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Operations and industrial modeling and management have a long history 

dating back to the first Industrial Revolution. Scheduling, inventory con-

trol, production planning, projects management, control charts, statistical 

records, customer satisfaction questionnaires, rankings and benchmarking. 

are some of the tools used for the purpose of better managing operations 

and services. The complexity of operations and logistics problems have  

increased, however, with the growth of supply chains, rendering traditional 

operational and risk management issues far more complex and strategic-

game-like at the same time. Similarly, we have gained increased experi-

ence in defining, measuring, valuing and managing risks that result from 

the particular environment that supply chains create.  Increasingly, there is 

a felt need for convergence between the traditional tooling of industrial-

logistics and the economic realities of supply chains operating on a global 

scale. This book provides students in logistics, risk engineering and econo-

mics as well as business school graduates the means to model and analyze 

some of the outstanding issues currently faced in managing supply chains.    

The growth and realignment of corporate entities into strategic supply 

chains, global and market sensitive, are altering the conception of operations 

modeling. Now far more strategic and sensitive to external events and to 

their externalities, they require new avenues of research. There is a need to 

rethink and retool traditional approaches to operations logistics and tech-

nology management so that these activities will be far more in tune with an 

era of global, cross-national supply chains. 

Today, supply chains are an essential ingredient in the quest for corporate 

survival and growth. Operations strategy in supply chains have mutated, 

however, assuming ever-expanding and strategic dimensions and augmenting 

appreciably the operational complexity and risks that modern enterprises 

face when they operate in an interdependent supply chain environment.   

These operational facets imply a brand new set of operational problems 

and risks that have not always been understood or managed. Supply chain 

managers have thus an important role to assume by focusing attention on  

 

 

PREFACE 



 these operations and risks and in educating corporate managers about what 

these operation problems and their risks imply. 

Our purpose in this book will be to consider these problems in depth and 

to draw essential conclusions regarding their management in supply chains. 

For example, traditional operational problems (such as inventory control, 

quality management and their like) are expressed in a strategic and intertem-

poral manner that recognizes the complexity and the interdependency of 

firms in a supply chain environment. Examples that highlight our concerns 

and how to deal technically with these problems will be extensively used.   

The book is directed necessarily towards advanced undergraduate stu-

dents but will be made accessible to students, including those in operations 

engineering, who have a basic understanding of mathematical tools such as 

optimization, differential equations and some elements of game theory. When 

necessary, the book will utilize appendices to review basic mathematical 

tools, emphasizing their application rather than the theoretical underpin-

nings. Similarly, a number of computer programs will be used for calcula-

tions, bridging the gap between theory and practice. 

The book consists of three areas, each intimately dependent on one an-

other, each emphasizing important facets of supply chains management 

operations. These include: 

• Supply Chains and Operations Modeling and Management 

• Intertemporal Supply Chains Management 

• Risk and Supply Chain Management 

The first area provides both traditional static and discrete-time models 

and their gradual extension to a supply chain environment, highlighting the 

new concerns of the supply chain environment. In addition, it emphasizes 

both one- and two-period problems while in the second area, we address 

essentially inter-temporal problems as differential games. The differential 

games are presented as natural continuous-time extensions of the corres-

ponding static models so that the effect of various types of dynamics on 

supply chains may be assessed and insights gained. The third area deals with 

risk and supply chains as well as with numerous applications to the man-

agement of quality in a supply chain environment and in managing inter-

dependent (both in substance and in decision-making) operations.  In this 

sense, the book highlights and resolves some important problems that  

address directly the needs and the complexity of supply chain management 

in a tractable and strategic setting. 
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PART I  

SUPPLY CHAINS AND 

OPERATIONS 

MODELING AND 

MANAGEMENT 





1 SUPPLY CHAIN OPERATIONS MANAGEMENT  

Operations and industrial modelling and management have a long history 

dating back to the first industrial revolution. With the growth of supply 

chains, the complexity of operations and logistics problems has increased 

rendering traditional operational management issues far more complex and 

of increased strategic importance. Similarly, we have a growing experience 

in quantitatively modelling, evaluating and using computer-aided analyses 

that contributes to our ability to better manage operations, in their inter-

temporal as well as their strategic and risk settings. Such experience and 

knowledge makes feasible the operations management of supply chains. 

Simultaneously, the growth and realignment of corporate entities into 

strategic supply chains, global and market sensitive, have altered our con-

ception of operations, their modeling and performance measurements. ren-

dering them far more strategic and sensitive to external events and to the 

externalities that beset the operations of supply chains. For this reason, in 

an era of global supply chains, operations performance and management 

have evolved, providing new and essential challenges and concerns (see 

for example, Agrawal and Sheshadri 2000; Bowersox 1990, Cachon 2003, 

Christopher 1992, 2004; Tsay et al. 1998). 

Supply chains are an essential ingredient in the quest for corporate survival 

and growth. Operations in supply chains have mutated, however, assuming 

ever-expanding dimensions, providing, on the one hand, greater opportuni-

ties for managing these operations and, on the other, augmenting apprecia-

bly, the operational complexity that modern enterprises face. Many of these 

problems are ill-understood and poorly valued. As a result the operations 

may be poorly managed, augmenting the risks that corporate entities face. 

Although these concerns are pre-eminent in corporate strategies, they 

require an understanding of issues that have not been addressed in tradi-

tional approaches to operations management. The supply chain manager 

has thus an important role to assume by focusing attention on supply chain 

operations and educating corporate managers about what these operations 

imply, how to value them and to “internalize” them into the firm’s eco-

nomic analyses so that the supply chain can be managed better. 



SUPPLY CHAIN OPERATIONS MANAGEMENT 

We begin in this chapter by an overview of the transformation of logis-

tics and operations into a concern for the management of supply chains 

operations. 

1.1 SUPPLY CHAIN OPERATIONS: A METAMORPHOSIS 

Operations and logistics are undergoing a metamorphosis originating in 

major changes in market forces, leading to a global competition, the incre-

ased and determinant role of customers and new technologies that have  

altered traditional operations in firms into cooperative and at time “man-

aged operations” across supply chains. This metamorphosis is being driven 

by the needs of firms to be “here and there” at all times and to thrive in a 

global environment where all operations involve multiple and coordinated 

agents. As a result, operational corporate strategies have changed and  

become far more sensitive, adaptable to the complex growth that confront 

operations, such as integrating production plans across independent firms 

which have a common interest to function in a coordinated manner. A 

common interest arises from a specialization of functions, economies of 

scales, greater flexibility and the ability to operate on a global-scale at a 

lower cost. For these reasons, firms focus on specific functions such as  

logistics, services, back-office finances, distribution and marketing. This 

has led to selective outsourcing becoming a crucial factor in attaining a 

competitive advantage. 

At the same time, the restructuring of operations in supply chains has 

also increased the risk to firms that are unaware of the consequences. 

There are bi-polar forces at play, upstream and downstream, acting simul-

taneously and setting new trends and raising new problems in the mana-

gement of operations in a supply chain environment. Within these trends, 

production, traditionally separated across function and firms, is becoming 

more and more integrated. For example, pressures are already exercised 

within firms to outsource some functions to carefully selected suppliers 

and to coordinate the planning of operations. By the same token, product 

design, production and distribution are no longer viewed as being the  

resulting effort of one firm but rather that of a collective of firms operating 

in a common underlying purpose (e.g., Lalonde and Cooper 1989; Mc Ivor 

2000; Newman 1988; Rao and Young 1996; Van Damme et al. 1996). 

Similarly, purchasing of materials, inventory control and the shop-floor 

management (scheduling, -routing, etc.) are now viewed in a supply chain 

setting in which synergies are sought with both suppliers upstream, distri-

butors and downstream clients. To implement these changes and to manage 

4      1
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and to manipulate these systems, personnel must acquire new skills and 

knowledge. Competition is increasingly international. Globalization has set 

in, making it possible to operate simultaneously and instantly in a number 

of countries, each providing a strategic advantage for a specialized function. 

This setting has unsettled the traditional and secured environment of  

operations and logistics and introduced a far greater awareness that adapta-

tion, strategic issues (arising from competitive postures and uncertainty) 

are now an essential part of what supply chains must deal with. In other 

words, the management of operations in terms of concept, scope, and tech-

niques has been altered by global competition and integration of produc-

tion outsourcing; technology and its holistic integration in the logistic and 

manufacturing processes; the emergence of market major forces and mar-

ket metamorphosis . As was the case following the first industrial revolu-

tion, albeit at a far greater scale, these forces have altered the economics of 

operations, providing a potential for profit through specialization of func-

tion and economies of scale. At the same time, the re-organization of oper-

ating supply chains has also augmented a firm’s risks and consequently the 

need to introduce approaches to management that are both adaptable and 

recognize the potential and the inequities that arise in supply chains. This 

book will seek to highlight some of these problems and at the same time 

provide a number of insights arising from the analysis of operation in their 

strategic game-like environment. 

1.2 MOTIVATIONS AND ORGANIZATION 

Supply chains arise as determinant organizational forms due to the many 

motivations and purposes. As a result there are many definitions of what 

constitute a supply chain. The traditional view of a supply chain is that of a 

“loosely aligned, fragmented series of paired relationships among different 

firms, agents and parties, independent or not that function within an agreed 

set of rules, contracts or contractual agreements”. For example, supply chains 

include a broad variety of collaborative agreements between a manufac-

turer-wholesaler; a wholesaler-retailer; a retailer-consumer and their inte-

gration within a collaborative network. These agreements are meant to  

coordinate collaboration between these parties and promote long-term stra-

tegic cooperation by legally binding agreements or through a shared eco-

nomic interest among independent enterprises. 

In an operational and narrower sense, a supply chain and its manage-

ment consist of the management of a network of facilities, the exchange of  
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communications, distribution channels and the supply chain entities that 

procure materials, transform these materials into intermediate and finished 

products, and distribute the finished products to customers. As a result of 

these wide range of functions, a supply chain can be viewed as an emerg-

ing operational and organizational form integrating all firms and entities 

that cannot, either by design or by economic interest, pursue by itself all 

these activities. Due to this inclusiveness, supply chain management is a 

potent and important alternative to the common use of centralized and  

authoritarian-based approaches to management.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Operations Management—Intra Firms Operations and Logistics 

In industrial and logistics management, supply chains have become the 

dominant organizational model, fed by and feeding the important changes 

in technology and operations management of the last half century. In  

Figures 1.1, 1.2 and 1.3, for example, we emphasize the growing concerns 

of supply chain management from intra-industry and self-management to  

include a far greater complexity based on intrinsically more global appro-

aches and the elements that define a supply chain as stated above. Explicitly, 

from a concern for operational problems associated to inventory manage-

ment, capacity planning, transportation, quality control, etc., to problems of 

supplier selection, collaborative ventures, co-production, contractual agree-

ments and negotiations. Some of these elements are shown in Figure 1.2 

and emphasize an upstream sensitivity. 
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Figure 1.2. Operations Management-Intra Firm and Up-stream Collaboration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Supply Chain: Upstream and Downstream Integration 
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Technological developments such as electronic data interchange (EDI), 

Internet and intra-nets as well as virtual private networks (VPN) have, of  

course, contributed to the growth of supply chains by making it possible 

for relevant parties to communicate instantly and economically. Subse-

quently, customer-focused strategies have also led to the development of a 

similar growth and integration of services in a firm's operations and thereby 

to the basic supply chain structures commonly observed in medium-sized 

and large corporations operating nationally and internationally. Such a 

supply chain is outlined in Figure 1.3. Note that new functions such as dis-

tribution and logistics, service-focused customization in both products and 

services as well as the many activities associated with post-sales, “loyalty 

management of customers” etc. have now been added to the basic and tra-

ditional operational function of firms engaged in operating and production. 

But, these functions have also contributed to an exponential growth of 

complexity in the management of operations and to the basic principles of 

management in such an environment. In turn, managerial challenges have 

led to important new issues in finance, marketing, and in all facets of busi-

ness, emphasizing problems of integration and the interface of the supply 

chain entities so that their economic promises can be realized and sus-

tained. Furthermore, the concept of competition between firms, has also 

evolved, emphasizing a competition between “global supply chains”, with 

means, markets, capacities and need broadly distributed and at times 

loosely coordinated. Below we shall consider a few such examples, high-

lighting in fact the extreme diversity of supply chains. 

Examples: The Many Faces of Supply Chains 

The common view of supply chains, as stated in Figures 1.1, 1.2 and 1.3 

involves supply chains with intra-firms operations focused on production 

and inventory management and on procurement and the management of 

logistics and distribution. Often, some of these functions are outsourced as 

well, leading to considerable diffusion in a firm’s operations. Upstream, 

the supply chain might consist of one or several suppliers operating under 

collaborative or contractual agreements that emphasize various degrees of 

commitment and exchange between the firm and its suppliers. Suppliers 

may be rated according to their reliability, the sustainability of the on-going 

relationship that has developed as well as their commitment to the firm’s 

activities and their responsibilities. Downstream, marketing channels  

and selling organizations such as franchises (which we will consider sub-

sequently) and other forms of exchange with retailers and intermediaries 

might be worked out. In these supply chains, the essential elements to reckon 
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with and which have altered the manner in which we manage operations 

are:  

• procurement and outsourcing  

•  

• channels and organizational structure and infrastructure 

•  
(with customers and distribution and marketing channels) 

 

 

 

 

 

 

 

 

 

Figure 1.4. Centralized-Decentralized Downstream Supply Chain 

 

 

 

 

 

 

 

 

 

Figure 1.5. The reservation Center at the core of ACCOR 

These supply chains arose as an alternative to centralized and vertical 

“supply chains” where material, manufacturing and products management, 
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are integrated as a whole and centrally designed and managed. The verti-

cally integrated chains are based on a collective of agents and firms that 

are dependent and therefore apply rules of management dictated by a cen-

tral authority. This is in contrast to “horizontal supply chains” which consist 

of independent (or nearly independent) agents and firms that pursue their 

own self-interest yet, at the same time, are dependent and sustained by the 

successful operations of the “global supply chain”. A centralized, down-

stream supply chain is represented in Figure 1.4 . 

Supply chains with many other faces and forms exist, however, their ex-

istence justified by their emphasis on economic success or by some other 

factors that can sustain their existence. An outstanding example is the 

growth of hotel supply chains (such as Hilton, Marriot, Accor etc.). In the 

case of Accor, economies of scale in reservation computer centers manag-

ing occupancy and, in some cases, the chain cash flow, have provided a 

strong impetus for individual hotels to affiliate with the Accor chain. This 

is represented graphically in Figure 1.5, where we highlight the centrality 

of the reservation center between intermediaries, and the many hotels cate-

gories that comprise Accor. 

Of course, other examples abound. ISO 9000 and various other certifica-

tions seek to develop a supply chain “esprit” Strategic alliances in informa-

tion technology, in car industries, in airlines etc. are all meant to create a 

collaborative environment and exchange platform that profits individually 

and collectively the whole supply chain. Franchises of all sorts (McDonald, 

Benetton, and so on.) are also based on the principles economic and opera-

tional that underlies the management of supply chains. 

Recently, the Internet has contributed immensely to the growth of vari-

ous firms built on supply chain principles. For example, collaborative logis-

tics in cooperation and coordination within a community of shippers and 

carriers using an Internet service to streamline business relations substan-

tially improved profitability and performance of all the companies involved. 

Leveraging the power of Internet as a computing platform has grown into a 

real opportunity for collaborative logistics.  

1.3 SUPPLY CHAINS: NEEDS AND RISKS 

In an early paper, “OM Factors Explaining the Need for SCM: in Suppliers 

Positioning” (1984) Hayes and Wheelright presented a number of consid-

erations spanning demand volatility and the interaction effects of delays and 

uncertainty in supplies; assets intensity favoring upstream suppliers that tend 

to be more focused and have greater economies of scale; standardization; 
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profitability; technological change; and scale and balance (economy and 

scope). In recent years, these issues have been further emphasized and inter-

preted into strategic and managerial needs including the need to: earn profits 

in both the short- and long-run; maintain services close to end customers; 

comply with regulations and government interventions (both nationally and 

internationally); and to maintain the ability to manage the firm when it 

grows quantitatively and in complexity and must face the strategic implica-

tions of business at a global scale. These needs and risks, underlying the 

trend toward supply chain management have been the essential engine that 

leads firms to restructure into “lean and complex” organizational forms, 

where “what one sees is a lot less than what one has” as it is the case in 

supply chains.  

The number of considerations that justify the growth of supply chains is 

large. What should a firm do in overcoming barriers in foreign markets? 

How can a firm adopt a strategy of focusing on its core competence and at 

the same time maintain its diversity and viability? How can a firm reduce 

the risks of its non-sustainability by operating alone? Can such a firm 

augment its market share on its own? Can it acquire, at a reasonable price, 

all the patents it needs to maintain its inventiveness and its technology 

savvy? These are among the many considerations that successful firms meet 

at defining moments, when future growth and oblivion are confronted.  

Mini-case: Strategic Alliances in the Airlines Industries 

Companies form strategic alliances because each of the parties gains some-

thing that they could not get on their own—either at all or at a reasonable 

price. Globalization, liberalization and privatization have been the factors, 

among others, that influence the formation of strategic alliances between 

airlines. It is the relative dominance of demand-side forces for large net-

work carriers that have driven the need to join an alliance (these include 

fewer connections, higher frequencies, more cities served, lower informa-

tion costs and frequent flyer programs). In effect if an airline intends to 

pursue a market strategy of being a full-service, broadly-based carrier, a 

necessary condition for success is joining an alliance . Which alliance to 

join also makes a difference. The benefits and costs of an alliance are  

determined by the underlying demand and supply-side drivers, and differ 

according to who the alliance partners are and the nature of the alliance. 

For an airline, the alliance can range from a simple marketing arrangement 

to a strong equity position. As more formal arrangements are made, the 

benefits rise but the costs of adjustment and integration increase as well. 

These factors have combined to create together “airlines supply chains” 
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flying under various names, yet operating as a common whole, exchanging 

and allocating flights and seats. 

For airlines in particular, the environmental factors pulling the growth 

of strategic alliances are: globalization, liberalization, and privatization, 

combined with basic industry-specific factors such as bilateral and regula-

tory restrictions. Demand-side and supply-side economics have also been 

pushed by the risks that airlines with a global outreach face if they wish to 

remain national airlines. Some of these risks have included: the presence 

of barriers to entry; vertical integration to exclude rivals from the market; 

increased competition costs; and indirect control by the competition’s  

actions (such as control of feeder carriers). To circumvent such difficulties 

airlines have pursued bottom-up and side strategies including, for example, 

simple alliances (such as marketing agreements for preferential exchange 

of traffic, code-sharing, frequent flyer participation) as well as strong car-

rier alliances (including equity swaps as was the case between Air France, 

KLM, Alitalia etc.). 

1.4 SUPPLY CHAINS AND OPERATIONS MANAGEMENT 

Operations in supply chains have evolved in tune with their needs and the 

risks they imply. Today operations in supply chains are viewed as operat-

ing in a coherent rather than a fragmented whole with responsibilities for 

various segments allocated to functional areas such as purchasing, manu-

facturing, sales and distribution. In addition, however, supply chain man-

agement calls for, and depends on strategic decisions-making. ‘Supply’, 

the shared objective of every element in the chain, is of particular strategic 

importance due to its impact on overall costs and market share.  

Figure 1.6. From Operational to Strategic Operations 

Various operations problems that arise are motivated (as with all opera-

tions problems) by some of the following considerations:  
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•  

to quality, to service and to customization. 

•  

•  

•  Differentiation, quality and standardization 

These strategic prerequisites of supply chain management are also chang-

ing the manner in which we represent and analyse models. In addition,  

attention is moving increasingly from intra-firm to strategic inter-firms as 

Figure 1.6. shows above.  

From Traditional to Supply Chain Aggregate Production Planning 

A traditional periodic production model consists of determining a produc-

tion plan responding to the problem of how much to produce and when. 

For example, weekly, monthly or daily production decisions may be reached 

on the basis of a demand forecast. These decisions may, however, involve 

a broad number of concerns such as inventory costs, transport capacity etc. 

each of which, in a supply chain, may be managed by independent agents. 

Traditional aggregate planning models have emphasized a centralized app-

roach, applying available resources and their associated information for a 

common purpose—centralized management. In a supply chain, some of these 

functions involve at times completely independent agents, generally a num-

ber of agents who reach their decisions independently.  

Current supply chains exhibit simultaneously an upstream and a down-

stream sensitivity. For example, supplies and customer delivery needs are 

often conflicting and have to be reconciled in a manner that rather than just 

the production needs with only a customer focus. Outsourcing on a global 

scale has added another aspect: “remote” production management. The  

effects of this concept have not yet been fully integrated into the consci-

ousness of operations managers. However, concern is gradually increasing 

for the management of services, of quality “controlled at a distance” and 

for production that the end firm cannot always control. 

 

 

 

Time and cycle time management, seeking to reduce time in all the 

firm does such as using the Internet in communications. Cycle 

time reduction, “at any price”, is a strategic objective of industrial 

management that contributes to stock cost reduction, to reactivity, 

The necessity of reducing geographical distances as a means of  

responding to the global outreach of supply chains and of achieving

savings in resource consumption. 

Customization and flexibility, variability, adaptability, and fixed cost 

reduction 
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Traditional production models are essentially based on “costs”, “infra-

structure”, “quality” and “constraints”. Strategic issues were essentially neg-

lected. Essential strategic concerns include: 

•  
plier’s selection, handling and the use of logistics.  

•  

•  Costs of people, salaries and related costs which are market driven.  

• 

In addition, the production environment is presumed constrained by  

resources such as: capacity; people (both as a function of quantity, quality 

and working modes); procurement and outsourcing; transportation and  

logistics. Intelligence gathering and forecasting continue to be important 

while technology constraints include: process structure; product assembly; 

organization; customer requirements; multiple plants and products; and 

warehouses. The integration of all these elements provides an underlying 

reality that supply chain managers must reckon with. 

These factors of cost, quality, infrastructure and constraint have gener-

ated complex decision problems which have been extensively studied, both 

in practice and in theory. They involve short- and long-run decision mak-

ing problems, both under certainty and uncertainty. For example, problems 

of inventory management have been treated by using specific models that 

recognize both the production infrastructure and constraints, and that 

minimize costs. The advent of MRP systems has augmented the dimen-

sions of inventory management by adding supply coordination, Just-in-

Time management and managed outsourcing. These systems have grown 

into ERP as well as supply chain ERP systems. The trend is to harness 

technology to handle ever greater and more complex problems, while  

under-valuing, in some cases, the importance the managerial and motivat-

ing facets of the production function which independent managers now co-

manage. by . Fig. 1.6. highlights these facets of the production system.  

Globalization and the growth of logistic costs, relative to the costs of 

production and related issues and the ever-increasing costs of competition 

and customer dissatisfaction, have altered managerial practices, in particu-

lar, aggregate production and logistic planning. The timely delivery of 

schedules, logistic costs and production services are emphasized far more.  

 

 

Costs of materials and components which are determined by sup-

Costs, determined by the organization, of production, efficiency and 

productivity-related issues. 

Costs of inventory which are both direct and indirect, determined by 

the inventory policy, financial costs and related considerations. 
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Figure 1.7. Traditional Production and Inventory 

As a result, aggregate production planning, is, at the same time, far more 

upstream –supplier sensitive, and also increasingly logistic and customer-

driven. In such an environment, other considerations are introduced that 

determine production plans and their management, including greater con-

cern for: 

• Supply delays, supply reliabilities and their costs 

• Information exchange and communication technology 

• Incentives management 

• Technological, political and social constraints  

• 
penalties 

• Transportation scheduling and logistic controls 

• Service and product quality and their controls 

• Customer prioritization, upstream and downstream 
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The integration of aggregate operations into supply chains, thus indicates 

a growth of complexity implied in a strategic management of operation. 

These problems and models that address a number of selective issues will 

be dealt with in forthcoming chapters. 

Production and Supply Chains: A Simplified Model 

In the traditional and centralized approach to production management, a 

firm is presumed to plan aggregate production over a given period of time 

(say weekly, over a period of a year) based on a data base which it con-

trols. Information regarding its capacity to produce (how much it can pro-

duce at most in any one week), cost data pertaining to how much it costs 

to produce one unit of a product, its inventory costs etc. are then gathered. 

Finally, even though information regarding the demands for its product is 

imperfect, the firm uses a forecast, essentially replacing the unknown  

demand with the presumed forecast. On the basis of these assumptions and 

any other a production manager may care to make, the firm proceeds to 

determine a production plan.  

The pull to producing in a supply chain environment arises because it 

provides advantages – economic and otherwise. For example, to assure cli-

ent loyalty by adopting a collaborative environment, a firm may expect to 

retain a number of clients who would be both loyal and allow early plan-

ning of the production program of the firm, (thereby, reducing the risk in 

production-demands and perhaps making it possible “to make do more 

with less”). The firm, which is facing such an eventuality is considering a 

relationship that will be maintained with other firms which it will supply 

as well as it can. These firms in turn will contribute to a synchronization  

of production schedules such that demands will be given ahead of time  

together with some tolerance regarding delivery dates.  

1.5 SUPPLY CHAINS AND INVENTORY MANAGEMENT 

Theory and practice in inventory management have produced an extremely 

large number of inventory models motivated by the need to reduce produc-

tion and operations costs while managing at the same the business risks asso-

ciated with either excess or inventory shortages (Lambert 1982; Cachon 

and Fisher 2000; Tapiero 2005; Ritchken and Tapiero 1986). Traditional 

models of inventory have thus been based by their location within the pro-

duction process, such as raw materials, in process products, finished goods 

inventory, etc. Classified by functional and statistical demand properties, 

inventories are meant to meet various types of demand: discrete, continuous, 
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deterministic, stochastic, constant, single-period or multi-period (and their 

combination thereof). Then there are demands by the policy that inventory 

managers seek to adopt including (Q,T), (s,S)-two bins, multiple-barrier 

policies etc. Finally, many inventory models, presuming essentially a cen-

tralized control, have been classified by the underlying process structure 

(whether in production, distribution, in retailing, in supplier inventories etc.), 

namely, single-stage; multiple stages in series and parallel; and assembly, 

to name some of the systems. Other names that capture this class of mod-

els include multi-echelon and demand independent and dependent models. 

This latter feature, independence, is particularly important, since the pre-

sumption that demands are independent of the order policies greatly sim-

plifies the modeling and the management of inventories. In supply chains, 

this is not the case and consequently we confront the particular complexity 

of dealing with such models and problems. 

The simplest textbook inventory problem consists in minimizing the fol-

lowing costs: ordering, inventory holding and out-of stock inventory stock 

(the latter being particularly difficult to price since it is often difficult to 

estimate the costs associated with lost sales). Inventory policies contem-

plated are then merely defined by a set of parameters on the basis of which 

the model is formulated and resolved. Typical policy examples include: an 

order cycle time or T policy (also called periodic review) in which the deci-

sion to order or not is reviewed over fixed intervals of time; an order-size 

(EOQ) or Q policy, consisting of ordering fixed quantities at variable or at 

fixed instants of time (depending on whether the problem assumes a  

demand uncertainty or not); a stock security (s,S) “feedback” policies, con-

sisting in launching quantity orders S at specific inventory states (with 

supplies provided with or without delays). Other policies exist of course 

and have been extensively treated in the literature. 

The following model (see Figure 1.8) represents, for example, a typical 

EOQ model with a constant demand, which in this special case can be  

interpreted as a T or Q policy. It also presents a typical (s,S) security policy 

where s is both a stock held for potential and incoming demands and a 

trigger to an order launched whenever inventory that is being is felt to be 

falling below secure stock levels. 

Such issues as “permitted shortages”, “production inventory models with 

on-going production”, “recuperating part or whole lost sales”, “determini-

stic and stochastic demands”, “single or multiple items” etc. are introduced 

in such models, complicating their analysis but not their structure as is the 

case when we consider inventory models in supply chains. In such situations, 

questions and problems pertinent to supply chains arise as we shall see sub-

sequently. In the cases mentioned above, determining the inventory policy 

requires information regarding: demand (Is it constant? Time variable?  
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Deterministic? Stochastic?); storage of items (Are they inert? Active?  

Deteriorating or appreciating?);  the selective main contributing costs to 

inventories–directly and indirectly (fixed costs, variable costs, out of stock 

costs, holding costs etc.); and, finally, what are the essential decision para-

meters to reckon with. An extremely simple EOQ model will be consid-

ered as a starting point to demonstrate the fact that the analysis of these 

simple problems assume an added complexity when the supply chain envi-

ronment is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Models of Inventory Management 

Example: The EOQ Model Revisited 

Consider an inventory model with K the set up cost and c1 the unit holding 

cost. No shortages are tolerated. In such a case the optimal order policy 

can be shown to be the EOQ and based on the minimization of the average 

“inventory system costs”. The solution is thus: 

EOQ: 12 /Q xK c= ; 

Cycle time: xcKT 1/= ; 

Average cost 12AC xKc= . 
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Note that this model implies that a number of business functions inter-

vene in determining the inventory policy. For example, financial consid-

erations arise about the interest rate paid on money which is tied down; 

manufacturing can have an effect by seeking investments in a flexible 

manufacturing technology which reduces the set-up costs marketing has an 

effect based on the requirements it imposes on demand satisfaction (i.e. the 

cost of shortages). The relative dominance of each of the business func-

tions will determine the inventory policy. While the EOQ formula is sim-

ple to apply, it is most revealing in integrating multiple strategic functions 

of business.  

These functions include 

• marketing, through determination of the demand x  

• purchasing, through the effects of the fixed order  

• finance, through the cost of money, or inventory holding c1 

• Tech SMED through the fixed cost K 

For example, if the cost of money goes up, how would that affect inven-

tories? If demand is expected to fall, how would that affect inventories? If 

purchasing costs decrease, would we order more or less often? If demand 

increases by 30% how much would average inventory increase? If the 

price of goods held in inventory increases, would we have on the average 

more or less inventory? Of course, by altering some of the assumptions 

made to obtain the EOQ formula, more general models can be derived and 

solved while other EOQ formulas may be obtained 

Some elementary calculations, based on our assuming a departure from 

the centralized solution (consisting in optimizing the average total inven-

tory cost) would reveal a departure from such a solution and the effects of 

multiple interests at play in a supply chain environment. Explicitly, con-

sider a demand to be set to kx instead of x, and reflecting the desire of a 

marketing manager who supplies such information to assure larger inven-

tory levels. In this case, since the EOQ formula resulting from an average 

cost minimization: 

1 / 2
,   

K c QT Q
AC T

T x

+
= =  

yields 
*

* * 1
1 1*

2 /   and  2
2

c QKx
Q xK c AC xKc

Q
= = + =  

Thus, by a mis-specification (or weighted inventory cost, by k, we have: 

1 1 1' 2 / , 2Q xK kc AC xKkc= = . 
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When we compare this to the centralized solution (k=1), we obtain the 

following costs: 

1AC
k

AC
=  

and therefore  

1

1

11
AC AC

kAC

−
= −  

In other words, the percentage growth in average inventory costs is in-

deed a function of stating (over or under) the true demand, imposed by the 

party who has the responsibility and potentially, the power to do so. Gen-

eralizing to multiple parties, in other words to additional departures from 

the centralized solution, it is easy to show that: 

* 1 3
1

2 1

2( )( )k K k x
Q

k c
= , 

which will alter the calculations of the average costs as seen by each of the 

parties. Note that if each of these parties is “an independent agent”, the  

resulting inventory policy will be the outcome of a “game” between these 

parties, each selecting voluntarily the information to be supplied. The 

game can be stated as follows: 

1 2 3

* * *

1 1 1 2 2 1 2 3 1

* 1 3
1

2 1

( , ),   ( , ),   ( , )

2( )( )
Subject to:   

k k k
Min F k Q Min F k Q Min F k Q

k K k x
Q

k c
=

 

The determination of agreed upon models and cost parameters as a sup-

ply chain determining the inventory policy is thus a particularly difficult 

issue. This involves an intra-chain political process where the power of 

managers can be determinant. Is marketing or production determinant in 

the firm strategy? If it is the former, it is possible that the out-of-stock cost 

may be overstated while the holding cost would be understated. 

Such an approach recognizes one facet of the management of supply 

chains inventory problems and some of the specific characteristics we are 

led to consider in such situations. In other words, inventory management in 

supply chains necessarily changes.  

SCM, as we saw earlier, involves a process of integration and collabora-

tion that optimizes the internal and external activities of the firm involved 

in delivering a greater perceived value to customers. For inventory man-

agement, new technologies based on EDI and Internet-VPNs (Virtual Private 
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Networks) has provided the means to simplify and augment collaborative 

efforts and provide an exchange of information. These technologies have 

simplified the process of communication in general and that of managing 

orders in particular. Nonetheless, when agents in a SC are independent, 

and independently reach their decisions, information is unevenly distri-

buted throughout the chain. As a result, uncertainties may be induced endo-

genously, generating additional costs. For example, car manufacturers often 

over-supply cars to distributors in order to transfer some of the inventory 

holding costs and to motivate them to greater sales efforts. Distributors may 

be aware of such behavior and as a result they may understate the orders in 

the expectation of over supplies. In this sense, mutual uncertainty is in-

duced, implicit in the behavior of the manufacturers and the distributors.  

By the same token, manufacturers have the tendency to “load” shelf space 

in supermarkets to augment the probability of selling. In this sense, they 

have a great interest in over supplying supermarkets  As a result, the con-

ventional wisdom that the less inventory, the better, is not always right. 

For end-product inventory, close to selling points, there may be an incen-

tive to maintain inventory. This is well known, as noted, in the car indus-

try, in pharmaceuticals as well as in brand facing in supermarkets, where 

visible inventory is used as a mean to induce sales. In these cases, point-of-

sales effort is associated to the size and the quality of the display (and 

therefore to the inventory investment incurred for a particular brand). Sales 

campaigns combined with the manufacturer’s subscription to inventory 

carrying charges as well as other expenses are then used as an incentive to 

improve sales performance at the selling point. Such practices are applied 

over a broad range of other type of products and in various manners.  

Similar observations may be recorded about various types of franchises 

where end-product inventory is shifted to franchisees. For example, inven-

tory ordering in supply chains considers the individual objectives of firms 

in the supply chain and their organization (defined by the franchise con-

tract or the organization under which they operate) or their position in the 

supply chain.  The inventory policy must then reflect the objectives and the 

conflicts-or-collaboration (which can be solved under alternative organiza-

tional and informational assumptions) between the supply chain members. 

By the same token, modeling the inventory process in outsourcing (com-

pare Figures 1.9 and 1.10) involves many issues that are often neglected in 

traditional inventory models. We outline below some issues, each of which 

is important in its own right. 
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Figure 1.9. Inventory Management in Vertical-Horizontal SC 

 

 

 

 

 

 

Figure 1.10. Inventory and Outsourcing 

• What are the rules of leadership? Who is leading? Who has the 

information? Who has the power and can exercise it or not?  

• What are the supply priorities, guarantees and related issues associated 

with products and goods transferred from one party to the other? 

• What are the information flows? Who gets what and when and by 

whom? 

• What are the objectives of the members of the supply chain? 

• What are the principles of equity, distribution and control? 

• What are the policy variables that each of the parties can exercise?  

• Who controls what? 

• What are the sources of uncertainty? Are they internally induced or 

do they occurr externally? 

• What are the constraints on each of the parties? The individual? The 

collective? 

• What are the objectives that each of the parties optimizes? 
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• What are the relevant models to consider and which are agreed upon 

(or not) by the supply chain parties? 

• How can we solve them? 

• How can a solution that has been deemed appropriate be imple-

mented? 

• What are the post-implementation monitoring tools and grievance 

resolution modes (economic and otherwise)? 

1.6 QUALITY AND SUPPLY CHAIN MANAGEMENT 

Quality and its control are important in all facets of supply chain manage-

ment—economic and otherwise. For example, a substantial part of war-

ranty claims can be traced to purchased items that are failing and to failed 

services. Similarly, faulty supply parts invariably lead to extremely large 

costs for the manufacturer and the retailer. Traditionally, quality and its 

control have emphasized the use of statistical control techniques which 

seek to detect deviations from agreed upon quality standards. In a supply 

chain environment, the dependence of agents and their self-motivation,  

requires another approach, game sensitive, which recognizes the supply 

chain structure, its economic exchanges mechanisms and its rules of lead-

ership. Such an approach will, necessarily, have an effect on both the sup-

pliers’ propensity to supply quality products and the control procedures 

implemented. It is for these reasons that industrial supply contracts, special 

relationships and coordination between producers and suppliers are so  

important. In TQM (see Tapiero 1994) attempts are made to integrate sup-

plier control procedures into a broad management framework. These  

attempts, however, often fail to recognize the complex motivations that 

underlie supplier behavior in a contractual environment and the specific 

characteristics of supply contracts. Due to the importance of this problem, 

guarantees of various sorts are sought in practice to assure that quality 

complies with its promise, as specified by the quality supply contract. Of 

course, such problems are not specific to industrial producers and suppliers 

but are quite general, spanning the gamut of business transactions where 

there is an exchange between parties (e.g. buyer-seller of a product or ser-

vice, franchises, etc.). In a supply chain, since some of the problems that 

arise may be due to the multiple, partially conflicting, objectives of supply 

chain agents, a great deal of effort is invested in developing a collaborative 

framework to meet both quality standards and objectives (Reyniers and 

Tapiero 1995a, 1995b; Tapiero 1995, 1996, 2006). 
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For discussion purposes, we shall consider a number of cases which will 

be outlined and dealt with in far greater detail in Chapter 8, devoted to qua-

lity and its control in supply chains. Consider supplier-producer relation-

ships, franchises and situations where there may be both an opportunity 

and a reason to collaborate and yet, there might also be reasons for conflict 

between the parties. The problems we consider are relatively simple and 

are used to highlight some of the basic considerations we ought to be 

aware of in such situations. First, industrial quality and business exchanges 

are often defined in terms of contracts. For example, a product which is 

sold has a quality responsibility associated with it, defined and protected 

by contractual agreements. Further, the transaction itself may have as well 

a service contract associated with it, assuring the buyer that product per-

formance will conform to its advertisement. Warranties of various sorts are 

then designed to convey both a signal of quality and to manage the risk of 

product acquisition. These and other mechanisms are increasingly used by 

buyers who are demanding risk protection clauses to assure that they  

obtain what they expected at the time the transaction was realized. This 

“downstream sensitivity” has also an “upstream sensitivity”, in maintain-

ing both a trusting and functional relationship with suppliers. There is also 

an also an economical aspect. The cost of quality control is invariably 

cheaper upstream than downstream. As a result, in a supply chain, the col-

lective welfare of the chain is improved if quality starts at the source and 

not discovered at its end-point when the customer is located.  

Technically, the traditional approach to the statistical control of quality 

(based on Neymann-Pearson theory) has ignored both the elements of con-

flict and measurement costs in constructing statistical tests. As a result, the 

traditional approach has underestimated the strategic (and game-like) im-

portance of controls when these are tied to contracts that have retaliatory 

clauses and when the agreed upon quality is not supplied. In such cases, 

threats, the nature of the contract (whether it is a short- or a long-term con-

tract) the information available to each of the parties and so on have an 

important effect on the selection of quality control strategies. Although 

economic theory has studied such problems, the traditional view of statisti-

cal quality control has not explicitly considered these effects.  

Of course, the TQM approach has increased awareness that industrial 

cooperation between producers, suppliers, wholesalers and retailers is nec-

essary to guarantee better quality and profitability and supply chain com-

petitiveness. Underlying this belief, are the basic facts that conflict is  

pervasive and that it is detrimental to productivity. The cases below pro-

vide a motivation for dealing with such problems.  
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Intra-Firm Supplier-Producer Relationships 

Increasingly, some firms have reorganized their production and business 

operations as supplier-producer relationships. It is believed that this decen-

tralizes the firm's operational units which can then be managed through proper 

incentives and controls as a supply chain and thereby attain the desired  

performance. In practice, top management invests considerable effort in 

demonstrating that the supplier-producer relationship is a win-win relation-

ship, leading to improved communication, coordination and synchroniza-

tion of operations schedules. A leading steel manufacturing firm in Europe 

has followed such a path and has emphasized management audits of ser-

vices and operations. In particular, “inter-unit” contracts and agreements 

are assessed and evaluated in terms of performance, transparency, oppor-

tunistic behavior (such as cheating and conniving) and the maintenance 

over time of intra-firm contractual agreements. Through such a system, the 

firm has observed that it was possible to remove from inter-unit exchanges 

conflicts which are not related to the unit profit and cost objectives (such 

as jealousy, personal conflicts, self-aggrandizement etc.) and to construct a 

system of procedures where responsibility, participation, self-control and 

decentralization can be induced. 

Marketing Channels and Quality 

Marketing channels of various sorts lead to the creation of supplier-producer 

relationships involving intermediaries which can be complex to manage. 

There can, of course, be no intermediaries, in which case a direct relation-

ship between a supplier and a producer is established. In both cases, the 

supply and the control of quality are affected by the management of the 

 relationship and by the contracts which are used to regulate it. Problems 

such as supplier (producer) liability and the responsibility of the interme-

diary and how it can be managed, audited and controlled are part of an  

array of business and operational tools which can be used to manage the 

quality from its inception to its delivery and consumption by the producer 

(or the consumer). When there are complex marketing channels consisting 

of many suppliers, producers, wholesalers, semi-wholesalers, retailers and 

consumers, the problems of quality management and control become that 

much greater. This situation leads to problems of managing the intermedi-

aries and their control. In practice, since we encounter such problems,  

insights regarding the effects of conflict, channel structure etc. on the sup-

ply and the control of quality are clearly needed to improve our potential to 

manage quality in the supply chain. 
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Quality Management and Franchises 

Franchises involve a mutual relationship between a firm (say a manufac-

turer) and one or more firms (say retailers) in which some contractual rules 

are established for the conduct of business and the sharing of revenues and 

costs. For example, a franchiser may solely provide the products to be sold 

by the franchisee at an agreed upon price and quality. The franchisee, in-

volved directly in the marketing of products, may assume part of the costs 

as well as (partly or wholly) some of the costs associated with post-sales 

product failures, repairs and other services. 

A franchiser-franchisee agreement is usually bound by contractual 

agreements which are maintained over time and which guarantee their mu-

tual incentive to operate and cooperate during this period. Quality and its 

control can thus provide an added incentive to maintain and to sustain the 

partnership. For a manufacturing franchiser, which is extremely sensitive 

to its national image and quality, the potential to consistently produce goods 

most franchises (such as in fast-food industries, services, etc.) however, 

the uniformity of the product quality through franchises is an important 

feature of the franchise business itself and therefore the control of quality 

and its management are extremely important and is, in most cases, an  

essential feature of a franchise. Some recurring questions in such relation-

ships include the incentives for the supply of quality by the franchiser and 

the incentives to perform for the franchisee. Also of interest are the effects 

of sharing post-sale costs (warranty, post-sales servicing, liability costs 

etc.) for the franchiser and the franchisee incentives for control.  

els and their analysis can be used.  In these models both the franchiser and 

the franchisee engage in risk-sharing; privately taken actions by any of the 

parties affects the outcomes of interest and their probabilities. For exam-

ple, the franchiser may design an incentive scheme for the purpose of  

inducing the franchisee to act in the franchiser’s interest. The franchiser 

may also agree to contracts that induce the franchisee to expend a greater 

marketing effort (such as maintaining a high advertising budget) to stimu-

late sales (from which the franchisee benefits) and to deliver quality pro-

ducts.  In this latter case, the franchisee and the franchiser may reach a 

price-incentive contract which is sensitive to delivered quality. These con-

tracts will, of course, affect the amount of inspection conducted by both 

the franchiser and the franchised (Bank 1996, see also, Chapters 7-8). 

To assess these questions, the development of “conflict-prone” game mod-

of advertised quality are essential to sales and to the franchise growth. In 
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Virtual Supplier Integration 

Robert N. Boyce, former CEO of SEMATECH (Austin, Texas), claims 

that supplier integration is replacing vertical integration. He calls this type 

of integration “Virtual Supplier Integration”. Explicitly, Boyce states that 

the Japanese have created a competitive edge through vertical integration. 

We can learn from it by establishing “virtual vertical integration” through  

Partnering with customers and suppliers. Just like a marriage, we need to 

give more than we get and believe that it will all work out better in the end. 

We should take a long term view, understanding suppliers' need for profit-

ability and looking beyond this year’s. 

Partnering is referred to as a shift from traditional open-market bargain-

ing to cooperative buyer-vendor relationships. Of course, Partnering implies 

a broad variety of actions taken simultaneously by the buyer and the ven-

dor. It can involve the increased use of long term contractual agreements, 

reduction of the number of suppliers, negotiation procedures based on man-

agement tradeoffs rather than conflict management, strategic coordination 

and cooperation in product development and market evaluation, integration 

of computer support systems and internet derived products and most of all 

developing a relationship based on trust and mutual support. 

More on Franchises 

Franchises are an important source of supply chain organizations. It  

involves a mutual relationship between a firm (a manufacturer, for exam-

ple) and one or more firms ( retailers, possibly) in which some contractual 

rules are established for conducting business and sharing of revenues and 

costs. There are many definitions for such agreements. Caves and Murphy 

(1976) define franchises as an agreement lasting for a definite or an indefi-

nite period of time, in which the owner of a protected trademark grants to 

another person or firm, for some consideration, the right to operate under 

this trademark for the purpose of producing or distributing a product or 

service. Thus, franchise contracts involve a sharing of intangible assets 

(especially trademark, goodwill) between independent firms. Because the 

value of such assets is defined by their use, these contracts involve difficult 

contractual relations. Rey and Tyrole, 1986 (see also Rey 1992) define a 

franchise agreement as usually involving several provisions, which relate 

to transfers from one side to the other (generally monetary transfers from 

the franchisee to the franchisor and technological or know-how transfers 

from the franchisor to the franchisees), and restrictions on the side of both 

the franchisor and the franchisee.  
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In practice these definitions are quite accurate, representing many sorts 

of franchises. For example, in some franchises production may be centrali-

zed and the distribution franchised (e.g. car sales, some food and depart-

ment stores, fast food, Benetton etc.). Then there are franchises based on a 

branded image with advertising centralized but production decentralized to 

the franchisee. Some franchises require an appreciable investment by fran-

chisees (due to the very high set-up costs in selling and generally dis-

economies of scale in retailing and some logistic systems). In such cases, a 

franchisor may puts up some, if not all, of the required local investment, 

while the franchisee may have to self-invest by transferring part of his ini-

tial capital to the franchisor. In general, franchises are created due to the 

possibility they offer of reducing costs or risk to revenue.  

The typical franchise consists of a contract between two legally inde-

pendent firms establishing a long-term relationship giving the franchisee 

the right to use the franchiser’s trademark. In exchange a payment of a lump 

sum fee and annual royalties at an agreed percentage of sales is signed. 

There may, of course, be many other provisions including for example: 

franchisee fee royalties or commission; resale price maintenance; quantity 

fixing; exclusive territories; exclusive dealing and tie-in. Transfer payment 

schemes can also be varied. For example, the franchisee’s lump sum transfer 

may be refundable in case of success and if the relationship is maintained 

(as a way to commit the franchisee to entrepreneurial activity). Royalties on 

gross sales (in general between 3 to 5 percent) have both positive and 

negative effects since they can create disincentives but reduce the risk for 

the franchisor and can be negotiated and depend on a large number of fac-

tors. Taxes have also an important role to play as they can be used to transfer 

liabilities from one agent to another, depending on the pricing of inputs.  

To assess these schemes, numerous approaches are used, based on eco-

nomic and theoretical (games) assessments of franchisee and franchisor  

relationships and intentions. These approaches consist essentially of the 

following: resource constraints, in which the franchisee has access to  

financial capital, to market expertise and to the managerial talent of the 

franchisor; incentive issues, in which case the franchisor provides incen-

tives to franchisees to perform in the interests of the franchisor and supply 

chain. These issues are important because of the acute problems that fran-

chises create. Some of these problems cover: conflicting motivations;  

information asymmetry where information is not distributed evenly among 

the two partners (non-observable, hidden action); moral hazard in which 

case conflicting motivations combined with information asymmetry can 

lead to moral cheating or to opportunistic behavior which is not in the  

interest of the supply chain. This latter problem is particularly significant  
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as it is often difficult to detect. As a result, supply chain managers will seek 

to institute audits to test the performance of the supply chain parties and at 

times threaten retaliation in case non-conforming behavior is detected. 

Standardization of parts and managerial practices needed to assure uni-

formity, often an important feature of many franchises, makes it possible 

to control the quality prevalent in the supply chain and deliver quality-

conforming goods to the supply chain clients. And finally, the design of 

the franchise contracts, carefully balancing the costs, the risks and their 

consequences and the opportunities the supply chain parties are facing. Of 

course, these contracts, issues to reckon with and their management provide 

an ample opportunity for stud, some of which will be considered subse-

quently. 

1.7 GAMES AND SUPPLY CHAIN MANAGEMENT 

Supply chain governance and the independence of decision-making agents 

lead necessarily to a multi-decision- maker framework. For example, out-

sourcing an industrial activity to an independent supplier implies that the 

decisions and the policies implemented by the outsourcing firm and its 

supplier are based on their own self-interest. Collaboration and coordina-

tion of their industrial activities in a supply chain framework will hope-

fully lead to added benefits for both firms even though the benefits of the 

collaboration will have to be split. For a review of game theory there are 

numerous texts and papers such as Friedman 1986; Fudenberg and Tirole 

1991; Moulin 1995; Nash 1950; Von Neumann and Morgenstern 1944.  

To motivate and simplify our presentation, we shall outline below some 

extremely simple problems that were solved using game theoretic notions 

in the next chapter and in an intertemporal differential game approach in 

subsequent chapters. Consider for example, the traditional one-period  

inventory problem. Such problems are based on the minimization of some 

centralized objective (usually costs borne by the operations manager) sub-

ject to an estimate of future demands. In a supply chain framework, both 

the decisions reached by the supplier delivering the goods and the order set 

by the operations manager are reached independently, albeit in a coordi-

nated and collaborated manner. These problems are therefore dynamic 

problems, although we shall consider first a static version of such prob-

lems. This implies that within a given period, the problem’s parameters are 

assumed to be fixed. A decision is reached at the beginning of a period and 

implemented at the end of the period together with the revelation of the 

demand subsumed in the inventory model. We shall also assume that 
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products are delivered by the end of the period and then instantly sold to 

meet the period’s demand. Of course, such a problem ignores intermediate 

inventories (and their associated costs) incurred in pre-season production 

and inventory build-ups.  

With these limitations in mind, we focus our attention on stock and pric-

ing policies which will mitigate the costs of shortages as well as excess  

orders, accounted for at the end of the period. In addition, and for matters 

of simplicity, we also assume that the information needed for the decisions 

to be reached by both the supplier and the operations manager are fully 

known and shared by the supply chain participants and that order lead-time 

are smaller than the period’s length such that all deliveries are provided on 

time. (The problems we outline next will, of course, be resolved in a sub-

sequent chapter, in their static, one-period game and dynamic (differential) 

game frameworks.) 

The Pricing Game 

As a departure point, consider the classical deterministic pricing game due 

participants in a supply chain. For example, a single supplier might sell a 

product to a single retailer over a single time period . Let the retailer face 

an endogenous demand, q(p), a downward-sloping function of the retail 

price p, i.e., 0<
∂
∂
p

q
. We assume that the supplier incurs a unit production 

cost c and sells the unit at the wholesale price w. The retailer’s price per unit 

Js(w,m)=(w-c)q(w+m) 

while the retailer's profit is: 

Jr(w,m)=mq(w+m). 

In the Bertrand pricing model, both the supplier and the retailer seek to 

maximize profits—the supplier by choosing the wholesale price and the  

retailer by selecting the retail price, p, and hence the order quantity q(p). 

Of course, each of these has dependent profits, depending on the other’s 

(independently reached) decisions. Therefore, a game theoretical approach, 

expressing the information available to each, the power relationship that 

co-exists between these players and the business rules at hand, determine a 

framework which we can use to assess the implications and the decisions 

that each of these players ought to reach. 

The game we shall consider consists in the following: the supplier sets 

the wholesale price while the retailer selects the retail price and thus the  

to Bertrand’s price competition model . This games involves two vertical 

is p=w+m, where m defines the retailer’s margin. Thus, the supplier’s profit is  
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quantity to order. The supplier then delivers the quantity ordered. Since 

this pricing game is deterministic, all products that the retailer orders will 

be sold (since there is no point in ordering quantities to be added to an  

inventory cost). As a result, we face such questions as: What is the effect 

of the vertical competition between the supplier and the retailer on the  

retail prices (i.e., customers)? On the wholesale price and the quantities 

sold by the chain?. Does collaboration in a supply chain framework matter 

and how much? Further, if collaboration pays, then how are the spoils of 

such collaboration distributed in a sustainable manner between the supplier 

and the operations manager. 

The Production Game 

A similar problem, dealing with the quantity to produce and production 

competition is defined by the well known Cournot model. Two essential 

features distinguish this model compared to the Bertrand pricing game  

described above. In this model, we represent a product price as a function 

of demand, p=p(q), 0<
∂
∂
q

p
, or q=q(p), 0<

∂
∂
p

q
, i.e., using an inverse  

demand function. A second feature deals with the types of competition 

presumed by the Cournot model. In the supply chain under consideration, 

we assume two horizontal participants (two independent firms reaching 

their own decisions independently), consisting of a manufacturer and a sup-

plier (or both manufacturers and suppliers). Assume two manufacturers, 

each incurring the unit production cost c when producing the same (or sub-

stitutable) product type. Further, assume that both compete in selling to the 

same retailer.  

The retailer employs the so-called vendor-managed inventory policy and 

thus will not interfere in the manufacturers’ competition. This implies that 

both manufacturers, say “1” and “2” decide on production quantities q1 and 

q2 respectively, supplied in turn to the retailer. (It is assumed that the  

retailer relies on the manufacturers’ decisions and that sales are transparent 

to both manufacturers-suppliers.) Consequently, the product price is a 

function of aggregate demand, p=p(q1+q2).  In other words, a manufacturer 

selecting a production quantity, will necessarily affect the other’s profit. 

The resulting game is as follows: both manufacturers set the quantities to 

produce and supply to the retailer. The retailer will then sell the products at 

a price which is an aggregate function of these quantities. In a supply chain 

with a collaborative environment, a number of issues can then be raised. 

For example, how does horizontal competition compare to a collaborative 

framework and can such a framework be sustainable? Further, if such  
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a collaboration can be maintained, what are the essential factors that define 

a “successful” supply chain?  

The Stocking Game 

The simplest single-period inventory problem is a “Newsvendor problem” 

consisting of a producer or retailer deciding to order to stock a fixed pro-

duct quantity q , when the period demand is assumed to be uncertain. Such 

a problem is subject to numerous modifications and extensions, some of 

which are considered in the next chapter. In the classical newsvendor prob-

lem, there is no initial inventory on hand; the demand, d, is exogenous 

with a known probability distribution function; the setup (or order) cost is 

negligible; the purchasing price is fixed; and the decision to order q units is 

made at the beginning of the period. Since the true demand D is known 

only by the end of the period, it is likely that either we incur a shortage (D-

q>0) whose unit cost is denoted by h
-
 or an inventory excess (q-D>0) 

whose unit holding cost is denoted by h
+
 . A retailer's objective is then a 

“linear regret” objective, seeking to minimize the least weighted shortage 

and holding costs (see also Tapiero, 2004, 2005). However, if in addition, 

we include a supplier who seeks to sell his product to the retailer, a rela-

tionship between the supplier and the retailer may, under numerous circum-

stances, alter the wholesale price, w, (the purchase price for the retailer). In 

this sense, the newsvendor problem turns out to be a game. Indeed, the  

retailer's purchase price w will no longer be fixed, in contrast to the classi-

cal newsvendor problem which assumes such a price is fixed.  

In a game framework, the supplier sells at a wholesale price w, incurs a 

production cost c, and maximizes the profit Js=(w-c)q. This profit function 

is deterministic. However, due to the random demand, the retailer's profit 

will be uncertain. Therefore, either an expected profit is maximized, E[.], 

(in which case, we assume that the retailer is risk neutral) or a risk sensi-

tive objective is defined, leading to a “robust” ordering policy, which will 

be insensitive to some of the actions that the suppliers may take.  In this 

framework, the game consists in the following: after the supplier chooses a 

wholesale price, w, the retailer determines the order quantity, q. The supplier 

then produces the products and delivers them by the end of the period. Of 

course, there are also variations and extensions to this game, in both their 

static and in their inter-temporal frameworks. Some of these will be con-

sidered in Chapters 2 and 3 respectively. 
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The Outsourcing Game 

Outsourcing consists in the transfer of previously in-house production or 

other activities to a third party. This problem has been the subject of con-

siderable analysis due to the current awareness that a large segment of  

industrial, logistics and service activities are outsourced both nationally to 

local firms and internationally. A simplistic version of this model, based 

on the classical make-buy decision problem can be construed as a single-

period newsvendor model with a setup cost added. The assumed setup cost 

C, is a fixed irreversible cost which the manufacturer incurs for each in-

house production order. In addition, a variable per unit cost cm, is assumed.  

The outsourcing decision is presumed to relieve the industrial firm from 

the fixed costs it assumes, augmenting thereby reactivity to market demands 

and reducing its aggregate costs. Of course, such presumptions are simplis-

tic since there are many mitigating factors and strategic considerations  

implied in the outsourcing decision. In our simplified model, the basic 

newsvendor assumptions remain unchanged; the demand is random with a 

known probability distribution; and the selling season is assumed to be 

short, so that if the order quantity is less than the true demand at the end of 

the period, then shortage h
-
 cost per unit of unsatisfied demand is incurred 

and there is no time for additional orders. Otherwise, if there is a surplus 

with respect to the quantity that the manufacturer is able to sell, the inven-

tory cost incurred per unit is h
+
 for inventory left over at the end of period.  

Such a framework will provide, nonetheless, a model in which some of the 

salient factors determining to outsource or not can be defined and discussed.  

The resulting outsourcing game is defined as follows: the supplier sets 

the wholesale price and then the manufacturer decides whether to outsource 

or to produce in-house. If the decision is to outsource, the manufacture  

responds with an order quantity, which the supplier delivers by the end of the 

period. If the decision is to produce in-house, then the manufacturer decides 

on the quantity to produce and initiates the production. This game, simple 

in a static framework, becomes elaborate in an inter-temporal framework. 

Inventory Game with Buy-Back, Sell-Back and other Options 

The profusion of optional features in inventory and production contracts 

has greatly expanded the number of issues addressed in operations and 

supply chain management problems. Such features have been considered 

particularly important since they allow directional risk transfer between 

parties who possess different information at the time the contracts are  
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negotiated and signed as well as vastly differing risk attitudes. To present one 

such optional feature, we shall consider a buy-back option in an inventory 

contract. In classical models, all expenses and risks related to the order that 

has been made is assumed by the “order taker”, i.e., the party who assumes 

the difference between the quantity, q, stocked and the actual demand, D, 

revealed at the end of period, which is paid for solely by the retailer. In an 

optional buy-back of the newsvendor problem, the retailer has the option 

to return unsold products at the end of period at a price, b(w), which is  

below the wholesale price, w. This implies that if a buy-back contract is 

signed, the supplier mitigates the retailer's surplus, x
+
, related to the risk it 

assumes and thus encourages the retailer to buy more. As a result, in addi-

tion to the retailer’s uncertain profit, the supplier’s payoff function Js(q,w)= 

(w-c)q-E[b(w)x
+
] now involves a random surplus, x

+
. This is in contrast to 

the outsourcing and inventory games, where the supplier’s profit was  

defined at the time of sale.  

The game is defined as follows: the supplier sets a wholesale price w 

and a buy-back price b(w); the retailer orders quantity q, which the supplier 

delivers, contracting for surplus products (if any) at the end of period, once 

the optional decision by the “buyer-manufacturer” is reached ex-post when 

demand is revealed.  

The Inventory Game with a Purchasing Option 

Similar to the sell-back and buy-back options, a purchasing option pro-

vides a supplier with the means to mitigate the retailer's risk associated with 

uncertain demands. To do so, an agreement regarding inventory shortage 

costs sharing rather than surplus costs may be assumed. Specifically, the 

supplier may agree to carry additional inventories by providing the retailer 

a purchasing option, complementing the regular order at the wholesale 

price, w. The option allows the retailer to issue an urgent or emergency  

order at a predetermined price, u(w)>w, 0
)(

≥
∂

∂
w

wu
, close to the end of 

the selling season and to be shipped immediately. The retailer, of course, 

will exercise this option only if customer demand exceeds its inventories. 

The quantity, which is the difference between the retailer’s shortage (back-

order) and the supplier’s inventory position at the end of period, will be  

delivered then as an emergency order. If the supplier is not able to satisfy 

such a backorder in full, a supply contract might stipulate that associ- 

ated retailer’s losses will be covered by the supplier (in whole or in  

part). Under this type of option, the supplier explicitly assures the buyer,  
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providing a customer service level at the retailer’s site (assuming as a re-

sult, part or the whole retailer's backlog cost).  

Similar to the buy-back option, a purchasing option affects the supplier’s 

profit and introduces some uncertainty and thus augments the risk associ-

ated with random demands faced by the buyer. Nevertheless, such contract 

provides both a sale incentive on the one hand and is justified by the 

economies of scale that the supplier wishes to implement (presuming that 

the supplier has a diversified group of such buyers).  

The game is defined as follows: the supplier chooses the wholesale and 

purchasing option prices, then the retailer and supplier choose quantities 

for their regular orders, the supplier then delivers the regular order. When 

the demand is realized, if there is a shortage, the backlogged units are  

urgently delivered to the retailer.  

1.8 RISK AND SUPPLY CHAIN MANAGEMENT 

Risks and its management have traditionally been used as a panacea for the 

many ills, real, potential or imaginary, that corporate management deals 

with or sustains, either internally or externally. However, the growth and 

realignment of corporate entities into strategic supply chains, global and 

market sensitive, are altering conceptions of corporate risk and as a result 

the management of supply chains. These concerns are today far more in 

tune with the operational challenges faced by cross-national supply chains. 

These topics will be developed further in Chapter 7.  

Supply chains are based on exchange and dependence between firms, all 

drawing financial benefits from the arrangement. These benefits include 

risks which must be sustained and managed, frequently in as many ways 

the mind can measure and the imagination suggests. Collaboration for  

example, is a well-trumpeted mechanism for maximizing profits while at 

the same time managing the dependence risks between firms engaged in 

supply chain exchanges. Collaboration is not always possible, however, for 

agreements may be difficult to self-enforce and as a result dependence 

risks are strategic and potentially overwhelming. These issues, specific to 

supply chains, combined with the operational and external risks that supply 

chains are subject to and create, require that specific attention be directed 

to their measurement and to their management. Such measurement will  

require a greater understanding of a firm’s motivations in entering supply 

chain relationship. Here, supply chain managers have an important role in 

achieving this understanding by focusing attention on these risks and in 

educating corporate managers about what these risks imply, how to measure, 
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evaluate, and internalize them in the costs and benefits calculations they 

use to reach decisions.  

It should be kept in mind that risk is also a great “motivator”, energizing 

technological innovation, development and growth. Without risk, there can 

be no profit as well. In other words, in the spirit of financial theory, profits 

can be realized if supply chain entrepreneurs take risk and these profits are 

a compensation for the risk they are willing to assume. The reverse might 

not be true, however—risk taking does not imply profits! For these rea-

sons, risk is a two-edged sword, an inducement to creative change but also 

bearing the possibility of a negative consequence.  

Supply chains have expanded hand-in-hand with the globalization of the 

economic environment and technological change and the emergence of  

financial markets entailing corporate objects and business risks that cannot 

be sustained by individual firms. Risk-sharing through joint ventures, sup-

ply chains and other inventive organizational frameworks has both justi-

fied the trend to ever-larger supply chains entities but at the same time it 

has raised a number of issues about risks and their control (such as opera-

tional risks; sustainability; political risks; and risk externalities sustained 

by supply chains). In contrast to the traditional focus on internal and exter-

nal risks in operations and logistics (for example, dealing only with the 

risks of supplies or meeting demands as outlined above), supply chains are 

far more subject to strategic risks and to risk externalities. Examples that 

highlight these risks will be considered here; basic models to deal with such 

problems in a supply chain environment will be considered in Chapters 7 

and 8. 

Supply chains are an essential ingredient of the quest for corporate sur-

vival and growth. Risk in supply chains has assumed, however, added  

dimensions, providing, on the one hand, greater opportunities to manage 

these risks and, on the other, augmenting appreciably, the risks that mod-

ern enterprises face. Since many of these risks are ill-understood and 

poorly evaluated, they are poorly managed. As a result they are also poorly 

measured, augmenting the risks that supply chains entities face. 

Risks Galore 

In contrast to the traditional focus on internal and external risks, we shall 

distinguish between: 

• Operational risks (such as intra-firms operational risks)  

• 
market structure risks)  

• Strategic risks (such as inter-firms risks)  

• Risk externalities  

External risks (such as technology, financial markets, political and 
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In Figure 1.11, a plethora of such risks are included, emphasizing the 

fact that risks are both varied and numerous. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Risk galore  

Operational risks (see Table 1.1) concern the direct and indirect adverse 

consequences of outcomes and events resulting from operations and ser-

vices that were not accounted for, that were ill-managed or ill- prepared. 

They affect individual clients, customer-firms or society at large (their  

externalities). The risks  result from many reasons and may be induced both 

internally and externally. Internal consequences are the result of failures in 

operations and service management while in the latter instance they derive 

from  external uncontrollable events we were not ready for or were unable 

quences. By contrast, operation attributes (product and service quality, for 

example) may be objective and subjective and can be measured in many dis-

parate ways. Quality may be based on a measure of excellence (measured 

absolutely, or relatively as is the case in benchmarking), or be defined as 

the ability to meet consumer specifications (as is the case in industry). Or, 

equivalently, measured in terms of the firm’s ability to meet “customers 

expectations”, it can be broadly used to measure service quality. Zeithamal 

at el. (1990), for example, concluded that “service quality as perceived by 

consumers results from a comparison of perceived service with expected  
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to attend to. Operations risks are thus a measurement of these conse- 
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service”. “Unquality” is then defined as the “risk” of deviating from con-

sumer expectations without actually measuring the consequence of such a 

deviation—which measures risk!. Other approaches have also been sug-

gested, however, based on the socio-psychology of persons (the servers, 

the serviced and the encounter between the two) involved in the service 

process (Klaus 1991, pp. 261-263). In other words, in services, quality and 

risk are highly intertwined concepts, often one expressing the other. In this 

sense, risk is an essential attribute of quality in services (as well as in  

industry). Operational risk and quality are therefore intimately related—

one is used to measure, to define and to manage the other.  

In industrial quality, since the definition of quality risks is based on the 

management of variations, their measurement and control are far more 

specific than in the case of services.  Such differences arise because service 

quality may be person-specific i.e. quality may be measured or valued in 

various ways by different persons and firms and in diverse circumstances. 

Further, it may depend on both “the service provider—the supplier” and 

the “serviced–producer”, each with their own interacting characteristics 

and wants, etc. For example, a firm over-emphasizing on-time delivery to 

a member of the supply chain (because of absolute requirements in syn-

chronization) may neglect some of its intangible attributes (the meeting 

and the discussion that were on-going between clients and delivery persons) 

leading thereby to a subsequent loss of customers. 

External risks derive from events over which the firms within the supply 

chain have little control. These events are now assuming a far greater  

importance, providing a source of concern and worry to supply chains. For 

example, financial markets in particular have created immense possibilities 

for corporate risk transfer and risk valuation of corporate enterprises and 

therefore a more efficient risk management. However, they have also be-

come a two-edged sword—misused in a manner to render certain financial 

decisions to be non-transparent and generally tending to favor short-term 

gains over longer ones. Further, based on the presumption that there is no 

profit without risks, financial markets have been used to exercise and  

assume exuberant (and irrational) risks. Size and scale in financial markets 

have also contributed to dwarfing any potential control can be exercised by 

the firms and the supply chains aggregates upon which they depend .  

By the same token, the current supply chain environment –“globalization”– 

has fostered the growth of many external threats that had previously been 

kept at bay . Globalization is thus both an opportunity and a threat. It is an 

opening to markets (with many specificities and risks) while at the same 

time there is a risk that “global” competition may invade what may have 

been traditional and protected markets. In other words, globalization means 
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also that the “world” enters freely into an enterprise’s traditional markets, 

threatening its ability to compete.  

Approaches to risk measurement, valuation and management might dif-

fer due to cultural environments, values and society’s traditions. Each  

emphasizes perspectives often neglected by the other. Such problems often 

contribute to misunderstandings in business practices and exchanges. Thus 

risk can be culture- sensitive, as has often been observed in practice in the 

US, Europe and Asia. In this spirit, the measurement of risk in a supply 

chain must reflect the many intricacies that local habits and culture imply 

as well as the many opportunities and threat they open for the supply chain 

(as is the case in China, for example).  

Technology, by the same token, is both an external as well as a strategic 

risk. It is an external risk because technology innovation is broadly diffused 

with firms having little control over the process.  Further, the “democrati-

zation” of innovation has removed the center of gravity in technological 

innovation from in-grown and managed R&D to innovations appearing in 

a seemingly spontaneous manner throughout the global chain. For these 

reasons, some firms have abandoned the in-house process of innovation 

and inventiveness management in favor of permanently scouting for talent 

and innovation. While in some cases, this might seem as a mechanism to 

reduce costs. In other, more likely cases, it is far more a losing battle fought 

by strengthening the protective walls that supply chains create to augment 

the control that firms within the chain have over their markets. 

Another strategic, external risk that supply chains encounter lies in the 

fact that firms within the chain have become major consumers of fast-

changing technologies, in particular IT. At the same, they are increasingly 

losing control over these technologies. This in turn amplifies the techno-

logical risks that supply chains and enterprises face. IT outsourcing, a cur-

rent fad, is a revealing signal of helplessness in managing a technology, 

imbedded in a strategic rationale; it has dire consequences for enterprises 

in the long run.  

Strategic risks (see Table 1.1): Supply chains are based on exchange and 

collaboration. The former aspect means that for firms to engage in a supply 

chain, their utility must at least be larger than a “going-it-alone”. Therefore 

risk arises when enterprises exchange with several other firms whose  

motivations may differ from the enterprise’s aims. In this case, collabora-

tion may be impossible to maintain. Information and power asymmetries, 

“a tyranny of minorities” etc., make it possible then for the few to threaten 

and control the many through moral hazard and adverse selection risks. 

This leads to supply chains breaking down. Further, even if firms do colla-

borate and find it economical to sustain the supply chain, often a randomized  
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strategy is Pareto efficient, which induces an additional strategic risk. In 

such circumstances, the mere fact that firms engage in a collaborative sup-

ply chain relationship induces a risk unlike the risk sustained by firms that 

“go-it-alone”. Strategic risks arise then from an uncertainty with risk de-

rivatives that are no longer consequences of a latent environmental (bad 

enough) uncertainty but the outcome of strategic (and potentially malevo-

lent) behaviors.  

Corporate realignment along supply chains and well integrated business 

entities is an example of the modern corporate work environment. Tradi-

tional and basic functions such as quality (risk) control, inventory (risk) 

management in a supply chain, etc. can no longer be dealt with in the “risk 

neutral” context and “conflict free” environment in which such problems 

are taught in the classroom and applied automatically in industrial manage-

ment. Rather, a strategic approach to risk assessment is needed. Recently, 

some papers along these lines have appeared (for example, Akerlof 1970; 

Barzel 1982; Riordan 1984, and many others as will be outlined in Chap 

ter 7). Underlying strategic risk is an information asymmetry whose risk  

effects can be summarized by adverse selection and moral hazard. In  

“Adverse Selection”, Akerlof points out that goods of different qualities 

may be uniformly priced when buyers cannot realize that there are quality 

differences (Akerlof 1970). For example, one may buy a used car, not 

knowing its true state, and therefore the risk of such a decision may induce 

the customer to pay a price which would not truly reflect the value of the  

car. In other words when there is such an information asymmetry, pricing 

of quality is ill-defined because of the mutual risks that exists between the 

buyer and the seller (who has a better information).  

“The Moral Hazard Problem” implies that a quality that cannot be ob-

served induces a risk to the customer. For example, there is a possibility 

that the supplier (or the provider of quality) will use that fact to his advan-

tage and not deliver the right level of quality. Of course, if we contract the 

delivery of a given level of quality and if the supplier does not knowingly 

maintain the terms of the contract that would be cheating. We can deal 

with such problems with various sorts of (risk-statistical) controls com-

bined with incentive contracts which create an incentive not to cheat or lie. 

In supply chain services, the control of such risks may be treated in many 

different ways. For example, some restaurants might open their kitchen to 

their patrons to convey a message of truthfulness in so far as cleanliness is 

concerned. A supplier would let the buyer visit the manufacturing facilities 

as well as reveal procedures relating to the control of quality, service  

record and reputation etc. 

Examples of these problems are numerous. We outline a few. A trans-

porter may not feel sufficiently responsible for the goods shipped by a 
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company to a demand point. As a result, it is necessary to manage the 

transporter relationship and thereby the risks implied in such a relation-

ship. Otherwise, this may lead to a greater probability of transport failure. 

The “de-responsabilization” of workers also induces a moral hazard. It is 

for this reason that incentives, performance indexation and “on-the-job-

responsibility” are so important and needed to minimize the risks of moral 

hazard (irrespective of whether these are tangibles or intangibles). For  

example, decentralization of the work place and getting people involved in 

their jobs may be a means to make them care a little more about their job 

and to provide an appropriate performance in everything they do. A sup-

plier who has a long-term contract might not care to supply on time for a 

buyer who is locked into such a relationship (contract). Within these  

examples, there are also negative inducements to performance.  

The relationship between strategic risks, conflict and control as well as 

the role of statistical sampling in improving the control of supply chain 

conflict has to a large measure been neglected. For example, the  failure of 

statistics to reflect conflict arose from the presumption that “uncertainty is 

not motivated”. In other words, randomness is an act of G-D and has no 

known purpose or is not directed towards any special purpose. Interpreting 

uncertainty and reducing its effects is then based on the presumption that 

our measurements and our acts are independent of the origins of such  

uncertainty. Randomness arises as well due to “moral hazard and adverse 

selection”, as pointed out earlier, because of information asymmetry and 

conflicting interests that induce a greater need for controls in order to  

assure that “what is intended will occur”. Here again, the use of sampling 

(because measurements are costly) as a technique to mitigate the effects of 

information asymmetry on decision efficiency has been ignored. For exam-

ple, insurance contracts with binding sampling clauses, may be designed 

not only as a means of exchange but also as a way to induce post-contract 

behaviour which is compatible with a contract’s intentions. Similarly, stra-

tegic audits always have a number of messages that they convey: a control, 

a signal to the auditor on the firm’s intentions and, of course, to collect  

information which is needed to reach an economic decision. For example, 

in a bilateral monopoly under information asymmetry, there is ample room 

for opportunistic behaviour! (That is to say, when only two parties are  

involved in decision-making, information asymmetry can lead to opportun-

istic behaviour, or, simply said, cheating). The control of exchanges between 

parties should, therefore, keep in mind the parties’ intentionality imbedded 

in their preferences, the exchange terms, as well as the information each 

will use in respecting or not the intended terms of their exchange. In some 

papers (Reyniers and Tapiero, 1995a, 1995b; Tapiero 1996, 2006), these 
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effects have been stressed in producer-supplier relationships and in the  

design of contracts for controlling quality. 

Table 1.1. Risks 

 

 

 

 

 

 

 

 

 

 

 

An externality is a cost or benefit that is experienced by someone who is 

not a party to the transaction that produced it. A negative externality is a cost 

experienced by someone who is not a party to the transaction that produced 

it. A positive externality is a benefit experienced by someone who is not a 

party to the transaction that produced it. Externalities are important because 

they can create incentives to engage in too much or too little of an activity, 

from an efficiency perspective. When all of the costs and benefits of a 

transaction are internal, meaning that all costs and benefits are experienced 

by someone directly involved, we expect the transaction to take place only 

if the benefits are greater than the costs. Say, for example, that a good is 

produced through a supply chain. A price can then be agreed on if both the 

clients –the public and the supply chain – can profit. What if, in making 

the product, the supply chain also contributes significantly to pollution 

without sharing the costs of cleaning the pollution it has created? In that 

case, the fact that a product was produced and sold does not necessarily 

mean that wealth was created because of such an exchange. To know for 

sure, we’d have to find out the economic value of the pollution damage.  

In general, the problem is that externalities create a divergence between 

private and social costs and that can be very risky because supply chains,  
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due to their size and power, are often competing with public and political 

institutions. Further, corporate responsibility, ethics, environmental consci-

ousness and other such concepts are used by firms to deal with risk exter-

nalities. Currently they are mostly used as popular buzz words in corporate 

strategies with risk externalities that are mostly misunderstood and not 

valued. Corporations react in a similar manner to patients that are told that 

they must diet urgently—which they do with a great appetite giving an  

indigestion. The problem is that externalities create a risk for corporate 

firms—the risk that a divergence between private costs and social costs 

will entail appreciable damage for the firm. 

Measurement of risk in supply chains is thus essential and ought to  

emphasize the specific characteristics and motivations of supply chains in 

managing their priorities, operational and otherwise. However, if the quest 

for profit is not without risk, there are no profits without an efficient risk 

management. Risk can no longer be a consequence of corporate strategy in 

its quest for an efficient supply chain management but an essential aspect, 

feeding and fed by this strategy. 

APPENDIX: ESSENTIALS OF GAME THEORY 

Game theory involves decision-making between two or more parties com-

peting against one another for the purpose of reaching an objective. Each 

of the parties may depend on the other. These problems are, in general, dif-

ficult to analyze, since risks of various sorts and many other factors must 

be taken into account. To properly describe how to behave in these cir-

cumstances involves an appreciation of psychological, sociological as well 

as economic motives. Behavioral decision-making, which seeks to study 

how decisions are made in fact, has been used to investigate and understand 

how and why certain decisions are reached in complex and conflicting 

situations. “Rational decision-making”, that is, the theory of how we ration-

ally behave in competing with others is known as game theory. Areas of 

application span economic analysis, for example, how agents reach deci-

sions in an economic environment, how market forces operate, and so on.  

Game theory was first proposed and defined by the French mathemati-

cian Emil Borel in 1921. The famed mathematician John von Neumann 

provided an analysis of games in 1928. In 1944, von Neumann, assisted by 

the economist Oskar Morgenstern, published the first thorough and to this 

day, most complete, work on game theory, “The Theory of Games and 

Economic Behavior”. This book was published about the same time that  
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Dantzig developed the simplex algorithm in linear programming. A few 

years later, a relationship between certain types of games (explicitly, zero-

sum games) and their solution by linear programming was pointed out. Here 

we are concerned with two-persons zero-sum games. Situations where there 

may be more than one player, potential coalitions, cooperation, asymmetry 

of information (where one player may know something the other does not) 

etc. are practically important but are not within our scope of study. 

Two-Persons Zero-Sum Games  

Two-persons zero-sum games involve two players. Each has only one 

move (decision) to take and both make their moves simultaneously. Each 

player has a set of alternatives, say A =( nAAAA ,.......,,, 321 ) for the first 

player and B=( mBBBB ,.......,,, 321 ) for the second player. When both players 

make their moves (i.e. they select a decision alternative) an outcome ijO  

follows, corresponding to the pair of moves ),( ji BA  which was selected 

by each of the players respectively. In two-persons zero-sum games, addi-

tional assumptions are made: (1) nAAAA ,.......,,, 321  as well as 

mBBBB ,.......,,, 321  and ijO  are known to both players. (2) Players do not 

know with what probabilities the opponent’s alternatives will be selected. 

(3) Each player has a preference that can be ordered in a rational and con-

sistent manner. In strictly competitive games, or zero-sum games, the 

players have directly opposing preferences, so that a gain by a player is a 

loss to its opponent. That is;  

 The Gain to Player 1 = The Loss of Player 2 

The concepts of pure and mixed strategies, minimax and maximin 

strategies, saddle points, dominance etc. are also defined and elaborated. 

For example, two rival companies, A and B, are the only ones. Company A 

has three alternatives 321 ,, AAA  expressing different strategic while B has 

four alternatives 4321 ,,, BBBB .  The payoff matrix to A (a loss to B) is 
given by: 
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This problem has a solution, called a saddle-point, because the least 

greatest loss to B is equal to the greatest minimum gain to A. When this is 

the case, the game is said to be stable, and the pay-off table is said to have 

a saddle-point. This saddle-point is also called the value of the game, 

which is the least entry in its row, and the greatest entry in the column. Not 

all games can have a pure, single strategy, saddle-point solution for each 

player. When a game has no saddle point, a solution to the game can be 

devised by adopting a mixed strategy. Such strategies result from the com-

bination of pure strategies, each selected with some probability. Such a 

mixed strategy will then result in a solution which is stable, in the sense 

that player 1's maximin strategy will equal player 2's minimax strategy. 

Mixed strategies therefore induce another source of uncertainty. 

Non-Zero Sum Games 

Consider the bimatrix game (A,B) = ( )ijij ba , . Let x and y be the vector of 
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.  The value of the game for each of the players is 

given by: 
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In this sense there can be three solutions (0,y), (x,y) and (1,y). We can 

similarly obtain a solution for the second player using parameters B and b. 

Say that 0≠A  and 0≠B , then a solution for x and y satisfies the follow-

ing conditions: 
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As a result, a simultaneous solution leads to the following equations for 

(x,y), which we have used in the text: 
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In this case, the value of the game is: 
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For further study of games and related problems we refer to Moulin 

1981; Nash 1950; Von Neumann and Morgenstern 1944; Thomas 1986. 
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A supply chain can be defined as “a system of suppliers, manufacturers, 
distributors, retailers, and consumers where materials flow downstream from 
suppliers to customers and information flows in both directions” (Geneshan 
et. al. 1998). The system is typically decentralized which implies that its 
participants are independent firms each with its own frequently conflicting 
goals spanning production, service, purchasing, inventory, transportation, 
marketing and other such functions. Due to these conflicting goals a decen-
tralized supply chain is generally much less efficient than the correspond-
ing centralized or integrated chain with a single decision maker. Efficiency 
suffers from both vertical (e.g., buyer-vendor competition) and horizontal 
(e.g., a number of vendors competing for the same buyer) conflicts of  
interest.  

How to manage competition in supply chains is a challenging task which 
comprises a variety of problems. The overall target is to make, to the extent 
possible, the decentralized chain operate as efficiently as its benchmark, 
the corresponding centralized chain. This particular aspect of supply chain 
management is referred to as coordination. This chapter addresses simple 
static supply chain models, competition between supply chain members 
and their coordination. 

2.1 STATIC GAMES IN SUPPLY CHAINS 

In research and management literature where supply chain problems and 
related game theoretic applications have gained much attention in recent 
years, we see extensive reviews focusing on such aspects as taxonomy of 
supply chain management (Geneshan et. al. 1998); integrated inventory 
models (Goyal and Gupta 1989); game theory in supply chains (Cachon 
and Netessine 2004); operations management (Li and Whang 2001); price 
quantity discounts (Wilcox et. al. 1987); and competition and coordination 
(Leng and Parlar 2005). 
 
 

IN A STATIC FRAMEWORK  
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In the literature, supply chains are distinguished by various features such 
as: types of decisions; operations; competition and coordination; incentives; 
objectives; and game theoretic concepts. In this chapter we deal with three 
essential features of static supply chains, i.e., the supply chains with deci-
sions independent of time: customer demand, competition and risk. In this 
sense we distinguish between  

• deterministic and random demands; endogenous and exogenous 
demands  

• vertical and horizontal competition within supply chains 

• no risk involved, risk incurred by only one of the parties and risk 
shared between the parties. 

In this chapter, supply chain games are combined into three groups. The 
first group of games represents classical horizontal production and vertical 
pricing competition under endogenous demands. These games involve  
decisions about either product prices or quantities with respect to two types 
of endogenous demands: (i) the quantity demanded for a product as a func-
tion of price set for the product and (ii) an inverse demand function with 
price as a function of the quantity produced or sold. In both cases the de-
mands are deterministic, which implies that all produced/supplied products 
are sold and thus there is no risk involved. 

Random exogenous demand for products characterizes the second group 
of games which is related to the classical newsvendor problem. The parties 
vertically compete by deciding on a price to offer and a quantity to order 
for a particular price. Since the demand is uncertain, the downstream party, 
which faces the demand, runs the risk of overestimating or underestimating 
it. The risk involves costs incurred due to choosing the quantity to order 
and stock before customer demand is realized. We refer to this group of 
games as stocking / pricing competition with random demand.  

The third group of games represents classical risk-sharing interactions 
between supply chain members. Similar to the second group, the competi-
tion is vertical and the demand is exogenous and random. Unlike the sec-
ond group, however, incentives to mitigate risk may be offered to a party 
which faces uncertain customer demands. Since the incentives include 
buyback and urgent purchase options, some of the uncertainty is trans-
ferred from one party to another. In such a case, the risk associated with 
random demand is shared and the inventories of all involved parties are  
affected when deciding on what quantities to stock. 
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Motivation 

We describe a few production, pricing and inventory-stock related prob-
lems which have been found in various service and industry-related supply 
chains. Most of these problems have been extensively studied and can be 
found virtually in every survey devoted to supply chain management  
including those mentioned above. It is worth noting that, in general, the 
number of basic supply chain problems is significant and selecting just a 
few of them for an introductory purpose is not a simple matter.  

Our selection criterion is based on one of the overall goals of this book– 
to show how optimal pricing and inventory policies evolve when static  
operation conditions become dynamic. Under such conditions, we find par-
ticularly interesting the static problems which allow for straightforward 
and, yet natural, dynamic extensions. The problems which we discuss in 
this chapter will be discussed again in the following chapters to show the 
effect of production and service dynamics on managerial decisions. 

The static feature of the problems we select implies that the period of 
time that the problems encompass is such that no change in system para-
meters is observed. Since all products are delivered at once by the end of 
the period and then instantly sold, these problems ignore the intermediate 
inventories (and associated costs) before and during the selling season. 
Due to the focus on stock and pricing policies, shortages as well as left-
overs are avoided, as much as possible, by the end of the period. In all the 
problems that we consider, it is assumed that the information needed for 
decision-making is available and transparent to the supply chain partici-
pants and that the overall order lead-time is smaller than the length of the 
period so that all deliveries are provided on time.  

This chapter introduces and discusses basic models of horizontal and 
vertical competition between supply chain members, the effect of uncertainty 
and risk sharing as well as basic tools for coping with the competition by 
coordinating supply chains. The analysis which we employ includes (i) 
formal statements of problems of each non-cooperative party involved as 
well as the corresponding centralized formulations where only one deci-
sion-maker is responsible for all managerial decisions in the supply chain; 
(ii) system-wide optimal and equilibria solution for competing parties; (iii) 
analysis of the effect of competition on supply chain performance and of 
coordination for improving the performance. In analyzing the problems we 
use Nash and Stackelberg equilibria which we briefly present next.  
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Nash and Stackelberg equilibria 

Game theory is concerned with situations involving conflicts and coopera-
tion between the players. Our focus is on two important concepts of Nash 
and Stackelberg equilibria intended respectively for dealing with simulta-
neous and sequential non-cooperating decision-making by multiple play-
ers. Consider a game, with the strategies yi, i=1,..,N being feasible actions 
which the N players may undertake. All possible strategies of a player, i, 
form a strategy set Yi of the player. A payoff (objective function), Ji(y1,  
 y2,..,yN,), i=1,..,N is evaluated when each player i selects a feasible strategy, 

ii
Yy ∈ . We assume that the games are played on the basis that complete 

information is available to all players. Since two-player games can be 
straightforwardly extended to multiple players and to simplify the presen-
tation, we further assume that there are only two players A and B.  

tion presents the concept of a Nash equilibrium (Nash 1950) 

Definition 2.1 

A pair of strategies *)*,(
BA

yy is said to constitute a Nash equilibrium if 

the following pair of inequalities is satisfied for all 
AA

Yy ∈ , and 
AB

Yy ∈  

JA(yA*, yB*) ≥  JA(yA, yB*) and JB(yA*, yB*) ≥  JB(yA*, yB).  

The definition implies that the Nash solution is 

*)},({maxarg*
BAA

Yy
A

yyJy
AA∈

=  and )}*,({maxarg*
BAB

Yy
B

yyJy
BB∈

= , 

and a unilateral deviation from this solution results in a loss. If this prob-
lem is static, strategy sets are not constrained and the payoff functions are 
continuously differentiable. The first-order (necessary) optimality condi-
tion results in the following system of two equations in two unknowns yA*, 
yB*: 

0
*),(

* =
∂

∂
= AA yy

A

BAA

y

yyJ
 and 0

)*,(
* =

∂
∂

= BB yy

B

BAB

y

yyJ
. 

In addition, the second order (sufficient) optimality condition which  
ensures that we maximize the payoffs is  

0
*),(

*2

2

<
∂

∂
= AA yy

A

BAA

y

yyJ
 and 0

)*,(
*2

2

<
∂

∂
= BB yy

B

BAB

y

yyJ
. 

Equivalently, one may determine )},({maxarg)(
BAA

Yy
B

R

A
yyJyy

AA∈
=  for each 

yB B
Y∈  to find the best response function, yA= )(

B

R

A
yy , of player A and of 

Each player’s goal is to maximize his own payoff. The following defini-
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player B, yB= )(
A

R

B
yy  which constitute a system of two equations in two 

unknowns. 
The examples we shall consider here will be elaborated later in this and 

subsequent chapters. 

Example 2.1 

Consider a supply chain consisting of one supplier, s, and one retailer r. 
The supplier offers products at wholesale price w and the retailer buys q 
product units and sets retail price p=w+m. This is the classical pricing 
game where the two firms want to maximize their profits. Let the supplier 
and retailer costs be negligible and the demand is linear and downward in 

lem is 
Jr(m,w)= m(a-b(w+m)) max→ , 

w
b

a
m −≤≤0  

and the suppliers problem is 

Js(m,w)=w(a-b(w+m)) max→ , 

w ≥ 0. 

First we observe that both objective functions are strictly concave in their 
decision variables. Thus, the first-order optimality condition is necessary 
and sufficient. Using the first-order optimality condition we have 

a-bw-2bm=0 and a-2bw-bm=0. 

If our constraints are not binding, the two best response functions are 

m=mR(w)=
b

bwa

2

−
 and w= w

R(m)=
b

bma

2

−
. 

Solving these two equations (or equivalently the previous two) we find a 
unique Nash equilibrium 

mn=
b

a

3
 and wn=

b

a

3
. 

The equilibrium is evidently feasible and all constraints are met, as 
b

a

3
>0, 

hence, m*>0, w*>0, and 
b

a
w

b

a

b

a n

3

2

3
=−< , hence, nn w

b

a
m −< .  

Stackelberg strategy is applied when there is an asymmetry in power or 
in moves of the players. As a result, the decision-making is sequential 
rather than simultaneous as is the case with Nash strategy. The player who 
first announces his strategy is considered to be the Stackelberg leader. The  
 

price, d=a-bp=a-b(w+m), a>0, b>0. Then the retailer’s optimization prob-
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follower then chooses his best response to the leader’s move. The leader 
thus has an advantage because he is able to optimize his objective function 
subject to the follower’s best response. Formally this implies that if, player 

A, for example, is the leader, then yB= )(
A

R

B
yy  is the same best response for 

player B as determined for the Nash equilibrium. Since the leader is aware 
of this response, he then optimizes his objective function subject to 

yA= )(
B

R

A
yy = ))((

A

R

B

R

A
yyy . 

Definition 2.2 

In a two-person game with player A as the leader and player B as the fol-

lower, the strategy yA*∈YA is called a Stackelberg equilibrium for the 

leader if, for all yA, 

))(,(*))(*,(
A

R

BAAA

R

BAA
yyyJyyyJ ≥ , 

where yB = )(
A

R

B
yy  is the best response function of the follower.  

Definition 2.2 implies that the leader's Stackelberg solution is 

)}(,({maxarg*
A

R

BAA
Yy

A
yyyJy

AA∈
= . 

That is, if the strategy sets are unconstrained and the payoff functions are 
continuously differentiable, the necessary optimality condition for the leader 
is 

0
)(,(

* =
∂

∂
= AA yy

A

A

R

BAA

y

yyyJ
. 

To make sure that the leader maximizes his profits, we check also the  
second-order sufficient optimality condition 

0
)(,(

*2

2

<
∂

∂
= AA yy

A

A

R

BAA

y

yyyJ
. 

Example 2.2 

Consider again Example 2.1 but assume that the supplier is the leader. 
That is, the supplier sets first his wholesale price. In response, the retailer, 
in setting his retail price, determines the product quantity he orders. Then, 

m=m
R(w)=

b

bwa

2

−

w
max Js(m,w)=

w
max w(a-b(w+

b

bwa

2

−
))=

w
max (

22

2
bwaw

− ). 

 

to find the Stackelberg solution, we substitute the best retailer’s response 

 (see Example 2.1) into the supplier’s objective function. 
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The supplier’s objective function is evidently strictly concave. Conse-
quently, the first-order optimality condition results in 

w
s=

b

a

2
, ms

=m
R(ws)=

b

a

4
. 

The found equilibrium is evidently unique and feasible, as 
b

a

2
>0, 

b

a

4
>0 and sw

b

a
− =

b

a

2
 and, thus, 

b

a
w

b

a

b

a
m ss

24
=−<= , i.e., all con-

straints are met.   

For comparative reasons we shall also consider a centralized supply 
chain with no competition (game) involved. The centralized problem can 
be viewed as a single-player game. 

Example 2.3 

Consider again Example 2.1 but assume that there is only one decision-
maker in the system. Then the centralized objective function is 

wm,
max J(m,w)= 

wm,
max [ Jr(m,w)+ Js(m,w)]=

wm,
max (w+m)(a-b(w+m)). 

Applying the first-order optimality condition we get two identical equa-
tions for m and n. This implies that there is only one decision variable p, so 

that the system-wide optimal solution is, m*+w*=
b

a
p

2
* = .  

2.2 PRODUCTION/PRICING COMPETITION 

We discuss here two classical problems arising in supply chains character-
ized by deterministic demands and either vertical supplier-retailer or horizon-
tal supplier-supplier competition. The competition is represented by games. 
We first analyze pricing equilibrium based on Bertrand’s competition model 
and then production equilibrium according to Cournot’s competition model. 
Since the problems are deterministic, they can be viewed as both single-
period and continuous review models. 

Consider a two-echelon supply chain consisting of a single supplier selling 
a product type to a single retailer over a period of time. The supplier has 
ample capacity and the period is longer than the supplier’s leadtime which  
 

2.2.1  THE PRICING GAME 
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implies that the supplier is able to deliver on time any quantity q ordered 
by the retailer. The retailer faces a concave endogenous demand, q=q(p), 

which decreases as product price p increases, i.e., 0<
∂
∂
p

q
 and 0

)(
2

2

≤
∂

∂
p

pq
. 

The supplier incurs unit production cost c and sells at unit wholesale price 
w, i.e., the supplier’s margin is w-c. Note that this formulation is an exten-
sion of that employed in Example 2.1, where a specific, linear in price, 
demand was considered. 

Let the retailer’s price per unit be p=w+m, where m is the retailer’s mar-
gin. Both players, the supplier and the retailer, want to maximize their 
profits – margin times demand which are expressed as Js(w)=(w-c)q(w+m) 
and Jr(p)=mq(w+m) respectively (see Figure 2.1). This leads us to the fol-
lowing problems. 

w
max Js(w,m)=

w
max (w-c)q(w+m)   (2.1) 

s.t. 
w ≥ c.     (2.2) 

m
max Jr(w,m)=

m
max mq(w+m)   (2.3) 

s.t. 
m ≥ 0,    (2.4) 

q(w+m) ≥ 0.   (2.5) 

Note that from w ≥ c and m ≥ 0, it immediately follows that p=w+m ≥ c. 
In contrast to the vertical competition between the two decision-makers as 
determined by (2.1)-(2-5), the supply chain may be vertically integrated or 
centralized. Such a chain is characterized by a single decision-maker who 
is in charge of all managerial aspects of the supply chain. We then have the 
following single problem as a benchmark. 

The supplier’s problem  

The retailer’s problem 
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Figure 2.1. Vertical pricing competition 

The centralized problem 

wm,
max J(m,w)=

wm,
max [ Jr(m,w)+ Js(m,w)]=

wm,
max (w+m-c)q(w+m) (2.6) 

s.t.  
m ≥ 0, q(w+m) ≥ 0. 

To distinguish between different optimal strategies, we will use below  
superscript n for Nash solutions, s for Stackelberg solutions and * for cen-
tralized solutions. 

System-wide optimal solution 

We first study the centralized problem by employing the first-order opti-
mality conditions 

p

pq
cmwmwq

m

wmJ

∂
∂

−+++=
∂

∂ )(
)()(

),(
=0, 

p

pq
cmwmwq

w

wmJ

∂
∂

−+++=
∂

∂ )(
)()(

),(
=0. 

Since both equations are identical, only the optimal price matters in the 
centralized problem, p*, while the wholesale price w ≥ 0 and the retailer’s 
margin m ≥ 0 can be chosen arbitrarily so that p*=w+m. This is because w 
and m represent internal transfers of the supply chain. Thus, the proper  
notation for the payoff function is J(p) rather than J(m,w) and the only  
optimality condition is 

p

pq
cppq

∂
∂

−+
*)(

)*(*)( =0.   (2.7) 

Let q(P)=0, P>c. Then it is easy to verify that, 

Supplier: w

Retailer: m

w q(w+m) 
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2

2

2

2 )(
)(

)()()(

p

pq
cp

p

pq

p

pq

p

pJ

∂
∂

−+
∂

∂
+

∂
∂

=
∂

∂
<0, 

that is, the centralized objective function (2.6) is strictly concave in price 

for ],[ Pcp∈ . This implies that equation (2.7) has a unique solution which 

maximizes (2.6). 

Game Analysis 

We consider now a decentralized supply chain characterized by non-
cooperative or competing firms and assume first that both players make 
their decisions simultaneously. The supplier chooses the wholesale price w 
and the retailer selects his price, p, or equivalently his margin, m, and 
hence buys q(p) products. The supplier then delivers the products. Since 
this pricing game is deterministic, all products that the retailer buys will be 
sold.  

sion 

0
)(

)(
),(

=
∂

∂
++=

∂
∂

p

pq
mmwq

m

wmJ
r .   (2.8) 

It is easy to verify that the retailer’s objective function is strictly concave 
in m and, thus, (2.8) has a unique solution, or, in other words, the retailer’s 
best response function is unique. Comparing (2.8) and (2.7) and taking into 
account that w>c (otherwise the supplier has no profit), we conclude with 
the following result: 

Proposition 2.1. In vertical competition of the pricing game, if the supplier 

makes a profit, i.e., w>c, the retail price will be greater and the retailer’s 

order less than the system-wide optimal (centralized) price and order 

quantity respectively.  

Proof: Substituting p =w+m into (28) we have 

0
)(

)()( =
∂

∂
−+

p

pq
wppq .   (2.9) 

Comparing (2.7) and (2.9) we observe that 

=
∂

∂
−+

p

pq
wppq

)(
)()(

p

pq
cppq

∂
∂

−+
*)(

)*(*)( =0, (2.10) 

while taking into account that w>c and 0<
∂
∂
p

q
, 

 
 
 

Using the first-order optimality conditions for the retailer’s problem, we 
find that the retailer’s best response is determined by the following expres-
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>
∂

∂
−+

p

pq
wppq

*)(
)*(*)(

p

pq
cppq

∂
∂

−+
*)(

)*(*)( =0.     (2.11) 

Next, by denoting 
p

pq
wppqpf

∂
∂

−+=
)(

)()()( , and recalling 0<
∂
∂
p

q
 

and 0
)(

2

2

≤
∂

∂
p

pq
, we find that 

0
)(

)(
)()()(

2

2

<
∂

∂
−+

∂
∂

+
∂

∂
=

∂
∂

p

pq
wp

p

pq

p

pq

p

pf
 

Note, that our conclusion that vertical pricing competition (2.1)-(2.5)  

depend on whether both players make a simultaneous decision or whether 
the supplier first sets the wholesale price and plays the role of the Stackelberg 
leader, as is often the case in practice. In either of the two cases, the overall 
efficiency of the supply chain deteriorates under vertical competition.  

Equilibrium 

To determine the Nash pricing equilibrium, which corresponds to simulta-
neous moves of the supplier and retailer, we next consider the optimality 

0
)(

)()(
),(

=
∂

+∂
−++=

∂
∂

p

mwq
cwmwq

w

wmJ
s . (2.12) 

One can readily verify that the supplier’s objective function is strictly 

concave in w, 0
),(

2

2

<
∂

∂
w

wmJ s  and, thus, the supplier’s best response (2.12) 

is unique as well. As a result, the Nash equilibrium, (wn,mn) is found by 
solving simultaneously the following system of equations 

0
)(

)( =
∂

+∂
++

p

mwq
mmwq ,   (2.13)  

0
)(

)()( =
∂

+∂
−++

p

mwq
cwmwq .  (2.14) 

Solving (2.13) and (2.14) results in 

w-c-m=0 and 0
)2(

)2( =
∂
+∂

++
p

mcq
mmcq . 

 
 

increases retail price and decreases the retailer’s order quantity does not 

conditions for the supplier’s objective function, 

Thus, to have (2.10) we need f(p)<f(p*), which, with respect to the last 

inequality, requires, p>p* and, hence, q(p)<q(p*), as stated in Proposition 1.
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Assuming that the solution w+m=P, q(P)=0 cannot be optimal since it 
leads to zero profit for all supply chain members, we conclude with the 
following result. 

n n n

0
)2(

)2( =
∂
+∂

++
p

mcq
mmcq

n

nn .  (2.15) 

and wn
=m

n
+c constitutes a unique Nash equilibrium of the pricing game 

with 0<m
n<(P-c)/2. 

Proof: To see that a solution of equation (2.15) always exists and that it is 

unique, assume mn=0. Then, since P>c and q(P)=0, 0)2( >+ nmcq , while 

the second term in (2.15) is zero. Thus, 0
)(

)()( >
∂

∂
+=

p

mq
mmqmf

n

nnn  

when mn=0. On the other hand, let c+2mn=P, since q(P)=0, while the sec-
ond term in (2.15) is strictly negative as mn=(P-c)/2>0, we have 

)(
)()(

∂
∂

+=
p

mq
mmqmf

n

nnn

0
)(

<
∂

∂
n

n

m

mf
, we conclude that the solution of f(mn)=0 is unique and 

0<mn<(P-c)/2.    

Next, we assume that the supplier makes the first move by setting the 
wholesale price. The retailer then decides on what price to set and, hence, 
the quantity to order. To find the Stackelberg equilibrium, we need to 

response m=m
R(w) determined by (2.8),  

Js(m,w)=(w-c)q(w+mR(w)). 

0
)()(

)())((
),(

=
∂

∂
∂

+∂
−++=

∂
∂

w

wm

p

mwq
cwwmwq

w

wmJ R

Rs , 

where 
w

wm R

∂
∂ )(

 is determined by differentiating (2.8) with m set equal to 

mR(w).  

0)
)(

1(
)()()(

)
)(

1(
)(

2

2

=
∂

∂
+

∂
∂

+
∂

∂
∂

∂
+

∂
∂

+
∂

+∂
w

wm

p

pq
m

p

pq

w

wm

w

wm

p

mwq RRR

. 

Thus 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

+
∂

+∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

−=
∂

∂
2

2

2

2 )()()()()()(

p

mwq
m

p

mwq

p

mwq

p

mwq
m

p

mwq

w

wmR

. (2.16) 

 

Proposition 2.2 . The pair (w ,m ), where m  satisfies the following equation 

maximize the supplier’s objective with m subject to the best retailer’s  

< 0 . Finally, taking into account that 

Differentiating the supplier’s objective function we have 
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Equation (2.16) naturally implies 

gin m. 

Based on (2.16) and (2.8) we conclude that a pair (ws,ms) constitutes a 
Stackelberg equilibrium of the pricing game if there exists a joint solution 
in w and m of the following equations 

0
)(

)()( =
∂
∂

∂
+∂

−++
w

m

p

mwq
cwmwq , 

0
)(

)( =
∂

+∂
++

p

mwq
mmwq , 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

+
∂

+∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

−=
∂
∂

2

2

2

2 )()()()()(

p

mwq
m

p

mwq

p

mwq

p

mwq
m

p

mwq

w

m
 

We do not study here the existence and uniqueness of the Stackelberg 
solution. Instead we revisit Examples 2.1 and 2.2, which determine both 
Stackelberg and Nash solutions for a special case of the pricing game. 

gible, c=0. Thus we obtain the problem solved in Example 2.1. Note that 

the demand requirements, b
p

q
−=

∂
∂

<0 and 0
2

2

≤
∂
∂
p

q
 are met for the selected 

function. Using Proposition 2.2. we solve (2.15),  

0)(2
)2(

)2( =−+−=
∂

∂
+ bmmba

p

mq
mmq nn

n
nn

, wn= mn 

to find Nash equilibrium wn= mn= 
b

a

3
, hence, pn= wn+ mn =

b

a

3

2
 and 

q(pn)=
3

a
, as is also the case in Example 2.1. The payoff for the equilibrium 

is identical for both players, Jr(m
n,wn)=Js(m

n,wn)=
b

a

9

2

. Similarly, one can 

verify that the Stackelberg solution is the same as in Example 2.2, 

w
s=

b

a

2
, ms=

b

a

4
, ps= ws+ ms =

b

a

4

3
, q(ps)= 

4

a
, 

Js(m
s,ws)=

b

a

8

2

 and Jr(m
s,ws)=

b

a

16

2

. 

 

Example 2.4 

the greater the supplier’s wholesale price w, the lower the retailer’s mar-

Let the demand be linear in price, q(p)=a-bp and the supplier’s cost negli-
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Finally, the centralized solution (2.7) (see also Example 2.3) is 

p

pq
cppq

∂
∂

−+
*)(

)*(*)( =a-bp*+p*(-b)=0, 

that is,  

m*+w*=
b

a
p

2
* = , q(p*)=

2

a
 and J(p*)=

b

a

4

2

. 

Comparing these results we find that the system-wide optimal order is 
greater than that of the Nash or Stackelberg strategy 

q(ps)= 
4

a
< q(pn)=

3

a
< q(p*)=

2

a
, 

which agrees with Proposition 2.1. Correspondingly, the retail prices  
increase under vertical competition 

ps=
b

a

4

3
> pn=

b

a

3

2
>

b

a
p

2
* = . 

and the overall chain payoff deteriorates 

Js(m
s,ws)+ Jr(m

s,ws)=
b

a

16

3 2

<Jr(m
n,wn)+Js(m

n,wn)=
b

a

9

2 2

< J(p*)=
b

a

4

2

.  

The goal of this example is twofold. First of all, it is rarely possible to find 
an equilibrium analytically. This example illustrates how to conduct the 
analysis numerically with Maple. Secondly, the condition imposed on the 
second derivative of demand is sufficient for the equilibrium to be unique, 
but it is not necessary, as the example demonstrates.  

Let the demand be non-liner in price, q(p)=a-bpĮ. Assuming that 0<Į<1, 

we observe that the demand requirements with respect to the first deriva-

tive are met, 1−−=
∂
∂ ααpb
p

q
<0, while with respect to the second 

2

2

2

)1( −−=
∂
∂ ααα pb
p

q
>0 is not. Using Proposition 2.2., we employ (2.13) 

respectively, m=m
R(w) and w=wR(m) .  Specifically, we first set the left-hand 

side of (2.13) as L1 

>L1:=a-b*(w+m)^alpha-m*alpha*(w+m)^(alpha-1); 

 := L1  −  − a b ( ) + w m α m α ( ) + w m
( )− α 1

 

and the left-hand side of (2.14) as L2. 

> L2:=a-b*(w+m)^alpha-(w-c)*alpha*(w+m)^(alpha-1); 

 

Example 2.5 

and (2.14) to obtain numerically the retailer’s and supplier’s best response 
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 := L2  −  − a b ( ) + w m α ( ) − w c α ( ) + w m
( )− α 1

 

Next we substitute specific parameters of the example Į=0.5, a=15, 
b=2,c=1 to have numeric left-hand sides L11 and L12 respectively 

>L11:=subs(alpha=0.5, a=15, b=2, c=1, L1); 

 := L11  −  − 15 2 ( ) + w m 0.5 0.5 m

( ) + w m 0.5
 

> L12:=subs(alpha=0.5, a=15, b=2, c=1, L2); 

 := L12  −  − 15 2 ( ) + w m 0.5 0.5 ( )− w 1

( ) + w m 0.5
. 

Next we find the equilibrium by solving the system of equations L11=0 
and L12=0 

>solve({L11=0, L12=0}, {m,w}); 
 

{ }, = m 21.83319513 = w 22.83319513  

sponse mR(w) numerically as mR 

> mR:=solve(L11=0,m); 

mR  + − 18. 1.200000000 + 225. 5. w 0.8000000000 w, := 

 −  − 18. 1.200000000  + 225. 5. w 0.8000000000 w

 

and the inverse function mRinv of the best supplier’s response wR(m) 

>mRinv:=solve(L12=0,m); 

mRinv  + − 28.37500000 1.875000000 − 229. 4. w 1.250000000 w , := 

 −  − 28.37500000 1.875000000  − 229. 4. w 1.250000000 w

 

Both responses have two solutions, positive and negative. Since the margin 
is non-negative, we select only positive solutions mR[1] and mRinv[2] and 
plot them on the same graph. 

>plot([mR[1],mRinv[1]],w=1..45,legend=[“Retailer”, 
“Supplier”]); 

 

To verify that the equilibrium is unique, we find the best retailer’s re-



66      2 SUPPLY CHAIN GAMES: MODELING IN A STATIC FRAMEWORK 

 

From Figure 2.2 we observe that there is only one point where the  
responses intersect. This is the Nash equilibrium point which we found 
numerically as mn =21.833 and wn =22.833. 

The centralized solution (2.7) is found similarly with Maple 

> L:=a-b*p^alpha-(p-c)*alpha*p^(alpha-1); 

 := L  −  − a b pα ( ) − p c α p
( )− α 1

 

> L11:=subs(alpha=0.5, a=15, b=2, c=1, L); 

 := L11  −  − 15 2 p0.5 0.5 ( )− p 1

p0.5
 

> popt:=solve(L11=0,p);  

:= popt 36.39890107  

Comparing the system-wide optimal price with the equilibrium Nash price, 
we find that p*=36.398<pn=mn+wn=21.833+22.833=44.666.  

Coordination 

According to Proposition 2.1, vertical competition has a negative effect on 
the supply chain. The retailer orders less, the retail price goes up and prof-
its shrink. Moreover, although the supplier’s leadership allows the supplier 
to increase his profit, in the specific case of linear price demand (see Exam-
ple 2.4), the leadership is also destructive as it further reduces the total 
profit in the supply chain. The negative effect of the vertical competition is 
due to the well-known double marginalization effect. This effect takes 
place if the retailer ignores the supplier’s profit margin, w-c, when ordering 
as shown in Proposition 2.1. Specifically, when recalling that p=w+m, the 
retailer’s best response (2.9) 
 
 

Figure 2.2. The pricing equilibrium 
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can be written as 

0
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∂
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p

pq
mpq , 

which implies that though the demand depends on price p=w+m, the  
retailer accounts only for his margin m instead of ordering as indicated by 
the centralized approach (2.7)  

p

pq
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and thus adding the supplier’s margin, w-c, to m. Equivalently, from equa-
tion (2.14)  

0
)(

)()( =
∂

∂
−+

p

pq
cwpq  

we observe that the supplier ignores the retailer’s margin m when setting 
the wholesale price. The remaining question is how to induce the retailer to 
order more, or the supplier to reduce the wholesale price, i.e., how to coor-
dinate the supply chain and thus increase its total profit. Of course, the 
supplier may set the wholesale price at his marginal cost, w=c, or the  
retailer may set his margin at zero. Equation (2.7) then becomes identical 
to (2.9) and the supply chain is perfectly coordinated. However, the supply 
chain member who gives up his margin gets no profit at all. The most 
popular way of dealing with such a problem is by discounting or by col-
laboration for profit sharing. 

One approach to discounting is a simple two-part tariff. If the supplier is 
the leader, he can set w=c, but charge the retailer a fixed fee. In this way, 
the supplier can regulate his share in the total supply chain profit without a 
special contract. Moreover, if the supplier sets the fixed fee very close to 
the centralized supply chain profit, J(p*), then the retailer gets almost no 
profit and still orders the system-wide optimal quantity q(p*) as well as 
sets system-wide optimal price p*. 

Regardless of whether there is a leader or not, signing a profit-sharing 
contract is an alternative way to mitigate the double marginalization. In 
such a contact, the parties would explicitly set their shares of the total sup-

ply chain profit, J(p*) with Ș, 0 ≤  Ș 1≤ , so that the retailer gets ȘJ(p*) and 
the supplier (1-Ș)J(p*). This, however, is already cooperative rather than 
competitive behavior. To illustrate one possibility for coordination with 
cooperation, we briefly consider an example of bargaining over the whole-
sale price and retailer's margin in terms of the Nash bargain, which solves 
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wm,
max [Jr(w,m)-jr][Js(w,m)-js], 

where jr and js represent the outside options to each party. Employing the 
demand function of this section and assuming that all outside options are 
normalized to zero, i.e., jr =0 and js =0, we have the following bargaining 
problem: 

wm,
max JB(m,w)= 

wm,
max mw[q(w+m)]2. 

If q(w+m) is such that JB(m,w) is concave, then applying the first-order op-
timality conditions we obtain the following two equations 

0
)(

2)( =
∂

+∂
++

p

wmq
mwmq , 

0
)(

)(2)( =
∂

+∂
−++

p

wmq
cwwmq . 

From these equations we immediately find that m=w-c and thereby the two 
equations result in a single condition: 

0
)(

)()( =
∂

+∂
−+++

p

wmq
cwmwmq . 

Taking into account that p=m+w, we observe that the derived condition 
is identical to the system-wide optimality condition (2.7). Thus, if J B(m,w) 
is concave, the Nash bargain perfectly coordinates the supply chain for the 
case of the pricing game. The only difference is that the system-wide optimal 
solution specifies only the optimal price p* (since the transfer costs are not 
important for a centralized system), while the Nash bargain solution of the 
pricing problem results in equal margins, m=w-c, and shares, Jr(w,m)= 

Js(w,m), for both parties.  

The multi-echelon effect 

It is intuitively clear that the greater the number of the upstream suppliers 
involved, the more margins are added to the supply chain and thereby the 
greater the deterioration of the expected system performance. Specifically, 
let an upstream distributor have a marginal cost cd per product and let him 
sell his products to the supplier at a price wd. Then the retail price would be 

p= w+m, w ≥ c+wd and the resulting problems of the three-echelon supply 
chain are defined as follows. 

dw
max Jd(wd,w,m)= 

dw
max (wd-cd)q(w+m) 

s.t. 
 

The distributor’s problem  
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wd ≥ cd. 

w
max Js(wd,w,m)=

w
max (w-c-wd)q(w+m) 

s.t. 
w ≥ c+wd. 

m
max Jr(wd,w,m)= 

m
max mq(w+m) 

s.t. 
m ≥ 0, q(w+m) ≥ 0. 

The centralized problem 

wm,
max J(m,w)=

wm,
max ( m+w - c- cd)q(w+m) 

s.t. 
m ≥ 0, q(w+m) ≥ 0, w ≥ c+ wd. 

Consequently the system-wide optimal retail margin is determined by 

p

pq
ccwmpq

m

wmJ
d ∂

∂
−−++=
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∂ )(

)()(
),(

=0, 

while the equation for an optimal margin when the parties are non-
cooperative remains the same 

0
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=
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∂
+=

∂
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p

pq
mpq

m

wmJ
r . 

We thus observe that the retailer when ordering, accounts for his margin m 
and ignores both the supplier’s margin w-c-wd and the distributor’s margin 
wd-cd , which is, w-c-cd in total. Again, by employing the two-part tariff, 
the supply chain becomes perfectly coordinated. This is accomplished if 
the distributor and the supplier set the wholesale prices equal to their mar-
ginal costs, i.e., wd=cd and w=c+cd, respectively and charge a fixed cost 
per transaction. 

Previously we were concerned with vertical competition. Now we shall 
study the effect of horizontal production competition (see Figure 2.3). 
Consider two manufacturers producing the same or substitutable types of  
 

2.2.2  THE PRODUCTION GAME 

The supplier’s problem  

The retailer’s problem 
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product over a period of time and thus competing horizontally for the same 
customers, possibly for the same retailer. Accordingly, the manufacturers 
are suppliers with ample capacity and the order period is longer than the 

time any quantity q1 and q2 to the retailer. The retailer, on the other hand, 
adopts the so-called vendor managed inventory (VMI) policy, in which the 
suppliers decide on the quantities to deliver while the retailer simply charges 
a fixed percentage from sales. Since the retailer has no part in the competi-
tion, he does not affect the system-wide optimal solution, equilibrium order 
quantities, or prices.  

Further, in the previous section we assumed that the retailer demand is a 

petition pricing. In this section we assume that the retail price is a function 

competition. Specifically, the product is characterized by an endogenous 
price function of total demand Q=q1+q2, p=p(Q), which, since the prod-
ucts are fully substitutable, is symmetric in q1 and q2. We assume that this 
symmetric function is down-sloping (concave) in the total quantity of the 

products, i.e., 0
21

<
∂
∂

=
∂
∂

q

p

q

p
 and concave, 0

2

2

≤
∂
∂
Q

p
, i.e., 

0
21

2

2

2

2

2

1

2

≤
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∂
=

∂
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=
∂
∂

qq

p

q

p

q

p
. The suppliers incur identical unit production 

cost c, c<p(0), and seek to maximize profits, i.e., they maximize their mar-
gins, p(Q)-c, times the demand, q1 or q2.  

The problem of supplier 1  

1

max
q

J1(q1,q2)=
1

max
q

 q1[p(q1+q2)-c]  (2.17) 

s.t. 
q1 ≥ 0, p(q1+q2) ≥ c. 

The problem of Supplier 2  

2

max
q

J2(q1,q2)= 
2

max
q

 q2[p(q1+q2)-c]  (2.18) 

s.t. 
q2 ≥ 0, p(q1+q2) ≥  c, 

where p(Q) is the price at which the retailer can sell Q product units; q1 
and q2 are the quantities produced by suppliers (manufacturers) 1 and 2  
 

 

suppliers’ lead-time. This means that both suppliers are able to deliver on 

of customer demand which is referred to as Cournot’s model of production 

function of product price which is referred to as Bertrand’s model of com-
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respectively and sold by the retailer; Q=q1+q2 is the total quantity sold by 
the retailer; and c is the unit production cost for both suppliers. 

 

Exactly, (2.17) and (2.18) can be presented as 

1

max
q

J1(q1,q2)=
1

max
q
ȕq1[p(q1+q2)-c]; 

2

max
q

J2(q1,q2)=
2

max
q
ȕq2[p(q1+q2)-c], 

where ȕ is percentage paid to the retailer by each manufacturer. Since  
coefficient ȕ does not affect the optimality conditions, it is omitted. More-

Jr(q1,q2)= (1-ȕ)q1[p(q1+q2)-c] + (1-ȕ)q2[p(q1+q2)-c], 

the centralized objective function does not involve ȕ at all since it repre-
sents internal supply chain transfers. Thus, if the supply chain is horizon-
tally integrated, that is, if a single decision maker is in charge, then we 
have the following single problem as a benchmark. 

The centralized problem 

21 ,
max

qq
J(q1,q2) =

21 ,
max

qq
[J1(q1,q2)+J2(q1,q2)]= 

21 ,
max

qq
 q1[p(q1+q2)-c]+ q2[p(q1+q2)-c]   (2.19) 

s.t. 
q1 ≥ 0, q2 ≥ 0, p(q1+q2) ≥ c. 

q1 
q2 

Supplier 1: q1 

Retailer: ȕp(q1+q2) 

Supplier 2: q2 

p(q1+q2) 

Figure 2.3. Horizontal competition for the same retailer 

over, since the retailer’s profit is 
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System-wide optimal solution 

We first study the centralized problem by employing the first-order opti-
mality conditions 
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Since the two problems are symmetric, Q=q1+q2, 
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total order Q matters in terms of optimality. Considering the symmetric  
solution to the above system of equations as well, q*= q1*=q2*, we obtain 
the following equation 

0
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Define Q' so that p(Q')=c. Then it is easy to verify that, 
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This implies that the Hessian of J(q1,q2) is semi-definite negative and thus 
the function J(q1,q2) is jointly concave in production quantities q1 and q2 

for ]',0[21 Qqq ∈+ . Though this does not ensure the uniqueness of the  

optimal solution, by differentiating the left-hand side of equation (2.20) in 
q=q* we obtain for the symmetric solution 
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that is, the left-hand side of (2.20) is strictly monotone in q. Thus, equation 
(2.20) has a unique solution as formalized in the following proposition. 

1 2 1 2

(2.20) constitutes a unique symmetric system-wide optimal order with 

0<q*<Q'/2. 

Proof: Since the left-hand side of equation (2.20) is strictly decreasing in 
q, if there is a feasible solution to (2.20), it is unique. To see that a solution 
of (2.20) always exists, assume q=0, then, since p(0)>c, the left-hand side 
of (2.20) is positive. On the other hand, if 2q=Q', since p(Q')=c, while the 
last term of (2.20) is strictly negative as q=Q/2>0, we find that the left-
hand side of (2.20) is negative. Thus a feasible solution always exists and 
0<q<Q'/2.   

Proposition 2.3 The pair (q *,q *), where q *=q *=q* satisfy equation .
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players simultaneously decide how many pro- 
ducts to produce and supply to the retailer. Using the first-order optimality 
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Again, since the two problems are symmetric, the competition is symmetric. 
That is, the solution to this system of equations is q= q1=q2, which satisfies 
the following equation 

Q

qp
qcqp

∂
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+−
)2(

)2( =0.   (2.21) 

Comparing (2.21) and (2.20), we conclude with the result highlighting the 
differences between the centralized and (Nash) game solution. 

Proposition 2.4. In horizontal competition of the production game with equal 

power players, the retail price will be lower and the quantities produced 

by the manufacturers higher than the system-wide optimal price and pro-

duction quantity respectively. 

Proof: Comparing (2.21) and (2.20) we observe that if q=q*, then 

Q

qp
qcqp

∂
∂

+−
)2(

)2( >
Q

qp
qcqp

∂
∂

+−
*)2(

*2*)2( =0, 

while the derivative of the left-hand side of this inequality with respect to q 
is negative. Thus, q>q*, which, in regard to the down-sloping price func-
tion p(2q), means that p(2q)<p(2q*).  

Nash solution 

concave in their production quantities, each supplier has a unique, best-
response function. In addition, since the derivative of the left-hand side of 
(2.21) is strictly negative, (2.21) has a unique solution. 

1
n,q2

n), which satisfies q1
n=q2

n= qn and 

0
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n

nn    (2.22) 

constitutes a unique Nash equilibrium of the production game with 0<qn< 

Q'/2. 

 

Proposition 2.5. The pair (q

Since it is easy to verify that the suppliers’ objective functions are strictly 

conditions for the suppliers’ problems we find 
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Proof: The proof is identical to that for proposition (2.3).   
The uniqueness of the Nash solution implies that both parties will tend to 
attain the equilibrium when pursuing their own profits. 

The effect of partial product substitutability  

Let the product that the second supplier produces partially substitute for 
the brand of the first supplier.  This is expressed by the ratio 0 ≤ Ȝ≤ 1, so 
that p=p(Q)=p(q1+Ȝq2). Then, the Nash optimality conditions take the follo-
wing form 
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Though these conditions are no longer symmetric, subtracting one equation 
from the other we find 
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n=Ȝq2
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Thus, Q=q1
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In other words, the equilibrium exists, but the production quantities are 
now proportional rather than identical. 

Stackelberg solution 

Next we assume that one of the suppliers is the leader, say supplier-one. 
To find the Stackelberg equilibrium, we need to maximize supplier-one’s 

1 2 2
R(q1). 

Let q2= q2
R(q1) satisfy the following equation 
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The Stackelberg equilibrium is determined by maximizing the following 
function  

1

max
q

J1(q1)=
1

max
q

 q1[p(q1+ q2
R(q1))-c].    

Differentiating this function we find 
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objective with q , subject to the best supplier-two’s response q = q
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where 
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Equation (2.25) implies, 0
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, 

the greater the production of the first supplier, q1, the lower the production 

of the second supplier, q2
R(q1). 

Based on (2.23), (2.24) and (2.25) we conclude that the pair (q1
s,q2

s) 
constitutes the Stackelberg equilibrium of the production game if there  
exists a joint solution in q1 and q2 of the following equations: 
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We illustrate this with the following example: 

Example 2.6 

Let the price be linear in production quantity, p=a-bQ, Q=q1+q2, p(0)=a>c. 
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Note that the price requirements, 
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=
∂
∂

=
∂
∂

q

p

q

p

= 0  are met for the selected function. Using Proposition 2.5 we 

solve (2.22),  
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and find that q1
n= q2

n = 
b

ca

3

−
, hence, pn= ca

3

2

3

1
+ . The payoffs for the 

b

ca

9

)( 2−
.  

Based on (2.23) we can identify the best response function of the second 
supplier  

0)()(
)(

)( 221

2

21

221 =−+−+−=
∂

+∂
+−+ bqcqqba

q

qqp
qcqqp , 

and thus 

b

cbqa
qqq

r

2
)( 1

122

−−
== . 

This response is then employed in (2.24) and (2.25) to find the Stackelberg 
equilibrium. Equivalently, by substituting this response into the first sup-
plier objective function 

1

max
q

 q1[p(q1+ q2
R(q1))-c]=

1

max
q

]
222

[ 1

1

cbqa
q −− . 

and using the first-order optimality conditions, we obtain an explicit reso-
lution of equation (2.24) for our example, 

0]
2

[]
222

[ 1

1

1

1 =−+−−=
∂
∂ b

q
cbqa

q

J
. 

Accordingly, q1
s=

b

ca

2

−
, q2

s = 
b

ca

4

−
, ps=

4

3ca +
, J1(q1

s,q2
s)= 

b

ca

8

)( 2−
and 

J2(q1
s,q2

s)= 
b

ca

16

)( 2−
. Note that instead of equal payoff under a simultane-

ous Nash strategy, the first supplier, who is the leader, gains a profit which 
is twice as much as the follower’s profit under a sequential Stackelberg 
strategy. 

Finally, the centralized solution (2.20) is 

0)(*2*2
*)2(

*2*)2( =−+−−=
∂

∂
+− bqcbqa

Q

qp
qcqp . 

Or, q1
*= q2

* =
b

ca

4

−
, hence, p*= ca

2

1

2

1
+  and the system-wide optimal 

supply chain profit is J(q1
*,q2

*)=
b

ca

4

)( 2−
. 

 
 
 

J1(q1
n,q2

n)=J2(q1
n,q2

n)=equilibrium are thus identical for both players, 



2.2 PRODUCTION/PRICING COMPETITION      77 

Comparing these results, we find for the first supplier, that his production 
quantity under the centralized approach is smaller than both that of the 
Nash strategy and that obtained when the supplier is the Stackelberg leader 

q1
s =

b

ca

2

−
> q1

n= 
b

ca

3

−
> q1

*=
b

ca

4

−
. 

For the second supplier, the production level is the same under the 
Stackelberg follower strategy and the system-wide policy, but higher for 
the Nash strategy. 

q2
n =

b

ca

3

−
>q2

s = q2
*=

b

ca

4

−
. 

Both results agree with Proposition 2.4 which compares Nash and system-
wide strategies. Correspondingly, given p(0)=a>c, the retail prices decrease  

ps=
4

3ca +
<pn= ca

3

2

3

1
+ <p*= ca

2

1

2

1
+  

and the overall supply chain payoff deteriorates under horizontal competi-
tion, 

J1(q1
s,q2

s)+J2(q1
s,q2

s)=
b

ca

16

)(3 2−
<J1(q1

n,q2
n)+J2(q1

n,q2
n)= 

b

ca

9

)(2 2−
<J(q1

*,q2
*)=

b

ca

4

)( 2−
.    

Example 2.7  

This example illustrates how the equilibrium can be analyzed numerically. 
Let the price be exponential in the production quantity, p=ae-bQ, Q=q1+q2, 

p(0)=a>c. Note that, 0
21

<−=
∂
∂

=
∂
∂ −bQabe

q

p

q

p
, while for the second order 

condition 02

21

2

2

2

2

2

1

2

>=
∂∂

∂
=

∂
∂

=
∂
∂ −bQeab

qq

p

q

p

q

p
 implying that the equilibrium  

is not necessarily unique. The Nash equilibrium is determined by (2.22) 

022 =−− −− nn qbnqb abeqcae . 

Setting the left-hand side of this equation as L in Maple 
>L:=a*exp(-b*2*q)-c-q*a*b*exp(-b*2*q); 

 := L  −  − a e
( )−2 b q

c q a b e
( )−2 b q

 

and substituting specific parameters of the problem a=15,b=0.1,c=1, 

we have 
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> L1:=subs(a=15, b=0.1, c=1, L); 

 := L1  −  − 15 e
( )−0.2 q

1 1.5 q e
( )−0.2 q

 

The solution to this transcendental equation is found with Maple’s SOLVE 
> solve(L1=0, q); 

7.191168444  

To verify that the Nash equilibrium is unique, we construct a plot of the 
left-hand side Y=L1 
> plot(L1, q=0..10); 

Figure 2.4. The Nash equilibrium 

 
From this plot (see Figure 2.4) we observe that for feasible orders q1

n= q2
 

n ≥ 0, there is only one intersection of Y=L1 with line, Y=0, which is the 
Nash equilibrium, q1

n=q2
n=7.191168444. 

Similarly, employing equation (2.20) to find the system-wide optimal 
solution with Maple:  
> LL:=a*exp(-b*2*q)-c-2*q*a*b*exp(-b*2*q); 

 := LL  −  − a e
( )−2 b q

c 2 q a b e
( )−2 b q

 

> LL1:=subs(a=15, b=0.1, c=1, LL); 

 := LL1  −  − 15 e
( )−0.2 q

1 3.0 q e
( )−0.2 q

 

> solve(LL1=0, q); 
4.224140740  

Comparing the system wide optimal production quantity with the Nash 
quantity we find q*=4.224< q1

n=q2
n=7.191.   

Coordination 

According to Proposition 2.4, although retailers and consumers may bene-
fit from non-cooperating suppliers leading to a fall in retail prices and an  
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increase in production as well as consumption of products, the horizontal 
competition has a negative effect on the supply chain’s profits. Thus, just 
as with the double marginalization effect, the deterioration in the supply 
chain performance arises because each manufacturer, when deciding on 
the quantity to produce, ignores the quantity which the other manufacturer 
is producing. This can be termed a “double quantification”. Indeed, in ver-
tical competition the supplier sells the retailer products which are then  
resold to the customers. Two margins are being imposed then on the same 
product quantity. On the other hand, in horizontal competition, each sup-
plier produces a number of products, but sells them at the same price. The 
price is due to the two quantities being produced. Ignoring one of the 
quantities, such as ignoring one of the margins, yields results that are dif-
ferent from the system-wide optimal solution.  

The essential means to coordinate horizontal competition is thus to coop-
erate. By simply agreeing to simultaneously set the production quantities 
equal to the system-wide optimal quantity, rather than to the non-cooperative 
equilibrium quantities, the suppliers, will be perfectly coordinating the supply 
chain and increasing their profits equally without any internal supply chain 
transfers. 

The multi-echelon effect 

Recalling the effect of vertical competition on the supply chain discussed 
in the previous section, it is apparent that the more upstream suppliers that 
are involved, the more margins are added to the supply chain. This results 
in a decrease in the quantity produced and an increase in prices. This is to 
say, double marginalization may coordinate the supply chain if its effect is 
not stronger than that of the horizontal competition. Specifically, let an  
upstream distributor who has a marginal cost cd per product play a supply 
part or sell products to both suppliers at price wd . (Of course, if the suppli-
ers are not symmetric, then the wholesale price that they can get from the 
distributor may be different). The corresponding problems of the three-
echelon supply chain with two horizontally competing suppliers are as fol-
lows (as aforementioned in this section, we consider the case when the  
retailer does not compete and therefore his problem is not accounted for): 

The problem of supplier 1 

1

max
q

J1(q1,q2)=
1

max
q

 q1[p(q1+q2)-c-wd] 

s.t. 
q1 ≥ 0, p(q1+q2) ≥  c+wd. 
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The problem of supplier 2  

2

max
q

J2(q1,q2)= 
2

max
q

 q2[p(q1+q2)-c-wd] 

s.t. 
q2 ≥ 0, p(q1+q2) ≥  c+wd 

dw
max Jd(wd,w,m)= 

dw
max (wd-cd)(q1+ q1) 

s.t. 
wd ≥ cd. 

The centralized problem 

21 ,
max

qq
J(q1,q2) = 

21 ,
max

qq
 q1[p(q1+q2)-c-cd]+ q2[p(q1+q2)-c-cd] 

s.t. 
q1 ≥ 0, q2 ≥ 0, p(q1+q2) ≥  c+cd. 

Assuming that the suppliers are at a Nash equilibrium, the equation for 
an optimal order quantity q=q1=q2 for the symmetric suppliers is similar to 
(2.21). The only difference could be that wd is subtracted 

Q

qp
qwcqp

d ∂
∂

+−−
)2(

)2( =0. 

A system-wide optimal solution, on the other hand, is similar to (2.20) 
but corrected by cd, 

0
*)2(

*2*)2( =
∂

∂
+−−

Q

qp
qccqp

d
. 

Comparing these two equations, we find that both suppliers account for 

d d d

if added, as in the centralized solution, results in a total of p(2q)-c-cd. Since 
wd> cd and the derivatives of the left hand sides of these equations are 
negative, the Nash production quantity q decreases compared to the sys-
tem-wide optimal solution. On the other hand, when the quantity which the 
other party produces is ignored (as discussed in this section), the (Nash) 
production quantity q decreases compared to the system-wide optimal  
solution. Thus, if for q=q* the following holds 

Q

qp
qwcqp

d ∂
∂

+−−
)2(

)2( >
Q

qp
qccqp

d ∂
∂

+−−
*)2(

*2*)2( , 

or, equivalently, 

The distributor’s problem  

their margins, p(2q)-c-w , and ignore the distributor’s margin w -c , which, 
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Q

qp
q

∂
∂

−
*)2(

* >
dd

cw − , 

Then, the effect of horizontal competition between the two suppliers is 
stronger than that of the vertical competition between the suppliers and  
additional upstream parties coordinate the supply chain. More precisely, 
the quantity produced and sold by the three-echelon supply chain will be 
lower than that of the corresponding two-echelon chain which does not  
involve an additional upstream distributor. 

Finally, it is worth noting that horizontal competition in multi-echelon 
supply chains opens up a whole spectrum of collaboration activities. For 
example, horizontally competing producers may coordinate the quantities 
they order from an upstream supplier to bargain lower wholesale prices. 
Interested readers are referred to Davidson (1988), Horn and Wolinsky 
(1988) and Viehoff (1987) who have addressed the benefits of various bar-
gaining schemes. 

2.3 STOCKING COMPETITION WITH RANDOM DEMAND 

In contrast to the previous section, we now assume that the retailer demand 
is random and proceed to adapt two classic newsvendor models into two 
stocking/pricing games. In one game the supplier sets the wholesale price 
to sell some of his stock while the retailer decides on the quantity to pur-
chase in order to replenish his stock. The retailer incurs no fixed order 
cost. We refer to this game as the stocking game.  

The other game is related to a manufacturer who pays a setup cost for 
each production order. To avoid this irreversible cost, the manufacturer has 
the alternative of outsourcing current in-house production to a supplier. 
Similar to the stocking game, the supplier decides on the wholesale price 
and does not charge a fixed order cost. Unlike the stocking game, the 
manufacturer determines first whether to outsource the production at this 
wholesale price or to produce in-house and then determining the proper 
quantity to order. We refer to this game as the outsourcing game. 

The classical, single-period, newsboy or newsvendor problem formulation 
assumes random exogenous demand, d, in contrast to previously discussed 
pricing and production problems with deterministic but endogenous demands. 
The selling season is short and there is no time for additional orders so if  
 

2.3.1  THE STOCKING GAME 
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the retailer orders less than the demand at the end of period, then shortage 
h- cost per unit of unsatisfied demand is incurred. The shortage cost nor-
mally includes lost sales and a loss of customer goodwill. On the other 
hand, if the retailer orders more than he is able to sell, unit inventory cost 
h+ (mitigated by salvage cost) is incurred for units left over at the end of 

is to find order quantity, q, to maximize expected overall profits. The des-
cribed newsvendor problem assumes that the product purchasing cost is 
fixed and given. However, if we take into account a supplier who inde-

tion by choosing a wholesale price, w, the newsvendor problem is reduced 
to a game. 

Let retailer’s margin, m, be fixed, f(D) and F(a)= ∫
a

dDDf
0

)(  be the  

demand probability density and cumulative distribution functions respec-

q
max Jr(q,w)= 

q
max {E[ym - h+x+ - h-x-]-wq},  (2.26) 

s.t. 
x=q-d,    (2.27) 

q ≥ 0,    (2.28) 

where x+=max{0, x} and x- =max{0, -x} are inventory surplus and shortage 
at the end of selling season respectively, and y=min{q,d} is the number of 
products sold. 

Applying conditional expectation to (2.26), the objective function trans-
forms into the following form 

q
max Jr(q,w)=

q
max { 

∫ ∫∫∫
∞

−+
∞

−−−−+
q

qq

q

dDDfqDhdDDfDqhdDDmqfdDDmDf
00

)()()()()()( wq}.(2.29) 

The first term in the objective function E[ym]= ∫∫
∞

+
q

q

dDDmqfdDDmDf )()(
0

 

represents income from selling y product units; the second and the third terms, 

E[h+x+]= ∫ −+
q

dDDfDqh
0

)()( , E[h-x-]= ∫
∞

− −
q

dDDfqDh )()(  represent  

 
 

The retailer’s problem 

period. The fixed-order cost is assumed to be negligible. The retailer’s goal 

pendently maximizes his profit and thus impacts the retailer’s optimal solu-

tively. Then, the retailer’s problem is formulated as follows. 
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losses due the inventory surplus and shortage respectively; and the last 
term, wq, is the amount paid to the supplier.  

Note, that the retailer orders products from the supplier if he expects 
non-negative profit. In other words, there is a maximum wholesale price, 
wM, that the supplier can charge. Taking this into account, as well as the 

lem. 

w
max Js(q,w)= (w-c)q   (2.30) 

s.t. 
c ≤ w ≤ wM.   (2.31) 

The corresponding centralized problem is based on the sum of two objec-
tive functions (2.30) and (2.26), which results in a function independent of 
the wholesale price, w, representing a transfer within the supply chain. 

The centralized problem 

q
max J(q)= 

q
max {E[ym - h+x+- h-x-]- cq}  (2.32) 

s.t. 
x=q- d, q ≥ 0. 

System-wide optimal solution 

We first study the centralized problem. Similar to (2.29), by determining 
the expectation of (2.32), we obtain 

q
max J(q)=

q
max {

cqdDDfqDhdDDfDqhdDDmqfdDDmDf

q

qq

q

−−−−−+ ∫ ∫∫∫
∞

−+
∞

00

)()()()()()( }. 

By employing the first-order optimality condition to this function, we 
have 

=
∂

∂
q

qJ )(
cdDDfhdDDfhdDDmfqmqfqmqf

q

qq

−+−+− ∫ ∫∫
∞

−+
∞

0

)()()()()( =0, 

which, after simple manipulations, results in 

0))(1()())(1( =−−+−− −+ cqFhqFhqFm . 

Thus we find that the traditional newsvendor expression for the optimal 
order quantity q*, which is feasible if m+h->c, 

The supplier’s problem 

unit production cost, c, of the supplier, we formulate the supplier’s prob-
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F(q*)= 
+−

−

++
−+
hhm

chm
.   (2.33) 

We can also verify the sufficient condition, i.e., that the objective func-
tion (2.30) is concave, 

=
∂

∂
2

2 )(

q

qJ
)()( qfhhm −+ ++− ≤ 0.  (2.34) 

Let f(D)>0 for maxmin dDd ≤≤ . Then, since ordering less than the 

minimum demand, d min, as well as more than the maximum demand, dmax, 
does not make any sense, the centralized objective function is strictly con-
cave and thus we find a unique solution. 

The effect of initial inventory  

Note that if the retailer has an initial inventory, x0, that is, x= x0+q-d, then 
by using the same arguments we observe that the only change in (2.33) is 
in the argument of F(.): 

F(x0+q)= 
+−

−

++
−+
hhm

chm
.                             (2.35) 

Let s satisfy the equation, 

F(s)=
+−

−

++
−+
hhm

chm
,   (2.36) 

then s is the base stock, and the optimal order quantity is interpreted as the 
well-known order-up-to policy, 

⎩
⎨
⎧ >−

=
otherwise. ,0

 if ,
*

00 xsxs
q  

Service level 

For the risk of shortage, we have the probability P[x<0]=1- Į, where Į is 
referred to as the service level. From (2.32) it follows that the service level 
in the centralized supply chain is P[x ≥ 0]= F(q*), or, equivalently, 
 

Į = +−

−

++
−+
hhm

chm
.   (2.37) 

When x0>s, the service level is higher than the specified level Į. 

Game analysis 

We consider now a decentralized supply chain characterized by non-
cooperative firms and assume first that both players make their decisions 
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simultaneously. The supplier chooses the wholesale price w and the retailer 
selects the order quantity, q. The supplier then produces q units at unit cost 
c and delivers them to the retailer.  

have 

=
∂

∂
q

wqJ ),(
wdDDfhdDDfhdDDmfqmqfqmqf

q

qq

−+−+− ∫ ∫∫
∞

−+
∞

0

)()()()()( =0 

Thus, we find that the maximum wholesale price, wM=m+h-, so that if 
w ≤ wM

F(q)= 
+−

−

++
−+

hhm

whm
.   (2.38) 

From (2.38) we observe, that if w=w
M, the retailer does not order at all, 

while if w< wM, then comparing (2.33) and (2.38) and taking into account 

w ≥ c and 0
)(

>
∂

∂
q

qF
, we conclude with results similar to those found for 

the pricing game with endogenous demand. 

Proposition 2.6. In vertical competition of the stocking game, if the sup-

service level are lower than the system-wide optimal order quantity and 

service level.     

including it into the numerator of (2.38), equation (2.38) would transform 
into (3.33). We thus find the double marginalization effect discussed in the 
pricing game. In addition, this effect decreases the customer service level 
unless the supplier does not want to profit from the sale and sets w=c. On 
the other hand, since the supplier’s objective function (2.30) is linear in w, 
we conclude that the supplier would set the wholesale price as high as pos-
sible, i.e., w=wM under the Nash strategy. In such a case, the retailer makes 
no profit and orders nothing. As a result of the Nash strategy, there is nei-
ther business nor customer service between the supplier and the retailer. 

Similar to the pricing game of the previous section, the statement of 
Proposition 2.6 that vertical competition causes the supply chain perform-
ance to deteriorate does not depend on whether the players make a simul-
taneous decision or if the supplier first sets wholesale price, as is often the 
case in practice. In what follows, we show that under the supplier’s leader-

maximum purchasing price wM. 

plier makes a profit, i.e., w>c, the retailer’s order quantity and the customer 

Note that if the retailer would account for the supplier’s margin, w-c, by 

ship, the Stackelberg equilibrium’s wholesale price does not equal the 

 , the best retailer’s response is determined by 

Using the first-order optimality conditions for the retailer’s problem, we 
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Equilibrium 

Assume that the supplier is a leader in the Stackelberg game. The sup-

q=qR(w) is determined by (2.38),  

Js(q,w)= (w-c) qR(w). 

0
)(

)()(
),(

=
∂

∂
−+=

∂
∂

w

wq
cwwq

w

wqJ R

Rs . (2.39) 

The value of 
w

wq R

∂
∂ )(

 is determined by differentiating (2.38) with q set 

equal to qR(w), 

f(qR(w))
w

wq R

∂
∂ )(

=
+− ++

−
hhm

1
. 

As a result:  
The greater the wholesale price, the lower the quantity that the retailer or-

ders and by substituting 

w

wq R

∂
∂ )(

= ( ) ))((

1

wqfhhm R+− ++
−  

into (2.38), we have 

0
))(()(

)(
),(

=
++

−
−=

∂
∂

+− wqfhhm

cw
wq

w

wqJ
R

Rs , (2.40) 

where 

F(qR(w))= 
+−

−

++
−+

hhm

whm
.  (2.41) 

We conclude with the following proposition. 

Proposition 2.7. Let f(D)>0 for D ≥ 0, otherwise f(D)=0 . The pair (ws,qs), 

where ws and qs= qR(ws) satisfy 

0
))(()(

)( =
++

−
−

+− sR

s

sR

wqfhhm

cw
wq , F(qR(ws))=

+−

−

++
−+

hhm

whm s

, 

 constitutes a Stackelberg equilibrium of the stocking game with c<ws< 

m+h-=wM.  

Proof: First we consider equation (2.40) and verify that  

0)(
),(

>=
∂

∂
cq

w

cqJ Rs , 0
)0()(

)(
<

++
−

−=
∂

∂
+− fhhm

cw

w

wJ MM

s  . 

Since f(D)>0 for D ≥ 0 we observe that 

))(()(
)(

),(

wqfhhm

cw
wq

w

wqJ
R

Rs

+− ++
−

−=
∂

∂
 

plier’s objective function with q subject to the optimal retailer’s response 

Differentiating the supplier’s objective function, we have 
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is a continuous function for c ≤ w ≤ wM. We conclude that there is at least 

one root, 0
),(

=
∂

∂
w

wqJ s

s , c<ws<wM, as stated in Proposition 2.7.  

To have a unique Stackelberg wholesale price, however, we require that 

the supplier's objective function be strictly concave,
2

2 ),(

w

wqJ
s

∂
∂

<0, that is, 

w

wq

q

qf

wqfhhm

cw

wqfhhmw

wq R

R

R

RR

R

∂
∂

∂
∂

++
−

+
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−
∂

∂
+−+−

)()(

))](()[())(()(

1)(
2

<0, (2.42) 

which apparently does not hold for every distribution. 

Let the demand be characterized by the uniform distribution,  

⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise 0,

;0for  ,
1

)(
AD

ADf  and 
A

a
aF =)( , 0 ≤ a ≤ A. 

Then the supplier objective function is strictly concave, as (2.42) holds. 
Using (2.40) - (2.41) we find 

0
)(

)( =
++

−
−

+−
A

hhm

cw
wq

s

sR  and F(qR(ws))=
A

wq sR )(
= 

+−

−

++
−+

hhm

whm s

. 

Thus, 

+−

−

++
−+

hhm

whm s

A 0
)(

=
++

−
−

+−
A

hhm

cw s

, 

which results in 

2

chm
ws ++

=
−

, 
2

)(
A

hhm

chm
wqq sRs

+−

−

++
−+

== , (2.43) 

while the system-wide optimal order quantity is twice as large,  

q*= +−

−

++
−+
hhm

chm
A.   (2.44) 

Recalling our assumption that wM=m+h->c, we observe that c<ws<wM 

and 0<qs<A/2. Thus, this problem has always a unique Stackelberg equili-
brium.   

Let the demand be characterized by an exponential distribution, i.e., 
 

Example 2.8 

Example 2.9 
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⎪⎩

⎪
⎨
⎧ ≥

=
−

otherwise 0,

;0for  ,
)(

De
Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0. 

Then according to (2.40), we have the equation for the Stackelberg 
wholesale price 

0
)(

)(
)(

=
++

−
−

−+− wq

R

R

ehhm

cw
wq

λλ
, 

where according to (2.41) 

)(1 wqR

e λ−− = +−

−

++
−+

hhm

whm
 

and thus 

qR(w)= +

+−

+
++

hw

hhm
ln

1

λ
. 

Substituting this into the equation of the Stackelberg wholesale price, we 
obtain  the following expression   

+

+−

+
++

hw

hhm
ln

1

λ
0

)(
=

+
−

− + λhw

cw
. 

We solve this equation with Maple by first setting the left hand side as L 
>L:=ln((m+hplus+hminus)/(w+hplus)-(w-c)/(w+hplus); 

 := L  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

 + + m hplus hminus

 + w hplus

− w c

 + w hplus
 

Then substituting specific values for m=15, hplus=1, hminus=10, 
c=2 

>L1:=subs(m=15, hplus=1, hminus=10, c=2, L); 

 := L1  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26

 + w 1

− w 2

 + w 1
 

we verify with a plot Y= L1 that it crosses line Y=0 only once and thus the 
Stackelberg wholesale price is unique. 
>plot(L1, w=2..15); 
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Figure 2.5. The Stackelberg wholesale price 

Next we solve equation L1=0 in a general form 
> ws:=solve(L1=0, w); 

 := ws −
 − ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟LambertW

3

26
e 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟LambertW

3

26
e

 

and evaluate the result numerically 
> evalf(ws); 

11.22512050  

Finally we calculate the equilibrium order quantity by using the best  

retailer’s response function qR(w)= +

+−

+
++

hw

hhm
ln

1

λ
. 

> q:=1/lambda*ln((m+hplus+hminus)/(w+hplus)); 

 := q

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + w hplus

λ
 

and substituting the specific parameters of the problem 
>qR:=subs(m=15, hplus=1, hminus=10, lambda=0.1, 

w=evalf(ws), c=2, q); 

 := qR 10. ( )ln 2.126768403 . 

Evaluating numerically the last result leads to 
> qs=evalf(qR); 

= qs 7.546036459 . 

Thus ws=11.225 and qs= 7.546. The system-wide optimal order quantity 
is determined by (2.33) 

q*=
+

+−

+
++

hc

hhm
ln

1

λ
, 
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which with Maple results in 
> qopt:=1/lambda*ln((m+hplus+hminus)/(c+hplus)); 

 := qopt

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + c hplus

λ
 

>qswopt:=subs(m=15, hplus=1, hminus=10, lamb-

da=0.1, c=2, qopt); 

 := qswopt 10. ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26

3
 

>evalf(qswopt); 
21.59484249  

Comparing the system-wide optimal solution with the equilibrium solution 
we find that the system-wide optimal order is almost three-times as large. 

qs= 7.546<q*=21.594.     

Coordination 

According to Proposition 2.6, vertical competition under exogenous ran-
dom demand has a negative effect on the supply chain: the retailer orders 
less and the service level decreases. This is similar to the pricing competi-
tion considered in the previous section and again the negative effect is due 
to the double marginalization. As opposed to the pricing game, there is no 

positive effect on the chain. More precisely, there is an equilibrium if the 
supplier assumes leadership.  

Due to the same double marginalization effect, the coordination in this 
game is similar to that discussed for the pricing game: discounting and 
profit sharing. We present here a straightforward approach for developing 
a coordinating quantity discounting scheme.  

s

make the wholesale price dependent on the order quantity, q, 

Js(q,w)= w(q)-cq. 

F(q)= 
+−

−

++
∂∂−+

hhm

qwhm
.   (2.45) 

We do not specify any specific requirement for wholesale price w(q) but 
impose conditions on the rate of change of w(q)  

q

qw

∂
∂ )(

<c, 0
)(

2

2

≥
∂

∂
q

qw
, if q<q* and 

q

qw

∂
∂ )( ≥ c, if q>q*. 

 
 

First we generalize the supplier’s objective function J (q,w)=(w-c)q to 

Nash equilibrium in the stocking game while the supplier’s leadership has a 

Then the retailer’s best-response (2.38) takes the following form 
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These conditions imply that the function w(q) may have various dis-
counting schemes for 0 ≤ q ≤ q*. Next we show that if the conditions are 
met, the supplier can select any value for w(q), w(q*)<wM, and still have 
the retailer ordering the system-wide optimal quantity. 

Proposition 2.8. Let w(q*)<wM, and the discounting scheme be such that 

if w(q) is a continuous function of q, 
q

qw

∂
∂ )(

<c and 0
)(

2

2

≤
∂

∂
q

qw
 for q<q*, 

and 
q

qw

∂
∂ )( ≥ c for q>q*, then the supplier orders the system-wide optimal 

quantity q*. 

Proof: Since w(q) is continuous, 0
)(

2

2

≥
∂

∂
q

qw
for q<q* and 

q

qw

∂
∂ )( ≥ c>0 

for q>q*, the wholesale price w(q) is a convex function, a solution which 
satisfies (2.45). Note that derivative of w(q) at q=q* is not required to  

exist. We thus represent it by the sub-gradient, e
q

qw
=

∂
∂ *)(

, cea ≤≤  

where a=
*

*)()(
lim

**, qq

qwqw

qqqq −
−

<→
<c. There can be three possible solutions to 

(2.45). Assume there exists an optimal solution q', q'<q*, such that 

q

qw

∂
∂ )( ≤ a<c and (2.45) is met. Recalling that F(q*)=

+−

−

++
−+
hhm

chm
, we 

find that if (2.45) is met and 
q

qw

∂
∂ )(

<c, then q'>q*, which contradicts our 

initial assumption. Similarly, we observe that another solution, say q'', 

q''>q* and thus 
q

qw

∂
∂ )( ≥ c contradicts (2.45). The only solution left is 

q'''=q*, e
q

qw
=

∂
∂ *)(

. Substituting this into (2.45) we find 

F(q''')=
+−

−

++
−+
hhm

ehm
, 

which is satisfied for e=c as a ≤ e ≤ c and q''=q*.   

A trivial example of linear discounting that satisfies Proposition 2.8 is 

⎩
⎨
⎧

−+−
≤≤−

=
otherwise, *),(*

*;0 ,
)(

qqcaqA

qqaqA
qw  

where A-aq*<wM. 
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In this section, the classical, single-period newsvendor model with a setup 
cost is turned into an outsourcing game. We consider a single manufac-
turer with two potential situations. He either incurs a fixed cost per each 
production order or the product produced is characterized by frequently 
changing characteristics and/or technology. These changes may be due to 
new product features and/or technological developments so that each 
change induces a non-negligible fixed cost. The basic assumptions remain 
unchanged: the demand is random with known density, f(D) and cumula-
tive F(a) distribution function. In addition we assume a short selling season. 
If the manufacturer’s production or supply order is less than the demand 
realized at the end of period, then a shortage cost h- per unit of unsatisfied 
demand is incurred and there is no time for additional orders. Otherwise, if 
there is a surplus, the unit inventory cost h+ is incurred at the end of period.  

Accordingly, the manufacturer has two options. One is to order the pro-
duction in-house, which incurs an irreversible fixed cost C as well as vari-
able cost cm per unit product. This is in contrast to the newsvendor model 
considered in the previous section, where the retailer's fixed-order cost was 
assumed to be negligible. The other option involves outsourcing the pro-
duction to a single supplier. Then the manufacturer incurs only the variable 
purchasing cost w per product unit and the supplier incurs a unit produc-
tion cost c. We assume that c>cm, no initial inventory, and a profitable  
in-house production (at least when there is no initial inventory at the 
manufacturer’s plant). Otherwise outsourcing is always advantageous. 
Both the manufacturer and the supplier are profit maximizers.  

q
max Jm(q,w)= 

 max{
q

max {E[ym -h+x+- h-x-]-wq},
q

max {E[ym -h+x+- h-x-]-cmq-C}}, (2.46) 

s.t. 
x=q-d,    (2.47) 

q ≥ 0,    (2.48) 

where x+=max{0, x} and x- =max{0, -x} are respectively inventory surplus 
and shortage at the end of a period, and y=min{q,d} is the number of 
products sold. 

first part 
q

max {E[ym - h+x+ - h-x-]-wq} represents the profit which the  

 

2.3.2  THE OUTSOURCING GAME 

The manufacturer’s problem 

The manufacturer’s objective function (2.46) consists of two parts. The 
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manufacturer can gain if he decides to outsource the production. The other 
part is the profit from in-house production (assuming that the production is 
profitable). Since the first part is identical to that studied in the previous 
section, application of conditional expectation to the first part of (2.46)  
results into (2.29). Thus, the optimal manufacturer's outsourcing order q' 
for (2.29) is given by (2.38), 

F(q')= +−

−

++
−+

hhm

whm
. 

If we assume that C=0, then the second part of (2.46) differs from the first 
part by cm only, replaced with w. Consequently, if C=0, then the optimal 
response for the second part of (2.46), q'', is 

F(q'')= +−

−

++
−+

hhm

chm m . 

Introduce a cost function, ʌ(q), such that 

ʌ(q)=E[ym - h+x+ - h-x-].   (2.49) 
Then, 

ʌ(q')-wq'= 

∫ ∫∫∫
′ ∞

′

−+
∞

′

′

′−−−′−′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( wq' 

is the maximum profit if outsourcing is selected (the first part of (2.46)). 
The maximum profit when in-house production is selected (the second part 
of (2.46)) is 

ʌ(q'')-cmq''-C= 

∫ ∫∫∫
′′ ∞

′′

−+
∞

′′

′′

′′−−−′′−′′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -cmq''-C. 

Thus, the optimal manufacturer's choice for a given wholesale price is 
summarized by 

⎩
⎨
⎧ −−≥−

=
otherwise, ,''

'')''(')'( if ,'

q

Cqcqwqqq
q

m
ππ

   (2.50) 

where q' is the outsourcing order, while q'' is the in-house production  
(according to our assumption that in-house production is at least worth-
while, ʌ(q'')-cmq''-C>0). Furthermore, condition (2.50) assumes that out-
sourcing is a dominating strategy when profits from in-house production 
and outsourcing are identical. 

Let outsourcing at supplier’s marginal cost be advantageous compared 
to in-house production profit,  
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ʌ(q'')-cmq''-C ≤ ʌ(q')-cq', F(q')=
+−

−

++

−+

hhm

chm
. 

This, along with (2.50) and the fact that outsourcing profit decreases 
when the wholesale price increases, implies that the maximum purchase 
price wo ≥ c always exists such that  

ʌ(q'')-cmq''-C=ʌ(q') - wo
q', F(q')= +−

−

++
−+

hhm

whm o

 . 

Using (2.49), wo is the smallest root of the expression below 

∫ ∫∫∫
′′ ∞

′′

−+
∞

′′

′′

′′−−−′′−′′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -cmq''-C= 

∫ ∫∫∫
′ ∞

′

−+
∞

′

′

′−−−′−′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -

w
o
q',     (2.51) 

where F(q'')= 
+−

−

++
−+

hhm

chm m  and F(q')= 
+−

−

++
−+

hhm

whm o

. 

On the other hand, if outsourcing is not advantageous, then ʌ(q'')-cmq''-

C>ʌ(q')-cq', F(q')= +−

−

++
−+
hhm

chm
 and cm<w

o<c. Thus condition (2.50) can 

be reformulated as follows 

⎩
⎨
⎧

<

≤≤
=

, if ,''

, if ,'
0

0

cwq

wwcq
q    (2.52) 

where F(q'')= 
+−

−

++
−+

hhm

chm m  and F(q')= +−

−

++
−+

hhm

whm o

. 

The interpretation of (2.52) is straightforward. If purchasing at the marginal 
cost of the supplier is not beneficial compared to the in-house production, 
then there is no wholesale price, w>c, to encourage outsourcing.  

The supplier's problem is similar to that of the previous section. 

w
max Js(q,w)= (w-c)q   (2.53) 

s.t. 
c ≤ w ≤ w

0.   (2.54) 

m

m
o

 

The supplier’s problem 

Note that if ʌ(q'')-c q''-C ≤ ʌ(q')-cq', then the supplier’s problem has a 
feasible solution. Otherwise, c <w <c, and the supplier’s problem has no  
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feasible solution since, in order to compete with in-house production, the 
supplier has to set the wholesale price below his marginal cost, w<c.  

Correspondingly, the centralized problem is split into two cases. If 
ʌ(q'')-cmq''-C ≤ ʌ(q')-cq', or equivalently, wo ≥ c, the centralized problem is  
 reduced to that considered in the previous section. Indeed, if the supply 
chain is integrated, then wholesale-related costs represent a transfer within 
the chain which does not affect the system-wide optimal solution. Then the 
supplier will deliver products at his marginal cost c and no fixed irreversi-
ble cost will be paid since in-house production is not implemented. 

The centralized problem 

q
max J(q)=

q
max {E[ym - h+

x
+
 - h

-
x

-]-cq}  (2.55) 

s.t. 
x=q-d, q ≥ 0. 

If wo<c, then the centralized objective function is identical to the second 
part of (2.46), which is the classical newsvendor problem with a setup cost  

q
max {E[ym -h+

x
+
- h

-
x

-]-cmq-C .   (2.56) 

become identical in such a case. 

System-wide optimal solution 

The centralized problem (2.55) was studied in the previous section. If out-
sourcing is selected, i.e., wo>c, the system-wide optimal order quantity q*' 
is unique and defined by (2.33).  

F(q*')= 
+−

−

++
−+
hhm

chm
. 

Note that if the supply chain is centralized, then it simply has two  
options to produce the product (at the manufacturer and at the supplier). 
Therefore, it is the production at the supplier option (if chosen) rather than 
outsourcing.  

Similarly, if production at the manufacturer is selected, wo<c, the optimal 
solution is the newsvendor solution  

F(q*'')=
+−

−

++
−+

hhm

chm m .   (2.57) 

In other words, the manufacturer’s problem and the centralized problem 
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The effect of initial inventory  

Since the supplier does not impose any fixed-order cost, the effect of initial 
inventories on outsourcing is identical to that for the centralized system as 
discussed in the previous section, 

F(x0
+q*')=

+−

−

++
−+
hhm

chm
. 

To study the effect of initial inventories on production at the manufac-
0

x
0
+q-d. Then the profit from not ordering anything is 

ʌ(x0)=

∫ ∫∫∫
∞

−+
∞

−−−−+
0

00

0

0

000

0

)()()()()()(
x

xx

x

dDDfxDhdDDfDxhdDDfmxdDDmDf . 

On the other hand, if the manufacturer produces q>0 products, the profit 
is 

ʌ(q+x
0)-cmq-C. 

The optimal solution for this objective function is determined by (2.57) 

F(q*''+x
0)=

+−

−

++

−+

hhm

chm
m

. 

Denote S= q*''+x
0, then the optimal in-house profit for a given x0 is  

ʌ0(S)-cm(S- x0)-C. 

Note that if x
0
=0, then assuming that in-house production is profitable 

under conditions of no initial inventory, we have, ʌ(S)-cm(S- x
0)-C>0, 

while ʌ(x0)<0 since we do not sell anything when x0=0. That is, 

ʌ(S)-cm(S- x0) -C> ʌ(x0), 
or equivalently, 

ʌ(S)-cmS -C> ʌ(x0)-cmx
0, 

which implies that it is optimal to produce in-house when x0=0. When initial 
inventories increase x

0>0, then the left-hand part of the inequality remains 
unchanged while the right-hand part increases towards its maximum which 
is attained at x0=S. Thus, when x0=S, C>0, we have 

ʌ(S)-cmS - C< ʌ(x0)-cmx
0, 

which implies that it is optimal not to produce when x0=S. The right-hand 
side of the inequality represents the traditional newsvendor objective func-
tion, ʌ(x0)-cmx

0, which monotonically increases when x0 increases towards 
S. We conclude that there exists x0=s<S, such that, 

ʌ(S)-cmS - C= ʌ(s)-cms. 

Thus, if x0<s, then ʌ(S)-cmS -C> ʌ(x0)-cmx
0 and it is profitable to produce 

so that S= q*''+x
0. On the other hand, if x0>s, then ʌ(S)-cmS - C< ʌ(x0)-cmx

0 
and it is not profitable to produce. Consequently, in contrast to the optimal  
 

turer’s plant, let x <S, (otherwise it is not optimal to produce at all) and x= 
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order-up-to policy when no fixed order cost is incurred, we obtain the  
so-called security stock (s, S) policy which is widely used in industry as 
well, 

⎩
⎨
⎧ <−

=′′
otherwise, ,0

 if ,
*

00 sxxS
q  

where s is the smallest value that satisfies ʌ(S)-cmS -C= ʌ(s)-cms. 

Game analysis 

To simplify the presentation, we assume x0=0 and consider now a decen-
tralized supply chain characterized by non-cooperating firms. Let the sup-
plier first set the wholesale price. If wo<c, then regardless of the wholesale 
price, an in-house production for q” is chosen. Otherwise, the manufac-
turer decides to outsource and issues an order, q', which the supplier deliv-
ers.  

Since in-house (2.57) and the centralized in-house solutions are identi-
cal, we further focus on outsourcing, i.e., wo ≥ c. Let us first assume that 
w

o
=c, then the supplier has zero profit by setting w=c, and simply sustains 

himself since the manufacturer’s dominating policy is to outsource (2.50) 
when the profit from in-house production is equal to the outsourcing profit.  

Let wo>c. Using the results from the previous section, the optimal order 
is determined by (2.38) 

F(q')= 
+−

−

++
−+

hhm

whm
. 

This, similar to Proposition 2.6, implies the double marginalization effect. 

Proposition 2.9. In the outsourcing game, if wo>c and the supplier makes a 

profit, i.e., w>c, the manufacturer’s order quantity and the customer service 

level are lower than the system-wide centralized order quantity and service 

level.    

Again, similar to the observation from the previous section, since the 

the wholesale price as high as possible, i.e., w=w
o under the Nash strategy. 

This causes supply chain performance to deteriorate. In contrast to the  
inventory game of the previous section, if the manufacturer’s dominating 
policy is to outsource when the profit from in-house production is equal to 
the profit from outsourcing, then the manufacturer will still outsource at 
w=w

o.  

supplier’s objective function is linear in w, the supplier would want to set 
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Equilibrium 

Given wo>c, Proposition 2.7 proves that there is a Stackelberg equilibrium 
price c<w

s<m+h
-. However, since q'>0 and ʌ(q')-wo

q'=ʌ(q'')-cm(q'')-C>0, 
then w

o
<w

M
=m+h

-. This implies that the Stackelberg wholesale price 
found with respect to Proposition 2.7 may be greater than w

o. In such a 
case it is set to ws= w

o.  
Based on Proposition 2.7 and the manufacturer’s optimal response 

(2.52), we summarize our results.  

If w
o
<c, then produce q'' products in-house, where 

F(q'')= 
+−

−

++
−+

hhm

chm
m . 

If wo
=c, then outsource; the equilibrium wholesale price is w

s
=c, and 

the outsourcing quantity q' is such that  

F(q')= 
+−

−

++
−+
hhm

chm
. 

If wo
>c, then outsource; find w' and q

'
= q

R
(w

'
) (according to Proposi-

tion 2.7), i.e.,  

0
))'(()(

'
)'( =

++
−

−
+− wqfhhm

cw
wq

R

R , F(qR(w'))=
+−

−

++
−+

hhm

whm '
. 

If w'<w
o
, then the equilibrium wholesale price is w

s
=w' and the 

outsourcing order is q', otherwise ws
=w

o and the outsourcing or-

der q' is such that F(q')= +−

−

++
−+

hhm

whm 0

. 

Let the demand be characterized by the uniform distribution,  

⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise 0,

;0for  ,
1

)(
AD

ADf  and 
A

a
aF =)( , 0 ≤ a ≤ A. 

Then using the results of Example 2.8, we have a unique solution for each 
case. 

If w
o
<c, then produce q''=

+−

−

++
−+

hhm

chm
m A products in-house, which is 

equivalent to the system-wide optimal solution.  

 

 

 

 

Example 2.10 
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If w
o
=c, then we outsource; the equilibrium wholesale price is w

s
=c and 

the outsourcing quantity is q
s=

+−

−

++
−+
hhm

chm
A products, which is equivalent 

to the system-wide optimal order. 

If 
2

chm ++ −

≤ w
o
 (and thus w

o
>c), then we outsource; the equilibrium 

wholesale price is 
2

chm
w s ++

=
−

 and the outsourcing order is 

2
'

A

hhm

chm
qq s

+−

−

++
−+

== .  

If 
2

chm ++ −

>w
o
>c, then we outsource; the equilibrium 

wholesale price is 
os ww = and outsourcing order quantity is 

2
'

0 A

hhm

whm
qq s

+−

−

++
−+

==  products, 

where w
o
 satisfies the expression 
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Example 2.11 

Let the demand be characterized by an exponential distribution, i.e., 
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⎪
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=
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otherwise 0,

;0for  ,
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Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0. 

 
We first formalize equation (2.51) for wo which, for the exponential dis-

tribution yields, 

∫ ∫
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λ
. 

We calculate this expression with Maple. Specifically, we set the order 
quantities q'' and q' as q2 and q1 respectively, 
> q2:=1/lambda*ln((m+hplus+hminus)/(cm+hplus)); 

 := q2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + cm hplus

λ
 

> q1:=1/lambda*ln((m+hplus+hminus)/(w0+hplus)); 

 := q1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + w0 hplus

λ
 

Next we define the left-hand side and right-hand side of (2.51) as LHS and 
RHS 
>LHS:=int((m*D-hplus*(q2-D))*lambda*exp(-lambda* 
D),D=0..q2)+int((m*q2-hminus*(D-q2))*lambda*exp(-

lambda*D), D=q2..infinity)-cm*q2-C: 

>RHS:=int((m*D-hplus*(q1-D))*lambda*exp(-lambda* 
D),D=0..q1)+int((m*q1-hminus*(D-q1))*lambda*exp(-

lambda*D), D=q1..infinity)-w0*q1: 

Then to see how fixed cost, C, effects the solution, specific values are 
substituted for the parameters of the problem except for C. 
> LHSC:=subs(m=15, hplus=1, hminus=10, cm=2, lambda=0.1, 

LHS); 

> RHS1:=subs(m=15, hplus=1, hminus=10, cm=2, lambda=0.1, 

RHS); 

After evaluating the left-hand side and the right-hand side 
> LHSCe:=evalf(LHSC); 

:= LHSCe − 65.2154725 1. C  

> RHSe:=evalf(RHS1); 

RHSe 15.76923077 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26.

 + w0 1.
168.7967107 8.796710786 w0−  +  +  := 

15.76923077 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26.

 + w0 1.
w0 5.769230769 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ln

1

 + w0 1.
 −  + 

5.769230769 w0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

1

 + w0 1.
 + 

 

we solve (2.51) in w0 
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> solutionw0:=solve(LHSCe=RHSe, w0); 

and plot the solution as a function of the fixed cost  
>plot(solutionw0, C=0..200); 

 
Figure 2.6. The effect of the fixed cost C on the maximum wholesale price w0 

The plot (Figure 2.6) implies that the higher the fixed cost, C, the 
greater w0 and thus the smaller the chance that in-house production is bene-
ficial compared to the outsourcing. For example, if C=120 
> LHSes:=subs(C=120, LHSCe); 

:= LHSes -54.7845275  

then 
>solve(LHSes=RHSe, w0); 

11.26258264  

w
0=11.2625 and thus if supplier's cost c>11.2625, the in-house production 

is advantageous (and is system-wide optimal) at quantity q''*=q2opt=21.594 
>q2opt:=evalf(subs(m=15, hplus=1, hminus=10, cm=2, 
lambda=0.1, q2));  

:= q2opt 21.59484249  

Otherwise, if c ≤ 11.2625 , then outsourcing is advantageous and the 
Stackelberg equilibrium wholesale price w' and order quantity q' are calcu-
lated as described in the previous section. Note that in case of w'>w

o, the 
Stackelberg wholesale price equals wo and the order quantity is computed 
correspondingly.   

Coordination 

If w
0>c, then outsourcing has a negative impact compared to the corres-

ponding centralized supply chain, the manufacturer orders less and the ser-
vice level decreases. This is similar to the vertical inventory game without  
 
 



a setup cost considered in the previous section. In contrast to that game, 
this effect is reduced when c ≤ w

o<w
s, where w

s is calculated under an as-
sumption of no constraints, i.e., according to Proposition (2.7). In addition, 
there can be a special case when wo=c, and thus the supplier is forced to set 
the wholesale price equal to its marginal cost, w=c. This eliminates double 
marginalization, the manufacturer outsources the system-wide optimal quan-
tity and the supply chain becomes perfectly coordinated regardless of whether 
the supplier is leader in a Stackelberg game or the firms make decisions 
simultaneously using a Nash strategy. On the other hand, since the case 
when the manufacturer prefers in-house production is identical to the cor-
responding centralized problem, no coordination is needed. Consequently, 
the case which requires coordination is when w

0>c. This case coincides 
with that derived for the inventory game with no setup cost. Thus, the co-
ordinating measures discussed in the previous section are readily applied 
to an outsourcing-based supply chain.  

An alternative way of improving the supply chain performance is to deve-
lop a risk-sharing contract which would make it possible to coordinate the 
chain in an efficient manner as discussed in the following section.  

2.4 INVENTORY COMPETITION WITH RISK SHARING 

In competitive conditions discussed so far, the retailer incurs the overall 
risk associated with uncertain demands. The fact that expected profit is the 
criterion for decision-making implies that the retailer does not have an  
assured profit. The supplier, on the other hand, profits by the quantity he 

to mitigate demand uncertainty by buying back left-over products at the 
end of selling season or offer an option for additional urgent deliveries to 
cover cases of higher than expected demand. These well-known types of 
risk-sharing contracts make it possible to improve the service level as well 
as to coordinate the supply chain as discussed in the following sections. 
(See also Ritchken and Tapiero 1986). 

A modification of the traditional newsvendor problem considered here 
arises when the supplier agrees to buy back leftovers at the end of selling 

season at a price, b(w), 0
)(

≥
∂

∂
w

wb
 and 0

)(
2

2

≥
∂

∂
w

wb
. This means that the  

 

2.4.1  THE INVENTORY GAME WITH A BUYBACK OPTION 
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sells. If the supplier is sensitive to the retailer’s service level, he may agree 
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uncertainty associated with random demand may result in inventory asso-
+

income b(w)x+ rather than a cost. Thus the supplier mitigates the retailer’s 
risk associated with demand overestimation or, in other words, the supplier  
 shares costs associated with demand uncertainty. The other parameters of 
the problem remain the same as those of the stocking game. 

q
max Jr(q,w)= 

q
max {E[ym + b(w)x+

 - h
-
x

-]-wq},  (2.58) 

s.t. 
x=q-d, 
q ≥ 0, 

where x+=max{0, x}, x- =max{0, -x} and y=min{q,d}. 

Applying conditional expectation to (2.58) the objective function trans-
forms into 

q
max Jr(q,w)=

q
max { 

∫ ∫∫∫
∞

−
∞

−−−++
q

qq

q

dDDfqDhdDDfDqwbdDDmqfdDDmDf
00

)()()())(()()( -wq}.(2.59) 

The first term in the objective function, E[ym]= ∫∫
∞

+
q

q

dDDmqfdDDmDf )()(
0

, 

represents income from selling y product units; the second, E[b(w)x+]= 

∫ −
q

dDDfDqwb
0

)())(( , represents income from selling leftover goods at 

the end of the period; the third, E[h-
x

-]= ∫
∞

− −
q

dDDfqDh )()( , represents 

losses due to an inventory shortage; while the last term, wq, is the amount 
paid to the supplier for purchasing q units of product. As discussed earlier, 
there is a maximum wholesale price, wM, that the supplier can charge so 
that the retailer will still continue to buy products. Taking this into account 

The supplier’s problem 

w
max Js(q,w)= 

w
max (w-c)q-E[b(w)x+]  (2.60) 

s.t. 

The retailer’s problem 

ciated costs, b(w)x  at the supplier’s site while at the retailer’s site it is an 

we formulate the supplier’s problem. 



c ≤ w ≤ w
M. 

selling q products at margin w-c, while the second, E[b(w)x+] is the pay-
ment for the returned leftovers to the supplier. To simplify the problem, we 
here assume that leftovers are salvaged at a negligible price rather than 

sum of two objective functions (2.59) and (2.60) which results in a func-
tion independent of the wholesale price, w. 

The centralized problem 

q
max J(q)= 

q
max {E[ym - h

-
x

-]-cq}  (2.61) 

s.t. 
x=q-d, q ≥ 0. 

Note that since w and b represent transfers within the supply chain, system-
wide profit does not depend on them.  

System-wide optimal solution 

Applying conditional expectation to (2.61) and the first-order optimality 
condition, we find that 

=
∂

∂
q

qJ )(
cdDDfhdDDmfqmqfqmqf

qq

−−+− ∫∫
∞

−
∞

)()()()( =0, 

which results in 

F(q*)= 
−

−

+
−+

hm

chm
.   (2.62) 

Since this result differs from (2.33) by only h+ set at zero, the objective 
function in (2.61) is strictly concave under the same assumptions. Simi-
larly, the service level in the centralized supply chain with a buyback con-
tract is 

Į =
−

−

+
−+

hm

chm
,   (2.63) 

This is different from Į =
+−

−

++
−+
hhm

chm
 of the traditional newsvendor 

problem only because of our assumption that surplus products are salvaged 
at a negligible price rather than stored at the supplier’s site.  

The first term (w-c)q in (2.60) represents the supplier’s income from 

stored at the supplier’s site. The centralized problem is then based on the 
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players make their decisions simultaneously. 
The supplier chooses the wholesale price w and thereby buyback b(w) 
price while the retailer selects the order quantity, q. The supplier then  
delivers the products and buys back leftovers.  

find w
M=m+h

-, so that if w ≤ w
M, then 

F(q)= 
)(wbhm

whm

−+
−+

−

−

.                               (2.64)  

from (2.64), the following result. 

Proposition 2.10. In vertical competition, if the supplier makes a profit, 

i.e., w>c, a buyback contract induces increased retail orders and an im-

proved customer service level compared to that obtained in the corres-

ponding stocking game.  
Proof: To prove this proposition, compare the optimal orders with the non-
cooperative buyback option 

F(q)= 
)(wbhm

whm

−+
−+

−

−

, 

and without the buyback option  

F(q)= 
+−

−

++
−+

hhm

whm
.                                         

From Proposition 2.10 we conclude that the buyback contract has a  
coordinating effect on the supply chain. Moreover, comparing (2.62) and 
(2.64), we observe that in contrast to the stocking game, with buyback con-
tracts, i.e., b(c)>0, when setting w=c, the retailer orders even more than the 
system-wide optimal quantity since there is less risk of overestimating  
demands. In such a case, the supplier has only losses due to buying back 
leftover products. Thus, the supplier can select w>c so that the retailer’s 
non-cooperative order will be equal to the system-wide optimal order 
quantity. This coordinating choice will be discussed below after analyzing 
possible equilibria. 

 

 

 

 

Using the first-order optimality conditions for the retailer’s problem, we 

Since the retailer’s objective function is strictly concave, we conclude 



Equilibrium  

Let us first consider the case of 0
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>
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∂
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wb
, 0
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2
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>
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∂
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 and assume that 

b(w) is chosen such that 
w

lim Js(q,w)= ∞− , i.e., the solution set is compact. 

objective function Js(q,w)=(w-c)q-E[b(w)x+]=(w-c)q ∫ −−
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dDDfDqwb
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∂
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∫
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w

wb
q

w

wqJ
.   (2.65) 

Verifying the second-order optimality condition, we also find 

0)()(
)(),(
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2

2
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∂

∂
−=

∂
∂

∫
q

s dDDfDq
w

wb

w

wqJ
.  (2.66) 

Since the functions of both supplier and retailer are strictly concave and 
the solution space is compact, we readily conclude that a Nash equilibrium 
exists (see, for example, Basar and Olsder 1999). 

Proposition 2.11. The pair (w
n
,q

n
), such that  

0)()(
)(

0

=−
∂

∂
− ∫

nq

n

n

n dDDfDq
w

wb
q , F(qn)= 

)( n

n

wbhm

whm

−+
−+

−

−

 

   

An interesting case arises when b(w) is a linear function of w. In such a 
case, similar to the traditional stocking game, Js(q,w) depends linearly on 
w, i.e., the supplier would set the wholesale price as high as possible. 
Unlike the stocking game, this situation does not lead to no-business under 
a buyback contract. Indeed, by setting w close to but less than wM, the sup-
plier may still be able to induce the retailer to order the desired quantity by 
properly choosing a function b*=b*(w). In fact, this strategy leads to per-
fect coordination regardless of the fact whether the supplier is the Stackel-
berg leader or the decision is made simultaneously. This is because under 
any wholesale price w, b*=b*(w) would ensure the same response from 
the retailer by increasing w the supplier increases his profit. Thus, this time 
we find the greater the wholesale price, the greater the supplier’s profit 

while the order quantity remains the same. 

Then the Nash equilibrium can be found by differentiating the supplier’s 

option.  
constitutes a Nash equilibrium of the inventory game under a buyback 
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Let 0
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>
∂

∂
w
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>
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 and the demand be characterized by the uni-

form distribution,  
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⎪
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a
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Then using (2.64), we find  
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Substituting into (2.65) we have 
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Rearranging this last equation we obtain 
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Since wn=w
M=m+h

-
 results in no order at all, the Nash equilibrium is found 

by  

0
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whm
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. 

If for example, b(w)=Į+ȕw2, and the buyback price does not exceed the 
maximum price, Į+ȕ[wM]2<m+h

-, then we have a unique Nash equilibrium 

)1(
1

−+
−=

hm
wn α

β
, A

whm

whm
q

n

n

n

2][βα −−+
−+

=
−

−

. 

On the other hand, the system-wide optimal order is 

q*= 
−

−

+
−+

hm

chm
A.     

Coordination 

As discussed in previous sections, discounting, for example, a two-part tariff 
is one tool which provides coordination by inducing a non-cooperative  
solution to tend to the system-wide optimum.  

In this section we show that buyback contacts provide an efficient 
means for coordinating vertically competing supply chain participants. 
Specifically, when b(w) is a linear function of w, the supplier’s objective  
 

Example 2.12 



function depends linearly on w. This implies that it is optimal for the sup-
plier to set the wholesale price as high as possible. However, unlike the 
traditional stocking game, this situation does not lead to no orders if the 
supplier chooses b*=b*(w) as described below.  

Let the best retailer's response q defined by (2.64) be identical to the 
system-wide optimal solution q* defined by (2.62), 

−

−

+
−+

hm

chm
=

)(* wbhm

whm

−+
−+

−

−

.   (2.67) 

From (2.67) we conclude that if 

( )
chm

cw
hmwb

−+
−

+=
−

−)(* ,   (2.68) 

 
 

then q=q* for any w<w
M. Thus, if b*(w) is set according to (2.68), the sup-

plier can maximize his profit by choosing w very close to wM. This would 
leave the retailer still ordering a system-wide optimal quantity which 
would perfectly coordinate the supply chain. This result is independent of 
the fact whether the supplier first sets w and b*(w) (as Stackelberg leader) 
or whether decisions on w and q are made simultaneously (Nash strategy) 
if function b*(w) is known to the retailer. 

Example 2.13 

Let the demand be characterized by an exponential distribution, i.e., 

⎪⎩

⎪
⎨
⎧ ≥

=
−

otherwise 0,

;0for  ,
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De
Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0 

q is identical to the system-wide optimal solution q*, that is, b*(w) is  
determined by (2.68). Then the equilibrium wholesale and buyback prices 
are 

w=w
M-İ=m+h

-
-İ and ( ) )1()(*

chm
hmwb

−+
−+= −

− ε
, 

where İ is a small number and the equilibrium order quantity is  

q= 
c

hm −+
ln

1

λ
. 

ciated with uncertain demands and the greater the share of the overall sup-
ply chain profit that the supplier gains on account of the retailer. When İ is 
very small, the retailer returns all unsold products at almost the same 
wholesale price he purchased them. He therefore has no risk at all in case 
the demand realization will be lower than the quantity stocked.  

Note that the smaller the İ, the greater the supplier’s share of the risk asso-
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and b*=b*(w) be chosen by the supplier so that the best retailer’s response 
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Similar to the buyback option, this modification of the stocking game 
arises when the supplier is willing to mitigate the risk the retailer incurs 
with respect to the uncertainty of customer demands. Specifically, similar 
to a buyback contract, the supplier may agree to have an inventory surplus 
at the end of the selling season. In contrast to the buyback contract, this 
surplus is due to an option which is offered to the retailer. The option  
allows the retailer to issue an urgent or fast order, to be shipped immedi-

ately, at a predetermined option price, m>u(w)>w, 0
)(

≥
∂

∂
w

wu
, close to the 

end of the selling season. The retailer will exercise this option only if  
customer demand exceeds his inventories. It is this difference between the 

option purchase covers. If the supplier is unable to satisfy such a backor-
der, he will compensate the retailer for his loss. Thus, under this type of 
contract, the supplier assumes the customer service level at the retailer’s 
site by mitigating the retailer’s backlog costs. We assume that the system 
parameters are such that the supplier’s order qs exceeds the retailer’s order 
qr, qr<qs (an exact requirement for this to hold is stated in Proposition 
2.13) which ensures an inventory game between the retailer and supplier. 
Furthermore, we assume that the wholesale price and the retailer’s margin 
are fixed and the supplier cost is negligible unless it is an urgent order. 
This enables us to focus solely on the inventory game where the supplier 
and retailer have to choose a quantity to order. To draw an analogy with 
our previous analysis, we allow the wholesales price to change when coor-
dination aspects are discussed.  

rq
max Jr(qr,qs)= 

rq
max {E[my+(m- u(w))xr

-
 - hr

+
xr

+- hr
-
xs

-] - wqr}, (2.69) 

s.t. 
xr=qrd, 

xs=qs – qr– xr
-, 

qr ≥ 0, 

where xr
+=max{0, xr}, xr

- =max{0, -xr} and y=min{d, qr}, 

r

the end of a period prior to an urgent order when realization, D, of random 
demand d is already known; xr

+ 

of the period; xr
- is the retailer's inventory shortage prior to an urgent  

order; the urgent quantity ordered by the retailer for immediate shipment,  
 

2.4.2  THE INVENTORY GAME WITH A PURCHASING OPTION 

The retailer’s problem 

retailer’s backorder and the supplier’s inventory level which the retailer’s 

In this single-period formulation, x  is the retailer’s inventory level by 

is the retailer’s inventory surplus at the end 



hr
+, hr are the retailer’s inventory holding and shortage costs respectively; 

and qr is the quantity ordered by the retailer at the beginning of the period 
and shipped by the end of the period. If the supplier does not have enough 
products to ship, then a purchase option implies that the supplier covers the 

unsold product.  
Applying conditional expectation to (2.69), the objective function trans-

forms into 

rq
max Jr(qr,qs)=

rq
max {

∫∫∫∫ −−−−++ +
∞∞ r

rr

r q

rr

q

r

q
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q

dDDfDqhdDDfqDwumdDDfmqdDDmDf
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∫
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rsr wqdDDfqDh )()( }.  (2.70) 

The first term in the objective function, E[ym]= ∫∫
∞

+
r

r

q

r

q

dDDfmqdDDmDf )()(
0

, 

represents the income from selling y=min{d,qr} product units; the second, 

E[(m-u(w))xr
-] = ∫

∞

−−
rq

r dDDfqDwum )()))((( , represents the income from 

backlog at the end of the period; the third and the fourth, E[hr
+
xr

+]= 

∫ −+
rq

rr
dDDfDqh

0

)()( , E[hrxs]= ∫
∞

− −
sq

sr dDDfqDh )()( , are the surplus and 

shortage costs; and the last term, wqr, is the amount paid to the supplier for 
a regular order.  

sq
max Js(qr,qs)= 

sq
max {wqr +E[(u(w)-c)(xr

- - xs
-) - (m- u(w)) xs

-- hs
+
xs

+]}, (2.71) 

s.t. 
xs=qs - qr - xr, 

xr=qr - d, 
qs ≥ 0, 

xs
+=max{0, xs}, xs=max{0, -xs}, 

 
 
 

The supplier’s problem 
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difference between the retailer’s margin and the option price m-u(w) for 
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where xs is the supplier’s inventory level by the end of period after an  
urgent order; qs is the quantity ordered by the supplier at the beginning of the 
period and shipped in time for reshipment from the supplier to the retailer 
by the end of the period; u(w) is the option price; hs

+ is the supplier’s  
inventory holding cost; and c is the cost of processing the urgent order.  

After simple manipulations with (2.71)  

Js(qr,qs)= wqr +E[(u(w)-c)xr - (m-c)xs
- - hs

+
xs

+] 

and determining expectation, we have 
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 (2.72) 

The first term in the objective function, wqr, is the income from selling qr 

products; the second, E[(u(w)-c)xr]= ∫
∞

−−
rq

r dDDfqDcwu )())()(( , represents 

income from the optional order; the third, E[(m-c)xs] = ∫
∞

−−
sq

s dDDfqDcm )())(( , 

represents the compensation paid by the supplier for the part of the  
optional order which the supplier is unable to deliver (i.e., this is the sup-

plier’s shortage cost); and the last term, E[hs
+
xs

+]= ∫ −+
s

r

q

q

ss
dDDfDqh )()(  

∫ −+ +
rq

rss
dDDfqqh

0

)()( , is the inventory surplus cost incurred by the sup-

plier.  
The centralized problem is based on the sum of two of the objective 

functions (2.69) and (2.71). 

The centralized problem 

sr qq ,
max J(qr,qs)= 

sr qq ,
max {E[my+(m-c)(xr

-
 - xs

-) - hr
+
xr

+ - hs
+
xs

+ - hr
-
xs

-]} (2.73) 

s.t. 
xs=qs - qr - xr, 

xr=qr - d, 
qr ≥ 0, qs ≥ 0. 

Note that since w, u(w) and (m-c)xs
-
 represent transfers within the supply 

chain, the system-wide profit does not depend on w, u(w) and is reduced 



by (m-c)xs
- to account only for the satisfied part (xr

-
- xs

-) of the optional  
(urgent) order. Applying conditional expectation to (2.73) we have explicitly, 
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System-wide optimal solution 

The first-order optimality condition with respect to qr results in 

=
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Thus, the system-wide unique optimal order quantity of the supplier is 
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r
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c
qF *)( .   (2.74) 

Similarly, the first-order optimality condition with respect to qs yields,  
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Furthermore, since the first derivative in one of the variables is inde-
pendent of the other variable, the corresponding Hessian is negative defi-
nite and this newsvendor type of the objective function is strictly concave 
in both decision variables.  
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Thus, the system-wide unique optimal supplier’s order is 
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players make their decisions simultaneously. 
After the retailer and supplier choose their orders qr and qs , the supplier 
delivers qr units as a regular order and (xr

-
 - xs

-) as an urgent order as well 
as covers the retailer for losses if the urgent order does saturate the  
demand, xs

-.  

function (2.70) we find 
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Equation (2.76) represents a unique, newsvendor-type, optimal solution. 
As long as our assumption u(w)<m holds, the regular order is independent 

r
-

the purchasing option causes a shortage which depends on the supplier’s 

objective function (2.72), 
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that is,  
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r
-

equilibrium order is system-wide optimal if hr
- is negligible.  

However, if hr
->0, then qs

*
>qs. 

 
 
 
 
 

order quantity rather than on the retailer’s decision.  
To determine the Nash equilibrium, we next differentiate the supplier’s 

This solution is unique and identical to (2.75) if h =0, that is, the supplier’s 

of the retailer’s margin. Shortage cost h  is not a part of this equation since 

Applying the first-order optimality condition to the retailer’s objective 



Equilibrium 

It is easy to verify that the second derivative with respect to the supplier’s 

strictly concave. Thus, imposing our assumption, qr ≤ qs, we readily conclude 
with the following statement. 

Proposition 2.12. Let ≥
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constitutes a unique Nash equilibrium of the inventory game under a pur-

chasing option.    

Since c<u(w)<m, then we can assume that u(w)-w ≤ c. If this condition 

holds, then 
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)(  which, of course, is not a 

new discovery. In contrast to previous results, the total order also includes 
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determines the service level in the supply chain with a purchasing option. 
We thus conclude with the following property: 

Proposition 2.13. Let ≥
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)(
. In vertical competition, if u(w)-

w ≤ c, a contract with a purchasing option induces lower order quantities 

from the retailer and supplier as well as a lower service level than the sys-

tem-wide optimal solution.   

r
n ) and without (qr) purchas-

ing option (see the stocking game in Section 2.3.2), we conclude that 
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as u(w)<m. 

Proposition 2.14. Let ≥
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r
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)(
. In vertical competition, a 

contract with a purchasing option induces a lower regular order quantity 

by the retailer compared to the contract without a purchasing option, 

while the service level depends on hs
+
.  

From Proposition 2.14, it follows that unless the supplier’s inventory 
holding cost is too high, a contract with a purchasing option improves the 
service level, but the regular order quantity decreases. This is expected,  
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urgent order, x -x , while the supplier’s inventory level, 

Next, comparing the retailer’s order with  (q

order quantity is negative and the supplier’s objective function is also 
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since, given the possibility of an urgent order, it is beneficial for the retailer 
to reduce the regular order and wait for demand to realize and only then 
increase profit by an urgent purchase if the demand exceeds the regular order 
stock. Note that since the urgent order is random, xr

- - xs
-, and always non-

negative, it means that  

 E[xr
- - xs

-]= ∫
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−
rq

r dDDfqD )()( - ∫
∞

−
sq

s dDDfqD )()( , (2.78) 

is not zero and thus the overall quantity ordered by the retailer is greater 
than that of a regular order. Moreover, the regular order quantity can be  
increased since a contract with a purchasing option allows efficient coordi-
nation by the proper choice of the option price, u(w). These results are 
demonstrated in the following example. 

Let the demand be characterized by the uniform distribution,  
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The centralized solution is  
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The average urgent order is thus, 
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Example 2.14 

while the total average retailer’s order is 



Coordination 

Coordination under a purchasing option is similar to buyback contacts 
where a proper choice of the buyback price, b(w), induces the retailer to 
choose a system-wide optimal order quantity. Specifically, if the supplier 
chooses the option price u(w) as a linear function of w, u*(w), so that  
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)(* ,   (2.79) 

then qr
n=qr*. Moreover, since u*(w) is chosen as a linear function of w, the 

supplier, as is the case with the buyback contacts, can increase the whole-
sale price very close to its maximum level and thus gain most of the supply  
 chain profit while still having the retailer order the system-wide optimal 
quantity. The overall game will, however, become perfectly coordinated 

performance.  
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In this chapter, we extend the single-period newsvendor-type model dis-
cussed in Chapter 2 to a multi-period setting. This implies that the supply 
chain operates in dynamic conditions and that customer demand has a 
different realization at each period (see, for example, Sethi et al. 2005). In 
such multi-period cases, the newsvendor problem is turned into a stochastic 
game. We address here two such games. One is a straightforward extension 
of the stocking game considered in Chapter 2. The other is a replenishment 
game, where the decisions are concerned not only with the quantities to 
order for stock but also with the frequency of orders or, equivalently, with 
the length of the replenishment period. The meaning of such an extension 
is not only technical. It is conceptually important for setting the grounds of 
the management of supply chains in inter-temporal frameworks to be dealt 
with in forthcoming chapters.  

3.1 STOCKING GAME  

The multi-period stocking game which we consider in this section presumes 
that the supply chain operates during a number of production periods. At 
the beginning of each period, current inventories and demands are observed; 
the supplier sets a unit wholesale price for the period; and the retailer 
orders (stocks) a quantity at this price to cope with the demand which will 
be observed only at the end of the period when it is no longer possible to 
adjust the quantity ordered. Therefore, any unsold quantities will be stored 
and any backlogged shortages will be dealt with in the next period. 

FORMULATION 

Let the supply chain consist of a single supplier and a single retailer and 
consider the straightforward extension of the single-period stocking game 

3.1.1   THE STOCKING GAME IN A MULTI-PERIOD 

IN A MULTI-PERIOD FRAMEWORK  

3 SUPPLY CHAIN GAMES: MODELING 



studied in Chapter 2. Specifically, assume that there are multiple periods 
and that at the end of each period, inventories can be reviewed and a 
decision made by both the supplier and retailer. At each period, the 
supplier selects a wholesale price at which to sell his stock) while the 
retailer orders a certain quantity to satisfy customer demands (see Figure 
3.1). The supplier has ample capacity and his lead-time is assumed to be 
shorter than the period length, T. We assume stationary states, i.e., all 
parameters remain unchanged over the periods and demands at each period 
are independent and identically distributed variables with f (.) and F(.) 
denoting the known density and cumulative probability functions res-
pectively. Both the supplier and retailer intend to maximize expected 
profits per period. Unlike the previous chapter, remaining inventories from 
one period are stored for use in subsequent periods. Sales are not lost. If 
the demand exceeds the stock, the shortage is backlogged. 

 

 

In this context, the general K-period retailer's problem is formulated as 
follows. 

q
max Jr(q,w)=

q
max E[∑

=

K

t 1

( ytm - hr
+
x

+
t - hr

-
x

-
t - wtqt)], (3.1) 

s.t. 
xt+1= xt+qt+1-dt+1, x0-fixed, t=0,1,..,K-1                     (3.2) 

qt ≥ 0, t=1,..,K 

q=(q1,q2,…, qK), w=(w1,w2,…, wK), 

q1 

Supplier

Retailer

w1 

x1 x0 xK 

w2 q2 qK wK 
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Figure 3.1. The multi-period stocking game 

The retailer’s problem 
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where, as indicated earlier, xt
+=max{0, xt} and xt

-=max{0, -xt} are the 
inventory surplus and shortage at the end of period t, respectively; 
yt=min{qt+xt-1,dt} is the quantity of products sold at the end of period t; m 
is the retailer's margin; hr

+ and hr
- are the unit inventory holding and 

backlog costs respectively; and qt is the quantity ordered by the retailer and 
delivered by the supplier at period t. 

The corresponding single-period stocking game and the effect of initial 
inventories have been discussed in Chapter 2. Specifically, applying con-
ditional expectation to (3.1), the multi-period objective function transforms 
into the following single-period form when there is only one period to go, 
i.e., t=K 

tq
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(3.4) 

Differentiating (3.4) we find the traditional newsvendor solution under 
initial inventories and t=K  

F(xt-1+qt)= +−

−

++
−+

hhm

whm

r

tr .   (3.5) 

Thus, the analysis of the problem may change only when there is more 
than one period left to go, t<K. 

Similar to the retailer's problem, we formulate the supplier's multi-
period problem:  

w
max Js(q,w)=

w
max E[∑

=

K

t 1

( wt qt - cit
- - hs

+
it

+)]  (3.6) 

s.t. 
it+1= it+ot+1-qt+1, i0-fixed, t=0,1,..,K-1  (3.7) 

c ≤ wt ≤ wt
M, t=1,..,K   (3.8) 

t

production or processing cost; hs
+ is the supplier's unit stock holding cost 

and it
+=max{0,it}= max{0, it-1-qt} is the supplier's stock at the end of 

period t; ot is the quantity produced by the supplier at period t, ot=0 if qt<it-

1 and ot= qt-it-1 if qt ≥ it-1, i.e., ot= it
- =max{0, qt-it-1}. 

The supplier’s problem 

where w  is the supplier's wholesale price at period t; c is the supplier’s 



The objective function (3.6) involves the stock holding cost hs
+
it

+ and no 
backlog cost (since it is assumed that the supplier has ample capacity and 
is able to produce as much as needed). This, however, does not prevent the 
supplier from surplus costs if the initial stock level i0 is too high so that 
it>0 for t>0.  

The corresponding centralized problem is based on the sum of two 
objective functions (3.6) and (3.1), which results in a function independent 
on the wholesale (transfer) price. 

The centralized problem 

q
max J(q)=

q
max E[∑

=

K

t 1

( ytm - hr
+
x

+
t - hr

-
x

-
t - hs

+
it

+
- cit

-)] (3.9) 

s.t. 
xt+1= xt+qt+1-dt+1, x0-fixed, t=0,1,..,K-1; 

qt ≥ 0, t=1,..,K; 
it+1= it+ot+1-qt+1, i0-fixed, t=0,1,..,K-1; 

c ≤ wt ≤ wt
M, 

t=1,..,K. 

In what follows we limit our attention to the case of K=2. 

One-period-to-go system-wide optimal solution 

It is shown in the previous chapter that the centralized problem for a 
single-period case results in the optimality condition (2.35). Given x1, K=2 
(only one period to go), this condition remains unchanged if i1=0, that is, 
for the last review period, 

F(x1+q2)= F(s2
c) +−

−

++
−+

rr

r

hhm

chm
. 

Otherwise, the supplier's stock affects the optimal solution. 

To facilitate the presentation, let us introduce a function Ȗ(z,a,b)  
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such that 

3.1.2   THE TWO-PERIOD SYSTEM-WIDE OPTIMAL SOLUTION 
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The effect of the supplier’s stock  
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Differentiating this expression with respect to q2 we find that, 
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We thus conclude 

F(x1+q2)= 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<
++

++

=
++
++

>
++
−+

+−

+−

+−

−

+−

−

, if ,

 ; if ,
ˆ

; if ,

12

12

12

iq
hhm

hhm

iq
hhm

ehm

iq
hhm

chm

rr

sr

rr

r

rr

r

   (3.10) 

where +≤≤−
s

hec ˆ . 

From equation (3.10) we observe that the notion of the base-stock 
derived from the classical newsvendor problem leads to two base-stock 
levels, s'2 and s2

c, s2
c< s'2, given by 

F(s2
c)= +−

−

++
−+

rr

r
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chm
 and F(s'2)= +−

+−

++
++

rr

sr
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. 

Therefore condition (3.10) implies a policy combining order-up-to and 
order-exactly, or: 

if x1 ≥  s'2, then q2= 0; 
if s'2 - i1 ≤ x1 < s'2, then q2= s'2 - x1; 
if s2

c
 - i1 ≤ x1 < s'2 - i1, then q2= i1;  (3.11) 

if x1 < s2
c - i1, then q2= s2

c - x1. 



The centralized objective function is evidently concave when t=2 and 
the found single-period solution is unique under the assumptions identical 
to those of the single-period stocking problem from the previous chapter.  

Two-periods-to-go system-wide optimal solution 

To solve the two-period centralized problem, we use the dynamic pro-
gramming formalism intuitively presented in the appendix to this book. Let 
the multi-period, profit-to-go function at time t be defined by 

Ktkq
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If there is no initial stock at the supplier's side, i1=0, and thus the 
supplier's stock does not affect the optimization, then it can be omitted in 
(3.12). Therefore, it

+=0 , it
-=qt and the profit-to-go function (3.12) 

transforms into 
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Introducing the following function 
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and recalling the optimal order
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q when there is only 

one period to go, we have for the case i1=0, 
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B2(x1) is a deterministic function if x1 is fixed, i.e., when only one period is 
left to go. However, when there are two periods to go, x1 is not known and 
thus B2(x1) is random. Specifically, by noting that x1= x0+q1-d1, for the 
case i1=0, (3.13) transforms into:  
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On the other hand, if there is a stock, i1>0, for example, s2
c - x1 ≤  i1< s2' - 

x1 when s2'>x1, then we have the following one-period-to-go profit 
function, 

⎪⎩

⎪
⎨
⎧

≥−

<+
=

+
'. if ,)(

' if),(
),(

2111

2111

112

sxihx

sxix
ixB

s
π

π
   (3.15) 
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profit is 
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Assume next that i0=0, which results in 
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By taking into account (3.14), we find that  
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Differentiating (3.17), we obtain the optimality condition 
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Then applying Bellman’s principle of optimality, the two-period expected 



Equivalently, denoting the base-stock level for the first period as 
s1

c=x0+q1, we observe that s1
c ≥ s2

c and the optimality equation (3.18) takes 
the following form 
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Differentiating the left-hand side of (3.19) (or of (3.18)), one can verify 
that the derivative is negative with respect to s1

c ( or q1). Therefore the 
centralized objective function is concave and the solution is unique in 
terms of both s1

c and q1. Note that for a found base-stock , s1
c, the order 

quantity q1 is not always feasible. If the initial inventory is too large, 
x0>s1

c ≥ s2
c, then we have, q1= s1

c - x0<0, that is, it is optimal not to order at 
all, 
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We consider now a decentralized supply chain characterized by non-
cooperative parties and i0=0. The game is as follows: at the beginning of 
the first period, the supplier chooses a wholesale price w1 while the retailer 
observes his inventory level x0 and selects an order quantity, q1. The 
supplier then produces q1 units at unit cost c and delivers them to the 
retailer. At the beginning of the second period, the retailer observes his 
inventory level x1 and the game is repeated. 

To analyze this dynamic game, we introduce two Bellman functions, 

one for the retailer, (.)r

t
B and one for the supplier (.)s

t
B . 

Single-period solution 

The solution for the case when only one period is left to go (t=2) is derived 
in the previous chapter and is determined by equation (2.38), where the 
maximum wholesale price is w2

M=m+hr
-. Therefore, taking into account 

initial inventory for the second period, x1, we have a scenario that if 
w2 ≤ w2

M, the best retailer's response is determined by 

F(x1+q2)= +−
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++
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rr

r

hhm

whm 2 .   (3.21) 

3.1.3    GAME ANALYSIS 
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Comparing (3.21) with the single-period system-wide optimal solution, 
we confirm the same negative effect of vertical competition on the supply 
chain performance (see Proposition 2.6).  

Again, since the Nash strategy leads to no business and no customer 
service at all between the supplier and the retailer, we next assume the 
supplier's leading role. The single-period, Stackelberg price is less than the 
maximum purchasing price w2

M which was determined and presented in 
Chapter 2.)  

One- period- to-go equilibrium 

The single-period, Stackelberg equilibrium price is determined by Propo-
sition 2.7 from equation (2.40) for the case of zero inventories at the 
beginning of the period. With respect to the initial inventory level, x1, this 
equation takes the following form 
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This result obviously holds if the initial inventory level does not exceed 

the base-stock level s2
s induced by the Stackelberg wholesale price, 

sw2 , 

i.e., if x1 ≤  s2
s, so that 

F(s2
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We next introduce the maximum possible wholesale price w2* for a 
given x1<s2

c . Price w2* satisfies the following equation 
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If x1 ≥ s2
c, then the retailer orders nothing as the supplier is unable to 

offer a price which is below his marginal cost. On the other hand, if x1<s2
c 

or the same w2*>c, then there exists a Stackelberg equilibrium price w2
s, 

w*>w2
s>c so that q2

s>0, as shown in the following proposition. 

Proposition 3.1. Let f(D)>0 for D ≥ 0, otherwise f(D)=0,  
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If x1 ≥ s2
c
, then the retailer orders nothing q2

R
(w2)=0. 

If x1<s2
c
, then the pair (w2

s
,q2

s
), such that w2

s
 and q2
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R
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) satisfy the 

equations  
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constitutes a Stackelberg equilibrium for the second period of the two-

period stocking game with c< w2
s <w2

*
.  

Proof: If w2* ≤ c, then x1 ≥  s2
c and we order nothing. Let w2*>c (the same 

x1<s2
c), then it is easy to show that w2*>w2

s>c. Specifically, by considering 
equation (3.22) we straightforwardly verify that  
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Taking into account that f(D)>0 for D ≥ 0 we observe that 
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is a continuous function for c ≤ w2
s ≤ w2

*. Thus, we conclude that there is at 

least one root of the equation, 
2

2 )(

w

wJ
s
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=0, c< w2
s <w2

*, as stated in 

Proposition 3.1. 
The second part of the proof is by contradiction. Let x1<s2

c and there 
exist s2

s ≤ x1. Then F(s2
s) ≤ F(x1) and comparing (3.23) and (3.24) we find 

that w2
* ≤ w2

s which contradicts the fact proven in the first part, that 
w2

*>w2
s. Thus, if x1<s2

c, then x1<s2
s and q2

s>0.    
To have a unique Stackelberg wholesale price, we need the supplier's 

objective function to be strictly concave, 
2
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2
)(

w

wJ
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∂

∂
<0, which apparently 

does not hold for every distribution. In other words, the uniqueness of the 
equilibrium depends on the type of demand that the supply chain faces. 

Two-periods-to-go – the best retailer's response 

To solve the two-period decentralized problem, we use dynamic progra-
mming. Consider first the retailer's problem (3.1)-(3.2). Let the profit-to-go 
from period t be defined as  
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Employing function ʌ(z), Proposition 3.1 and recalling that K=2, we 
have for t=2 and no supplier's stock, i1=0,  
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Note that according to Proposition 3.1, s2
s and w2

s depend on x1, i.e., s2
s= 

s2
s(x1) and w2

s= w2
s(x1). When there are two periods to go, x1 is unknown 

and thus B2
r(x1) is a function of a random variable. Specifically, by taking 

into account that x1= x0+q1-d1=s1-d1, (3.26) transforms into 
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Then applying the principle of optimality, the expected two-period 
retailer's profit is 
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By taking into account (3.27), we find that  

=)]([ 12 xBE
r

∫∫
∞

−

−

+−−−−−+−
c

c

ss

sss

ss

dDDfDsDssDswDssdDDfDs

21

21

)()])()(())(([)()( 1121212

0

1 ππ . 

Substituting into (3.28), results in the profit for the two-periods-to-go 
case, 
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Differentiating (3.29). we obtain the first-order optimality condition 
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Differentiating the left-hand side of (3.30), one can verify whether the 
derivative is negative with respect to s1. If this is the case, the objective 
function is concave and the solution is unique in terms of both s1 and q1. 
Furthermore, s1 ≥ s

2
c

⎩
⎨
⎧ <−

=
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 if, 1001

1

sxxs
q    (3.31) 

Comparing (3.30) with the corresponding system-wide optimal solution 
(3.19), we observe that unless special conditions are maintained, the base-
stocks and thereby the order quantities are different. As a result, the supply 
chain performance deteriorates not only at the last period, t=2, but also 
when there are two periods to go, t=1.  

Considering the supplier's objective function (3.6) for the case of no 
initial stock at the supplier's side 

w
max Js(q,w)=

w
max E[∑

=

K

t 1

( wt-c)qt], 

we observe that since the Nash strategy at t=2 results in the maximum 
wholesale price and no business regardless of the value of x1, the supplier’s 
Nash strategy at t=1 is a single-period solution. That is, the supplier’s Nash 
strategy remains the same and there is no business at all at both periods. 
The Stackelberg equilibrium’s wholesale price, however, does not neces-
sarily equal the maximum purchasing price as discussed below. 
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Two- periods-to-go equilibrium 

According to Proposition 3.1, if x1 ≥ s2
c, then q2=0 regardless of the 

wholesale price w2, otherwise w2
s and q2

s
= s2

s-x1 satisfy 
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Function B2
s(x1) is deterministic if x1 is fixed when only one period is 

left. However, when there are two periods to go, x1 is unknown and thus 
B2

s(x1) is random. Specifically, by taking into account that x1= x0+q1-d1, , 
we have 
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Applying the principle of optimality, the supplier’s expected two-periods-
to-go profit is 
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When substituting into (3.34) and setting s1(w1)=q1
R(w1)+x0 , we have 
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Finally, differentiating (3.35), we obtain the optimality condition 
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Thus, for the second period, the supplier’s payoff function is 
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where according to (3.31) if x0>s1, then q1=0 regardless of the wholesale 

price w1. Otherwise 
1

11 )(

w

ws

∂
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 is found by differentiating (3.30) with respect 

to w1 and the other two partial derivatives by differentiating both equations 
of (3.32) in w1.  

We thus derived a system of two equations (3.36) and (3.30). A solution 
of this system with two unknowns, s1 and w1, provides a Stackelberg 
equilibrium s1

s and w1
s for the first period, t=1. We summarize the result as 

follows. 

Proposition 3.2. Let f(D)>0 for D ≥ 0, w1
s
 and s1

s
 be simultaneous solutions 

of (3.30) and (3.36) in w1 and s1 respectively. 

If x0>s1
s
, then the retailer orders nothing q1

R
(w1)=0 regardless of the 

wholesale price w1,  

Otherwise, if x0 ≤ s1
s
, then the pair (w1

s
, q1

s
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s
 - x0) constitutes a 

Stackelberg equilibrium for the first period of the two-period stocking 

game with w1
s
>c.    

Let the demand be characterized by the uniform distribution, 
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The result of the single-period game with initial inventory is determined 
by (3.32). Using the uniform distribution, we have 
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while the system-wide optimal base-stock level is (see (2.44)),  

s2
c= +−
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A. 
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Based on (3.37), we find 
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Next, we consider the retailer's best response (3.30) when there are two 
periods to go. Substituting (3.37)-(3.38) into (3.30) and taking into account 
the uniform distribution we have 
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Consequently, we consider the supplier’s optimality condition (3.36), 
which, with respect to the uniform distribution, takes the following form 
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To find 
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, we differentiate equation (3.39) with respect to w1 
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Substituting (3.41) into (3.40), we obtain a single equation in one 
unknown w1. Given x0, a solution to this equation in w1 provides an 
equilibrium wholesale price w1

s for the current inventory, x0. Finally, 
substituting w1 with w1

s in equation (3.39) results in a single equation with 
one unknown s1. A solution to this equation in s1 provides equilibrium 
base-stock level s1

s. 
The system-wide optimal base-stock level for the first period is 

determined by (3.19), i.e., 
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Example 3.2 

This example illustrates the effect of initial inventories when there is only 
one period to go. Let the demand be characterized by an exponential 
distribution, i.e., 
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According to Proposition 3.1, the Stackelberg wholesale price and base-
stock level are found from  
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We solve these equations with Maple. The base-stock s2 equation is 
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> s2:=1/lambda*ln((m+hplus+hminus)/(w2s+hplus)); 

 := s2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + w2s hplus

λ  
The left-hand side of the Stackelberg wholesale price equation (3.42), 
LHS, is 
>LHS:=1/lambda*ln((m+hplus+hminus)/(w2+hplus))-x1-
(w2-c)/((w2+hplus)*lambda); 

 := LHS  −  − 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

 + + m hplus hminus

 + w2 hplus

λ
x1

 − w2 c

( ) + w2 hplus λ
 

Next, we substitute specific values into the left-hand side and define the 
result as LHS1 
>LHS1:=subs(m=15, hplus=1, hminus=10, c=2, lambda=0.1, 

LHS); 

 := LHS1  −  − 10. ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26

 + w2 1
x1

10. ( )− w2 2

 + w2 1
 

Similarly, we find the base-stock level s2 which is defined as s2s, 
>s2s:=subs(m=15, hplus=1, hminus=10, c=2, lambda=0.1, 

s2); 

 := s2s 10. ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

26

 + w2s 1
 

Then equation (3.42) is solved in w2
s with x1 unknown 

>w2s:=solve(LHS1=0, w2); 

 := w2s −
1. ( ) − ( )LambertW 0.1153846154 e

( )+ 0.1000000000 x1 1.
3.

( )LambertW 0.1153846154 e
( ) + 0.1000000000 x1 1.

 

The system-wide optimal order quantity is determined by the newsvendor 

type of equation F(s2
c)= +−

−

++
−+

rr

r

hhm

chm
, which with respect to the expo-

nential distribution leads to 

 s2
c = +
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+
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r
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hhm
ln

1

λ
. We calculate it as a benchmark, s2c. 

>s2c:=1/lambda*ln((m+hplus+hminus)/(c+hplus)); 

 := s2c

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

+ + m hplus hminus

 + c hplus

λ
 

>s2ce:=evalf(subs(m=15, hplus=1, hminus=10, c=2, 

lambda=0.1, s2c)); 
:= s2ce 21.59484249  



To see how the initial inventory level affects the Stackelberg wholesale 
price and the base-stock level, we produce a graph of w2

s and s2
s as functions 

of inventory x1 and, for comparison, include the system-wide optimal base-
stock level. 
>plot([w2s,s2s,s2ce],x1=0..30,legend=["wholesale 
price", "base-stock", "system-wide base-stock"]); 

 
1

From the graph we observe that as the initial inventory level, x1, 

increases, the wholesale price decreases towards the supplier's marginal 

cost (to encourage the retailer to order even if he has inventories in stock) 
and the base-stock level increases towards the system-wide optimal level, 

i.e., the supply chain coordinates when initial stock increases. In addition, 
as x1 exceeds 21.5948, the base-stock level becomes lower than the initial 
inventory level and thus the optimal order is zero as shown in Proposition 
3.1. Thus given x1<21.5948, the base-stock level s2

s and order quantity q2
s= 

s2
s
- x1 are found from the graph along with w2

s for this x1.    

Coordination 

Vertical competition under exogenous random demand has a negative effect 
on the supply chain at each period. Comparing equations (3.31) and (3.19), 
we observe that the retailer’s order can be equal to the system-wide optimal 
order only under very special conditions. In general, the coordination methods 
discussed in the previous chapter for a single-period stocking game are appli-
cable to the corresponding multi-period dynamic game.  
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Figure 3.2. The effect of the initial inventory level x  on the Stackelberg  
wholesale price and the base-stock level 
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There are two important coordinating factors related to our dynamic, 
multi-period stocking game. The equilibrium base-stock level decreases 
with the period number, s1

s ≥ s2
c ≥ s2

s. Thus if there is more than one period 
to go, the retailer orders more than at the last period. In fact, he orders 
even more than the system wide-optimal order under the corresponding 
static (single-period) game. This improves the efficiency of the supply 
chain compared to the single-period stocking game and thus multi-period 
contracts are advantageous. The other factor is due to the initial invent-
tories. The greater the inventory levels at the beginning of a period, the 
lower the wholesale price. Consequently, the double marginalization effect 
incurred by the supply chain is smaller unless, of course, the current inventory 
level is too high so that the retailer does not need to order at all.  

3.2 REPLENISHMENT GAME: CASE STUDIES 

To illustrate the practical implications of our results, we address here a 
problem encountered by a large-scale health service supply chain operating 
in a periodic review mode. Due to the vital nature of the products and 
services it provides, the number and timing of urgent orders are not limited. 
As a result, increasingly high transportation costs are incurred and the 
problem is to select an inventory replenishment (review) period that mini-
mizes transportation costs. Moreover, the supply chain involves multiple 
retailers who inevitably and independently respond to any change in 
replenishment policy since it may affect their inventory costs. Such a rela-
tionship results in a game between a distribution center and retailers. Since 
the problem is intractable due to its scale and stochastic nature, we combine a 
game theoretic approach with empirical analysis. 

Many authors have addressed various replenishment policies intended 
for either continuous or periodic inventory review. The choice of which 
review policy to use is due to the corresponding costs as well as to practical 
and organizational considerations (see e.g. Chaing and Gutierrez 1996; 
Teunter and Vlachos 2001; Rao 2003; Feng and Rao 2006). 

Traditionally, and in contrast to the problem we consider in this section, 
most periodic review inventory systems operating under regular and urgent 
orders assume that the review period is predetermined. Veinott (1966) and 
Whittmore et al. (1977) examine an optimal ordering policy only when 
regular and emergency lead times differ by one time unit. They focus on a 
situation in which supply lead times are a multiple of a review period. 
Chaing and Gutierrez (1998) and Chi Chiang (2003) assume a relatively 
large predetermined review period so that the lead times can be shorter 



than the review period. (This assumption is similar to ours. In our study, 
since the retailers are located relatively close to the distributor, the lead 
time is short.) They develop optimal policies for regular and urgent orders 
at a periodic review. Teunter and Vlachos (2001) also presume that the 
lead times can be shorter than the review period in which duration is 
predetermined. Bylka (2005) in a recent paper assumes that emergency 
orders arrive immediately (so that the lead time of a regular order is equal 
to one). The measure of effectiveness is the total (or average per period) 
expected cost, which includes holding, shortages and both types of order 
costs. The typical feature of these studies is that they allow only a very 
restricted number of urgent orders (normally one or two) per review period.  

Only a few works (see Flynn and Garstka 1997; Rao 2003, for details) 
analyze the optimal review or replenishment period for the single supply 
mode. Flynn and Garstka (1997) develop a model where every T period a 
retailer observes the current stock level and places orders for the next T 
periods. They assume that the retailer orders a sequence of deliveries and 
distinguish between review and delivery intervals. The review period T 
that they find minimizes the average cost per period. Flynn and Garstka 
note that T should increase as order setup cost increases; it decreases as the 
holding and shortage costs as well as the variance in demand increase. Rao 
(2003) compares two control policies: the periodic review (R,T) policy and 
the continuous review, reorder point (Q,r). He shows that an economic 
order interval from a deterministic analysis can provide a good approxi-
mation for the optimal T.  

A vast body of literature is devoted to inventory coordination or stock-
related games (for literature reviews, see, for example, Cachon and Netessine 
2004, and Leng and Parlar 2005. However, there are only a relatively small 
number of papers that focus on supply chains comprising multiple retailers 
(see, for example, Cachon 2001b, and Wang et al. 2004). Specifically, 
Cachon (2001b) studies the competitive and cooperative selection of invent-
tory policies and assumes that each location implements a continuous 
review policy; that demand for the product is Poisson distributed; and that 
the supplier serves the retailers on a first-come-first-serve basis. He shows 
that while a Nash equilibrium for a set of reorder points exists, it does not 
necessarily lead to supply chain efficiency. Thus a competitive solution 
need not coincide with the global optimum. Wang et. al. (2004) study a 
system with one supplier and multiple retailers, each with his own lead 
time and holding cost. Each echelon uses a base-stock policy. Because the 
players are not cooperative and care only for their own profit, supply chain 
performance deteriorates. Several contracts for the system-wide optimal 
cooperation are introduced.  
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A different setting is studied in Cachon (2001a) where one retailer sells 
N products with stochastic demands and trucks with finite capacity are dis-
patched from a warehouse. There is a constant lead time from the warehouse 
to the retailer. Three policies for dispatching are considered: full-service 
periodic review; minimum quantity periodic review; and continuous review. 
Cachon shows that continuous review is less costly if the warehouse is 
close to the retailers. When the lead time is long, the advantage is small.  

In this section we focus on the replenishment period rather than dis-
patching policies. The warehouse is relatively close-by and the retailers are 
able to issue an urgent order at any time and as many times as needed. As a 
result, they are continuously disrupting the periodic replenishment strategy 
of the distributor, which can be viewed as a constant replenishment period 
policy with continuous supply adjustments (Kogan et al. 2007).  

FORMULATION 

We consider a supply chain which comprises a single distributor and mul-
tiple retailers. Two supply modes, regular and urgent, characterize the sys-
tem. A retailer places an order from the distribution center at regular time 
intervals imposed by the distributor. Thus, the inventories are reviewed 
and replenished periodically. In a stock-out case, the retailer can place 
urgent orders. The distributor (the supplier) has ample capacity and his 
warehouse induces a constant inventory cost which is independent of the 
level of inventory handled. At the same time, transportation costs incurred 
by the supplier depend on the retailer’s inventory policies. Thus, in this 
supply chain, the supplier seeks to find a replenishment period which 
minimizes the transportation cost related to both regular and urgent orders. 
The retailers, on the other hand, seek to minimize their inventory-related 
costs, thereby affecting the supplier’s goal. This situation is naturally des-
cribed by the game theoretic framework where the distributor competes 
with the retailers. 

Case studies 

Clalit Health Services (Clalit), with an annual budget of $3.3 billion, is the 
largest healthcare organization in Israel. More than 30,000 employees are 
engaged in providing highly advanced medical care to 55% of the Israeli 
population. With healthcare providers issuing five million prescriptions per 
year, Clalit's logistic operations deliver approximately 5000 types of items  
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to the organization’s 14 hospitals, 1380 primary and specialized clinics and 
400 pharmacies. Annual operating costs amount to $17.2 million while 
transportation costs stand at $2.3 million.  

Clalit successfully maintains steady operating costs but transportation 
costs have been increasing. Relative to operating costs, transportation costs 
reached 11.8% in 2003, 12.2% in 2004, and 13.3% in 2005. This increase 
is attributed to Clalit's willingness to dispatch urgent supplies when shortages 
arise. The transportation costs induced by urgent orders have reached 40% 
of the regular supply transportation costs ($1.4 million per year) and have 
become a major management concern.  

There are a number of causes for the increase. First of all, Clalit distri-
bution centers handle regular supplies of products under a periodic review 
mode which allows the pharmacies to place as many urgent orders as 
needed. Second, the competition between healthcare providers in general 
and pharmacies specifically has resulted in increased frequency of deliveries 
– sometimes once a day or even twice a day. The average value of the 
deliveries in these circumstances is about $220 - $280 and includes only 5-
7 different items. Thirdly, since the pharmacies were being charged accor-
ding to total shipments per month regardless of the transportation frequency, 
they were being encouraged to keep their inventories as low as possible.  

In 2001, the distribution companies (which Clalit employed) changed 
this operating mode since their profits were being erased and the distri-
bution charges became frequency dependent. More specifically, the distri-
butors began to distinguish between regular deliveries, i.e., those planned 
in advance and which are normally provided once a week and urgent 
supplies, which must be carried out within a day or two. Naturally, higher 
charges were imposed on urgent supply deliveries. 

The change in transportation charges had a decentralizing effect on the 
two-echelon supply chain. On the one hand, Clalit is interested in decreeasing 
supply frequency since it is still responsible for about 60% of transport-
tation costs. On the other hand, the competition as well as high inventory 
holding costs induces pharmacies to increase urgent order frequencies in 
response to less frequent regular supplies. Since urgent orders are more 
expensive, this significantly affects the overall transportation costs the 
healthcare company incurs. As a result, even though the pharmacies are 
part of Clalit, the new transportation charges (imposed on Clalit by its 
transportation subcontractors) along with the privilege of urgent orders, 
increase the impact the pharmacies have on the supply chain. This is to 
say, driven by their goals of minimizing inventory costs, the pharmacies 
reduce the way that Clalit dominates the chain. 
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Today, Clalit’s distribution center directly supplies 350 pharmacies. About 
75% of the pharmacies are supplied every 14 days; 15% - once a month 
(every 4 weeks); and about 10% - every 7 days. The pharmacies and the 
distribution center are connected exclusively on an ongoing basis and 
orders are issued electronically. The major challenge of Clalit's distribution 
center, which is a leader in the supply chain, is to determine and implement 
an optimal review or replenishment period that will lead to minimized 
overall transportation costs with respect to the best response of the phar-
macies (i.e., the followers) in terms of regular and urgent orders. It is also 
important to understand the current position of the players in terms of 
leadership in the supply chain: Does the distribution center really dominate 
(thus implementing a Stackelberg strategy), or do the pharmacies succeed 
in imposing an independent (Nash) strategy on the chain by means of 
urgent orders? What are the losses and implications associated with the 
current position? These are the questions which motivated the research 
presented in this section.  

Problem formulation 

Consider a distribution center of ample capacity which supplies products 
to N retailers at each replenishment period t of length T. The distributor 
has a large automated warehouse. The warehouse is never completely 
filled up while inventory handling operations incur negligible variable 
costs compared to the fixed cost of maintaining the warehouse. The cost of 
transportation to the retailers during period T, C(T,Qt), on the other hand, 
is significant and is incurred only by the distributor. The transportation 

cost depends on the period length T and total order quantity, ∑
=

=
N

n

n

tt qQ
1

, 

where qt
n is the regular order of retailer n, n=1,..,N at period t. We assume 

that urgent orders depend on both T and Qt and thus affect C(T,Qt), which 
will be studied empirically. 

Since the overall number of products each retailer orders is overwhelm-
ing, similar to supply contracts which specify the total purchase when 
dealing with multiple products (see, for example, Anupinidi and Bossok 
1998), we consider an aggregate order over all items of retailer n, qt

n, 
measured in monetary units. Various researchers report that aggregating 
data in about 150-200 points normally results in less than one percent error 
in estimating the total transportation costs (Ballou 1992; Hause and Jamie 
1981). In addition to the regular orders, the distributor allows for special 
orders in case of emergency. Since these contingent orders involve small 
quantities, they do not affect the retailers’ inventory costs. However, as 



mentioned above, they do affect the transportation cost of the distributor, 
C(T,Qt), since special, smaller capacity vehicles are employed to carry out 
urgent orders. This is to say, by increasing the length of period T, or by 
decreasing the frequency of supplies - both are the same - the distributor 
diminishes the transportation cost of regular orders. This, however, causes 
the retailers to boost urgent orders required for the entire period T, thereby 
inducing additional costly transportation costs for the distributor. As a 
result, although the supply chain is formally centralized, the situation 
reflects a classical non-cooperative game in which the distributor is a 
leader, who sets first the length of the regular review period T and the 
retailers respond with regular and urgent order quantities. The optimal 
strategy in this game is referred to as the Stackelberg solution.  

The distributor’s problem. 

per period 

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=
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QTCE
KT
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),(
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limmin    (3.43) 

s.t, 

T 0≥ . 

Note that although order Qt is the total result of retailer decisions at 
period t, the length of the period T is independent of t, as the distributor 
adopts a constant-period review policy. 

The retailer’s problem 

Let dit
n be the customer demand rate for retailer n at ith time unit of period 

t. The demand is random and characterized at each time unit i by proba-
bility density fn(.) and cumulative distribution Fn(.) with mean µn and 
standard deviation ın. Denote the demand for T time units at period t as 

∑
=

=
T

i

n

it

Tn

t dd
1

,    (3.44) 

and its density and cumulative functions as fnT (.) and FnT (.) respectively 

with mean Tµn and standard deviation T ın. 

The retailer's n problem is to minimize his expected inventory costs per 
period  
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where 
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The distributor’s problem is to minimize his expected transportation cost 
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n

tX  is the retailer n inventory level at the beginning of period t; 

( ) },0max{ n

t

n

t
XX =

+
 and ( ) },0max{ n

t

n

t
XX −=

−
; 

hn
+ and hn

- are the unit surplus and backlog costs per time unit respect-
tively. 

The inventory dynamics are described by the following balance equation 
nT

t

n

t

n

t

n

t
dqXX −+=+1 , qt

n 0≥ , t=1,2,…  (3.46) 

In what follows we derive the Stackelberg strategy by first solving the 
retailer’s problem and then substituting the solution into the distributor’s 
problem to find an equilibrium review period.  

According to Stackelberg strategy, the best retailer n response is sought for 
a given T. This is accomplished by calculating expectation in (3.45): 
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Next, applying the first order optimality condition to a single period 
term of (3.47), we obtain the newsboy-type optimal policy: 
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Denote the base-stock value by snT,  

nT

n

t

n

t
sqX =+ ,    (3.49) 

such that +−

−

+
=

nn

n

nTnT
hh

h
sF )( . Retailer n then orders up to this stock level 

snT if the current level of inventory is less than snT, otherwise he doesn’t 
order at all. Assuming that initial inventory is less or equal to snT , we 
observe that if this single period a myopic solution is applied at each 
period, then X

n
t+1 ≤  snT for each t. This argument is then used in the 

following theorem (detailed proof can be found in, for example, Zipkin 
1995). 

Theorem 3.1. The myopic stationary base-stock policy with base-stock 

level snT is optimal for multi-period problem (3.45)-(3.46).  

We thus determined the best retailer's n response, n

tnT

n

t
Xsq −= , to any 

replenishment period T set by the distributor. In practice, retailers are not 
always able to calculate their unit backlog costs. However, the service 
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is frequently used by management as a goal to be met. The higher the goal 
(the service level), the greater the base-stock level and thus the lower the 
risk of backlogs induced by uncertain demands. 

Stackelberg equilibrium 

Given initial inventory levels, the retailers' orders are deterministic at the 
first period. Therefore, calculating expectation in (3.45) we find 
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Let fQ(.) and FQ(.) be the total order Qt density and cumulative 
distributions respectively. Then (3.50) can be presented as 
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The following proposition determines the distribution of the total order, 

)( tQf ξ . 

Proposition 3.3. Distribution of Qt is identical to the demand distribution, 

∑
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t
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for t 2≥ , that is, )( tQf ξ  is stationary with mean T∑
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n

n
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Proof: From (3.46) and (3.49) we have 

nT

tnT

n

t
dsX −=+1  , n

tnT

n

t
qsX 11 ++ −=  

and thus 
n

tq 1+ = dt
nT

., t=1,2,.. 

Consequently, the distribution of the optimal orders 
n

tq , t 2≥ (for a 

replenishment period of length T) is identical to the demand dt
nT distribution. 

Since the demand distribution per time unit is assumed to be independent 
of time, i.e., dt

nT is stationary, the distribution of the total order 

∑
=

=
N

n

n

tt
qQ

1

=∑
=

N

n

nT

t
d

1

, t 2≥  
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is stationary as well with mean T∑
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µ  and standard deviation 
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Since the problem data are stationary, equation (3.51) simplifies to 
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Assume that the probability of extremely high demands is negligible and 
a much-stretched replenishment period results in enormous transportation 
costs due to urgent orders. This, along with constraints T ≥ 0 and Qt ≥ 0, 
implies that the solution sets for T and Qt are compact. Consequently, the 
limit in the last expression results in 
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The equilibrium is then obtained by assuming that fQ(.) depends on T 
(see Proposition 3.3) and by applying the first-order optimality condition 
with respect to T: 
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 and a solution of 

(3.53) in T by Į, we conclude that if 0>
∂
∂
T

A
 ( i.e., 0

2

2
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∂
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J d ) and Į≥ 0, 

then the replenishment period Ts=Į and the base-stock level αn

s

nT
ss =  with 

order quantity n

tn

n

t
Xsq −= α  for t=1,2,..; n=1,..,N constitute a unique 

Stackelberg equilibrium in the replenishment game.  

Nash equilibrium 

To compare the effect of leadership on the game between the supply chain 
parties, we next assume that there is no leader in the chain. This implies 
that the distributor and the retailers make their decisions simultaneously so 
that in contrast to the Stackelberg strategy, the distributor’s objective function 



(3.43) is minimized as though the total order quantity Qt (and, hence, fQ(.)) 
does not depend on T. Then, applying the first-order optimality condition 
to the objective function (3.52) we obtain  
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, and denoting a solution 

of (3.54) in T by ȕ, we conclude with the following theorem. 

Theorem 3.2. If ȕ≥ 0 and 0>
∂
∂
T

B
, then the replenishment period Tn=ȕ 

and the base-stock level αn

n

nT
ss =  with order quantity n

tn

n

t
Xsq −= β  for 

t=1,2,..; n=1,..,N constitute a Nash equilibrium in the replenishment game.  

Proof: First note that 0>
∂
∂
T

B
, ensures convexity of the distributor’s cost, 

while the newsvendor type of objective (3.47) is evidently convex in 
nT

s  

and n

t
q as well. Then there must exist at least one simultaneous solution of 

the first-order optimality conditions (3.54) and (3.48) (see, for example, 
Debreu 1952), which, if positive, constitutes a Nash equilibrium for the 
replenishment game.   

Results for a normal distribution of the demand  

As discussed above, independent optimization of the retailers' responses 

results in the distribution of the optimal orders n

t
q  (for a replenishment 

period of length T) identical to the demand dt
nT distribution. Assuming that 

the demand distribution is normal, we observe that fnT(.) and FnT(.) are 
normal density and cumulative functions with mean Tµn and standard 

deviation T ın. Then the total optimal order, Qt, is characterized by the 

normal distribution as well, with the mean and standard deviation as 
determined in Proposition 3.3. Note that if demand is independent at each 
time unit (i.e., stationary), then according to the central limit theorem, 
summation of independent demands over T time units tends to the normal 
distribution even if demand at each time unit is not normal. In other words, 
the normality assumption of this section is not very restricting. 

Our first observation with respect to the normal distribution is related to 

demand dn per time unit is ın. When T increases, the standard deviation 
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reduces, 
TT

T n

n

σ
σ = . Therefore, similar to the pooling demand effect 

widely employed in supply chains, the retailer’s expected inventory costs 
per time unit is a monotonically decreasing function of T (see Figure 3.4). 
This is shown in the following proposition by utilizing the standard normal 
density function, ĭ(.).  

Proposition 3.4. Let fnT(.) be the normal density function with mean Tµn 

and standard deviation T ın. Then the greater the replenishment period 

T, the lower the retailer's expected inventory cost per period, Jr
n so that 
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Differentiating this expression with respect to T, we immediately 

observe that 0<
∂
∂

T

J n

r  and 0
2

2

>
∂
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J n

r , as stated in this proposition.  

The following observation is related to the Nash solution. Considering 
now the distributor’s cost Jd, the best responses of the distributor, T=TR(snT) 

as well as of retailer n, )(Tss R

nTnT
= , we obtain the following properties.  

Proposition 3.5. Let fnT(.) be the normal density function with mean Tµn 

and standard deviation T ın. Then the distributor’s cost and, hence, the 

distributor’s best response do not depend on retailer n base- stock level, 

0=
∂
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nT

R
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T
. On the other hand, the best retailer n response does depend on 



the replenishment period: the greater the replenishment period T, the 

larger the base-stock level, 0
)(
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∂
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nT . 

Proof: First note that neither Jd nor its derivative, which is the left-hand 
side of equation (3.54), denoted by B, explicitly depends on snT . Further-
more, according to Proposition 3.3, no matter what base-stock level snT we 
choose, the quantity that retailer n orders has the same distribution, which 
depends only on demand. Thus, given replenishment period T, fQ(.) does 
not depend on the base-stock policy snT employed. This is to say that Jd and 
B are independent on snT . However, if B does not depend on snT, then the 

distributor's best response T=TR(snT) does not depend on snT, i.e, 0=
∂
∂

nT
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s

T
. 

The retailer's best response is determined with the standardized base-
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sTTTss σµ +==  (see Proposition 3.4), and thus,  
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as stated in the proposition.     

There are two important conclusions related to Proposition 3.5. The first 
conclusion is concerned with the supply chain's performance and thereby 
the corresponding centralized supply chain. If the supply chain is vertically 
integrated with one decision-maker responsible for setting both a replenish-
ment period and base-stock level for each retailer, then the centralized 
objective function is a summation of all costs involved: 
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The distributor's cost Jd is independent of the base-stock level, as shown 
in Proposition 3.5. Therefore, applying the first-order optimality condition 

to J(T) with respect to either n

t
q  or 

nT
s , we obtain equation (3.48). This 

implies that the condition for the Nash base-stock level is identical to the 
system-wide optimality condition. Next, to find the system-wide optimality 
condition for the replenishment period, we differentiate J(T) with respect 
to T, which, when taking into account (3.54) and (3.55), results in 
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Comparing equations (3.56) and (3.54) we find the following property.  

Proposition 3.6. Let 
T

B

∂
∂

>0 and fnT(.) be the normal density function with 

mean Tµn and standard deviation T ın. The system-wide optimal replenish-

ment period and base-stock level are greater than the Nash replenishment 

period and base-stock level respectively.  

Proof: Let us substitute T in equation (3.56) with the Nash period Tn= ȕ. 
Then the first term in (3.56) vanishes as it is identical to B from (3.54), 

while the second term is negative, i.e., 
T

J

∂
∂ )(β

<0. Since both 
T

B

∂
∂

>0 and 

0
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r  (see Proposition 3.4), then 
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 increases if T increases and 

thus (3.56) holds only if the system-wide optimal period T*> ȕ.  

Finally, it is shown in Proposition 3.5, that 0>
∂

∂
T

snT , i.e., if T> ȕ , then 

snT>snȕ .   

Proposition 3.6 sustains the fact that vertical competition causes the 
supply chain performance to deteriorate as discussed in Chapter 2. Similar to 
the double marginalization effect, this happens because the retailers ignore 
the distributor’s transportation cost by keeping lower, base-stock inventory 
levels. The distributor, on the other hand, ignores the retailers’ inventory 
costs when choosing the replenishment period. Figure 3.4 illustrates the 
effect of vertical competition on the supply chain. 

The second property, which is readily derived from Proposition 3.5, is 
related to the uniqueness of the Nash solution. 

Proposition 3.7. Let fnT(.) be the normal density function with mean Tµn 

and standard deviation T ın. The Nash equilibrium (T n, snT
n) determined 

by Theorem 3.2 is unique.  

Proof: The proof immediately follows from Proposition 3.5 and Theorem 

3.2. Indeed the two best response curves T =T R(snT) and )(Tss R

nTnT
=  can 

intersect only once if 0=
∂
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nT

R

s

T
 and 0

)(
>

∂
∂

T

Ts R

nT , i.e, a solution determined 

by Theorem 3.2 is unique.  



The transportation costs were obtained from a sample of 16 pharmacies 
which are being exclusively supplied every 14 days on a regular basis by 
Clalit's primary distribution center. The base-stock policy was determined 
according to service level definition and demand forecasts. Pharmacists 
place their orders using software that computes replenishment quantities 
for every item with respect to the base-stock level. The pharmacist electro-
nically sends the completed order to the distribution center for packing and 
dispatching. If there is a shortage or expected shortage before the next 
planned delivery, the pharmacist can send an urgent order to be delivered 
not later than two working days from the time of the order.  

An external subcontractor (according to outsourcing agreement) delivers 
the orders to the pharmacies. The contractor schedules the appropriate 
vehicle (trucks in case of regular orders and mini-trucks for urgent orders) 
according to the supply plans for the following day. Delivery costs depend 
on the type of the vehicle used (track or mini-track) and the number of 
pharmacies to be supplied with the specific transport.   

To estimate the influence of a periodic review cycle on the transportation 
costs (planned and urgent deliveries) the replenishment period for the 16 
pharmacies was changed from the original two weeks to three and four 
weeks. This resulted in a total of 18 replenishment cycles representing 34 
working weeks. Monthly sales of the selected pharmacies varied from 
$50,000 to $136,000. Each order that was sent from a pharmacy was 
reported, and each transport, with every delivery on it, including invoices 
that were paid to the vehicle contractor, was reported. The data, processed 
with SPSS non-linear regression analysis, indicate that the resultant 
parameters of the transportation cost function are a=4463, b=0.0000163 
while the average estimation error is less than 5%. 

Numerical Analysis 

The goal of our numerical analysis is to check whether this supply chain is 
predictable using equilibria and how it is affected by the distributor’s leader-
ship. In other words, we compare the objective functions (3.43) and (3.45), 
as well as the effect on the overall supply chain (the sum of (3.43) and 
(3.45)). Specifically, with distributor leadership, its expected cost equation 

(3.52), is =1d
J ξξξα

α
dfC
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, while without leadership it 
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objective function Jd1, while ȕ assumes the normal probability function 
independent on the period T, the distributor obviously is better off if he is 
the leader and therefore decides first rather than when the decision is made 
simultaneously (no leaders).  
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The numerical results of our empirical studies show that the current 
equilibrium of Clalit’s supply chain, which is an outcome of many adjust-
ments it has undergone during many years of operations, is close to and 
positioned in between both the Stackelberg and Nash equilibria. This is in 
contrast to the skepticism of many practitioners who believe that a theoretical 
equilibrium is hardly attainable in real life. Specifically, the equilibrium 
replenishment period under equal competition is about 16 days; the current 
replenishment period is 14 days; and the equilibrium under the distributor’s 
leadership is 11 days. Figure 3.3 presents the equilibria over the distributor’s 
transportation cost function. 

 

Figure 3.3. The transportation cost as a function of T along with the Stackelberg, 

The Stackelberg equilibrium demonstrates the power the distributor can 
harness as a leader. The economic implication of harnessing the distributor’s 
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power is about 20 NIS per day ($ 4 per day) for the sampled supply 
volumes. The annual significance, in terms of the overall supply chain, is 
1.4 million NIS, or 14% of the total delivery costs. Interestingly enough, 
the current equilibrium is closer to the Nash replenishment period rather 
than to the Stackelberg which sustains Clalit’s managerial intuition that its 
distribution centers do not succeed in taking full advantage of their power 
over the pharmacies. 

 
Figure 3.4. Overall supply chain cost, total retailers cost, and distributor’s cost 

Figure 3.4 presents the results of the calculation for the supply chain as 
a whole, i.e., including the retailers’ inventory management costs and the 
distributor’s transportation costs. In Figure 3.4, the total costs for the Stackel-
berg, current and Nash strategies as well as the system-wide optimal (global) 
solution appear as dots on the total cost curve. From this diagram it is easy 
to observe the effect of the total inventory-related cost on the entire system 
performance. Specifically, we can see that if the supply chain is vertically 
integrated or fully centralized and thus has a single decision-maker who is 
in charge of all managerial aspects, the system-wide optimal replenishment 
period is 18 days versus the current equilibrium of 14 days. The significance 
of this gap (which agrees with Proposition 3.6) is that more than 3 million 
NIS could be saved if the system were vertically integrated. If the distri-
butor attempts to locally optimize (the Stackelberg strategy) this would 
lead to annual savings in transportation costs of only 1.4 million NIS. 
However, the significance of such an optimization for the supply chain  
as a whole is a loss of 8 million NIS. This is the price to be paid if the  
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supply chain is either decentralized or operates as a decentralized system. 

Coordination 

This case study was motivated by increasingly high transportation costs 
incurred by a large health service provider which is part of a supply chain 
consisting of multiple retailers (pharmacies) and a distribution center. The 
costs are attributed to unlimited urgent orders that the retailers could place 
in the system. Management’s approach to handling this problem was to 
reduce the replenishment period or even transform the policy from periodic 
to continuous-time review. The latter option in the current conditions would 
simply imply daily (regular) product deliveries. As shown in Proposition 3.6, 
such an approach would only lead to further deterioration in supply chain 
performance due to the double marginalization effect inherent in vertical 
supply chains. This is also sustained by a numerical analysis of the equili-
brium solutions for the case of a normal demand distribution. The analysis 
shows that if a distributor imposes his leadership on the supply chain, i.e., 
acts as the Stackelberg leader, then the replenishment equilibrium period is 
reduced. This makes it possible to cut high transportation costs. However, 
if instead of an imposed leadership on the supply chain, it is vertically 
integrated or the parties cooperate, then the potential savings in overall 
costs are much greater. In such a case, the system-wide optimal replenishment 
period must increase rather than decrease or transform into a continuous-
review policy. Thus, in the short run, imposing leadership by reducing the 
replenishment period may cut high transportation costs. However, in the 
long-run, greater savings are possible if, for example, the vendor-managed 
inventory (VMI) approach is adopted by the retailers or imposed on the 
retailers by the health provider. In such a case, a distribution center will 
decide when and how to replenish inventories and the system will become 
vertically integrated with respect to transportation and inventory considera-
tions. This illustrates the economic potential in cooperation and a total 
view of the whole supply chain. 
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PART II 

 INTERTEMPORAL SUPPLY 

CHAIN MANAGEMENT 





So far we have considered discrete-time, single- and multi-period models 
of competition and coordination in supply chains. In this chapter, we consider 
continuous-time, intertemporal supply chain models operating in a dynamic 
environment arising from rapidly changing market conditions including 
such factors as so-called “word of mouth” and “customer fatigue”; econo-
mies of scale; seasonal, fashion and holiday demand patterns; and uncer-
tainty. Since dynamic changes may occur at any point in time, control 
actions can be exercised continuously. As a result, intertemporal competition 
between non-cooperative supply chain agents leads to differential games. 
In some cases, intertemporal relations can be handled by straightforwardly 
adjusting decision variables as though there is no long-term effect on the 
supply chain, i.e., by static (myopic) optimization, at each time point inde-
pendently. However, in most cases, there is a long-term dynamic effect 
and thus the results obtained for the corresponding static models are no 
longer valid. 

Our goal in this chapter is to illustrate the effect of dynamic conditions 
on supply chain performance when decisions can be taken at any time point 
rather than at the beginning (or end) of a certain review period as was the 
case with the models studied in Chapters 2 and 3. Both periodic and con-
tinuous operational review modes are discussed. When inventories and 
demands are not observable within a review period, continuous in-time 
decisions are derived based on expected values and thereby known proba-
bility distributions.  

4.1 DIFFERENTIAL GAMES IN SUPPLY CHAINS 

A retailer’s ability to collect detailed information about customer purchasing 
behavior and the ease of changing prices due to new technologies (including 
Internet and IT) has engendered extensive research into dynamic pricing in 
general and continuous-time pricing strategies in particular. Increasing 
attention has been paid to dynamic pricing in the presence of inventory 
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considerations (see, for example, the survey by Elmaghraby and Keskinocak 
2003) and to coordinated pricing and production/procurement decisions 
(see surveys by Chan et. al. 2003; Yano and Gilbert 2002; Cachon 2003). 
However, despite this range of research interests, relatively few studies are 
devoted to the continuous interaction between dynamic retail prices, 
inventory-related costs and wholesale prices in supply chains, i.e., to a 
dynamic, continuous-time game between supply chain members. 

Due to mathematical difficulties inherent in differential games, i.e., 
games involving decisions that have to be made continuously, the supply 
chain management literature has been primarily concerned only with the 
application of deterministic differential models (Cachon and Netessine 
2004). Two types of solution approaches have been addressed with respect 
to the supply chain decision u(t) and state X(t) variables. One is an open-
loop solution u*=u*(t), which is determined as a function of time. The 
other, an optimal solution found as a function of state history, u*=u*(t, 

x(Ĳ) t≤≤ τ0 ), is referred to as a closed-loop solution. In a special, memory-

less case of u*=u*(x(t), t), the solution is referred to as a feedback control 
(for further details, see the appendix to the book). Jorgenson (1986) derives 
an open-loop Nash equilibrium under static deterministic demand, d(t)= 
a(t)-b(t)p(t), with demand potential a(t) and customer sensitivity b(t) being 
constant and thereby not affecting the supply chain dynamics. Eliashberg 
and Steinberg (1987) use the open-loop Stackelberg solution concept in a 
game with a manufacturer and a distributor (both with unlimited capacity) 
involving quadratic seasonal demand potential a(t) and constant sensitivity 
b(t). Assuming that the wholesale price the manufacturer charges the dis-
tributor is constant and that no backlogs are allowed, they investigate the 
impact of the quadratic seasonal pattern upon the various policies of the 
distribution channel. They acknowledge that demand uncertainty, together 
with stock-out costs, may change the results and suggest supplementing the 
proposed procedure with a sensitivity analysis. Desai (1992) allows demand 
potential to change with an additional decision variable. To address seasonal 
demands, he later suggests a numerical analysis for a general case of the 
open-loop Stackelberg equilibrium under sine form of a(t), constant cus-
tomer sensitivity b(t) and unlimited manufacturer and retailer capacities 
(Desai 1996). For more applications of differential games in management 
science and operations research, we refer the interested reader to a review 
by Feichtinger and Jorgenson (1983).  

In this chapter, we extend the static games considered in Chapter 2 to 
study various dynamic effects on the supply chain by  
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• comparing system-wide and equilibrium solutions of dynamic pro-
blems with the corresponding solutions of their static prototypes, 
which we now refer to as myopic solutions that ignore dynamics; 

• investigating the effect of system dynamics on vertical and hori-
zontal competition in supply chains under simple demand patterns, 
demand uncertainty and economy of scale; 

• examining the effect of standard (static) as well as dynamic coordi-
nating tools on the performance of dynamic supply chains. 

In particular, we find that even though the myopic attitude of a firm is 
troublesome in many cases, sometimes it remains optimal, as if the problem 
is static, and sometimes it may even coordinate supply chains. Similarly, 
standard static coordinating tools in some dynamic conditions result in a 
perfectly coordinated supply chain. In other cases they are not efficient 
enough. 

We start by considering the effect of learning, with production experience, 
on vertical pricing and horizontal production competition (Section 4.2). 
Both static pricing and production games of Chapter 2 are extended with 
dynamic equations which model production cost reduction as a result of 
accumulated production experience in economy of scale. In addition to 
endogenous change in demand, accounted for in the corresponding static 
games, we assume that the demand for products may evolve gradually with 
time in an exogenous way as a result of “word of mouth”, “customer 
fatigue”, or changes in fashion or the season.  

Section 4.3 focuses on inventory competition. In this part of the chapter 
we discuss two differential games. One game is a straightforward extension 
of the static pricing game involving the retailer’s inventory dynamics. A 
single supplier and retailer make up a supply chain operating over a pro-
duction horizon. The supplier sets a wholesale price which is not necessarily 
constant along the production horizon. In response, the retailer chooses 
dynamic pricing, production and inventory policies. The need for a dynamic 
response is due to interaction between a limited processing capacity that 
features the retailer and exogenous demand peaks which may exceed the 
capacity. In contrast to the production/pricing games of the first part of this 
chapter, the exogenous change in demand is instantaneous rather than gra-
dual and is due to special business or high demand periods such as, for 
example, national holidays and weekends. Such periods are typically affect-
ted by the so-called “customer price anticipation” which induces increased 
price sensitivity. We show that increased price sensitivity, limited proces-
sing capacity and available inventory storage lead the retailer to develop 
sophisticated inventory policies which involve both back-ordering and 



forward buying. Compared to the static pricing game, these dynamic policies 
impact the vertical price competition. 

As an alternative to the pricing competition with one-side (the retailer’s) 
inventory considerations, the other game discussed in Section 4.3 focuses 
solely on inventory competition. In this differential inventory game, since 
the demand is exogenous, pricing has no impact on production. The system 
consists of one supplier and one retailer. We assume that both the retailer 
and the supplier have limited capacity. This restriction, along with seasonal 
demand peaks, induces the supplier and retailer to accumulate inventories 
and balance production between backlog and surplus inventory costs. Thus, 
inventory considerations by both sides are involved and the dynamic produc-
tion policies that the firms employ cause inventory competition which 
affects the supply chain performance.  

Section 4.4 is devoted to two differential games which are extensions of 
static stocking and outsourcing games. We assume that the demand is 
random and discuss different forms of subcontracting. One game addresses 
the question of balancing limited production capacity with an unlimited 
advance order of end-products. We assume the demand has no peaks; the 
selling season is short (as in the classical newsvendor problem); and the 
supply lead-time is long. Therefore, once the season starts, it is too late to 
outsource the production while in-house capacity can only respond to limited 
demand fluctuations. 

The supply chain involves a single manufacturer and a single supplier 
(subcontractor) contracting before the selling season starts. The subcontract-
tor sets a wholesale price. In response, the manufacturer selects an order 
quantity (referred to as advance order) to be delivered by the beginning of 
the selling season and chooses his production/inventory policy during the 
season. This description implies that the intertemporal production balancing 
game is just one of the possible extensions of both the static stocking game 
and the static outsourcing game (with zero setup cost) considered in 
Chapter 2. A further extension to these static games as well as to the 
differential balancing game would be to relax the requirement of only a 
single advance order contracted out. Such an extension is treated as the 
differential outsourcing game. In this final intertemporal game of the chapter, 
production outsourcing is possible at any time point of a production horizon. 
There are multiple suppliers of limited capacity which determine wholesale 
prices and a random peak of demand is expected by the end of the pro-
duction horizon. The manufacturer’s goal is to increase capacity to cope 
with the peak by selecting in-house production, suppliers for outscoring 
and inventory policies. 

The last section of this chapter is devoted to horizontal investment 
competition in supply chains. The main focus of this section is on feedback 
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equilibrium and cooperation strategies of multiple firms, which co-invest 
in a supply chain infrastructure. 

4.2 INTERTEMPORAL PRODUCTION/PRICING 
COMPETITION 

In this section we consider non-cooperative intertemporal pricing and produc-
tion games which underlie vertical and horizontal competition in supply 
chains involved with production experience dynamics. 

Consider a two-echelon supply chain consisting of a single supplier (manu-
facturer) selling a product type to a single retailer over a period of time, T. 
The supplier has ample capacity and can deliver any quantity q at any time 
t. In contrast to the static model, we assume that the period during which 
the parties interact is long enough so that the customer demand, which is 
endogenous in the product price, evolves also over time exogenously. This 
is to say, we adopt Bertrand’s model of pricing competition with the 
quantity sold per time unit, q, depending not only on product price, p, 
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∂
∂
p

q
 and 0

2

2

≤
∂
∂
p

q
, but also on time t elapsed, q=q(p,t). Therefore, 

t

tpq

∂
∂ ),(

 is not necessarily equal to zero. The exogenous change in demand 

is due to the interaction of various factors including seasonal fluctuations, 
fashion trends, holidays, customer fatigue and word of mouth. When the 

cumulative sales, ∫
t

dssspq
0

)),(( , i.e., the experience, have little effect on 

these factors, the dynamic changes can be straightforwardly dealt with by 
the corresponding price adjustment as in traditional static supply chain 
models. On the other hand, if production (sales) of large quantities 
(economy of scale) results in the so-called learning effect, which makes it 
possible to reduce the unit production cost, c(t), then there is a long-term 
impact of experience that cannot be studied in the framework of static 
models.  

Let the retailer’s price per product unit be p(t)=w(t)+m(t), where m(t) is 
the retailer’s margin at time t and w(t) is the supplier’s wholesale price. 
Then, if both parties, the supplier and the retailer, do not cooperate to 

4.2.1  THE DIFFERENTIAL PRICING GAME 



maximize the overall profit of the supply chain along period T, their deci-
sions, w(t) and m(t), affect each other’s revenues at every point of time, 
resulting in a differential game. In such a game, the supplier chooses a 
wholesale price, w(t), at each time point t and the retailer selects a margin, 
m(t), and thus determines the quantity q(p,t) he will order at price w(t) in 
order to sell it to his customers at price p(t)= w(t)+m(t). Consequently, the 
retailer orders q(p,t) products at each time t and the supplier accumulates 

experience by producing these quantities over time, ∫
t

dssspq
0

)),(( . As a 

result, the production cost, c(t), is reduced. We thus have the following 
problems. 

The supplier’s problem  

w
max Js(w,m)=

w
max ( )∫ +−

T

dtttmtwqtctw
0

),()())()((   (4.1) 

s.t. 

( )ttmtwqtc ),()()( +−= γ& , c(0)=C  (4.2) 

w(t) ≥ c(t),    (4.3) 

where Ȗ is the learning factor, i.e., the decrease in unit production cost per 
one more product produced.  

The retailer’s problem 

m
max Jr(w,m)= 

m
max ( )∫ +

T

dtttmtwqtm
0

),()()(   (4.4) 

s.t. 
m(t) ≥ 0,    (4.5) 

q(w(t)+m(t),t) ≥ 0.   (4.6) 

Formulations (4.1)-(4.6) assume non-cooperative behavior of the supply 
chain members which affects the overall supply chain performance. On the 
other hand, if the supply chain is vertically integrated or centralized, so 
that a single decision-maker is in charge of all managerial aspects of the 
supply chain, then we have the following single problem as a benchmark 
of the best supply chain performance. 

The centralized problem 

wm,
max J(w,m)=

wm,
max [ Jr(w,m)+Js(w,m)]= 
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wm,
max ∫ +−+

T

dtttmtwqtctmtw
0

)),()(())()()((   (4.7) 

s.t.  
(4.2)-(4.3) and (4.5)-(4.6). 

We henceforth omit independent variable t wherever the dependence on 
time is obvious.  

System-wide optimal solution 

To evaluate the best possible performance of the supply chain, we first study 
the centralized problem by employing the maximum principle. Specifically, 
the Hamiltonian for the problem (4.2)-(4.3), (4.5)-(4.6) and (4.7) is 

)),()(()()),()(())()()(()( ttmtwqtttmtwqtctmtwtH +−+−+= γψ , (4.8) 

where the co-state variable )(tψ  is determined by the co-state differential 

equation 

)),()((
)(

)(
)( ttmtwq

tc

tH
t +=

∂
∂

−=ψ& , 0)( =Tψ .  (4.9) 

Note that since function (4.7) is strictly concave, while all constraints are 
linear, the maximum principle presents not only necessary but also sufficient 
optimality conditions and the optimal solution which satisfies these condi-
tions is unique. 

The Hamiltonian (4.8) can be interpreted as the instantaneous profit rate, 

which includes the value c&ψ  of the negative increment in unit production 

cost created by the economy of scale. The co-state variable ψ  is the shadow 

price, i.e., the net benefit from reducing production cost by one more 
monetary unit at time t. The differential equation (4.9) states that the mar-
ginal profit from reducing the production cost at time t is equal to the 
demand rate at this point. 

From (4.9) we have 

dsssmswqt

T

t

)),()(()( +−= ∫ψ    (4.10) 

According to the maximum principle, the Hamiltonian is maximized by 
admissible controls at each point of time. That is, by differentiating (4.8) 
with respect to m(t) and w(t) and taking into account that p(t)=w(t)+m(t), 
we have two identical optimality conditions defined by the following equation 

0
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where the shadow price (co-state variable) )(tψ  is determined by (4.10) and 

the production cost (state variable) c(t) is found from (4.2) 

dsspqCtc

t

),()(
0

∫−= γ    (4.11)  

Therefore, as with the static pricing model, only optimal price matters in 
the centralized problem, p* ≥ c, while the wholesale price, w ≥ c, and the 
retailer’s margin, m ≥ 0, can be chosen arbitrarily so that p*=w+m. This is 
due to the fact that w and m represent internal transfers of the supply chain. 
Thus, the proper notation for the payoff function is J(p) rather than J(m,w) 
and the only optimality condition is,  

0
)*,(

)*()*,( =
∂

∂
−−+

p

tpq
cptpq ψγ .  (4.12) 

More exactly, p* is the unique optimal price if it satisfies equation 
(4.12) and p*(t) ≥ c(t), where c and ψ are determined by (4.11) and (4.10) 

respectively. Otherwise p*(t)=c(t) and the supply chain is not profitable at 
time t. 

Let us introduce the maximum price, P(t), at time t, q(P(t))=0. Naturally 
assume that P>c, then, since, 0≤ψ (see equation (4.10)), P>c+ψγ . Next it 

is easy to verify that if 0≥−− ψγcp , then  
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and equation (4.12) has an interior solution such that P>p* ≥ c+ψγ . This 

implies that p*(t)>c(t) does not necessarily hold at each point of time. In 
such time points the boundary solution p*(t)=c(t) will be optimal. Comparing 
the system-wide dynamic optimality condition (4.12) with the optimality 
condition (2.7) for the corresponding static formulation, we observe that 
the only difference is due to the product of the shadow price ψ  and learning 
factor Ȗ present in the dynamic formulation. Referring to the static optimal 
solution at time point t as myopic, since it ignores the future learning effect 
(the long-run effect γ  set at zero) and taking into account that )(tψ ≤ 0 for 

Note, that henceforth in the book we distinguish between cases when all 

chain) and those when the J ≥ 0 and thereby the supply chain is sustainable 
but not necessarily profitable. Similarly, one can characterize separately 
each party as either profitable or sustainable or as neither of the two. 

 
 

0 ≤ t ≤ T, we find that the myopic attitude leads to overpricing.  
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Proposition 4.1. In intertemporal centralized pricing (4.2)-(4.3), (4.5)-
(4.6) and (4.7), if the supply chain is profitable, i.e., P>p>c, the myopic 

retail price will be greater and the myopic retailer’s order less than the 

system-wide optimal (centralized) price and order quantity respectively for 

Tt <≤0 .  

Proof: Comparing (2.7) and (4.12) and employing superscript M for 
myopic solution we observe that 
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while taking into account that p>c,ψ <0 for Tt <≤0 , and 0<
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Next, by denoting 
p
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∂
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Thus, from conditions (4.14) and (4.15) we have f(pM)<f(p*), which 
with respect to the last inequality requires that p

M
>p* and, hence, 

q(pM)<q(p*), as stated in Proposition 4.1.  
According to Proposition 4.1, myopic pricing derived from static 

optimization is not optimal. This, however, does not mean that dynamic 
optimization necessarily leads to time-dependent prices. In other words, an 
important question is whether the long-term effect of the economy of scale 
causes the optimal price to evolve with time. It turns out that if the demand 
does not explicitly depend on time, q(p,t)=q(p), the optimal centralized 
pricing strategy is independent of time. Otherwise, for example, an exogen-
ous increase in demand monopolistically results in a price increase. This 
property is stated in the following proposition under the assumption that if 
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Proposition 4.2. In intertemporal centralized pricing (4.2)-(4.3),(4.5)-(4.6) 
and (4.7), if the supply chain is profitable, i.e., P>p>c, and there is a 

demand time pattern q(p,t) such that 
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 exists, then the system-wide 
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time, then the system-wide optimal price and order quantity are constant 

at the interval.   
Proof: Differentiating (4.12), we have 
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Recalling the assumption and (4.13) we readily observe that 0* >p&  if 

0
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, otherwise, 0* ≤p& .  

Game Analysis 

We consider now a decentralized supply chain characterized by non-
cooperative or competing firms and assume that both players make their 
decisions simultaneously. The supplier chooses a wholesale price w and 
the retailer selects a price, p, or equivalently a margin, m, and hence orders 
q(p,t) products at each t, Tt ≤≤0 . Since this differential pricing game is 

deterministic, the retailer sells all the products that he has ordered. 
Using the maximum principle for the retailer’s problem, we have  
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Thus, )(t
r

ψ =0 for Tt ≤≤0  and the supplier’s production experience 

does not affect the retailer. This is to say, the myopic pricing is optimal for 
the non-cooperative retailer and the retailer can simply use the first- order 
optimality condition to derive pricing strategy for each time point: 
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It is easy to verify that since the retailer’s objective function is strictly 
concave in m, (4.16) has a unique solution. Or, by the same token, the 
retailer’s best response function is unique. Comparing (4.12) and (4.16), 
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we conclude that the long-term dynamic effect of production experience 
causes the supply chain performance to deteriorate even more than in the 
corresponding static case with no learning. 

Proposition 4.3. In vertical competition of the differential pricing game, 

myopic pricing is optimal for the retailer. If the retailer and supplier profit 

at each t, the retail price will be greater and the retailer’s order less than 

the system-wide optimal (centralized) price and order quantity respectively. 

Moreover, these gaps are even greater than those induced by the corres-

ponding static pricing game. 

Proof: The first statement is due to the fact that 0=
r

ψ . Employing the 

fact that 0)( <tψ  for Tt <≤0 , the proof of the second statement is similar 

to that of Proposition 2.1. The last statement of Proposition 4.3 readily 
results from Proposition 4.1.  

Note, that our conclusion that vertical intertemporal pricing competition 
increases retail prices and decreases order quantities compared to the system-
wide optimal solution does not depend on the type of game played. Speci-
fically, it does not depend on whether both players make a simultaneous 
decision or the supplier first sets the wholesale price and thus plays the role 
of the Stackelberg leader. As a result, similar to the static pricing game dis-
cussed in Chapter 2, the overall efficiency of the supply chain deteriorates 
under intertemporal vertical competition. Moreover, in addition to the 
traditional double marginalization effect, we observe the consequence of 
the learning effect. That is, comparing (4.12) and (4.16), we find that the 
deterioration of supply chain performance is due to the fact that the retailer 
myopically ignores not only the supplier’s margin, w-c, from sales at each 
time point but also the supplier’s profit margin from production cost 
reduction, ψγ . It is because of the latter that the deterioration under 

dynamic experience in intertemporal supply chain competition is even 
greater than that which occurs in the static pricing game, as stated in 
Proposition 4.3. The difference, however, shrinks with time as the shadow 
price tends to zero by the end of the product production period T. 

Equilibrium 

To determine the Nash equilibrium which corresponds to the simultaneous 
moves of the supplier and retailer, we next apply the maximum principle to 
the supplier’s problem. Specifically, we construct the Hamiltonian 
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Differentiating the Hamiltonian with respect to wholesale price w we 
have 

0
),(

)(),( =
∂

∂
−−+

p

tpq
cwtpq

s
γψ ,   (4.19) 

which implies that an interior optimal solution determined by (4.19) is such 

that 0>−− γψ
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cw . Next, verifying the second derivative of the Hamiltonian, 
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From equation (4.19) and the last inequality, we observe that (i) although 
the supplier naturally accounts for his margin from cost reduction with 
experience, the severe problem of double marginalization persists since the 
supplier ignores the retailer’s margin m; (ii) the intertemporal wholesale 
price is lower than the myopic wholesale price which is obtained by setting 
the learning effect Ȗ at zero. The latter implies that the performance of the 
supply chain further degrades if the supplier adopts a myopic attitude.  

It is easy to verify that the supplier’s objective function is strictly con-
cave in w and, thus, the supplier’s best response (4.19) is unique as well. 
Thus, the Nash equilibrium (wn,mn) is found by solving simultaneously 
(4.19) and (4.16), which results in 
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Note that if the second equation of (4.20) has a solution in m, then this 
solution is such that 

p= >++ γψ
s

mc 2 0, 0>−− γψ
s

cw ,  (4.21) 

which however does not ensure that w=c+m+ γψ
s

≥ c. We conclude with 

the following result. 

sψ
pair (Ȝ,Ș) be a solution of system (4.20) in w

 
and m

 
respectively. If min{P-

c,Ș} ≥ - γψ
s

, then the pair (w
n
=Ȝ,mn

=Ș) constitutes a unique open-loop 

Nash equilibrium of the differential pricing game with 0 ≤ - γψ
s

<m
n<(P-c-

γψ
s

)/2=P-Ȝ.  
Proof: To see that a solution of (4.20) always exists and that it is unique, 

assume m
n=0 at a point t. Then, since P(t)>c(t)+ γψ )(t

s
 and q(P)=0,  

 
 

Proposition 4.4. Let be determined by (4.18), c by (4,11) and dynamic 
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0),2( >++ tmcq
s

n γψ , while the second term in the second equation of 

(4.20) is zero.  
Using notation of f(mn) for the left-hand side of the second equation of 
(4.20), we find that 

0
),(

),()( >
∂

++∂
+++=

p

tmcq
mtmcqmf s

n

n

s

nn γψ
γψ , 

 when mn=0. On the other hand, by letting c+2m
n+ γψ

s
=P and accounting 

for the fact that q(P,t)=0, mn=(P-c- γψ
s

)/2>0 and that as a result, the second 

term of the second equation of (4.20) is strictly negative, we observe that 

0)( <nmf . Consequently, taking into account that 0
)(

<
∂

∂
n

n

m

mf
, we 

conclude that the solution of f(mn)=0 is unique and meets the following 
condition 

0<m
n<(P-c- γψ

s
)/2. 

Finally, requiring mn ≥ - γψ
s

 and (P-c- γψ
s

)/2>- γψ
s

, i.e., min{P-c,Ș} ≥  

- γψ
s

, we readily verify that the first equation of (4.20), w=c+m+ γψ
s

, 

always has a unique feasible solution as well.    

Although, the condition min{P-c,Ș} ≥ - γψ
s

for the Nash equilibrium is 

stated in terms of the co-state variable, a sufficient condition can be obtained 
by assuming the maximum value for the demand q(c, t), i.e., 

 min{P(t)-c(t),Ș(t)} ≥ ∫
T

t

dsscq ),(γ . 

Note that if c is not replaced with its expression (4.11), then the solution 
of system (4.20) at time t becomes a function of state variable c, and 
accordingly can be viewed as closed loop Nash equilibrium.  

We next show that similar to the centralized supply chain, a pricing 
trajectory with respect to the wholesale price and retailer’s margin under 
intertemporal competition is monotonous if the demand time pattern is 
monotonous. In contrast to the centralized system, where the price p* 
barely matters and the only requirement for w and m is w+m= p*, the 
competition induces not only higher pricing, but also the same rate of 

change of the margins, mw && = . This is shown in the following proposition 

assuming that conditions of Propositions 4.2 and 4.4. hold. 

Proposition 4.5. In the differential pricing game, if the supply chain is pro-

fitable, and there is a demand time pattern q(p,t) such that 
t

tpq

∂
∂ ),(

 exists, 

then the supplier’s wholesale price and the retailer’s margin 



monotonically increase at the same rate as long as 0
),(

>
∂

∂
t

tpq
, and they 

decrease as long as 0
),(

<
∂

∂
t

tpq
. If 

t

tpq

∂
∂ ),(

=0 at an interval of time, then 

the Nash equilibrium does not depend on time at the interval.  
Proof: Differentiating both equations of (4.20), we have 

mw && = , 

p

tpq
m

tp

tpq
m

p

tpq
mm

p

tpq

t

tpq

∂
∂

+
∂∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ ),(

]
),(

2
),(

[2
),(),( 2

2

2

&&& =0 

and thus 

t

tpq

p

tpq
m

p

tpq
m

∂
∂

−=
∂

∂
+

∂
∂ ),(

]
),(

2
),(

3[
2

2

&

tp

tpq
m

∂∂
∂

−
),(2

. (4.22) 

Taking into account 0<
∂
∂
p

q
, 0

2

2

≤
∂
∂
p

q
 and mw && = , we observe mono-

tonous evolution similar to that obtained for centralized pricing, but with 
respect to the wholesale price and the retailer’s margin.  

We next illustrate the results with linear in price demand, q(p,t)=a(t)-bp, 

and the demand potential a(t) first being an arbitrary function of time. 
Then we plot the solutions for specific supply chain parameters. 

Example 4.1. 

Let the demand be linear in price with time-dependent customer demand 
potential a(t), q(p,t)=a(t)-bp, a>bC. Since the demand requirements, 

b
p

q
−=

∂
∂

<0 and 0
2

2

=
∂
∂
p

q
 are met for the selected function, we employ 

Proposition 4.4 to solve system (4.20), which, for the linear demand, takes 
the following form: 

nn bmmcba −++− )2( ψγ =0 ,   (4.23) 

w
n=c+m

n+ψγ .   (4.24) 

Using equation (4.22) or, equivalently, by differentiating (4.23) and (4.24) 
we have 

b

a
mw nn

3

&

&& ==  

and  

b

ta

b

Ta
Tmtm nn

3

)(

3

)(
)()( +−= , 

b

ta

b

Ta
Twtw nn

3

)(

3

)(
)()( +−= . 
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In addition from (4.23) we obtain, 0)(3)()( =−− TbmTbcTa nn . Thus, 

3

)(

3

)(
)(

Tc

b

Ta
Tm

n

n −= . 

According to (4.24) wn(T)=c
n(T)+m

n(T), that is,  

3

)(2

3

)(
)(

Tc

b

Ta
Tw

n

n += . 

Substituting found mn and wn into (4.2) we have 

dt
Tc

b

ta
btaCTc

nT

n ]}
3

)(

3

)(2
[)({)(

0

+−−= ∫γ ,  (4.25) 

which results in 

bT

TAC
Tc n

γ
γ

−
−

=
3

)(3
)( ,   (4.26) 

where ∫=
T

dttaTA
0

)()( . 

Assume that the system parameters are such that the terminal production 
cost, cn(T), is positive, no matter how experienced the manufacturer becomes, 

i.e., ȖbT<3 and 3C>ȖA(T). Consequently, if 
b

ta

3

)( ≥
)3(3

)(3

bT

TAC

γ
γ

−
−

, then the 

Nash equilibrium of the differential pricing game is 

+=
b

ta
twn

3

)(
)(

)3(3

))(3(2

bT

TAC

γ
γ

−
−

 and 
b

ta
tmn

3

)(
)( =  

)3(3

)(3

bT

TAC

γ
γ

−
−

− , (4.27) 

otherwise at least one of the parties is not always profitable and the equili-
brium involves boundary solutions at some intervals of time. Next, the 
overall price, mn

+w
n, that the retailer charges and the quantity he orders 

are  

+=
b

ta
tp n

3

)(2
)(

)3(3

)(3

bT

TAC

γ
γ

−
−

 and −=
3

)(
)(

ta
tq n b

bT

TAC

)3(3

)(3

γ
γ

−
−

,  (4.28) 

respectively.  
To find the system-wide optimal solution (4.12), which for the linear 

demand function is determined by the equation  

bcpbpa )*(* ψγ−−−− =0 ,   (4.29) 

we first differentiate it to obtain 
b

a
p

2
*

&

& = . Then from (4.29) we have the 

terminal boundary condition 

0)(*2)()( =−+ TbpTbcTa , 



that is, )(*
2

)(

2

)(
Tp

Tc

b

Ta
=+ . Thus, 

2

)(

2
*

Tc

b

a
p += . Substituting found 

centralized solution into (4.2) we have 

dt
Tc

b

ta
btaCTc

T

)
2

)(

2

)(
()()(

0

+−−= ∫γ ,  (4.30) 

which results in 

bT

TAC
Tc

γ
γ

−
−

=
2

)(2
)( .   (4.31) 

Comparing (4.25) and (4.3) and taking into account that bCa > , we 

observe that even if the terminal production costs in the right-hand side of 
these equations are identical c(T)=c

n(T), the Nash cost c
n(T) in the left-

hand side of equation 4.25 is greater than c(T) for the centralized case 
(equation (4.30)). Consequently, assuming that ȖbT<2 implies Ȗb<1 and we 
have, when comparing (4.26) and (4.31),  

bT

TAC

γ
γ

−
−

2

)(2
<

bT

TAC

γ
γ

−
−

3

)(3
.  (4.32) 

Then the system-wide optimal price that the retailer charges his customers 
and the quantity he orders are 

+=
b

ta
tp

2

)(
)(*

)2(2

)(2

bT

TAC

γ
γ

−
−

 and −=
2

)(
)(*

ta
tq

)2(2

)(2

bT

TAC

γ
γ

−
−

b. (4.33) 

Using inequality (4.32), one can immediately observe that both terms of 

the price-defining equation of (4.33), 
b

ta

2

)(
 and 

)2(2

)(2

bT

TAC

γ
γ

−
−

, are smaller 

than the corresponding terms of the Nash price in (4.28), as stated in 
Proposition 4.3. 

In what follows, we illustrate with Maple the Nash solution (4.28) for 
specific parameters of the differential pricing game. 

Let the demand potential a(t) be exponentially decreasing over time, 
a(t)=10e

-01t. The other system parameters are: b=0.1, C=11, T=8, Ȗ=0.05. 
We first define the potential a(t) and its cumulative value A(T) with Maple. 

> a:=10*exp(-0.1*t); 

 := a 10 e
( )−0.1 t

 

> A:=int(a, t=0..T); 

 := A  − 100. 100. e
( )−0.1000000000 T

 

Next we determine the Nash wholesale price w; margin m; price p; system-
wide optimal price pop; quantity q; shadow price (co-state variable) ȥ; and 
production cost (state variable) c: 
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> w:=a/(3*b)+(2*(3*C-gamma*A))/(3*(3-gamma*b*T)); 

 := w  + 
10

3

e
( )−0.1 t

b

2 ( ) − 3 C γ ( ) − 100. 100. e
( )−0.1000000000 T

 − 9 3 γ b T
 

> m:=a/(3*b)-(3*C-gamma*A)/(3*(3-gamma*b*T)); 

 := m  − 
10

3

e
( )−0.1 t

b

 − 3 C γ ( ) − 100. 100. e
( )−0.1000000000 T

 − 9 3 γ b T
 

> p:=2*a/(3*b)+(3*C-gamma*A)/(3*(3-gamma*b*T)); 

 := p  + 
20

3

e
( )−0.1 t

b

 − 3 C γ ( ) − 100. 100. e
( )−0.1000000000 T

 − 9 3 γ b T
 

> q:=a/3-b*(3*C-gamma*A)/(3*(3-gamma*b*T)); 

 := q  − 
10

3
e

( )−0.1 t b ( ) − 3 C γ ( ) − 100. 100. e
( )−0.1000000000 T

 − 9 3 γ b T
 

> psi:=-int(q, t=t..T); 

> c:=C-int((gamma*q), t=0..t); 

> pop:=a/(2*b)+(2*C-gamma*A)/(2*(2-gamma*b*T)); 

 := pop  + 
5 e

( )−0.1 t

b

 − 2 C γ ( ) − 100. 100. e
( )−0.1000000000T

 − 4 2 γ b T
 

Finally, we substitute the chosen system parameters into the Nash 
equations and plot the results. 
> ct:=subs(T=8, C=11, b=0.1, gamma=0.05, c); 

> psit:=subs(T=8, C=11, b=0.1, gamma=0.05, psi); 

> qt:=subs(T=8, C=11, b=0.1, gamma=0.05, q); 

> pt:=subs(T=8, C=11, b=0.1, gamma=0.05, p); 

> mt:=subs(T=8, C=11, b=0.1, gamma=0.05, m); 

> wt:=subs(T=8, C=11, b=0.1, gamma=0.05, w); 

> popt:=subs(T=8, C=11, b=0.1, gamma=0.05, pop);  

>plot([pt,mt,wt,popt], t=0..8, legend=[“Retail 

price, p”,”Retailer’s margin, m”, “Supplier’s 

wholesale price, w”, “System-wide opt price p*”]); 



 
Figure 4.1. Evolution of the retail, wholesale and system-wide optimal prices 

> plot([psit, ct], t=0..8, legend=[“Co-state, psi”, 

“production cost, c”]); 

Figure 4.2. Evolution of the co-state and production cost 

> plot(qt, t=0..8, legend=“Demand, q”); 
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Figure 4.3. Evolution of the order quantity 

Coordination 

As mentioned above, the negative effect of the intertemporal vertical com-
petition is due to the double marginalization persistent at each time point 
as in static models and to a dynamic learning effect. It is the learning effect 
which induces a new margin compared to the corresponding static pricing 
game. In contrast to the margins from sales, this new margin is gained 
from reducing production costs. Thus, the deterioration takes place if the 
retailer ignores both the supplier’s profit margin, w-c, and the supplier’s 

margin from cost reduction, γψ
s

− . Specifically, recalling that p=w+m, the 

retailer’s best response is 

0
),(

),( =
∂

∂
+

p

tpq
mtpq , 

which implies that although the demand depends on two margins, p=w+m, 

and the supplier has a margin from cost reduction, γψ
s

− , the retailer takes 
into account only his margin m rather than ordering with respect to the 
centralized approach (4.12)  

p

tpq
cptpq

∂
∂

−−+
)*,(

)*()*,( ψγ = 0
)*,(

)**()*,( =
∂

∂
−−++

p

tpq
cmwtpq ψγ  

and thus adding the supplier’s margins w-c and - γψ
s

to m. At the same 

time, from equation (4.19)  

0
),(

)(),( =
∂

∂
−−+

p

tpq
cwtpq

s
γψ  

we observe that the supplier ignores the only margin, m, that the retailer 
has when setting the wholesale price. The question is how to induce the 
retailer to order more products, or the supplier to reduce the wholesale 
price, i.e., how to coordinate the supply chain and thus increase its total 
profit.  



It turns out that the two-part tariff approach coordinates supply chains 
functioning in dynamic conditions as well. However, in contrast to the static 
models, the two-part tariff allows for different implementation strategies, 
which do not necessarily result in perfect coordination. That is, an optimal 
solution under vertical competition may not converge to the system-wide 
optimal solution. Specifically, if the supplier is the leader, he can set the 
wholesale price equal to his production cost, but charge the retailer with a 
fixed (possibly time-dependent) fee. With this dynamic version of the two-
part tariff strategy, the supplier induces the retailer to order more products 
and regulates his share in the total supply chain profit without a special 
contract.  

To show the effect of the dynamic two-part tariff on the supply chain, 

let the supplier be a leader who first sets the wholesale price )()( tctw ≡ , 

then the Hamiltonian of the retailer’s problem takes the following form 

)),()(()()),()(()()( ttmtcqtttmtcqtmtH
r

+−+= γψ ,  (4.34) 

where the co-state variable )(t
r

ψ  is determined by  

p

tmcq
m

rr ∂
+∂

−=
),(

)( γψψ& , 0)( =Tψ .  (4.35) 

Then the margin the retailer sets is found by differentiating the 
Hamiltonian with respect to m,  

0
),(

)(),( =
∂
+∂

−++
p

tmcq
mtmcq

r
γψ .  (4.36) 

Comparing (4.12) and (4.36) we observe that the retailer orders a system-
wide optimal quantity if in addition to )()( tctw ≡ , we have ȥr ≡ ȥ (the 

retailer’s shadow price is identical to the system-wide shadow price), 
which, with respect to (4.35) and (4.9), cannot hold. This is to say, the 
retailer accounts for a learning effect with shadow price ȥr<0 instead of 
ȥ<0. Accordingly, we have found that when setting )()( tctw ≡  and 

charging fixed fees for orders, the supplier eliminates double marginali-
zation and also induces the retailer to partially take into account the 
supplier’s margin from cutting the production cost. However, the optimal 
retailer’s response will never be equal to the system wide optimal solution. 
The explanation of the two-part tariff’s partial efficiency is due to the 
cumulative memory of dynamics. Repeated setting of )()( tctw =  during a 

period of time, transforms the decision or control variable w(t) into a state 
variable, identical to the state variable c(t) whose dynamic properties are 
known and which can thus be accounted for by the retailer. This is in 
contrast to the memoryless static models which does not account for either 
previous settings or future effects. 
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We also note that, since ȥr(T)=ȥ(T)=0, ȥ tends to ȥr with time. This 
implies that time has a coordinating effect on the dynamic supply chain 
which becomes perfectly coordinated with the dynamic two-part tariff by 
the end of the production period. This passive way, however, is not the 
only way how the coordination can be improved with the two-part tariff.  

An alternative way is to set the wholesale price equal to the system-
wide, time-dependent, production cost, )(*)( tctw ≡ . This time-variant 
two-part tariff strategy implies that the wholesale price is only a function 
of time rather than only of the learning experience. Consequently, w(t) 
remains a decision variable and the supply chain can be perfectly coordi-
nated. The disadvantage of this two-part tariff price however, is that since 
the wholesale price will follow exactly the evolution of the supplier produc-
tion cost, the retailer may still interpret it as the dynamic two-part tariff. 
Consequently, the retailer may deviate from the system-wide optimal order 
quantity at some point of time. To prevent this (sort of) time-inconsistency, 
the supplier may choose another type of two-part tariff strategy. For 
example, the supplier, instead of choosing pure strategies with either 

)()( tctw ≡  or )(*)( tctw ≡ , may employ a mixed two-part tariff strategy. 
With such a strategy, the wholesale price could be selected randomly at 
constant levels around the production cost c(t) over some fixed intervals of 
time. In such a case, w(t) is announced as a deterministic function of time, 

)(ˆ tw , rather than of the learning dynamics or of the optimal production 

cost and the retailer’s optimality condition is reduced to: 

0
),ˆ(

)(),ˆ( =
∂
+∂

−++
p

tmwq
mtmwq

r
γψ . 

As long as wholesale prices )(ˆ tw  are not affected by the demand expe-

rience, the closer the price )(ˆ tw  to c(t), the more coordinated the supply 

chain will be. Further, the risk of viewing this strategy as a pure dynamic 
two-part tariff will also be reduced.  

In contrast to the previous section devoted to vertical competition, this section 
focuses on the effect of intertemporal horizontal competition on pricing 
and production decisions. We consider two manufacturers producing sub-
stitutable products over a period of time, T, and competing horizontally for 
the same customers through a single retailer that they supply. This is to 
say, the two manufacturers are the suppliers who have ample capacity and 
are able to deliver any quantity q1(t) and q2(t) per time unit to the retailer, 

4.2.2  THE DIFFERENTIAL PRODUCTION GAME 



where q1(t) and q2(t) are the quantities produced by supplier-one and 
supplier-two at time t respectively. The retailer, on the other hand, adopts 
the so-called vendor-managed inventory (VMI) policy, which implies that 
the suppliers decide on the quantities to deliver while the retailer simply 
charges the suppliers a fixed percentage from sales. In this way, the retailer 
does not take part in competition and consequently affects neither the 
system-wide optimal solution nor equilibrium order quantities. In contrast 
to the previous section, which assumes a Bertrand-Nash equilibrium and 
similar to the static production game of Chapter 2, Cournot behavior is 
assumed in the differential production game with the retail price being a 
function of customer demand. Specifically, the retailer faces the inverse 
demand function p=p(Q) of total demand rate, Q=q1+q2. Note that since 
the products are fully substitutable, the inverse, downward slopping, 

demand function is symmetric in q1 and q2, i.e, 0
21

<
∂
∂

=
∂
∂

q

p

q

p
 and 

0
21

2

2

2

2

2

1

2

≤
∂∂

∂
=

∂
∂

=
∂
∂

qq

p

q

p

q

p
. Furthermore, the period during which the firms 

operate as a chain is sufficiently long so that the price p depends not only 
on the quantity sold per time unit Q but also on time t elapsed, p=p(Q,t). In 

other words, 
t

p

∂
∂

 is not necessarily equal to zero over the production period.  

Similar to the previous section, we assume the suppliers’ unit production 
costs c1(t) and c2(t) (state variables) decrease with experience, i.e., with 

cumulative quantity ∫
t

dsssQp
0

)),((  produced. To simplify the discussion, we 

also assume that the initial production cost is the same for both suppliers, 
c1(0) = c2(0)=C, p(0,t)>C. This, however, does not ensure that the production 
costs remain identical over time as the ability to learn with experience can 
be different for the competing suppliers. 

If the suppliers do not cooperate to maximize the overall supply chain 
profit over period T, their decisions q1(t) and q2(t) affect each other’s 
revenues at every point of time resulting in a differential game described 
by the following problems. 

The problem of supplier 1  

1

max
q

J1(q1,q2)=
1

max
q

 ( )( )∫ −+
T

dttcttqtqptq
0

1211 )(),()()(β  (4.37) 
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s.t. 

)()( 111 tqtc γ−=& , c1(0)=C,   (4.38) 

q1(t) ≥ 0, p(q1+q2,t) ≥ c1(t),   (4.39) 

where Ȗ1 is the learning factor of the first supplier, i.e., the decrease in unit 
production cost per one more product produced, and 1-ȕ is the percentage 
paid to the retailer by each manufacturer. 

The problem of supplier 2  

2

max
q

J2(q1,q2)= 
2

max
q

 ( )( )∫ −+
T

dttcttqtqptq
0

2212 )(),()()(β  (4.40) 

s.t. 
)()( 222 tqtc γ−=& , c2(0)=C,   (4.41) 

q2(t) ≥ 0, p(q1+q2,t) ≥ c2(t),   (4.42) 

where Ȗ2 is the learning factor of the second supplier.  
If the supply chain is horizontally integrated, that is, if a single decision 

maker is in charge, then we have the following centralized problem as a 
benchmark. 

The centralized problem 

21 ,
max

qq
J(q1,q2)=

21 ,
max

qq
[J1(q1,q2)+J2(q1,q2)]= 

21 ,
max

qq
( )( )∫ −+

T

tcttqtqptq
0

1211 )(),()()([β + ( )( ) dttcttqtqptq ])(),()()( 2212 −+  (4.43) 

s.t. 
(4.38) - (4.42). 

System-wide optimal solution 

To evaluate the best possible performance of the supply chain, we first study 
the centralized problem by employing the maximum principle. Specifi-
cally, the Hamiltonian for problem (4.43), (4.38) - (4.42) is 

))()),()(()(([)( 1211 tcttqtqptqtH −+= β + ))]()),()(()(( 2212 tcttqtqptq −+  

)(111 tqγψ− )(222 tqγψ− ,  (4.44) 

where it is assumed that since the supply chain is profitable at each point 
of time and constraints p(q1+q2,t) ≥ c2(t), p(q1+q2,t) ≥ c1(t) are not binding, 
the co-state variables are determined by the co-state differential equations 

)()( 11 tqt βψ =& , 0)(1 =Tψ ; )()( 22 tqt βψ =& , 0)(2 =Tψ .     (4.45) 



The Hamiltonian (4.44) can be interpreted as the instantaneous profit rate, 

which includes the values 11c&ψ and 22c&ψ  of the negative increment in the 

unit production costs of the two suppliers due to the economy of scale. The 
co-state variable of a supplier is the shadow price, i.e., the net benefit from 
reducing production cost of the supplier by one more monetary unit at time 
t. The differential equations of (4.45) state that the marginal profit of a 
supplier from reducing its production cost at time t is equal to the portion 
of demand which is sold for the sole gain of the supplier at time t. 

From (4.45) we have 

dssqt

T

t

)()( 11 ∫−= βψ  and dssqt

T

t

)()( 22 ∫−= βψ .  (4.46) 

According to the maximum principle, the Hamiltonian is maximized by 
admissible controls q1(t) and q2(t) at each point of time. That is, by differ-
entiating (4.44) with respect to q1(t) and q2(t), we obtain the following 
equations for an interior solution 
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where the production cost (state variable) for each supplier is found from 
(4.38) and (4.41) 

dssqCtc

t

)()(
0

111 ∫−= γ ; dssqCtc

t

)()(
0

222 ∫−= γ .  (4.49)  

Thus, if a solution, q1(t) and q2(t), of the system of two equations (4.47) 
and (4.48), is such that q1(t) ≥ 0, p(q1+q2,t) ≥ c1(t), q2(t) ≥ 0, 
p(q1+q2,t) ≥ c2(t) holds for Tt ≤≤0 , then this solution determines the 

optimal production orders. Otherwise the supply chain may not always be 
profitable.  

To gain further insights into the system-wide optimal solution, we hence-
forth assume that both suppliers have the same ability to learn, Ȗ1=Ȗ2. Then, 
similar to the static production game, the two problems become symmetric. 
Consequently, a symmetric solution to the system of equations (4.47)-

(4.48), q*= q1*=q2*, 21 ψψ = , c1=c2=c, satisfies the following equation 

0
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∂
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qctqp .  (4.50) 
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Define the maximum order quantity, Q' (t), so that the supply chain is 
sustainable, p(Q',t)=c(t). Then, differentiating the left-hand side of equation 
(4.50) with respect to q, we obtain 
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2

2

44
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q

Q

p

q

H

∂
∂

+
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=
∂
∂ ββ <0.  (4.51) 

This implies that the optimal solution q*, )',0(*2** 21 Qqqq ∈=+  

defined by (4.50) is unique and the supply chain is profitable if  

0
),(

<−
∂

′∂′ ψγβ
Q

tQp
Q . 

Assuming that the supply chain is profitable and comparing the system-
wide dynamic optimality condition (4.50) with the optimality condition for 
the corresponding static formulation (2.20), we observe that the only dif-
ference is due to the product of the shadow price and learning factor Ȗ 
present in the dynamic formulation. Consequently, referring to the static 
(short term) optimal solution at time point t as myopic, and taking into 

account that )()()( 21 ttt ψψψ == ≤ 0 for Tt ≤≤0  (see equations (4.46)), 

we find that the myopic approach leads to overpricing. 

Proposition 4.6. In intertemporal centralized production (4.38) - (4.43), if 
the suppliers make a profit, i.e., Q'>q>0, the myopic retail price will be 

greater and the myopic retailer’s order less than the system-wide optimal 

(centralized) price and order quantity respectively.  
Proof: Comparing (2.20) and (4.50) and employing superscript M for 
myopic solution we observe that 
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while taking into account that ≤ψ 0, 

Q

tqp
qctqp

M

MM

∂
∂

+−
),2(

2]),2([ ββ < ψγββ −
∂

∂
+−

Q

tqp
qctqp

M

MM ),2(
2]),2([ . (4.53) 

Next, by denoting ψγββ −
∂

∂
+−=

Q

tqp
qctqpqf

),2(
2]),2([)( , and similar to 

(4.51), we require that 0
)(

<
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∂
q

qf
. 

Thus, from conditions (4.52) and (4.53) we have f(qM)>f(q*), which, 

with respect to the last inequality, requires that q
M

<q* and, hence, 
p(qM)>p(q*), as stated in this proposition.  

According to Proposition 4.6, myopic pricing derived from static opti-
mization is not optimal. This, however, does not mean that the long-term 



effect of economy of scale causes the optimal price to evolve with time. 
Specifically, if the demand does not explicitly depend on time, q(p,t)=q(p), 
the optimal centralized pricing strategy is independent of time. Otherwise, 
an exogenous increase in prices, for example, naturally results in increased 
production, as stated in the following proposition under the assumption 

that if 0
),(

<
∂

∂
t

tQp
, then 0

),(2

≤
∂∂

∂
tQ

tQp
 and if 0

),(
>

∂
∂

t

tQp
, then 

0
),(2

≥
∂∂

∂
tQ

tQp
. 

Proposition 4.7. In intertemporal centralized production (4.38) - (4.43), if 
the supply chain is profitable, i.e., Q'>q>0, and there is a demand time 

pattern, p(Q, t), such that 
t

tQp
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∂ ),(

 exists, then the system-wide optimal 

order quantity monotonically increases as long as 0
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, and 

decreases as long as 0
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.Otherwise, if 
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=0, at an interval 

of time, then the system-wide optimal order quantity and price are 

constant at the interval. 
Proof: Differentiating (4.50), we have 
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Recalling (4.51), we readily observe that 0* >q&  if 0>
∂
∂

t

p
, otherwise, 

0* ≤q& .   

Game analysis 

Consider now a decentralized supply chain characterized by non-
cooperative firms and assume that both suppliers decide on quantities to 
produce and supply to the retailer simultaneously at each time t. Using the 
maximum principle we construct the Hamiltonians for each supplier  

))()),()(()(([)( 12111 tcttqtqptqtH −+= β )(11

1

1 tqγψ− )(22

1

2 tqγψ− , 

[)(2 β=tH ))]()),()(()(( 2212 tcttqtqptq −+ )(11

2

1 tqγψ− )(22

2

2 tqγψ− . 
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Assuming that the supply chain is profitable at each point of time and thus 
constraints p(q1+q2,t) ≥ c2(t), p(q1+q2,t) ≥ c1(t) are not binding, the co-state 
variables are determined by the co-state differential equations 

)()( 1

1

1 tqt βψ =& , 0)(
1

1 =Tψ ; )()( 2

2

2 tqt βψ =& , 0)(
2

2 =Tψ , 01

2

2

1 ≡≡ψψ . 

Note that in contrast to the centralized formulation, the Hamiltonian of a 

supplier includes either 1

1

1 c&ψ or 2

2

2 c&ψ , which is the value of the negative 

increment in the unit production cost of the supplier due to the economy of 
scale. Similar to the centralized problem, the co-state variable of a supplier 
is the shadow price, with a differential equation that states that the 
marginal profit of the supplier from reducing his production cost at time t 
is equal to the portion of the demand at this point which is sold for the sole 
gain of the supplier. 

Differentiating the two Hamiltonians with respect to q1(t) and q2(t), we 
find 
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Thus, if a solution of equations (4.54) and (4.55) is such that q1(t) ≥ 0, 
p(q1+q2,t) ≥ c1(t), q2(t) ≥ 0, p(q1+q2,t) ≥ c2(t), then this solution determines 
optimal production orders. Otherwise the supply chain may not be 
profitable at some time intervals and the optimal solution is not always 
interior with respect to the constraints. 

Assuming again that both suppliers have the same ability to learn, Ȗ1=Ȗ2, 

the two problems become symmetric, 
s

ψψψ == 2

2

1

1 , c1=c2=c. That is, the 

solution to the system of equations (4.54)-(4.55) is q= q1=q2, and it 
satisfies the following equation 
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Using the arguments similar to those for the centralized optimality con-
dition (4.50), we observe that if the derivative of the left-hand side of 
(4.56) is negative, 
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then the solution of (4.56) is unique. From (4.56) we observe by setting Ȗ 
at zero that myopic suppliers produce less and the retail price is higher 
than those defined by the intertemporal production model. Assuming in 



addition to (4.57) that the supply chain is profitable and comparing (4.50) 
and (4.56), we conclude with the following result. 

Proposition 4.8. In horizontal competition of the differential production 

game with equal power players, if the suppliers profit at each t, the retail 

price will be lower and the quantities produced by the suppliers higher 

than the system-wide optimal price and production quantity respectively. 

Moreover, these gaps are even greater than those induced by the corres-

ponding static production game.  

Proof: Comparing (4.50) and (4.56) we observe that if q=q*, then
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while the derivative of the left-hand side of this inequality with respect to q 
is negative. Thus, q>q*, which, in regard to the down-slopping price 
function p(2q,t), means that p(2q,t)<p(2q*,t). Using the same arguments 
and accounting for the fact that the co-state variable is negative it is easy to 
observe that these gaps are even greater than those induced by the corres-
ponding static production game.  

Consequently, similar to the static production game, the overall efficiency 
of the supply chain deteriorates under intertemporal horizontal competition. 
Moreover, the profit margin from cutting the production cost (learning effect) 
may even worsen the situation by inducing further price reductions compared 
to the static (myopic) game. Therefore the suppliers’ myopic attitude can 
become advantageous in terms of system performance.  

Nash solution 

Similar to Proposition 4.4, it is easy to verify that if (4.57) holds and  

γψβ
s

ctp ≤− ]),0([ , 

then solution qn of (4.56) in q is unique and thus the pair (q1
n
,q2

n), which 
satisfies q1

n
=q2

n
= q

n, constitutes a unique open-loop Nash equilibrium of 
the differential pricing game with 0<q

n<Q'/2. 
By differentiating (4.56)  
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we next show that similar to the centralized supply chain, the production 
trajectory under intertemporal horizontal competition is monotonous where 

t

tQp

∂
∂ ),(

 is monotonous. This is accomplished in the following proposition 
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using the assumption of Proposition 4.7 that signs of 
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 are the same.  

Proposition 4.9. In the differential production game, if the supply chain is 

profitable, and there is a demand time pattern p(Q, t) such that 
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exists, then the suppliers’ order quantity monotonically increases as long 
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Proof: Rearranging terms in (4.59) we have  
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Recalling (4.57), we immediately observe from this expression that 0>q&  

if 0
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>
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∂
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tqp
, otherwise, 0≤q& .   

We illustrate the results with an inverse demand function linear in pro-
duction quantity. 

Example 4.2. 

Let price be linear in production quantity with customer demand potential 
a dependent on time, p=a(t)-bQ, Q=q1+q2, p(0)=a>c. Evidently, the 

requirements, 0
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for the selected function and the Nash condition (4.56) takes the following 
form 
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Differentiating this equation, we find the specific form that equation (4.59) 
transforms into for the linear demand function 
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Denoting ∫=
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)()( ττ , we find from the dynamic learning equation  
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and similar to the static production game, the portion of the profit, 1-ȕ, that 
the suppliers pay to the retailer does not affect the unique Nash solution, 
which is 
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Assuming that bT 3<γ  and CTA <)(γ  to ensure non-negative terminal 

production cost c(T), one can readily observe that the myopic (Ȗ=0) Nash 

production quantity, 
b

ca

3

−
, is lower and thus the retail price is higher 

compared to the corresponding Nash values of the differential game.  
Subsequently, the centralized optimality condition (4.50) is 
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which, when differentiated, leads to 
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Using (4.50) at t=T, i.e., 0)]()(*4)([ =−− TcTbqTaβ , we find the optimal 

production quantity 
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Comparing this system-wide optimal solution with the Nash quantity 
(4.60), we observe that q*<q

n even if the terminal production cost is the 
same for both cases. However, if q*<q

n, then according to the dynamic 
learning equation, the Nash terminal production cost, cn(T), must be less 
than the system-wide production cost c(T) which makes the inequality 
q*<q

n even stronger (compare (4.60) and (4.61)). This sustains the fact 
that the supply chain performance deteriorates under horizontal competition. 

Moreover, comparing q* with the myopic Nash solution, 
b
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observe that 
b

Tca
q

4

)(
*

−
= ≤

b

ca

3

−
 holds for any t if 
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. This 

inequality, if for example 4C≤a, always holds and accordingly a myopic 
attitude of the suppliers is beneficial for the supply chain performance. 

Consequently, substituting found q* into the dynamic learning equation, 
we obtain 
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We next illustrate the Nash solution found in this example for the 
following system parameters: a(t)=15*e-0.1t, T=8, C=9, b=0.2, Ȗ=0.05, ȕ=0.1. 

First, we define the demand potential a(t) and its cumulative value over 
the production period T, A(T)  
> a:=15*exp(-0.1*t); 

 := a 15 e
( )−0.1 t

 

> A:=int(a, t=0..T);  

 := A  − 150. 150. e
( )−0.1000000000 T

 

Consequently, the Nash solution is calculated in terms of production 
quantity q; retail price p; production cost c; and shadow price ȥ. The chosen 



system parameters are then substituted and the results are plotted along 
with the system-wide optimal solution. 
>q:=a/(3*b)-(1/(3*b))*(C-gamma*A/(3*b))/(1-gamma* / 

(3*b)); 

>qs:=a/(4*b)-(1/(4*b))*(C-gamma*A/(4*b))/(1-amma*T/ 
(4*b)); 

>p:=a-b*2*q; 

>ps:=a-b*2*qs; (system-wide optimal price) 

>qt:=subs(T=8, C=9, b=0.2, gamma=0.05, q); 

>pt:=subs(T=8, C=9, b=0.2, gamma=0.05, p); 

>c:=C-gamma*int(qt, t=0..t); 

>ct:=subs(T=8, C=9, b=0.2, gamma=0.05, beta=0.1, c); 

>plot([pt,ct,pst], t=0..8, legend=[“Retail price, 
p”,”Production cost, c1=c2=c”, “System-wide price 

p*”]); 

 
Figure 4.4. Evolution of the production cost, retail and system-wide optimal prices 

>psi:=-beta*int(qt, t=t..T); 

>psit:=subs(T=8, C=21, b=0.2, gamma=0.05,beta=0.1, psi); 

>plot([psit, qt, qst], t=0..8, legend=[“Co-state, psi”, 

“production quantity, q”, “system-wide quantity q*”]); 
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Figure 4.5. Evolution of the co-state, production and system-wide optimal order 
quantity 

The effect of different learning abilities 

Different learning abilities introduce an asymmetry into the choice of pro-
duction quantities. If the supply chain is centralized, then it does not make 
sense to use an inefficient manufacturer. Therefore, the system-wide optimal 
solution will involve only the fastest learning supplier. Formally, this is 
found by adding the Lagrange multiplier )(tµ ≥ 0 to the optimality con-

ditions. Then Q=q1>0 and q2=0 are defined by the optimality conditions 
(4.47)-(4.48), which take the following form 
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To illustrate the change in the interior Nash solution, we let 21 λγγ =  
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This implies that although all properties of Proposition 4.9 hold, the 
dynamic changes in production quantities are not necessarily symmetric, 
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Furthermore, according to the optimality equations (4.54) and (4.55), the 
latter condition cannot hold for different learning abilities.  

Assuming the former condition holds, 0=
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, thereby 
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then 
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qtq 22 )( =  and Q(t)=Q for Tt ≤≤0  and considering 

(4.54) and (4.55) at t=T we have: 
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Thus, in contrast to the system-wide optimal solution, if supplier one 
learns faster, Ȝ>1, then he produces less, q1

n<q2
n. From system (4.62)-

(4.63) we also find 
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On the other hand, from learning equations (4.38) and (4.41), we obtain 
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n<q2
n, we conclude 

that q2
n
 >Ȝq1

n. That is, the total production of supplier two will be more 
than Ȝ times greater than that of supplier one and the greater the learning 
inequality of the suppliers the stronger the deterioration of the supply chain 
performance.  
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Coordination 

Although consumers benefit from the non-cooperative behavior of the sup-
pliers, which leads to a fall in retail prices and an increase in production as 
well as in consumption of the product, the horizontal competition has a 
negative effect on supply chain profits. As with the double marginalization 
effect, this happens because each manufacturer, when deciding on the 
quantity to produce, ignores the quantity which the other manufacturers 
produce, i.e., because of “double quantification”. The major way to coordi-
nate such a chain is to cooperate. The suppliers, by simply agreeing to set 
simultaneously their production quantities equal to the system-wide optimal 
quantity, rather than to the non-cooperative Nash quantities, will perfectly 
coordinate the supply chain as well as increase their profits with equal 
shares without any internal supply chain transfers. Transfers, however, will 
be needed if the cooperating suppliers differ in their ability to learn with 
production experience. 

Another interesting point is the effect of myopia on horizontal competi-

tion in supply chains. The profit margin γψ
s

 from cutting the production 

cost induces the suppliers to produce more, which decreases the prices 
compared to both the corresponding static (myopic) and system-wide 
optimal solutions. As a result, myopic suppliers, even if they are not able 
to cooperate, may make the supply chain more coordinated. This is in 
contrast to vertically competing firms where myopic behavior only worsens 
the performance of supply chains. 

Finally, it is worth mentioning that even if no coordinating actions are 
exercised, the coordination improves with time as the shadow price of cutting 
the production cost tends to zero by the end of the production period T in 
both centralized and decentralized supply chains. By the same token, the 
less time that remains until the end of production period, the smaller the 
difference between an intertemporal model and the corresponding static 
model.  

4.3 INTERTEMPORAL INVENTORY GAMES 

The two previous sections were devoted to intertemporal production and 
pricing games with production learning dynamics. This section addresses 
the effect of inventory dynamics. We consider two types of games. One 
models pricing competition which accounts only for the retailer’s dynamics. 
The other, which considers the supplier’s and the retailer’s inventory dyna-
mics, focuses on vertical inventory competition. 



In this section we consider a pricing game in a two-echelon supply chain 
consisting of a single supplier (manufacturer) selling a product type to a 
single retailer over a period of time, T. The supplier has ample capacity 
and can deliver any quantity at any time point. Similar to the pricing game 
of Section 4.2.1, the demand changes exogenously with time. In contrast to 
the pricing game considered in Section 4.2.1, the product type is char-
acterized by a long lifecycle so that after a limited time period, the learning 
effect is negligible. Instead, the retailer has a finite processing capacity 
which may induce inventory accumulation to prepare for the time intervals 
where the demand exceeds processing capacity. The focus, then, in this 
section is on the effect of inventory dynamics rather than production experi-
ence on the supply chain.  

Another important distinction from the differential pricing game is the 
demand pattern. In contrast to gradual evolution considered in the differential 
pricing game, we assume jumps in demand due to special business conditions 
such as national holidays. Furthermore, special business conditions fre-
quently impact not only demand potential, but also customer sensitivity to 
prices. Empirical studies show that consumers are more price-sensitive during 
periods of high demand such as Christmas, Thanksgiving and weekends 
(see, for example, Chevalier et. al 2003; Bils, 1989; and Warner and 
Barsky 1995). The best response to such an instantaneous change often 
involves a limited-time promotion. In the UK, for example, Christmas 
sales of consumer electronics may reach up to 40% of the annual sales. A 
promotion during higher customer sensitivity can cause customers to buy 
more than they usually would, indeed, more than they would normally buy 
even during a regular promotion.  

To illustrate this phenomenon and simplify further presentation, we will 
assume linear in price demand d(p,t). One can view demand d(p,t) for a 
product as a function of the current product price p(t), the list price P and 
the customer price sensitivity b(t), d(p,t)=g(t)+b(t)(P-p(t)), where g(t) is 
the demand under anticipated list pricing, p(t)=P. Then, by denoting the 
demand potential, a(t)=g(t)+b(t)P, we observe that this function is equiva-
lent to the standard linear demand function, d(p,t)=a(t)-b(t)p(t) considered 
in most examples presented in this book. This is to say, if customer sen-
sitivity b(t) increases during a limited-time promotion, the demand poten-
tial a(t)=g(t)+b(t)P may increase as well, even if g(t) remains unchanged. 
This also implies that sales during a period of increased customer sensitivity 
and, as a result, increased demand elasticity, may become more efficient 
than those offered during regular times. For example, if customer price 

WITH ENDOGENOUS DEMAND 
4.3.1  THE DIFFERENTIAL INVENTORY GAME 
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sensitivity b(t) increases during a limited-time period by K units and p(t) ≤ P, 
then the positive increment in demand, b(t)(P-p(t)), includes K additional 
product units for each dollar discounted in price p(t) compared to sales 
offered at other times.  

Although large manufacturers traditionally dominate trade deals, retailers 
armed with extensive data about profitability, product movement, and 
customer demand for a class of goods are developing sophisticated purchase 
and storage policies to take advantage of the trade promotions that manu-
facturers offer. A retailer, for instance, may engage in “forward buying”, 
that is, purchasing more goods during a promotional period than he 
expects to sell (Zerrillo and Iacobucci 1995). In this section we derive such 
policies and provide formal rationales for complex purchase and inventory 
policies under increased customer sensitivity. 

We assume there is a leader – a supplier or wholesaler – and a follower – 
the retailer. When the supplier sets a wholesale price, the retailer commits 
to purchase a certain quantity. Both desire to maximize their profits. The 
contract between these players is of the rolling-horizon type which implies 
that purchase orders can be periodically updated within certain limitations. 
If demand as well as the supply chain parameters is steady, then there is a 
static Stackelberg solution to this two-player game. However, if the demand 
changes, the Stackelberg strategy becomes dynamic. 

Our notations include X(t), which is the retailer’s inventory level at time 
t, a state variable; u(t) is the order quantity processed by the retailer at time 
t (processing rate), which can also be viewed as the quantity q(t)=u(t) that 
the supplier delivers to the retailer at t, a decision (control) variable; and U 
is the retailer maximum processing rate. Other notations are similar to those 
employed in the previous sections: p(t) is the retail price at time t, a 
decision (control) variable; w(t) is the unit wholesale price charged by the 
supplier, a decision variable; h+, h- are the product unit holding and backlog 
costs respectively incurred per time unit by the retailer; and cr , cs are the 
product unit processing costs incurred by the retailer and supplier respec-
tively. 

A typical rolling horizon contract between a supplier and a retailer 
implies an infinite planning horizon and a minimum period, T, which 
characterizes the contract. During T, mutual supplier-retailer commitments 
cannot be revised. Specifically, the supplier sets a constant wholesale price 
for a period, T. In response, the retailer commits to order fixed quantities 
with minor variations to cope with demand fluctuations within the period. 
If the demand is steady, this type of supply chain results in a steady-state 
that the commitments determine, i.e., a constant wholesale price, as well as 
a constant retailer order quantity, inventory level and product price. This 
steady-state can be disrupted if a limited-time promotional sale is initiated. 



With respect to this initiative, the supplier is expected to reduce the wholesale 
price from w1 to w2 for the promotional period of time [ts, tf] to boost sales, 
i.e.,  

⎪⎩

⎪
⎨
⎧

<≤

≥<
=

fs

fs

tttw

ttttw
tw

,

 and ,
)(

2

1
; w1 ≥  w2.                    (4.64)  

This promotion is commonly coordinated with the retailer who also drops 
prices and increases order quantities. As a result, the chain is in a transient-
state for a period of time comprising the interval, [ts, tf]. Furthermore, since 
the promotion dates are either advertised or coincide with especially sensitive 
seasons (e.g. holidays), the price sensitivity of the customers, b(t), during 
these dates increases: 
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As mentioned above, this increase in price sensitivity increases the 
demand potential a(t) during the promotion as well,  
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That is, if b2>b1, then from a1= g+b1P and a2= g+b2P, we have a2>a1. Since 
the effect of the customer sensitivity on demand potential is not necessarily 
linear, we relax the linearity and employ a more general assumption 
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which ensures that the demand elasticity, 
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and thus the efficiency of price cuts increases. Note, that this assumption is 
always met for any linear function a(t)=g+b(t)P, if b2>b1.  

The effect of an increase in customer sensitivity occurs only if the pro-
motional time interval, [ts, tf], is much shorter than the regular contract 
period T, which is typically the case with limited-time promotions as well 
as national holidays. Therefore we consider a period of time [0, T] such 
that the supply chain which was in the steady-state at the beginning of the 
period will have enough time after the promotional interval to return to this 
state by time T.  
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The supplier’s problem 

Since we assume that the supplier has ample capacity, his dynamics are 
straightforward: produce (supply) exactly according to retailer orders u(t) 
to maximize expected profits by choosing regular, w1, and promotional, w2, 
wholesale prices: 

w
max Js(w,u,p)=

w
max ∫ −

T

s
dttuctutw

0

)]()()([   (4.65) 

s.t. 

s
ctw ≥)( ,                                          (4.66) 

where the first term in the objective function (4.65) presents wholesale 
revenues over time and the other term presents supplier processing costs 
over time. 

The retailer’s problem 

The retailer also wants to maximize profit by selecting proper order 
quantities and product prices {u(t), p(t), Tt ≤≤0 } 

pu ,
max ∫ −−−−=

T

r
pu

r
dttXhtutwtuctptbtatppuwJ

0
,

))](()()()())()()()(([max),,( (4.67) 

s.t. 

))()()(()()( tptbtatutX −−=& ;   (4.68) 

Utu ≤≤ )(0 ;                                         (4.69) 

a(t)-b(t)p(t) 0≥ ;   (4.70) 

p(t) 0≥ ,                                            (4.71) 

where the first term in the objective function (4.67) presents revenues of 
the retailer from the sales d(t)=a(t)-b(t)p(t); the second term reflects retailer 
processing costs; and the third is the cost of purchasing from the supplier 
at the wholesale price. The last term in (4.67) accounts for inventory costs 

h(X(t))=h+X+(t)+h-X-(t), }0),(max{)( tXtX =+  and }0),(max{)( tXtX −=− , 

which are due to the bounded processing capacity (4.69) of the retailer. 
With respect to the inventory balance equation (4.68), if the cumulative 
processing rate at time t is greater than the cumulative demand at t, then 
the inventory holding cost is incurred at t, h+X(t), otherwise the backlog 
cost h-X-(t) is incurred. 

In this section we use the Stackelberg solution concept to solve the supplier 
and retailer problems with the supplier acting as the leader and the retailer 
acting as the follower. On the other hand, if the supply chain is vertically 
integrated or centralized so that a single decision maker is in charge, then 



we have the following single problem as a benchmark of the best supply 
chain performance. 

The centralized problem 

pu ,
max ∫ −−−−=

T

sr
pu

r
dttXhtuctuctptbtatppuJ

0
,

))](()()())()()()(([max),(  (4.72) 

s.t. 
(4.68) - (4.71). 

System-wide optimal solution: steady-state conditions 

We start off by considering static conditions and thus the centralized solution 
when the supply chain is in a steady-state characterized by constant wholesale 
prices, retailer orders and inventory levels which are naturally kept at zero 
level in such a case. This implies that we consider a sub-period during which 
customer sensitivity remains unchanged and no promotion initiative is 
expected.  

We derive the optimal solution by maximizing the Hamiltonian of the 
centralized problem 

))()()()()(())(()()())()()()(()( tptbtatuttXhtucctptbtatptH
sr

+−+−+−−= ψ  

with respect to the retail price p(t) and processing rate u(t), where the co-
state variable )(tψ is determined by the co-state differential equation 
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Similar to the previous sections, the Hamiltonian can be interpreted as 

the instantaneous profit rate, which includes the profit X&ψ from the incre-

ment in inventory level of the retailer created by processing u and pricing p. 

Objective function (4.72) is obtained by summing the retailer’s and sup-
plier’s objective functions which eliminates the wholesale price since it repre-
sents transfer within the supply chain. In what follows we will distinguish 
between two different types of solutions: steady-state and transient-state. 
The former is related to the case when the dynamic production conditions 
of the supply chain transform into static conditions and, correspondingly, 
the differential pricing and inventory game into a static game. The latter is 
related to conditions when the supply chain behavior cannot be static. 
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The co-state variable is the shadow price, i.e., the net benefit from reducing 
inventory surplus/shortage by one more unit at time t. The differential 
equation (4.73) states that the marginal profit of the supply chain from 
reducing its inventory level at time t if there is a surplus at t, X>0 (or from 
reducing inventory shortage, if X<0) is equal to the product unit holding 
cost per time unit (or unit shortage cost , if X<0).  

If the supply chain system is at the same steady-state at t=0 and t=T, i.e., 
it is characterized by steady demand potential a(0)=a(T); customer sensi-
tivity b(0)=b(T); wholesale price w(0)=w(T); and retailer’s inventory state 
X(0)=X(T). Then the co-state variable must also be the same at these points 
of time: 

)()0( Tψψ = .   (4.74) 

Maximizing the Hamiltonian with respect to p(t), i.e., considering  
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subject to (4.70) and (4.71) we readily find 
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Similarly, by maximizing the u(t)-dependent part of the Hamiltonian,  
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subject to (4.69), we find 
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Note, that the third condition in (4.76), which presents the case of an 
intermediate processing rate, is obtained by differentiating the singular 
condition, 

sr
cct +=)(ψ , 

along an interval of time where it holds. Then, by taking into account 
(4.73), we conclude that this condition holds only if X=0 along the interval, 
i.e., u=d=a-bp. Furthermore, this singular condition is feasible if in addition to 
the constraints (4.69)-(4.71), we have 

d=a-bp ≤ U .   (4.77) 

Consider a sub-period of time ],0[],[ Ttt ⊆=
()

τ  characterized by no-

promotion, so that customer sensitivity b(t)=b1 and potential a(t)=a1 remain 



constant for a period of time, τ∈t , rather than identical only at t=0 and 

t=T as imposed by (4.74). As shown in the following proposition, if 
X(0)=0 this requirement implies that the dynamic system exhibits a static 
behavior characterized by constant retailer pricing and processing rates as 
well as zero inventory levels. 

Proposition 4.10. If b(t)=b1, a(t)=a1, , for τ∈t , ],0[ T⊆τ , X( t
)

)=0 and 

0 ≤ a1-b1(cr+ cs) ≤ 2U, then X(t)=0 for τ∈t , and the system-wide optimal 

processing and pricing policies are: 
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respectively. 
Proof: Consider the following solution for the state, co-state and decision 
variables: 

X(t)=0, 
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It is easy to observe that this solution satisfies the optimality conditions 
(4.74) - (4.76). Furthermore, this solution is always feasible if conditions 
(4.70) and (4.77) hold which is ensured by 0 ≤ a1-b1(cr+ cs) ≤ 2U, as stated 
in the proposition. Finally, the centralized objective function involves only 
concave and piece-wise linear terms, which implies that the maximum-
principle based optimality conditions are not only necessary, but also 
sufficient.   

System-wide optimal solution: transient-state conditions 

Transient-state conditions do not introduce much sophistication into the 
centralized supply chain. Indeed, it is easy to verify that if the change in 
demand parameters is such that 0≤ a2-b2(cr+ cs)≤ 2U holds, then instan-
taneous change in customer sensitivity does not affect the form of the solution 
presented in Proposition (4.10). The price and the processing rate are simply 
adjusted to the changes as stated in the following proposition. 

Proposition 4.11. If b(t)=b1, a(t)=a1, for 
s

tt < , 
ftt ≥ , X( t

)

)=0, 0 ≤ a1-

b1(cr+ cs) ≤ 2U, and b(t)=b2, a(t)=a2, for 
s

tt ≥ , ftt < , 0 ≤ a1-b1(cr+ 

cs) ≤ 2U, then X(t) ≡ 0, and the system-wide optimal processing and pricing 

policies are: 
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Proof: The proof is very similar to that of Proposition 4.10.  
 
Comparing statements of Propositions 4.11 and 4.10, we find that under 

our assumption, 
2
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> , the optimal response of the centralized supply 

chain to increased customer price sensitivity for a period of time is a pro-
motion during this interval. Denoting 
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one can straightforwardly verify the following statements. 

Proposition 4.12. If b(t)=b1, a(t)=a1, for stt < , ftt ≥ , X( t
)

)=0, 0 ≤ a1-

b1(cr+ cs) ≤ 2U, and b(t)=b2, a(t)=a2, for 
s

tt ≥ , 
f

tt < , 0 ≤ a1-b1(cr+ 

cs) ≤ 2U, 
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> , then the system-wide optimal price decreases, while the 

demand and processing rate increase during transient period 
s

tt ≥ , 
f

tt < , 
i.e., p1>p2 and u1<u2.   

To compare these results with the myopic attitude, we could set the 
shadow price at zero which is equivalent to disregarding dynamic differ-
ential equations. This approach provides standard static formulations in 
Sections 4.2.1 and 4.2.2 devoted to learning dynamics. However, this is 
not the case with the problem under consideration. Indeed, substituting ψ  

with zero in (4.75)-(4.76), we find that it is optimal not to process 
anything, u=0, and just to sell by backlogging and promising later 

deliveries (which will never come) at a lowered price, 
b

a
p

2
= , compared 

to the system-wide optimal price. This policy, of course, has legal pro-
blems. On the other hand, if we assume that the retailer will process as 
many products as demanded by his customers, i.e., replace u with d, which 
is exactly what was assumed in all our deterministic static games. Then, 
when setting ψ =0, we obtain a single optimality condition for the only 

variable, 
b

ccba
p sr

2

)( ++
= . This expression, which was found for the 

static pricing game, does not come as much of surprise since, by setting 
u=d, we eliminate inventory dynamics and convert the dynamic game into 
the corresponding static pricing game. Consequently, similar to the previous 



sections, referring to the corresponding static model as myopic, we 
observe an interesting property: 

The system-wide optimal solution is identical to the centralized myopic 

solution if the retailer processes as many products as demanded.  

An immediate conclusion is that if the considered vertical supply chain 
with endogenous demand is centralized, then it exhibits static behavior so 
that it is not only performs best, but is also easily controlled with no dyna-
mics or long-term effects that need to be accounted for.  

In what follows we show that if the chain is not centralized and is in a 
transient-state, then its performance deteriorates and the control becomes 
sophisticated. 

Game analysis: steady-state conditions 

Given a wholesale price, w(t), we first derive the retailer’s optimal response 
for problem (4.67)-(4.71) by maximizing the Hamiltonian  
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with respect to the price p(t) and processing rate u(t), where the co-state 
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This equation, along with the co-state variable, has the same interpretation 
as in the centralized formulation. If the supply chain system is at the same 
steady-state at t=0 and t=T, i.e., it is characterized by the same demand 
potential a(0)=a(T), customer sensitivity b(0)=b(T), wholesale price w(0)= 
w(T), and retailer inventory state X(0)=X(T), then the co-state variable 
must be also the same at these points of time: 
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Maximizing the Hamiltonian with respect to p(t) we readily find 
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Note, that by using the same argument as in the analysis of the centralized 
system, we can say that if the retailer has a myopic attitude, then p is the 

only decision variable and 
b

bca
p r

2

+
=  is the optimal myopic price. 

By maximizing the u(t)-dependent part of the Hamiltonian, we find 
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Similar to the centralized approach, the third condition, which presents 
the case of an intermediate processing rate, is obtained by differentiating 

the singular condition, )()( twct
rrr

+=ψ , along an interval of time where the 

condition holds. Then, by taking into account (4.79), we conclude that this 
condition holds only if X(t)=0, i.e., u(t)=d(t)=a(t)-b(t)p(t). Furthermore, 
this singular condition is feasible if, in addition to all constraints, (4.77) 
holds.  

To derive the steady-state retailer’s best response function, we assume 

steady sales at a sub-period of time ],0[],[ Ttt ⊆=
()

τ  characterized by no-

promotion, so that the customer sensitivity b(t)=b1, potential a(t)=a1 and 
wholesale price w(t)=w1 remain constant for a period of time, τ∈t . The 

following proposition states that this requirement implies static behavior 
characterized by constant pricing and processing rates as well as zero inven-
tory levels. 

Proposition 4.13. If b(t)=b1, a(t)=a1, for τ∈t , ],0[ T⊆τ , X( t
)

)=0 and 

0 ≤ a1-b1(cr+ w) ≤ 2U, then X(t)=0 for τ∈t , and the best retailer’s 

processing and pricing policies are:  
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Proof: The proof is very similar to that of Proposition 4.10.   

Comparing statements of Proposition 4.10 and Proposition 4.13, we 
readily come up with the expected conclusion for static games: 
if the supplier makes a profit, w>cs, then in a steady-state vertical compe-

tition of the differential inventory game with endogenous demand, the retail 

price increases and the demand, along with the processing rate, decreases 
compared to the system-wide steady-state optimal solution. 



Proposition 4.13 determines the optimal retailer’s strategy in a steady-state 
during a no-promotion period. To define the corresponding supplier’s game 
in a steady-state over an interval of time, for example [0,T], we substitute 
the best retailer’s response for ],0[ T=τ  into the objective function (4.65): 

=−∫
T

s
dttuctutw

0

)]()()([ Tcw
wcba

s

r )(
2

)(11 −
+−

.          (4.82) 

Note that the maximum of function (4.82) does not depend on the length 
of the considered interval T and can be determined by simply applying the 
first-order optimality conditions. Accordingly, we conclude with the follow-
ing proposition for the supply chain which is in a steady-state along an 
interval, ],0[ T . 

Proposition 4.14. If b(t)=b1, a(t)=a1 for ∈t ],0[ T , X(0)=X and 0 ≤ a1-

b1(cr+ cs) ≤ 4U, then X(t)=0 for ∈t ],0[ T , the supplier’s wholesale pricing 

policy 
1

11

2

)(
)(

b

ccba
tw srs −−

= , and the retailer’s processing 

4

)(
)( 11 srs ccba

tu
+−

=  and pricing 
1

11

4

)(3
)(

b

ccba
tp srs ++

=  policies 

constitute the unique Stackelberg equilibrium for ∈t ],0[ T . 

Proof: Since function (4.82) is concave in w, the first-order optimality condi-

tion applied to it results in a unique optimal solution 
1

11

2

)(
)(

b

ccba
tw srs −−

=  

which is feasible if 
sr

cc
b

a
+≥ , as stated in this proposition. Substituting 

this result in the equations for p(t) and u(t) from Proposition 4.13 leads to 
the equilibrium equations stated in Proposition 4.14. Furthermore, ps(t) is 

feasible (meets (4.70)) due to the same condition, 
sr

cc
b

a
+≥ . Finally, u*(t) 

is feasible if the condition, 0 ≤ a-b(cr+w) ≤ 2U, stated in Proposition 4.13 
holds. Substitution of ws(t) into this condition as well completes the proof. 

According to Propositions 4.13-4.14, the retailer’s problem may have an 
optimal interior solution and the supply chain may be in a steady-state if 
the demand is non-negative in this state and the maximum processing rate 
is greater than the maximal demand 

r
c

b

a
≥ +cs and a<U. 

Steady-state equilibrium  
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Game analysis: transient -state conditions 

We assume first that since the promotion time is much shorter than the 
committed contract period T, the supplier chooses the wholesale price as 
determined in Proposition 4.14 to maintain a steady-state; a new wholesale 
price can only be selected at a predetermined date for a limited promo-
tional period. In response, the retailer will change his policy accordingly. 
This changeover induces in the supply chain a transient-state in which both 
the supplier and retailer attempt to use increased customer sensitivity during 
the limited promotional period to increase sales. 

We further assume that since T is longer than the promotion duration, 
the supply chain, which is in a steady-state (characterized by demand poten-
tial a1 and sensitivity b1) at time t=0, will return to this state by time t=T 
after the promotion period, which starts at ts>0 and ends at time tf<T. This 
implies that the optimality conditions derived in the previous section remain 
the same, but that w(t) is no longer constant and is defined by equation 

(4.64), where w1= 
1

11

2

)(
)(

b

ccba
tw srs −−

= , and w2 is a decision variable. 

To derive the retailer’s best response function, we distinguish between 
two types of transient-states: brief and maximal changeover. The difference 
between the two is due to a temporal steady-state the supply chain may 
reach during the promotion. The presence of this temporal steady-state 
implies that the retailer has enough time to optimally reduce prices to a 
minimum level corresponding to the promotional wholesale price w2. This 
phenomenon can be viewed as the maximum effect that a promotional 
initiative can cause, which is why we focus here on this type of transient-
state, as discussed in the following theorem. 

Theorem 4.1. Let a(t)-b(t)(cr+w(t)) ≥ 0, w1>w2 
2

)(
* 111 wcba

d r
+−

= , 

2

)(
** 222 wcba

d r
+−

= . If t1<ts, t2>ts, t3<tf, t4>tf, 32 tt ≤  satisfy the following 

equations 
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then X(t)=0 for 10 tt ≤≤ , 32 ttt ≤≤ , Ttt ≤≤4 ; X(t)<0 for 21 ttt << , 

X(t)>0 for t3<t<t4; the optimal retailer’s processing policy is  

u(t)=d* for 10 tt <≤  and Ttt ≤≤4 , u(t)=d** for 32 ttt <≤ , 

u(t)=U for 2ttt
s

<≤  and 
f

ttt <≤3 , u(t)=0 for
s

ttt <≤1  and 4ttt
f

<≤ ; 

and the optimal retailer’s pricing policy is 

)(2
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)(2

))()(()(
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+

 for 43 ttt <≤ . 

Proof: First note, that as mentioned before, the retailer’s problem is a convex 
program, which implies that the necessary optimality conditions are suffi-
cient. 

Consider a solution which is characterized by four breaking points, t1, t2, 
t3 and t4 so that the retailer is in a steady-state between time points t=0 and 
t= t1, between t= t2 and t= t3, and between t= t4 and t=T, as described 
below: 

X(t)=0 for 10 tt ≤≤ , 32 ttt ≤≤  and Ttt ≤≤4 ;  (4.85)  

u(t)=d* for 10 tt <≤  and Ttt ≤≤4 , u(t)=d** for 32 ttt <≤ ,   (4.86)  

u(t)=U for 2ttt
s

<≤ , 
f

ttt <≤3 , u(t)=0 for
s

ttt <≤1  and 4ttt
f

<≤ ; (4.87) 

1)( wct
rr

+=ψ  for 10 tt <≤ , Ttt ≤≤4 , 2)( wct
rr

+=ψ  for 32 ttt <≤ ;(4.88)  

)()( 11 tthwct
rr

−−+= −ψ  for 21 ttt <≤ , )()( 32 tthwct
rr

−++= +ψ  for 
43 ttt <≤ .(4.89) 

It is easy to observe that the solution (4.85))-(4.89) meets optimality condi-

tions ((4.76)) if a(t)-b(t)(cr+w(t)) 0≥ , a(t) ≤  U and there is sufficient time to 

reach a steady-state during the promotion period, i.e., 32 tt ≤ . Furthermore, 

the optimal pricing policy is immediately derived by substituting the co-

state solution (4.88)-(4.89) into p=
b

ba
r

2

ψ+
 (see optimality conditions 
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(4.75)), as stated in the theorem. In turn, this solution is feasible if p(t) 0≥  

(which always holds) and p(t)
)(

)(

tb

ta
≤  (see constraint (4.70)) or the same 

d(t) 0≥ . The latter holds because,  

2

2

1

1
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a
> , p(t) ≤  
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++
 and w1= 

1

11

2

)(

b

ccba
w srs −−

= . 

To complete the proof, we need to find the four breaking points and 

ensure that 32 tt ≤ . Points t1 and t2, are found by solving a system of two 

equations (4.85) and (4.89). Specifically, from (4.85) and (4.68) we find that  
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By substituting found p(t) into (4.90) we obtain 
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which along with  

)( 1212 tthwcwc
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−−+=+ −  

from (4.88) and (4.89) results in the system of two equations (4.83) in 
unknowns t1 and t2 as stated in the theorem. 
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Considering (4.91) simultaneously with equation 

1342 )( wctthwc
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+=−++ +  

from (4.88) and (4.89) results in two equations (4.84) for t3 and t4 stated in 
the theorem. Ƒ 

The solutions to equations (4.83)-(4.84) are unique and are as follows. 

Solution of Equations (4.83) 
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Solution of Equations (4.84)  

*

2

*

4 Att
f

+=  and 1

*

4

*

3 ftt −= , 
+

−
=

h

ww
f 21

1
, 

where 

12 wcf
r

+= , 

[ ]
[ ]

12

2

1
*

21211222121*

2

2
1

2
1

2
1

2
1

2
1

2
1

2
1

bbh

DhfbfhbfbfbaaU
A

−

++−+−−+
=

+

++

, 

).
4

1
2

1
2

1

4
1

2
1

2
1(

4
1

4
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

4
1

4
1

2
1

2
1

2
1

2
1

2
1

4
1

4
1

2

1

22

221

2

212212

2

12

2

1212112111

22

1

2

2

22

1

2

1212121

2

1

2

221

22

121

21

2

2112121122111

2

2

2

2

2

2

2

11211222212221

211222121

2

2

2

121

2*

2

fhbffhbfahbUfhb

fbhbffbhbfahbUfhbhfb

hfbhffbbhffbfbbhfbb

hffbhfbahfbahfbahfba

fbfbUfhbUfhbfbafbafba

fbaUfbUfbaaaaUaUaUD

++++

+++++

++++

+++++

++

++−+

+−−+−−+

++−+−−

−+++−−

−+++−−+

+−+−−++−+=

 

The optimal solution derived in Theorem 4.1 is illustrated in Figure 4.6. 
According to this solution, it is beneficial for the retailer to change pricing 
and processing policies in response to a reduced wholesale price and incre-
ased customer price sensitivity during the promotion. 

The change is characterized by instantaneous jumps upward in quantities 
ordered and downward in retailer prices at the point the promotion starts 
and vice versa at the point the promotion ends. Inventory surplus at the end 
of the promotion indicates that the retailer ordered more goods during the 
promotional period than he is able to sell (forward buying). Moreover, the  
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retailer starts to lower prices even before the promotion starts. This strategy 
makes it possible to build greater demands by the beginning of the promo-
tion period and to take advantage of the reduced wholesale price during the 
promotion. This is accomplished gradually so that a trade-off between the 
inventory backlog (surplus) cost and the wholesale price is sustained over 
time. Figure 4.6 shows that any reduction in wholesale price results first in 
backlogs and then surplus inventories. This is in contrast to a steady-state 
with no inventories being held.  

 
   
 
 
 

  
 
   

 

  
 
   

                            

 

 

  
   

 
 
 
 
 
 

 

 

 
Figure 4.6. Optimal retailer policies under promotion (the case of symmetric 
costs, h+=h-). 

There are two immediate conclusions emanating from Theorem 4.1. One 
is that the retailer’s total order quantity increases with the decrease of the 
wholesale price as formulated in the following corollary. 
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Corollary 4.1. If a(t)-b(t)(cr+w(t)) ≥ 0, the lower the promotional 

wholesale price, w2, the greater the total order ∫ ∫=
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lower the overall product pricing ∫
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The other conclusion for transient conditions is drawn by comparing the 

maximum demand 
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=  and minimum price 
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=  under non-cooperative solution with the corresponding 
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==  and price 
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p cr

++
=  under a 

centralized solution. The conclusion is straightforward and agrees with our 
previous results obtained for vertical competition in static conditions, as 
stated in the following proposition. 

inventory game with endogenous demand, if the supplier makes a profit, 

w>cs, then the retail price increases and the demand, along with the 

processing rate, decreases compared to the system-wide optimal price 

demand and processing rate respectively.    
As a result, neither the promotion prices nor the demand will be respect-

tively that low or high as they should be in respect to the system-wide 
optimal setting. Furthermore, recalling that the myopic price at transient-

state is 
2

222

2

)(
)(

b

wcba
tp r

++
= , we observe that this price is closer to the 

system-wide optimal price 
2

22

2
2

)(

b

ccba
p cr

++
=  and even switches on and 

off at the same time. This implies that under some conditions the myopic 
attitude may coordinate the supply chain.  

Another observation is that the myopic price is determined by the same 

equation 
b

wcba
tp r

2

)(
)(

++
=  in both steady- and transient-state (only values 

of a and b change). Comparing this equation with the pricing policy 
determined by Theorem 4.1, we find the following property: 

Corollary 4.2. In the transient–state vertical competition of the differential 
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The myopic retail price does not exceed the corresponding price in the 

transient-state from t=ts to t=tf of vertical competition of the differential 

inventory game with endogenous demand. 
This result is not typical since until now we have only observed over-

pricing from a myopic approach. Overpricing does happen with a myopic 
approach but only at short time intervals t1<t<ts and tf<t<t4. On the other 
hand, at intervals ts<t<t2 and t3<t<tf, the myopic price is strictly below the 
dynamic retail price. 

Transient-state equilibrium 

Theorem 4.1 identifies the best retailer’s strategy in the presence of a transient-
state during a promotion period. To define the corresponding supplier’s 
strategy over interval [0,T], we substitute the retailer’s best response into 
objective function (4.65): 
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Applying the first-order optimality conditions to this static function with 
respect to w2 and denoting the result by F(w2), we obtain: 

F(w2)= 

[ ] [ ] [ ] 0))(*(*))(()()(*
222 232322411 =′−−+′−−+−+′−−

wswssfws
ttcwdttcwUttUttcwd (4.92) 

To show the uniqueness of the equilibrium for a transient-state, we need 
the property stated in the following proposition. 
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of (4.83)-(4.84). If 21 RttR sf ≤−≤ , then equation (4.92) has only one root 
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Proof: First note that function (4.92) has a negative highest order (the 
third-order) term. Therefore, to prove that equation F(w2)=0 has only one 

root w2=Į in the range of 1wc
s

<< α , it is sufficient to show that F(cs)>0 

and F(w1)<0 (see Figure 4.7.) 

 
 

Figure 4.7. Analysis of the first-order optimality condition of the Stackelberg 
wholesale price 

The fact that F(cs)>0 is observed from (4.92) by substituting w2 with cs. 
This reduces (4.92) to  

F(cs)= [ ] )*(*)()()(* 2323411 2
ttdttUttUttcwd

sfws
−+−−−+′−− , 

which is positive if [ ] 0
214 >′+−

w
tt . 
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which is always positive as 2aU ≥ and )(
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which is always positive as well. Thus, we conclude F(cs)>0. 
Similarly, from (4.92), we find 
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where 
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in this proposition. Finally, recalling that according to Theorem 4.1, 3 tt ≥  ,
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Thus, α  is the wholesale equilibrium price in transient conditions. The 

following proposition summarizes our results for both steady- and transient-
state conditions. 

2



Proposition 4.16. If a1-b1(cr+cs) ≥ 0, a2-b2(cr+α ) ≥ 0, 21 RttR
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≤−≤ , 

then the supplier’s wholesale pricing policy 
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processing u(t) and pricing p(t) policies, determined by Theorem 4.1, con-

stitute the unique Stackelberg equilibrium for ],0[ Tt ∈ . 

Proof: The proof is immediate. According to Proposition 4.15, F(w2)=0 

has only one root in the feasible range of 1wc
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<< α , therefore the optimal 

wholesale price it defines is unique. Furthermore, according to Theorem 

4.1, p(t) and u(t) are unique and feasible if 23 tt ≥  and a(t)-b(t)(cr+w(t)) ≥ 0 

hold. Substituting into the latter the corresponding values for b(t) and w(t), 
we obtain the conditions stated in this proposition.    

The existence of equilibrium wholesale price ws(t)=w2
s=Į stated in the 

previous proposition readily leads to the following corollary. 

Corollary 4.3. Let a1-b1(cr+cs) ≥ 0, a2-b2(cr+α ) ≥ 0, and 21 RttR
sf

≤−≤ . 

If the customer sensitivity increases during the promotion period, b2>b1, 

then the wholesale price decreases 12 ww < .   

From Corollaries 4.1 and 4.3, it immediately follows that during higher 
demand, the retail price falls (Corollary 4.1) when customer sensitivity 
increases (Corollary 4.3). Moreover, the retailer starts to lower prices even 
before the promotion starts (Theorem 4.1). This phenomenon has been 
widely observed in empirical studies of retail prices during and close to 
holidays (see, for example, Chevalier et. al. 2003; Bils, 1989 and Warner 
and Barsky, 1995).  

Note, that one can view the optimal solution during the promotion condi-
tions of Theorem 4.1 and Proposition 4.16 as a feedback policy. Indeed, 
the processing and pricing policies are such that inventory levels are kept 
at zero when the supply chain is in a new steady-state during the promo-

tion, i.e., for 32 ttt <≤ . On the other hand, the remaining promotion time 

is characterized by a feedback, )),((0 ttXπ , where the upper index, 0, 
stands for the critical number X=0 (threshold) on which the feedback 
depends . This is summarized as: 

⎪
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≥<

<≤≤

==
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As shown in Theorem 4.1, as well as in Corollaries 4.1-4.3, the optimal 
Stackelberg solution implies that if customer sensitivity increases during a 
promotional period, then both the retailer and the supplier increase their 
profits compared to a solution which disregards the change in customer 
sensitivity. This, however, does not necessarily mean that profits during 
the promotion will exceed those gained during regular operation at a 
steady-state. This is to say, on special occasions like Christmas, customer 
sensitivity may increase without any promotional initiative and the decen-
tralized chain will have no other option than to respond. On the other hand, 
if a promotional initiative expected to impact customer sensitivity is assessed 
as not beneficial in regard to regular profits, then it can be abandoned in 
time. The necessary and sufficient condition with respect to the profita-

bility of a limited-time, 21 RttR
sf

≤−≤ , promotion initiated by the leader 

is straightforwardly obtained from equation (4.91). 

If =)( 21 bθ  

)(*)()*(*)()()( 141232322 ttdcwttdcwttttUcw
ssfss

−−−−−+−+−− >0, 

then the supplier (the leader) will gain an extra profit from the promotion 
compared to the regular (steady-state) profits under d* for the same period 

of time. Similarly, from (4.67) one can define a gap function, )( 22 bθ , so that 

the retailer would have an extra profit if )( 22 bθ >0. Since these conditions 

involve extremely large expressions of the switching time points, we illus-

trate the evolution of profit gaps )( 21 bθ  and )( 22 bθ  quantitatively for dif-

ferent customer sensitivities and fixed promotion times in the following 
example. The interpretation is immediate – when both gaps are positive, 
the promotion is beneficial for both the leader and the follower. 

Example 4.3.  

We calculate wholesale equilibrium price as determined by Proposition 4.16 

for U=10000, 25001 =a , 60002 =a  product units per time unit; 101 =b  

product units per dollar and time unit; 100=
s

t , 300=
f

t  and T=1000 time 

units. The results are presented in Table 4.1. 
From Table 4.1, we see that there is a bounded interval to the customer 

sensitivity values b2 for which an equilibrium exists. The existence of the 



equilibrium starts from b2>24 which ensures our general assumption of an 

increase in demand elasticity, 
2

2

1

1

b

a

b

a
> , and terminates at b2>52 when the 

condition, a2-b2(cr+w2) ≥ 0, of Theorem 4.1 no longer holds. More impor-
tantly, the range of values is such that the promotion gains extra profits for 

both the supplier and retailer (i.e., gaps )( 21 bθ and )( 22 bθ  are both positive) 

from b2=28 to b2=32. This result is due to a non-linear relationship between 
the demand potential, a2, which remains the same and sensitivity, b2, which 
increases. The profitability range could be extended if, for example, a 
linear relationship, a(t)=g+b(t)P, were used in the example. Under such 
conditions, a2 would always increase with b2. 

Coordination 

So far, in our examples of supply chain games with endogenous demands, 
we assumed that only demand potential a(t) may change with time. In this 
section we consider a differential inventory game where both customer 
demand potential a(t) and customer sensitivity b(t) change over time. As 
with other games that capture vertical competition in supply chains, we 
found that the prices increase and order quantities decrease compared to 
the corresponding system-wide optimal solutions. This deterioration in the 
performance is true regardless whether the supply chain is in a steady- or 
transient-state.  

Customer-related dynamics, however, contribute some distinctive features 
to the supply chain performance. For example, although the equilibrium 
wholesale price changes instantaneously, the retail prices evolve in a more 
complex manner which includes both gradual and step-wise amendments 
which start even before the wholesale price drops and sometime after the 
wholesale promotion ends. Such a behavior is due to the fact that the retailer 
has additional instruments for a trade-off (compared to the corresponding 
static models) which are inventory-holding and backlogging over time. For 
example, by forward buying and storing some inventories during the whole-
sale promotion, the retailer may profit more compared to that under a 
system-wide solution. The system-wide optimal solution does not account 
for wholesale prices, viewing them as internal transfers thereby ignoring 
individual profits of each party. Due to inventory dynamics, the traditional 
two-part tariff is not as efficient as it is in static supply games. This occurs 
because the supplier when setting the wholesale price w2, ignores not only 

X
r
& . ling inventories, ψ

the retailer’s profit margin from sales, but also the profit margin from hand-
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Indeed, it is easy to observe from Theorem 4.1 (as well as Figure 4.6) 
that even if the supplier sets the wholesale price at the minimum level, w2=cs, 
(to earn profits during the promotion only from fixed contract costs), then 
the retail price and customer demand attain system-wide optimal levels only 
after an interval of time and will not remain at that level until the end of the 
promotion. Thus, though the two-part tariff during the promotion coordinates 
the supply chain, this policy is insufficient for perfect coordination.  

Table 4.1. Wholesale prices and profit gaps between transient and steady state 
6

 

 h
+=1, h-=2,  

cr=30, cs=60 
h

+=1, h-=10,  
 cr=30, cs=60 

h
+=1, h-=2,  

cr=60, cs=30 
b2=12 to 24 

ș1(b2) (ș 2(b2) ) - - - 

w2* no equilibrium no equilibrium no equilibrium 

b2= 28 

ș1(b2) (ș 2(b2) ) 4.2342 (1.8058) 4.2540 (1.8669) 4.2342 (1.8058) 

w2* 125.6560 125.2240 95.6560 

b2= 32 

ș1(b2) (ș 2(b2) ) 0.6568 (0.5914) 0.7292 (0.5289) 0.6568 (0.5914) 

w2* 114.0560 113.2240 84.0560 

b2= 36 

ș1(b2) (ș 2(b2) ) -2.0835 (0.037) -1.9369 (-0.3428) -2.0835 (0.0371) 

w2* 104.5200 103.3680 74.5200 

b2= 40 

ș1(b2) (ș 2(b2) ) -4.198 (-0.0935) -3.9647 (-1.1398) -4.198 (-0.0935) 

w2* 96.5756 95.1680 66.5756 

b2= 44 

ș1(b2) (ș 2(b2) ) -5.835 (-0.0398) -5.5084 (-2.1196) -5.835 (-0.0398) 

w2* 89.8640 88.2800 58.8640 

 
Interestingly, myopic centralized pricing is identical to the system-wide 

optimal solution during a steady-state. During the transient-time, despite 
vertical competition, myopic pricing is below the dynamic equilibrium pricing  
 

(10 $ ) 

As Theorem 4.1 demonstrates, the greater the shadow price rate of change, 
the faster the retail price (and therefore the demand) will attain the system-
wide optimal level. This is not surprising since the rate of change of the co-
state variable is the marginal profit from reducing inventories which the 
inventory holding/backlog costs determine. Consequently, the greater the 
holding and backlog costs, the less the retailer utilizes the inventory surplus/ 
shortage and the more coordinated the supply chain becomes. 



and above the system-wide optimal pricing. Moreover, the myopic price is 
even characterized by stepwise timing identical to the centralized solution. 
Thus, the myopic retailer’s attitude may coordinate the supply chain. This, 
however, requires more precise analysis in each particular case to assess 
whether the overall profit of the supply chain improves or not.  

Finally, a promising coordinating option for the supplier is to set a per-
manent wholesale price w=cs, rather than a price for just a limited-time period 
when customer sensitivity changes. He then charges the retailer a fixed-cost 
per time unit. With such a two-part tariff, the retailer’s problem becomes 
identical to the centralized problem and the supply chain is perfectly coordi-

poral inventory game, the supplier is giving up his profit from sales over 
an indefinite period of time and relying completely on fixed transfers of his 
share, which is equivalent to long-term cooperation between the supplier and 
retailer rather than competition.  

Cycles and seasonal patterns in demand are frequently found in production 
and service operations. For example, housing starts and, thus, construction-
related products tend to follow cycles. Automobile sales also tend to follow 
cycles (see, for example, Russell and Taylor 2000). In this section we study 
the effect of cyclic demands on supply chain operations. 

Consider a production game in a two-echelon supply chain consisting of 
a single supplier (manufacturer) delivering a product type to a single retailer 
over a period of time, T. Similar to the game discussed in the previous 
section, the production horizon is infinite and there are periodic seasonal 
(instantaneous) changes in demand. Since the time between the seasons is 
sufficiently long, there is enough time for the supply chain to revert to the 
state it was in before the season began. 

There are two major distinctive features of this supply chain game com-
pared to that of the previous section. First, we consider exogenous customer 
demand that implies that the quantities produced and sold by this supply 
chain cannot affect the price level of the product. This simplifies the problem 
since price is no longer a decision variable. Moreover, we assume that the 
wholesale price is fixed and thus this decision variable is also excluded.  

The second distinctive feature is linked to production capacity. In contrast 
to the inventory game with endogenous demand, the finite capacity of both  
 

nated. However, with a rolling horizon contract, as assumed in this intertem-

WITH EXOGENOUS DEMAND 
4.3.2 THE DIFFERENTIAL INVENTORY GAME 
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the supplier and retailer implies that they produce, deliver and process at a 
rate not exceeding some predetermined maximum number of products per 
time unit. This complicates the problem by introducing multiple switching 
points which are induced by competing inventory decisions and capacity 
limitations. This is to say, as we look at differential inventory games with 
exogenous demand, we will be focusing on the sole effect of inventory 
dynamics on production decisions and associated costs.  

We assume that both the supplier and the retailer have warehouses of 
infinite capacity for holding end-products. If, at a time point t, the cumu-
lative number of products processed by the retailer exceeds the cumulative 
demand for the products, an inventory holding cost is incurred at t, hr

+, per 
product and time unit. Otherwise, a backlog cost is incurred, hr

-. The latter 
stipulation implies that all deficient products from the retailer’s side will 
be backlogged and delivered to the customers when the retailer catches up 
with processing. This was also the case with the inventory game of the 
previous section. Similarly, if cumulative production by the supplier exceeds 
cumulative processing by the retailer, an inventory holding cost is incurred 

s
+. Otherwise there is a shortage cost paid, hs

-. Any 
shortage of products at the supplier’s side is immediately replenished by 
delivering products to the retailer from a safety stock. The safety stock will 
be restored as the supplier catches up with production, i.e., as soon as 
possible. We assume that the cost associated with the risk of depleting the 
safety stock is higher than that of holding the safety stock. Therefore, the 
adopted safety stock level, Qs, is sufficiently high to cope with seasonal 
fluctuations in the retailer’s orders.  

The retailer’s backlog cost is traditionally related to loss of customer 
goodwill. On the other hand, the supplier’s shortage cost is related to the 
risk of depleting the safety stock. Indeed, if the cost, R, of risk associated 
with one product lacking in the safety stock for one time unit is greater 
than that of holding one unit in the safety stock for one time unit, hS, then a 
shortage at time t, Xs

-, in the safety stock Qs, Qs> Xs
-, induces the following 

cost at t for one time unit 

hS(Qs -Xs
-) + RXs

- = hSQs + (R-hs)Xs
- . 

Defining the difference between the risk and the holding costs, R-hS, as 
the supplier’s unit backlog or shortage cost hs

-=R-hS , we observe that due 
to the linearity of our model, the safety stock cost hSQs is a constant that 
does not affect the optimization.  

Since the demand is periodic (seasonal), the objective of each party (the 
supplier and the retailer) is to find a cyclic production/processing rate, 
which minimizes all inventory-related costs over an infinite planning horizon.  

by the supplier ,  h



The retailer’s problem 

∫=
f

s

rr

t

t

rr
u

srr
u

dttXhuuJ ))((min),(min   (4.93)  

s.t. 

)()()( tdtutX
rr

−=& ;   (4.94) 

rr
Utu ≤≤ )(0 ,   (4.95) 

where Xr(t), Xs(t) are the inventory levels of the retailer and supplier at 
time t respectively; ur(t), us(t) are the retailer’s and supplier’s processing/ 
production rates respectively; and Ur, Us are the maximal production rates 
of the retailer and supplier respectively. The only term in (4.93) accounts 
for the retailer’s inventory costs: 

hr(Xr(t))=hr
+Xr

+(t)+hr
-Xr

-(t), }0),(max{)( tXtX =+ , }0),(max{)( tXtX −=− . 

We assume that the customer demand rate for products, d t( ) , is periodic 

and step-wise: 

,)( 2 r
Udtd >=  ,..2,1,21 =+≤<+ jjTttjTt dd . 

,)( 1 s
Udtd <=  ,..2,1,)1( 12 =+≤<−+ jjTttTjt dd . 

Assume the system has reached the steady-state on an infinite planning 
horizon with its limit cycles T so that: 

rfrsr
XtXtX == )()( and ,)()(

sfsss
XtXtX ==  (4.96) 

where t s  and t f  are the time points where a limit cycle starts and ends 

and T = t f - t s .  

The supplier’s problem 

∫=
f

s

ss

t

t

ss
u

rss
u

dttXhuuJ ))((min),(min    (4.97)  

s.t. 

)()()( tututX
rss

−=& ;   (4.98)  

ss
Utu ≤≤ )(0 ,     (4.99) 

where  
hs(Xs(t))=hs

+
Xs

+(t)+hs
-
Xs

-(t) 

is the supplier’s inventory cost. It can be readily seen that both the supplier’s 
and the retailer’s problems are quite symmetric. The only difference seems 
to be between the dynamics of (4.98) and (4.94), where customer demand 
d in (4.94) is replaced with the retailer’s processing rate ur in (4.98). These 
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dynamics, however, are symmetric as well because we assume that the 
processing rate of the retailer ur is the retailer’s demand (dr) ordered from 
the supplier. Thus we could set demand for the supplier dr(t)= ur(t) to make 
the dynamics symmetric. 

The centralized problem 

}))](())(([min{)],(),([min
, ∫ +=+

f

s
s

rs

t

t

rrss
u

rsrrss
uu

dttXhtXhuuJuuJ , (4.100) 

s.t. 
(4.94)-(4.96), (4.98)-(4.99). 

System-wide optimal solution 

To study the centralized problem, we construct the Hamiltonian: 

))()()(())()()(())(())(()( tdtuttututtXhtXhtH
rrrssrrss

−+−+−−= ψψ , (4.101) 

and the system of the co-state differential equations with co-state variables 

)(t
s

ψ and )(t
r

ψ : 

)(

))((
)(

tX

tXh
t

s

ss

s ∂
∂

ψ =&  and 
)(

))((
)(

tX

tXh
t

r

rr

r ∂
∂

ψ =&   (4.102) 

and the boundary constraints: 

sfsss tt ψψψ == )()(  and 
rfrsr tt ψψψ == )()(  . (4.103) 

This leads to 
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ψ&  (4.104) 

Similar to the previous sections, the Hamiltonian is interpreted as the 

instantaneous profit rate. This includes the profit 
ss

X&ψ  and 
rr

X&ψ  from 

the increments in inventory level of the supplier and retailer respectively, 
which are created by processing ur and producing us products. The co-state 
variables ȥr(t) and ȥs(t) are the shadow prices, i.e, the net benefits from 
reducing inventory surplus/shortage by one more unit on the part of the 
retailer and supplier respectively. Each differential equation of (4.104) 
states that the marginal profit of either the suppler or retailer (and thus the 
overall supply chain) from reducing his inventory level at time t, when 
there is a surplus (otherwise from reducing inventory shortage) is equal to 
the corresponding unit holding cost per time unit (or unit shortage cost).  



Applying the maximum principle, we maximize the Hamiltonian at each 
time point with respect to the retailer’s processing rate ur and the supplier’s 
production rate us. This results in the following optimality conditions.  

⎪
⎩

⎪
⎨

⎧

<

∈=

IR).-regime (idle0,(t) if ,0

SR);-regime(singular 0,=)(if ],[0,
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 (4.105) 
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 (4.106) 

From (4.105)-(4.106) one can observe that in production/processing 
regimes PR as well as idling IR, the optimal production/processing rate is 
uniquely determined. The optimal control in the SR regime requires more 
analysis, as shown below. We will use the notations of the form SRr ∈  

and SRs ∈  that say that the retailer (r) and the supplier (s) are in a SR 

regime at a specific time interval. 
The optimal solution determined by conditions (4.105) and (4.106) 

depends on the relationship between the inventory costs. For different 
relationships there will be different optimal sequences of the regimes. We 
present here one possible solution by assuming that the unit inventory 
holding cost of the retailer is greater than the supplier’s, while the backlog 
cost of the retailer is lower than the supplier’s  

−− <
sr

hh , ++ >
sr

hh , +−−+ ≠≠
rsrs

hhhh , . 

We will show that according to this assumption, the optimal solution 
ensures that there will be no backlog at the supplier’s side (and thus no use 
for a safety stock), because the retailer takes into account the supplier’s 
inventories in a centralized supply chain. In addition, we assume that the 
supplier’s capacity is lower than the retailer’s maximum production rate, 

rs
UU < . 

Otherwise, the supplier simply follows the processing rate of the retailer 
and there are no inventory dynamics. In such a case, we only need to find 
the optimal solution for the retailer. Clearly, a cyclic solution to the problem 
exists if the supplier has enough capacity to satisfy the demand over each 
cycle of length T, as the following proposition states. 

Proposition 4.17. There always exists a cyclic solution if and only if 

)( 12

1

12 dd

S

tt
dU

dd
T −

−
−

≥ .   (4.107) 
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Proof: If a cyclic solution exists, then the supplier, who has the smallest 
maximum production rate in the supply chain, should satisfy the demand. 

That is, his maximum production over the entire period, TU
S

,  should exceed 

the demand over the same period: 

( ) )()( 122121

dddd

s
ttdttTdTU −+−−≥ .  (4.108)  

By rearranging the terms in (4.108), inequality (4.107) is immediately 
obtained.  

Next, assume that condition (4.107) is satisfied. We show that there is at 
least one cyclic solution. To simplify the discussion, we further assume 
that 

( ) )()( 122121

dddd

s
ttdttTdTU −+−−= . 

We then let 
srs

Ututu == )()( , fs ttt ≤≤ . So for the retailer we have  

=−∫ dttdtu

f

s

t

t

r ))()(( 0)}()({ 121122 =+−+−− dddd

s
ttTdttdTU . 

Since the firms have the same production rate, they will have the same 
cumulative production and inventory will remain the same at the beginning 
of a cycle for both the supplier and retailer. Thus, we constructed a cyclic 
solution. The above argument would still be valid even if (4.108) were a 
strict inequality and we would be simply producing only for a part of the 
cycle.    

We next study the singular regimes. 

Proposition 4.18. If SRr ∈  in a time interval ],0[ T⊂τ , then 0=)(tX
r

 

and/or 0=)(tX
s

. If SRs ∈  in a time interval ],0[ T⊂τ , then 

0=)(tX
s

, τ∈t . 

In case in a time interval ],0[ T⊂τ , 0=)(tX
s
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0=)(tX
r
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=  for τ∈t . 

Proof: By definition, in SR, )()( tt
sr

ψψ = , τ∈t  if SRr ∈  and 0)( =t
s

ψ  if 

SRs ∈ . Differentiating these equalities we have:  

)()( tt
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ψψ && = ,    (4.109) 

0)( =t
s

ψ& .    (4.110)  

According to (4.104), the equalities (4.109) and (4.110) can be satisfied if 

and only if 0=)(tX
r

 and/or 0=)(tX
s

 for SRr ∈  and if 0=)(tX
s

 

for SRs ∈ .  

Finally, from the dynamic equations (4.98) and (4.94) we observe: 

in case 0=)(tX
s

, then ),()( tutu rs =  if 0=)(tX
r

, then )()( tdtu
r

= .   



To describe the results, we further partition the SR regime into SR1 if 

du
r

=* , and SR2 otherwise.  

We now use a constructive approach to solve the centralized problem. 
That is, we first propose a solution, and then we show this solution is indeed 
optimal. The optimal policy we are proposing is the following: 

• Retailer: Use the SR1-PR-SR2-SR1 (producing/processing at the 
demand rate (SR1) first, then at the maximal rate (PR), then at the 
rate of the supplier (SR2), and finally again at the demand rate (SR1)) 

processing sequence with switching times ,,, 221

srr ttt  srr ttt 221 ≤≤ . 

• Supplier: Use the SR1-PR-SR1 sequence with switching times 
ss tt 21 , , sr tt 11 ≥ .  

This policy, illustrated in Figure 4.8, is more rigorously defined in the 
following proposition. 

Proposition 4.19. The control policy: 
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provides the system-wide optimal solution. 

Proof: Consider ],[ 1

s

s
ttt ∈ . According to (i) of Proposition 4.19, 

1)()( dtutu
sr

== , 0)()( == tXtX
sr

, 0)()( == tt
sr

ψψ . Therefore (4.94)-

(4.95), (4.98)-(4.99), and (4.104)-(4.106) are satisfied and (4.100) is 
maximized.  

Now consider ],[ 11

rs ttt ∈ . In this interval 1)( dtu
r

= , 
ss

Utu =)( , 0)( >tX
s

, 
+==
ssr

htt )()( ψψ && , 0)( =tX
r

. Again it is easy to check that co-state equa-

tions (104) are satisfied and that (4.100) is maximized. If ],[ 31

rr ttt ∈ , then, 

recalling our assumptions on the relationships between inventory costs, we 
find, 

thttthtt
s

r

ssr

r

r

++ +=>+= )()()()( 11 ψψψψ , for rr ttt 31 ≤< , 

that is, the optimality conditions (4.106) are satisfied.  
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The proof of the proposition for the remaining time intervals is similar 
and therefore omitted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.8. System-wide optimal production, processing and inventory policies 

Drawing upon Proposition 4.19 we can detail the system-wide optimal 
solution by finding the switching time points. To proceed, we first integrate 
the retailer’s differential equation with boundary conditions (4.96) to obtain: 
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Similarly for the supplier we find: 
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The following equation for rt3 , at which the inventory of the retailer 

reaches zero level, is derived from equation (4.111): 
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By integrating the co-state differential equations, we find for the retailer 
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r
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and for the supplier: 
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Solving system (4.111)-(4.115) we find: 
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(4.119) 
An interesting observation follows from these results and Proposition 

4.19. In the centralized supply chain the retailer processes products at maxi-
mum rate when he has an inventory surplus; when there is a shortage, the 
retailer reduces the processing rate to that equal to the maximum production 
rate of the supplier (see regime SR2 in Figure 4.8). This allows the supplier 
to catch up and prevents backlogs at the supplier’s facilities. The explanation 
is straightforward; the retailer’s backlog cost is lower than the supplier’s. 
The cooperative retailer evidently takes this into account by reducing his 
orders. On the other hand, since the inventory holding cost of the retailer is 
higher than that of the supplier, in cases of surplus, the retailer does not 
reduce the processing rate. This induces the supplier (who has a smaller 
capacity) to increase his inventories in advance. As we show below in the 
game analysis, the supply chain performance deteriorates because the non-
cooperative retailer ignores the supplier’s backlogs. 
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Similar to the previous section, to obtain a static analogue of the centra-
lized inventory problem, we eliminate inventory dynamics. This is accom-
plished by replacing Xr(t) with ur(t)-d(t) and Xs(t) with us(t)- ur(t) in the 
objective function. The myopic solution for the low demand d1 is trivial – 
produce and process products at the rate of d1. We thus have a simple 
problem with piece-wise linear objective function for high demand d2 and 
three possible solutions to check out,  

ur= Ur and us= Us, then J(us, ur)= )()( 2

−−−− −−−−−−
srssrrr

XUUhXdUh ; 

ur= Us and us= Us, then J(us, ur)= )( 2

−− −−−
rsr

XdUh ; 

ur= 0 and us= 0, then J(us, ur)=
−−− −
rrr

Xhdh 2 , 

while the other possible combinations are obviously not optimal. Since 

d2>Us and −− <
sr

hh , we readily find that the minimum cost is J(us, ur)= 

)( 2

−− −−−
rsr

XdUh , that is, 

when demand is high, the myopic retailer’s order rate is lower than the 

system-wide optimal retailer’s processing rate. Both the retailer and the 

supplier have no inventory surplus, i.e., inventories decrease and thus the 

retailer’s backlog increases. The supplier has no backlog.  

Accordingly, the myopic centralized supply chain does not employ possi-
bility of inventory accumulation, which naturally increases backlogs when 
demand is high. Since the supplier’s backlog cost is higher, the retailer takes 
all backlogs on himself by reducing his processing rate. 

The multi-echelon effect 

Based on the optimal policies proven in Proposition 4.19 for a two-echelon 
centralized supply chain, we can outline the solution for a multi-echelon 
supply chain.  

To facilitate the presentation, we now reformulate the centralized problem 
and present the notion of the restricting firm or agent. Let a multi-echelon 
supply chain contain I firms. Then the inventory dynamics of all firms can 
be described by the following differential equations: 

.),()()(

;1,,..,2,1),()()( 1

IitdtutX

IitututX

ii

iii

=−=

−=−= +

&

&

  (4.120) 

where )(tX i  is the inventory level accumulated by firm i at time t and 

)(tu
i

, i=1,2,...,I is the production rate for firm i, 

ii
Utu ≤≤ )(0 ,    (4.121) 



with 
i

U  being the maximal production (processing, distribution and so on) 

rate of firm i. We assume that firm i=I is the retailer, while firms i=1,..,I-1 
are consecutive suppliers and/or distributors.  

The steady-state conditions on limit cycles T are: 

,,,1,)()( IiXtXtX fisi K===   (4.122) 

The objective is to minimize the total inventory-related cost: 
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t
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i
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dttXh min))((
1

   (4.123) 

Then the Hamiltonian for this problem is: 
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IIii
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<
∑ ψψ ,   (4.124) 

and the system of the co-state differential equations with co-state variables 

ψ i t( ) : 

⎪
⎩

⎪
⎨

⎧

=−∈
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=
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−
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0)( if ],,[
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iψ& , i=1,..,I  (4.125) 

with the boundary constraints: 

ifisi tt ψψψ == )()( .   (4.126) 

We employ the same assumptions 
−−

+ <
ii

hh 1 , ++
+ >

ii
hh 1 , +

+
−−

+
+ ≠≠ 11 ,

iiii
hhhh  i I= −1 2 1, ,..,  

and the following definition.  

Definition 4.1 

Firm ′i  is restricting if either Ii =′ , or 
ii

UU <′  for all Iiii ≠′′> , .  

With respect to this definition, Figure 4.9 shows the system-wide 
optimal solution for a four-echelon supply chain which contains only two 
restricting firms. Note, that since non-restricting firms simply follow the 
production plan of the adjacent downstream restricting firms, we only need 
to find the optimal solution for the restricting firms.  

Based on the optimal policies of Proposition 4.19 for two restricting 
firms, it is now easy to conjecture the optimal behavior for the system with 
an unlimited number of restricting firms. Figure 4.10 illustrates a case 
involving three restricting firms, which satisfies all conditions of the 
maximum principle. There are two changes compared to the case with two 
restricting firms. The first is that there is a time lag when switching from 

the SR1 to the PR (early switching) for every restricting firm ′i  relative to 
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Figure 4.9. System-wide optimal solution of four-echelon supply chain with two 

restricting firms, 
++++ <<< 4321 hhhh  and 

−−−− >>> 4321 hhhh   
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Figure 4.10. System-wide optimal solution of three-echelon supply chain with 

three restricting firms, 
+++ << 321 hhh  and 

−−− >> 321 hhh  
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The other change is that the SR2 for every restricting firm, ′i ,  is split 

into a number of steps. The control value of every step is equal to the 
maximal production rate of the corresponding upstream restricting firm 
which prevents these firms from experiencing higher backlog costs. 

Game analysis 

Since we have assumed from the very beginning that the supplier always 
provides timely deliveries by means of available inventories and, if neces-
sary, from the safety stock, the retailer’s decisions are independent of those 
made by the supplier. Thus the parties have asymmetric power and the 
game between them is as follows.  

The retailer first analyzes the demand and determines his processing rate 
or equivalently the quantities per time unit to order. Next, the supplier ana-
lyzes the retailer’s orders during the production cycle and determines his 
production plan to ensure timely deliveries. The supplier then produces and 
delivers the products which the retailer processes and sells. In this sequence 
of decisions, the retailer is the Stackelberg leader and the supplier is the 
follower. We address first the supplier’s best response.  

To optimize the supplier’s production plan, we construct the 
Hamiltonian: 

))()()(())()()(())(()( tdtuttututtXhtH
r

s

rrs

s

ssss
−+−+−= ψψ ,  (4.127) 
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with the boundary constraints: 
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Note that since the constant 
s

r
ψ  does not affect the optimization it can 

be set at zero. This implies that the Hamiltonian’s instantaneous profit rate 

includes only the profit 
s

s

s
X&ψ  from the increment in the supplier’s invent-

tory level.  
Maximizing the Hamiltonian at each time point with respect to the sup-

plier’s production rate us we obtain the condition similar to (4.105):  
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Analogous to Proposition 4.18, the singular regime condition is resolved 

by differentiating 0=)(
s

t
s

ψ , which readily results in 0=)(tX
s

, and there-

fore, )()( tutu
rs

= .  

Assuming that the retailer’s order ur(t) is characterized by a constant 
maximum rate at an interval of time [ts1,ts2), we now construct an optimal 
production policy as the SR1-PR-SR1 sequence with switching points t1, t2 
and show that it is optimal.  

Proposition 4.20. Let ur(t)=d1 for ts≤t<ts1 and ts2≤t≤tf , ur(t)=Ur for ts1≤t< 

ts2. The supplier’s production policy: 
1)( dtus =  for ts≤t<t1 and t2≤t≤tf , 

us(t)=Us for t1≤t< t2, where 
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is optimal 

Proof: Consider the following solution for the state and co-state variable: 

(i) 1)( dtu
s

= , 0)( =tX
s

, 0)( =t
s

s
ψ , for ts≤t<t1 and t2≤t≤tf ; 

(ii) 
ss

Utu =)( , for t1≤t<t2, Xs>0 and +=
s

s

s
ht)(ψ&  for t1<t<t', Xs<0 and 

−−=
r

s

s
ht)(ψ&  for t'<t<t2. 

This solution evidently meets the optimality conditions (4.130). To find the 
switching points, we first integrate the co-state equation from (ii) with 
initial and terminal conditions from (i). This results in 

0)'()'( 21 =−−− −+ tthtth
ss

.  (4.131) 

Similarly, by integrating state equation (4.98) with controls defined by 
(ii) and initial as well terminal conditions from (i) we have 

0))(())(( 1222111 =−−+−+−−
ssrssss

ttUUttttdU . (4.132) 

0)')(())(( 1111 =−−+−−
srsss

ttUUttdU .  (4.133) 

Equations (4.131)-(4.133) constitute a system of three equations in three 
unknowns t1, t' and t2, whose solution is feasible, t2>t'>t1 and is as stated in 
this proposition.   
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Next, to optimize the retailer’s processing plan, we construct the Hamil-
tonian: 
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and the system of the co-state differential equations 
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with the boundary constraints: 
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Note that since the constant 
r

s
ψ  can be set at zero, the optimization is 

not affected. This implies that, the Hamiltonian’s instantaneous profit rate 

includes only the profit 
r

r

r
X&ψ  from the increment in the retailer’s invent-

tory level.  
Applying the maximum principle, we obtain the familiar condition: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

∈=

IR),-regime (idle0,(t) if ,0

SR);-regime(singular 0,=)(if ],[0,

PR);-regime (working0,>(t) if ,

)(

r

r

r

rr

r

rr

r tUu

U

tu

ψ

ψ

ψ

   (4.136) 

where the singular regime condition is resolved by differentiating 0=)(t
r

r
ψ , 

which readily results in 0=)(tX
r

, and therefore, )()( tdtu
r

= .  

The retailer’s best solution depends only on the demand function. It can 
easily be seen that the following proposition is very similar to Proposition 
4.20 and can be derived by simply replacing the corresponding variables. 

Proposition 4.21. The retailer’s processing policy: 
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r
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is optimal.  
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Equilibrium 

The next result immediately follows from Propositions 4.17, 4.20-4.21 by 
simply setting ts2=t2”and ts1=t1”. 

Proposition 4.22. The supplier’s production rate 
1)( dtu

s

s =  for ts≤t<t1 and 

t2≤t≤tf , us
s(t)=Us for t1≤t< t2, and the retailer’s processing rate 

1)( dtu
s

r =  

for ts≤t<t1” and t2”≤t≤tf, ur
s(t)=Ur for t1”≤t< t2”,where all switching points 

are determined by Propositions 4.20 and 4.21 with ts1=t1” and ts2=t2”, 

constitute the unique Stackelberg equilibrium for the differential inventory 

game.    

Comparing the equilibrium with the system-wide optimal solution of 
Proposition 4.19 and referring to the time intervals [t1, t2) and [t1”, t2”), as 
the periods of response to higher demand (d2) by the supplier and retailer 
respectively, we conclude with the following observation. 

Proposition 4.23. In vertical inventory competition, the retailer reduces 

the response period to higher demand and increases the processing rate to 

the maximum compared to the system-wide optimal solution; the supplier’s 

response period does not change and, in contrast to the system-wide optimal 

solution, the supplier incurs a backlog. 

Proof: The proof is immediately apparent since the retailer’s equilibrium 
solution no longer involves the SR2 compared to the centralized solution. 
That is, the retailer no longer reduces his processing rate during the res-
ponse period to higher demand and does not allow the supplier to catch up 
without backlogging. The supplier’s response period remains unchanged 
since neither the total retailer’s order nor the supplier’s production policy 
(production at maximum rate) changes.  

Figure 4.11 presents the equilibrium solution. Proposition 4.23 implies that 
the supply chain performance deteriorates under the vertical intertemporal 
competition since the retailer, when ordering products, ignores the supplier’s 
inventory level and associated costs. 

Using the same argument as for the system-wide myopic solution, the per-
formance of the supply chain will further deteriorate if a myopic approach 
is employed since neither inventory accumulation nor storage is involved. 
As a result, inventory backlogs increase on both sides. 

Example 4.4.  

Consider a three-echelon supply chain with system parameters presented in 

Table 4.2. The demand rates are 5.11 =d  and 5.42 =d , 0=
s

t , 0.51 =dt , 
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0.82 =dt  and T = 12. Firms indexed by i=1 and i=2 are the suppliers and 

i=3 is the retailer. 

Table 4.2. System parameters 

 

Firm  Unit inventory costs Maximal 
Index   production 

rate 

I +
i

h  −
i

h  i
U  

1 0.4 1.1 3.5 
2 0.5 1.0 2.5 
3 0.7 0.8 3.0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.11. Stackelberg equilibrium production, processing and inventory policies 
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We first identify the restricting firms. According to Definition 4.1, these 
are firms i=3 and i=2 (the retailer, i=3, is referred as r and the nearest up-
stream supplier, i=2 is referred as s). In addition we verify the necessary 
and sufficient condition of the limit cycle (4.107):  

9)58(
5.15.2

5.15.4
)( 12

1

12 =−
−
−

=−
−
− dd

s

tt
dU

dd
. 

Since T=12>9, we conclude that the limit cycle exists (see Proposition 
4.17).  

Next, we employ Proposition 4.21 to find the retailer’s switching points 
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and the retailer’s Stackelberg processing policy 

5.1)( =tu s

r
 for 0≤t<3.4 and 9.4≤t≤12, ur

s(t)=3 for 3.4≤t< 9.4. 

Similarly, by setting ts1=t1” and ts2=t2” with respect to Proposition 4.22 and 
employing Proposition 4.20, we find the supplier’s switching points  
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and the supplier’s equilibrium production policy 

5.1)( =tu
s

s
 for 0≤t<1.4 and 10.4≤t≤12, us

s(t)=Us for 1.4≤t<10.4. 

Next, to determine the system-wide optimal solution, we return to indexes 

i=1,2,3. From equation (4.119) we find 97.02

1 =t . Then by substituting this 

in equations (4.116)-(4.118), we obtain 97.92

2 =t , 85.33

1 =t , and 77.53

2 =t . 

Consequently, according to Proposition 4.19, the system-wide optimal 
production for the retailer (i=3) is the following: 

5.1)(*3 =tu  for 85.30 <≤ t , 3)(*3 =tu  for 77.585.3 <≤ t , 

5.2)(*3 =tu  for 97.977.5 <≤ t , 5.1)(*3 =tu  for 1297.9 <≤ t . 
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The system-wide optimal production for supplier i=2 is defined as: 

5.1)(*2 =tu  for 97.00 <≤ t , 5.2)(*2 =tu  for 97.997.0 <≤ t , 

5.1)(*2 =tu  for 1297.9 <≤ t . 

Finally, the system-wide optimal control for the non-restricting firm, i=1, 
replicates that of supplier i=2: 

5.1)(*1 =tu  for 97.00 <≤ t , 5.2)(*1 =tu  for 97.997.0 <≤ t , 

5.1)(*1 =tu  for 1297.9 <≤ t . 

Comparing the corresponding switching points of the Stackelberg equili-
brium and the system-wide optimal solution, we observe the reduction of the 
equilibrium response period of the retailer with respect to the centralized 
solution from 9.97-3.85=6.12 to 9.4-3.4=6. The supplier’s response period 
remains the same as shown in Proposition 4.23. 

Coordination 

First of all, note that if we assume that the retailer pays for the supplier’s 
inventory-related costs, then the Hamiltonian (4.134) becomes analogous 
to the centralized Hamiltonian (4.101). As a result, the optimality 
condition (4.136) transforms into the condition symmetric to (4.106). This 

implies that when setting )()( tt s

s

r

s
ψψ = , the equilibrium solution satisfies 

all conditions of the maximum principle and is identical to the centralized 
solution.  

Consequently, if the retailer accounts for the supplier’s inventories, the 
Stackelberg equilibrium turns into the system-wide optimal solution, i.e., 
the supply chain becomes perfectly coordinated. That is to say, we have a 
similar effect to that found in the previous inventory game with endoge-
nous demand. The effect in that game arose from ignoring the profit margin 
from handling inventories and was analogous to ignoring the other party’s 
profit margin from sales (double marginalization) or from production cost 
reduction (learning effect). In contrast to the previous inventory game in 
Section 4.3.1, a sort of two-part tariff will perfectly coordinate the supply 
chain. This can be accomplished if the supplier: (i) sets a fixed premium 
(rather than cost) which the retailer can get by the end of each production 
cycle and (ii) requests (variable) payment from the retailer at each time 
point for the inventory costs the supplier incurs. Thus, the retailer will gain 
the fixed premium with the supplier’s inventory costs deducted “just in 
time”. Since a constant premium does not affect the optimization while the 
variable inventory cost does affect it, the retailer will no longer ignore the 
supplier’s inventories and the supply chain performance will not deteriorate. 
Moreover, if the supplier sets the premium equal to his system-wide optimal 



inventory costs over the production cycle, then the retailer covers all system 
costs and still continues to order a system-wide optimal quantity. Thus, as 
with the two- part tariff, the profit (cost) shares of the firms are balanced 
by the proper choice of the fixed premium.  

4.4 INTERTEMPORAL SUBCONTRACTING COMPETITION  

In this section we consider two intertemporal games: production balancing, 
which involves subcontracting, and outsourcing. These games are natural 
extensions of the static stocking and outsourcing games discussed in Chapter 
2. The stocking and outsourcing games are based on the classic newsvendor 
model; similarly, the basis for the extensions is the dynamic newsvendor 
model. However, in contrast to these static games where the retailer’s (manu-
facturer’s) inventories are accounted for only at the beginning of period or 
selling season, inventory dynamics or expected inventories are accounted 

In this section we consider a supply chain consisting of a single manu-
facturer (retailer) and single supplier (subcontractor); a case of multiple 
suppliers in an outsourcing context is considered in the next section. The 
supplier is characterized by ample capacity and thus the inventory dyna-
mics are trivial. On the other hand, since the manufacturer, has a limited 
capacity, his decisions are dependent on available inventories. Moreover, 
the demand for products is random and its realization is known only by the 
end of a selling season. The short selling season and significant leadtime 
make it impossible or difficult to subcontract during this time. Therefore, 
the manufacturer can only place an advance order to the supplier for an 
initial inventory of end-products which is then used to balance production 
along with in-house capacity. 

There are two new features involved in this production balancing problem. 
The first is that the precise inventory level is observed only once per 
period. In the differential inventory games discussed so far, we assumed 
that inventories are continuously reviewed during the production period. 
This, however, is not always possible and many large retailers, especially 
supermarkets, know exact inventory levels only once per certain period at 
time points of full inventory review. Such a policy is referred to in the 
literature as a periodic inventory review. This however does not imply that 
inventory costs are not incurred during this period. In practice, although 

4.4.1  THE PRODUCTION BALANCING GAME 

for at each time point along the season.  

238     4  MODELING IN AN INTERTEMPORAL FRAMEWORK



4.4 INTERTEMPORAL SUBCONTRACTING COMPETITION      239 

inventory levels and losses associated with inventories may not be known 
precisely for a period of time, inventory costs (as well as costs of book-
keeping, material tracking, transportation, space, material transformation, 
labor, depreciation, etc.) are incurred continuously. At the end of the period, 
it is possible to determine exactly how much was spent, when, and why. 
This explains the use of the expected inventory cost as the objective fun-
ction in inventory control models. 

The other feature is related to the available initial inventory, which is 
now a decision variable. Until now, we assumed that the initial inventory 
level was known and that it was possible to have instant deliveries along 
the production or selling period. In the present formulation (as mentioned 
above), we assume that the selling season is short, as is frequently the case 
in the fashion industry, and that it is too late to issue an order during the 
selling season. In-house capacity, however, is sufficient for a limited adjust-
ment to demand fluctuations. Consequently, the initial inventory level is an 
important decision variable which is a part of the production balancing 
game, where the supplier is the Stackelberg leader who sets a wholesale 
price. The manufacturer is the follower who, in response to the wholesale 
price, selects an order quantity to be shipped by the beginning of the 
selling season as well as intertemporal production policy along the selling 
season.  

The described conditions involve two well-known problems: production 
control and newsboy. The inventory game considered in the previous section 
relies on production control and the fact that both demand and inventories 
are known along the production horizon. If, however, the demand is unknown 
until the end of a selling season and production smoothing during the 
selling season has negligible efficiency, then an optimal choice of advance 
inventory orders is referred to as a newsboy or newsvendor model, as dis-
cussed in Chapter 2. In production control models, on the other hand, the 
main focus is on efficient production adjustment during the season. 

The model we employ in this section combines both features: it allows 
for advance ordering or subcontracting of products and continuous-time in-
house production adjustment during the selling season. As in production 
control problems (see, for a review, Maimon et al. 1998), the production 
rate is controllable along the selling season. As in the classical single-
period newsboy problem, the probability distribution of the demand is 
known while exact realization of the determined is revealed only by the 
end of the selling season.  



The supplier’s problem 

The supplier or subcontractor maximizes profits from the advance order 
quantity X(0): 

)0()(max),),0((max XcwwuXJ
s

w
s

w
−= ,  (4.136) 

s.t. 
w ≥ cs,    (4.137) 

where cs is the supplier’s unit production cost and w is the wholesale price. 

The manufacturer’s problem 

The manufacturer produces products of the same type and has a facility for 
storing finished products during the production (selling season) T. The 
production process is described by the following balance equation 

dtatutX )()()( −=& ,   (4.138) 

where )(tX  is the surplus level in the storage by time t; a(t)d is the 

demand rate; and u(t) is the production rate at time t. The dynamic process 
(4.138) is determined by two decision variables, production rate, u(t), 
which is bounded by the maximum capacity of the manufacturer U 

Utu ≤≤ )(0 ,   (4.139) 

and the initial inventory level X(0) being stored. The initial level X(0) is 
due to advance orders contracted out and delivered at unit cost w by the 
beginning of the selling season  

X(0) ≥ 0.                                       (4.140) 

The demand, a(t)d, is a time-dependent parameter representing at time t 
the amount of the product-type required per time unit, where a(t), a(t)>0 
for 0 ≤ t<T, is a known demand shape and d is a random demand ampli-
tude. For a selling season T, there will be a single realization of d, D, 
which is known only by time T. Exact inventories are observed only once 
per period as well. Therefore, a decision has to be made, under these 
uncertain conditions before production starts, based on probability density 

)(Dϕ  and cumulative distribution )(DΦ  functions. We assume )(Dϕ  is 

differentiable. 
Similar to the inventory dynamics considered so far, the difference bet-

ween the cumulative production and the cumulative demand described by 
differential equation (4.138) is the surplus level. If the cumulative demand 
exceeds the cumulative production (shortage), X(t)<0, i.e., the surplus is 
negative, a penalty, h

-, will have to be paid for each backlogged unit. 
Otherwise, an inventory holding cost is incurred for each product unit, h+. 
Furthermore, production costs per product unit, c, are incurred at points t 
when the manufacturer is not idle. Since the current trend in industry is to 
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find the cheapest manufacturer for contracting out advance orders (e. g., in 
the Far East), we assume here, that the in-house production cost is greater 
than the unit cost of advance orders, cs<c. 

The objective is to find such a production rate u(t) and advance order 
X(0) that satisfy constraints (4.138)- (4.140) while minimizing the following 
expected cost over the selling season T: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++= ∫ −−++

T

uX
m

uX
wXdttXhtXhtcuEwuXJ

0
),0(),0(

)0()()()(min),),0((min ,(4.141) 

where 

)}(,0max{)( tXtX =+ , )}(,0max{)( tXtX −=− . 

To facilitate the analysis, let us substitute (4.138) into the objective 
((4.141). Given probability density )(Dϕ  of the demand, denoting 

∫+=
t

duXtY
0

)()0()( ττ ,   (4.142) 

and using conditional expectation, we find: 
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)())()(()())()(( ϕϕ , (4.143) 

where  

A(t)= ∫
t

da
0

)( ττ .                                  (4.144) 

The new objective (4.143) is subject to constraints (4.139)-(4.140) and 
(4.142), which together constitute a deterministic problem equivalent to 
the stochastic problem (4.138)- (4.141).  

The centralized problem 

The centralized formulation is independent of the wholesale price which 
represents an internal transfer in the supply chain. 

=−= )},),0((),),0(({min)),0((min
)0(,)0(,

wuXJwuXJuXJ
sm
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)0()()()(min         (4.145) 

s.t.(4.138)- (4.140). 



Similar to the manufacturer’s problem, the deterministic equivalent of 
problem (4.138) - (4.140) and (4.145) includes the following objective 
function 

)0()( YcTcYJ
sm

+= + 

∫ ∫∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−+
∞

−

∞−

+
T

tA

tY

tA

tY

dtdDDtDAtYhdDDtDAtYh
0

)(

)(

)(

)(

)())()(()())()(( ϕϕ . (4.146) 

and constraints (4.139)- (4.140) and (4.142). 

System-wide optimal solution 

To study the equivalent deterministic centralized problem, we construct the 
Hamiltonian 

−+−= )()()()( tuttcutH ψ

dDDtDAtYhdDDtDAtYh

tA

tY

tA

tY

)())()(()())()((

)(

)(

)(

)(

ϕϕ ∫∫
∞

−

∞−

+ −+− , 

where the co-state variable )(tψ  represents the margin gained by produc-

ing one more product unit at time t. The co-state variable satisfies the 
following co-state equation  

)(

)(
)(

tY

tH
t

∂

∂
−=ψ& , 

that is, 

 )
)(

)(
()()( −−+ −Φ+= h

tA

tY
hhtψ&   (4.147) 

with transversality (boundary) constraint 
0)( =Tψ ,   (4.148) 

and complementary slackness 

 0)0( if ,)0( and 0)0( if ,)0( =≤>= YcYc ss ψψ .      (4.149) 

By rearranging only u(t)-dependent terms of the Hamiltonian, we obtain: 

))()(()( cttutH
u

−= ψ .   (4.150)  

Since this term is linear in u(t), the optimal production rate that maxi-
mizes the Hamiltonian is 
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                            (4.151) 

Thus, under the optimal solution, the manufacturer may be: idle (when 
ct <)(ψ ); working at his maximum production rate ( ct >)(ψ ); or entering 

the singular regime ( ct =)(ψ ) which is characterized by an intermediate 

production rate between 0 and U. The ambiguity of the last condition in 
terms of the production rate is resolved in the following proposition. 
Proposition 4.24. Let there exist b, Utba ≤≤ )(0 , Tt ≤≤0 , such that 

 )(
−+

−

+
=Φ

hh

h
b . If ct =)(ψ  over an interval of time, then u(t)= ba(t) and 

b
tA

tY
=

)(

)(
 along this interval. 

ct =)(ψ  along an interval of time, we differentiate it, 0)( =tψ& , and sub-

stitute (4.147), which results in 
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Next, by choosing b so that  

 )(
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+
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hh

h
b ,                                    (4.152) 

we have along this interval 

b
tA

tY
=

)(

)(
.                                        (4.153) 

Differentiating this condition along the same time interval, we find 

)()( tbatY =&  and with respect to (4.142), u(t)=ba(t), as stated in the pro-

position.   
Note that a relationship between production control and the newsboy pro-

blem discussed in the beginning of this section is sustained with equation 
(4.152), which is the classical newsboy solution discussed in Chapter 2. 
Thus, if inventory (surplus/shortage) costs are viewed as momentary overage 
and underage costs, then an optimal production regime may satisfy the 
classical equation over a part of the selling season. 

If production can be profitable at all, then b>0, as is assumed henceforth. 

Given b, Utba ≤< )(0 , which meets  )(
−+

−

+
=Φ

hh

h
b , then, according to 

Proof: To find the production rate which meets the singular regime condition 



Proposition 4.24, the optimality conditions (4.151) take the following 
form: 
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                              (4.154) 

However, if ba(t)>U, then the singular regime, ct =)(ψ , cannot hold at an 

interval of time and the optimality conditions (4.151) take the following 
form 
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ctU
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ψ
   (4.155) 

Accordingly, the system-wide optimal solution depends on the relationship 
between system parameters. Therefore, in what follows, we determine the 
solution separately for different cases. First, we consider the case when 
production activity is not cost efficient, that is, both advance orders and 
production are not justified. 

Proposition 4.25. If  
T

c
h s≤− , then the system-wide optimal solution is 

given by X*(0)=0 and u*(t)=0 for Tt ≤≤0 . 

Proof: Consider the following solution 

Y(t)=0 and u(t)=0 for Tt ≤≤0 .  (4.156) 

If Y(0)=0 and thus according to (4.142), X(0)=0, then with respect to 

(4.149),  )0( 
s

c≤ψ <c. Since 

b
tA

tY
<= 0

)(

)(
,  )

)(

)(
()()( −−+ −Φ+= h

tA

tY
hhtψ& <0, 

i.e., the optimality condition ct <)(ψ  from (4.154) holds for Tt ≤≤0 . As 

a result, if solution (4.156) is feasible with respect to (4.148), 0)( =Tψ , 

then it is optimal. Taking into account (4.147), equation (4.148) transforms 
into 

)0( ψ +  0])0()[(
0

=−Φ+ −−+∫ dthhh

T

. 

This, with respect to  )0( 
s

c≤ψ and 0)0( =Φ , results in the condition stated 

in the proposition.  
The next proposition treats the case when subcontracting (an advance 

order) is more advantageous than utilizing the manufacturer’s production 
capacity. 
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Proposition 4.26. Let t1 and e satisfy the following system of equations  

b
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tA =)( 1  and cs+  0])

)(
()[(

0

=−Φ+ −−+∫ dth
tA

e
hh

T

. 

If  
T

c
s <  

)
)(

()(

1

1

tT

cdt
tA

e
hh

h

T

t

−

+Φ+

≤
∫ −+

− , then the system-wide optimal advance 

order is X*(0)=e, and the system-wide optimal production rate is u*(t)=0 

for Tt ≤≤0 . 

Proof: Consider the following solution 

X(0)=bA(t1), 0)( 1 =tψ& , Y(t)=X(0) and u(t)=0 for Tt ≤≤0 .   (4.157) 

If X(0)>0, then with respect to (4.149),  )0( 
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Thus, if t1>0 and ct ≤)( 1ψ , then solution (4.157) is feasible and meets the 

optimality condition, ct <)(ψ , from (4.154) for Tt ≤≤0 . Using con-

ditions 0)( =Tψ  and  )0( 
s

c=ψ , we find an equation for X(0): 
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and for )( 1tψ  

=)( 1tψ -  ])
)(

)0(
()[(

1

dth
tA

X
hh

T

t

−−+ −Φ+∫   (4.159) 

If X(0)>0, then 0
)0(

)( 1 >=
b

X
tA  which with respect to (4.158) results in 

 
T

c
h s>− , as stated in the proposition. The other condition stated in the 

proposition is immediately obtained by substituting (4.159) into ct ≤)( 1ψ  

and setting X(0)=e.  

The following two propositions treat two cases when both subcontracting 
and producing with the manufacturer’s own production capacity is beneficial. 
In the first case, a singular regime holds over an interval of time, that is, 



ba(t) ≤ U (See Proposition 4.24) and the optimal solution is determined by 
conditions (4.154). The other case arises when a singular regime cannot 
occur, ba(t)>U, and therefore the optimal solution is determined by 
(4.155). 

Proposition 4.27. Let 0<ba(t) ≤ U for 21 ttt <≤ , t1 and t2 satisfy the 

following equations 
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− , then the system-wide optimal advance order is 

X*(0)=bA(t1) and the optimal production rate is u*(t)=0 for 
10 tt <≤ ; 

u*(t)=ba(t) for 21 ttt <≤  and u*(t)=0 for Ttt ≤≤2 . 

Proof: If condition  
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−  of Proposition 4.26 is not 

met, then there must be two switching points, t1 and t2, 0<t1<t2<T, such that 

 0)( >tψ& , Y(t)=X(0) and u(t)=0 for 10 tt <≤ ; 

 )( ct =ψ , Y(t)=X(0)+b(A(t)-A(t1)) and u(t)= ba(t) for 
21 ttt <≤ ;(4.160) 

 0)( <tψ& , Y(t)= X(0)+ b(A(t2)-A(t1)) and u(t)=0 for Ttt ≤≤2 . 

It is easy to observe that solution (4.160) meets optimality conditions (4.154). 
As with Proposition 4.26, we find from (4.160), (4.147) and (4.148) the 
equations for the two switching points: 
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Finally, taking into account (4.153), 
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and substituting it into (4.161) and (4.161), we obtain the equations stated 
in this proposition.   

Proposition 4.28. Let ba(t)>U, 21 ttt <≤ , 1t  and 2t  be determined by 
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X(0), t1 , t2 and t3 satisfy the following equations 
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− , then the system-wide optimal advance order is 

X*(0)=bA(t3)-U(t3-t1) and the system-wide optimal production rate is u*(t)=0 

for 10 tt <≤ ; u*(t)=U for 21 ttt <≤  and u*(t)=0 for Ttt ≤≤2 . 

Proof: If condition  
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−  of Proposition 4.26 is not 

met and ba(t)>U, 21 ttt <≤ , then there must be a break point, t3, such that 
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is, there are two switching points, t1 and t2, 0<t1<t2<T, such that 

 )( ct <ψ , Y(t)=X(0) and u(t)=0 for 10 tt <≤ ; 

 )( ct ≥ψ , Y(t)= X(0)+U(t-t1) and u(t)=U for 21 ttt <≤ ;    (4.163) 

 )( ct <ψ , Y(t)= X(0)+ )( 12 ttU −  and u(t)=0 for Ttt ≤≤2
. 

We immediately see that solution (4.163) meets optimality conditions (4.155). 
As with Proposition 4.27, we find from (4.163), (4.147) and (4.148) the 
equations for the two switching points, co-state break point and advance 
order as stated in the proposition 
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as stated in the proposition.  
Proposition 4.25-4.28 presents closed form solutions for various produc-

tion conditions. These solutions are globally optimal as shown in the follow-
ing theorem. 

Theorem 4.2. A solution determined by Propositions 4.25-4.28 is the globally 

optimal solution of problem (4.139)-(4.140), (4.142) and (4.143).  
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we consider the second derivative with respect to Y(t): 
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where 
)(

)(

tA

tY
z = . 

It is easy to observe that it is non-negative, that is, L and thus the objective 
function (4.143) is convex.    

Sensitivity Considerations 

In this section we assume that the demand amplitude is random, but that 
the demand shape is known, as is often the case with fashion goods. In 
light of these assumptions, an important question arises as to what happens 

Proof: The necessary optimality conditions (4.147)-(4.151) utilized by Propo-
sitions 4.25-4.28 are sufficient if the problem (4.139)-(4.140), (4.142)-(4.143) 
is convex. To verify the convexity, first note that constraints (4.139)-(4.140) 
and (4.142) are linear. The objective function (4.143) consists of three terms. 
The first two terms are linear as well. The third term is non-linear. To analyze 
the third term, 
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if the demand shape changes in a limited way? It turns out that the solutions 
determined in Propositions 4.25-4.28 do not always depend on the demand 
shape. Specifically, the solution defined by Propositions 4.25, which depends 
on the system costs, is completely insensitive to the demand shape. On the 
other hand, the solutions of Propositions 4.26-4.28 do not depend on the 
demand shape at each point of time, but do depend on a cumulative value, 

 )
)(

)0(
( dt

tA

X
b

a

t

t

∫Φ over some points ta and tb. For example, if 
R

e
e =Φ )(  (the 

uniform distribution of the demand amplitude), then according to Propo-
sitions 4.25, ta=0, tb=T, and the optimal advance order is determined by 
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This implies that the demand shape, a(t), or ∫=
t

datA
0

)()( ττ , may change at 

each point of time. This change does not affect the optimal solution as long 

as the cumulative value, ∫
T

tA

dt

0
)(

, does not change.  

Finally, the most demand-sensitive solution is that defined by Proposition 
4.27. Indeed, according to Proposition 4.27, even if the corresponding cumu-
lative values of the demand shape do not change, the optimal production 

rate, u(t)=ba(t), changes for 21 ttt <≤ , when a(t) changes. Therefore, it is 

especially important to review sales along this particular interval of time. 
The more accurate the information on the demand shape, the closer the 

production rate can be to the optimal solution for 
21 ttt <≤ . 

Note that if the manufacturer has a myopic attitude and does not take 
into account inventory dynamics, then he will contract out all expected 
demand since in-house production is more expensive than subcontracting. 
Consequently, the myopic order quantity, X(0) is determined by the 
newsboy formula discussed in Chapter 2: 

+−
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+
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=Φ
hh
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b sM )( , bM= 

)0(

)0(

a

X
.   (4.164) 

Noting that b>bM, and assuming that the manufacturer has sufficient 
capacity, ba(t) ≤ U, and comparing (4.164) with the corresponding expres-
sions from Propositions 4.25-4.27, we conclude that if the unit in-house 

production cost is greater than the unit supplier’s cost, then the myopic  

 



manufacturer does not produce and his advance order is always less than 

the system-wide optimal order. 
A low supply cost (or wholesale price) is the major reason for the full-

production outsourcing that is frequently observed nowadays. Manufacturers 
also tend to order less, frequently ignoring the fact that the inventories 
deplete as the selling season progresses and thus the true inventory-related 
costs are lower over the season than those accounted for when ordering in 
the beginning of the season. Finally, production smoothing during the selling 
season allows for a trade-off between initial order costs and dynamic inven-
tory costs. If the overall production is outsourced, then the trade-off benefits 
disappear. 

Game analysis 

Consider first the equivalent deterministic manufacturer’s problem (4.139)-
(4.143). Applying the maximum principle, we find the same Hamiltonian 
as for the centralized problem (with cs replaced with w) and co-state 
differential equation (4.147) with boundary condition (4.149), where we 

simply replace )(tψ  with )(t
m

ψ . The complementary slackness condition 

is similar as well with cs replaced with w: 

 0)0( if ,)0( and 0)0( if ,)0( =≤>= YwYw mm ψψ . (4.165) 

Thus, the optimality conditions as well as all propositions derived for 
the centralized formulation hold for non-cooperative parties and the only 

change we have is cs replaced with w and )(tψ  with )(t
m

ψ . For example, 

Proposition 4.27 can be restated as follows. 

Proposition 4.29. Let 0<ba(t) ≤ U for 
21 ttt <≤ , t1 and t2 satisfy the 

following equations 
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− , then the manufacturer’s best response with respect 

to the advance order is X(0)=bA(t1) and with respect to the production 
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rate is u(t)=0 for 
1

0 tt <= ; u(t)=ba(t) for 
21

ttt <=  and u(t)=0 for 

Ttt ==2 .  

We now analyze the most likely production conditions (Proposition 
4.29) characterized by sufficient manufacturing capacity ba(t) ≤ U and where 
both subcontracting and producing are carried out at the manufacturer’s 
own production facility. Comparing the equations for the first switching 
point of the manufacturer’s optimal response (see Proposition 4.29) and those 
of the system-wide optimal solution (see Proposition 4.27) we conclude 
with the following proposition. 
Proposition 4.30. In regard to the subcontracting competition of the pro-

duction balancing game, if the supplier makes profit, i.e., w>cs, then the 

manufacturer produces more in-house and subcontracts less than the system-

wide optimal solution. 

Proof: The proof is straightforward. Comparing the equations for the first 
switching point of the manufacturer’s optimal response (see Proposition 
4.29) with the corresponding point of the system-wide optimal solution 
(see Proposition 4.27)  
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we observe that since w>cs and (.)Φ  is a cumulative function, t1 found from 

(4.166) is smaller than that from (4.167). Thus, the manufacturer starts 
production earlier under competition. On the other hand, the equations for 
the second switching point t2 and the production rates are the same with 
respect to Propositions 4.29 and 4.27. Thus the manufacturer produces 
more if the supply chain is not centralized. In addition, since X(0)=bA(t1) 

and A(.) is a cumulative function, the manufacturer subcontracts less.   

The result, of course, does not come as a surprise since subcontracting 
competition of the production balancing game is a vertical competition 
where double marginalization results in a decreased quantity which the 
manufacturer orders from the supplier, thus enhancing the incentive for in-
house production. Note that a myopic manufacturer also orders less than 
the system-wide optimal quantity but assumes no in-house production if 
the subcontractor’s wholesale price is below the in-house production cost, 
w<c. Consequently, a myopic attitude can hardly improve supply chain 
performance.  



Equilibrium  

Consider now the supplier’s problem. Applying the first-order optimality 
condition to the supplier’s objective function (4.136), we find that the opti-
mal wholesale price w is defined by the equation: 
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Using implicit differentiation of (4.169) and the fact that  )(
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we find that 
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which implies that the greater the wholesale price, the earlier the manu-
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which by substituting into the first-order optimality condition results in 
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We thus conclude with the following proposition. 

Proposition 4.31. Let all conditions of Proposition 4.27 be met, 
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If 
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then the wholesale price w
s
= Ȝ<c, the manufacture’s advance order X

s
(0)= 

į and production policy us
(t)=0 for 10 tt <≤ ; u

s
(t)=ba(t) for 21 ttt <≤ ; 

u
s
(t)=0 for Ttt ≤≤2  constitute the unique Stackelberg equilibrium in the 

differential production balancing game. 

 

The following example illustrates the results for demands following a 
uniform distribution. 

The following example is based on a problem faced by a large supplier of 
fashion goods, where demand is quite steady, i.e., a(t)=1, but the amplitude 
d is a random parameter characterized by the uniform distribution,  

Proof: To prove the proposition, it is sufficient to verify the secondorder
optimality condition, which immediately results in condition (4.174) stated
in the proposition. 

Example 4.5. 
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Given b<U, the input data for the supply chain are presented in Table 
4.3. 

Table 4.3. System parameters. 

cS h
+
 h

-
 C R T b 

3.0 1.0 4.0 6.0 20.0 100 16.0 

We start by calculating the system-wide optimal solution. Since A(t)=t, 
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Using data from Table 4.3, equations (4.175) and (4.174) result in 
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 06)100(4)ln100(ln4 222 =−−+−− ttt ,  (4.177) 

respectively. Solving equation (4.177) in t2, we find that t2 = 83.1862. 
Thus, the system-wide optimal advance order quantity is 

X*(0)=bt1=53.7770 

and the system-wide optimal production rate (see Figure 4.12.) is 

u*(t)=0 for 361.30 <≤ t ; u*(t)=16 for 1862.83361.3 <≤ t  

 u*(t)=0 for 1001862.83 ≤≤ t . 

Next, to find the Stackelberg equilibrium, we employ Proposition 4.31. 
Specifically, we first solve equation (4.172), which results in 
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Substituting (4.178) into the last expression, we obtain the equation for the 
equilibrium wholesale price ws: 
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Consequently, plugging the data from Table 4.3 into (4.179) results in 
the Stackelberg wholesale price ws=4.769642<c=6. Substituting this value 
into (4.178) provides equilibrium advance order Xs(0)= 22.055. Then 
t1=X(0)/b=1.378438, while t2 = 83.1862 remains unchanged. Thus the 
equilibrium production rate is u

s(t)=0 for 3784.10 <≤ t ; u
s(t)=16 for 

1862.83378438.1 <≤ t  and us(t)=0 for 1001862.83 ≤≤ t .  

Finally, the uniqueness of the found wholesale price (condition (4.174)) 
can be straightforwardly verified by differentiating expression 
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 from (4.179), which results in a negative 

expression. Comparing the system-wide optimal solution with the 
equilibrium solution, we observe that Xs(0)< X

*(0) and t1
s
< t1*, as stated in 

Proposition 4.30. 
 

Figure 4.12. System-wide optimal solution of Example 4.5 

Coordination 

According to Proposition 4.30, system performance deteriorates if the 
firms are non-cooperative. This result is to be expected since balancing 
production with advance orders presents a case of vertical competition. 
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Comparing Propositions 4.27 and 4.31, it is readily seen that if the supplier 
sets the wholesale price equal to his marginal cost, then the advance order 
quantity becomes equal to the system-wide optimal quantity and the manu-
facturer’s production rate converges to the system-wide optimal policy. Thus, 
the production balancing game is an example of when double marginalization 
not only decreases the order quantity but also affects production and invent-
tory dynamics. Therefore, perfect coordination, is straightforwardly obtained 
by the two-part tariff. The supplier sets the wholesale price equal to his mar-
ginal cost and makes a profit by choosing the appropriate fixed transforma-
tion cost. 

In this section we consider a supply chain consisting of one producer (manu-
facturer) and multiple suppliers of limited capacity. The suppliers (or service 
providers) are the leaders and the individual producer is a follower. To 
compensate for the suppliers’ power asymmetry and capacity restrictions, 
the producer may use a number of potential suppliers. Accordingly, in 
contrast to the balancing production game described in the previous section, 
this outsourcing game involves the decision to select a number of external 
suppliers (or service providers) for contingent future demands. Furthermore, 
the orders can be issued at any point of time rather than only once before 
the selling season starts. Similar to the production balancing problem and 
in contrast to the static outsourcing game considered in Chapter 2, there is 
no fixed or setup cost incurred when in-house production is launched. Nor 
are in-house production costs necessarily lower than the suppliers’ whole-
sale prices.  

We assume that the producer maintains the contingent and bounded in-
house capacity to produce, at a known cost, quantities over time, u(t). The 
demand consists of two components. One component reflects the regular, 
relatively low demand – of a known, steady level – which is traditionally 
met by in-house production and thus does not affect the optimization. As a 
result, this component (which was modeled in the production balancing 
problem) is not introduced explicitly in our model. It is accounted for by 
reduced (with respect to the regular demand consumption) in-house maxi-
mum capacity U. The other demand component represents peak demands 
(a new feature compared to the production balancing problem) and is intro-
duced explicitly as a random variable. For example, oil and gas contracts 
are often negotiated and in some cases implemented well before energy 
demands are revealed. In such cases, home-heating firms may tend to 
build-up supplies for the winter, preventing problems associated with high 

4.4.2  THE DIFFERENTIAL OUTSOURCING GAME 



demands (whether expected or not). Similarly, universities build up Internet 
server capacities by entering early into contractual agreements with Internet 
suppliers, building thereby an optional capacity to meet potential and future 
demand for services. In some cases, the firms, in addition to their own 
limited capacity, use external suppliers, relying thereby on outside capacities 
to meet future demands for products and service. Some extreme cases 
involve, of course, an outsourcing problem which consists in transferring 
activities that were previously in-house to a third party (Gattorna 1988; La 
Londe and Cooper 1989; Razzaque and Sheng 1998). 

Since supply chain management frequently relies on sequential trans-
missions of information (Malone 2002), the problem of production-supply 
outsourcing is set as a hierarchical game where suppliers are sequential 
leaders while the producer is a follower. In this framework, the producer 
uses a demand estimate for some future date T (for example, the demand 
for oil at the beginning of the winter), selects time-sensitive production and 
a supply policy which is time-consistent with the firm’s cost-minimizing 
objectives. The supply policy implies that given N potential suppliers, a 
subset of them is selected by the producer. Based on the producer’s 
rational outsourcing decisions, each supplier selects a wholesale price to 
offer while the producer orders a certain product quantity vn(t) from the 
nth, n=1,2,…,N supplier at the stated price. 

The producer’s problem 

Assume a firm producing a single product-type (commodity or service) to 
satisfy an exogenous demand, d, for the product-type at the end of a plan-
ning horizon, T. Inventories (or service capacity) are stored until the selling 
season starts, i.e., until t=T: 

.)0(),()()( 0XXtvtutX
n

n
=+= ∑&   (4.180) 

where )(tX  is the surplus level of inventories by time t; u(t) is the pro-

ducer in-house production rate at time t; vn(t) is the supply rate of ordered 

and received from supplier n products; and 0X  is a constant. Both self-
production and supplier capacity are bounded: 

0 ≤ u(t) ≤ U,    (4.181) 

0 ≤ vn(t) ≤ Vn, n=1,..,N   (4.182) 

where U is the producer’s capacity and Vn is the capacity of supplier n. 
The demand d at the end of planning period T is a random variable 

given by probability density and cumulative distribution )(Dϕ  and 
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∫=Φ
a

dDDa
0

)()( ϕ  functions respectively. For each planning horizon T, 

there will be a realization D of d, which is known only at time T. Equation 
(4.180) presents the flow of products determined by production and supply 
rates from all engaged suppliers. The difference between the cumulative 
supply and production of the product and its demand, X(T)-D, is a surplus. 
If the demand exceeds the cumulative production and supplies, a penalty is 
paid. On the other hand, if X(T)-D>0, an overproduction cost is incurred at 
the end of the planning horizon. Furthermore, production costs are incurred at 
time t when the producer is not idle; holding costs are incurred when inven-

tory levels are positive, 0)( >tX . Note that (4.180) implies that 0)( ≥tX  

always holds. 
The producer’s objective is to find such a production program, u(t), and 

supply schedule rates, vn(t) (outsourcing program), that satisfy constraints 
(4.180)- (4.182) while minimizing the following expected cost over the 
planning horizon T:  
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where wn(t) is the supplier n unit wholesale price at time t;  h is the invent-
tory holding cost of one product per time unit; and a piece-wise linear cost 
function is used for the surplus/shortage costs, 

−−++ += ZpZpZP )( ,   (4.184) 

where },0max{ ZZ =+
, },0max{ ZZ −=−

, 
+p and 

−p  are the costs of 

one product surplus and shortage respectively.  Substituting (4. 184) into 
the objective (4.183), we have:  
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Objective (4.185) is subject to constraints (4.180)- (4.182), which together 
constitute a deterministic problem equivalent to the stochastic problem 
(4.180)-( 4.183).  



The supplier’s problem 

Let the suppliers be ranked and then numbered with respect to their marginal 
costs, sn, so that sn-1<sn for n=2,..,N. The information on their wholesale 
prices, wn, is obtained sequentially, starting from the highest rank supplier 
n=N (see Kubler and Muller, 2004 for known examples and experimental 
evidence of sequential price setting). We assume that wholesale prices 
depend on the marginal costs and that the rank of a supplier, n (1<n<N), is 
not reconsidered if wn-1 ≤ wn ≤ wn+1 holds. 

Each supplier operates without inventories, supplying just-in-time at 
maximum rate Vn. Therefore the supplier’s inventory dynamics is trivial. 
The nth supplier objective is: 
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11 ))()()((min),..,,,..,(min , n=1,2,..,N, (4.186) 

where snvn(t) – the supplier n expenditure rate and wn(t)vn(t) – the supplier 
n revenue rate from wholesales at time t. Naturally, for the supplier to be 
sustainable and maintain his ranking, we require that 

wn(t) ≥ sn , n=1,2,..,N and wn(t) ≤ wn+1(t), n=1,2,..,N-1. (4.187) 

The centralized problem 

The centralized formulation excludes vertical competition by replacing the 
wholesale (transfer) prices with the corresponding marginal costs: 
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subject to constraints (4.180)- (4.182). 
Similar to the producer’s problem, substituting (4.184) into the objective 

(4.188), we have:  
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Objective (4.189) is subject to constraints (4.180)- (4.182), which together 
constitute a deterministic problem equivalent to the stochastic centralized 
problem (4.180) - (4.182) and (4.188).  
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System-wide optimal solution 

The Hamiltonian for problem (4.189), (4.180)- (4.182) is as follows  
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The co-state variable )(tψ  is the shadow price or margin gained by 

producing/outsourcing one more product unit at time t. According to the 
maximum principle, )(tψ  satisfies the following co-state equation: 
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with transversality (boundary) condition: 
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That is, 
 )( ht =ψ& ,   (4.191) 

)))((1())(()( TXpTXpT Φ−+Φ−= −+ψ . (4.192) 

Rearranging only the decision variable-dependent terms of the Hamil-
tonian, we obtain: 

)())(()( tucttH
u

−= ψ ,  (4.192) 
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Thus, the optimal production and supply rates that maximize the Hamil-
tonian are: 
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An immediate insight from equations (4.193) and (4.194) is: (i) it is 
optimal to either not produce or produce only at maximum rate U, (ii) if it 



is optimal to use a supplier n for outsourcing, then it must be accomplished 
at a maximum rate, Vn, as shown in the following proposition.  

Proposition 4.32. If 0≠h , then u(t)∈{0,U} and },0{)(
nn

Vtv ∈ , n=1,..,N 

and 0 ≤ t ≤ T. 

Proof: The proof is by contradiction. Assume that production at an inter-
mediate rate can be optimal. According to the optimality condition (4.193), 
the singular regime, ct =)(ψ , is the only regime along which intermediate 

values of the production rate are possible at a measurable time interval, Ĳ. 
Therefore, assuming the singular regime condition holds over Ĳ and differ-
entiating this condition, we find: 

0)( =tψ& , 

which contradicts the co-state equation (4.191), 0 )( ≠=htψ& . Thus no inter-

mediate production rate is optimal, i.e., u(t)∈{0,U}. Similarly, one can 
verify that an intermediate outsourcing rate is not feasible.  

An additional observation follows from optimality conditions (4.193) 
and (4.194) as well as from the linearity of the co-state variable (4.191). 
Specifically, if the producer’s own unit production cost is lower than that 
of all suppliers, then the producer will first use his capacity to produce, 
starting from a time point, say t0, and then seek supplies at a maximum rate 
beginning with the least costly supplier, say n=1, starting from a point in 
time, t1. Next, he will seek supplies from the second less costly supplier 
and so on. This type of supply is advantageous when the producer’s own 
capacity is relatively low while the expected demands are high and thus 
can be dealt with by just-in-time supply deliveries. On the other hand, if 
supply marginal costs are lower than the producer unit cost, then consecu-
tive supplies will be sought first; self-production will be the last refuge, if 
at all.  

To consider the most general conditions, we assume that there are M, 
M<N, suppliers for which marginal costs are below the producer’s own 
cost, c, i.e., sn(t)<c for n=0,1,..,M and N-M suppliers with sn(t)>c for 
n=M,M+1,..,N. We next distinguish between various types of optimal 
solutions. First we delineate the conditions when the expected demand is 
low relative to system costs and initial inventories. 

Proposition 4.33.  If 
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pp

sp
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10 )( ,   (4.195) 

then it is not optimal to produce or to seek supplies, i.e., u(t)=0 and 

vn(t)=0 for Tt ≤≤0 , n=1,..,N. 

Proof: Consider the following solution for the co-state variable:  
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))(1()()( 00 XpXpT Φ−+Φ−= −+ψ , )()()( tThTt −−=ψψ . 

This solution implies u(t)=0 and 0)( =tv
n

 for Tt ≤≤0 , n=1,…,N and thus 

X(T)=X0, if the optimality conditions (4.193)- (4.194) are met, i.e., 

1)( st <ψ  for Tt ≤≤0 , as stated in the proposition.  

If condition (4.195) is not met, then the supply rate from a supplier, n, 
can be optimal starting at time, tn, while the manufacturer’s in-house 
production starts from time t0 (see Figure 4.13), as shown in the following 
proposition.  
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If 10 t≤ , Tt
K

< , then ( )
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+−=  for n=2,…,K, and 
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1
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h
t +−= , the system-wide optimal solution is unique and is given 

by: 0)( =tv
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tt <≤0 ; Vtv
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≤≤ , n=1,…,K and u(t)=0 

for 00 tt <≤ ; u(t)=U for Ttt ≤≤0 . 

Proof: First note that since problem (4.180)- (4.182), (4.185) is convex, the 
maximum principle-based necessary optimality conditions are sufficient. 
Moreover, according to Proposition 4.32, when 0≠h , the solution which 

meets the optimality conditions (4.193) and (4.194) is unique. For the state 
(4.180) and co-state (4.191) equations, consider the following solution 
which is determined by K+1 breaking points and satisfies the optimality 
conditions (4.193) and (4.194): 
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If this solution is feasible, then it is also an optimal solution. To verify feasi-

bility, we first determine the breaking points, ( )
11

1
tss

h
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nn
+−= , n>1. By 

substituting in the terminal inventory expression, X(T), we obtain: 
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Next, by taking into account the transversality condition (4.192) and 

)()( 11 tThsT −+=ψ , we find 

)()))((1())(( 11 tThsTXpTXp −+=Φ−+Φ− −+ . 

Finally, by substituting X(T) into the last expression, we determine equa-

tion (4.196) in unknown 1t . The feasibility of this solution is ensured by 

10 t≤ , Tt
K

< , as stated in the proposition.   

 
 

There are some important observations from Proposition 4.34. First, 
even though the optimal number of suppliers, K, is not known in advance, 
one can easily find it by solving equation (4.196) repeatedly for K=1,2, and 

so on until a feasible (and thus optimal) solution is found, i.e, 10 t≤ , 

U 
t1 

V1 

t0 

t2 

V2 

s1 

T 

s2 

c 

X(t) 

u(t) 

vn(t) 

)(tψ  

Figure 4.13. The system-wide optimal solution: the case of two suppliers and 
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Tt
K

< . Furthermore, if K does not exist such that 01 ≥t , then the expected 

demand is too high or production/outsourcing capacity is too low and 
production/supply must be started from the very beginning of the planning 
horizon. Henceforth, we assume that this is not the case and focus on the 
broadest production conditions. 

Game analysis 

We next derive the best producer’s response to wholesale prices wn(t) for 
n=1,2,..N set by the suppliers sequentially starting from the highest rank 
n=N. To apply the maximum principle to the deterministic equivalent of 
the producer’s problem we construct the Hamiltonian  

∑∑ ++−−−=
n

nm

n

nnm
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where the co-state variable )(t
m

ψ , the margin which the producer gains 

from producing/outsourcing one more product unit, satisfies the following 
co-state equation: 

 )( ht
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=ψ& ,   (4.198) 

with transversality (boundary) condition: 
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Φ−+Φ−= −+ψ . (4.199) 

Consequently, the optimal production and supply rates that maximize 
the Hamiltonian are: 
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Comparing conditions (4.198)-(4.201) with the corresponding conditions 
found for the centralized problem, we observe that they are symmetric and 
are obtained by replacing ȥ with ȥm and sn with wn. Thus, with the replace-
ment provided, all results derived for the centralized problem can be restated 
for the producer’s problem. Specifically, it is optimal to either not produce 
or produce only at maximum rate U. And if it is optimal to use suppliers, 
then it must be accomplished at a maximum rate, Vn, unless the rate of 
increase of the unit wholesale price is equal to the unit holding cost rate, h, 



as shown in the following proposition. The new requirement to the rate of 
change of the wholesale prices is due to the fact that while the marginal 
costs sn are constant, the wholesale wn(t) price may change with time. 

Proposition 4.35. If htw
n

≠)(&  and 0≠h , then u(t)∈{0,U} and 

},0{)(
nn

Vtv ∈ , n=1,..,N and 0 ≤ t ≤ T.    

Although we assume that the wholesale price is a differentiable function 
of time, all subsequent results can easily be presented for arbitrary wn(t).  

We first assume that the suppliers’ pricing policy, wn, does not affect 
their rating and then verify this. Again, to consider the most general condi-
tions, we assume that there are M, M<N, suppliers for which wholesale 
prices are below the producer’s own cost, c, i.e., wn(t)<c for n=0,1,..,M and 
N-M suppliers with wn(t)>c for n=M,M+1,..,N. Then replacing s1 with w1 
we restate the no production/outsourcing conditions derived in Proposition 
4.33. 
Proposition 4.36. If  
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then it is not optimal to produce or to seek supplies, i.e., u(t)=0 and 

0)( =tv
n

 for Tt ≤≤0 , n=1,..,N.  

If condition (4.202) is not met, then the supply rate from a supplier, n, 
can be optimal starting at time, tn, while the producer’s production may 
start optimally from time t0. The following proposition presents the pro-
ducer’s optimal response (see Figure 4.14) when the contract between the 
producer and a supplier has no flexibility. That is, supplier n commits to a 
steady wholesale price wn(t)=wn, while the producer orders a constant 
quantity Vn(T-tn). In such a case, the result of Proposition 4.37 is obtained 
by replacing s1 with w1 in Proposition 4.34. 

Proposition 4.37. Let htw
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If we set unit inventory holding cost at zero, thereby disregarding 
inventory dynamics, then equation (4.204) takes the familiar newsboy 
form,  
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We thus conclude, given wholesale prices, a myopic producer will order 

more than he needs to account for inventory dynamics. 

This is to say, that a primary difference emanates from the dynamics of 
inventory accumulation. The time-dependent solution of Proposition 4.37 
implies that the producer may not order until a certain breaking point in time 
which depends on the problem’s parameters and the inventory holding cost.  

As we shall show in Proposition 4.39 below, the greater the wholesale 
price of a supplier, the longer the producer waits before he orders. This obser-
vation is justified by the differential game since the producer has an advan-
tage over a supplier up to and until the breaking point (for outsourcing to 
this suppler) is reached. This implies as well that a supplier may not be 
able to wait for an order at the stated price and thus may reduce his 
wholesale price—inducing the producer to order earlier. After a breaking 
point has been reached and an order placed, the situation changes and the 
supplier has an advantage over the producer as shown in Proposition 4.38 
below. This result confirms the observed behavior of suppliers who tend to 
increase contracted wholesale prices over time when supply contracts are 
flexible and market conditions change. 



 
 

Unlike the steady-price assumption of Proposition 4.37, we shall distin-
guish next between two cases: when the wholesale price wn(t) of supplier n 
changes before supplies start, i.e., before tn , and after this breaking point. 
It turns out that in the latter case there are certain bounds such that changes 

in wn(t) for Ttt
n

≤<  do not affect the optimal response of the producer as 

shown in the following proposition.  

Proposition 4.38. Let wn(tn)=wn, and maintain conditions of Proposition 

4.37. The solution determined by Proposition 4.37 remains optimal if  
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Proof: According to the co-state solution of Proposition 4.37, we have 
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Figure 4.14. The producer’s optimal response: the case of two suppliers and 
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Note, that according to the co-state solution of Proposition 4.37 (see the 
proof of Proposition 4.34), we have 

)()()( 11 tthtt
mm

−+=ψψ = )()( 11 tthtw −+ . 

Therefore, if wn(t) is differentiable, then taking into account 

wn(tn)=wn= )()( 111 tthtw −+ , Proposition 4.38 is transformed into a simple-

to-use sufficient condition: if htw
n

<)(&  for Ttt
n

≤≤ , then the optimal 

solution does not change. 
Proposition 4.38 indicates that a supplier’s wholesale price can drop arbi-

trarily after the supplier begins delivery. This will not affect the producer’s 
ordering policy with respect to the supplier since the supplier already deli-
vers products at a maximum rate. Further, a wholesale price increase is boun-
ded by the unit inventory holding cost per time unit. Indeed, if this condition 
does not hold, the producer may be better off keeping lower inventory levels 
rather than accumulating inventories resulting from a supplier’s fulfilling 
order. 

Finally, if a wholesale price changes before supplies are dispatched, the 
corresponding breaking point changes. Below, we show that an increase in 
the wholesale price, wn(t)=wn, of a supplier before the breaking point 
results in delay in supply orders, i.e., the optimal solution changes no matter 
how small the price change. 

Proposition 4.39. If all conditions of Proposition 4.37 hold, then 0>
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Proof: Taking into account that ( )
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+−=  (see Proposition 4.37), 

equation (4.204) transforms to 

Substituting this in the optimality condition, )()( if )( twtVtv
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, we employ implicit differentiation of the last 

expression, 
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An immediate corollary from this lemma is that the greater the wholesale 
prices, the later the producer places outsourcing orders thereby outsourcing 
smaller quantities. With respect to the centralized supply chain this implies: 
If the suppliers profit by setting wn(t)>sn, for 0 ≤ t ≤ T, then the outsourcing 

order quantity decreases compared to the system-wide optimal quality; the 

greater the wholesale prices, the larger the difference between the compe-

titive solution of the differential outsourcing game and the system-wide 

optimal solution.  

Equilibrium 

The Stackelberg strategy is frequently associated with time-inconsistency, 
namely, even though such an equilibrium can be formulated at a given 
time, it might not be sustainable over time (Jorgenson and Zaccour 2004). 
The intuition for the time-inconsistency is the following. In a Stackelberg 
game, the leader seeks to influence the follower’s choice of strategy for 
making the most profits. For this purpose, the leader sets at time zero the 
strategy for the entire horizon. However, if at a time point t the leader finds 
a more profitable strategy over the remaining part of the horizon, the 
leader has no reason to follow the initially announced strategy. In the con-
text of this outsourcing game, the supplier’s decision to eventually deviate 
from the initially announced wholesale price depends on the type of con-
tract between the producer and the supplier. This implies that the time-
inconsistency may affect the equilibrium if a contract with flexibility is  
 

=0.

270     4  MODELING IN AN INTERTEMPORAL FRAMEWORK



4.4 INTERTEMPORAL SUBCONTRACTING COMPETITION      271 

preferred to the total commitment type of contract (e.g., minimum total quan-
tity commitment and periodical commitment; see, for example, Anupinidi 
and Bassok 1999). The leaders then can use the flexibility to change the 
prices. In what follows we consider the game that results in such an equi-
librium. 

To determine the Stackelberg (or hierarchical) strategy, we substitute 
the producer’s optimal response into the supplier n objective function 

which is minimized. According to Propositions 4.37 and 4.38, 0)( =tv
n
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tt <≤0 ; Vtv
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≤≤ , and tn is a function of wn(t), i.e., tn 

=tn(wn(t)). Therefore using the first-order optimality condition, we obtain: 
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Recalling Proposition 4.38 and 4.39, we substitute (4.204) into (4.206) 

to find that if htw
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4.37 hold), then an optimal wholesale price satisfies the following equation:  
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Let the solution to equation (4.207)-(4.208) in wn(tn) and Y be ȕn and Ȗ 
respectively. If the contract is not flexible, the wholesale price cannot be 

changed, and therefore wn(t)=wn(tn)= ȕn for Ttt
n

≤≤ , n=1,2,…,K, as 

shown in the following proposition. 

Proposition 4.40. Let all conditions of Proposition 4.37 be met, 
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(4.209) 
then the supplier’s wholesale pricing policy is wn

s(t)=ȕn, and the pro-

ducer’s production u
s
(t) and outsourcing vn

s(t) policies, n=1,..,K are deter-

mined by Proposition 4.37. These policies constitute the unique Stackelberg 

equilibrium for ],0[ Tt ∈  in the differential outsourcing game. 

Proof: To prove the proposition, it is sufficient to show that the second-
order optimality condition holds, that is, the derivative of the left-hand side 
of (4.207) is positive; and that ȕn ≥ sn, i.e., constraint (4.187) holds. The 
fact that the latter is true is immediately observed from (4.207) which can 
be met only if wn(tn)=ȕn>sn . To show the former, we differentiate (4.207) 
with respect to wn(tn): 
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Taking into account (4.205) and requiring that 0
2

2

>
n

n

s

dw

Jd
 we obtain condi-

tion (4.209) as stated in this proposition.   

Note that condition (4.209) does not necessarily hold for every proba-
bility distribution. If this is the case, the equilibrium may not be unique. 
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Consider a supply chain system characterized by two suppliers N=2 each 
of which supplies the manufacturer, i.e., K=2 and by the uniform demand 
distribution 

⎪⎩

⎪
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=
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ADϕ  and 
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a
a =Φ )( . 

First we observe that 0)( =′ Dϕ  and thus condition (4.209) of Proposition 

4.40 is met. Next, if supplier n=1 has a wholesale price lower than the pro-
ducer’s production cost and supplier n=2 is costlier than the producer, then 
from (4.204) we have: 
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Accordingly, if t1>0 and t2<T, then according to Proposition 4.37 

0)(1 =tv  for 10 tt <≤ ; 11 )( Vtv =  for Ttt ≤≤1 ; 0)(2 =tv  for 20 tt <≤ ; 

22 )( Vtv =  for Ttt ≤≤2  and u(t)=0 for 00 tt <≤ ; u(t)=U for Ttt ≤≤0 . 

Finally, substituting the breaking points t1, t2 and t0 into (4.207) we 
obtain two linear equations with two unknowns w1, w2 : 
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Let p+=p
-=$5/product unit; c=$0.7 per product unit; h=$0.1 per product 

unit and time unit; U=10, V1=5, V2=15 product units per time unit; s1=0, 
s2=$0.8, T=10 time units; and A=200 product units. This implies that the 
sequence of suppliers is n=1 (s1=0), in-house production (c=0.7) and n=2 
(s2=0.8). Inserting these in the last equations we have: 

Example 4.6. 



7.06w1 – (10-t1)=0, 0.48(w2-0.8) – (10-t1)+10(w2 – w1)=0; 

t1=6.65+5.63w1-4.68w2, ( )
110 7.010 twt +−= , and ( )

1122 10 twwt +−= . 

Solving these equations, we find the breaking points t1, t0 and t2 at which 
the producer begins to outsource to the first supplier at the rate V1 of 5 per 
time unit; self-production at U=10 per time unit; and outsourcing to the 
second supplier at V2=15 per time unit respectively: 

t1=5.14, t0=5.34, and t2=9.74. 

In addition, the Stackelberg wholesale prices of the two suppliers are: 

w1
s=0.68 and w2

s=1.14. 

Recalling that c=0.7, we verify that w2
s>c>w1

s. 
Similarly, from Proposition 4.34 we find the system-wide optimal 

solution by solving the following equations 
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h
t +−= =8.94. 

Comparing this result with the Stackelberg policy, we observe the expected 
effect of vertical competition. The total production order X*(T)=U(T-t0) + 
V1(T-t1) +V2(T-t2) of the centralized supply chain X*(T)=81.8 is greater 
than that under equilibrium competition Xs(T)= 74.8. 

The effect of time-inconsistency  

The equilibrium wholesale price determined by Proposition 4.40 is embodied 
within the total commitment type of contract between all parties. However, 
in real life it is often observed that once a contract with a degree of flexi-
bility has been signed, and deliveries initiated (i.e., after breaking point tn), 
suppliers may use numerous excuses (e.g., service extensions, increased 
labor costs and raw material prices and so on) to raise their prices. This is 
particularly the case for Internet and telecom providers, who add various 
pay services and limitations to increase in the course of time, explicitly as 
well as implicitly, their initial wholesale price. The equilibrium as a result 
may in practice be problematic.  

To understand this, we employ the sensitivity analysis conducted with 
respect to Proposition 4.38. Indeed, according to Proposition 4.38, a produ-
cer’s optimal response does not change if the initial wholesale price wn(tn) 
increases after tn at a rate slower than the inventory holding cost h. Accor-
dingly, if supplier n is cunning enough to properly increase the initial 
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price, the optimal solution in terms of the producer will remain the same. 
This implies that since the producer will not change the order quantity 
while paying a higher price, the supplier will collect a greater profit. This 
phenomenon is referred to as the time-inconsistency of the equilibrium.  

A Stackelberg strategy is frequently associated with time-inconsistency 
which usually causes the equilibrium to fall apart. In our case, however, 
this does not happen! All players show a steady behavior and supply con-
tracts are not abandoned. Moreover, if suppliers increase wholesale prices 

at a constant rate, )(tw
n
& , which tends to h (but never equal to it), then they 

will gain a maximum profit under the same producer’s response. This is to 
say, the supply chain will attain a new equilibrium which is time-
consistent as the following proposition states.  

Proposition 4.41. Let all conditions of Proposition 4.37 be met except for 

wn(t)=wn.. 
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then the supplier’s wholesale pricing policy is wn
s
(t)=ȕn+Ȝ(t-tn) for 

Ttt
n

≤≤ , Ȝ h→ -, and the producer’s production u
s
(t) and outsourcing 

vn
s
(t) policies, n=1,..,K are determined by Proposition 4.37. These policies 

constitute a Stackelberg equilibrium in the differential outsourcing game 

with unique, initial wholesale prices wn
s
(tn) and unique production and 

outsourcing policies for ],0[ Tt ∈ . 

Proof: The proof immediately follows from Propositions 4.38 and 4.40.  

We next illustrate the new, time-consistent equilibrium with the same 
example. 

Returning to our example, we note that with respect to Proposition 4.41 the 
time-consistent equilibrium wholesale prices are:  

w1
s(t)=0.68+Ȝ(t-5.14) for 5.14 10≤≤ t  and w2

s (t)=1.14 + Ȝ(t-9.74) 

for 9.74 10≤≤ t , 

Example 4.6. (continued) 

where Ȝ h→ -0 and h=0.1. 

 



Coordination 

Building-up a supply capacity to meet future and uncertain demands for 
products and services is a costly strategic issue which involves decisions 
being made in the course of time with the sole purpose of meeting a demand 
in real-time that may outstrip an available capacity. Of course, firms may 
build-up their self-capacity and thereby meet demands when they occur, 
but such an approach is often deemed far too costly. Therefore firms use 
multiple suppliers who can provide an added supply capacity as well as 
goods that may be stored to meet prospective demands.  

We assume that the producer lacks the capacity to meet peak demands at 
known specific times and therefore depends on suppliers. This results in 
vertical outsourcing competition with a Stackelberg equilibrium solution 

as is often the case with vertical competition. Similar to the supply chain 
games with underlying vertical competition discussed in this book, the two-
part tariff efficiently coordinates the system. Indeed, by comparing Pro-
positions 4.34 and 4.37, we observe that if all suppliers set the wholesale 
prices equal to their marginal costs, the solution becomes system-wide 
optimal and the suppliers can get their share of the profits by setting fixed 
costs of supplies. The difference between this approach and the other two-
part tariff applications discussed so far is related to time-inconsistency. As 
shown in Proposition 4.41, if the contract between the producer and 
suppliers allows for some level of flexibility, the suppliers will be tempted 
in time to gradually increase wholesale prices above the marginal costs at a 
rate close but less than the unit holding cost of the producer. As long as 
this condition holds, the producer’s best response does not change (see 
Proposition 4.38). This implies that the overall supply chain profit does not 
change as well. Therefore the performance of the supply chain does not 

different from that for the corresponding centralized supply chain. The deteri-
oration of the supply chain performance is due to double marginalization 
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This, for example, implies that the equilibrium wholesale price of the first 
supplier can reach the initial wholesale price, 1.14, of the second supplier 
by the end of the planning horizon. The essential implication of the equili-
brium is: if Ȝ attains h=0.1, then, according to Proposition 4.35, the producer 
has multiple optimal responses and can select an order quantity vn(t) less 
than the maximum one, implying that the maximum profit is no longer 
assured for supplier n. Moreover, if Ȝ>0.1, then optimality conditions (4.201) 
induce the producer to completely stop ordering, causing suppliers to lose 
profits by an increase in wholesale prices. Thus, suppliers may increase 
wholesale prices at a rate very close, but never equal to 0.1. 
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deteriorate and the amendments in the wholesale prices are just internal 
transfers of the chain. Thus, the two-part tariff in this intertemporal system 
has a “third part” which is dynamic. Specifically, the suppliers first set the 
wholesale price equal to the marginal cost at their breaking point (supply 
time) wn(tn)=sn and fixed transaction cost. Then they gradually increase the 

price, wn
s
(t)=sn+Ȝ(t-tn) for Ttt

n
≤≤ , Ȝ h→ -0. The result is that the supply 

chain is perfectly coordinated and the dynamic increase in the wholesale 
prices provides the suppliers (the Stackelberg leaders) with additional 
profits that constitute a bargaining tool that the suppliers may use to reduce 
the fixed supply cost.  

4.5 INTERTEMPORAL CO-INVESTMENT IN SUPPLY 
CHAINS  

This section considers investment in a supply chain infrastructure using an 
inter-temporal model. We assume that firms’ capital is essentially the supply 
chain’s infrastructure. As a result, firms’ policies consist in selecting an 
optimal level of employment as well as the level of co-investment in the 
supply chain infrastructure. So far we have mainly discussed open-loop 
equilibrium solutions of competing firms. This section presents both open-
loop and feedback solutions for non-cooperating firms, as well as, long- 
and short-run investment cooperation.  

Consider N-firms operating in a supply chain, each characterized by its 
output price pj(t) at time t, labor force Lj(t), investment policy Ij(t) and an 
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Dynamic Model for Co-Investment in Infrastructure 

We let K(t) be the level of current supply chain infrastructure capital, deter-
iorating at the rate į. The process of capital accumulation is then given by: 
 

4.5.1  THE DIFFERENTIAL INVESTMENT AND LABOR GAME 
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The firms’ objective consists in maximizing the discounted profit by 
selecting an optimal employment policy on the one hand and a co-investment 
in supply chain infrastructure (contributing thereby to all firms potential 
revenues) on the other. The objective is specified by: 
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where )(tc j  is the labor cost and (.)
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C  is a continuous, twice differ-

entiable and increasing investment cost function, 0>
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mitigated by a proportion which is subsidized and given by θ . To study 

the problem, we construct the Hamiltonians: 
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The Hamiltonian (4.212) can be interpreted as the instantaneous profit 

rate of firm j, which includes the firm j value )()( tKt
j

&ψ  of increment )(tK&  

in the infrastructure capital. The co-state variable ψ j(t) is the shadow price, 

i.e., the net benefit of firm j from investing one more monetary unit at time 
t. The differential equation (4.213) states that the marginal opportunity 
cost įψ j(t) of investment of firm j in infrastructure should equal the 

(discounted) marginal profit 
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ductivity and from the capital gain j
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Optimal policies are found by maximizing the Hamiltonians with res-
pect to investments, Ij(t), and labor, Lj(t), which yields: 
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where lj(t) is determined by 

, (4.212) 
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with ij(t) determined by 
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Since the objective function (4.211) is concave and constraints (4.210) 
are linear, conditions (4.214)-(4.217) are necessary and sufficient for opti-
mality and will be considered next in detail, providing specific insights regar-
ding the investment process in supply chain infrastructure.  

The N-Firms Open-Loop Nash Strategies 

The Nash equilibrium for each firm is obtained by optimizing simultane-
ously all N Hamiltonians (4.213). This straightforwardly results in the 
following proposition. 

Proposition 4.42. If a(t), bj(t) and ij(t), j=1,..,N satisfy the following system 

of equations 
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then, the pair of dynamic strategy sets {Ijn
(t)=ij(t), j=1,..,N} and {Lj

n
(t)= 

lj(t), j=1,..,N}, 0≥t  is a Nash equilibrium in the supply chain co-investment 

and labor force differential game.  
The implications of this proposition are best examined through an example 

which assumes a Cobb-Douglas Production function and a quadratic invest-
ment cost.  



Example 4.7.  

Let the aggregate production function be a Cobb-Douglas function, 
βα
jj

LaKLKf =),( , with Į+ȕ=1, CIj(I)=
2

)1(
jIj

Ic θ−  and, let the labor cost 

increase slower than the price index raised to power ȕ so that: 

 Ȧj(t)=
β

β
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⎦
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teε
, İ<min{rj, j=1,..,N}.  

Using (4.215), we have 0
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)()( 1 =−−
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tc
tltaK

j
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βα β , and thus,  
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Note, that 0
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>

∂

∂

tK
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j

, if ȕ<1 and 0
)(

)(
<

∂

∂

tK

tL
j

, if ȕ>1. Next, from Propo-

sition 4.42, we have 
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which with respect to Į+ȕ=1 and Ȧj(t)= 
β
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⎥
⎥
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⎢
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⎡ 1
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, results in 
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Noting that 0)(lim =
∞→
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t
, we find: 
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Solving 
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j

jI

j

je
I

tiC
tb

−

∂

−∂
=

))()1((
)(

θ
 in ij(t) we find optimal investment 

strategies for each of the firms, j: 

Ij
n(t)=ij(t)= [ ] β

ε

β
βθ

α
δε

−

−+−
1

1

)1(2
a

cr

e

Ijj

t

, j=1,…,N. 

The total supply chain capital is then obtained from (4.210), by: 
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∑
=

+−=
N

j

j
tita

dt

tda

1

)()(
)( δ , or +−= )()( tata δ& [ ] β

ε

β
βθ

α
δε

−

= −+−∑ 1

1

1 )1(2
a
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e

Ij

N

j j

t

. 

The solution of this differential equation yields the supply chain capital 
explicitly given by: 

K
n(t)=a(t)=

tt
N

j jIj

Aee
cr

a
δεβ

δε
β

βθ
α

δε
−

=

− +
+−−+ ∑

1  

1

1

)(2

1
][

)1(2)(

1
, 

where A is determined by the boundary condition a(0)=K0,  

A=K0- ∑
=

−

+−−+

N

j jIj
cr

a
1  

1

1

)(2

1
][

)1(2)(

1

δε
β

βθ
α

δε
β . 

This solution implies that the growth of equilibrium investments over time 
is inversely proportional to the firms’ discount rates and investment costs. 
This strategy compensates the effect of price index increases over weighted 

labor costs as shown in Figure 4.15. Further, we have 0,0
2

2

>
∂

∂
>

∂

∂

θθ
jj

II
, 

meaning that the larger the subsidies the larger the co-investments, growing 
then at an increased rate. For this reason, supply chain support for indivi-
dual member firm co-investment is indeed important and may justify in 
some cases a “centralized control” which dictates to member firms the inten-
sity of their investment. The level of capital will thus increase as well as a 
function of the support parameter. 

  

L2 

L1 

I2 

I1 

t 

K(t) 

Ij(t) 

Lj(t) 

Figure 4.15. The Nash equilibrium over time, the case of N=2 



Figure 4.15 above points out to the optimal equilibrium over time when 

Ȧ(t)=
teε
, r1>r2, cI1>cI2, and ⎥
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⎤
⎢
⎣

⎡
)(
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1
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)(

)(

2

2

tc

tp
β .    

Thus, if firms comprising the supply chain differ in their basic parame-
ters and at least some of the parameters (price index, labor cost, investment 
costs and so on) change in time, then firms’ investments not only differ 
and change over time, but their co-investment shares in the overall infra-
structure capital may diverge in time as well. Such a change in investment 
strategies thus makes it difficult to plan future capital development of the 
supply chain. For this reason, a strategy that imposes steady co-investment 
shares by firms might lead to results that are viable. We shall turn our 
attention next to this special case. 

Proposition 4.43.  Let j

j

jIjj

j
I

iC

K

tlKf
tp ϑ

θ
=

∂

−∂

∂

∂ ))1(())(,(
)(  and 

 j=1,..,N, satisfy the following equations for 

0)(
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∂
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j

j
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∂

∂
, j=1,..,N  

If K0= K , then there exists the pair of strategy sets: static investment {Ijn(t)= 

ji , j=1,..,N} and employment {Ljn(t)= )(tl j , j=1,..,N}, 0≥t  which is a Nash 

equilibrium in the supply chain investment and labor force differential game. 

Proof: Consider the solution for the state and co-state variables, which is 

characterized by a constant level of capital K(t)= K : 

)(
)(

))(),((
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This solution is optimal if lj(t) and ij(t) from (4.214) and (4.216), 

0
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)())(),((
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jIj

j

je
I

tiC
t

−

∂

−∂
=

))()1((
)(

θ
ψ , 

 

K ,
j

i , )(tl j ,

t ≥ 0.
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are non-negative which is evidently true as 0≥
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j
L

f
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Differentiating 
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ψ and substituting the co-state 

equation we find that 
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If j
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∂

∂ ))1(())(,(
)(  is constant, then capital K  and 

investment Ki
N

j

j
δ=∑

=1

 policies are constant as well, as stated in the propo-

sition. Finally, we straightforwardly verify the boundary condition, 
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trjIj
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.   

Below, we consider an example to highlight the effects of a constant co-
investment strategy. 

Example 4.8.  

Let the aggregate production function be again the Cobb-Douglas function, 
βα
jj

LaKLKf =),( , with Į+ȕ=1, CIj(I)=
2

)1( jIj Ic θ− , rj=r for j=1,..,N, 

K0= K , and Ȧj=
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4.43, we have 
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Taking into account  
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of Proposition 4.43, we obtain a system of N+1 equations in N+1 

unknowns, ji , j=1,..,N , K : 
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Summing all equations we have  
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which together with Į+ȕ=1 results a constant co-investment strategy when 

K0= K : 
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Interestingly, note that 0>
∂
∂

θ
K

 and 0>
∂
∂
θ
i

, which points out to a growth 

of capital and co-investment when investment subsidies increase.     

What if a sustainable K  exists and is attainable, but K0 ≠ K ? There are 
two possible approaches to dealing with this problem.  

The first approach is non-cooperative and readily emanates from Proposi-
tions 4.42 and 4.43. Indeed, one can assume that there is a point in time, say 
t*, at which the supply chain attains a stationary investment equilibrium 
(described in Proposition 4.43) as t* tends to infinity. To determine whether 
such an equilibrium exists, the system of equations stated in Proposition 

4.42 can be resolved for the terminal condition, K(t*)= K . The solution that 
Proposition 4.42 thus provides is a dynamic, open-loop Nash equilibrium. 
While such a solution allows to gain some insights, it is difficult to imple-
ment. If the firms do not collaborate, then a closed-loop solution may be 
more viable. We develop such a solution next. 

The other approach consists in using open-loop policies for cooperating, 
which can be short- and long-run as discussed in Section 4.5.2.  

The N-Firms Feedback Nash Strategy 

In this section, we show how to obtain a closed-loop equilibrium in the con-
ditions of Proposition 4.43, i.e., when a stationary investment equilibrium 
is attainable. The derivation is accomplished by employing an equivalent 

formulation of the maximum principle. Specifically, let 
tr

jj

jett )()( ψ=Ψ . 

Then 
tr

jj

jett
−Ψ= )()(ψ  and ))()(()( trtet

jjj
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j

j Ψ−Ψ= −
&

&ψ . Using these 
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notations in conditions of Proposition 4.43, the co-state equation (4.213) 
and the optimality condition (4.217) take the following form respectively: 
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Denote the solution of equation (4.219) as ij(t) = ))(( tF jj Ψ . To simplify 

the presentation we next suppress index t wherever the dependence on 
time is obvious. Consequently, the stationary investment conditions are 

0=K&  and 0=Ψ& , and from (4.218) the static co-state value 
j

Ψ of the co-

state variable is fined by,  
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δ
,    (4.220) 

as well as the steady-state capital is equal to K  (see Proposition 4.43). Let 
us introduce a new function, ĭj(.),  

))(()( tKt jj Φ=Ψ .          (4.221) 

Denote the solution of equation (4.215) as lj=FLj(K). Differentiating 

(4.221) we have KK
jj

&& )(Φ′=Ψ , which when substituting the state (4.210) 

and co-state (4.218) equations leads to 
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Thus, we have proved the following theorem. 

Theorem 4.3. If 
j
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 does not explicitly depend on time for 

j=1,..,N, then investment {In
j= ))(( KF jj Φ , j=1,..,N} and employment 

{Ljn(t)= FLj(K), j=1,..,N}, 0≥t  constitute a feedback Nash equilibrium in 

the supply chain investment and labor force differential game, where 

)(KjΦ , j=1,..,N satisfy the following differential equations, 
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The following example illustrates the results of Theorem 4.3. 

. (4.219) 



Example 4.9. 

Assume the conditions of Example 4.8, except K0< K  and Į+ȕ<1. Then 
we have  
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As a result, the system of backward differential equations (4.222) takes the 
following form: 

0)()(]
)1(2

)(
)[(

1
1

1

=Φ+−+−
−

Φ
Φ′

−
−

=
∑ KrKK

c

K
K

jj

N

j Ij

j

j
δξδ

θ
β

α

. (4.223)  

1
1)(

−
−

+
=Φ β

α

δ
ξ

K
r

K
j

j
, j=1,..,N, 
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We solve this system of equations with Maple for two firms, N=2, a=1, 

Į=0.1, ȕ=0.1, ș=0.4, į=0.04, r1=r2=0.002, c1=0.4, c2=0.5, cI1=0.2, cI2=0.3, 
p1= p2=7.  

 

 
Figure 4.16. The feedback equilibrium investments as a function of capital, I1

n= 

))(( 11 KF Φ and I2
n= ))(( 22 KF Φ  
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The resultant feedback policies of the two firms, I1
n=

)1(2

)(

1

1

θ−
Φ

I
c

K
 and 

I2
n=

)1(2

)(

2

2

θ−
Φ

I
c

K
, is illustrated graphically in Figure 4.16. The corres-

ponding evolution in time of the capital and investments for the case of 

K(0)=0.2< K =69.91217939 are depicted in Figures 3 and 4, respectively.  

 

Figure 4.17. Evolution of the capital over time, Kn(t) 

 

investments. When the infrastructure capital is greater (smaller) than the 

steady-state level K , it is optimal to invest in total by all firms less (more) 

than Kδ =2.796487176, so that the overall accumulated capital decreases 

(increases) towards the stationary investment equilibrium. Furthermore, 
the investments decrease much faster when the capital exceeds the static 
level compared to the rate of their decrease when the capital is lower than 
the static level (see Figure 4.16). 

 
Figure 4.18. Evolution of the investment over time, I1

n(t) and I2
n(t) 

From Figures 2 - 4 we observe that the greater the capital, the lower the 
 



Naturally, the first firm, which has lower investment cost, cI1=0.2<cI2=0.3 
invests more than the second firm (see Figure 4.18).  

Since 
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Figure 4.19. Evolution of the employment over time, L1

n(t) and L2
n(t) 

From Figure 4.19 we observe that the employment increases with the 
capital and it tends to the static level for the firms, 

1L = 2.98533 and 
2L = 

2.329779, which is higher for the first firm as its wages are lower, c1= 
0.4<c2=0.5. Since employment is proportional to the infrastructure capital, 
the rate of employment changes much faster when the infrastructure 
capital is low.   

If all parties are interested in a stationary co-investment strategy for the 
supply chain (and therefore are seeking a stationary equilibrium, see 
Proposition 4.43), it can be implemented by determining jointly time t*, 

and collaborative investment policies, )(tI j  for *0 tt ≤≤ , j=1,..,N . This 

is accomplished by requiring that the joint-capital, K(t), will reach the 

4.5.2  SHORT-RUN AND LONG-RUN COOPERATION  
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the equilibrium employment to attain a static level as well, 

, induces  is constant in the example, the static capital, 

. The evolution in time of the equilibrium employ- 

ment for the two firms is shown in Figures 5.  
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desired optimal level K  by t*, i.e., K0+ KdttI
N

j

t

j
=∑∫

=1

*

0

)( (as shown in 

Figure 4.20). 

 
Figure 4.20. The equilibrium over time, the case of K0< K

Short-Run Cooperation 

An ultimate way of short-run cooperation is a one-time partnership. Assume 
that firms agree to cooperate until a common point t* to reach the stationary 
equilibrium in minimum time. Optimal control theory shows that in such a 

case one time, high level investments, 
j

Î , j=1,..,N will be optimal, so that 

0

1

ˆ KKI
N

j

j
−=∑

=

.  

To model an instantaneous investment, 
jÎ , we employ the Dirac delta 

function ǻ(t), )(ˆ)( tItI jj ∆= . Specifically, the optimal policy for reaching 

the desired equilibrium in minimum time must be a solution of the follow-
ing optimization problem, 

*min t
jI

    (4.224) 

s.t. 
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Using the maximum principle we construct the Hamiltonian  
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 and N=2 
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where the co-state variable is determined by 

)()( tt δλλ =& .         (4.226) 

Furthermore, since t* is unknown, an additional necessary transversality 
condition is that, H(t)=1, i.e., 
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Maximizing the Hamiltonian (4.225) we readily observe that if Ȝ(t)<0, then 
no investment is optimal, if Ȝ(t)=0, then the investments are arbitrary non-

negative values. Otherwise, if Ȝ(t)>0, then +∞→)(tI j
, j=1,..,N.  Based on 

these properties, we have the following result. 

Proposition 4.44. The optimal solution of problem (4.224) is t*=0 and 

*)(ˆ*)( tItI
jj
∆= , j=1,..,N, where ǻ(t*) is Dirac delta function at t* and 

0

1

ˆ KKI
N

j

j
−=∑

=

. 

Proof: The proposition is proved by contradiction. Let us assume that the 
optimal solution be obtained for t*>0. Then Ij(t), i=1,..,N are finite (other-
wise any capital can be reached in no time which contradicts t*>0) and 
thus Ȝ(t) ≤ 0. On the other hand, according to the maximum principle, if 

Ȝ(t)<0, *0 tt ≤≤ , then no capital is invested and thereby K(t) will never 

reach K . Accordingly, the only case left is Ȝ(t)=0 for a measurable inter-
val of time. However, condition (4.226) never holds during this interval, if 
Ȝ(t)=0. Thus we get a contradiction and t*=0. 

To meet the boundary condition K(t*)= K  we need  

KdttItKK
N

j

j
=+−+ ∑∫

=

+

])()([
1

0

0

0 δ . 

Thus, *)(ˆ*)( tItI
jj
∆=  and substituting this into the last expression we 

find an equation for unknowns 
jÎ , as stated in the proposition.  

Note that a stationary equilibrium can be viewed as both open- and closed-
loop equilibrium. From Proposition 4.44 it follows that, if competing firms 
are able to cooperate in setting their one-time investments, then the firms 
can reach the stationary Nash equilibrium in no-time and stay there 
infinitely long as summarized in the following theorem. 
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Theorem 4.4. Assume that at some point of time t=t* there exists a sustain-

able level of the capital K(t*). Let j
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jIjj

j
I

iC

K

tlKf
tp ϑ

θ
=

∂

−∂

∂
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If K(t*)= K , then there exists the pair of strategy sets: static investment 

{Ijn(t)= ji , j=1,..,N} and employment {Ljn(t)= )(tl j , j=1,..,N}, 0≥t  which 

is a Nash equilibrium in the supply chain investment and labor force 

differential game for *tt ≥ .   

Long-Run Cooperation and the Centralized Solution 

In this section we shall consider a centralized, supply chain co-investment 
strategy, which turns out, expectedly, to be different than the Nash strategy 
obtained earlier. In this organizational mode the supply chain “controller” 
will dictate to member firms how much to invest in infrastructure to maxi-
mize centralized profits. Subsequently, we shall discuss inducement for 
firms to cooperate and thereby reach a sustainable centralized investment 
strategy in the long run. In particular an example will be treated in detail. 
The centralized supply chain investment problem is formulated as a 
control problem: 

∫∑
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,
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s.t. (4.210), 
whose Hamiltonian is: 
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where the co-state variable )(tψ is determined by 
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Maximizing the Hamiltonian with respect to investments, Ij(t), and labor, 
Lj(t), we note that the optimal employment remains the same as that of the 
non-cooperative game, (4.214) and (4.215), while the investment strategy 
now depends on a single co-state variable: 
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where ij(t) is determined by 
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This change implies that the optimal co-investment in the centralized 
chain is different from that for the corresponding decentralized chain. As 
with Proposition 4.42 we outline first the general case, summarized by 
Proposition 4.45 below. 
Proposition 4.45. If a(t), bj(t) and ij(t), j=1,..,N satisfy the following system 

of equations for 0≥t , 
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then, the strategy pair {Ij*(t)=ij(t), j=1,..,N} and {Lj*(t)=lj(t), j=1,..,N}, 

0≥t  is optimal for the centralized supply chain problem (4.228) and 

(4.210).  

Coordination 

The centralized optimal solution is, of course, more profitable. As a result, 
a centralized investment strategy may be desirable but it may also be difficult 
to implement. A sustainable cooperative solution where the profits of centra-
lization “are appropriately” distributed among firms would provide a self 
enforceable procedure that allows the implementation of such a solution. 
To attain such a self enforced cooperation we consider a special static-
investments case. Our results are summarized by Proposition 4.46 below 
and by some examples. 
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Proposition 4.46. Let j
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If K0= K̂ , then there exists the pair of strategy sets: static investment {Ij*(t)= 

jî , j=1,..,N} and employment {Lj*(t)= )(ˆ tl j , j=1,..,N}, 0≥t  which is optimal 

for the centralized supply chain problem (4.210) and (4.228).  

Proof: Consider the solution for the state and co-state variables, which is 

characterized by a constant level of capital K(t)= K̂ : 
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This solution is optimal if lj(t) and ij(t) satisfy (4.214) and (4.216), 
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 is constant then the capi-

tal and the investment policies are constant as well and are given by K̂  
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, as stated in this proposition. Finally, we straightforwardly 

verify the boundary condition, =
∞→

)(lim t
t

ψ 0
)ˆ)1((

lim
1

=
∂

−∂ −

=
∞→ ∑ tr

N

j

jIj

t

je
I

iC θ
.  

Setting rj=r for j=1,..,N for comparing Proposition 4.43 and Proposition 
4.46, we observe that the only difference is that instead of the equation, 
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determined by Proposition 4.43, the following equation results from 
Proposition 4.46, 
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Consequently, we can conclude that the difference between a centralized 
and a decentralized supply chain is that in a centralized supply chain, invest-

ments by each firm are proportional to the total supply chain production 

rate per capital unit. On the other hand, in a decentralized supply chain, 

investments by firms are only proportional to firms’ production rate per 

capital unit. Thus, the more firms cooperate and invest proportionally to 

the overall supply chain production rate, the closer the decentralized invest-

ment strategy is to the centralized one. The incentive for such cooperation 
is evident: firms should share in the total supply chain profits such that their 
profit will increase comparatively to the non-cooperative (decentralized) 
solution. An example to this effect is considered next. 

Example 4.10.  
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found in Example 4.8. Next, taking into account (4.234) and Ki
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Proposition 4.46, we obtain the algebraic system of N+1 equations in N+1 
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Note in this case that subsidizing investments in a centralized supply 
chain can provide the same results (or better) as those obtained for a decen-

tralized supply chain, i.e., 0
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Comparing the result of Example 4.10 with that of Example 4.8, we 
observe that if cIj=cI for j=1,..,N, the profit of the centralized supply chain 

is due to the fact that the optimal centralized chain capital K̂  increases N 

times and employment increases 
)1(
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βN  times compared to the decentra-

lized solution. This increase is provided by higher investment by each firm, j, 
in the centralized chain which is now proportional to the total weighted 

ratio of the price index and the labor cost, [ ]∑
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This however does not guarantee that if the firms decide to cooperate by 
investing as required by the centralized solution, then all firms will benefit 
individually without a reallocation of the overall supply chain profits.  
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In this chapter we consider firms which employ a periodic review policy 
and handle products characterized by a relatively short life-cycle, so that a 
single inventory update at a predetermined point on the production horizon 
(i.e., two-period approach) may suffice to identify demand over the remain-
ing part of the production horizon. Fisher et al. (2000) reported an example 
of this approach in the apparel industry where highly accurate demand 
forecasts were made after observing only 11% of demand. Fisher and Raman 
(1996) reported further examples in which very accurate forecasts were 
obtained after observing 20% of demand.  

5.1 TWO-PERIOD INVENTORY OUTSOURCING 

Large manufacturers are continuously striving to reduce inventory costs  
related to both raw materials and finished goods. In this chapter we address 
inventory outsourcing to a selected distributor or large retailer as one way 
of reducing inventories. Specifically, we consider a supply chain which  
involves a single producer or manufacturer and a distributor. The producer 

WITH PERIODIC REVIEW 

IN AN INTERTEMPORAL FRAMEWORK 

5 SUPPLY CHAIN GAMES: MODELING 

The point of update is assumed to be chosen from previous experience 

and may generally involve different considerations, such as the change from 

high- to off-season, expected customer fatigue towards the product, or the 

impact of competitors catching up with production of a similar product. As 

a result, demand realization determined for the second part of the production 

horizon may be different from that observed for the first part. In contrast to 

the previous chapter, where customer demand along with inventories was 

observed either continuously or only by the end of production horizon, we 

assume here that an update is possible before the end of the horizon and 

that the probability distribution of demand for the second part of the pro-

duction horizon depends on demand realization over the first part of the 

production horizon (see also Kogan et al. 2004, 2007; Kogan and Herbon 

2007).  
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has a small warehouse characterized by a fixed cost which affects neither 
optimal production nor inventory policy. Instead, the distributor handles 
just-in-time all inventory-related operations, including transportation from 
the producer to the distributor’s warehouses and to customers. The distri-
butor sets a price, h+(t), for handling product units, while the producer decides 
on the number of products, u(t) to produce and store X+(t) at the distribu-
tor’s warehouse during the production horizon, T. Since both parties are 
operating constantly (producing and handling inventories), they are conti-
nuously incurring related costs even though the exact demands are unknown 
until a certain point of time where the inventories are reviewed and the 
demand is updated. 

Exogenous demands and the following inventory dynamics characterize 
the periodic review, production control problem:  

i
dtutX −= )()(& , X(0) is given, Tt ≤≤0 , 

i=1 for τ<≤ t0  and i=2 for Tt <≤τ ,                   (5.1) 

where demand rate di is a random variable which has a constant realization 
D1 before a point of review, t=Ĳ, and a constant realization after Ĳ , D2. 
Both realizations are known only by time t=Ĳ, 0<Ĳ<T and are not necessar-
ily equal. Exact inventory level is observed from time t=Ĳ. We assume that 
the demand at the second part of the production horizon depends on that 
realized at the first part and denote the probability density functions as fi(.) 
and the corresponding cumulative functions as Fi(.), i=1,2, where  

f1(D1) and F1(a)= ∫
a

dDDf
0

111 )(  

 are univariate distribution functions; 

f2(D2|D1) and F2(a|D1)= ∫
a

dDDDf
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are conditional distribution functions. 
The production control is bounded 

Utu ≤≤ )(0 .    (5.2) 

The producer’s goal is to minimize expected inventory-related costs 
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where 

C(X(t))=h
+(t)max{X(t),0}+h

-max{-X(t),0},  (5.4) 

Producer’s Problem  
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h
+(t)- is the unit inventory holding cost and h

-- is the unit backlog cost. 
Henceforth we assume that the inventory unit cost may change or be recon-
sidered only once. This can occur only at a point of inventory review, t=Ĳ, 
i.e., 
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τ
 

In what follows, we assume that the probability distributions fi(.) and 
Fi(.) are continuously differentiable functions and that demand does not 
exceed the production capacity, 0 ≤ di ≤ U. The latter assumption does not 
affect the approach and is made to reduce the number of awkward mathe-
matical expressions.  

Consider the second time interval [Ĳ, T]. At this interval, problem (5.1)-
(5.4) takes the following deterministic form: 

min))((det →= ∫
T

dttXCJ
τ

   (5.5) 

s.t. 

2)()( DtutX −=& , Tt ≤≤τ , X(Ĳ) is given, 

Utu ≤≤ )(0 . 

An optimal solution for problem (5.5) and thus the best producer’s  
response to an inventory holding price h+(t) can be straightforwardly found 
without applying any specific optimization technique. It is formalized in 
the following two propositions. Proposition 5.1 treats the case that occurs 
when there is an inventory surplus at the beginning of the second period. 

Proposition 5.1. Let X(Ĳ) ≥ 0, then the optimal solution for problem (5.5) 

and the optimal value of the objective function are 

If D2
τ

τ
−

<
T

X )(
, then u(t)=0 for Tt ≤≤τ and  

Jdet= ))(
2

))((( 22

2 τττ −−−+ T
D

TXh , 

otherwise, if 2

)(
D

T

X
≤

−τ
τ

, then u(t)=0, 
2

)(

D

X
t

τττ +<≤  and u(t)= D2 for 

Tt
D

X
≤≤+

2

)(ττ , and  

Deterministic Component of the Problem 
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Jdet=
2

2

2
2

)(

D

X
h

τ+ . 

Proof: The minimum value of the objective function of problem (5.5) is 

obviously zero which is attainable only when 0)( ≡tX . Thus, if 2

)(
D

T

X
≤

−τ
τ

, 

there does not exist a better control than u(t)=0 for 
2

)(

D

X
t

τττ +<≤  and 

u(t)=D2 for Tt
D

X
≤≤+

2

)(ττ , so that 0)( =tX  for Tt
D

X
≤≤+

2

)(ττ . Since 

this provides zero cost over interval Tt
D

X
≤≤+

2

)(ττ  and no production, 

u(t)=0, for 
2

)(

D

X
t

τττ +<≤ , inventory X(t) can be deleted to zero as fast as 

possible. Any increase of such a control at a time point t, 
2

)(

D

X
t

τττ +<≤  

With the found optimal solution, we next calculate the optimal value for 

the objective function. That is, for D2
τ

τ
−

<
T

X )(
, we have 

Jdet= ∫ −−+
T

dttDXh
τ

ττ ))()(( 22 = ))(
2

))((( 22

2 τττ −−−+ T
D

TXh . 

Otherwise, 

Jdet= ∫
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+ −−
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22 ))()((
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τ
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2
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)(
))
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(
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D

X
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D

XD

D

X
h

τττ ++ =− .   

The following proposition deals with the case of inventory shortage 
when there is one period to go. 

would result in increased inventory holding cost of Jdet and reduce the  

period during which 0)( ≡tX . Similarly, since no production u(t)=0 for 

Tt ≤≤τ  is optimal when the demand is too low relative to the available 

inventory, D2
τ

τ
−

<
T

X )(
, no shortage can occur. Production at a time point 

can only increase the holding cost.  
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Proposition 5.2. Let X(Ĳ)<0, then the optimal solution for problem (5.5) 

and the optimal value of the objective function are 

If D2
τ

τ
−

+<
T

X
U

)(
, then u(t)=U for 

2

)(

DU

X
t

−
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X
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, 

otherwise if D2
τ
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+≥
T

X
U

)(
, then u(t)=U for Tt ≤≤τ and  

Jdet= ))(
2

))((( 22 τττ −
−

+−− − T
DU

TXh . 

Proof: The proof is similar to that of Proposition 5.1. This time, we initially 
have a shortage. The fastest way to get rid of it is to produce as much as pos-
sible, u(t)=U, until either the end of the production horizon or X(t) attains 
zero, which is the most desirable inventory level.  

The optimal value then for the objective function is D2
τ

τ
−

+<
T

X
U

)(
. 

Jdet= =−−+− ∫
−
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−
2
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Otherwise, 

Jdet= =−−+−∫ −
T

dttDUXh
τ

ττ )))(()(( 2 ))(
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))((( 22 τττ −
−

+−− − T
DU

TXh .  

Given an optimal solution over the second interval [Ĳ ,T], we are now inter-
ested in an optimal solution and accordingly, the best producer’s response 
over the first time interval [0, Ĳ]. First we split the objective function (5.3) 
into two parts with respect to the two periods: 

⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
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p
dttXCEdttXCEdttXCEhuJ

τ
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))(())(())((),(
00

. (5.6) 

Applying conditional expectation and accounting for equations (5.1) and 
(5.4) we have 

Stochastic Component of the Problem 
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Using Propositions 5.1-5.2, the last term in (5.7) can be readily determined 
as a sum of Jdet obtained for each particular case multiplied by the correspon-
ding probability. Specifically, from Proposition 5.1 for X(Ĳ) ≥ 0, we have 
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Similarly, from Proposition 5.2 we have for X(Ĳ)<0: 
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+=τ )0()( XX≤ D . Taking into account equation (5.1), 

, which by definition of the demand distribution  f (.),
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Consequently, 
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Let us introduce a new variable, Y(t): 

)()( tutY =& , Y(0)=X(0), τ≤≤ t0 .  (5.9) 

Then, by substituting ∫ −+=
τ

ττ
0

1)()0()( DdssuXX =Y(Ĳ)-D1Ĳ into (5.8) and 

taking into account (5.9), the objective function (5.7) takes the following 
form 
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We thus proved the following theorem. 
Theorem 5.1. Control u(t), which is optimal for deterministic problem 

(5.5) when Tt ≤≤τ and for deterministic problem (5.2),(5.9)-(5.11) when 

τ<≤ t0  is optimal for stochastic problem (1)-(4) for Tt ≤≤0 .  

Problem (5.9)-(5.11) and (5.2) is a canonical, deterministic, optimal con-
trol problem which can be studied with the aid of the maximum principle. 
Since all constraints are linear, the maximum principle-based optimality con-
ditions are not only necessary but also sufficient if the objective function 
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(5.10) is convex. Moreover, this problem has a unique solution if the  
objective function is strictly convex, which evidently holds if  

0
)(1 >

∂
∂

D

DF
 and 0

))((
2

2

>
∂

∂
Y

Y τϕ
. 

Accordingly, we next use the maximum principle by first constructing the 
Hamiltonian 
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t

tY

ψ+−+−−= ∫∫ −+ , (5.13) 

where the co-state variable )(tψ  is determined by the co-state differential 

equation 
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H
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with boundary (transversality) condition 
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τ
τϕψ
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Y
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∂
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−= .    (5.15) 

According to the maximum principle, the optimal control maximizes the 
Hamiltonian, that is, 

⎪
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We resolve the ambiguity of the third condition from (5.16) in the follow-
ing proposition. 
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+
=
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h
F

1

1 β  and 0)( =tψ  at a measurable inter-

val,τ . If ȕ≤ U, then Y(t)=ȕt and β=)(tu  for τ∈t . 

Proof: Differentiating the condition 0)( =tψ  over τ  and taking into account 

(5.14), we find 
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Thus 
t

tY )(
=β  and, therefore, Y(t)=ȕt and β== )()( tutY&  for τ∈t .  

We next introduce two switching points ta and tb which satisfy 
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                  (5.12) 

Proposition 5. 3.  Let 
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respectively and assume that the production system has sufficient capacity, 
i.e., ȕ≤ U.  

Similar to the optimal solution for the second period, an optimal solu-
tion for the first period can be structured into a number of cases depending 
on the parameters of the production system. We study first two general cases 
of a non-negative initial inventory level which are described in the follow-
ing two propositions (see Figures 5.1 - 5.4). 

Proposition 5.4. Let X(0) ≥ 0 and βτ<)0(X . If 
β
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t

a
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, then the optimal production control is 
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X
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Proof: Consider the following solution for the state variables 

u(t)=0, Y(t)=X(0) for 
β
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X
t <≤ ; u(t)=ȕ, 

Y(t)= ȕt for 
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and co-state variables 
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If this solution is feasible and satisfies optimality conditions (5.16), then it 
is optimal.  

The feasibility, 
β

)0(X
t

a
> and 0

)(

))((
)()( <

∂
∂

−+= aa tUtY
Y

Y
τβττ

τϕ
, is imposed by 

the statement of this proposition. The optimality conditions are verified 
straightforwardly. Specifically, it is easy to observe that from βτ<)0(X  and 
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and therefore u(t)=ȕ. 

Note that the optimal control described in Proposition 5.4 consists of three 

different trajectories. If the feasibility requirement 0
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is not met, then the third trajectory implies no-production instead of pro-
duction at maximum rate as stated in the following proposition. 

Proposition 5.5. Let X(0) ≥ 0 and βτ<)0(X . If 
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, and 

u(t)=0 for τ≤≤ tt
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.      

Similarly we can state the two general cases when the initial inventory 
level is negative as shown in the following two propositions (see Figures 
5.3-5.4).Proofs for Proposition 5.5 as well as for the next two propositions 
are similar and therefore omitted. Of course, special cases readily emanate 
from Propositions 5.4 and 5.5 when one of the switching points or both 
vanish.  

Proposition 5.6. Let X(0)<0 and )()0( βτ −−> UX . If 
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, then the optimal production control is 
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ψu(t)=0, from (5.16) holds. Similarly, 

< t ≤ τ  and thus the first optimality condition, u(t)=U, from 

(5.16) holds. The third condition from (5.16) is explicit,ψ (t) = 0  for 
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u(t)=U for 
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Figure 5.1. Optimal control over the first period for X(0)>0 when 0
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Figure 5.2. Optimal control over the first period for X(0)>0 when 0
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Figure 5.3. Optimal control over the first period for X(0)<0 when 0
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Figure 5.4. Optimal control over the first period for X(0)<0 when 0
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Example 5.1 

In this example we derive explicit equations for 
)(

))((
)(

τ
τϕψ

Y

Y
T

∂
∂

−=  and 

))(( τϕ Y . The example is motivated by the goods which have a short life-

cycle during which it is likely that the demand has a single realization, i.e., 
D1=D2, which is estimated by time Ĳ of inventory review. Therefore, after 
deriving a general optimal solution, we focus on the example which is 
based on the conditional density function 

f2(D2|D1)=į(D2-D1), 

where į(D2-D1) is a Dirac function. When substituting this conditional dis-
tribution function into equation (5.11), ))(( τϕ Y  simplifies to: 

 
 
 
 
 
 
 
 

Ĳ tb -X(0)/(U-ȕ) 

ȕ 

u(t) 

)(tψ

Y(t) 
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This affects only boundary condition (5.15) as follows 
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The distributor handles at each time point t all inventory-related operations. 
For each time unit of this service, the distributor charges the producer per 

Distributor’s Problem  
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item holding cost, h+(t).The distributor’s goal is to minimize his expected 
cost (or, which is the same in this case, to maximize his profit): 
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s.t. 
(5.1)-(5.2) 

Mthm ≤≤ + )( ,   (5.23) 

where m is the distributor’s marginal cost and M is the maximum inventory 
holding cost so that the producer will not explore the market for another 
competing distributor. 

Using the same approach as in the previous section, we first analyze the 
deterministic part of the problem, i.e., when there is only one period to go. 

Consider time interval [Ĳ, T]. At this interval, problem (5.1)-(5.2), (5.22) 
and (5.23) takes the following deterministic form: 

min)()( 2det →−= ∫ ++
T

dttXhmI
τ

   (5.24) 

s.t. 
(5.1),(5.2) and (5.23). 

An optimal solution for problem (5.24) and thus the best distributor’s 
response to any producer’s production and inventory policy is straightfor-
ward. Indeed, the dynamic equation (5.1) depends neither on h+(t) explic-
itly, nor the switching points in Propositions 5.1 and 5.2. As a result, the 
optimal solution for this problem is trivial, which is to charge the producer 

for handling the inventories as much as possible, Mh =+
2 . Similar to Pro-

positions 5.1 and 5.2, the objective function value is then 
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X
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τ+−  if )()(0 2 ττ −≤< TDX .  (5.25) 

In what follows, we summarize these observations with the aid of the fact 
that the optimal production policy, u(t), from Propositions 5.1 and 5.2 can 
be presented in a time-dependant (integral) feedback form, ʌ*(X(Ĳ),t). 

Deterministic Component of the Problem 
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5.2 GAME ANALYSIS 

The game between the producer and the distributor is as follows. At each 
period, the distributor selects a price, h+, to charge the producer for handling 
inventories during one period while the producer decides how many products 
u(t) to produce and outsource (store) X+(t) at each time point t of period. 
The manufacturer then produces the products and the distributor handles 
the surplus.  

We consider different relationships between the players – the supply chain 
parties. The equal strength of the parties characterizes one case in which 
the decisions are made simultaneously (Nash strategy). The other cases are 
due to the presence of a leader (Stackelberg strategy). If the leader is a dis-
tributor who sets a charge for carrying inventories, then the manufacturer 
is a follower who responds to the charge with a production policy and, 
consequently, an inventory outsourcing policy as well. A reverse situation 
is also possible, when the manufacturer is the leader. Since an optimal solu-
tion of the producer does not depend on the distributor’s charge at the last 
period (see Propositions 5.1 and 5.2), the equilibrium at this period is straight-
forward, regardless of leadership in the supply chain, as stated in the fol-
lowing proposition. 

Proposition 5.8. Given inventory level X(Ĳ), equilibrium in a two-period 

inventory outsourcing differential game for Tt ≤≤τ does not depend on 

whether there is a leader in the supply chain or not. Specifically, a Nash 

equilibrium as well as a Stackelberg equilibrium when the distributor is 

the leader and when the producer is the leader are described by the same 

unique production feedback policy u(t)=ʌ*(X(Ĳ),t), 
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and inventory holding price Mh =+
2 .   

Note, that if full commitment and no flexibility characterize the contract 
between the manufacturer and the distributor, then the inventory holding 
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price cannot be reconsidered at the inventory review point. Thus the sto-
chastic component of the problem determines the equilibrium price, which 

will be ++ = 12 hh  instead of Mh =+
2  . 

Given an optimal solution over the second interval [Ĳ ,T ], we are now inter-
ested in an optimal solution and the best distributor’s response over time 
for the first interval [0, Ĳ] of problem (1),(2), (22) and (23). Applying con-
ditional expectation to the objective function (5.22) we obtain: 
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Taking into account equation (5.9) and  
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objective function (5.26) transforms into 
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As with Theorem 5.1, we conclude with the following theorem. 

Stochastic Component of the Problem 
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Theorem 5.2. Control h+(t), which is optimal for deterministic problem 

(5.24) when Tt ≤≤τ and for deterministic problem (5.2), (5.9), (5.23), 

(5.28) and (5.29) when τ<≤ t0  is optimal for stochastic problem (5.1)-

(5.2), (5.22) and (5.23) for Tt ≤≤0 .   

Similar to the deterministic case, when Tt ≤≤τ , we readily observe 

from (5.1),(5.28)-(5.29) that the inventory dynamics do not depend on 

price +
1h  unless the distributor is the Stackelberg leader and is therefore 

able to take into account the best producer’s response to a price he offers. 

Since function (5.28) is linear in +
1h , in cases where there are no leaders or 

the producer is the leader, the optimal distributor’s response is again to 
charge the producer as much as possible for handling his inventories, 

Mh =+
1 . 

Proposition 5.9. Given inventory level X(0), if 0
))((
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>
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∂
Y

Y τϕ
, 0

)(1 >
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∂
D

DF
, 

and that the supply chain has no leader or the producer is the leader, then 

the production policy determined by Propositions 5.4-5.7 and inventory 

holding price Mh =+
1 constitute a unique Nash equilibrium as well as a 

Stackelberg equilibrium under the producer’s leadership in the two-period 

differential inventory outsourcing game for τ≤≤ t0 .  

The situation changes if a large distributor is the leader and the manu-
facturer is the follower. Then the optimal manufacturer’s production policy 
defined in Propositions 5.4-5.7 is substituted into the distributor’s problem 
(5.2), (5.9),(5.23), (5.28) and (5.29). This is to say that, in such a case, the 
distributor assumes production u(t) to be endogenous. Propositions 5.4-5.7 
identify four general types of optimal solutions and a number of sub-cases. 
These cases depend on the system parameters and whether the manufac-
turer has an initial shortage of products or a surplus. Each of these cases 
thus induces a corresponding equilibrium. To avoid awkward expressions, 
we here focus only on two cases, both of which are due to the standard  
assumption that the initial inventory level is zero, X(0)=0. Then the first 
switching point in Propositions 5.4-5.7 vanishes and the best producer’s 
response takes the following form. 

Proposition 5.10. The optimal production policy is: 

Low demand expectation 
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To find the Stackelberg equilibrium, we substitute (5.9) along with the 
first production policy from Proposition 5.10 (induced by a low demand 
expectation) into (5.28) and (5.29). This converts the dynamic problem (5.2), 
(5.9), (5.23), (5.28) and (5.29) into a static one, to which we can apply the 
first-order optimality condition,  

0
1

=
∂
∂

+h

J
d .    (5.30) 

Let us denote a solution of equation (5.30) in 
+

1h as Ȗ. We thus conclude 

with the following proposition. 

Proposition 5.11. Given inventory level X(0)=0, 0
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 and Mm ≤≤ γ , then the production policy 

u(t)=ȕ for 
b

tt <≤0 , u(t)= ,for 0 b τ≤≤ tt  and inventory holding price 
+

1h = Ȗ constitute a unique Stackelberg equilibrium in the two-period dif-

ferential inventory outsourcing game for τ≤≤ t0 .   

Similarly, we can determine an equilibrium for the case of high demand 
expectation by substituting the corresponding production policy from 
Proposition 5.10 into equations (5.28) and (5.29). Denoting the solution to 
equation (5.30) for such a case as ȡ, we conclude with the following 
proposition: 
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Proposition 5.12. Given inventory level X(0)=0, 0
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and Mm ≤≤ ρ , then the production policy u(t)=ȕ for 
a

tt <≤0 , u(t)=U 

for , τ≤≤ tt
a

 and inventory holding price ρ=+
1h  constitute a unique 

Stackelberg equilibrium in the two-period differential inventory outsourc-

ing game for τ≤≤ t0 .    

The following example illustrates Proposition 5.11 for specific probability 
distribution functions. 

Example 5.2.  

Consider a uniform distribution, f1(D)=1/A, A<U and f2(D2|D1)=į(D2-D1). 
Then the objective function (5.28) takes the following form: 
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where the switching point tb is a function of h+ as defined by equation 
(5.19). Using the same uniform distribution equation (5.19) takes the fol-
lowing form 
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Thus equation (5.32) takes the following form 
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Although equation (5.33) is transcendental and cannot be resolved expli-

citly in tb, one can easily derive a closed-form expression for 
+

1dh

dt
b  by impli-

cit differentiation of (5.33) with respect to +
1h and assuming that tb depends 

on +
1h . Then, given +
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b , one can straightforwardly find the optimal price 
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If the contract between the parties does not allow for any change in  
inventory holding price within the production horizon, then h1

+ is set equal 
to h2

+ when solving (5.34). Otherwise, if a change is possible at the end of 
the first period (a contract with flexibility), then h2

+ should be set at maxi-
mum, i.e., h2

+=M (see Proposition 5.8) when solving (5.34). This implies 
that the equilibrium price depends not only on leadership in the supply 
chain, but also on the type of contract.  

Furthermore, we note that equation (5.34) is a closed-form expression 
for Stackelberg price h1

+ , where tb is determined by (5.33). Thus, equa-
tions (5.33) and (5.34) form a system of two algebraic equations in two 
unknowns h1

+and tb. Once h1
+ has been found, it is then verified that 

Mhm ≤≤ +
1  and that τϕ −<

∂
∂

h
Y

)0(
and 0

)(
>

∂
∂

Y

βτϕ
, as required by 

Proposition 5.11.    
Finally, the cases defined in Proposition 5.10, which are described by 

boundary controls and no switching points, are immediate: the equilibrium 
charge should be at the maximum value. 

We next compare the competitive solutions found for the dynamic dif-
ferential game with a centralized approach. 

If the supply chain is vertically integrated, then an inventory holding price 
is a transfer cost which does not affect a centralized solution. This implies 
that the centralized problem is identical to the producer’s problem, the 
only difference being that the inventory holding price is replaced with the 
distributor’s marginal cost m. With respect to Proposition 5.8, which states 
that the optimal production policy at the second period is independent of 
the inventory holding price, we readily conclude with the following result. 

Proposition 5.13. In competition of the two-period differential inventory 

outsourcing game, the producer’s production quantity u(t) is identical to 

the system-wide optimal solution over the second period, i.e., Tt ≤≤τ .  

This result implies that the distributor, by choosing the maximum hold-
ing price to charge the producer for each product unit, affects only his 
profit share for Tt ≤≤τ , but the overall profit of the supply chain remains 

System-wide Optimal Solution 
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the same as in the corresponding centralized system. The situation is, how-
ever, different at the first period, i.e., when τ≤≤ t0 . If the distributor 

makes profit, m>h+, then the production rate u(t)=ȕ, ( )
−+

−

+
=

hh

h
F

1

1 β   

decreases, compared to the system-wide optimal rate determined by 

( )
−

−

+
=

hm

h
F *1 β . 

According to Proposition 5.14, the supply chain is perfectly coordinated at 
the second period Tt ≤≤τ , regardless of power asymmetry (leadership). 

During the first period, τ≤≤ t0 , however, double marginalization of ver-

tically competing firms impacts the system in a similar way to what was 
observed in single-period problems (Chapters 2 and 4). Evidently, the dis-
tributor, by setting the holding price equal to his marginal cost, h+= m, and 
charging, instead, a fixed transaction cost, converts the producer’s problem 
into the corresponding centralized problem, thereby ensuring the producer 
will follow the system-wide optimal production policy. Thus, as in many 
other cases of vertical competition, with the two-part tariff, the supply 
chain becomes perfectly coordinated during the first period as well. 
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6 SUSTAINABLE COLLABORATION IN SUPPLY 

CHAINS  

The intertemporal supply chain models presented in Chapters 4 and 5 focus 
on inventory, production and pricing relationships between a supplier and 
a retailer according to different types of demands. However, in reality, there 
are many other factors that affect members of a supply chain. For example, 
uncertainty can be associated not only with demands but also with produc-
tion yields. The firms may utilize common resources such as energy, raw 
materials, budget and logistics infrastructure, which can be limited or deli-
vered by a supplier of bounded capacity. Furthermore, the firms may choose 
to expand their outsourcing activities to include repair and maintenance 
operations rather than just production or inventory.  

In this chapter we extend our attention to broader issues and consider 
supply chains in which the parties collaborate to gain centralized control 
over decision-making. We are thus interested in reexamining system-wide 
optimal production and inventory policies to account for additional con-
straints and conditions imposed on supply chains. Special attention is paid 
here to production control of multiple manufacturers sharing limited sup-
ply chain resources. 

6.1 MULTI-ECHELON SUPPLY CHAINS WITH 

UNCERTAINTY 

This section addresses a multi-echelon, continuous-time extension to the 
classical single-period newsboy problem (for a review on the classical 
formulation and its extensions see, for example, Khouja 1999; Silver et. al. 
1998). Products flow from one echelon to the next. We assume that we 
don’t know the demand during the planning horizon, but we do know the 
cumulative demand at the end of the planning horizon. This is the same  
assumption made in classical newsboy problems discussed in Chapter 2. 
Forecast updates are not available along the horizon. The objective is to 
adjust the production rates during the planning horizon in order to mini-
mize total expected costs. The total costs include shortage or surplus costs 



occurring at the end of the planning horizon for the last downstream eche-
lon (as considered in the classical newsboy problem), as well as the surplus 
costs in the other echelons during the planning horizon. 

Problem formulation 

Consider a supply chain containing I vertically connected producers or 
manufacturers. The chain produces a single (aggregate) product-type to 
satisfy a cumulative demand D for the product-type by the end of a plan-
ning horizon, T. The product undergoes consecutive production and supply 
stages and thus transforms from a raw material to an end-product.  

The following differential equations describe this system: 

;1,..,2,1,0)0(),()()( 1 −==−= + IiXtututX
iiii

&  

,,0)0(),()( IiXtutX
iii

===&    (6.1) 

where )(tX
i

is the surplus level at the warehouse located after the i-th 

manufacturer (denoted mi ) ; )(tu
i

is the production rate of 
i

m ; )(tu
i

is the 

control variable whose value can be instantly set within certain bounds: 

IiUtu ii ,...,2,1,)(0 =≤≤ ,    (6.2) 

with 
i

U  being the maximal production rate of manufacturer i. The product 

demand D is a random variable representing yield amount of the product-
type and characterized by probability density )(Dϕ  and cumulative distri-

bution ∫=Φ
a

d
dDDa

0

)()( ϕ  functions respectively. For each planning hori-

zon T, there will be a single realization of D which is known only by time 
T. Therefore, the decision has to be made under these uncertain conditions 
before production starts. 

Equations (6.1) present the flow of products through a warehouse placed 
between two consecutive manufacturers. If the warehouse is intermediate, 
this flow is determined at each point of time by the difference between the 
current production rates of the two consecutive manufaturers. If the ware-
house is located after the last downstream manufacturer and is intended for 
the finished products, then the flow is determined by the production rate of 
the last manufacturer. The products are accumulated in this warehouse in 
order to be delivered to the customers at the end of the production horizon. 
The difference between the cumulative production and the cumulative 

demand, DTX
I

−)( , is the surplus level of the last manufacturer 
I

m .  

If the cumulative demand exceeds the cumulative production of 
I

m , i.e.,  

if the surplus is negative, a penalty will have to be paid for the lost sales. 
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On the other hand, if 0)( >− DTX
I

 an overproduction cost is incurred at 

the end of the planning horizon. Furthermore, inventory costs are incurred 

when warehouse levels of the manufacturers are positive, 0)( >tX
i

, 

i=1,2,..I. Negative warehouse levels are prohibited: 

0)( ≥tX
i

 i=1,2,…,I-1.   (6.3) 

Note, that (6.1) implies that 0)( ≥tX
I

 always holds. 

The objective is to find such controls )(tu
i

 that satisfy constraints (6.1)-

(6.3) while minimizing the following expected cost over the planning hori-
zon T: 

min))(())((
0

→⎥
⎦

⎤
⎢
⎣

⎡
−+= ∫∑

T

I

i

ii
DTXPdttXCEJ . (6.4) 

Similar to the previous chapters, linear and piece-wise linear cost func-
tions are used for the inventory and surplus/backlog costs respectively,  

)())(( tXctXC
iiii

= ,   (6.5) 
−−++ += ZpZpZP )( ,   (6.6) 

where },0max{ ZZ =+  and },0max{ ZZ −=− . 

Analysis of the problem 

Let us substitute (6.5) and (6.6) into the objective (6.4). Then, given prob-

ability density )(Dϕ  of the demand, we find:  

=−+

+−+=

∫

∫∫∑
∞

−

∞
+

dDDTXDp

dDDDTXpdttXcJ

I

I

T

i

ii

)()}(,0max{

)(})(,0max{)(

0

00

ϕ

ϕ

dDDTXDpdDDDTXpdttXc
TX

I

TX

I

T

i

ii

I

I

)())(()())(()(
)(

)(

00

ϕϕ ∫∫∫∑
∞

−+ −+−+ .(6.7) 

The new objective (6.7) is subject to constraints (6.1) - (6.3) which  
together constitute a deterministic problem equivalent to the stochastic 
problem (6.1)-(6.6).  

Proposition 6.1. Problem (6.1)-(6.3), (6.7) is a convex program.  

Proof: Since constraints (6.1)-(6.3) are linear, cost functions ))(( tXC
ii

 are 

linear and the sum of convex functions is a convex function, the proof is 
straightforwardly obtained by verifying whether the second term of objec-
tive function (6.7) 



dDDTXDpdDDDTXpR
TX

I

TX

I

I

I

)())(()())((
)(

)(

0

ϕϕ ∫∫
∞

−+ −+−=  

is convex with respect to )(TX I : 

=
∂

∂
2

2

)(TX

R ( ) ( )
0

)(

)(
≥

∂
Φ∂

+ −+

TX

TX
pp

I

I .    

To study the equivalent deterministic problem, we formulate a dual pro-

blem with co-state variables )(t
i

ψ  satisfying the following co-state equations 

 1,...,2,1 ),()( −=−= Iitddtctd iii µψ and 
II

ct =)(ψ&   (6.8) 

with transversality (boundary) constraints: 

1,...,2,1,0)0( −==+ IiTiψ ;

)(

)())(()())((

)(
)(

)(

0

TX

dDDTXDpdDDDTXp

T
I

TX

I

TX

I

I

I

I

∂
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−∂

−=
∫∫
∞

−+ ϕϕ

ψ = 

dDDpdDDp
TX

TX

I

I

)()(
)(

)(

0

ϕϕ ∫∫
∞

−+ += . 

That is, 

)))((1())(()( TXpTXpT III Φ−+Φ−= −+ψ .  (6.9) 

Left-continuous functions of bounded variation, )(t
i

µ , are due to the 

state constraint (6.3) and present possible jumps of the corresponding co-

state variables when 0)( =tX
i

. These jumps satisfy the non-negativity 

0)( ≥td
i

µ                                          (6.10) 

and complementary slackness condition 

∫ =
T

ii
tdtX

0

0)()( µ .   (6.11) 

The Hamiltonian is the objective for the dual problem, which is maxi-
mized by the optimal controls according to the maximum principle: 

max)()())()(()()( 1 →+−+−= +
≠
∑∑ tuttututtXcH

IIii

Ii

i

i

ii
ψψ .    (6.12) 

By rearranging only control dependent terms of the Hamiltonian we  
obtain: 

)()())()()(()( 11

1

1 ttutttutH
i

iii
ψψψ +−=∑

>
− . 
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Since this term is linear in )(tu
i

, it can be easily verified that the opti-

mal production rate that maximizes H(t) is 

⎪
⎩

⎪
⎨

⎧

<∀<−

−

−

−

−

IR).-regime   (idle 1=0,)(and1> ,0)()( if ,0

)( if ,

1

1

1

ititt

tU

iii

iiii

iiii

i

ψψψ

ψψ

(6.13) 

Accordingly, under the optimal control, the ith manufacturer mi can either 

be idle (denoted IRm
i
∈ ), working with its maximal production rate 

( PRm
i
∈ ), or enter the singular regime ( SRm

i
∈ ). Since the primal prob-

lem is convex (see Proposition 6.1), the maximum principle provides not 
only the necessarily, but also the sufficient conditions of optimality. There-

fore, all triplets ))(),(),(( ttXtu
iii

ψ that satisfy the primal (6.1)-(6.3), the 

dual (6.8)-(6.12), and (6.13) will minimize the objective function (6.7).  
We next study the singular regime as its underlying controls are not 

uniquely determined in optimality conditions (6.13). To ensure the unique-
ness of the solutions over this regime, we need the following assumption:: 

1+≠
ii

cc  for all Ii <≤1 . 

Proposition 6.2. (i) If SRm
i
∈  in a time interval τ  then 0=)(1 tX

i−  

and/or 0=)(tX
i

.(ii) If in a time interval τ   110,=)( −<≤ IitX
i

then 

),()( 1 tutu
ii += and if 0)(, == tuIi

i
. 

Proof: By definition, in SR )()( 1 tt
ii −=ψψ , τ∈t . Differentiating this equal-

ity we have:  

1 ),()( 1 >= − itdtd
ii

ψψ ,                                (6.14) 

.1,0)( == itd
i

ψ    (6.15) 

By substituting the corresponding co-state equations, we then find: 

)()( 11 tddtctddtc
iiii −− −=− µµ , Ii > ; 

0)( =− tddtc
ii

µ , 1=i . 

By taking into account (6.10) and (6.11), we conclude that the last equa-

lities can be satisfied if and only if 0=)(1 tX
i−  and or 0=)(tX

i
 for Ii ≠ . 

The second statement of this proposition is immediately observed from 
the system equation (6.1).    

 
 

u (t) = w∈[0,U ], if  ψ (t)−ψ

(t)>0, ∀i >1 andψ (t) >0, i =1 (production r e  gim e -PR);

(t) =0, ∀i >1andψ (t) =0, i =1 (singula r r egime-SR)



System-wide optimal solution 

To study optimal behavior of the supply chain system, we need to distin-
guish between two types of manufacturers and warehouses. The distinction 
is due to the capacity limitations of the manufacturers. Similar to Chapter 4 
we define a restricting manufacturer. 

Definition 6.1. Manufacturer i′ , is a restricting manufacturer if either 

Ii =′  or 
ii

UU <′ , for all IiiiI ≠′′>≥ , .    

In addition, we identify a restricting warehouse. 

Definition 6.2. Warehouse placed after manufacturer ′i , is a restricting 

warehouse if either Ii =′  or 
ii

cc <′ , for all IiiiI ≠′′>≥ , .  

Similar to the deterministic multi-echelon supply chain discussed in 
Section 4.3.2, the most important question is to derive the optimal behavior 
of the restricting manufacturers. The behavior of the non-restricting manu-
facturers followed by non-restrictive warehouses, is completely determined 
by the restricting manufacturers. According to Definitions 6.1 and 6.2, inven-
tory costs and manufacturer maximum production rates determine whether 
the corresponding manufacturers and/or warehouses are restricting. These 
notions provide an important insight on ranking manufacturers in terms of 
their optimal control. Based on this insight, we assume in what follows that 
the supply chain consists only of restricting manufacturers. Once an optimal 
solution for such a system is found, we then generalize it for all types of 
manufacturers. Moreover, in order for the problem to be tractable, we 

assume: if manufacturer ′i , is a non-restricting manufacturer, then its 
warehouse is also non-restricting. 

We now use a constructive approach to solve the problem. That is, we 
first propose a solution, and then we show that this solution is indeed  
optimal. To formalize the solution we denote by J the total number of  
restricting warehouses and by R(j), j=1,2,...,J their indexes.  

The optimal control policy we are proposing for each subset 

{ }
1)1(1)()( ,...,, +−−=

jRjRjRj
mmmS , R(0)=0, j=1,2,...,J of the restricting manu-

facturers is the following. 
Use the IR-PR (no production and then production at the maximum rate 

of 1)1( +−jR
m ) production sequence for 1)1( +−jR

m  and IR-SR (no production 

and then singular production at the maximum rate of 1)1( +−jR
m  with the 

same switching time 
j

t  for each im , i=R(j),R(j)-1,…,R(j-1)+2. 

This policy is more rigorously defined in the following. 
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Policy A: Consider a system with I restricting manufacturers, J restricting 

warehouses and J switching points, Tttt
J

≤≤≤≤≤ ...0 21 . The behavior 

}
1)1( +−jR

m , R(0)=0, j=1,2,...,J is:  

(i) 0)( =tu
i

 for 
j

tt <≤0 , 1)1()( +−=
jRi

Utu  for Ttt
j

≤≤ , i=R(j),R(j)-

1,…,R(j-1)+1.  

(ii) 0)( =tX
i

 for Tt ≤≤0 , i=R(j)-1,…,R(j-1)+1;  

0)()( =tX
jR

 for 
j

tt ≤≤0 , 0)()( >tX
jR

 for Ttt
j

<< , 0)()( =TX
jR

 for 

IjR ≠)( . 

(iii) )()( )1( tt
jRi −=ψψ , for j

tt ≤≤0 , )()(
jRi

ct =ψ& , for Ttt
j

≤≤ , 

)()( 10 tt ψψ = , i=R(j),R(j)-1,…,R(j-1)+1, 1>j ; )()( )1( tt
Ri

ψψ = , 

)1()(
Ri

ct =ψ&  for Tt ≤≤0 , 0)( 1 =t
i

ψ , i=R(1),R(1)-1,…,1, 1=j .  

We now show the proposed behavior for restricting manufacturers satis-
fies the co-state equations (6.8)-(6.11) and the maximum principle based 
optimality conditions (6.13).  

vides the optimal solution. 

Proof: First note that according to Policy A, 0)( =TX
i

 for i=1,2,…,I-1, 

which with respect to (6.10) and (6.11) implies that the transversality con-

straints 0)0( =+T
i

ψ  are satisfied with instant jumps )(Td
i

µ . 

Consider the first subset of manufacturers, { }
11)1()1(1 ,...,, mmmS

RR −= . 

According to (i) of Policy A, 0)( =tu
i

 for 10 tt <≤ , 1)( Utu
i

=  for 

Ttt ≤≤1 , i=R(1),R(1)-1,…,1. This control is feasible since the production 

system consists of only restricting manufacturers, that is 
i

UU <1  .  

Next, according to (ii) of Policy A, 0)( =tX
i

 for Tt ≤≤0 , i=R(1)-

1,…,1;  

0)()1( =tX
R  for 10 tt ≤≤ , 0)()1( >tX

R  for Ttt <<1 , 0)()1( =TX
R , which 

evidently satisfies the state equations (6.1) if 0)(1)1( =+ tu
R  for 20 tt <≤ , 

1)1(1)1( )( ++ =
RR

Utu  for Ttt ≤≤2 , as stated in Policy A(ii) and  

1)1(211 += RUtUt .   (6.16) 

Consider now a solution for the co-state variables. According to Policy 

A(iii), )()( )1( tt
Ri

ψψ = , 0)( 1 =t
i

ψ and )1()(
Ri

ct =ψ&  for Tt ≤≤0 , i=R(1), 

0)( 1 =t
i

ψ , 

Proposition 6.3. If all manufacturers are restricting, then Policy A pro-

{
1)()( ,...,, −=

jRjRj
mmSwe are proposing for each subset of manufacturers 



R(1)-1,…,1, 1=j , which meets co-state equations (6.8) for the determined 

behavior of the state variables. This also implies that 0)( <t
i

ψ  (idle regime, 

0)( =tu
i

 according to (6.13)) for 10 tt <≤ , and 0)( >t
i

ψ  (full production 

1)( Utu
i

=  according to (6.13)) for Ttt ≤≤1
, i=1. Furthermore, condition 

)()( )1( tt
Ri

ψψ =  satisfies the singular regime from (6.13), Proposition 6.2 

conditions for i=R(1),R(1)-1,…,1. Thus (6.1), (6.8)-(6.11) are satisfied and 
(6.12) is maximized.  

Similarly, by considering subsequent subsets of manufacturers, 

{ }
1)1(1)()( ,...,, +−−=

jRjRjRj
mmmS , j=2,...,J, one can verify that the proposed 

solution satisfies the state and co-state equations and the optimality condi-
tions (6.13) if the switching times are set as: 

1)(11)1( +++− =
jRjjRj

UtUt , Jj < .   (6.17) 

The only difference is that the last manufacturer I =R(J) does not have a 

predecessor and his switching point, 
1)1(

)(

+−

=
JR

I

J
U

TX
t  is determined so that 

)(TX
I

 satisfies the corresponding transversality condition (6.9).  

Based on Policy A, we can solve the two-point boundary value problem 
(6.1),(6.2),(6.8)-(6.11) to find the switching time points. 

We first note that Policy A(ii) condition 0)( =TX
i

 for i=1,2,..,I-1 along 

with (6.17) implies: 

1)1(

)(

+−

−=
jR

I

j
U

TX
Tt  for j=1,2,…,J.  (6.18) 

Then, by integrating the co-state equations (6.8) with boundary conditions 
from Policy A(iii), we find: 

)()()(
1

1)1( JI

Jj

jjjRI
tTcttcT −+−= ∑

≤<
−−ψ .  (6.19) 

Finally, by substituting (6.18) into (6.19) and taking into account the 
corresponding transversality condition from (6.9), we obtain the following 

equation in unknown 0)( =TX
I

: 

)(

)))((1())((

111

1)1(1 1)1(1)2(

)1(

TX

TXpTXp

U
c

UU
c

I

II

JR

I

Jj jRjR

jR

Φ−+Φ−

=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−+

+−≤< +−+−
−∑

. (6.20) 

Equation (6.20) allows determining optimal production or order quantity 

)(TX
I

 for the multi-echelon supply chain. Note, that by setting all inventory 
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costs at zero in equation (6.20), one can now obtain the classical, single-
stage newsboy problem solution: 

If 0=
i

c  for i=1,…,I, then 
−+

−

+
=Φ

pp

p
TX

I
))(( . 

We now study the effect of non-restricting manufacturers accompanied 
by non-restricting warehouses on the optimal behavior of the supply chain. 
The approach is similar to that for the restricting manufacturers. We denote 
by K the total number of the restricting manufacturers and by Q(k), k= 
1,2,…,K their indexes. Next, we propose an optimal control policy for each 

subset { }
1)1(2)(1)( ,...,, +−−−=

kQkQkQk
mmmS , Q(0)=0, k=1,2,...,K of the non-

restricting manufacturers as follows. 
If k>1, use SR (the singular production at the rate of adjacent upstream 

restricting manufacturer )1( −kQ
m ) for each im , i=Q(k)-1,Q(k)-2,…,Q(k-1)+1. 

If k=1, use SR (the singular production at the rate of adjacent downstream 

restricting manufacturer )(kQ
m ) for each im , i=Q(k)-1,Q(k)-2,…,Q(k-1)+1. 

This policy is more rigorously defined as follows. 
Policy B: Consider a system with I restricting manufacturers, J restricting 

warehouses and J switching points, Tttt
J

≤≤≤≤≤ ...0 21 . The behavior 

we are proposing for each subset of non-restricting manufacturers 

{ }
1)1(2)(1)( ,...,, +−−−=

kQkQkQk
mmmS , Q(0)=0, k=1,2,...,K is:  

(i) if k>1, )()( )1( tutu
kQi −= , otherwise )()( )( tutu

kQi
=  for Tt ≤≤0 , 

i=Q(k)-1,Q(k)-2,…,Q(k-1)+1; 

(ii) 0)( =tX
i

 for Tt ≤≤0 , i=Q(k)-1,Q(k)-2,…,Q(k-1)+1;  

(iii) if k>1, )()( )1( tt
kQi −=ψψ , otherwise 0)( =t

i
ψ  for Tt ≤≤0 , i=Q(k)-

1,Q(k)-2,…,Q(k-1)+1.  

We now show that the proposed behavior for non-restricting manufac-
turers satisfies the co-state equations (6.8)-(6.11), the maximum principle-
based optimality conditions (6.13), and does not effect the optimal behavior 
of the restricting manufacturers determined by Policy A. 

Proposition 6.4. If all restricting manufacturers satisfy Policy A and all 

non-restricting manufacturers satisfy Policy B, then these policies provide 

the optimal solution. 

Proof: The proof is straightforward. The solution described in Policy B 
satisfies Proposition 6.2, that is, it satisfies the system (6.8) – (6.11) and 
conditions (6.13) for the non-restricting manufacturers. Moreover, one can  
 



readily observe, that the co-state variables of non-restricting manufacturers 
for k>1 are simply identical to those for the adjacent upstream restricting 
manufacturers while the optimality conditions (6.13) for the restricting 

manufacturers do not change. Finally, copying for k>1, )()( )1( tt
kQi −=ψψ  

is feasible because of two facts: the assumption, which implies )1( −≥
kqi

cc  

and 0)( =tX
i

 for Tt ≤≤0 , which implies any jumps 0)( ≥td
i

µ of the 

co-state variables are allowed.   

Algorithm 

We summarize our findings with an algorithm. The algorithm is straight-
forward and immediately follows from Policies A and B as described below. 

INPUT: I; ic , 
i

U , i=1,…,I; −+ pp , . 

Step 1. Use Definitions 6.1 and 6.2 to determine and number restricting 
manufacturers Q(k), k=1,…,K and restricting warehouses R(j), j=1,…,J.  

Step 2. Consider only restricting manufacturers. Use (6.20) to calculate 

)(TX
I

. Form subsets { }
1)1(1)()( ,...,, +−−=

jRjRjRj
mmmS , R(0)=0, j=1,2,...,J.  

Step 3. Use equation (6.18) to calculate J switching points. Use Policy A 
to set the optimal solution for all subsets of the restricting manufacturers. 

Step 4. Consider all manufacturers. Form subsets of the non-restricting 
manufacturers 

{ }
1)1(2)(1)( ,...,, +−−−=

kQkQkQk
mmmS , Q(0)=0, k=1,2,...,K.  

Step 5. Use Policy B to set the optimal solution for all subsets of the 
non-restricting manufacturers. 

OUTPUT: Optimal controls )(tu
i

 for Tt ≤≤0 , i=1,2,…,I. 

From this algorithm we readily conclude with the following proposition. 

)(TX
I

 which satisfies equation (6.20), if 

T
U

TX

Q

I ≤
)1(

)(
, then problem (6.1)-(6.6) is solvable in O(I) time.  

Proof: According to Propositions 6.2-6.4, the solution presented by Poli-
cies A and B is optimal if the switching points determined by (6.18) are 

feasible, i.e., there is enough capacity to produce )(TX
I

 by the end of the  

 

Proposition 6.5. Given 
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planning horizon. The feasibility is straightforwardly provided by requir-

ing 01 ≥t . This inequality, by taking into account equation (6.18) and the 

fact that the first restricting manufacturer R(0)+1 is Q(1), results in 

T
U

TX

Q

I ≤
)1(

)(
, as stated in the proposition. Moreover, due to Proposition 6.1, 

this solution is globally optimal. Finally, provided that a solution can be 
found for the optimal order quantity equation (6.20), each step of the algo-
rithm evidently requires only O(I) operations.    

Remark. Proposition 6.5 estimates the complexity of solving problem 
(6.1)-(6.6) provided that an optimal order equation (6.20) can be resolved 
analytically. However, an analytical solution is not always available. One 
can readily observe that equation (6.20) is monotone in the unknown 

)(TX
I

, which implies that it can be easily solved numerically to any de-

sired precision.  

Consider the uniform distribution, 
⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise. 0,

;0for  ,
1

)(
dD

dDϕ . Then 

d

a
a =Φ )(  and equation (6.20) takes the following form: 

( )
1)1(1 1)1(1)2(

)1(

111
)(

+−≤< +−+−
−

−+

−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+
=

∑
JR

I

Jj jRjR

jR

I

U
c

UU
c

d

pp

p
TX . (6.21) 

To illustrate each step of the algorithm, we consider a small, five-echelon 
supply chain system. Table 6.1 presents the input data for such a system. 

In addition, T=5 time units, d=24 product units, 1=+p $ per product unit 

and 2=−p $ per product unit. 

Table 6.1. Parameters of the five-echelon supply chain system 

Parame-

ters 

Manufac-

turer 1 
Manufac-

turer 2 
Manufac-

turer 3 
Manufac-

turer 4 
Manufac-

turer 5 

i
U  3 2 4 7 6 

i
c  2.5 0.5 3 2 1 

Example 6.1. 



 

Figure 6.1. Optimal control of the five-echelon supply chain 
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Step 1 identifies sets of three restricting manufacturers (K=3) as Q(1)=2, 
Q(2)=3, Q(3)=5 and two restricting warehouses (J=2) as R(1)=2, R(2)=5, 
respectively. Considering only restricting manufacturers 2,3 and 5 at Step 
2 results in 

( ) 8.4
111

)(

5

5

32

2

5 =
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+
=

−+

−

U
c

UU
c

d

pp

p
TX  product units, 

}{ 21 mS =  and },{ 352 mmS = . 

Two switching points are calculated at Step 3, as 6.2
)(

2

5

1 =−=
U

TX
Tt  

time units and 8.3
)(

3

5

2 =−=
U

TX
Tt  time units. Then, based on Policy A, 

the optimal solution is set for restricting manufacturers (see Figure 6.1): 

0)(2 =tu  for 6.20 <≤ t  and 2)(2 =tu  for 56.2 ≤≤ t  

0)()( 53 == tutu  for 8.30 <≤ t  and 4)()( 53 == tutu  for 58.3 ≤≤ t . 

Next, Step 5 forms subsets of non-restricting manufacturers as }{ 11 mS = , 

}{2 ∅=S  and }{ 43 mS = . Finally, according to Policy B, the optimal solu-

tion for the non-restricting manufacturers is set at Step 5: 

)()( 21 tutu =  and )()( 34 tutu = for 50 ≤≤ t .   

Finally, we emphasize that with the aid of the maximum principle, the 
problem of centralized control of a multi-echelon supply chain is reduced 
to determining optimal production order quantity; ranking manufacturers 
and warehouses; calculating a limited number of switching time points; 
and assigning production rates over the switching points with respect to the 
manufacturer and warehouse ranks. 

6.2 SUPPLY CHAINS WITH LIMITED RESOURCES 

Sharing resources is common in industrial applications and can involve  
energy and natural resources, production equipment, logistics infrastructure 
and information systems. Advances in information technology have challen-
ged Internet and database suppliers with the problem of providing a high 
level of service in the face of permanently growing demands. Specifically, 



the explosive growth of the Internet and the World Wide Web has brought 
a dramatic increase in the number of customers that compete for the shared 
resources of distributed system environments (Liu at al. 2000). 

In this section we address two problems of centralized control over parallel 
production under limited resources. Multiple manufacturers produce different 
products for the same retailer. Since the retailer gains a fixed percentage 
from sales, control over the supply chain is unaffected. The manufacturers 
do not compete in terms of products as the products are not substitutable. 
However, the production utilizes the same resources, which implies that an 
increase in production rate of one of the manufacturers may induce the 
others to reduce their production rate (Kogan et al. 2002). 

The difference between the two intertemporal problems considered in 
this section is due to the production conditions. One case involves uncer-
tain demands for products that the manufacturers face. The other problem 
is concerned with preventive maintenance service of a resource the supply 
chain depends upon, such as logistics infrastructure, transportation and 
production equipment. This service is outsourced to an independent firm of 
bounded capacity. The firm receives a fixed transfer cost for periodic 
maintenance of the resource and as a result the objective of the overall 
supply chain is unaffected. However, during the maintenance service of 
the resource, the production of the manufacturers is interrupted which 
means that the system dynamics are affected. 

WITH RANDOM DEMANDS FOR PRODUCTS 

In this section we consider a horizontal supply chain operating under  
uncertain demands subject to a renewable resource. The demand for items, 
Dn, n=1,2,..,N is not known until the end of the horizon. The goal is to 
minimize item holding costs while meeting the demand as close as possi-
ble in terms of shortage and surplus costs of the items incurred by the end 
of the planning horizon by each manufacturer. Since demands do not  
arrive until the end of the production horizon and the production is control-
lable and takes time (i.e., it is a continuous-time, dynamic process), a deci-
sion has to be made before the production starts. This implies that this 
problem also can be viewed as a dynamic extension of the newsvendor 
problem, specifically, of the multi-item, single-period newsvendor prob-
lem. Therefore, similar to the newsboy problem, the model can be applied 
to evaluating and allocating advanced orders in manufacturing and retail-
ing as well as in service industries dealing with items that become obsolete 
quickly, spoil quickly, or have a future that is uncertain beyond a single 

6.2.1  PRODUCTION CONTROL OF PARALLEL PRODUCERS 
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period. Contrary to the classical newsboy problem, the resources are con-
strained and the dynamic extension enables us to determine not only opti-
mal order quantities, but also optimal sequencing and timing of them. 

Problem formulation 

Consider a manufacturing supply chain system consisting of N producers 
which utilizes a single resource to produce N corresponding (not substitut-
able) product types and a warehouse for each product type to collect fin-
ished products. The system produces to satisfy a cumulative demand, Dn, 
for product-type n by the end of a planning horizon, T. The production 
process can be described by the following differential equations: 

NnXtrktX
nnnn

,...,2,1,0)0(),()( ===& ,  (6.22) 

where )(tX
n

 is the surplus level of product-type n produced by manufac-

turer n and stored in its warehouse by time t; and )(trk
nn

 is the production 

rate of product n at time t which is linearly proportional with coefficient 

n
k  to the resource usage )(tr

n
at time t. Naturally, the resource usage is 

bounded from below 

0)( ≥tr
n

, n=1,2,…,N                                    (6.23) 

and from above by the maximal level of the resource usage  

∑ ≤
n

nn
Mtrw )( ,    (6.24) 

where weights nw  present the resource consumption per unit of product n. 

Furthermore, the product demands Dn, n=1,2,…,N are random variables 

characterized by probability density functions )(
n

Dϕ  and cumulative dis-

tribution functions ∫=Φ
na

nnn
dDDa

0

)()( ϕ . For each planning horizon T, 

there will be a single realization of Dn which is known only by time T. 
Therefore, the decision has to be made under these uncertain conditions 
before the production starts. 

Similar to the problem considered in Section 6.1, the difference between 

the cumulative production and the demand, 
nn

DTX −)( , is the surplus 
level. If the cumulative demand exceeds the cumulative production, i.e., if 
the surplus is negative (shortage of needed items), a penalty will have to be 

paid for backlogs. On the other hand, if 0)( >−
nn

DTX  (extra items 

which were never used) over-production cost is incurred at the end of the 
planning horizon. Furthermore, inventory holding costs are incurred at 

points where warehouse levels are positive, 0)( >tX
n

. 



The objective is to find such resource usage )(tr
n

, n=1,2,…,N that satis-

fies constraints (6.22)-(6.24) while minimizing the following expected cost 
over the planning horizon T: 

min))(()(
0

→⎥
⎦

⎤
⎢
⎣

⎡
−+= ∫ ∑∑

T

n

n

n

n

nn
DTXPdttXhEJ ,  (6.25) 

where 
n

h  is the inventory holding cost of one product of type n per time 

unit and  
−−++ +=
nnnnn

ZpZpZP )( ,   (6.26) 

where },0max{
nn

ZZ =+ , },0max{
nn

ZZ −=− , +
n

p  and −
n

p  are the costs of 

one product surplus and shortage respectively. 
To simplify the analysis, we substitute (6.26) into the objective (6.25). 

Then, given probability density )(
n

Dϕ  of the demand, we find:  

∫∑=
T

n

nn
dttXhJ

0

)( + 

nnnn

n

nnnnn

n

n
dDDTXDpdDDDTXp )()}(,0max{)(})(,0max{

00

ϕϕ ∫∑∫∑
∞

−
∞

+ −+−  

∫∑=
T

n

nn
dttXh

0

)(

nn

TX

nn

n

nnn

TX

nn

n

n
dDDTXDpdDDDTXp

n

n

)())(()())((
)(

)(

0

ϕϕ ∫∑∫∑
∞

−+ −+−+ .(6.27) 

The new objective (6.27) is subject to constraints (6.22) - (6.24), which 
together constitute a deterministic problem equivalent to the stochastic 
problem (6.22)-(6.25).  

Analysis of the problem 

To study the equivalent deterministic problem, we use co-state variables 

)(t
n

ψ  satisfying the following co-state equation: 

 )(
nn

ht =ψ&     (6.28) 

with transversality (boundary) constraint: 

=)(T
n

ψ  
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)(

)())(()())((
)(

)(

0

TX

dDDTXDpdDDDTXp

n

nn

TX

nn

n

nnn

TX

nn

n

n

n

n

∂
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−∂

−
∫∑∫∑
∞

−+ ϕϕ

nn

TX

nnn

TX

n
dDDpdDDp

n

n

)()(
)(

)(

0

ϕϕ ∫∫
∞

−+ +−= , 

that is, 

)))((1())(()( TXpTXpT
nnnnn

Φ−+Φ−= −+ψ .  (6.29) 

According to the maximum principle, the Hamiltonian is maximized by 

the optimal control variables )(trn : 

max)()()()( →+−= ∑∑ trkttXhtH
n

nnn

n

nn
ψ   (6.30) 

By rearranging only control-variable dependent terms of the Hamilto-
nian and introducing a new variable 

)()( trwty
nnn

=     (6.31) 

we obtain: 

max)()()( →= ∑
n

n

n

n

nu
ty

w

k
ttH ψ .  (6.32) 

s.t. 

0)( ≥ty
n

, n=1,2,…,N;   (6.33) 

Mty
n

n
≤∑ )( .    (6.34) 

Since this term (6.32) is linear in )(ty
n

, it can be readily verified that 

the optimal resource usage that maximizes the Hamiltonian is 

⎪
⎪
⎪
⎪
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ψψψ

ψψψ

 (6.35) 

With respect to (6.31), conditions (6.35) imply that under the optimal 

solution the n-th product is not produced and thus, 0)( =tr
n

 (no resource 

usage); or it is produced at a maximum rate of 
nn

n

n
w

M

w

ty
tr ==

)(
)(  (full  



resource usage); or the resource is shared for simultaneous production of a 

number of products ],0[)(
n

n
w

M
tr ∈ (singular resource usage). 

Similar to the problem considered in the previous section we find that 
conditions (6.35) are the necessary and sufficient optimality condition. 

Proposition 6.6. Problem (6.22)-(6.24), (6.27) is a convex program, i.e., 

there is only one optimal value for the objective function. 
Proof: First of all, note that constraints (6.22)-(6.24) are linear. The objec-
tive function (6.27) consists of two terms. The first term is linear as well. 
The second term  

nn

TX

nn

n

nnn

TX

nn

n

n
dDDTXDpdDDDTXpR

n

n

)())(()())((
)(

)(

0

ϕϕ ∫∑∫∑
∞

−+ −+−=  

is convex with respect to )(TX
n

, because  

=
∂

∂
2

2

)(TX

R

n

( ) ( )
0

)(

)(
≥

∂
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+ −+

TX

TX
pp

n

n

nn
. 

Thus, problem (6.22)-(6.24), (6.27) is convex.   
Since the problem is convex, the maximum principle provides not only 

the necessary, but also the sufficient conditions of optimality. Therefore, 

all triplets ))(),(),(( ttXtr nnn ψ that satisfy the primal (6.22)-(6.24), the 

dual (6.28)-(6.29), and (6.35) will minimize the objective function (6.27).  

System-wide optimal solution  

We next study the basic properties of the optimal solution. The first prop-
erty is the so-called integrality property, which is due to the fact that the 
singular regime never exists on an optimal trajectory. 

Proposition 6.7: Given 
n

n

n

n

n

n
w

k
h

w

k
h

′

′
′≠ and 0≠

n
h , n=1,2,…,N, there  

always exists an optimal solution, such that )(trn  is equal to either 
n

w

M
, 

or 0 at each measurable interval of time. 
Proof: The optimality condition (6.35) implies that the singular regime is 
the only regime characterized by the control variable which may take val-

ues between 0 and 
n

w

M
 at a measurable time interval, τ . According to 

(6.35), the singular regime may occur if either at least two gradients are 
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equal to one another, i.e., 
n

n

n

n

n

n
w

k
t

w

k
t

′

′
′= )()( ψψ , or at least one gradient 

equals zero, i.e., 0)( =
n

n

n
w

k
tψ . 

Given 
n

n

n

n

n

n
w

k
h

w

k
h

′

′
′≠ , assuming first that the singular regime condition 

n

n

n

n

n

n
w

k
t

w

k
t

′

′
′= )()( ψψ  holds over τ and differentiating this condition, we 

find:  

n

n

n

n

n

n
w

k
t

w

k
t

′

′
′= )()( ψψ && .   (6.36) 

By taking into account equation (6.28), we conclude that for equality 
(6.36) to hold, it is necessary that 

n

n

n

n

n

n
w

k
h

w

k
h

′

′
′= .                                    (6.37) 

which contradicts the conditions of the proposition. 

Similarly, it is verified that for condition 0)( =
n

n

n
w

k
tψ  to hold, it is nec-

essary that 

0)( =tψ& , 

which contradicts the co-state equation (6.28), 0 )( ≠= htψ& .  

Note that equality 
n

n

n

n

n

n
w

k
h

w

k
h

′

′
′=  implies that it is does not matter what 

product to produce first in terms of the objective function. We further 
eliminate this degraded case by assuming  

n

n

n

n

n

n
w

k
h

w

k
h

′

′
′≠ and 0≠

n
h , n=1,2,…,N. 

The next two corollaries present two properties: the sequencing of the 
manufacturers, i.e., the order in which it is optimal for the manufacturers 
to begin producing and the non-preemption of the optimal solution. 

Corollary 6.1. Given product n’ is switched on after product n, the follow-

ing holds 

n

n

n

n

n

n
w

k
h

w

k
h

′

′
′< . 



Proof: The proof immediately follows from optimality condition (6.35), 
Proposition 6.7 and the fact that the co-state variable is a continuous func-
tion, increasing in time as defined by equations (6.28).  

Corollary 6.2. The optimal schedule is non-preemptive, i.e., if product n 

has been switched on after product n’, at a time, nt , then the following will 

hold 0)( =′ tr
n

 for Ttt
n

≤< . 

Proof: Using the same argument as in the proof of Corollary 6.1, linear 

functions 
n

n

n

n

n

n
w

k
t

w

k
t

′

′
′ )( and  )( ψψ  can intersect only once at a switching 

point 
n

t . Therefore the optimality condition 
n

n

n

n

n

n
w

k
t

w

k
t

′

′
′> )()( ψψ cannot 

change after this point, i.e., product n’ will never regain production.     

Henceforth, without loss of generality, we assume that all products are 

ordered and numbered in increasing order of 
n

n

n
w

k
h . 

Propositions 6.6 and 6.7 along with Corollaries 6.1 and 6.2 reduce the 
continuous-time, dynamic control problem to discrete-time problems of 
sequencing product types and allocating jobs for processing them at a 
maximum rate without preemption. However, to solve the problem, we 

need to know either time points 
N

ttt ,...,, 21  at which the processing of 

products 1,2,…,N switches on, or optimal inventory order quantities 

)(TX
n

. The following proposition states the timing property of the opti-

mal solutions, which implies that unknowns 
N

ttt ,...,, 21  and )(TX
n

 affect 

each other. This is to say that the optimal switching points and order quan-
tities cannot be determined independently, rather they constitute a simulta-
neous solution of a system of non-linear equations. 

Proposition 6.8. Define time points Tttt
N

≤≤ ,...,,0 21  and terminal inven-

tories 0)( ≥TX
n

, n=1,2,…,N to satisfy the following system of N alge-

braic non-linear equations 
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k
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−− , n=2,…,N (6.38) 

))(()( 111 TXfhtT =− ,   (6.39) 

where 

)))((1())(()())(( TXpTXpTTXf
nnnnnn

Φ−+Φ−== −+ψ  and 
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)()( 1 nn

n
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M
kTX −= + , n=1,2,…,N; Tt

N
=+1 .          (6.40) 

Then the optimal solution is given by:  

0)( =tr
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 for 
n

tt <≤0  and Ttt
n

≤<+1 ; 

n

n
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M
tr =)(  for 1+≤≤

nn
ttt , n=1,…,N. 

Proof: For the state (6.22) and co-state (6.28) equations, consider the fol-
lowing solution, which is determined by N switching points: 

0)( =tr
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tt <≤0  and Ttt
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≤<+1 ; 
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M
tr =)(  for 1+≤≤
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=+1 . 

)()()(
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tthTt −−=ψψ , 
n

tt ≥ ,   (6.41) 

This solution satisfies the optimality conditions (6.35) if: 

( ) ( )
n

n

nnn

n

n

nnn
w

k
htTT

w

k
htTT )())()()(
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−− ψψ , n=2,…,N. (6.42) 

Next, by taking into account the boundary conditions (6.29), equations 
(6.41) and (6.42), we obtain the system (6.38)-(6.40) stated in the proposi-
tion. According to Proposition 6.6, a feasible solution to the state (6.6) and 
dual (6.28)-(6.29) equations, which satisfies the optimality conditions 
(6.35), is globally optimal. The feasibility of the constructed solution is en-
sured by the production horizon which is sufficiently long to produce all 

optimal inventory amounts )(TX
n

, i.e., by Ttt
n

≤≤ ,0 1  as stated in the 
proposition.   

As the following corollary shows, solvable cases can be derived from 
Proposition 6.8 .  

Corollary 6.3. Let demands be characterized by the uniform distribution,  

⎪
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otherwise. 0,

;0for  ,
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dD
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a =Φ )( , if Ttt

N
≤≤ ,0 1 , 

if there exists a feasible solution of the system (6.38)-(6.40), then problem 

(6.22)-(6.27) is solvable in 0(2N
3
) time. 

Proof: Given that the demands are characterized by the uniform distribu-
tion, the non-linear equation (6.38) becomes linear, that is, (6.38)-(6.40) 
constitute the following system of 2N linear equation in N unknown 

switching points Tttt
N

≤≤ ,...,,0 21  and N terminal inventories )(TX
n

: 
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 n=2,…,N, (6.43) 
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)()( 1 nn
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w

M
kTX −= + , n=1,2,…,N; TtN =+1 .   

Note, both Proposition 6.8 and Corollary 6.3 assume that a feasible solu-

tion Tttt
N

≤≤ ,...,,0 21  of the system (6.38)-(6.40) exists, that is, the pro-

duction horizon is sufficiently long. Although there is no exact a priori 
condition to check whether the production horizon is long enough and, 
thus, equations (6.38)-(6.40) define the globally optimal solution of prob-
lem (6.22)-(6.25), solving equations (6.43) can be considered as a polyno-
mial-time verification of the solvability of the problem. In addition, the 
worst-case estimate of the production horizon is presented in the following 
proposition. The estimate is sufficient to ensure the solvability of the prob-
lem because it is based on the longest, possibly optimal, processing times. 

Proposition 6.9. Let ∗
n

X  be determined by −+

−
∗

+
=Φ

nn

n

n
pp

p
X )( . If 

∑
∗

≥
n

nn

M

wX
T , then the optimal solution of problem (6.22)-(6.25) is deter-

mined by the system (6.38)-(6.40).  

Proof: According to the optimality conditions (6.35), product n is pro-

duced during an interval of time, if 0)( ≥≥ at
n

ψ  along this interval. With 

respect to equations (6.28) and (6.29) this implies that  

aTXpTXpT
nnnnn

≥Φ−+Φ−= −+ )))((1())(()(ψ  

holds. Thus, −+
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TX ))((  and the maximum terminal inventory is 

determined by a=0 as ∗≤
nn

XTX )( , where −+
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+
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n

n
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p
X )( .  
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Since each product is produced at a rate of 
n

w

M
 (see Proposition 6.8), 

the maximum time required for processing all products (and, thus, ensur-

ing a feasible solution Tttt
N

≤≤ ,...,,0 21  of the system (6.38)-(6.40)) is 

determined by ∑
∗

n

nn

M

wX
 as stated in the proposition.   

Algorithm 

Besides special solvable cases, such as the case with demands for products 
characterized by uniform probability distributions (see Corollary 6.3), the 
optimization problem (6.22)-(6.25) is reduced to a system of state and co-
state equations. The system consists of N non-linear equations and N-linear 
equations in 2N unknowns (see Proposition 6.8), which, in general, are not 
analytically solvable. However, this system of 2N equations can be solved 
numerically to any desired precision by decomposing it into 2N recursively 
solvable equations. The algorithm presented below begins with the earliest 

possible time point for production to begin, 01 ≥t , and proceeds to improve 

the solution at each subsequent iteration. A lower bound for this starting 
point is determined in the following proposition.  

Proposition 6.10. Given that the production horizon is long enough for all 

products to be produced, i.e., Ttt
N

≤≤ ,0 1 . If 
1

1

h

p
T

−

≥ , then 
1

1

1
h

p
Tt

−

−≥ . 

Proof: Let us substitute condition (6.29) for )(1 Tψ  into (6.39). Then by 

rearranging terms in (6.38) we obtain 

−+

−

+
−−

=Φ
11

111

1

)(
))((

pp

htTp
TX .   (6.44) 

Since )(⋅Φ  is non-negative, we find the time point 1t  is feasible if the 

right-hand side of equation (6.44) is non-negative, i.e., 0)( 111 ≥−−− htTp , 

as stated in the proposition. Note, if, 
1

1

h

p
T

−

< , then the earliest feasible 

point to start the production is simply 01 ≥t .  

Once the earliest switching point has been set at the initial step of the 
algorithm (as determined by Proposition 6.10, the unknown terminal quan-

tity )(1 TX  can be found from the non-linear equation (6.39). The next 

switching point is then obtained from the linear equation (6.40). Conse-
quently, the non-linear equation (6.38) can be solved for n=2 since it has 



only one unknown, )(2 TX . Given the unknown terminal quantity )(2 TX , 

we are then able to return to equations (6.40) and (6.28) to find subsequent 
switching time points and terminal inventories. If, however, an unknown is 
not feasible, the algorithm returns to the initial stage to correct the earliest 

switching point, 1t , and to resume solving consecutively all the equations 

again. Since 1t  is artificially set, 2N-1 equations are needed to calculate the 

remaining 2N-1 unknowns. The 2Nth equation, )()(
N

N

NN
tT

w

M
kTX −= , 

which is N th equation (6.40), is then used to verify the obtained solution. 
The process is terminated if either a feasible solution cannot be deter-
mined, i.e., the production horizon is not long enough to produce all the 
products, or all unknowns have been found and feasible. The latter fact indi-
cates that the Nth equation (6.40) holds, i.e., an optimal solution has been 
computed with desired precision ξ . 

The algorithm is summarized as follows.  

INPUT: N; M;ξ ; )(),( ⋅Φ⋅ϕ ; 
n

k , 
n

w , −+
nn

pp , , hn, n=1,…,N; 

Step 1. Sort and renumber products in non-decreasing order of 
n

n

n
w

k
h . 

Set ∑ ∑∑ −++=
n n n

n

n

n

n

n

n n

n

n
w

k
p

w

k
p

w

k
hTg };max{ , 

t

n

n

n
X

M
w

k
xma εε =  and 

Mg
t

ξε = . Set 
1

11

1
h

p
Ttt

−

−==  if 
1

1

h

p
T

−

≥ , otherwise set 01

1 == tt . Set 

Tt =2 . 

Step 2. Given 1t , solve equation (6.39) in )(1 TX  by a dichotomous 

search with accuracy 
X

ε . Set n=1.  

Step 3. Given )( and TXt
nn

, solve equation (6.40) in 1+nt . Set n=n+1. If 

Tt
n

> , then go to Step 5. 

Step 4. Given )( and , 11 TXtt
nn-n − , solve equation (6.38) in )(TX

n
 by a 

dichotomous search with accuracy 
X

ε . If there is no feasible solution for 

)(TX
n

, then go to the next step, otherwise go to Step 7. 

Step 5. If either 
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Step 6. If 12 tt = , then Stop, the production horizon is too short and the 

problem is not solvable in polynomial-time. Otherwise set n=1 and go to 
Step 2. 

Step 7. If n=N, then go to Step 9; otherwise go to Step 3.  

Step 9. Verify equation (6.39). If either 
Xn

N

NN
tT

w

M
kTX ε≤−− )()(  or 

t
tt ε≤− 12 , then set the optimal solution as determined in Proposition 6.8 

and Stop; otherwise go to the next step. 

Step 10. If )()(
n

N

NN
tT

w

M
kTX −> , then set 1

2 tt =  and 
2

12

1
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t

+
= ; 

otherwise set 1

1 tt =  and 
2

12

1

tt
t

+
= . Set n=1 and go to Step 2. 

OUTPUT: Optimal solution )(tr
n

 for Tt ≤≤0 , n=1,2,…,N. 

The efficiency of the algorithm is due to the important properties of the 
system of equations (6.38), (6.39) and (6.40). To state these properties, we 
rearrange terms in equations (6.38) 
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and in equation (6.39)  

0)())(()( 111111 =−−Φ+− −+− htTTXppp .             (6.46) 

These equations can be efficiently solved as stated in the following 
proposition. 

Proposition 6.11. Given nt , )(1 TX
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function ( ) ))((1 TXppF
nnnn

Φ+−= −+λ  is non-increasing in )(TX
n

. Given 

1t , function ))(()()( 111111

1

1 TXpphtTpF Φ+−−−= −+−  is non-increasing 

in )(TX
n

. 

Proof: Given 
n

t  and )(1 TX
n− , the proof is immediate, as function )(⋅Φ is 

non-decreasing in its argument.   

Proposition 6.11 shows that the functions induced by each of the equa-
tions (6.38)-(6.39) are monotone if these equations are resolved separately. 
However, this property (used in Steps 2 and 4 of the algorithm) is insuffi-
cient. To efficiently solve the problem, we need the function induced by 

the entire system (6.38)-(6.40) to be monotone in unknown 1t . Given this 
property, 1t , which is initially estimated by its lower bound, can then be 

effectively corrected until the optimal solution is found. It is due to this 
overall monotone property we are able to decompose the system of non-
linear equations so as to solve them separately in a recursive manner. The 
following two propositions formalize this important property. Specifically, 
the property proven in Proposition 6.12 and used in Step 5 of the algorithm 
provides efficient verification of whether the production horizon is long 
enough for the problem to be solvable. Proposition 6.13 (used in Step 10), 
on the other hand, provides fast convergence of the algorithm to an optimal 
solution. 

Proposition 6.12. Given 2N equations (6.38)-(6.40) in 2N unknowns nt  

and )(TX
n

, n=1,2,...,N. Let 2

n
F  be a function which maps )(1 TXt

n
→ , 

then 2

n
F , n=1,2,...,N are non-decreasing in their argument. 

Proof: Let us consider n=1. Given 1t , )(1 TX  is determined by (6.44) derived 

from equation (6.39). Since the right-hand side of (6.44) is non-decreasing 

in 1t  and )(⋅Φ is non-decreasing in its argument, 2

1F  is non-decreasing in 

its argument as well. This implies that if 1t  increases, )(1 TX cannot decrease 

as stated in the proposition. Let us now set n=2 and 1t  increases. Then accor-

ding to the corresponding linear equation (6.40), 2t  must increase even if 

)(1 TX  does not increase. By rearranging terms in the corresponding equa-

tion (6.38), i.e., for n=2, we obtain:  
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Note that function )))((1())(())(( TXpTXpTXf
nnnnn

Φ−+Φ−= −+  is 

non-increasing in )(TX
n

. Since 2t  increases and )(1 TX either does not 

change or increases as well, )(2 TX  defined by the last equation cannot  

decrease if 
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h ≥ . However, we have assumed that the products 

are sequenced in non-decreasing order of 
n

n

n
w

k
h . Thus, 2

2F  is monotone as 

stated in the proposition. By setting n=3,…,N and repeating the same  

arguments, we find that the remaining functions 2

n
F  are monotone as well.  

Corollary 6.4. Given 2N equations (6.38)-(6.40) in 2N unknowns nt  and 

)(TX
n

, n=1,2,...,N. Let 3

n
F  be a function which maps 

n
tt →1 , then 3

n
F , 

n=1,2,...,N are non-decreasing in their argument. 

Proof: This property is obtained as a by-product in the proof of Proposi-
tion 6.12.   

Proposition 6.13. Given 2N equations (6.38)-(6.40) in 2N unknowns nt  

and )(TX
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, n=1,2,...,N, then function 4

N
F )()(

N
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M
kTX −−=  is 

non-decreasing in 1t . 

Proof: This proof immediately follows from Proposition 6.12 and Corol-
lary 6.4.   

Based on Propositions 6.9 – 6.13, we are now ready to evaluate the 
complexity and accuracy of the algorithm. 

Theorem 6.1. If a feasible solution of the system (6.38)-(6.40) exists, then 

problem (6.22)-(6.25) is solvable with accuracy ξ  in 
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Proof: First note that the primal-dual algorithm constructs a solution based 
on Propositions 6.7-6.8 and Corollaries 6.1 - 6.2, thereby satisfying all opti-
mality conditions derived from the maximum principle within the specified 



computational accuracy. Moreover, due to Proposition 6.6 the optimality 
conditions are not only necessary but also sufficient. 

To prove the complexity and accuracy of the algorithm, we assess it 
step-by-step. Step 1 uses Corollary 6.1 and Proposition 6.10 to sort products 

and provide an initial value for 1t  in O(NlogN) time. In Step 2, equation 

(6.39) is solved by a dichotomous search, which, according to Proposition 

6.11, requires at most 
X

M

nX

ε
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is the maximum possible terminal inventory (see Proposition 6.9). Thus, 
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complexity. In Step 4, equation (6.38) is solved again by dichotomous 

search in 
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nX

ε
log  time. Step 5, which is based on Proposition 6.12, veri-

fies whether the found solution is feasible in O(1) time. If it is not feasible, 
then, with the aid of Step 6, the algorithm returns to Step 2. Thus, Steps 2-

6 can be repeated at most N times, resulting in ⎟
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log . Once a feasible solution has been 

found, Step 9 verifies the accuracy of this solution in O(1) time. If the  

accuracy is insufficient, 1t  is corrected at Step 10, according to Proposition 

6.13, and the algorithm returns to Step 2. This overall dichotomous search 

is carried out at most 
t

T

ε
log  times. Thus, by taking into account the com-

plexity of Step 1, we conclude that the worst-case estimate of the algo-
rithm complexity is  
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Finally, we estimate the relationship between the computational accu-

racy of the objective function value,ξ , and the accuracy of the dichoto-

mous search, ε t . By varying the objective function, we obtain  
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Substitution of ε t , computed in (6.49), into the complexity estimate 

(6.47), completes the proof.     

To illustrate both analytical and numerical methods, we consider a simple 
two-product (two parallel manufacturers) supply chain. 

Example 6.2.  

Let M=1 resource units, N=2 and demands be characterized by the uniform 
distribution over horizon T=10 time units. The input data for such a system 
is presented in Table 6.2. 

Table 6.2. Parameters of the production system 

 
 

n
d  

n
h  

n
w  

n
k  +

n
p  −

n
p  

n

n

n
w

k
h  

n=1 30.0 0.1 0.1 1.0 6.0 10.0 1 

n=2 80.0 0.4 0.05 1.0 8.0 15.0 8 

First, we note that <
1

1

1
w

k
h

2

2

2
w

k
h , that is, the condition of Corollary 6.1 

is met and, therefore, we don’t need to reorder and renumber the products. 
Since the uniform distribution characterizes the demands, the problem can  
 



be solved analytically. Namely, according to Corollary 6.3, the optimal solu-
tion must satisfy the system of equations (6.43) which, with respect to the 
data of Table 6.2, takes the following form: 
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1.0)10(
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)(
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)(
6 2

11 t
TXTX

−=⎟
⎠
⎞

⎜
⎝
⎛ −+− ; 

)(10)( 121 ttTX −= ; )10(20)( 22 tTX −= . 

Solving this system of 2N=4 equations results in 84.51 =t  time units and 

64.72 =t time units, 18)10(1 =X  product units and 2.47)10(2 =X  product 

units. Next, according to Proposition 6.8, the optimal solution is 

0)(1 =tr  for 84.50 <≤ t  and 1064.7 ≤< t ; 10)(1 =tr  for 64.784.5 ≤≤ t ; 

0)(2 =tr  for 64.70 <≤ t ; 20)(2 =tr  for 1064.7 ≤≤ t . 

This solution is depicted in Figure 6.2.  

Then the optimal value of the objective function is found from (6.27): 

J ∫∫ +−⋅+−⋅+−⋅=
10

64.7
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32
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)1830(

20

2.47
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18

2

)64.710(8
36.28.1

2

)84.564.7( 222222

 

=1.62+4.248+22.278+32.4+111.39+24+100.86=$296.796. 

Next, we solve the problem numerically according to the algorithm, as if 
equations (6.43) have a general non-linear form. The accuracy of the opti-

mal value of the objective function we require is 20$=ξ . 

In the first step of the algorithm, we determine parameters g=470, 

01 =t  and the maximum precision for calculating time points 043.0=
t

ε  

and inventories 85.0=
x

ε . Consequently, 875.16)10(1 =X  is found from 

(6.39) at Step 2. At Step 3, the algorithm calculates 69.12 =t  from (6.40) 

and sets n=2. 4.38)10(2 =X  is determined from (6.38) in Step 4. 
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Figure 6.2. Optimal control of the horizontal supply chain with two producers 
sharing a limited resource 

Since the obtained solution is feasible, the algorithm proceeds to Step 9. 

At Step 9, 4.38)10(2 =X  is compared to 166)( 2

2

2 =− tT
w

M
k . Since the 

difference between these two values exceeds 85.0=
x

ε , Step 10 sets 

5
2

100
1 =

+
=t  and returns the computation to Step 2. Then the second  

iteration is performed which results in 81.17)10(1 =X  (Step 2), 781.62 =t  

(Step 3) and 92.45)10(2 =X  (Step 4). At Step 9, 92.45)10(2 =X  is com-

pared to 38.64)( 2
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2 =− tT
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M
k . As a result, Step 10 sets 5.7

2

105
1 =

+
=t  

and initiates a new iteration starting from Step 2. It is easy to verify that 
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only eight iterations are required to obtain 856.51 =t  which meets 

043.0=
t

ε  and 97.17)10(1 =X ; 653.72 =t ; 94.46)10(2 =X . 

Consequently, the value of the objective function (6.27) provided by the 
numerical algorithm is: 

J’ ∫∫ +−⋅+−⋅+−⋅=
10

653.7

653.7

856.5

)653.7(204.0)653.710(97.171.0)856.5(101.0 dttdtt

2

80

94.46

21

30

97.17

1

2

94.46

0

21

97.17

0

1

80

1
)94.46(15

30

1
)97.17(10

80

1
)94.46(8

30

1
)97.17(6

dDDdDD

dDDdDD

∫∫

∫∫

−+−

+−+−+

 

=1.615+4.218+22.034+32.292+110.168+24.12+102.465=$296.912. 

Comparing this value with the optimal one obtained analytically, we 
conclude 

J'-J=$296.912-$296.796=$0.116, 

which is better than the required accuracy 20$=ξ .   

WITH MAINTENANCE  

As technology progresses, systems with shared resources become more 
complex. In order to obtain maximum availability and reliability, periodic 
maintenance is vital. The literature presents several methodologies for  
incorporating maintenance and system control policies in stochastic envi-
ronments (e.g., Anderson 1981; Boukas and Liu 1999; Boukas and Haurie 
1998) or in deterministic environments (e.g., Cho et al. 1993 and Maimon 
et al. 1998). In this section we follow the deterministic direction and deal 
with preventive maintenance. The maintenance service is outsourced to a 
firm which conducts a periodic check-up of a single resource shared by 
multiple producers (manufacturers). During maintenance, production proc-
esses are interrupted. Similar to the problem considered in the previous 
section, each manufacturer is responsible for producing a specific product. 
The products that the centralized supply chain is engaged with are non-
substitutable. 

6.2.2  PRODUCTION CONTROL OF PARALLEL PRODUCERS 
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Problem formulation 

Consider a supply chain involving N parallel manufacturers producing N 

product-types to satisfy demand rate 
n

d , n=1,2,...,N. Since the manufac-

turers share a resource which is unreliable unless preventive maintenance 

is provided, production is periodically stopped for maintenance. Define 
s

t  

the time at which the production period starts; ft  the end of the mainte-

nance period; P the production duration; and M the maintenance duration. 
We then have 

MPtt sf ++= .   (6.50) 

Assuming the system has reached the steady-state, then the cyclic beha-
vior of the system can be described by the following differential equations: 

nnn
dtutAtX −= )()()(& , )()( fnsn tXtX = , n=1,2,...N , (6.51) 

where )(tX
n

 is the surplus of product n at time t, if 0)( ≥tX
n

, and the 

backlog, if 0)( <tX
n

. )(tu
n

 is the production rate and A(t) is a periodic 

maintenance function defined as: 

⎩
⎨
⎧

++<≤+
+<≤

=
. if 0,

; if ,1
)(

s

s

MPttPt

Pttt
tA

s

s
  (6.52) 

The production rate is a control variable, which is bounded by the 

maximum production rate 
n

U  for product n: 

nn
Utu ≤≤ )(0 .   (6.53) 

The production of each product utilizes a single resource with respect to 
the following normalized resource constraint  

∑ ≤
n n

n

U

tu
1

)(
.   (6.54) 

In order to ensure that that the demand can be fulfilled at each produc-
tion cycle, we also need that: 

∑ +
≤

n n

n

MP

P

U

d
.   (6.55) 

The objective is to find an optimal cyclic behavior ( )(),( tXtu
nn

) of the 

manufacturers that satisfies constraints (6.51), (6.53)-(6.54) while mini-
mizing the following piece-wise linear cost functional: 

[ ]∫∑ −−++ +=
f

s

t

t n

nnnn
dttXctXcJ )()( ,  (6.56) 

Where 
 

}0),(max{)( tXtX
nn

=+ , }0),(max{)( tXtX
nn

−=− , (6.57) 



+
n

c  and −
n

c  are the unit costs of storage (inventory) and backlog of product-

type n, respectively. 
We assume relatively large backlog costs are assigned to products that 

cause large inventory costs and vice versa as formalized below.  
Assumption 6.1. The inventory and backlog costs are agreeable, that is, if 

nnnn
UcUc ′

+
′

+ > , then 
nnnn

UcUc ′
−
′

− >  and vice versa, for ,, Ω∈′nn  where 

}1{ NL=Ω . 

Without losing generality, we also assume that if 
nnnn

UcUc ′
+
′

+ >  then 

nn ′> , and if nn ′≠  then 
nnnn

UcUc ′
+
′

+ ≠ , ,, Ω∈′nn  where }1{ NL=Ω . 

Analysis of the problem 

Applying the maximum principle to problem (6.51)-(6.56), the Hamilto-
nian, is formulated as follows: 

[ ] ( )∑∑ −++−= −−++

n

nnn

n

nnnn
dtuttXctXcH )()()()( ψ .        (6.58) 

The co-state variables, )(t
n

ψ , satisfy the following differential equations 

with the corresponding periodicity (boundary) condition: 

⎪
⎩

⎪
⎨

⎧

=−∈

<−

>

=
+−

−

+

;0)( if ],,[ ,

;0)( if ,

;0)( if ,

)(

tXccaa

tXc

tXc

t

nnn

nn

nn

nψ&  )()(
fnsn

tt ψψ = .    (6.59) 

To determine the optimal production rate )(tu
n

 when   0)( ≠tA , we con-

sider the following four possible regimes, which are defined according 

to )(tU
nn

ψ . 

Full Production regime FP: This regime appears if there is an n such 

that Ω∈≠∀>> ',,' ),()( ,0)( '' nnnntUtUandtU
nnnnnn

ψψψ . In this regime, accord-

ing to (6.58), we should have 
nn

Utu =)(  and ,0)(' =tu
n

 Ω∈≠∀ ',,' nnnn . to 

maximize the Hamiltonian. 

No Production regime NP: If  0)( <tU
nn

ψ , Ω∈∀n . In this regime we 

should have ,0)( =tu
n

 Ω∈∀n  to maximize the Hamiltonian.  

Singular Production regime S-SP: This regime appears if there is Ω⊂S , 

the rank of S  (the rank of S is defined as the number of units in S and  

denoted R(S)) is greater than 1, and 

SmSntUtUandSnntUtU
mmnnnnnn

∉∈∀>∈∀>= , ),()(,', ,0)()( '' ψψψψ . 
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In this regime there is a set of products S (the active set) for which the 

Hamiltonian gradients 0)( >tU
nn

ψ  are equal to each other and are greater 

than all the other gradients at an interval of time. 
Singular Production regime Z-SP: This regime appears if there is a 

Ω⊂Z  such that 

ZmZntUtUandZnntUtU
mmnnnnnn

∉∈∀>∈∀== , ),()(,', ,0)()( '' ψψψψ . 

In this regime there is a set of products Z (the active set) for which the 

Hamiltonian gradients 0)( =tU
nn

ψ  and are greater than all the other gra-

dients in an interval of time. 
The optimal production rates under the singular production regimes are 

discussed in the following three propositions. 

Proposition 6.14. If there is an Ω∈n  such that 0)( >tU
nn

ψ , then 

∑
Ω∈

=
m m

m

U

tu
1

)(
, and 

if 0)( >tu
n

 then )()( '' tUtU
nnnn

ψψ ≥  for all Ω∈', nn . 

Proof: Since the optimal control maximizes the Hamiltonian (6.58), the 

first part of the proposition must hold, otherwise we could increase )(tu
n

 

to enlarge the Hamiltonian. To prove the second part of the proposition, 

assume there is an n’ such that )()( '' tUtU
nnnn

ψψ < . Also assume the por-

α=
n

n

U

tu )(
.  Then 

)(

)(

'' tU

tU

nn

nn

ψα

ψα <

 

0)(* ≠tX
n

 and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑

≠
∈

*

**

,

1)(

nn

Sn n

n

nn U

d
Utu  for nn

Sn∈
= min* ; 

nn
dtu =)( , 0)( =tX

n
 for all *nn ≠ , Sn ∈ ; 

0)( =tu
n

 for all Sn ∉ . 

Proof: According to the definition of the S-SP regime, 

0)()( '' >= tUtU
nnnn

ψψ , τ∈t  for all Snn ∈', ,  (6.61) 

)()( tUtU
llnn

ψψ > , τ∈t  for all SlSn ∉∈ , .  (6.62) 

By differentiating condition (6.61), we obtain: 

)()( '' tUtU
nnnn

ψψ && = , τ∈t .                             (6.63) 

tion of the resource allocated to part n is 

instead of n,  and if the same capacity were allocated to part n’ 

Hamiltonian H could be increased. But this violates the optimality assum-
ption. 

interval τ . Then the following hold for t ∈τ : 

Proposition 6.15. Let the S-SP regime with its active set S  be in a time 



Considering Assumption 6.1 and the definition of )(t
n

ψ&  shown in (6.59), 

equation (6.63) can be met in only two cases. 

Case 1: 0)( =tX
n

 for all Sn ∈ , and  

Case 2: 0)(* ≠tX
n

, and 0)( =tX
n

 for all *nn ≠ , Sn ∈  with nn
Sn∈

= min*  

and  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−= ∑

≠
∈

*

**

,

1)(

nn

Sn n

n

nn U

d
Utu     (6.64) 

If 0)( =tX
n

 in a time interval for some Sn ∈ , then differentiating 

0)( =tX
n

 and using state equation (6.51), we obtain: 

u t dn n( ) = .                                       (6.65) 

But from (6.55) we have 01 ≥− ∑
Ω∈n n

n

U

d
, thus 

*

*

*
*

*

,

1
)(

n

n

nn

Sn n

n

n

n

U

d

U

d

U

tu
≥−= ∑

≠
∈

.   (6.66) 

In case 1, ** )(
nn

dtu = . Thus the previous inequality implies that the 

Hamiltonian in Case 2 will be larger than the Hamiltonian in Case 1 and 
therefore Case 2 provides the optimal control. The maximization of the 

Hamiltonian also demands that 0)( =tu
n

 for all Sn ∉ . From (6.65) we 

have 
nn

dtu =)( , for all *nn ≠ , Sn ∈ .  

Proposition 6.16. Let the Z-SP regime with its active set Z be in a time 

 interval τ . Then 
nn

dtu =)( , 0)( =tX
n

 for all Zn ∈ and 0)( =tu
n

 for all 

Zn ∉ , τ∈t .   

Proof: Consider the Z-SP regime which by definition satisfies: 

0)( =t
n

ψ , τ∈t  for all Zn ∈ ,  (6.67) 

and  

0)( <t
n

ψ , τ∈t  for all Zn ∉ . 

First if 0)( <t
n

ψ  to maximize the Hamiltonian we must have 0)( =tu
n

. 

Next, by differentiating condition (6.67), we obtain: 

0)()( ' == tt
nn

ψψ && , τ∈t  for all Znn ∈', .              (6.68) 

Using the same argument as in Proposition 6.15, we have: 

0)( =tX
n

, 
nn

dtu =)( , τ∈t  for all Zn ∈ .            (6.69) 
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The next proposition shows that there must be a Z-SP regime with its 
active set Ω=Z  in some time interval τ . 

Proposition 6.17. Let ∑ +
<

n n

n

MP

P

U

d
. Then during the production period 

P there must be a Z-SP regime with its active set Ω=Z  in some time  

interval τ . 

Proof: We first notice that under the S-SP, Z-SP, and FP regimes 

∑ =
n n

n

U

tu
1

)(
. Also, based on the assumption of this proposition we have 

∑ <+
n n

n PMP
U

d
)( . Therefore, during the production duration P, if we 

only use the S-SP, Z-SP, and FP regimes, we would have 

∑ ∑<+
n n n

n

n

n P
U

tu
MP

U

d )(
)( , which implies the production would exceed 

demand. This violates our cyclic production assumption. Accordingly 

there must be a time period Ρ⊂Ρ1 , during which ∑ <
n n

n

U

tu
1

)(
, and the 

only possible regimes during 1Ρ  are Z-SP and NP. If Ω≠Z , either Z-SP 

or NP will result in some product(s) being not produced. That is, there exists 

some n such that ,0)( =tu
n

 1Ρ∈t . We now argue that this cannot be the opti-

mal solution.  

For such n that ,0)( =tu
n

 1Ρ∈t , we must have 0)( <t
n

ψ  under Z-SP or 

NP regimes. If 0)( <tX
n

, then 0)( <t
n

ψ&  and thus product n will not be 

produced again. This contradicts the cyclic production assumption. If 

0)( >tX
n

, then we can certainly reduce the overall cost by doing the fol-

lowing. We first reduce the production in the period before 1Ρ  so that 

0)( 1 =tX
n

, where 1t  is the starting time of 1Ρ . We then let ,)(
nn

dtu =  1Ρ∈t  

maintain 0)( =tX
n

, 1Ρ∈t . Both will reduce the inventory cost. Thus we 

must have ,0)( ≠tu
n

 all Ω∈n , 1Ρ∈t . Therefore the only possible regime is 

Z-SP with Ω=Z .    
In the following we will establish the optimal production sequence, 

starting from Z-SP regime with Ω=Z . First, Proposition 6.18 shows that 
the regime following the above Z-SP regime must be an S-SP regime with 

Ω=S . 



Proposition 6.18. Let 
1τ  and 

2τ  be two consecutive time intervals, 
2τ  fol-

lowing 1τ . If Z-SP regime is in 1τ , then 0)( >tu
n

 for all Zn ∈ , 2τ∈t . 

Further, if Ω=Z  then there is an S-SP regime in 2τ  with Ω=S . 

Proof: According to Proposition 6.16, 0)( =tX
n

 and 0)( =t
n

ψ  for Zn ∈ , 

1τ∈t . If 0)( =tu
n

, 2τ∈t , then from (6.51) and (6.59), we have 

0)( <tX
n

, 0)( <t
n

ψ& , and 0)( <t
n

ψ , 2τ∈t . Therefore 0)( <t
n

ψ  for 

1tt > , where 
1t  is the starting time of 

2τ  and product n will never be pro-

duced again. This contradicts the assumption of the cyclic production  

requirement. If Ω=Z , then 0)( >tu
n

 for all Ω∈n , 
2τ∈t . This can only 

happen if S-SP regime is in 2τ  with Ω=S .  

We now state the relationship between two consecutive S-SP regimes. 

Proposition 6.19. Let two S-SP regimes with their active sets 1S  and 2S  be 

in two consecutive time intervals 1τ  and 2τ , 2τ  following 1τ  and 

nm
Sn 1

min
∈

= . If 0)( >tX
m

, 1τ∈t  and 1',',' Snnnm ∉Ω∈∀> , then 

mSS += 21
. 

Proof: If 1Sn ∈ , mn > , then according to Proposition 6.15 we have 

0)( =tX
n

, )()( tUtU
mmnn

ψψ = , 1τ∈t . If 0)( =tu
n

, 2τ∈t , then 

0)( <tX
n

, 
2τ∈t . Further, since mn > , if 0)( <tX

n
, )()( tUtU

mmnn
ψψ && <  

(see (6.59) and Assumption 6.1). Therefore )()( tUtU
mmnn

ψψ <  for all 

1tt > , where 1t  is the starting time of 2τ . This ensures 0)( =tu
n

 for all 

1tt >  which contradicts the cyclic production requirement. Therefore 

0)( >tu
n

, 2τ∈t . Thus 2Sn ∈ . 

We next show if 1Sn ∉  then 2Sn ∉ . We first observe that by defini-

tion of an S-SP regime, 
11'' ', ),()( SnSntUtU

nnnn
∉∈∀> ψψ , 

1τ∈t . Since 

'nn >  for 11 ', SnSn ∉∈∀  and 0)( >tX
m

, 1τ∈t  (assumptions of this 

proposition), we have 0)( >tU
nn

ψ& , )()( '' tUtU
nnnn

ψψ && > , 11 ', SnSn ∉∈∀  

(see (6.59)). Therefore, 
11'' ', ),()( SnSntUtU

nnnn
∉∈∀> ψψ , 

1tt = , where 
1t , 

as defined above, is the starting time of 2τ . Consequently, 2' Sn ∉ . Since 

21 SS ≠ , we must have mSS += 21 .   

The above propositions show that there must be a Z-SP regime with 
Ω=Z  (Proposition 6.17) followed immediately by an S-SP with Ω=S  

(Proposition 6.18). The possible regimes afterwards are S-SP regimes  
defined in Proposition 6.19. We now show that an FP regime must be the 
last regime before the maintenance period. 
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Proposition 6.20. Let 
1τ  and 

2τ  be two consecutive time intervals, 
2τ  fol-

lowing 
1τ . Further, S-SP regime with its active set S is in 

1τ . Then FP 

regime is in 2τ  if and only if R(S)=2. (Recall R(S) denotes the number of 

units in S.) 

Proof: If R(S)>2 there would exist Sn ∈1 and Sn ∈2 such that mn >1
 

and mn >2 , where nm
Sn∈

= min . If FP is in 2τ  then either 0)(
1

=tu
n

 or 

0)(
2

=tu
n

, 2τ∈t . But this contradicts the arguments established in the 

first part of Proposition 6.19. 

If R(S)=2, there exists an Sn ∈ , mn > . According to the argument in 

Proposition 6.19, the only possible regime in 2τ∈t  is an FP regime.   

It is easy to show that only the maintenance period can stop an FP regime. 
The above propositions established the optimal sequence of regimes between 
the Z-SP with Ω=Z  and the maintenance period. It is summarized in the 
following proposition. 

Proposition 6.21. The optimal production regimes from the Z-SP regime to 

the maintenance period are the following: Z-SP→ S-SP1 →  S-SP2 → … S-

SPN-1 → FP→ Maintenance, where S-SPk is an S-SP regime with its active 

set being Sk={k, k+1, … , N}.    
A similar proposition will show that the optimal production regime after 

the maintenance period is the reverse of the sequence in Proposition 6.21 
due to the agreeable cost coefficients (see Assumption 6.1): Mainte-
nance→ FP →  S-SPN-1…→  S-SP2 → S-SP1 →  Z-SP. 

Having determined the optimal control regime sequence, our next step is 

to determine 
n

t , the time instances at which the regimes change after Z-SP 
regime but before the maintenance, and 

n
t′ , that after the maintenance as 

shown in Figure 6.3. 

We further denote maintenance interval ],[ 21

MM tt , and time instance *

n
t  

at which inventory levels cross zero line, n=1,2,...,N. By integrating state 
equation (6.51), we immediately find: 

0)()(1 *

1

1

1

=−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

−

+=
∑ nnnnnn

N

ni i

i ttdttU
U

d
, n=1,..,N, M

N
tt 11 =+  ; (6.70) 

0)()(1 *

1

1

1

=−′−′−′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

−

+=
∑ nnnnnn

N

ni i

i ttdttU
U

d
, n=1,..,N, M

N
tt 21 =′ +  .   (6.71) 

Integrating co-state equations (6.59) we will obtain another set of N 
equations: 



)()()()( *

1

1

1

*

1

1

1

nnnnii

n

i

iinnnniii

n

i

i
ttUcttUcttUcttUc −′+′−′=−+− −

+

−

=

−+
+

−

=

+ ∑∑ , n=1,..,N. 

(6.72) 

t tN

M

+ =1 1 , ′ =+t tN

M

1 2 . 

The above 3N equations can then be used to determine the 3N unknown 

n
t , 

n
t′ , and *

n
t . 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6.3. Optimal behavior of the state and co-state variables for N=3

Algorithm 

Step 1: Sort products according to nnUc +
 in ascending order. 

Step 2: Find 3N switching points *,,
nnn

ttt ′ , n=1,..,N by solving 3N equa-

tions (6.70)-(6.72). 
Step 3: Determine the optimal production rates in each regime according 

to Propositions 6.15 and 6.16. 

Mt2

X3(t) 

X2(t) 

X1(t) 

Un nψ (

n=1 
n=2

n=3

t1 t2 t3 3t′ ′t2 ′t1  Mt1

362     6   SUSTAINABLE COLLABORATION IN SUPPLY CHAINS



6.3 SUPPLY CHAINS WITH RANDOM YIELD      363 

Note that in the above algorithm the production is organized according 
to the weighted lowest production rate rule (WLPR), where the maximum 
production rate is weighted by the inventory or backlog costs. In contrast 
to most WLPR rules, which only allow one product with the lowest pro-
duction rate to be produced at a time, this algorithm may assign a number 
of products to be produced concurrently, as there are multple manufac-
turers. Since the production rate is inversely proportional to the production 
time, the concurrent WLPR rule is consistent with the weighted longest 
processing time rule (WLPT) well-known in scheduling literature (Pinedo 
1990). The complexity of the algorithm is determined by Step 2, which 

requires )( 3NO  time to solve.  

6.3 SUPPLY CHAINS WITH RANDOM YIELD  

In this section we consider a centralized vertical supply chain with a single 
producer and retailer. Similar to the problem considered in the previous 
section (6.2), since the retailer gains a fixed percentage from sales, control 
over the supply chain is not affected. The new feature is that a random 
production yield characterizes the manufacturer.  

The stochastic production control in a product defect or failure-prone 
manufacturing environment is widely studied in literature devoted to real-
time or on-line approaches (see, for example, the pioneering work of  
Kimemia (1982), Kimemia and Gershwin (1983), and Akella and Kumar 
(1986)). The optimal production rate u(t), which minimizes the expected 
inventory holding and backlog costs, is usually a function of the inventory 
X(t). To prove the optimality of the control, certain assumptions will have 
to be asserted, e.g., the observability of the inventory level and manufac-
turing states, and notably the Markovian supposition that stipulates that a 
continuous-time Markov chain describes the transition from an operational 
state to a breakdown state of the manufacturer. 

Unfortunately, in certain manufacturing systems, the information about 
either manufacturing states or inventory levels may at best be imprecise, if 
not unobtainable. One example is the chip fabricating facility, where yield 
or production breakdowns are due to complex causes which are difficult to 
identify. The system, like many modern ones, could continue producing at 
the same rate even when there has been a malfunction, because it is the 
part inspection, at a much later production stage, that will eventually unveil 
the culprits.  

It is also commonplace in some production systems that inventory levels 
are not continuously obtainable . This reality, in conjunction with the often 



ambiguous manufacturing states described above, warrants the exploration 
of an off-line control, which provides better system management when the 
above-mentioned information is lacking (Kogan and Lou 2005). 

As with many other sections in this book, we assume here periodic  
inventory review and thus the problem under consideration can be viewed 
as one more extension of the classical newsvendor problem. This dynamic 
extension is due to the random yield. Accordingly, an optimal off-line con-
trol scheme is developed in this section for a production system with ran-
dom yield and constant demand. 

Many authors have considered random yields in various forms. Com-
prehensive literature reviews on stochastic manufacturing flow control and 
lot sizing with random yields or unreliable manufacturers can be found in 
Haurie (1995) as well as Yano and Lee (1995). In addition, Gerchak and 
Grosfeld-Nir (1998) and Wang and Gerchak (2000) consider make-to-
order batch manufacturing with random yield. In these papers it is proven 
that the optimal policy is of the threshold control type—stop if and only if 
the stock is larger than some critical value. Gerchak and Grosfeld-Nir 
(1998) develop a computer program for solving the problem of binomial 
yields, while Wang and Gerchak (2000) study the critical value for differ-
ent production cases.  

The optimal control derived in this section is significantly different from 
the traditional threshold control expected under the Markovian assumption, 
which alternates between zero and the maximum production rate. Indeed, 
the production rate is not necessarily maximal when the expected inven-
tory level is less than the critical value X*. Nor is it necessarily zero when 
the inventory level is larger than X*.  

Problem formulation 

Consider a single manufacturer, single part-type centralized production 
system with random yield characterized by a Wiener process. Similar to 
the Wiener-increment-based stochastic production models (Haurie 1995), 
the inventory level X(t) is described by the following stochastic differential 
equation 

( ) DdttutdPdttdX −+= )()()( µβ ,  (6.73) 

where X(0) is a given deterministic initial inventory and u(t) is the produc-
tion rate, 

Utu ≤≤ )(0 ,    (6.74)  

P, 10 << P (U>D/P), is the average yield - the proportion of the good 

parts produced; )(tµ  is a Wiener process; β  is the variability constant of 
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the yield; )(tdµ  is the Wiener increment; and D is the constant demand 

rate.  
Similar to Shu and Perkins (2001) and Khmelnitsky and Caramanis (1998), 

we consider a quadratic inventory cost which is incurred when either 
X(t)>0 (inventory surplus), or X(t)<0 (shortage). The objective of the pro-
duction control is to minimize the overall expected inventory cost: 

⎥⎦
⎤

⎢⎣
⎡= ∫

T

dttXEJ
0

2 )(     (6.75) 

subject to (6.73) and (6.74), where T is the planning horizon during which 
the state of the system can be evaluated. 

To find the optimal production control, we introduce an equivalent deter-
ministic formulation. 
Proposition 6.22. Problem (6.73) - (6.75) is equivalent to minimizing 

∫∫ ∫ +⎥⎦
⎤

⎢⎣
⎡ +−=

tT t

dtdssudssuPDtXJ
0

2
2

0 0
))()()0(( β ,   (6.76) 

s.t. 

(6.74), where 
2ββ = . 

Proof: Integrating equation (6.73) we have  

∫∫ ++−=
tt

sdsudssPuDtXtX
00

)()()()0()( µβ ,  (6.77) 

which leads to 

[ ]222 )()(])0([2])0([)( tLtLDtXDtXtX +−+−= , (6.78) 

where ∫∫ +=
tt

sdsudssPutL
00

)()()()( µβ . Using the fact that the expecta-

tion of the stochastic (Ito) integrals is zero, we obtain 

=)]([ 2 tXE  
2

0 00

2 )()()()(])0([2])0([ ⎥⎦
⎤

⎢⎣
⎡ ++−+− ∫ ∫∫

t tt

sdsudssPuEdssPuDtXDtX µβ . (6.79) 

With respect to the Ito isometry, [ ]∫∫ =⎥
⎦

⎤
⎢
⎣

⎡ tt

dAEdWAE
0

2

2

0

)()()( ττττ  

(Kloeden and Platen 1999), the last term in (6.79) can be rewritten as: 

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛++⎟

⎠
⎞⎜

⎝
⎛=⎥⎦

⎤
⎢⎣
⎡ + ∫∫∫∫∫ ∫

2

000

2

0

2

0 0
)()()()()(2)()()()(

ttttt t

sdsusdsudssuPdssuPEsdsudssPuE µβµβµβ  

= ∫∫ +⎥⎦
⎤

⎢⎣
⎡ tt

dssudssuP
0

22
2

0

2 )()( β . 

Therefore we have  



⎥⎦
⎤

⎢⎣
⎡= ∫

T

dttXEJ
0

2 )( = =∫ dttXE
T

)]([ 2

0

+−+− ∫∫
tT

dssuPDtXDtX
0

2

0
)(])0([2])0(([

dtdssudssuP
tt

))()(
0

22
2

0

2 ∫∫ +⎥⎦
⎤

⎢⎣
⎡ β . 

Finally, by rearranging the terms in the last expression and using 2ββ = , 

we arrive at (6.76).  Ƒ 
We use the maximum principle to solve the problem. Note that the  

objective function (6.76) is a summation of strictly convex functions. This 
implies that the problem is convex and has a unique optimal solution.  

Since the objective function (6.76) contains integrals over independent 
variable t, it does not satisfy the canonical optimal control formulation 
needed for using the maximum principle. Hence we introduce the expected 

inventory, )(tX
E

, which satisfies 

DtPutX
E

−= )()(& , )0()0( XX
E

= ,  (6.80) 

and the cumulative quadratic control, )(tY , which satisfies 

)()( 2 tutY =& , 0)0( =Y .   (6.81) 

Then the objective function (6.76) takes the following form: 

[ ]∫ →+=
T

E
dttYtXJ

0

2 min)()( β .  (6.82) 

Formulation (6.74), (6.80)-(6.82) is canonical. According to the maxi-
mum principle, the control u(t) which maximizes the Hamiltonian H(t) 
subject to constraint (6.74) is optimal for (6.80) - (6.82) and, thus, for the 
original problem. The Hamiltonian is defined as 

)()())()(()()()( 22 tutDtPuttYtXtH
YXE

ψψβ +−+−−= ,   (6.83) 

where the co-state variables )(t
X

ψ  and )(t
Y

ψ  satisfy the following co-state 

equations 

)(2)( tXt
EX

=ψ& , 0)( =T
X

ψ ;   (6.84) 

βψ =)(t
Y
& , 0)( =T

Y
ψ .   (6.85) 

Analysis of the problem: two special cases 

As delineated below, depending upon the level of the initial inventory )0(X , 

different optimal control formulations will have to be employed. The for-
mulations are, unfortunately, rather involved, and their proofs convoluted. 
To make the results more comprehensible, we will start off by proving two 
special cases.   
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The first special case: DTX ≥)0( . 

In this case, the initial inventory is large enough to meet the demand for 
the entire planning horizon T. Therefore the optimal policy, as one expects, 
is not to produce at all. 

Proposition 6.23. If DTX ≥)0( , then 0)( =tu , Tt <≤0  is optimal. 

Proof: Since DTX
E

≥)0(  means 0))(()0()(
0

>−+= ∫ ττ dDPuXtX
t

E
, 

we have 0)(2)( >= tXt
EX

ψ& , Tt <≤0 . But 0)( =T
X

ψ , therefore 

0)( <t
X

ψ  and 0)( <t
Y

ψ , Tt <≤0  (see (6.84) and (6.85) respectively). 

Therefore, 0)( =tu , Tt <≤0  maximizes (6.83) and is thus optimal.  

The second special case: X(0) is moderately large, but DTX <)0( . 

As shown in Theorem 6.2 below, given two critical values, 
2

*

P

D
X

β
−=  

and X̂  which can be evaluated through equations depending on the sys-

tem and initial conditions, ∗> XX̂ , we will have a three-phase control 

when ∗≥> XXX )0(ˆ (see Figure 6.4(a)). Initially the optimal production 

rate u(t) is zero, and thus the average inventory level )(tX
E

 decreases. This 

is the first phase, which is identical to the control in the preceding special 

case. At a time point ψt  (a certain level of )(tX
E

, ∗>> XtXX
E

)(ˆ
ψ ), the 

optimal u(t) becomes positive but is still small enough so that )(tX
E

 con-

tinues its decline. This is the second phase. 

Finally, as soon as )(tX
E

 reaches a critical value, *X , (this time point is 

referred to as tO), the optimal )(tu  becomes a constant, 
P

D
tu =)(*  and 

from that point on )(tX
E

 and )(* tu  will remain equal to ∗X  and 
P

D
, res-

pectively. This is the third phase during which the system enters the steady 

state. The optimal control when X(0) is smaller than *X is the mirror im-
age of the described control (see Figure 6.4(b)) and therefore is not consi-

dered here. On the other hand, if XXDT ˆ)0( ≥> , then the optimal control 

will include only the first two phases. Note, that the proofs of the equation 

for X̂ and the existence of tO when ∗≥> XXX )0(ˆ , which utilize the  

asymptotic behaviors of the family of Bessel functions, are tedious and 



therefore excluded. To prove Theorem 6.2, we first need to establish the 
following proposition.  

Proposition 6.24. Assume functions )(tψ , )(tX  and  

⎪⎩

⎪
⎨
⎧

≥
−

<
=

0)(,
)(2

)(
,0)(,0

)(
t

tT

tP

t

tu ψ
β

ψ
ψ

 

satisfy DtPutX −= )()(&  and )(2)( tXt =ψ&  for Tt ≤≤0 , where 0>β , 

P>0 and D>0 are constants. Furthermore, assume 0)( =Tψ , 

2

~
)0(

P

D
XX

β
−=>  and XtX

~
)( =′  for some t ′ , Tt ≤′≤0  and XtX

~
)( ≠ , 

tt ′<≤0 . Then 

)(
~

2)( tTXt −−≤ψ , '0 tt ≤≤ , and 

XtX
~

)( =  and )(
~

2)( tTXt −−=ψ  for Ttt ≤≤′ . 

Proof: We first show that )(
~

2)( tTXt −−<ψ , tt ′<≤0 . Since XX
~

)0( > , 

XtX
~

)( =′  and XtX
~

)( ≠ , tt ′<≤0 , we must have XtX
~

)( > , tt ′<≤0 . 

Thus, there is a t ′′ , tt ′<′′ , such that 0)()( <−= DtPutX&  for ttt ′<≤′′ . 

Therefore 
P

D
tu <)( , ttt ′<≤′′ , which leads to  

)(
~

2)( tTXt −−<ψ  for ttt ′<≤′′ .   (6.86) 

If )(
~

2)( tTXt −−>ψ  for some t , tt ′′<≤0 , then because 

XtXt
~

2)(2)( >=ψ&  for tt ′<≤0 , we would have )(
~

2)( tTXt ′′−−>′′ψ . 

But this contradicts (6.86). Therefore )(
~

2)( tTXt −−<ψ , for tt ′<≤0 . 

We now show that )(
~

2)( tTXt ′−−=′ψ . Assume the opposite were true, 

that is, )(
~

2)( tTXt ′−−<′ψ . Thus 
P

D
tu <′)(  and 0)( <′tX& . Therefore 

there would exist a t ′′′ , Ttt <′′′<′  such that XtX
~

)( <  for ttt ′′′≤<′ . 

Thus, XtXt
~

2)(2)( <=ψ&  and )(
~

2)( tTXt −−<ψ  for ttt ′′′≤<′ . 

Furthermore, there would exist a ∗t , Ttt ≤< ∗' , such that XtX
~

)( =∗ , 

otherwise XtX
~

)( <  and, thus, XtXt
~

2)(2)( <=ψ&  and )(
~

2)( tTXt −−<ψ  

for Ttt ≤<′ . This implies 0)( <Tψ , which contradicts the assumption  
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that 0)( =Tψ . Since XtX
~

)( =∗  and XtX
~

)( <′′′ , there would be a 1t , 
∗≤<′′′ ttt 1  such that XtX

~
)( 1 =  and XtX

~
)( <  for 1ttt <≤′′′ . Therefore 

XtXt
~

2)(2)( <=ψ&  and, thus, )(
~

2)( tTXt −−<ψ , 
P

D
tu <)( , and finally 

0)( <tX& , for 1ttt <<′′′ . Since XtX
~

)( <′′′ , we would have XtX
~

)( 1 < . 

But this contradicts the assumption that XtX
~

)( 1 = . Therefore we must 

have )(
~

2)( tTXt ′−−=′ψ . 

We now show that XtX
~

)( =  and )(
~

2)( tTXt −−=ψ  for Ttt ≤≤′  by 

contradiction. Assume there existed some 1α  and 2α , Tt <<<′
21 αα  

such that XtX
~

)( =  for 1α≤≤′ tt , and XtX
~

)( ≠  for 21 αα ≤< t . This 

would mean that 0)( ≠tX&  at 1α=t . But XtX
~

)( =  for 1α≤≤′ tt  and 

)(
~

2)( tTXt ′−−=′ψ  should result in Xt
~

2)( =ψ& , )(
~

2)( tTXt −−=ψ , 

P

D
tu =)(  and, thus, 0)( =tX&  for 1α≤≤′ tt  which contradicts 0)( ≠tX&  

at 1α=t . Therefore we must have XtX
~

)( =  and )(
~

2)( tTXt −−=ψ  for 

Ttt ≤≤′ .  

Theorem 6.2. Let ∗≥> XXX )0(ˆ  
2P

Dβ
−=  and A, B, Ψt , 

O
t  satisfy the 

following equations: 

( ) ( )
C

XX
CTBKCTAI

))0((2
22

*

00

−
=+ ,  (6.87) 

( ) ( ) 0)(2)(2 11 =−+−
OO

tTCBKtTCAI ,  (6.88) 

( ) ( ) ψψψ tTXtTCBKtTCAI −=−+− ∗2)(2)(2 11 , (6.89) 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−−−−−−−+

+−=

))(2())(2())(2()(2(
2

)0(*

0000

2

OO
tTCKtTCK

C

B
tTCItTCI

C

AP

DtXX

ψψ

ψ

β
 

(6.90) 

2))(()2(

)2(ˆ

00

0

−−+
+= ∗

ψ

ψ
tTCICTI

CTI
DtXX ,  (6.91) 

where 
β

2P
C = . 



( ) ( )[ ]
⎪⎩

⎪
⎨
⎧

≤≤−−

<≤−−−+−⋅−
=

∗

∗

TtttTX

tttTXtTCBKtTCAItT
t

O

O

X

),(2

0),(2)(2)(2
)(

11ψ  

(6.92) 
where In(z) is the Modified Bessel function of the first kind of order n and 

Kn(z) is the Bessel function of the second kind of order n (Neumann func-

tion). 

Then 

⎪⎩

⎪
⎨
⎧

≤≤
−

<≤
=

Ψ

Ψ

Ttt
tT

tP

tt

tu X ,
)(2

)(

,0,0

)(

β
ψ    (6.93) 

is optimal. 

Proof: In order to show the optimality of )(tu , we need to prove that  

(i) )(2)( tXt
EX

=ψ&  and 0)( =TXψ , 

(ii) u(t) is feasible, and  

(iii) )(tu  and )(tXψ  maximize the Hamiltonian (6.83). 

First, )(tXψ , 
O

tt <≤0  satisfies the following differential equation 

(Gradshteyn and Ryzhik 1980): 

D
tT

t
Pt X

X
2

)(

)(
)( 2 −=

−
−

β
ψ

ψ&& ,   (6.94) 

which can be rewritten as 

)(22)(2)( tXDtPut EX
&&& =−=ψ .  (6.95) 

One can also find from (6.87)-(6.92), that )(tXψ&  satisfies the following 

boundary condition  

)0(2)0(
EX

X=ψ& .   (6.96) 

Integrating both sides of (6.95) with respect to (6.96) shows that 

)(2)( tXt
EX

=ψ&  for 
O

tt <≤0 . For Ttt
O

≤≤ , substituting (6.92) into 

(6.93) leads to 
P

D
tu =)( . Thus, 0)()( ==− tXDtPu

E
& , which results in 

∗= XtX
E

)(  for Ttt
O

≤≤ . Differentiating (6.92) we show that 

)(2)(2 tXtX
XE

ψ&== ∗ . Finally, it is easy to verify that 0)( =T
X

ψ . 

Therefore (i) is proven. 

Let us now show )(tu  is feasible, that is, Utu ≤≤ )(0 . First, it can be 

shown that ∗= XtX
OE

)(  ((6.90) - (6.92)), )(2)(
OOX

tTXt −−= ∗ψ  ((6.86) 

)(t
X

, X
E

conditions of Proposition 6.24. According to that proposition, 

(t)  and u(t)  satisfy the remaining and (6.92)), as well as, ψ
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)(2)( tTXt
X

−−≤ ∗ψ  for 
O

tt ≤≤0 . Thus, )(2)( tTXt
X

−−≤ ∗ψ  and there-

fore U
P

D
tu <≤)(  for Tt ≤≤0 , which yields 0)( ≤tX

E
& , Tt ≤≤0 .  

Assume 0)0( >
E

X  (in fact, this is ensured by the existence of Ψt ). Since 

)(tX
E

 is non-increasing and 0<∗X , there must be a 
OX

tt < , such that 

0)( =
XE

tX . Therefore 0)( ≤tX
E

 and, thus, 0)(2)( ≤= tXt
EX

ψ& , 

Ttt
X

≤≤  and 0)( >t
X

ψ& , 
X

tt <≤0 . Considering 0)( =T
X

ψ , we have 

0)( ≥t
X

ψ , Ttt
X

≤≤ . Thus 
X

tt <Ψ . Also 0)( <t
X

ψ , Ψ<≤ tt0 , and 

0)( ≥t
X

ψ , Ttt ≤≤Ψ . Taking (6.93) into account, we conclude that 

)(0 tu≤  for Tt ≤≤0 . Combining this with the fact U
P

D
tu <≤)( for 

Tt ≤≤0 that we have just proven, we conclude that )(tu  is feasible. 

Finally, it is easy to observe, that )(tu  and )(tXψ  determined by (6.92) 

and (6.93) maximize the Hamiltonian (6.83).    

Optimal control  

The optimal control, when *)0( XX ≥ , is dependent upon the initial  

inventory X(0) in the following manner.  

Case 1: DTX ≥)0( , 0)(* =tu , Tt ≤≤0 . This is the first special case 

in the last section. Only the first phase of the three-phase control is used. 

Case 2: XXDT ˆ)0( ≥> . The optimal control is defined as: 

( ) )(
2

)(2)( 1 tT
C

D
tTCItTAt

X
−+−⋅−=ψ , for Tt ≤≤0 , (6.97) 

⎪⎩

⎪
⎨
⎧

≤≤
−

<≤
=

Ψ

Ψ

Ttt
tT

tP

tt

tu X ,
)(2

)(

,0,0

)(*

β
ψ   (6.98) 

and Ψt  is obtained by solving the following equation: 

( ) 02)(21 =−−− ∗
ψψ tTXtTCAI ,  (6.97) 

where 
)2(

)ˆ(2

0 CTIC

XX
A

∗−
= . Obviously, Tt <Ψ  satisfies 0)( =ΨtX

ψ . 

This case has the first two phases described in Theorem 6.2: initially 

0)(* =tu  when Ψ< tt  and then )(* tu  becomes positive, but still small 

enough so that the average inventory level )(tX
E

 continues declining. 



Since the initial inventory is relatively large, )(tX
E

 will never reach the 

critical value ∗X  and thus the third phase of the control will not be entered. 

Case 3: ∗≥> XXX )0(ˆ . We have the second special case determined 

by Theorem 6.2 with a three-phase control, which is illustrated in Figure 
6.4(a).  

Note that the proof of Case 2 is very similar to that of Theorem 6.2 and 
thus omitted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a)                                                     (b) 

 
Figure 6.4. Optimal Behavior of the system for X(0)>X* (a) and X(0)<X* (b)  

In summary, depending upon the initial inventory level, the optimal con-
trol may have up to three phases. In the first phase, the optimal production 
rate is either at its maximum or its minimum, as in the traditional threshold 
control. The optimal production rate in the second phase is determined by 
a set of complex non-linear equations containing Bessel functions. In the 
third phase, similar to the traditional threshold control, the system enters a 
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D
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D
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0tψt  
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7 RISK AND SUPPLY CHAINS 

Risk results from the direct and indirect adverse consequences of outcomes 
and events that were not accounted for or that we were ill prepared for, and 
concerns their effects on individuals, firms or the society at large. It can 
result from many reasons both internally induced and occurring externally 
with their effects felt internally in firms or by the society at large (their 
externalities). In the former case, consequences are the result of failures or 
misjudgments while in the latter, consequences are the results of uncon-
trollable events or events we cannot prevent.  

A definition of risk and risk management involves as a result a number 
of factors, each reflecting a need and a point of view of the parties involved 
in the supply chain. These are: 

(1) Consequences, individual (persons, firms) and collective (supply 
chains, markets). 

(2) Probabilities and their distribution, whether they are known or not, 
whether empirical or analytical and based on models or subject-
tive.  

(3)  Individual preferences and Market-Collective preferences, expres-
sing a subjective valuation by a person or firm or organizatio-
nally or market defined—its price. 

(4) Sharing and transfer effects and active forms of risk prevention, 
expressing risk attitudes that seek to alter the risk probabilities 
and their consequence, individually or both. 

These are relevant to a broad number of professions, each providing a 
different approach to the measurement, the valuation and the management 
of risk which is motivated by real and psychological needs and the need to 

deal individually and collectively with problems that result from uncer-

tainty and the adverse consequences they may induce and sustained in an 

often unequal manner between individuals, firms, a supply chain or the 

society at large. For these reasons, risk and its management are applicable 
to many fields where uncertainty primes (for example, see Tapiero 2005a, 
2005b). In supply chains, these factors conjure to create both a conceptual 
and technical challenge dealing with risk and its management.  



7. 1 RISK IN SUPPLY CHAINS 

Risk management in supply chains consists in using risk sharing, control 
and prevention and financial instruments to negate the effects of the supply 
chain risks and their money consequences (for related studies and 
applications see Anipundi 1993, Christopher 1992, Christopher and Tang 

2004). For example, Operational Risks concerning the direct and indirect 
adverse consequences of outcomes and events resulting from operations 
and services that were not accounted for, that were ill managed or ill 
prepared for. These occur from many reasons, both induced internally and 
externally. In a former case, consequences are the result of failures in 
operations and services sustained by the parties individually or collectively 
due either to an exchange between the parties (in this case an endogenous 
risk) or due to some joint (external) risks the firms are confronted by. In 
the latter case it is the consequence of uncontrollable events the supply 
chain was not ready for or is unable to attend to. The effect of risk on the 
performance of supply chains can then be substantial arising due to many 
factors including the following. 

• Exogenous (external) factors—factors that have nothing to do with 
what the supply chain firms do but due to some uncontrollable 
external events (a natural disaster, a war, a peace, etc.);  

• It may be due to controllable events—endogenous, either because 
of human errors, mishaps of operating machines and procedures 
or due to the inherent conflicts that can occur when organization 
and persons in the supply chain may work at cross purpose. In 
such conditions, risk can be motivated, based on agents and 
firms’ intentionality;  

• It may be due to information asymmetry, leading adverse selec-
tion and moral hazard (as we shall see below and define) that can 
lead to an opportunistic behavior by one of the parties which 
have particular implications for the management of the supply 
chain;  

• It may result from a lack of information, or the poor manage-
ment of information and its exchange in the supply chain, such 
as forecasting—individually and collectively, the supply chain 
need, demands etc.;  

• It may express a perception, where a risk attitude (by a party or a 
firm) may confer risk to events that need not be risky and vice 
versa. Risk attitude is then imbedded in a subjective perception 
of events that may be real or not;  
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• It may be the result of measurements—both due to the definition 
of its attributes or simply errors in their measurement. 

For example, some agents may convey selective information regarding 
products or services and thereby enhance the appeal of these products and 
services. Some of this information may be truthful, but not necessarily! 
Truth-in-advertising and truth (transparency) in lending for example are 
important legislations passed to protect consumers just as truth in exchange 
and in transparency are needed to sustain a supply chain. In many cases 
however, it might be difficult to enforce. Further, usually firms are extremely 
sensitive to negative information or to the presumption that they have been 
misinformed. Such situations are due to an uneven distribution of informa-
tion and power among the parties and induce risks we coin “Adverse Selec-
tion” and “Moral Hazard”. Risk, information and information asymmetry 
are thus important issues supply chains are concerned with and are therefore 
the topic of essential interest and management. 

Akerlof (1970) has pointed out that goods of different qualities may be 
uniformly priced when buyers cannot realize that there are quality differ-
ences. For example, one may buy a used car, not knowing its true state, 
and therefore the risk of such a decision may induce the customer to pay a 
price which would not reflect truly the value of the car and therefore mis-
price the car. In other words, when there is such an information asymme-
try, valuation and prices are ill defined because of the mutual risks that 
exist due to the buyer and seller specific preferences and the latter having a 
better information. In such situations, informed sellers can resort to oppor-
tunistic behavior. Such situations are truly important. They can largely 
explain the desires of firms to seek “an environment” where they can trade 
and exchange in a truthful and collaborative manner. Some buyers might seek 
assurances and buy warranties to protect themselves against post-contract 
failures or to favor firms who possess service organizations (in particular 
when the products are complex or involve some up-to-date technologies). 
As a result, for transactions between producers and suppliers, the effects of 
uncertainty lead to dire needs to construct long-term and trustworthy rela-
tionships as well as a need for contractual engagements to assure that “the 
contracted intentions are also delivered”.  Such relationships may lead, of 
course, to the “birth” of a supply chain. 

Adverse Selection and “The Lemon Phenomenon”  



A characteristic that cannot be observed induces a risk to the non-informed. 
This risk is coined “Moral Hazard” (Holstrom, 1979, 1982; Hirschleifer 
and Riley 1979). For example, possibly, a supplier (or the provider of a 
service) may use such a fact to his advantage and not deliver the contracted 
amount. Of course, if we contract the delivery of a given level of quality 
and if the supplier does not knowingly maintain the terms of the contract 
that would be cheating. We can deal with such problems with various sorts 
of (risk-statistical) controls combined with incentive contracts which create 
an incentive not to cheat or lie. If a supplier were to supply poor quality 
and if it were detected, the supplier would then be penalized accordingly 
(according to the agreed terms of the contract or at least in his reputation 
and the probability that buyers will turn to alternative suppliers). If the 
supplier unknowingly provides products which are below the agreed con-
tracted standard of quality, this may lead to a similar situation, but would 
result rather from the uncertainty the supplier has regarding his delivered 
quality. This would motivate the supplier to reduce the uncertainty regarding 
quality through various sorts of controls (e.g. through better process controls, 
outgoing quality assurance, assurances of various sorts and even service 
agreements) as will be discussed in the next chapter in far greater details. 
For such cases, it may be possible to share information regarding the quality 
produced and the nature of the production process (and use this as a signal 
to the buyer). For example, firms belonging to the same supply chain may 
be far more open to the transparency of their processes in order to convey 
a message of truthfulness. A supplier would let the buyer visit the manu-
facturing facilities as well as reveal procedures regarding the controls it uses, 
machining controls, the production process in general as well as the IT 
Technologies it has in place. 

Examples of these risk prone problems are numerous. We outline a few. 
An over-insured logistic firm might handle carelessly materials it is respon-
sible for; a warehouse may be burned or looted by its owner to collect 
insurance; a transporter may not feel sufficiently responsible for the goods 
shipped by a company to a demand point etc. As a result, it is necessary to 
manage the transporter and related relationship and thereby manage the 
risks implied in such relationships. Otherwise, there may be adverse conse-
quences, leading, for example, to a greater probability of transports damage; 
leading to the “de-responsabilization” of parties or agents in the supply chain 

bility” are so important and needed to minimize the risks of Moral hazard 
(whether these are tangible or intangible). For example, in decentralized 
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supply chains, getting firms to assume fully their responsibilities may also 
be a means to care a little more for the supply chain overall performance 
and in everything they do that affects other firms’ performance as well. A 
supplier who has a long term contract might not care to supply performing 
parts for the buyer who is locked-into such a relationship (contract). In 
such situations, co-dependence and collaboration provide some of means 
needed to mitigate these risks. 

Throughout these examples, there are negative inducements to perfor-
mances. To control or prevent these risks, it is necessary to proceed in a 
number of manners. The concern of a supply chain organizational design is 
a reflection of the need to construct relationships which do not induce 
counter-productive acts. For example, the demand for ever greater perfor-
mance at lower risk has induced firms to define various organizational 
frameworks for supply chains which are altering the nature of doing 
business. GM and its suppliers are working closely together, albeit with 
many control and counter measures to assure managed exchanges. The 
same applies to almost any major manufacturer. It is increasingly believed 
that the reduction of the number of suppliers is leading to a sort of semi-
integration and exchanges between producers and suppliers and therefore 
to some other risks arising due to potential moral hazard. Such exchanges 
are bi-directional relating to: 

• Information which prevents faulty operations and services; 

• Information needed for in-process services and operations; 

• Information which induces collaborative exchange. 

Steps that are important and can be followed include: Detecting signals 
of various forms and origins to reveal the supply chain agents’ behaviors, 
rationality and performances; A greater understanding of the supply chain’s 
intentions which can lead to a better design of the supply chain organization 
and its information systems; Managing and controlling the relationship 
between the supply chain’s firms’, their employees and workers. Earlier 
for example, we saw that information asymmetry can lead to opportunistic 
behavior such as cheating, lying and being counter productive, just because 
there may be an advantage to doing so without having to sustain the conse-
quences of such a behavior. Developing an environment which is cooperative, 
honest, open and which leads to a frank exchange of information and opti-
mal performances is thus a necessity to sustain a supply chain’s existence. 
For additional references and applications in supply chains pertaining to 
issues of information and supply chains, the reader may consult as well 
Boone et al 2002, Cachon and Fisher 2000, Cheng and Wu 2005, Agrell  
et al. 2004, Aviv 2004, 2005). These problems are fundamentally impor-
tant in designing and managing the contractual relationships that define the 



supply chain and its operations and applied in the many contexts in which 
supply chains operate (see also Agrawal and Shesadri 2000, Cohen and 
Agrawal 1999, Corbett 2001, Corbett and Groote 2000, Corbett and Tang 
1998, Desiraju and Moorthy 1997, Lee et al. 1997a, 1997b). 

In conditions of information asymmetry, one of the parties may have an 
incentive to reveal some of the information it has. The seller of a product 
may have or have not an interest in making his product transparent to the 
buyer. He may do so in a number of ways, such as pricing it high and 
therefore conveying the message to the potential buyer that it is necessarily 
(at that price) a high quality product (but then, the seller may also be cheat-
ing!). The seller may also spend heavily on advertising the product, claiming 
that it is an outstanding product with special attributes and thereby inducing 
sales justified by the product quality (but then the seller my also be lying!). 
Claiming that the product is just “great” may be insufficient. Not all buyers 
are gullible. They require and look for signals that reveal the true properties 
of the product. Pricing, warranties, reputation and principles, advertising, 
are some of the means used by sellers to send signals. For example, the 
seller of a lemon with a warranty will eventually lose money. Similarly, a 
firm that wants to limit the entry of new competitors may signal that its 
costs are very low (and so if they decide to enter, they are likely to lose 
money in a price battle). Advertising heavily may be recuperated only 
through repeat purchase and therefore, over-advertising may be used as a 
signal that the over-advertised products are of good quality. 

Uninformed parties, however, have an incentive to look for and obtain 
information. For example, shop and compare, search reliable suppliers etc. 
are instances of information seeking by uninformed parties. Such activities 
are called screening. A driver that has a poor accident record history is likely 
to pay a greater premium. If characteristics of customers are unobservable, 
firms can use self selection constraints as an aid in screening to reveal 
private information. For example, consider the phenomenon of rising wage 
profiles where workers get paid an increasing wage over their careers. An 
explanation may be that firms are interested in hiring workers who will 
stay for a long time. Especially if workers get training or experience which 
is valuable elsewhere this is a valid concern. Then they will pay workers 
below the market level initially so that only “loyal” workers will self select 
to work for the firm. Similar arguments may be used in selecting supply 
chain parties. 
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The classic example of “signaling” points out that high productivity 
individuals try to differentiate themselves from low productivity ones, by 
the amount of education they acquire. In other words, only the most produc-
tive workers invest in education. This is the case because the signaling cost 
to the productive workers is lower than to low productivity workers and 
therefore firms can differentiate between these two types of workers. By 
the same token, individual, parties, supply chains are very jealous of their 
reputation and the maintenance of their standards of services so that they 
can differentiate themselves from competitive alternatives. 

7.2 RISK PRACTICE IN SUPPLY CHAINS 

A search for “Supply Chains Risks” on internet will reveal a large number 
of interviews with practitioners, individual and academic contributions, 
consulting firms and papers that seek to bring attention to what supply 
chain managers are calling attention to—supply chains derived risks. For 
example, Chris D. Mahoney (UPS, October 2004, www.ism.ws/Pubs/ 
ISMMag/100406.cfm) points out that “many companies have worked hard 
to streamline their supply chains. They’ve whittled down the field and built 
relationships with only the most competent suppliers. And many have 
gotten the desired result—supply chains that run like clockwork, reducing 
costs and bolstering customer service. But it turns out there’s a downside—
greater risk”. These risks are also more complex, arising for many reasons 
transcending the traditional concern for operational (intra firm) and 
external (hazard) risks. Risks previously neglected have expanded because 
of supply chains entities dependencies, political, strategic and risks exter-
nalities, augmenting thereby the importance of their assessment and their 
management. For example, the unending drive for lean manufacturing, to 
reduce inventory, single sourcing of raw materials, or adopting just-in-time 
(JIT) manufacturing and delivery techniques, while cutting costs has also 
contributed to the size and adverse effects of supply chains risks.  Greater 
attention and management to these risks is therefore needed both because 
of the potential catastrophic costs these risks imply and because the drive 
to expand and streamline into lean and cost-reducing supply chains has 
ignored these risks. Mahoney for example, raises the following questions:  

“If your main distribution center or plant sustained substantial damage, 
how much time would it take you to bounce back? How much inventory 
would you lose and what are the costs of recouping it? If inventory loss is 
sizeable, how rapidly can you adjust production lines and plans to accom-
modate new production goals? Can key suppliers ramp up swiftly? Or, if a 
product is de-emphasized, how will they handle the revenue loss? How much 



revenue would your company stand to lose if order taking and filling were to 
come to a halt for a week, two weeks or a month? What are the legal and 
financial ramifications of being unable to satisfy contracts? How will your 
market share and brand be affected in the long-term? What sales and market-
ing initiatives will you need to adopt to handle customers, recoup revenues, 
and reclaim lost market share and goodwill?”  

According to Mahoney, we require more risk management, more supply 
chain integration and stakeholder management, and network capacity. How-
ever the “answer is always part of the problem” and risk management in 
supply chains will need far more strategic and senior management involve-
ment to provide directives for dealing with the following issues (Marsh’s 
consulting Risk-Adjusted Supply Chain Practice www.marsh riskconsulting. 
com/st/):  

̇ Do we fully understand the dependencies within our supply chain?  
̇ Have we identified the weak links within our supply chain?  
̇ Do we understand the risk that has been inadvertently built into our supply 

chain?  
̇ Have we identified the supply chain risks that we might be able to miti-

gate, eliminate, or pass on to another supply chain member?  
̇ Do we incorporate the element of risk when making strategic or tactical 

decisions about our supply chain?  
̇ Is our supply chain nimble and flexible so that we can take advantage of 

both supply chain risks and opportunities?  
̇ Have we fully captured our enterprise-wide risk profile?  
̇ Do we know which supply chain risks may cause an adverse event that 

could cause a significant disruption to our supply chain?  
̇ Do we have the necessary tools, skills, and resources to model our 

supply chain, including its risks and vulnerabilities, in order to under-
stand the financial impact that various events and scenarios will have on 
our supply chain?  

̇ Do we benchmark the activities that make up our supply chain?  
̇ Have we identified — and do we monitor — key risk indicators of upstream 

or downstream activities that might result in a disruption in the supply 
chain?  

̇ Have we fully integrated our business contingency plans and emergency 
response plans into our supply chain management initiatives?  

Overwhelmingly, and as discussed earlier, supply chains are based on 
co-dependency and collaboration exchange between firms, each drawing a 
payoff whose risks it must also sustain and manage in as many ways as it 
may be able to measure and conjure. Collaboration for example, is a well 
trumpeted mechanism for maximizing payoffs while at the same time man-
aging co-dependence risks that firms engaged in supply chain exchanges 
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are dealing with. Collaboration is not always possible however, as presumed 
in our previous chapters (where Nash and Stackelberg solutions were used) 
for agreements that may be difficult to self-enforce. As a result co-dependence 
risks are strategic and can potentially be overwhelming for firms that operate 
in and out of supply chains.  

By the same token, strategic focusing and outsourcing by firms while 
justified on some theoretical and economic grounds induce their own risks. 
These issues, specific to supply chains combined with the operational and 
external risks that supply chains are subject to, require that specific attention 
be directed to their measurement and to their management. Such measure-
ment requires a greater understanding of firms’ motivations’ in entering 
supply chain relationships and the factors that determine their dependence 
risks (Bank 1996, Tapiero 2005a). However, the growth and realignment 
along supply chains of corporate entities in an era of global and strategi-
cally focused and market sensitive strategies is altering the conception of 
Corporate Risk in Supply Chains. Some of these risks are well known and 
well documented, including: 

• Operational, and  

• External-hazards risks 

• Risks of globalization,  

• Financial markets risks 

• Strategic risks as well as  

• Technological risk,  

• Sustainability and risk externalities.  

While risk exposure and risk management may use our abilities to deal 
ex-ante and ex-post with the adverse consequences of uncertainty (risk), 
the measurement and the valuation-pricing of risks remains a challenge 
(although great strides have been achieved in using financial instruments 
and real options, see Tapiero 2004 for example). If risk is money valued by 
some actor-agent, it need not be valued equally by the agents involved and 
collaborating in the supply chain, leading thereby to latent supply chain 
asymmetries with dire consequences to the management of risks as 
indicated earlier. There are, of course, non money measures such as meas-
urements of variability (variance, semi variance, range etc. and other statis-
tical and probability based measures). How valuable are these risks to 
firms?  How valuable are they to the supply chain? And how does the 
market mechanism value-price these risks? It is through such a valuation 
and its price (the risk premium) that events assume a consequence defined 
as risk. For example, is the loss of capacity a risk measure? Is the cost of 
losing a client ...a risk measure? Is a demand’s standard deviation a risk 



measure? These terms are risk-meaningful only to the extent that we are 
conscious of their effects and amplified by our ability to measure, value 
and price their consequences. Supply Chain Managers have thus an impor-
tant role to assume in defining supply chain risks, in measuring and 
valuing these risks and “internalize them” in the costs and benefits calcula-
tions they are using to reach decisions and draw the essential attention that 
supply chains risks deserve. For related problems in supply chain see also 
Agrawal and Nahmias 1998, Akella et al 2002, Anupundi and Akella 
1993, Harland et al 2003. 

7.3 SUPPLY CHAIN RISKS AND MONEY 

Risk is a consequence, expressing the explicit and latent objectives of the 
firm and the supply chain. In supply chains, as well in markets, the unit of 
exchange is essentially “money” and therefore, risk is ultimately measured, 
valued and managed by money. The concern of “Total” approaches in 
industrial management that seek to account for all potential risk effects—
direct and indirect ones, are a departure from the traditional approaches, 
that recognize the significant performance effects of risks but do not 
always provide a quantification of their value nor recognize the derived 
(indirect) dependencies of such effects. Further, since we can only value 
what we can be aware of or can measure and inversely we can measure 
only what we value”, attention has been directed to problems that are easier 
to identify rather than to the strategic problems that occur in supply chains. 
For example, quality measurements in industry have emphasized primarily 
non-quality because it can be measured, as a result, industrial managers 
have mostly been oblivious to “good quality” because they were hardly 
measured. By the same token, while the unknown demand for a product 
might be a source of (inventory) risk, it is not a risk. It is a measured risk 
when the consequence of such a demand uncertainty can be assessed in 
money terms. Similarly, if a party A is not responsible and does not pay 
for the costs it has inflicted to another party B in the supply chain, these 
costs will not be defined as a risk for that first party A. In this sense, risk 
measurement implies at the same time its risk definition and its valuation. 
Such an approach provides a far greater justification and incentive for 
performance measurement which becomes extremely important and in some 
cases may contribute to the growth of supply chains. For example, Barzel 
(1982), points out that “when two inputs have to be measured at two suc-
cessive junctures, a rationale for an integrated (supply chain- our insertion) 
firm emerges”. In this sense, measurement has its own error sources and 
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commensurate risks which induce firms to network in order to work and 
operate in an environment where measurements and their risks are reduced. 

Risk management in supply chains is, as a result, multi-faceted. It is 
based on both theory and practice. It is conceptual and technical, blending 
behavioral psychology, financial economics and decision making under 
uncertainty into a coherent whole that justify the selection of risky choices 
and manages their consequential risks. Its applications are also broadly 
distributed across many areas and fields of interest. The examples we shall 
treat in the next section are meant to highlight a number of approaches that 
address specific concerns in supply chains. In the next chapter we shall be 
concerned in particular with the management of quality in supply chains, 
recognizing the strategic aspects of risks in a supply chain. The approaches 

In a supply chain, the management of risks is both active and reactive, 
requiring on the one hand that actions be taken to improve a valuable process 

• Unforeseeable events we are ill prepared to cope with. 

• Adversarial situations resulting from a conflict of interests between 
contract holders. Adversarial relationships combined with private 
information leading to situations when one might use information 
to the detriment of the other and thereby possibly resulting to 
opportunistic behavior. 

• Information asymmetries inducing risks (moral hazard and adverse 
selection) that affect the supply chain parties and society at large.  

• Oversimplification of the problems involved or their analysis (which 
is often the case when the problems of globalization are involved). 
Such oversimplification may lead to erroneous assessments of uncer-
tain events and thereby can lead to the participants to be ill pre-
pared for their consequences.  

• Information is not available or improperly treated and analyzed. 
This has the effect of inducing uncertainty regarding factors that 
can be properly managed and, potentially leading to decisions that 
turn out to be wrong. Further, acting with no information breeds 
incompetence that contributes to the growth of risk. 

• Poor organization and control of processes. For example, a process 
that does not search for information, does not evaluate outcomes  
 

  

and, on the other, preventing recurrent problems. Generally, problems occur 
for a number of reasons, enriched by the complexity supply chains induce. 
These include: 

used are equally applicable to a broad variety of problems supply chains 
are confronted with.



• and situations that can be costly. Similarly, a myopic approach with 
no controls of any sort, no estimation of severity and consequences 
and no long run evaluation of consequences can lead to costs that 
could have been avoided. 

• Non adaptive procedures to changing events and circumstances. 
Decision makers oblivious to their environment, blindly and stub-
bornly following their own agenda are a guarantee for risk. 

These problems recur in many areas and thus one can understand the 
universality and the importance of risk and its management. 

The definitions of risk, risk measurement and risk management are closely 
related, one feeding the other to determine the proper-optimal levels of 
risk. Economists and Decision Scientists have attracted special attention to 
these problems. In this process a number of tools are used based on:  

• Ex-ante risk management  

• Ex-post risk management and 

• Robust Design 

Ex-ante risk management involves “before the fact” application of vari-
ous tools such as: Risk sharing and transfer; Preventive controls; Preven-
tive actions; Information seeking; Statistical analysis and forecasting; Design 
for reliability; Insurance etc..   

“After the fact” or Ex-post risk management involves, by contrast, con-
trol audits and the design of flexible-reactive schemes that can deal with 
problems once they have occurred to limit their consequences. Option con-
tracts for example, are used to mitigate the effects of adverse movements 
in stock prices (but not only as we saw earlier). With call options, in 
particular, the buyer of the option limits the downside risk to the option 
price alone while profits from price movements above the strike price are 
unlimited. For example, to manage the price of supplies and their delivery, 
a buyer may buy options contract (see Ritchken and Tapiero 1984). 

Robust design, unlike ex-ante and ex-post risk management seeks to 
reduce risk by rendering a process insensitive (i.e. robust) to its adverse 
consequences. If a supplier fails due to an unforeseeable event, the effects 
of this event can be reduced by providing contingent supply opportunities. 
Technically, risk management desirably alters the outcomes a party of the 

supply chain can be confronted with and reduce negative consequences to 

planned or economically tolerable levels.  
There are many ways to reach this goal, however each discipline devises 

the tools it can apply. For example, engineers and industrial managers apply 
reliability design and quality control techniques and TQM (Total Quality  
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Management) approaches to reduce the costs of poorly produced and poorly 
delivered products etc. as we shall see in the next chapter. Examples to these 
approaches in risk management in these and other fields abound. In supply 
chains, one may consult additionally AON 2005, Babich et al. 2004, 
Chopra 2004, Kleindorfer and Saad 2005, Nagurney et al. 2005, Parlar and 
Perry 1996, Rice and Caniato 2003, Shefy 2001 and Zsidisin et al 2001). 

Controls such as audits, statistical quality and process controls (as will 
be seen in the next chapter) for example are applied ex-ante and ex-post. 
They are exercised in a number of ways in order to rectify processes and 
decisions taken after non-conforming events have been detected and speci-
fic problems have occurred. Auditing a firm in a supply chain, controlling 
a product performance over time etc. are simple examples of controls 
sought. 

7.4 RISK VALUATION 

Risk and uncertainty in supply chains are treated and valued in many dis-
parate ways, conceptually and technically different. The approaches we 
use are subjective (personal) and objective (based on a market attitude and 
valuation-pricing). There is an extensive body of knowledge and numerous 
references that treat these problems. In supply chains, the treatment of risk 
and uncertainty assumes an added complexity however due to the strategic 
interactions (and game-like situations) that the parties of the supply chain 
are engaged in as we saw in previous chapters. We shall elaborate below 
on a number of cases to highlight some approaches we might use in ana-
lyzing “supply chain problems” when risk is an essential consideration to 
reckon with. In particular, we shall consider again Problem 2.1 of Chapter 2 
and extend it in several directions emphasizing the introduction of uncer-
tainty in the supplier and the retailer decisions. Second, we shall use a 
common VaR risk approach to an inventory problem in a supply chain (see 
also Jorion 2000, Alessandro et al. 2005, Tappiero 2000, 2005). A third pro-
blem considers an outsourcing problem while a final and fourth problem 
outlines an approach to (financially) market pricing a franchise contract. 
The problems are by no means exhaustive and are used instead to demon-
strate a number of techniques adapted to our analysis of supply chain 
problems under risk and uncertainty. Prior to dealing with these problems, 
a brief review of valuation approaches is outlined. 



Expected utility (EU) is a traditional way economists use to evaluate a 
random prospect or discrete payments made or received, described by “lot-
tery” L or vector (x1,p1; x2,p2 ; ……; xn,pn), meaning that the consequence 
x1 is obtained with probability p1, etc. Such a discrete lottery may 
designate for example a type of risk (investment, an industrial perfor-
mance, a demand for a product, a machine’s failure etc.). From the point of 

view of an individual endowed with a utility function u(⋅) and under Eu(.) 

(the expected utility) it is worth
1

( )
n

i ip u x∑ , or: 
1

( )
n

i iEu p u x= ∑ . In such an 

expression, the utility function imbeds the decision maker (investor, man-
ager) preference for money. Further, in seminal and individual papers, 
Pratt and Arrow have shown that one version of the attitude toward risk 
can be recovered from the explicit specification of the utility function. 
Assume an individual endowed with a constant (non risky) asset C (“a bird 
in the hand”) as well as with a potential and favorable prospect (“the bird 
in the bush”), a lottery x% , i.e. with expected value with ( ) 0E x >% . The risk 

attitude of a decision maker could then be characterized by that amount, 

priced ap , the decision maker would be willing to sell the lottery or, in 

other words, the smallest non random amount he would be willing to 
receive to remove the risk faced (an amount often loosely called the “cash 
equivalent” of the lottery to the given individual decision maker). Using 
then the expected utility rule for reaching decision when faced with uncer-
tainty (or the EU rule), we have a value equivalence between two different 
prospects, one certain and the other uncertain, or: 

( ) [ ( )]au C p E u C x+ = + %  or ( )1 [ ( )]ap u E u C x C−= + −%       (7.1) 

where ap  denotes the risk premium. An alternative manner for expressing 

this premium would be to equate it to that amount of money the decision 
maker would be willing to pay for obtaining for sure the expected payoff 

of the lottery, namely, ( )ap CE E x+ = % , where the certainty equivalent is a 

function of the prospects and, of course, the utility function, or 
( , )CE C xπ= %  and thereby,  

)~,()~( xCxEpa π−=                     (7.2) 

Note that, if a decision maker seeks some risk protection (say by insur-

ance), he (she) will accept to pay the risk premium defined by ap . In this 

particular case, the decision maker displays a risk aversion. Note that to be 

accepted, the premium will be at most: ( , ) ( , ) ( )I ap C x p C x E xπ= − = −% % % . 

Finding a convenient analytical expression of ( , )C xπ %  seems thus an 
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essential question to solve (albeit it is completely defined by the utility 
function and its inverse). Unfortunately, this is a very complicated function 

for discretionarily large values of x~ . Fortunately, Pratt showed that if 

x~ displays finite variance and if its range is not too large with respect to C, 

then π  can be satisfactorily approximated by the expression: 
2 2 2"[ ( )] ( ) "( ) ( ) ( )

( )
'[ ( )] 2 '( ) 2 2

u C E x x u W x x
A W

u C E x u W

σ σ σπ − + −
≅ ⋅ = ⋅ = ⋅

+
% % % %

%
, (7.3) 

where 

"( )
( ),  ( ) log '( )

'( )

u W d
W C E x A W u W

u W dW
= + = − =% .  (7.4) 

Where W is the expected wealth, which reduces obviously to C when x~  

is actuarially fair (i.e. has zero mean). This result can be proved easily by 

replacing the uncertain prospect x%  with ( )x E x ε= +% % , where ε  is a zero 

mean random variable with finite variance 2 ( )xσ % . From the equation 

above, we see that any decision maker endowed with a concave utility 

function will have positive A(W) and π  , as u’(W)>0 for all possible val-

ues of W (by definition of a utility function) and as variances are always 

positive, the sign of π  is opposite to that of u”(W), i.e. π  ҏҏwill be positive 

if and only if u”(W)<0, which characterizes a concave utility function. 

Thus, there exists a simple link between the complicated function in equa-

tion denoting π  and the local approximation.  

The function A(W) is known as the Arrow-Pratt coefficient of absolute 

risk aversion (hereunder ARA). As our equations show, the larger A(W), 

the smaller the cash (certainty) equivalent (or selling price) of any given 

lottery x% . By definition therefore, a decision maker is said to be locally risk 

averse if and only if he (she) displays positive π  and hence positive A(W), 

locally risk prone (or risk lover) if she (he) displays negative π  (and 

hence negative A(W)җ), locally risk neutral if he (she) displays null π ҏ(and 

hence null A(W)җҠҏ). This corresponds respectively to a concave, convex, 

affine (or linear) utility function. 

Risk can also appear as a multiplicative factor, for example when an 

amount a of the asset is invested with a risk favorable return g% , the rest 

being held as cash C. Expected wealth (or the objective we are concerned 

with) is then equal to: 
( . )W E C a g= + % .   (7.5) 

Maximizing expected utility leads then to a relative risk premium 
2* *( ). ( ) 2A W gπ σ≈  by a similar computation. The relevant coefficient 

of relative local risk aversion is dimensionless (a percentage ratio, hereunder 

called RRA) is denoted here by A*(W), with: 



"( )
*( ) . . ( )

'( )

u W
A W W W A W

u W

−
= = .   (7.6) 

There are additional expressions and extensions of this approach, accoun-
ting for behavioral and psychological attitudes and profusely used in practice. 
We refer to the following references for further study however (see the 
bibliographical list at the end of this chapter). Instead, we shall focus on 
some of their implications and applications in problems that portent to 
supply chain management issues. 

Consider a supply chain consisting of two parties, operating in a co-
dependent manner, with one party reaching a set of decisions and the other 
reaching another set of decisions, whose outcomes affect the parties’ 
performance (Riordan 1984). Such situations can coexist with power and 
information asymmetries of one party over the other. Thus, while each of 
the parties may be free to reach some decisions, the consequences of these 
decisions depend on both parties’ decisions with one of the party subjugated 
to the other in some manner or one party having some informational 
advantage over the other. Such situations lead to “Principal and Agents” 
problems. For example a supplier may be the “agent” for a firm—the pro-
ducer who acts as a “principal”, trusting the supplier to perform his job in 
the interest of the producer. In such a situation, the producer can use such 
an advantage to tailor his actions by taking into consideration the actions 
pursued by the agent—the supplier. Similar situations arise between a firm 
and its salesmen (some operating on commissions, quotas and difficult to 
manage). Salesmen effort allocations can be observed by the firm which 
uses such information to manage and motivate salesmen for greater efforts 
and profits. Similarly, in many situations, a firm belonging to a supply 
chain may provide incentives to motivate another firm to exchange with 

the actions taken by the latter firm may be observed only imperfectly. The 
principal agent problem consists then in determining the rules for sharing 
the outcomes resulting from say a supplier and a producer interactions. 
Asymmetry of information in such cases can lead of course to a situation 
of potential moral hazards and therefore to risks that firms in a supply 
chain seek to manage. To do so, there are several approaches, generally 
based on the design of an appropriate incentive system and audits (controls). 
Given the substantial risks this implies that such “incentive and control” 
systems are of great practical importance in the design and in the man-
agement of supply chains. In the next chapter, we shall focus our attention 
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on such “systems” for the management of quality. Below, we shall merely 
elaborate on a simple utility quantification of the problem which parallels 
facets of the Stackelberg strategy used throughout this text.  

A first approach to this problem which we consider here, coined the first 

order approach consists in the following. Let x~  be a random variable which 

represents the gross return obtained by say, a producer--the principal. The 
principal-agent problem consists then in determining the amount trans-
ferred to the agent by the principal in order to compensate him for the 
efforts he has performed on behalf of the principal. To do so, assume that 
the agent utility is separable and is given by: 

( , ) ( ) ( );  ' 0, " 0, ' 0, " 0V y a v y w a v v w w= − > ≤ > >% % ,   (7.7) 

where ', ", ', "v v w w  are the first order and second order derivatives of the 

agent and the principal respectively and y%  is the return of the agent, a random 

variable as well. In order to assure the agent’s participation, it is necessary 
to give him at least an expected utility greater than the cost of the agent’s 
effort, or: 

( , ) 0    ( ) ( )EV y a or Ev y w a≥ ≥% % .              (7.8) 

In this case, the utility of the principal is: 

( ), ' 0, " 0u x y u u− > ≤% % .         (7.9) 

Note that the problems we formulate depend then on the information 
distribution between the principal and the agent. Various assumptions per-
taining to what one party knows of the other will lead of course to alterna-
tive problem formulations.  

For simplicity, let the expected value of x~  be x, agent’s share y be a 

decision variable (replacing y~ ), w be independent of a as well as the 

agent’s effort a be observable to both parties and is proportional to the 

share y. That is, assume we are interested to determine a sharing rule (x-y, 

y) and the corresponding proportional agent’s effort. In this case, the 

problem of the producer-principal is formulated as follows. 

)]([max yxu
y

−  s.t. 0)( ≥− wyv .            (7.10) 

By applying Kuhn-Tucker conditions for optimality to (7.10), the 
optimal solution is found to be:  

λ=
−′
−′

)(

)(

wyv

yxu
,            (7.11) 

which provides the sharing rule between the principal (receiving ( )x y x− ) 

and the agent (receiving ( )y x ) a function of their respective utilities. In 

other words, the parties’ preferences expressed by their utility function, 

provide an expression for their mutual interest in maintaining an exchange. 



Note that if we account for the fact that the agent’s share y depends on the 

overall profit, i.e., y=y(x), then by taking a second derivative of 

'( ( )) '( ( ))u x y x v y xλ− = , with respect to x , we find an implied optimal 

relationship:  

)())(())(1))((( xywxyvxyxyxu ′−′′=′−−′′ λ .             (7.12) 

and therefore  

( )"( ( )) 1 '( )'( ( ))

'( ( )) "( ( ))( '( ))

u x y x y xu x y x

v y x v y x y x

− −−
= ,         (7.13) 

where w is omitted to shorten the following expressions. As a result, we 
obtain an ordinary differential equation for the sharing rule between the 
principal and the agent, explicitly given by: 

( )1 '( )( ( ))"( ( )) / '( ( ))

"( ( )) / '( ( )) ( ( )) ( '( ))u

y xA y xv y x v y x

u x y x u x y x A x y x y x

ν −
= =

− − −
,     (7.14) 

where ( )( ( )),  ( ( ))uA y x A x y xν −  are the Arrow-Pratt indices of risk aver-

sions of the agent and principal , 

( )'( ) ( ( )) ( ( )) ( ( ))u uy x A x y x A y x A x y xν− + = − .          (7.15) 

For example, let the utilities of both principal and the agent are given by 

the exponential functions: ( ) 1  and :   ( ) 1w wu w e w eα βν− −= − = − . Then 

their derivatives are '( ) ,  '( )w wu w e w eα βα ν β− −= = , while the indices of 

risk aversion for both, are constant and given by ( ),α β  respectively. As a 

result, the exchange rule is simply defined by the following differential 

equation: 

'( )  and  ( )y x y x A x
α α

α β α β
= = +

+ +
.   (7.16) 

The solution indicates then a “linear sharing rule”, proportional to the 
indices of risk aversion of the principle and the agent. These results are 
important for explaining and dealing with a number of relationships that 
recur in supply chain contexts. Below we summarize a number of exam-
ples used by Dyane Reyniers (London School of Economics) in her class-
rooms. 

Assume a centralized firm that can observe the effort of the supply chain’s 
parties with a direct relationship between their performance and the effort 
they provide. Let e be the effort and P(e) be the resulting performance, a 
profit function. The party’s cost is C(e) while its reservation utility is u. 
There is a number of simple payment schemes that can motivate the party  
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to provide the efficient amount of effort. These are: Payments receive 

based on effort e, and the party’s return is we+K. The centralized problem 
is then to solve 

  ( ) ( ) ( )    :    ( )Max P e we K C e Subject to we K C e uπ = − + − + − ≥ . (7.17) 

The inequality constraint is called the “participation constraint” or the 

“individual rationality constraint”. The centralized firm has no motivation 

to give more money to the party than his reservation utility. In this case, 

the effort selected by the firm will be at the level where marginal cost 

equals the marginal profit of effort, or: *)('*)(' eCeP = . The party has to be 

encouraged to provide the optimal effort level however which leads to the 

incentive compatibility constraint. In other words, the party's net payoff 

should be maximized at the optimal effort or '( *)w C e= . Thus, the party is 

paid according to his marginal disutility of effort and a lump sum K which 

satisfies the reservation utility.   

The central firm could propose to pay the party a lump sum L providing a 
reservation utility if the effort e* is made, i.e. ( *)L u C e= +  and zero 

otherwise. Clearly, the participation and incentive compatibility constraints 
are satisfied under this simple payment scheme. This arrangement is called 
a forcing contrat because the party is forced to make the effort e* (while 
above, the party is left to select his effort level).   

Now assume that a franchisee can keep part of the profits of his effort in 

return for a certain payment to the principal—the franchiser. This can be 

interpreted as a franchise structure. To set the franchise fee, the franchiser 

proceeds as follows. First the franchisee maximizes ( ) ( )P e C e F− −  and 

therefore chooses the same optimal effort as before such that: 

'( *) '( *)P e C e= . The principal-franchiser can charge a franchise fee which 

leaves the franchisee with his reservation utility: ( *) ( *)F P e C e u= − − . 

When the effort cannot be observed, the problem is more difficult. In this 

case, payment based on effort is not possible. If we choose to pay based on 

output, then the principal would choose a franchise structure. However, if 

the agent is risk averse, he will seek some payment to compensate the risk 

he is assuming. If the principal is risk neutral, he may be willing to assume 

the agent’s risk and therefore the franchise solution will not be possible in 

its current form!    

Example 7.2. (Forcing contracts)  

Example 7.3. ( Franchises) 



“Utility”, although an important tool to analyze decisions made under risk 
expresses an individual point of view, imbedded in the parameters that 
define the utility function. It does not express a market valuation of the 
prospect—its price. For practical purposes however, decisions in supply 
chain firms are valued and priced by “money” as set by the market. 
Advances in market pricing of financial assets and their derivatives, have 
contributed an important approach to determining asset prices in general 
using a plethora of financial products (options of various sort and broadly 
traded). These prices are risk attitude free, in the sense that they do not 
express the price a person or a firm is willing to pay for a given prospect 
based on a personal risk attitude but based on a broad (and liquid) market 
when such an exchange is being pursued. As a result, “price” is defined by 
an equilibrium in a large liquid financial market where assets are traded 
and their risk priced according to the risk attitudes of not one party, but the 
“multitudes” of parties (investors and speculators, risk averse, risk loving, 
risk neutral or not) engaged in such an exchange. Such prices are however 
relative, based on commonly observed prices of risk free assets or some 
other agreed on and observable assets. In such contexts, the price of an 
asset can be valued by the expected value of a distribution coined the Risk 
Neutral Distribution—RND. Such a distribution does not indicate a risk 
free attitude but is merely a belief regarding the market future prospects 
whose current price can be expressed in certain conditions (called Com-
plete Markets) as an expectation (under the RND) discounted at the risk 
free rate. In this sense, the future expected value acts as a sort of cash and 
certainty equivalent for a future prospect currently valued at its on-going 
risk free rate.  

The implication of this approach to supply chains is extremely important 
and provides grounds for fertile and extensive research that has practical 
applications to the management, the planning, the contracting and the 
organization of supply chains in general. Below, we shall merely point out 
to some basic relationships between the empirical distribution (or as deter-
mined by one or the other parties in the supply chain, or by the supply chain 
as a whole through collaborative forecasting) of the future prospect as 
defined by the financial market—the Risk Neutral Distribution, that 
underlies pricing of risky assets in complete markets. For further study, the 
reader is encouraged to consult the extensive literature in finance, in deri-
vatives, in real options and in the many applications of financial market 
pricing to non-financial assets. Finally, we shall restrict ourselves to trac-
table problem examples. 

396      7  RISK AND SUPPLY CHAINS 

Utility Valuation and Market Pricing 



7.4 RISK VALUATION      397 

The importance of a financial market approach to risk pricing is then in 
providing a price at which risk can be defined uniquely (in case, markets 
are complete) and exchanged (bought and sold). This is possible of course 
if an exchange between such investors and traders can be realized freely. 
When this is not the case, and risks are valued individually, implicitly due 
to individuals’ or firms’ attitudes to risk and their private information, a 
broad number of approaches is used to mitigate their effects and establish a 
subjective valuation and price for the underlying risk.  

In supply chains, firms are not indifferent to risk and their correspon-
ding subjective probability is thus different than the (market) RND. In fact, 
the RND would be adjusted upward (or downward) for all states in which 
money is more (or less) highly valued. Hence the higher the risk aversion, 
the more the RND and the subjective-empirical probability distributions 
differ. The risk aversion can thus be estimated from the joint observation 
of the two densities. Studies by Ait-Sahalia and Lo 1998, Anagnou et al. 
2003, Bahra 1997 and others have contributed by pointing out that the 
index of absolute risk aversion (.)A , can be presented as a functional rela-
tionship involving empirical and the risk neutral distribution. That is, given 
any two, the other third might be determined (revealed): 

(.) ( ,  Subjective Probability)A f RND= .  (7.18) 

This was exploited by Jackwerth (1999, 2000) and Ait-Sahalia and Lo 

(1998, 2000) for extracting a measure of risk aversion in a standard dyna-

mic exchange economy. Essentially, they assumed individuals would maxi-

mize the expected utility of future and uncertain prospects at a future date 

whose current price is known and measured by the (implied) risk neutral 

distribution. In this formulation, risk attitude (implied by the utility function) 

is a function of the risk neutral and the investor’s subjective probability 

distributions. To determine their relationship, assume that markets are com-

plete, that is there is a unique price for all assets that have the same returns 

and the same risks (thus there can be no arbitrage). Then, by definition of 

completeness, an asset price is necessarily equal to the discounted future 

price of the asset with expectation taken with respect to the risk neutral 

distribution and discounted at the risk free rate. A simple mathematical 

formulation that captures simultaneously an investor’s risk attitude, his 

subjective-empirical probability and the market risk neutral distribution 

consists in maximizing the investor future expected utility subject to the 

current market pricing of the portfolio (using a risk neutral distribution). 

Letting for convenience the current market price (wealth) be 0W  and the 

future wealth at time T be WT, we have the following problem: 



)]([max
TP

W
WuE

T

, subject to ( ) 0][
1

1
WWE

R
TRNT

f

=
+

,        (7.19) 

where fR  is the risk free market rate. Thus, to find a relationship between 

the private (subjective), subscript, P, and risk neutral, subscript RN, prob-
ability distributions we assume that the choice of the portfolio by a con-
sensus investor is equivalent to choosing the wealth which will realize in 
each terminal state. Using the constraint Lagrange multiplier λ , the object-

tive to optimize is: 

( ) ))(
1

1
()()( 0WdWWfW

R
dWWfWu

TTRNTT

f

TTpT
−

+
−=Φ ∫∫ λ  (7.20) 

where (.) and  (.)P RNf f  are subjective (based on private information) and 

risk neutral distributions respectively. Applying the first order optimality 
condition to (7.20) and assuming that in equilibrium the consensus investor 
holds the market portfolio with return S, we find 
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.           (7.21) 

In this case, for no arbitrage, that is for an economic equilibrium with a 
unique and known price, we have by differentiating condition (7.21): 
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      (7.22) 

Combining (7.21) and (7.22), we obtain: 

)(

)(

)(

)(

)(

)(
)(

Sf

Sf

Sf

Sf

Su

Su
SA

RN

RN

P

P

r

′
−

′
=

′
′′

−=      (7.23) 

And therefore: 

( ) ( ) ( )
ln ( ) ln ( ) ln

( )

P T
r T P T RN T

T T RN T

f W
A W f W f W

W W f W

⎛ ⎞⎛ ⎞∂ ∂
= − = ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

. (7.24) 

Consequently, we obtain that the index of risk aversion is given by a 
discrimination function of the subjective (private) and the risk neutral 
distributions, explicitly given by: 

( ) ( ) ( ) ( )
( )

,  ln
P T

T T T

T RN T

f W
A W g W g W

W f W

⎧ ⎫∂ ⎪ ⎪= = ⎨ ⎬
∂ ⎪ ⎪⎩ ⎭

.  (7.25) 

A broad number of techniques can then be used to estimate empirically 
the risk neutral distribution (by using market data on derivatives for exam-
ple, and calculating the implied risk neutral distribution reflecting market 
prices). This establishes a specific relationship between the risk attitude 
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and the subjective probability distribution. Note that for a risk neutral 
decision maker, the index of absolute risk aversion is null and thus, the 

ratio of the distributions ( )
( )

P T

RN T

f W

f W
 is constant. By the same token, for an 

exponential utility function, the index of absolute risk aversion is 

proportional to the future prospect and therefore, the function ( )Tg W  is 

linear. In other words: 

( )
( )

 ln
P T

T

RN T

f W
a bW

f W
+ =          (7.26) 

and, therefore,  

( ) ( )Ta bW

P T RN Tf W e f W
+= ,         (7.27) 

where a and b are appropriately defined parameters. Of course, since the 
risk neutral probability distribution integral equals one, we have: 

( ) ( )1 Ta bW

P T T RN T Tf W dW e f W dW
+= =∫ ∫  

and 
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Thus: 
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Since, also  

( ) ( ) 1Ta bW

P T T RN T Te f W dW f W dW
− − = =∫ ∫           (7.30)  

we have: 

( )TbW a

P T Te f W dW e
− =∫            (7.31) 

and therefore,  
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If the utility of an investor is assumed to be HARA (Hyperbolic Abso-

lute Risk Aversion) with an index of absolute risk aversion ( )TA W , declin-

ing with wealth, given by: 
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then, 

( ) ( )( )( ) ( )1
1P T T RN Tf W aW b f W

γ
γ

−
= + − .                   (7.34) 

In some problems it might be convenient to approximate the distribu-
tions by parametric known distributions. For example, say that both the 
subjective and the risk neutral distributions are normally distributed with 

means and variances given by: ( )2,S Sµ σ  and ( )2,RN RNµ σ , then: 
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And therefore, this implies that risk aversion is proportional to the pros-
pect since: 
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Thus, if 
2 2

RNP

P RN

µµ
σ σ

< , risk aversion decreases linearly in wealth and vice 

versa. Note that a risk aversion is then defined by the sign of ( )TA W , as 

defined in this artificial example. In this sense, a risk attitude can be revealed 
by observed behaviors (the financial market for example). 

Higher order risk attitudes can be defined similarly. Explicitly, the index 
of prudence can be defined as well in terms of the subjective and risk 
neutral distributions logarithmic function ( )Tg W  and given by: 

"( )
'( )

'( )

T
P T

T

g W
A g W

g W
= − ,  ( )"( )T Pg W A A A= + .  (7.37)  

If an investor is risk averse, A >0 and, therefore, for "( )Tg W >0 (an 

increasing rate of discrimination rate with respect to wealth) implies 

prudence since PA >0. However, if empirical analysis indicates "( )Tg W <0, 

then the prudence index is both negative and larger than the index of risk 

aversion. Extensive research, both theoretical and empirical has extended 

this approach and indicated a number of important results. For example, 

risk attitude is not only state varying but is time varying as well. Further, it 

clearly sets out the concept of risk attitude in terms of a distance between 

the subjective and the risk neutral (market) distributions. Again, in the case 
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of the artificial normal example treated earlier, we have an index of pru-

dence given by: 

2 2

1 1 1
P

RN P

A A
A σ σ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
.   (7.38) 

In this equation, we clearly see the relationship between the risk neutral, 
the subjective and the risk attitude of the investor both with respect to the 
index of absolute risk aversion and the investor’s prudence. This brief 
introduction to utility and risk valuation will be discussed subsequently 
using specific examples. Below, we consider a concept of preference based 
on quantile risk and profusely used as a measure of risk exposure. It is also 
used to manage risks in some financial firms and increasingly in opera-
tional and supply chain problems. 

In theory and in practice risk is measured and valued based on three essential 
approaches which we shall resume by: (1) Utility valuation, (2) Asymmetric 
(individual, whether “rational” or not) preferences based on regret and 
quantile risk specification (also coined as value at Risk) and (3) Market 
pricing of risk. The first approach, discussed previously, is based on the 
presumption that “persons” are not indifferent to the size of gains and losses. 
Rather, “persons” actions are motivated by an “underlying rationale”, mostly 
specified by the expected utility approach. In the third approach, Market 
Pricing, risk is valued and priced by “market of risk” where investors and 
speculators interact and exchange current and future certain and uncertain 
prospects, till a state of equilibrium is reached at which these prospects 
have a defined price.  

Preferences and Quantile Risks 

In other cases, “persons” actions are motivated by an underlying “beha-
vioral and psychological” rationale. A typical rational is based on a con-
cept of regret, expressing decision makers ex-post attitudes towards results 
they either did not expect or losses (the second approach). Such an app-
roach is closely associated to the widely practiced quantile risk or Value at 
Risk as we shall see below. To express such subjective preferences, a num-
ber of approaches (based and often derived from expected utility argu-
ments) are used and portending to represent persons’ preferences. In some 
cases, as it is the case in finance and in related areas, risks and their value-
price are measured relative to some well known and predictable state.  
For example, measure one set of uncertain returns relative to a sure one. In  
this context, a concept of certainty equivalence (if it can be measured or 
assessed and as seen earlier) is used to measure the premium a person 
would be willing to pay to do away altogether with the risk of a given 
prospect. In financial analysis, one often encounters the equivalent and 
relative price which we denoted by the risk free rate, providing the time 



The quantile risk approach, unlike the utility or market price approach is 
based on “expectation and threshold” (rather than expectation and risk pre-
mium) sometimes used (Artzner et al. 1997, 1999, 2000, 2001; Embrecht 
2000; Beckers 1996) to suggest an excess function defined in terms of a 
loss threshold K, and given by: 

{ }( )e k E L K L K= − −% % .                    (7.39) 

In other words, this is the expected loss incurred beyond a (subjective) 
threshold “K”, expressing thereby a risk exposure. For example, K might 
be a maximally allowable loss before a certain and unpleasant action is 
taken. This approach is in fact a complement to the celebrated and applied 
Value at Risk (VaR) quantile risk model which measures risk exposure by 
specifying the probability that the loss be greater than the threshold, or :  

{ } 1P L K ς> ≤ −% .   (7.40) 

In this case, the threshold we have defined can be interpreted as a capital 
or a reserve set aside to meet such contingent losses. In this sense, this 
measure relates to money and implies as well a risk preference—based on 
a regret type preference. Explicitly, given ς , we have: 1 ( ) 1LF K ς− ≤ −  or 

1( )LK F ς−= . Thus given the quantile risk ς  we may be willing to assume 

and given the loss function, the implied amount of money we have at risk 
(at the specified exposure probability) is K.  

For these reasons, K is often denoted as the Value at Risk (VaR ) and 
commonly defined as the expected loss from an adverse movement with 
specified probability over a specified period of time, expressing thereby a 
quantile risk measure of a risk exposure in money terms. The use of VaR  
can be justified as stated earlier by an ex-post disappointment decision 
model as we shall see and on the basis of which it can be applied to numer-
ous supply chain decision making problems. In other words, it can be justi-
fied by a regret criterion which has inspired a number of approaches coined 
“regret-disappointments models” (Savage 1954; Loomes and Sugden 1986; 
are important references in this approach). According to Bell 1982, (see 
also Bell 1985, 1995, 1999) disappointment is a psychological reaction to 
an outcome that does not meet a decision maker’s expectation. In parti-
cular, assume that the measurement of disappointment is assumed to be  
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value of an asset, which has no risk. The premium “a person” or “market” 
will pay for a given lottery or uncertain return in the present or in the future 
is then expressed relative to these commonly known values. In more 
general terms, an expression for the measurement and the pricing of risk 
(and therefore its management) needs to be specified in terms of data we 
can properly refer to and gather.  
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proportional to the difference between expectation and the outcome below 
the expectation. Elation, may occur when the outcome obtained is better 
than its expectation. A general treatment based on risk-value theory with 
respect to such an approach is suggested by Dyer and Jia 1997. Their 
approach uses a “value asymmetry” between “elation” and “regret-loss”. 
Such an approach is based on the presumption that the “cost of reaching 
the wrong decision” may be, proportionately, greater than the payoff of hav-
ing made the right decision. In other words, managers abhor losses, valuing 
them more than they value gains for having made the right decision. This 
explains a preference for flexibility more than justified by its expected 
payoff and of course contrasts classical Bayesian (ex ante) expected deci-
sion theory. For example, a performance below than expected can have 
disproportionate effects on value. The VaR approach provides an expres-
sion for these considerations consisting in specifying a time horizon T and 
the confidence level VaRP , with VaR denoting the loss in value over the 

time horizon T that is exceeded with probability ( VaRP−1 ). In other words, 

if ξ  is a random variable denoting the amount of money made in a number of 

sales, then VaR is defined as that amount, where the probability of losing 
more than that amount is determined with the specified probability VaRP . 

Explicitly, if we let (.)TP  be the probability of gains and losses over the 

time period T, we then have: 

1 ( ) ,   ( ) ( )
VaR

T VaR T TF VaR P F VaR P dξ ξ
−

−∞

− = = ∫ .         (7.41) 

Assuming the invertibility of cumulative distribution function, we have 
again  

( )1( ) 1  and  1T VaR T VaRF VaR P VaR F P−= − = − .         (7.42) 

Therefore the VaR is often used as the amount of money to set aside to 
meet such contingencies losses. In this sense (which is continuously ques-

tioned and criticized but used), the specification of ( ),VaRP VaR  provides a 

constraint determining the risk exposure as well as the amount of money 
(our other resources) to set aside to meet such eventualities. The rationality 
of this approach will be considered in the next section within a simple 

target cost problem which we will generalize to a supply chain context. 

7.5 SELECTED CASES AND PROBLEMS 

To highlight some of the approaches elaborated in the previous section, we 
shall consider a number of problems where risks are measured in terms of 



money and managed in supply chains in terms of operational risk 
externalities. 

We reconsider Example 2.1 (Chapter 2) consisting of one supplier, s, and 
one retailer r. As stated earlier, the supplier offers products at a known 
wholesale price w while the retailer buys q units of product which he sells 
at a set retail price p=w+m. In the pricing game considered in Example 
2.1, the two firms maximize their profits; the demand is linear and down-
ward sloping in price. Results were obtained under alternative assumptions 
regarding the relationships the supplier and the retailer were engaged in. 
Uncertainty in such problems arises in a number of manners. Of course, 
both the market demand (the quantity actually sold by the retailer) may be 
random, as well as the product price. Further, both the quantity sold and 
the price may depend (or not) on one another. Such uncertainty leads to 
inventories or shortages accumulating when market demand and the supply 
of a retailer are not synchronized. Further, price uncertainty can lead as 
well to performance risks, mitigated at times by using derivatives to hedge 
against price variations. While the retailer faces downstream “a market 
risk” (in demand and in price), he may also face risks “upstream” when 
dealing with the supplier, such as supply uncertainties, supply delays and 
uncertainty in these delays, supply prices etc. These risks, however, are 
mostly the result of the bilateral relationship between the supplier and the 
retailer and the contracts that bind them. In a supply chain, the problems 
that can be encountered are indeed very broad and therefore, we shall 
restrict ourselves to a sample few.  

In our analysis, we shall assume first and for simplicity a supplier func-
tioning in a purely competitive economy and pricing products sold at their 
marginal costs. That is, if S  is the total quantity produced by the supplier at 

a cost ( )C S  with a profit ( )wS C S− , then the retailer price is '( )w C S= . In 

addition, we consider a retailer buying products at a wholesale price w, 

assumed fixed for simplicity. We also let 0π  be the current market price of 

this product and therefore, the retailer’s realized profit margin at this time 

is 0 wπ − . Since all order decisions are made at this time for selling at the 

next period, the profit margin of the retailer is a random variable which we 

denote by 1 1 1m wπ= −% %  where 1π%  is the market (random selling price)  

at the next period and 1w  is the current negotiated wholesale price. Let  
the order policy be the fixed quantity, 1D  while the next period demand  
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Example 2.1 Revisited 



7.5 SELECTED CASES AND PROBLEMS      405 

is a random variable ( )1 1D π% , a function of prices only (subsequently, we 
shall consider a more general case, with a demand, a random function of 
random prices). Then, the retailer profit at the next period is: 

( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

(1 )   
(1)

(1 )   

f

r

f

w R D Q D D if D D
P

D w R D I D D if D D

π π π

π π π π

⎧ − + − − ≤⎪= ⎨
− + − − >⎪⎩

% % %

% % % %

 (7.43) 

while the supplier profit is 

1 1(1)SP w D=            (7.44) 

Note that when the order is smaller then the demand, ( )( )1 1 1D Dπ ≥% , a 

shortage or service cost ( )( )1 1 1Q D Dπ −% is incurred while when the order 

is larger than the demand, ( )( )1 1 1D D π≥ % , then an inventory cost 

( )( )1 1 1I D D π− %  is sustained. These costs are usually difficult to price. 

Therefore, in this section, we shall price these costs by using derivatives 
on the underlying product. Explicitly, say that the retailer buys initially y 

put options with a strike of h , with a current price of ( )0 ;PUTP hπ . Of 

course, to meet shortages, the retailer may buy on the spot market the 
quantity needed to meet his contracted demand or exercise the put options 
if this is economical. In this case, the quantity bought on the spot market is 

( )( )
11 1 1 1P hz D D y ππ ≥= − −
%

%  while the profit from such a transaction is the 

speculative profit only, or ( )1,0yMax h π− % . By the same token, when the 

demand is smaller than the order quantity, we have an end of period 

inventory equal to ( )( )1 1 1D D π− % . In such a case, if we were to sell ini-

tially x call options at a strike k, then the ending inventory after such a 

transaction is ( )( )
11 1 1 1C kz D D x ππ ≤= − −
%

% . To assure ourselves of a zero 

inventory, we require that: ( )( )
11 1 10 1 kD D x ππ ≤= − −
%

% , which can be obtained 

by buying a sufficient number of call options to meet any demand. For 

example, if the high price is ( )1 1Maxπ π+ = % , then the maximum inventory 

is ( )1 1 1D D π +−  and therefore ( )1 1 1X D D π += −  will provide a guarantee 

that inventories will be sold at any strike (albeit at a loss, compensated by 
the premium collected initially) below the maximum price. By the same 

token, we can buy put options at the strike price ( )1h Max π= %  in which  

 



case, when the demand is low, a profit will be made. The maximum short-
age is then Y. In this case, we have the following retailer’s profit: 

( ) ( )
( ) ( ) ( )
1 1 1 0 1 1 1 1

1 1 1 1 1 0 1 1 1 1

(1   
(1)

(1 ) (1 ) ( ; ) ,0   

f f PUT

r

f f CALL

w R if D D
P

D w R D X R C h XMax k if D D

π π

π π π π π

⎧ − + ≤⎪=⎨
− + + + − − >⎪⎩

% % %

% % % %

  

(7.45) 
Of course, under risk neutral pricing, we have:  

( ) ( )0 1 0 1(1 ) ( ; ) ,0 ;  (1 ) ( ; ) ,0f PUT f CALLR P h Max h R C h Max kπ π π π+ = − + = −% % .(7.46) 

And therefore, the retailer profit is: 

( ) ( )
( ) ( )
1 1 1 1 1 1

1 1 1 1 1 1 1 1

(1 )   
(1)

(1 )   

f

r

f

w R D if D D
P

D w R D if D D

π π

π π π

⎧ − + ≤⎪= ⎨
− + >⎪⎩

% %

% % %
  (7.47) 

Accordingly, under risk neutral pricing, the price of the ordering policy is: 

( )1 1

1
(0) (1)

(1 )
r RN r

f

P w D E P
R

= − +
+

    (7.48) 

Explicitly, it can be calculated as follows. First, since ( )1 1 1/ 0D π π∂ ∂ < , 

we have,  

( ) ( ) ( )1 1 * 1

1 1 1 1 1 1 1;   ,Max MinD D D D D Dπ π π− − + − −= = =  (7.49) 

As a result: 

( ) ( ) ( )
( )

( )

( )

( )1
1 1 1

1
1 1 1

1 1 1 1 1 1 1 1 1 1 1

1
(0)

(1 )

Min

Max

D D D D

r RN RN

f D D D D

P w D D f d D f d
R

π π π π π π π
−

−

⎧ ⎫⎪ ⎪= − + +⎨ ⎬
+ ⎪ ⎪⎩ ⎭

∫ ∫

(7.50) 

The optimal order policy is thus given by the maximization of (0)rP . 

However, to do so, we require the underlying risk neutral distribution of 
prices which is not always easily available. Of course, in a binomial model, 
assuming that markets are complete, a solution, implied in our observation 
of spot, call and put prices, can be found easily. Explicitly, since, in a bino-
mial complete market model we have: 

( )0 1 1

1
(1 )

1
RN RN

f

p p
R

π π π+ −= + −
+

, or, 
( )0 1

1 1

1 f

RN

R
p

π π

π π

−

+ −

+ −
=

−
, (7.51a) 

( ) ( ) ( ) ( )0 1 1

0 1

1 1

11 1

1 1

f

CALL RN

f f

R k
P p k

R R

π π π
π π

π π

− +

+
+ −

⎡ ⎤+ − −⎣ ⎦= − =
+ + −

,(7.51b) 

( ) ( ) ( )( )( )1 0 1

0 1

1 1

11 1
(1 )

1 1

f

PUT RN

f f

R h
P p h

R R

π π π
π π

π π

+ −

−
+ −

− + −
= − − =

+ + −
.(7.51c) 

The last two equations can be solved simultaneously, providing thereby 
a solution for both the binomial process and the risk neutral (binomial) 
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probability. Since there are two prices only, the demand implied by the 
complete market assumption is: 

1 1 1 1 1 1 1 1( );   ( );   D D D D D Dπ π+ + − − + −= = < .        (7.52) 

And therefore: 

( ) ( )
( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1 1 1

(1 ) for  
(1)

(1 ) for  

f

r

f

w R D D D
P

D w R D D D

π π

π π π

− −

+ + +

⎧ − + ≤⎪= ⎨
− + >⎪⎩

          (7.53) 

( )
11 1 1 1 1

1
(0) (1 ) (1 )

1
r f RN RN

f

P w R D p D p D
R

π π− + += − + + − +
+

.    (7.54) 

Note that the latter equation is not linear in the order quantity as this 

quantity is implicit as well in the calculations of the implied risk neutral 

probability. Using equation (7.50), a derivative with respect to the order 

quantity yields: 

( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( )( ) ( )( )

1
1 1

1
1

1

1 1 1 1

1 1 1 1 1 1 1 1

1

1
1

1 1 1 1 1

1 1 1 1 1 1 1

1

1
0

(1 )
Max

D D

RN RN

D D

f

RN

D D
f d D D D f D D

D
w

R D D
D D D D D f D D

D

π π π
−

−

−
− −

−
− − −

⎧ ⎫∂
⎡ ⎤⎪ ⎪+ ⎣ ⎦∂⎪ ⎪

= − + ⎨ ⎬
+ ⎪ ⎪∂

−⎪ ⎪
∂⎩ ⎭

∫
 

(7.55) 

Since ( )( )1

1 1 1 1D D D D− = , this equation is reduced to: 

( )
( )

( )
( ) ( )

1 *
1 1 1

1 1

* *

1 1 1 1 1 1 1 1 1 1(1 ) ;   

Max

D D

f RN RN

D D

w R f d f d D D

π

π

π π π π π π π
−

−

+ = = =∫ ∫ . (7.56) 

and therefore, if the demand is linear and given by ( )1D a bπ π= − , then 

the optimal order quantity is * *

1D a bπ= −  a solution of the above equa-

tion. For example, say that the risk neutral distribution is a uniform distri-

bution in the time interval 1 1,x x− +⎡ ⎤⎣ ⎦ , then we have: 

*
1

1

*2 2

1 1
1

1 1 1 1

1
(1 )

2
fw R d

π

π

π ππ π
π π π π−

−

+ − + −

−
+ = =

− −∫                   (7.57) 

and therefore, 

( ) ( )2
*

1 1 1 1 12 (1 )fw Rπ π π π− + −= + + − .     (7.58) 



Finally, 

( ) ( )2
*

1 1 1 1 1 12 (1 )fD D w Rπ π π− + −⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

.        (7.59) 

More generally, calculating the implied risk neutral distribution in terms 
of derivatives will be more precise, albeit numerically based. 

When the demand is a random function of random prices as well, a similar 
approach can be used by considering a stochastic constraint, summarizing 
the potential demand realizations in terms of an order and a portfolio of deri-
vatives contracts that replicate (that is can meet) the demand at all prices 
and in all situations.  

The implication of our approach is that a retailer acting on a risk neutral 
probability (i.e., in complete markets) is subject to the same laws of finance, 
presuming that “without assuming risks”, there are no profits. In other words, 
a retailer, acting as an intermediary between, say, the supplier and end market 
customers, “must have some informational advantage” or some other advan-
tages that will allow him to make (arbitrage) profits. Of course in a practical 
setting, the retailer and the supplier base their analyses on both observa-
tions of market behavior and their instructed beliefs in regard to the future 
states of potential prices. Such beliefs recur both with respect to the demand 
and price uncertainty, which are combined in retailers risk attitudes in deter-
mining an optimal order policy. The risk neutral probability imbeds these 
beliefs (assuming their expression in the price of derivatives) while the 
relationship between demand and price, has made it possible to remain 
within the simple complete markets framework that has allowed our calcu-
lations. A generalization to more complex situations can be considered as 
well. 

From the analysis in the previous section, we clearly saw that our results 
depend on knowing the risk neutral probability. In practice however, 
retailers and suppliers possess private information which can lead them to 
believe that they have in fact an informational advantage. In this case, 
while market prices are what they are, a retailer for example, may think 
that the market errs in the specification of the risk neutral distribution. In 
other words, say that the retailer has a private information regarding the 
future demand and therefore an information regarding prices (assuming 
that the demand is indeed a function of prices), or a direct information 

regarding the future prices. Let (.)Pf  be a private probability estimate of 

the future prices and let the retailer utility function (expressing his risk 
attitudes) be (.)u . In this case, the retailer private utility and information 

would lead him to maximize the expected next period profit subject to the 
current prices. An explicit relationship, between these (see also Jackwerth 
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1999, 2000, Ait-Sahalia .and Lo 1998, 2000) is given by (as seen and 
proved earlier): 

(.)
(.) ln

(.) (.)

P
r

RN

fd
A

d f

⎧ ⎫⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

, ( ) (.)
exp ( )

(.)

P
r

RN

f
A z dz

f
=∫ .         (7.60) 

This relationship states that a decision maker’s index of risk aversion 

(.)rA , expressing his personal risk attitude, combined with his subjective 

assessment of future states (prices for example) determines the risk neutral 
distribution of these future states. Thus, given any two of these terms, the 
third can be calculated. Therefore, introducing in our optimality equation 
the implied risk neutral distribution we have: 

( )
*
1 1

1 1

* *

1 1 1 1 1 1 1(1 ) exp ( ) ( ) ;   f r Pw R A z dz f d D D

π π

π π

π π π π
− −

⎛ ⎞
⎜ ⎟+ = − =
⎜ ⎟
⎝ ⎠

∫ ∫ . (7.61) 

For example, if the retailer has an exponential utility function whose 
index of absolute risk aversion is α , then integration of (7.61)) yields: 

( )
( )

ln
P

RN

f

f

π
ξ απ

π
+ =  or ( ) ( )RN Pf e fξ αππ π− −= %

.  (7.62) 

where ξ  is an integration constant defined by the risk neutral distribution: 

( ) ( )
0 0

1 ( )RN Pf d e e f d e Lξ απ ξπ π π π α
∞ ∞

− − −= = =∫ ∫ .  (7.63) 

In equation (7.63), α  is the Laplace Transform of the retailer subjective 

estimate of the future prices (i.e. his private information). As a result, 

( )e Lξ α=  and finally,  

( ) ( )
( )

P

RN

e f
f

L

απ π
π

α

−

=
%

.    (7.64) 

As a result, we have: 

( ) ( )
*
1 1

1

1 * *

1 1 1 1 1 1(1 ) ;   
( )

P

f

e f
w R d D D

L

π απ

π

π
π π π

α−

−

+ = =∫ . (7.65) 

Again, let the private information of the retailer indicate a price distri-
bution which is uniform, that is: 

( )
*
1

1

1

* *

1 1 1 1 1 1

1 1

1
(1 ) ;   

( )
fw R e d D D

L

π
απ

π

π π π
α π π −

−
+ −

+ = =
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∫ ,  (7.66) 

or 

*
1 1

*

1 1
1 2 2

1 1

1 1 1
(1 )

( )
fw R e e

L

απ αππ π
α α α αα π π

−
−

− −
+ −

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ = − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎡ ⎤− ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
.(7.67) 



Therefore, it is a solution of: 

( )*
1 1

*
* *1 1

1 1 1 1 1 12 2

1 1
(1 ) ( ) ;  fe e w R L D D

απ αππ π α π π π
α α α α

−
−

− − + −⎛ ⎞ ⎛ ⎞
⎡ ⎤+ = + − + − =⎜ ⎟ ⎜ ⎟ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
,(7.68) 

where: 
1 1 1

11 1 1 1

1
( ) x e e

L e dx

π απ απ
α

π

α
π π π π

+ − +

−

− −
−

+ − + −

−
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⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦
∫ .  (7.69) 

Consequently, 

( ) ( )*
1 1 1 1

*
* *1 1

1 1 1 12 2

1 1
(1 ) ;  fe e w R e e D Dαπ απ απ αππ π π

α α α α
− − +

−
− − − −⎛ ⎞ ⎛ ⎞

= + − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.(7.70) 

In this situation as well, the price estimates of the derivatives by the 
retailer are: 

( )1

1

0

1

1 ( )

P

f

e f
d

R L
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In this illustration, we shall provide an application of Value at Risk as out-

lined in the previous section. Assume that in a supply chain an individual 

firm target costs Q  a part for a product to be assembled by a supply chain 

and let a random variable, z , be the realized cost with a known probability 

distribution function. The actual development cost is a function of the firm’s 

operational strategy and investments. To finance the production cost, an 

amount equal to the target cost is borrowed at the bank at the rate r . The 

following objective is then defined, consisting of the costs of over or under 

meeting the target cost. Explicitly, if z Q> , then the firm (a supplier) is 

penalized at a rate of rα >  while if the supplier cost is below the target, 

z Q< , then the resulting cost of such a deviation is penalized at a rate 

of β α< . As a result, the following (asymmetric) objective is defined 

  ;    ,  QMin rQ E z Q z Q E z Q z Q rα β β α αΦ = + ⎡ − ≥ ⎤ + ⎡ − ≤ ⎤ < >⎣ ⎦ ⎣ ⎦ .(7.74) 

Let the cumulative probability distribution of the cost be (.)CF , then the 
expected cost is: 
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( ) ( )
0

( ) ( );     
Q

C CQ

Q

M in rQ z Q dF z z Q dF z rα β β
∞

= + − + − >Φ ∫ ∫ . (7.75) 

The least objective target cost is thus found by setting to zero the first 
derivative of the objective function above, or: 

[ ]1 ( ) ( ) 0C Cr F Q F Qα β− − − = . 

Thus, an optimal target cost is 

( ),   ,   ,C

r
F Q r

αξ α β α
α β

−
= = < <

−
     (7.76) 

or, in other words, the target cost is given by  

* 1 1( ) ,  ,   ,C C

r
Q F F r

αξ α β α
α β

− − ⎛ ⎞−
= = < <⎜ ⎟−⎝ ⎠

           (7.77) 

where Q* is the optimal value. 
Of course, if development costs are a function of their effort (or some 

other variable of interest) and the costs are charged when performing above 
or below the target cost, then a firm’s objective consists in minimizeing the 
following: 

0

( ) ( ) ( )  
Q

C Cu

Q

Min h u zdF z u zdF z uα β
∞

= + +Φ ∫ ∫ . (7.78) 

For example, let the cost probability distribution have a Weibull proba-

bility distribution defined by 
1 ( )( ) ( ) , 0,  0

aa b u zf z ab u z e aτ− −= ≥ > , then 

the cumulative probability distribution is 
( )( ) 1

ab u zF z e−= −  with mean 

and variance 

2 21 2 1
( ) ( ) 1 ,   var( ) ( ) 1 1 ,a aE z b u z b u

a a a

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Γ + = Γ + − Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
.(7.79) 

Thus, the optimal target cost is in this case is: 
1

1
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−
⎧ ⎫⎛ ⎞− −⎪ ⎪⎛ ⎞= = < <⎨ ⎬⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭

. (7.80) 

The Target Costing problem defined above can be generalized further to 
the firm outsourcing parts to multiple suppliers. In this case, a simple 
formulation of the problem faced by the “central firm” is given by 

( ) ( ), ,

1 1 1 0

( ) ( );     
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k

Qn n n

k k C k k C kQ
k k kQ

Min r Q z Q dF z z Q dF z rα β β
∞

= = =

= + − + − >∑ ∑ ∑Φ ∫ ∫ .(7.81) 

while each supplying firm, seeks to minimize the following 



, ,

0

( ) ( ) ( )  
k

k

Q

k C k k C k ku

Q
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These equations define a game between the supply chain manager and 
the individual supplying firms. In this game, the “central firm” determines 
the target cost for each firm, while the individual firms optimize with respect 
to the efforts furnished. Evidently, for each firm k, we have the following: 

( ), ,1 ( ) ( ) 0;   C k k C k kr F Q F Q rα β β− − − = > .        (7.83) 

Or 

, ( ) =C k k

r
F Q

α
β α

−
−

,    (7.84) 

while optimization of the effort by the individual firm is defined as stated 
earlier. 

7.6 COLLABORATION, RISKS AND SUPPLY CHAINS 

Collaboration in supply chains assumes a growing importance due to the 
profit that results from economies of scale, in technology, in production, in 
market power, in introducing entry barriers and thereby reducing some of 
the associated risks for firms. At the same time however, internal risks 
such as lock-in contracts, risk sharing, risk transfer, size risk etc, have to 
be dealt with. The risks sustained are of course a function of the contractual, 
behavioral and collaboration attitudes in use. For example, vertical integra-
tion or hierarchical control; subcontractors-contractual relationships; franchi-
ses; joint ventures and partnerships; strategic alliances; reciprocity agreements 
etc. all have benefits and risks. These risks derive mostly form the supply 
chain leadership rules and incentives (inducing power asymmetries) and by 
information asymmetry. For example, when two parties engage in a con-
tractual relationship which is costly to break apart, or lock-in contracts, there 
may be risks for one or the other party or both. For this reason, the profit of 
collaboration by reducing the number of suppliers and building trustworthy 
relationships, engaging in long term supplies and exchange, locking oneself 
in dependence of any kind (such as joint technology, Intranets, joint plann-
ing, technology sharing etc.) is also a “two edge sword”. In this sense 
collaboration in supply chains is not a “free lunch”. Celebrated cases are of 
course outsourcing and franchises.  
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Outsourcing (as discussed in Chapters 2 and 4) is essentially defined as the 
transfer of previously in-house activities to a third party (see also, Gattorna 
1988; La Londe and Cooper 1989 for additional review of this problem). In 
such a transfer, economies of scale may be reached while fixed cost invest-
ments can be reduced rendering the outsourcing more agile-flexible. At the 
same time, there may be opportunity risks based on the search for self 
interest such as information asymmetries as stated above. The questions 
firms struggle with prior to outsourcing are therefore both complex and 
numerous. Should a firm strive to maintain its capacity or turn to an external 
(and therefore hardly controllable) supplier? Will a firm’s technological 
positioning (and therefore its knowledge base in the future) be reduced? 
What are the firm’s strategic options and contingent plans? These and other 
questions are important risk problems to contend with. For example, an 
essential motivation when outsourcing inventory, arises from economies of 
scale, risk and focus. These motivations presume that economic advantages 
arise from collaboration and exchange between firms, leading to a firm 
restructuring its organization to deal with its external supply chain. A 
typical example would in practice be to focus on a JIT (Just in Time) 
manufacturing strategy while outsource the management of inventories to 
a carefully selected supplier (although outsourcing and JIT might not be 
correlated). Such a practice can lead to numerous problems however. Spe-
cifically, when several firms act on the same market and outsource to a 
common supplier, they may augment significantly the demand volatility 
faced by the supplier (and thereby augment costs). Such risk considera-
tions are therefore essential and to be accounted for when reaching the 
decision to outsource inventories. 

Thus, inventory outsourcing involves not only reduced costs and the 
potential to focus on core competencies, but also risks. The two main risks 

tory activities, namely, risks assumed at the inventory and order stage and 
risks assumed ex-post once uncertainty in demands is revealed and supplies 
received. These risks are of course dependent on different factors such as 
supply delays and the preferential supplier-firm relationship. As a result, 
inventory outsourcing can be conceived in numerous ways, based on model 
relationships, which involve wholly or partly, arm’s length contractual and 
conflicting partnerships. From a supplier’s point of view the concern to 
maintain firms-clients that have outsourced as well as minimizing the  
costs of managing inventories are the prime objective. See also Baghana 
and Cohen 1998, Janssen and Kok 1999, Ritchken and Tapiero 1986, 

Outsourcing and Risks  

(ex-ante and ex-post) in this case include the outsourcing of critical inven-



Tapiero and Grando 2006, Van Donk and van der Vaart 2005, Tsay et al. 
1998. 

To manage outsourcing risks, a number of approaches is suggested in 
the literature. For example, essential factors to reckon with in reaching the 
decision to outsource require that we understand the specific competitive 
advantage the firm has, and recognize the firm’s resource heterogeneity, 
the effects of imperfect mobility and its internal alignment. In this context, 
a firm to manage risks and seek one or several suppliers ought to: (i) 
Retain the resources responsible for competitive advantage; (ii) Avoid 
monopolistic or oligopolistic supply markets and (iii) Manage the risk of 
post-contractual dependency. In implementing the decision to outsource, 
negotiations relating to supply prices, supply security and assurances, back 
up and alternative supplies are the issues a firm will be confronted with. 
Should the firm have one or more suppliers? To what extend can a firm 
depend on its suppliers? Can contracts negotiated between two firms be 
reciprocal, in a manner that one will depend reciprocally on the other! 
What are the penalties for non conformance to contract terms? These are a 
sample of the many questions one may raise that can have risk implica-
tions. For this reason, in car manufacturing supply chains in Japan, several 
suppliers are used, emphasizing the independent development of parts, 
integrated into a whole at the Car manufacturer. As a result, outsourcing 
and external supply relationships are extremely varied with different types 
of supplier relationship; with different costs and rewards associated in each 
relationship. They are also varied with relationships designed to meet the 
supply chain specific needs and spanning “arm’s length”- contractual, con-
flictual, limited or full partnership that may be fixed or varying over time.  

As seen earlier, each relationship entails its own risks of supplying faulty 
material and products, information asymmetry and power risks (of moral 
hazard, adverse selection). In such an environment, the risk management 
of suppliers and outsourcing depends far more on organizational and pro-
perly conceived contracts than just technical analysis, albeit such an ana-
lysis is important as we shall see below through examples and in the next 
chapter as well. For example, single sourcing versus multiple sourcing can 
compound the supplies variation of firms, long term and locked in con-
tracts can lead one firm to be totally dependent on the other (although long 
term contracts are considered important for sustaining a supply chain). Of 
course, a mutual commitment, a shift form a conflictual to a collaborative 
based on trade-offs and sharing, maximizing mutual understanding and  
an exchange of information leading to trustworthy and credible commit-
ments are basic ingredients in outsourcing, supplier and supply chain 
relationships. These problems are of the utmost importance requiring a 
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strategic approach to risk. For simplicity, we often reduce these problems to 
a treatable format as will be shown in a specific case below. 

Franchises are an old and broadly practiced economic arrangement, origi-
nating in the Middle Ages (X and XII the Centuries) where landed lords 
granted territorial rights to cultivate land by some in their local population. 
It expanded dramatically at the beginning of the century in both the US 
and Europe. The French Cotton firm (Lainiere de Roubaix, Laine Penguin) 
seeking to sell its textile expanded into 350 franchisees in less than ten 
years while in the US, Antitrust Laws of 1929 led US firms to the creation 
of distribution franchises by US car manufacturers. The expansion of 
franchises, mostly in services, has been since then spectacular, accounting 
for a substantial percentage of service and logistics activity. In France for 
example, there were 34 Franchisers in 1970 compared to 600 in 1990 and, 
of course, this number has expanded since the European Union integration. 
Franchises are an approach to collaboration between a franchiser—the 
firm, and franchisees, contracted for the purpose of exploiting a particular 
concept or advantage provided by the franchiser. It is mostly an economic 
agreement based on an exchange between parties made for profit, with 
each of the parties expecting to draw some advantage from the agreement. 
This general principle underlies franchise contracts, outsourcing agree-
ments, joint partnerships etc. Franchises in particular, are essentially a 
contract between two legally independent firms establishing a long-term 
relationship where the franchiser grants to the franchisee the right to use 
the franchiser’s trademark, the use of a specific (potentially patented) tech-
nology etc., In exchange, the franchisee pays a lump sum fee and annual 
royalties at an agreed percentage of sales. 

A franchise may involve several other provisions as well as options that 
each of the parties may grant to the other. For example, risk sharing, exclu-
sive territories with optional agreement appended to these agreements, 
promotional efforts sharing, buy-back provisions (Marvel 1982, Rey 1992, 
Rey and Tirole 1986, Tirole 1988, Mathewson and Winter 1986, Klein and 
Saft 1885). These contractual relationships are broadly used. Over one 
third of all retail sales in the US occur through a franchise system. For 
example, in many cases, production may be centralized while distribution 
may be franchised (e.g. car selling, some food and department stores, fast 
food, clothing trademarks etc.). In some cases as well, image and advertis-
ing is centralized but production is decentralized, franchised to companies 
focused in manufacturing (as it is increasingly the case). 

Franchises  



The economic rationale for franchises arises due to the very high set up 
costs in selling as well as to problem of managing complex and diffused 
distribution systems. Thus, a franchisor may construct a franchising system 
where franchisees would invest parts, if not all, of the required local 
investment. Typically, such an agreement is made for definite or indefinite 
periods of time, which the owner of a protected trademark grants to fran-
chisees, for some consideration, the right to operate under this trademark 
for the purpose of producing or distributing a product or service (Caves 
and Murphy 1976). Because the value of such assets is defined by their 
use, these contracts involve difficult contractual relations. Franchisee fees 
assume then many variations such as royalties, or commission, resale price 
maintenance, exclusive territories, exclusive dealing as well exclusivity 
relationships of various sorts with reciprocal agreements for the conduct of 
mutual services. The study of franchises involves as a result many issues 
such as resource constraints (thus the franchise will grant access to finan-
cial capital, market expertise and managerial talent of franchisee); incentive 
issues where the franchise system provides strong incentive for both parties 
to perform well; and of course an economy of scale where the franchiser 
assumes responsibility for economic activities where economies of scale 
can be realized.  

Traditionally, an expected utility framework based on the parties’ utilities 
for money is used to value franchise contracts (see, for example, Blair and 
Kaserman 1982, Caves and Murphy 1976, Mathewson and Winter 1986, 
Rubin 1978, Rubin and Carter, 1990). Such an approach is subjective how-
ever expressing the value that each of the parties draws from the agree-
ment based on valuations that are no easily revealed. For example, each of 
the parties may calculate the discounted utility of gains and losses, summa-
rized in a “flow of funds”, over a relevant planning horizon. And on the 
basis of appropriate assumptions regarding the policies and managerial 
procedures adopted, a pricing “objective” is determined (see Kaufman and 
Dant 2001, Lafontaine 1992, Kaufman and Lafontaine 1994, Sen 1993). 
This price is not the market price for the franchise agreement and does not 
convey the true discount rate (which is both time and risk sensitive). 

In addition franchising risk is imbedded in both the franchise contract 
and the ex-post controls applied to manage the franchisee-franchisor rela-
tionships once the contract is signed. For example, a typical franchise con-
tract consists of a lump sum payment which may or may not be refundable 
and involves optional choices just as the relationship maintained over at 
least a certain length of time, at which the franchise can be renegotiated (as 
a way to commit the franchisee to entrepreneurial activity and safeguard 
from misuse of the franchise). Similarly, an advantage (or disadvantage) 
can be gotten through a tax on current inputs, such as selling current input 
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at prices larger than the franchisor’s marginal cost. For some contracts the 
franchisor supply parts of the fixed operating costs (when he leases land 
that he owns) combined (or not) with provisions to recapture the franchise 
(which alters the franchisee utility). Thus, even with the most stringent 
contract, franchises are subject to many risks. Risks of “milking” the fran-
chise; asymmetry risks (in power and in information) and other risks 
resulting in sub-performing franchisees can harm the franchise brand as a 
whole. We will next consider a number of simple problems to highlight 
only some of these issues. 

Below we shall consider two problems demonstrating alternative app-
roaches to dealing with risk in both outsourcing and in franchises. The 
former is a straightforward expected minimization problem, while the latter 
provides an approach to pricing the franchise. 

We consider first a problem of “inventory outsourcing” (Tapiero and Grando 
2006) with the supplier a leader, having full information of the outsourcing 
firm’s demand distributions and parameters. This leads as we saw earlier to 
a Stackelberg game meaning that one of the parties in the game is a leader, 
aware of the other party—the follower, his motivations and his decisions. 
When dealing with an independent demand of the parties, the supplier bene-
fits from (statistical) risk aggregation. On the other hand, if parties demands 
are dependent, this may lead to an unwieldy situation which requires that a 
risk management policy be adopted by the supplier (such as building an 
aggregate inventory as well as buying call options for further supplies, as 
shown in Ritchken and Tapiero 1986 and highlighted in the revised Example 
2.1 in this chapter). 

Say that we have a number of individual firms j, j=1,2,…. managing 

inventories independently and ordering the quantities jR  inducing 

inventory and shortage costs given by 1 jc  and 2 jc  respectively, where jD%  

is the individual firm demand for these quantities. The total incurred cost 
for each firm, j, is random and is defined by 

( ) ( )1 2j m j j j j j j jC p R c R D c R D
+ −

= + − + −% % %  .            (7.85) 

Note that m jp R  is the value of materials to be ordered while the latter 
are cost items measured at the end of the period. Further, we use the notation: 
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( )
if 0

0 if 0

x x
x

x

+ >⎧
= ⎨ ≤⎩

, ( )
if 0

0 if 0

x x
x

x

− − <⎧
= ⎨ ≥⎩

, 
( ) ( )
( ) ( )

x x x

x x x

+ −

+ −

= −

= +
. (7.86) 

The total expected first two moments of the costs are thus 

( ) ( ) ( )1 2j m j j j j j j jE C p R c E R D c E D R
+ +

= + − + −% % % ,     (7.87) 
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,(7.88) 

where mp  is the current market price of buying the good (a part that might 

be needed in a production process). A risk neutral optimal ordering policy 
based on expected costs minimization can be found by minimizing 

( )ˆ
j jC E C= %  above where ( )j jF D%  is the cumulative function of the jth 

firm demand. For such a firm, the optimal order policy is given by the first 

necessary conditions for optimality ˆ / 0j jC R∂ ∂ = , which leads to an 

optimal quantile risk specification for the inventory policy. Namely, we 
have:  

( )*

j j jF R α=  or ( ) ( ) ( )*

1 1 21 1 /j j j j m j jF R c p c cα− = − = + + . (7.89) 

This expression defines, at the least inventory cost, the shortage risk 
sustained by the outsourcing firm. As a result, the optimal ordering policy 

of an inventory managing firm is ( )* 1 j j jR F α−= . Due to focusing and 

economies of scale, the supplier may acquire goods at a lower price 

s mp p≤ , which he may use to set a selling price pms, s ms mp p p≤ ≤  to 

outsourcing firms, lower than the market price. The supplier’s holding and 

shortage costs are assumed given by parameters ( )1 2,s sc c . Using the same 

model, the supplier adopts an optimal order policy given by 

( )*

N SF R α=  where ( ) ( )1 1 21 /s s ms s sc p c cα− = + + ,       (7.90) 

where ( ).NF  is the cumulative distribution function of the aggregate 

demand 
1

n

j

j

D
=

∑ %  by all firms, assumed to be normal. The mean and variance 

are given respectively by 
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( )2

1 1 1 1
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When demands are independent, we have:  

( )2

1

var
n

j

j

Dσ
=

= ∑ % .    (7.92) 

When demands are dependent, the demand variance faced by the sup-
plier can be much greater (or smaller, depending on demand correlations). 

For our special purpose case, assume that firms outsource to the supplier 

(and therefore do not hold inventories). If firm j is supplied j jV D≤ % , a 

shortage ( ) ( ),0j j j jD V Max D V
+

− = −% %  is incurred with shortage risk 

( )1 j jF V− . To assume a risk of shortage smaller than the risk sustained 

by self-managing inventory, the outsourcing firm would require that 
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As a result the least supply of an outsourcing firm requires (protected by 
an appropriate outsourcing contract) 
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.   (7.94)  

By outsourcing inventories, firms may thus profit not only by an expec-
ted cost reduction but by reducing inventory risks as well.  

For exposition purposes, we consider a one period binomial process repre-
senting a simplified franchise exchange agreement (for extensions and addi-
tional developments, see Tapiero, 2007). The terms of exchange consist in 
the transfer of a lump sum from the franchisee to the franchisor and a royalty 
payment. Furthermore, we also assume that the franchiser guarantees the 
franchisee by providing a buy back option that the franchisee can exercise 
at any time at a set price. In this sense, the franchisee has a Put option 
defined by the terms of the franchise contract defined by both the pro-
fitability of the franchise and the terms set by the franchisor. This par-
ticular characteristic is used to price the franchise price by replicating it to 
an equivalent Put option traded (if a market can be found for such trades) 
in some financial markets. Thus, the question we address is: what is the 
market price for the franchisee’s investment, or equivalently, what is the 
franchisee’s risk premium when investing in the franchise, as required by 

Valuation, Pricing and Franchises with A Binomial Process 



the franchisor? Further, what are the terms that the franchiser can provide 
in such a franchise contract? Unlike game theoretic approaches to such 
problems, based on the parties’ interest and information, our approach is 
based on the existence of complete markets and both parties use such 
markets to price the terms of the franchise contract. In this sense, there is 
no conflict, but a price equilibrium that the franchiser and the franchisee 
use in determining the terms they would accept and at what price.  

Say that a franchisee initial investment is K, part of which, ,  0 1Kβ β< < , 

is transferred to the franchiser as a lump sum for the right to exercise under 
the franchiser banner. The net starting investment of the franchise is, thus, 

(1 )Kβ− . In addition, assume that the franchisee pays out to the fran-

chiser a royalty at a proportional rate 0 1α≤ <  to the profit made in the 

period.  The price of the franchisee a period later is then either 

(1 ) (1 ),   0K h hβ− + >  or (1 ) (1 ), 0Kβ− − >l l , where ( ),h l  are the 

rates of return in case of economic success or economic failure. The 

transfer amounts to the franchiser are therefore (1 ) (1 ),   0K h hα β− + >  

or (1 ) (1 ), 0Kα β− − >l l , with their complement values remaining as 

part of the franchisee’s income. If markets are complete (in a financial 
sense), and assuming an implied risk neutral probability for such markets, 

the current price equals the discounted future price at the risk free rate fR , 

or 

[ ]1
(1 ) (1 ) (1 ) (1 )(1 ) (1 )

1
RN RN

f

K p K h p K
R

β β β− = − + + − − −
+

l .(7.95) 

And therefore, the implied risk neutral probability is 

,   
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+
= <

+

l

l

.      (7.96) 

Given the terms of exchange between the franchisee and the franchiser, 
each of the parties will be faced with the following cash flows (where the 
first term is the franchisee and the second the franchiser and as explained 
below). 

At time t=0, ( ),  K Kβ− , while at time t=1: 

( )( )( )
( )( )

(1 )(1 ) (1 ) (1 ) max , 0

(1 ) (1 ) (1 ) (1 ) max , 0

K K

K r K K

α β ξ β ρ µ ξ ρ

β α β ξ β ρ µ ξ

⎧ − − + + − + −⎪
⎨

+ + − + − − −⎪⎩
 . (7.97) 

If the franchisee exits the franchise at time t=1, we have: 

Q

Q

+ Φ⎧
⎨− − Φ⎩
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where  

( )(1 )(1 ) (1 ) ,0Max K Qα β ξΦ = − − + − .      (7.98) 

Here ξ  denotes the binomial states, namely whether the franchise was 

highly profitable or less, r  denotes the rate of return the franchiser collects 

on the lump sum payment, while ( )( )1 (1 ) (1 )K Kα β ξ− − − +  denotes 

the franchisee return for the period and therefore a rate of return for the 
period is given by 

( ) ( )( )1 1 (1 )(1 )
1

(1 )

α β ξ
µ ξ

β
− − − +

= −
−

.   (7.99) 

Of course, if the franchisee is assured a least rate of return equal to ρ  

by the franchise, then we have a rate of return, ( )( )(1 ) max ,K β µ ξ ρ− . 

Since, ( )( ) ( )( )max , max , 0µ ξ ρ ρ µ ξ ρ= + − , the franchiser is respon-

sible only for the complement in case the franchisee does not reach the 

guaranteed return, or ( )( )max , 0ρ µ ξ− . We have, as a result, the cash 

flow indicated in our equation (7.97) above. 
By the same token, if the franchiser provides an exit price to the franchisee 

as a function of the franchisee’s investment, then when the franchisee 
exercises this option (in fact, a perpetual American option), then at the exit 
time, the franchisee collects the maximum of (1 )(1 ) (1Kα β ξ− − + ) and 

the exit price, denoted by, say, Q. In other words, the franchiser supplies 
the franchisee with the following option 

( )(1 )(1 ) (1 ),M ax K Q Qα β ξ− − + = + Φ , 

where 

( )(1 )(1 ) (1 ) , 0M ax K Qα β ξΦ = − − + − .      (7.100) 

This option is evidently a cost to the franchiser, as stated above since it 
involves a transfer of funds to the franchisee. As a result, at time t=1, the 
franchisee and the franchiser collect (or pay out) (1)fP  and (1)FP  

respectively and by risk neutral pricing 

( ) ( )1 1
(0) (1) ;  (0) (1)

1 1
f R N f F RN F

f f

P E P P E P
R R

= =
+ +

, (7.101) 

where  

(0) ;  (0)f FP K P K β= = − .          (7.102) 

In other words, the present value to the franchisee equals in a complete 

market his investment, while the franchiser collecting the lump sum, Kβ , 



is receiving such a payment to meet future obligations to the franchisee.  

If, ( ) 0hµ ρ− > , then for the franchisee we have 

( ) ( )( )
( )( )( ) ( )

(1) (1 )(1 ) (1 )

     (1 ) (1 )(1 ) (1 ) (1 )

RN f RN

RN RN RN

E P K p h

K p h p K h p Q

α β

β ρ µ ρ α β

= − − + + − +

+ − + − + − − + + −

l l
 (7.103) 

while for the franchiser  

( ) ( )( )
( )( ) ( )

(1) (1 ) (1 ) (1 )

      (1 )(1 ) (1 ) (1 )(1 ) (1 )  

RN F RN

RN RN

E P K r K p h

K p p Q K

β α β

β ρ µ α β

= + + − + + −

− − − − − − − − − −

l l

l l

(7.104) 

Note that the last term in the equation above corresponds to the money 
exchange in case the franchisee chooses to exit the franchise agreement. 
As a result, we obtain the following system of equations expressed in 
exchange terms of the franchise, 

( ) ( )( )
( )( )( ) ( )

( ) ( )( )
( ) ( )

1 (1 )(1 ) (1 )

      (1 ) (1 )(1 ) (1 ) (1 )

1 (1 ) (1 ) (1 )

     (1 )(1 ) ( ) (1 ) (1 )(1 ) (1 )

f RN

RN RN RN

f RN

RN RN

K R K p h

K p h p K h p Q

K R K r K p h

K p p Q K

α β

β ρ µ ρ α β

β β α β

β ρ µ α β

+ = − − + + − +

+ − + − + − − + + −

− + = + + − + + −

− − − − − − − − − −

l l

l l

l l

(7.105) 

Following some elementary manipulations, we have 

( ) ( )( )

( ) ( )

1 (1 )
(1 )(1 ) (1 ) 1 2 ( )

(1 ) (1 )

(1 ) (1 ) ( ) (1 )(1 )
(1 ) (1 )

f RN
RN

f

RN RN

R p Q
p h h

K

R r Q
p h p

K

α ρ α µ ρ
β β

β
α α ρ µ α

β β

+ −
− − − − = − + + + − +

− −

− ⎡ ⎤
+ − = + + − + − − − −⎢ ⎥− −⎣ ⎦

l l

l l l l

(7.106) 

Using the risk neutral pricing probabilities calculated earlier, we have 
for the franchisee and the franchiser: 

 

( ) ( )( )
1

(1 )(1 ) (1 ) 1 2 ( )
(1 ) (1 )

f f f
R R h R Q

h h
h h K

α ρ α µ ρ
β β

+ + −⎛ ⎞ ⎛ ⎞
− − − − = − + + + − +⎜ ⎟ ⎜ ⎟− + + −⎝ ⎠ ⎝ ⎠

l
l l

l l

( ) ( )(1 ) ( ) (1 )(1 )
(1 ) (1 )

f f

f

R r h R Q
R

h K

β
α α ρ µ α

β β
− −⎛ ⎞⎡ ⎤

+ − = + + + − − − −⎜ ⎟⎢ ⎥− + −⎣ ⎦⎝ ⎠
l l l l

l

Consequently, for a fixed sharing agreement, the lump sum transfer 

payment is found by equating these two equations and solving them. Alter-

natively, for a fixed royalty contract, the lump sum payment can be deter-

mined by equating these equations. We can then calculate the resulting 

ration Q/K, expressing the proportion of the franchisee investment which is 

guaranteed by the franchiser. A numerical analysis of these equations is 
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(7.108) 

(7.107) 
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considered below emphasizing the substitution between the problem’s 

parameters. Of course, given one parameter, the other can be calculated. 

Such an approach can be used in various other manners. For example, the 

potential returns of the franchise may be determined by the efforts of 

franchisees and the franchiser (for example through greater advertising), 

altering thereby the potential returns, ( ),h −l , and their risk neutral 

probabilities and the actions that ensue these implied probabilities. Of 

course, greater investment in such returns will increase the price of the 

franchise. While, milking the franchise, will dim its prospects and reduce 

its price. If the franchiser and the franchisee are mutually aware of each 

other preferences and the implications of their acts and policies, a game 

might follow, priced also by the market as a function of their resulting 

strategies. In such cases, distrust and non-collaborative behaviors can 

result in large losses by both parties. The consequences of such gains and 

losses can be assessed using the framework we have outlined, appro-

priately expanded to be time sensitive (i.e., in a multi-period context) and 

more specific in terms of the return processes unfolding as the franchisee 

and the franchiser adopt their respective policies. Such situations and 

games may be topics for additional research, albeit the approach followed 

in such research would conceptually be the same as that pursued here.  

For the following parameters: h=0.3, l=0.15, Rf=0.05, r=0.12, Į=0.08, 
ȡ=0.16 we computed in equation (7.98), Q/K, the ratio of the exit strike to 
the franchisee investment, as a function of ȕ, the proportion paid upfront to 
the franchiser. The results are shown in Figure 7.1 below. 

 

Example 7.5 

Figure 7.1. Equations (7.107) and (7.108) of Q/K as a function of ȕ 



The intersection of the two equations provides the simultaneous solution 
in ȕ, which is found with Maple to be 0.1693159796. In other words, if a 
franchisee were to invest $100,000 for his acquiring and operating a fran-
chise, then the upfront payment to the franchiser would be $16,931. In this 
sense, the terms the franchisee would be confronted will be the down pay-
ment of 16,931 to the franchiser and a transfer of 8% of all future earnings.   
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Managing (non) quality and the risk consequences have generally assumed 
that the underlying uncertainty faced by firms, individually and collec-
tively, is neutral! In other words, uncertainty and risk are not motivated 
while issues relating to information, information and power and parties’ 
intentionalities are mostly neglected. Supply chains however are beset by 
multiple parties interacting with broadly varying motivations, information 

tive objectives as well as environments (in the form of governments, other 
supply chains and interest groups) that render the management of quality 
in supply chains far more strategic. This raises many problems that are 
specific to supply chains and require particular attention. In figure 8.1 some 
techniques and a number of factors are pointed out, summarizing a number 
of concerns that will be considered in this chapter. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. Quality related techniques and factors 
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Three elements include: statistics, conflict and control. Statistics deals 
with the uncertainties we face and how they are defined empirically-
quantitatively. For example, is uncertainty originating in (unmotivated) ran-
domness, is randomness motivated (as it would be if it were to depend on 
other parties actions and intentions). Is randomness the product of external 
and uncontrollable hazard or it is endogenous, resulting from our actions 
and the incentive we apply in managing quality and the supply chain? 
Conflict refers to the mutual behavioral and organizational relationships 
that evolve in a supply chain. If there is an information asymmetry or if 
there is a power asymmetry, and if there are separate and potentially non-
identical objectives, one of the parties may resort to an opportunistic behavior. 
In this sense, the questions stating to what extent are the supply chain 
parties independent or dependent, which party is a leader and which is a 
follower are important ones. To control quality and the quality of the rela-
tionship in a supply chain, it means to control what the parties of the supply 
chain do, both ex-ante and ex-post. For example, are parties complying in 
meeting the contractual agreements they have agreed to; is the quality 
delivered, the quality agreed on between the parties etc. 

The implications of such questions and of the control of quality in supply 
chains are of course inherent in the assumptions we are willing to make 
regarding the parties implied, their behavior and the characteristics of the 
underlying supply chain processes. For example, are there quality incentive 
contracts to manage the quality of products transferred from one firm to 
another? What are the implications to any of the parties of a non-quality 
originating in any specific firm of the supply chain? How is quality con-
trolled across the supply chain and what are the pre-posterior controls 
(contract design) that allow both a monitoring-control and the choice of 
actions (which have, of course, consequences for the responsible supply 
parties)? These problems require technical approaches such as game theory, 
random payoff games and other approaches that are far more sensitive to 
the types of problems we have to deal with. Generally, in managing quality 
in supply chains, three essential approaches can be used. First, the plethora 
of human based approaches based on TQM (which are not considered here), 
Contracts negotiations and the economics of such contracts and finally, a 
strategic approach to the management of quality and its control (based on 
the endogenous uncertainty that arises due to the game parties engage in). 
We shall consider only some of these approaches, demonstrated profusely 
through examples. 
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A contract is a bilateral binding agreement by which agreed upon exchange 
terms between two parties are used as substitutes to market mechanisms. 
This may involve contracts regarding work practices, payments and salary 
scales and a set of clauses intended to protect each of the parties against 
possible non-compliance by one of the parties bound by the contract. The 
essential advantage resulting from a contract is to protect both parties, reduce 
the uncertainty they may face and thereby stabilize their respective operating 
environments. For example, a supplier who enters into a contractual relation-
ship with a specific producer may secure a certain level of sales which 
brings both profits and stability to its operational plans (as it is the case in 
supply chains). A producer could assure (through inspection sampling) that 
special care be given by the supplier to materials and parts. Pre-contract 
negotiations, which vary from situation to situation, provide an opportunity 
to clarify future terms of exchange and provide protection for each of the 
parties once the contract is signed. A poorly designed contract may be 
disastrous for the supplier and the producer alike, since ex-post-contract 
disagreements can lead to litigations, which are usually very costly and 
therefore important source of risks for the proper supply chain operations. 
For example, if delivery of quality products is not specifically stated as 
special clauses, suppliers may be tempted to supply sub-standard products. 
Similarly, union-management negotiations, over generous terms for one of 
the parties can lead to an environment which will induce non-quality by 
one of the parties taking advantage of situations as they arise and poten-
tially cheating or non-conforming to the terms of the employment contract. 
For example, in the beginning of the industrial revolution, overly harsh 
working conditions induced workers to sabotage their machines by putting 
their sabot (wooden shoes) in the machine requiring thereby both direct 
and statistical controls. By the same token, overly protective measures for 
work, or pay scales based on piece work only can have adverse effects on 
inventory accumulation and on the production of quality produced (if they 
are not sensitive to the quality of work as well).  

When there is an information asymmetry, a party may take advantage of 
special situations, in contradiction with the terms of the contract negotiated 
(in letter or in spirit). Such behaviors include opportunistic behavior, 
cheating, hiding facts, interpreting falsely or to one’s own interest certain 
outcomes and situations. In other words, one of the parties (or both) may 
resort to opportunistic behavior. For example, when the cost of inspecting 
quality is large and there is an information asymmetry, a supplier can be  
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tempted to supply a sub-standard quality (in contrast to the agreed upon 
and negotiated quality supply contract). To reduce such risk (usually called 
moral hazard as discussed in Chapter 7), once a contract has been signed 
the producer must devise a strategy which will provide an incentive to 
meet the terms of the contract and sufficient protection in case of supplier 
default. In these circumstances, inspection helps detect sub-standard quality. 
For example, if a part is tested and found defective, a rebate (negotiated at 
the time the quality contract was signed) can be paid by the supplier which 
in effect reduces the price of parts to the producer on the one hand and 
provide an incentive to the supplier to perform as agreed upon by the terms 
of the contract. Foreseeing such situations and providing rules for sharing 
the costs of non-quality are extremely important in determining the actual 
quality delivered as well as for instituting controls by both the supplier and 
the producer alike.  To highlight some of the economic issues associated to 
contracts we shall consider specific problems.  

For demonstration purposes, say that a contract consists of a quality Q 
for a product and a transfer payment p. The supplier has a private 
knowledge regarding Q which is given by z, providing a statistical 
information regarding Q and probability density function F(.) while the 
buyer provides information which is given by y with a probability density 
function G(.). The supplier and the buyer profits are given with respect to 
sales R(Q,y) and production cost C(Q,y) as: 

( , )

( , )

B

S

R Q y p

p C Q y

π
π

= −
= −

 

The price p is therefore a transfer between the parties. If these were 
collaborating, then the sum of their profits would be: 

( , ) ( , )B S R Q y C Q yπ π+ = −  

Then, a quality contract is a pair of valued function { }( , ), ( , )Q y z P y z  which 

depends on the information available to each.  When quality Q is a fun-
ction of the private information available to both parties and the (transfer) 
price is a function of this information, an efficient contract can be defined 
by the following: “A contract is said to be efficient if it maximizes the 

profit of one agent given some level of profit for the other”. 

    Subject to:  

    Subject to:  

B S S

S B B

Max

Max

π π π
π π π

≥

≥
 

If the parties in the supply chain collaborate, then the centralized profit 
is given y: ( , , ) ( , ) ( , )Q y z R Q y C Q zπ = − . Mathematically, this means that for 

a strongly convex function of profits, we require: 
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2 2

2 2
0,   0

R C R C

Q Q Q Q Q

π∂ ∂ ∂ ∂ ∂
= − = − <

∂ ∂ ∂ ∂ ∂
, 

which provides the quality level that maximizes a centralized profit. There-

fore the maximum profit, * ( , , )Q y zπ , is defined as well in terms of the con-

tractual terms agreed on by the parties. When the parties have their own 
private information (in which case there is an information asymmetry), the 
problem is slightly more complex, as indicated earlier. 

We consider next the case of information asymmetry, in which case we 
assume that: 

• Buyer observes y but not z; 
 Seller observes z but not y. 

In such circumstances a contract is said to be incentive compatible in 

the following condition. Say that the buyer observes y and reveals y*. Then, 
the contract is incentive compatible for the buyer if: 

{ } { }( ( , ), ) ( , ) ( ( , ), ) ( , ) 'E R X y z y P y z y E R X y z y P y z y− > −  

For contract to be strongly incentive compatible it requires that truthful-
ness be always optimal even after knowing the private information of the 
opposing agent. For example, Supplier will be truthful even if it already 
knows the sampling plan of the producer. Incentive compatibility thus 
requires that an agent will always find it optimal to reveal private infor-
mation before knowing the private information of the opposing agent. To 
highlight these problems we shall consider the following problems. 

• Discuss three forms of producers-supplier relationships in a supply 
chain: (i) Conflictual, (ii) Contractual and (iii) Partnering. What are 
the advantages and the disadvantages of these organizations? Formu-
late the corresponding optimization problems. 

• Consider a conflicting relationship between a producer and his 
supplier. What would be the effects of an information asymmetry 
between the two and what would be the effects of sharing infor-
mation. Discuss two imagined situations involving, in the first case, 
information regarding product quality and, in the second, informa-
tion regarding demand requirements for some parts. 

• What are the effects of the dependence of a producer on a unique 
supplier? Contrast the advantages and disadvantages of a single 
versus a multiple suppliers outsourcing policy (to do so, use the 
concept of Stackelberg games considered earlier in the book).  

Example: Types of quality-quantity contracts 
Information asymmetry beset the many types of quality contracts that can be 
defined, including for example: Requirement contract that grants quantity 

•
•



discretion to the buyer within pre-negotiated limits, but allows quantity to 
move outside those limits with the mutual consent of both buyer and seller. 
Output contracts are the converse, giving limited quantity discretion to the 
seller. Finally, quantity contracts are intermediate between both parties; 
pre-negotiating a definite transaction quantity but permits parties to mutu-
ally agree to deviate from that quantity  

Supply chains are as stated earlier organizational frameworks based on 
exchange and dependence between firms, each with its own objectives and 
motivations and drawing a payoff whose risks it must also sustain and 
manage. Collaboration is not always possible however, for agreements 
may be difficult to self-enforce and as a result dependence risks of various 
sort may lead some firms to take advantage of their position in the supply 
chain network either because of power or information asymmetries. Further, 
profit from collaboration must also be justified for parties which will be 
involved together if the supply chain collaborates in fact. The traditional 
control of quality however assumes mostly that the underlying uncertainty 
faced by firms, individually and collectively, is neutral. In other words, the 
risk consequences measured by non-conforming quality are not motivated 
and therefore, the traditional approach to quality and its control has ignored 
the strategic and competitive effects of managing quality in an environ-
ment where firms act for their self interest (for exceptions see Reyniers 
and Tapiero 1995a, 1995b). 

The implications of such an environment to the control of quality in 
supply chains are of course inherent in the assumptions we are willing to 
make regarding the supply chain organization on the one hand and the 
quality contract engaging the parties on the other. For example, are there 
incentives to deliver conforming quality between the parties? What are the 
risk and economics consequences of delivering poor quality? Is quality 
controlled across the supply chain and what are the pre-posterior controls 
that allow both a monitoring-control and a choice of actions by the parties. 
Typically, in supply chains, uncertainty arises not only due to the uncer-

tions and preferences that each of the parties has. In this sense, in addition 
to statistical uncertainty, the management of quality may include strategic 
uncertainty arising due to conflicts latent between the supply chain firms. 
As a result, in such an environment, games of strategies and the control  
ex-ante and ex-post of quality might lead to quality control strategies that 
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are “mixed”, with both strategic (threats and menaces) and statistical (infor-
mation and assurance based) considerations. In this section, we consider the 
control of quality contracts from a number of perspectives, emphasizing 
both competition and collaboration. 

Consider a contract to deliver parts or products of “acceptable” quality 
defined by the contract on the one hand and economic consequences for 
each of the parties in case the terms of the contract are not met. The essen-
tial advantage resulting from a contract is therefore to protect both parties, 
reduce the uncertainty they may face and thereby stabilize their respective 
operating environments. In a producer-supplier environment, a producer 
could assure (through inspection sampling) that special care be given by 
the supplier to materials and parts. Pre-contract negotiations, which vary 
from situation to situation, provide an opportunity to clarify future terms of 
exchange and provide protection for each of the parties once the contract is 
signed. For example, if delivery of quality products is not specifically 
stated in special clauses, suppliers may be tempted to supply sub-standard 
products. 

To resolve some of these issues such problems may lead to, we assume 
that money and risk define the parties objectives. To focus our attention we 
consider some examples and calculate the risks and the control associated 
to specific supply chain organizations. Although the problems we formulate 
can be analyzed analytically in a very limited number of cases, numerical 
calculations can be reached with relative ease. To keep matters tractable 
however, some simplifications are made.  

In a lone-firm framework, control-sample selection consists in mini-

mizing a consumer risk (or a type II risk ( , )c n kβ  in a Neymann-Pearson 

statistical framework) which consists in accepting a lot which is “not 

conforming” subject to a Producer risks ( , )C n kα  (or type I error) which 

consists in rejecting a “good lot”. These risks will be explained further 
below and are usually and explicitly defined in terms of control inspection 

parameters, for example ( , )n k  where n is a sample size on the basis of 

which a decision (based on the result of such an inspection compared to 
parameter k) is reached. This can be formulated as follows: 

( )
[ ]

0,0
( , )   Subject to: ( , )c C C

n k n
Min n k n kβ α α

≥ ≤ ≤
≤                (8.1) 

That is, minimizing the type II errors (of say accepting a bad lot) subject to 

a type I error (of say, rejecting a good lot). The parameter Cα  is usually 

specified by the parties, representing the risk it is willing to assume. In a 
producer-supplier environment, both the statistical risks of the supplier and 
the producer are to be considered and the economic consequences, negotiated, 



resulting from a game that both parties engage in. We consider such a 
game by considering a number of situations co-existing in supply chains. 
These examples highlight the approach we use. We shall begin with some 
essential assumptions needed to obtain analytical results however. 

Consider the strategic quality control game between a producer and a sup-
plier engaged in an exchange with outcomes defined by the bimatrix ran-

dom payoff game defined by ,A B⎡ ⎤⎣ ⎦
% %  below. The strategies that each of the 

parties can choose consist in selecting a quality control (sampling) strategy 
for product assurance and supply controls. Such strategies assume many 
forms, although we shall focus our attention on the selection of elementary 
sampling strategies (for example, apply a specific sampling strategy, or do 
nothing). The consequences of such choices by the parties in the supply 
chain (for example, a supplier and a producer) are statistical, denoting by 
the entries in the random payoff matrix, where ~ denotes a random 
variable. 

00 01 00 01

10 11 10 11

;   
,

;   

a a b b
A B

a a b b

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦

% %% %
% %

% %% %
.  (8.2) 

In such a game, there are two essential considerations faced by the sup-
ply chains parties—economic and risk, which are imbedded in the bi-matrix 
random payoff entries. For example, say that the sampling strategies that 
each of the parties can follow are: Use a binomial control sample 

( ), , 0,1j jn k j =  or do nothing. Here, the index j=0 denotes for example a 

supplier while the index j=1 denotes a downstream producer. Of course, 
generally, we can consider a finite set of alternative control strategies that 
each of the parties can pursue. In this sense, sampling control by the pro-
ducer acts both as a quality control and as a “threat” to the producer, 
expressing “lack of trust” in the supplier’s quality. As commonly practiced 

in sampling control we let ( )1 2,θ θ  to be the proportions of parts 

defectives in a lot where 1 2θ θ<  denotes a conforming lot (also called the 

AQL in statistical quality control) and the latter proportion, 2θ ,denoting a 

non conforming lot (also called LTFD in statistical quality control). In 
such a case, the “probability risks” associated to each of these sampling 
strategies, coined type I and type II errors in a Neymann-Pearson statistical 
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control framework are for the supplier and the producer defined by 
(Wethehill 1977; Tapiero 1996): 

( ) ( )
( ) ( )

1 1

2 2

1 , ;   1 ,

, ;   , ;  

P P P S S S

P P P S S S

P j k n P j k n

P j k n P j k n

θ α θ α

θ β θ β

− ≤ = − ≤ =

≤ = ≤ =
 (8.3) 

In this approach, the parameters ( )1 2,θ θ  are negotiated contract quality 

terms which we assume given while the statistical control strategies 

( ), ,   0,1j jn k j =  can be parameters defined by each of the parties together 

with their decision to apply such controls or not. Further, the production 
technology used by the supplier is assumed to be by its propensity to 
produce confirming lots, given by: 

1

2

with probability 1-

with probability 

θ ν
θ

θ ν
⎧

= ⎨
⎩

% .  (8.4) 

In this sense, a supplier can both improve his process reliability by decre-
asing ν  (but of course, production might be costlier) or augment the amount 

of quality inspection controls and apply more stringent control rules. Given 
these risks and the parties strategic behavior, the economic consequences, 
are necessarily random, expressed as a function of the sampling results and 
the uncertain consequences due to the facts that the process of producing 
non-quality is also random (since non conforming lots are produced in a 
random manner that the parties seek to control). For demonstration pur-
poses, assume that the following costs are defined for both the producer 
and the supplier: jI  denote sampling inspection costs; jE  denote con-

sumers’ costs borne by the party in case a bad lot is accepted; jD  denotes 

the cost if both parties sample while the second party (producer) detects 

the non-conforming lot; And finally, jC , denotes the cost if a good lot is 

rejected. In this case, the bi-matrix random payoff game between the pro-
ducer and the supplier on the basis of which we shall pursue our analyses. 
Note that in this formulation, we have a random costs matrix, a function of 
the risks probabilities each of the parties assumes and a function of the 
organizational process (in this case, a single supplier and a single producer): 



( )
( )

( )
( )

1 1

1 1

0 1 """ 0 1 """

0 1 0 1

p p s p p

p p s p p

p p

p p p p

p s p s

s s

E wp E wp

D wp D wp
I I

C wp C wp
A

wp wp

E wp E wp

wp wp

β β ν β ν

β β ν β ν

α ν α ν

β ν β ν
β ν β ν

⎡ ⎤⎧ ⎧
⎢ ⎥⎪ ⎪

− −⎪ ⎪⎢ ⎥+ +⎨ ⎨⎢ ⎥− −⎪ ⎪⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎪ ⎪⎢ ⎥− −⎩ ⎩⎢ ⎥
⎧ ⎧⎢ ⎥
⎨ ⎨⎢ ⎥− −⎩ ⎩⎣ ⎦

% (8.5) 

 

( )
( )

( )

( )

1 1

1

0 1 """ 0 1 """

1
0 1

0 1 """

s p s s p

s p s s p

S

s S

s s

s

S

s S

E wp E wp

D wp D wp
I

C wp

wp wp
B

E wp
E wp

I
C wp

wp
wp

β β ν β ν

β β ν β ν

α ν

β ν
ν

α ν
ν

⎡ ⎤⎧ ⎧
⎢ ⎥⎪ ⎪

− −⎪ ⎪⎢ ⎥+ ⎨ ⎨⎢ ⎥−⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− −⎩ ⎩⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎧⎢ ⎥
⎧⎪⎢ ⎥⎪ ⎪⎢ ⎥+ ⎨ ⎨⎢ − ⎥⎪ ⎪ −⎢ ⎥⎩⎪ −⎩⎣ ⎦

% . (8.6) 

While these economic costs are self explanatory, we shall briefly discuss 
them. Assume that both the supplier and the producer apply a statistical 
control procedure and consider the first entry in the producer bi-matrix 

game. The cost pC  is the cost incurred if the producer rejects a good lot 

received from the supplier and produced by the supplier with a technology 

whose characteristic is defined by the probability parameter ( )1 ν− . Since 

the risk probability of such an event in case the producer applies his 

statistical control sample is pα , the probability of such an event is 

( )1pα ν− . By the same token pD  is the cost that the producer assumes if 

he rejects a bad lot (with risk probability 1 Pβ− ) produced by the supplier 

with probability ν . To do so however, the supplier must have accepted 

such a bad lot which he would with probability Sβ . As a result we obtain 

the appropriate entry in the producer payoff (costs) matrix. This cost may 
also be shared or passed on back to the supplier, as specified by the con-

tract between these parties when drafted. Consider next the cost PE  which 

the producer sustains because of his accepting a bad lot passed on to 
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consumers, who, unavoidably will detect its non-conforming quality. The 

risk probability of such a cost would necessarily be P Sβ β ν . Further, a 

commensurate cost would be passed on to the supplier such that the total 

end-customer cost is P SE E+ . A similar interpretation is associated to 

each of the terms in the bi-matrix game.  
The strategic quality control random payoff (costs) game can then pro-

vide some insights on the amount of controls parties will exercise. To resolve 
the problems associated with the solution of this random payoff game, we 
shall maintain the Neymann-Pearson risk framework and associate type I 
and type II risks to each strategy the parties adopt and explicitly given 

below. First define by , ( , ),I SP i j  the probability of the supplier accepting a 

good lot when applying a strategy i and the producer applying strategy j 

and let , ( , ),II SP i j  be the probability that the supplier accepts a bad lot, 

although it is good and each of the parties follows sampling control 

strategies i and j. Let ( , ),  0 1,  0 1x y x y≤ ≤ ≤ ≤ , be the probabilities that 

the producer and the supplier sample, then the risk probabilities assumed 
by the parties are in expectation given for the supplier by: 

( ) ( ) ( ),

,

(1 ) 1 (1 ) 1 (1 ) (1 ) 1

(1 ) (1 ) (1 )

I S S S S

II S s s s

P xy x y y

P y xy x y y y

α ν α ν α ν

ν β ν β ν ν β ν

= − − + − − − = − −

= − + + − = − +
(8.7) 

And for the producer (who receives lots from the supplier), given by: 

( )( )

( )( )

,

,

1 1 (1 )(1 )

(1 ) (1 ) (1 )(1 )

      1 1

I P p

II P p s p s

p s

P x x

P xy x y x y x y

x x y y

α ν ν

β β ν β ν β ν ν

ν β β

= − − + − −

= + − + − + − − =

= + − + −

 (8.8) 

Note that in the first case, when calculating the probability of accepting 
a good lot, if a lot is properly produced, the prior actions taken by the sup-
plier are not relevant. Therefore the probability of accepting a good lot is 
essentially determined by the probability that it has been manufactured 
properly. While in the latter case, the probability is based on the strategies 
adopted by the supplier and the producer, based on sample results. Now, 
say that we impose (based on negotiations and agreements between the 

parties) the following expected acceptable risk parameters ( , )S PA A , con-

sisting in the probability of rejecting a good lot for both the supplier and 
the producer. That is: 

, ,1   and  1I S S I P PP A P A− ≤ − ≤ .  (8.9) 

By the same token, we define the risk parameters ( ),S PB B  such that: 



, ,  and  II S S II P PP B P B≤ ≤    (8.10) 

Equations (8.7)-(8.10), thus provide a set of risk constraints which will 
be helpful to determine a solution to our strategic collaborative and com-
petitive quality control games, faced by the supplier and the producer. We 
shall consider first a number of results, providing some theoretical insights 
on the effects of strategic games on sampling control (and in fact contracts 
controls) in supply chains. First we consider the risk neutral game, in which 
only expected costs are minimized. Subsequently, we shall consider a colla-
borative and risk control game and provide an alternative approach to obtain-
ing collaborative controls in supply chains. For simplicity, some of our results 
(when they are based on straightforward analysis of the underlying games) 
are summarized by propositions. First, say as stated above, that the supplier 
and the producer are risk neutral. In this case, the expected costs for the 
producer and the supplier are: 

( ) ( ) ( ) ( )1 1 1 1
ˆ P P P S P P S P p p p p p p p p

p s p

I E D C I E D C
A

E E

β βν β βν α ν βν β ν α ν

βν ν

⎡ ⎤+ + − + − + + − + −
⎡ ⎤=⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

(8.11) 
 

( ) ( ) ( )
( )

1 1 1
ˆ

1

S S P S S P S S S S P S P

S S S S S S

I E D C E D
B

I E C E

β β ν β β ν α ν β ν β ν
β ν α ν ν

+ + − + − + −⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ + + −⎣ ⎦

(8.12) 

These two matrices, define a 2-persons non-zero sum game whose solu-
tion can be found by an application of the well known Nash equilibrium 
(Nash 1950; Moulin 1995). The following sampling strategies result which 
we summarize in the proposition below proved in the appendix. 

Proposition 8.1. Define  / ;  / ; /k k k k k k k k kd D E c C E i I E= = = , then the 

supplier and the producer Nash equilibrium sampling policies are defined 

by: 
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( )

( )( )( )

( )
( )( )

*

*

1
1

0
1 1

1 (1 ) (1 )

1 1 (1 )

S S S

S S S

S S S

S p p S S S

p p p p p

S p p
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c

i c
x if

d c

x otherwise

d i c
x

d

αν
β α

αν
β β β α
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+⎧ ≤⎪ − +⎪
⎪ +
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− − − +⎪

⎪
⎪
⎩

− − − + −
=

− − −

 (8.13) 

and 

( )

( )

( )
( )( )

*

*

1
(1 ) 1

0
(1 ) 1

1 (1 )

1 1 (1 )

p p p

p p S p p

p p p

p p p p

s S S S

S p S

i c
if

d c

i c
y if

d c

y otherwise

i c
y

d

α
ν

β β α

α
ν

β α

ν β α ν
ν β β

+⎧
≥⎪ − − +⎪

⎪ +⎪= ≤⎨
− − +⎪

⎪
⎪
⎪⎩

− − + −
=

− − −

      (8.14) 

Proof: The proof is a straightforward application of Nash equilibrium to 
non-zero sum games.    

In this solution a number of insights results. First, note that the greater 
the production technology reliability the smaller the incentive to sample 
and vice versa. In this sense production technology and statistical sampling 
controls are substitutes. If the propensity to produce non conforming lots is 

larger than ( )(1 ) 1

p p p

p p S p p

i c

d c

α
β β α

+

− − +
, then the supplier will fully 

sample while the producer will sample fully only if that same propensity is 

smaller than 
( )1

S S S

S S S

i c

c

α
β α
+

− +
. This is the case, because the producer will 

presume that it would be in the best interest of the supplier to fully sample 
(and therefore there would be no need for him to do so as well). By the 
same token, if the propensity to produce non conforming units is smaller 



than ( )(1 ) 1

p p p

p p p p

i c

d c

α
β α

+

− − +
, then the supplier presuming that his tech-

nology is reliable, will not sample at all. Interestingly, when the production 
technology is unreliable with  

( )1
S S S

S S S

i c

c

αν
β α
+

≤
− +

   (8.15)  

then the producer will sample fully. For all other regions, there will be 
partial sampling as indicated in the proposition. The value for each of the 
parties in such a situation is given from equation (8.2) by: 

00 01 10 11

00 01 10 11

ˆ ˆ ˆ ˆ( , ) (1 ) (1 ) (1 )(1 )

ˆ ˆ ˆ ˆ( , ) (1 ) (1 ) (1 )(1 )

P

S

V x y a xy a x y a x y a x y

V x y b xy b x y b x y b x y

= + − + − + − −

= + − + − + − −
 (8.16) 

Thus, for an interior solution we have (as calculated explicitly in Propo-
sition 8.1) the following probabilities of sampling: 

* *11 01 11 10

00 10 11 01 00 10 11 01

ˆ ˆˆ ˆ
,   

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

a a b b
y x

a a a a b b b b

− −
= =

− + − − + −
,      (8.17) 

which leads to the following Nash values: 

* * 11 00 10 01

00 10 11 01

ˆ ˆ ˆ ˆ
( , )

ˆ ˆ ˆ ˆ

N

P

a a a a
V x y

a a a a

−
=

− + −
, or 

( )
( )( ) ( )

* *
1

( , )
1 1 1

P P pN

P p

P P P p

i c
V x y E

d c

α ν
ν

ν β α ν
+ −

=
− − − −

 (8.18) 

and  

* *( , )N

SV x y =
01111000

01101100

ˆˆˆˆ

ˆˆˆˆ

bbbb

bbbb

−+−

−
, or 

* * (1 )
( , )

1

N S S S
S S

S

i c v
V x y E

α
β

+ −
=

−
   (8.19) 

Of course all cases (x,y=0,1) ought to be analyzed as well, corres-
ponding to all the situations we have indicated in our proposition. We can 
also see from (8.18) and (8.19) the effects of the ex-post (customers) 
quality costs on both the supplier and the producer alike. The larger these 
costs the larger the costs for the producer. While, for the supplier, it seems 

that the Nash equilibria costs given by: 
* * (1 )

( , )
1

N S S S
S

S

I C v
V x y

α
β

+ −
=

−
 are 

only functions of the amount of inspection carried and the expected cost of 
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rejecting good lots, augmented by 1/(1 )Sβ−  which is the inverse of the 

probability of rejecting a good lot. For example, for the following para-

meters: 2 10.1,  0.3,  0.01ν θ θ= = =  with the following specified risks 

0.10, 0.05;p pα β= =  0.05, 0.05S Sα β= =  arising from the choice of 

sampling techniques of the supplier and the producer and the following 

costs parameters for the producer and the supplier: 30,  10,p pE D= =  

0.75, 2;  20,  4, 0.5,  4p p S S S SI C E D I C= = = = = =  we find an inter-

ior solution to sampling by both the producer and the supplier, which is 

given by: 
* *

 0.8448, 0.6259x y= = . 

When the supplier and the producer collaborate by setting up a centralized 
control over the chain to minimize the overall supply chain cost, the resul-
ting system-wide cost is: 

( ) ( )
( ) ( )

00 00 01 01

10 10 11 11

ˆ ˆˆ ˆ( , ) ( , ) (1 )

ˆ ˆˆ ˆ                               (1 ) (1 )(1 )

C C

P SV x y V x y a b xy a b x y

a b x y a b x y

+ = + + + − +
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(8.20) 

The Hessian matrix of function (8.20) is indefinite. Therefore, the sampling 
solution in such a case is a corner solution, in which case, the supplier will 
always fully sample or not, and similarly for the producer. Consequently, 
both the supplier and the producer disregard their own costs and risks with 
4 potential solutions to be compared: 

(1,1) (1,1); (1,0) (1,0); (0,1) (0,1); (0,0) (0,0)C C C C C C C C

P S P S P S P SV V V V V V V V+ + + + .(8.21) 

This approach however is neither interesting nor practical because it 
negates the existence of the risks that both the supplier and the producer 
seek to manage. Thus, in a collaborative framework, both the expected 
costs for the parties and the risks implied by both the producer and the 
supplier are to be accounted for. In this case, an appropriate formulation of 
the random payoff game, in terms of expected costs and the controlling 
Neymann-Pearson constraints (8.7)-(8.8) are given by: 

8.2.2  CENTRALIZED CONTROL AND COLLABORATION 
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  (8.22) 

This is a straightforward nonlinear optimization problem whose solution 
can be reached by standard numerical methods. The disadvantage of this 
formulation is that it still assumes full collaboration or vertical integration 
of the supply chain, which is rarely possible and ignores individual costs 
and costs transfers between the parties.  

Alternatively, we can obtain a collaborative binary as well as interior 
solutions that are sensitive to both the risk constraints and individual costs 
of the supplier and producer by assuming that the producer’s propensity to 
control quality is proportional to that of the supplier, denoted for conveni-

ence by x ky= . With such an assumption a number of possibilities are 

neglected and can be verified separately. These possibilities include the 
following six sampling strategies: 

( ,1), ( ,0), (1, ), (0, ), (1,0), (0,1)x x y y                     (8.23) 

For example, for a sampling strategy ( ),0x , we have the following 

(using equations (8.7), (8.8) and the objectives stated above): 
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( )( ) ( )
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(8.24) 
and therefore the risk constraints are reduced to: 

( )
1

(1 )  1

p

P

pp

B

A
x

νν
ν αβ

− −
≤ ≤

−−
,   (8.25) 

while the joint objective of the collaborating supply chain is: 

11 11 01 11 01 11
ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( )CR CR

P SV x y V x y a b a a b b x+ = + + − + − .(8.26) 

A solution is then necessarily determined by the risk constraints. 

Namely, 01 01 11 11
ˆ ˆˆ ˆ0 if x a b a b= + > + , violating the risk constraint (8.25) and 

therefore 0x ≠  necessarily. When the inequality is reversed, we obtain 

also a sampling program determined by the upper constraint imposed by 
the type I risk of the producer. As a result: 
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Similarly, other constraints can be treated. For convenience, consider inter-

ior solutions, by letting x ky= . The collaborative objectives of the supplier 

and the producer are then convex and therefore a global solution can be 
found, as summarized by the following proposition. 

Proposition 8.2. Let risk constraints not to be binding and define 

00 00 01 10 01 10

11 11 10 10

ˆ ˆ ˆˆ ˆ ˆ2 2

ˆ ˆˆ ˆ

a b a a b b

a b a b
ξ + − − − −

=
+ − −

  (8.28) 

If 
1

1
k

ξ
>

+
 then (8.23) has a unique interior optimal solution. 

Proof: The proof is straightforward by verifying the second order optima-
lity condition along with binary constraints.   

The advantage of this collaborative approach is that once a solution for 
sampling is determined in terms of the parameter k, we can employ k for 
fine tuning the supply chain to prevent violations of the risk constraints. 

Specifically, substituting x ky=  into the objective function (8.20) we 

have the collaborative cost: 
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while the collaborative cost is: 
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To obtain feasible solution, satisfying the producer and the supplier risk 
constraints, we thus solve the following problem: 

, ,

, ,
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Explicitly, this is given by: 
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  (8.32) 

If the risk constraints are not binding, then there is a non empty interval 

defined by ( )1 2,k k  where k turns out to be a potentially negotiating para-

meter, defining both the economic costs sustained by the producer and the 

supplier and the type I and type II risks, (both a function of k). This is 

30, 10,p pE D= = 0.75,pI =  

2,pC = 20,SE =  4, 0.5, 4S S SD I C= = =  

with risk parameters 0.1, 0.05, 0.1, 0.1, 0.055S P P Sα α β β ν= = = = =  

(a function of the sampling plans adopted). For these system parameters 
we see the effects of parameters k on the costs sustained by each of the 
parties. Clearly, the sum of the Nash equilibrium costs for both parties is 
much larger than the sum of collaborative costs. In addition, we see also that 
collaborative costs are increasing in k as stated in Proposition 8.3 below. 
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Figure 8.2. System collaborative and equilibrium costs 
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Proposition 8.3. If the probability of non conforming production lots 

satisfies the condition below: 
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then the smaller the collaboration parameter k the lower the collaborative 

supply chain cost. 

Proof: The proof is obtained by differentiating the cost function (8.30) 

with respect to k resulting in the condition 01011111
ˆˆˆˆ baba +≤+ , which 

requires such a result to be positive.  
The implication of this proposition is that the party with larger inspection 

costs will reduce the amount of inspection and thus the associated cost 
while transferring some of the inspection effort and cost to the other party. 

ducer’s cost and inspection effort increase as k increases. At the intersec-

costs. At this point k<1, pointing out to unequal inspection efforts exercised 

equal individual costs, but do not minimize the system-wide cost of the 

 

 

cost (Figure 8.3) and inspection effort (Figure 8.4) decrease while the pro-
This is observed in Figures 8.3 and 8.4 below. Specifically, the supplier’s 

tion point of the two cost curves in Figure 8.3 both parties incur identical 

by the parties (see Figure 8.4). Furthermore, at this point the parties attain 

collaborative supply chain (see Figure 8.2). 

Figure 8.3. Supplier’s and Producer’s collaborative costs 



 

straints. For the parameters selected, we note that the maximum errors tole-
rated by the producer and the supplier are as defined in the figure. The 
conclusion to be drawn from such a numerical analysis confirms the intuition 
that having the supplier augment the control of quality (meaning a smaller 
k), relative to that of the producer, will result in lower risks for both the 
producer and the supplier. In this sense, the conventional wisdom that samp-
ling upstream the supply chain is efficient is verified here as well. Further, 
as stated earlier, the parameter k, is shown to be a parameter where both 
costs and risks substitution can be determined. 

This problem has taught us on the one hand that in a competitive state, 
there may be an interior solution to the inspection game as stated in Propo-
sition 8.1. The decision to control or not for the supplier is then a function 
of the underlying process reliability. For the producer, a reliable process 
may require as well some inspection (of course, we are not considering in 
this case the extreme case of zero default production). The propensity to 
inspect by the producer is then merely a result of the parties’ motivations 
and the mutual distrust implied in the Nash solution.  
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Figure 8.4. Collaborative versus equilibrium costs 

Finally, Figure 8.5 outlines the effects of parameter k on the risk con-
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A similar analysis under a collaborative framework turns out to be 
trivial, with a solution to the inspection game turning out to be an “all or 
nothing” solution for one or both parties. Of course such a solution is not 
realistic nor does it confirm the observed behavior of industrial firms 
operating in a supply chain. This is the case because we have neglected the 
risk effects that are particularly important in the control of quality. In this 
sense, the risk neutral problem has limited interest while the random-
payoff inspection game is difficult to resolve in a practical sense. A 
potential approach entertained was to assume a risk attitude (Munier and 
Tapiero 2007) by both the producer and the supplier and thereby transform 
the competitive game into a deterministic non-zero sum game. Such an 
approach is not appropriate however as it introduces risk attitude 
parameters that are only implicit in decision makers’ actions rather than 
known explicitly. Further, when studying the risk attitude sensitive 
problem we also reached the same conclusion for a collaborative supply 
chain, neglecting again the implied risk constraints that underlie the 
decision to control quality or not. For these reaons, following an approach 
set by Tapiero (2005a-2005b), the random payoff strategic quality control 
game was transformed into a Neymann-Pearson risk constraints game. In 
other words, while maintaining the risk neutral valuation of economic 
costs, the approach has appended to parties decision processes the risk 
qualifications (type I and type II risks in the Neymann-Pearson statistical 
framework). Explicitly, since parties strategies are defined in terms of both 
the choice of sampling plans and the randomized strategies applied in 
selecting these plans, we have introduced a concept of “expected” type I 

5Figure 8.. . Supplier’s and producer’s risks 



and type II risks to be sustained by both the producer and the supplier. 
Such an approach leads to a broad number of potential equilibria, when 
combined with sampling plans selections. Further, in a collaborative 
framework, the model assessed will also lead to results that might not be 
practical due to producer’s and suppliers’ focus on sepecfic parameters and 
selecting the relationships that they ought to maintain one with respect to 
the other. In this sense, assuming that there is an interior solution to the 
game where such a relationship is maintained, defined by parameter k, we 
demonstrated (Proposition 8.2) that in the collaborative game there can be 
an interior solution to the sampling random payoff game meeting the 
parties risk constraints that can be used to select an optimal sampling 
strategy by each of the parties on the one hand and selecting the compatible 
optimal sampling plan on the other. 

Consider next a game between a supplier of parts and a manufacturer, who 
uses these parts in its production process. We focus our attention on a 
supplier of parts, whose manufacturing yield, p , expresses the propensity 

to produce a part which conforms to acceptable standards of manufacture 

and whose manufacturing cost is ( )C p ,  ∂ ∂C p > 0, ( )∂ ∂2 2 0 1C p C> = ∞, . 

The yield can be improved either by investments in technologies 
enhancing the process reliability or by investing in preventive measures 
taken to improve the quality delivered by the supplier and measuring the 
actual proportion of faulty products delivered. In this sense, a supplier’s 
strategy is defined by selecting the yield determined by investments in the 
manufacturing process and its investment in control measures, exercised 
once the part has been manufactured. Of course, practically, the yield may 
itself be random. In this case, we are still confronted with a random payoff 
game, which is more difficult to solve and decision parameters will be 
based on the statistical properties of the yield. Such an issue as well as the 
asymmetric knowledge between the supplier and the customer regarding 
this parameter is a topic for further research however. 

A customer’s strategy consists in either accepting the supplier’s delive-
ries without any inspection, or in submitting the supplier’s parts to control 
inspection (conformance tests), assuring that parts conform to the agreed 
contract. Nonconformance or delivery of substandard parts, entailing costs 
which are defined by the contract terms between the supplier and the 
customer-manufacturer. To represent such a situation, we shall construct 
again a non-zero sum two persons game with random payoffs which we 
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simplify and analyze. This analysis will clarify the effects of the contract 
terms between the supplier and the manufacturer-customer on the inspection-
control policies of both parties and the manufacturing yield, which is 
selected by the supplier. We assume that the supplier preventive policy 
consists in the inspection-control of a part, at a cost of ci, prior to its sale to 

the manufacturer-customer (who pays a price π  for the part and who may 
test it faultlessly at a cost of cb ). Furthermore, the sale of a part is defined 

by a contract which protects the customer against the delivery (whether on 
purpose or not) of defective parts by the supplier, on the condition that 
parts are inspected and detected by the customer. Such a contract is thus 
defined by a schedule (π , T) denoting both the part price and the cost 
incurred by the supplier when a defective part is detected. When the 
customer accepts a part, it is then the customer’s responsibility. That is, the 
customer only (who in turn sells the part as one of the elements in a com-
plex product, which it may produce or assemble), will incur warranty and 
post sales defective costs. The supplier’s “transfer cost”, incurred when a 
product is detected by the customer, provides as we shall see, an incentive 
for the supplier to provide good parts on the one hand (either through 
inspection or through the selection of an appropriate manufacturing tech-
nology resulting in the yield p) and for the customer to inspect incoming 
products on the other. In this section we shall consider the effects of the 
contract parameters on the equilibria of a non zero sum game random payoff 
game played by the supplier and the customer and on their behavior. 

In this section, unlike previous ones, we consider explicitly the nonlinear 
costs of production as a function of the yield and determine the substitution 
effects between the yield and the inspection policy of the supplier. To 
assess some of the relationships between the customer and the supplier 
inspection-control policies, the manufacturing yield and the parameters of 
the two parties contract; a sensitivity analysis is performed. Existence of a 
number of equilibria for the game is shown to depend on the production 
cost function C p( )  and on the contract terms of the supplier-customer. 

Thus, we will be able to show that a production technology (resulting in 
the yield p ) and the negotiated contract agreements generate various yield 

offerings as well as a number of potential inspection-control policies. Fur-
thermore, using the framework, we note that inspection-control is also 
strategic, recognizing conflict and information asymmetry between contrac-
tual parties as essential problems to reckon with in the management of 
quality. Finally, we are also addressing the problem of sampling design by 
both a customer and a supplier and discuss the substitution effects between 
preventive (based on inspection and detection of defective parts prior to 



their entering the production process) and the application of high yield 
(albeit costly) manufacturing technologies. 

This approach to supply chains management thus recognizes that uncer-
tainty for both the supplier and the customer, can be generated endogen-
ously, i.e. it is determined by the acts that each of the parties, bound by a 
contract and conflicting objectives, will follow. Inspection (control) is thus 
required and determined according to the assumptions made regarding the 
game participants, their motivations and their behavior and not only the 
uncertainty with respect to the process. In other words, these controls are 
determined by the solution of a game, which recognizes the realistic conflict 
between the supplier and the customer and the uncertainty such conflict 
generates. We shall also clarify the idea of equilibrium as a mechanism to 
generate yield and inspection-control policies (rather than optimality of 
some function, which expresses an individual point of view). These particular 
facets of our problem are more in tune with the practical setting and the 
environment within which suppliers and manufacturers-customers operate. 

Assume that a contract for the delivery of materials or parts has been nego-
tiated and signed by a supplier and a producer. Suppose that this contract 
stipulates a price π  and a transfer cost T by the supplier (if a part is 
delivered and found defective by the manufacturer-customer). Further, let 
p be the yield and assume that once a unit is inspected by the supplier, and 
found defective, then all subsequent units are inspected until a unit is 
demonstrably non defective (that is, the supplier uses a corrective sampling 
technique). Let φ  be the manufacturer-customer-selling price of the part 

(to some end customer). Then if the producer inspects it with probability y 
and the supplier with probability x, the bi-matrix (random payoff) game 
results, as summarized in Table 8.1. Note that in this game, the manu-
facturer-customer has two alternatives: inspect or not the incoming part. If 
we denote the randomized strategy of the customer by 0 1≤ ≤y , then this 

defines also the customer’s “strategic” sampling (an outcome in the game 
solutions). The supplier has however, two decisions to reach one regarding 
the manufacturing yield and the other regarding the amount of out-going 
parts inspection. Both are defined over a continuum of probabilities ( , )x p  

where x is the randomized strategy based on the two alternatives, “inspect 
versus do not inspect”. We assume that the supplier uses the games’ value 
to determine the yield. The cost of consistently producing a good part  
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(equivalent to a “zero-defects” technology) is infinite, C(1) = ∞ . Thus, we 

presume that the cost of producing only defective parts is not acceptable 
and the only remaining possibility is for the yield to be some probability 
0 1< <p defined by the game's random payoffs. Of course, both the “yield” 

and the “control-inspection” strategies of the supplier are dependent, for 
the choice of one affects the other. For example, if p  is very large (close 

to one), then it is possible that a 0% inspection policy may be optimal. 

Table 8.1. The (Supplier, Producer) Payoff Matrix 
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The bi-matrix game entries are evident. For example, say that the sup-
plier produces a defective part (with probability 1- p ) and inspects it as 

well (with probability x). Then, whether the customer inspects the part or 
not, the expected payoff is equal to the unit price π  less the production 

cost C p( )  and its inspection cost ci . Since the part is defective, it must be 

replaced by another part which is also inspected until the part manu-
factured is found to be non-defective. Since p is the manufacturing yield, 
the number of parts manufactured until one is non-defective is a random 

variable 
~
k

1
 whose probability distribution is geometric and given by 

p p jj( ) , , ,...1 1 2− =   whose mean is (1-p)/p. Thus, although only one unit is 

sold at a price of π , the expected number of parts manufactured and tested 

in this case equals E(1+
~
k

1
)=1/p. The customer’s corresponding payoff is 

equal to φ π− − c
b

 in case of inspection and φ π−  in case of no inspection 

by the customer. If the supplier does not inspect an outgoing defective part 
and if the customer detects this part for sure through inspection, then the  
 



supplier’s payoff is reduced by T, the contracted amount transferred to the 
customer which is in fact a price break for the sale of defective parts. If the 
customer does not inspect the incoming part, he will incur a total loss of 
−π . Of course, we do not consider in this special case, the post sales failure 

costs such as warranty and related costs which can be substantial, sustained 
by the customer who is using the part in the assembly of the manufacturing 
of some other more complex products.  

Using the defined game, we can formulate the following proposition for 
the supplier control-inspection policy. 

using a yield p , it is never optimal to fully sample. Further,  

(i) If T C p c pi≤ + −( ) / ( )1  it is never optimal to sample, i.e. 

x* = 0 . 

(ii) If T C p c pi≥ + −( ) / ( )1  it is optimal to sample, i.e. x* > 0 . 

(iii) For a risk neutral manufacturer-customer, the supplier inspec-

tion probability under condition (ii) above is given by: 

x
c

T p

b*
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which is, of course, reduced to simple expectation for the risk neutral 
supplier.  

Note that $ $ ( $ )u u u22 11 12> = . Further, $ $u u21 11>  if T C p c pi≤ + −( ) / ( )1 . 

Therefore the strategy to never sample by the supplier is always optimal as 
stated in (i) in the proposition. When this is not the case, both the full sam-
pling and the no sampling strategies are not dominating and therefore the 
only remaining possibility is for a mixture of these alternatives, which 

leads to a sampling probability of 10 * << x  as stated in (ii) above. Further, 

these two cases cover the proposition's statement that it is never optimal to 
fully sample. 

When the game solution is a randomized strategy, it is well known to 
be: 

x
v v

v v v v

* =
−

− + −
21 22

12 11 21 22

, 

where v i jij , , ; ,  = =12 12  are the expected values corresponding to the entries 

in the bimatrix games. 
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Proof: For each of the entries of the supplier’s game, we consider the 
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v cb11 = − −φ π  
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In this case, we have: 
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which is reduced to the proposition statement.   

The implication of this proposition is that if the contracted transfer cost 
T, is smaller than the expected cost of production plus the expected cost of 
sampling a good unit, then it is not optimal to test. However, when it is 
larger, it is optimal to incur the inspection cost to avoid such a payment. In 
this case, the inspection probability is expressed in terms of the contract 
parameters and the manufacturer-customer inspection cost. Note that the 
larger the inspection cost cb , the smaller the amount of control-inspection 
to be carried (since the manufacturer-customer will tend to exercise an 
inspection policy less often). Further the larger the selling price and the 
larger the transfer cost, the more the supplier will sample. In this sense, the 
terms of the contract determine the amount of sampling to be carried by 
the supplier. We turn next to the manufacturer-customer and prove the 
following proposition. 

Proposition 8.5.  The manufacturer-customer has no dominating no samp-

ling strategy. Further, 

If T C p c pi≤ + −( ) / ( )1 , the supplier -customer optimal policy is to sample 

fully 

If T C p c pi≥ + −( ) / ( )1  the optimal sampling strategy is to sample partly 

with probability given by: 
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Proof: Consider again the following entries 

v cb11 = − −φ π  

v12 = −φ π  

v c T pb21 1= − − + −φ π ( )  

v22 = −π  

Note that ν ν11 12<  while ν ν21 22>  which rules out a dominating sam-

pling strategy by the manufacturer-customer. As a result, the sampling 
strategy is a randomized one, which is given by solving for y,  
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As we saw in the previous proposition, two situations arise. First, x = 0 , 
which occurs when T C p c pi≤ + −( ) / ( )1 . In this case,  
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Since ν ν21 22> , the optimal sampling policy is full sampling, that is y* = 1 . 

Now consider the case, T C p c pi≥ + −( ) / ( )1  where the supplier policy is 

to sample. In this case, we have: 
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which is the randomized strategy when T C p c pi≥ + −( ) / ( )1 , as sated in 

the proposition.   

The implications of this proposition are again demonstrating the depen-
dence of the manufacturer-customer sampling policy of the yield p , its cost 

function and, of course, the contract parameters (see Nash 1950). 
These propositions confirm partially Deming’s “conventional wisdom” 

that it is often optimal to fully (or not at all) sample (see Burke et al 1993). 
Explicitly, Deming, incorporating costs, has developed a decision rule, 
which would recommend a 100% inspection, no inspection or turning to 
acceptance sampling. This was translated to a teaching game highlighting 
the importance of Deming’s argument against traditional acceptance 
sampling techniques. It is noteworthy, however, that even though Deming 
did not use a game theoretic approach, he pointed out to the use of a 
“randomized sampling strategy” which, of course has been suggested here 
and which generalizes traditional sampling techniques. Our result points 
out however, that it is “often optimal” to sample for strategic reasons as 
indicated by the solution of the Nash game above. In this sense, sampling 
for the control of quality has a strategic effect, which has an importance 
previously neglected. 

In summary for the more usual case T C p c pi≥ + −( ) / ( )1 , there is one 

unique equilibrium in mixed strategies while when T C p c pi≤ + −( ) / ( )1 , 

there is also a unique equilibrium consisting of no sampling by the supplier 
and full sampling by the manufacturer-customer.  

To determine the optimal yield, the supplier will then consider the value of 
the game when the Nash game above has the solution expounded by Propo-
sitions 8.4 and 8.5. In this case, the optimal yield is found by solving and 
comparing the value of the game under the following two (equilibria) opti-
mization problems. 

{ }
0 1

11 12 21 221 1 1 1
< <

+ − + − + − −
p

Max u x y u x y u x y u x y$ $ ( ) $ ( ) $ ( )( )* * * * * * * *  

s.t. 
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which is equivalent to: 
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T C p c pi≥ + −( ) / ( )1 , 

where 
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As a result, if there is an interior solution, we have: 
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Alternatively, under the second equilibrium, we have: 
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s.t. 
T C p c pi≤ + −( ) / ( )1 . 

Let ( )p p1 2
* *,  be the optimal solutions under both equilibria, then, obvi-

ously, the supplier will adopt the solution leading to the largest expected 
payoff of the game. By changing the assumptions regarding the relative 
power each of the parties has, we will obtain, of course, other solutions. 
These are discussed below. 

Each of the solutions considered here can be altered by an appropriate 
selection of contract parameters which can lead to a pre-posterior game 

analysis evaluated in terms of ( )p T,  (see also Reyniers and Tapiero 1995a 

it is possible to create an incentive for the supplier to supply quality parts 
by the selection of contract parameters.  

A sensitivity analysis of some of these solutions follows. For conveni-
ence, we consider only the case with interior solutions and study the effects 
of T on the propensity to sample. Obviously, the larger T, the less the 

manufacturer-customer will sample since
 

∂
∂

y

T
< 0  . 

Further,  

( )
∂
∂ φ

x

T

c

p T

b=
− +

>
1

0
2
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. 
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for the analysis of contracts). If the supplier and the producer do not coop-
erate (and thus the Nash equilibrium solutions defined here are appropriate), 
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Similar relationships can be found by treating other parameters. The 
implications are that increases in T provide an incentive for the supplier to 
sample while for the customer to sample less. 

When either the customer or the supplier is a leader and the other a follower, 
we define a Stackelberg game (Stackelberg 1952). For example, say that 
the supplier is a leader and the customer is a follower. Then, for a given 

( )x p, , the customer problem is: 

( ) ( )( ) ( )( )[ ]Max
y

V y x p x p T x p c yb , ; = − − + − − −φ 1 1 1 1  

and therefore the customer sampling policy is either to inspect all of the 
time (y=1) or none at all (y=0). Of course: 

( )( ) ( )( )
( )( ) ( )( )y

x p T x p c

x p T x p c

b

b

=
− − + − − ≥
− − + − − <
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⎩

1 1 1 1 1

0 1 1 1 1

  if  

  if  

φ
φ

 

The supplier’s problem consists then in selecting a strategy (x,p) based 
on the customer’s response y(x,p) given above. Namely,  

( ) ( ) ( )( ) ( )( )Max
x p

U y x p C p c x C p c

p

p
x y x T x p yi i

,
; ;
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1

1 1 1

2

 

s.t. 
y x p( , ) ,= 1 0 , 

as sated above. 
In this case, we note that the sampling decision is always an all or nothing 

sampling policy. For example, say that y=1, then the supplier turns to full 

sampling if ( )T p ci1− ≥ , otherwise the supplier will not sample at all. How-

ever, if the customer does not sample, then we note that the supplier does 
not sample either, since  

( ) ( ) ( )( )Max
x p

U y x p C p x c C p c

p

p
i i

,
; ;
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1

2

 

has always a solution x = 0 . Of course, the supplier yield will then be 
minimal (and therefore the quality will be the worst possible). In this sense, 
when one of the parties has power over the other the quality will be low (as 
it is the case in Stackelberg games but which does not hold true in Nash 
conflict games). 

Stackelberg equilibrium 



In industrial situations, it is common that cooperative solutions are sought. 
In this case (if we do not consider for simplicity the distribution of spoils 
resulting from cooperation), the problem faced by the supplier and the 
manufacturer customer alike is given by: 

( ) ( ) ( ) ( )( )( ) ( )( )
2(1 )

; ; ; ; 1 1 1i b i

p
V y x p U y x p C p cx cy x p y C p c

p
φ φ

⎡ ⎤−
⎢ ⎥+ = − − − − − − − − +⎢ ⎥
⎢ ⎥⎣ ⎦

which we maximize with respect to (y,x,p). Of course, x=y=0 and therefore 
the optimum yield is found by a solution of: 

( ) ( ) ( )V p U p C p p0 0 0 0; ; ; ;+ = − + φ  

and therefore, the optimal yield is: 
( )∂

∂
φ

C p

p
=  which expresses the classical 

relationship between the marginal cost and the marginal revenue for the 
optimal yield. In this sense, cooperation will lead to the highest yield while 
an asymmetric power relationship as the one stated above will lead to the 
least yield. 

In conclusion, we note that producers’ and suppliers’ inspections are, as 
we discussed, function of the industrial contract in effect between a sup-
plier and a customer. This provides a wide range of interpretations and poten-
tial approaches for selecting a quality inspection policy. This section has 
shown that there is a clearly important relationship between the terms of a 
contract and the acceptance sampling policy. There are, of course, many 
facets to this problem, which could be considered and have not been consi-
dered in sufficient depth. For example, risk aversion, more complex contracts 
and the design of yield delivery contracts have not been considered. Never-
theless, these are topics for further research. The basic presumption of this 
section is that once supplier-customer contracts are negotiated and signed, 
there may be problems when enforcing these contracts. As a result, some 
controls are needed to ensure that contracts are carried out as agreed on. 
The approach is based on solving the post-contract game between the sup-
plier and the producer where the resultant inspection and quality supplies 
equilibrium policies are given by the randomized strategies available to 
each of the parties. 
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Centralized problem 

(x+y(1−x))
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We consider next the supply chain organizational structures and their asso-
ciated rules of leaderships. We also use the statistical Neyman-Pearson 
quantile risk framework for hypothesis testing (and quality control), as 
done earlier. Based on such risks we shall construct a variety of control 
programs that respond to the specific needs and the specific organizational 
structure of a supply chain. To demonstrate the usefulness of this app-
roach, a number of problems are also solved. To keep matters tractable 
however, some simplifications are made.  

For simplicity and exposition purposes, assume that lots of size N are 
delivered by a supplier to a buyer (a producer of finished products), parts 
of which are sampled and tested. To assure contract compliance, both the 
supplier and the buyer can use a number of sampling programs, each with 
stringency tests of various degrees (spanning the no sampling case and 
thereby accepting the lot as is, to the full sampling case and thereby 

inspecting the whole lot) and assuming no risks. Let 1,...j M N= ≤  be 

the M alternative sampling-control programs used by the client-buyer and 

1,...i N=  be the alternative sampling-control programs used by the provider-

supplier. Correspondingly, we denote by ( ) ( ), , , ,, ; ,p i p i S j S jα β α β , the 

producers and consumers risks for the producer and the supplier 
respectively. These are the probabilities of rejecting a good lot and 
accepting a bad one by a producer (indexed p) and a supplier (indexed S), 
under each specific and alternative statistical sample selected. These risks 
are summarized in the matrix below. 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

,1 ,1 ,1 ,1 ,1 ,1 , ,

,2 ,2 ,1 ,1 ,2 ,2 , ,

, , ,1 ,1 , , , ,

, ; , ... ... , ; ,

, ; , , ; ,
 

... ...

, ; , ... ... , ; ,

p p S S p p S m S M

p p S S p p S m S M

p N p N S S p N p N S m S M

α β α β α β α β

α β α β α β α β

α β α β α β α β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(8.33) 

The selection of a control program can be unique and randomized, 
reflecting strategic considerations such as signals by a producer to indicate 
that they control their suppliers and vice versa for suppliers to indicate that 
they are careful to deliver acceptable quality items. These controls and 
their outcomes may also be negotiated and agreed on in contractual 

8.4 RISK IN A COLLABORATIVE SUPPLY CHAIN 

8.4.1 A NEYMANN-PEARSON FRAMEWORK 

FOR RISK CONTROL 



agreements to include penalties and incentives based on the control-sample 
outcomes. In this sense, associated to the risk specifications of equation 
(8.33), there may be as well a bi-matrix of costs summarizing the expected 
and derived costs implied by the parties control strategies. For simplicity 
and brevity, this section will consider only a specification of type I risks 
and the collaborative minimization of type II risks, in the spirit of the 
traditional Neyman-Pearson theory. 

Explicitly, assume for simplicity binomial sampling distributions with 

parameters ( ), ,,p i p in c  for the producer and ( ), ,,S j S jn c  for the supplier 

where the indices i  and j  denote a set of finite and alternative sampling 

plans available to the producer and the supplier respectively. Let AQL  be 

a contracted proportion of acceptable defectives (or the Acceptable Quality 

Limit) and LTFD  be a contracted proportion of unacceptable defectives 
in a lot (or the Lowest Tolerance Fraction Defectives). Then the risks 
sustained by the producer (buyer) and by the supplier, when each selects 

sampling plans ( ), ,,p i p in c  and ( ), ,,S j S jn c  are respectively (see also 

Wetherhill, 1977, Tapiero, 1996): 

( ) ( ) ( ) ( )
, ,

, ,, ,

, ,

0 0

1 1 ;  1 .
k i k i

k i k i

c c
n nk i k i

k i k i

n n
AQL AQL LTFD LTFDα β− −

= =

⎛ ⎞ ⎛ ⎞
= − − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑l l l l

l ll l
 

(8.34) 

where ,k p S= . For example, if the supplier fully samples (i.e. j=N) and 

attends to all non conforming units, then , ,1,  0S N S Nα β= = . If the buyer 
knew for sure that this were the case, he would use always a costless no-
inspection alternative. Similarly, say that the supplier accepts a bad lot (the 
supplier’S consumer risk). The buyer-consumer risk will in this case be 
determined by the stringency of controls used by the supplier. If the buyer-
producer also accepts this defective lot, the probability corresponding to 
the producer and the supplier sampling strategies defines bi-matrices with 

entries: , ,(1 );p i S S jAα α⎡ ⎤−⎣ ⎦  and , ,;p i S S jBβ β⎡ ⎤⎣ ⎦  for type I (producer) and 

type II (consumer) risks. In these entries, ( , )S SA B  denote the average 

supplier control risks, assumed known (or contracted) by the producer. 
These risks will be altered, of course, as a function of the mutual 
relationships established between the supplier and the producer. If the 
supplier assumes responsibility for a consumer’s risk only if it is detected 
by the producer, then the supplier and the producer consumer risks will 

rather be , ,; (1 )p i S S j pB Bβ β⎡ ⎤−⎣ ⎦  instead of ,S jβ , as stated in the type II 
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risk bi-matrix above. Note that ( , )p pA B  denote the average producer and 

consumers risks of the buyer-producer. Other cases may be considered as 
well, based on the exchange of information between the supplier and the 
producer. For example, if the supplier reports to the producer his choice of 
control techniques, then the risk bi-matrices for both, will be instead 

, , ,(1 );p i S j S jα α α⎡ ⎤−⎣ ⎦  and , , ,; (1 )p i S j S j pBβ β β⎡ ⎤−⎣ ⎦ . In other words, the 

organization structure of the supply chain and the information-controls 
exchange combined with the “various degrees and forms” of collaboration 
(or none at all) will determine both the control programs applied and the 
risks sustained by the supply chain parties. Each of theses cases can be 
treated separately, although the approach we use here is essentially the 
same. 

Assume that average risks sustained by the supply chain parties are 
agreed on (or contracted) and let each of the parties selects a control 
program in randomized manner over the following risk bi-matrices 

, ,(1 );p i S S jAα α⎡ ⎤−⎣ ⎦  and , ,;p i S S jBβ β⎡ ⎤⎣ ⎦ . Let ix  be the probability that the 

producer selects a control strategy i  while jy  is the probability that the 

supplier selects control strategy j. The average risks for the supplier are 

then: , ,

1 1

 ;  
M M

j S j S j S j S

j j

y yα α β β
= =

= =∑ ∑ where ( ),  S Sα β  is the average 

type I risk associated to a selection of sampling plans using the 

randomized sampling strategies ,  1, 2,...jy j M= used by the supplier. It is 

not, of course, the actual average risks sustained by the supplier, since such 
risks will depend on the action followed by producer as well. In this case, 
we use capital letters to denote the actual type I and II risks sustained. In 

this special case, , (1 ) S S p p SA A Aα α= = − and ,S S p p SB B Bβ β= =  

where ( ),p pA B  are the corresponding average risks of the producer with 

sampling specific average risks ( ),p pα β  defined as randomized sampling 

strategies , ,

1 1

,
N N

i p i p i p i p

i i

x xα α β β
= =

= =∑ ∑ . Note that in such notations, the 

sampling-control risk problems faced by both the producer and the 
supplier are then given by minimizing the consumers (type II) risks subject 
to some constraints on their producers (type I) risks, explicitly stated as 
follows. 
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( )
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1
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β
=

=

≤ ≤ = =
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≤
∑
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∑

(8.35) 

where risk minimization is reached with respect to the available alternative 
sampling plans and their randomization (namely, selecting a number of 
sampling plans through a randomization rule to be found by the solution of 

the game). Here, ( ),PC SCA A  stands for specific parameters while 

, (1 )S S p p SA Aα α α= = − . The solution of the constrained game (8.35) 

subject to risks (8.34) determines therefore an adaptation of the Neyman-
Pearson lemma to a supplier-producer situation, which can be solved 
according to the available information we have regarding alternative 
sampling plans and assumptions on the behavioral relationships that exist 
between the supplier and the producer. For example, assuming power 
(leader-led) relationships and collaborative strategies that both the 
producer and the supplier will adopt, a number of games might be 
developed. Explicitly, if the producer is a leader in a Stackleberg game, 
fully informed of the supplier objectives, then the sampling-control 
selection problem is defined by: 

( )

( )

, ,

1

, ,

1

, ,0 1, 1,  1,2,...

, ,0 1, 1,  1,2,...

 = =   

Subject to:

 =   

N

p i p i i i

i

M

S j S j j j

j

p p S p S

n c x x i N

S S

n c y y j M

Min B B

Min B

β β β

β

=

=

≤ ≤ = =

≤ ≤ = =

∑

∑

  (8.36) 

where the type I risks, dropped out of equation (8.36) are implied as in 
equation (8.35). When it is the supplier who leads and the producer is led, 
then producer risk is minimized first and the supplier uses this information 
to minimize his risks. Further, if both the supplier and the producer 
collaborate in controlling risks, then the problem they face can be stated as 
a weighted (Pareto optimal) solution to the game (8.35). In this case, we 

presume that there is a parameter 0 1λ≤ ≤  expressing the negotiating of 

each of the parties, such that: 
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( )

( )

{ }
, ,

1

, ,

1

, ,0 1, 1,  1,2,... ;

, ,0 1, 1,  1,2,...

 (1- )  
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p i p i i i
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Min B Bλ λ
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≤ ≤ = =
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+
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       (8.37) 

subject to both the producer and the supplier type I risks constraints is 
minimized.  Alternatively, we may consider other objectives such as 
economic and sampling costs as well as the costs associated with the type I 
and type II risks of both the producer and the supplier. If we consider the 

, ,; (1 )p i S S j pB Bβ β⎡ ⎤−⎣ ⎦ and 

(1 ) ,   (1 )
1 1

p SS
S S p p p S p S p

p S p S

B B B B B
β βββ β β β

β β β β
= − = = = − =

+ +
 

(8.38)  
and 

(1 ) (1 ),   S S p S p S p p SB B Bβ β β β β β= − = − = . (8.39) 

Evidently, other situations arise, a function of the information available 
to each of the parties and the exchange they engage in and the behavioral 
assumptions made regarding the potential collaboration and/or conflict that 
exists between the supplier and the producer. To obtain tractable results 
and for demonstration purposes we restrict ourselves to simple solutions 
for a supplier and a producer, each considering two alternative control pro-
grams. Essential results are then summarized and discussed. Subsequently, 
special cases and numerical examples are treated to highlight both the 
implications and the applicability of the approach. Below, we begin with 
non-collaborating supplier and producer to subsequently compare to the 
effects of collaboration.  

Proposition 8.6. Let ( ) ( ), , , ,, , 1, 2 and , , 1, 2p i p i S j S ji jα β α β= =  be type 

I and II and risks of a producer and a supplier engaged in mutual (and 

conflicting) binomial sampling-controls as in equation (8.34) with 

,2 ,1 ,2 ,1<  and <  p p S Sβ β β β . Then if type I risks are satisfied by both 

strategies, the optimal sampling-control is a pure strategy where both the 

supplier and the producer adopt intensive control strategies (with type II 

risks ( ),2 ,2, p Sβ β ). If type I risks constraints are binding then the supplier 

type II risk bi-matrices , , ,p i S j S j p
⎡ ⎤⎣ ⎦β β ; (β 1− B )  

instead, then the samplin g-control problem’s formulations in (8.35)-(8.37) 

remain the same with average risks respectively defined instead by: 



and the producer can turn to randomized sampling strategies given by the 

solution of: 

= /(1 )  and   p PC SC S SCA A Aα α− =    (8.40) 

While average type II risks minimized by each of the parties are 

explicitly given by: 

( )
( )( )
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, ,

,1 ,2
0 , 1,2

,1 ,2 ,1 ,2
0 , 1,2

  (1 )   

  = (1 ) (1 )
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= + −

+ − + −
   (8.41) 

where , ,( , ), 1, 2S j S jn c j =  and , ,( , ), 1, 2p i p in c i =  are two known sampling 

plans available to the supplier and to the producer, while 

( ), ,, , 1, 2S k S k kα β =  and ( ), ,, , 1, 2p k p k kα β =  are the types I and II risks 

associated with each of these sampling plans by the supplier and the 

producer. Then the optimal randomized strategies for selecting one or the 

other sampling plans are: 

,2,2* *

,1 ,2 ,1 ,2

/(1 )
;   

PC SC pSC S

S S p p

A AA
y x

αα
α α α α

− −−
= =

− −
 .  (8.42) 

Proof: The proof is straightforward since in the bi-matrix 

,2 ,2 ,2 ,2 ,2; ;p S S p S SBβ β β β β⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , intensive sampling by both the supplier 

and the producer are dominating all other strategies. This observation 
might be practically misleading because it ignores the costs associated 
with sampling and of course all other risk costs. Of course, if the type I 
risks are set to their maximal values, then: 

(1 )  or  = /(1 )  and   p p S PC p PC SC S S SCA A A A A Aα α α α= − = − = = , 

which provides a system of equations in the randomizing parameters (x,y), 

2, 1x x x= − ): 

( ) ( )
,

,

2
,

1 0

1 1 ,
S j

S j

c
nS j

j SC

j

n
y AQL AQL A

−

= =

⎛ ⎞⎛ ⎞
− − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ l l

l l
 

and 

( ) ( ) ( ) ( )
, ,

, ,

2 2
,

1 0 1 0

1 1 * 1 1 1
p i S j

p i S j

c c
n np i j

i j PC

i j

n m
x AQL AQL y AQL AQL A

− −

= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
− − − − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑l l l l

l ll l
 

Given a solution for (x,y) in terms of the sampling-control parameters, 

the type II risks of the supplier, ,1 ,2(1 )S S Sy yβ β β= + −  is minimized 

468      8  QUALITY AND SUPPLY CHAIN MANAGEMENT 

1 2 10 , 1 ,0y y y y x≤ = = − ≤ =or using equation (8.34), we have (with 
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with respect to , ,( , )S j S jc n  while the risk of the producer 
2 2

, ,

1 1

i j p i S j

j i

x y β β
= =

∑∑  is minimized with respect to , ,( , )p i p ic n . This propo-

sition remains valid when we use instead (8.38) and (8.39). Of course, the 
solution to this problem requires that we apply numerical techniques to 
select the appropriate sampling control parameters. Non-cooperation implies 
therefore that the firm uses as much as possible sampling-controls and do 
not randomize sampling strategies (unless type I risk constraints are violated, as 

stated in the proposition above). When type I risks constraints are binding, then 

,2,2* *

,1 ,2 ,1 ,2

/(1 )
;   

PC SC pSC S

S S p p

A AA
y x

αα
α α α α

− −−
= =

− −
 

and therefore the sampling control problem is reduced to a nonlinear opti-
mization problem stated in the proposition and explicitly given by: 

( )

( ) ( )

, ,

, ,

,2

,2 ,1 ,2
0 , 1,2

,1 ,2

,2 ,2

,2 ,1 ,2 ,2 ,1 ,2
0 , 1,2

,1 ,2 ,1 ,2

  

/(1 )
  =  

S j S j

p i p i

SC S

S S S S
c n j

S S

PC SC p SC S

p p p p S S S
c n i

p p S S

A
Min B

A A A
Min B

α
β β β

α α

α α
β β β β β β

α α α α

< < =

< < =

⎛ ⎞−
= + − ⎜ ⎟⎜ ⎟−⎝ ⎠
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − −
⎜ ⎟+ − + −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠

 
Producers and suppliers can reduce control costs if they collaborate. In 

this case, equation (8.37) is resolved subject to the type I risk constraints. 
Of course, if these risks are binding, then (8.37) is reduced to: 
 

( )( ) ( )( )
, , , ,

,2 ,1 ,2 ,2 ,1 ,2
0 , 1,2;0 , , 1,2

1
  +

p i p i S j S j

p p p S S S
c n i c n i j

Min x y
λλ β β β β β β

λ< < = < < =

−⎡ ⎤+ − + −⎢ ⎥⎣ ⎦
 (8.43) 

or 

( ) ( )

, , , ,0 , 1,2;0 , , 1,2

,2 ,2

,2 ,1 ,2 ,2 ,1 ,2

,1 ,2 ,1 ,2

    

/(1 )1
   + *

p i p i S j S jc n i c n i j

PC SC p SC S

p p p S S S

p p S S

Min

A A Aα αλλ β β β β β β
λ α α α α

< < = < < =
Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤− − −−⎢ ⎥⎜ ⎟Γ = + − + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦

  

(8.44) 
Examples will elaborate both the usefulness of this approach as well as 
deviations from a complete collaboration between the supplier and the 
producer. To keep our calculations simple, some simplifications are made. 



If there is only one firm (say the supplier), then the problem is reduced to 
the standard quality assurance approach with randomized sampling plans 
which uses Neyman-Pearson theory. In this case, we have: 

,

1

  = 
M

S j S j

j

Min yβ β
=

∑  Subject to : ,

1 1

,  1,   0
M M

j S j S j j

j j

y y yα α
= =

≤ = ≥∑ ∑ .(8.45) 

In this simple problem, we note the potential for randomizing inspection 
strategies in costs reduction so that in effect inspection controls assume a 
strategic perspective. Such an idea is also pointed out by Deming (see 
Burke et al. 1993) who claims intuitively that “one either samples fully or 
not”. When firms compete, the solution is for maximal sampling as stated 
here (although in practice, cost considerations will imply that randomized 
controls can be optimal).   

We consider theoretically and numerically problem (8.41) when both—the 
supplier and the producer use two strategies: no sampling and sampling m 

and n (for the supplier and the producer respectively). If the parties do not 
sample, the probabilities of rejecting a good lot (the producer risk) is null 
for both while the probability of accepting a bad lot is 1, or: 

,1 ,10;  0,p Sα α= =  and ,1 ,11;   1p Sβ β= = . This special situation results in 

the following risks: 

{ } { }
{ }

{ } ( )

, 0 1 , 0

, 0 (0,0);(1,1) (0, ); ( , )

1 , 0 ( ,0);( ,1) ( 1 , ); ( , )

S S S

p p p S S p S S

y m y m

x n

x n

α β β
α β α α α β β β

⎛ ⎞= − >
⎜ ⎟

=⎜ ⎟
⎜ ⎟− > −⎝ ⎠

. (8.46) 

If type I risks are binding and the producer and the suppliers are not 
collaborating, we have the following randomizing parameters: 

* * /(1 )
1 ;   1SC PC SC

S p

A A A
y x

α α
−

= − = − .  (8.47) 

And the sampling-control problem is reduced to: 
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8.4.2  SPECIAL CASES AND EXTENSIONS 

Example 8.1.  

Example 8.2. 
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0

* * *

0

( )    (1 ) 1   ;  

/(1 )
( )    = (1 ) 1

SC
S S S

m
S

PC SC
p S p S p S

n
p

A
a Min B

A A
b Min B B

β β
α

β β β β
α

<

<

⎡ ⎤
= + − −⎢ ⎥

⎣ ⎦
⎛ ⎞⎡ ⎤−

+ − −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (8.48) 

where starred variables are optimal values resulting from the supplier risk 
minimization. In case of collaboration, we have instead: 

( ) ( )
0 ;0

,2

/(1 )1
  + 1 1 * 1 1PC SC SC

p p S S
c n d m

p S

A A A
Min

λλ β β β β
λ α α< < < <

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤−−⎢ ⎥⎜ ⎟+ − − + − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦
(8.49) 

Next, assume that there is no collaboration. In this case, for parties 
minimizing type II risks, a non-zero sum game with a pure (costliest) 

strategy at 0 and 0x y= =  is reached with type II risks ( , )p S Sβ β β  for 

the producer and the supplier respectively. The supplier’s sampling 
program selection will consist then in minimizing the type II risk subject to 
a type I constraint. By the same token, the type II risk minimization by the 
producer subject to the type I risk is  p SMin β β  subject to the producer 

type I constraint which is a function of the supplier’s assumed risks. If the 
producer is informed of the control procedure set in place by the supplier, 
then, of course, such information can be used to reduce the amount of 
sampling (and therefore costs) by the producer. If both the supplier and the 
producer collaborate ex-ante by an exchange of information regarding the 
quality strategies (but maintain their independence by selecting in a game-
like manner the strategies to sample or not, resulting in the pure dominant 
strategy), then the amount of sampling to be performed on the same lot by 
both parties will be necessarily reduced. This can be verified by 
minimizing the producer risk with respect to the amount of sampling 
performed by both the supplier and the producer as well as selecting the 
jointly optimal critical test parameter. In other words, the optimal sampling 
program for both the supplier and the producer would be (once we insert 
the sampling distributions):  p SMin β β  subject to type I constraints for the 

producer and the supplier. Of course, if collaboration between the supplier 
and the producer is complete, there might be a randomized strategy for 
sampling (in which case, either or both the producer and supplier may 
prefer not to sample), reducing thereby the amount of sampling. The 
problem to be minimized is then given by simplifying equation (8.37) 

which is reduced to: minimizing { }(1- )S pβ λβ λ+  (since p p SB β β=  



and S SB β= ). If both the supplier and the producer do not sample with pro-

babilities ( ),y x , then the resulting type II risks are ( ),2(1 )S Sy yβ β= + −  

and ( ),2(1 )p px xβ β= + −  and therefore, problem (8.37) is reduced to: 

( )
( )

( ) ( )

( )

,2 ,2

,2 ,2

,2 ,2
, ,0 1

, ,0 1

,2 ,2 ,2

  (1 )  (1 ) (1 )  

Subject to:

(1 ) ,  (1 ) 1 (1 )

p p

S S

S p
n c x

n c y

S SC p S PC

Min y y x x

y A x y A

β λ β λ

α α α

≤ ≤
≤ ≤

⎡ ⎤+ − + − + −⎣ ⎦

− ≤ − − − ≤

 (8.50) 

with ( ),PC SCA A  specified type I risk constraints (as defined in equation 

(8.35)). If there is an interior solution, it is easy to show that optimal 
sampling by the supplier and the producer is given by the marginal effect 
of a sample increment on type II risks, equaling the odds of not sampling, 

or ,2 ,2/ /(1 ),  / /(1 )S S p pn y y n x xβ β−∂ ∂ = − − ∂ ∂ = − . Interestingly, if the 

type I constraints are binding, we will have then optimal sampling lot sizes 

( ),2 ,2,S pn n which are given by: 

,2,2

,2 ,2

(1 )
1;   1

1 1

p p SCSS

S SC p PC

Ay x

n y A n x A

β ααβ ∂ −∂
− = = − − = = −

∂ − ∂ −
 (8.51) 

which are sets of equations, each a function of one variable with:  

( ) ( ),2 ,21 1

,2 ,2 ,2 ,21 1 1 ( 1) ; 1 1 ( 1)S Sn n

S S S SAQL n AQL LTFD n LTFDα β− −⎡ ⎤ ⎡ ⎤= − − − − = − − −⎣ ⎦ ⎣ ⎦
(8.52) 

( ) ( ),2 ,21 1

,2 ,2 ,2 ,21 1 1 ( 1) ;  = 1 1 ( 1)p pn n

p p p pAQL n AQL LTFD n LTFDα β− −⎡ ⎤ ⎡ ⎤= − − − − − − −⎣ ⎦ ⎣ ⎦
(8.53) 

When we use risk bi-matrices such as (8.38) and (8.39), we obtain 
different results, expressing the interdependencies of risk presumed by the 
producer and supplier interdependent organization and risk transfer 
agreements. For example, when the relationship between the producer and 
supplier is altered, with the supplier fully responsible for any detected non 
conforming lot by the producer, the amount of control exercised by each 
will necessarily reflect this relationship. Explicitly, set the risk bi matrix 

, ,; (1 ) ,   1, 2; 1, 2p i S S j pB B i jβ β⎡ ⎤− = =⎣ ⎦ , 

where ,1 ,11, 1p Sβ β= = , ,2 ,21, 1p Sβ β< < , the average type II risks are 

then calculated as follows. Using the bimatrix: 
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,2

,2 ,2 ,2

; (1 ) ; (1 )

;(1 ) ; (1 )

S p S S p

p S p p S S p

B B B B

B B B B

β

β β β

⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

we have: 

,2

,2

(1 )

(1 ) (1 ) (1 ) (1 )

p S p S p S

S p S p S p

B xB x B B

B y B y B B

β β

β β

= + − =

= − + − − = −
, 

which is reduced to: 

,   
1 1

p SS
S p

p S p S

B B
β ββ

β β β β
= =

+ +
  (8.54) 

with ( ) ( ),2 ,2(1 ) ,   (1 )S S p py y x xβ β β β= + − = + − , as stated above, 

while type I risks remain as in equation (8.50). Again, consider a colla-
borative solution that minimizes (8.37) (with (8.54) inserted into (8.37)). 
Namely, we minimize the objective:  

( )(1- ) (1- )
1

S
p S p

p S

B B
βλ λ λβ λ
β β

+ = +
+

, 

explicitly specified by: 

( )
,2 ,2 ,2 ,20 ;0 ;0 ( , ) 1

 1 (1 )
1S S p p

S
p

c n c n x y
p S

Min
β λ β
β β< < < < < <

− −
+

 (8.55) 

with ( , )p Sβ β  as stated above. Of course, minimization of (8.55) is a fun-

ction of the “sharing” parameter λ  and optimal sampling-control para-

meters that provide a feasible interior solution (i.e. a solution that satisfies 

the type I risks constraints). If type I risks are binding, then, of course, ( ),x y  

are given by (8.47). Numerical examples to these effects will be considered 
subsequently.    

Consider a supplier who supplies a producer who in turn supplies another 
producer. The production process is thus a series assembly process supply 
chain, each producer with a risk attitude reflected by the consumer and 
producer risks assumed. Thus, letting the first supplier be indexed “1”, we 
have: 

1 1
(1) (1) (1) (1) (1) (1) (1)

1 1

 ,   
M M

j j SC j j

j j

A y A B yα β
= =

= ≤ =∑ ∑ ,  (8.56) 

Example 8.3. Multi-echelon and assembly supply chains 



while for subsequent producers-suppliers we have recursive equations for 
type I and II risks explicitly given by: 

( )
1 1

( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( )

1 1

1-
k kM M

k k k k k k k k k

j j SC j j

j j

A y Aα β
+ +

+ + + + + + +

= =

= ≤∑ ∑
In other words, for the second firm, the type I risk 

(2)A  equals the 
probability that the first firm has not committed a type I error (and rejected 

a good lot with probability ( )(1)1- A ) times the probability that it commits 

such an error, as stated in equation (8.56) for the first supplier-firm. This 

results therefore in ( )
2

(2) (2) (2) (1)

1

1-  
M

j j

j

A y Aα
=

= ∑ . Similarly, the type II error 

that a second firm commits is equal to the probability that the first firm (the 

supplier) has committed such an error (with probability
(1)B ) times the proba-

bility that it commits such an error under all 2M  available sampling stra-

tegies, each selected with probability 
(2)

jy , or 
2

(2) (2) (2) (2)

1

M

j j

j

B y Bβ
=

= ∑ , as 

stated in equation (8.57). Of course, in this equation both ( )( 1) ( 1),k k

j jα β+ +
 

are given in terms of the sampling-control parameters specified in equation 
(8.34). 

For an assembly process, we can proceed similarly in two manners. 
Either the producer samples production ex-ante or ex-post (i.e. finished 
product). In the latter case, when the producer has several suppliers, we 
have: 

1 1

;    ; =1,2,.....j j j j

j j

y A y Bα β
= =

= =∑ ∑l l l l l l
l  (8.58) 

( ) ( ) ( ) ( ) ( ) ( )

1 1

(1 ) ;     
n n

A A A A

i i i i

i i

x A A x B Bα β
= =

⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑l l

l l

. (8.59) 

Finally, if each supplier is tested individually, then we are in the specific 
case treated and summarized by our proposition. That is: 

( ) ( ) ( ) ( )

1 1

;     .j j j j

j j

y A y Bα β
= =

= =∑ ∑l l l l l l
  (8.60) 

( , ) ( ) ( , ) ( , ) ( ) ( , )

1 1

(1 ) ;     ;
n n

A A A A

i i i i

i i

x A A x B Bα β
= =

− = =∑ ∑l l l l l l l l
  (8.61) 
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while for ex-post assembly, we have the following consumers and 
producers risks: 

( ) ( ) ( ) ( , ) ( ) ( ) ( , )

1 11 1

= (1 )         
n n

A A A A A A A A

i i i i

i i

A x A A B x Bα β
= == =

− =∑ ∑∏ ∏l l l

l l

(8.62)  

From these expressions we clearly see (due to the mutliplicative effects of 
the risks borne by downstream firms of the supply chain) the important 
risk effects sustained by an assembler-producer when he uses multiple 
suppliers. Such an observation can therefore be used to justify the fact that 
a growth of assembly technologies in manufacturing necessarily implies a 
need for more reliable and responsible suppliers (and therefore, industrial 
organizations that are based on supply chains).   

We conclude by providing a number of numerical examples. 

For simplicity, we shall consider in this numerical example a randomized 
curtailed sampling technique, consisting in applying a curtailed sample in 
probability or doing nothing. When the parties do nothing, nothing is 
detected, while when the sample is tested, a non-conforming unit is 
detected in probability according to the stringency of the tests applied (the 
sample size). Curtailed sampling thus, specifies that the first time that a 

non defective unit is detected, then the lot is rejected. Say that AQL  is an 

acceptable quality limit and let LTFD  be the lowest tolerance fraction 
defectives. Thus, the probability of accepting a bad lot (when the control 
test is applied) equals the probability that all units sampled are accepted, in 

other words ( )1
n

p LTFDβ = −  where n  is the producer sample size. By 

the same token, the probability of rejecting a good lot (the producer’s risk) 
is equal to the probability of not accepting a good lot, or 

( )1 1
n

p AQLα = − − . Similar results are obtained for the supplier who 

applies also a randomized curtailed sampling technique with a sample size 

m . Let  ( , )x y  be the probabilities that the producer and the suppliers do 

not sample. Then, we have by equation (8.54), the following average type 
II risks: 

( )( )(1 ) 1
m

S y y LTFDβ = + − −  and ( )( ) (1 ) 1
n

p x x LTFDβ = + − −  

For type I risks, we have: 

Example 8.4. Curtailed sampling 



( )

( ) ( )( )
(1 ) 1 1 ,   

(1 ) 1 1 1 (1 ) 1 1

n

SC

n m

PC

y AQL A

x AQL y AQL A

⎡ ⎤− − − ≤⎣ ⎦

⎡ ⎤ ⎡ ⎤− − − − − − − ≤⎣ ⎦ ⎣ ⎦

 

If the mean type I risk constraints are binding, the two equations above are 
equalities and can therefore be solved for the probabilities of not sampling 
at all, or: 

( ) ( )( )

( )

(1 ) ,
1 1 1 1

(1 )  
1 1

PC

n m

SC

SC

n

A
x

AQL A AQL

A
y

AQL

− =
⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

− =
⎡ ⎤− −⎣ ⎦

 

Explicitly, let AQL =0.05, LTFD =0.15 and SCA =0.10 , PCA =0.08. Thus 

if type I risks are binding, we have probabilities of sampling which a 
function of the sample size only: 

( ) ( ) ( )( )
0.10 0.08

1 ,  1
1 0.95 1 0.95 0.10 1 0.95

n n m
y x− = − =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Of course, for the supplier, the probability of sampling is the same regard-
less of the producer sample size (as shown in Table 8.3 where computa-
tions for alternative sample sizes selected by the supplier and the producer 
are summarized). However, the sample probability of the producer is always 
dependent on the sample size of the supplier. The higher the supplier’s 
sample size, the smaller the probability of sampling by the producer. This 
relationship expresses therefore a sensitivity of the producer to controls 
made upstream by the supplier. By the same token, given the sampling 
probabilities, the average type II risks for the supplier and the producer are 
calculated by: 

( )
( )

( )

( )
( ) ( )( ) ( )

0.10
0.85 1 1 0.85 ,  

1 0.95

0.08
 0.85 1 1 0.85  

1 0.95 0.10 1 0.95

m m

S n

n n

p n m

β

β

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ ⎡ ⎤= + − −⎜ ⎟⎣ ⎦⎢ ⎥⎡ ⎤−⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ ⎡ ⎤= + − −⎜ ⎟⎢ ⎥ ⎣ ⎦⎡ ⎤ ⎡ ⎤− − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
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Note again that these risks are also a function of the sample sizes only. 

Using equation (8.54), or ( )/ 1 ,   S S p S p p SB B Bβ β β β= + = , we find that 

the average risk sustained by the supplier and the producer is a function of 
the firms’ sample size. Of course, if the supplier and the producer 
cooperate, we can consider a weighted sum of these risks which can be 
minimized with respect to the sample size to be applied by each firm. A 
likely result would be to sample more upstream and less downstream by 
the producer. If we set an AQL=0.05, and an LTFD=0.15 and assume that 
average type I risks for the supplier and the producer are bounded by 

0.15,  0.20SC PCA A= = , then for sample sizes (5,10,15,20), selected by 

the supplier and the producer alike, we obtain the results in Table 8.3. 
Explicitly, if the producer and the supplier choose a sample size of 15 units 
each, then the probabilities of not sampling by the producer and the 
supplier are .56 and .72 respectively while the average type II risks for 
each are .308 and .514. The average type II risk, equally shared by the 
producer and the supplier, in case they cooperate, would be .411. In this 
table, we see that the average “shared type II risk” decreases when the 
supplier increases the sample size. However, when the supplier maintains a 
fixed sample size (say m=10), then the average shared type II risk 
increases when the producer increases the sample size. When the producer 
maintains a fixed sample size and the supplier augments the sample size, 
the shared type II risk always decline. This observation explains the 
common practice to augment the amount of quality control upstream at the 
expense of downstream quality control.  Additional observations drawn 
from Table 8.3 indicate that the no sampling probability of the supplier and 
the producer increase as a function of their sample size, although the 
producer is more sensitive to the supplier sample size than the supplier to 
the producer sample size, as indicated by the equations for y and x given 
above. 

When type I risks are not binding, we obtain the results stated in Table 
8.2. In this case, we minimize equation (8.55), with  

 

( )( )(1 ) 1
m

S y y LTFDβ = + − − and ( )( ) (1 ) 1
n

p x x LTFDβ = + − −  

with respect to ( )0 , 1x y≤ ≤  and (n,m) and then calculate the resultant 

type I risks. In our analysis, we see that we sample more (since the 
probabilities x and y are smaller than in the case treated in Table 8.3) and 
that the type II risks are significantly reduced, albeit the resulting type I 
errors are significantly increased. For example, if the producer uses a 
sample size of 10 and the supplier a sample size of 15, then the shared type 



II risk is equal to .1134 compared to .424 as indicated in Table 8.3. The 
type I risks are equal to .240 and .401 however, compared to .15 and .20 
which we used as type I constraints in Table 8.3. In this sense, the intricate 
relationship between a producer and a his supplier as well as the risk 
specifications for type I and II risks for each combined with probabilities 
of doing nothing lead to complex relationships that can provide a broad 
number of potential control combinations. Finding sample sizes (n,m) and 
randomization parameters (x,y) for the producer and the supplier that meet 
risk constraints on both type I and II risks may thus require extensive 
analysis and in some cases extensive sampling by both parties. The sampling 
can, however, be significantly reduced if in fact, both the producer and the 
supplier turn to collaboration. A more extensive analysis would, in this case, 
assess the risks economic implications and proceed to their economic cost 
minimization.   

Concluding, we note that Neyman-Pearson theory in statistics can be 
adapted to deal with sample control-inspection problems in supply chains. 
For simplicity, we have considered some applications and examples, 
although the approach used is quite general. Applications including econo-
mic sampling, conflicts, negotiations and contracts design in supply chains 
could be considered as well. We have focused attention on an extended 
application of Neyman-Pearson theory to risk control in a multi-agent 
environment when agents may collaborate or not (as it is the case in supply 
chains). We have also used a number of examples to highlight the approach 
and its applicability. Further research is needed both from a game theoretic 
perspective, emphasizing repeated and random payoffs game as well as 
from an economic valuation perspectives (emphasizing the economic valu-
ation of collaboration, truthful sharing of information and sampling-control 
mechanism instituted to assure that agents act ex post as they have contracted 
to act ex-ante). Finally, the discussion was essentially based on the presum-
ption that there is a strategic value to sampling-control which ought to be 
considered in designing cooperative partnerships. This is the case since, infor-
mation and power asymmetries can lead to opportunistic behaviour while 
statistical controls can mitigate the adverse effects of such asymmetries.  

This is coherent with the modern practice of quality management which 
has gone beyond the mere application of statistical tools but at the same 
time has maintained these tools as an essential facet of the management of 
quality and its control.  
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Table 8.2. Type I and type II Risks when Type I risks are not binding 

 

m 

n 

5 10 15 20 

5: Type II 
Type I (P,S) 
Type II (P,S) 

.267 
.175, .226 
.1644,.370 

.1308 
.135, .226 
.080, .18 

.060 
.10, .22 

.037, .08 

.027 
.081, .226 

.0169, .038 
10: Type II 
Type I (P,S) 
Type II (P,S)

.224 
.31, .401 
.08, .408 

.1134 
.240, .401 
.037, .189 

.05 
.186, .401 
.017. .085 

.023 
.0143, .401 
.007, .038 

15: Type II 
Type I (P,S) 
Type II (P,S) 

.232 
.415. .536 
.03, .427 

.105 
.32, .536 
.01, .19 

.047 
.24, .536 
.007..08 

.021 
.192, .536 
.003, .038 

20: Type II 
Type I (P,S) 
Type II (P,S) 

.226 
.496, .641 

.0169, .436 

.101 
.384, .641 

.0075, .195 

.0452 
.29, .641 
.003, .08 

.020 
.223, .641 
.001, .038 

 
 

Table 8.3. Type I and type II Risks when Type I risks are binding 

 
m 

n 
5 10 15 20 

5:  Not feasible Not feasible Not feasible Not feasible 
10: Type II 

 (x,y) 
Type II (P,S) 

.428 
.4555, .6261 

.308, .547 

.390 
.4136, .6261 

.27, .51 

.371 
.3764, .6261 

.247 .495 

.362 
.344 .6261 
.232, .49 

15: Type II 
 (x,y) 

Type II (P,S) 

.449 
.6022, .720 
.349, .549 

.424 
.580, .720 
.323, .524 

.411 
.5615, .720 
.308, .514 

.405 
.545, .720 
.299, .512 

20: Type II  
(x,y) 

Type II (P,S) 

.459 
.67007, .766 

.372, .52 

.439 
.65559, .766 

.352, .526 

.429 
.643, .766 

.34, .51 

.425 
.63, .766 
.334, .516 
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APPENDIX: OPTIMALITY CONDITIONS IN 

SINGLE- AND TWO-PLAYER DYNAMIC GAMES 

A1.1 DYNAMIC PROBLEMS 

System dynamics 

Consider a dynamic system characterized by an object whose coordinates 

or states can be changed in time by exercising an action or control over a 

planning horizon T-t0. Let such a change of state, n, n=1,..,N be described 

by a set of differential equations 

)),(),..,(),(),(),..,(),((
)(

2121
ttutututxtxtxf

dt

tdx
MNn

n = , n=1,..,N, Ttt ≤≤
0

, (A1.1) 

where t – time; t0 – initial time point; xn(t) is a state variable; um(t) is a con-

trol (or decision) variable; and functions fn(.) describe internal properties of 

the object and account for external effects. To simplify the presentation, 

we may use a vector form and omit t wherever the time-dependence is obvi-

ous, 

),,( tuxf
dt

dx
= .   (A1.2) 

Equations (A1.1) and (A1.2) assume continuity of the state variables 

x
T
=(x1,..,xN) and piecewise-continuous control functions u

T
=(u1,..,um), 

where superscript T of a vector stands for its transpose. This, however, is 

not always the case in real-life. If state equations involve infinite jumps, 

the derivatives in (A1.1) and (A1.2) are replaced with differentials. Fur-

thermore, dynamic processes have some limitations in real-life which can 

be formalized by a number of constraints. 

Boundary state constraints 

There may be an initial boundary constraint of state n 

xn(t0)=x0.    (A1.3) 

If planning horizon T is finite, then a terminal boundary constraint can 

be imposed 

xn(T)=xT,    (A1.4) 



484      APPENDIX: OPTIMALITY CONDITIONS  

Or, if the dynamic process has a periodic character of length T-t0 so that 

the terminal states of a period are identical to the initial states of the period, 

then 

x(t0)= x(T).    (A1.5) 

Control constraints 

Control is rarely arbitrary. Let U(t) be a given set of possible controls from 

RM
, Ttt ≤≤

0
. Then the control constraints are described as 

)()( tUtu ∈ , Ttt ≤≤
0

.   (A1.6) 

State constraints 

Let G(t) be a given set of possible states from R
N
. Then the state con-

straints are described as 

x(t)∈G(t), Ttt ≤≤
0

.   (A1.7) 

In addition, one can encounter constraints which combine different types 

of constraint. For example, state and control constraints can be mixed. The 

control is normally exercised to achieve a certain goal which we refer to as 

the objective function, J. The problem of choosing the best control for a 

dynamic system is further referred to as an optimal control problem. 

The objective function 

Let T be fixed, L(x,u,t) and R(x(0),x(T)) be given cost functions. Note that 

if either the initial or terminal state is fixed, that is,  if either constraint 

(A1.3) or (A1.4) is imposed, then we have R(x0,x(T)) and R(x(0),xT) res-

pectively. Consequently, the objective is to minimize an integral measure 

of the system’s behavior along the planning horizon as well as the cost asso-

ciated with its initial and/or terminal state. 

∫ +=
T

t

TxxRdtttutxLJ

0

))(),0(()),(),(( .  (A1.8) 

If the planning horizon is not fixed, then the objective function is 

∫ +=
T

t

TxxRdtttutxLJ

0

))(),0(()),(),(( +S(T-t0),  (A1.9) 

where S(T-t0) is the cost associated with the length of the planning horizon. 

If a state equation involves a stochastic process, then expectation, E, is 

typically added to the objective function if the goal is to minimize the expec-

ted cost. 
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Thus the optimal control problem is to find an admissible control so that 

inf),,,,,(
00

→TtxuxxJ
T

.  (A1.10) 

An admissible control in terms of the imposed constraints which provide 

(A1.10) is referred to as optimal control, u*. To study optimal control 

problems, we will now assume that all functions defining the system dyna-

mics, constraints and objective function are continuous and piecewise con-

tinuously differentiable in x and u. All these functions can have a finite 

number of jumps in t. Moreover, we assume that function L(x,u,t) is con-

vex in control u for minimization problems. In addition, we further distin-

guish between two types of solutions. One is an open-loop optimal control 

u*=u*(t) which is determined as a function of time and, in terms of the  

object state, depends only on the boundary state value x0 (xT). The other, an 

optimal solution found as a function of state history, u*=u*(t, x(Ĳ) t≤≤ τ0 ), 

is referred to as a closed-loop solution. In a special, memoryless case of 

u*=u*(x(t), t), the solution is referred to as a feedback control. If the opti-

mal control problem is deterministic, it is often possible to find one form 

of solution, for example, an open-loop solution, and then transform it into 

the other, i.e., the closed-loop solution. This, however, is rarely possible 

for stochastic problems. Moreover, in stochastic problems an update (feed-

back) on the object state x(t) may not be available at each point of time.  

Example A1.1 

Consider a manufacturer who continuously produces a single (aggregate) 

product type in response to a demand, d(t). If cumulative production exceeds 

the cumulative demand, then excessive inventories are stored in a ware-

house, otherwise the shortages are backlogged. The goal is to minimize 

both inventory holding and backlog costs. The described problem is a well-

known optimal production control problem (see, for example, Kogan and 

Khmelnitsky, 2000). The state equation for this problem takes the follow-

ing form 

)()()( tdtutx −=& , 

where x(t) is the inventory level at time t (surplus, if x(t)>0 and backlog if 

x(t)<0); u(t) is the production rate (the number of products per time unit) at 

t; and d(t) is the demand rate at time t. 

Note that the demand can be an exogenous function of time, or endoge-

nous, depending, for example, on the inventory on hand, d=d(x(t),t). Then 

the state differential equation is 

)),(()()( ttxdtutx −=& . 
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Another possibility is that the demand, d(x(t),t) is a stochastic process 

with jumps or instantaneous disturbances. The classical example of the lat-

ter type of demand is described by the Wiener process, w(t). In such a case 

the state differential equation is a stochastic Ito differential equation (see, 

for example, Tapiero, 1988) 

dwtxdttatutdx ),())()(()( σ+−= , 

where a(t) is a deterministic component of the demand; dw – Weiner incre-

ment, a stochastic component of the demand; and ı(x,t) is the variability of 

the demand.  

Assuming that the production rate cannot be negative and that the pro-

duction capacity U, the maximum number of products which can be pro-

duced per time unit, is bounded, the control constraint is  

Utu ≤≤ )(0 . 

The initial boundary condition (A1.3) implies that in such a case the initial 

inventory level which we have in the warehouse, if xo, is positive. Otherwise 

it is the backlog we need to take into account when planning production.  

A typical example of a state constraint in production control problems is 

the maximum backlog, x
B
, the manufacturer can afford without losing 

sales, i.e., 

x(t) ≥ x
B
. 

If the demand process d is stochastic, then the state constraint is typically 

imposed on the probability P of the backlog, 

P[x(t)<0]=1-Į , 

or alternatively 

P[x(t) ≥ 0]= Į, 

where Į is the service level. 

Let t0=0 and inventory associated costs be leaner with product unit hold-

ing cost per time unit, h
+
 equal to the unit backlog cost h

-
 per time unit, h

+
= 

h
-
=h. Then the goal of the optimal production control is to find u(t), 

Tt ≤≤0 , which minimizes the following objective function subject to 

the described constraints: 

∫=
T

dttxhJ
0

)( . 

If the production process is stochastic, then expectation, E, is added 

∫=
T

dttxhEJ
0

)( .  
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A1.2 DYNAMIC PROGRAMMING 

Consider the following deterministic optimal control problem 

inf))(()),(),((),,(

0

00
→+= ∫

T

t

TxRdtttutxLuxtJ ,        (A1.11) 

s.t. 

),,( tuxf
dt

dx
= , Ttt ≤≤

0
, x(t0)=x0,  (A1.12) 

)()( tUtu ∈ , x(t)∈G(t), Ttt ≤≤
0

.  (A1.13) 

Discrete-time dynamic programming 

To obtain an approximate solution of the problems, select mesh points 

t0<t1<…tK-1<tK=T. 

difference equations and the integral with summations: 

inf)())(,,(),(
1

1

0

0

0 →+−= +

−

=
∑ K

iii

ii
K

i

xRtttuxLxJ 0
u , (A1.14) 

s.t. 

))(,,(
1

1

iii

iiii tttuxfxx −+= +
+ , i=0,1,..,K-1, x

0
=x0, (A1.15) 

u
0
=(u

0
,u

1
,..,u

K-1
), )(

i

i tUu ∈ , x
i∈G(ti), i=0,1,..,K-1.     (A1.16) 

Denoting  

))(,,(
1 iii

iii tttuxLL −= + , ))(,,(),(
1 iii

iiiiii tttuxfxuxf −+= + , 

G
i
= G(ti) and )(

i

i tUU = , 

equations (A1.14)-(A1.16) simplify to 

inf)(),(),(
1

0

0

0 →+= ∑
−

=

Kii
K

i

i xRuxLxJ 0
u , (A1.17)  

s.t. 

),(1 iiii uxfx =+ , i=0,1,..,K-1, x
0
=x0,  (A1.18)  

u
0
=(u

0
,u

1
,..,u

K-1
), 

ii Uu ∈ , ii Gx ∈ , i=0,1,..,K-1. (A1.19) 

The objective function (A1.17) determines the overall cost incurred 

along the planning horizon when only the initial inventory level is known, 

x
0
=x0.  Similarly, if x

1
 is known, then the new problem would be 

inf)(),(),(
1

1

1

1 →+= ∑
−

=

Kii
K

i

i xRuxLxJ 1
u ,   

s.t. 

),(1 iiii uxfx =+ , i=1,..,K-1, x
1
 - fixed,    

Then, using Euler’s scheme, the differential equations can be replaced with 
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u
1
=(u

1
,..,u

K-1
), ii Uu ∈ , ii Gx ∈ , i=1,..,K-1.   

To present the dynamic programming approach, let us introduce an aux-

iliary optimization problem 

inf)(),(),(
1

→+= ∑
−

=

Kii
K

ki

ik

k xRuxLxJ k
u ,  (A1.20) 

s.t. 

),(1 iiii uxfx =+ , i=k,..,K-1,  (A1.21) 

u
k
=(u

k
,..,u

K-1
), ii Uu ∈ , ii Gx ∈ , i=k,..,K-1, (A1.22) 

where x
k
 and integer k are fixed. When k=0, we evidently obtain initial 

formulation (A1.17)-(A1.19). Denote the set of all possible (in terms of 

condition (A1.22)) controls u
k
 by V

k
(x

k
), so that the corresponding trajec-

tory x
k
=(x

k
, x

k+1
,..,x

K-1
) satisfies state equations (A1.21) and state constraints 

ii Gx ∈ , i=k,..,K-1. Correspondingly, denote the set of all admissible con-

trols only at stage k, for which u
k∈V

k
(x

k
),  by U

k
(x

k
). It is easy to observe 

that  

),(),(),( 1

1

0000

0

10
uu xJuxLxJ += , 

and more generally, 

),(),(),( 11

1

++
++= kk

uu
k

k

kkk

k
xJuxLXJ . 

Given ),(inf 11

1
)( 11

++
+++

k
u

k

k
xV

xJ
kk

 as a function of x
k+1

, then backward optimiza-

tion of ),( k
uXJ

k
 leads to the following optimality conditions. 

Let us introduce a new value function, 

),(inf)(
)(

k
u

k

k
xV

k

k
xJxB

kk
= , k=0,1,..,K-1,  (A1.23) 

which is referred to as the Bellman (cost-to-go) function. Then the principle 

of optimality is determined by the following recursive dynamic programming 

equations 

{ })(),(inf)( 1

1
)(

+
++= k

k

kkk

xU

k

k
xBuxLxB

kk
, k=0,1,..,K-1, (A1.24) 

BK(x
K
)=R(x

K
). 

With respect to the state equation ),(1 iiii uxfx =+ , condition (A1.24) can 

be presented  in  a more convenient form for optimization  

{ })),((),(inf)(
1

)(

kk

k

kkk

xU

k

k
uxfBuxLxB

kk ++= , k=0,1,..,K-1. 

This principle implies that if an optimal solution, u
*0

=(u
*0

,u
*1

,..,u
*K-1

), exists 

(and thus “inf” can be replaced with “min”), then it can be found backward 

in time by first solving in u
K-1

,  

{ })(),(min)( 111

)(

1

1 11

KKKK

xU

K

K
xRuxLxB

kk
+= −−−−

− −−
, 
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which, with respect to ),( 111 −−−= KKKK uxfx  (see (A1.21)) is 

{ })),((),(min)( 111111

)(

1

1 11

−−−−−−−
− +=

−−

KKKKKK

xU

K

K
uxfRuxLxB

kK
. 

This allows us to find u*
K-1

=u*
K-1

(x
K-1

). Next using 

),( 2221 −−−− = KKKK uxfx , we solve 

{ })),((),(min)( 222

1

222

)(

2

2 22

−−−
−

−−−−
− +=

−−

KKK

K

KKK

xU

K

K
uxfBuxLxB

Kk
 

to find u
*K-2

= u
*K-2

(x
K-2

). We continue this way until B0(x0) and accordingly 

the optimal feedback control is found for all stages, u*
k
= u*

k
(x

k
), k=0, 

1,..,K-1, x
0
= x0.  

Continuous-time dynamic programming 

Consider problem (A1.11)-(A1.13) and let the auxiliary problem be 

inf))(()),(),((),,( →+= ∫
T

t

TxRduxLuxtJ ττττ , 

s.t. 

),,( τ
τ

uxf
d

dx
= , Tt ≤≤ τ , x(Ĳ)=x, 

)()( ττ Uu ∈ , x(Ĳ)∈G(Ĳ), Tt ≤≤ τ . 

Denote the Bellman function as 

))(),..,(),(),..,(,(inf)),(),..,(( 11
),(

1 tututxtxtJttxtxB MN
txV

N = ,  (A1.25) 

where V(x,t) is the set of all controls )()( ττ Uu ∈ , Tt ≤≤ τ  so that the 

corresponding trajectory x(Ĳ)=x(Ĳ,u), Tt ≤≤ τ  satisfies state equations 

),,( τ
τ

uxf
d

dx
=  and state constraints x(Ĳ)∈G(Ĳ), Tt ≤≤ τ . Correspond-

ingly, we denote the set of all admissible controls at time t by U(x,t). 

Construct the Hamiltonian as 

),,,(
),(

),,(),,
),(

,( tuxf
x

txB
tuxLtu

x

txB
xH

n

T

⎟
⎠
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 (A1.26) 

where the Lagrange multipliers 

T

x

B
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=(
N

x

B

x

B

∂
∂

∂
∂

,..,
1

) are frequently refer-

red to as co-state or adjoint variables. 
n

x

B

∂
∂

 presents the shadow price of 

state n, i.e., the gain in the objective function value which can be obtained by 

reducing state n by one more unit at time t. 
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Then the optimal control, u*=u*(x,
x

txB

∂
∂ ),(

,t)∈V(x,t) minimizes the 

Hamiltonian  

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

),,
),(

,(min
1

),(
tu

x

txB
xH

txU
,                          (A1.27) 

and satisfies the Hamiltonian-Jacobi-Bellman equation 

),,
),(

,( *

1

tu
x

txB
xH

∂
∂

t

txB

∂
∂

−=
),(

,  (A1.28) 

B(x, T)=R(x). 

Consequently, the solution approach is to first find 

u*=u*(x,
x

txB

∂
∂ ),(

, t)∈V(x,t)   (A1.29) 

from (A1.27). Then substitute it into the Hamiltonian-Jacobi-Bellman 

equation (A1.28), which, if solved analytically, provides B(x,t). Next, differ-

entiating B(x,t) with respect to x and substituting it into (A1.29) we obtain 

u*=u*(x, t). 

Example A1.2 

Consider a transportation problem. Let x0 be the amount of products to be 

transported within a limited time T. The transportation rate is not bounded, 

but increasingly expensive as it incurs quadratic cost u
2
(t) at each time 

point t. If by time T, any products x(T) are still undelivered, an increas-

ingly high penalty ax
2
(T) is levied. Thus, we encounter the following 

minimization problem 

∫ →+=
T

TaxdttuJ
0

22 min)()( , 

)()( tutx =& , x(0)=x0, 

where x0 and a>0 are given constants and u(t)
1R∈ . With respect to 

(A1.26) the Hamiltonian is 
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n
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and thus, 

u
x

txB
utu

x

txB
xH

∂
∂
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∂

∂ ),(
),,

),(
,( 2 . 
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Then the optimal control, u*=u*(x,
x

txB

∂
∂ ),(

, t) is achieved by minimizing 

the Hamiltonian. That is, differentiating the Hamiltonian with respect to u 

we find 

u=
x

txB

∂
∂

−
),(

2

1
. 

Note that the Hamiltonian is concave and consequently the first order 

optimality condition is not only necessary but also sufficient. Substituting 

this into the Hamiltonian-Jacobi-Bellman equation (A1.28)  

),,
),(

,( tu
x

txB
xH

∂
∂

t

txB

∂
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−=
),(

, 

we obtain 
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∂
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⎜
⎝
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∂
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−
t

txB

x

txB
 and B(x,T)=ax

2
. 

We search for solution B(x,t) of this partial differential equation in the 

form of a polynomial 

B(x,t)=A0(t) + A1(t)x + A2(t)x
2
. 

Substituting this expression into the derived partial differential equation 

along with the boundary condition, we have 

0
4

)2( 2

212

210
=

+
−++

xAA
xAxAA &&& , Tt ≤≤0  

22

210
)()()( axxTAxTATA =++ , 

which, by comparing terms of the same power, leads to the following system 

of ordinary differential equations: 

0
4

2

1

0
=+

A
A& , 0

211
=− AAA& , 02

22
=− AA& , Tt ≤≤0 , 

A0(T)=0, A1(T)=0, A2(T)=a. 

Thus, we find 

A0(t) ≡  A1(t) ≡ 0, A2(t)=
)(1 Tta

a

−−
 

and therefore the Bellman function and the co-state variable are 

)(1
),(

2

Tta

ax
txB

−−
=  and 

)(1

2),(

Tta

ax

x

txB

−−
=

∂
∂

. 

Finally, the optimal feedback policy is 

u*(x,t)=
x

txB

∂
∂

−
),(

2

1
= 

)(1 Tta

ax

−−
−

.    
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The relationship between discrete and continuous-time dynamic 
programming 

To see the relationship between discrete and continuous-time dynamic 

programming formulations, we apply the following heuristic considerations. 

Let ttt
ii

∆=−+1
, i=0,1,.., K-1, ti=t, x

i
=x(t), V

k
(x

k
)=V(x,t), U

k
(x

k
)=U(x,t)  and 

Bk(x
k
)= B(x,t). Then recalling that 

))(,,( 1 ii

i

iii tttuxLL −= + , 

and letting +→∆ 0t , we obtain 

{ })),(),(inf),(
),(

dttdxxBdtuxLtxB
txU

+++= , (A1.30) 

B(x, T)=R(x),                                  (A1.31) 

where 

),,(inf),(
),(

uxtJtxB
txV

= . 

Assuming that the Bellman function is differentiable in time and state, and 

employing Taylor serious approximation of ),( dttdxxB ++ with the terms 

only of the first order of ǻt ,  

dt
t

txB
dx

x

txB
txBdttdxxB
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),(),( , (A1.32) 

we obtain from (A1.30): 
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Recalling that ),,( tuxf
dt

dx
= , we have from (A1.33), the continuous-time 

optimality conditions 

0
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. (A1.34) 

B(x, T)=R(x). 

Denote the Hamiltonian, H as, 
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),(
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Then, if an optimal control policy exists, condition (A1.34) results in 

t
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txU ∂
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⎫
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⎧
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Let the optimal control, which minimizes (A1.36) be u*=u*(x,
x

txB

∂
∂ ),(

, 

t). Then, substituting it into (A1.35), we find the Hamiltonian-Jacobi-

Bellman partial differential equation, 
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or equivalently 

t
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u
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,( , B(x, T)=R(x). (A1.38) 

Note that this result is identical to that stated in the previous section. It, 

however, is not always correct. If the state variables have instantaneous 

changes, as for example, with the Weiner process, then we would need a 

more precise analysis. Specifically, if B(x,t) is twice differentiable with  

respect to x, we will have more terms in the first order of ǻt in the Taylor 

expansion (A1.32) 
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Then substituting (A1.39) into (A1.30) we have 
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where 
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and the partial differential equation for a dynamic system with states which 

may have instantaneous changes, 
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A1.3 STOCHASTIC DYNAMIC PROGRAMMING 

Consider first the discrete-time problem (A1.17)-(A1.19) which involves 

stochastic variable w
i
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inf)}(),({),(
1

0

0

0
→+= ∑

−

=

Kii
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i

i xRuxLExJ 0
u , 

s.t. 

),,(1 iiiii wuxfx =+ , i=0,1,..,K-1, x
0
=x0, 

u
0
=(u

0
,u

1
,..,u

K-1
), ii Uu ∈ , ii Gx ∈ , i=0,1,..,K-1. 

Using the same definition of the Bellman (optimal cost-to-go) function at 

time tk with starting state value xk, 

),(inf)(
)(

k
u

k

k
xV

k

k
xJxB

kk
= , k=0,1,..,K-1, 

the principle of optimality (A1.24) straightforwardly transforms into the 

following recursive dynamic programming equations 
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k
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xBuxLExB

kk
, k=0,1,..,K-1, (A1.42) 

BK(x
K
)=R(x

K
). 

Similar to the deterministic dynamic programming, these equations are 

solved backward, starting from k=K-1 with BK(x
K
)=R(x

K
)= 

R( ),,( 1111 −−−− KKKK wuxf ), 

{ }))],,((),([min)( 1111111
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and continuing until all controls are found. 

Consequently, the continuous-time formulation is obtained for problem 

(A1.11)-(A1.13) with stochastic disturbances w(t): 

inf]))(()),(),(([),,(
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00 →+= ∫
T

t

TxRdtttutxLEuxtJ , 

s.t. 

),,,( τwuxdfdx = , Ttt ≤≤
0

, x(t0)=x0, 

)()( tUtu ∈ , x(t)∈G(t), Ttt ≤≤
0

 

and auxiliary problem 

inf))](()),(),(([),,( →+= ∫
T

t

TxRduxLEuxtJ ττττ , 

s.t. 

),,,( τwuxdfdx = , Tt ≤≤ τ , x(Ĳ)=x, 

)()( ττ Uu ∈ , x(Ĳ)∈G(Ĳ), Tt ≤≤ τ . 

Specifically, using the same definition  

),,(inf),(
),(

tuxJtxB
txV

=    (A1.43) 

the dynamic programming optimality conditions (A1.30)-(A1.31) are  
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{ })),(),(inf),(
),(

dttdxxBdtuxLEtxB
txU

+++= ,  (A1.44) 

B(x, T)=R(x),   (A1.45) 

where, similar to the previous analysis, the Taylor serious approximation 

can be used for )),( dttdxxB ++ . Taking into account (A1.40) found for a 

process with instantaneous changes in state, we have 
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Example A1.3 

Consider the following stochastic optimization problem 

inf)),(),((),,(
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00
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dtttutxLEuxtJ , 

s.t. 

dwudttuftdx )())(()( σ+= , Tt ≤≤0 , x(t0)=x0, 

Utu ∈)( , 

where  dw –  the Weiner increment with E[dw]=0 and VAR[dw]=dt. 

For our example with the only state variable, condition (A1.46) takes the 

following form 
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There are only two terms in the last expressions which involve uncertainty: 

dx and (dx)
2
. With respect to the state equation dwudttuftdx )())(()( σ+= ,  

E[ dtufdwudtufEdx )(])()([] =+= σ . 

Assuming that (dt)
2
 is very small and using E[(dw)

2
]= VAR[dw]=dt, we 

have 

E[ dtudwudtufEdx )(]))()([(])( 222 σσ =+=  

Thus, (A1.46) simplifies to 
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That is, the optimal control u*=u*(x) is determined by  
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and thus the Hamiltonian-Jacobi-Bellman equation is 
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If ı does not depend on u, then denoting 

+
∈
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)}(uf
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we have the following partial differential equation 
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A1.4 THE MAXIMUM PRINCIPLE 

As shown in the previous sections, dynamic programming in continuous-

time problems involves the use of the Hamiltonian for deriving a partial 

differential equation for the Bellman value function, which, in turn, identi-

fies the corresponding feedback policy. Although the dynamic program-

ming approach is a powerful tool for developing optimal feedback policies, 

partial differential equations are not easy to solve, especially when the pro-

blem is featured with control and state constraints. In such a case, approxi-

mate (discrete-time) solutions can be found for continuous-time problems. 

On the other hand, the use of the Hamiltonian could be extended to 

study optimal behavior of the dynamic system under an open-loop control 

with respect to the state and co-state differential equations rather than solv-

ing the partial differential equation for a feedback control. An approach 

which focuses on optimizing the Hamiltonian is referred to as the maxi-

mum principle. 

The maximum principle provides a set of the necessary optimality con-

ditions for identifying whether a solution is optimal or not. When reduced 

to solving a two-point boundary value system of ordinary differential equa-

tions, the maximum principle provides us with an additional chance to solve 

the problem.  

Consider the following dynamic problem  

min))((),,(
0

→+= ∫
T

TxRdttuxLJ   (A1.49) 

)),,( tuxf
dt

dx
= , Tt ≤≤0 ,  (A1.50) 

gk(u,t) 0≤ , k=1,…,K,   (A1.51) 

x(0)=x0.    (A1.52) 

According to the maximum principle, the optimal control is achieved by 

maximizing for each time point t, the Hamiltonian 
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),,(),,()(),,( tuxLtuxftuxH T −=ψψ ,  (A1.53) 

as a function of controls um(t), m=1,..,M, where )(tTψ =( )(
1

tψ ,…, )(t
n

ψ ) 

are continuous co-state variables which satisfy the following co-state dif-

ferential equations 

x

uxH

∂
∂

−=
),,( ψψ& .   (A1.54) 

The correspondence between the co-state variable of the dynamic pro-

gramming and of the maximum principle is ψ−=
∂
∂

x

B
 (see, for example, 

Basar and Olsder, 1999). 

The boundary condition for (A1.54) is 

)(

))((
)(

Tx

TxR
T

∂
∂

−=ψ .   (A1.55) 

Note that the Hamiltonian is not required to be always differentiable in 

x. At a point, nx̂ , where the derivative does not exist, the co-state equation 

changes to involve the sub-gradient of the Hamiltonian 

],,[)ˆ()( baxHt
nn

=∂∈ψ&   (A1.56) 

where  
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. (A1.57) 

Other boundary constraints  

Instead of initial boundary constraint (A1.52), the problem may have ter-

minal constraints 

x(T)=xT.   (A1.58) 

and correspondingly a payment for initial state R
(

(x(0)) in place of 

R(x(T)). Then the boundary condition (A1.55) is replaced with 

)0(

))0((
)0(

x

xR

∂
∂

=
(

ψ .   (A1.59) 

If the dynamic process has a periodic nature so that the terminal states 

of a period, T, are identical to the initial states,  

x(0)= x(T).   (A1.60) 

then the boundary constraint (A1.52) is replaced with 

)()0( Tψψ = .   (A1.61) 
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State constraints 

Let a constraint on state n be imposed as 

ln(xn(t)) ≤ 0, Tt ≤≤0 .   (A1.62) 

Then the co-state variable )(t
n

ψ  may have jumps which are presented by 

measures 0)( ≥td
n

µ . As a result, the co-state equation takes the following 

form 

n
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nn
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d
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xl
dt
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d µψψ
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∂
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)(),,(
  (A1.63) 

and a complementary slackness condition is added so that 0)( =td
n

µ , 

when the corresponding state constraint is not active, xn(t)<0, 

0))((
0

=∫
T

nnn
dtxl µ .   (A1.64) 

The objective function with variable planning horizon 

If the planning horizon is not fixed (a decision variable) as defined in 

(A1.9) and the objective function is 

∫ +=
T

TxRdtttutxLJ
0

))(()),(),(( +S(T),  (A1.65) 

where S(T) is the cost associated with the length of the planning horizon, 

then the only change in the optimality conditions is that they include an 

additional constraint 

H=
T

TS

∂
∂ )(

, Tt ≤≤0 .                       (A1.66) 

Example A1.4 

Consider again the problem from Example A1.2: 

∫ →+=
T

TaxdttuJ
0

22 min)()( , 

)()( tutx =& , x(0)=x0, 

where x
0
 and a>0 are given constants and u(t) 1R∈ . Now, instead of dyna-

mic programming-based minimization in Example A1.2, we apply the 

maximum principle, where the optimal control is found by maximizing the 

Hamiltonian 

)()()(2 tuttuH ψ+−= . 

The co-state equation is 
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0=
∂
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−=
x

Hψ&  

with the boundary condition 

)(2)( TaxT −=ψ . 

Thus we conclude that )(2)( Taxt −=ψ , Tt ≤≤0 . Since there are no 

constraints imposed on control, to find the optimal control we simply dif-

ferentiate the Hamiltonian,  

02 =+−=
∂
∂ ψu

u

H
, 

which results in )(
2

Taxu −==
ψ

. Note that the Hamiltonian is concave 

and thus the first order optimality condition is not only necessary but also 

sufficient. Integrating the state differential equation we have 

TTaxxdtTaxxTx

T

)()()(
0

0

0
−=−= ∫ . 
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)( 0 , which along with )(Taxu −= results in 
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1
)(*

0
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Thus we have found an open-loop optimal control. Next we transform 

the control into a closed loop form. For this equivalent representation, we 

first express x0 from the open-loop equation 

a

aTu
x

)1(0 +
−= . 

Consequently, we substitute x0 with the last expression in the state equa-

tion, ∫+=
t

udxtx
0

0
)( τ , which  results in 
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xx
u
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aTu )1( +
, 

that is, u*(x,t)=
)(1 Tta

ax

−−
−

, which is identical to the optimal feedback 

control found with dynamic programming in Example A1.2. Moreover,  

recalling that 
2

ψ
=u , we obtain the co-state variable 

)(1
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Tta

ax

−−
−=ψ . 
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This value differs only in sign from that found with dynamic programming 

in Example A1.2, 

)(1

2

Tta

ax

x

B

−−
=

∂
∂

. 

The difference in signs, ψ−=
∂
∂

x

B
 of the two shadow prices is due to the 

fact that in contrast to the maximum principle, the corresponding Hamilto-

nian of the dynamic programming formulation that we employed is intended 

for minimization.   

A1.5 NON-COOPERATIVE DYNAMIC GAMES 

Game theory is concerned with situations involving conflict and cooperation 

between the players. Until now we assumed that there was a single object, 

controlled by a single decision maker (player) who  was willing to optimize 

the object's behavior with respect to some objective. However, in real life, 

a number of decision makers who are not necessarily ready to cooperate 

may control several objects. In this section we discuss the optimality con-

ditions in dynamic non-cooperative games which are a natural extension of 

the principles of optimality discussed in previous sections. Dynamic games 

arise when players gain some dynamic information throughout the decision 

process and use it over time. Our focus is on two important concepts – Nash 

and Stackelberg equilibriums –  for dealing respectively with simultaneous 

and sequential decision-making among multiple players.  

Similar to the static games, to find Nash equilibrium, we would need the 

optimality conditions of each player to be met simultaneously. This implies 

solving jointly the number of optimal control problems equal to the number 

of players. Accordingly, to determine a Stackelberg equilibrium, we need 

to find first the best response function of the follower (solve the follower’s 

control problem) and then optimize the leader's behavior subject to the best 

follower's response. Since optimal solution of any single player control 

problem is either open-loop or closed-loop, the simultaneous optimization 

in a multi-player game is either open- or closed-loop. As discussed earlier, 

the maximum principle enables us to study an open-loop solution, while 

the dynamic programming allows us to search for a feedback solution. 

Thus, utilization of the two standard techniques of optimal control theory, 

the maximum principle and dynamic programming leads to open-loop  

and feedback equilibrium solutions respectively. This may be seen, for  
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example, in  discrete-time stochastic problems involving two players A and 

B. 
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The set of strategies {uA
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), uB
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), k=0,1,..,K-1} provides 

a feedback Nash equilibrium solution if there exist functions with starting 

state value xk at time tk, 
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such that the recursive dynamic programming equations  
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are met. 

On the other hand, with the aid of the maximum principle for the con-

tinuous-time deterministic problems involving two players A and B with 

control variables uA
T
=(uA1,..,uAM) and uB

T
=(uB1,..,uBM) we can deal with the 

following problem for each of the players 

min))((),,,(
0

→+= ∫
T

ABAA

A TxRdttuuxLJ  

min))((),,,(
0

→+= ∫
T

BBAB

B TxRdttuuxLJ  

),,,()( tuuxftx
BA

=& ,  Tt ≤≤0 , 

x(0)=x0, 

gA
k(uA, t)) 0≤ , g

B
i(uB,t)) 0≤ , k=1,…,KA, i=1,…,KB. 
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The set of strategies {u
*

A=uA
*
(t), u

*
B=uB*(t), Tt ≤≤0 } provides an 

open-loop Nash equilibrium solution if the following conditions hold. 

The optimal control maximizes for each time point t, the Hamiltonian of 

player A 

),,,(),,,()(),,,( *** tuuxLtuuxftuuxH
BAABA

T

ABAA

A −=ψψ  

with respect to uA, g
A

k A A

B 

),,,(),,,()(),,,( *** tuuxLtuuxftuuxH
BABBA

T

BBAB

B −=ψψ  

with respect to uB, g
B

i(uB,t) 0≤ , i=1,…,KB.   

The co-state variables, )(t
A

ψ  and )(t
B

ψ , satisfy the following co-state 

differential equations 

x

H A

A ∂
∂

−=ψ&  and 
x

H B

B ∂
∂

−=ψ&  

with boundary conditions 

)(
)(

Tx

R
T A

A ∂
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−=ψ  and 
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R
T B

B ∂
∂

−=ψ . 

Example A1.5 

Consider a modification of the problem from Example A1.2. Let there be a 

retailer B who orders products from a supplier or manufacturer A. In res-

ponse, the supplier, either produces or orders products from a distributor. 

The difference between the cumulative production rate of supplier A and 

the cumulative order rate of the retailer B constitutes the supplier's ware-

house inventory level, x(t): 

)()()( tututx
BA

−= β& , x (0)=x
0
>0, 

where 0<ȕ<1 is the production efficiency coefficient. 

The supplier’s objective is to maximize payments for the retailer’s orders, 

uB
2
(t) and to  minimize production cost, uA

2
(t), both over the planning hori-

zon. The cost of leftovers is minimized  by the end of the horizon, ax
2
(T). 

∫ →+−=
T

BAA
TaxdttutuJ

0

222 min)())()(( , 

The retailer, on the other hand, naturally wants to pay less for his orders, 

but is interested in having  the supplier produce more products and thus 

spend more on production. The reason for this is if the supplier produces 

more, he is likely to have leftovers which the retailer can utilize to ensure 

high level customer service. 

(u ,t)) ≤ 0 , k=1,…,K  and the Hamiltonian of player 
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T
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This is an example of the classical zero-sum game, JB+JA=0, which implies 

Ha= - Hb and 
BA

ψψ −= . 

Let 1)1( 2 >− aTβ . To find an open-loop Nash equilibrium, we first 

construct the Hamiltonians: 
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−++−= βψ . 

Note that since the Hamiltonians are concave, the first-order optimality 

condition is not only necessary but also sufficient. The co-state equations 

are 
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ing the state differential equation we have 

TTaxxdtTaxdtTaxxTx

TT

)()1()()()( 20

00

20 ββ −+=+−= ∫∫ . 

That is, 
aT

x
Tx

)1(1
)(

2

0

β−−
= , which is along with )(Taxu

u
B

A −==
β

  

results in 

aT

ax
tu

A
)1(1

)(*
2

0

β
β
−−

−=  , 
aT

ax
tu

B
)1(1

)(*
2

0

β−−
−= , Tt ≤≤0 . 

As a result, we have found an open-loop optimal control. Next we trans-

form the control into a closed-loop form. To do this, we first express x
0
 

from the open-loop equation 

a

aTu
x B

))1(1( 2

0 β−−
−= . 

Thus we conclude that ψ (t) = −2ax(T ) and ψ 0 ≤ t ≤ T . 

 Since there are no constraints imposed on control, to find optimal control

we simply differentiate the Hamiltonians,  
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Consequently, we substitute x
0
 with the last expression and 

BA
uu β=  in 

the state equation, dttutuxtx
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t
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Another way to find a feedback Nash equilibrium is to employ corre-

sponding continuous-time dynamic programming conditions. Specifically, 

using the same definition of the Hamiltonian as in the maximum principle, 

we have for the Hamiltonian-Jacobi-Bellman equations: 
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Example A1.6 

Once again we resolve here Example A1.5 to find a feedback a Nash equi-

librium with dynamic programming rather than the maximum principle. As 

in Example A1.5, from the same Hamiltonians 
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and taking into account that 
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Recalling that for a zero-sum game, 
BA

ψψ −= , and B
B
(x,t)=-B

A
(x,t), we 

find a single partial differential equation 
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We search for solution B(x,t) of this partial differential equation in the 

form of a quadratic function 

B(x,t)= A(t)x
2
. 

Substituting this expression into the derived partial differential equation 

along with the boundary condition, we have 
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which leads to the following ordinary differential equation 

0)1( 22 =+− AA &β , A(T)= - a. 

Thus, we find 

1))(1(
)(

2 −−−
=

Tta

a
tA

β
 

and, therefore, the Bellman function and the co-state variable for player A 

are 
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Finally, the optimal feedback policies are 
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This result is identical to that from Example 1.5 which was derived from 

an open-loop Nash equilibrium.     
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