Chile

{faguiler, luguerre}@dcc.uchile.cl

^ Department of Computer Science,
Pontificia Universidad Catolica de Chile.

Av. Vicuiia Mackenna 4860, 6904411, Santiago Chile.
ralarcon@ing.puc.cl

' System Department, Universidad del Cauca
FIET, Sector Tulcan, Popayan-Colombia

ccollazo@unicauca.edu.co

Abstract. Adaptive systems behavior based on user models appear promising,
mostly for complex environments such as mixed reality environments (MRE).
An MRE comprises a virtual representation of the reality as well as physical
objects augmented with virtual features. These objects are coupled with the
virtual representation so that they can reflect its changes in real time. The
proper design of an MRE and the user models that it implies are crucial for its
success, but unfortunately, there are no guidelines for the design of these
environments. In this paper we present a methodology for designing user
models for MRE as well as for the augmentation of physical everyday objects.
The user model describes users' knowledge in two levels of abstraction:
objects manipulation (syntax) and its meaning assigned by a community of
practice (semantics).

1 Introduction

User models could be defined as models that a system have about users, which reside
inside the computational environment. An advantage of this approach is that a
system can adapt itself to the current task or user, dynamically and with little effort
or none required from the user [6]. This property is interesting mostly in complex

Please use the following format when citing this chapter:

Aguilera, F., Alarcon, R.A., Guerrero, L.A., CoUazos, C.A., 2006, in IFIP International Federation for In
formation Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software
Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 62-76.

A cognitive model of user interaction as a guideline for designing novel interfaces 63

environments such as mixed reality environments (from now on MRE). MREs blend
the real and the virtual [19] by keeping virtual representations of real things and
introducing virtual features in the real world through complex objects. A complex
object has a real concrete part coupled to various virtual representations (simulation,
animation, symbolic) by means of grasp or image recognition [3].

Although research in MRE [15, 18, 22], tangible user interfaces (TUI) [9, 12],
and multimodal interfaces [14], look promising, they cannot be considered by default
beneficial. Bad designs lead to unnatural interfaces, hard to understand, requiring an
extra cognitive effort from users [20], for manipulate them (syntax), and
understanding the results of such manipulation (semantics). Unfortunately, most
experiences reported in TUIs and MREs, are mainly ad hoc design strategies [14]
instead of the general design frameworks of GUI interfaces research [16]. In
addition, research in novel interfaces does not consider real contexts of use. As a
result, there is not a clear understanding of users' needs, restrictions, knowledge and
assumptions in relation with the interface. This situation avoids making a proper
evaluation of interfaces impact on users and many times "hammers in search of
nails" are created. For the case of user models in MREs, this situation is challenging
because if the system decides to adapt itself according to a misconceived user model
the resulting action could be performed in the physical world of a user and turn into a
odd action.

How can we identify the most important aspects to consider when designing an
MRE?. A first notion could be "transparent artifacts", it states that a well-designed
artifact (such as a door) becomes transparent when it is used: it allows us to focus on
the task at hand instead of on the artifact itself (e.g. a door allows us to focus on our
plans such as getting into the kitchen instead of on the door itself) [1]. This concept
is used in GUI interfaces design: it exploit users' knowledge about the world such as
pointing, grabbing and moving objects [22]. Such knowledge can be understood as
the perceived objects' properties in order to manipulate them or affordances (e.g. a
file can be grasp through a hand icon) [8], and the expected results (e.g. erase a file).

But users' knowledge about artifacts goes beyond its physical manipulation;
users assign meaning to objects based also on its use [1]. For instance, GUI designers
facilitate the users' understanding of its actions, by exploiting common knowledge
and organizing GUI elements into metaphors (e.g. providing a trashcan icon for files
deletion). Particularly, everyday objects (EO) such as keys, doors, rooms, etc. have a
meaning shared by a specific community. Users have expectations about them: a
lawyer may expect to find his office door closed, while students may expect to find
their room door opened. Just as we use basic knowledge such as pointing, grabbing,
etc, and semantic knowledge such as metaphors in GUI interfaces, we can exploit
EOs semantics for creating MREs with user models encapsulating this knowledge so
that the system can adapt itself without disturbing the user.

In this paper, we present a methodology for guiding the design of a cognitive
user model in order to enrich EOs comprised by a MRE. Our methodology has three
main tasks: syntax modeling, which consists of characterizing EO manipulation (e.g.
grabbing); praxis modeling, which consists of identifying the shared meaning
assigned by a community to the EO; and object augmentation, which consists of
determining the new virtual features of the object and its impact on the original
object's syntax and semantics.

64 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos

The resulting MRE comprehends a virtual representation of the real world, a set
of complex objects immersed in the users' real world and a set of user cognitive
models (one for each user). A user model encapsulates the user knowledge and
assumptions about complex objects at two levels of complexity: its manipulation or
syntax (grasping, moving, etc.), and the semantics associated with its use in a
determined context [1]. As an example, we used our methodology for guiding the
design of a MRE called "Collaborative Virtual-Real Environment" or CVRE [7, 10].
CVRE includes a virtual representation of the real facilities of our Department of
Computer Science at University of Chile, a set of complex objects (the real part is
coupled with the virtual by means of grasp recognition) and a set of user models
implemented through software agents.

The rest of the paper is organized as follows: section 2 describes the conceptual
background of our methodology. Section 3 shows the proposed cognitive user model
for MREs. In section 4 we present the use of our methodology in a practical
example. In section 5 we describe our CVRE. Finally, section 6 presents some
conclusions.

2 Contextual knowledge: syntax and semantics

In the area of context-aware computing, user context is described as the conditions
associated to the user's current location, such as: social aspects [5], physical
properties [12] or related information [4]. More generally, context can be understood
as "the interrelated conditions in which an event, action, etc. takes place"\ In
Artificial Intelligence (AI), context is used for interpreting the meaning of a
sentence. For instance, if a friend asks us to "close the window", in a cold, windy
day, we may understand that s/he refers to a physical window instead of a MS-
Window. This way, context narrows down the proper interpretation of an expression
[2]. In groupware, contextual information is provided to group members so they can
understand how their actions fit into the group goals and choose the appropriate
response among a set of possibilities [21]. In all these scenarios, context is used to
determine the meaning of a situation, a sentence or an action, so that an appropriate
response can be built.

In HCI, Barmon [1] proposes that objects should not be studied only as "things".
Objects have no meaning in isolation: they are given meaning only through their
incorporation into social praxis. This way, objects' meaning depends on the context
of use of such object. We define this context as "the interrelated conditions in which
an individual interact purposely with such object". Such conditions can be
differentiated at least in two complexity levels: the manipulation or actions
performed by users on the object (syntax) and the interpretation of its results or
consequences {semantics).

According to Bannon, this semantics would depend on the community who uses
the object. For instance, a regular family uses a frigidaire to store food, but in a
hospital (another context of use), people can use frigidaires to store blood samples.

' Excerpt from Merriam Webster On Line at http: // www.m-w.com .

A cognitive model of user interaction as a guideline for designing novel interfaces 65

In that way, communities determine different contexts of use and meaning for
objects. The objects and their manipulation may be the same (syntax), but users'
knowledge about the results of their manipulation depends on the context of use.

Others, like Brezillon [2] considers that contextual knowledge has two aspects:
static knowledge, which remains constant throughout the interaction; and dynamic
knowledge that changes throughout the interaction. Consider for example, an
everyday object such as a pencil. The knowledge associated to its manipulation (e.g.
how to hold a pencil) is mainly static and can be used in diverse contexts (e.g.
grading students test, setting appointments in a PDA touch screen, etc.), however,
when used it may serve to draw lines or to pick up a file (e.g. in the touch screen),
the dynamic nature of context serves as a mean for supporting users' diverse goal or
to allow users to assign unexpected uses to objects.

Finally, a fundamental guide for understanding the knowledge associated to the
functioning of objects from a cognitive point of view, is provided by Norman [17].
He defines a series of concepts such as affordances (the perceived properties of a
thing that determine how it could possibly be used), constraints (the perceived
properties of a thing that prohibits some activities and encourages others), feedback
(the perceived properties of a thing that permits sending information to users about
what action has been done), etc.

Objects allow to share and divide work practice among people, mediating the
people' work. This is particularly important in groupware where a well-designed
shared object can help users to understand their work and choose a proper behavior,
providing a better collaboration scenario. When people share a common physical
space but interact in an asynchronous way objects become the elements through
which people leave traces of their actions and intentions. In all these cases people'
actions on objects are interpreted in the context of use that the particular worker's
community shares and allows them to coordinate their actions.

2.1 Dimensions for Analysis and Design

Norman's concepts are useftil for describing an object manipulation, but they are too
general. With the aim of obtaining more specific guidelines, we followed Gutwin's
and Greenberg's strategy [11]. They used five "type of questions" iteratively (what,
who, when, how, where), for defining some dimensions of analysis and modeling of
groupware context (e.g. identity, location, etc). After some iterations, refinement and
discussion we found some useful dimensions for MREs. They are: Usage, Feedback,
History, Intention, Consequence, Action, Dependence, Opportunity, Access, Roles,
Reach and View. Each dimension must be defined in the two levels of abstraction
discussed previously: syntactic (manipulation) and semantic (interpretation of
manipulation by a community) level.

Usage: When referred to syntax, it describes the mechanism for manipulating an
object. It could be obtained by answering a "How" question: e.g. How do you
manipulate a key? (related to Norman's affordance concept, as well).

66 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos

Feedback: When referred to syntax, it describes the mechanism to know when an
action has been done. It could be obtained by answering "How" questions: e.g. How
do you know the consequences of using a key? (Norman's feedback concept).

History: When referred to syntax, it provides information about past events
concerning presence, location or action. It could be obtained by answering "Who"
questions: e.g. Who used a key?, "Where": e.g. Where is the person that used a key?,
and "How": e.g. How do you know if a key was used (Norman's constraints
concept).

Intention: When referred to syntax, it describes the object properties that a user
expects to change when interacting with the object. It could be obtained by
answering "What" questions: e.g. What is a key used for? (Norman's affordance
concept). When referred to semantics, intention describes the meaning associated to
an object property change. It could be obtained by answering the question "What":
e.g. "What is the user intention when using a key?".

Consequence: When referred to syntax, it gives information about the actions the
user can predict when perform an action over an artifact. It could be obtained by
answering "What" questions: e.g. What is the direct consequence of use a key?

Action: When referred to syntax, this aspect provides information about the state
or process of doing something. It could be obtained by answering "What" questions:
e.g. What do I do with a key?

Dependence: When referred to syntax, it describes the state of being determined,
influenced, or controlled by something else. It could be obtained by answering
"What" questions: e.g. What is the dependence of a key with people?

Opportunity: When referred to syntax, it represents favorable or advantageous
circumstance or combination of circumstances of doing something. It could be
obtained by answering "When" questions: e.g. When is a key used?

Access: When referred to syntax, it indicates the permissions of the people of use
certain artifacts. It could be obtained by answering "Who" questions: e.g. Who can
use a key?

Roles: When referred to syntax, it presents the characteristic and expected social
behavior of an individual. It could be obtained by answering "Who" questions: e.g.
Who should use a key?

Reach: When refereed to syntax, it describes what is reached when an object is
used. It could be obtained by answering "Where" questions: e.g. Where does a key
allow to reach?

View: When refereed to syntax, it describes what is viewed when an object is
used. It could be obtained by answering "Where" questions: e.g. Where does a key
allow to view?

3 Cognitive User Model for Designing Mixed Reality

In this section, we present a methodology for designing adaptive MREs. It
comprehends five steps implemented in three phases: everyday objects syntax
modeling, praxis modeling, and augmenting objects.

A cognitive model of user interaction as a guideline for designing novel interfaces 67

3.1 Phase 1: Everyday objects syntax modeling

Our aim is to design MREs that include everyday objects augmented with virtual
features. By augment, we mean to manipulate a physical artifact so that it is publicly,
and in most cases permanently, recognized to represent or denote something else.
This kind of natural augmentation is an activity that human beings perform
constantly. Our first step is to determine which objects will be considered as part of
the environment. One of the risks when augmenting objects with new fiinctionality is
that we distort objects' syntax and semantics in a way that we lose useful properties
or change the object so much that users may need extra cognitive effort to use it.

In order to avoid this, we model the object real syntax (manipulation) and
semantics (interpretation) using the dimensions described in section 2.1 (numbered
circles 1 and 2 in fig, 1). In this way, we can perform later a controlled distortion.

Syntax —

Problem domain

User model

Expectations

Praxis
Dimentions

(T)

T
Manipulation
Dimentions \

(

_ , ^ \ I—S

Real

features/
restriction

1 /̂ ^
aject ^^

Virtual

features/
restriction

®® ®
Fig. 1. An outline of the methodology followed for augmenting objects. A user cognitive
model about an artifact comprising syntactic and semantic aspects is initially created. The

model is used as a basis for performing a progressive and controlled distortion of the object.

68 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos

3.2 Phase 2: Praxis modeling

Diverse communities will assign different meaning to the same object: for instance
in a university, if an aula door is left half-opened, one may expect that students will
get in as they arrive; however, if the door belongs to a lawyer office, one may
interpret it as a potential security hazard. Furthermore, within a community we can
find different types of users or roles, such as teachers, secretaries, students, etc.,
whose praxis may be slightly different for each one.

A first step is to identify the set of users or roles in a community. For each of
them, we must characterize their knowledge about objects usage. Again we use our
dimensions for finding objects semantics (numbered circle 3 in fig. 1). In figure 1 we
can observe that syntax and semantics are separated with a dotted line. Indeed, we
can see that semantics are included in a box labeled "problem domain". This is
because syntax or manipulation can be the same across diverse domains of use, for
instance in the door example, the artifact (door) can be manipulated with the same
set of actions in a school or in a lawyer office (assume that the object manipulated is
the same). The opposite applies for shared meaning of object manipulation; diverse
communities will assign another meaning to them, depending of their use context.
For instance lawyers and teachers could assign different meanings for a structurally
similar half-opened door.

Semantics may be expressed as shared policies: users of a certain type agree on a
specific interpretation of objects usage and needs. For instance, secretaries may agree
that the doors of their offices must remain opened during their work-time. This
knowledge corresponds to the assumptions that the system takes into consideration
when adapting its behavior.

3.3 Phase 3: Augmenting objects

The goal of the phases previously presented is to identify the objects in order to
augment, their physical properties, weaken their restrictions and manipulation
constraints, as well as to change the expectations hold by each type of user in
relation with each object. In this stage, we define the desired objects' virtual features
(numbered circle 4 in fig. 1).

These features should be consistent with the syntax and semantics defined in the
previous steps. A designer may choose to change some of them, but s/he will know
in advance that users may need to learn how to use these new features. As well, a
designer may choose to modify an object (numbered circle 5 in fig. 1). For instance,
s/he could add leds, speakers, motors, etc. Again s/he should consider the impact of
his/her choice on syntax and semantics. If the object is modified, then its physical
constrains and manipulation could change. Furthermore, users may decide to change
their shared policies in order to take advantage of objects new possibilities. In this
case the cycle must be followed again (cyclic arrows in fig. 1).

In the next section we apply our methodology for creating a MRE. The
environment comprises the physical workplace of the Computer Science Department
at the University of Chile that has a counterpart in the virtual world in the form of a

A cognitive model of user interaction as a guideline for designing novel interfaces 69

Web based Collaborative Virtual Environment. Additionally, physical elements such
as doors, keys and rooms have been augmented following the methodology.

4 Designing a CVRE

In a previous work we have designed a Collaborative Virtual Environment (CVE)
[10], which is a virtual space where people can collaborate. The CVE visually
mimics the real world in order that people can use it in a natural way. Now we will
extend our previous work and transform it into a MRE (CVRE) comprising
augmented everyday objects.

4.1 Everyday objects syntax modeling.

The everyday objects considered as part of our CVRE are rooms [10], doors, door-
locks and keys. Rooms are virtual representation of the real workplaces in the
Computer Science Department: X teachers' offices, Y students' rooms, etc. Rooms
are assigned to one people (owner). Access to rooms is controlled by one wood door
without glasses and one door-lock. Door keys are assigned to room owners. The
administrator keeps also a copy of each key. A properties summary is shown in
Table 1.

Table 1.. Our CVE contains rooms, doors with locks and keys. Their real features are
described in this table

Room Door Lock Key
- workspace: academic

office, secretary office,
aula room, meeting
room, etc.

- it can have glass walls
(transparent) or not,

- assigned to 1 or more
people.

- it has a door.

- it allows to the
enter into a room.

- it can be open,
semi-open or
closed.

- it can have glass
walls (transparent)
or not.

- it has a lock.

• it allows to close a
door.

• it is used with a
key- equal locks
are allowed.

• it allows to leave
closed a lock.

• we can obtain a
key copy.

• is transferable.

it is possible to be
taken to all parts.

4.2 Praxis modeling

CVRE users are: Professors, Administrative personnel. Research assistants, Teaching
assistants. Students and other academic personnel. In table 2 we present the praxis
modeling for Professors in relation with an office door.

70 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. CoUazos

Table 2. Praxis model of a door office. The table shows the detailed analysis of the shared
meaning assigned by teachers to their doors. The user model will contain some of these
dimensions as rules used to adapt CVE to users preferences. Notice that at the semantic level,
teachers' offices or rooms are workspaces.

Dimension Question Answer (Poor)
History How do you know if a If either the door status, the workspace content or the

door was used? workspace status has changed since last visit.

Intention What is the objective
to open a door?

To enter into a closed workspace.
To change the visibility of a workspace.
To allow that some person leaves the workspace.
To allow people to inspect workspace content.

Consequence

What is the objective
to close a door?

What is the direct
consequence of keep
the door opened?

To close an opened workspace.
To change the visibility of a workspace.
To avoid others to leaves the workspace.
To avoid others to inspect the contents of a
workspace.

Passers-by can contact people inside the workspace.
Workspace contents are visible for everybody.
A person is allowed to leave the office.

What is the direct
consequence of keep
the door closed?

Hide the content of the workspace.
Users must knock the door, for knowing if anybody is
inside.
We do not know who is outside room.

Action What do you do with Enter / leave a workspace.
a door? Allow / deny the visibility of the workspace contents.

Dependence What is the Regularly, people who open a door, have sufficient
dependency with permissions to enter into the workspace,
people?

Opportunity When is a door used? When a user needs to enter/leave a workspace.
When a user needs that other people enter/leave
workspace.

Access Who can use a door? The person who are next to a door and need to
open/close it.

Roles Who should use a The person who is allowed to open/close it.
door?

In table 3 we present an analysis of the syntax modeling of a key. Note the
differences with table 2: the answers are described in terms of physical properties
and not in terms of the changes that we performed.

A cognitive model of user interaction as a guideline for designing novel interfaces 71

Table 3. Syntax model for a door office key. The table shows the detailed analysis for
understanding key manipulation. Possible key status will be also contained in the user model.

Dimension Question Answer (Key)
Usage How do you Putting the key in the door lock,

manipulate a key?

Feedback How do you know that Because the key fits the door lock. If it does not, it is
it is the correct key not the correct key.

History How do you know if a I cannot be sure,
key was used?

Intention What is a key used for? Opening/closing door locks.

Consequence What is the direct Door locks change their state to open/close,
consequence of using a
key?

Action What do you do with a Putting the key in the door lock, turning it, and
key? removing the key.

Dependence What is the dependency Only the carrier of the key can use it.
with peoples?

What is the dependency Only the key that fits the door lock can be used,
with door-locks?

Opportunity When is a key used? When I have the key that fits a door lock and I want

to open/close the door of a room.

Access Who can use a key? The people that have a key.

Roles Who should use a key? People that have a key and need to open the a door
lock.

View Where does a key allow The contents of the room associated with a door
to view? related with a key (transitive).

Reach Where does a key allow To the room associated with the key.
to reach?

History Where is the person Possibly in the room, but I cannot be sure.
that used the key?

4.3 Augmenting objects

Table 4 describes the virtual features that we have chosen for augmenting some
objects. The most important feature is the creation of a desktop-lock, which is
basically a door-look that allows us to open and close virtual shared workplaces by

72 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. CoUazos

using an augmented key. Unlike the real world, desktop-locks are not associated with
just one key, but with many keys as long as they belong to a valid virtual workplace.

Table 4.. Virtual features of rooms, doors with locks and keys, chosen according properties
discovered in tables 2 and 3

Room
virtual
workspaces

Door
new intermediate
state: semi-opened
door, (which define
a semi-accessible
space)

Lock
desktop lock: allows to open
and close virtual shared
workplaces. We can use the
same lock for various rooms
(only change the keys)

Key
activity log (register
past event about use
of a key)

5 Implementing the CVRE

We have used phidgets for augmenting everyday objects (e.g. the key-lock pair).
Phidgets (physical widgets) are specialized devices developed at the University of
Calgary that leverages the complexities of developing physical interfaces [9]. The
philosophy behind Phidgets is to resemble the GUI widgets; they are GUI elements
that encapsulate interface interaction and make GUIs easy to develop as they may be
arranged for composing an application interface. Phidgets encapsulates minimal
functionality for rapid prototyping of physical interfaces. The elements we have used
for implementing our CVRE are: a Phidget Interface Kit (the main interface where
all the sensors are connected to); a rotation sensor (which allows us to control the
twists of the key in the lock); three LEDs (allowing us to give feedback about the
accessibility state provided by the key); a RFID (Radio frequency identification, a
small object attached to a key that allows us to read information associated with each
key in order to identify them); a movement sensor (that allows us to know if the user
leaves his keys in the lock at the time of leaving his job). Fig. 2a depicts the
augmented interface built.

A cognitive model of user interaction as a guideline for designing novel interfaces 73

^

Fig. 2. Key interface developed using phidgets

Three LEDs (a red, green and yellow ones), indicate the accessibility provided for
a particular room. The green color represents a totally opened lock (a fiilly accessible
space); the red color represents a closed lock (a totally inaccessible space), and the
yellow color represents the intermediate state previously described (a semi-
accessible space). A tag has been attached to each key, so that it makes possible to
the RFID reader to identify and differentiate the used keys. For this reason, it is
necessary that the keys associated with different virtual rooms be physically equal
(in order to be accepted by the regular lock). The tags attached to them differentiate
keys.

A movement sensor is located next to the lock, facing the user (the white circle on
fig.2a), in order to detect his/her presence or absence.

P

Fig. 3. CVE main interface corresponds with the floor plan of DCC. Keys are used to allows a
user to access his or her personal space

74 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos

CVE virtual rooms. Our CVE [7] maps the real physical design of our Computer
Science Department and allow CVE users to be aware of such structure through a
floor map (Fig. 2b and 2c). Users can access into their own personal space (a room)
or get into the virtual workspace of a colleague. Again we follow our guidelines and
exploit the knowledge that users have about the structure and division of work that
actually occurs at our Computer Science Department.

In our CVE, users employ the desktop-key to open and close virtual spaces.
Doors allow users to control their privacy and the degree of availability that a user
wants that by-passers perceive about him. Our key-lock interface allows a user to
control the state that the user wishes others to see in the virtual interface. For it, each
position of the key corresponds to a state: totally closed (red) to indicate that s/he is
offline, totally opened (green) to indicate that s/he is available, and an intermediate
state (yellow) to indicate that one is busy or temporarily absent. This alternative was
used to control the state of a user of a session of instant message.

6 Conclusions and Further Work

The presented work stresses out the importance of the design of physical interfaces
that take into account the previous users' knowledge about the objects' context of
use. Such context comprises both syntactic and semantic categories of analysis.
There has been a large tradition of discontinuity between the rich interactions with
objects in our physical world, and the impoverished interactions with electronic
material. The linkage between these two worlds has been difficult and expensive.
But we believe that rather than force users to adopt radical forms of interaction, we
may exploit instead the achieved knowledge about how the world works. By
augmenting pre-existing tools within the framework of a work praxis or context of
use, we may bring computing to the world instead of the other way around. By
designing interfaces that augment objects' features, but keeping a coherent semantics
with the original version and its usage in the real world, we believe that a more
natural design of these interfaces could be achieved.

On the other hand, computing nowadays provides enormous potential for novel,
unexpected, rich and useful interaction. We do not argue against such approach,
however, we believe that the presented work may serve as a reference for identifying
the successful design choices and its rationale as well as to suggest needs and
promising research areas.

In this paper we have presented a framework for analyzing the context of use of a
physical everyday object in order to identify its associated semantics, augmenting it
(i.e. by adding intermediate states) and use those semantics for new tasks (i.e. by
allowing to handle multiple context of work or providing availability awareness). We
have used phidgets as a medium for ugmenting and manipulating everyday objects
easily (i.e. a key as an authentication mechanism).

Other issues we want to explore as future work, are the possibility of
dynamically selecting devices' relationships. For instance, a key can handle more
than one application, but the lock is physically the same for each door. Hence, we
want to explore the possibility to enrich the key so that it can provide multi sensory

A cognitive model of user interaction as a guideline for designing novel interfaces 75

information (i.e. change its color), so that a key may represent indeed a set of keys.
May the users perform a context switch because of the color? The research question
for further work aims to identify more context attributes. For instance we may argue
that users' intention when manipulating an object actually triggers the users'
appropriate context for interpreting, let us say, an action. Otherwise, physical
(sensory) arrangement of physical environment may trigger users' appropriate
interpretation context.

Finally in order to answer the questions raised in the discussion as well as to
learn more on the effects of this approach on users, we need to design appropriate
tests and evaluate the objects' usage in varios context of use.

References

1. Bannon L., B0dker S.: Beyond the interface: Encountering artifacts in use. In: J. Carroll
(ed.): Designing Interaction: Psychology at the Human-Computer Interface. Cambridge:
Cambridge University Press 1991, pp. 227-253.

2. Brezillon, P. and Abu-Hakima, S.: Using knowledge in its context: Report on the IJCAI-93
Workshop. The AI Magazine, 1995, 16(1), pp. 87-91.

3. Bruns, F. W.: Complex Objects and Anthropocentric Systems Design. In: Advances in
Networked Enterprises (L. M. Camarinha-Matos, H. Afsarmanesh, H.-H. Erbe (Eds.),
Boston, 2000, pp.249-258.

4. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C: Developing a context-
aware electronic tourist guide: some issues and experiences. CHI'DO, pp. 17-24.

5. Dey, A. K., Salber, D., Abowd, G. D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. In Moran, T.P. and
Dourish, P. (Eds.) Context-Aware Computing: A Special Triple Issue of Human-Computer
Interaction. Lawrence-Erlbaum, March 2002.

6. Fischer G.: User Modeling in Human-Computer Interaction, In User Modeling and User-
Adapted Interaction, UMUAI,, 11(1), 2001, pp. 65-86.

7. Frecon, E., and Nou A.: Building distributed virtual environments to support collaborative
work. ACM Symposium on Virtual Reality Software and Technology, VRST'98, pp. 105-
113, Taipei, Taiwan, Nov. 1998.

8. Gibson, J. J.: The theory of affordances. In R. E. Shaw and J. Bransford (Eds.), Perceiving,
Acting, and Knowing. Hillsdale, NJ: Lawrence Erlbaum Associates, 1977.

9. Greenberg, S., and Fitchett, C: Phidgets: Easy development of physical interfaces through
physical widgets. Proceedings of the ACM UIST 2001 Symposium on User Interface
Software and Technology, November, Orlando, Florida, ACM Press, 2001.

lO.Guerrero, L. A., Collazos, C. A., Pino J. A., Ochoa S. F., and Aguilera, F.: Designing
Virtual Environments to Support Collaborative Work in Real Spaces, Journal of Web
Engineering, 2(4), October, 2004, pp.282-294.

11. Gutwin, C. and Greenberg, S.: A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Computer Supported Cooperative Work, 11(3-4), 411-446, Special
Issue on Awareness in CSCW, Kluwer Academic Press, 2002.

12. Ishii, H., and Ulmer, B., Tangible bits: Towards seamless interfaces between people, bits
and atoms. Proceedings of the ACM CHr97, pp. 234-241, 1997.

13. Leech, G.: Semantics: The Study of Meaning. Harmondsworth, UK: Penguin, (1981).

76 Felipe Aguilera, Rosa A. Alarcon, Luis A. Guerrero, Cesar A. Collazos

H.MacLean, K. E, and Roderick J. B.: Smart Tangible Displays in the Everyday World; a
Haptic Door Knob. Proceedings of the lEEE/ASME International Conference on Advanced
Intelligent Mechatronics, AIM'99, September 1999, Atlanta, USA.

IS.McGee, D.R., Cohen, P.: Creating Tangible Interfaces by Augmenting Physical Objects
with Multimodal Language. Intelligent User Interfaces, 2001, pp.113-119.

16.Nielsen, J.: Usability Engineering. The Computer Science and Engineering Handbook
1997, pp. 1440-1460.

17.Norman, D. A.: The Design of Everyday Things, London/New York: MIT Press, 2000.
IS.Olwal, A. and Feiner S.: The Flexible Pointer: An Interaction Technique for Augmented

and Virtual Reality, UIST 2003, Vancouver, BC, November 2003, pp. 81-82.
19.0hta, Y., Tamura, H.: Mixed Reality-Merging Real and Virtual Worlds. Tokyo, 1999.
20. Shneiderman, B.: Direct Manipulation for Comprehensible, Predictable and Controllable

User Interfaces. Proceedings of International User Interfaces, 1997, pp. 33-39.
21. Sohlenkamp, M.: Supporting group awareness in Multi-User Environments through

Perceptualization. GMD Research Series, No.6 Zugl.: Padderbom, Univ. Diss, 1999.
22.Want, R., Fishkin, K.P., Gujar, A., and Harrison, B.L.: Bridging physical and virtual

worlds with electronic tags. Proceedings of the Conference on Human Factors in
Computing Systems, 1999, ACM Press, pp.370-377.

An empirical evaluation for business
process tools

Erika M. Nieto-Ariza', Guilleimo Rodriguez-Ortiz'"^, Javier Ortiz-
Hernandez'

1 Centra Nacional de Investigacion y Desarrollo Tecnologico,
Interior intemado Palmira s/n, Cuemavaca, Morelos, 62490 Mexico

{erika, ortiz}@ cenidet.edu.mx
Home page: http://www.cenidet.edu.mx

2 Instituto de Investigaciones Electricas, Reforma 113, 62490,
Cuemavaca, Morelos, 62490, Mexico

gro@iie.org.mx

Abstract. As the use of web grows, organizations are increasingly choosing to
use it to provide their services. The modeling process is a previous step in the
systematization of a process. Due to the great number of modeling tools in
existence, it is necessary to identify the information that tools allow to specify.
A set of concepts is proposed to evaluate modeling tools using three levels of
abstractions. The proposal compares the modeling capabilities supplied by the
different techniques and allows determining what modeling tool is the most
appropriate to model specific concepts of interest to a problem.

1 Introduction

Models are commonly used to represent complex systems and to observe the
performance in the business process when a technology system is integrated.
Technology systems should support business and they become an integral part of the
business process [1,2,3,4,5]. Due to the great number of techniques to model and
specify requirements, it is complex and laborious to compare them. Three modeling
levels are proposed which integrate a set of concepts to build web application
models: a) Organizational, its goal is to describe how the organization works and the
business process that are going to be systematized with a web information system; b)
Conceptual, its goal is to describe the role of the software system and its integration
with a particular organizational environment; c) Web, its goal is to describe the
semantics of a web application [5,6]. The basis of our contribution is in the detection
and classification of a set of concepts which are used to analyze, to evaluate
modeling tools and to recognize the capabilities that each tool has in order to model
at the three levels of abstraction.

Please use the following format when citing this chapter:

Nieto-Ariza, E.M., Rodriguez-Ortiz, G., Ortiz-Hernandez, J., 2006, in IFIP International Federation for
Information Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Soft
ware Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 77-84.

78 Erika M. Nieto-Ariza, Guillermo Rodriguez-Ortiz, Javier Ortiz-Hernandez

There are some methods and methodologies to evaluate business process modeling,
but they evaluate the functionality of an application or a modeling tool. Rosemman
proposes an ontology to evaluate organizational modeling grammars identifying their
strength and weaknesses [7]. Luis Olsina and Devanshu Dhyani [8, 9] propose a
methodology to evaluate the characteristics of a web application in operational
phases. The structure of this paper is as follows; in section 2 the modeling concepts
that comprise our approach are presented, in section 3 the modeling concepts are
enhanced with a set of aspects found to be usefiil in building models, in section 4 the
evaluation results are presented, in section 5 a product evaluation is presented, last
the conclusions are discussed.

2 Modeling concepts

A business process model can be viewed at many levels of abstraction, and
complementary model views can be combined to give a more intelligible, accurate
view of a system to develop than a single model alone [3]. This approach establishes
three levels of abstraction and each one includes certain modeling concepts of
features (table 1). Concepts are properties or characteristics that structurally describe
types of requirements and define the key elements in a business process. The
concepts facilitate integration of the levels of abstraction, such that, starting with an
organizational model, the elements of the conceptual and the web model are easily
identified. The selection of the concepts is a task that requires the analysis of
different modeling tools. Through the correspondence of an concept in one level to
its corresponding concept in the next level, the three levels are integrated in a
complete view of the business process. For example, the task concept in the
organizational level correspond to the functional concept at the conceptual level and
later it will be correspond to an event concept at the Web level of abstraction.

Table 1. Modeling concepts at each level of abstraction

Organizational
level
Actor

Resource

Goal
Task

Activity

Business rule

Quality

Conceptual level

Actor

Artifact

Goal
Function

Event

Constraint

No functional
requirement

Web
Business process

—

User profile (Rol)
Class (objetct)

Artifact
—

Service

Event
Pre and post

condition
No functional
requirement

level
Pure navigation

Navigation page -
Relationship

User profile (Rol)
—

Artifact
Objective
Service

—
—

—

An empirical evaluation for business process tools 79

The organizational modeling concepts are as follows.
- Goal. It describes a business process desired state that an organization imposes to
itself, with a certain degree of priority; the goal must be quantified whenever
possible.
- Actor. It describes an entity that has a specific goal, participates in the business
process, or has relationships with other actors. An actor may have different roles,
todo- Resource. It describes an informational or physical entity that is transferred
between actors as a result of task executed by an actor.
- Task. It describes a series of activities oriented to reach a goal; it may indicate how
should be accomplished.
- Activity. It describes a set of actions to carry out one task.
- Quality. It describes the desired characteristics in the business process.
- Business rule. It describes the actions and criteria that govern the execution of the
business process.

The conceptual modeling concepts are as follows.
- Goal. It describes the information system purpose, limitations and responsibilities,
from the business view point.
'Actor. It describes an entity (human, hardware, software or process activity) that
interacts with the information system and that might play different roles.
- Artifact. It describes an abstract or physical entity that is transferred between an
actor and the information system.
- Function. It describes a service that must be provided by the system to the actors.
- Event. It describes a change in the business process in one instant specific of time.
- Non functional. It describes the desired quality features or constraints for the
information system as for example, platform and interface requirements, etc.
- Constraint. It describes a condition for a service execution provide by the system.

The Web modeling concepts are as follows.
- Objective. The purpose of the Web application, from a simple information pages
displayer to a complex and sophisticated corporate portal.
- Navigation relationship. It describes a global vision of the Web application
according to a user profile with relation to the information to be presented.
- User profile. It describes the user unique use of the Web application. A user can
have many profiles for the same Web application.
- Class. It describes an object type to model the entities that integrate the application,
and the information handling for the users to navigate.
- Artifact. It describes an abstract object to be transferred between the Web
application and a user or vice versa as a result of an event execution.
- Service. It describes an activity or an action that the web application has.
- Event. It describes the trigger of an activity or action that might be carried out to
obtain a result or artifact.
- Non functional It describes the quality features or constrains for the web
application.
- Pre and pas condition. It describes the performance of an event execution where a
precondition is a required object state before the event can be executed and a post
condition is the required object state after the event execution.

80 Erika M. Nieto-Ariza, Guillermo Rodriguez-Ortiz, Javier Ortiz-Hernandez

3 The concepts and the evaluation methodology

The concepts are enhanced with aspects that make them more powerful to model

a particular view. These concepts are also used as scales to evaluate modeling tools.

The definition of an evaluation scale for each concept is a task that requires the

analysis of different modeling tools.

Table 2. Concepts and evaluation scales for the organizational level of abstraction

^ ^ ^ ^ S c a l e

Concept^^^

Actor

Resource

Goal

Task

Activity

Business

rule

Quality

1

Actor

Resource

Goal

Task

Activity

Business
rule

Quality

2

—

Type

Priority

Who requests

Tasks

supported

Associated

concept

Associated

concept

3

Role

Actor using it

Problem

Who
executes

Hierarchy

Origin

—

4

Type
—

Opportunity

Hierarchy

How is

activated

Type

Origin

5

Responsibility

Actor

supplying it

Verification

Associated

Goal.

When is

concluded

Hierarchy

Measure

Table 3. Aspects and evaluation scales for the conceptual level of abstraction

^^^Sca le
C o n c e p t ^ ^ ^

Actor

Artifact

Goal

Function

Event

Constraint

Non

functional

requirement

1

Actor

Artifact

Goal

Function

Event

Constraint

Constraint

2

—

Actor or

function

supplying

Who establish it,

Associated to

a fimction

Who starts it

Who fires it.

What is the

start state.

Type

Who proposes it

To what is

applied.

3

Role

Assigned

priority

Who uses it

What is

produced.

Hierarchy

Who defines it

Type of
requirement.

4

Type

Actor or

fiinction

requiring

Measure,

Failure cause

Hierarchy

Who receives

the product,
Owner

function

To who or

what applies

Measure to
verify

compliance.

5

Responsibility

Artifact state

Opportunity

to solve a

problem

The product

Final state

Who or what

enforces it

What happens
if not

fulfilled.

An empirical evaluation for business process tools 81

Table 4. Concepts and evaluation scales for the web level of abstraction

~ ^ ^ ^ ^ Scale

Concept ^ ^ ^ ^ ^

Navigation page
Relationship

User profile

(Role)

Class (object)

Artifact

Goal

Service

Event

Pre and post

condition

Non functional
requirement

1

Navigation

page

User profile

Class (objct)

Artifact

Who defines

it

Related

events

Event

Post
condition

Non

functional

requirement

2

Nav. page -

Relationship

Role

Attributes

—
Associated

service,

Hierarchy,

Requesting

User

Service
owner.
Hierarchy,

Pre
condition

Who
proposes it,
To what is
applied.

3

User Profile

Role

changes

allowed

Relationships

Type

Priority

Executing
agent.

Result.

Implementing

class

Type of
requirement.

4

Navigation

help

Services

per user

Methods

Supplier

Measure

Result
final user

Who

requests

Measure
to verify
compliance

5

Access

constraints

Business

process state

Tye of

relationships

User

Failure cause,

Opportunity

to solve it

Owner page

Shared or not

Associated
event

What happens
ifnotftjlfiUed.

The scale is defined for each concept using the capabilities related to the concept.
Also, a desired capability mentioned in the literature may be used in the definition of
a scale. Following a well-known approach from the economics and management
disciplines [10], to each concept a scale between 0 and 5 is assigned which is going
to be used to evaluate one of the modeling capabilities. The order assigned to the
scales is intuitive and relatively arbitrary; however, it can be changed easily. The
concepts evaluation scales facilitate the comparison of different modeling tools
capabilities (see table 2, 3 and 4). The evaluation scale is obtained by first taking a
list of the capabilities of one tool, and then a list of capabilities from a second tool,
from a third, until all selected tools are analyzed.

The evaluators have to evaluate the three levels of abstraction for all concepts.
For each modeling tool and for each aspect a,, a corresponding evaluation e, is
obtained. The results are displayed in a table for easy of comparison and a total score
is obtained for each tool and for each level of abstraction as Ze,. A tool that scores
better than other it possibly has more capabilities to model requirements at the
corresponding level of abstraction than the other. The methodology assigns a value
to each concept of the method. For example, the precondition and post condition
concept at the web level of abstraction; if the method has the post condition aspect, it

82 Erika M. Nieto-Ariza, Guillermo Rodriguez-Ortiz, Javier Ortiz-Hernandez

will have 1 point. If the method has also the precondition aspect, it will have 2
points. If the method has the post condition, precondition and the associated event
aspect, it will have 5 points.

4 Evaluation results

To evaluate the scale the following tools were evaluated (tables 5, 6, 7a and 7b): i*,
Tropos, EKD, BPM-UML, NDT, 00-Method/OOWS, and OOWS [5, 7, 4, 8, 9, 10,
11, 12, 16]. At organizational level, BPM-UML obtains good scores for this level of
abstraction, and i* has the lowest score.

Table 5. Organizational level evaluation of the tools

Organizational level
Actor
Resource
Goal
Task
Activity
Business rule
Quality

Total

Max. Value
5
5
5
5
5
5
5

35

I*
5
5
1
2
0
2
3

18

Tropos
5
5
3
4
2
0
4

23

EKD
5
2
4
3
0
5
4

23

BPM-UML
5
5
3
2
4
4
4

27

Table 6. Organizational level evaluation of the tools
Conceptual Max. I* Tropos NDT EK BPM- 00 -
level Value D UML Method
Actor

Artifact

Goal

Function

Event

Constrain

No functional

Total

5

5

5

5

5

5

5

35

5

5

1

2

0

2

3

17

5

5

3

2

1

0

4

20

5

1

2

4

2

4

3

21

5

4

4

5

0

5

4

27

5

5

3

5

4

4

4

30

1

4

1

2

3

5

0

16

Table 7(a). Web level evaluation of the tools (business process)
Web level Max. Value Tropos OO-Method /

OOWS
NDT OOWS

User profile

Class

Artifact

Service

Event

Pre and post condition

No functional

Total

5

5

5

5

5

5

5

35

3

0

4

3

1

2

3

16

4

5

4

3

3

5

0

24

3

5
1

4

2

4

3

22

4

5

4

3

2

3

0

21

An empirical evaluation for business process tools 83

Table 8(a). Web level evaluation of the tools (pure navigation)
Web level Max. Value Tropos 00-Method / OOWS NDT OOWS
Navegational page

- relationship

User profile

Goal

Artifact

Service

Total

5

5

5

5

5

25

1

3

3

4

3
14

5

4

0

4

3

16

5

3

2

1

4

15

5

4

0

4

3

16

The tools were evaluated with respect to the parameters defined for the approach
presented here. During the evaluation of tools, their own characteristics are shown,
for example, the quahty aspects of a business process are modeled as qualitative
goals using BPM-UML. At conceptual level, the result shows the capacities of each
tool, for example, EKD obtains good scores for this level, but OO-Method has the
lowest score. At web level, the result shows the capacities of each tool, for example,
OO-Method/OOWS obtains good scores for this level, but Tropos has the lowest

5 Evaluation methodology of products

Concepts allow to evaluate the products of different tools when they are applied to a
specific problem. To show the use, a case study was applied to the i*, Tropos, EKD
and BPM-UML tools. The products of these tools were evaluated with the
methodology of products. The evaluation capability can be completed with the
product evaluation. A brief example of the product methodology is presented. The
variables defined for the analysis and evaluation of the products are the following: a)
workflow, b) order execution in the function, c) tree of decomposition, d)
organization, and e) clear identification of the elements. To each variable a value 0
or 5 is assigned, 5 if the tool has the variable or 0 if it has not the variable. The
values assigned to the variables are relatively arbitrary; however, it can be changed.
The results in the product evaluation of the tools are presented in the table 8. This
evaluation shows that BPM-UML has good score, but in the product evaluation EKD
has the best score. The product is an additional reference to select a modeling tool
(capability - product).

Table 8. Product evaluation

I*
Tropos
EKD
BPM

Work
flow

5
5
5
5

Order
execution

0
0
5
0

Tree of
decomposition

5
5
5
5

Organization

0
0
5
5

Identification
of elements

0
5
5
5

Total

10
15
25
20

84 Erika M. Nieto-Ariza, Guillermo Rodriguez-Ortiz, Javier Ortiz-Hernandez

Conclusion

There are many proposals to model requirements and each one has its own elements.

Some use the same concepts but the names are different, which makes it complex

and laborious to compare the tools. The approach presented here unifies the various

terminologies, increases the knowledge about modeling concepts, and proposes an

evaluation approach for the tools modeling capabilities and techniques. This helps to

select the tool that is more appropriate to the needs of a problem domain.

Additionally, the approach evaluates the products when different tools are applied to

a definition problem. A set of variables is proposed to evaluate the complexity of

each model. This helps to know how many capacities the tools has, and also how

complex the models are when a specific tool is used. A future work is use metrics on

the products or models when different tools are applied. The approach has been used

to evaluate e-leaming systems [16]. Additionally, it has been applied in the

development of various study cases to evaluate virtual reality tools and to clearly

appreciate the concepts that the tools allow to model.

References

1. James Pasley, "How BPEKL and SOA are changing web services development", IEEE Internet
Computing. May - June 2005.

2. Peter F. Green, Michael Rosemann y Marta Indulska, "Ontological Evaluation of Enterprisee systems
Interoperability Using ebXML", IEEE Transactions on Knowledge and Data Engineering, Vol 17, No.
5, IEEE Computer Society, may 2005.

3. Mersevy T. and Fenstermacher K., "Transforming software development: and MDA road map", IEEE
Computer Society, September 2005.

4. H. E. Eriksson and M. Penker, Bussiness, Modeling with UML, Chichester, UK, Wiley Editorial,
2000.

5. E. Yu, Modelling Strategic Relation for Process Reengineering, Universidad de Toronto, Canada,
1995. Thesis submitted for the degree of Doctor of Philosophy.

6. A. Ginige and S. M. "Web Engineering: An Introduction" IEEE Multimedia, pp 1-5, Jan-Mar 2001.
7. Peter F. Green, Michael Rosemann y Marta Indulska, "Ontological Evaluation of Enterprisee systems

Interoperability Using ebXML", IEEE Transactions on Knowledge and Data Engineering, Vol 17, No.
5, IEEE Computer Society, may 2005,

8. Olsina, Luis A., Metodologia cuantitativa para la evaluacion y comparacion de la calidad de sitios web.
Tesis doctoral. Fac. de Ciencias Exactas, Univ. Nacional de La Plata, noviembre de 1999.

9. Devanshu Dhyani, Wee Keong Ng, and Sourav S. Bhowmick, A survey of web metrics, ACM
computer survey, Vol 34, No. 4. December 2002, pp. 469-503.

10. Bubenko J., Brash D, y Stima J. EKD User Guide, Royal Institute of technology (KTH) and
Stockholm University, Stockholm, Sweden, Dept. of Computer and Systems Sciences, 1998.

ll.M. J. Escalona, J. torres, M. Mejias, A. M. Reina. From the requirement to the conceptual model in
NDT. Ill Taller de Ingenieria del Software Orientado a la Web Alicante, Spain. November, 2003

12.E. Insfran, O.Pastor y R. Wieringa, "Requirements Engineering-Based conceptual
Modelling", Requirements Engineering Springer-Verlang, vol. 2, pp. 7:61-72, 2002.

13. J. Gomez, C. Cachero and O. Pastor, "Conceptual modeling of device-independent Web applications"
IEEE Multimedia, vol. 8 issue: 2 , pp 26-39, April-Jime 2001.

14. L. Liu, E. Yu Intentional Modeling to support Identity Management 23rd Int. Conference on
ConcepUial Modeling (ER 2004). Shanghai, China, November, 2004. Springer, pp. 555-566.

15. J. Fons, O. Pastor, P. Valderas y M. Ruiz, OOWS: Un metodo de produccion de software en ambientes
web. 2005. http://oomethod.dsic.upv.es/anonimo/..%5Cfiles%5CBookChapter%5Cfons02b.pdf

I6.Eduardo Islas P., Eric Zabre B. y Miguel Perez R., "Evaluacion de herramientas de software y
hardware para el desarrollo de aplicaciones de realidad virtual", consultado en el 2005,
http://www.iie.org.mx^oletin022004/tenden2.pdf

Integration Ontology for Distributed
Database

Ana Mufioz', Jose Aguilar ,̂ and Rodrigo Martinez'
Institute Universitario Tecnologico de Ejido. Merida Venezuela

anamunoz@ula.ve,
2 Uiversidad de Los Andes. CEMISID. Merida Venezeula.

aguilar@ula.ve
3 Uiversidad de Murcia. Murcia Espafla.

rodrigo@um.es

Abstract. In this work we will study the problem of the design of the
"Integration Model for Distributed Database System". We particularly design
the canonical model through the ontological handling of the information. The
ontology is designed in a way that allows the description of a database like a
set of representative terms of its different components. In this ontology, the
definitions use classes, relations, fiinctions, among other things, of databases,
to describe their components, operations and restrictions, as well as, the
process of integration. These databases can be Relational, Fuzzy, Intelligent
and Multimedia.

1 Introduction

The interoperability between different systems information is one of the most critical aspects
in the daily operation of many organizations. In the last decade this preoccupation was
increased with the proliferation of different databases, with different data models, that run in
different platforms. The systems of distributed databases, also known as federated databases,
allow to have available the information from different sources of intelligence that can be
heterogeneous, distributed and independent, A federated database acts like a front-end
application of manifold component. The federated database provides operations for the access
to each component, maintaining the consistency of information between the diverse sources
and providing a uniform access method to the services that each component offers.
The diversity of programming languages, data models and methods of integration, determine
different styles in the architecture for a federated database, that varies from a loosely coupled
to tightly coupled approach. In general, the tightly coupled systems integrate the diverse
sources of intelligence through a global conceptual scheme, normally denominated canonical
model, providing a uniform vision of the diverse components at a high level. The use of a
canonical model hides the structural differences between the different components and gives
to the user the illusion to be accessing a simple centralized database. On the other hand, on the

Please use the following format when citing this chapter:

Munoz, A., A^ilar , J., Martinez, R., 2006, in IFIP International Federation for Information Process
ing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds.
Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 85-93.

86 Ana Munoz, Jose Aguilar, Rodrigo Martinez

systems tightly coupled the integration of the components is based on a language of common
access that all the components must decide, in a way that all the functions are standardized.
In this work we will deal with the design of the "Canonical Model for Integration of
Distributed Databases". Particularly, we set out to design the canonical model through the
ontological handling of the information. This ontology allows describing a database like a set
of terms that represent its different components. In this ontology, the definitions use classes,
relations, fimctions, among other things, of the databases, to describe its components,
restrictions, operations, etc. The reason of using ontologies is that they define concepts and
relations within a taxonomic frame, whose conceptualization is represented, of a formal way,
legible and usable. Of this form, ontology is a common and shared understanding of a domain
that can be used to communicate heterogeneous systems [7].
The integration of tightly coupled federated database has been treated in previous works for
relational and objects databases. Alvarez in its work presents a proposal of binary integration
for the generation of a federation of component databases [1]. In addition, it presents a scheme
to use the local components through a query language. In the work of Abello et al., they
present an integration model in real time to databases using the canonical model BLOOM [2].
These works use the architecture for federated databases of Shet&Larson [10]. In previous
works [8] we have represented an architecture for the integration of database where it is
necessary a canonical model.
Like continuation of that work, in this article the ontological taxonomies that compose the
databases integration architecture are described, and the Canonical Model is designed using
this ontological notion. This way, the processes of integration of the different types of
databases and of resolution of conflicts are defined through the ontology. In addition, the
integration ontology is translated to first-order logic predicate, so that from it we design the
mechanisms of consultation, update and data mining for Intelligent Distributed Database. This
article shows in one first part, the theoretical aspect on which the same one is based, which
includes to the distributed databases, as well as the ontology concepts. In the second part the
integration process is described through ontological schemes, as well as its axioms that defines
the logic expressions of the integration process. The ontological schemes of the component
databases are described in other work [11]. Thus, the fundamental aspect of this work is to
propose a ontological frame based on sentences of First-Order Logical Predicate (LPO) for the
integration of a federation of databases.

2 Theoretical Aspects

2.1 Distributed Databases
The distributed databases talk about the integration of necessities of no local storage and
processing where is necessary to interchange originating information of different sites [1, 2].
The systems of distributed databases integrate systems of diverse databases, to give to the
users a global vision of the information available. The decentralization of the information
promotes the heterogeneity in its handling. This can occurs in many levels, from the form and
meaning of each data to the format and the storage media that are chosen to keep it. From the
fijnctional organization, the systems of distributed database are divided in two classes: A
homogenous distributed database that is a collection of muhiple data. The homogenous
systems are looked like a centralized system, but instead of storing to all the data in a single
place the data are distributed in several sites communicated by the network. The
heterogeneous systems are characterized to handle different database in each node. An
important subclass is the Federated Databases, which integrate information from
heterogeneous databases, and present a global access to the users, with transparent methods to
use the total information in the system. The main characteristic is the autonomy that the local

Integration Ontology for Distributed Database 87

databases, also called Component Databases, conserve. In order to build the federation of
Component Databases, it is necessary to provide a mechanism that is able to obtain a global
scheme of databases, which allows a transparent access to the different databases existing
[10]. The heterogeneity in the component databases can be presented in several aspects:
hardware, software, data modeling, and semantic aspect, among others. A System of Federated
Database (SFDB) is classified like weakly connected or strongly connected, based on the idea
of whom handles the federation and how their components are integrated. A SFDB is weakly
connected if the responsibility to create and to maintain the federation falls to the user, and
there is not control on the part of the federated system and its administrations. A federation is
strongly connected when the federation and its administrators are responsible for the creation
and the maintenance of the same one, and participate actively in the control of the Component
Database. A strongly federated system connection can be of two types: With unique
federation, if it allows the creation and management of an only federated scheme. With
multiple federations, if it allows the creation and management of multiple federated schemes.
Each SFDB has an architecture of schemes to surpass the syntactic and semantic
heterogeneities. Shet&Larson [10] proposes an architecture of schemes for a SFDB composed
by: i) Local Scheme. It is the conceptual scheme of the Systems of Component Database that
integrates the Federation; ii) Component Scheme. The conceptual schemes of the component
databases are translate to a canonical model, that is a common data modeling for all the
databases that are going to compose the federation; iii) Scheme of Export. In this scheme is
described the part of the component schemes that are going to be shared as well as their
location and access control; w) Federated Scheme, in this scheme is made the integration of
the multiple schemes of exportation; v) External Scheme. This is the scheme for each user
and/or application of the SFDB.

2.2 Canonical Model
The ability of representation of the database comes given by its data modeling. A data
modeling is made up of structures, operations and the restrictions in the use of them. The
ability of representation of a data modeling is made up of two factors[9]: i) Expressivity. The
expressivity of a data modeling is the degrees in which a mode! can directly represent the
concepts that it conform, ii) Semantic Relativism. The semantic relativism of data modeling is
the power of its operations to derive external schemes.
When different databases form a federation, they require a integration data modeling, called
Canonical Data Model (CDM). The CDM is the element that processes the query and updates
that are made to the federation. Thus, following the architecture of five levels of Shet&Larson
[10], we can develop a common CDM to all the federation. The use of a CDM solves the
problem of syntactic heterogeneity, consequence of the use of different native data models.
The heterogeneity semantic, resulting of different conceptualizations from Component
databases, is solved in the process of integration of schemes. The CDM has the following
characteristics: i) Generalization: it is the process by means of which, from two or more
entities is constructed a new entity; ii) Association: it defines a new entity from the relations
between two or more entities; iii) Classification: allows to group entities in classes, that is
constructs a new entity from the common characteristics of other entities. The CDM must
support the definition of new operations and restrictions, must allow the implementation of
integration operators, among other things [9]. We will use ontologies to represent our CDM,
since they allow integrating databases using intelligence during the process of conformation of
the federation, as well as the semantic enrichment through the integration of the databases
with its concepts, operations and restrictions.

2.3 Ontology
A definition of Ontology in terms of database is the following [4, 7]: "Ontology is a database
that describes the concepts of the world of some domain, some of its properties and how
these concepts are related between them ". The knowledge represented within ontology is

Ana Mufioz, Jose Aguilar, Rodrigo Martinez

formalized through five components: i) Concepts or classes: They are the ideas to be
formalized. They belong to a certain domain of application, and can be organized in
taxonomies; ii) Relations: They represent the interactions between the classes and are defined
as a subgroup of a Cartesian product; iii) Functions: They are a special case of relations,
where elements are generated by means of the calculation of a function; iv) Instance: they are
used to represent elements or individuals in an ontology; v) Axioms: They serve to model
sentences that always are going to be certain. They are used to represent knowledge and are
used to represent the properties that concepts and instances must satisfy. For example: If
animal class animal is mammalian; the instance dog is mammalian.
Classifications of ontologies have been done in agreement with the type of concept to describe
and its use [4, 5]: i) Terminological: they specify the terms that are used to represent
knowledge. Usually they are used to unify vocabulary in a certain domain; ii) Knowledge
Modeling: they specify concepts related to the knowledge. They contain a rich internal
structure and usually are fixed to the particular use of the knowledge that they describe; iii)
Ontologies of domain: These ontologies are specific for a domain in concrete; iv) Ontologies
of tasks: These ontologies represent the tasks that are susceptible to make in a domain in
concrete; v) General Ontologies: They represent general information and nonspecific of a
domain.

3 Design of an Intelligent Model of Integration for Federated
Databases

The design of our CDM will be based an Ontologies. These ontologies describe to each one of
the databases to integrate, as well as the integration process. In the following figure is shown
our Intelligent Canonical Model (modeled in a Knowledge and Facts Database), and that has
learning and reasoning mechanisms to carry out the integration process.

Mechanism
of Inference

It

\

Mechanism
of Learning

/
Knowing Database

Fact DAtabase
ONTOLOGY

*

Figure 2. Intelligent Model for Federated Databases
The Federated Databases integrate information from local heterogeneous databases and allow
the global access to the users. The main characteristic is the autonomy that the local databases
or Component Databases conserve. In order to allow on a federation of Component Database,
we need to provide an integration mechanism for obtaining a global approach of the resources
of information of an organization. This is obtained through the canonical model.

3.1 Concepts of Federated Databases
A Federated Database is a component database that has operations and restrictions of
integration. The Component Databases are the databases that conform the federation. In our
case, these component databases can be: Object-oriented Databases, Relational Databases,
Multimedia Databases, Fuzzy Databases, or Intelligent Databases; also a component database
can be another federated Database. Each one of these component databases has their concepts,
operations and restrictions. In figure 3 is shown the ontological scheme that describes the
concepts of the federated databases.

Integration Ontology for Distributed Database 89
FEDERA'TCD DATABASE

COMPONENTS DATABASE OPERATIONS INTEGRATIONS RESTRICTIONS INTEGRATION

Figure 3. Ontological scheme of the components that integrate an Intelligent Distributed
Database

In table 1 is described the ontological scheme of the figure 3 through axioms. These are used
to define the ontology like logic expressions. Each axiom includes its description in natural
language, and its logical expression.
Table 1. Axioms for the concepts of the Federated Databases
Sentence
A Federated database has component
databases, and operations and restrictions of
integration
The component databases can be relational
databases, object-oriented databases,
multimedia databases, fuzzy databases,
intelligent databases and federated data bases
The Relational database has Concepts,
Operations, and Restrictions
The OODB has Concepts, Operations, and
Restrictions

The Multimedia Database has Concepts,
Operations, and Restrictions

The fuzzy database has Concepts,
Operations, and Restrictions

The Intelligent Database Concepts,
Operations, and Restrictions

LPO

¥ X FederatedDB(x) => Has (x,ComponentDB)
A Has (x,IntegrationOperation) A Has
(x,IntegrationRestriction)
V x ComponentDB(x) => Is(x,RelationalDB) V
Is (x, OODB) V Is (x, MuhimediaDB) V Is (x,
FuzzyDB) V Is (x, IntelligentDB) V Is (x,
FedratedDB)
V- X RelationalDB(x) => Has(x,ConceptsR) A
Has(x, OperationsR) A Has(x, RestrictionsR)

V- X OODB(x) => Has(x,ConceptsOO) A
Has(x, OperationsOO) A Has(x,
RestrictionsOO)
¥ X MultimediaDB(x) => Has(x,ConceptsMM)
A Has(x, OperatinsMM) A Has(x,
RestrictionsMM)
¥ X FuzzyDB(x) => Has(x,ConceptsFuzzy) A
Has(x, OperationsFuzzy) A Has(x,
RestrictionsFuzzy)
¥ x IntelligentsDB(x) => Has(x,ConceptsInt) A
Has(x, Operationsint) A Has(x, Restrictionsint)

3.2 Operations of Integration in a Database Federation
We will use the operations of integration according to Batini and Lenzerini [3, 6], which is
made in phases. Next the characteristics of these phases are described.
Preintegration. In this phase is defined the order of integration of the databases and the parts
of the databases to integrate. The integration order can be binary when two schemes are
integrated simultaneously, and n-Aryan when they integrate n schemes simultaneously. Also,
the policies of integration as far as the access restrictions and priority in the access to
Component databases are defined. This procedure is the same when we form a new federation
or when we can incorporate a component database to an existing Database Federation.
Comparison of the schemes. The databases are compared and analyzed to determine the
correspondence between concepts and to detect the possible conflicts. Once the conflicts are

90 Ana Munoz, Jose Aguilar, Rodrigo Martinez

detected, they are sent to the Conflicts Management System to solve them through a system of
rules.
Union and Reconstruction. Once solved the conflicts, the union of the different schemes from
the component databases is made. The goal of this activity is to conform or to align schemes
to make them compatible for its integration. It has operations like: transform an atomic
concept into another one, eliminate redundant relations, create hierarchy of generalization.
In figure 4 is shown the ontological scheme that describes the operations of integration of a
Database Federation.

INTEGRATION OPERATIONS

UNION AND
RECONSTRUCTION

OF SCHEMES

SCHEMES TO
PROCESS OF INTEGRATE

NEGOTIATION RESTWCnONS

\ AND PRIORITY OF
Tofform TffS(iC(xporate ACCESS

\ REVISION OF
CORRESPONDENCE

BETWEEN CONCEPTS

Figure 4. Ontological Scheme to Operations of Integration for a Database Federation
The Axioms for the operations of integration of a Database Federation are in the table 2:
Table 2. Axioms for the operations of a Database Federation
Sentence
The operation of integration has the phase of
preintegration, comparison of schemes and
conformation of the canonical model

The Preintegration defines the integration
order, the negotiation process, the schemes to
integrate, the restrictions and the priority of
access

The Order of integration of the databases can
be binary or n-Aryan

In the Process of negotiation a new federation
is formed or a component database is added to
an existing Database Federation
In the comparison of schemes must be
reviewed the correspondence between
concepts to determine the conflicts
A binary order of integration integrates two
schemes simultaneously
The integration order n-Aryan is the one that
Integrate n schemes simultaneously
The access restrictions are the authorizations to
accede to the component databases that
conformed the federation
The access priority establishes the order of
access to the component databases

LPO
V X Operati6nIntegration(x) => Has
(x,Preintegration) A
Has(x,ComparisonSchemes) A Has
(x,ConformationCM)
¥ Preintegration(x) =>Has(x,
Orderlntegration) A
Has(x,ProcessNegotiation) A
Has(x,SchemestoIntegrate) A Has(x,
RestrictionsofAccess) A Has(x,
PriorityofAccess)
V X Orderlntegration(x) =>
Is(x,BinaryIntegration) V Is(x, n-
aryanlntegartion)
V X ProcessNegotiation(x) =>
Formed(x,NewFederatedDB) V Added(x,
ComponentDB)
V X SchemesComparison(x) => Has
(x,ReviewCorrespondencebetweenConcepts)
A Has(x,IdentificationofConflictsIntegartions)
V x Binarylntegration(x) =>
Integrate(x,TwoSchemes)
V x N-Aryanlntegration(x) =>
Integrate(x,NSchemes)
V X RestrictionsAccess(x) => ItAuthorizes
(x,AccessComponentDB)

V- X AccessPriority(x) =>
Establishes(x,OrderofAccesstoCoraponentDB)

Integration Ontology for Distributed Database 91

The union and reconstruction of schemes
define the union of schemes and the update of
the information in the model

V X UnionandReconstructionSchemes(x) =>
Have(x,UnionScheraes) A
Have(x,UpdateofInformation)

3.3 Restrictions of Integration in a Database Federation
In the integration of the databases, the following types of conflicts can appear:
— Conflicts in Tables: Conflicts in the Name of tables, Conflicts in the Structure of the

tables, objects and multimedia elements. Conflicts in the Restrictions of Integrity.
— Conflicts of Attributes: Conflicts in name of Attributes, Conflicts in Values by Default,

Conflicts by Restrictions of the Attributes Values, Conflicts by the Cardinality and
degree of Atomicity, Conflicts in the Representation of the Information.

— Conflicts of Data: Conflicts between the values, when equivalent instances have different
values because the collected data are incorrect or are obsolete. Differences in the
representation.

— Conflicts in Rules: Simultaneous firing of Rules, Contradiction between rules.
In figure 5 is shown the ontological scheme that describes the conflicts.

IMTEGRATIONS

RULES CONFUCTS

TAB l£ CONFUCTS

y
CONFUCTS IN

NAMES EC3UAL
FOR TAflL£S
DIFFERENT

NAMED OF

VALUES BY
DEFECT

RESTRICTIONS
ALLOCATION O

I N THE ATTRIBUTES

REPRESENTATION O
INFORMATION

Figure 5. Ontological scheme of the Integration Restrictions for a Database Federation.
The Axioms of the restrictions of integration for a Database Federation are in table 3:
Table 3. Axioms for the restrictions in a Database Federation
Sentence
The integration restrictions can be conflicts
in schemes or conflicts in rules
The conflicts in scheme can be conflicts in
tables or conflicts in attributes or conflicts
in data
The conflicts in tables can be in name of
tables, structure of table, of object or of
multimedia element or in integrity
restrictions

The tables name conflicts arises when
different names for equal tables or equal
names for different tables exist
The conflict in table structure happens
when there are attributes that are omitted or
when there are attributes that are deduced

LPO
V X Integrationrestrictions (x) =>
Is(x,ConflictsSchemes) V Is(x,ConflictsRules)
V x ConflictsSchemes(x) =>
Is(x,ConflictsTable) V Is(x,ConflictsAttributes)
V Is (x,ConflictsData)
V X ConflictsTable(x) => Is
(x,ConflictsNamedTable) V Is (x,
ConflictsStructureTable) V Is
(x,ConflictsStructureObject) V Is(x,
ConflictStructureMM) V Is
(x,ConflictRestrictionIntegrity)
V x ConflictsNamedTable (x) =>
DifferentNamedTables(x,EqualTables) V
EqualNamedTables(x,DiferentsTables)
V X ConflictsStructureTable (x) => Is(x,
AttributesOmitted) V Is(x,AttributesDeduced)

92 Ana Munoz, Jose Aguilar, Rodrigo Martinez

The conflict in stracture of Object happens
when there are attributes of the object that
are omitted or when there are attributes of
the object that are deduced
The conflict in multimedia structure
happens when there are attributes MM
omitted or when there are attributes MM
that are deduced
The conflicts in attributes can be conflicts
in name attribute or conflicts in values by
default or conflicts of restrictions of values
of the attributes or conflicts of cardinality
or conflicts in the representation of the
information

The conflicts in name of Attributes has
different names for equivalent attributes or
equal names for different attributes exist
The conflicts in values by default occur by
definition of the values deduced by default
The conflicts by Restrictions of Values to
the Attributes can be conflicts in the data
types and conflicts in the domain of
restrictions.

A cardinality conflict is the difference of
details of the attributes
The Conflicts in the representation of
information are the different domain that an
attribute represents
The conflicts in data can be conflicts
between values or conflicts of differences in
the representation
A conflict between values arises when
equal instances have different values

The representation differences has different
representations for a same data
A conflict in rule can be a firing
simultaneously of rules, or can be a conflict
in the connection way or can be conflict in
the aim of the processing of rules, or can be
a contradiction between rules
A simultaneous firing of rules is when an
event activates more than one rule

¥ X ConflictsStructureObject(x) =>
Is(x,AttributesObOmitted) V
Is(x,AtributtesObDeduced)

V-x ConflictStrucmreMM =>
Is(x,AttributesMMOmited) V
Is(x,AttributesMMDeduced)

V x ConflictsAttributes(x) =>
Is(x,ConflictoNombreAtributo) V Is
(x,ConflictsValuesByDefault) V Is
(x,ConflictsRestrictionofAlocationsofValues) V
Is (x,ConflictsCardinality) V Is
(x,ConflictosRepresentact6onInformation)

V X ConflictsNomedAttributes(x) =>
HasDifferentNames(x,EquivalentAttributes) V
HsEqualNames(x,DiferentAttributes)
¥ X ConflictsValueByDefault(x) =>
Has(x,DefinitionOfValuesDeduced)
¥ X ConflictsRestrictionofAllocationofValues(x)
=> Is(x,ConflictsinDataType) V
Is(x,ConflictsinRestrictionsofDomain)

¥ xCardinalityConflict(x) => Has(x,
DifferentLevel fromRepresentationofAttributes)
¥ X RepresentationonnformacionConflict(x) =>
Has(x,DifferentDomain)

¥ X ConflictsData(x) => Is (x,
ConflictsbetweenValues) V Is (x,
ConflictsofDifferencesintheRepresentation)
¥ X ConflictsbetweenValues(x) =>
Has(x,EqualInstancesofData) A Has(x,
DifferentValuesofData)
¥ X ConflictofDiferencesofRepresentation(x) =>
Has(x,DifferentRepresentationOfDifferentData)
¥ X ConflictinRule(x) => Is (x,
FiringSimuItaneouslyofRules) V Is (x,
ConflictintheConnectionWay) V Is
(x,EndOfProcessing) V Is
(x,ContradictionBetweenRules)
¥ x SimultaneousFiringofRules (x) => Isa(x,
ShootsmorethanoneRule)

4 Conclusions

In this work the ontological schemes that represent the process of integration of databases are
presented, based on the architecture of Shet&Larson [10] for federated databases. The
development of the ontologies is used like scheme that allows making the intelligent

Integration Ontology for Distributed Database 93

integration of a federation of databases. Particularly, the canonical model must have the ability
of representation of the different data models from level of its structures, operations and
restrictions of the databases vi'hich conform the federation, solving the heterogeneity problems
that can be presented. We use ontology like representation of the canonical model, since it
allows taxonomically to describe the concepts in the domain of the databases and its
properties. In addition, with the ontology we will be able to design management systems based
on mechanisms of reasoning and learning. Thus, our Model of Intelligent Integration of
Federated databases is intelligent and extensibility. In our representation of the Model of
Intelligent Integration of Federated Databases we found the taxonomies that describe the
concepts, operations and restrictions of the process of integration of the databases. The axioms
interpret the taxonomy and will allow translating the ontologies to a language of knowledge.
With them, new knowledge could be obtained and extracted.
In the future, a language of manipulation of the Intelligent Distributed Database will be
designed using our ontology. For this, an inference mechanism must be designed that allow to
reason during the processes of query and update over the Distributed Database. In addition, a
mechanism of manipulation of the Canonical Model must be designed (leaming) to update the
knowledge. Also, from the inference mechanism tasks of data mining will be able to be done,
such as generate patterns of access of users of the system to create virtual communities, extract
new knowledge derived from the integration of the databases, etc.

References

1. Alvarez Carrion, G.; "Integracion de esquemas en bases de datos heterogeneas fuertemente
acopladas". Master thesis, Universidad de las Americas, Puebla. Mexico 1999

2. Abello A., M. Oliva, J. Samos, and F. Saltor; "Information System Architecture for secure
Data Warehousing". In Proc. of the 3rd Int. Workshop on Engineering Federated
Information Systems (EFIS), pag. 33-40. 2000

3. Batini C, Lenzerini M.; "A comparative analysis of methodologies for database schema
integration", ACM Computing Surveys 17, 4, December 1976.

4. Bertino E., Catania B., Zarri Gian P.; "Intelligent Database System", Addison-Wesley.
2001. http://ksi.cpsc.ucalgary.ca/KAW/KAW97/blazquez/

5. Corcho O., Fernandez-Lopez M., Gomez-Perez A., "Methodologies, tools and languages for
building ontologies. Where is their meeting point? Data & Knowledge Engineering 46
(2003)41-64. Elsevier.

6. Femandez-Breis J., Martinez-Bejar R.; "A cooperative framework for integrating
ontologies"; Elsiever Science Human Computer Studies 2002.

7. Gruber, T. R. "A Translation Approach to Portable Ontology Specifications. KSL Report",
1993, http://ksl-web.stanford.edu/abstracts_by_author/Gruber,T..papers.html

8. Muiioz A., Aguilar J.; "Architecture for Distributed Intelligent Databases". IEEE, 13th
Euromicro Conference on Parallel, Distributed and Network-based Processing, Euromicro-
PDP 2005, pp 322-327

9. Saltor F., Castellanos M, Garcia-Solaco M; "Suitability of data models as canonical models
for federated databases"; Universitat Politecnica de Catalunya.

10. Shet P, Larson J., "Federated Database System for managing distributed, heterogeneous
and autonomous databases". ACM Computing Surveys 22, 1990 pp 173, 236

SSP: A Simple Software Process for Small-
Size Software Development Projects

Sergio F. Ochoa', Jose A. Pino', Luis A. Guerrero', Cesar A. Collazos'̂

' Department of Computer Science
Universidad de Cliile

Blanco Encalada 2120, Santiago, Chile
{sochoa, jpino, luguerre}@dcc.uchile.cl

FIET, System Department
University of Cauca

Popayan, Sector Tulcan, Colombia
ccollazo@unicauca.edu.co

Abstract. A large number of software development projects in Latin-
American countries are small-size, poorly defined and time pressured. These
projects usually involve under qualified people. Provided that well-known
software development models have shown limited applicability in such
scenario, developers usually carry out ad-hoc software processes. Therefore,
the obtained results are unpredictable. This article presents a Simple
Software Process (SSP) for small-size software projects involving under
qualified people. The proposal is motivated by current practice in Chile. SSP
proposes a step-by-step process which structures the development activities
and it improves the process visibility for clients and team members.
Furthermore, SSP formally includes "the user/client" as an active role to be
played during the project. This process has been used in 22 software projects
and the results are encouraging.

1. Introduction

Most software development projects in Chile are information systems of small or
medium size (1-2 months or 3-6 months) [17]. Typically, these projects involve time
pressured activities and clients reacting just when they detect the need for a software
solution [9, 21]. For that reason, these projects have a high rate of volatile
requirements [17].

Typically, qualified developers are involved in large or medium-size projects
whereas small software projects are carried out by under-qualified or inexperienced

Please use the following format when citing this chapter:

Ochoa, S.F., Pino, J.A., Guerrero, L.A., CoUazos, C.A., 2006, in IFIP International Federation for Infor
mation Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software
Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 94-107.

SSP: A Simple Software Process for Small-Size Software Development Projects 95

software developers [17, 21]. The reactionary development scenario and the lack of
clear guidelines to face the process, push developers to follow an ad-hoc
development process. A recent study carried out by Sacre concludes that software
processes in Chile tend to be chaotic and unpredictable, because they do not have a
guiding development model [17]. Besides, each development is influenced by
variables like type of project, client and development team. It shows how immature
are the processes in this scenario. As a consequence, software projects in this
scenario cannot assure the development time and cost nor the quality of the final
product [14, 17].

The heavyweight software methodologies are limited to support such scenario.
This is because they involve several stages and roles that require an important
amount of communication and coordination in order to get a final product. This
required bureaucracy jeopardizes the applicability of such software models.

On the other hand, there are the lightweight or agile methodologies that could
have an interesting applicability to the described scenario. However, the high
clients/users availability required to support the development process makes these
processes unsuitable. The need to develop in an asynchronous and distributed way is
another important limitation to adopt lightweight software processes in this scenario.

Alternatively, in order to solve the stated problem, this paper presents a software
process called Simple Software Process (SSP), which has been designed to guide
small-size software development projects in immature scenarios. This methodology
was slowly evolving, as experience with real word cases was accruing.

Next section presents the critical issues which give rise to most problems in the
software projects. Section 3 presents the related work and analyzes the applicability
of the best known software processes to immature scenarios. Section 4 presents the
proposed software process. Section 5 analyzes the results obtained after applying the
methodology. Finally, section 6 states the conclusions of this work and the future
related activities.

2. Critical Issues

Based on the studies of the local software industry conducted by Sacre [17], Stein
[21] and IDC [10] during 2002, and based on several reported experiences and
authors' experiences, a set of critical issues has been identified. Some of these issues
present facts, which may not be changed and thus, any proposed solution must cope
with them. These issues are the following ones:

Deadlines Determined by Need. Typically, the project deadlines are determined by
the need of the client for deploying the software solution in his/her organization.
Typically the available time is shorter or equal than the required one to do a good
job. Therefore, it should be assumed deadlines will be difficult to reach and work
will be done under pressure.

Asynchronous and Distributed Work. Most team members usually work in a
distributed and asynchronous setting with little time dedicated to the project. Each
member has allocated a time quantum to carry out the work and he/she has little
time for coordination and integration activities [21].

96 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. CoUazos

Under Qualified Developers. Typically, development teams are composed of a
senior engineer acting as project manager, and a set of senior students of
Computer Science and Technology or junior engineers with little expertise in
software development and teamwork [17, 10]. Although technically they are able
to tackle a problem, they have difficulties to work as team members, to interact
with users/clients and to identify/manage requirement changes and to handle risk
and unpredictable problems. Most of them have little time assigned to the project
and they work in an asynchronous and distributed way. Each member of the team
plays more than one role, e.g., project manager/tester or analyst/programmer, but
the rights and duties associated to each role are not explicitly defined [21]. In such
cases, the project manager assigns activities based on his own best judgment [9].
As an example, we can mention that it is possible to observe programmers making
design decisions, or that some tasks are simply not carried out because the project
manager forgot to assign them.

On the other hand, there are further critical issues that need to be managed. The
inadequate management of these issues produces most problems appearing in this
type of projects. The critical issues to be managed during small development projects
in immature scenarios are the following ones:

Clients Availability. Usually, the client has little time to interact with the
development team. Many tasks involving the client, such as information
providing, decision-making, review of prototypes, are accomplished late because
his/her lack of time [21].

Requirement Stability. Most of these software projects are consequences of
clients' reaction triggered by the identification of a need for a software solution.
Therefore, software projects are not well conceived and matured at start time with
the requirements elicitation. It produces permanent changes of the requirements
and a lack of visibility of the software project [17]. Clients feel they have the right
to adjust the requirement without paying extra money because the developers are
not realizing what they want. This is one of the main causes of conflicts between
clients and developers.

Coordination Activities. Most team members are not full time dedicated to the
project and they work in an asynchronous and distributed way. There are no
clearly defined roles in the team and there are no clear rights and duties associated
to each team member [21]. Project managers assign activities to team members
based on their own best judgment [9]. In addition, they are in charge of
coordinating these team members activities based on some ad-hoc strategy. In a
development scenario with many low dedicated, distributed and beginner
developers is too easy to lose control of the project.

Project Visibility. Typically there is not enough time to do a proper development,
therefore management and control activities are superficially done. There is high
unplanned parallelism related to the tasks of team members, which originates an
unnecessary workload and conflicts of scope. Typically, it is difficult to determine
the advance status of the project and the workload required to finish it. It generates
conflicts with clients and within the development team [17, 9].

SSP: A Simple Software Process for Small-Size Software Development Projects 97

Effort Estimation. The project duration and the initial fbnctionaUty are quite fixed;
therefore the effort estimation is reduced to a money issue [14]. The time available
to develop the project is directly related to the client's urgency to have the
products. Sometimes such duration is not viable to get good products, but
ignorance about the productivity of these work teams drives the company to take
high-risk projects. Generally, these projects are finished late and/or the resulting
products do not satisfy the client expectations [14].

Product delivery. It is often clear what the final product the project should deliver
in terms of software code, but the same cannot be said for the corresponding
documentation. The process is strongly focused on delivering software, but the
documentation is either incomplete or totally forgotten. In addition, the contents of
intermediate products (specification of requirements or document design) are not
carefully studied to verify if they are appropriate for the applied development
style. On the other hand, there are many development teams that produce only the
requirements specification and the software of the final product. Generally, this
lack of formal intermediate products is the main cause for communication and
coordination problems within the work team [17]. Moreover, the informality to
elicit, specify and use requirements in these projects is the most important cause
for a conflictive climate both among developers themselves and between them and
the client [21].

Although these critical issues are the source for several problems in this type of
projects, there is a lack of guidelines to manage them. In addition, well-known web
development models seem to be problematic to be used in contexts such as the
Chilean one, because of they are so heavy weight as to be carried out in short time
using novice developers. This situation forces software developers to use handmade
procedures to develop the Web software products. Next section presents the related
works and the strengths and weaknesses of several proposals that could be used to
solve the problem.

3. Related Work

Most models reported in the literature for software development are oriented towards
mature development scenarios. Some of them are known as heavyweight software
models because of the bureaucracy required during their application to a project. On
the other hand, there are lightweight or agile software processes that involve minimal
bureaucracy, but high interaction among team members and between team members
and the users/clients.

Heavyweight software processes seem to be problematic to be used in immature
contexts, because they are so difficult to be carried out in a short time period by using
developers. Some of the most representative heavyweight software processes include
the following ones.

OOHDM (Object-Oriented Hypermedia Design Methodology). This is a
development methodology for hypermedia applications, including Web
applications [18, 20]. OOHDM offers a clearly defined process, which can be

98 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos

adopted using an incremental model or a prototype based model. It proposes five
basic steps to carry out the development: requisite elicitation, conceptual design,
navigational design, abstract interface design and implementation. Although the
process is clear, it is not easy enough to be used by beginners in short time
periods.

WSDM (Web Sites Design Method). This methodology uses a user-centered design
strategy [4]. The design is driven by the views of different user-classes instead of
being data-driven. This method is limited to "Kiosk Web Sites", i.e., Web
applications that only display data, and can be navigated through themselves.
WSDM is a variant of the waterfall model that involves four phases: user
modeling, conceptual design, implementation design and implementation. One of
the most important advantages of this model is the application of user
requirements as a guide for the development process. As regards disadvantages,
since the model is based on the waterfall model, WSDM is affected by its typical
problems [2]. In addition, it is only focused on the design process and does not
give a clear support for roles, asynchronous and distributed work and coordination
activities.

WebComposition. This model describes a consistent approximation to the Web
Applications development based on components [8]. Basically, this model follows
a spiral process that involves three phases: analysis and planning, design and
implementation. The process is simple and provides feedback about process and
product in a continuous way. One limitation of this model is the disregard for user
requirements as a guide for the development process. It is focused on the design of
the product, and it forces to use WCML (WebComposition Markup Language) [7]
to represent that design. In addition, this model supports a rapid development only
if the work team has an available library of reusable components, which are
appropriate to build the new product.

WebE (Web Engineering). WebE is a general model described by Pressman [16],
which follows an evolving approach including six stages: formulation, planning,
analysis, engineering, Web Pages development, testing and user evaluation.
Although this model is well conceived, it is heavyweight to be carried out in a
short time. Besides, it has some restrictions such as: it does not perform
requirements management; it demands a great effort for product design; each
phase requires specialists; and the roles of the work team are not clearly defined.

RUP (Rational Unified Process). RUP provides a disciplined approach to
assigning tasks and responsibilities within a development organization [12]. Its
goal is to ensure the production of high quality software that meets the needs of its
end users within a predictable schedule and budget. This software process
involves the following phases: inception, elaboration, construction and transition.
Team members work toward the milestones that mark each phase completion by
performing activities organized into nine disciplines.

These models were not designed to support small software projects carried out in
immature scenarios. For that reason their complexity, formalism, lack of support for
quick developments or lack of a formal participation of the client during the
development process restrict their applicability. However, there are lightweight
software processes or agile methods that can be used to overcome limitations of

SSP: A Simple Software Process for Small-Size Software Development Projects 99

traditional software processes [6]. Some of the most known agile methods are the
following ones:

Extreme Programming (XP). XP was created for small and medium size software
projects where requirements are vague, change rapidly or are very critical [1]. XP
was designed having in mind the problems with traditional programming
methodologies with respect to deadlines and client satisfaction.

Scrum. Scrum was not conceived as an independent method, but a complement of
other agile methods [19]. Scrum stresses management values and practices, and it
does not include practices for the technical parts (requirements, design,
implementation). For that reason. Scrum can be used in conjunction with another
agile method. Scrum is a management and control process that implements
process control techniques.

Crystal. Crystal is a family of methodologies created by Cockbum [3]. They are
based on the fact that, comparing software construction with an engineering
process makes us think about software "specifications" and "models", about its
completeness, correctness and operation. The most exhaustively documented
Crystal methodology is Crystal Clear (CC). CC can be used in small projects with
medium criticality, although it can also be applied to critical projects if it is
properly extended.

Feature Driven Development (FDD). FDD is an agile, iterative and adaptive
method that it does not cover the complete software life cycle, but only the design
and implementation phases. It is considered adequate for major mission critical
projects [15]. FDD applies an iterative development with the best found practices
to be effective within industry parameters. It stresses quality aspects and it
includes small tangible deliverables, together with the precise control of the
project progress.

These agile software methodologies do not use strict phases but they include a
series of recommendations which aim at easing up the development [1, 11]. In
addition, they substitute the strict documentation for an intense level of
communication among clients and developers. However, the lack of time from clients
and the problems of communication and coordination noted in previous projects
jeopardize these development approaches. Besides, they have been proven
inappropriate for developments in which the team members work in an asynchronous
and distributed way. The following section presents the SSP methodology, which has
been specifically designed to support small-size software development projects in the
above mentioned scenario.

4. The Simple Software Process

The Simple Software Process (SSP) proposed in this paper intends to be appropriate
enough to support the development of small information systems, in immature
scenarios. The first version of this process was defined in 1998 to support software

100 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos

development projects carried out by computer science undergraduate students at the
Pontificia Universidad Catolica de Chile.

The course where this experience tools place was ICC2152 - Software
Engineering Laboratory (10th term). In this course, students are grouped in teams and
one role is assigned to each member. Responsibilities and rights of each role are
specified in SSP. During 16 weeks the teams develop a real software application and
interact with real clients and users. Over fifty small-size projects have been
developed using SSP.

Since 2001, SSP has been also applied in the Universidad de Chile, in a course
similar to the previously mentioned one. This work reports only the last twenty-two
projects which have been carried out by undergraduate and graduate students from
Universidad de Chile, in the course CC51A - Software Engineering (10th term),
which keeps the same development scenario.

Increment 1: CORE Conception Architectural
Design

Prototyping

Increment 2: COMPLEMENT Conception
Architectural

Design

Engineering

Fig. 1. Structure of SSP model

This development process involves two increments (Core and Complement) and
each one is composed of four phases (Figure 1): conception, architectural design,
engineering and delivery. The reason to propose two increments is because past
experiences have shown that controlled two-steps approaches provide good results in
short-time projects.

The first increment involves about 70% of user requirements and 100% of quality
requirements. The second increment addresses the residual user requirements, which
usually are not clear by the time the project starts. Thus, delays because unclear and
changing requirements are reduced. The requirements of the second increment should
be aligned with those defined in the first increment. Otherwise, a negotiation instance
will be required.

Usually, the time spent in the development of the first and second increment is
also around 70% and 30%> respectively. The SSP approach involves a little work of
integration, which has not relevant impact on the project schedule. In addition, the
products to be integrated have been conceived and specified for fast integration. It
allows developers to work asynchronously and in a distributed way avoiding delays
caused by unclear requirements.

Furthermore, the prototyping during the development is a service that supports
each phase in order to make it agile, improve the quality of the obtained products,
and reduce the anxiety of clients. The next section describes the SSP phases and the
dynamics of the development process. After it, section 4.2 presents a brief
description of the roles involved in the development.

SSP: A Simple Software Process for Small-Size Software Development Projects 101

4.1. Phases of the model

In contrast to other development methodologies, the parallel work with low
interactions among team members is fundamental in SSP. The restrictions on
development time force team members to optimize the process, by maintaining low
interaction among them, and working in an asynchronous/distributed way. In the
following sub-section, the four phases of SSP are presented.

Conception. This stage has two goals: (1) to define the project viability, and —if it
turns to be viable— (2) to specify the user requirements which will guide the
development process. The project viability is identified through an effort
estimation methodology called CWADEE (Chilean Web Application
Development Effort Estimation) [14]. If the project turns viable, the collected
information is used to design the elicitation process, which has two stages. The
first stage is oriented to capturing the most important and stable user requirements.
With this information, the developer may create prototypes that are used to verify,
validate and redefine such requirements with the user-clients. The second stage is
oriented to capture those requirements that are contradictory, conflictive or not
clear enough. The protot)^e developed for the first stage is updated in order to
support the prototype revisions with users and clients. Typically, these two stages
are enough to identify the user requirements. Then, if needed, the development
effort estimation could be adjusted. Finally, a User Requirement Document
(URD) is created and validated through rapid prototypes. This document, like
other ones proposed by SSP, is clearly specified and it is simple to write.
Furthermore, during this phase, a set of test cases is built and documented in TCD.

Architectural Design. The inputs to this phase are the URD and the last prototype
of the system. The phase main goal is to define the product structure in terms of
subsystems, relationship among subsystems, information structure, system
navigation and basic look-and-feel. It also specifies the operational environment
of the system. This information is included in the Architectural Design Document
(ADD) which is the result of this phase. During this stage programmers work in
parallel with designers, by having these latter ones keep the coordination of
activities and process control. Thus, when this phase ends, the obtained prototype
is used to test the designed architecture with users and clients. Such prototype
includes the look-and-feel, the navigation pattern and the raw functionality of the
system.

Engineering. This phase uses the ADD to generate a detailed design that is
implemented directly on the current prototype. The usability is the motivation for
this phase, and the main goal is to get a product that is usable. During the
development of the first increment, the programmers implement as much as
possible in order to reduce the risks and to validate the usability of the Web
application. During the second phase, the additional fimctionality is implemented,
and both the complex functionality and the component integration are carried out.
Eventually, some designers can participate in this phase as consultants in order to
ensure the product usability. Upon finishing this phase, a usable product meeting
the increment requirements should be obtained.

102 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos

Delivery. The delivery phase is focused on installing the product in the user/client
premises, to evaluate the acceptation level and to carry out minor adjustments if
necessary. This phase is short and it is in charge of the programmers.

Analyst

I
Feedback Pf^'"*'"'

^ ^ i
Arch. Design

i

FBeat)acli^'' ' ' '<'a""-

Fig. 2. Example of SSP dynamics

Figure 2 shows the dynamics of an SSP increment. The diagram shows three
cycles in which it is possible to do testing and get feedback from the
clients/users/team members. The first cycle is related to the conception phase, the
next one is related to the architectural design phase and the last one is related to
engineering. The process dynamics can be adjusted according to team member skills
and roles that are present in the team work.

4.2. The roles

SSP demands for six roles to be assigned to group members: project manager,
analyst, designer, programmer, tester and user/client. Although the user and client
are not formally part of the work team, they play a key role during the development
in order to help accomplishing the project scheduling. SSP formally proposes to
include this role in the development process as a way to assure a quantum of
user/client's time. Experiences using SPP indicates that it is a key factor to consider
in order to have normal project execution. The formal participation of users/clients
allows them to be conscious of their responsibilities. Moreover, the rest of team
members are conscious of the user/client's role and the formal interactions required
with these new members of the team. Provided that roles and interactions among the
participants are well specified, a common understanding is created and maintained
during the execution of the project. It increases the project visibility for all people
involved in the development.

A team member could play a maximum of two roles during the project in order to
avoid bottlenecks. However, just some roles combinations are recommended. For
example, it is not recommended that a person may have the roles of programmer and
tester, because testers have to review the programmers' work. Next, a brief
description of the roles considered in SSP is presented.

SSP: A Simple Software Process for Small-Size Software Development Projects 103

Analyst. The analysts are responsible for the conception phase. They have to (1) establish if the

project is viable or not, and (2) specify the user requirements in the URD (User Requirements

Document). This document is a simplified version of the ESA Software Engineering Standard

proposal [5]. The analyst-programmer or analyst-tester role combinations have
shown to be appropriate if a person has to play more than one role.

Designer. The designers are in charge of the architectural design phase, which
produces the ADD (Architectural Design Document), It includes the architectural
design of the software application and operational environment. Moreover, it
includes the design of the application look-and-feel and navigation. Designers
also collaborate with the programmer during the engineering phase by testing and
improving the product usability. Besides, they can adjust or add test cases to TCD
(Test Cases Document). A person whose main role is designer can also play a
programmer or tester role.

Programmer. The programmers are in charge of the engineering phase. They
are responsible for the development of fast prototypes to be shown and the final
product. Usually, they participate during the architectural design phase in order to
assure that designs may be quickly implemented. A person whose main role is
programmer can also play an analyst or designer role.

Tester. The tester is usually a distributed role, which is played by several
members along the development process. For example, analysts can play a tester
role when the conception phase has concluded. This role is responsible for
specifying the test cases and for checking whether the products adhere to the
specifications. Typically, the tester generates the TCD and reports the testing
processes. The process presented in Figure 2 shows roles that can also act as
tester during each phase of an increment.

Project Manager. The project manager plans, coordinates and controls the
activities of the team members. The manager can also act as tester during part of
the process and he/she typically acts as a communication interface with the
client/user,

User/Client. The users and clients are in charge of (1) providing information
and requirements of system to be developed, and (2) providing feedback to
developers about the interim products that are delivered during the process. The
software developers have internal check points with the users and clients every
week in order to diagnose the project advance. Such meetings are formally
scheduled and they take 10-20 minutes. Attendance to these meeting is part of the
duties of users and clients.

Experiments performed in two Chilean universities are presented below. The
experimentation scenario is similar to the one characterized in section 2.The obtained
results are not conclusive enough; however they show the web development process
in immature scenarios can be controlled in order to be predictable.

104 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos

5. Experimental Results

Various versions of SSP have been used in more than 50 projects since 1998.
This paper reports only the 22 last projects which show the results of the SSP current
version. This software process has been used to support software development in
software engineering courses taught at two major Chilean universities: Pontificia
Universidad Catolica de Chile and Universidad de Chile.

Typically, these courses are taken by advanced undergraduate and graduate
students of computer science. As previously mentioned, students are grouped in
teams of 4-6 people. Each team member had to play at least a role, by considering
that all SSP roles must be covered. Then, a real project is assigned to each team. The
projects involved participation of real clients and users. Although the scope and main
requirements of the projects were previously agreed between instructors and clients,
the team members had to negotiate the projects scope with their clients in order to
make effective the developers estimations. Each team had 16 weeks to develop and
deliver the final product.

At start time, the work teams had to define SSP adaptation to conduct the
development process. The communication/coordination infrastructure supporting the
team members included email, telephone, a CVS (Concurrent Versions System) and
a document describing the roles and the interaction protocol. Students were free to
use these or other coordination tools.

Instructors defined three main check points for each project execution: upon
finishing the conception phase during first increment, upon ending the conception
phase during the second increment, and upon completing the engineering phase
during both increments (core and complement). In order to diagnose the projects
advance, a formal technical review was conducted during each check point. The
reviews took 60-90 minutes by project. These instances were used to get part of the
results reported in table 1.

Results shown in Table 1 correspond to those obtained in software projects
developed from first term 2003 to second term 2005. In order to present the results
the projects were classified by the instructors according to size and complexity, based
on the amount and complexity of user requirements. The following project categories
were identified: Very Small size - Medium complexity (VSM), Very Small size -
Complex (VSC), Small Size - Low complexity (SSL), Small Size - Medium
complexity (SSM). For each project category, it is presented:

a) the number of initiated projects,

b) the number of projects under production -successfully finished-,

c) the number of members per work team,

d) the average and standard deviation of the spent man-hours,

e) the average and standard deviation of cHents'/users' assessments about the obtained product,

f) the average and standard deviation of team members' assessments about SSP as support for the

development process,

SSP: A Simple Software Process for Small-Size Software Development Projects 105

g) the average and standard deviation of the experts' assessments about the quality of the final
product,

h) the average and standard deviation of the team members' assessments about visibility of the project

provided by SSP, and

i) the average and standard deviation of the clients/users' assessments about visibility of the project

during the development process.

The two first assessments (items e and f) were carried out by using questionnaires designed with the

method proposed by Zapata et al. [22], and the third assessments (item g) was done using an
extension of the 8-issues questionnaire proposed by Nielsen [13]. The values range
between 1 and 10, the higher the better.

Results show the SSP is predictable in terms of time, because most projects were
completed and put into production. The man-hour values are stable enough according
to project types as to support realistic estimations, regardless of the team work. The
clients' and experts' assessments indicate that good quality products can be obtained.
The work teams' opinions show a high level of satisfaction when using SSP to guide
the development process. The same occurs with the project visibility as seen by
clients/users and team members. The low clients/users commitment was the common
factor in those projects that were not put into production.

Table 1

Item

A

B

C

D

E

F

G

H

I

. Experimental results

Category/Issues

Number of Projects

Number of Completed Projects

People by Work Team

Man Hours / Standard Deviation

Clients-Users Assessment / Std.
Deviation

Work Team Assessment / Std. Deviation

Expert Assessment / Std. Deviation

Team Members Visibility / Std.
Deviation

Clients-Users Visibility / Std. Deviation

VSM

4

3

4

248 / 35

8.5/0.7

8.5/0.5

8.0/0.7

8.7 / 0.4

9.1/0.3

vsc
6

5

5 - 6

367/71

8.2 / 0.9

9.1/0.7

8.3/0.5

8,5/0.5

8.0/0,4

SSL

7

7

4 -5

285/32

8.9/0.8

9.1/0.6

7.9 / 0.3

9,2 / 0,4

9.3 / 0.5

SSM

5

4

5 - 6

389/68

8.7/1.2

9.4 / 0.5

8.2 / 0.4

9.1/0.6

9.2/0.3

On the other hand, SSP has been applied to three projects out of the university
scenario, in a small software company. They were two SSL and one SSM project.
The obtained results reported by the project manager were similar to those shown on
Table 1.

The main strengths of SSP are their simplicity and clarity about roles to play
(including the client/user), tasks to be done and interactions between activities. These
interactions, allows team members to work in an asynchronous and distributed way.

106 Sergio F. Ochoa, Jose A. Pino, Luis A. Guerrero, Cesar A. Collazos

Observing the results we can say that SSP provides a good visibihty of the project for
both developers and users/clients and produces predictable results. These features
make SSP appropriate to support developments of small-size software projects in
immature scenarios.

6. Conclusions and Future Work

Usually, small-size software projects carried out in immature development
scenarios cannot guarantee either the development time and cost or the quality of the
final product. The limitations that well-known heavyweight and lightweight software
methodologies have to guide developments in such a scenario were presented in
section 3.

In order to deal with this problem, authors have studied several software projects
in Chile to identify key issues that are the source for most problems. The results
showed a poor understanding or consideration of key issues such as: rights and duties
of team members' roles, development context, process activities, coordination
protocols, users/clients participation and project visibility. SSP has taken these issues
into account. It evolutions has been guided by the lessons learned with each project.
The results obtained of its application in 22 projects are encouraging. SSP seems to
be a viable alternative to guide small-size software development in immature
scenarios.

This proposal is based on the cases we had at hand. We do not know yet its
extensibility to other cultural settings. This will be the subject of a forthcoming
paper. However, it is possible to hypothesize its applicability to similar cultural and
economical environments such as other Latin-American countries.

In the short term, we will continue testing SSP in the reported scenario, and we
will start testing such a methodology within software companies. In the long term,
we plan to use SSP in several software developments settings in order to identify its
limitations.

Acknowledgements

This work has been partially supported by grants N° 1030959 and 1040952 from
Fondecyt (Chile).

References

[1] K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.
[2] B. Bohem. A Spiral Model for Software Development and Enhancement. IEEE

Computer, Vol. 21, No. 5, 61-72. 1988.
[3] A. Cockbum. Agile Software Development. Adisson-Wesley, 2002.
[4] O. DeTroyer and K. Leune. WSDM: a User Centered Design Method for Web

Sites. Proc. of the Int. 7th World-Wide Web Conference, Brisbane, Australia.
1998.

SSP; A Simple Software Process for Small-Size Software Development Projects 107

5] European Space Agency. ESA Software Engineering Standards. PSS-05-0 Issue
2. ESA Board for Software Standardization and Control (BSSC). February,
1991.

6] M. Fowler. The New Methodology. April 2003.
http://www.martinfowler.com/articles/newMethodology.html.

7] M. Gaedke, D. Schempf and H. Gellersen. WCML: An Enabling Technology for
the Reuse in Object-Oriented Web Engineering. Proc. of 8th Int. World Wide
Web Conference (WWW8). Toronto, Ontario, Canada. 1999.

8] M. Gaedke and G. Graef. Development and Evolution of Web-Applications
using the WebComposition Process Model. Proc. of Int. Workshop on Web
Engineering at the WWW9, Amsterdam, The Netherlands, May 2000.

9] F. Guerrero. Success Factors for Adopting and International Process Standard in
a Chilean Software Organization: An Experimental Study. Master Thesis. DCC.
Universidad Catolica de Chile. Santiago, Chile. May, 2003.

10] IDC Chile. The Chilean Software Industry. A Study for Japan External Trade
Organization (in Spanish). International Data Corporation Chile (IDC Chile).
2003.

11] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2001.

12] P. Kruchten. The Rational Unified Process- An Introduction. Third Edition.
Addison-Wesley. 2004.

13] J. Nielsen. Usability Engineering. Academic Press, London, 1993.
14] S. Ochoa, M.C. Bastarrica. CWADEE: A Chilean Web Application

Development Effort Estimation Process. In Proceedings of LA-Web 2003
Conference. IEEE Press. Santiago, Chile. 10-12 November, 2003.

15] S. Palmer and M. Felsing. A Practical Guide to Feature-Driven Development.
Prentice Hall, 2002.

16] R. Pressman. Software Engineering: A Practitioner's Approach. 5th Edition,
McGraw Hill. 2000.

17] E. Sacre. A Methodology To Develop Web Applications in Small and Medium
Size Enterprises (in Spanish). Master Thesis. Computer Science Department,
University of Chile. June, 2003.

18] D. Schwabe, G. Rossi, S, Barbosa. Systematic Hypermedia Design with
OOHDM. Proceedings of the International Conference on Hypertext' 96.
Washington, USA. 1996.

19] K. Schwaber. The Scrum Development Process. Proceedings of OOPSLA '95,
Workshop on Business Object Design and Implementation, Austin, Texas, USA.
ACM Press. October 1995.

20] D. Schwabe, G. Rossi, S, Barbosa. An Object Oriented Approach to Web-Based
Applications Design. In: TAPOS - Theory And Practice of Object Systems, 207-
225. 1998.

21] W. Stein. A Web Software Process for Small or Medium-Sized Projects
Focused on the Chilean Scenario. Engineering Thesis (In Spanish). Computer
Science Department, Universidad de Chile, April 2003.

22] S. Zapata, M. Lund. Proposal to Measure Software Customers Satisfaction.
Proceedings of 1st Argentine Symposium on Software Engineering (ASSE'
2000), Tandil, Argentina, pp.185-197. September 4-9. 2000.

A Method for Collaborative Requirements
Elicitation and Decision-Supported

Requirements Analysis

Michael Geisser and Tobias Hildenbrand
University of Mannheim, Schloss, 68131 Mannheim, Germany,

{geisser, hildenbrand} @uni-mannheim.de,
WWW home page: http://wifol.bwl.uni-mannheim,de/team.html

Abstract. As software systems become more and more complex with a
multitude of stakeholders involved in development activities, novel ways of
conducting the process of requirements elicitation and analysis are to be found.
Therefore, this paper introduces a method for collaborative requirements
elicitation and decision-supported requirements analysis. Accompanying this
method, appropriate tools and techniques, both existing and custom-made, are
referred to. The method is designed for a geographically distributed
collaborative environment in order to support software manufacturers as well
as IT departments which develop software solutions for multiple users or even
consortiums of customers.

1 Introduction

Since the '60s, numerous methods for a more systematic approach to software
development have been devised as part of the newly created software engineering
(SE) discipline. SE in general aims at consistently producing high-quality software
within predictable budget restrictions and project schedules. However, even today
surveys show that the majority of all software projects significantly run out of
schedule and budget. This and fiirther problems in software projects are mostly
caused by a lack of understanding of the customers' needs at the beginning of the
project as well as by unsystematic approaches to early development activities [14,
24, 25]. The discipline of requirements engineering (RE) focuses on these early
stages of software development projects.

Introducing a more systematic method for RE constitutes a fiindamental
prerequisite for realizing the goals of SE. This task is even more complicated when

Please use the following format when citing this chapter:

Geisser, M., Hildenbrand, T., 2006, in IFIP International Federation for Information Processing, Volume
219, Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds. Ochoa, S.,
Roman, G.-C, (Boston: Springer), pp. 108-122.

A Method for Collaborative Requirements Elicitation 109

considering consortiums of multiple customers: This implies the involvement of
numerous stakeholders from different organizations. In this particular scenario, it is
of high importance to systematically guide the stakeholders with their respective
opinions through the RE process in order to reach a consensus which the consequent
stages of SE can build upon.

In an aim to support software manufacturers in addressing these complications,
this paper provides a theoretically sound method accompanied by appropriate tools
for collaborative requirements elicitation including decision support for requirements
analysis. The CoREA method (Collaborative Requirements Elicitation and Analysis)
aims at enabling software companies to systematically elicit requirements in a
distributed environment and provides profound and objective decision support for
analyzing and selecting relevant requirements.

After having already outlined the paper's underlying problem statement and
objective, an overview and critical evaluation of related RE approaches and methods
will be given as theoretical framework. Section 3 contains a description of the
method consisting of two major parts: (a) eliciting a complete set of requirements
with regards to a distributed collaborative scenario and (b) analyzing those
requirements in order to find a reasonable and objective choice for implementation.
Supportive tools for each step of the method will also be presented. The concluding
section summarizes the results of our research, including a demarcation to previous
work, and provides an outlook on future research questions.

2 Related Work

As already indicated, most problems in software development stem from a poor
initial understanding of the customers' needs. RE deals with this difficulty and tries
to systematically create a better understanding in the early stages of a SE project.
The most common definition of the RE process is that of Ian Sommerville: "The
requirements for a system are the descriptions of the services provided by the system
and its operational constraints. [...] The process of finding out, analysing,
documenting and checking these services and constraints is called requirements
engineering" [23]. This process is subdivided into four phases, namely feasibility
study, requirements elicitation and analysis, requirements specification, and
requirements validation. Parallel and subsequent to these phases, requirements
management covers all activities concerning the management of emerging changes
to requirements during the whole software development process [23].

2.1 Collaborative Requirements Engineering

As Cook und Churcher observed, „Software Engineering is inherently a team-based
activity" [6], and thus, SE, and RE in particular, are not feasible without a certain
degree of collaboration, in most cases. Moreover, involving all relevant stakeholders
early on in the process is particularly crucial for successful software projects [2].
Among all RE phases, requirements elicitation and analysis is an especially

110 Michael Geisser and Tobias Hildenbrand

collaborative stage: first, stakeholders from both the software company and the
customer need to be identified, and second, requirements from all these stakeholders
have to be gathered collaboratively. In particular, requirements analysis takes place
among stakeholders from the ordering party supported by the software vendor.
Requirements specification is carried out collaboratively as well: the pivotal activity
(modeling), can only be successful after continuous consultation with the customers'
stakeholders. Many computer scientists advocate an even deeper involvement of all
stakeholders within the requirements specification phase by means of collaborative
methods [1,9]. The remaining phases of RE are by far less collaborative than the two
previously mentioned. In the following, existing approaches to collaborative
requirements elicitation and analysis will be the center of attention.

2.2 Collaborative Requirements Elicitation and Analysis

Considering scientific approaches for collaborative requirements elicitation and
analysis, there is only one established research endeavor, namely the WinWin
approach. Originating from Boehm's Theory W [5], WinWin has evolved over four
iterations from an extended spiral model of software development [4] to the latest
version, called Easy Win Win (EWW) [10]. This approach propagates a change from
traditional, contract-oriented mechanisms to collaborative practices based on trustful
relationships among stakeholders. EWW does not aim at rigid agreements and
detailed requirements specifications. It rather tries to provide the stakeholders
involved with a shared vision and common beliefs in order to be able to react to both
unforeseen problems and opportunities in an adaptive and quick manner [3]. The
establishment of trust among all team members is an integral constituent of the
EWW method. Additionally, this approach leads to more realistic expectations
among stakeholders, since they exchange and scrutinize their respective beliefs by
means of intensive discourse. Moreover, EWW is able to reveal tacit knowledge as
well as conflicts and inconsistencies in very early stages of the requirements
elicitation and analysis phase [12]. Other advantageous features of this method
include its detailed process description, which provides certainty and guidance for
participating stakeholders, as well as its supportive groupware tools. Thus, EWW
combines the WinWin spiral model of SE with collaborative knowledge techniques
and automation of a custom-built group support system [5].

The relatively high complexity constitutes the major downside of this approach
since the process is not very intuitional and necessitates training for both moderators
and participants. Moreover, the process is not tailored to a distributed environment as
physical discussions are a fundamental element of the method. The relatively high
subjectivity of requirements selection accounts for another disadvantage. Although
EWW tries to guarantee a certain degree of objectiveness by means of a
prioritization mechanism, the absolute character of this mechanism is inferior to
comparative ones [15]. Another drawback is the "ease of realization" criterion for
assessing requirements. Since this criterion incorporates numerous factors it is
arguable whether all stakeholders are capable of rating this property on an absolute
scale. The directive not to vote unless stakeholders feel able to assess this criterion is

A Method for Collaborative Requirements Elicitation 111

also problematic, since the participants' subjective appraisement may differ
significantly from their actual abilities. Table 1 provides an overview of EWW's
advantages and disadvantages in context of our initial problem statement.

Table 1. Evaluation of the EasyWinWin method

Advantages Disadvantages
+ Flexibility - Not very intuitional
+ Establishment of trust - Not suitable for distributed development
+ Realistic expectations - Relatively high subjectivity
+ Revelation of tacit knowledge
+ Early detection of conflicts
+ Detailed process description
+ Tool support (groupyyare)

2.3 Distributed Requirements Elicitation and Analysis

The gradual globalization of economies makes highly distributed software
development techniques indispensable. The driving force and rationale behind this
development is the opportunity to share resources and to use wage differentials on a
global scale. Against this background, not only the distributed SE process as a whole
has been subject to researchers' investigations [1] but also distributed RE, and
particularly requirements elicitation, has been studied empirically [7, 8, 13].
However, these studies unanimously deal with distributed elicitation activities using
traditional techniques and methods not necessarily suitable for distributed
environments. Furthermore, many asynchronous techniques (e.g. shared glossaries
and discussion forums) are not explicitly taken into consideration. However, all
studies deem distributed requirements elicitation possible and even favorable
compared to collocated approaches. In order to realize this potential advantage,
methodical principles need to be taken into consideration and requirements for tool
support have to be granted. E.g. initial face-to-face meetings are considered essential
in order to establish trustful relationships among the persons involved [8]. Important
requirements for collaborative tools include support for both synchronous and
asynchronous collaboration capabilities [13].

With regards to EWW's original groupware, geographically distributed
stakeholders were only integrated in a rudimental way. Therefore, a web-based tool
for distributed requirements elicitation supporting the EWW approach was
developed; ARENA [11]. However, this tool does not complement the existing
groupware tools but replaces them. Therefore, in order to conduct collaborative,
distributed requirements elicitation and analysis, the whole process has to be run
within the boundaries of the ARENA tool. This, in turn, is very problematic, since
ARENA solely supports web-based asynchronous collaboration. Thus, it is
impossible to arrange synchronous meetings which play a pivotal role within the
original method. Besides ARENA, two other applications supporting EWW were
developed especially for mobile devices. Thus, it is possible not only to conduct
requirements elicitation in a geographically distributed setting but also without any

112 Michael Geisser and Tobias Hildenbrand

tie to fixed desktop workplaces. These mobile tools are especially useful in scenarios
where collocated workshops are held in combination with interviewing
geographically distributed stakeholders [22].

Open source software development (OSSD) constitutes another source of insight
into techniques for distributed requirements elicitation and analysis. In OSSD, the
overall development process is primarily distributed. Therefore, further findings for
the course of this paper can be derived - especially when considering the major
downsides of EWW, namely being non-intuitional and not suitable for distributed
environments. However, major differences between commercial software projects
and OSSD can be found, in particular when comparing requirements processes.
Unlike commercial developers, open source developers are mostly among the future
users of the software product [17]. Empirical studies reveal that requirements
processes in OSSD projects run much more implicitly and informally than in any
other kind of development project -- sometimes even omitting some of the generally
accepted RE activities [17, 21]. In particular, requirements elicitation and analysis is
carried out much more informally than in traditional RE, as requirements are elicited,
elaborated, and discussed in forums and via mailing lists. Especially in case of
distributed environments, forums represent an efficient way of asynchronously
eliciting requirements even in commercial settings — particularly in terms of resource
consumption. However, these forums should be structured and supervised by a
moderator, in order to coach those stakeholders not so familiar with the medium and
to run the process as systematically as possible,

2.4 Quantitative Approaches to Requirements Engineering

The RE process has to consider various requests from diverse stakeholders, each
having a different view on the system to be built and thus having varying priorities.
Furthermore, most stakeholders are unaware of the implementation costs of the
respective requirements. Due to budget restrictions, it is generally impossible to
incorporate all the stakeholders' requirements in the final software product.
Therefore, a reasonable selection has to be conducted in order to maximize customer
value [19]. In the literature, two major methods supporting quantitative RE can be
found: the Cost-Value Approach [15], and Quantitative WinWin [18, 19]. Both
methods base upon the Analytic Hierarchy Process (AHP) [20], a supportive method
for complex team decision processes which has proved to be superior to other
requirements prioritization algorithms in RE [16].

The Cost-Value Approach (CVA) features intuitional and easy handling. In
addition, this method leads to better results than absolute ones due to its solid
mathematical foundation. The AHP's pairwise comparisons have a detrimental
effect, since the method's complexity rises exponentially compared to the number of
requirements. Neither are possible interdependencies between requirements
considered [15]. Thus, e.g. a requirement with a very low value-cost ratio might be
indispensable for implementing another requirement with a very high value-cost
ratio. The CVA would advise to omit this indispensable requirement, even though
the global maximum of customer value could thus never be attained.

A Method for Collaborative Requirements Elicitation 113

Quantitative WinWin (QWW), on the other hand, considerably reduces the
number of comparisons by using the AHP hierarchically [18]. However, the effect of
the AHP's pairwise comparisons still has a negative impact on the process, since
several iterations are extremely demanding in terms of the stakeholders' cooperation
and willingness to participate. Therefore, QWW is still more complex than the CVA.
It also features a solid mathematical foundation and thus overcomes the limitations
of a subjective requirements selection. The stakeholders' cooperation is even more
mission-critical when evaluating the relative importance of requirements as proposed
in the extended version of this approach [19]. Nevertheless, the method's original
assumption that the relative importance values of requirements are given has to be
considered quite unrealistic. Moreover, when estimating costs (as well as duration
and quality in the extended version) using the proposed simulation system represents
more of a risk than an improvement, since the expected quality of results from this
estimation is at least arguable [19]. Furthermore, neither consistency checks of the
stakeholders' AHP comparisons nor interdependent requirements are taken into
consideration. These interdependencies are particularly crucial, since it can be
assumed that both value and complexity of respective requirements will not stay
constant but will rise with a growing number of implemented features [19]. Finally,
the method's name is somehow misleading, because it has nothing in common with
the original WinWin approach but the iterative nature of the process. Table 2
outlines the results of the quantitative methods' evaluation.

Table 2. Comparison of Cost-Value Approach and Quantitative WinWin

Method Advantages Disadvantages

Cost-Value
Approach

+ Mathematical foundation
+ Cost-value consideration
+ Consistency check
+ Intuitional handling

• No consideration of interdependencies
among requirements

• Complexity

Quantitative
WinWin

+ Mathematical foundation
+ Cost-value consideration
+ Hierarchical AHP

- No consideration of interdependencies
among requirements

- High complexity
- No consistency check
• Cost estimate problematic
- Close cooperation among stakeholders needed

3 Introducing the CoREA method

Based on the analysis and evaluation of existing approaches, we now introduce the
CoREA method for collaborative RE. CoREA covers collaborative requirements
elicitation in a distributed environment as well as quantitative decision support for
distributed requirements prioritization and selection. The CoREA method consists of
two distinct phases: Phase I is predominantly concerned with the iterative and
collaborative elicitation of requirements from different stakeholders, while explicitly
taking into account geographically distributed work. Subsequently, in phase II, costs

114 Michael Geisser and Tobias Hildenbrand

and values of the respective requirements are analyzed in order to support the
selection process with regards to the ensuing design and implementation phases.

3.1 Collaborative Requirements Elicitation

In phase I of the CoREA method, requirements are elicited both collaboratively and
iteratively. The method builds upon EWW but uses techniques from OSSD in order
to achieve both a more intuitional procedure and consistent support for distributed
collaboration. The objective of this first phase is to capture the requirements as
completely as possible. Hence, a vague vision conceptualizing the customers' needs
serves as starting input. Moreover, an initial list of relevant stakeholders must be
available. The set of relevant stakeholders as well as the central vision evolves over
time, as several iterations of the process will be traversed. The respective process
steps for CoREA's collaborative requirements elicitation phase will be described in
detail in the following sections.
Step 1: Initial Meeting
Within the scope of the initial meeting the vision statement along with a first list of
stakeholders is handed over to the software company. This meeting enables the
establishment of interpersonal relationships among the stakeholders who are
supposed to collaborate predominantly asynchronously and geographically
distributed within the following steps.
Step 2: Brainstorming
Asynchronous brainstorming aims at generating first ideas about the software to be
developed in the project. Web-based forums are utilized to enable geographically
distributed collaboration among stakeholders. Thus, they are able to generate new
ideas as well as complement and comment existing entries. Whereas criticism during
brainstorming sessions is often interdicted, CoREA prescribes this explicitly in order
to reject unrealistic requirements as soon as possible in the RE process. This second
step is supposed to be supported intensely by a moderator from the software
manufacturer who supervises and adjusts the detail level of discussion, if necessary.
Furthermore, the moderator ensures the correct and consistent usage of technical
terms, e.g. by systematically asking questions. In addition, he fosters active
participation of all stakeholders by purposefully addressing people.
Step 3: Revise Vision and Identify Categories
After having completed the brainstorming step, the vision document has to be
revised by the moderator and a further SE expert from the software company. Their
task is to incorporate the ideas previously generated in step 2. In addition, categories
for upcoming requirements need to be identified from the given sets of ideas in order
to guarantee a structured procedure in the subsequent steps. At the same time, a SE
expert tries to identify and reject unrealistic proposals and thus ensures the system's
realizability and technical feasibility. Moreover, the expert detects technical terms,
which have to be defined in a common glossary.
Step 4: Prioritize Categories & Discussion
The prioritization of requirement categories and subsequent discussion occurs within
the scope of a virtual meeting. Alongside the moderator who guides all participants

A Method for Collaborative Requirements Elicitation 115

through the process and all stakeholders provided by the customer, the SE expert
from step 3 also has to participate in this meeting. In order to realize such a virtual
meeting, multimedia-based groupware is necessary. In particular, audio and video
conferencing as well as anonymous polling features are vital for conducting this step.
At first, the proposals rejected in step 3 will be paid attention to and the SE expert
has to justify their exclusion. Afterwards, the stakeholders have to conduct an
anonymous prioritization of requirement categories. In doing so, each category's
importance has to be assessed from the customers' organizations' points of view on a
scale ranging from 0 (not important at all) up to 3 (extremely important). A more
detailed graduation of the scale would not be appropriate at this point, since the
stakeholders' perceptions are still relatively imprecise and significant differences in
categorization are yet to be detected. In case of substantial differences in the
stakeholders' assessments of particular categories the meaning and the relevance of
this category have to be discussed intensely. This discussion aims at reaching a
consensus among all stakeholders involved. After the discussion, the moderator
presents the revised vision and incorporates fiirther changes if necessary. The list of
technical terms identified for the glossary will also be shown and, if required,
complemented by further terms. This step concludes by deciding whether new
stakeholders have to be involved for the ongoing course of the elicitation process and
which of the current stakeholders are dispensable for the time being.
Step 5: Create or Revise Glossary
The creation of the glossary containing technical terms identified in the previous
steps is supposed to be conducted asynchronously and geographically distributed.
For this purpose, a web-based technology, e.g. a Wiki system or comparable
groupware systems allowing collaborative, asynchronous document editing over the
Internet, can be utilized.
Step 6: Submit and Comment Requirements
Again, a structured web-enabled discussion forum is utilized in order to be able to
both submit new and comment on existing requirements asynchronously and from
different geographic locations. In this forum, the moderator creates different areas
for the respective requirement categories as well as one additional area for
requirements that could not have been categorized so far. As in step 2, the moderator
tries to resolve ambiguities by asking questions, requests more precise explanations
and fosters active participation by all stakeholders.
Step 7: Consolidate and Categorize Requirements
In this step, the requirements submitted and annotated via the discussion forum have
to be consolidated by the moderator and the SE expert from the software
manufacturer. Thereby, all findings from the respective discussion threads have to be
merged. After that, these consolidated requirements are allocated either to existing
categories or newly created ones. While allocating requirements the SE expert pays
attention to the fact that interdependent requirements are not classified in different
categories. He also tries to identify and eliminate proposals for unrealistic
requirements. In addition he compiles technical terms to be specified in the glossary.
If necessary, the vision might be revised and adapted as well.
Step 8: Prioritize Categories and Requirements & Discussion

116 Michael Geisser and Tobias Hildenbrand

In order to collaborate effectively in terms of costs and time consumption as well as
to establish trust and interpersonal relationships among stakeholders, organizing
alternating physical and virtual meetings is a promising approach. Thus, in case step
8 has to be traversed several times and the most recent meeting was a virtual one, the
following iteration demands for a physical meeting. This step is conducted
analogously to step 4. However, besides prioritizing and discussing categories,
requirements themselves are also to be dealt with at this point. In case the glossary
has to be revised or new stakeholders have been identified, another iteration starting
with step 5 has to be traversed. Otherwise, all participants check the categories in
terms of completeness. If there are uncompleted categories, another partial iteration
traversing steps 5 to 8 is required. If no further iterations are required, the phase I of
CoREA is considered completed. Figure 1 depicts a spiral model of the requirements
elicitation process in order to visualize the method's iterative character and
contextualize the respective steps.

(5) Create or
Revise

Glossary

(6) Submit and
Comment

Requirements

(2) Brainstorming

(4) Prioritize
Categories

&
Discussion

(3) Revise
Vision and

Identify
Categories

(7)
Consolidate

and
Categorize

(8) Prioritize
Categories and
Requirements

&
Discussion

Requirements Analysis

Fig. 1. CoREA Spiral Model of Collaborative Requirements Elicitation

A Method for Collaborative Requirements Elicitation 117

3.2 Decision-Supported Requirements Analysis

Within the second phase of the CoREA method, requirements are selected for actual
implementation based upon a quantitative analysis of costs and customer value. The
starting point of this process is a list of requirements, as it was gathered and
consolidated during the requirements elicitation phase. From an economic point of
view, implementing only those requirements providing satisfactory value as
compared to their costs is considered reasonable. Monetary budget restrictions can
also necessitate a more deliberate selection of requirements. Thereby, this selection
is conducted according to the value-cost ratio: the requirements with the highest
ratios will be implemented.
Step 1: Form Requirements Sets
Since requirements always bear interdependencies among each other, they cannot be
compared in a way that neglects these interdependencies. If one or more categories
(cp. section 3.1) contain interdependent requirements, so-called requirements sets
have to be formed. Figure 2 shows a graphical representation of interdependent
requirements and requirements sets. In this example, requirement A2 is a prerequisite
for A3. The latter, together with AO, is in turn a precondition for A4 and A5. Taken
together the directed graph forms a self-contained requirements set. Al does not
depend on any other requirements and thus forms a set of its own. Requirements set
3 consists of two interdependent requirements B1 and B2 and the implementation of
the former is a prerequisite for the latter.
Step 2: Estimate Costs and Values
As soon as the requirements sets have been formed within the different categories,
costs and values for requirements and requirements sets have to be estimated. While
the software company's SE expert is exclusively responsible for realistic cost
estimations, estimating the requirements' value is up to the stakeholders provided by
the customers. Costs are estimated on the one hand on a quantity basis (e.g. by man-
days) and on the other hand on a value basis (e.g. daily rate per employee). Customer
value is determined by means of the AHP (see section 2.4).

118 Michael Geisser and Tobias Hildenbrand

y^Rtqmmm&nU Set 1 \

(XT)

y/Rt:qukemeMs Sat 3 \ ^

0
K®J

/ Require î ieiits Set 2 \ ^

(@ © 1
1 /

©/
1/

f A4 A5 j

Fig. 2. Graphical Representation of Interdependencies

Step 3: Graphical Representation of Results
Results from step 2 are represented graphically with regards to interdependent
requirements by depicting all possible combinations originating from root
requirements in the directed graphs with their respective aggregated cost and value
estimates. Figure 3 takes on the example given in step 1 (see Figure 2) displaying
possible combinations of requirements. The diagram displays the different
combinations and their respective cost-value characteristics. In order to support cost
and value estimation especially for the CoREA method, a prototypical web
application has been implemented. This prototype enables geographically distributed
stakeholders to be securely guided through the estimation process. It implements the
AHP algorithm and is able to visualize the results in the form of a cost-value diagram
as shown in Figure 3 (see appendix).

A Method for Collaborative Requirements Elicitation 119

5J -

3 ;

3.1 .

25 -

20 -

iu^/,>.-.^a4 A',»

i. lU IS A" î> jO 3 i AQ 4 j iQ

Fig. 3. CoREA Cost-Value Diagram

Step 4: Decide Upon Selection
Finally, a physical meeting of all stakeholders is conducted. The moderator presents
the cost-value diagram with all possible requirements combinations and their cost
and value estimations resulting from step 3. Based on this objectified foundation, it
has to be decided which requirements will be implemented immediately, totally
discarded, or preserved for upcoming releases. In order to provide additional
decision support, the diagram contains two straight lines: requirements with at least
two times more relative value than relative cost should be implemented in any case,
whereas those with twice the relative costs should not be considered for
implementation. These equations have been empirically tested and proven
themselves suitable to distinguish preferable requirements with high value-cost ratios
from those with a low ratio [15]. Finally, Figure 4 gives a visual overview of
CoREA's requirements analysis phase. In combination with Figure 1 this depicts the
overall CoREA method.

120 Michael Geisser and Tobias Hildenbrand

Requirements Blcilation

Form
Be^iremenis Sets

Fig. 4. Decision-Supported Requirements Analysis in CoREA

4 Conclusion

Based upon a critical evaluation of existing approaches, this paper introduces a
novel, decision-supported method for collaborative requirements elicitation and
analysis suitable for a distributed environment. This method consists of two
subsequent phases. While requirements are elicited iteratively and as completely as
possible in the first phase of the CoREA method, phase II provides methodic
guidance for selecting those requirements that will actually be implemented. CoREA
thus enables software manufacturers to systematically elicit the requirements
collaboratively with customers in a distributed environment. This effect is achieved
by transferring the established Win Win approach into a geographically distributed
environment. Moreover, CoREA improves Win Win in terms of intuitional handling
and objective requirements selection procedures. By enhancing WinWin's core
properties, our method builds upon the vast theoretical and empirical knowledge
gathered in the field of collaborative requirements elicitation. We are able to
eliminate WinWin's well-known weaknesses through additional insights in the fields
of distributed software development and quantitative methods for requirements
evaluation. Besides enhancing EWW, CoREA for the first time takes
interdependencies into account by introducing requirements sets as units of
evaluation. This method and the tool prototype have been developed in close
cooperation with the IT departments of two large German financial institutions.

To be able to gain additional empirical evidence, the method will be applied
within several case studies. Since CoREA was developed within the scope of a larger
research consortium, access to practical settings is ensured. Based on the practical
experience from upcoming case studies, both tool support and the method itself will
be improved and adapted.

A Method for Collaborative Requirements Elicitation 121

Alongside prototypical evaluation, it is useful to complement CoREA through
broadening the theoretical foundations. Even though it is deemed hard to design
domain-specific methods for RE, it has yet to be analyzed, whether domain-specific
process instances can be generated by means of ontologies and other semantic
technologies. Moreover, requirements analysis and selection can be extended by
time-related aspects as the current estimation of the requirements' costs and value
might be complemented by taking development time into consideration. This in turn,
is usefiil for process planning and control. Furthermore, the method's integrability
with product line concepts in SE and traceability capabilities have to be analyzed in
order to facilitate proactive reuse of requirements. Considering component-based
software development methodologies, techniques for matching standard sets of
requirements with standard infrastructure and business components are an open field
of research as well.

In order to develop an integrated methodology for collaborative RE, future work
also has to deal with adapting requirements specification and validation processes for
distributed environments. Thus, the full potential of distribution, specialization and
collaborative work can be exploited in the early stages of SE. Such an integrated
methodology allows a better focus on the very early stages of SE. Hence, it provides
a sound basis for inter-organizational division of labor, and faster realization of new
software solutions. In doing so, higher quality is eventually achieved through the
integration of multiple stakeholders with diverse competencies. In addition, an
improved RE process leads to less consequential defects in later phases which
become more expensive the later they emerge. The issues discussed in this paper do
not only apply for RE but for the whole SE process and software lifecycle
respectively. Enabling and improving distributed work, whether organizationally or
geographically distributed, will play an important role in the course of the global
industrialization process within the software sector. Therefore, considering the entire
SE process, integrated methodic and technological support for collaborative software
development projects are becoming more and more important in the future.

5 Appendix: Tool Prototype

In order to support cost and value estimation for requirements evaluation an internet-
based prototype has been developed. This prototype is called IBERE (Internet-Based
Empirical Requirements Evaluation) and guides distributed participants securely
through the requirements estimation procedure. IBERE is also able to visualize the
results of the requirements evaluation process in the form of a cost-value diagram by
utilizing the AHP algorithm for calculating the utility value for each requirement.
Thus, this prototype supports steps 2 and 3 of CoREA's decision-supported
requirements analysis (cp. section 3.2). The screenshot in Figure 5 depicts pairwise
comparisons of requirements within one set as part of the AHP procedure.

122 Michael Geisser and Tobias Hildenbrand

Procjress

ibere ^:

"tlilE J r .^AH pii--!tSf

?>i.ti:i^*'''Jny €'^''Hm

imiiixtsi-t

•«raiMy
PiSiWO-. FOF p^h-;^i Pi l ; - ior -AH f.-!iP::"

Fig. 5. Pairwise Comparison of Requirements with IBERE

Figure 6 depicts the graphical representation of the AHP's resuhs (cp. step 3 in
section 3.2). In this example, requirements 1.1, 1.3 and 2.1 should be implemented
due to their high value-cost ratios, as indicated by their positions above the upper
straight line. In contrast, the requirements 1.4 and 2.3 should not be taken into
consideration for the final software product because of their unfavorable value-cost
ratios. The consideration of requirements interdependencies (cp. Figures 2 and 3) in
IBERE is currently under development and therefore cannot be shown in this
screenshot.

Defining Security Requirements Through
Misuse Actions

Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, and
Shihong Huang

Department of Computer Science & Engineering
Florida Atlantic University

777 Glades Road, SE-300, Boca Raton, Florida 33431-0991 USA
{ed, mike, maria, shihong} @cse.fau.edu
URL: http://www.cse.fau.ediv'~security

Abstract. An important aspect of security requirements is the understanding
and listing of the possible threats to the system. Only then can we decide what
specific defense mechanisms to use. We show here an approach to list all
threats by considering each action in each use case and analyzing how it can
be subverted by an internal or external attacker. From this list we can deduce
what policies are necessary to prevent or mitigate the threats. These policies
can then be used as guidelines for design. The proposed method can include
formal design notations for validation and verification.

1 Introduction

Defining security requirements is difficult and there is no generally accepted way
[1], [2], [3], [4], [5]. An important aspect of security requirements is the listing of the
possible threats to the system. Only then can we decide what specific defense
mechanisms to use. A threat is a potential attack, while an attack is an actual misuse
of information. Most approaches consider only the effect of low-level attacks; e.g.,
taking control of the database system through a buffer overflow attack. There are two
problems with this approach: the number of such threats is very high, and we need to
make assumptions about a system that has not yet been built. A way to avoid the first
problem is the use of sets of generic attacks [6], but this approach cannot avoid the
second drawback.

We believe that we should look at the higher levels of the system. An attacker
has an objective or goal that he wants to accomplish, e.g., steal the identity of a
customer, transfer money to his own account, etc. Security requirements should

Please use the following format when citing this chapter:

Fernandez, E.B., VanHilst, M., Petrie, M.M.L., Huang, S., 2006, in IFIP International Federation for In
formation Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of Software
Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 123-137.

124 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

define the needs of the system without committing to specific mechanisms. We show
here an approach to list threats by considering each action in each use case and
seeing how it can be subverted by an internal or external attacker. We assume that
the functional use cases have already been defined or are being defined concurrently.
From the list of threats we can deduce what policies are necessary to prevent or
mitigate the attacks. The proposed method is extendable to include formal design
notations for validation and verification; we explore some possibilities. While there
is no guarantee that our approach produces all possible threats, it appears superior to
other approaches with similar objectives.

A related approach is the concept of misuse cases [1], [7]. Misuse cases are
independent use cases initiated by external attackers to the system. That approach, by
itself, lacks completeness because it is not clear what misuse cases should be
considered. Another related approach is risk analysis. In risk analysis, threats to the
successful completion and use of the system are identified and analyzed. Threat
likelihood and consequences are considered in a cost benefit analysis, and plans are
made to address them. Risk analysis, per se, lacks a method of systematically
identifying the threats, it concentrates on the effect of threats on the system.

In previous work we introduced a methodology for secure systems design that
uses architectural layers and security patterns [8], [9]. An important aspect of that
methodology is the emphasis on approaching security at all stages. The approach
presented here would be one of the first stages in using that methodology.

Section 2 discusses some background on use cases. Section 3 presents the
concept of misuse actions and shows through an example of how to relate threats to
use cases. Section 4 shows how we can define policies to prevent the identified
attacks. Section 5 compares our approach to other approaches. The paper ends with
some conclusions.

2 Use cases, threats, and policies

Use cases are interactions of a user with the system [10]. The set of all use cases is
described by a UML Use Case diagram. Each use case is described by a textual
template identifying actors (or stakeholders), preconditions, postconditions, normal
flow of execution, and alternate flows of execution. Sequence diagrams may
complement the textual descriptions. Use cases are not atomic but consist of a
sequence of actions. For example, in a use case to borrow a book from the library
one must check if the user has a valid account (first action), she is not overdue
(second action), the copy of the book is set to not available (third action), etc.
Complex use cases may have many actions. Since use cases identify the actor that
performs the use case, we can also identify who is the possible attacker.

As indicated earlier, an attacker has an objective or goal that he wants to
accomplish. To accomplish his purposes, he must interact with the system trying to
subvert one or more actions in a use case (he might do this indirectly). Low level
actions, such as attacking a system through a buffer overflow, are just ways to
accomplish these goals but not goals in themselves. Looking at use cases is
consistent with the idea that security must be defined at the highest system levels, a
basic principle for secure systems [11].

Defining Security Requirements Through Misuse Actions 125

There is a large variety of possible security policies and it is not clear in general,
which ones are needed in a given system. Once we understand the possible threats,
we can define policies to stop them. These policies are used in turn to guide the
selection and implementation of security mechanisms; for example where in the
system we should use authentication and the type of authentication required. If the
threats indicate that we require authorization we can then find the specific
authorization rules that are needed. In an earlier paper we proposed a way to find all
the rights needed by the actors of a set of use cases in an application [12]. The idea is
that all the use cases of an application define all the possible interactions of actors
with the application. We need to provide these actors with rights to perform their
functions. If we give these actors only those rights, we are applying the basic
principle of least privilege. If we define appropriate rights, attacks can be prevented
or mitigated.

3 Threats and actions

We illustrate our approach through an example. Consider a financial company that
provides investment services to its customers. Customers can open and close
accounts in person or through the Internet. Customers who hold accounts can send
orders to the company for buying or selling commodities (stocks, bonds, real estate,
art, etc.). Each customer account is in the charge of a custodian (a broker), who
carries out the orders of the customers. Customers send orders to their brokers by
email or by phone. A government auditor visits periodically to check for application
of laws and regulations. Figure 1 shows the Use Case diagram for this institution.

Figure 2 shows the activity diagram for the use case "Open account" in this
institution, indicating the typical actions required to open an account for a new
customer. We indicate "swimlanes" for Customer and Manager, the two actors
involved in this use case [13]. These actions result in new information, including
objects for the new customer, her account, and her card-based authorization.

Potentially each action (activity) is susceptible to attack, although not necessarily
through the computer system. Figure 3 shows the same activity diagram showing
possible threats and including a new swimlane for an external attacker. For this use
case we could have the following threats:

• Al. The customer is an impostor and opens an account in the name of another
person

• A2. The customer provides false information and opens an spurious account
• A3. The manager is an impostor and collects data illegally
• A4. The manager collects customer information to use illegally
• A5. The manager creates a spurious account with the customer's information
• A6. The manager creates a spurious authorization card to access the account
• A7. An attacker tries to prevent the customers to access their accounts (denial

of service)
• A8. An attacker tries to move money from an account to her own account

126 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

Customer

Auditor

Manager

Broker

Fig. 1. Use cases for a financial institution

In the activity diagram in Figure 3 the attacks are shown as misuse actions
(dotted lines). Undesired consequences in the form of additional or alternative
objects (dotted lines) have also been added. With these annotations, the attacks and
vulnerabilities presented by the use case become part of our understanding of the use
case and are explicit in its analysis.

Note that:
• We can identify internal and external attackers. The actors in these attacks could

be external attackers (hackers), acting as such or hackers impersonating legitimate
roles. It is also possible that a person in a legitimate role can be malicious
(internal attacks). For example, Al and A3 are performed by external attackers;
A2, A4, A5 and A6 are performed by insiders, while A7 and A8 are performed by
either external or internal attackers.

Defining Security Requirements Through Misuse Actions 127

Customer

"Trovme"
Personal

Info

: Customer

Account 1:

:Cardl 4

Manager

Check Credit

Create
Account

Create
Authorization

Create
Authorization

Fig. 2. Activity diagram for use case "Open account"

128 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

External
Attacker

false
info

. 4 î
1 transfer I

mooev
. ^ _ _ _ .

I
I
4-

I 1
Accounts:'

I

Customer

Impostor

Provide
Personal

Info
-1
I

:Customer

Account 1:

Initial
deposit

:Cardl

Manager

Impostor
C

Check Credit
\ T i l e g a l

dissemination

Create
Account

f create |
spurious I

I account I

Account2:

Create
Authorization f crculc

I

Issue
Card

*«^ spurious
I card I

i

(g)
i :Card2 |

Fig. 3. Activity diagram for use case "Open accounf showing misuse actions

Defining Security Requirements Through Misuse Actions 129

We can list systematically all (or most) possible application threats. While
completeness cannot be assured, the fact that we consider all actions in a use case
gives us some confidence that we considered at least all important possible
attacks. The threats that we postulate come from our experience, from the
knowledge of the application, and from the study of similar systems (banking
systems have similar threats).
We can later identify the target of the low-level attacks. Starting from the threats
to actions we can look at the lower levels of the systems already designed and
search for possible realizations of the threats, e.g. a buffer overflow, bypassing
entry points of a procedure, etc.
Note that we only consider attacks to our system. Attacks to systems that
collaborate with our system are beyond our control. For example, credit checking
is normally performed using an external service. If that service was compromised
we could receive erroneous information about a potential customer and make a
wrong decision about his account.
We are not restricted to analyze each use case in isolation. Some workflows
require several use cases, e.g. "Approve a purchase order" can be followed by
"Send a purchase order". We can consider attacks that take advantages of this
sequence, for example, by bypassing some steps that perform checks. These
threats, in general, are harder to find.
The sequence used in the example to open an account in a financial institution is
very similar to opening an account in a bank, in a club, or in a library. In fact, we
can think of it as a pattern and it could be an addition to a pattern for building the
corresponding software [14]. Having threat patterns simplifies finding threats for
new systems.

4 Stopping or mitigating tlie attacks

We can now find out what policies are needed to stop these attacks. For this purpose,
we can select from the typical policies used in secure systems [11]. This selection
should result in a minimum set of mechanisms instead of mechanisms piled up
because they might be useful. For example, to avoid impostors we can have a policy
of I&A (Identification and Authentication) for every actor participating in a use case.

To stop or mitigate the attacks in the example we need the following policies:
• Al . A3. Mutual authentication. Every interaction across system nodes is

authenticated.
• A2. Verify source of information.
• A4. Logging. Since the manager is using his legitimate rights we can only log his

actions for auditing at a later time.
• A5. A6. Separation of administration from use of data. For example, a manager

can create accounts but should have no rights to withdraw or deposit money in
the account.

• A7. Protection against denial of service. We need some redundancy in the system
to increase its availabilify. Intrusion detection and filtering policies should also be
useful.

130 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

• A8. Authorization. If the user is not explicitly authorized he should not be able to
move money from any account.
The lower levels of the system should enforce these policies. If they are properly

designed we do not need to identify every low-level threat.

5 Formalization

The analysis of attacks and their prevention can be formalized as shown in Figure 4.
The preconditions for undesired consequences are presented in comments. For the
analysis we focus only on sufficient preconditions that should not normally be
present at that point in the execution of the use case. In some cases the preconditions
are simple conjunctions, where all conditions must be present. In other cases, the
preconditions may involve more complicated logical relationships among
preconditions.

To express relationships among preconditions, we have adopted the concise
notation from RSML [15]. Preconditions are represented in tabular form as
disjunctions of conjunctions (disjunctive normal form). Each column in the table is a
sufficient set of preconditions. Within each column, the role of a precondition literal
(True, False, or don't care) is given by the letters T, F, or X. For example, a spurious
account could be created either when a malicious manager acts without customer
approval, or when there is an error (intended or unintended) in the customer
information.

Figure 5 shows the equivalent fault tree representation for one set of
preconditions. A fault tree analysis allows probabilities of occurrence to be estimated
for each condition or event. The fault tree can be expanded, with sub-dependencies,
to assist in this process. In a fault tree a circle or ellipse represents a basic condition,
while a diamond represents a condition that could be further elaborated. An error in
the customer info is treated as basic - it doesn't matter how or why the error was
made. Customer approval could be further expanded, for example to show an "or"
condition between customer signing an acknowledgement or customer receiving
notification. Similarly, alternative preconditions for a malicious person acting in the
role of manager could be explored.

In analyzing risks and their prevention, it is important to make a distinction
between the actual desired condition, and the mechanism that is used to achieve it.
For example, a good manager is a desired condition for secure transactions.
Authorization is a mechanism to reduce the likelihood of a bad manager being able
to accomplish his purposes. But authorization is, itself, not the desired goal, and
may, in fact, be neither sufficient nor the only means of achieving the goal condition.
In this sense, our analysis approach is consistent with the spirit of goal oriented
practices [2, 16].

In the formalized analysis, the defense policies and mechanisms must be shown
to reduce the probability of each sufficient set of preconditions to an acceptable level
of risk. An actual formal analysis is beyond the scope of the present paper. However,
we can give a sense of how such analyses could be performed using fault tree and
model checking techniques.

Defining Security Requirements Tlirough Misuse Actions 131

External
Ai'ackc"

Customer

1 impos

False _
info

ct> -4

Provide
Personal

Info

:Customer

Pre-conclMions

Hi
F

system compromise
customer aware

Transfer
Money

Account.?:

Account]:

Initial
Deposit

Cardl:

tor

Manager

cp-—Impostor

Pre-conditions
manager good
system compromise
customer aware

X
T
F

F
X
F

EE^M
Check
Credit

! Disseminate |
Info >

iriegally !

— r ^ — - i
^ ^ Y :

Create
Account

C'reate
Spurious
Account

J.

I

!
:

X....

Accoiint2

Pre-coiiclitions
manager good
customer info good
customer approves

X
F
X

F
X
F

Create
Authorization

Pre-conditions
manager good
customer aware

^ «. - _ Q ^

Issue
Card

Issue
Spurious

Card

. X .

(S)
Card2:

Fig. 4. Formalizing the analysis of attacks and preventions

132 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

s p u r i o u s
a c c o u n t
c r e a t e d

b a n k p r o c e s s

Fig. 5. Fault tree for spurious account creation

Fault tree analysis can assess the effectiveness of chosen defense mechanisms for
achieving desired levels of assurance. Fault tree notation is similar to attack tree
notation [3], but is more appropriate for risk-benefit analyses and is widely supported
by commercially available tools. Probability values are estimated, where needed, and
then combined to compute a probability for the occurrence for an insecure or unsafe
combination of conditions and events. Continuing the example from above, a fault
tree analysis would assign a non-zero value to the likelihood of a dishonest manager
receiving authorization.

To perform model checking, the activity diagram can be converted to a state
machine. Activities become states (of performing the activity). Precondition sets
become the transition conditions to pass from one state to another. Initial values for
literals appearing in the transition conditions must be set (to True, False, or Don't
know). Defense mechanisms included in the state machine change the values of
literals when visited.

Defining Security Requirements Through Misuse Actions 133

Discussion

The closest approach to ours is clearly the one based on misuse cases [1], [7]. Misuse
cases are not developed systematically and it is easy to miss important attacks. That
approach also uses other use cases to mitigate or prevent attacks. Use cases are
interactions of users with the system but attack prevention cannot be done in general
through additional interactions. We need instead security policies and the
corresponding mechanisms to implement them. Misuse cases because of their
reliance on whole use cases they need to define new stereotypes such as "threaten"
and "mitigate" use cases, while we just use standard use cases. We do not think that
the emphasis on protecting assets is also the best for information systems. Emphasis
on assets makes sense when we are talking of physical assets that can be stolen.
Information security is about preventing illegal reading or modification of
information as well as assuring its availability. It makes then more sense to defend
against specific actions, e.g. stealing identity, instead of protecting the identity
database.

The group at the Open University in the U.K. has done a significant amount of
work on security requirements [17], including the use of abuse frames to lead to
security requirements (an abuse frame is similar to a misuse case but using Jackson's
problem frames [18].

[2] discusses requirements for secure systems using the concept of goal-oriented
requirements. Other authors also have focused on security requirements [5], [19] but
none of them consider use cases. Mouratidis and his group use a special
methodology, Tropos, to model security. Their approach to develop requirements
does not consider use cases either [20].

Van Lamsweerde considers anti-models, which describe how specifications of
model elements could be maliciously threatened, why and by whom [21]. His
approach combines ideas from misuse cases and goal-oriented requirements.

All these models consider a coarser unit that can be attacked and are less
systematic than our approach.

7 A methodology to build secure systems

This work is part of a methodology to build secure systems. Of course, it does not
need to be applied as part of this approach but the methodology provides a context
for our development. A main idea in the proposed methodology is that security
principles should be applied at every stage of the software lifecycle and that each
stage can be tested for compliance with security principles. Another basic idea is the
use of patterns to guide security at each stage [9]. Figure 6 shows a secure software
lifecycle, indicating where security can be applied (white arrows) and where we can
audit for compliance with security principles and policies (dark arrows).

This project proposes guidelines for incorporating security from the
requirements stage through analysis, design, implementation, testing, and
deployment. Our approach considers the following development stages:

134 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

Security verification and testing

\7
Secure UCs

\z ^̂ \z
Authorization rules in Rule enforcement Language enforcement

conceptual model through architecture

Security test cases

Fig. 6. Secure software lifecycle

Domain analysis stage: A business model is defined. Legacy systems are
identified and their security implications analyzed. Domain and regulatory
constraints are identified. Policies must be defined up front, in this phase. The
suitability of the development team is assessed, possibly leading to added training.
Security issues of the developers, themselves, and their environment may also be
considered in some cases. This phase may be performed only once for each new
domain or team.

Requirements stage: Use cases define the required interactions with the system.
Applying the principle that security must start from the highest levels, it makes sense
to relate attacks to use cases. We study each action within a use case and see which
threats are possible (this paper). We then determine which policies would stop these
attacks. From the use cases we can also determine the needed rights for each actor
and thus apply a need-to-know policy. Note that the set of all use cases defines all
the uses of the system and from all the use cases we can determine all the rights for
each actor. The security test cases for the complete system are also defined at this
stage.

Analysis stage: Analysis patterns can be used to build the conceptual model in a
more reliable and efficient way. Security patterns describe security models or
mechanisms. We can build a conceptual model where repeated applications of a
security model pattern realize the rights determined from use cases. In fact, analysis
patterns can be built with predefined authorizations according to the roles in their use
cases. Then we only need to additionally specify the rights for those parts not
covered by patterns. We can start defining mechanisms (countermeasures) to prevent
attacks.

Design stage: Design stage; when we have the possible attacks to a system,
design mechanisms are selected to stop these attacks. User interfaces should

Defining Security Requirements Through Misuse Actions 135

correspond to use cases and may be used to enforce the authorizations defined in the
analysis stage. Secure interfaces enforce authorizations when users interact with the
system. Components can be secured by using authorization rules for Java or .NET
components. Distribution provides another dimension where security restrictions can
be applied. Deployment diagrams can define secure configurations to be used by
security administrators. A multilayer architecture is needed to enforce the security
constraints defined at the application level. In each level we use patterns to represent
appropriate security mechanisms. Security constraints must be mapped between
levels.

Implementation stage: This stage requires reflecting in the code the security rules
defined in the design stage. Because these rules are expressed as classes,
associations, and constraints, they can be implemented as classes in object-oriented
languages. In this stage we can also select specific security packages or COTS, e.g.,
a firewall product, a cryptographic package. Some of the patterns identified earher in
the cycle can be replaced by COTS (these can be tested to see if they include a
similar pattern).

7 Conclusions

We have presented an approach that produces all (or most) of the threats to a given
application. This happens because we consider systematically all actions within a use
case and we see how they could be subverted. While all this could be done in the
textual version of the use case, the use of UML activity diagrams produces a clear
and more intuitive way to analyze these attacks. From the threats we derive
necessary policies to stop or mitigate them.

We have now completed the requirements stage and we are ready to start
defining the solution to our design problem. Each identified threat can be analyzed to
see how it can be accomplished in the specific environment. The list can then be
used to guide the design and to select security products. It can also be used to
evaluate the final design by analyzing whether the system defenses can stop all these
attacks. As we indicated earlier since use cases define all the interactions with the
system we can find from them the rights needed by these roles to perform their work
(need to know). Future work will concentrate in the transition from the policies to
the mechanisms.

When dealing with a complex safety-critical software system, the number and
complexity of threats will increase; for example, there may be more than one way to
attack a particular action. Without proper mechanisms to represent this information,
software developers will have difficulty to effectively digest the information and to
validate the design and implementation. Another future work is to find a better way,
considering layout, style etc, to document the misuse action diagrams, that can be
effective even for complex systems. Some work has been done to assess the efficacy
of UML diagrams as one type of graphical documentation [22], [23]. For example,
we can use annotated UML activity diagrams and Interaction Overview Diagrams to
assess the best way to document misuse actions, according to quality attributes such
as completeness and effectiveness.

136 Eduardo B. Fernandez, Michael VanHilst, Maria M. Larrondo Petrie, Shihong Huang

Acknowledgements

The referees made useful comments that improved this paper. This work was
supported by a grant from the US Department of Information Security Agency
(DISA), administered by Pragmatics, Inc.

References

1. Alexander, I.: Misuse cases: Use cases with hostile intent. In IEEE Software, Vol. 20,
No. 1, January/February 2003, IEEE Computer Society Press, Los Alamitos, California
(2003) 58-66.

2. Liu, L., Yu, E. and Mylopoulos, J.: Security and privacy requirements analysis within a
social setting. In Proceedings of the 11' IEEE International Conference on
Requirements Engineering (RE'03), Monterey, California, 8-12 September 2003, IEEE
Computer Society Press, Los Alamitos, California (2003) 151-161.

3. Schneier, B.: Attack Trees: Modeling Security Threats. In Dr. Dobb's Journal, Vol. 24,
No. 12, December 1999, CMP Media LLC, Manhasset, New York, USA (2003) 21-29.

4. Whitmore, . J. J.: A method for designing secure solutions. In IBM Systems Journal,
Vol. 40, No. 3, IBM, Riverton, New Jersey, USA (2001) 747-768.
http://www.research.ibm.com/joumal/sj

5. Zuccato, A.: Holistic security requirement engineering for electronic commerce. In
Computers & Security, Vol. 23, No. 1, Elsevier, UK (2004) 63-76.

6. Howard, M., and LeBlanc, D. Writing secure code, (2"'' Ed.), Microsoft Press, Redmond,
Washington, USA (2003).

7. Sindre, G. and Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. In
Proceedings of the 37th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS-Pacific 2000), Sydney, Australia, 20-23 November
2000 IEEE Press, Los Alamitos, Cahfomia, USA (2000) 120-131.

8. Femandez, E. B.: A methodology for secure software design. In Software Engineering
Research and Practice: Proceedings of the International Conference on Software
Engineering Research and Practice, SERP '04, Las Vegas, Nevada, USA, Vol. 1, 21-24
June 2004, H. R. Arabnia and H. Reza (eds.), CSREA Press, USA (2004) 130-136.

9 Femandez, E. B., Larrondo-Petrie, M. M., Sorgente, T. and VanHilst M.: A methodology
to develop secure systems using patterns. In Integrating security and software
engineering: Advances and future vision, H. Mouratidis and P. Giorgini (Eds.), Idea
Group, Hershey, Pennsylvania, USA (2006).

10. Larman, C: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development (3"''edition.), Prentice-Hall, Englewood Cliffs,
New Jersey, USA (2005).

11. Femandez, E. B., Gudes, E. and Olivier, M.: The Design of Secure Systems, Addison-
Wesley, Reading, Massachussetts, USA (2007).

12 Femandez, E. B., and Hawkins, J.C: Determining Role Rights from Use Cases. In
Proceedings of the 2nd ACM Workshop on Role-Based Access Control, RBAC'97,
Fairfax, Virginia, USA, 6-7 November 1997, ACM Press, New York, New York, USA
(1997) 121-125.

13. Booch, G., Rumbaugh, J. and Jacobson, I.: The Unified Modeling Language User Guide
(2"'' Ed.), Addison-Wesley, Upper Saddle River, New Jersey, USA (2005).

14. Femandez, E. B. and Liu, Y.: The Account Analysis Pattem. In Proceedings of
EuroPLoP 2002 (Pattern Languages of Programs), Irsee Germany, 3-7 July 2002,
Universitatsverlag Konstanz, Konstanz, Germany, (2002).
http://www.hillside.net/pattems/EuroPLoP2002/

Defining Security Requirements Through Misuse Actions 137

15. Leveson, N. G., Heimdahl, M. P. E., Hildreth, H. and Reese, J. D.: Requirements
specification for process control systems. In IEEE Transactions on Software
Engineering, Vol. 20, No 9, September 1994, IEEE Computer Society Press, Los
Alamitos, California, USA (1994) 684-707.

16. Cleland-Huang, J., Denne, M., Mahjub, G., and Patel, N.: A goal-oriented approach for
mitigating security and continuity risks. In Proceedings, of the IEEE Inernational
Symposium on Secure Software Engineering (ISSSE'06),\'i-\5 March 2006, Arlington,
Virginia, USA (2006) 167-177.

17. Haley, C.B., Laney, R.C., and Nuseiben, B.: Deriving security requirements from
crosscutting threat descriptions. In Proceedings of the 3"^. International Conference on
Aspect-Oriented Software Development (AOSD'04), Lancaster, UK, 22-26 March 2004,
ACM Press, New York, New York, USA (2004) 112-121.

18. Jackson, M.: Problem Frames: Analysing and structuring software development
problems, Addison-Wesley, Reading, Washington, USA (2001).

19. He, Q. and Anton, A. I.: Deriving access control policies from requirements
specifications and database design. North Carolina State University CS Technical Report.
TR-2004-24, (2004).

20. Mouratidis, H.,Giorgini, P. and Manson, G.A.: Using security attach scenarios to analyse
security during information systems Design. In Proceedings of the 2" International
Workshop on Security in Information Systems at ICEIS 2004, Porto, Portugal, April 2004
(2004) 10-17.

21. van Lamsweerde, A.: Elaborating security requirements by construction of intentional
anti-models. In Proceedings of the 26' International Conference on Software
Engineering (ICSE'04), Edinburgh, UK, 23-28 May 2004, IEEE Computer Society Press,
Los Alamitos, CaUfomia, USA (2004)148-157.

22. Huang, S. and Tilley, A.: Workshop on Graphical Documentation for Programmers:
Assessing the Efficacy of UML Diagrams for Program Understanding. Held in
conjunction with The If International Workshop on Program Comprehension, IWPC
2003, 10 May 2003, Portland, Oregon, USA, IEEE Computer Society Press, Los
Alamitos, California, USA (2003) 281-282.

23. Tilley, S., and Huang, S.: A qualitative assessment of the efficacy of UML diagrams as a
form of graphical documentation in aiding program understanding. In Proceedings of the
2P' ACM Annual International Conference on Design of Communication (SIGDOC
2003: 12-15 October 2003; San Francisco, California, USA, ACM Press: New York,
New York, USA (2003) 184-191.

Experiences in Portable Mobile Application
Development

Antti Kantee and Heikki Vuolteenaho

Helsinki University of Technology

Abstract . In the software world portability means power. The more
operating environments you can support out of the same code tree
means more potential users for your software. If done right, additional
platforms can be supported with little extra maintenance cost. If done
wrong, maintaining additional platforms will become a veritable night
mare.
This paper describes experiences undergone when creating truly portable
software. Our software is a real time rendered 3D map and messaging
application, which runs on UNIX (Linux, Mac OS X, NetBSD), Win
dows 98/2000/XP, Windows CE and Symbian Series 60. It is Symbian
which makes this mix of platforms interesting and challenging. How
ever, with the knowledge of potential problems, we found that this set
of platforms is totally manageable for a portable mobile 3D application.

1 Introduction

Traditionally, in the UNIX and C world, portability has come to stand for the
ability of a software to deal with differences imposed by the underlying CPU
architecture, such as byte order, pointer size or alignment constraints [4, 5].
Other usual suspects for hindering a porting process are standard library or
system interfaces either missing or behaving differently. By carefully program
ming against POSIX and ISO C provided interfaces and avoiding making as
sumptions about the compiler or underlying hardware, it is possible to achieve
a fairly high level of portability, even between UNIX and Windows.

However, when a completely different kind of system, Symbian, is introduced
into the picture, the rules change. All assumptions which used to hold in the
UNIX and Windows environments may no longer be valid. This does not nec
essarily make things more complex or difficult. The major factor of difficulties
for having Symbian within the sphere of portability of a software is basing key
design elements on non-valid assumptions.

This paper describes the issues encountered in developing a mobile 3D ap
plication written in C. In Chapter 2 we describe issues specific to Symbian while
Chapter 3 concentrates on issues affecting all platforms.

Please use the following format when citing this chapter:

Kantee, A., Vuolteenaho, H., 2006, in IFIP International Federation for Information Processing, Volume
219, Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds. Ochoa, S.,
Roman, G.-C, (Boston: Springer), pp. 138-152.

Experiences in Portable Mobile Application Development 139

1.1 T h e software: m L O M A

mLOMA [13] (mobile LOcation aware Messaging Application) is in its essence
a 3D map application optimized for mobile devices and built on top of
OpenGL [9] and GLUT [6]. The mLOMA client can be used to browse a real
time rendered 3D scene with a framerate acceptable for interactive use. It fea
tures a route guidance system and support for GPS location tracking. A server
component is also provided. If a network connection is available, clients can re
ceive up-to-date information on the model and interact using the server. Users
can track each others' locations and communicate using messages. Messages
can be public or targeted to individual users and they can be attached to any
points in space or the model.

JMiii iilniirtJHHhiiriHB>%ltfWlrtili*il

WW

Pig. 1. mLOMA client running on Pocket PC and Symbian Series 60 platforms

Since mobile terminals do not feature 3D acceleration in hardware and are
limited both in terms of available CPU power and memory, the implementation
must try to limit resource consumption to a minimum. This is in part done by
doing a PVS precalculation on the 3D scene [13] and the rest is accomplished
by non-wasteful C programming.

140 Antti Kantee and Heikki Vuolteenaho

1.2 Portability

For defining portability, we first separate tlie wliole idea of portability into two
different categories: code portability and concept portability. Concept porta
bility refers to the ability to implement an idea on a variety of platforms. For
example, a user interface requiring a cursor is not completely portable to all
mobile computing platforms, since some platforms lack a pointer device. On
those platforms it is possible to emulate a pointer device, but this will affect
usability and is therefore visible to the end user.

Code portability is the ability of software to run common lines of code be
tween the various platforms it is portable to. The code lines which cannot be
shared result from differences in the various platforms either in system inter
faces or from the hardware. Code portability involves crafting interfaces which
abstract the underlying platform functionality where it is different. Abstracing
does, however, come with a price of call indirection and increased coding effort,
and therefore should be carried out only where necessary. We use the term ma
chine independent (MI) to describe code which runs on all platforms and the
term machine dependent (MD) to describe code which runs only on a certain
platform. Software with code portability will have a high MI/MD ratio in terms
of lines of code.

Implementing a certain functionality multiple times for different platforms
when not really necessary is in its essence confusing code portability with con
cept portability. The resulting user-perceived functionality will be the same,
but the cost of maintaining several different implementations is much higher
and will probably lead to broken platforms as code evolves [7, 11]. It is easy
to see why, since as the number of lines of code shared between platforms goes
down, the portion of the codebase that can be tested on a single platforms goes
down as well.

1.3 Symbian

Symbian is an operating system designed primarily for mobile phones and other
mobile devices. Conserving limited resources is a priority, and several program
ming practices used on Symbian encourage it. This makes working with Symbian
in a multi-platform project a challenging task.

While fully understanding Symbian requires closer attention, this paper does
not cover the architecture of Symbian and such studies can be found in dedicated
hterature [3, 17].

2 Porting to Symbian

The mLOMA client was originally written for Linux desktops, Windows desk
tops and Windows CE PDA devices. Symbian Series 60 support was not origi
nally planned. However, once capable mobile terminals became available, sup
port was required.

Experiences in Portable Mobile Application Development 141

2.1 G L U T

Symbian lacks a platform-provided GLUT [6] implementation. GLUT, tersely
put, works as an event handler in between the application and console (win
dowing, input devices). Generally, implementations never come out of the main
event loop until they detect the quit command being issued. However, due to
the active object scheduling scheme used in Symbian applications [12], we can
not run continuosly in the main loop. Instead, we need to periodically relinquish
control of execution and generate events to regain control.

A subset implementation of GLUT for Windows CE had been done earlier
in the project, since GLUT was not available for it at that time .̂ However, this
implementation is mostly incompatible with the Symbian programming restric
tions and in addition was built on top of the normal application-transparent
preemptive scheduling principle.

We ended up with two separate GLUT implementations. While this is in
disagreement with our portability rule set forth in Chapter 1.2, it is important
to note this as an acceptable and even encouraged exception to the rule. First
of all, code lines are not shared because there are not very many lines to share:
approximately 415 of the total 496 lines in the implementation are completely
specific to Symbian. Second, the GLUT interface is very unlikely to change and
therefore require platform-specific maintenance.

2.2 Writable global data in DLLs

Symbian GUI applications are built as DLLs and Symbian does not allow
writable global data in DLLs [3]. There are two choices: build an EXE instead
of a DLL or get rid of all global writable data. The first option makes building
a traditional Symbian GUI very comphcated [21].

Each thread can store exactly one word of global writable data in a slot
called Thread Local Storage (TLS). We put all our global variables inside a
(rather large) struct and push the struct pointer to TLS. Accessing the TLS is
slower than a regular function call, in our testing it was roughly 20 times slower.
Because of this, we often pass the pointer as an extra parameter in often-used
function calls. However, we noticed that passing "a pointer to globals" was
detrimental for the interface development within the client. Especially junior
programmers had the habit of crafting interfaces with nothing but that pointer
passed.

Symbian tools are not helpful in locating global writable data in the pro
gram, as they do not even specify the offending module:

ERROR: Dl l 'ML0MA[102048D8].APP'
has u n i n i t i a l i s e d d a t a .

Symbian developers have found ways to extract the offending source modules
and variables [18], but they are not very practical. A much better way of locating

However, GLUTjES is now available for Windows CE.

142 Antti Kantee and Heikki Vuolteenaho

modules and code fragments in violation of this restriction is to use a typical
UNIX command sequence:

f ind . -name \ * . o \
I xargs nm -o —defined-only \
I awk '$2 r / [tTrR] / {pr int $0>'

If the filter encounters a symbol type that is not text or read-only data, it prints
the module and symbol name. After this, it is easy to use a text editor to search
for the culprit symbol in the offending module.

Notice, that for this to work, nm must support the object format of the
objects it is supposed to examine. It is most natural to run this on a UNIX
development platform against UNIX objects, although it should be possible to
use a UNIX-hosted toolchain, such as the one provided by the GNUPoc project,
for running it against Symbian object files.

2.3 Stack size

In C programming it is customary to allocate memory for local operations from
the current stack frame, from where it will be automatically freed when upon
return. In most environments it is safe to assume at least tens or hundreds of
kilobytes of stack space, making allocating fairly large objects from the stack
possible.

Symbian has a comparatively small default stack size (8kB). Large alloca
tions from stack are therefore impossible. On the device, running out of stack
will lead to a crash, but the emulator build fails on purpose if it runs into a
dangerously large (>4kB according to our tests) stack frame ^:

MAIN.obj : error LNK2001:
unresolved external symbol ch.kstk

To remedy this problem, all large allocations had to be moved from the stack
to the heap. It involved some code restructuring, but was mechanical work.

2.4 Texture loading

The mLOMA client needs to load JPEG and PNG images to show textures
on the 3D map. On platforms other than Symbian the open source libraries
libjpeg and hbpng are used for this purpose. However, these libraries have not
been ported to Symbian. Porting them is problematic at best because of the
writable global data limitation discussed in Chapter 2.2. Symbian does have a
native API for image loading and we use that instead.

The Symbian image loading APIs are asynchronous (non-blocking), while
on the other platforms they are synchronous (blocking); the client was designed

^ Notice that running out of stack is still possible in case of a deep enough call
recursion without any single stack frames running over the warning limit.

Experiences in Portable Mobile Application Development 143

fairly heavily on synchronous interfaces meaning that it expects the image to
loaded once the image loading call returns. We used a nested active scheduler
loop to effectively make the loading process appear synchronous [1], although
this is strongly discouraged [16]. We ran into several problematic situations
because of this. Normally application code handling an event runs without in
terruption (non-preemptively). But while the image loading function is blocking
(using nested scheduling), the nested scheduler is free to schedule other active
objects requiring attention. This causes for example reentrancy problems, as we
enter GLUT through the active scheduler (Chapter 2.1). Several workarounds
were introduced into the code, but, needless to say, these problems were ex
tremely difficult to locate and the resulting bug symptoms may occur only in
rare corner cases.

One possibility would have been to convert the entire application to deal
with asynchronous interfaces. This, however, would have been poor choice un
less the previously synchronous image loading backends would have been con
verted to asynchronous also. The reason is that different behaviour would have
introduced platform specific bugs. Converting the sychronous backends to asy-
chronous would have meant introducing threads into the program. The authors
generally consider threading to be harmful [20]. Specific to this case, we prob
ably would have run across different platforms exhibiting different threading
behaviour.

A better solution to the problem came from an isolation technique [14]
used, amongst other locations, in the popular OpenSSH networking daemon.
In MD Symbian startup we create a thread whose only function is to handle
texture loading. Communication between the application execution context and
texture thread happens through a synchronization primitive. The application
first triggers the texture loading and then sleeps on top of the synchronization
primitive. When texture loading is complete, the texture thread triggers the
application to continue executing. After replacing the nested scheduler with this
scheme, all inexplicable crashes disappeared. We propose that all who want to
emulate sychronous interfaces on Symbian use this method.

2.5 Stdio problems with locales

The stdio call families of printf and scanf () have a problem with the thou
sands separator and decimal separator on Symbian. It seems that modifying
the application's private locale does not affect the separators at all and using
the system-wide locale it is only possible to change the characters, not totally
remove them (more important for the thousands separator). This leads to a sit
uation where it is not possible to reliably read and write fioating point numbers
from using an externally provided source, such as a config file.

Third party options were not available due to licensing or problems with
globals (see Chapter 2.2), so we crafted our own implementations called
f getf loat() and f putf loat() , which read and write, respectively, a fioat using
the given stdio stream. These are suboptimal, because they disrupt code flow.

144 Antti Kantee and Heikki Vuolteenaho

In retrospect, the right choice would have been to drop floating points from files
all together.

3 Problems &: solutions, tools

3.1 The build process

Currently, using the native build systems for each platform, we have different
build systems for:

- UNIX desktops: Linux, Mac OS X, NetBSD (make & GNU'ish toolchain)
- Windows (MS Developer Studio, Visual C + +)
- Windows CE, PocketPC 2002 (MS Developer Studio, Visual C + +)
- Windows CE, PocketPC 2003 (MS Developer Studio, Visual C + +)
- Symbian Series60 VI (makmake. Visual C++/gcc)
- Symbian Series60 V2 (makmake, Visual C++/gcc)

This means that adding a source file to the project or for example adding a
project-wide C preprocessor definition requires modifying seven different files.
The MS Developer Studio projects are not even meant for hand-editing, so
touching them from outside the actual IDE is dubious practice.

As the number of platforms increases, the maintenance overhead grows soon
beyond acceptable limits. If various platforms require a lot of manual editing to
keep up, they will likely end up being out-of-sync with the main development
environment. At one point after a project has grown onto multiple platforms,
an attempt to unify the build procedures for all platforms should be made.

We will attempt to make this unification for mLOMA in the future. One
possibility is to autogenerate the Symbian makmake project files from the UNIX
Makefiles and use GNU Make in the Windows builds. The latter is accomplished
by a well-known scheme of having a MS Developer Studio project file, which
just contains the instructions to run GNU Make for building the project and
leaves the details of the build process up to the Makefile.

Another possibility for accomplishing the same effect would be to autogen
erate the project files. The UNIX Makefiles could easily be used to act as the
autogeneration facility, since they are written in a clean fashion separating in
put data (e.g. source file names) from rules (e.g. how to product an executable).
It should be fairly simple to autogenerate the .mmp files for Symbian builds
and there is evidence that autogenerating MS Developer Studio project files is
possible [8], even if not directly available.

In a sense, the build system can be equated with program source code and
the concept discussed in Chapter 1.2. A portable program will also have a
portable and flexible build system.

Experiences in Portable Mobile Application Development 145

3.2 Local l anguage s u p p o r t

The mLOMA client application needs to support various different languages,
as it is aimed primarily for tourists, who benefit from local-language support.
This means that our software cannot include hardcoded messages to the user in
the middle of code, but rather the code must contain identifiers, which can be
translated on the fly. While is it well-known how to accomplish this on any given
platform, for example Linux [2], the problem is finding something usable on all
platforms; for example even UNIX vendors cannot agree amongst themselves
on should they use ca tge t s () or g e t t e x t () .

Message d a t a b a s e The problem here is not so much abstracting the program
ming interface as it is abstracting the message database. If we were to use the
native il8n services of each platform, it would require us to input the translated
messages into several different databases. This would, first of all, mean learning
the tools of the various message catalogs. Second, and worse, this would most
likely mean that some of the catalogues would be out-of-sync with others, as
development takes place on different platforms.

Since we only need to do simple key-to-text translation, a self-authored
component was created for translation purposes. This was done by writing a
script in awk for translating the input text into lookup tables which could be
used from within the code. A selection of the input text format is presented in
Table 1. This table is translated by the script into code usable at runtime. For
all except Symbian, this means creating tables of C strings and for Symbian
this means creating resource files and appropriate descriptor tables.

Table 1. Selected example translations from master_ui.txt

!fi
FORM_RDUTE_FASTEST Nopein reitti
MENU_HELP Ohjeet
!en
FDRM_ROUTE_FASTEST Fastest route
MENU_HELP Help
let
FORM_RQUTE_FASTEST Kiireim tee
MENU_HELP Abi

After the translation tables have been built, they are compiled into the client
software and can be accessed through a call to a function a bit misleadingly
named l o c a l i z e () ^, for example the call l o c a l i z e (UISTRJ^ENU-HELP) would
produce the string "Ohjeet", "Help", or "Abi" depending on if the selected
language was Finnish, English or Estonian, respectively.

^ After all, the call only gives a translation of the string. It does not, for example,
convert monetary units, dates or thousands separators to local conventions.

146 Antti Kantee and Heikki Vuolteenaho

Runtime interface and language selection Deciding wliich translation
to use runtime is equally, if not more, difficult than deciding how to do the
translation. In a perfect world it would be possible to do this while holding
on to two guidelines: changing the language should be similar on all mLOMA
platforms and the method for changing the language should be in alignment
with the platform's native way of doing runtime language selection.

POSIX does not specify anything about local language support in the locale
interface, so we cannot use the s e t l o c a l e () interface for querying the language:
LC_MESSAGES would be close, but not being a part of POSIX it is not defined
by Windows. Environment variables (getenvC'LANG")), are not supported by
Windows CE. Symbian has its own framework.

Currently all platforms use specific implementations: UNIX and Windows
use getenv(), Windows CE uses a compile-time selector and Symbian uses its
own resource file framework, which allows the application to select the correct
locale at application startup. The future is undecided, although all things con
sidered, a configuration file entry might be the simplest choice even though it
means going against established platform conventions.

3.3 Memory management

Our memory resources are different from modern GUI applications. We have
to assume an extremely small amount of available memory, around 5MB in the
minimum configuration. In addition, there is no secondary memory on the Sym
bian and Windows CE platforms, so we need to control memory management
ourselves.

Our scheme for dealing with the memory limit is simple: we have a wrapper
around malloc, memory_malloc() ^, which checks if memory allocation fails,
frees all memory available to be free'd and tries to allocate the same amount
of memory again. Only if this second allocation fails, the wrapper will return a
failure to the caller and the caller must deal with the situation.

For parts of allocated memory it is easy to tell if it is currently in use or
not. A lot of memory usage comes from the geometric model and associated
textures used to render the 3D scene. This static information is easy to reload
if it is later required. In a sense, this type of operation can be compared with
a practice used in some operating systems, where the read-only text segment
is not paged out to secondary memory. To perform a memory sweep in case of
a shortage, we simply walk the list of textures and meshes and free ones which
are currently not in the field of view.

Tracking allocated memory Symbian is designed for low-memory environ
ments with long-running applications and tries to encourage proper memory

'' For the diversity of platforms we have, it is much simpler to have a completely
different symbol name for the memory allocation function than it is to try insert
a wrapper using the same name as the platform malloc and still try to call the
platform malloc from within the wrapper.

Experiences in Portable Mobile Application Development

Table 2. CPP tricks for memory allocator interface

147

memory.h:

#ifdef MEMORY_DEBUG
void *memory_nialloc(size_t, unsigned /*magic*/,

const char *, const char *, int);
#define memory_malloc(a,b) \

memory_malloc(a,b,MEHORY_DEBUG_MAGIC, \
__FUNCTION__,__FILE__,__LINE__)

#else
void *memory_malloc(size_t);
#eudif /* MEMORY_DEBUG */

memory.c

#ifdef MEMORY_DEBUG
#undef memory_malloc
void *omamemory_malloc(size_t);
#else
#define omaiiiemory_malloc memory_malloc
#endif /* MEMORY_DEBUG */

management habits to avoid memory leaks. This exhibits itself by the debug
builds panicking at exit if any allocated (non-freed) memory remains. Most
UNIX and Windows programs do not free their memory upon exit, as keep
ing track of all memory allocations requires extra work and in any case the
operating system will unmap the pages of an exiting process.

While we could simply not care about the issue, as Symbian release builds
do not complain, playing along with the platform memory management func
tionality seems like a correct option. This mandates us to do memory tracking
if we wish to avoid two related problems: the Symbian debug builds panick
ing upon exit and standard desktop programming practices contributing such
errors. While a tool such a Valgrind [10]would work perfectly for this, normal
development cycles are not usually done within it and since we already feature
our own malloc(), couphng tracking with it is the right choice.

Fig. 2. Memory meta information reserved by our malloc()

alloc
size

other
metainfo

i

malloc internal

user memory

returned
pointer

148 Antti Kantee and Heikki Vuolteenaho

Some malloc() implementations register the amount of memory reserved in
extra space right before the pointer returned to the caller [19], also illustrated
in Figure 2. Our idea is to use this same space to achieve an 0(1) lookup for
memory allocation chunk describing metadata. Using the information contained
in the chunks of metadata, the application prints out diagnostic messages when
exiting:

n o n - f r e e ' d chunk a t 0x8a l6a l c , s i z e 0x24
m a i n / m o t h e r . c : m o t h e r _ i n i t () , l i n e 55

This indicates that memory reserved from the module mother.c, in the function
mother_ini t () , on line 55 in the module was not freed before exit. Upon seeing
this message, it is much easier to figure out what is going wrong than from
having the program crash on the Symbian platform with the following error
message:

Program c losed : MLOMA ALLOC: 132df248 0

By using certain C preprocessor tricks illustrated in Table 2, memory allo
cation works, without any modifications to calling code, for the memory wrap
pers compiled with or without MEMORY_DEBUG and the calling code compiled
with or without MEMORYJDEBUG. The tracking layer is implemented directly as
memoryjnalloc and it calls the backend called omamemory_malloc. If the mem
ory module is compiled without MEMORYJ)EBUG, the call to the tracking layer
is simply skipped by renaming the omamemoryjnalloc symbol. In the oppo
site case, a caller compiled without MEMORY_DEBUG will not pass the correct
MEMORY_DEBUG_MAGIC signalling that the rest of the arguments are garbage and
should not be examined.

Table 3. Compiled (gcc 3.3.3, NetBSD/i386) total size of memory free'ing subroutines

optimization flags
-OO
-02
-Os

resulting code size (bytes)
2485
1770
1534

We could of course use the metainformation to free all memory, but it was
decided against that. First of all, the code size (Table 3) for the freeing code is
insignificant when compared with the allocation overhead, at least two pointers
per allocation. Second, and more important, an automatic solution would not
be in alignment with the original reason for freeing all memory.

3.4 Networking

The networking code used in the client is divided into four different layers.

1. platform-provided networking interface

Experiences in Portable Mobile Application Development 149

2. platform-specific implementation backing our networking abstraction layer
3. abstraction layer for platform networking interface
4. protocol unit serialization and deserialization layer

Platform networking interfaces The underlying implementations and their
limitations must be understood before abstracting them can be attempted. Our
platforms are divided into two categories: the Berkeley-influenced [15] platforms
such as Linux, Windows and Mac OS X in one category and Symbian in the
other.

Symbian uses active objects to provide an asynchronous interface to normal
socket operations. The major difference to the normal Berkeley-style interface
is the fact that Symbian sockets do not support synchronous operation at all.

Platform-specific implementations The differences within the Berkeley
category are subtle enough so that grouping them under a single implemen
tation is feasible and painless.

The relevant differences we encountered between the UNIX implementa
tions and the Windows implementations can be seen from Table 4. All of these
problems could be circumvented by simple cpp macros and a typedef.

Table 4. UNIX and Windows socket differences

initialization
error query
errno values
ioctl call
shutdown() arguments
sockaddr length type

UNIX
none
myerr = e r rno
EINPROGRESS / EAGAIN
i o c t l ()
SHUTJIDWR

sock l en . t

Windows
WSAStartupO
myerr = WSAGetLastError()
WSAEWOULDBLOCK / WSAEWOULDBLOCK

ioctlsockstO
SD-BOTH

none

The Symbian implementation is completely disjoint from the Berkeley-
family implementation. It uses its own data structures, descriptor buffers and
active objects to interface with the Symbian platform networking interface. Con
version from descriptor buffers to buffers in machine-independent code (char
*) and vice versa is currently inefficiently done using memory copy.

Abstraction layer As noted above, the only major difference between the two
families of platform network interfaces is Symbian's inability to do synchronous
operation. This is not a hindrance at all, since being a single-threaded applica
tion, asynchronous network operation is the only choice if we do not want to
block the entire UI in case of e.g. network congestion.

For managing connections, we need two different interface functions: one for
initiating a connection and one for disconnecting. The asynchronous nature of
the TCP connection is handled internally. In case the connection to the server
is not successful, the situation is no different from the user perspective as a

150 Antti Kantee and Heikki Vuolteenaho

Table 5. Machine Independent Networking Interface

int network_init(struct network *net);
void network_exit(struct network *net);

int network_enqueue(struct network *net, uint8_t *data,

size_t datalen, int message_type);
struct netbuf * network_dequeue(struct network *net);
void network_buf_done(struct netbuf *buf);

int network_connect(struct network *net,

const char *address,
unsigned short port);

void network_disconnect(struct network *net);

failed login and it will be treated as such: the network functionality will be
unavailable to the user.

Network send and receive functions in a two-level fashion. Sending data
onto the network first puts the data onto a network buffer list. This is done
synchronously from the application point-of-view. We cannot directly always
attempt to send data onto the network, since the network might be congested,
the socket buffer therefore full, and sending would either block or fail, depend
ing on if we were operating in blocking or non-blocking mode [15]. After data
has entered the network buffer list, it is periodically drained onto the network
using the GLUT timer functionality. Receiving data happens conversely: the
network buffer queue is periodically filled by a function called from a GLUT
timer handler and the application can read complete protocol data units off it
synchronously.

To reduce the strain on memory allocation for the clients, this layer is not
completely protocol-agnostic, but knows also about the application protocol
framing mechanism we use, so that it can allocate memory chunks of the correct
size for incoming transmissions.

Protocol serialization layer To avoid subtle but difficultly trackable incom
patibility issues between the various client platforms and the server, the from-
and to-wire routines are autogenerated from an XML representation.

The interface used to access the protocol unit contents is simply struct
member access provided by the C language. A single PDU is always repre
sented by a single structure and the structure representation is auto generated
from the XML information. After all fields have been filled, the autogenerated
s e r i a l i z e () routine is called to produce a byte stream representation of the
contents of the structure. Conversely, deserial izG() is called for a byte stream
received from the network to fill out a struct representation of the same byte
stream.

Experiences in Portable Mobile Application Development 151

4 Conclusions and future work

Writing a portable mobile application for UNIX, Windows 98/2000/XP and
Windows CE is simple when compared to the situation with Symbian. Symbian
is a different type of system and many normal programming idioms were found
to be unsuitable for Symbian. However, including Symbian produces a sym
biotic relationship between the platforms: the requirements of Symbian keeps
questionable programming practices down to a minimum while tools available
on other platforms aid development on Symbian.

The scheduling model used by Symbian causes major problems: most plat
form functionality is a schedulable service, which in turn causes its interface to
be asynchronous. For software with prior design elements based on synchronous
interfaces, we showed an acceptable method for emulating synchronous inter
faces on Symbian. Another major set of differences are memory limitations, both
the lack of a read/write data segment on Symbian as well as the small amounts
of main memory and lack of secondary memory on PDA/mobile devices.

When attempting to write software with code portability to multiple plat
forms, it is most important to understand the limitations and characteristics
of each platform and make design decisions based upon that understanding. If
platform expertise is not available at the beginning of the project, resources for
some necessary development iteration to get the interfaces right should be allo
cated. The main goal is to make, as far as reasonably possible, all components
either shared or behave similarly on all platforms. This will not only unify the
user experience across various platforms, but, more importantly, reduce devel
opment, maintenance and testing effort.

Future work with the project includes unifying the user interface and pro
gram menu code: currently Symbian uses its native components while other
platforms use OpenGL. In addition, unifying the build system to support a
single project file across all our platforms needs work.

References

[1] Matti Dahlbom. Image loading and color reduction. 2003. URL h t t p :
/ /www.newlc .com/Image- loading-and-color - reduc t ion .h tml .

[2] Pancrazio de Mauro. Internationalizing messages in linux programs. Linux
Journal, 1999(March 1999).

[3] Richard Harrison. Symbian OS C++ for Mobile Phones. Wiley, 2003.
[4] Martin Husemann. Fighting the lemmings. In EuroBSDCon, pages 45-53,

2004.
[5] Steve Johnson and Dennis Ritchie. Portability of C programs and the

UNIX system. The Bell System Technical Journal, 57(6):2021-2048, June-
August 1978.

[6] Mark J. Kilgard. The OpenGL Utility Toolkit (GLUT) Programming In
terface API Version 3. 1996.

152 Antti Kantee and Heikki Vuolteenaho

[7] David G. Korn. Porting UNIX to Windows NT. In USENIX Annual
Technical Conference, pages 43-57, 1997.

[8] Paul Kunz. Building with automake.
[9] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide.

Addison-Wesley Publishing Company, 1993.
[10] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision

framework. Electronic Notes in Theoretical Computer Science, 89(2), 2003.
[11] Geoffrey J. Noer. Cygwin32: A free Win32 porting layer for UNIX appli

cations. In 2nd USENIX Windows NT Symposium, 1998.
[12] Nokia Corporation. Symbian OS: Active objects and the active scheduler.

2004.
[13] Antti Nurminen and Ville Helin. Technical challenges in mobile real-time

3D city maps with dynamic content. In lAESTED Software Engineering,
2005.

[14] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In 12th USENIX Security Symposium, pages 231-241, 2003.

[15] W. Richard Stevens. UNIX Network Programming, volume 1. 1998.
[16] Symbian. Symbian developer library, 2003. URL ht tp: / /www.symbian.

c o m / d e v e l o p e r / t e c h l i b / v 7 0 s d o c s / d o c \ _ s o u r c e / r e f e r e n c e / c p p /
AsynchronousServices/CActiveSchedulerClass .html .

[17] Martin Tasker. Professional Symbian programming. Wrox Press, 2000.
[18] Paul Todd. Finding initialized or uninitialized static data in a dll. 2004.
[19] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, 1996.
[20] Robbert van Renesse. Goal-oriented programming, or composition using

events, or threads considered harmful. In ACM SIGOPS European Work
shop, pages 82-87, 1998.

[21] Peter van Sebille. EMame: a MAME port to EPOC Release 5 and Symbian
platform v 6.0. 2001.

Adapting Aspect-Oriented Applications: A
Trial Experience

Claudia Marcos and Jane Pryor

E-mail: {cmarcos,jpryor}@exa.unicen.edu.ar
ISISTAN Research Institute, Facultad de Ciencias Exactas, UNICEN

Paraje Arroyo Seco, B7001BBO Tandil, Argentina
Tel/Fax: + 54—2293^40362/3 http://www.exa.unicen.edu.ar/~isistan/

Abstract. During a system's life cycle, new requirements or changes in the
existing ones imply modifying the system. Aspect-oriented software
development is a new approach to the modularization of systems, yet it does
not provide mechanisms to aid the evolution of software. The effort required to
support the evolution greatly depends on the tool used for its construction. For
this reason, the selection of a tool should also take into account its support for
implementing evolving requirements. In this paper we present a comparison of
two different tools. Aspect! and Alpheus, to support the construction and
evolution of aspect-oriented applications. AspectJ is an aspect-oriented
programming language based on Java. Alpheus is an aspect-oriented
development tool based on a reflective framework.

Keyword. System evolution, unanticipated system evolution, aspect-oriented
applications, aosd evolution, reflective architecture for aspects.

1 Introduction

All systems evolve during their life cycle due to new requirements or to changes
in their fiinctionality [1]. A system's evolution may be anticipated or unanticipated in
its development. When the evolution has been anticipated, the changes to a system
can be carried out without major problems. However, unanticipated evolution
usually produces deterioration of a system. For this reason it is very important to
have tools which support unanticipated system evolution.

The aspect-oriented paradigm provides constructors which encapsulate the
elements whose code tends to be disseminated throughout many ftmctional
components. These constructors are called aspects [2] [3]. The goals of this
paradigm are the encapsulation of these aspects and the minimization of the

Please use the following format when citing this chapter:

Marcos, C, Pryor, J., 2006, in IFIP International Federation for Information Processing, Volume 219,
Advanced Software Engineering: Expanding the Frontiers of Software Technology, eds. Ochoa, S., Roman,
G.-C, (Boston: Springer), pp. 153-161.

154 Claudia Marcos and Jane Pryor

dependency among them and the basic functional components. In general terms, the
system qualities obtained through the separation of concerns also have an impact on
the ease of a system's evolution, due to independent and well encapsulated code.

This work presents an evaluation and documentation of different techniques,
tools and programming languages, for the development and evolution of aspect-
oriented software. In order to carry out this evaluation, a case study was developed.
To study the impact of evolution, requirements were modified and also added at
different stages of the life cycle, using these tools. The example was developed with
AspectJ, a language for aspect-oriented programming, and with Alpheus, a visual
tool for the construction of aspect-oriented applications. Then it is evaluated how the
tools supported changes in requirements, both during the development of the
application and once completed, and the incorporation of new requirements.

The following two sections introduce AspectJ and Alpheus, respectively. Section
4 describes the example used to compare both tools. Section 5 shows how the
example is developed with Alpheus, and how it supports the system's evolution and
the evaluation of this support. In Section 6 the example and evaluation is developed
using AspectJ. The remaining section presents the conclusions.

2. AspectJ: an Aspect-Oriented Programming Language

AspectJ extends Java with new kind of classes called aspects [2]. These aspects
crosscut the classes, interfaces and other aspects. In AspectJ, an aspect is a Java
class, but it adds five new entities: join-points, point-cuts, introductions, advices and
aspects themselves.

A join-point is a well-defined point in the execution of a program, such as
method calls, method executions, access to attributes, exception handling, etc. A
point-cut captures a collection of events in the program execution. It is a structure
which has been designed to identify and select join-points in an AspectJ program.
When a join-point is reached in the primary application code, the corresponding
point-cut is activated and the aspect code is executed. The advices define the
implementation code of the aspect, which is to be executed in the places defined by
the point-cuts. Introductions and declarations are used to change the original
structure of a program by adding or extending interfaces and classes. They may
introduce new elements such as methods, constructors, or attributes.

3. Alpheus: A Tool for Aspect-Oriented Applications

Alpheus is a tool based on a reflective framework [4] that supports the
development of aspect-oriented applications of different domains, enhancing desired
software qualities such as adaptability and reuse [5][6]. The support for aspects that
Alpheus provides has the following characteristics:

Flexible strategies for the runtime association and activation of aspects:
that is at what point the thread of control to the aspect [7]. When all
methods and objects of a specified class are associated to an aspect: we call

Adapting Aspect-Oriented Applications: A Trial Experience 155

this strategy class association. When some methods are associated to an
aspect; method association. When some objects are associated to an aspect:
object association. When a particular method of an object is associated to an
aspect: object-method association. Additionally, the activation of the aspect
can take place before and/or after the intercepted method.
Reuse of planes: The concept of planes has been introduced in order to
obtain a clear separation and encapsulation of concerns. A plane is a
collection of aspects which carry out similar or related functionality.
Definition and solving of conflicts between competing aspects: Conflicts
may occur if two or more aspects compete for activation. Different
categories of conflict activation policies and different levels of granularity
between conflicts are defined [6].

The tool allows developers to define the components of the application and then
generates the Java code of the application. Alpheus also provides the visualization of
the components of an application, plus some UML diagrams [8].

4 An Example - Personal Web Server

A Personal Web Server (PWS) is a server application which receives petitions
for documents from a web client, locates and then sends the document. The
HyperText Transfer Protocol (HTTP) is used to establish the connection. HTTP is a
simple protocol implemented in TCP/IP. The HTTP client sends a document
identifier to the server and the server replies by sending HTML documents or
common text. A firewall is a filter mechanism that applies security policies to the
network traffic. The firewall has some access policies applied fi'om and to the
external network.

This example will evolve in two different ways. During its development, the new
requirement is the necessity to register the access of the HTML documents stored in
the PWS. When it is working it is necessary to store other types of documents (gif,
jpg) not only HTML. It is also necessary to introduce a new firewall at night time for
some statistics.

As the PWS has a server which offers services to clients, the natural architecture
for this system is a client-server one [9]. Clients have to know which servers are
available but they do not know anything about the other clients [1].

5. Personal Web Server with Alpheus

Three planes are defined in Alpheus: PlanoFirewall, containing the policies
related to the access from and to the network; Planolncidencias, containing the
actions log; and Base, containing the fijnctional application. The aspects and objects
are then defined for each plane.

The composition (called association) between the aspects and objects can be
defined. For each associafion it is necessary to specify when and how the aspect is

156 Claudia Marcos and Jane Pryor

activated (before, after, etc.), plus the strategy to follow (class, method, class-
method, etc). For the PWS two associations have been defined.

The first association is in order to control the access to the network. It is defined
between the OFirewall object and the ASPFirewall aspect of the PlanoFirewall
plane. The association has some characteristics: before, because the aspect is to be
activated before the base element; method-reflection, as the reglas_red(id) method of
the OFirewall class will be modified by the aspect's functionality. The second
association is created to store the access to the HTML documents. It is defined
between the MCFirewall aspect of the PlanoFirewall plane and the ASPIncidences
of the Planolncidencias plane.

6.2.1 Evolution during Development
A new requirement is introduced the access to HTML documents is to be

registered by the system because statistics. In order to support this new requirement a
new plane is defined, PlanoEstadistica. Secondly, the aspects in this plane are
specified (ASPEstadistica) (Figure 2). Lastly, an association is established between
the OConnectionThread of the base plane and the newly created ASPEstadistica of
the PlanoEstadistica plane. As a result, whenever the OConnectionThread is invoked
the ASP Estadistica oversees the access to the HTML documents.

' '•"X'Tir's.'

Figure 2. Evolution during development

6.2.2 Evolution When the System is Working
Once the system components were defined Alpheus uses this specification of the

application and generates the corresponding Java code. Once the system is working,
it is necessary to register the access to all documents, not only HTML. To support
this, the addstatistic method of the ASPEstadistica aspect has to be modified and
the aspect has to be recompiled.

The system continues to evolve when it is necessary to introduce a new firewall
for night-time. The new plane PlanoFirewallNoche and the aspect
ASPFirewallnoche are specified (Figure 4). The association between the Firewall
class of the base plane and the ASPFirewallnoche aspect is specified.

This new composition causes a conflict between aspects, because when an
OFirewall object receives a message, two aspects compete for activation:

Adapting Aspect-Oriented Applications: A Trial Experience 157

ASPFirewall and ASPFirewallnoche. The activation of the firewalls depends on
the time of day, therefore it is not possible to determine before-hand which of the
aspects has to be activated (context-dependent conflict). To solve this type of
conflict, the designer specifies the conflict and the programmer inserts the
corresponding code. For the rest of conflicts the tool generates automatically the
solution.

!l 'i-!* I IS Wsi

liiiLuv I. liivwalLNo'li'j UbiOLiaiion

6.3 Personal Web Server with AspectJ

The PWS application was also developed with Java (IDE) Borland JBuilder6
Enterprise and AspectJ. For the PWS example, two aspects have to be coded. The
ASPFirewall aspect (Figure 5 A) implements the policies of the firewall,
crosscutting the Firewall class as it is in charge of supervising the access to the
HTML document. The second aspect is called ASPIncidences, and it registers the
events of the application by storing them in a data base.

The ASPFirewall aspect defines a point-cut for the invocation of the reglasred
method of the Firewall class (Figure 5 B). The advice (Figure 5 C) has been declared
as before. Before analyzing whether the access to the document is allowed, the
ASPFirewall modifies the result variable of the firewall object according to the
information retrieved from the database.

158 Claudia Marcos and Jane Pryor

i i r^ort uebaen /e r .F icewaH;

aspect ASP_FiEeuall

i

connection_bd bd;

pT'hM.r A?I' Ji:;:rTalJ i

| i i d • nciF c.™-,-cri-.;-._aL;5-;;,;; J * - ;

l,i,c:r.-iccMO!i(!;

trtiljiic poir.'-'j^-. EiCj«.^.;(?Lrr;i*-a^l LL-s-all'.
^xeciiCiori'haoliMn F i " e r i t ; . r e j l a s ^ i a l

=;p--L?-t;'3ie'-oii JiiESL'nl:.: a-rr^.n^fir-^vctl

S':i,i:i^ i?> = :iE'--iail.i3r;;;ip[l :
Clrrf•l:^lli.3er_:;e^-^lir.t^'-c.-•7J ny'i i :

puWii; Doolcan a :csaa ;3cr i : ,5 ip,

r e t a i l . b S . t e g l a s _ r = d (i p) ;

)

St..-ir«» ,•

1

i , '?..*-'

s ; t i a « : f

B
i:-r-.-a}...';

Figure 5. Aspect definition with Aspect!
The application code is generated in two steps: firstly the weaver converts the

aspect code to Java code, and secondly, the Java compiler generates the Java object
code (.class), where the application and aspect code are mixed together.

6.3.1 Evolution During Development
Because AspectJ is a programming language and is therefore used during the

implementation phase, it is not really possible to evaluate evolution during
development. However, it is possible to introduce the new requirement by creating a
new aspect called ASPEstadistica (Figure 6). This aspect will register the access to
the HTML documents when the sendFile of the ConnectionThread class is invoked.
Section A of Figure 6 describes the definition of the aspect, and section B shows the
point-cut and its estadistica advice.

The joint point for the point-cut estadistica is related to the sendFile method of
the ConnectionThread class and the ct instance. This aspect registers the access to
the HTML documents in the system database.

aspect ASI'_E3tadistica3

"nt! = new C'oriiiecr-.ons.'L-iaiiJ I • ;
bd.cfa-irier-i.j»i;l;

j>ijbl»r pc;i-.r'TUt- e.ifitzatiC'j^C&rir.v'o'.iu
exfci umr-i'- 'urrt r'ir,riecticL-.T;iread.d
:3-:ri i .y-; '£this.^f^-

aLr.Bt (CLI-US- CicnT^ire".--! CoU 3=;T;:viLyi.:

>

A
iiiL-e-î i ' . r i :
in:!: 'ilfC.-ii?.: '-

iHi-tJ

M-';".'.r"«-'5'-':'2aii,

i
Figure 6. Definition of the ASPEstadisticas aspect

Adapting Aspect-Oriented Applications: A Trial Experience 159

6.3.2 Evolution When the System is Worldng
Once the system is working it is necessary to register the access to all kinds of

documents and not only the HTML ones. The system is then extended in order to
introduce a new firewall for night-time analysis, so the ASPFirewallNoche is
added. The ASPFirewallNoche aspect is activated when the documents are
requested from 00:00 hrs to 8:00 hrs. To support the activation of the aspect during
the night a conditional sentence has to be implemented. The ASPFirewall aspect
also has to be modified introducing the conditional sentence to decide when this
aspect has to be activated (during the day).

The ASP_FirewaIl and ASPFirewallNoche aspects have a conflictive situation
which is not of precedence but dependent on the context, because their activation
depends on the time. Aspect! does not support this kind of conflict so the solution
has to be coded into the aspects. The only mechanism supported by Aspect! for the
resolution of conflicts is of precedence. Both aspects have to be modified in order to
introduce the sentences needed to verify the hour.

3. Comparison of the Tools

These tools were evaluated in their support for the system evolution in two ways:
their flexibility to support changes in the requirements, and their extensibility for
introducing new functionality. Moreover, they also were evaluated during the system
development and once the system is working.

As Alpheus is a research tool it is free and open-source
(http://www.exa.unicen.edu.ar/catedras/reflex/). The available documentation may
be found in the form of papers describing Alpheus, the reflective framework it
instantiates, and how it works by means of examples. The user interface of Alpheus
is very intuitive and friendly. To aid the designer, Alpheus also provides consistency
validation and visualization of the application by means of different diagrams and
also provides some UML diagrams.

Aspect! provides the means to code aspect-oriented applications using a well-
known development environment. Java developers therefore have all the support
necessary to begin with the development of aspect-oriented applications. AspectJ
does not support the resolution of different kinds of conflicts that an application may
have. Aspect! has very good documentation and it is widely-used for the
development of aspect-oriented applications. The development environment used
with AspectJ provides some extra benefits, such as code generation, different kinds
of reports, code documentation, etc. Table 1 shows the results of the evaluation of
the example evolution using AspectJ (AJ) and Alpheus (A).

160 Claudia Marcos and Jane Pryor

Table 4. Tools Evaluation
Evolution

Elements to Evaluate

Viability of implementing new
requirements

Number of classes to be
implemented

Number of classes to be modified

Number of aspects to be created

Classes to be compiled
Implementation time

Statistics for HTML
Documents

AJ

YES

0

0

1

13
20min

A

YES

0

1

1

2
30min

Statistics
Extension
AJ

YES

0

0

1

13
20min

A

YES

0

1

0

j 1
30

min

Night-time
Firewall

AJ

YES

0

0

1

13
30

min

A

YES

0

1

1

2
45

min

7 Conclusion

This paper presents an evaluation of two different tools, Alpheus and AspectJ,
which support the development of aspect-oriented applications. They were evaluated
analyzing their support for the evolution by the development of an example.

Alpheus is a visual development tool which instantiates a reflective framework.
With this tool it is possible to specify all the components of an aspect-oriented
application and then automatically generate the corresponding code. It also provides
different levels of visualization of the application and automatic detection of
conflicts. AspectJ is an aspect-oriented programming language based on Java which
introduces some new concepts in order to code aspects and their characteristics.

One of the main differences in the tools is the way in which the aspect weaving
process is carried out. In Alpheus, the weaving is done at run-time and AspectI has a
static weaver, but on the other hand, the performance is better. In both tools it was
possible to support the evolution of the Personal Web Server application, and the
amount of aspects and classes needed for this evolution were almost the same. In
AspectJ it was always necessary to recompile all the classes and in Alpheus only the
affected classes are compiled again.

8 Bibliography

[1] I. Sommerville. Ingenieria de Software. Sexta edicion 2002.
[2] Aspect-Oriented Programming Home Page. At Http://aosd.net
[3JAOSD 2002, 1st. Intemational Conference on Aspect-Oriented Software Development.

Enschede. Gregor Kiczales, ed., (ACM Press, The Netherlands, 2002).
[4] P. Maes. Concepts and Experiments in Computational Reflection. In Proceedings of

OOPSLA '87.

Adapting Aspect-Oriented Applications: A Trial Experience 161

[5] J. Pryor, and C. Marcos. Constructing Aspect-Oriented Applications using a Reflective
Framework. Technical Report TR-28-02, ISISTAN Research Institute, Universidad
Nacional del Centre de la Provincia de Buenos Aires (UNICEN), 2002.

[6] F. Valentino, A. Ramos, C. Marcos, and J. Pryor, A Framework for the Development of
Multi-Level Reflective Applications. Proc. of the Second Argentine Symposium on
Software Engineering (ASSE), Argentina, 2001.

[7] C. Marcos, Patrones de Disefio como Entidades de Primera Clase, PhD. Thesis, Facultad de
Ciencias Exactas, ISISTAN Research Institute, Universidad Nacional del Centro de la
Provincia de Buenos Aires (UNICEN), April 2001.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language. User Guide
(Addison-Wesley, 1999).

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture - A System of Patterns. John Wiley & Sons, 1996.

Building a 3D Meshing Framework Using Good
Software Engineering Practices*

N. Hitschfeld, C. Lillo, A. Caceres, M. C. Bastarrica, and M. C. Rivara

Computer Science Department, FCFM, Universidad de Chile
{nancy Icli l loIacaceresIcecil iaImcrivarajOdcc.uchile.cl

Abstract . 3D meshing tools are complex pieces of software involving
varied algorithms generally with high computing demands. New require
ments and techniques appear continuously and being able to incorporate
them into existing tools helps keep them up to date. Modifying complex
software is generally a complex task and software engineering strategies
such as object-orientation and design patterns promote modifiability
and flexibility. We present the design of a 3D meshing framework based
on these concepts that yields a software that is both flexible at runtime
and easy to modify, while not sacriflcing performance severely. We also
present an evaluation of the framework design quality and performance.

1 Introduction

A mesh is a discretization of a domain geometry. It may be composed of tri
angles or quadrilaterals in 2D, or tetrahedra or hexahedra in 3D. Building 3D
meshing tools is a challenging task involving diverse issues: (a) depending on
the application field where the tools are used, different algorithms are more
appropriate than others, so there is the option of having either a multiplicity
of different tools or a flexible software that adapts to different contexts; (b)
3D meshing is a very active research area, where new approaches, criteria, and
algorithms are proposed continuously; if a tool is to have a long life, it should
be able to incorporate these changes without much effort; and (c) tools should
be able to manage big meshes, so performance issues such as efficient processing
and storage usage are relevant and should be taken into account.

Mesh generation tools have usually been developed by their final users, i.e.
mathematicians, physicists or engineers. This caused that not always the best
methods for software development have been applied. We believe that there is
an opportunity to improve the quality of meshing tools by applying the best
software engineering practices known.

*The work of N. Hitschfeld, A. Caceres and C. Lillo was supported by Fondecyt
N° 1030672. The work of M. C. Rivara was supported by Fondecyt N° 1040713.

Please use the following format when citing this chapter:

Hitschfeld, N., Lillo, C, Caceres, A., Bastarrica, M.C., Rivara, M.C., 2006, in IFIP International Federa
tion for Information Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of
Software Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 162-170.

Building a 3D Meshing Framework 163

1.1 Good Practices in Software Engineering

The main goal of software engineering is to develop good practices so that to
obtain good software. The are qualities related to software execution such as cor
rectness and performance, that are well understood. However, there is another
set of qualities that have been gaining relevance lately: flexibility, reusability or
modifiability. These qualities are relevant because the cost of modifying soft
ware is high. Algorithms and data structures have a determinant influence over
performance. Similarly, software design techniques such as object-orientation,
design patterns or software architecture have more influence over the attributes
not related to execution. Reaching the desired software quality depends on the
requirements at hand. Generally optimizing some attributes can only be done
at the expense of other qualities. Sophisticated meshing tools implementing
high performing algorithms and data structures are usually less reusable, and
certainly less maintainable. So a compromise among the required attributes is
generally the best solution.

Software reuse promotes productivity and high quality. Software already de
veloped can be incorporated in new systems saving development time and costs,
and also counting on the properties of the reused parts. One of the known efforts
to make available robust, efficient, flexible and easy to use implementations of
geometric algorithms and data structures is the reusable library CGAL [5]. Soft
ware families is a modern approach based on planned massive reuse. A product
family is a set of products that are built from a collection of reused assets in
a planned manner. There have been some attempts in using software product
family concepts for building meshing tools [2, 4].

1.2 3 D Tetrahedral Meshing Tools

Meshing tools allow us to solve partial differential equations numerically or to
visualize objects. In 3D, different meshing tools vary in the type of the elements
they manage; the most widely used are tetrahedral and hexahedral meshes.
There are several 3D tetrahedral meshing tools currently available but not all
of them provide the same functionality [9] varying depending on the application
for which they were designed.

Three examples of known meshing tools are TetGen, TetMesh and QMG.
TetGen [13] is a very efficient and robust open source tool for the generation
of quality Delaunay meshes for solving partial differential equations using finite
element and finite volume methods. TetGen has been developed using C++,
but not necessarily object-oriented concepts, since it is implemented using a
few classes and without using inheritance, polymorphism, information hiding
or encapsulation. TetMesh [7] is a commercial product for the generation of
quality tetrahedral meshes for finite element methods. It was originally devel
oped in FORTRAN 77 and afterwards migrated to C. QMG [8] is an open
source octree based mesh generator for automatic unstructured finite element
mesh generation. It was developed in C + + and Tcl/tk using object-orientation

164 Hitschfeld et al.

concepts, but since it uses octrees as the main data structure, all algorithms
should conform to this structure, yielding an efficient yet highly coupled tool.
In general, all the mesh generation tools are focused on reaching efficiency and
robustness and not extensibility and modifiability.

1.3 Our Meshing Framework

The motivation of our work is to design and develop a framework that allows
us the construction of new 3D meshing tools with little effort. We would like
to have the flexibility of easily interchanging or adding new input/output data
formats, mesh generation algorithms for each step, quality criteria and refine
ment/improvement region shapes. We have already designed the architecture of
a family of 2D meshing tools [2] and now we have extended it for the generation
of 3D mesh generators. The framework is implemented in C + + and currently
includes Delaunay and Lepp-based algorithms, among others.

In this paper we propose a 3D tetrahedral meshing framework whose de
sign is based on object-orientation and design patterns in order to achieve the
flexibility and evolvability required, without sensibly sacrificing performance.

2 Framework Analysis, Design and Implementation

The framework has been developed using object-orientation and design pat
terns. Functional requirements were specified using UML use-case diagrams
and described with sequence diagrams. Software structure was specified using
class diagrams ^.

2.1 Requirements and Analysis

A flexible and complete 3D mesh generation framework should implement each
one of the following processes:

- input geometry in different formats;
- generation of an initial volume mesh that fits the domain geometry;
- refinement/improvement of a mesh in order to satisfy the quality criteria;
- smoothing of the mesh according to a certain smoothing parameter;
- derefinement of a mesh according to density requirements;
- quality evaluation of the generated mesh;
- visualization of the mesh.

The specification of the input geometry and physical values can be gener
ated by CAD programs or by other mesh generation tools. We have already

Part of the framework design documentation can be found
h.ttp: //www. dec. uchi le . c l / " nancy/framework/diagrams. html.

Building a 3D Meshing Framework 165

implemented the Off and Mesh formats. The algorithms that generate the ini
tial volume mesh can receive as input the domain geometry described as a
triangulated surface mesh or as a general polyhedron. We have implemented an
initial volume mesh that fulfills the Delaunay condition and an initial volume
tetrahedralization that may not satisfy it.

The initial volume mesh is the input of the refinement step that divides
coarse tetrahedra into smaller ones until the refinement criteria are fulfilled in
the indicated region. Either the initial volume mesh or the refined mesh can be
the input of the improvement process. The user must specify an improvement
criterion and a region where the improvement is to be applied. At the moment,
we have implemented the refinement and improvement strategies based on the
Lepp-concept [10] but it is possible to add other strategies, such as the Delaunay
refinement [11], without much effort. The smoothing and derefinement processes
are also applied according to a criterion and over a region of the domain.

Once a mesh has been processed, the user has the possibility of evaluating
its quality according to different criteria. This is useful if the user wants to see
the distribution and percentage of good and bad elements in the mesh. The vi
sualization process is currently done using Geomview [1]. Each mesh generation
process can also be skiped by representing it with a dummy algorithm.

2.2 Des ign and Implementat ion

Figure 1 shows the most important part of the meshing framework class di
agram. We represent each mesh generation process as an abstract class and
each different strategy implementing each process as a concrete subclass. For
example, the Refine abstract class is realized by subclasses LeppAlgorithms
and VoronoiRef inement, as shown in Fig. 2. We also represent aU the crite
ria with the Criterion abstract class and all the region shapes with the Region
abstract class in Fig. 1. This allows a programmer to add a new criterion, re
gion shape or strategy by adding just a concrete class that inherits from the
respective abstract class and without modifying the source code. The code of
a particular mesh generator uses the abstract classes code, and the user must
select which concrete algorithms he/she wants to use for each mesh generation
process, criteria and region shapes. For example, GenerateVolumeMesh can be
realized with GMVDelaunay to generate a Delaunay volume mesh. Similarly, the
abstract class Refine can be realized with LeppAlgorithms receiving a Region
and a Criterion as parameters realized as WholeGeometry and LongestEdge,
respectively (see Fig. 2).

The mesh is modeled as a container object. The Mesh class provides methods
for accessing and modifying its constituent elements (tetrahedra, faces, edges
and points). TetraJiedron, Face, Edge and Vertex are also classes, each of them
providing concrete functionality and also providing access to the neighborhood
information. The mesh quality evaluation is modeled using the Evaluate class.
This class uses a criterion and, according to some user parameters, it classifies
the elements and generates a file with the evaluation results as output.

166 Hitschfeld et al.

fej r Cemr^l/c^m^e^sj? f Refme Smoothj fleQ^fre) i L DeRt!tir& •

5 t = = 3

SiJiTaceM83h , VoiumeMesfH

JijL.

Fig. 1. Framework general class diagram

VolumeEOgeRate . [Ctfct^nradMsEdgeRate UngestEdge

ardh-

jsgTL

znzn

Fig. 2. Partial detailed class diagram

In the framework implementation, we used several design patterns [6]. Each
different mesh generation process and each criterion follows the Strategy pat
tern. The region shape follows the Composite pattern. The mesh evaluation
class follows the Observer pattern where the observed object is the Mesh. The
interface is organized using the Command pattern. The mesh is a Singleton.

Building a 3D Meshing Framework 167

3 3D Framework Evaluation

Our goals was to achieve flexibility, modifiability and performance. While the
first two depend on a good design, the last can only be evaluated at runtime.

3.1 Design Evaluation

Metrics for object-oriented design provide quantitative mechanisms for estimat
ing design quality. Good metrics evaluation shows a good design but it does not
guarantee good software. However, bad metrics evaluation almost guarantees
bad software results. In this work, we use the metrics proposed in [3] because
they are widely used for measuring flexibility and extensibility. A brief descrip
tion of each metric is included in Table 1 and Table 2 shows the results of
applying the metrics to the framework class diagram.

N a m e Descript ion
Sum of all method's complexity within a class. The number of methods and
their complexity indicate the effort required for implementing a class. The
larger the number of methods the more complex the inheritance tree will be,
and also the more specific a class becomes, limiting its reusability.

Weighted Meth
ods per Class
(WMC)

Depth oT In^
heritance Tree
(DIT

Maximum length between the node and the root irii the inheritance tree. 'Phe
deeper the class, the more probable the class inherits a lot of m,ethods. A deep
class hierarchy may imply a complex design.

umber of chil
dren (NQC)
Coupling Be-
tween Objects
(CBO)

rnply i
ilaren As the number of children grows, the abstraction represented by a class be

comes vague, and its reusability decreases.
It is the number of collaborations between a class and the rest of the system.
As this number grows, the class reusability decreases. High values also make
modifications and testing harder
it is the number of metnods that may be potentially executed as a response
to a message received by a class object. As this metric grows, testing the class
becomes harder, and the class complexity also grows.

Response for
Class (RFC)

Lack oT Cohe-
sion in Methods
(LCQM)

A high LCQM indicates that methods can be grouped in disjoin sets with
respect to attributes, and form two or more classes with them.

Table 1. Design metrics

Minimum
Maximum
Medium
St. Deviation

W M C
1

36

7.60
7.11

D I T

0
2

0.60
0.66

N O C

0
8

0.50
1.43

C B O

0
22

3.87
4.18

R F C

1
36

12.67
7.87

L C O M
0

100

30.98
36.73

Table 2. Tool design evaluation

The WMC metric shows a value within the normal scope for this kind of sys
tem. There are only two classes out of this scope: Predicates and Tetrahedron.
The former reuses a library described in [12]. The latter class contains several
methods required for the Delaunay algorithm, such as the sphere test; thus

168 Hitschfeld et al.

it can be divided into two different classes: one that includes basic concepts
about tetrahedron, and another one extending the first one that contains spe
cific methods for Delaunay implementation. The DIT metric is always small,
showing a low design complexity. The same occurs with the NOC metric. Both
metrics can grow when extending the design. The CBO metric value is normal
for an application with this size (52 classes). The maximum value is achieved
in the MeshGenerator class that references the classes implementing the main
processes and classes holding the main parameters, such as criteria and regions;
this class is only used when the system is operated using the command line, so
it can be excluded from the analysis. For the RFC metric, the values are within
the normal scope for all classes except for P r e d i c a t e s and Tetrahedron for the
same reasons explained for WMC. Finally, the LCOM metric has high values;
however, the highest values are only found in abstract classes: their methods
have no code, so they do not access instance variables; thus, the metric has no
effect.

3.2 Performance Evaluation

Performance evaluation in 3D meshing tools is mainly related to the time it
takes to execute typical mesh processes. Figure 3 shows an example of a volume
before and after applying the refinement process and Fig. 4 shows the time as
a function of the number of refined tetrahedra.

Pig. 3. Refinement process example: 170 points and 441 tetrahedra (left), and 8,823
points and 45,518 tetrahedra (right)

In general terms, a generated meshing tool with the same functionality as
TetGen is around two times slower with respect to refinement and improvement.
This difference may be due to the fact that in TetGen all data structures are
accessed directly, not using information hiding or encapsulation, and there is
no dynamic binding. On the other hand, the mesh generated mesh tool uses all
these concepts.

Building a 3D Meshing Framework 169

Pig. 4. Refinement framework time performance (executed in a Pentium IV processor
with 2.6 GHZ and 1 GB RAM)

4 Conclusion

3D meshing tools are extremely complex software that apply resource consum
ing algorithms to big meshes. This is why performance has been the main focus
of research around implementing this kind of software. However, since comput
ers tend to have more and cheaper memory and CPU capacity, some of the
burden has shifted towards the development process of the tools. In this con
text, we proposed an object-oriented design based on design patterns that has
proved to yield a flexible and modifiable framework, without severely sacrificing
performance.

References

1. Geometry Center at the University of Minnesota. Geomview, 1996.
http://www.geomview.org.

2. M. C. Bastarrica and N. Hitschfeld-Kahler. Designing a Product Family of Mesh
ing Tools. Advances in Engineering Software, 37(1):1-10, Jan 2006.

3. Shyan R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476-493, June 1994.

4. A. H. ElSheikh, W. S. Smith, and S. E. Chidiac. Semi-formal design of reliable
mesh generation systems. Advances in Engineering Software, 35(12):827-841,
2004.

5. Andrea Fabri. CGAL- the computational geometry algorithm library. In Proceed
ings of the 10th Annual International Meshing Roundtable, 2001.

6. Erich Gamma, Richard Helm, Ralph Hohnson, and Hohn Vlissides. Design Pat
terns: Elements of Reusable Object Oriented Software. Addison-Wesley, 1995.

7. Paul-Louis George, Frederic Hecht, and Eric Saltel. TetMesh-GHS3D V3.1, the
fast, reliable, high quality tetrahedral mesh generator and optimiser, 1986. White
paper, http://www.simulog.fr/mesh/geuer2.htm.

170 Hitschfeld et al.

8. Scott A. Mitchell and Stephen A. Vavasls. Quality mesh generation in three
dimensions. In Proceedings of the Eighth Annual Symposium on Computational
Geometry, pages 212-221, Berlin, Germany, 1992. ACM.

9. Steve Owen. Meshing software survey, 1998. h t tp : / /www.andrew.cinu.edu/-
u s e r / s o w e n / s o f t s u r v . h t m l .

10. Maria Cecilia Rivara. New Longest-Edge Algorithms for the Refinement and/or
Improvement of Unstructured Triangulations. International Journal for Numeri
cal Methods in Engineering, 40:3313-3324, 1997.

11. Jim Ruppert . A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms, 18(3):548-585, May 1995.

12. J. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Comp. Geometry, 18(3):305-363, 1997.

13. H. Si and K. Gartner. Meshing Piecewise Linear Complexes by Constrained De
launay Tetrahedralizations. In Proc of the 14* International Meshing Roundtable,
2005.

	front-matter
	fulltext
	fulltext2
	fulltext3
	fulltext4
	fulltext5
	fulltext6
	fulltext7
	fulltext8
	fulltext9
	fulltext10
	fulltext11
	fulltext12
	fulltext13

