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FOREWORD

The Institute for Mathematical Sciences at the National University of

Singapore was established on 1 July 2000. Its mission is to foster mathemat-

ical research, particularly multidisciplinary research that links mathematics

to other disciplines, to nurture the growth of mathematical expertise among

research scientists, to train talent for research in the mathematical sciences,

and to provide a platform for interaction and collaboration between local

and foreign mathematical scientists, in support of national development.

The Institute organizes thematic programs which last from one month to

six months. The theme or themes of a program will generally be of a multi-

disciplinary nature, chosen from areas at the forefront of current research in

the mathematical sciences and their applications, and in accordance with

the scientific interests and technological needs in Singapore.

Generally, for each program there will be tutorial lectures on background

material followed by workshops at the research level. Notes on these lec-

tures are usually made available to the participants for their immediate

benefit during the program. The main objective of the Institute’s Lecture

Notes Series is to bring these lectures to a wider audience. Occasionally,

the Series may also include the proceedings of workshops and expository

lectures organized by the Institute.

The World Scientific Publishing Company has kindly agreed to publish

the Lecture Notes Series. This Volume, “Mathematics and Computation in

Imaging Science and Information Processing”, is the eleventh of this Series.

We hope that through the regular publication of these lecture notes the

Institute will achieve, in part, its objective of promoting research in the

mathematical sciences and their applications.

April 2007

Louis H. Y. Chen

Ka Hin Leung

Series Editors
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PREFACE

Rapid advances in communication, sensing and computational power have

led to an explosion of data. The usefulness of this resource for human knowl-

edge is determined by its accessibility and portability, which present fresh

challenges to existing techniques in terms of transmission, storage, query-

ing, display and numerical manipulation. As a result, much current research

efforts focus on developing more advanced techniques for the representation,

processing, analysis and interpretation of these data sets. This requires and

gives rise to new theories and new methods in the areas of approximation,

imaging science, information processing, mathematical modeling, scientific

computing and statistics.

In view of these exciting developments, the program “Mathematics and

Computation in Imaging Science and Information Processing” was held in

Singapore at the Institute for Mathematical Sciences, National University

of Singapore, from July to December 2003 and in August 2004 to promote

multidisciplinary research on the mathematics in imaging science and in-

formation processing. In particular, the program emphasized on numerical

methods in image and information processing, wavelet theory and its ap-

plications in image and signal processing, and time-frequency analysis and

applications. Under the program, three conferences, six workshops, eleven

tutorials and three public lectures were organized. A total of more than 340

participants took part in these activities including over 130 international

attendees. We thank the Institute for Mathematical Sciences for its gener-

ous funding and efficient administrative support, without which the smooth

implementation of the program would not be possible. We would also like

to express our sincere appreciation to the authors for their contributions

towards this volume.

The tutorials of the program, each comprising a series of lectures, were

conducted by international experts, and they covered a wide spectrum of

topics in the field of mathematical image, signal and information process-

ing. This compiled volume contains survey articles by the tutorial speakers

ix
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on subdivision in geometric modeling and computer graphics, high order

numerical methods for time dependent Hamilton-Jacobi equations, varia-

tional methods in mathematical image processing, data hiding and image

steganography, and the apriori algorithm in data mining. The accompany-

ing volume is on Gabor analysis and wavelet theory, which are two funda-

mental mathematical tools in imaging science and information processing.

It contains exposition articles by the tutorial speakers and also research

papers. The two volumes collectively provide graduate students and re-

searchers new to the field a comprehensive introduction to a number of im-

portant topics in mathematical image, signal and information processing.

The chapters in each volume were written by specialists in their respective

areas. The following outline the organization of this volume and highlight

the topics presented.

During the last decade, subdivision surfaces based on arbitrary control

meshes have become an important and quite pervasive tool for computer

graphics and geometric modeling applications. Chapter 1 by D. Zorin pro-

vides an introduction to the algorithms and theory related to subdivision

surfaces, covering both fundamentals and recent research developments. It

surveys the basic concepts on subdivision surfaces and gives an overview

of various important subdivision schemes for surfaces on arbitrary meshes,

with focus on two of the most common schemes (Loop and Catmull-Clark).

In addition, it reviews recent theoretical results on smoothness and approx-

imation properties of subdivision surfaces on arbitrary meshes.

Hamilton-Jacobi equations have applications in many areas including

image processing and computer vision. C.-W. Shu’s Chapter 2 reviews sev-

eral high order numerical methods for solving time dependent Hamilton-

Jacobi equations. It begins with first order monotone schemes on structured

rectangular meshes and unstructured meshes, which act as building blocks

for high order schemes. The high order methods discussed include essen-

tially non-oscillatory schemes for structured meshes, weighted essentially

non-oscillatory schemes for both structured and unstructured meshes, and

discontinuous Galerkin schemes for unstructured meshes.

Image deblurring is the recovery of a sharp image from its blurry ob-

servation. It appears in many different sectors of imaging science, including

optical, medical and astronomical applications, and is a topic of active

research in mathematical image processing. Regularization techniques are

often used to handle this ill-posed inverse problem. Chapter 3, co-authored

by T. F. Chan and J. Shen, presents a comprehensive account of image de-
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blurring, highlighting its main modeling ideas and techniques. In particular,

it describes various variational methods for image deblurring for both the

situations of known and unknown point spread functions which model the

blurs. Mathematical analysis is provided for the existence or uniqueness of

solutions of these methods. The associated computational approaches are

also developed.

With the increasing need to conceal information (for instance, secret

data, copyright information and movie subtitles) within a host data set,

data hiding is now a major research area in signal, image and video process-

ing. It can be regarded as a game between the embedder/decoder and the at-

tacker, who employ optimal data-hiding and attack strategies respectively.

Chapter 4 by P. Moulin and R. Koetter reviews the fundamentals of the

data-hiding problem. Various data-hiding algorithms are described, rang-

ing from simple early codes to more modern codes based on information-

theoretic binning concepts. The performance of these codes are analyzed

in terms of probability of error and data-hiding capacity. As illustration of

the theory, image watermarking examples are shown.

Related to data hiding is the topic of steganography, in which many new

and powerful techniques have been developed in the last few years. Unlike

cryptography which aims to make a message secure, the goal of stegano-

graphic techniques is to hide the presence of the message itself from an

observer. Due to their high degree of redundancy present, digital images

are common objects used as carriers of embedded messages. Chapter 5,

co-authored by M. Kharrazi, H. T. Sencar and N. Memon, is a tutorial on

image steganography and steganalysis. It first introduces some general con-

cepts and ideas in the topic of steganography, with discussions on stegano-

graphic security and capacity. Then it focuses on image steganography and

steganalysis, reviewing recent techniques for embedding messages and de-

tecting presence of messages in images.

Finally, M. Hegland’s Chapter 6 is on the field of data mining. Large

amount of data sets are generated by day-to-day management in various

sectors such as business, finance, administration and social services. Origi-

nated from market basket analysis, association rules are currently one of the

most popular tools in data mining which is about extracting useful informa-

tion from these data sets. Chapter 6 gives a tutorial on the apriori algorithm

for efficient association rule discovery. It begins with fundamentals of as-

sociation rule discovery, and the mathematical model derived provides a

framework for the apriori algorithm. Then the apriori algorithm and sev-
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eral of its extensions are discussed in detail, giving much insight into this

important approach of data mining.

Say Song Goh

National University of Singapore, Singapore

Amos Ron

University of Wisconsin-Madison, USA

Zuowei Shen

National University of Singapore, Singapore
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SUBDIVISION ON ARBITRARY MESHES:

ALGORITHMS AND THEORY

Denis Zorin

New York University
719 Broadway, 12th Floor, New York, USA

E-mail: dzorin@mrl.nyu.edu

Subdivision surfaces have become a standard geometric modeling tool
for a variety of applications. This survey is an introduction to subdivision
algorithms for arbitrary meshes and related mathematical theory; we re-
view the most important subdivision schemes, the theory of smoothness
of subdivision surfaces, and known facts about approximation properties
of subdivision bases.

1. Introduction

This survey is based on a series of lectures presented at the IMS-IDR-

CWAIP Joint Workshop on Data Representation at the National University

of Singapore in August 2004.

Our primary goal is to present a brief introduction to the algorithms

and theory related to subdivision surfaces from basic facts about subdivi-

sion to more recent research developments. This tutorial is intended for a

broad audience of computer scientists and mathematicians. While not be-

ing comprehensive by any measure, it aims to provide an overview of what

the author considers the most important aspects of subdivision algorithms

and theory as well as provide references for further study.

A large variety of algorithms and a comprehensive theory exist for sub-

division schemes on regular grids, which are only briefly mentioned in this

survey. Subdivision on regular grids, being closely related to wavelet con-

structions, has an important applied role in many applications. However,

ability to handle arbitrary control meshes was one of the primary reasons for

the rapid increase in popularity of subdivision for computer graphics and

geometric modeling applications during the last decade. This motivates our

1
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focus on schemes designed for such meshes.

We start with a brief survey of applications of subdivision in computer

graphics and geometric modeling in Section 1. In Section 2, we introduce

the basic concepts for both curve and surface subdivision. In the third

section we review different types of subdivision rules focusing on the most

commonly used in practice (Loop and Catmull-Clark subdivision).

In contrast to the regular case, fewer general theoretical results and tools

are available for subdivision schemes on arbitrary meshes; in many aspects

the theory is somewhat behind the practice. The most important theoretical

results on smoothness and approximation properties of subdivision surfaces

are reviewed in Sections 5 and 6.

Sections 2–5 are partially based on the notes for the SIGGRAPH course

“Subdivision for Modeling and Animation” co-taught by the author in

1998-2000. There is a number of excellent books and review articles on

subdivision which the author highly recommends for further reading: the

monograph of Cavaretta et al. [11] on subdivision on regular grids, survey

articles by Dyn and Levin [18,19], the book by Warren and Weiner [81], the

articles by Sabin[67,66] and Schröder [71,72].

1.1. Subdivision in computer graphics and geometric

modeling

The idea of constructing smooth surfaces from arbitrary meshes using re-

cursive refinement was introduced in papers by Catmull and Clark [10] and

Doo and Sabin [17] in 1978. These papers built on subdivision algorithms

for regular control meshes, found in the spline literature, which can be

traced back to late 40s when G. de Rham used “corner cutting” to describe

smooth curves.

Wide adoption of subdivision techniques in computer graphics appli-

cations occurred in the mid-nineties: with an increase in complexity of

the models, the need to extend traditional NURBS-based tools became

apparent.

Constructing surfaces through subdivision elegantly addresses many is-

sues with which computer graphics and computer-aided design practitioners

are confronted. Most importantly, the need to handle control meshes of ar-

bitrary topology, while maintaining surface smoothness and visual quality

automatically. Subdivision surfaces easily admit multiresolution extensions,

thus enabling efficient hierarchical representations of complex surfaces.

At the same time, most popular subdivision schemes extend splines (and
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produce piecewise-polynomial surfaces for regular control meshes), thus

maintaining continuity with previously used representations and inheriting

some of the appealing qualities of splines. Another important advantage of

subdivision surfaces is that simple local modifications of subdivision rules

make it possible to introduce surface features of many different types [25,8].

Finally, subdivision surfaces can be extended to hierarchical representations

either of wavelet [47], pyramid type [92], or related displaced subdivision

surfaces [38].

Over the past few years, a number of crucial geometric algorithms were

developed for subdivision surfaces and subdivision-based multiresolution

representations. One of the important steps that enabled many practical

applications was development of direct evaluation methods [75], that made

it possible to evaluate, in constant time, recursively defined subdivision

surfaces at arbitrary points. Algorithms were developed for trimming [43],

performing boolean operations [7], filleting and blending [84,56], fitting [34],

computing surface volumes [58], lofting [53,54,55,69] and other operations.

Subdivision surfaces were demonstrated to be a useful tool for complex

interactive surface editing [36,92,9,30].

Subdivision surfaces became a mature technology, used in a variety of

applications. Examples of applications include representing and registering

complex range scan data [2], face modeling [74,44] and three dimensional

extensions of subdivision used in large-scale visualization [41,4].

As subdivision algorithms can be used to define bases on arbitrary mesh

domains, they are a natural candidate for higher-order finite element calcu-

lations for engineering applications, shell problems in particular. First steps

in this direction were made in [12,13]. Natural refinement structure of sub-

division surfaces leads to adaptive hierarchal finite element constructions

[35]. Subdivision-based mesh generation for FEM is explored in [39,40].

2. Basics

In this section we introduce the basic concepts of subdivision needed to

define various subdivision schemes considered in Section 3.

2.1. Subdivision curves

The goal of this section is to introduce the basic concepts using subdivision

curves as an example. The apparatus of subdivision matrices we introduce

is not essential for curves, as the same formulas can be obtained by other

means; however, it is indispensable for subdivision surfaces.
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Subdivision algorithm. We can summarize the basic idea of subdivision

as follows: subdivision defines a smooth curve or surface as the limit of

successive refinements of an initial sequence of control points.

In this section, to simplify exposition, we only consider curves defined

by infinite sequences of control points indexed by integers and only one type

of refinement: a new control point is added to the sequence between two old

control points and the positions of old points are recomputed (Figure 1).

Fig. 1. Subdivision steps for a cubic spline.

The numbering for the refined sequence is chosen so that the point i

in the original sequence has even number 2i in the new sequence. We use

notation pj for the sequence of control points after j subdivision steps.

The most general definition of a linear subdivision rule is that it is a

collection of linear maps Sj , mapping pj to pj+1. In this survey we consider

subdivision rules which satisfy two additional requirements: the rules are

stationary and have finite support.

More formally, for the type of one-dimensional refinement described

above, stationary subdivision rules can be specified by two sequences of

coefficients {ae
i , |i ∈ Z} and {ao

i |i ∈ Z} which are usually referred to as even

and odd masks. For a given sequence of control points p = (pi ∈ R
n, i ∈ Z),

a single subdivision step produces a new refined sequence p′ of control points

p′i, defined by

p′2i =
∑

j∈Z

ae
i−jpj

p′2i+1 =
∑

j∈Z

ao
i−jpj

(1)

For our choice of numbering, the even-numbered points correspond to the

repositioned original control points, and odd-numbered points are the newly

added points. For stationary subdivision, the linear map from pj to pj+1

does not depend on the level, i.e. there is a single linear operator S, such

that pj+1 = Spj .
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The rules have finite support if only a finite number of coefficients ao
i

and ae
i are nonzero. The set of indices for which the mask coefficients are

not zero is called mask support.

The most common subdivision scheme for uniform cubic B-splines

has masks with nonzero entries (1/8, 3/4, 1/8) with indices (−1, 0, 1) and

(1/2, 1/2) with indices (−1, 0), for even and odd control points respectively

(Figure 1).

We can view the initial control points p0 as values assigned to integer

points in R. It is natural to assign control points p1 to half-integers, and in

general control points pj to points of the form i/2j in R.

For each subdivision level j we then have a unique piecewise linear

function L[pj ], defined on R which interpolates the control points pj :

L(i/2j) = pj
i . We say that the subdivision scheme converges if for any ini-

tial control points p0, the associated sequence of piecewise linear functions

L[p(j)] converges pointwise.

In particular, for the cubic spline masks defined above, the limit curve

is a cubic polynomial on each integer interval [i, i+ 1]. The reason for this

is that this set of masks is derived from the well-known refinement relation

for uniform cubic B-splines:

B(t) =
1

8
(B(2t− 2) + 4B(2t− 1) + 6B(2t) + 4B(2t+ 1) +B(2t+ 2)) .

(2)

A cubic spline curve has the form
∑

i∈Z piB(t− i); applying the refine-

ment relation (2) to B(t− i) and collecting the terms, we obtain

∑

i∈Z

piB(t− i) =
∑

i∈Z

p′iB(2t− i)

with p′2i = (1/8)(pi−1+6pi +pi+1) and p′2i+1 = (1/2)(pi +pi+1), i.e. with p′i
defined by the subdivision rules stated above. We conclude that sequences

pi and p′i define the same spline curve. However, the refined control points

p′i correspond to scaled basis functions B(2t) with smaller support and are

spaced closer to each other. As we refine, we get control points for the same

cubic curve f(t) but split into shorter polynomial segments. One can show

the piecewise linear functions, connecting the control points, converge to

f(t) pointwise.

While spline subdivision is a starting point for many subdivision con-

structions, deriving subdivision masks from spline refinement is not essen-
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tial for obtaining convergent schemes or schemes producing smooth curves

or surfaces. For example, one can replace the (1/8, 3/4, 1/8) rule by three

perturbed coefficients 1/8− w, 3/4 + 2w, 1/8− w), and still maintain con-

vergence and tangent continuity of limit curves for sufficiently small w.

However, the limit curves for the modified rules in general cannot be ex-

pressed in closed form.

Modified coefficients are usually chosen to meet a set of requirements

necessary for desirable scheme behavior. The most basic requirement is

Affine invariance. If the points of sequence q are obtained by applying

an affine transformation T to points of p, then [Sq]i = T [Sp]i, i ∈ Z.

By considering translations by t, qi = pi + t, and substituting into the

subdivision rules 1, we immediately obtain that the coefficients of masks

should sum up to one:
∑

i∈Z

ae
i = 1,

∑

i∈Z

ao
i = 1.

In other words, the subdivision operator S should have a eigenvector with

constant components pi = 1, for all i, and eigenvalue 1. It can also be shown

this is necessary (but not sufficient) condition for convergence.

Subdivision matrices. As we have seen above, a subdivision step can

be represented by a linear operator acting on sequences. It is often useful

to consider local subdivision matrices of finite dimension. Such matrices

have an important role, both in practice and in theory, as they can be

used for limit control point positions and tangent vectors and analysis of

convergence and continuity. These local matrices are restrictions of the

infinite subdivision matrices to invariant neighborhoods of points.

Fix an integer i; then the invariant neighborhood Nm of size m for i

is the set of indices {i − m, . . . i + m}, such that the control points p1
j ,

j = 2i − m. . . 2i + m, can be computed using only points p0
i , for i ∈

Nm. The minimal size of the invariant neighborhood depends only on the

support of the masks. For example, the minimal size m for the cubic B-

spline subdivision rules is 1 because one can compute points p1
2i−1, p

1
2i and

p1
2i+1 given points p0

i−1, p
0
i and p0

i+1.

We often need to consider invariant neighborhoods of larger size, such

that the control points in the neighborhood define the curve completely on

some interval containing the point of interest. For cubic splines, a curve

segment, corresponding to an integer interval [i, i+1], requires four control

points. To obtain a part of the curve, containing i in the interior of its
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domain, we need to consider both [i − 1, i] and [i, i + 1] for a total of five

points, which correspond to the neighborhood of size 2.

1 2-1-2 0

-1 10

4
161

4

Fig. 2. In the case of cubic B-spline subdivision, the invariant neighborhood is of size 2.
It takes 5 control points at the coarsest level to determine the behavior of the subdivision
limit curve over the two segments adjacent to the origin. At each level, we need one more
control point on the outside of the interval t ∈ [−1, 1] in order to continue on to the next
subdivision level. 3 initial control points for example would not be enough.

The subdivision rules for computing five control points, centered at i,

on level j+1 from five control points, centered at i on level j can be written

as















pj+1
2i−2

pj+1
2i−1

pj+1
2i

pj+1
2i+1

pj+1
2i+2















=
1

8













1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1



























pj
i−2

pj
i−1

pj
i

pj
i+1

pj
i+2















.

The 5 by 5 matrix in this expression is the subdivision matrix. If the same

subdivision rules are used everywhere, this matrix does not depend on the

choice of i.

The eigenvalues and eigenvectors of the subdivision matrix allow one to

analyze how the control points in the invariant neighborhoods change from

level to level.

Suppose an n × n subdivision matrix is non-defective, i.e. has n inde-

pendent eigenvectors xi, i = 0, . . . n − 1. Then, any vector of initial con-

trol points p can be written as a linear combination of eigenvectors of the



July 27, 2007 5:50 WSPC/Lecture Notes Series: 9in x 6in chapter1

8 D. Zorin

matrix: p =
∑n

i=0 aixi. The coefficients ai can be computed using eigenvec-

tors as

ai = (li · p),

using the dual basis of left eigenvectors li, i = 0 . . . n−1, satisfying (xi ·lk) =

δik. In this form, the result of applying the subdivision matrix j times, i.e.

the control points on j-th subdivision level in the invariant neighborhood,

can be written as

Sjp =

n
∑

i=0

λjaixi (3)

where λi, i = 0 . . . n− 1, are the eigenvalues.

Limit positions. One can immediately observe that for convergence it is

necessary that all eigenvalues of the matrix have magnitudes no greater

than one. Furthermore, one can easily show that if there is more than

one eigenvalue of magnitude one, the scheme does not converge either.

At the same time, λ0 = 1 is an eigenvalue corresponding to eigenvector

[1, 1, . . . 1]. The reason is that multiplying S by this eigenvector is equivalent

to summing up the entries in each row, and by affine invariance, these entries

sum up to one.

Next, we observe that for i ≥ 1, |λi| < 1, all terms excluding the

first on the right-hand side of (3) vanish, leaving only the term a0x0 =

[a0, a0, . . . a0]. This means that in the limit, all points in the invariant neigh-

borhood approach a0, i.e. a0 is the value of the limit subdivision curve at

the center of the invariant neighborhood.

Tangent vectors. If we further assume that |λ1| > |λ2| and λ2 is real and

positive, consideration of the first two dominant terms in (3) makes it pos-

sible to compute the tangent to the curve under some additional conditions

on the subdivision scheme, which will be considered in Section 5 for surfaces.

Consider the vector of differences Sjp−a0x0 between all points in the invari-

ant neighborhood at level j and the center of the invariant neighborhood.

if we scale this vector by 1/λ1, it converges to a1x1 = [a1x
1
1, a1x

2
1, . . . a1x

n
1 ],

i.e. all limit difference vectors are collinear and parallel to a1. This suggests

(but does not guarantee without additional assumptions, which hold for

most common schemes) that a1 = (l1 · p) is a tangent vector to the curve.

The observations above show the left eigenvectors, corresponding to

the eigenvalue 1 and the second largest eigenvalue λ1, play a special role,
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defining the limit positions and tangents for a subdivision curve.

Example. The eigenvalues and eigenvectors of the subdivision matrix for

cubic splines are

(λ0, λ1, λ2, λ3, λ4) =

(

1,
1

2
,
1

4
,
1

8
,
1

8

)

(x0,x1,x2,x3,x4) =













1 −1 1 1 0

1 − 1
2

2
11 0 0

1 0 − 1
11 0 0

1 1
2

2
11 0 0

1 1 1 0 1













.

The left eigenvectors of eigenvalue 1 and subdominant eigenvalue 1/2 are

[0, 1/6, 2/3, 1/6, 0] and [0,−1, 0, 1, 0], which yield the formulas for the curve

point and tangent

a0 =
1

6
(pi−1 + 4pi + pi+1); a1 = pi+1 − pi−1,

which coincide with the formulas obtained by direct evaluation of cubic

B-spline curves.

2.2. Subdivision surfaces

Most of the concepts we have introduced for subdivision curves can be

extended to surfaces, but significant differences exist. While the control

points for a curve have a natural ordering, this is no longer true for arbitrary

meshes. Furthermore, for an arbitrary mesh, local mesh structure may vary:

e.g. a vertex can share an edge with an arbitrary number of neighbors,

rather than only one or two, as is the case for a curve and the polygonal

faces of the mesh which may have different numbers of sides. A finer mesh

can be obtained from a given coarser mesh in many different ways. Thus,

in the case of subdivision for meshes, one needs to define refinement rules,

which specify how the connectivity of the mesh is changed when it is refined,

and geometric rules, which specify the way the control point positions are

computed for the refined mesh.

Another important difference is that while the curves can always be

considered to be functions on a domain in R, there is no simple natural

domain for surfaces. To be able to define subdivision surfaces as a limit

of refinement, we need to construct a suitable domain out of the control
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mesh of the surface. We start with a specific example, the Loop subdivision

scheme, to motivate the formal constructions we need to introduce.

Refinement of triangular manifold meshes. This scheme uses trian-

gular manifold control meshes. Such control mesh consists of a complex K,

which is a triple (V,E, F ) of sets of vertices, edges and faces, and control

points p0, associated with each vertex in V . We use notation pj(v) for a

control point at refinement level j associated with vertex v. The sets of

vertices, edges and faces satisfy the following constraints:

• each edge is a pair of distinct vertices;

• each face is a set of three distinct vertices;

• each pair of vertices of a face is an edge;

• the intersection of two faces is either empty or an edge;

• each edge belongs to exactly two faces;

• the link of a vertex v (the set of edges of all faces containing v, ex-

cluding the edges that contain v themselves) can be ordered cycli-

cally such that each two sequential edges share a vertex.

Two complexes are isomorphic if between their vertices there is a one-to-one

map, which maps faces to faces and edges to edges.

Similarly to the curve case, we define neighborhoods on meshes. A 1-

neighborhood N1(v,K) of a vertex v is a set of faces, consisting of all

triangles, containing v. A 1-neighborhood N1(G,K) of a set of faces G

consists of all triangles of 1-neighborhoods of the vertices of G. An m-

neighborhood Nm(v,K) is defined recursively as 1-neighborhood of m− 1

neighborhood.

The most common refinement rule for such meshes is face quadrisection.

The new mesh is formed as follows: all old vertices are retained; a new vertex

is added for each edge, splitting it into two; each edge is replaced by two

new edges and each face by four new faces. One can easily see that all new

vertices inserted using this refinement rule have valence 6, and only the

vertices of the original mesh may have a different valence. The vertices of

valence 6 are called regular, and the vertices of other valences are called

extraordinary.

The Loop subdivision scheme. To define how the control points are

computed, we need to specify rules for updating the positions of existing

control points and for computing newly inserted control points.

These rules for the Loop subdivision scheme are shown in Figure 3. The

rule for a vertex, inserted on an edge e, uses the control points for two
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Fig. 3. Loop subdivision masks for new control points and updated positions of old
control points. Vertices, for which control points are computed, are marked with circles.

triangles sharing e:

pj+1(w) =
3

8
pj(v1) +

3

8
pj(v2) +

1

8
pj(v3) +

1

8
pj(v4),

where v1, v2 are edge endpoints, and v3 and v4 are the two remaining ver-

tices of triangles sharing e.

The rule for updating positions of existing vertices is actually a para-

metric family of rules, with coefficients depending on the valence k of the

vertex.

pj+1(v) = (1− kβ) + β
∑

vi∈N1(v)

pj(v)

where β can be taken to be 3/8k, for k > 3, and β = 1/16 for k = 3 (this

is the simplest choice of β different choices of β are possible).

If the mesh is fully regular, i.e. all vertices have valence 6, these rules

reduce to the subdivision rules for quartic box splines and can be derived

from scaling relations similar to (2).

We note that these rules only depend on the local structure of the

mesh, using only points within a fixed-size neighborhood of the point being

computed: if we measure the neighborhood size in the refined mesh, both

types of rules use level j control points, corresponding to vertices within

the 2-neighborhood at level j+ 1; this is the analog of finite support in the

curve case.

Furthermore, we observe that the rules depend only on the mesh struc-

ture of the 1-neighborhood of the vertex (specifically, the number of adja-

cent vertices), not on the subdivision level, or vertex numbering. This is the

analog of being stationary in the curve case. We will give a more precise

definition below.
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To reason about convergence of this scheme, we also need to define the

piecewise linear interpolants similar to L[pj ], defined for curves. Unfortu-

nately, there is no natural way to map the vertices of an arbitrary mesh

to points in the plane or some other standard domain, so one cannot use

a similar simple construction. For mesh subdivision to be able to define

the limit surfaces rigorously, we need to construct special domains for each

complex; subdivision surfaces are defined as functions on these domains.

Domains for subdivision surfaces. The simplest construction of the

domain for the subdivision surface requires an additional assumption. For

triangular meshes, the control points p0 in R
n can be used to define an

geometric realization of a complex. Each face of K (i.e. a triple of vertices

(u, v, w)) corresponds to the triangle in R
n, defined by three control points

(p0(u), p0(v), p0(w)). We additionally require that no two control points co-

incide, and for any two triangles in R
n, corresponding to faces of K, their

intersection is either a control point, a triangle edge, empty, or, informally,

the initial control mesh has no self-intersections. With this additional as-

sumption, one can use the initial mesh as the domain on which the linear

interpolants of control points at different levels of refinement are defined.

We denote this domain |K0|.
The initial control points p0 are already associated with the points in the

domain (the control points themselves). It remains to associate the control

points on finer levels with points on the initial mesh. This can be done

recursively. Suppose a vertex w of the refined complex Kj+1 is inserted

on the edge connecting vertices u and v of Kj . Suppose these vertices are

already associated with points t(u) and t(v) on |K0|, contained in the same

triangle T of |K0|. Then we associate w with the midpoint (1/2)(t(u)+t(v)),

which, by convexity, is also contained in the same triangle T . It is easy to

show that no two vertices can be assigned to the same point in the domain:

the points obtained after j refinement steps form a regular grid on each

triangle of |K0|.
Now we can define the piecewise linear interpolants, similar to the ones

used for curves. Fix a refinement level j and a triangle T of |K0|. The

vertices of Kj form a regular grid on T , with triangles corresponding to

faces of Kj . For points of |K0| inside each subtriangle (u, v, w) of T , we

define L[pj ] to be the linear interpolant between pj(u), pj(v) and pj(w).

In this way, we obtain a sequence of functions L[pj ] defined on |K0|;
the limit subdivision surface is a the pointwise limit of this sequence, if it

exists. Thus the subdivision surface is defined as a function on |K0| with

values in R
n.
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Stationary subdivision in 2D.The Loop subdivision scheme is an ex-

ample of a stationary subdivision scheme. More generally, for any complex

K and its refinements Kj , K0 = Kj , a linear subdivision scheme gives a

sequence of linear operators Sj(K), mapping control points for vertices V j

to control points for vertices V j+1. This means that for a given vertex w of

Kj+1,

pj+1(w) =
∑

v∈V

avwp
j(v) (4)

We say that a scheme is finitely supported if there is an M , such that for

any w and v 6∈ NM (w,Kj+1), avw = 0. The support suppw of the mask of

the scheme at w is the minimal subcomplex containing all vertices v of Kj

such that avw 6= 0. We say that the scheme is stationary or invariant, with

respect to isomorphisms, if the coefficients avw coincide for vertices, for

which supports are isomorphic. More precisely, if there is an isomorphism

ι : suppw1 → suppw2, and ι(w1) = w2 then aι(v)w2
= avw1

. The invariance

can be also defined with respect to a restricted set of isomorphisms, e.g. if

the mesh is tagged.

Subdivision matrices in 2D. The definition of invariant neighborhoods

and the construction of subdivision matrices for subdivision on meshes is

completely analogous to the curve case. However, the size of the matrix is

variable and depends on the number of points in the invariant neighbor-

hood. Another difference is related to the fact that invariant neighborhoods

may not exist for a finite number of initial subdivision levels, as the mesh

structure changes with each refinement. For a given neighborhood size m,

however, after a sufficient number of subdivision steps, each extraordinary

vertex v is surrounded by sufficiently many layers of regular vertices, and

m-neighborhoods of v on different subdivision levels are similar.

For example, for the Loop scheme, the invariant neighborhood size is

2. For a vertex of valence k, it contains 3k + 1 vertices. The subdivision

matrix has the following general form:









1− kβ aT
01 0 0

a10 A11 0 0

a20 A21 A22 0

a30 A32 A32 A33









,

where all vectors aij are of length k and have constant elements (a01 = β1,

a02 = (3/8)1, a02 = (1/8)1, a03 = (1/16)1. The blocks Aij are cyclic k× k,
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defined as follows,

A11 =
1

8
Cyclic(3, 1, 0, . . .0, 1),

A21 =
1

8
Cyclic(3, 3, 0 . . .0), A22 =

1

8
Cyclic(1, 0, . . . 0),

A31 =
1

16
Cyclic(10, 1, 0, . . .0, 1), A32 =

1

16
Cyclic(1, 0, . . . 0, 1),

A33 =
1

16
Cyclic(1, 0, . . . 0).

Limit positions and tangent vectors in 2D. The computation of the

limit positions for mesh subdivision scheme is the same as for curves: one

needs to compute the dot product of the left eigenvector of eigenvalue 1

with the vector of control points in the invariant neighborhood.

The computation of tangent vectors is slightly different. Instead of

a unique tangent vector, a smooth subdivision surface has at least two

nonuniquely defined independent tangent vectors spanning the tangent

plane. In the case of surfaces, we further assume that the eigenvalues of

the subdivision matrix satisfy 1 = |λ0| > |λ1| ≥ |λ2| > |λ3| and λ1,2 are

real. This is not necessary for tangent plane continuity, but this assumption

commonly holds and greatly simplifies the exposition. In this case, again

under some additional assumptions to be discussed in Section 5, one can

compute the tangent vectors to the surface using right eigenvectors l1 and

l2, corresponding to the eigenvalues λ1 and λ2.

For the Loop scheme, the masks for limit positions and tangent vectors

are quite simple: both have supports in the 1-neighborhood of a vertex.

The coefficients of the mask for the limit position, i.e. the entries of the left

eigenvector l0, have the same form as the vertex rule, with β replaced with

βlimit = 8β/(3 + 8kβ). The two tangent masks l1 and l2 can be chosen to

be cos 2πj/k and sin 2πj/k for the vertices of 1-neighborhood distinct from

the center indexed by j. The coefficient for the center itself is 0. This choice

is not unique: for the Loop scheme and most other commonly used schemes,

λ1 = λ2, and any linear combination c1l1 + c2l2 is also a left eigenvector.

3. Overview of Subdivision Schemes

In this section we review a number of stationary subdivision schemes gener-

ating C1-continuous surfaces on arbitrary meshes. Our discussion is not ex-

haustive even for stationary schemes. We discuss two most common schemes

(Loop and Catmull-Clark) and their variations in considerable detail, and
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briefly several examples of other types of schemes; more detailed informa-

tion on other schemes can be found in provided references.

3.1. Classification of subdivision schemes

Refinement rules. The variety of stationary subdivision schemes for sur-

faces is primarily due to the many possible ways to define refinement of

complexes. Several classifications of refinement rules (e.g. [27,1,24]) were

proposed; our discussion mostly follows [27].

Almost all refinement rules are extensions of refinement rules for peri-

odic tilings of the plane. The principal reason is there is an extensive theory

for analysis of subdivision on regular planar grids which can be used to ana-

lyze the surface, constructed from an arbitrary mesh everywhere excluding

a set of isolated points.

A single refinement step typically maps a tiling to a finer tiling, which

is obtained by scaling and optionally rotating the original tiling; however,

some schemes may alternate between different tiling types.

All known schemes with one exception are based on refinements of reg-

ular monohedral tilings, for which all tiles are regular polygons. The 4-8

scheme [80,79], originally formulated using a tiling with right triangles, can

be reformulated using regular quad tilings, i.e. it also fits into this category.

There are only three regular tilings: triangular, quadrilateral and hexag-

onal. Hexagonal tilings are rarely used, and stationary schemes for such

tilings were considered in detail only recently [14,85,57].

Once the tiling is fixed, there are still many ways to define how it is

refined, even if we require that the refined tiling is of the same type. Dodg-

son [15] lists a set of heuristics that are typically used to limit the variety of

possible refinement rules. Here we briefly review these heuristics and their

motivation.

1 Refinement of regular tilings is used. While other tiling types, such

as periodic (e.g. Laves or Archimedes tilings) or aperiodic (Penrose

tilings) can be considered, all schemes proposed so far meet this re-

quirement.

2/3 A refinement rule either maps all vertices of the original tiling to the

vertices of the refined tiling, or it maps them to the face centers of the

refined tiling. Again, it is possible to consider other types of rules, but

all known schemes are in one of these categories.

4 If a point is a center of rotational symmetry of order k in the tiling

(i.e. the rotations by 2πj/k around this vertex map the tiling to itself),
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then in the refined tiling, it should be a center of rotational symmetry

of at least the same order. If this requirement is not satisfied, one can

show that the result of refinement depends on the way the vertices

of a tiling are enumerated. Given the first 3 heuristics, this heuristic

excludes refinement rules, mapping triangle vertices to centers, and

hexagon centers to vertices.

5 For some number s, s times refined tiling is aligned with the original

tiling, i.e. is obtained by uniform scaling. This is also justified by sym-

metry considerations, although, as pointed out in [15] is not strictly

necessary. However, all schemes satisfying heuristic 7 in the stronger

form that we use also satisfy this heuristic.

6 Triangle and quadrilateral schemes are generally useful but hexahedral

schemes are more limited in their applications. One reason is that hex-

ahedral tiling does not contain any multiple-edge straight lines, which

can be used for meshes with boundaries and features.

7 Low arity (the ratio of the edge length of the refined tiling to the

original tiling) is preferable. According to [15] arities higher than four

are not likely to be useful. All practical and most known schemes, with

exception of three recently proposed schemes, have arity two or less. As

schemes of high arities result in very rapid decrease in the edge length,

which is often undesirable, it is likely that only schemes of arity two

or less will be used in applications.

These heuristics reduce the number of possible refinement rules to just

six: four for quadrilateral tilings and two for triangle tilings (Figure 4).

We note that classifications, based on considering various possible trans-

formations of tilings, do not yield an immediate recipe for refinement purely

in terms of mesh connectivity; generalization to arbitrary connectivity

meshes is not automatic either.

The remaining six refinement rules are uniquely identified by three pa-

rameters:

Tiling. The tile can be triangle or quadrilateral.

Vertex mapping. Vertices are mapped to vertices (primal) or vertices

are mapped to faces (dual). Dual triangle refinement are excluded by

heuristics 4.

Arity. For triangle tilings can be 2 or
√

3; for quad meshes can be 2

or
√

2.
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Fig. 4. Different refinement rules.

Each of the six refinement rules can be easily formulated in terms of

mesh connectivity in such a way that the refinement can be applied to an

arbitrary polygonal mesh. For ease of understanding, we provide a some-

what informal description. We only specify the set of new vertices and edges,

with faces defined implicitly as loops of edges. For primal rules, old vertices

are retained, and old edges are discarded. For dual rules, both old vertices

and edges are discarded. For each rule, we list how many different types of

geometric rules are necessary to construct a subdivision scheme for meshes

without boundaries. To handle meshes with boundaries, additional special

rules for boundary vertices are necessary.

While triangle-based refinement rules can be applied to any mesh,

known geometric rules for such schemes are only formulated for triangle

meshes.

Primal triangle rule (TP) of arity 2. This is the rule considered in

Section 2: create new vertices for each old edge and split each old edge

in two; for each old face connect new vertices inserted on edges of this

face sequentially. Two geometric rules are necessary: one to update

control points for old vertices (vertex rule) and another to compute

positions of new control points (edge rule).
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Primal triangle (TP) rule of arity
√

3. Create a new vertex for each

face; connect old vertices with new vertices for each old face containing

the old vertex; connect new vertices for adjacent old faces. Two similar

geometric rules (vertex and edge) are needed.

Primal quad rule (QP) of arity 2. Create new vertices for each old

edge and face; split old edges in two; for each old face, connect corre-

sponding new vertex with new vertices inserted on edges. Three geo-

metric rules are necessary: one for old vertices (vertex rule), one for new

vertices corresponding to edges (edge rule), and one for new vertices

corresponding to faces (face rule).

Primal quad rule (QP) of arity
√

2. Create a new vertex for each face;

connect old vertices to new vertices for all adjacent faces. Two geomet-

ric rules are necessary, similar to the TP rules, the edge rule, and the

face rule.

Dual quad rule (QD) of arity 2. For every face, create new vertices for

every corner of the face and connect them into a face; connect new

vertices corresponding to the same old vertex from adjacent faces. Only

one geometric rule is necessary.

Dual quad rule (QD) of arity
√

2. Add a new vertex for each edge; for

each face, connect new vertices on edges sequentially. Only one geo-

metric rule is necessary.

The general property of the triangle rules is that it does not increase

the number of non-triangular faces in the mesh. The general property of

the quad rules is that they do not increase the number of non-quadrilateral

faces. Moreover, both primal quad rules and the
√

3 triangle rule make all

faces of a mesh triangular after one refinement step.

Classification. For each refinement rule type, there may be many different

subdivision schemes depending on the choice of geometric rules. The geo-

metric rules can be further classified by two characteristics: whether they

are approximating or interpolating, and by their support size. Interpolating

schemes do not alter the control points at vertices, inherited from the pre-

vious refinement level; approximating schemes do. The distinction between

approximating and interpolating for schemes with arity no greater than two

makes sense only for primal schemes.

With this criteria in place, we can classify most known schemes; in most

cases, only one scheme of a given type is known. The reason for this is that

only schemes with small support are practical, and additional symmetry
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considerations considerably reduce the number of degrees of freedom in

coefficients. Maximizing smoothness of resulting surfaces on regular grids

further restricts the choices, in most cases yielding a known parametric

family of schemes.

The table below lists all schemes known to fit into our classification.

Refinement type Approximating Interpolating

TP, arity 2 Loop [45,25,8,46,62] Butterfly [21,91]

TP, arity
√

3
√

3,[33], composite
√

3 [57] interpolatory
√

3,[37]

QP, arity 2 Catmull-Clark [10] iterated [90,76] Kobbelt [31]

QP, arity
√

2 4-8 [80,79] interpolating
√

2 [26]

QD, arity 2 Doo-Sabin [16,17], iterated [90] —

QD, arity
√

2 Midedge [59,23] —

Polygonal meshes with boundaries. The minimal number of geometric

rules, ranging from one to three, is sufficient if we require the rules to be

invariant with respect to isomorphisms of mask supports and assume the

meshes do not have boundaries.

However, in practice it is not sufficient to consider only this class of

meshes: in any practical application, the control mesh may have a boundary.

Furthermore, the boundary may not be smooth everywhere: it may consist

of several smooth pieces, jointed at corners. The definition of meshes with

boundary is identical to the polygonal mesh definition in Section 2; the only

differences are that an edge can be contained only in one face, and the link

of a vertex is a chain of edges, with last vertex not connected to the first.

While a boundary edge or vertex is identified unambiguously, corner

vertices on the boundary require tags. It turns out that depending on the

type of corner (convex or concave); different rules need to be used, so at

least two different tags are needed.

We have already seen that subdivision schemes defined on triangular

meshes create new vertices only of valence 6 in the interior. On the bound-

ary, the newly created vertices have valence 4. Similarly, on quadrilateral

meshes both primal and dual schemes create only vertices of valence 4 in

the interior and 3 on the boundary. Hence, after several subdivision steps,

most vertices in a mesh will have one of these valences (6 in the interior, 4

on the boundary for triangular meshes, 4 in the interior, 3 on the bound-

ary for quadrilateral). The vertices with these valences are called regular,

and vertices of other valences are called extraordinary. Similarly, faces with
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3 and 4 vertices are called regular for triangle and quadrilateral schemes

respectively, and faces with a different number of vertices are called ex-

traordinary.

Next, we consider several examples of subdivision schemes. We start

with a detailed description of two schemes that are used in most appli-

cations: Loop and Catmull-Clark, which use TP and QP refinement rules

of arity 2. Then we consider examples of interpolating schemes (Butter-

fly), dual schemes (Doo-Sabin) and non-arity 2 schemes (Midedge and 4-8

subdivision).

3.2. Loop scheme

The Loop scheme for meshes without boundary was already described

in Section 2. The scheme is based on the three-directional box spline,

which produces C2-continuous surfaces on the regular meshes. The Loop

scheme produces surfaces which are C2-continuous everywhere except at

extraordinary vertices, where they are C1-continuous. C1-continuity of this

scheme for valences up to 100, including the boundary case, was proved by

Schweitzer [73]. The proof for all valences can be found in [87]. In addition

to already defined rules for interior vertices, it remains to specify rules for

vertices on or near the boundary. The rules we define here were proposed

in [8].

A common requirement for rules for boundary vertices is that the control

points on level j+1 should only depend on boundary control points on level

j. In the case of the Loop scheme, for compatibility with the regular case, we

use the standard cubic spline rules, both for edge points and vertex points

(Figure 5). If a vertex v is tagged as a corner vertex, a trivial interpolating

rule is used: pj+1(v) = pj(v).

Adding these rules formally completes the definition of the scheme for all

possible cases; unfortunately, this set of rules is insufficient to produce limit

surfaces which are C1 continuous at the extraordinary boundary vertices

or surfaces with concave corners on the boundary. To achieve this, spatial

edge rules are applied at edge points adjacent to extraordinary boundary

vertices.

For edge points, our algorithm consists of two stages, which, if desired,

can be merged, but are conceptually easier to understand separately.

The first stage is a single iteration over the mesh during which we apply

the vertex rules and compute initial control points for vertices inserted on

edges. All rules used at this stage are shown in Figures 3 and Figure 5. The

mask support is the same, but the coefficients are modified. The change in
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coefficient ensures that the surface is C1 for boundary vertices. However,

the scheme still cannot produce concave corners: The surface develops a

“flip” at these vertices; the reason for this, informally, is that the invariant

configuration defined by subdominant eigenvectors of subdivision matrix in

this case does not have a concave corner; rather, it has a convex one.

&

&

'�(*) '�(*)

'+(+, -�(�. '+(+, '+(+,

'+(+,

-�(*,
/10

0

Fig. 5.

The γ is given in terms of parameter θk, defined differently for corner

and boundary vertices:

γ (θk) = 1/2− 1/4 cosθk

For boundary vertices v not tagged as corners, we use θk = π/k, where

k is the number of polygons adjacent to v. For a vertex v tagged as a convex

corner, we use θk = α/k, where α < π, and for concave corner we choose

α > π. The parameter α can be either fixed (e.g. π/2 for convex and 3π/2

for concave) or can be chosen depending on the angle between the vectors

from p0(v) to adjacent boundary control points adjacent to v.

To ensure the correct behavior at the concave corner vertices, an addi-

tional step flatness modification is required which is defined as follows.

Flatness modification. To avoid the flip problem described above, one

needs to ensure that the eigenvalues corresponding to a pair of “correct”

eigenvectors, forming a concave corner, are subdominant. The following

simple technique proposed in [8] achieves this. We introduce a flatness pa-

rameter s and modify the subdivision rule to scale all eigenvalues except

λ0 and λ = λ1 = λ2, corresponding to the desired eigenvectors, by factor
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1− s. The vector of control points p after subdivision in a neighborhood of

a point is modified as follows:

pnew = (1− s) p+ s
(

a0x
0 + a1x

1 + a2x
2
)

,

where, as before, ai = (li · p), and 0 ≤ s ≤ 1. Geometrically, the modified

rule blends between control point positions before the flatness modification

and certain points in the tangent plane, which are typically close to the

projection of the original control point. The limit position a0 of the center

vertex remains unchanged.

The flatness modification is always applied at concave corner vertices;

the default values for the flatness parameter is s = 1 − (1/4)/λ3, where

λ3 = (1/4)(cosπ/k) − cos (θk)) + 1/2 (the largest eigenvalue 6= 1 of the

subdivision matrix before the modification). The modification ensures that

the surface is C1 in this case. In other cases, s can be taken to be 0 by

default.

The formulas for limit positions and tangents for all possible cases can

be found in [8].

3.3. Catmull-Clark scheme

The Catmull-Clark scheme [10] probably is the most widely used subdivi-

sion scheme. One of the reasons is it extends tensor-product bicubic B-spline

surfaces, the most commonly used type of spline surfaces. This scheme uses

the QP refinement rule with arity 2. It produces surfaces that are C2 ev-

erywhere, except at extraordinary vertices, where they are C1. The tangent

plane continuity of the scheme was analyzed in [5], and C1-continuity in

[60].

The masks are shown in Figure 6; for interior vertices, there are three

types of masks: for new vertices inserted at edges and faces and for update

of control points at old vertices.

If k = 4, the masks reduce to subdivision masks for bicubic B-splines.

Similar to the Loop scheme, cubic spline rules are applied at the boundary,

and at the corner boundary vertices, the trivial interpolating rule is used.

Again, just as is the case for the Loop scheme, the minimal set of rules re-

sults in surfaces which lack smoothness at extraordinary boundary vertices.

A similar technique is used for Catmull-Clark, with parameter γ computed

as

γ (θk) = 3/8− 1/4 cos θk.

The parameter θk is defined exactly in the same way as for the Loop scheme.
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Fig. 6. Catmull-Clark subdivision. Catmull and Clark suggest the following coefficients
for rules at extraordinary vertices: β1 = 3

2k
and β2 = 1

4k
.

Finally, a similar extra step is used to ensure correct behaviour at con-

cave corners:

pnew = (1− s) p+ s
(

a0x
0 + a1x

1 + a2x
2
)

.

The limit position and tangent vector coefficients are listed in [8].

The geometric rules of the Catmull-Clark scheme are defined above

for meshes with quadrilateral faces. Arbitrary polygonal meshes can be

reduced to a quadrilateral mesh using a more general form of Catmull-

Clark rules [10]:

• a face control point for an n-gon is computed as the average of the

corners of the polygon;
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• an edge control point is the average of the endpoints of the edge and

newly computed face control points of adjacent faces;

• the vertex rule can be chosen in different ways; the original formula is

pj+1(v) =
k − 2

k
pj(v) +

1

k2

k−1
∑

i=0

pj(vi) +
1

k2

k−1
∑

i=0

pj+1(vf
i )

where vi are the vertices adjacent to v on level j, and vf
i are face

vertices on level j + 1 corresponding to faces adjacent to v.

4. Modified Butterfly Scheme

The Butterfly scheme was proposed in [21]. Although the original Butterfly

scheme is defined for arbitrary triangular meshes, the limit surface is not

C1-continuous at extraordinary points of valence k = 3 and k > 7 [87]. The

scheme is C1 on regular meshes.

Unlike approximating schemes based on splines, this scheme does not

produce piecewise polynomial surfaces in the limit. In [91] a modification

of the Butterfly scheme was proposed, which guarantees that the scheme

produces C1-continuous surfaces for arbitrary meshes as proved in [87]. The

scheme is known to be C1 but not C2 on regular meshes. The masks for

the scheme are shown in Figure 7.

?�@BAC@BD ?�@�AC@EDF AC@ED F A�@BD

@�ABG

@�ABH @BA�H

@BA�G

?�@BAC@BD

?�@BAC@BD ?�@�A�@BD

?�@�A�@BD I�J
I�K

I�L MEJ
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O N
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O L P@�ABH @BA�H @�ABH @BA�H

@�AEQ?�@�ABG ?�@�A�G
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R ABG S�A�G
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Fig. 7. Modified Butterfly subdivision. The coefficients si are 1

k

(

1

4
+ cos 2iπ

k
+

1

2
cos 4iπ

k

)

for k > 5. For k = 3, s0 = 5

12
, s1,2 = −

1

12
; for k = 4, s0 = 3

8
, s2 = −

1

8
,

s1,3 = 0.
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Fig. 8. Tangent masks for regular vertices (Butterfly scheme).

The tangent vectors at extraordinary interior vertices can be computed

using the same rules as for the Loop scheme. For regular vertices, the for-

mulas are more complex: in this case, we have to use control points in a

2-neighborhood of a vertex. The masks are shown in Figure 8.

Because the scheme is interpolating, no formulas are needed to compute

the limit positions: all control points are on the surface. On the boundary,

the four point subdivision scheme is used [20]. To achieve C1-continuity on

the boundary, special coefficients have to be used.

Boundary rules. The rules extending the Butterfly scheme to meshes with

boundary are somewhat more complex, because the stencil of the Butterfly

scheme is relatively large. A complete set of rules for a mesh with boundary

(up to head-tail permutations), includes 7 types of rules: regular interior, ex-

traordinary interior, regular interior-boundary, regular boundary-boundary

1, regular boundary-boundary 2, boundary, and extraordinary boundary

neighbor; see Figures 7. To put it all into a system, the main cases can be

classified by the types of head and tail vertices of the edge on which we add

a new vertex. The following table shows how the type of rule to be applied

Head Tail Rule

regular interior regular interior standard rule
regular interior regular crease regular interior-crease
regular crease regular crease regular crease-crease 1 or 2
extraordinary interior extraordinary interior average two extraordinary rules
extraordinary interior extraordinary crease same
extraordinary crease extraordinary crease same
regular interior extraordinary interior interior extraordinary
regular interior extraordinary crease crease extraordinary
extraordinary interior regular crease interior extraordinary
regular crease extraordinary crease crease extraordinary
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for computing a non-boundary vertex is determined from the valence of the

adjacent vertices, and whether they are on the boundary or not. The only

case when additional information is necessary, is when both neighbors are

regular crease vertices.

The extraordinary crease rule (Figure 7) uses coefficients cij , j = 0 . . . k,

to compute the vertex number i in the ring, when counted from the bound-

ary. Let θk = π/k. The following formulas define cij :

c0 = 1− 1

k

(

sin θk sin iθk

1− cos θk

)

ci0 = −cik =
1

4
cos iθk −

1

4k

(

sin 2θk sin 2θki

cos θk − cos 2θk

)

cij =
1

k

(

sin iθk sin jθk +
1

2
sin 2iθk sin 2jθk

)

4.1. Doo-Sabin scheme

The Doo-Sabin subdivision is quite simple conceptually: a single mask is

sufficient to define the scheme. Special rules are required only for the bound-

aries, where the limit curve is a quadratic spline. It was observed by Doo

that this can also be achieved by replicating the boundary edge, i.e., creat-

ing a quadrilateral with two coinciding pairs of vertices. Nasri [52] describes

other ways of defining rules for boundaries. The rules for the Doo-Sabin

scheme are shown in Figure 9. C1-continuity for schemes similar to the

Doo-Sabin schemes was analyzed in [60].

α0

α1α2

α  ̀ − 1



acb[d e+b[d

Fig. 9. The Doo-Sabin subdivision. The coefficients are defined by the formulas α0 =
1/4 + 5/4k and αi = (3 + 2 cos(2iπ/k))/4k, for i = 1 . . . k − 1.
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4.2. Midedge scheme and other non-integer arity schemes

A scheme described in [59] is an arity
√

2 QD scheme; two steps of refine-

ment of this type result in Doo-Sabin type scheme.

The rules for the simplest version of this scheme are very straightfor-

ward: the point inserted on an edge is the average of the endpoints. While

the limit surface is smooth for this rule, the quality of the surface is not

good for extraordinary faces; the rules can be modified to improve surface

quality.

An example of a QP scheme of arity
√

2 is the 4-8 scheme [80,79]. While

originally defined in terms of 4-8 refinement, it can be easily reinterpreted

in terms of regular quadrilateral grid refinement as shown in Figure 10.

f�g�h f�g�h

f�g�h f�g�h i
j�k f�g�l�m

f�g�l�m
f�g�l�m

Fig. 10. The 4-8 subdivision scheme rules refinement. As the edges are not refined, only
face and vertex rules are necessary.

It should be noted that for quadrilateral schemes of non-integer arity;

there appears to be no natural treatment for the boundaries: as each quad

for the refined mesh has vertices from two quads sharing an edge, it is

impossible to construct quads in the same way on the boundary. One needs

to introduce special refinement rules on the boundary and corresponding

special geometric rules. A set of such rules is described in [80]. The rules

are quite complex (six different rules are needed), in contrast to the rules

for interior vertices.

On regular grids this scheme produces surfaces of high smoothness (C4)

despite its small support, but at extraordinary vertices, it is still only C1.

The first TP scheme of arity
√

3 was described in [33]; other schemes

were considered in [57].
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4.3. Comparison

We conclude our survey of subdivision schemes with some comparisons. For

sufficiently smooth and fine control meshes, the results for most common

schemes are indistinguishable visually. We use relatively simple meshes to

demonstrate the differences in clear form; for most meshes used in appli-

cations, the differences are less apparent. In our comparison, we consider

Loop, Catmull-Clark, Modified Butterfly and Doo-Sabin subdivision.

Figure 11 shows the surfaces obtained by subdividing a cube. Loop and

Catmull-Clark subdivision produce surfaces of higher visual quality, as these

schemes reduce to C2 splines on a regular mesh. As all faces of the cube are

quads, Catmull-Clark yields the nicest surface; the surface generated by the

Loop scheme is more asymmetric because the cube had to be triangulated

Loop Butterfly

Catmull-Clark Doo-Sabin

Fig. 11. Results of applying various subdivision schemes to the cube. For triangular
schemes (Loop and Butterfly) the cube was triangulated first.
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Loop Butterfly

Catmull-Clark Doo-Sabin

Fig. 12. Results of applying various subdivision schemes to a tetrahedron.

before the scheme is applied. At the same time, Doo-Sabin and Modified

Butterfly reproduce the shape of the cube more closely. The surface quality

is worst for the Modified Butterfly scheme, which interpolates the original

mesh. We observe that there is a tradeoff between interpolation and surface

quality: the closer the surface is to interpolating, the lower the surface

quality.

Figure 12 shows the results of subdividing a tetrahedron. Similar obser-

vations hold in this case. In addition, we observe extreme shrinking for the

Loop and Catmull-Clark subdivision schemes.

Overall, Loop and Catmull-Clark appear to be the best choices for most

applications, which do not require exact interpolation of the initial mesh.

The Catmull-Clark scheme is most appropriate for meshes with a significant

fraction of quadrilateral faces. It might not perform well on certain types
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Initial mesh Loop Catmull-Clark

Catmull-

Clark,after

triangulation

Fig. 13. Applying Loop and Catmull-Clark subdivision schemes to a model of a chess
rook. The initial mesh is shown on the left. Before the Loop scheme was applied, the
mesh was triangulated. Catmull-Clark was applied to the original quadrilateral model
and to the triangulated model; note the substantial difference in surface quality.

of meshes, most notably triangular meshes obtained by triangulation of a

quadrilateral mesh (see Figure 13). The Loop scheme performs reasonably

well on any triangular mesh, thus, when triangulation is not objectionable,

this scheme might be preferable.

More in-depth studies of subdivision surface behavior focusing on curva-

ture can be found in [68,61,29]. Ways to improve surface appearance using

coefficient tuning were explored in [6].

5. Smoothness of Subdivision Surfaces

In this section we review the theory of smoothness of surfaces generated

using stationary subdivision. Smoothness is the focus of most of the work in

theory of subdivision. The standard goal is to establish conditions on masks

of subdivision schemes that ensure that the limit surfaces, for almost all

configurations of control points, are in a smoothness class. Most commonly,

the classes Cr, for integer values of r are considered.

In the regular case, powerful analysis tools exist. (see e.g. a recent survey

[19] or the book [11] as well as [28] for further references). In most cases,

subdivision schemes for surfaces are constructed by generalizing relatively

simple schemes for regular grids, for which smoothness analysis is relatively

straightforward.

Due to locality of subdivision rules, this ensures surfaces are smooth
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away from isolated points, corresponding to vertices or face centers of the

initial meshes. To complete the analysis for arbitrary meshes, one needs to

analyze behaviour near such points; in this section we concentrate on this

topic.

To be able to formulate the criteria for surface smoothness, we precisely

define the limit subdivision surfaces and review tangent plane continuity

and Cr-continuous surfaces.

5.1. C
r-continuity and tangent plane continuity

There are many different equivalent or nearly equivalent ways to define Cr-

surfaces for integer r. A standard approach in differential geometry is to

define Cr manifolds, and then define Cr surfaces in R
n as Cr-continuous

immersions or embeddings of Cr manifolds. However, this approach is not

the most convenient for our purposes, as no a priori smooth structure exists

on the domain of subdivision surfaces. Thus, we take a somewhat different

but equivalent approach. We do not require a smooth structure and say that

a surface defined on a domain, for which only topological structure exists, is

Cr if there is a Cr-continuous local reparameterization for a neighborhood

of any point. More formally, we use the following definition.

Definition 1: A surface f : M → R
n, where M is a topological 2D

manifold, is Cr
-continuous, for r ≥ 1, if for every point x ∈ M there

exists an open neighborhood Ux in M of x, and a regular parameterization

π : D → f(Ux) of f(Ux) over an open unit disk D in the plane, A regular

parameterization π is one that is r-times continuously differentiable, one-

to-one, and has a Jacobi matrix of maximum rank, i.e. if (s, t) is a choice

of coordinates on D ∂sπ and ∂tπ for any choice of coordinates on D are

independent.

We call a subdivision scheme Cr continuous if for any complex K and

almost any choice of control points p for vertices of this complex, resulting

limit surfaces are Cr-continuous. In practice, however, it is difficult to prove

this for arbitrary complexes, and additional restrictions have to be imposed.

The condition that the Jacobi matrix of p has maximum rank is neces-

sary to make sure that there no degeneracies, i.e., f represents a surface,

not a curve or point.

In our constructions, it is useful to consider a weaker definition of sur-

face smoothness at a point. This definition captures the intuitive idea that

the tangent plane to a surface changes continuously, and is applicable only
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for an isolated point, i.e. we assume that the surface is Cr-continuous every-

where excluding a point. We first define a tangent plane continuous surface

in R
3. Note that if the surface is C1-continuous in R

3 in a neighborhood

of a point, there is a well-defined normal at that point given for a choice of

coordinates (s, t) by ∂sπ × ∂tπ.

Definition 2: A surface f : M → R
3 is tangent plane continuous at

x ∈M if and only if it is C1-continuous in a neighborhood of x, and there

exists a limit of normals at x.

An example of a surface which is tangent plane continuous but not

C1-continuous is (x = s2 − t2, y = 2st, z = s3).

We will also need the definition of tangent plane continuity in higher

dimensions; for n > 3, the appropriate generalization of the cross product is

the exterior (wedge) product, R
n ×R

n → R
n(n−1)/2; for two vectors v, w,

their product v∧w has components viwj−vjwi, 0 ≤ i < j ≤ n. The exterior

product is linear in each argument and antisymmetric ( v ∧ w = −w ∧ v).
From antisymmetry, it follows that v∧v = 0. For n = 3, the exterior product

is identical to the cross product. The exterior product v∧w defines a plane

in n dimensions spanned by vectors v and w just as normal v×w defines the

plane in 3D. In higher dimensions, the definition of tangent plane continuity

is identical to 3D, with exterior product ∂s ∧ ∂t considered instead of the

normal.

The following fact can be easily proved: if a surface is tangent plane

continuous at a point and the projection of the surface onto the tangent

plane at that point is one-to-one for a neighborhood of the point, the surface

is C1.

The definition of tangent plane continuity for a subdivision scheme is

similar to the definition of Cr-continuity.

5.2. Universal surfaces

We present an approach to establishing smoothness criteria for subdivision

schemes described in [88]. We do not derive the necessary and sufficient

conditions in full generality, as required algebraic machinery is relatively

complicated and obscures the main ideas. Instead, we derive conditions

similar to Reif’s originally proposed sufficient condition [63]. We use the

more general approach based on the universal surfaces over Reif’s original

derivation since in author’s view it provides better geometric intuition for

tangent plane continuity and C1 continuity. Most statements are presented
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without proof. For more complete analysis and proofs, we refer the reader

to [65,86,88].

It is intuitively clear that to verify that a subdivision scheme with

finitely supported masks produces smooth surfaces for almost all config-

urations of control points, it is sufficient to consider behavior of a part of

the surface on a 1-neighborhood of an extraordinary vertex v |N1(v)|. We

further assume that the control mesh for |N1(v)| contains a single extraor-

dinary vertex and is an invariant neighborhood. This is, in fact, a limiting

assumption; however, all known analysis techniques rely on this assump-

tion, as verification of smoothness of subdivision schemes in a more general

setting so far is not possible. This problem is discussed in greater detail in

[88].

In this restricted setting, we can regard a regular k-gon U centered at

zero in R
2, as the domain of the patch of the subdivision surface in which

we are interested. Let S be the subdivision matrix, and pj vectors of control

points for U at subdivision levels j, pj+1 = Spj . Let N be the number of

points in p. An important observation following from the construction of

the limit subdivision surface is that p1 = Sp is the vector of control points

for the scaled domain (1/2)U , and in general, pj = Sjp0 is the vector of

control points for (1/2j)U ; in other words, the limit function f [p] evaluated

on (1/2)U satisfies

f [p](y/2) = f [Sjp](y) (5)

Consider a basis e1, . . . eN ; then p =
∑

i piei. By linearity of subdivision,

we can write f [p] = f [
∑

i piei] =
∑

i pif [ei]. We introduce the map ψ :

U → R
N , defined as f = (f [e1], f [e2], . . . f [eN ]). This surface (the universal

surface)defined by this map is defined uniquely up to a nonsingular linear

transformation.

For any vector of control points p, we can regard the subdivision surface

f [p] as a linear map of the universal surface to three-dimensional space give

by

f [p](y) = (p · ψ(y))

It immediately follows from (5) that ψ satisfies

ψ(y/2) = STψ(y) (6)

Furthermore, we can verify by direct computation that the normal to

the subdivision surface f [p](y) at points y where it is f is differentiable can
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be computed as

∂1f [p]∧∂2f [p] = N(y) = ((py ∧ pz) · w(y), (pz ∧ px) · w(y), (px ∧ py) · w(y))

(7)

where w(y) = ∂1ψ(y)∧∂2ψ(y), i.e. the analog of the normal for the universal

surface. We also note that f is differentiable everywhere on U except at

edges of triangles of U . Furthermore, one-sided derivative limits exist at

edges, excluding the center of U , i.e. zero. One can show that using one-

sided limits of derivatives on either side of the edge yields the same vector

w(y), so it is defined everywhere.

This surface has the following important property.

Theorem 3: A subdivision scheme is tangent plane continuous (Cr) at

vertices of a given valence if and only if the universal surface for this valence

is tangent plane continuous, assuming that the universal surface is C1-

continuous away from zero. The universal surface is Cr-continuous if and

only if the subdivision scheme is Cr continuous.

This theorem allows us to replace analysis of all possible surfaces gener-

ated using a subdivision scheme with analysis of a single surface in higher-

dimensional space for each valence. The assumption of the theorem about

C1-continuity away from zero typically follows from the analysis of the

regular case and the characteristic map as explained below.

To analyze whether the universal surface is tangent plane continuous, we

need to look at the behavior of the vectors w(y) (the generalized normals)

as y → 0. For any linear transform A, Aw ∧ Av = (ΛA)(w ∧ v) defines

a natural extension of A to the space of exterior products. Thus, taking

derivatives and wedge products, we obtain

w(y/2) = ∂1ψ(y/2) ∧ ∂2ψ(y/2) = 4(ΛST )∂1ψ(y) ∧ ∂2ψ(y) = 4(ΛST )w(y)

(8)

i.e. the vector w(y) satisfies a scaling relation, but with a different matrix.

As a result, our problem is reduced to the following: under which condi-

tions does the direction of Ajw(y), where A = 4ΛST , converge to a unique

limit for j →∞ and for any choice of y?

5.3. Sufficient smoothness criteria

So far, our discussion has been completely general. Without any assump-

tions on the matrix S, the conditions for convergence to a unique limit can

be quite complex and require analysis of the Jordan normal form of the
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subdivision matrix. The main ideas can be easily understood if we consider

the special case when S satisfies the conditions of Section 2: the matrix has

a basis of eigenvectors, λ1 and λ2 are real positive, λ0 = 1 > λ1 ≥ λ2 > |λ3|,
if the eigenvalues are ordered by magnitude, and each is repeated once for

each of its eigenvectors.

In the case of such matrices, the matrix ΛS also has a simple structure.

First, we observe that if xi and xj are independent eigenvectors of S, with

eigenvalues λi and λj , then ΛS(xi ∧ xj) = Sxi ∧ Sxj = λiλjxi ∧ xj , i.e.

xi ∧ xj is an eigenvector with eigenvalue λiλj . There are N(N − 1)/2 such

eigenvectors, and these eigenvectors are independent. We conclude that ΛS

also has a complete system of eigenvectors, with eigenvalues equal to λiλj ,

with i < j.

This observation allows us to understand the behavior of Ajw(y). Sup-

pose w(y) =
∑

i αixi where xi are eigenvectors of A. Then, the direction

of Ajw(y) converges to the direction of xi, where xi is the eigenvector with

largest eigenvalue such that αi 6= 0.

We observe that we can define ψ =
∑

cifi, where fi = f [xi] is the

eigenbasis function corresponding to eigenvalue λi; in particular, by affine

invariance, f0 is a constant.

w(y) =
∑

i<j

(ci ∧ cj)(∂1fi∂2fj − ∂2fi∂1fj) =
∑

i<j

(ci ∧ cj)J [fi, fj ]

where J [fi, fj ] denotes the Jacobian of two functions.

We note that the terms corresponding to i = 0 vanish because f0 is a

constant. Thus, the largest eigenvalue which may have a nonzero term in

this decomposition is λ1λ2.

If we assume that for any y, J [fi, fj ](y) 6= 0, we see that the limit direc-

tion of Ajw(y) = w(y/2j) is always c1∧ c2, i.e. all these sequences converge

to the same limit. With more careful analysis, one can easily establish that

the limit is the same for any sequence w(yj), with yj → 0.

We obtain the following sufficient condition for tangent plane continuity:

Theorem 4: Suppose for a valence k, the subdivision matrix is non-

defective and has eigenvalues satisfying λ0 = 1 > λ1 ≥ λ2 > |λ3|, when

ordered in non-increasing order, each eigenvalue repeated according to its

multiplicity. Suppose the eigenbasis functions corresponding to eigenvalues

λ1 and λ2 satisfy J [f1, f2] 6= 0 everywhere on the regular k-gon U \ {0}.
Then, the scheme produces tangent plane continuous surfaces on U for

almost any choice of control points.
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The pair of functions (f1, f2) defines a map U → R
2. This planar map

is called the characteristic mapa.

This condition is not necessary, even given the assumptions on the

scheme: e.g. the Jacobian of f1 and f2 can be zero everywhere, but the

scheme can still be tangent plane continuous if e.g. the Jacobian of f1 and

f3 does not vanish. Theorem 4 is a weaker form of Reif’s criterion; note

that we do not obtain C1 continuity, only tangent plane continuity. How-

ever, we note that the stronger C1-continuity criterion immediately follows

from combining Theorem 4 with the observation from Section 5.1 that C1

continuity is equivalent to tangent plane continuity and injectivity of pro-

jection to the tangent plane.

We observe that in the coordinate system with basis vectors ci, the

projection of the universal surface to the tangent plane is equivalent to

simply discarding all components except f1 and f2; this projection is one-

to-one, if the map (f1, f2) : U → R
2 is one-to-one, i.e. the characteristic

map is injective. This yields the following criterion.

Corollary 5: (Reif ’s criterion) If the assumptions of Theorem 4 are satis-

fied, and in addition the characteristic map is injective, the scheme produces

C1-continuous surfaces on U for almost any choice of control points p.

Higher-order smoothness. The general conditions for higher order

smoothness have quite elaborate form and are beyond the scope of this tu-

torial. We only state a necessary and sufficient condition for C2-continuity,

which are of greatest practical relevance, for a limited class of schemes since

the conditions have simple and intuitive form:

Proposition 6: Suppose a scheme satisfies conditions of Corollary 5 and

has equal subdominant eigenvalues λ = λ1 = λ2. Then the scheme produces

C2 continuous surfaces if and only if for any eigenvalue µ 6= λ, µ 6= 1,

either |µ| < λ2 or µ = λ2, and the corresponding eigenbasis function is a

homogeneous quadratic function of f1 and f2.

This condition shows a serious limitation of stationary subdivision: the

simplest approach to constructing C2 schemes is to ensure that all non-

subdominant eigenvalues are sufficiently small. This can be easily achieved

aReif’s original definition is somewhat different: only the restriction of (f1, f2) to an
annular region around zero is included.
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by manipulation of coefficients, as was shown in [8,62], but results in sur-

faces, which have zero quadratic approximants at extraordinary vertices,

i.e. zero curvature. To obtain non-zero curvature, we need to satisfy a much

more difficult condition on the eigenbasis functions. In fact, it was demon-

strated in [64] that this is impossible to achieve for schemes based on low

degree splines.

6. Approximation Properties of Subdivision Surfaces

While smoothness of subdivision surfaces with arbitrary control meshes has

received a lot of attention, much less is known about approximation prop-

erties: to the best of our knowledge, there is a single published work on the

topic [3]. Given that subdivision bases for refined grids coincide with spline

surfaces almost everywhere, one would expect similar approximation be-

havior. However, available estimates do not fully confirm this. At the same

time, subdivision surfaces are used by many authors as a practical approx-

imation tool [48,42,70,77,50,2] with good results, which highlights the need

for more thorough theoretical exploration of this aspect of subdivision.

In this section we review the main concepts of approximation of surfaces

and state the estimates obtained in [3] as well as some results of [89].

6.1. Functional spaces on surfaces

A typical form of the approximation estimates for finite element and splines

spaces is

‖g − g̃‖Hs(Ω) < Cht−s‖g‖Ht(Ω),

where g ∈ Ht is the approximated function, g̃ is the best approximation (the

closest point from the approximating space), h is a parameter characterizing

the approximation space (e.g. element size for finite elements, or support

size of individual basis functions), andHs(Ω) andHt(Ω) are Sobolev spaces

on the domain Ω.

Our goal is to derive similar estimates for subdivision surfaces. The

task is complicated by the fact that the domains on which subdivision

bases are defined (polygonal complexes) do not have an intrinsic smoothness

structure, and it is impossible to define Sobolev spaces on these domains

without introducing such structure.

On the other hand, one can observe that subdivision itself can be used

to introduce a smoothness structure on the domain using the characteristic

maps. Before we explain the construction, we review the needed general
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concepts: Cr,1 manifolds and Sobolev spaces on these manifolds in the con-

text of polygonal complexes.

First, we recall the definition of spaces Hs(Ω) for an open domain Ω

in R
n. Consider a function f in C∞

0 (Ω), the space of compactly supported

smooth functions on Ω. For an integer s, define the seminorm |f |Hs(Ω) as the

Lp norm of the s-th differential of f on Ω (recall that the s-th differential is

a multilinear form in s variables with coefficients equal to partial derivatives

of total order s). The norm ‖f‖Hs(Ω) is defined as ‖f‖Lp(Ω) + |f |Hs(Ω).

A Cr,1 2D manifold structure on a subset M of Euclidean space is an

atlas, which is a collection of charts (χi,Ωi), χi : Ωi →M , and Ωi is an open

domain in R
2. Charts satisfy several conditions: (1) the union of χi(Ωi) is

M ; (2) the transition maps χ−1
j ◦ χi are of smoothness class Cr,1, i.e. of

r-times differentiable functions with Lipshitz r-th derivatives. We need to

consider Cr,1 smoothness structures, rather than simply Cr because they

allow us to construct a broader range of functional spaces on manifolds with

smoothness structure defined by subdivision.

Let ρi be a partition of unity subordinated to the atlas χi, that is, the

support of each ρi is contained in the range of χi (note that the support of

a function is defined to be the closure of the set where the function is not

zero, and therefore, the distance from supp ρi to ∂Ω is positive.) For a Cr,1

and s ≤ r + 1 function f : M → R define the norm

‖f‖Hs(Ωi) =
∑

i

‖(ρif) ◦ χi‖HsΩi

The space Hs(M) is the completion of Ck,1(M) with respect to this

norm. It is straightforward to show that the norms defined with respect to

different atlases or partitions of unity M are equivalent; thus, the definition

of the space Hs(M) does not depend on the atlas or the partition of unity.

The fact that f ◦ g is in Hs if f is in Hs and g is in Cs−1,1 is necessary to

prove invariance [51].

In this definition, the norm is not invariant with respect to the change

of atlas: while the spaces stay the same, the norms may change.

These definitions allow us to formulate approximation estimates for

bases defined on manifolds. It remains to define a sufficiently smooth struc-

ture on the domain of subdivision surfaces.

6.2. Manifold structure defined by subdivision

As in the previous section, we restrict our attention to TP schemes of arity

2, i.e. schemes similar to the Loop scheme.
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Suppose for regular grids a subdivision scheme yields functions which

are Cr,1, for example it is based on B-splines of degree r+ 1. We note that

these splines reproduce polynomials of degree r + 1, and therefore, have

approximation order r + 2 for functions from the space Hr+2.

We also assume that the characteristic map is regular, in the sense

defined in the previous section, and one-to-one. For each vertex v of a

complex K, consider the inverse of the composition of a piecewise linear

map from |N1(K)| to the regular k-gon Uk, with the characteristic map

Φk : Uk → R
2. We denote this map χv . We use the interior of images

Φk(Uk) as the domains of the charts, and χv as the chart maps for out

atlas.

One can easily show that for any two adjacent vertices v and w for any

interior point of |N1(v)| ∩ |N2(w)|, the composition χ−1
v ◦ χw is Cr,1, i.e.

the structure defined by these charts is Cr,1.

We conclude that for a scheme producing Cr,1-continuous surfaces for

regular control grid and with regular and one-to-one characteristic maps,

we can define smoothness spaces up to order k + 1 on arbitrary meshes.

This result is somewhat unsatisfactory as we cannot consider functions of

higher smoothness k+ 2, for which the scheme has the best approximation

rate in the regular case.

Now we can state the result obtained in [3].

Theorem 7: Consider bases defined by the Loop subdivision scheme on

complexes K0, K1, . . .Kj . . . , obtained by quadrisection refinement of the

initial complex K0 = K. Then, the C2,1 manifold structure and Sobolev

spacesHt(|K|) for t ≤ 3 are defined on |K| as described above, and the best

approximation f̃ by subdivision basis functions of a function f ∈ H t(|K|)
satisfies

‖f − f̃‖Hs(|K|) < Cλt−s
max‖f‖Ht(|K|)

for any s ≤ 2, where λmax is the maximal subdominant eigenvalue for all

valences of vertices in K.

Comparing with what is known for quartic box splines, on which Loop

scheme is based, we see that this statement is limiting in several ways. First,

the maximal exponent is 3 rather than 4; this is due to the limited smooth-

ness of the chosen manifold structure on |K|. The order of approximation is

further reduced by having to use λmax, which can be as high as 5/8 instead

of 1/2, as the scale parameter.
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Finally, the norm on the left-hand side can be at most H2. This is due

to the fact that the basis functions are C1, and therefore, are in H2 but

not higher smoothness spaces.

Given that the basis produced by subdivision almost everywhere co-

incides with the basis in the regular case, one expects that better esti-

mates should be possible. Indeed, one can show that by choosing a different

smoothness structure on |K|, one can obtain the following estimate [89]

‖f − f̃‖L2(|K|) < C(1/2)t‖f‖Ht(|K|)

for t ≤ 4. While exactly matching splines for L2 = H2 norms on the right-

hand side, the choice of smoothness structure results in the loss of estimates

for H1 and H2.

The optimal choice of structure for estimates of this type remains

open.

7. Conclusions

The survey we have presented is far from exhaustive. We did not discuss

many important theoretical and algorithmic topics related to stationary

subdivision on meshes. There are a few important extensions. Examples in-

clude variational subdivision [32] and PDE-based schemes [82,83,81], subdi-

vision schemes in higher dimensions [4,49] and schemes for arbitrary mesh

refinement [22]. Multiresolution surfaces based on subdivision were not con-

sidered either.

While there was a rapid progress in subdivision theory in the late 90s,

few questions were resolved conclusively. While smoothness criteria exist

and are well established, applying these criteria remains difficult, especially

for parametric families of subdivision schemes and requires extensive com-

putations. There are no criteria directly relating smoothness of limit sur-

faces to easy-to-verify conditions on mask coefficients; although, recent work

by Prautzsch and Umlauf [78] is a promising step in this direction. Analysis

approximation properties and fairness of limit surfaces is even further from

completion.

In contrast, an increasing number of applications use subdivision as

the surface representation of choice, and applications appear in other areas

(e.g. subdivision-based finite elements). We hope that the needs of practical

applications will encourage further theoretical advances.
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modeling, finite-element analysis, and engineering design for thin-shell struc-
tures using subdivision. Computer Aided Design, 34(2):137–48, 2002.

14. J. Claes, K. Beets, and F. Van Reeth. A corner-cutting scheme for hexagonal
subdivision surfaces. In Proceedings SMI. Shape Modeling International 2002,
pages 13–20. 2002. 17-22 May 2002.

15. N. A. Dodgson. An heuristic analysis of the classification of bivariate sub-
division schemes. Technical Report 611, University of Cambridge Computer
Laboratory, December 2004.

16. D. Doo. A subdivision algorithm for smoothing down irregularly shaped poly-
hedrons. In Proceedings on Interactive Techniques in Computer Aided Design,
pages 157–165, Bologna, 1978.

17. D. Doo and M. Sabin. Analysis of the behaviour of recursive division surfaces
near extraordinary points. Computer-Aided Design, 10(6):356–360, 1978.



July 27, 2007 5:50 WSPC/Lecture Notes Series: 9in x 6in chapter1

42 D. Zorin

18. N. Dyn and D. Levin. The subdivision experience. Wavelets, images, and
surface fitting (Chamonix-Mont-Blanc, 1993), pages 229–244, 1994.

19. N. Dyn and D. Levin. Subdivision schemes in geometric modelling. Acta
Numerica, 11:73–144, 2002.

20. N. Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision
scheme for curve design. Computer-Aided Geometric Design, 4(4):257–68,
1987.

21. N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for
surface interpolation with tension control. ACM Transactions on Graphics,
9(2):160–9, 1990.

22. I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing
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In these lectures we review a few high order accurate numerical meth-
ods for solving time dependent Hamilton-Jacobi equations. We will start
with a brief introduction of the Hamilton-Jacobi equations, the appear-
ance of singularities as discontinuities in the derivatives of their solutions
hence the necessity to introduce the concept of viscosity solutions, and
first order monotone numerical schemes on structured and unstructured
meshes to approximate such viscosity solutions, which can be proven
convergent with error estimates. We then move on to discuss high order
accurate methods which are based on the first order monotone schemes
as building blocks. We describe the Essentially Non-Oscillatory (ENO)
and Weighted Essentially Non-Oscillatory (WENO) schemes for struc-
tured meshes, and WENO schemes and Discontinuous Galerkin (DG)
schemes for unstructured meshes.

1. Introduction and Properties of Hamilton-Jacobi

Equations

In these lectures we review high order accurate numerical methods for solv-

ing time dependent Hamilton-Jacobi equations

ϕt +H(ϕx1
, ..., ϕxd

) = 0, ϕ(x, 0) = ϕ0(x), (1)

where H is a (usually nonlinear) function which is at least Lipschitz con-

tinuous. H could also depend on ϕ, x and t in some applications, however

the main difficulty for numerical solutions is the nonlinear dependency of

H on the gradient of ϕ.

Hamilton-Jacobi equations appear often in many applications. One im-

portant application of Hamilton-Jacobi equations is the area of image pro-

cessing and computer vision, which is the main theme of this program at

47
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the Institute for Mathematical Sciences (IMS) of the National University

of Singapore. Other application areas include, e.g. control and differential

games.

It is easy to verify that global C1 solution does not exist for (1) in

the generic situation, regardless of the smoothness of the initial condition

ϕ0(x). Singularities in the form of discontinuities in the derivatives of ϕ

would appear at a finite time in most situations, thus the solutions would be

Lipschitz continuous but no longer C1. This could be verified, at least in the

one dimensional case, by observing the equivalence between the Hamilton-

Jacobi equation

ϕt +H(ϕx) = 0, ϕ(x, 0) = ϕ0(x) (2)

and the hyperbolic conservation law

ut +H(u)x = 0, u(x, 0) = u0(x) (3)

if we identify u = ϕx. Singularities for the conservation law (3) are in the

form of discontinuities in the solution u, thus u is bounded, with a bounded

total variation, but is not continuous. The study of singularities for (3) can

be performed using characteristics, see for example [23,39,25]. Such results

can be directly translated to that for the Hamilton-Jacobi equation (2) by

integrating u once. Discontinuities in u then become discontinuities for the

derivative of ϕ.

This lack of global smoothness of the solution ϕ in (1) makes it nec-

essary to define a “weak” solution for the PDE (1), that is, a solution ϕ

which may not satisfy the PDE (1) pointwise at every point. In particular,

we would only require that ϕ satisfies the PDE (1) at any point where ϕ

has continuous first derivatives. At those points where the first derivatives

of ϕ are not continuous, a different requirement is needed for the solu-

tion ϕ to be an acceptable weak solution. For the hyperbolic conservation

law (3), the requirements at the discontinuities of u include the so-called

Rankine-Hugoniot jump condition, which relates the moving speed of the

discontinuity with its strength and is derived from an integral version of

the PDE (3), and an entropy condition which singles out a unique, physi-

cally relevant weak solution from many candidates. For the Hamilton-Jacobi

equation (2) or in general (1), the requirements at the discontinuities of the

derivatives of ϕ are characterized by certain inequalities which single out

the unique, physically relevant “viscosity solution” of the Hamilton-Jacobi

equation. To be more precise, ϕ is called a viscosity sub-solution of (1) if,

for any smooth function ψ, at each local maximum point (x̄, t̄) of ϕ − ψ,
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we have the inequality

ψt(x̄, t̄) +H(ψx1
(x̄, t̄), ..., ψxd

(x̄, t̄)) ≤ 0.

Similarly, ϕ is called a viscosity super-solution of (1) if, for any smooth

function ψ, at each local minimum point (x̄, t̄) of ϕ − ψ, we have the in-

equality

ψt(x̄, t̄) +H(ψx1
(x̄, t̄), ..., ψxd

(x̄, t̄)) ≥ 0.

ψ is called the viscosity solution to (1) if it is both a viscosity sub-solution

and a viscosity super-solution of (1). For more details, see for example [13].

For the purpose of numerical approximations to the Hamilton-Jacobi

equation (1), we would need to pay special attention to the following prop-

erties of its viscosity solution ϕ:

• The viscosity solution ϕ may contain discontinuous derivatives. In

applications, most solutions we encounter are piecewise smooth.

• The weak solution ϕ may not be unique. There are extra require-

ments at the discontinuities of the derivatives of ϕ to make it the

unique, physically relevant viscosity solution.

For simplicity of notations we shall mostly concentrate on the two di-

mensional case, namely d = 2 in (1). In this case we will use x, y instead

of x1 and x2. The equation (1) is then rewritten as

ϕt +H(ϕx, ϕy) = 0, ϕ(x, y, 0) = ϕ0(x, y). (4)

2. First Order Monotone Schemes

In this section we will briefly describe first order monotone schemes for

solving the Hamilton-Jacobi equation (4), both on structured meshes and

on unstructured meshes. These first order monotone schemes will be used

as building blocks for high order schemes to be described in the following

sections.

2.1. Monotone schemes on structured rectangular meshes

We first consider monotone schemes on structured rectangular meshes. For

simplicity of notations we will assume that the mesh is uniform in x and

y. This simplification is not essential: all of the discussions below can be

applied to non-uniform Cartesian meshes with obvious modifications. We
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denote by ∆x and ∆y the mesh sizes in x and y respectively, and de-

note by ϕi,j the numerical approximation to the viscosity solution of (4),

ϕ(xi, yj , t) = ϕ(i∆x, j∆y, t). We also use the standard notations

∆x
±ϕi,j = ± (ϕi±1,j − ϕi,j) , ∆

y
±ϕi,j = ± (ϕi,j±1 − ϕi,j) .

First order monotone schemes [14] are defined as schemes of the form

d

dt
ϕi,j = −Ĥ

(

∆x
−ϕi,j

∆x
,

∆x
+ϕi,j

∆x
;

∆
y
−ϕi,j

∆y
,

∆
y
+ϕi,j

∆y

)

(5)

where Ĥ is called a numerical Hamiltonian, which is a Lipschitz continuous

function of all four arguments and is consistent with the Hamiltonian H in

the PDE (4):

Ĥ(u, u; v, v) = H(u, v).

A monotone numerical Hamiltonian Ĥ is one which is monotonically

non-decreasing in the first and third arguments and monotonically non-

increasing in the other two. This can be symbolically represented as

Ĥ ( ↑, ↓; ↑, ↓ ) .

The scheme (5) with a monotone numerical Hamiltonian is called a mono-

tone scheme. We give here the semi-discrete (continuous in time) form of

the monotone scheme. The fully discrete scheme can be obtained by using

forward Euler in time. It is also called a monotone scheme.

It is proven in [14] that monotone schemes have the following favorable

properties:

• Monotone schemes are stable in the L∞ norm;

• Monotone schemes are convergent to the viscosity solution of (4);

• The error between the numerical solution of a monotone scheme

and the exact viscosity solution of (4), measured in the L∞ norm,

is at least half order O(
√

∆x).

The low half order error estimate is not a particular concern for viscosity

solutions containing kinks (discontinuities in the first derivatives). In fact,

it can be shown that for many cases, this half order error estimate is op-

timal. However, it is an unfortunate fact that monotone schemes cannot

be higher than first order accurate for smooth solutions. This is indeed a

serious concern, as we would hope the scheme to be high order accurate for

smooth solutions, or in smooth regions of non-smooth solutions. Monotone

schemes would not be able to achieve this.
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The importance of monotone schemes is that they are often used as

building blocks for high order schemes. All the high order schemes dis-

cussed in these lectures are built upon first order monotone schemes. Thus

it is important to know a few typical monotone schemes and their relative

merits.

The simplest monotone flux is the Lax-Friedrichs flux [14,32]:

ĤLF
(

u−, u+; v−, v+
)

= H

(

u− + u+

2
,
v− + v+

2

)

−1

2
αx

(

u+ − u−
)

− 1

2
αy

(

v+ − v−
)

(6)

where

αx = max
A≤u≤B

C≤v≤D

|H1(u, v)| , αy = max
A≤u≤B

C≤v≤D

|H2(u, v)| . (7)

Here Hi(u, v) is the partial derivative of H with respect to the i-th argu-

ment, or the Lipschitz constant of H with respect to the i-th argument. It

can be easily shown that ĤLF is monotone for A ≤ u ≤ B and C ≤ v ≤ D.

Another slightly different Lax-Friedrichs flux is

ĤLF
(

u−, u+; v−, v+
)

=
1

4

(

H(u−, v−) +H(u+, v−) +H(u−, v+)+

H(u+, v+)
)

− 1

2
αx

(

u+ − u−
)

− 1

2
αy

(

v+ − v−
)

(8)

where αx and αy are chosen the same way as before by (7). This flux is also

monotone for A ≤ u ≤ B and C ≤ v ≤ D.

The Godunov type monotone flux is defined as [5]:

ĤG
(

u−, u+; v−, v+
)

= extu∈I(u−,u+) extv∈I(v−,v+) H(u, v) (9)

where

I(a, b) = [min(a, b),max(a, b)]

and the function ext is defined by

extu∈I(a,b) =

{

mina≤u≤b if a ≤ b,
maxb≤u≤a if a > b.

As pointed out in [5], since in general

min
u

max
v

H(u, v) 6= max
v

min
u
H(u, v),

we will generally obtain different versions of the Godunov type fluxes ĤG

by changing the order of the min and the max.
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The local Lax-Friedrichs flux is defined as

ĤLLF
(

u−, u+; v−, v+
)

= H

(

u− + u+

2
,
v− + v+

2

)

−1

2
αx(u−, u+)

(

u+ − u−
)

− 1

2
αy(v−, v+)

(

v+ − v−
)

(10)

where

αx(u−, u+) = max
u∈I(u−,u+)

C≤v≤D

|H1(u, v)| ,

αy(v−, v+) = max
A≤u≤B

v∈I(v− ,v+)

|H2(u, v)| . (11)

It is proven in [32] that the local Lax-Friedrichs flux ĤLLF is monotone

for A ≤ u ≤ B and C ≤ v ≤ D. The local Lax-Friedrichs flux ĤLLF has

smaller dissipation than the (global) Lax-Friedrichs flux ĤLF .

It would seem that a more local Lax-Friedrichs flux could be

ĤLLLF
(

u−, u+; v−, v+
)

= H

(

u− + u+

2
,
v− + v+

2

)

−1

2
αx(u−, u+; v−, v+)

(

u+ − u−
)

− 1

2
αy(u−, u+; v−, v+)

(

v+ − v−
)

where

αx(u−, u+; v−, v+) = max
u∈I(u−,u+)

v∈I(v− ,v+)

|H1(u, v)| ,

αy(u−, u+; v−, v+) = max
u∈I(u−,u+)

v∈I(v− ,v+)

|H2(u, v)| .

This would be easier to compute and also would have even smaller dissipa-

tion than the local Lax-Friedrichs flux ĤLLF defined in (7). Unfortunately,

it is shown in [32] that ĤLLLF is not a monotone flux.

Another very useful monotone flux is the Roe flux with entropy fix [32]:

ĤRF
(

u−, u+; v−, v+
)

=






















H(u∗, v∗) Case 1;

H
(

u−+u+

2 , v∗
)

− 1
2α

x(u−, u+) (u+ − u−) Case 2;

H
(

u∗, v
−+v+

2

)

− 1
2α

y(v−, v+) (v+ − v−) Case 3;

ĤLLF (u−, u+; v−, v+) Case 4.

(12)

where Case 1 refers to the situation when H1(u, v) and H2(u, v) do not

change signs in the region u ∈ I(u−, u+) and v ∈ I(v−, v+); Case 2 refers

to the remaining situations and when H2(u, v) does not change sign in the
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region A ≤ u ≤ B and v ∈ I(v−, v+); Case 3 refers to the remaining situa-

tions and when H1(u, v) does not change sign in the region u ∈ I(u−, u+)

and C ≤ v ≤ D; and finally Case 4 refers to all remaining situations. Here

u∗ and v∗ are defined by upwinding

u∗ =

{

u−, if H1(u, v) ≥ 0;

u+, if H1(u, v) ≤ 0;
v∗ =

{

v−, if H2(u, v) ≥ 0;

v+, if H2(u, v) ≤ 0.

This Roe flux with local Lax-Friedrichs entropy fix is easy to code and

has almost as small a numerical viscosity as the (much more complicated)

Godunov flux, hence it is quite popular.

All the monotone fluxes considered above apply to a general Hamilto-

nian H . There are also simple monotone fluxes which apply to H of certain

specific forms. The most noticeable example is the Osher-Sethian flux [31],

which applies to Hamiltonians of the form H(u, v) = f(u2, v2) where f is a

monotone function of each argument:

ĤOS
(

u−, u+, v−, v+
)

= f(ū2, v̄2) (13)

where ū2 and v̄2 are implemented by

ū2 =

{

(min(u−, 0))2 + (max(u+, 0))2, if f( ↓ , · )
(min(u+, 0))2 + (max(u−, 0))2, if f( ↑ , · )

v̄2 =

{

(min(v−, 0))2 + (max(v+, 0))2, if f( · , ↓ )

(min(v+, 0))2 + (max(v−, 0))2, if f( · , ↑ ) .

This numerical Hamiltonian is purely upwind and easy to program, hence it

should be used whenever possible. However, we should point out that not all

HamiltoniansH can be written in the form f(u2, v2) with a monotone f . For

example, H(u, v) =
√
au2 + cv2 is of this form for constants a and c, hence

we can use the Osher-Sethian flux for it, but H(u, v) =
√
au2 + 2buv + cv2

is not of this form, hence Osher-Sethian flux does not apply and we must

program a Godunov type monotone flux if we would like a purely upwind

flux.

2.2. Monotone schemes on unstructured meshes

In many situations it is more convenient and efficient to use an unstructured

mesh rather than a structured one described in the previous section. We can

similarly define the concept of monotone schemes on unstructured meshes,

which again serve as building stones for higher order schemes. In this section

we only present the Lax-Friedrichs type monotone scheme on unstructured
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meshes of Abgrall [2]. Other monotone schemes can also be defined on

unstructured meshes.

The equation (4) is solved in a general domain Ω, which has a trian-

gulation Th consisting of triangles. The nodes are named by their indices

0 ≤ i ≤ N , with a total of N + 1 nodes. For every node i, we define the

ki+1 angular sectors T0, · · · , Tki
meeting at the point i; they are the inner

angles at node i of the triangles having i as a vertex. The indexing of the

angular sectors is ordered counterclockwise. ~nl+ 1

2

is the unit vector of the

half-line Dl+ 1

2

= Tl
⋂

Tl+1, and θl is the inner angle of sector Tl, 0 ≤ l ≤ ki;
see Figure 1.

i

Tl+1

Tl

Tl−1

nl+1/2

θl

Fig. 1. Node i and its angular sectors.

We denote by ϕi the numerical approximation to the viscosity solution

of (4) at node i. (∇ϕ)0, · · · , (∇ϕ)ki
will respectively represent the numerical

approximation of ∇ϕ at node i in each angular sector T0, · · · , Tki
.

The Lax-Friedrichs type monotone Hamiltonian for arbitrary triangu-

lations developed by Abgrall in [2] is a generalization of the Lax-Friedrichs

monotone Hamiltonian for Cartesian meshes described in the previous sec-
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tion. This monotone Hamiltonian is given by

Ĥ((∇ϕ)0, · · · , (∇ϕ)ki
) = H











ki
∑

l=0

θl(∇ϕ)l

2π











−α
π

ki
∑

l=0

βl+ 1

2

(

(∇ϕ)l + (∇ϕ)l+1

2

)

· ~nl+ 1

2

(14)

where

βl+ 1

2

= tan

(

θl
2

)

+ tan

(

θl+1

2

)

α = max{ max
A≤u≤B

C≤v≤D

|H1(u, v)|, max
A≤u≤B

C≤v≤D

|H2(u, v)|}.

Here H1 and H2 are again the partial derivatives of H with respect to

ϕx and ϕy, respectively, or the Lipschitz constants of H with respect to

ϕx and ϕy, if H is not differentiable. [A,B] is the value range for (ϕx)l,

and [C,D] is the value range for (ϕy)l, over 0 ≤ l ≤ ki for the local Lax-

Friedrichs Hamiltonian, and over 0 ≤ l ≤ ki and 0 ≤ i ≤ N for the global

Lax-Friedrichs Hamiltonian.

The Ĥ in (14) defines a monotone Hamiltonian. It is Lipschitz contin-

uous in all arguments and is consistent with H , i.e., Ĥ(∇ϕ, · · · ,∇ϕ) =

H(∇ϕ). It is proven in [2] that the numerical solution of the monotone

scheme using this numerical Hamiltonian converges to the viscosity solu-

tion of (4), with the same half order convergence rate in the L∞ norm for

regular triangulations, namely for such triangulations where the ratio be-

tween the radii of the smallest circle outside a triangle and the largest circle

inside the triangle stays bounded during mesh refinement.

3. High Order ENO and WENO Schemes on Structured

Rectangular Meshes

In this section we describe the high order ENO (essentially non-oscillatory)

and WENO (weighted ENO) schemes on structured rectangular meshes for

solving the two dimensional Hamilton-Jacobi equations (4). Schemes for

higher spatial dimensions are similar. We will only consider spatial dis-

cretizations in this section. Time discretization will be described in section

6.

We first explain the meaning of “high order” when the solution contains

possible discontinuities for its derivatives. In such situations high order
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accuracy refers to a formal high order truncation error in smooth regions

of the solution. Thus in general we can only expect high order accuracy in

smooth regions away from derivative singularities. However, typically high

order methods also have a sharper resolution for the derivative singularities.

Thus high order methods are also referred to as “high resolution” schemes,

especially when applied to conservation laws.

3.1. High order ENO schemes

High order ENO schemes for solving Hamilton-Jacobi equations were de-

veloped in [31] for the second order case and in [32] for the more general

cases, based on ENO schemes for solving conservations laws [17,37,38]. We

refer to the lecture notes of Shu [36] for more details of ENO and WENO

schemes.

The key idea of ENO schemes is an adaptive stencil interpolation proce-

dure, which automatically obtains information from the locally smoothest

region, and hence yields a uniformly high-order essentially non-oscillatory

approximation for piecewise smooth functions.

We first summarize the ENO interpolation procedure, which is used for

building ENO schemes to solve the Hamilton-Jacobi equations (4). Given

point values f(xj), j = 0,±1,±2, ... of a (usually piecewise smooth) func-

tion f(x) at discrete nodes xj , we associate an r-th degree polynomial

P f,rj+1/2(x) with each interval [xj , xj+1], constructed inductively as follows:

(1) We start with a first degree polynomial interpolating at the two bound-

ary nodes of the target interval [xj , xj+1] and denote the left-most point

in its stencil by k1
min:

P f,1j+1/2(x) = f [xj ] + f [xj , xj+1](x− xj), k1
min = j;

(2) If km−1
min and P f,m−1

j+1/2 (x) are both defined, then let

a(m) = f [xkm−1

min

, ..., xkm−1

min
+m], b(m) = f [xkm−1

min
−1, ..., xkm−1

min
+m−1],

and

(a) If |a(m)| ≥ b(m), then c(m) = b(m), kmmin = km−1
min − 1; otherwise

c(m) = a(m), kmmin = km−1
min ,

(b) The ENO polynomial of the next higher degree is defined by

P f,mj+1/2(x) = P f,m−1
j+1/2 (x) + c(m)

km−1

min
+m−1

∏

i=km−1

min

(x− xi).
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In the procedure above, f [ · , · · · , · ] are the standard Newton divided dif-

ferences defined inductively as

f [xi] = f(xi); f [xi, ..., xi+m] =
f [xi+1, ..., xi+m]− f [xi, ..., xi+m−1]

xi+m − xi
.

Note that we start from the first degree polynomial P f,1 with a stencil

of two points, which would generate a first order monotone scheme in the

procedure below.

Clearly, the ENO interpolation procedure starts with a base stencil con-

taining 2 grid points, then adaptively adds one point to the stencil at each

stage, which is either the left neighboring point or the right neighboring

point to the current stencil depending on which would yield a smaller (in

magnitude) divided difference together with points in the current stencil.

It can be shown that this ENO interpolation procedure can generate

high order approximation yet avoids spurious oscillations, in the sense of

yielding a total variation of the interpolant being at most O(∆xr) larger

than the total variation of the piecewise smooth function f(x) being inter-

polated. Thus the ENO procedure is especially suited for problems with

singular but piecewise smooth solutions, such as solutions to conservation

laws or Hamilton-Jacobi equations.

High order ENO schemes use monotone fluxes described in section 2.1

as building blocks and the ENO interpolation procedure described above to

compute high order approximations to the left and right derivatives. The

algorithm can be summarized as follows:

(1) At any node (xi, yj), fix j to compute along the x-direction, by using

the ENO interpolation procedure, to obtain

u±i,j =
d

dx
Pϕ,ri±1/2,j(xi). (15)

(2) Similarly, at the node (xi, yj), fix i to compute along the y-direction,

by using the ENO interpolation procedure, to obtain

v±i,j =
d

dy
Pϕ,ri,j±1/2(yj). (16)

(3) Form the semi-discrete r-th order ENO scheme

d

dt
ϕi,j = −Ĥ(u−i,j , u

+
i,j ; v

−
i,j , v

+
i,j). (17)

This semi-discrete ENO scheme will be discretized in time by the high

order strong stability preserving Runge-Kutta time discretizations, to be

described in section 6.
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Numerical results obtained with these ENO schemes can be found in

[31] and [32] and will be not be presented here.

3.2. High order WENO schemes

WENO schemes are designed based on ENO schemes. Both ENO and

WENO schemes use the idea of adaptive stencils in the interpolation pro-

cedure based on the local smoothness of the numerical solution to auto-

matically achieve high order accuracy and a non-oscillatory property near

discontinuities. ENO uses just one (optimal in some sense) out of many

candidate stencils when doing the interpolation, as is described in the pre-

vious section, while WENO uses a convex combination of all the candidate

stencils, each being assigned a nonlinear weight which depends on the local

smoothness of the numerical solution based on that stencil. WENO im-

proves upon ENO in robustness, better smoothness of fluxes, better steady

state convergence, better provable convergence properties, and more effi-

ciency. For more details regarding WENO schemes, we again refer to the

lecture notes [36].

High order WENO schemes for solving Hamilton-Jacobi equations were

developed in [20], based on WENO schemes for solving conservations laws

[30,21]. The framework of WENO schemes for solving Hamilton-Jacobi

equations is similar to that of ENO schemes described in the previous sec-

tion. The only difference is the interpolation procedure to obtain u±
i,j and

v±i,j .

Let us look at the fifth order WENO interpolation procedure to obtain

u−i,j as an example. When the third order ENO interpolation procedure (see

the previous section) is used, we can easily work out the algebra to obtain

the three possible interpolations to u−i,j :

u−,0i,j =
1

3

∆+
x ϕi−3,j

∆x
− 7

6

∆+
x ϕi−2,j

∆x
+

11

6

∆+
x ϕi−1,j

∆x
,

u−,1i,j = −1

6

∆+
x ϕi−2,j

∆x
+

5

6

∆+
x ϕi−1,j

∆x
+

1

3

∆+
x ϕi,j
∆x

, (18)

u−,2i,j =
1

3

∆+
x ϕi−1,j

∆x
+

5

6

∆+
x ϕi,j
∆x

− 1

6

∆+
x ϕi+1,j

∆x
,

depending on which of the three possible stencils

{xi−3, xi−2, xi−1, xi}, {xi−2, xi−1, xi, xi+1}, {xi−1, xi, xi+1, xi+2}

(where yj is omitted in the stencil as it is the same for all three stencils) are

chosen by the ENO stencil choosing procedure based on the magnitudes of
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the divided differences. Recall that ∆+
x ϕi,j = ϕi+1,,j − ϕi,j is the standard

forward difference operator in x. If the third order ENO scheme is used, one

of the u−,mi,j for m = 0, 1 or 2 is used as u−i,j . The WENO procedure however

uses a convex combination of all three u−,mi,j for the final approximation u−i,j :

u−i,j = w0u
−,0 + w1u

−,1 + w2u
−,2 (19)

where ws ≥ 0 are the nonlinear weights obeying w0 + w1 + w2 = 1. The

weights ws are chosen to satisfy the following two properties:

(1) In smooth regions, {w0, w1, w2} should be very close to the so-called

optimal linear weights {0.1, 0.6, 0.3}:

w0 = 0.1 +O(∆x2), w1 = 0.6 +O(∆x2), w2 = 0.3 +O(∆x2),

which makes u−i,j defined by (19) fifth order accurate in approximating
∂ϕ
∂x (xi, yj) in smooth regions;

(2) When stencil s contains a singularity (discontinuity in the x derivative)

of ϕ, the corresponding weight ws should be very close to zero, so

that the approximation u−i,j emulates an ENO approximation where

“bad” stencils make no contributions. In the choice of weights in [20]

ws = O(∆x4) when stencil s contains a singularity.

The key ingredient in designing a nonlinear weight to satisfying the two

properties listed above is a smoothness indicator, which is a measurement

of how smooth the function being interpolated is inside the interpolation

stencil. The recipe used in [20] is similar to that in [21] for conservation laws,

namely the smoothness indicator is a scaled sum of the squares of the L2

norms of the second and higher derivatives of the interpolation polynomial

on the target interval. These smoothness indicators work out to be

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b+ c)2,

IS2 = 13(c− d)2 + 3(3c− d)2,

where

a =
∆2
xϕi−2,j

∆x
, b =

∆2
xϕi−1,j

∆x
, c =

∆2
xϕi,j
∆x

, d =
∆2
xϕi+1,j

∆x
(20)

are the second order differences, defined by ∆2
xϕi,j = ϕi+1,j−2ϕi,j+ϕi−1,j .

With these smoothness indicators, the nonlinear weights are then defined
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by

w0 =
w̃0

w̃0 + w̃1 + w̃2
, w1 =

w̃1

w̃0 + w̃1 + w̃2
, w2 =

w̃2

w̃0 + w̃1 + w̃2
,

with

w̃0 =
1

(ε+ IS0)2
, w̃1 =

6

(ε+ IS1)2
, w̃2 =

3

(ε+ IS2)2
,

where ε is a small number to prevent the denominator to become zero and

is typically chosen as ε = 10−6. Finally, after some algebraic manipulations,

we obtain the fifth order WENO approximation to u−i,j as

u−i,j =
1

12

(

−∆+
x ϕi−2,j

∆x
+ 7

∆+
x ϕi−1,j

∆x
+ 7

∆+
xϕi,j
∆x

− ∆+
x ϕi+1,j

∆x

)

−ΦWENO(a, b, c, d)

where

ΦWENO(a, b, c, d) =
1

3
w0 (a− 2b+ c) +

1

6

(

w2 −
1

2

)

(b− 2c+ d)

with a, b, c, d defined by (20).

By symmetry, the approximation to the right derivative u+
i,j is given by

u+
i,j =

1

12

(

−∆+
x ϕi−2,j

∆x
+ 7

∆+
x ϕi−1,j

∆x
+ 7

∆+
xϕi,j
∆x

− ∆+
x ϕi+1,j

∆x

)

+ΦWENO(e, d, c, b)

with b, c, d defined by (20) and e defined by

e =
∆2
xϕi+2,j

∆x
.

The procedure to obtain v±i,j is similar. Finally, we can form the semi-

discrete fifth order WENO scheme as

d

dt
ϕi,j = −Ĥ(u−i,j , u

+
i,j ; v

−
i,j , v

+
i,j). (21)

This semi-discrete WENO scheme will be discretized in time by the high

order strong stability preserving Runge-Kutta time discretizations, to be

described in section 6. WENO schemes of different orders of accuracy can be

defined along the same lines. For example, the third order WENO scheme
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is given by (21) with u−i,j on the left-biased stencil {xi−2, xi−1, xi, xi+1}
defined by

u−i,j =
1

2

(

∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

−w−

2

(

∆+
x ϕi−2,j

∆x
− 2

∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

where

w− =
1

1 + 2r2−
, r− =

ε+ (∆2
xϕi−1,j)

2

ε+ (∆2
xϕi,j)

2
.

By symmetry, the approximation to u+
i,j on the right-biased stencil

{xi−1, xi, xi+1, xi+2} is defined by

u+
i,j =

1

2

(

∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

−w+

2

(

∆+
x ϕi+1,j

∆x
− 2

∆+
x ϕi,j
∆x

+
∆+
x ϕi−1,j

∆x

)

where

w+ =
1

1 + 2r2+
, r+ =

ε+ (∆2
xϕi+1,j)

2

ε+ (∆2
xϕi,j)

2
.

Numerical results obtained with these WENO schemes can be found in

[20] and will be not be presented here.

4. High Order WENO Schemes on Unstructured Meshes

In this section we describe high order WENO schemes for solving the

two dimensional Hamilton-Jacobi equations (4) on unstructured triangu-

lar meshes. We will concentrate on the third order WENO scheme in [42].

For the fourth order WENO schemes, see [42] for details. We again use the

first order monotone flux described in section 2.2 as building blocks.

The semi-discrete high order WENO scheme is given by:

d

dt
ϕi(t) + Ĥ((∇ϕ)0, · · · , (∇ϕ)ki

) = 0 (22)

where Ĥ is the monotone flux described in section 2.2. The WENO proce-

dure to obtain approximations to the sectional derivatives (∇ϕ)0, ..., (∇ϕ)ki

will be described in detail below. The semi-discrete scheme (22) will be dis-

cretized in time by the high order strong stability preserving Runge-Kutta

time discretizations, to be described in section 6.
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First we discuss how to construct a high-order approximation to ∇ϕ
in every angular sector of every node, see Figure 1. Let P k denote the

set of two-dimensional polynomials of degree less than or equal to k. We

use Lagrange interpolations as follows: given a smooth function ϕ, and a

triangulation with triangles {40,41, . . . ,4M} and nodes {0, 1, 2, . . . , N},
we would like to construct, for each triangle 4i, a polynomial p(x, y) ∈ P k,
such that p(xl, yl) = ϕ(xl, yl), where (xl, yl) are the coordinates of the three

nodes of the triangle 4i and a few neighboring nodes. p(x, y) would thus

be a (k + 1)th-order approximation to ϕ on the cell 4i.
Because a kth degree polynomial p(x, y) has K =

(k+1)(k+2)
2 degrees of

freedom, we need to use the information of at least K nodes. In addition

to the three nodes of the triangle 4i, we may take the other K − 3 nodes

from the neighboring cells around triangle 4i. We rename these K nodes

as Si = {M1,M2, . . . ,MK}, Si is called a big stencil for the triangle 4i.
Let (xi, yi) be the barycenter of 4i. Define ξ = (x−xi)/hi, η = (y−yi)/hi,
where hi =

√

|4i| with |4i| denoting the area of the triangle 4i, then we

can write p(x, y) as:

p(x, y) =

k
∑

j=0

∑

s+r=j

asrξ
sηr.

Using the K interpolation conditions:

p(Ml) = ϕ(Ml), l = 1, 2, · · · ,K,

we get a K × K linear system for the K unknowns asr. The normalized

variables ξ, η are used to make the condition number of the linear system

independent of mesh sizes.

It is well known that in two and higher dimensions such interpola-

tion problem is not always well defined. The linear system can be very

ill-conditioned or even singular, in such cases we would have to add more

nodes to the big stencil Si from the neighboring cells around triangle 4i
to obtain an over-determined linear system, and then use the least-square

method to solve it. We remark that this ill-conditioning may come from

both the geometric distribution of the nodes, for which we could do noth-

ing other than changing the mesh, and from the choice of basis functions

in the interpolation. For higher order methods, a closer to orthogonal basis

rather than ξsηr would be preferred, such as the procedure using barycen-

tric coordinates in [1] and [3]. However, for third and fourth order cases,

ξsηr can be used for simplicity.
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After we have obtained the approximation polynomial p(x, y) on the

triangle 4i, ∇p will be a kth-order approximation for ∇ϕ on 4i. Hence we

get the high-order approximation ∇p(xl, yl) to ∇ϕ(xl, yl), for any one of

the three vertices (xl, yl) of the triangle 4i, in the relevant angular sectors.

A scheme is called linear if it is linear when applied to a linear equation

with constant coefficients. We need a third-order approximation for ∇ϕ to

construct a third-order linear scheme, hence we need a cubic polynomial

interpolation. A cubic polynomial p3 has 10 degrees of freedom. We will

use some or all of the nodes shown in Figure 2 to form our big stencil. For

extremely distorted meshes the number of nodes in Figure 2 may be less

than the required 10. In such extreme cases we would need to expand the

choice for the big stencil, see [42] for details. For our target triangle 40,

which has three vertices i, j, k and the barycenter G, we need to construct

a cubic polynomial p3, then ∇p3 will be a third-order approximation for

∇ϕ on 40, and the values of ∇p3 at points i, j and k will be third-order

approximations for ∇ϕ at the angular sector 40 of nodes i, j and k. We

label the nodes of the neighboring triangles of triangle 40 as follows: nodes

1, 2, 3 are the nodes (other than i, j, k) of neighbors of 40, nodes 4, 5, 6, 7,

8, 9 (other than 1, 2, 3, i, j, k) are the nodes of the neighbors of the three

neighboring triangles of 40. Notice that the points 4, 5, 6, 7, 8, 9 do not

have to be six distinct points. For example the points 5 and 9 could be the

same point.

The interpolation points are nodes taken from a sorted node set. An

ordering is given in the set so that, when the nodes are chosen sequentially

from it to form the big stencil S0, the target triangle 40 remains central to

avoid serious downwind bias which could lead to linear instability. Referring

to Figure 2, the interpolation points for the polynomial p3 include nodes

i, j, k and the nodes taken from the sorted set: W = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
The detailed procedure to determine the big stencil S0 for the target triangle

40 is given below.

Procedure 1: The choice of the big stencil for the third-order scheme.

(1) Referring to Figure 2, we form a sorted node set: W =

{1, 2, 3, 4, 5, 6, 7, 8, 9}. In extreme cases when this set does not contain

enough distinct points, we may need to add more points from the next

layer of neighbors.

(2) To start with, we take S0 = {i, j, k, 1, 2, 3, 4, 5, 6, 7}. Use this stencil S0

to form the 10× 10 interpolation coefficient matrix A.

(3) Compute the reciprocal condition number c of A. This is provided by
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Fig. 2. The nodes used for the big stencil of the third-order scheme.

most linear solvers. If c ≥ δ for some threshold δ, we have obtained

the final stencil S0. Otherwise, add the next node in W (i.e. node 8) to

S0. Use the 11 nodes in S0 as interpolation points to get the 11 × 10

least square interpolation coefficient matrix A. Judge the reciprocal

condition number c again. Continue in doing this until c ≥ δ is satisfied.

It seems that δ = 10−3 is a good threshold after extensive numerical

experiments [42]. Notice that, since we have normalized the coordinates,

this threshold does not change when the mesh is scaled uniformly in

all directions. For all the triangulations tested in [42], at most 12 nodes

are needed in S0 to reach the condition c ≥ δ.

We now have obtained the big stencil S0 and its associated cubic poly-

nomial p3. For each node (xl, yl) in 40, ∇p3(xl, yl) is a third-order approxi-

mation to ∇ϕ(xl, yl). In order to construct a high-order WENO scheme, an

important step is to obtain a high-order approximation using a linear com-

bination of lower order approximations. We will use a linear combination

of second-order approximations to get the same third-order approximation
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to ∇ϕ(xl, yl) as ∇p3(xl, yl), i.e., we require

∂

∂x
p3(xl, yl) =

q
∑

s=1

γs,x
∂

∂x
ps(xl, yl),

∂

∂y
p3(xl, yl) =

q
∑

s=1

γs,y
∂

∂y
ps(xl, yl)

(23)

where ps are quadratic interpolation polynomials, and γs,x and γs,y are the

linear weights for the x-directional derivative and the y-directional deriva-

tive respectively, for s = 1, · · · , q. The linear weights are constants depend-

ing only on the local geometry of the mesh. The equalities in (23) should

hold for any choices of the function ϕ.

Notice that to get a second-order approximation for the derivatives

∇ϕ(xl, yl), we need a quadratic interpolation polynomial. According to the

argument in [19], the cubic polynomial p3(x, y) has four more degrees of

freedom than each quadratic polynomial ps(x, y), namely x3, x2y, xy2, y3.

For the six degrees of freedom 1, x, y, x2, xy, y2, if we take ϕ = 1, ϕ = x, ϕ =

y, ϕ = x2, ϕ = xy and ϕ = y2, the equalities in (23) will hold for all these

cases under only one constraint each on γs,x and γs,y, namely
∑q

s=1 γs,x = 1

and
∑q

s=1 γs,y = 1, because p3 and ps all reproduce these functions exactly.

Hence we should only need q ≥ 5. q = 5 is taken in the scheme below.

We now need q = 5 small stencils Γs, s = 1, · · · , 5 for the target tri-

angle 40, satisfying S0 =
⋃5
s=1 Γs, and every quadratic polynomial ps is

associated with a small stencil Γs. In the third-order scheme, the small

stencils will be the same for both directions x, y and all three nodes i, j, k

in 40. However the linear weights γs,x, γs,y can be different for different

nodes i, j, k and different directions x, y. Because each quadratic polyno-

mial has six degrees of freedom, the number of nodes in Γs must be at

least six. To build a small stencil Γs, we start from several candidates

Γ
(r)
s , r = 1, 2, · · · , ns. These candidates are constructed by first taking a

point A
(r)
s as the “center”, then finding at least six nodes from S0 which

have the shortest distances from A
(r)
s and can generate the interpolation

coefficient matrix with a good condition number, using the method of Pro-

cedure 1. We then choose the best Γs among Γ
(r)
s , r = 1, · · · , ns for every

s = 1, · · · , 5. Here “best” means that by using this group of small stencils,

the linear weights γs,x, γs,y, s = 1, · · · , 5 for all three nodes i, j, k are either

all positive or have the smallest possible negative values in magnitude. The

details of the algorithm is described in the following procedure.

Procedure 2: The third-order linear scheme.

For every triangle 4l, l = 1, · · · , N , do Steps 1 to 6:
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(1) Follow Procedure 1 to obtain the big stencil Sl for 4l.
(2) For s = 1, · · · , 5, find the set Ws = {Γ(r)

s , r = 1, 2, · · · , ns}, which are

the candidate small stencils for the s-th small stencil. We use the fol-

lowing method to find the Γ
(r)
s in Ws: first, nodes i, j, k are always

included in every Γ
(r)
s ; then we take a point A

(r)
s as the center of

Γ
(r)
s , detailed below, and find at least 3 additional nodes other than

i, j, k from Sl which satisfy the following two conditions: 1) they have

the shortest distances from A
(r)
s ; and 2) taking them and the nodes

i, j, k as the interpolation points, we will obtain the interpolation co-

efficient matrix A with a good condition number, namely the recip-

rocal condition number c of A satisfies c ≥ δ with the same threshold

δ = 10−3. For the triangulations tested in [42], at most 8 nodes are used

to reach this threshold value. Finally, the center of the candidate sten-

cils A
(r)
s , r = 1, · · · , ns; s = 1, · · · , 5 are taken from the nodes around

4l (see Figure 2) as follows:

• A(1)
1 = point G, n1 = 1;

• A(1)
2 = node 1, A

(2)
2 = node 4, A

(3)
2 = node 7, n2 = 3;

• A(1)
3 = node 2, A

(2)
3 = node 5, A

(3)
3 = node 8, n3 = 3;

• A(1)
4 = node 3, A

(2)
4 = node 6, A

(3)
4 = node 9, n4 = 3;

• {A(r)
5 }9r=1 = nodes 4, 5, 6, 7, 8, 9 and the middle points of nodes 4

and 8, 5 and 9, 6 and 7. n5 ≤ 9.

(3) By taking one small stencil Γ
(rs)
s from each Ws, s = 1, · · · , 5 to form a

group, we obtain n1×n2×· · ·×n5 groups of small stencils. We eliminate

the groups which contain the same small stencils, and also eliminate

the groups which do not satisfy the condition

5
⋃

s=1

Γ(rs)
s = Sl

According to every group {Γ(rs)
s , s = 1, · · · , 5} of small stencils, we have

5 quadratic polynomials {p(rs)
s }5s=1. We evaluate ∂

∂xp
(rs)
s and ∂

∂yp
(rs)
s

at points i, j, k, to obtain second-order approximation values for ∇ϕ
at the three vertices of the triangle 4l. We remark that for practical

implementation, we do not use the polynomial itself, but compute a

series of constants {al}ml=1 which depend on the local geometry only,

such that:

∂

∂x
p(rs)
s (xn, yn) =

m
∑

l=1

alϕl (24)
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where every constant al corresponds to one node in the stencil Γ
(rs)
s

and m is the total number of nodes in Γ
(rs)
s . For every vertex (xn, yn)

of triangle 4l, we obtain a series of such constants. And for the y

directional partial derivative, we compute the corresponding constants

too.

(4) For every group {Γ(rs)
s , s = 1, · · · , 5}, we form linear systems and solve

them to get a series of linear weights γ
(rs)
s,x and γ

(rs)
s,y satisfying the equal-

ities (23), for the three vertices i, j, k. Using the previous argument for

combining low-order approximations to get high-order approximation,

we form the linear system for γ
(rs)
s,x at a vertex (ξn, ηn) as follows (note

that we use normalized variables): take ϕ = ξ3, ξ2η, ξη2, η3 respectively,

the equalities are:

5
∑

s=1

γ(rs)
s,x

∂

∂ξ
p(rs)
s (ξn, ηn) =

∂

∂ξ
ϕ(ξn, ηn) (25)

where p
(rs)
s is the quadratic interpolation polynomial for ϕ, using stencil

Γ
(rs)
s . Again, in practical implementation, we will not use p

(rs)
s itself,

instead we use the constants computed in the last step and equation

(24) to compute the approximation for the derivatives of ϕ. Together

with the requirement

5
∑

s=1

γ(rs)
s,x = 1, (26)

we obtain a 5 × 5 linear system for γ
(rs)
s,x . For γ

(rs)
s,y , the same argu-

ment can be applied. Note that we need to compute the reciprocal

condition number c for every linear system again. If c ≥ δ for the

same threshold δ = 10−3, we will accept this group of stencils as one

of the remaining candidates. Otherwise, the linear system is consid-

ered to be ill-conditioned and its corresponding group of small stencils

{Γ(rs)
s , s = 1, · · · , 5} is eliminated from further consideration.

(5) For each of the remaining groups Λl = {Γ(rs)
s , s = 1, · · · , 5}, find the

minimum value γl of all these linear weights γ
(rs)
s,x , γ

(rs)
s,y of the three

vertices i, j, k. Then find the group of small stencils whose γl is the

biggest, and take this group as the final 5 small stencils for triangle 4l.

Denote them by Γs, s = 1, · · · , 5. For every final small stencil Γs, s =

1, 2, · · · , 5, we store the index numbers of the nodes in Γs, the constants

in the linear combinations of node values to approximate values of ∇ϕ
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at points i, j, k, and the linear weights γs,x, γs,y of the three points

i, j, k.

(6) Now we have set up the necessary constants which only depend on the

mesh for all triangles. To form the final linear scheme, we compute

the third-order approximations (∇ϕ)0, · · · , (∇ϕ)kl
for all mesh nodes

l, by the linear combinations of second-order approximations, using the

prestored constants and linear weights. Then we can form the scheme

(22).

We now describe the construction of WENO schemes based on non-

linear weights.

We only discuss the case of WENO approximation for the x-directional

derivative at vertex i of the target cell 4l. Other cases are similar. In order

to compute the non-linear weights, we need to compute the smoothness

indicators first.

For a polynomial p(x, y) defined on the target cell 40 with degree up

to k, we take the smoothness indicator β as:

β =
∑

2≤|α|≤k

∫

40

|40||α|−2 (Dαp(x, y))
2
dxdy (27)

where α is a multi-index and D is the derivative operator. The smoothness

indicator measures how smooth the function p is on the triangle 40: the

smaller the smoothness indicator, the smoother the function p is on40. The

scaling factor in front of the derivatives renders the smoothness indicator

self-similar and invariant under uniform scaling of the mesh in all directions.

The smoothness indicator (27) is the same as that used for the structured

mesh case discussed in the previous section.

Now we define the non-linear weights as:

ωj =
ω̃j

∑

m ω̃m
, ω̃j =

γj
(ε+ βj)2

(28)

where γj is the jth linear weight (e.g. the γs,x in the linear schemes), βj is

the smoothness indicator for the jth interpolation polynomial pj(x, y) (the

ps in equation (23) for the third-order case) associated with the jth small

stencil, and ε is again a small positive number to avoid the denominator to

become 0 and is usually taken as ε = 10−6. The final WENO approximation

for the x-directional derivative at vertex i of target cell 4l is given by

(ϕx)i =

q
∑

j=1

ωj
∂

∂x
pj(xi, yi) (29)
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where (xi, yi) are the coordinates of vertex i and q = 5 for the third-order

schemes.

In the WENO schemes, the linear weights {γj}qj=1 depend on the local

geometry of the mesh and can be negative. If min(γ1, · · · , γq) < 0, we

can adopt the splitting technique of treating negative weights in WENO

schemes developed by Shi, Hu and Shu [34]. We omit the details of this

technique and refer the readers to [34].

Again, we remark that the smoothness indicator (27) is a quadratic

function of function values on nodes of the small stencil, so in practical

implementation, to compute the smoothness indicator βj for the j-th small

stencil by equation (27), we do not need to use the interpolation polynomial

itself, instead we use a series of constants {art, r = 1, · · · , t; t = 1, · · · ,m},
which can be precomputed and they depend on the mesh only, such that

βj =

m
∑

t=1

ϕt(
t

∑

r=1

artϕr), (30)

where m is the total number of nodes in the j-th small stencil. These

constants for all smoothness indicators should be precomputed and stored

once the mesh is generated.

We summarize the algorithm for the third-order WENO schemes as

follows:

Procedure 3: The third-order WENO schemes.

(1) Generate a triangular mesh.

(2) Compute and store all constants which only depend on the mesh and

the accuracy order of the scheme. These constants include the node

index numbers of each small stencil, the coefficients in the linear com-

binations of function values on nodes of small stencils to approximate

the derivative values and the linear weights, following Procedure 2 for

the third-order case, and the constants for computing smoothness in-

dicators in equation (30).

(3) Using the prestored constants, for each angular sector of every node

i, compute the low-order approximations for ∇ϕ and the nonlinear

weights, then compute the third order WENO approximation (29). Fi-

nally, form the scheme (22).

Numerical examples using the third and fourth order WENO schemes

on unstructured meshes can be found in [42] and will not be presented here.
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5. High Order Discontinuous Galerkin Schemes on

Unstructured Meshes

Discontinuous Galerkin methods have become very popular in recent years

to solve hyperbolic conservation laws because of their distinctive features,

among which are the easy design of the methods with any order of accuracy

and their minimal requirement on the mesh structures [12]. Adapted from

these methods for conservation laws, a discontinuous Galerkin method for

solving the Hamilton-Jacobi equations (1) was developed by Hu and Shu

in [18] based on the equivalence between Hamilton-Jacobi equations and

hyperbolic conservation laws [22,29]. See also [24]. In [18,24], the Hamilton-

Jacobi equations (1) were first rewritten as a system of conservation laws

(wi)t + (H(w))xi
= 0, in Ω× [0, T ], w(x, 0) = ∇ϕ0(x), (31)

where w = ∇ϕ. With piecewise polynomial space as the solution space, the

usual discontinuous Galerkin formulation could be obtained for (31) [8,10].

Notice that wi, i = 1, · · · , n are not independent due to the restriction

w = ∇ϕ. A least square procedure was applied in each time step (or each

time stage depending on the particular time discretization used) to enforce

this restriction in [18,24].

In a recent preprint by Li and Shu [27], we have given a reinterpreta-

tion and simplified implementation of the discontinuous Galerkin method

for Hamilton-Jacobi equations developed in [18,24]. This was based on a

recent work by Cockburn et al [9] and by Li and Shu [26], where the locally

divergence-free discontinuous Galerkin methods were developed for partial

differential equations with divergence-free solutions. Compared with tra-

ditional ways to solve this type of equations, the piecewise divergence-free

polynomial space, which is a subspace of the standard piecewise polynomial

space, is used. With minimal change in the scheme formulation (only the

solution and test space is changed to a smaller space), the computational

cost is reduced, the stability and the order of accuracy of the scheme are

maintained. For specific applications such as the Maxwell equations [9] and

the ideal magnetohydrodynamics (MHD) equations [26], this new method

even improves over the traditional discontinuous Galerkin method in terms

of stability and/or accuracy while saving computational costs. The idea of

this approach could be applied to more general situations, by using piece-

wise solution space in which functions satisfy certain properties of the exact

solutions (divergence-free, or curl-free, ...). The general approximation the-

ory can guarantee no loss of accuracy when such smaller solution space is

used. This observation leads to a reinterpretation and simplified implemen-
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tation of the discontinuous Galerkin method for Hamilton-Jacobi equations

developed in [18,24].

In this section we describe the discontinuous Galerkin method for solv-

ing the Hamilton-Jacobi equations developed in [18,24], using the reinter-

pretation in [27]. There are other similar or related types of discretizations

for Hamilton-Jacobi equations on unstructured meshes, e.g. the schemes of

Augoula and Abgrall [4] and that of Barth and Sethian [6], which will not

be described in this section because of space limitations.

Starting with a regular triangulation Th = {K} of Ω (edges denoted

by e), the general discontinuous Galerkin formulation of (31) is: find w =

(w1, · · · , wn) ∈ V
k, such that

d

dt

∫

K

wividx =

∫

K

H(w)(vi)xi
dx−

∑

e∈∂K

∫

e

Ĥi,e,Kvids, ∀K, i = 1, · · · , n

(32)

holds for all v = (v1, · · · , vn) ∈ V
k , where V

k is the solution space which

will be specified later, and Ĥi,e,K is the monotone numerical flux described

in section 2.2. The strong stability preserving Runge-Kutta time discretiza-

tion, to be described in section 6, could be used in time direction. Notice

(32) is the formulation for the derivatives of ϕ in (1). To recover the miss-

ing constant in ϕ (e.g. the cell average of ϕ in each element), there are two

different strategies developed in [18,24] which can be used:

(1) By requiring that
∫

K

(ϕt +H(ϕx, ϕy)) v dxdy = 0, (33)

for all v ∈ V 0
h and for all K ∈ Th, that is,
∫

K

(ϕt +H(ϕx, ϕy)) dxdy = 0, ∀K ∈ Th ; (34)

(2) By using (34) to update only one (or a few) elements, e.g., the corner

element(s), then use

ϕ(B, t) = ϕ(A, t) +

∫ B

A

(ϕx dx+ ϕy dy) (35)

to determine the missing constant. The path should be taken to avoid

crossing a derivative discontinuity, if possible.

We refer the readers to [18,24] for more details.

Before finalizing the scheme, we introduce the following spaces,

V
k
1 = {(v1, · · · , vn) : vi|K ∈ P k(K), i = 1, · · · , n, ∀K ∈ Th}, (36)
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V
k
2 = {(v1, · · · , vn) : v|K = ∇ϕ, ϕ ∈ P k+1(K), ∀K ∈ Th}, (37)

where P k(K) denotes the space of polynomials in K of degree at most k. It

is easy to see that V
k
2 ⊂ V

k
1 . Two formulations are obtained if V

k in (32)

is specified as follows:

• Formulation I: V
k = V

k
1 . A single polynomial ϕ ∈ P k+1(K), up to a

constant, is recovered from w in each element by the following least

square procedure
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

(ϕxi
− wi)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1(K)

= min
ψ∈Pk+1(K)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

(ψxi
− wi)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1(K)

(38)

after each time stage. This is the method proposed by Hu and Shu in

[18].

• Formulation II: V
k = V

k
2 .

We have proven in [27] that the two formulations are mathematically equiv-

alent. Clearly, the second formulation has several advantages over the first

formulation:

(1) Formulation II allows the method of lines version of the scheme, while

Formulation I does not have a method of lines version due to the least

square procedure which is applied after each time step or stage. The

method of lines version allows more natural and direct analysis for sta-

bility and accuracy of discontinuous Galerkin methods, e.g. the results

in [24].

(2) The implementation of the algorithm is significantly simplified by using

Formulation II since a smaller solution space is used and the least square

procedure is completely avoided. If we characterize the computational

cost of (32) per time step per element simply by the dimension of Vk|K ,

we can get

n1 = dim(Vk
1 |K) = n

k
∑

r=0

Cn−1
r+n−1, n2 = dim(Vk

2 |K) =

k+1
∑

r=1

Cn−1
r+n−1.

For example, for the two dimensional case n = 2, n1 = (k + 2)(k + 1),

n2 =
(k+4)(k+1)

2 , hence n2

n1

→ 1
2 as k → ∞; i.e. the cost is reduced

to about half for higher order schemes. For the three dimensional case

n = 3, n1 = k3+6k2+11k+6
2 , n2 =

(k+1)(k2+8k+18)
6 , hence n2

n1

→ 1
3 as

k → ∞; i.e. the cost is reduced to about one third for higher order

schemes.
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Representative numerical examples using the discontinuous Galerkin

methods for solving the two dimensional Hamilton-Jacobi equations (4) will

be given in section 7. More numerical examples can be found in [18,24,27].

6. High Order Strong Stability Preserving Runge-Kutta

Time Discretizations

For all of the spatial discretizations discussed in the previous sections, the

time variable t is left undiscretized. A popular time discretization method

is the class of strong stability preserving (SSP), also referred to as total

variation diminishing (TVD), high order Runge-Kutta time discretizations,

see [37,35,15,16].

We start with the following ordinary differential equation (ODE)

d

dt
u(t) = L(u(t), t) (39)

resulting from a method of lines spatial discretization of a time dependent

partial differential equation, such as (17), (21), (22) or (32) in the previous

sections. Here u = u(t) is a (usually very long) vector and L(u, t) depends on

u either linearly or non-linearly. In many applications L(u, t) = L(u) which

does not explicitly depend on t. The starting point for the SSP method is

an assumption that the first order Euler forward time discretization to (39):

un+1 = un + ∆tL(un, tn), (40)

where un is an approximation to u(tn), are stable under a certain (semi)

norm

||un+1|| ≤ ||un|| (41)

with a suitable time step restriction

∆t ≤ ∆t0, (42)

which typically depends on the spatial discretization mesh size. With this

assumption, we would like to find SSP time discretization methods to (39),

that are higher order accurate in time, yet still maintain the same stability

condition (41). This might require a different restriction on the time step

∆t than that in (42) of the form

∆t ≤ c∆t0, (43)

where c is called the CFL coefficient of the SSP method. The objective is

to find such methods with simple format, low computational cost and least

restriction on the time step ∆t, i.e. larger CFL coefficient c.
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We remark that the strong stability assumption for the forward Euler

step in (41) can be relaxed to the more general stability assumption

||un+1|| ≤ (1 +O(∆t))||un||.
This general stability property is also preserved by the high order SSP time

discretizations.

Runge-Kutta methods are time discretizations which can be written in

several different ways. In [37], a general m stage Runge-Kutta method for

(39) is written in the form:

u(0) = un,

u(i) =

i−1
∑

k=0

(

αi,ku
(k) + ∆tβi,kL(u(k), tn + dk∆t)

)

, i = 1, ...,m (44)

un+1 = u(m)

where dk are related to αi,k and βi,k by

d0 = 0, di =

i−1
∑

k=0

(αi,kdk + βi,k), i = 1, ...,m− 1.

Thus, we do not need to discuss the choice of dk separately. In most ODE

literatures, e.g. [7], a Runge-Kutta method is written in the form of a

Butcher array. Every Runge-Kutta method in the form of (44) can be easily

converted in a unique way into a Butcher array, see [37]. A Runge-Kutta

method written in a Butcher array can also be rewritten into the form (44),

however this conversion is in general not unique. This non-uniqueness in the

representation (44) is exploited in the literature to seek the largest provable

time steps (43) for SSP.

We always need and require that αi,k ≥ 0 in (44). If this is violated no

SSP methods are possible. Basically, we rely heavily on convexity arguments

which would require that all αi,k ’s to be non-negative.

If all the βi,k’s in (44) are also nonnegative, βi,k ≥ 0, we have the fol-

lowing simple lemma, which is the backbone of SSP Runge-Kutta methods:

Lemma 4: [37] If the forward Euler method (40) is stable in the sense of

(41) under the time step restriction (42), then the Runge-Kutta method (44)

with αi,k ≥ 0 and βi,k ≥ 0 is SSP, i.e. its solution also satisfies the same

stability (41) under the time step restriction (43) with the CFL coefficient

c = min
i,k

αi,k
βi,k

. (45)
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The most popular and successful SSP methods are those covered by

Lemma 4. We will only give examples of SSP methods covered by Lemma

4 in this section. If some of the βi,k’s must be negative because of accuracy

constraints, there is also a way to obtain SSP methods, see [37,15,16] for

details.

We list below a few popular SSP Runge-Kutta methods:

(1) A second order SSP Runge-Kutta method [37]:

u(1) = un + ∆tL(un, tn)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1), tn + ∆t) (46)

with a CFL coefficient c = 1 in (43). This is just the classical Heun or

modified Euler method.

(2) A third order SSP Runge-Kutta method [37]:

u(1) = un + ∆tL(un, tn)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn + ∆t) (47)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t),

with a CFL coefficient c = 1 in (43).

(3) A third order low storage SSP Runge-Kutta method [15]:

u(0) = un, du(0) = 0,

du(i) = Aidu
(i−1) + ∆tL(u(i−1), tn + di−1∆t), i = 1, . . . , 3, (48)

u(i) = u(i−1) + Bidu
(i), i = 1, . . . , 3,

un+1 = u(3).
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with

z1 =
√

36b4 + 36b3 − 135b2 + 84b− 12

z2 = 2b2 + b− 2

z3 = 12b4 − 18b3 + 18b2 − 11b+ 2

z4 = 36b4 − 36b3 + 13b2 − 8b+ 4

z5 = 69b3 − 62b2 + 28b− 8

z6 = 34b4 − 46b3 + 34b2 − 13b+ 2

d0 = 0

A1 = 0

B1 = b

d1 = B1

A2 =
−z1(6b− 4b+ 1) + 3z3

(2b+ 1)z1 − 3(b+ 2)(2b− 1)2

B2 =
12b(b− 1)(3z2 − z1)− (3z2 − z1)2

144b(3b− 2)(b− 1)2

d2 = B1 +B2 +B2A2

A3 =
−z1z4 + 108(2b− 1)b5 − 3(2b− 1)z5
24z1b(b− 1)4 + 72bz6 + 72b6(2b− 13)

B3 =
−24(3b− 2)(b− 1)2

(3z2 − z1)2 − 12b(b− 1)(3z2 − z1)

where b = 0.924574, with a CFL coefficient c = 0.32 in (43). Only u

and du must be stored, resulting in two storage units for each variable.

This method can be used when storage is a paramount consideration,

such as in large scale three dimensional calculations.

(4) A fourth order, five stage SSP Runge-Kutta method. It can be proven

[15] that all four stage, fourth order SSP Runge-Kutta scheme (44) with

a nonzero CFL coefficient c in (43) must have at least one negative βi,k.

To obtain fourth order SSP Runge-Kutta methods with nonnegative

βi,k covered by Lemma 4, we would need at least five stages. The fol-

lowing is a five stage, fourth order SSP Runge-Kutta method [40] with
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a CFL coefficient c = 1.508 in (43):

u(1) = un + 0.39175222700392∆tL(un, tn)

u(2) = 0.44437049406734un+ 0.55562950593266u(1)

+0.36841059262959∆tL(u(1), tn + 0.39175222700392∆t)

u(3) = 0.62010185138540un+ 0.37989814861460u(2)

+0.25189177424738∆tL(u(2), tn + 0.58607968896780∆t)

u(4) = 0.17807995410773un+ 0.82192004589227u(3) (49)

+0.54497475021237∆tL(u(3), tn + 0.47454236302687∆t)

un+1 = 0.00683325884039un+ 0.51723167208978u(2)

+0.12759831133288u(3)

+0.08460416338212∆tL(u(3), tn + 0.47454236302687∆t)

+0.34833675773694u(4)

+0.22600748319395∆tL(u(4), tn + 0.93501063100924∆t).

7. A Few Numerical Examples

We will show a few numerical examples simulated by the discontinuous

Galerkin method in section 5 [18] as representatives. Other examples can

be found in the references listed in each sections for different numerical

methods discussed in these notes.

Example 5: Two dimensional Burgers’ equation:

{

ϕt +
(ϕx+ϕy+1)2

2 = 0, −2 < x < 2, −2 < y < 2

ϕ(x, y, 0) = − cos
(

π(x+y)
2

) (50)

with periodic boundary conditions.

At t = 0.5/π2, the solution is still smooth. We use non-uniform rectan-

gular meshes obtained from the tensor product of one dimensional nonuni-

form meshes via randomly shifting the cell boundaries in a uniform mesh

in the range [−0.1h, 0.1h] (the meshes in two directions are independent).

The L2-errors computed by a 6× 6 point Gaussian quadrature in each cell

are shown in Table 1.

At t = 1.5/π2, the solution has discontinuous derivatives. Figure 3 is

the graph of the numerical solution with 40× 40 elements (uniform mesh).

Finally we use triangle based triangulation, the mesh with h = 1
4 is

shown in Figure 4. The accuracy at t = 0.5/π2 is shown in Table 2. Similar
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Table 1. Accuracy for 2D Burgers equation, non-uniform rectangular mesh, t = 0.5/π2.

P 1 P 2 P 3

N × N L2 error order L2 error order L2 error order

10 × 10 4.47E-01 — 6.28E-02 — 1.61E-02 —

20 × 20 1.83E-01 1.288 1.50E-02 2.066 2.06E-03 2.966

40 × 40 8.01E-02 1.192 3.63E-03 2.047 3.48E-04 2.565

80 × 80 3.82E-02 1.068 9.17E-04 1.985 6.03E-05 2.529

160 × 160 1.87E-02 1.031 2.34E-04 1.970 8.58E-06 2.813
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Fig. 3. Two dimension Burgers’ equation, rectangular mesh, t=1.5/π2.

accuracy pattern is observed as in the rectangular case. The result at t =

1.5/π2, when the derivative is discontinuous, is shown in Figure 5.

Table 2. Accuracy for 2D Burgers equation, triangular
mesh as those in Figure 4, t = 0.5/π2.

P 2 P 3

h L1 error order L1 error order

1 5.48E-02 — 1.17E-02 —

1/2 1.35E-02 2.02 1.35E-03 3.12

1/4 2.94E-03 2.20 1.45E-04 3.22

1/8 6.68E-04 2.14 1.71E-05 3.08
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Fig. 4. Triangulation for two dimensional Burgers equation, h = 1

4
.

Example 6: The level set equation in a domain with a hole:

{

ϕt + sign(ϕ0)(
√

ϕ2
x + ϕ2

y − 1) = 0, 1
2 <

√

x2 + y2 < 1

ϕ(x, y, 0) = ϕ0(x, y)
(51)

This problem is introduced in [41]. The solution ϕ to (51) has the same

zero level set as ϕ0, and the steady state solution is the distance function to

that zero level curve. We use this problem to test the effects using various

integration paths (35) when there is a hole in the region. Notice that the

exact steady state solution is the distance function to the inner boundary

of domain when boundary condition is adequately prescribed. We compute

the time dependent problem to reach a steady state solution, using the

exact solution for the boundary conditions of ϕx and ϕy. Four symmetric

elements near the outer boundary are updated by (34), all other elements

are recovered from (35) by the shortest path to the nearest one of above

four elements. The results are shown in Table 3. Also shown in Table 3 is

the error (difference) between the numerical solution ϕ thus recovered, and
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Fig. 5. Two dimension Burgers’ equation, triangular mesh, t=1.5/π2.

the value of ϕ after another integration along a circular path (starting and

ending at the same point in (35)). We can see that the difference is small

with the correct order of accuracy, further indicating that the dependency

of the recovered solution ϕ on the integration path is on the order of the

truncation errors even for such problems with holes. Finally, the mesh with

1432 triangles and the solution with 5608 triangles are shown in Figure 6.

Table 3. Errors for the level set equation, triangular mesh with P 2.

Errors for the Solution Errors by Integration Path

N L1 error order L1 error order

403 1.02E-03 — 1.61E-04 —

1432 1.23E-04 3.05 5.84E-05 1.46

5608 1.71E-05 2.85 9.32E-06 2.65

22238 2.09E-06 3.03 1.43E-06 2.70

Example 7: The problem of a propagating surface:
{

ϕt − (1− εK)
√

1 + ϕ2
x + ϕ2

y = 0, 0 < x < 1, 0 < y < 1

ϕ(x, y, 0) = 1− 1
4 (cos(2πx− 1)) (cos(2πy − 1))

(52)

where K is the mean curvature defined by

K = −
ϕxx(1 + ϕ2

y)− 2ϕxyϕxϕy + ϕyy(1 + ϕ2
x)

(1 + ϕ2
x + ϕ2

y)
3

2

, (53)
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Fig. 6. The level set equation, P 2.

and ε is a small constant. Periodic boundary condition is used.

We apply the discontinuous Galerkin method, with the second derivative

terms handled by the local discontinuous Galerkin techniques presented and

analyzed in [11], which amounts to solving the following system


































ut −
(√

1 + u2 + v2 + εp(1+v
2)−2quv+r(1+u2)
1+u2+v2

)

x
= 0

vt −
(√

1 + u2 + v2 + εp(1+v
2)−2quv+r(1+u2)
1+u2+v2

)

y
= 0

p− ux = 0

q − uy = 0

r − vy = 0

(54)

using the discontinuous Galerkin method. The details of the method, espe-

cially the choices of fluxes, which are important for stability, can be found

in [11].

We use a triangulation shown in Figure 7. We refine the mesh around

the center of domain where the solution develops discontinuous derivatives

(for the ε = 0 case). There are 2146 triangles and 1108 nodes in this trian-

gulation. The solutions are displayed in Figure 8 and Figure 9, respectively,

for ε = 0 (pure convection) and ε = 0.1. Notice that we shift the solution

at t = 0.0 downward by 0.35 to show the detail of the solutions at later

time.

Example 8: The problem of a propagating surface on a unit disk. The
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Fig. 7. Triangulation used for the propagating surfaces.

equation is the same as (52) in the previous example, but it is solved on a

unit disk x2 + y2 < 1 with an initial condition

ϕ(x, y, 0) = sin

(

π(x2 + y2)

2

)

and a Neumann type boundary condition ∇ϕ = 0.

It is difficult to use rectangular meshes for this problem. Instead we

use the triangulation shown in Figure 10. Notice that we have again re-

fined the mesh near the center of the domain where the solution develops

discontinuous derivatives. There are 1792 triangles and 922 nodes in this

triangulation. The solutions with ε = 0 are displayed in Figure 11. Notice

that the solution at t = 0 is shifted downward by 0.2 to show the detail of

the solution at later time.

The solution with ε = 0.1 are displayed in Figure 12. Notice that the

solution at t = 0 is again shifted downward by 0.2 to show the detail of the

solution at later time.
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Fig. 8. Propagating surfaces, triangular mesh, ε = 0.

Example 9: A problem from optimal control [32]:







ϕt + (sin y)ϕx + (sinx+ sign(ϕy))ϕy − 1
2 sin2 y − (1− cosx) = 0,

−π < x < π, −π < y < π

ϕ(x, y, 0) = 0

(55)

with periodic boundary conditions. We use a uniform rectangular mesh of

40 × 40 elements. The solution at t = 1 is shown in Figure 13, while the

optimal control w = sign(ϕy) is shown in Figure 14.

Notice that the discontinuous Galerkin method computes ∇ϕ as an

independent variable. It is very desirable for those problems in which the

most interesting features are contained in the first derivatives of ϕ, as in

this optimal control problem.

Example 10: A problem from computer vision [33]:
{

ϕt + I(x, y)
√

1 + ϕ2
x + ϕ2

y − 1 = 0, −1 < x < 1, −1 < y < 1

ϕ(x, y, 0) = 0
(56)
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Fig. 9. Propagating surfaces, triangular mesh, ε = 0.1.

with ϕ = 0 as the boundary condition. The steady state solution of this

problem is the shape lighted by a source located at infinity with vertical

direction. The solution is not unique if there are points at which I(x, y) = 1.

Conditions must be prescribed at those points where I(x, y) = 1. Since our

method is a finite element method, we need to prescribe suitable conditions

at the correspondent elements. We take

I(x, y) = 1/
√

1 + (1− |x|)2 + (1− |y|)2 (57)

The exact steady solution is ϕ(x, y,∞) = (1− |x|)(1 − |y|). We use a uni-

form rectangular mesh of 40× 40 elements. We impose the exact boundary

conditions for u = ϕx, v = ϕy from the above exact steady solution, and

take the exact value at one point (the lower left corner) to recover ϕ. The

results for P 2 and P 3 are presented in Figure 15, while Figure 16 contains

the history of iterations to the steady state.

Next we take

I(x, y) = 1/
√

1 + 4y2(1− x2)2 + 4x2(1− y2)2 (58)



June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 85

 

 

 

 

 

 

Fig. 10. Triangulation for the propagating surfaces on a disk.

The exact steady solution is ϕ(x, y,∞) = (1− x2)(1− y2). We again use a

uniform rectangular mesh of 40×40 elements and impose the exact bound-

ary conditions for u = ϕx, v = ϕy from the above exact steady solution,

and take the exact value at one point (the lower left corner) to recover ϕ.

A continuation method is used, with the steady solution using

Iε(x, y) = 1/
√

1 + 4y2(1− x2)2 + 4x2(1− y2)2 + ε (59)

for bigger ε as the initial condition for smaller ε. The sequence of ε used

are ε = 0.2, 0.05, 0. The results for P 2 and P 3 are presented in Figure 17.

8. Concluding Remarks

We have briefly surveyed the properties of Hamilton-Jacobi equations and a

few numerical schemes for solving these equations. Because of space limita-

tions, there are many related topics that we have not discussed, for example

the class of central non-oscillatory schemes (e.g. [28]), techniques for effi-

ciently solving steady state Hamilton-Jacobi equations, etc.
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Fig. 11. Propagating surfaces on a disk, triangular mesh, ε = 0.
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To recover a sharp image from its blurry observation is the problem
known as image deblurring. It frequently arises in imaging sciences and
technologies, including optical, medical, and astronomical applications,
and is crucial for allowing to detect important features and patterns such
as those of a distant planet or some microscopic tissue.

Mathematically, image deblurring is intimately connected to back-
ward diffusion processes (e.g., inverting the heat equation), which are
notoriously unstable. As inverse problem solvers, deblurring models
therefore crucially depend upon proper regularizers or conditioners that
help secure stability, often at the necessary cost of losing certain high-
frequency details in the original images. Such regularization techniques
can ensure the existence, uniqueness, or stability of deblurred images.

The present work follows closely the general framework described
in our recent monograph [18], but also contains more updated views
and approaches to image deblurring, including, e.g., more discussion
on stochastic signals, the Bayesian/Tikhonov approach to Wiener fil-
tering, and the iterated-shrinkage algorithm of Daubechies et al. [30,31]
for wavelet-based deblurring. The work thus contributes to the devel-
opment of generic, systematic, and unified frameworks in contemporary
image processing.
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1. Mathematical Models of Blurs

Throughout the current work, an image u is identified with a Lebesgue

measurable real function on an open two-dimensional (2D) regular domain

Ω. A general point x = (x1, x2) ∈ Ω shall also be called a pixel as in digital

image processing. The framework herein applies readily to color images for

which u could be considered an RGB-vectorial function.

1.1. Linear blurs

Deblurring is to undo the blurring process applied to a sharp and clear

image earlier, and is thus an inverse problem. We hence start with the

description of the forward problem - mathematical models of blurring.

In most applications, blurs are introduced by three different types of

physical factors: optical, mechanical, or medium-induced, which could lead

to familiar out-of-focus blurs, motion blurs, or atmospheric blurs respec-

tively. We refer the reader to [18] for a more detailed account on the as-

sociated physical processes. Figures 1 and 2 show two real blur examples

directly taken by a digital camera under different circumstances.

Fig. 1. A real example of an out-of-focus blur. Left: the clear image; Right: the out-of-
focus image taken by a digital camera that focuses on a point closer than the scene.

Mathematically, blurring can be either linear or nonlinear. The latter is

more challenging to invert due to the scarcity of proper nonlinear models.

The current work shall mainly focus on linear deblurring problems.

A general linear blur u0 = K[u] is defined by a linear operator K. In

most applications noise is unavoidable and a real observation is thus often

modelled by

u0 = K[u] + n,
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Fig. 2. A real example of a motion blur. Left: the clear image; Right: the motion-blurred
image taken by a camera that experiences a rapid jitter during the exposure.

provided that the noise n is additive. (Multiplicative noises can be handled

similarly.)

Among all linear blurs, the most frequently encountered type is shift-

invariant. A linear blurK is said to be shift-invariant if for any shift a ∈ R
2,

u0(x) = K[u(x)] implies that u0(x− a) = K[u(x− a)].

It is well known in signal processing as well as system theory [56] that a

shift-invariant linear operator must be in the form of convolution:

K[u] = k ∗ u(x) =

∫

R2

k(x− y)u(y)dy, (1)

for some suitable kernel function k(x), or the point spread function (PSF).

At any fixed pixel x ∈ Ω, a general linear blur K induces a linear

functional on u, or a generalized function Lx : u → K[u](x). Denote it

symbolically by k(x, ·) so that as in distribution theory [68], one has

Lx[u] = 〈k(x, ·), u(·)〉.

Suppose that the distribution k(x, ·) is actually an ordinary measurable

function in L1(Ω). Then the linear blur becomes ordinary integrals:

u0(x) =

∫

Ω

k(x,y)u(y)dy, x ∈ Ω.

Herein we shall assume that the image u belongs to Lp(Ω) with p ∈
[1,+∞], and that K is a bounded linear operator from Lp(Ω) to Lq(Ω) with

some q ∈ [1,+∞]. As a result, the adjointK∗ is defined from (Lq)∗ to (Lp)∗,

the dual spaces. (One must be aware, however, that (L∞)∗ 6= L1 [48].)
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1.2. The DC-condition

The most outstanding characteristic of a blur operator is the DC-condition:

K[1] = 1, treating 1 ∈ L∞(Ω). (2)

In classical signal processing [56], DC stands for direct current since the

Fourier transform of a constant contains no oscillatory frequencies. By du-

ality, 〈K[u], v〉 = 〈u,K∗[v]〉, and the DC-condition on K amounts to the

mean-preserving condition on K∗:

〈K∗[v]〉 = 〈v〉, by setting u = 1; or

∫

Ω

K∗[v](x)dx =

∫

Ω

v(x)dx,

(3)

if both v and K∗[v] belong to L1(Ω).

In terms of information theory [27], the DC condition implies that con-

stant signals are invariant under blurring. In particular, blurs cannot gen-

erate ripples from flat signals, and thus can never create information.

When the blur is shift-invariant with a PSF k, the DC-condition requires
∫

R2

k(x)dx = 1, or in terms of its Fourier transform, K(ω = 0) = 1,

since the adjoint is also shift-invariant with PSF k(−x). Moreover, a more

convincing blur operator has to be lowpass [56,67], i.e., K(ω) must decay

rapidly at high frequencies.

1.3. Nonlinear blurs

Blurs could be nonlinear, though linear models prevail in the literature.

Consider for example the following nonlinear diffusion model:

vt = ∇ ·
[

1
√

1 + |∇v|2
∇v

]

, v
∣

∣

t=0
= u(x). (4)

Let the solution be denoted by v(x, t). For any fixed finite time T > 0,

define a nonlinear operator K = KT by: u0 = K[u] = v(x, T ). Nonlinearity

is evident since for example K[λu] 6= λK[u] for general u and λ 6= 0. But

the operator K apparently satisfies the DC-condition. Furthermore, (4) is

the gradient descent equation of the minimum surface energy

E[v] =

∫

R2

√

1 + |∇v|2dx.

As a result, the above nonlinear diffusion model always smoothens out any

rough initial surfaces. In particular, small scale features and oscillations of u
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must be wiped out in u0 = K[u], making u0 a visually blurred and mollified

version of the original image u. Notice remarkably that the nonlinear blur

is in fact shift-invariant.

2. Illposedness of Deblurring

The illposedness of deblurring could be readily understood in four intrigu-

ing aspects. Understanding the root and nature of illposedness helps one

design good deblurring models. The following four viewpoints are in some

sense the four different facets of a same phenomenon, and hence must not

be taken individually.

A. Deblurring is Inverting Lowpass Filtering. In the Fourier domain,

a blur operator is often lowpass so that high frequency details are com-

pressed by vanishing multipliers. As a result, to deblur a blurry image, one

has to multiply approximately the reciprocals of the vanishing multipliers,

which is conceivably unstable to noises or other high-frequency perturba-

tions in the image data.

B. Deblurring is Backward Diffusion. By the canonical PDE theory,

to blur an image with a Gaussian kernel amounts to running the heat

diffusion equation for some finite duration with the given image as the

initial data. Therefore, to deblur is naturally equivalent to inverting the

diffusion process, which is notoriously unstable.

Stochastically, diffusion corresponds to the Brownian motions of an ini-

tial ensemble of particles. Thus to deblur or to de-diffuse amounts to revers-

ing an irreversible random spreading process, which is physically illposed.

C. Deblurring is Entropy Decreasing. The goal of deblurring is to re-

construct the detailed image features from a mollified blurry image. Thus

from the standpoint of statistical mechanics, deblurring is a process to in-

crease (Shannon) information, or equivalently, to decrease entropy. Accord-

ing to the second law of statistical mechanics [41], deblurring thus could

never occur naturally and extra work has to be done to the system.

D. Deblurring is Inverting Compact Operators. In terms of abstract

functional analysis, a blurring process is typically a compact operator. A

compact operator is one that maps any bounded set (according to the
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associated Hilbert or Banach norms) to a much better behaved set which is

precompact. To achieve this goal, intuitively speaking, a compact operator

has to mix spatial information or introduce many coherent structures, which

is often realized essentially by dimensionality reduction based on vanishing

eigenvalues or singular values. Therefore to invert a compact operator is

again equivalent to de-correlating spatial coherence or reconstructing the

formerly suppressed dimensions (during the blurring process) of features

and information, which is unstable.

This illustration can be further vivified via finite-dimensional linear al-

gebra [65,66]. Looking for an unknown vector u of dimension much higher

than its observation b for the matrix-vector equation Au = b often has

either no solution or infinitely many. Any unique meaningful solution has

to be defined in some proper way.

3. Tikhonov and Bayesian Regularization

From the above discussion, proper regularization techniques have to be

sought after in order to alleviate the illposedness of the deblurring process.

Two universal regularization approaches, which are essentially recipro-

cal in the two dual worlds of deterministic and stochastic methodologies, are

Tikhonov regularization [69] and the Bayesian inference theory [45]. Their

intimate connection has been explained in, for example, Mumford [53], and

Chan, Shen, and Vese [20].

In essence, both approaches introduce some prior knowledge about the

target images u to be reconstructed. In the Bayesian framework, it is to

introduce some proper probability distribution over all possible image can-

didates, and necessary bias (i.e., regularization) is encouraged to favor more

likely ones. In the Tikhonov setting, the prior knowledge is often reflected

through some properly designed “energy” formulations, e.g., a quadratic

energy like a‖u‖2 under some proper functional norm.

We now introduce the most general framework of Bayesian-Tikhonov

regularization for deblurring. Consider the blur model

u0(x) = K[u](x) + n(x), x = (x1, x2) ∈ R
2,

with a general blur operator K and additive white noise n.

First, assume that blur processK is either known explicitly or estimated

in advance [18]. As an estimation problem, deblurring can be carried out

by the Bayesian principle or MAP (maximum a posteriori probability):

û = argmaxProb(u | u0,K),
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or equivalently, in terms of the logarithmic likelihood or Gibbs’ ensemble

formula E[·] = − log p(·) + a constant or fixed free energy [24],

û = argminE[u | u0,K].

The Bayesian formula with a known blur K is given by

Prob(u | u0,K) = Prob(u | K)Prob(u0 | u,K)/Prob(u0 | K).

Given an image observation u0, the denominator is simply a fixed prob-

ability normalization constant. Thus effectively one seeks an estimator û

to minimize the product of the prior model Prob(u | K) and the data (or

fidelity) model Prob(u0 | u,K). Since ideal images and blurs are often inde-

pendent, one has Prob(u | K) = Prob(u). Therefore in terms of the energy

formulation, one attempts to minimize the posterior energy

E[u | u0,K] = E[u] +E[u0 | u,K]. (5)

In the setting of Tikhonov regularization, the prior energy E[u] is virtually

a regularizer for the data fitting model E[u0 | u,K]. Functionally, E[u] can

be specified by a suitable norm or semi-norm in some proper function space

such as the BV or Besov spaces, which will be discussed later.

For blind deblurring when the kernel K is unknown, the Bayesian for-

mula becomes

max
u,K

Prob(u,K | u0) = Prob(u0 | u,K)Prob(u,K)/p(u0).

In most applications, the blur mechanism K is uncorrelated to the image

content u (e.g., in astronomical imaging, atmospheric turbulence activities

K are not influenced by the ideal image observation u of the stars and

galaxies many lightyears away). Then one has

Prob(u,K) = Prob(u)Prob(K),

and the posterior energy takes the form of

E[u,K | u0] = E[u0 | u,K] +E[u] +E[K], (6)

up to a fixed additive constant (corresponding to the free energy under the

given parameters in the models).

In both models (5) and (6) for non-blind and blind deblurring, the data

generation model E[u0 | u,K] is often readily expressible via squared fitting

error for Gaussian white noise. Thus the key to effective deblurring relies

upon the proper proposals on the prior knowledge for the target image u,

as well as the blur process K in the blind scenario.
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4. Optimal Wiener Filtering for Non-Blind Deblurring

From now on, instead of the black-faced symbols x and ω, a general pixel

will be denoted by x = (x1, x2) and its frequency dual variable by ω =

(ω1, ω2). Due to the stochastic nature of Wiener filtering, we shall begin

with a brief introduction to 2-D stochastic signals.

4.1. 2-D stochastic spatial signals

Consider only real stochastic images defined on the domains of either R
2

for analog images or the lattice Z
2 for digital ones.

A stochastic image u(x) is said to be homogeneous if any of its finite

marginal distributions carries no spatial memory, or equivalently, is trans-

lation invariant:

Px+z,··· ,y+z(u, · · · , v) ≡ Px,··· ,y(u, · · · , v), ∀z = (z1, z2),

where the marginal probability is defined by

Px,··· ,y(u, · · · , v)du · · · dv = Prob(u(x) ∈ [u, u+du], · · · ,u(y) ∈ [v, v+dv]).

Familiar sources for homogenous images include Gibbs’ random fields with

translation invariant potentials, or Markov random fields with translation

invariant graph structures and local conditionals [6,18,40]. Homogeneity is

appropriate for modelling certain ideal single-species textures such as sandy

beaches or grasslands, which are more or less uniform.

More generally, a stochastic signal u is said to be wide-sense homoge-

neous (WSH), if its two-point auto-correlation function

Ruu(x, y) = E[u(x)u(y)],

is translation invariant: for any relocation z,

Ruu(x+ z, y + z) = Ruu(x, y).

Thus if u is WSH, its auto-correlation function is essentially a single-pixel

function: Ruu(x − y) = Ruu(x, y). Let ω = (ω1, ω2) denote the spatial

frequency variable. Then the power spectral density Suu(ω) is defined to

be the Fourier transform of Ruu(x):

Suu(ω) =

∫

R2

Ruu(x)e−ixωdx.

A WSH image n(x) is said to be white noise, if Snn(ω) ≡ σ2, or equiva-

lently, its auto-correlation function Rnn(x) is a constant multiple of Dirac’s

delta signal δ(x).
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Two WSH images u and v are said to be cross-WSH if their cross-

correlation function is translation invariant as well.

Ruv(x, y) = E[u(x)v(y)] = Ruv(x− y). (7)

Define the cross-WSH set of a given WSH image u to be

Λu = {v | v is cross-WSH to u }. (8)

Then u ∈ Λu. Furthermore, we have the following list of straightforward

but useful properties.

Theorem 1: Suppose u is WSH and Λu its cross-WSH set. Then Λu is a

linear space which is closed under spatial relocation:

v(·) ∈ Λu ⇒ v(·+ z) ∈ Λu,

for any relocation z ∈ R
2, as well as under linear filtering:

v ∈ Λu ⇒ h ∗ v ∈ Λu,

for any filter h = h(x). Let H(ω) denote the impulse response of h. Then,

Rh∗v,u(x) = h ∗Rvu(x), and Sh∗v,u(ω) = H(ω)Svu(ω).

4.2. Stochastic signals as random generalized functions

Another intriguing approach to stochastic signals is to treat a stochastic

signal as a random generalized function.

Recall that a generalized function F , or a Schwartz distribution, is a

linear functional on the test function space D = C∞
0 (R2), so that for any

test function φ ∈ D,

the determinisitc values 〈F, φ〉 are linear in φ.

A 2D stochastic field u on R
2 can be treated as a random generalized

function so that for any test function φ ∈ D, the value

Uφ = 〈u, φ〉 is a random variable, and Uaφ+bψ = aUφ + bUψ.

The mean field of u is an ordinary generalized function mu such that

E(Uφ) = 〈mu, φ〉, for any φ ∈ D.

If mu = 0, u is said to have zero means. Two random fields u and v are

said to be equivalent if Uφ and Vφ share the same probability distribution

for any test function φ ∈ D.
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For any shifting operator Sz : φ(x)→ φ(x− z) with z ∈ R
2, the shifted

random field Szu is defined by the dual formula

〈Szu, φ〉 = 〈u, S−zφ〉, φ ∈ D.

u is said to be shift invariant if u is equivalent to Szu for any shift z. If a

test function φ is interpreted as a measurement sensor, then a random field

is shift invariant if and only if no statistical difference can be detected from

the measurements when a sensor is moved from one location to another.

A random field u of zero means is said to be wide-sense homogeneous

(WSH) if there exists some locally integrable function Ruu(x) such that for

any two test functions φ and ψ, one has

E(UφUψ) = 〈φ,Ruu ∗ ψ〉.

Similarly, two random fields u and v of zero means are said to be cross-

WSH if there exists some locally integrable function Ruv(x) such that for

any test functions φ and ψ,

E(UφVψ) = 〈φ,Ruv ∗ ψ〉.

Ruu and Ruv are called the auto-correlation and cross-correlation func-

tions, and are apparently unique if in existence. If one formerly takes Dirac’s

delta functions as test functions, it is easy to verify the consistency between

the current functional definitions and the pointwise definitions in the pre-

ceding subsection.

The reader can familiarize the above theory with the help of the follow-

ing example of random harmonic waves in 1D:

u(x) = A cos(x+B), x ∈ R,

where A and B are independent random variables with B uniformly dis-

tributed over [0, 2π), and A exponentially distributed on (0,∞). Then it is

easy to show, for example, that u must be homogenous (or shift invariant).

4.3. Filtering-based deblurring

Assume that the blur is shift invariant: u0 = k ∗ u + n. Filtering-based

deblurring is to produce an estimator û of the ideal image u via a linear

filtering scheme:

û = ûw = w ∗ u0, with a suitable filter w.

Without noise, the ideal filter would be directly given by W (ω) = 1
K(ω) ,

in the Fourier domain, so that û = w ∗ u0 ≡ u for any clear image u and
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perfect reconstruction is reached! However, it is a rather unnerving formula

since a typical blur k is often lowpass and K(ω) decays rapidly at high

frequencies. Such a naive filter therefore exaggerates any high-frequency

errors or perturbations.

To alleviate such unwanted instability, in the noise-free case one rewrites

the naive filter W = 1/K to

W (ω) =
K∗(ω)

K(ω)K∗(ω)
=

K∗

|K|2 , where ∗ denotes complex conjugacy.

The vanishing denominator at high frequencies can be guarded away from

zero by incorporating a positive factor r = r(ω):

W →Wr =
K∗

|K|2 + r
. (9)

The resultant deblurred image ûr is then given by

ûr = wr ∗ k ∗ u,

or in the Fourier domain, the composite effect of the blurring and deblurring

processes is achieved by the multiplier

Wr(ω)K(ω) =
|K(ω)|2

|K(ω)|2 + r(ω)
. (10)

The restoration indeed well approximates the identity operator on low fre-

quencies where r � |K|2 since K is lowpass. High frequencies are however

suppressed since K almost vanishes and |K|2 � r. Thus the regularizer r

plays a soft cutoff role.

The reader should pay constant attention to the frequent emergency of

such an r-factor henceforth. It embodies a universal quantity that is critical

for any deblurring problem.

The question is how to choose wisely an optimal regularizer r. A uniform

constant is a reasonable guess but lacks clear theoretical backup. What

Wiener discovered was that r should be related to the signal-to-noise ratio

in the observation u0, which will be explained in the next subsection.

It is also the right spot to reiterate the earlier analogy drawn from

the finite linear algebra of solving Au = b. Recall that the least square

solution [65,66] is given by the normal equation:

A∗Aû = A∗
b, or û = (A∗A)−1A∗Au.

Thus the “filter” in the least-square solution is given by

W = (A∗A)−1A∗.
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When the linear operator A “mixes” information too intensely so that

rank (A) = dim(Range(A))� # of rows of A,

A∗A becomes singular (or almost singular if the approximate rank only

counts the nonnegligible singular values of A). Then the inversion of

(A∗A)−1 still remains illposed or unstable. In linear algebra, the filter is

then regularized to

Wr = (A∗A+ rI)−1A∗ (11)

for some positive small parameter r > 0, where I is the identity matrix. The

resultant estimator corresponds to the regularized least-square problem:

ûr = argmin
u
‖Au− b‖2 + r‖u‖2.

Notice the characteristic similarity between (9) and (11).

4.4. Optimal Wiener filtering

Wiener’s filter w is to minimize the mean squared estimation error ew de-

fined by ew(x) = ûw(x)− u(x). That is,

w = argminhE(e2h) = argminhE(h ∗ u0(x)− u(x))2. (12)

Notice that Wiener’s filter is independent of the particular pixel x used in

the above definition since eh is easily seen to be WSH for any fixed real filter

h = h(x), provided that u the ideal image and n the noise are independent

and WSH.

Variation on the optimal Wiener filter: w → w + δh gives the “equilib-

rium” equation

E[(w ∗ u0(x) − u(x)) (δh ∗ u0(x))] = 0.

Taking localized small variation δh(x) = εδ(x − a) for some ε � 1 at any

site a, one can rewrite the equation to E[(w ∗ u0(x)− u(x))u0(x− a)] = 0.

Since a is arbitrary, it is equivalent to

E[(w ∗ u0(x) − u(x))u0(y)] = 0, ∀x, y ∈ Ω, (13)

the one known as the orthogonal condition for Wiener’s filter.

By Theorem 1, in terms of the correlation functions, one has

w ∗Ru0u0
(z) = Ruu0

(z), z ∈ R
2.
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The optimal Wiener filter is thus given by W (ω) = Suu0
(ω)/Su0u0

(ω),

expressed in terms of the power spectral densities. For the blur model:

u0 = k ∗ u+ n, one has, according to Theorem 1,

Suu0
= K∗(ω)Suu(ω), and Su0u0

= |K(ω)|2Suu(ω) + Snn(ω).

Therefore, we have established the following theorem.

Theorem 2: (Wiener Filter for Deblurring) The optimal Wiener filter is

given by, in the Fourier domain,

W (ω) =
K∗Suu

|K|2Suu + Snn
=

K∗

|K|2 + rw
, (14)

where the regularizer rw = Snn/Suu is the squared noise-to-signal ratio.

For a Gaussian white noise with variance σ2, one has Snn(ω) ≡ σ2. Since

Suu is often bounded, the Wiener regularizer rw is therefore well bounded

above zero.

We refer the reader to, e.g., [43,47] for further improvement of the above

classical Wiener filters, especially on relaxing the stochastic assumptions on

the signals and the conditions on the blur model.

4.5. Connection to the Bayesian/Tikhonov method

We now show that Wiener filtering is intimately connected to the general

framework of Bayesian or Tikhonov regularization laid out in the preceding

section.

Take the quadratic data-fitting model

E[u0 | u, k] = λ‖k ∗ u− u0‖2 = λ

∫

R2

(k ∗ u− u0)
2dx

for additive Gaussian white noise, where λ is inversely proportional to the

noise variance σ2.

For the prior model E[u], assume the ideal image u belongs to the

fractional-Sobolev space Hγ(R2). Formally, this means that u ∈ L2(R2)

and its fractional gradient ∇γu ∈ L2(R2). More rigorously, the norm is

properly defined in the Fourier domain by:

‖u‖2γ =

∫

R2

(1 + |ω|2)γ |U(ω)|2dω,

where U(ω) denotes the Fourier transform of u(x). Define

r(ω) =
(1 + |ω|2)γ

λ
=

λ−1

(1 + |ω|2)−γ . (15)
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Notice that r(ω) can indeed be considered as the squared noise-to-signal

ratio as in the Wiener filter since λ−1 is proportional to the noise variance

and the denominator is proportional to the squared signal strength. (More

precisely, the noise n has been assumed in L2 and its power spectral density

is the ideal variance σ2 modulated by some decay factor |ω|−2α, which is

however shared by the signal and cancelled out. This makes the above r a

more authentic squared noise-to-signal ratio.)

Notice that the power-law decay in (15) is very common in stochastic

signal analysis and processing.

One is thus led to the following posterior energy for deblurring:

E[u | u0, k] = λ‖k ∗ u− u0‖2 + ‖u‖2γ.
In the Fourier domain, it is equivalent to the energy

E[U | U0,K] =

∫

Ω

|K(ω)U(ω)− U0(ω)|2 dω +

∫

Ω

r(ω)|U(ω)|2dω. (16)

Performing variation on U , one has the equilibrium equation for the optimal

estimator:

K∗(KU − U0) + rU = 0, or U(ω) =
K∗(ω)

|K|2(ω) + r(ω)
U0(ω),

with r being the squared noise-to-signal ratio. This could be considered as

the deterministic version of Wiener filtering. To our best knowledge, such

an explicit connection has never been made before in the literature.

More generally, with r(ω) already computed for Wiener filtering (14),

one can substitute it into the Bayesian/Tikhonov formulation (16), and

arrive at the precise posterior energy form for deterministic Wiener filtering.

An interesting case occurs if r(ω) = (1+ |ω|2)−µ for some notable µ > 0,

which corresponds to the scenario when the target image signal u is highly

oscillatory, or is functionally a generalized function instead of L2 [64].

5. Deblurring Blurred BV Images

One of the most powerful deterministic image prior model is the space of

functions of bounded variations BV(Ω), first introduced into image process-

ing by Rudin, Osher, and Fatemi [61]. In this section, we discuss the theory

and computation of deblurring BV images.

5.1. TV deblurring by Rudin, Osher, and Fatemi

The total variation (TV) of a BV image u is conventionally denoted by
∫

Ω |Du| or |Du|(Ω) [38,42]. When the image u is smooth so that its gradient
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∇u belongs to L1, the TV is simply the ordinary L1 integral
∫

Ω

|Du| =
∫

Ω

|∇u|dx,

in the sense of Sobolev norm. For a more generic BV image u that has

discontinuous jumps, the TV |Du| is in fact a Radon measure so that for

any open set Q ⊂ Ω,

|Du|(Q) = sup
g∈C1

0
(Q,B2)

∫

Q

u(∇ · g)dx,

where B2 ⊂ R
2 denotes the unit open disk centered at the origin and g =

(g1, g2) is vectorial. For more introduction to BV images and their applica-

tions in image analysis and processing, we refer the reader to our new mono-

graph [18], the more mathematically oriented monographs [38,42], as well

as numerous existent works, e.g., [1,7,9,12,16,17,50,57,58,62,63,70,71,72].

In one adopts the TV measure for image regularization: E[u] =

α
∫

Ω |Du|, the posterior energy for Bayesian/Tikhonov deblurring then

takes the form of

E[u | u0, k] = E[u] +E[u0 | u, k]

= α

∫

Ω

|Du|+ λ

2

∫

Ω

(k ∗ u− u0)
2dx,

(17)

with x = (x1, x2) ∈ Ω = R
2 and two suitable positive weights α and λ. This

was the restoration model originally proposed and computed by Rudin-

Osher-Fatemi [60,61], and later further studied by many others [9,72,73].

Notice that as far as energy minimization is concerned, only the ratio

r = α/λ contributes to the solution process. As for parametric estimation

in statistics, one could also treat r as an unknown as well, and expand the

energy to E[u, r | u0, k] by absorbing some prior knowledge E[r] on r.

The previous discussion on the optimal Wiener filtering (14) seems to

suggest that the ratio r = α/λ is in the same dimension of the noise-to-

signal ratio rw. In particular, r should be proportional to the variance σ2 of

the noise, which is natural since by the Bayesian rationale for least square

fidelities, one indeed has λ = O(1/σ2).

5.2. Dealing with bounded image domains

In model (17), it has been conveniently assumed that the image domain

Ω is the entire plane R
2 to facilitate shift invariance. In real applications,
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however, Ω is often a bounded disk or square for which the blur

K[u] = k ∗ u(x) =

∫

R2

k(x− y)u(y)dy, x ∈ Ω

needs to be properly redefined.

First, one can remodify the blur to a shift-variant PSF given by

k(x, y) =
k(x− y)

∫

Ω
k(x− z)dz , ∀x, y ∈ Ω. (18)

We assume that the original PSF k(x) is nonnegative, and x = (0, 0) belongs

to the support of the measure dµ(x) = k(x)dx. That is, the integral of k(x)

on any neighborhood of (0, 0) is positive. Then the denominator in (18) is

always positive. It is also easy to see that the DC-condition K[1] = 1 still

holds after the modification.

An alternative way is to first extrapolate u beyond Ω. Let

Q : u
∣

∣

Ω
→ ũ = Q[u]

∣

∣

R2
,

be a suitable linear extrapolation operator which extends u on Ω onto the

entire plane. (Functionally, Q could be some linear operator from, e.g.,

W 1,∞(Ω) to W 1,∞(R2).) Then the blur is modified to

K[u](x) = k ∗ ũ(x) = k ∗Q[u](x), ∀x ∈ Ω, (19)

or equivalently, K = 1Ω · (k ∗Q) with a multiplier 1Ω(x).

The DC-condition is satisfied if and only if k ∗Q[1] ≡ 1 when restricted

in Ω. In particular, the natural condition Q[1] ≡ 1 would suffice since k

satisfies the DC-condition on R
2.

If Q is represented by some kernel g(x, y) with y ∈ Ω, x ∈ R
2. Then the

modified K is represented by

k(x, y) =

∫

R2

k(x− z)g(z, y)dz, x, y ∈ Ω.

Therefore the DC-condition is satisfied when g and k meet the following

compatibility condition
∫

Ω

∫

R2

k(x− z)g(z, y)dzdy ≡ 1, ∀x ∈ Ω. (20)

Finally, another less traditional approach to handling bounded domains

can be based on the inpainting technique [4,5,11,13,14,15,16,17,19,36]. Sup-

pose that k(x) is compactly supported on a disk Bρ(0) = {x ∈ R
2 : |x| < ρ},

and the ρ-neighborhood of Ω is defined by

Ωρ = {x ∈ R
2 | dist(x,Ω) < ρ}.
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Assume also the ideal image u ∈ BV(Ω). Then, instead of the original

model (17), one can attempt to minimize the modified version –

E[u | u0, k, ρ] = α

∫

Ωρ

|Du|+ λ

2

∫

Ω

(k ∗ u− u0)
2dx. (21)

The convolution inside the fidelity term no longer stirs up any problem.

In summary, both the restricted-kernel method (18) and the image-

extrapolation method (19) lead to a shift-variant blur K with kernel k(x, y),

and the deblurring model for BV images becomes

min
u
ETV[u | u0,K] = α

∫

Ω

|Du|+ λ

2

∫

Ω

(K[u]− u0)
2dx. (22)

Next we briefly discuss the solutions to this model. More details can be

found, for example, in [1,9,18].

5.3. Existence and uniqueness

Following the preceding preparation, the image domain Ω can be assumed

bounded and Lipschitz in R
2. In addition, we assume that (i) the ideal

image u ∈ BV(Ω), (ii) the blurry and noisy observation u0 ∈ L2(Ω), and

(iii) the linear blur K : L1(Ω) → L2(Ω) is bounded, injective, and satisfies

the DC-condition: K[1] ≡ 1.

Condition (i) and (ii) are necessary for (22) to be well defined. Injectivity

in (iii) is also necessary for the uniqueness of optimal deblurring.

The proof for the following theorem can be found in, e.g., [9,18].

Theorem 3: (Existence and Uniqueness of BV Deblurring) Under the pre-

ceding three conditions, the optimal deblurring u∗ = argminE[u | u0,K]

for model (22) exists and is unique.

Furthermore, the unique minimizer must satisfy the mean constraint.

Corollary 4: (The Mean Constraint) The unique minimizer u∗ must au-

tomatically satisfy the mean constraint 〈K[u∗]〉 = 〈u0〉.

Stochastically, this is a natural inference from the blur model

u0 = K[u] + n,

since the noise has zero means. Deterministically, this fact has to be proven

from the deblurring model.
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Proof: For the unique minimizer u∗, define for any c ∈ R

e(c) = E[u∗ − c | u0,K].

Then c∗ = argmin e(c) has to minimize
∫

Ω

(K[u∗]− u0 − c)2dx, since K[c] = c.

As a result, the unique minimizer c∗ = 〈K[u∗]− u0〉. On the other hand c∗
has to be zero since u∗ − c∗ = u∗ due to uniqueness. Therefore,

〈K[u∗]〉 = 〈u0〉,

which establishes the assertion.

Figures 3, 4, and 5 are three generic examples from [18] that demonstrate

the performance of the deblurring model (22).

an out−of−focus image deblurred image (with known PSF)an out−of−focus image deblurred image (with known PSF)

Fig. 3. Deblurring an out-of-focus image.

5.4. Computation and examples

The variational deblurring model (22) has been computed more or less

based on the formal Euler-Lagrange equation [1,9,60,61]:

α∇ ·
[ ∇u
|∇u|

]

− λK∗[K[u]− u0] = 0, (23)
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image blurred by horizontal hand jittering deblurred image (with known PSF)image blurred by horizontal hand jittering deblurred image (with known PSF)

Fig. 4. Deblurring a motion-blurred image.

image blurred by horizontal hand jittering deblurred image (with known PSF)image blurred by horizontal hand jittering deblurred image (with known PSF)

Fig. 5. Restoring another motion-blurred image.

with Neumann adiabatic condition ∂u/∂n = 0 along the boundary ∂Ω.

Equation (23) holds in the distributional sense, i.e., for any compactly sup-

ported smooth test function φ, the solution satisfies

α〈∇φ, ∇u|∇u| 〉+ λ〈K[φ],K[u]− u0〉 = 0.

The nonlinear degenerate elliptic equation (23) is often regularized to

α∇ ·
[ ∇u
|∇u|a

]

− λK∗[K[u]− u0] = 0, (24)
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where the notation |x|a denotes
√
x2 + a2 for some fixed positive parameter

a. It amounts to minimizing

E[u | u0,K, a] = α

∫

Ω

√

|Du|2 + a2 +
λ

2

∫

Ω

(K[u]− u0)
2dx, (25)

which is closely connected to the minimal surface problem [42].

Computationally, the most common algorithm has been based on the so-

called lagged-diffusivity technique [9,18,72], which is an iterative procedure.

Based on the current best estimation u(n), one solves for u(n+1) the following

linearized equation:

α∇ ·
[∇u(n+1)

|∇u(n)|a

]

− λK∗[K[u(n+1)]− u0] = 0, (26)

with the Neumann condition. Notice that given u(n), the linear operator

Ln = −α∇ · 1

|∇u(n)|a
∇+ λK∗K

is positive definite or strictly elliptic.

This algorithm guarantees convergence since it is equivalent to the

alternating-minimization (AM) algorithm for the augmented energy

Ea[u, z | u0,K] =
α

2

∫

Ω

(

z|∇u|2 + z−1
)

dx+
λ

2

∫

Ω

(K[u]− u0)
2dx,

where z = z(x) is an auxiliary field, which corresponds to the edge signature

function in image processing [17]. Then it can be easily shown that

min
u,z

Ea[u, z | u0,K] = min
u
ETV[u | u0,K].

Furthermore, the above lagged-diffusivity algorithm corresponds to exactly

the AM algorithm for the augmented energy:

· · · → u(n) → z(n) → u(n+1) → · · · .

6. Parametric Blind Deblurring

In all the above models, the blur K has been assumed known. We now

develop variational deblurring models when the blur is unknown, a sce-

nario often nicknamed “blind deblurring” [39,46,75]. Inspired by the theory

of statistical estimation, we shall classify such models into ones that are

parametric or nonparametric, or figuratively, partially blind or completely

blind.
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6.1. Parametric modeling

Suppose that the unknown linear blur belongs to a known parametric family

K = {Kθ | θ ∈ I ⊂ R
d},

where θ = (θ1, · · · , θd) denotes a d-dimensional parametric vector and varies

on a subset or domain I in R
d. One is therefore not completely “blind” to the

blur operator, and the uncertainty only arises from θ. A familiar example

is the Gaussian family of shift-invariant blurs Kθ = g∗ given by

g(x | θ) =
1

2πθ
exp

(

−x
2
1 + x2

2

2θ

)

, θ ∈ I = (0,∞), (27)

where in statistics θ precisely corresponds to the variance σ2.

By the Bayesian rationale stated previously [18,53], parametric blind

deblurring becomes the minimization of

E[u, θ | u0] = E[u0 | u, θ] +E[u] +E[θ]. (28)

The first two terms can be safely copied from the non-blind deblurring

model discussed previously. Thus it suffices to incorporate some appropriate

model for the parameter distribution p(θ) or E[θ].

Suppose u ∈ BV(Ω), θ ∈ I ⊂ Rd, and E[θ] = φ(θ) for some suitable

function φ. Then the deblurring model is explicitly given by

E[u, θ | u0] = α

∫

Ω

|Du|+ λ

2

∫

Ω

(Kθ[u]− u0)
2dx+ φ(θ). (29)

Assume that φ(θ) is bounded below: φ(θ) ≥ M > −∞ for all θ ∈ I .

Otherwise it can attenuate the role of the first two terms in (29) and distort

the real intention of the model. As an example, consider the Gaussian family

in (27). Suppose the variance θ is subject to the exponential distribution

with density function:

p(θ) = a exp(−aθ), θ ∈ I = (0,∞), for some a > 0. (30)

Then φ(θ) = E[θ] = − ln p(θ) = aθ − ln a ≥ − lna > −∞.
Following Theorem 3, Kθ is assumed to be injective and satisfy the

DC-condition Kθ[1] = 1. Then for any given θ, the conditional minimizer

ûθ = argminE[u | u0,Kθ] = argminα

∫

Ω

|Du|+ λ

2

∫

Ω

(Kθ[u]−u0)
2dx (31)

always exists and is unique by Theorem 3. The original model (29) is then

reduced to an optimization problem on the parameter domain I ⊂ R
d:

min
θ∈I

e(θ), with e(θ) = E[ûθ, θ | u0].
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e(θ) is, however, generally non-convex and consequently the global mini-

mizer (ûθ∗ , θ∗) could be non-unique.

6.2. The AM algorithm

Such a multivariable optimization problem can usually be solved by the

alternating-minimization (AM) algorithm [2,3,18,22,23,36,54]. One starts

with some initial guess θ(0), which could be drawn from argminφ(θ) for

instance. Then, one successively obtains the alternating conditional mini-

mizers

θ(0) → u(0) → θ(1) → u(1) → · · · (32)

by optimizing the conditional energies:

u(n) = argminE[u | u0, θ
(n)], followed by

θ(n+1) = argminE[θ | u0, u
(n)], where

E[θ | u0, u] =
λ

2

∫

Ω

(Kθ[u]− u0)
2dx+ φ(θ).

(33)

Notice that in the language of conditional probabilities, the Markov prop-

erty holds for the zigzag sequence (32):

Prob(θ(n+1) | u(n), θ(n), u(n−1), · · · ) = Prob(θ(n+1) | u(n)),

Prob(u(n) | θ(n), u(n−1), θ(n−1), · · · ) = Prob(u(n) | θ(n)).

By Theorem 3, the conditional update θ(n) → u(n) must be unique, while

the conditional parameter estimation u(n) → θ(n+1) could be nonunique.

Uniqueness can, however, still be enforced by some extra sorting scheme,

e.g.,

θ(n+1) = argmin{φ(θ) | θ ∈ argminE[θ | u0, u
(n)]},

provided that φ(θ) is strictly convex. The following is evident for AM.

Proposition 5: (Alternating Minimization is Monotone) For each n ≥ 0,

E[u(n+1), θ(n+1) | u0] ≤ E[u(n), θ(n) | u0].

Let B(L1, L2) denote the Banach space of all bounded linear operators

from L1(Ω) to L2(Ω). Then the following convergence result holds, whose

proof can be found in our monograph [18].

Theorem 6: (Convergence of Alternating Minimization) Assume that
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(a) the blur parametrization

K : I ⊂ R
d → B(L1, L2), θ → Kθ

is a continuous mapping; and

(b) φ(θ) is lower semi-continuous in θ ∈ I .

Then, if as n→∞, u(n) → u∗ in L1(Ω) and θ(n) → θ∗ ∈ I, the limit pair

(u∗, θ∗) satisfies

u∗ = argminE[u | u0, θ∗], θ∗ = argminE[θ | u0, u∗]. (34)

We must point out that the continuity on blur parametrization is strong

but not baseless. Consider, for example, the shift-invariant Gaussian fam-

ily (27) on Ω = R
2. By Young’s inequality [48], one has

‖(Kθ−Kθ′)[u]‖2 = ‖(g(x | θ)−g(x | θ′))∗u‖2 ≤ ‖g(x | θ)−g(x | θ′)‖2‖u‖1.
Therefore, ‖Kθ −Kθ′‖ ≤ ‖g(x | θ)− g(x | θ′)‖2, which indeed converges to

zero for any θ′ > 0, and θ → θ′.

In terms of the first formal variations,

∂

∂u
E[u∗ | u0, θ∗] =

∂

∂u
E[u∗, θ∗ | u0]

∂

∂θ
E[θ∗ | u0, u∗] =

∂

∂θ
E[u∗, θ∗ | u0].

Thus the limit (u∗, θ∗) does satisfy the equilibrium equations of the de-

blurring model E[u, θ | u0], and consequently offers a good candidate

for optimal deblurring. In particular, if E[u, θ | u0] is strictly convex on

(u, θ) ∈ BV(Ω)× I , (u∗, θ∗) must be the unique global minimizer.

7. Non-Parametric Blind Deblurring: Double-BV Model

7.1. General formulation of blind deblurring

If the blur operator K is completely unknown, deblurring is conceivably

much more challenging than the previous cases. Instead of estimating a few

parameters, now one has to reconstruct the entire blur process K.

Herein we study only the shift-invariant case when the image observa-

tion u0 is defined on Ω = R
2 with a PSF k(x). The blur operator is thus

reduced to a function, which is simpler than the general situation and can

be managed with proper regularizations.

By the general Bayesian/Tikhonov framework, one attempts to mini-

mize the posterior energy

E[u, k | u0] = E[u] +E[u0 | u, k] +E[k],
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provided that the blur is independent of the image, as discussed earlier. In

the case of BV images and Gaussian white noise, one has

E[u] = α

∫

R2

|Du|, E[u0 | u, k] =
λ

2

∫

R2

(k ∗ u− u0)
2dx.

Thus the key to successful deblurring lies in a proper proposal for the blur

prior E[k].

When the blur k is smooth, e.g., a Gaussian kernel, one may naturally

enforce the Sobolev regularity [75]: E[k] = β

∫

R2

|∇k|2dx. Generally, such

prior knowledge must be formulated based on the physical mechanism that

drives the blur process, e.g., the atmospheric turbulence.

7.2. Double-BV blind deblurring model of Chan and Wong

In motion blurs due to sudden jitters or out-of-focus blurs arising from

ideal diffraction-free lenses (see, e.g., Chan and Shen [18]), the PSF’s are

typically compactly supported with sharp cutoff boundaries. In such sce-

narios, as for images with sharp edges, the total variation regularity seems

more appealing for the blur k as well. This leads to the double-BV blind

deblurring model of Chan and Wong [23]:

E[u, k | u0 = α

∫

R2

|Du|+ β

∫

R2

|Dk|+ λ

2

∫

R2

(k ∗ u− u0)
2dx. (35)

The detailed analysis for the double-BV model first appeared in our re-

cent monograph [18]. Herein we only briefly introduce the most essential

ingredients and refer the reader to [18] for more involved proofs and expla-

nations.

For Ω = R
2, the BV norm is conventionally defined as [37,42]

‖u‖BV = ‖u‖L1(R2) + |Du|(R2). (36)

While most results on BV functions in the literature are for bounded do-

mains, it is worthwhile to pay extra attention to the complexity arising

from unboundedness. We refer the reader to the more detailed discussion

in Chan and Shen [18].

We now first extend a Poincaré inequality from bounded domains to R
2,

whose proof can be found in [18].

Theorem 7: (Poincaré Inequality for BV(R2)) Suppose u belongs to

BV(R2) with finite BV-norm defined as in (36). Then u ∈ L2(R2), and

more specifically,

‖u‖L2(R2) ≤ C|Du|(R2), for some constant C independent of u.
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For the double-BV blind deblurring model of Chan and Wong [23], we

impose three conditions:

Condition A. The observation u0 ∈ L2(R2) ∩ L∞(R2).

Condition B. The ideal image u belongs to BV(R2).

Condition C. The blur PSF k belongs to BV(R2), and satisfies the DC-

condition:

∫

R2

k(x)dx = 1.

The L2 constraint in Condition A naturally comes from the data model

in (35), while the L∞ constraint is satisfied by most real imaging devices

and is convenient for mathematical analysis. Furthermore, according to the

Poincaré inequality in Theorem 7, Condition B implies that u ∈ L2(R2).

Then by Young’s inequality [48], one has

‖k ∗ u‖L2(R2) ≤ ‖k‖L1(R2)‖u‖L2(R2),

which makes the data fitting term in (35) finite and well defined.

7.3. On the uniqueness: Hidden symmetries

In what follows we reveal some special symmetries hidden in the double-

BV deblurring model (35). Such symmetries could lead to nonuniqueness

of solutions.

Theorem 8: (Image-PSF Uncertainty) Suppose (u∗, k∗) minimizes the

double-BV deblurring model (35) with (α, β, λ). Assume in addition that

m =

∫

R2

u∗(x)dx = β/α.

Then (u+, k+) = (mk∗, u∗/m) must be a minimizer as well.

The proof is a straightforward verification. Now for any given a =

(a1, a2) ∈ R
2, define the shifting operator

Sa : g(x)→ Sa[g] = g(x− a), for any measurable function g.

Then it is well known that shifting commutes with convolution:

Sa[k ∗ u] = Sa[k] ∗ u = k ∗ Sa[u].
Furthermore, for any u, k ∈ BV(R2), the invariance holds:

∫

R2

|DSa[u]| =
∫

R2

|Du| and

∫

R2

Sa[k]dx =

∫

R2

kdx,

which induces the following symmetry.
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Theorem 9: (Dual-Translation Uncertainty) Suppose (u∗, k∗) minimizes

the double-BV deblurring model (35). Then for any a ∈ R
2, (Sa[u], Sa[k])

is also a minimizer.

In order to better understand the double-BV deblurring model, con-

sider now an easier but intimately related model - the double-Sobolev blind

deblurring model E2[u, k | u0] given by

α

2

∫

R2

|∇u|2dx +
β

2

∫

R2

|∇k|2dx+
λ

2

∫

R2

(k ∗ u− u0)
2dx, (37)

for which both u and k belong to the Sobolev space H1(R2).

The unitary Fourier transform of a function g(x) on R
2 is defined by

G(ω) = G(ω1, ω2) =

∫

R2

g(x)e−i2πω·xdx.

Then the unitary property of Fourier transform gives:
∫

R2

|G(ω)|2dω =

∫

R2

|g(x)|2dx, and

∫

R2

|∇g(x)|2dx = 4π2

∫

R2

ω2|G(ω)|2dω,

with ω2 = |ω|2 = ω2
1 + ω2

2 . Notice that the Fourier transform of k ∗ u is

given by a direct product K(ω)U(ω). Therefore, in the Fourier domain, the

double-Sobolev blind deblurring energy E2[u, k | u0] becomes E2[U,K | U0],

which is simply given by

2π2α

∫

R2

ω2|U(ω)|2dω+2π2β

∫

R2

ω2|K(ω)|2dω+
λ

2

∫

R2

|K(ω)U(ω)−U0(ω)|2dω.
(38)

The DC-condition now requires K(0) = 1. Furthermore, since u, k, and

u0 are all real, one requires that both U and K satisfy the conjugate con-

dition

Ū(ω) = U(−ω) and K̄(ω) = K(−ω), ω ∈ R
2. (39)

This leads to a nonuniqueness theorem more general than Theorem 9.

Theorem 10: (Dual-Phase Uncertainty) Let (u∗, k∗) ∈ H1(R2)×H1(R2)

be a minimizer to the double-Sobolev blind deblurring model (37). And let

φ(ω) : R
2 → R, ω → φ(ω)

be any real smooth phase factor that is odd: φ(−ω) = −φ(ω). Then

(u+, k+) = Inverse Fourier Transforms of (U∗(ω)eiφ(ω),K∗(ω)e−iφ(ω))

must be also a minimizer.
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Proof: It is straightforward to verify on the Fourier domain that

E[u+, k+ | u0] = E[u∗, k∗ | u0],

and that both u+ and k+ are indeed real. Furthermore, k+ does satisfy the

DC-condition since
∫

R2

k+dx = K+(0) = K∗(0)e−iφ(0) = K∗(0) = 1.

In particular, by taking φ(ω) = a · ω = a1ω1 + a2ω2, one recovers

the dual-translation uncertainty stated in Theorem 9. For uniqueness, it is

therefore desirable to impose further conditions to break up the potential

symmetries.

7.4. The existence theorem

The Poincaré’s inequality in Theorem 7 can be further improved by drop-

ping off the L1 condition [18].

Theorem 11: (Poincaré’s Inequality) For any u ∈ L2(R2), the Poincaré

inequality holds:

‖u‖L2(R2) ≤ C|Du|(R2), for some constant C independent of u.

The finiteness of the L2-norm appears necessary due to counterexamples

like u ≡ 1. The proof can be found in Chan and Shen [18].

Define the space BV2 by

BV2(R
2) = {u ∈ L2(R2) | |Du|(R2) <∞}.

Then by Theorem 7, BV(R2) ⊂ BV2(R
2). The larger space BV2 shall play

a natural role for the blind deblurring model to be discussed below. We

now study the existence of the double-BV blind deblurring model

E[u, k | u0] = α

∫

R2

|Du|+ β

∫

R2

|Dk|+ λ

2

∫

R2

(k ∗ u− u0)
2dx. (40)

The following conditions will be assumed for the study of existence.

Condition (a). Observation u0 ∈ L2(R2) ∩ L∞(R2).

Condition (b). Image u ∈ BV2(R
2), and ‖u‖L∞ ≤ ‖u0‖L∞ .

Condition (c). PSF k ∈ BV(R2), nonnegative, and satisfies the DC-

condition: 〈k, 1〉 = 1.
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Notice that the constraints put differently on u and k help break their

symmetric role in the model. However, even under Condition (b) and (c),

the dual-translation uncertainty addressed by Theorem 9 is still not got rid

of, since both conditions are still translation invariant.

For this purpose, Chan and Wong adopted the following centrosymme-

try condition [23] to break the symmetry:

Condition(d’). The PSF is centrosymmetric: k(−x) = k(x).

It amounts to requiring that the blur operator K is Hermitian. Numerical

evidences in [23] seem to suggest that this condition can stably lead to

unique deblurring solutions, though the theory has not been explored.

Herein to restrict the PSF to be highly concentrated near the origin, we

impose the condition on the “tail” behavior of k.

Condition(d). There exists some nonnegative function F (x) ∈ L1(R2), and

some positive radius R > 0, so that

0 ≤ k(x) ≤ F (x), ∀x ∈ R
2 : |x| ≥ R. (41)

For example, if F (x) ≡ 0 for all |x| ≥ R, Condition (d) amounts to requiring

k to be compactly supported on the disk BR = {x ∈ R
2 : |x| < R}.

Theorem 12: (Existence of Double-BV Blind Deblurring) Under Condi-

tions (a), (b), (c), and (d), the minimizers to the double-BV blind deblurring

model (40) exist.

The more technical proof could be found in our recent monograph [18].

Computationally, the double-BV blind deblurring model (40) can be also

implemented via the AM algorithm, similar to that described in Eqn. (33)

for parametric blind deblurring. More computational details can be found

in the work of Chan and Wong [23].

8. Deblurring Besov Images via Iterated Shrinkage

In this section, we introduce the iterated-shrinkage algorithm of Daubechies

et al. [30,31] for wavelet-based image deblurring.

Shrinkage has been one of the most efficient algorithms for image denois-

ing and compression due to its low complexity and simple implementation,

as studied in the stochastic framework by Donoho and Johnstone [34,35],

and also in the variational framework by DeVore, et al. [8,32,33]. For de-

blurring, a direct shrinkage scheme becomes infeasible due to the global

spatial correlation induced by the blur (integral) operator. Consequently,
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Daubechies et al. in the aforementioned works developed the iterated-

shrinkage algorithm to still take advantage of the efficiency of the shrinkage

scheme.

8.1. Wavelets and Besov images

We first briefly introduce wavelets and Besov images on R
2. The reader is

referred to, e.g., [18,29,51,52,67,74] for more details on these topics.

Let φ(x) = φ(x1, x2) denote the scaling function, assumed to be com-

pactly supported and sufficiently smooth for simplicity. For example, one

can take the tensor product φ(x1) ⊗ φ(x2) of a 1D scaling function by

Daubechies’ design [28,29]. Assume that the three canonical wavelets asso-

ciated to the multiresolution analysis of φ are given by

ψ(0,1)(x), ψ(1,0)(x), and ψ(1,1)(x).

In the tensor-product framework, these can similarly be constructed from a

1D scaling function and its associated canonical wavelet. The wavelets are

similarly assumed to be compactly supported and sufficiently smooth. Let

t = (t1, t2) ∈ T = {(0, 1), (1, 0), (1, 1)}

denote one of the three wavelet types. Assume that each ψt(x) has been

normalized to have a unit L2 norm, and the associated multiresoltuion

analysis is orthogonal (biorthogonality imposes no extra challenge).

For any triple index

λ = (j, n, t) = (j, (n1, n2), t) ∈ Z× Z
2 × T,

define the L2 normalized copy

ψλ(x) = ψtj,n(x) = 2jψt(2jx− n).

Similarly, define φn(x) = φ(x − n) for any n ∈ Z
2. Then L2(R2) has the

homogenous orthonormal wavelet basis:

{

ψλ(x) : λ = (j, n, t) ∈ Z× Z
2 × T

}

. (42)

For λ = (j, n, t), one defines |λ| = j to be the associated resolution index.

For any locally integral image u, its wavelet coefficients are defined by

uλ = u(j,n,t) = 〈u, ψλ〉 =
∫

R2

u(x)ψλ(x)dx, λ ∈ Z× Z
2 × T.
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In 2D, the space of Besov images, Bαq (Lp) with α > 0, q, p ≥ 1, can be

equivalently defined by:

‖u‖Bα
q (Lp) = ‖〈u, φ•〉‖lp +





∑

j≥0

2jq(α+1−2/p)‖u(j,•,•)‖qlp





1/q

.

The homogeneous Besov semi-norm |u|Ḃα
q (Lp), on the other hand, can be

characterized by merely the wavelet coefficients:

|u|Ḃα
q (Lp) =





∑

j∈Z

2jq(α+1−2/p)‖u(j,•,•)‖qlp





1/q

.

One Besov space of particular interest to image processing is when α = 1

and p = q = 1, for which the semi-norm takes the simple form of:

|u|Ḃ1

1
(L1) =

∑

j∈Z

‖u(j,•,•)‖l1 =
∑

λ

|uλ|. (43)

The BV image prior, which has been extensively employed in the previous

sections, is closely related to the Besov class B1
1(L1). Roughly speaking,

BV is somewhere between B1
1(L1) and a weaker version of B1

1(L1), which

is the remarkable result established by Cohen et al. [25,26]. Thus in the

wavelet literature, the BV image prior has often been approximated by the

B1
1(L1) [8,21], which shall also be adopted herein.

8.2. Besov image deblurring via iterated shrinkage

Consider the linear blur model with a known blur K and additive Gaussian

noises:

u0(x) = K[u](x) + n(x), x = (x1, x2) ∈ R
2.

Assume that the blur K : L2 → L2 is bounded and with operator norm

‖K‖ ≤ 1. This is always true for any shift-invariant blur with a PSF k(x)

that is nonnegative everywhere. Then by Young’s inequality, one has

‖k ∗ u‖L2 ≤ ‖k‖L1 ‖u‖L2 , (44)

and consequently the operator norm ‖K‖ ≤ ‖k‖L1 = 1 since k satisfies the

lowpass condition
∫

R2 k(x)dx = 1 and is nonnegative.

By the general Bayesian/Tikhonov framework discussed earlier, if the

prior image model is taken to be the Besov space B1
1(L1), the deblurring

model is then given by

û = argmin u E[u | u0,K] = 2α|u|Ḃ1

1
(L1) + β

∫

R2

(K[u]− u0)2dx, (45)
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where α, β > 0 with β inversely proportional to the variance σ2 of the noise,

and α characterizing the sensitivity to signal roughness.

Under the wavelet basis, the deblurring energy takes the simple form of

E[u | u0,K] =
∑

λ

(

2α|uλ|+ β(K[u]λ − u0
λ)

2
)

. (46)

Unlike image denoising or compression for which K = Id is the identity

operator and the energy is completely decoupled, the present model is cou-

pled across all the resolutions due to the blur operator K. This makes the

classical wavelet shrinkage algorithms [34,35] not directly applicable.

Let δu =
∑

λ δuλψλ denote a perturbation. Then the first variation of

the model energy E[u | u0,K] in (45) is given by

δE/2 = α
∑

λ

sign(uλ)δuλ + β

∫

R2

K∗[K[u]− u0]δudx

=
∑

λ

(

αsign(uλ) + β(M [u]λ − gλ)
)

δuλ,
(47)

where M = K∗K and g(x) = K∗[u0]. As a result, we have established the

following theorem.

Theorem 13: The optimal deblurring must satisfy the system of equa-

tions:

0 = r sign(uλ) + (M [u]λ − gλ), λ ∈ Z× Z
2 × T, (48)

where r = α/β could be considered as the noise-to-signal ratio as inspired

by Wiener filtering and BV deblurring discussed earlier.

As in classical wavelet analysis [18,34], define the soft-shrinkage operator

Sr(t) by

Sr(t) = sign(t)(|t| − r)+ = sign(t) max(|t| − r, 0), for t ∈ R.

Then if there is no blur so that both K and M are the identity operator,

the system of equilibrium equations (48) are then completely decoupled,

and the optimal solution is directly given by

uλ = Sr(gλ), for λ ∈ Z× Z
2 × T.

For deblurring, generallyM = K∗K is a mixing operator which could be

sparse but is often not the identity matrix. Then Daubechies et al. [30,31]

proposed the following iterated-shrinkage algorithm. Similar ideas also ap-

peared in the variational-PDE literature for deblurring-related applications

(see, e.g., Chan and Shen [17]).
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To proceed, one first modifies that equilibrium system (48) to

0 = r sign(uλ) + (uλ − gλ)− (uλ −M [u]λ).

The the iterated-shrinkage algorithm of Daubechies et al. [30,31] is based

on the following iteration scheme uk → uk+1 at each time step k:

0 = r sign(uk+1
λ ) + uk+1

λ −
(

ukλ + gλ −M [uk]λ
)

. (49)

Notice that due to the one-step time delay, the new system for uk+1 is

decoupled. Furthermore, it takes the form of a blur-free denoising problem!

Therefore, we have the following [30,31].

Theorem 14: At each time step k, the iteration is efficiently carried out

by the shrinkage operator applied to each wavelet channel:

uk+1
λ = Sr

(

ukλ + gλ −M [uk]λ
)

, for λ ∈ Z× Z
2 × T.

8.3. Understanding the iterated-shrinkage algorithm

We now present two ways to better understand the above iterated-shrinkage

algorithm of Daubechies et al. [30,31], from both the differential-equation

and variational points of view.

8.3.1. As semi-implicit time marching

Suppose more generally that the equilibrium system is augmented to

0 = r sign(uλ) + (Auλ − gλ)− (Auλ −M [u]λ), (50)

for some constant A� 1. Then the iteration algorithm is given by

0 = r sign(uk+1
λ ) +Auk+1

λ − (Aukλ + gλ −M [uk]λ), (51)

which again allows an explicit shrinkage solution. Suppose ∆t = A−1 � 1.

Then the last equation can be rewritten to

uk+1
λ − ukλ

∆t
= −

(

r sign(uk+1
λ ) + (M [uk]λ − gλ)

)

. (52)

If one introduces the continuous time variable t so that

ukλ = uλ(t = k∆t), k = 0, 1, · · · .
Then the iteration (52) is precisely a semi-implicit scheme for the infinite

system of coupled ordinary differential equations:

d

dt
uλ(t) = − (r sign(uλ(t)) + (M [u(t)]λ − gλ)) , λ ∈ Z× Z

2 × T,
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where the right hand side is precisely the negative gradient − 1
2
∂E
∂uλ

by (47).

Therefore, in the limit of A � 1, or equivalently, ∆t = A−1 � 1, the

iterated shrinkage algorithm of Daubechies et al. [30,31] can be consid-

ered as a semi-implicit scheme for gradient-descent time marching for the

deblurring energy E[u | u0,K].

8.3.2. Via augmentation and auxiliary variables

The second way to understand the iterated-shrinkage algorithm is via

the variational method on auxiliary variables and augmented function-

als [30,31].

If one introduces an auxiliary variable z, which is considered as a delayed

version of the target image u during the iteration, then the system (50) can

be rewritten to

0 = r sign(uλ) +A(uλ − zλ) +M [z]λ − gλ. (53)

Consequently, the iterated-shrinkage algorithm (51) can be considered as

the solution to the above equation given z = uk.

This motivates one to introduce an augmented energy E[u, z | u0,K]

whose conditional energy E[u | z, u0,K] is in the integral form of (53):

E[u | z, u0,K] = 2r|u|Ḃ1

1
(L1) +A‖u− z‖2 + 2〈M [z]− g, u〉,

where both the norm and inner product are in the L2 sense. Then given z,

the system (53) yields the optimal u for E[u, | z, u0,K].

As a result, the full augmented energy must be given in the form of

E[u, z | u0,K] = E[u | z, u0,K] + Φ[z | u0,K],

where the functional Φ is independent of u.

We look for the specific form of Φ, such that (i) the iterated-shrinkage

algorithm (51) corresponds to the AM (alternating-minimization) algorithm

for the augmented energy E[u, z | u0,K]; and (ii)

E[u, z | u0,K] ≥ β−1E[u | u0,K], (54)

and the equality (or minimum) holds when z = u. The equality condition

leads to

2〈M [u]− g, u〉+ Φ[u | u0,K] = ‖K[u]− u0‖2.

Since 〈M [u]− g, u〉 = 〈K[u]− u0,Ku〉, this gives explicitly

Φ[z | u0,K] = ‖K[z]− u0‖2 − 2〈K[z]− u0,Kz〉 = −〈K[z]− u0,K[z] + u0〉.
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Notice that

2〈M [z]− g, u〉 − 〈K[z]− u0,K[z] + u0〉
=2〈K[z]− u0,Ku〉 − 〈K[z]− u0,K[z] + u0〉
=− 〈K[z],K[z]〉+ 2〈K[z],K[u]〉 − 2〈K[u], u0〉+ 〈u0, u0〉
=− ‖K[z]−K[u]‖2 + ‖K[u]− u0‖2

=− ‖K[u− z]‖2 + ‖K[u]− u0‖2.
Therefore, the augmented energy is ultimately given by

E[uz | u0,K] = 2r|u|Ḃ1

1
(L1) +A‖u−z‖2−‖K[u−z]‖2+‖K[u]−u0‖2. (55)

Since A � 1 (and in particular A ≥ 1) and the operator norm ‖K‖ ≤ 1

as explained in (44), the augmented energy is indeed bounded below by

β−1E[u | u0,K] as required in (54). To conclude, we have the following

theorem.

Theorem 15: The iterated-shrinkage algorithm for E[u | u0,K] of

Daubechies et al. [30,31] is exactly the AM algorithm for the augmented en-

ergy E[u, z | u0,K]. In particular, the algorithm must be stable and satisfy

the monotone condition E[uk+1 | u0,K] ≤ E[uk | u0,K].

9. Further Reading

For the several more involved proofs that have been left out, we refer the

reader to our recent monograph [18]. For readers who are interested in this

area, we also recommend to explore and read about other methodologies or

related works, for example, the recursive inverse filtering (RIF) technique

of Richardson [59] and Lucy [49] arising from astronomy imaging, as well as

numerous works by other active researchers such as James Nagy et al. [55],

Chan, Chan, Shen, and Shen [10] on wavelet deblurring via spatially varying

filters, and Kindermann, Osher, and Jones [44] on nonlocal deblurring.
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This paper reviews the fundamentals of the data hiding problem. Data
hiding can be viewed as a game between two teams (embedder/decoder
vs attacker), and optimal data-hiding and attack strategies may be de-
veloped in this context. This paper presents a framework for developing
such strategies as well as practical codes. The theory is applied to image
watermarking examples.

1. Introduction

Watermarking and data hiding are now major research areas in signal,

image and video processing [13]. The goal is to conceal information (such

as copyright information, annotations, movie subtitles, secret data, etc.)

within a host data set. This hidden information should be decodable even

if the watermarked data are modified (to some extent) by an adversary

(attacker).

Beginning around 1990, a variety of watermarking and data hiding al-

gorithms have been proposed in the literature, with mixed success. Many

algorithms were based on heuristics and were unable to resist simple at-

tacks. In the second part of the 1990’s, it was realized that information

theory plays a natural role in watermarking and data hiding, due to the

need to reliably communicate information to a receiver. This theory also

guides the development of good data hiding codes. The main challenge

was to formulate a precise mathematical framework capturing the essential

features of watermarking and data hiding problems:

(1) The watermarking process should introduce limited distortion in the

131
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host signal. Likewise, the attack should introduce limited distortion.

(2) While the host signal is known to the information embedder, it may be

unknown to the decoder (blind watermarking/data hiding). Additional

side information (such as a cryptographic key) may be shared by the

encoder and decoder.

(3) The communication channel is under control of the attacker.

The essential ingredients of the information-theoretic approach are as fol-

lows:

(1) Distortion metrics are used to define a broad class of admissible em-

bedding functions and a class of attack channels.

(2) Statistical models for the host data, the message, and the secret key

are used to meaningfully define probabilities of error.

(3) Reliable communication is sought under any attack channel in the pre-

scribed class [24]. Game theory plays a natural role under this setup:

one party (embedder/decoder team) tries to minimize probability of

error, and the other party (attacker) tries to maximize it.

There is a cost in restricting the class of embedding functions, and a

danger in restricting the class of attacks. In the first case, performance

of the watermarking/data hiding system may be unnecessarily low – in

particular, we shall see why spread-spectrum systems [12] are generally

not competitive with quantization-based systems [4]. In the second case,

performance of the watermarking/data hiding system may be catastrophic

– for instance because the embedding algorithm was designed to resist white

noise attacks, but not geometric attacks.

Application of information theory has revealed the following fundamen-

tal concept, which until early 1999 [4,14,39] had been overlooked in the

watermarking literature: Even if the host signal SN is not available at the

decoder (blind watermarking), the fact that the encoder knows SN signifies

that achievable rates are higher than if SN was some unknown interference.

(Spread-spectrum systems do not exploit that property.) The watermark-

ing problem falls in the category of communication problems where encoder

and decoder have access to side information [11,21,10].

This paper begins with a brief overview of the data-hiding prob-

lem (Sec. 2). This is followed by a description of simple but instructive

data-hiding coding techniques (Sec. 3) and more modern codes based on

information-theoretic binning concepts (Secs. 4 and 5). Next we present a

statistical analysis of these schemes (Sec. 6) and capacity analyses (Secs. 7
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and 8). Desynchronization attacks are considered in Sec. 9. Applications to

images are presented in Sec. 10. The authentication problem is reviewed in

Sec. 11, and the paper concludes with a discussion in Sec. 12.

Notation. We use capital letters to denote random variables, small let-

ters to denote their individual values, calligraphic fonts to denote sets, and

a superscript N to denote length-N vectors, e.g., xN = (x1, x2, · · · , xN ).

We denote by p(x), x ∈ X , the probability mass function (p.m.f.) of a ran-

dom variable X taking its values in the set X . The notation Pr[E ] denotes

the probability of an event E , and the symbol E denotes mathematical

expectation. The Gaussian distribution is denoted by N (µ, σ2).

2. Model for Data Hiding

fN (sN, m, kN) AN (yN | xN)
 ˆMM

SN

KN

XN YN

N (yN, kN)

Encoder Decoder

Fig. 1. Formulation of information hiding as a communication problem.

Referring to Fig. 1 [39], assume that a message M is to be embedded in

a length-N host-data sequence SN = (S1, · · · , SN ): typically data from an

host image, video, or audio signal. Side information KN = (K1, · · · , KN )

(possibly correlated with SN ) is shared by the encoder and decoder. The

watermarked data XN = (X1, · · · , XN ) are subject to attacks that attempt

to remove any trace of M from the modified data Y N = (Y1, · · · , YN ). The

mapping from XN to Y N is generally stochastic and is represented by a

p.m.f. AN (yN |xN ). The decoder has access to Y N and KN and produces

an estimate M̂ for the message that was originally transmitted. A decoding

error occurs if M̂ 6= M . The variables Si, Ki, Xi, Yi take their values in sets

S,K,X and Y , respectively.

Data Embedding. Consider a bounded distortion function d1 : S ×
X → R

+ . The distortion function is extended to a distortion on N–vectors

by dN
1 (sN , xN ) = 1

N

∑N
k=1 d1(sk, xk). A rate-R, length–N watermarking

code subject to distortion D1 is defined as a triple (M, fN , φN ), where:
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• M is the message set of cardinality |M| = d2NRe;
• fN : SN ×M×KN → XN is the encoder which produces the sequence

xN = fN (sN , m, kN). The mapping fN is subject to the average dis-

tortion constraint

E[dN
1 (SN , XN)] ≤ D1; (1)

• φN : YN × KN → M is the decoder which produces the decoded

message m̂ = φN (yN , kN).

The definition of the distortion constraint (1) involves an averaging

with respect to the distribution p(sN , kN ) and with respect to a uniform

distribution on the messages. An alternative is to replace (1) with almost-

sure (a.s.) distortion constraints [9,42,43]:

Pr[dN
1 (sN , XN ) ≤ D1] = 1, ∀sN ∈ SN . (2)

Attacker. Consider a distortion function d2 : X ×Y → R
+. An attack

channel with memory, subject to distortion D2, is defined as a sequence of

conditional p.m.f.’s AN (yN |xN ) from XN to YN , such that

E[dN
2 (XN , Y N )] ≤ D2. (3)

In addition to distortion constraints, other restrictions may be imposed on

the attack channels. For instance, for analysis purposes, the attack channel

may be constrained to be memoryless, or blockwise memoryless. Denote by

AN the class of attack channels considered. Two alternatives to the average

distortion constraint (3) are a.s. constraints:

Pr[dN
2 (xN , Y N ) ≤ D2] = 1, ∀xN ∈ XN , (4)

and an average distortion constraint with respect to the host data:

E[dN
2 (SN , Y N )] ≤ D2. (5)

(The attacker is assumed to know fN and all probability distributions.)

Decoder. If the decoder knows the attack channel AN , it can imple-

ment the Maximum a Posteriori (MAP) decoding rule, which minimizes the

probability of error [40]:

m̂ = argmax
m∈M

p(m|yN , kN). (6)

If the decoder does not know AN , one needs a universal decoder for the

class AN [24], with guaranteed performance level for all AN ∈ AN , see

Sec. 7. Heuristic decoding rules (such as the correlation rules and normalized

correlation rules that are often used in the watermarking literature) might

be severely suboptimal against an astute attacker.
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3. Early Codes

The first papers on data hiding appeared in the early 1990’s. The ideas

proposed during that period include least significant bit (LSB) embed-

ding techniques, which are elementary and nonrobust against noise. They

are however closely related to more advanced binning techniques. The pe-

riod 1995-1998 saw the development of spread-spectrum modulation (SSM)

codes [12]. Both SSM and LSB methods are reviewed next.

3.1. Spread-spectrum codes

The watermarking problem presents similarities with the problem of com-

munication in presence of a jammer. This has motivated many researchers

to apply techniques from this branch of the communications literature,

which was greatly developed during the 1980’s. SSM techniques have been

especially popular. We first briefly review these techniques and then show

how they can be applied to watermarking and data hiding.

The jamming problem. In a standard radio or TV communication

system, the transmitter sends a signal in a relatively narrow frequency band.

This technique would be inappropriate in a communication problem with a

jammer, because the jammer would allocate all his power to that particu-

lar band of frequencies. A SSM system therefore allocates secret sequences

(with a broad frequency spectrum) to the transmitter, which sends data

by modulating these sequences. The receiver demodulates the data using a

filter matched to the secret sequences. Essentially the transmitter is com-

municating information over a secret low-dimensional subspace; only noise

components in that subspace may affect communication performance. The

jammer must spread his power over a broad frequency range, but only a

small fraction of that power will have an effect on communication perfor-

mance.

The application of SSM to data hiding is illustrated in Fig. 2. Associated

with each message m and secret key k is a pattern p(m,k) which is “mixed”

with the host sN to form the marked signal xN . Each pattern is typically

a pseudo-random noise (PRN) sequence. The mixing could be as simple as

a weighted addition:

xn = sn + γ p(m,k)
n , 1 ≤ n ≤ N (7)

where γ is a strength parameter, which depends on the embedding distor-

tion allowed. The mean-square embedding distortion is ND1 = γ2‖p(m,k)‖2
and is usually the same for all m and k. The marked signal xN is possibly
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corrupted by the attacker’s noise, which produces a degraded signal

yN = xN + wN . (8)

The receiver knows the secret key k and can match yN with the |M| wave-

forms p(m,k). If the host is not available to the receiver, the matching could

be a simple correlation:

m̂ = argmax
m∈M

tm(yN , k) (9)

where

tm(yN , k) =

N
∑

n=1

yn p(m,k)
n , m ∈M (10)

are the correlation statistics. If the host is available to the receiver, per-

formance can be improved (see discussion at the end of this section) by

subtracting the host from the data before correlating with the watermark

patterns:

tm(yN , sN , k) =

N
∑

n=1

(yn − sn) p(m,k)
n , m ∈M.

Normalized
Pattern

key
k

message
m

Watermarked
Signal

Watermark

Embedding
strength

host signal

γ

γ

p(m,k)

x(m,k)s

p(m,k)

Fig. 2. Application of SSM to data hiding.
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Several important refinements of the basic system of Fig. 2 have been

developed over the years. Embedding distortion can be locally adapted to

host signal characteristics, e.g., (7) can be replaced with

xn = sn + γn(sN ) p(m,k)
n (11)

where γn depends on the local characteristics of the host (e.g., frequency

and temporal characteristics) [13,46].

Moreover, the basic correlator decoder (9) is often not well matched to

noise statistics. An exception arises when the noise is white and Gaussian.

Then the correlation statistic is a sufficient statistic [40], and the correlator

decoder is ideal. For colored Gaussian noise however, a weighted correlation

statistic is ideal. With non-Gaussian noise such as impulsive noise, the

performance of a correlator decoder can be quite poor.

For the blind data hiding case, due to (7) and (8) we can write the

received data as the sum of the watermark γp(m,k) and total noise sN +wN :

yN = γp(m,k) + (sN + wN ).

Typically the host signal sN has high energy relative to the embedding and

attack distortions. As we shall see in Sec. 6, the performance of the decoder

is limited by the high total noise level. For private data hiding, the decoder

knows s, so the noise at the decoder is just w.

Authentication. It was assumed in (8) and (9) that the signal yN

submitted to the decoder is marked using one of the patterns p(m,k). The

decoder can however be modified to account for the possible presence of

an unmarked signal at the decoder. The expected value of the correlation

statistics tm(yN , k) is normally zero in that case. A positive threshold T is

selected and the decoder returns

m̂ =

{

argmaxm∈M tm(yN , k) if maxm∈M tm(yN , k) ≥ T

0 else
(12)

where m̂ = 0 indicates that no watermark was detected.

3.2. LSB codes

An early form of data hiding for grayscale images is based on LSB (Least

Significant Bit) embedding techniques. These codes are rudimentary bin-

ning schemes.

The method is applicable to host signals of the form sN =

{s1, s2, · · · , sN}, where each sample si is encoded using b bits representing

the natural binary decomposition of an integer between 0 and 2b − 1. For
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instance, si could represent one of the 256 intensity levels of a monochrome

image, such as 77 = (01001101); the LSB is 1 in this case. The LSB plane

is the length-N binary sequence made of all the LSB’s. The LSB’s can be

changed without adversely affecting signal quality, and so LSB embedding

methods simply replace the LSB plane with an information sequence; the

information rate is 1 bit per sample of sN . The payload could be increased

by replacing the second LSB with an information sequence as well, but this

would increase embedding distortion.

Note that the value of b (i.e., the range of host signal amplitudes) is

immaterial here. The LSB embedding scheme is capable of rejecting host-

signal interference. Unfortunately, LSB embedding does not survive modest

amounts of noise. For instance, an attacker could simply randomize the

LSB plane, effectively destroying the hidden information that was originally

embedded there.

4. Binning Schemes: General Principles

Binning is an important information-theoretic technique. It is an ideal tech-

nique for encoding data with side information at the transmitter only, as

well as for decoding data with side information at the decoder only [11,21].

Since blind data hiding is an instance of the former problem, we provide

an overview of binning in this section. We begin with two examples.

Example 1. Let S be a length-3 binary sequence. There are eight such

sequences: 000, 001, · · · , 111, all assumed equally likely. We want to embed

information into S, producing a new sequence X . The embedding is subject

to a distortion constraint: S and X may differ in at most one position. We

transmit X to a receiver which should decode the embedded information

without knowing the original S.

Question 1: How many bits of information can we embed in S?

Question 2: How can we design an appropriate encoding/decoding scheme?

Answer. Under the distortion constraint, the original S can be modi-

fied in at most four ways: S ⊕X ∈ {000, 001, 010, 110}, so at most two bits

of information can be embedded. Straightforward spread-spectrum ideas

don’t work at all in this case: simply adding (modulo 2) one of the four

patterns above to S conveys no information about the message to the re-

ceiver. Instead, we can communicate exactly two bits of information using

the scheme depicted in Table 1. The eight possible sequences X are par-

titioned into four bins (column of the 2 × 4 array). Each bin corresponds
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to one of the 2-bit information sequences we want to communicate. Given

an arbitrary sequence S and an arbitrary information sequence M , we look

in bin M for the sequence closest to S in the Hamming sense, and declare

that sequence to be X . For instance, if S = 010 and M = 01, we have

to choose between the two sequences 001 and 110 in bin M . The latter is

closer to S and is thus declared to be X . In Table 1, the four choices of

X corresponding to the four possible messages (with S = 010) have been

boxed. The decoder observes X and simply outputs the corresponding bin

index m. Observe that:

(1) in any given bin, the two candidates X are maximally distant (Ham-

ming distance = 3);

(2) in any given bin, there is always one sequence that satisfies the embed-

ding distortion constraint;

(3) the receiver can decode the information bits without error.

(4) The codewords in column m of the array are obtained by adding m to

the codewords in column 00.

Table 1. A simple binning scheme: embedding a
length-2 binary message m into a length-3 binary
sequence S, in a way that modifies at most one
bit of S.

m = 00 m = 01 m = 10 m = 11

x = 000 001 010 011

111 110 101 100

Example 2. (Model for watermarking of grayscale images, where

grayscale modifications are not allowed to exceed 1.) Let S = {0, 1, · · · , 2b−
1}, and partition this set into the subset Se = {0, 2, · · · , 2b − 2} of even

integers and the subset So = {1, 3, · · · , 2b − 1} of odd integers. Let SN

be a length-N sequence in SN . Here the marked sequence X should sat-

isfy |Xi − Si| ≤ 1 (addition is modulo 2b) for 1 ≤ i ≤ N . Denote by

m = {m1, · · · , mN} a binary sequence to be embedded into sN . Consider

the LSB code of Sec. 3.2, which can be formulated as

xi = mi + 2
⌊si

2

⌋

, 1 ≤ i ≤ N.

This code selects xi ∈ Se if mi = 0, and xi ∈ So if mi = 1. Thus we may

view Se and So as two bins from which we select xi depending on the value

of mi.
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In both examples, if the decoder does not have access to the marked

sequence X , but to a degraded sequence Y = X+W , there will be decoding

errors. However one can construct binning schemes that offer protection

against errors, as elaborated in Sec. 5.

5. Quantization-Based Codes

In 1999, Chen and Wornell introduced a class of data-hiding codes known as

dither modulation codes, also referred to as quantization-index modulation

(QIM) codes [3,4]. These methods embed signal-dependent watermarks us-

ing quantization techniques. They turn out to be binning schemes and are

related to work from the early 1980’s in information theory (see Sec. 7).

5.1. Scalar-quantizer index modulation

The basic idea of QIM can be explained by looking at the simple problem

of embedding one bit in a real-valued sample. The use of scalar quantizers

is of course a special case of QIM which is sometimes referred to as “scalar

Costa scheme” [17]. Here we have m ∈ {0, 1} (1-bit message), s ∈ R (1

sample), and no key k. A scalar, uniform quantizer Q(s) with step size ∆

is used to generate two dithered quantizers:a

Qi(s) = Q(s− di) + di, i = 0, 1 (13)

where

d0 = −∆

4
, d1 =

∆

4
. (14)

The reproduction levels of quantizers Q0 and Q1 are shown as circles and

crosses on the real line in Fig. 3. They form two lattices:

Λ0 = −∆

4
+ ∆Z, Λ1 =

∆

4
+ ∆Z. (15)

5.1.1. Original QIM

This is Chen and Wornell’s original idea [3]. The marked sample is defined

as

x =

{

Q0(s) : m = 0

Q1(s) : m = 1.
(16)

aDithering is classical technique used in signal compression for improving the perceptual
aspect of quantized signals.
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Fig. 3. Embedding one bit into one sample using original QIM. Here Λ0 and Λ1 are the
sets of circles and crosses, respectively.

The maximum error due to embedding is ∆
2 . If the quantization errors are

uniformly distributed over [−∆
2 , ∆

2 ] (in a sense made more precise in Sec. 6),

the mean-squared distortion due to embedding is

D1 =
∆2

12
. (17)

Assume the marked sample x is corrupted by the attacker, resulting in a

noisy sample y = x + w. The QIM decoder is a minimum-distance decoder.

It finds the lattice point closest to y and outputs the estimated message

m̂ = argmin
m∈{0,1}

dist(y, Λm) (18)

where dist(y, Λ)
4
= mins∈Λ |y − s|. Clearly this scheme works perfectly (no

decoding error) if |w| < ∆/4. Observe that QIM may be thought of as a

binning scheme with some error protection against noise (unlike the exam-

ples in Sec. 4). The two bins are the lattices Λ0 and Λ1, which have infinite

size.

5.1.2. Distortion-compensated scalar QIM

The basic QIM embedding scheme (16) works poorly if the noise level ex-

ceeds ∆/4. However, the scheme can be modified to increase resistance to

noise, as described in [4,25]. The distortion-compensated scalar QIM em-

bedding function is defined as

x =

{

Q0(αs) + (1− α)s : m = 0

Q1(αs) + (1− α)s : m = 1
(19)

(see Fig. 4), where α ∈ (0, 1] is a parameter to be optimized. Observe

that (19) coincides with the original scheme (16) for α = 1. The embed-
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ding formula (19) may also be written as the sum of s and a term due to

quantization of αs:

x =

{

s + (Q0(αs)− αs) : m = 0

s + (Q1(αs)− αs) : m = 1.
(20)

A third expression for the embedding function is

x =

{

d0

α + Xsym(s− d0

α ) : m = 0
d1

α + Xsym(s− d1

α ) : m = 1
(21)

where

Xsym(s) = Q(αs) + (1− α)s (22)

is the prototype sloped-staircase function shown in Fig. 4. This function is

symmetric around s = 0, is made of linear segments with slope 1− α, and

takes its values in the union of intervals,

Xsym :=
∆

2α
∪n∈Z [n− (1− α), n + (1− α)].

The actual marked value x takes its values in the offset domain dm

α +Xsym.

The maximal quantization error is |x − s| = ∆
2 and occurs when x =

∆
α ( 1

2 + n), n ∈ Z. The decoder implements

m̂ = argmin
m∈{0,1}

dist(αy, Λm), (23)

which differs from (18) due to the scaling of the received y by α.

The advantages of this generalized scheme are not obvious now but will

become clear in Sec. 6 when a statistical model for the attack noise w is

considered. So compelling are these advantages, in fact, that the distortion-

compensated QIM scheme (19) has essentially replaced the original QIM

scheme (16) in practice, and the qualifier “distortion-compensated” is often

omitted for the sake of brevity.

5.2. Sparse QIM

Chen and Wornell showed how to extend the scalar QIM scheme above to

embed one bit in a length-N host sequence [4]. They considered two basic

methods.

The first method, which they called Spread Transform Dither Modula-

tion (STDM), consists of quantizing the projection of the host vector in a
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Fig. 4. Selection of marked sample x given s and m ∈ {0, 1}, using distortion-
compensated QIM.

given direction p. Specifically, given a host vector s and a unit vector p,

they define the marked signal as

x =

{

s + (Q0(s
T p)− sT p) p : m = 0

s + (Q1(s
T p)− sT p) p : m = 1

(24)

where the superscript T denotes vector transpose. See Fig. 5. The decoder

projects the received data onto direction p and decides whether quantizer

Q0 or Q1 was used:

m̂ = argmin
m∈{0,1}

dist(yT p, Λm). (25)

Observe that the distortion due to embedding takes place in direction

p only; no other component of s is modified. Therefore the embedder can

allocate the entire distortion budget in direction p, enabling the use of a

large quantizer step size. Choosing ∆ =
√

12ND1 results in an expected

per-sample mean-square error equal to D1. The large quantizer step size

(relative to the case N = 1) offers an increased protection against noise.

The distance between the lattices Λ0 and Λ1 is dmin = ∆
2 =
√

3ND1 and is

thus proportional to
√

ND1.

Various extensions and refinements of the basic STDM method are pos-

sible. In particular, one can use distortion-compensated STDM (as will be

seen later, the optimal choice for α is close to 1 in that case, i.e., the scheme

is very similar to basic STDM). Another idea is to quantize a few compo-

nents of the host signal and not just one. All these codes are sparse QIM

codes. The number of signal components used for embedding, divided by

n, is the sparsity factor τ of the code; n/τ is sometimes called spreading

factor.
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Fig. 5. STDM for embedding one bit in N = 2 samples.

5.3. Lattice-quantizer index modulation

Chen and Wornell [4] presented a second application of scalar QIM to the

vector case. The idea is to replace the scalar quantizer of (19) with a L-

dimensional vector quantizer. Fig. 6 illustrates this concept when L = 2

and the vector quantizer is obtained by independently quantizing each co-

ordinate of αsL with the scalar quantizer of (19). In effect αsL is quantized

using one of the two lattices

Λ0 =

(

−∆

4
, · · · ,−∆

4

)

+ ∆Z
L, Λ1 =

(

∆

4
, · · · , ∆

4

)

+ ∆Z
L. (26)

Observe that the mean-squared distortion due to embedding is still D1 =
∆2

12 . The rate of the code (number of bits embedded per sample) is R = 1/L.

The distance between the sets Λ0 and Λ1 is now

dmin =
1

2
∆
√

L =
√

3LD1.

The decoder’s output is

m̂ = argmin
m∈{0,1}

dist(αyL, Λm), (27)
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Fig. 6. QIM for embedding one bit in L = 2 samples using cubic lattice.

defining dist(yL, Λ) := minpL∈Λ ‖yL − pL‖. The quantity dist(αyL, Λm) is

a coordinatewise sum of squared quantization errors.

5.3.1. General construction

The papers [23,48] presented a general approach for constructing good struc-

tured binning schemes. The approach is based on nested linear codes. A

nested linear code is a N -dimensional lattice partition Λ/Λ′ where Λ and Λ′

are respectively referred to as the fine lattice and the coarse lattice. Define

Q = quantization function mapping each point x ∈ R
N to the nearest

lattice point in Λ′

V = {x ∈ R
N : Q(x) = 0} = Voronoi cell of Λ′

C = quotient Λ/Λ′.

Example: let Λ′ = ∆Z
N and Λ = D+

N = ∆Z
N ∪ (∆

2 , · · · , ∆
2 ) + ∆Z

N ,

which is a lattice for all even N . We obtain C = {(0, 0), (∆
2 , ∆

2 )}. Then V is

the N -dimensional cube [−∆
2 , ∆

2 ]N ; its normalized second-order moment is

equal to ∆2

12 . Fig. 6 illustrates this design (shifted by (∆
4 , ∆

4 )) when N = 2.

The lattice partition Λ/Λ′ should have the following properties.

(P1) Q should be a good vector quantizer with mean-squared distortion

D1: loosely speaking, V should be nearly spherical.

(P2) C should be a good channel code with respect to Gaussian noise:

loosely speaking, the codewords in C should be far away from each

other.
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To each m ∈ M corresponds a codeword cm ∈ C and a translated coarse

lattice Λm = cm + Λ. The fine lattice is the union of all these translated

lattices.

Given m and sN , the encoder quantizes αsN to the nearest point in Λm,

obtaining

uN (m) = Qm(αsN ) := Q(αsN − cm) + cm ∈ Λm.

The difference uN(m) − αsN represents a quantization error. Finally, the

marked sequence is given by

xN = (1− α)sN + uN (m) (28)

= (1− α)sN + Qm(αsN ) (29)

which is a generalization of (19).

The decoder quantizes αyN to the nearest point in the fine lattice Λ′ =

∪m∈MΛm. It then outputs the corresponding index m̂ according to (27).

5.3.2. Practical codes

To satisfy properties (P1) and (P2) above, we need Λ and Λ′ to be high-

dimensional. In practice, one cannot afford using arbitrary high-dimensional

lattices, because quantization operations become prohibitively expensive.

Instead one can would use lattices that have a special structure, e.g., prod-

ucts of low-dimensional lattices.b Another powerful idea is to use recursive

quantization techniques such as trellis-coded quantization [7,22] to (im-

plicitly) define the coarse lattice Λ. Similarly, one can use classical error-

correction codes such as Hamming codes and turbo codes to (implicitly)

define the fine lattice Λ′. The latter idea is illustrated in Fig. 7, where the

actual message m ∈M is first encoded into a longer (redundant) sequence

m̃, which is used as an input to the nested lattice code. These two codes are

termed outer code and inner code, respectively. Chou and Ramchandran [8]

recently proposed the use of an outer erasure code; their scheme is intended

to resist erasures, insertions and deletions, in addition to the Gaussian-type

attacks that the inner code is designed to survive. Solanki et al [41] studied

a closely related system, see Sec. 10 for more details.

bThe cubic lattice is the simplest example of a product lattice.
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Fig. 7. Lattice-based encoder and decoder for data hiding, using the encoding function
(28) and the decoding function (27).

6. Probability of Error

The natural metric for quantifying decoding performance is probability of

decoding error. This type of analysis can be rather complicated but useful

results can be obtained using appropriate asymptotic methods (N →∞).

For simplicity of the exposition assume that the only data available

to the decoder is the degraded signal Y N (i.e., no side information KN ).

The decoding rule partitions the received data space into decoding regions

Ym, m ∈ M. The decoder outputs message m for all sequences that belong

to Ym. The probability that message m is not decoded correctly is Pe|m =

Pr[Y N /∈ Ym | m sent]. It depends on {Ym} and the statistics of the host

signal and the randomized code. To analyze this problem, it is convenient

to study the case of two codewords first.
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6.1. Binary detection

The message set in the binary detection case is M = {0, 1}. The decoding

problem is a binary hypothesis testing problem:
{

H0 : Y N ∼ p0

H1 : Y N ∼ p1
(30)

where the notation Y N ∼ p means that Y N is a random vector with prob-

ability distribution p(yN). Some detection rules are relatively simple. Such

are the correlation and nearest-neighbor decoding rules encountered in SSM

and QIM watermarking. A statistical model such as (30) is not required in

this case.

Improved detection rules can often be derived by exploiting knowledge

of the statistics of Y N . For instance, if both messages are equally likely,

the detector that minimizes probability of error is the maximum likelihood

(ML) detector [40]:

L(yN) =
p1(y

N )

p0(yN )

H1

>
<

H0

1 (31)

where L(yN ) is the likelihood ratio test statistic.

The probability of error for the test (31) isc

Pe =
1

2

∫

min(p0(y
N ), p1(y

N )) dyN . (32)

Fig. 8 depicts the distribution of L(yN) under hypotheses H0 and H1. Two

types of error are shown in the figure: deciding H1 when H0 is true (type

I), and deciding H0 when H1 is true (type II). Pe is the average of these

two error probabilities.

To achieve low Pe, we need to create a substantial disparity between

the probability density functions (p.d.f.’s) p0 and p1. Let us see how some

basic data-hiding codes perform in this respect. We use a simple model to

illustrate the ideas: embed 1 bit into 1 sample.

Example: Consider real-valued s, x and y. The attack is y = x + w,

where W is Gaussian noise, distributed as N (0, σ2
w). The host signal sample

S is distributed asN (0, σ2
s ). Define the Watermark to Noise Ratio WNR :=

a2

σ2
w

and the Watermark to Host Ratio WHR := a2

σ2
s

. The performance of

SSM and QIM systems is derived below.

cThe integral is a sum if Y is a discrete set.
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Fig. 8. Testing between two statistical hypotheses.

6.1.1. Spread-spectrum modulation

The spread-spectrum scheme is given by

x =

{

s + a : m = 0

s− a : m = 1,
(33)

and the original s is unknown to the detector. Equation (33) is a special

case of (7). Then p0 = N (a, σ2
s +σ2

w) and p1 = N (−a, σ2
s +σ2

w). Both p.d.f.’s

are shown in Fig. 9. They are hard to distinguish when a2 << σ2
s + σ2

w.

This corresponds to the common case of a strong host-to-watermark ratio;

detection performance is poor. More precisely, Pe = Q(d/2), where

d =

√

(2a)2

σ2
s + σ2

w

= 2
√

(WNR−1 + WHR−1)−1

is a normalized distance between the two p.d.f.’s, and Q(t) =
∫ ∞

t (2π)−1/2e−x2/2 dx is the Q function. Observe that Pe → 1
2 as WHR→

0, i.e. detection becomes completely unreliable.

PSfrag replacements

y0 a−a

p1(y) p0(y)

Fig. 9. Rival p.d.f.’s for detection of m ∈ {0, 1}, using a simple SSM code.

For detection with the host signal known to the detector (private wa-
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termarking), we have Pe = Q(d/2) again, where d =
√

(2a)2

σ2
w

= 2
√

WNR.

This performance is achieved independently of the value of WHR, and so

detection performance is much improved when WHR << WNR. In fact

SSM is an ideal modulation scheme for this problem.

6.1.2. Scalar QIM

Assume again that S is unknown to the detector. Consider the distortion-

compensated scalar QIM scheme (20). The rival distributions of Y are

shown in Fig. 10 for σ2
w = 0 and for σ2

w = 1. The p.d.f.’s in the second

case are the same as the p.d.f.’s in the case σ2
w = 0, convolved with the

Gaussian noise p.d.f., N (0, σ2
w). Observe that

(1) The perturbation due to embedding (quantization noise) is limited be-

tween −∆
2 and ∆

2 . Under Bennett’s high-rate model for quantization

noise, this perturbation is uniformly distributed between −∆
2 and ∆

2 ,

and the distortion due to embedding is D1 := E(X−S)2 = ∆2

12 .d Equiv-

alently, given D1, we select

∆ =
√

12D1. (34)

Also WNR =
∆2/12

σ2
w

.

(2) For large σ2
s , we can view the p.d.f.’s as quasi-periodic, with period

equal to ∆
α . Roughly speaking, the ability to discriminate between p0

and p1 depends on the overlap between the support sets of p0 and p1,

and fairly little on σ2
s .

(3) The rounded “pulses” that make up the p.d.f.’s p0 and p1 are given by

the convolution of a rectangular pulse of width (1 − α)∆/α, with the

N (0, σ2
w) p.d.f..

(4) For good discrimination between p0 and p1, the pulses should have

relatively small overlap.

(5) In the absence of attacker’s noise (σ2
w = 0), the best choice for α would

be 1, in which case we obtain error-free detection.

(6) For σ2
w > 0, the choice of α is a tradeoff between embedding distortion

and detection performance. The tradeoff is determined by the value of

the parameters ∆ and α of the embedding function (19).

dThe uniform quantization model is exact for any value of ∆ if a uniformly distributed
external dither is applied [48]. For the problem at hand, this means that d0 is randomized
uniformly over [0,∆] and that we keep |d1 − d0| = ∆

2
.
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(7) For large σ2
s , little information is lost by reducing Y to the test statistic

Ỹ := αY mod ∆. (35)

This nonlinear transformation “folds” the p.d.f.’s into an interval of

width ∆. The p.d.f.’s of Ỹ under H0 and H1 are shown in Fig. 11 for

two values of α. The minimum-distance decoding rule (23) is equivalent

to

m̂ = argmin
m∈{0,1}

|ỹ − dm| (36)

where |d1 − d0| = ∆
2 .

PSfrag replacements

αy

−

5∆

4
−

∆

4

3∆

4

p0(αy)

PSfrag replacements
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−

3∆

4

∆

4

5∆

4

p1(αy)

Fig. 10. Rival p.d.f.’s for detection of m ∈ {0, 1} based on unprocessed data Y , using
scalar QIM with WNR = 0.1 and α = WNR

1+WNR
.

6.2. Modulo additive noise channel

The advantage of the processing (35) of the data Y is that it lends itself to

a detection test that is simple, good, and independent of the exact statistics

of S. From (8), (21), (35), note that

ỹ = (dm + ẽ + w̃) mod ∆ (37)

where

Ẽ := αXsym

(

S − dm

α

)

mod ∆ (38)

is termed self-noise, and

W̃ := αW mod ∆ (39)
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(b) WNR = 0.1

Fig. 11. Rival p.d.f.’s for detection of m ∈ {0, 1} based on transformed Ỹ , using scalar
QIM with α = WNR

1+WNR
.

is the aliased attacker’s noise. Indeed the p.d.f. of W̃ is an aliased version

of pαW :

pW̃ (w̃) =

∞
∑

k=−∞

pαW (αw̃ + k∆), 0 ≤ w̃ ≤ ∆. (40)
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Note that Ẽ = 0 for (1 − α)∆
2 < |Ẽ| < (1 + α)∆

2 . Under the uniform

quantization noise model, pẼ is a rectangular pulse of width (1 − α)∆

centered at 0:

pẼ(ẽ) =
1

∆(1− α)
1{|ẽ|≤∆

2
(1−α)}.

Under hypothesis Hi, i = 0, 1, the data Ỹ is the sum of an information-

bearing offset di and a noise V equal to the sum of the self-noise and the

aliased attacker’s noise:

V = Ẽ + W̃ mod ∆. (41)

Since Ẽ and W̃ are statistically independent, the p.d.f. of V is the circular

convolution of the p.d.f.’s of Ẽ and W̃ :

pV (v) = (pẼ ? pW̃ )(v)

] =

∫

pẼ(ẽ)pW̃ (v − ẽ) dẽ, 0 ≤ v ≤ ∆. (42)

Therefore the p.d.f. of Ỹ under Hi takes the form

qi(ỹ) = pV (ỹ − di), i = 0, 1 (43)

The rival p.d.f.’s qi(ỹ), i = 0, 1 are simply translates of pV . The detector

must decide between the two hypotheses
{

H0 : Ỹ = d0 + V

H1 : Ỹ = d1 + V
(44)

The role of α as a tradeoff between self-noise and attacker’s noise appears

clearly in this formulation of the detection problem. For small α, the self-

noise Ẽ dominates the attacker’s aliased noise W̃ . For α = 1, the self-noise

is zero, and the attacker’s noise dominates. Equation (44) defines a Modulo

Additive Noise (MAN) channel, diagrammed in Fig. 12.

� ��

�

� ����� �

Fig. 12. Modulo Additive Noise Channel.
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As an alternative to the simple minimum-distance detector (36), we

study the theoretically optimal ML detector. The ML detector based on

the transformed data Ỹ and the statistical model above is

pV (ỹ − d1)

pV (ỹ − d0)

H1

>
<

H0

1. (45)

It coincides with the minimum-distance detection rule (23) if the attacker’s

noise distribution pW is unimodal and symmetric.

The probability of error for the optimal test (45) is

P̃e =
1

2

∫

min(q0(ỹ), q1(ỹ)) dỹ. (46)

If the noise distribution pW (w) is symmetric around w = 0, so is pW̃ (w̃).

The two rival p.d.f.’s, q0(ỹ) and q1(ỹ), have means µ0 = d0 and µ1 = d1

respectively, and common variance σ2
v . For moderate-to-large WNR, we

have

σ2
v ≈ (1− α)2

∆2

12
+ α2σ2

w̃ .

So the “generalized SNR” for detection is given by

GSNR :=
(µ1 − µ0)

2

σ2
v

≈ (d1 − d0)
2

1
12 (1− α)2∆2 + α2σ2

w̃

(47)

where |d1 − d0| = ∆
2 . The value of α that maximizes GSNR is given by a

nonlinear equation. (Note that σ2
w̃ is a decreasing function of ∆ and tends

to σ2
w if ∆ >> ασw .) A reasonable approximation for α that maximizes

GSNR is

αmax−GSNR ≈
∆2/12

∆2/12 + σ2
w

=
WNR

WNR + 1
(48)

whence maxα GSNR ≈ 3(WNR + 1). The actual maximizing α is slightly

lower than the right side of (48) because σ2
w̃ ≥ σ2

w.

While GSNR is often useful as a rough measure of separation of the

p.d.f.’s q0 and q1, it does not necessarily serve as an accurate predictor of

detection performance. Fig. 13 plots GSNR and P̃e as a function of α, for

three different values of WNR. Note that the optimal α is slightly different

under the GSNR and P̃e criteria.
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Quite interesting is the performance gap relative to private watermark-

ing, which bounds the performance of any public watermarking scheme.

In this case the spread-spectrum scheme (33) yields an error probability

Pe = Q(
√

WNR) which is typically smaller than the QIM error probabili-

ties by a factor of 2–3 when WNR ranges from 0.2 to 5, see Fig. 13. The

performance loss is quite small, considering that the QIM detector does not

known the host signal.

6.3. Probability of error – Vector case

The previous two subsections have quantified the benefits of QIM in terms

of probability of error for binary detection based on a single observation.

This subsection considers the more realistic case of N observations and

studies two approximations to the probability of error.

Assume we have a host data vector SN = {S1, S2, · · · , SN} and we

mark each component Si using the spread-spectrum and QIM techniques.

Moreover,

(a) SN is Gaussian with mean zero and covariance matrix RSN ;

(b) the marked signal XN is corrupted by additive white Gaussian noise

W N with mean zero and variance σ2
w.

6.3.1. Spread spectrum modulation

For the spread-spectrum scheme, (33) generalizes to

xN =

{

sN + aN : m = 0

sN − aN : m = 1
(49)

where the spread sequence aN is known to the detector. For blind water-

marking we have

p0 = N (aN , RSN + σ2
wIN ), p1 = N (−aN , RsN + σ2

wIN ).

The LRT takes the form

aNT (RSN + σ2
wIN )−1yN − 1

2
aNT (RSN + σ2

wIN )−1aN

H1

>
<

H0

0 (50)

and the probability of error of the test (50) is Pe = Q(d/2), where d2 =

4aNT (RSN + σ2
wIN )−1aN is the GSNR for the detector.
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Fig. 13. Generalized SNR and probability of error Pe for binary detection based on one
single sample. The variable on the horizontal axis is the tradeoff parameter α for QIM.
For comparison, Pe for the private and public SSM schemes is given by the ordinate of
the dotted horizontal lines.

For private watermarking we have

p0 = N (aN , σ2
wIN ), p1 = N (−aN , σ2

wIN ).

Then Pe = Q(d/2) where d2 =
‖2aN‖2

σ2
w

= 4 WNR.
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6.3.2. Scalar QIM

For the scalar QIM scheme, let dN
i = {di,1, di,2, · · · , di,N} for i = 0, 1.

We assume again that di,n ∈ {±∆
4 } and that the noise p.d.f. pW (w) is

symmetric around w = 0. Equation (19) generalizes to

xN =

{

Q0(αsN ) + (1− α)sN : m = 0

Q1(αsN ) + (1− α)sN : m = 1
(51)

where each Qi is viewed as a vector quantizer, in this case simply a product

of scalar quantizers:

(Qi(s
N ))n = Q(sn − di,n) + di,n, 1 ≤ n ≤ N, i = 0, 1.

Without loss of generality, we shall assume d0,n ≡ ∆
4 and d1,n ≡ 3∆

4 .

The first step at the receiver is to compute the transformed data

Ỹn = αYn mod ∆, 1 ≤ n ≤ N. (52)

Under the uniform quantization noise model, the preprocessed data

{Ỹn, 1 ≤ n ≤ N} are mutually independent, even though there may be

dependencies between the host signal samples {Sn}. The detector must

decide between the two hypotheses
{

H0 : Ỹ N = dN
0 + V N

H1 : Ỹ N = dN
1 + V N (53)

where the samples Vn, 1 ≤ n ≤ N , are independent and identically dis-

tributed (i.i.d.) with p.d.f. pV given in (42). The ML detector based on Ỹ N

and the statistical model above is

L̃(ỹN) =

N
∏

n=1

pV (ỹn − d1,n)

pV (ỹn − d0,n)

H1

>
<

H0

1 (54)

which coincides with the minimum-distance detector (27) in some cases.

Similarly to (36), the minimum-distance detection rule may be written in

the form

m̂ = argmin
m∈{0,1}

N
∑

n=1

|ỹn − dm,n|2. (55)

The probability of error is given by

P̃e =
1

2

∫

[0,∆]N
min(qN

0 (ỹN ), qN
1 (ỹN )) dỹN . (56)
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It may in principle be computed numerically, using integration over the

N -dimensional cube [0, ∆]N . Unfortunately such methods are impractical

even for relatively small N . Monte-Carlo simulations are an alternative, but

are time-consuming and do not necessarily provide analytical insights. Two

analytic methods for approximating P̃e are considered next.

6.3.3. Gaussian approximation

One may easily derive the generalized SNR at the detector, as was done in

Sec. 6.2. Formula (47) generalizes to

GSNR ≈ ‖d1 − d0‖2
1
12 (1− α)2∆2 + α2σ2

w̃

=
N∆2/4

1
12 (1− α)2∆2 + α2σ2

w̃

. (57)

If the noise V was Gaussian, the probability of error would be given by

P̃e = Q(
√

GSNR/2). (58)

However V is non-Gaussian, and (58) is generally a poor approximation to

the actual P̃e.

6.3.4. Large deviations

If GSNR is large (as is always the case for sufficiently large N), the perfor-

mance of the detection test is dominated by rare events (whose frequency

of occurrence is determined by the tails of the p.d.f.’s qN
0 and qN

1 ), and

Gaussian approximations of these tails are usually severely inaccurate. The

usual approach to such problems in the detection literature is based on large

deviations theory [40]. The following upper bound on P̃e holds for any N :

P̃e ≤
1

2
e−NB(q0,q1)

where

B(q0, q1) = − ln

∫ ∆

2

−∆

2

√

q0(ỹ)q1(ỹ) dỹ (59)
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is the so-called Bhattacharyya coefficient, or Bhattacharyya distance be-

tween the p.d.f.’s q0 and q1. Moreover, the bound is tight in the exponent:e

lim
N→∞

[− 1

N
ln P̃e] = B(q0, q1).

Hence B(q0, q1) is a more useful predictor of detection performance than is

GSNR. It is easy to compute (via numerical 1-D integration in (59)) and

can be used to determine how large N should be to guarantee a prescribed

probability of error.

The Bhattacharyya coefficient B(q0, q1) depends on the QIM parameter

α via q0 and q1. The dependency of B(q0, q1) on α is shown in Fig. 14. The

approach above can be generalized to lattice QIM [35].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

−10
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−6

−4

−2

0

2

α →

ln
 (P

e)

Error Probabilities with varying α; D
1
=D

2

P
e,actual

P
e,bhat

P
e,Gauss

Fig. 14. P̃e and its upper bound based on the Bhattacharyya coefficient B(q0, q1) for
binary detection based on N = 15 samples. Also shown is the Gaussian approximation to
P̃e, which is overoptimistic by several orders of magnitude. The variable on the horizontal
axis is the QIM tradeoff parameter α.

eIn general, a Chernoff bound with optimal Chernoff exponent is tight. However, due
to the symmetry of pV and the fact that q0 and q1 are translates of pV , the optimal
Chernoff exponent is 1

2
, and thus the optimal bound is the Bhattacharyya bound.
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6.4. Multiple codewords

In the case of |M| > 2, calculation of the probability of error

Pe =
1

|M|
∑

m∈M

Pr[Y N /∈ Ym|m sent]

presents difficulties if M is large. Fortunately, useful bounds on Pe can be

derived.

Assume equally likely codewords. For linear codes, the conditional error

probability Pr[Y N /∈ Ym|m sent] is independent of the message m that was

sent. Thus we may arbitrarily select m = 0 and write

Pe = Pr[Y N /∈ Y0|m = 0].

A useful upper bound on Pe can sometimes be obtained using the union

bound:

Pe ≤ (|M| − 1) max
i6=j∈M

Pe|i,j (60)

where Pe|i,j is the probability of error for a binary test between hypotheses

Hi and Hj . Such bounds are typically useful at low bit rates.

Assume for simplicity that a scalar QIM system is used, with Bhat-

tacharyya distance B(q0, q1) given in (59). The code C = Λ/Λ′ is a subset

of {−∆
4 , ∆

4 }N . Assume this code has minimum Hamming distance equal to

dH (typically proportional to N), we obtain

P̃e|i,j ≤ e−dHB(q0,q1).

If the number of messages grows with N in a subexponential fashion

( 1
N log |M| → 0 as N → ∞), the total probability of error exponent is

determined by the worst-case pair of hypotheses:

Pe ≤ (|M| − 1)e−dHB(q0,q1).

It is thus desirable to use codes with good minimum-distance properties.

In the case where |M| grows exponentially with N , the union bound

(60) may be loose; if log |M| ≥ dHB(q0, q1), the bound becomes trivial

(≥ 1). Finding better bounds in this case is a topic of current research

[19,27].

7. Data-Hiding Capacity

After analyzing probability of decoding error for binning schemes, we turn

our attention to a closely related problem, namely what is the maximal rate
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of a code that allows reliable transmission (Pe → 0 as N → ∞). In other

words, we wish to determine a Shannon capacity for data hiding [39].

The rate of the data hiding code (M, fN , φN ) is R = 1
N log |M|, and

the average probability of error is

Pe,N =
1

|M|
∑

m∈M

Pr[φN (Y N , KN ) 6= m |M = m]. (61)

A rate R is said to be achievable for distortion D1 and for a class of attack

channels AN , N ≥ 1, if there is a sequence of codes subject to distortion

D1, with rate R, such that Pe,N → 0 as N → ∞, for any sequence of

attacks in AN . The data-hiding capacity C(D1, {AN}) is then defined as

the supremum of all achievable ratesf for distortion D1 and attacks in the

class {AN}.

7.1. Finite alphabets

For simplicity of the exposition, consider the average distortion constraints

(1) and (3), and assume the host signal and the attack channel are memo-

ryless. Then

AN (yN |xN ) =

N
∏

i=1

A(yi|xi).

The data-hiding capacity defined above turns out to be the solution of a

certain mutual-information game and is given in the theorem below. Let

U ∈ U be an auxiliary random variable such that (U, S)→ X → Y forms a

Markov chain. Let Q(D1) be the set of covert channels Q that satisfy the

constraint
∑

x,s,k,u

d1(s, x)Q(x, u|s, k)p(s, k) ≤ D1, (62)

A(D2) be the set of attack channels A that satisfy the constraint

∑

s,x,k,y

d2(x, y)A(y|x)p(x|s, k)p(s, k) ≤ D2, (63)

and A be an arbitrary subset of A(D2).

fOften NR is termed payload of the code in the watermarking literature. Some authors

use the word capacity as a synonym for payload. This can create confusion because
R is an attribute of the particular code considered, not Shannon’s (code-independent)
capacity.
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Theorem 1: [39] Assume the attacker knows the encoding function fN and

the decoder knows fN and the attack channel A. A rate R is achievable for

distortion D1 and attacks in the class A if and only if R < C, where C is

given by

C := C(D1,A) = max
Q(x,u|s,k)∈Q(D1)

min
A(y|x)∈A

J(Q, A) (64)

where |U| ≤ |X ||Ω|+ 1, Ω is the support set of p(s, k), and

J(Q, A) = I(U ; Y |K)− I(U ; S|K) (65)

where I(X ; Y |Z)
4
=

∑

x,y,z p(x, y, z) log
p(x,y|z)

p(x|z)p(y|z) denotes conditional mu-

tual information [11].

Gel’fand–Pinsker. The capacity result (64) is closely related to an

important result by Gel’fand and Pinsker [21] in 1980. They derived the

capacity of a memoryless channel whose state is known to the encoder but

not to the decoder. The encoder may exploit the state information using

a binning technique, as discussed below. The role of the channel state is

analogous to the role of the host signal in blind data hiding. Key differences

with the Gel’fand–Pinsker problem include the existence of distortion con-

straints, the availability of KN at both the encoder and decoder, and the

fact that the attack channel is unknown to the encoder – whence the min-

imization over A in (64).

Binning Schemes. In principle, the capacity bound can be approached

using a random binning coding technique [11,21], which exemplifies the role

of the covert channel Q, see Fig. 15. A size–2N(I(U ;Y,K)−ε) codebook C
is constructed for the variable UN by randomly sampling the capacity-

achieving distribution p(uN ), and partitioning the samples into |M| equal-

size subsets (lists). The actual embedding of a message m ∈M proceeds as

follows: first identify an element uN (m) from the list of elements indexed

by m in the codebook C, in such a way that uN (m) is statistically typical

with the current (sN , kN ), then generate watermarked data xN according

to the p.m.f. p(xN |uN (m), sN , kN ). The decoder finds ûN that is statisti-

cally typical with (yN , kN ), and obtains m̂ as the index of the list to which

ûN belongs. However, memory and computational requirements grow ex-

ponentially with block length N , and so such approaches are known to be

infeasible in practice. Developing structured binning schemes that approach

the capacity bound is a active research area [4,23,48,7,5,18,6]. This prob-

lem is closely related to the problem of developing good nested lattice codes

in Euclidean spaces which was introduced in Sec. 5.3 and will be further

developed in Sec. 8.
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Fig. 15. Random binning technique.

Attack Channels With Memory. Recently, Somekh-Baruch and

Merhav [42] have shown that the capacity formula (64) holds under milder

assumptions on the attacks and decoder. They assume the a.s. distortion

constraints (2) and (4). The decoder does not know the attack channel AN ,

which is any channel that satisfies (4) (AN has arbitrary memory). Capac-

ity can again be achieved using a random binning scheme similar to the one

described above, and a particular universal decoder based on the method

of types [24,11], i.e., based on the empirical first-order statistics of the pairs

(uN , yN), for all possible codewords uN ∈ C.

7.2. Gaussian channels

Theorem 1 can be generalized to the case of infinite alphabets S, X , Y ,

U , K. The case of Gaussian S and squared–error distortion measure is

of considerable practical and theoretical interest, as it becomes possible

to explicitly compute the distributions that achieve capacity, leading to

insightful results. We refer to this case as the Gaussian channel. Let S =

X = Y be the set R of real numbers, and d1(x, y) = d2(x, y) = (x− y)2 be

the squared-error metric. Also let S ∼ N (0, σ2), meaning that S follows a

Gaussian distribution with mean 0 and variance σ2.

A remarkable result is that the data-hiding capacity is the same for

both blind and nonblind data hiding problems. Under the average distortion

constraints (1) and (5), we obtain [37]

C = CG(σ2, D1, D2)
4
=

{

1
2 log

(

1 + D1

D

)

: if D1 ≤ D2 < σ2,

0 : if D2 ≥ σ2 (66)

where D
4
=

σ2(D2−D1)
σ2−D2

. When D2 < σ2, the optimal distributions turn out
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to be Gaussian test channels [11,37,36], see Fig. 16.

−αa

U

Z

α

S X

W

V

1/β

Y

Covert Channel Q(x,u|s) Attack Channel A(y|x)

Fig. 16. Optimal data–hiding and attack strategies for Gaussian host data S ∼
N (0, σ2). Here Z ∼ N (0, aD1) and W ∼ N (0, β(D2 − D1)) are mutually indepen-

dent random variables, where a = 1 − D1/σ2 and β = σ2

σ2
−D2

. The optimal channels

p(x|s) and A(y|x) are Gaussian test channels with distortion levels D1 and D2 − D1,
respectively. For public data hiding, α = aD1

aD1+D
; for public data hiding, one may choose

α = a.

Closely related to this result is one derived by Costa [10] in 1983 for

communications on an additive white Gaussian noise channel (with power

D2) in the presence of an i.i.d. Gaussian interference (with power σ2) that

is known at the encoder but not at the decoder. When the channel input

power is constrained not to exceed D1, Costa showed that the capacity of

the channel is exactly the same as if the interference was also known to

the decoder: C = 1
2 log

(

1 + D1

D2

)

. The analogy to the data hiding problem

is remarkable: the host signal SN plays the role of the known interference.

Capacity in the data hiding problem is slightly lower than in the Costa

problem because the optimal Gaussian attack is not additive; however, the

gap vanishes in the low-distortion limit (D1/σ2 → 0 and D2/σ2 → 0). In

this case, we have

α =
WNR

1 + WNR
(67)

which admits an elegant MMSE (minimum mean squared error) interpre-

tation [20]; also see (48).

Additional extensions of Costa’s result have recently appeared [9,48,47].

In particular, the capacity formula C = 1
2 log

(

1 + D1

D2

)

is still valid if the

interference SN is any finite-power sequence, for any values of D1 and D2.
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Similarly to the finite-alphabet case [42], the capacity for the following

two data hiding games are identical: (i) the game with average distortion

constraint (3) and memoryless attack channel, known to the decoder, and

(ii) the game subject to the a.s. distortion constraint (4) with a decoder

uninformed about the attack channel [9].

The optimal decoding rule for Fig. 16 is a minimum-distance decoding

rule:

ûN = argmax
uN∈C

p
(

uN |yN
)

= argmin
uN∈C

‖uN − γyN‖2 (68)

where γ ∼ α as D1/σ2 → 0 and D2/σ2 → 0. For large N , we have ‖uN‖2 ∼
Nσ2

u, and (68) is asymptotically equivalent to a correlation rule:

ûN ∼ argmax
uN∈C

< uN , yN > . (69)

This rule is remarkable in its simplicity and robustness. For instance (69)

is also optimal if the attacker is allowed to scale the output of the Gaussian

channel by an arbitrary factor, because all correlations are scaled by the

same factor. Also (69) turns out to be the optimal universal decoding rule

in Cohen and Lapidoth’s setup [9].

The property that capacity is the same whether or not SN is known

at the decoder is illustrated in Fig. 17 using sphere-packing arguments.

Assume that D1, D2 << σ2. With overwhelming probability, the scaled

codewords 1
αUN live in a large sphere of radius

√

Nσ2(1 + ε) centered at

0. The encoder in the random binning construction selects a scaled code-

word 1
αUN inside the medium-size sphere of radius

√

ND1/α2 centered at

SN . There are approximately 2NC codewords (one for each possible mes-

sage m) within this medium-size sphere. The received data vector Y N lies

within a small sphere of radius
√

Nσ2
v centered at 1

αUN . Decoding by joint

typicality means decoding Y N to the center of the closest small sphere. To

yield a vanishing probability of error, the small spheres should have statis-

tically negligible overlap. The number of distinguishable messages, 2NC , is

independent of the size of the large sphere (Nσ2).

8. Capacity of Constrained Systems

While the theory above provides fundamental limits for reliable data hiding,

it does not say how to construct practical codes. The codes used to prove

the capacity theorems are random codes which cannot be used in practice

due to the exponential complexity of the storage and encoding and decoding

procedures.
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Fig. 17. Sphere-packing interpretation of blind Gaussian information hiding. Shaded
spheres are indexed by the same message m.

The codes mentioned in Sec. 5.3.2 are practical, but is their perfor-

mance good enough to approach the unconstrained capacity (66)? Re-

cently Erez and Zamir proved that the answer is yes [19]. Roughly speak-

ing, this requires the use of lattices with nearly spherical Voronoi cells.

The information-bearing sequence UN selected by the lattice encoder (28)

plays the same role as the sequence UN in the random-binning technique of

Sec. 7.

For any practical lattice code, one would like to quantify the perfor-

mance gap relative to an unconstrained system. To illustrate this problem,

we consider the case of scalar quantizers.

8.1. Capacity of scalar QIM systems

Equation (53) describes the transmission of two possible length-N code-

words dN
0 and dN

1 over the MAN channel of Fig. 12. The channel adds

independent samples V1, · · · , VN to the input codewords. The addition is

modulo ∆, the step size of the scalar quantizer. Referring to (41), the noise

V has two parts: self-noise due to quantization and aliased attacker’s noise.
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The tradeoff parameter α controls the probability distribution of V . If we

want to transmit many codewords (as described in Sec. 6.4), what is the

maximum rate of reliable transmission?

The answer is given by analyzing the MAN channel of Fig. 12. The

maximum rate of reliable transmission for scalar QIM is

RS−QIM
α = max

pD

I(D; Ỹ ) (70)

where pD is a probability distribution over the input alphabet D. If the

codeword letters are in the binary alphabet D = {±∆
4 } (as was assumed in

Sec. 6.3.2), the maximizing distribution is symmetric: pD(−∆
4 ) = pD(∆

4 ) =
1
2 .

The value of α that maximizes RS−QIM
α is obtained numerically and

is not the same as (67). A good approximation proposed by Eggers et al

[17] is αS−QIM
opt =

√

WNR
WNR+2.71 . Both the exact value and its approximation

are close to (67) for WNR ≥ 1. Fig. 18 shows capacity as a function of

WNR for scalar QIM and compares it with the capacity expression (66)

for unconstrained systems. The gap is approximately 2 dB at a rate of 0.5

bit/sample.

Since the input to the MAN channel is binary-valued, capacity cannot

exceed 1 bit/sample. This restriction can be eliminated by allowing the

size of the input alphabet D to be greater than two. The largest nontrivial

input alphabet is [0, ∆]. The capacity of this less constrained system can

be evaluated using (70). The maximizing pD is uniform over [0, ∆]. The

capacity improvement over binary alphabets is insignificant at rates below

0.7 bit/sample. The gap to capacity is equal to the shaping gain of scalar

quantizers, 1
2 log2

2πe
12 ≈ 0.254 bit, at high WNR’s [19].

Further improvements can be obtained by replacing scalar quantizers

with L-dimensional vector quantizers (as explained in Sec. 5.3) and evalu-

ating the capacity formula (70), where pD is now a probability distribution

over the Voronoi cell V .

8.2. Capacity of sparse QIM systems

It is easy to relate the capacities of QIM and sparse QIM systems (Sec. 5.2).

We have

Rsparse
α,τ (WNR) = τRS−QIM

α (WNR/τ), 0 < α, τ ≤ 1 (71)

and thus Csparse
τ (WNR)

4
= maxα Rsparse

α,τ (WNR) = τCS−QIM(WNR/τ).
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Fig. 18. Capacity vs WNR for scalar QIM.

Based on numerical experiments on scalar quantizers, Eggers et al [17]

observed the following properties:

(1) For WNR above a certain critical value WNR∗, the optimal sparsity

factor is τ = 1, i.e., the system is the same as a standard nonsparse

QIM system.

(2) For WNR below WNR∗, the optimal τ is less than one, i.e., sparse

QIM systems outperform their nonsparse counterparts.

Interestingly, this property is related to information-theoretic time-sharing

ideas: the curve CS−QIM(WNR) is nonconvex at low WNR′s, and the curve

Csparse(WNR) the upper convex envelope of CS−QIM(WNR). Thus

Csparse(WNR) =

{

WNR
WNR∗ CS−QIM(WNR∗) : WNR ≤WNR∗

CS−QIM(WNR) : else
(72)

is a straight line for 0 ≤ WNR ≤ WNR∗ and coincides with

CS−QIM(WNR) beyond WNR∗. Here WNR∗ is the unique solution to
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the nonlinear equation

d

dWNR
ln CS−QIM(WNR)

∣

∣

∣

∣

WNR=WNR∗

=
1

WNR∗
.

In conclusion, sparse QIM methods are advantageous at low WNR but not

at high WNR.

If higher-dimensional quantizers are used, the resulting capacity curve

CQIM
L (WNR) approaches the actual capacity function C(WNR) =

1
2 log2(1+WNR) which is convex and thus cannot be improved by convex-

ification.

8.3. Parallel Gaussian channels

Real-world signals such as images do not follow i.i.d. Gaussian models;

however they can be decomposed into approximately independent Gaussian

components [36]. Data-hiding capacity can be evaluated by solving a certain

power-allocation problem, as described below.

Assume SN is a collection of K independent sources Sk, 1 ≤ k ≤ K,

each producing Nk i.i.d. Gaussian random variables from the distribution

N
(

0, σ2
k

)

, where
∑K

k=1 Nk = N . Thus, we have K parallel Gaussian chan-

nels, with samples {Sk (n)}, and rates rk = Nk/N , 1 ≤ k ≤ K. The distor-

tion metric is squared error. Let

d1k =
1

Nk

Nk
∑

n=1

E [Xk(n)− Sk(n)]
2

and d2k =
1

Nk

Nk
∑

n=1

E [Yk(n)− Sk(n)]
2

(73)

be the distortions introduced by the embedder and the attacker in channel

k, respectively. We have distortion constraints

K
∑

k=1

rkd1k ≤ D1 and

K
∑

k=1

rkd2k ≤ D2. (74)

As in the Gaussian case, capacity is the same for both blind and nonblind

data hiding [37,36]:

C = max
{d1k}

min
{d2k}

K
∑

k=1

rkCG(σ2
k, d1k, d2k) (75)

where the maximization and minimization over power allocations are sub-

ject to the distortion constraints (74). The capacity-achieving distributions

are product distributions, i.e., the K channels are decoupled.
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9. Desynchronization Attacks

In addition to noise attacks, an attacker may introduce delays and scaling

factors (fixed or time-varying) in an attempt to desynchronize the decoder.

The perceptual effects of such operations are normally quite weak, but the

effects on decoding performance can be devastating. Thus one can ask three

basic questions:

(1) How does the performance of the basic QIM decoders degrade under

such operations?

(2) What is the capacity of the data-hiding systems if the distortion metric

does not penalize delays and scaling factors?g

(3) How can one improve the basic QIM decoder to better cope with desyn-

chronization attacks?

This line of research has recently gained some interest. For simplicity, we

consider five simple desynchronization attacks.

(1) Offset. Let xθ(n) = θ + x(n).

(2) Amplitude scaling. Let xθ(n) = θx(n).

(3) Cyclic Delay. Denote by xθ the signal x cyclically shifted by θ, i.e.,

xθ(n) = x(n− θ mod N) if θ is an integer. For noninteger θ, we use the

more general formula xθ(n) =
∑N

i=1 x(i)ϕ(n−i) where ϕ(t) = sin πt
N sin πt/N

is the periodic sinc interpolating function.

(4) Erasures. Samples x(n) are erased with a certain probability, resulting

in a shortened received sequence.

(5) Insertions. New values are inserted in the sequence x(n) resulting in

a longer received sequence.

Performance of Basic QIM Decoders. The noise V at the decoder is

still a weighted average of quantization noise and attacker’s noise, however

a new term is added to the attacker’s noise in the first three cases.

(1) For an offset attack, the new term is simply the offset θ. If w is zero-

mean, the mean-squared error (MSE) of the attack noise is increased

from Dw = 1
N ‖w‖2 to Dw + θ2, which is significant if |θ| >

√
Dw.

(2) For an amplitude scaling attack, the new term is equal to (θ − 1)x(n).

If w(n) is independent of x(n), the MSE of the attack noise becomes

Dw +(θ−1)2 1
N ‖x‖2. This effect is significant if |θ−1| exceeds the root

noise-to-host power ratio,
‖w‖
‖x‖ .

gThe squared-error metric penalizes delays and scaling factors, unlike some perceptual
metrics.
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(3) For a cyclic delay, the MSE of the attack noise is asymptotic to Dw +

θ2 1
N ‖x′‖2 as θ → 0, where x′(n) =

∑N−1
i=0 x(i)ϕ′(n − i) denotes the

sampled derivative of the signal x. This effect is significant if |θ − 1| >
‖w‖
‖x′‖ .

For θ a nonzero integer, the probability of error is close to 1, except if

a cyclic code is used [35].

(4) Erasures and insertions can have a similar catastrophic effect.

Therefore, the effect of even mild desynchronization attacks on unsuspect-

ing QIM decoders can be devastating.

Capacity. As is the case with more traditional communication prob-

lems [24], desynchronization attacks have only a benign effect on capacity

[39,36]. The poor performance of basic QIM decoders under desynchro-

nization attacks should thus be attributed to the suboptimality of these

decoders rather than a fundamental performance limit.

Improved QIM Systems. Several ideas are being developed in the

literature to better cope with desynchronization attacks. These include the

use of pilot sequences [17,31] for estimating desynchronization parameters,

cyclic codes for coping with integer delays [35], Reed-Solomon codes for

coping with an equal number of insertions and deletions [41], and syn-

chronization codes for coping with more general insertions, deletions and

substitutions [16,8].

10. Data Hiding in Images

Several papers, including [8,41,30], have recently studied quantization-

based codes for embedding data in images. The paper [30] directly illus-

trates the parallel-Gaussian channel theory, as described below.

Wavelet image coefficients are assumed to be Gaussian with zero means

and location-dependent variances. The coefficients are conditionally inde-

pendent, given the variance field. They are grouped into channels containing

coefficients with similar variances. This yields a parallel Gaussian model,

as described in Sec. 8.3.

The embedding algorithm is outlined in Table 2. The attacker and de-

coder are assumed to know the variances of the wavelet coefficients of the

host data.h The optimal attack is Gaussian, with power allocation {d2k}

hHence this scheme is semi-blind; at the decoder SN is unknown, but the corresponding
variances are known. In practice, the variances would be estimated from the received
data.
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Table 2. Quantization-Based Embedding Algorithm.

Step 1 Apply a discrete wavelet transform to the host image.

Step 2 Estimate the variances of the wavelet coefficients

at each scale and location.

Step 3 Group wavelet coefficients with similar variances,

and treat each group as a channel.

Step 4 Solve the power allocation problem (75), obtaining

{d1k} and {d2k}.

Step 5 Choose a target bit rate Rk below Ck = CG(σ2
k, d1k, d2k)

for each channel k. For instance, Rk = 0.1Ck.

Step 6 Embed data in each channel using a Gaussian code

from Sec. 5.3.2.

Step 7 Apply the inverse wavelet transform to the modified

wavelet coefficients. This yields the watermarked image.

derived in Step 4 of Table 2. The decoder performs MAP decoding in each

channel, according to (68).

Results are given for the 512×512 image Lena, using Daubechies’ length-

8 orthogonal wavelets and 64 parallel Gaussian channels. A value of D1 = 10

is chosen such that the embedding distortion is just noticeable. For D2 =

5D1, the operational probability of bit error, Pbe, is equal to 0.05. This is

vastly better than Pbe ≈ 0.5 obtained using uniform bit allocation over the

channels, and Pbe ≈ 0.5 obtained using Chen and Wornell’s original QIM

(using αk = ak = 1 instead of the optimal αk = d1k

d1k+d2k
). The total bit

rate is 398 bits, 10% of NC.

The paper [41] showed how to combine QIM schemes with desynchro-

nization codes. For instance, they embedded 6,301 bits in the image Lena

and tampered with the image in various ways (cropping, resizing, substitu-

tions, compression, noise, etc.) All 6,301 bits could be successfully decoded.

11. Authentication

So far we have focused on coding problems, in which the decoder knows

that one of |M| possible messages is embedded in the data, and attempts to

reliably decode the message. As discussed in Sec. 3.1, the problem is some-

what different when the decoder is possibly presented with a nonmarked

signal. The simplest such problem arises when the receiver must perform a

binary decision: is the received signal marked (using a known signature) or

not. The primary application of this problem is signal authentication.

The basic hypothesis testing setup is given by (30), where H0 and H1

are respectively the “unmarked” and “marked” hypotheses. The challenge
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is to design an embedding code so that the rival p.d.f.’s p0 and p1 are as

dissimilar as possible.

It turns out that QIM codes outperform SSM codes in this context as

well. A signal is marked by fixing a dither sequence dN and using e.g.,

scalar QIM with this particular sequence. The probability of error of such

schemes has been analyzed in [27]. Such schemes make it also possible to

reconstruct the original signal with a guaranteed accuracy [28].

12. Discussion

This paper has reviewed some basic theory for data hiding and examined the

connection between this theory and design criteria for good practical codes.

Information theory and game theory play a central role in the analysis

and allow us to study the tradeoffs between embedding distortion, attack

distortion, and embedding rate. These tradeoffs have been evaluated using

probability of error and capacity analyses. Related aspects of these problems

may be found in recent papers on the characterization of error exponents

[29,34,26], on optimal design of the key distribution [38], and on optimal

estimation of attack channel parameters [31,33].

These methods can be applied to closely related problems such as fin-

gerprinting [1,32,45,44] and steganography [2,15,39].
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30. M. K. Mıhçak and P. Moulin, “Information-Embedding Codes Matched
to Local Gaussian Image Models,” Proc. IEEE Int. Conf. on Im. Proc.,
Rochester, NY, 2002.

31. P. Moulin, “Embedded-Signal Design for Channel Parameter Estimation.
Part II: Quantization Embedding,” Proc. IEEE Statistical Signal Process-
ing Workshop, St Louis, MO, Sep. 2003.

32. P. Moulin and A. Briassouli, “The Gaussian Fingerprinting Game,” Proc.
CISS’02, Princeton, NJ, March 2002.
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In the last few years, we have seen many new and powerful steganog-
raphy and steganalysis techniques reported in the literature. In the fol-
lowing tutorial we go over some general concepts and ideas that apply
to steganography and steganalysis. We review and discuss the notions
of steganographic security and capacity. Some of the more recent im-
age steganography and steganalysis techniques are analyzed with this
perspective, and their contributions are highlighted.

1. Introduction

Steganography refers to the science of “invisible” communication. Unlike
cryptography, where the goal is to secure communications from an eaves-
dropper, steganographic techniques strive to hide the very presence of the
message itself from an observer. The general idea of hiding some infor-
mation in digital content has a wider class of applications that go beyond
steganography, Fig. 1. The techniques involved in such applications are col-
lectively referred to as information hiding. For example, an image printed
on a document could be annotated by metadata that could lead a user
to its high resolution version. In general, metadata provides additional in-
formation about an image. Although metadata can also be stored in the
file header of a digital image, this approach has many limitations. Usually,
when a file is transformed to another format (e.g., from TIFF to JPEG or
to BMP), the metadata is lost. Similarly, cropping or any other form of
image manipulation destroys the metadata. Finally, metadata can only be
attached to an image as long as the image exists in the digital form and is
lost once the image is printed. Information hiding allows the metadata to

177
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travel with the image regardless of the file format and image state (digital
or analog).

A special case of information hiding is digital watermarking. Digital wa-
termarking is the process of embedding information into digital multimedia
content such that the information (the watermark) can later be extracted
or detected for a variety of purposes including copy prevention and control.
Digital watermarking has become an active and important area of research,
and development and commercialization of watermarking techniques is be-
ing deemed essential to help address some of the challenges faced by the
rapid proliferation of digital content. The key difference between informa-
tion hiding and watermarking is the absence of an active adversary. In wa-
termarking applications like copyright protection and authentication, there
is an active adversary that would attempt to remove, invalidate or forge wa-
termarks. In information hiding there is no such active adversary as there
is no value associated with the act of removing the information hidden in
the content. Nevertheless, information hiding techniques need to be robust
against accidental distortions.

Covert 
Communication

WatermarkingSteganography

Information 
Hiding

Fig. 1. Relationship of steganography to related fields.

Unlike information hiding and digital watermarking, the main goal of
steganography is to communicate securely in a completely undetectable
manner. Although steganography is an ancient art, first used against the
persian by the romans, it has evolved much through the years.

In the following tutorial we focus on some general concepts and ideas
that apply across the field of steganography. The rest of this tutorial is or-
ganized as follows: in section 2 we first define the problem which steganog-
raphy tries to address and introduce to the reader some terminologies com-
monly used in the field. In section 3 we go over different approaches in
defining security. In section 4, the notion of steganographic capacity is dis-
cussed, section 5 goes over some embedding techniques, and in sections 6
some steganalysis techniques are reviewed. We conclude in section 7.
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2. General Concepts

In this section we go over the concepts and definitions used in the field
of steganography. We first start by going over the framework in which
steganography is usually presented and then go over some definitions.

The modern formulation of steganography is often given in terms of the
prisoner’s problem [41] where Alice and Bob are two inmates who wish to
communicate in order to hatch an escape plan. However, all communication
between them is examined by the warden, Wendy, who will put them in
solitary confinement at the slightest suspicion of covert communication.
Specifically, in the general model for steganography, illustrated in Fig. 2,
we have Alice wishing to send a secret message m to Bob. In order to do
so, she “embeds” m into a cover-object c, and obtains a stego-object s. The
stego-object s is then sent through the public channel. Thus we have the
following definitions:

Cover-object: refers to the object used as the carrier to embed messages
into. Many different objects have been employed to embed messages into
for example images, audio, and video as well as file structures, and html
pages to name a few.

Stego-object: refers to the object which is carrying a hidden message.
So given a cover object and a message, the goal of the steganographer is to
produce a stego object which would carry the message.

In a pure steganography framework, the technique for embedding the
message is unknown to Wendy and shared as a secret between Alice and
Bob. However, it is generally considered that the algorithm in use is not
secret but only the key used by the algorithm is kept as a secret between
the two parties, this assumption is also known as Kerchoff’s principle in the
field of cryptography. The secret key, for example, can be a password used
to seed a pseudo-random number generator to select pixel locations in an
image cover-object for embedding the secret message (possibly encrypted).
Wendy has no knowledge about the secret key that Alice and Bob share,
although she is aware of the algorithm that they could be employing for
embedding messages.

The warden Wendy who is free to examine all messages exchanged be-
tween Alice and Bob can be passive or active. A passive warden simply ex-
amines the message and tries to determine if it potentially contains a hidden
message. If it appears that it does, she suppresses the message and/or takes
appropriate action, else she lets the message through without any action.
An active warden, on the other hand, can alter messages deliberately, even
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Wendy

BobAlice

Suppress 
message

Embedding 
Algorithm

Secret Message Hidden message

Secret Key

Secret Key

Cover Message

Extracting 
Algorithm

Is it Stego?

Fig. 2. General model for steganography.

though she does not see any trace of a hidden message, in order to foil any
secret communication that can nevertheless be occurring between Alice and
Bob. The amount of change the warden is allowed to make depends on the
model being used and the cover-objects being employed. For example, with
images, it would make sense that the warden is allowed to make changes
as long as she does not alter significantly the subjective visual quality of a
suspected stego-image. In this tutorial we assume that no changes are made
to the stego-object by the warden Wendy.

Wendy should not be able to distinguish in any sense between cover-
objects (objects not containing any secret message) and stego-objects (ob-
jects containing a secret message). In this context, steganalysis refers to the
body of techniques that aid Wendy in distinguishing between cover-objects
and stego-objects. It should be noted that Wendy has to make this distinc-
tion without any knowledge of the secret key which Alice and Bob may
be sharing and sometimes even without any knowledge of the specific algo-
rithm that they might be using for embedding the secret message. Hence
steganalysis is inherently a difficult problem. However, it should also be
noted that Wendy does not have to glean anything about the contents of
the secret message m. Just determining the existence of a hidden message
is enough. This fact makes her job a bit easier.
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The development of techniques for steganography and the wide-spread
availability of tools for the same have led to an increased interest in ste-
ganalysis techniques. The last two years, for example, have seen many new
and powerful steganalysis techniques reported in the literature. Many of
such techniques are specific to different embedding methods and indeed
have shown to be quite effective in this regard. We will review these tech-
niques in the coming sections.

3. Steganographic Security

In steganography, unlike other forms of communications, one’s awareness of
the underlying communication between the sender and receiver defeats the
whole purpose. Therefore, the first requirement of a steganographic system
is its undetectability. In other words, a steganographic system is considered
to be insecure, if the warden Wendy is able to differentiate between cover-
objects and stego-objects.

There have been various approaches in defining and evaluating the secu-
rity of a steganographic system. Zollner et al. [50] were among the first to ad-
dress the undetectability aspect of steganographical systems. They provide
an analysis to show that information theoretically secure steganography is
possible if embedding operation has a random nature and the embedded
message is independent from both the cover-object and stego-object. These
conditions, however, ensure undetectability against an attacker who knows
the stego-object but has no information available about the indeterminis-
tic embedding operation. That is, Wendy has no access to the statistics,
distribution, or conditional distribution of the cover-object.

On the other hand, [21,38] approached steganographic security from a
complexity theoretic point of view. Based on cryptographic principles, they
propose the design of encryption-decryption functions for steganographic
embedding and detection. In this setting, the underlying distribution of the
cover-objects is known by the attacker, and undetectability is defined in a
conditional sense as the inability of a polynomial-time attacker (Wendy) to
distinguish the stego-object from a cover-object. This model assumes that
stego-object is a distorted version of the cover-object, however, it does not
attempt to probabilistically characterize the stego object.

In [7], Cachin defined the first steganographic security measure that
quantifies the information theoretic security of a stegosystem. His model
assigns probability distributions to cover-object and stego-object under
which they are produced. Then, the task of Wendy is to decide whether
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the observed object is produced according to known cover-object distribu-
tion or not. In the best case scenario, Wendy also knows the distribution of
stego-object and makes a decision by performing a binary hypothesis test.
Consequently, the detectability of a stegosystem is based on relative entropy
between the probability distributions of the cover-object and stego-object,
denoted by Pc and Ps, respectively, i.e.,

D(Pc||Ps) =
∫

Pc log
Pc

Ps
. (1)

From this equation, we note that D(Pc||Ps) increases with the ratio Pc
Ps

which in turn means that the reliability of steganalysis detector will also
increase. Accordingly, a stego technique is said to be perfectly secure if
D(Pc||Ps) = 0 (Pc and Ps are equal), and ε-secure if the relative entropy
between Pc and Ps is at most ε, D(Pc||Ps) ≤ ε. Perfectly secure algorithms
are shown to exist, although they are impractical [7]. However, it should
be noted that this definition of security is based on the assumption that
the cover-object and stego-object are independent, identically distributed
(i.i.d.) vectors of random variables.

Since Wendy uses hypothesis testing in distinguishing between stego-
objects and cover-objects, she will make two types of errors, namely, type-
I and type-II errors. A type-I error, with probability α occurs, when a
cover-object is mistaken for a stego-object (false alarm rate), and a type-
II error, with probability β, occurs when a stego-object is mistaken for a
cover-object (miss rate). Thus bounds on these error probabilities can be
computed using relative entropy, thereby relating steganographic security
to detection error probabilities. Cachin [7] obtains these bounds utilizing
the facts that deterministic processing can not increase the relative entropy
between two distributions, say, Pc and Ps, and hypothesis testing is a form
of processing by a binary function that yields α (P (detect message present
| message absent)) and β (P (detect message absent | message present)).
Then, the relative entropy between distributions Pc and Ps and binary
relative entropy of two distributions with parameters (α,1 − α) and (β,
1 − β) need to satisfy

d(α, β) ≤ D(Pc||Ps), (2)

where d(α, β) is expressed as

d(α, β) = α log
α

1 − β
+ (1 − α) log

1 − α

β
. (3)
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Then, for an ε-secure stegosystem we have

d(α, β) ≤ ε. (4)

Consequently, when the false alarm rate is set to zero (α = 0), the miss
rate is lower bounded as β ≥ 2−ε. It should be noted that the probability
of detection error for Wendy is defined as

Pe = αP (message absent) + βP (message present). (5)

Based on above equations, for a perfectly secure stegosystem, α + β = 1,
and when a cover-object is equally likely to undergo embedding operation,
then Pe = 1

2 . Hence, Wendy’s decisions are unreliable.
As one can observe, there are several shortcomings in the above defi-

nition of security. While the ε-secure definition may work for random bit
streams (with no inherent statistical structure), for real-life cover-objects
such as audio, image, and video, it seems to fail. This is because, real-
life cover-objects have a rich statistical structure in terms of correlation,
higher-order dependence, etc. By exploiting these structures, it is possi-
ble to design good steganalysis detectors even if the first order probability
distribution is preserved (i.e., ε = 0) during the embedding process. If we
approximate the probability distribution functions using histograms, then,
examples such as [20] show that it is possible to design good steganalysis
detectors even if the histograms of the cover image and the stego image are
the same.

Consider the following embedding example. Let X and Y be two binary
random variables such that P (X = 0) = P (Y = 0) = 1/2, and let them
represent the host and covert message, respectively. Let the embedding
function be given by the following:

Z = X + Y mod 2. (6)

We then observe that D(PZ ||PX) = 0 but E(X − Z)2 = 1. Therefore the
non-zero mean squared error value may give away enough information to a
steganalysis detector even though D(.) = 0.

One attempt to overcome the limitations of i.i.d. cover-object model was
made by Wang et al. [45] where they extended Cachin’s results to multivari-
ate Gaussian case, assuming that cover-object and stego-object are vectors
of length N with distributions PcN and PsN , respectively. In the multivari-
ate case, similar to i.i.d. case, undetectability condition requires that the
distribution of cover-object is preserved after embedding. However, when
this is not possible, the degree of detectability of a stegosystem will depend
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on the deviation from the underlying distribution and the covariance struc-
ture of the cover-object. If the cover-object is jointly Gaussian with zero
mean and covariance matrix RcN , among all distributions (with zero mean
and covariance matrix RsN ) the Gaussian distribution for the stego-object
minimizes the relative entropy. Then, the detectability of stegosystem can
be quantified based on the relative entropy as

D(PcN ||PsN ) =
1
2

(
tr(R̂) − log(R̂ + IN )

)
≈ 1

4
tr(R̂2) (7)

where tr(.) denotes the trace of a matrix, IN is the N ×N identity matrix,
and R̂ = RcN R−1

sN − IN . Consequently, Wendy’s detection error probability,
Pe can be lower bounded as [45]

Pe >
1
2

exp−D(P
cN ||P

sN )+D(P
sN ||P

cN )

2 (8)

assuming both hypotheses are equally likely, i.e., Pe = 1
2α + 1

2β.
Although [45] addressed the inherent limitation of the ε-secure notion

of Cachin, [7], by considering non-white cover-objects, due to analytical
tractability purposes they limited their analysis to cover-objects that are
generated by a Gaussian stationary process. However, as stated before, this
is not true for many real-life cover-objects. One approach to rectify this
problem is to probabilistically model the cover-objects or their transformed
versions or some perceptually significant features of the cover-object and
put a constraint that the relative entropy computed using the nth order
joint probability distributions must be less than, say, εn and then force
the embedding technique to preserve this constraint. But, it may then be
possible, at least in theory, to use (n + 1)th order statistics for successful
steganalysis. This line of thought clearly poses several interesting issues:

• Practicality of preserving nth order joint probability distribution
during embedding for medium to large values of n.

• Behavior of εn depends on the cover message as well as the embed-
ding algorithm. If it varies monotonically with n then, for a desired
target value, say, ε = ε∗, it may be possible to pre-compute a value
of n = n∗ that achieves this target.

Of course, even if these nth order distributions are preserved, there is no
guarantee that embedding induced perceptual distortions will be accept-
able. If such distortions are significant, then it is not even necessary to use
a statistical detector for steganalysis!

From a practical point of view, Katzenbeisser et al. [23] propose the idea
of using an indistinguishability test to define the security of a stegosystem.
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Fig. 3. Detector ROC plane. (Figure taken from [11].)

In their model, Wendy has access to cover-object and stego-object gen-
eration mechanisms and uses them consecutively to learn the statistical
features of both objects to distinguish between them, rather than assum-
ing their true probability distributions are available. In a similar manner,
Chandramouli et al. [11] propose an alternative measure for steganographic
security. Their definition is based on the false alarm probability (α), the
detection probability (1 − β), and the steganalysis detector’s receiver op-
erating characteristic (ROC) which is a plot of α versus 1 − β. Points on
the ROC curve represent the achievable performance of the steganalysis de-
tector. The average error probability of steganalysis detection is as defined
in Eq. (5). Assuming P (message present)=P (message absent) and setting
α = 1 − β, then Pe = 1/2 and ROC curve takes the form shown in Fig.
3. That is, the detector makes purely random guesses when it operates or
forced to operate on the 45 degree line in the ROC plane. Then, the stegano-
graphic security can be defined in terms of the deviation of the steganalysis
detector’s operation curve from the 45 degree ROC line. Correspondingly,
a stegosystem can be defined to be γD-secure with respect to a steganalysis
detector D when |1 − βD − αD| ≤ γD where 0 ≤ γD ≤ 1 and γD = 0 refers
to the perfect security condition, similar to the ε-security notion of Cachin
[7].

4. Steganographic Capacity

Steganographic capacity refers to the maximum amount (rate) of informa-
tion that can be embedded into a cover-object and then can be reliably
recovered from the stego-object (or a distorted version), under the con-
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straints of undetectability, perceptual intactness and robustness, depending
on whether Wendy is active or passive. Compared to data hiding systems,
stegosystems have the added core requirement of undetectability. Therefore,
the steganographic embedding operation needs to preserve the statistical
properties of the cover-object, in addition to its perceptual quality. On the
other hand, if Wendy suspects of a covert communication but cannot re-
liably make a decision, she may choose to modify the stego-object before
delivering it. This setting of steganography very much resembles to data
hiding problem, and corresponding results on data hiding capacity can be
adapted to steganography [31].

As discussed in the previous section, the degree of undetectability of
a stegosystem is measured in terms of a distance between probability dis-
tributions PcN and PsN , i.e., D(PcN ||PsN ) ≤ ε where ε = 0 is the perfect
security condition. Let d(cN , sN ) be a perceptual distance measure defined
between cover-object cN and stego-object sN . When the warden is passive,
the steganographic capacity Cp of a perfectly secure stegosystem with em-
bedding distortion limited to P is defined, in terms of random vectors sN

and cN , as

Cp = {supH(sN |cN ) : PcN = PsN and
1
N

E[d(cN , sN)] ≤ P} (9)

where E[.] denotes the expected value and supremum is taken over all
PsN |cN for the given constraints. In [31], Moulin et al. discuss code gen-
eration (embedding) for a perfectly secure stegosystem with binary i.i.d.
cover-object and Hamming distortion measure, and provide capacity re-
sults. However, generalization of such techniques to real life cover-objects
is not possible due to two reasons. First is the simplistic i.i.d. assumption,
and second is the utilized distortion measure as there is no trivial relation
between bit error rate and reconstruction quality.

In order to be able to design practical stegosystems, the perfect security
condition in Eq. (9) can be relaxed by replacing it with the ε-security notion.
One way to exploit this is by identifying the perceptually significant and
insignificant parts of the cover-object cN , and preserving the statistics of
the significant component while utilizing the insignificant component for
embedding. For this, let there be a function g(.) such that d(cN , g(cN )) ≈ 0
and g(cN ) = g(sN). Then, Eq. (9) can be modified as

Cp = {sup H(sN |cN ) : Pg(cN ) = Pg(sN ) and
1
N

E[(d(cN , sN)] ≤ P} (10)

where D(PcN ||PsN ) ≤ ε. This approach requires statistical modelling of
the cover-object or of some features of it, which will be modified during
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embedding. For example, [48,16,10] observe the statistical regularity be-
tween pairs of sample values in an image, and provide a framework for
(ε-secure) embedding in least significant bit (LSB) layer. Similarly, Sallee
[39] models AC components of DCT coefficients by Generalized Cauchy dis-
tribution and uses this model for embedding. In the same manner, wavelet
transformed image coefficients can be marginally modelled by Generalized
Laplacian distribution [42]. This approach, in general, suffers due to the
difficulty in modelling the correlation structure via higher order joint dis-
tributions which is needed to ensure ε-security.

In the presence of an active warden, the steganographic capacity can be
determined based on the solution of data hiding capacity with the inclusion
of undetectability or ε-security condition. Data hiding capacity has been
the subject of many research works, see, [5,13,29,49,12,8,30,36,37,9] and
references therein, where the problem is viewed as a channel communication
scenario with side information at the encoder. Accordingly, the solution
for the data hiding capacity requires consideration of an auxiliary random
variable u that serves as a random codebook shared by both embedder
and detector. Let the distorted stego-object be denoted by y, and assume
cover-object and stego-object are distorted by amounts P and D during
embedding operation and attack, respectively. Since undetectability is the
central issue in steganography, we consider the additional constraint of Pc =
Ps. Then, the steganographic capacity for the active warden case, Ca, is
derived, in terms of i.i.d. random variables c, u, s, and y, as

Ca = {sup I(u, y) − I(u, c) : Pc = Ps, E[(d(c, s)] ≤ P, andE[(d(s, y)] ≤ D}
(11)

where supremum is taken over all distributions Pu|c and all embedding func-
tions under the given constraints. The computation of the steganographic
capacity of practical stegosystems, using Equations (9)-(11), still remains
to be an open problem due to lack of true statistical models and for reasons
of analytical tractability.

Chandramouli et al. [10], from a practical point of view, make an al-
ternative definition of steganographic capacity based on the γ-security no-
tion given in the previous section [11]. They define steganographic capacity
from a detection theoretic perspective, rather than information theoretic,
as the maximum message size that can be embedded so that a steganalysis
detector is only able to make a perfectly random guess about the pres-
ence/absence of a covert message. This indicates that the steganographic
capacity in the presence of steganalysis varies with respect to the steganal-
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ysis detector. Therefore, its formulation must involve parameters of the
embedding function as well as that of the steganalysis detector. Assuming
N is the number of message carrying symbols, and α

(N)
D and 1 − β

(N)
D are

the corresponding false alarm and detection probabilities for a steganalysis
detector D, the steganographic capacity is defined as

N∗
γ = {maxN subject to |1 − β

(N)
D − α

(N)
D | ≤ γD} symbols. (12)

Based on this definition, [10] provide an analysis on the capacity of LSB
steganography and investigate under what conditions an observer can dis-
tinguish between stego-images and cover-images.

5. Techniques for Image Steganography

Given the proliferation of digital images, and given the high degree of redun-
dancy present in a digital representation of an image (despite compression),
there has been an increased interest in using digital images as cover-objects
for the purpose of steganography. Therefore we have limited our discussion
to the case of images for the rest of this tutorial. We should also note that
there have been much more work on embedding techniques which make use
of the transform domain or more specifically JPEG images due to their
wide popularity. Thus to an attacker the fact that an image other than
that of JPEG format is being transferred between two entities could hint
of suspicious activity.

There have been a number of image steganography algorithm proposed,
these algorithm could be categorized in a number of ways:

• Spatial or Transform, depending on redundancies used from either
domain for the embedding process.

• Model based or ad-hoc, if the algorithm models statistical proper-
ties before embedding and preserves them, or otherwise.

• Active or Passive Warden, based on whether the design of
embedder-detector pair takes into account the presence of an active
attacker.

In what follows we go over algorithms classified into 3 different sections,
based on the more important characteristics of each embedding technique.
Some of the techniques which we will discuss below have been successfully
broken by steganalysis attacks, which we will go over in Section 6.
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5.1. Spatial domain embedding

The best widely known steganography algorithm is based on modifying the
least significant bit layer of images, hence known as the LSB technique. This
technique makes use of the fact that the least significant bits in an image
could be thought of random noise and changes to them would not have
any effect on the image. This is evident by looking at Fig. 4. Although the
image seems unchanged visually after the LSBs are modified, the statistical
properties of the image changes significantly. We will discuss in the next
section of this tutorial how these statistical changes could be used to detect
stego images created using the LSB method.

Fig. 4. Bitplane decomposition of image Lena.

In the LSB technique, the LSB of the pixels is replaced by the message to
be sent. The message bits are permuted before embedding, this has the effect
of distributing the bits evenly, thus on average only half of the LSB’s will be
modified. Popular steganographic tools based on LSB embedding [14,33,40],
vary in their approach for hiding information. Some algorithms change LSB
of pixels visited in a random walk, others modify pixels in certain areas of
images, or instead of just changing the last bit they increment or decrement
the pixel value [40].

Fridrich et al. [18] proposed another approach for embedding in spatial
domain. In their method, noise that statistically resemble common process-
ing distortion, e.g., scanner noise, or digital camera noise, is introduced to
pixels on a random walk. The noise is produced by a pseudo random noise
generator using a shared key. A parity function is designed to embed and
detect the message signal modulated by the generated noise.
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5.2. Transform domain embedding

Another category for embedding techniques for which a number of algo-
rithms have been proposed is the transform domain embedding category.
Most of the work in this category has been concentrated on making use of
redundancies in the DCT (discrete cosine transform) domain, which is used
in JPEG compression. But there has been other algorithms which make use
of other transform domains such as the frequency domain [1].

Embedding in DCT domain is simply done by altering the DCT coeffi-
cients, for example by changing the least significant bit of each coefficient.
One of the constraints of embedding in DCT domain is that many of the
64 coefficients are equal to zero, and changing too many zeros to non-zero
values will have an effect on the compression rate. That is why the number
of bits one could embed in DCT domain, is less that the number of bits one
could embed by the LSB method. Also the embedding capacity becomes
dependent on the image type used in the case of DCT embedding, since de-
pending on the texture of image the number of non-zero DCT coefficients
will vary.

Although changing the DCT coefficients will cause unnoticeable visual
artifices, they do cause detectable statistical changes. In the next section,
we will discuss techniques that exploit these statistical anomalies for ste-
ganalysis. In order to minimize statistical artifacts left after the embedding
process, different methods for altering the DCT coefficients have been pro-
posed, we will discuss two of the more interesting of these methods, namely
the F5 [46] and Outguess [32] algorithms.

F5 [46] embedding algorithm was proposed by Westfeld as the latest
in a series of algorithms, which embed messages by modifying the DCT
coefficients. For a review of jsteg, F3 and F4 algorithms that F5 is built on,
please refer to [46]. F5 has two important features, first it permutes the DCT
coefficients before embedding, and second it employs matrix embedding.

The first operation, namely permuting the DCT coefficients has the
effect of spreading the changed coefficients evenly over the entire image. The
importance of this operation becomes evident when a small message is used.
Let’s say we are embedding a message of size m, then if no permutation
is done and coefficients are selected in the order they appear, then only
the first m coefficients are used. Thus the first part of the image get’s fully
changed after embedding, and the rest of the image remains unchanged.
This could facilitate attacks on the algorithm since the amount of change
is not uniform over the entire image. On the other hand when permutation



June 6, 2007 10:16 WSPC/Lecture Notes Series: 9in x 6in chapter5

Image Steganography and Steganalysis: Concepts and Practice 191

is done, the message is spread uniformly over the image thus the distortion
effects of embedding is spread equally and uniformly over the entire image.

The second operation done by F5 is matrix embedding. The goal of
matrix embedding is to minimize the amount of change made to the DCT
coefficients. Westfeld [46], takes n DCT coefficients and hashes them to k

bits. If the hash value equals to the message bits then the next n coefficients
are chosen and so on. Otherwise one of the n coefficients is modified and the
hash is recalculated. The modifications are constrained by the fact that the
resulting n DCT coefficients should not have a hamming distance of more
than dmax from the original n DCT coefficients. This process is repeated
until the hash value matches the message bits. So then given an image, the
optimal values for k and n could be selected.

Outguess [32], which was proposed by Provos, is another embedding al-
gorithm which embeds messages in the DCT domain. Outguess goes about
the embedding process in two separate steps. First it identifies the redun-
dant DCT coefficients which have minimal effect on the cover image, and
then depending on the information obtained in the first step, chooses bits
in which it would embed the message. We should note that at the time Out-
guess was proposed, one of its goals was to overcome steganalysis attacks
which look at changes in the DCT histograms after embedding. So Provos,
proposed a solution in which some of the DCT coefficients are left un-
changed in the embedding process, afterwards these remaining coefficients
are adjusted in order to preserve the original histogram of DCT coefficients.
As we will see in the steganalysis section both F5 [46], and Outguess [32]
embedding techniques have been successfully attacked.

As mentioned before, another transform domain which has been used
for embedding is the frequency domain. Alturki et al. [1] propose quantiz-
ing the coefficients in the frequency domain in order to embed messages.
They first decorrelate the image by scrambling the pixels randomly, which
in effect whitens the frequency domain of the image and increases the num-
ber of transform coefficients in the frequency domain thus increasing the
embedding capacity. As evident from Fig. 5, the result is a salt and pep-
per image where its probability distribution function resembles a gaussian
distribution. The frequency coefficients are then quantized to even or odd
multiples of the quantization step size to embed zeros or ones. Then the
inverse FFT of the signal is taken and descrambled. The resulting image
would be visually incomparable to the original image. But statistically the
image changes and as the authors show in their work, the result of the
embedding operation is the addition of a gaussian noise to the image.
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a b

c d

Fig. 5. Frequency domain embedding. a) Original image, b) scrambled image, c) his-
togram of DFT coefficients, and d) histogram of DFT coefficients after quantization.
(Figure taken from [1].)

5.3. Model based techniques

Unlike techniques discussed in the two previous subsections, model based
techniques try to model statistical properties of an image, and preserve
them in the embedding process. For example Sallee [39] proposes a method
which breaks down transformed image coefficients into two parts, and re-
places the perceptually insignificant component with the coded message
signal. Initially, the marginal statistics of quantized (non-zero) AC DCT
coefficients are modelled with a parametric density function. For this, a low
precision histogram of each frequency channel is obtained, and the model is
fit to each histogram by determining the corresponding model parameters.
Sallee defines the offset value of coefficient within a histogram bin as a sym-
bol and computes the corresponding symbol probabilities from the relative
frequencies of symbols (offset values of coefficients in all histogram bins).

In the heart of the embedding operation is a non-adaptive arithmetic
decoder which takes as input the message signal and decodes it with re-
spect to measured symbol probabilities. Then, the entropy decoded mes-
sage is embedded by specifying new bin offsets for each coefficient. In other
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words, the coefficients in each histogram bin are modified with respect to
embedding rule, while the global histogram and symbol probabilities are
preserved. Extraction, on the other hand, is similar to embedding. That
is, model parameters are determined to measure symbol probabilities and
to obtain the embedded symbol sequence (decoded message). (It should be
noted that the obtained model parameters and the symbol probabilities are
the same both at the embedder and detector.) The embedded message is
extracted by entropy encoding the symbol sequence.

Another model based technique was proposed by Radhakrishnan et al.
[35], in which the message signal is processed so that it would exhibit the
properties of an arbitrary cover signal, they call this approach data masking.
As argued if Alice wants to send an encrypted message to Bob, the warden
Wendy would be able to detect such a message as an encrypted stream since
it would exhibit properties of randomness. In order for a secure channel to
achieve covertness, it is necessary to preprocess the encrypted stream at the
end points to remove randomness such that the resulting stream defeats
statistical tests for randomness and the stream is reversible at the other
end.

Encryption Inverse
Wiener Wiener Decryption

Message

Key Key

Message

Randomness
Test

Not Random

Alice Bob

Fig. 6. Proposed System for Secure and Covert Communication. (Figure taken from
[35].)

The authors propose Inverse Wiener filtering as a solution to remove
randomness from cipher streams as shown in Fig 6. Let us consider the ci-
pher stream as samples from a wide sense stationary (WSS) process, E. We
would like to transform this input process with high degree of randomness
to another stationary process, A, with more correlation between samples
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by using a linear filter, H . It is well known that the power spectrum of a
WSS input, A(w), to a linear time invariant system will have the output
with the power spectrum E(w) expressed as

E(w) = |H(w)|2A(w). (13)

If E(w) is a white noise process, then H(w) is the whitening filter or Wiener
filter. Since the encrypted stream is random, its power spectral density is
flat and resembles the power spectral density of a white noise process.
Then, the desired Wiener filter can be obtained by spectral factorization of
(E(w)/A(w)) followed by selection of poles and zeros to obtain the mini-
mum phase solution for H(w). The authors discuss how the above method
could be used with audio as cover-object in [35], and more recently with
images as cover-object in [34].

6. Steganalysis

There are two approaches to the problem of steganalysis, one is to come
up with a steganalysis method specific to a particular steganographic al-
gorithm. The other is developing techniques which are independent of the
steganographic algorithm to be analyzed. Each of the two approaches has
its own advantages and disadvantages. A steganalysis technique specific to
an embedding method would give very good results when tested only on
that embedding method, and might fail on all other steganographic algo-
rithms. On the other hand, a steganalysis method which is independent
of the embedding algorithm might preform less accurately overall but still
provide acceptable results on new embedding algorithms. These two ap-
proaches will be discussed below and we will go over a few of the proposed
techniques for each approach.

Before we proceed, one should note that steganalysis algorithms in
essence are called successful if they can detect the presence of a message,
and the message itself does not have to be decoded. Indeed, the latter can
be very hard if the message is encrypted using strong cryptography. How-
ever, recently there have been methods proposed in the literature which in
addition to detecting the presence of a message are also able to estimate
the size of the embedded message with great accuracy. We consider these
aspects to be extraneous and only focus on the ability to detect the presence
of a message.

6.1. Technique specific steganalysis

We first look at steganalysis techniques that are designed with a particular
steganographic embedding algorithm in mind. As opposed to the previous
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section, where the embedding algorithms were categorized depending on the
approach taken in the embedding process, here we categorize the stegano-
graphic algorithms depending on the type of image they operate on, which
includes Raw images (for example bmp format), Palette based images (for
example GIF images), and finally JPEG images.

6.1.1. Raw images

Raw images are widely used with the simple LSB embedding method, where
the message is embedded in a subset of the LSB (least significant bit) plane
of the image, possibly after encryption. An early approach to LSB steganal-
ysis was presented in [48] by Westfeld et al. They note that LSB embedding
induces a partitioning of image pixels into Pairs of Values (PoV’s) that get
mapped to one another. For example the value 2 gets mapped to 3 on LSB
flipping and likewise 3 gets mapped to 2. So (2, 3) forms a PoV. Now LSB
embedding causes the frequency of individual elements of a PoV to flatten
out with respect to one another. So for example if an image has 50 pixels
that have a value 2 and 100 pixels that have a value 3, then after LSB
embedding of the entire LSB plane the expected frequencies of 2 and 3 are
75 and 75 respectively. This of course is when the entire LSB plane is mod-
ified. However, as long as the embedded message is large enough, there will
be a statistically discernible flattening of PoV distributions and this fact is
exploited by their steganalysis technique.

The length constraint, on the other hand, turns out to be the main
limitation of their technique. LSB embedding can only be reliably detected
when the message length becomes comparable with the number of pixels
in the image. In the case where message placement is known, shorter mes-
sages can be detected. But requiring knowledge of message placement is
too strong an assumption as one of the key factors playing in the favor of
Alice and Bob is the fact that the secret message is hidden in a location
unknown to Wendy.

A more direct approach for LSB steganalysis that analytically estimates
the length of an LSB embedded message in an image was proposed by
Dumitrescu et al. [16]. Their technique is based on an important statistical
identity related to certain sets of pixels in an image. This identity is very
sensitive to LSB embedding, and the change in the identity can quantify
the length of the embedded message. This technique is described in detail
below, where our description is adopted from [16].

Consider the partition of an image into pairs of horizontally adjacent
pixels. Let P be the set of all these pixel pairs. Define the subsets X , Y
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and Z of P as follows:

• X is the set of pairs (u, v) ∈ P such that v is even and u < v, or v

is odd and u > v.
• Y is the set of pairs (u, v) ∈ P such that v is even and u > v, or v

is odd and u < v.
• Z is the subset of pairs (u, v) ∈ P such that u = v.

After having made the above definitions, the authors make the assumption
that statistically we will have

|X | = |Y |. (14)

This assumption is true for natural images as the gradient of intensity
function in any direction is equally likely to be positive or negative.

Furthermore, they partition the set Y into two subsets W and V , with
W being the set of pairs in P of the form (2k, 2k + 1) or (2k + 1, 2k), and
V = Y − W . Then P = X ∪ W ∪ V ∪ Z. They call the sets X , V , W and
Z as primary sets.

When LSB embedding is done pixel values get modified and so does the
membership of pixel pairs in the primary sets. More specifically, given a
pixel pair (u, v), they identify the following four situations:

00) both values u and v remain unmodified;
01) only v is modified;
10) only u is modified;
11) both u and v are modified.

The corresponding change of membership in the primary sets is shown in
Fig. 7.

By some simple algebraic manipulations, the authors finally arrive at
the equation

0.5γp2 + (2|X ′| − |P|)p + |Y ′| − |X ′| = 0. (15)

where γ = |W | + |Z| = |W ′| + |Z ′|. The above equation allows one to
estimate p, i.e., the length of the embedded message, based on X ′, Y ′, W ′,
Z ′ which can all be measured from the image being examined for possible
steganography. Of course it should be noted that we cannot have γ = 0,
the probability of which for natural images is very small.

In fact, the pairs based steganalysis described above was inspired by
an effectively identical technique, although from a very different approach,
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Fig. 7. State transition diagram for sets X, V, W, Z under LSB flipping. (Figure taken
from [16].)

called RS-Steganalysis by Fridrich et al. in [19] that had first provided re-
markable detection accuracy and message length estimation even for short
messages. However, RS-Steganalysis does not offer a direct analytical ex-
planation that can account for its success. It is based more on empirical
observations and their modelling. It is interesting to see that the Pair’s
based steganalysis technique essentially ends up with exactly the same ste-
ganalyzer as RS-Steganalysis.

Although the above techniques are for gray scale images, they are appli-
cable to color images by considering each color plane as a gray scale image.
A steganalysis technique that directly analyzes color images for LSB embed-
ding and yields high detection rates even for short messages was proposed
by Fridrich et al. [17]. They define pixels that are “close” in color intensity
to be pixels that have a difference of not more than one count in any of the
three color planes. They then show that the ratio of “close” colors to the
total number of unique colors increases significantly when a new message of
a selected length is embedded in a cover image as opposed to when the same
message is embedded in a stego-image (that is an image already carrying a
LSB encoded message). It is this difference that enables them to distinguish
cover-images from stego-images for the case of LSB steganography.

In contrast to the simple LSB method discussed, Hide [40] increments
or decrements the sample value in order to change the LSB value. Thus
the techniques previously discussed for LSB embedding with bit flipping do
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Fig. 8. Neighborhood histogram of a cover image (top) and stego image with 40 KB
message embedded (bottom). (Figure taken from [47].)

not detect Hide. In order to detect embedded messages by Hide, Westfeld
[47] proposes a similar steganalysis attack as Fridrich et al. [17] where it
is argued that since the values are incremented or decremented, 26 neigh-
boring colors for each color value could be created, whereas in a natural
image there are 4 to 5 neighboring colors on average. Thus by looking at
the neighborhood histogram representing the number of neighbors in one
axis and the frequency in the other one would be able to say if the image
carries a message. This is clearly seen in Fig 8.

6.1.2. Palette based images

Palette based images, like GIF images, are another popular class of images
for which there have been a number of steganography methods proposed
[27,24,28]. Perhaps some of the earliest steganalysis work in this regard was
reported by Johnson et al. [22]. They mainly look at palette tables in GIF
images and anomalies caused therein by common stego-tools that perform
LSB embedding in GIF images. Since pixel values in a palette image are
represented by indices into a color look-up table which contains the actual
color RGB value, even minor modifications to these indices can result in
annoying artifacts. Visual inspection or simple statistics from such stego-
images can yield enough tell-tale evidence to discriminate between stego
and cover-images.

In order to minimize the distortion caused by embedding, EzStego [27]
first sorts the color pallet so that the color differences between consecutive
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colors is minimized. It then embeds the message bits in the LSB of the
color indices in the sorted pallet. Since pixels which are modified due to
the embedding process get mapped neighboring colors in the palette, which
are now similar, visual artifacts are minimal and hard to notice. To detect
EzStego, Fridrich [20] argues that a vector consisting of color pairs, obtained
after sorting the pallet, has considerable structure due to the fact there are
a small number of colors in pallet images. But the embedding process will
disturb this structure, thus after the embedding the entropy of the color pair
vector will increase. The entropy would be maximal when the maximum
length message is embedded in to the GIF image. Another steganalysis
techniques for EzStego were proposed by Westfeld [48], but the technique
discussed above provides a much higher detection rate and a more accurate
estimate of the message lengths.

6.1.3. JPEG images

JPEG images are the third category of images which are used routinely as
cover medium. Many steganalysis attacks have been proposed for steganog-
raphy algorithms [32,43,46] which employ this category of images. Fridrich
[20] has proposed attacks on the F5 and Outguess algorithms, both of which
were covered in the previous section. F5 [46] embeds bits in the DCT coef-
ficients using matrix embedding so that for a given message the number of
changes made to the cover image is minimized, at the same time it spreads
the message over the cover image. But F5 does alter the histogram of DCT
coefficients. Fridrich proposes a simple technique to estimate the original
histogram so that the number of changes and length of the embedded mes-
sage could be estimated. The original histogram is simply estimated by
cropping the JPEG image by 4 columns and then re-compressing the image
using the same quantization table as used before. As is evident in Fig 9,
the resulting DCT coefficient histogram would be a very good estimate of
the original histogram.

Intuitively, effect of the cropping operation could be reasoned as fol-
lows. In a natural image, characteristics are expected to change smoothly
with respect to spatial coordinates. That is, image features computed in
a portion of image will not change significantly by a slight shift in the
computation window. In the same manner, the statistics of the DCT co-
efficients computed from a shifted partitioning of an image should remain
roughly unchanged. However, since in F5, DCT coefficients are tailored by
the embedder, cropping of the image (shift in the partitioning) will spoil the
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Fig. 9. The effect of F5 embedding on the histogram of the DCT coefficient (2,1).
(Figure taken from [20].)

structure created by embedding process, thereby, the coefficient statistics
will vary and estimate the original structure.

A second technique proposed by Fridrich [20] deals with the Outguess
[32] embedding program. Outguess first embeds information in LSB of the
DCT coefficients by making a random walk, leaving some coefficients un-
changed. Then it adjusts the remaining coefficients in order to preserve
the original histogram of DCT coefficients. Thus the previous steganaly-
sis method where the original histogram is estimated will not be effective.
On the other hand when embedding messages in a clean image, noise is
introduced in the DCT coefficients, therefore increasing the spatial discon-
tinuities along the 8x8 JPEG blocks. Given a stego image if a message is
embedded in the image again there is partial cancellation of changes made
to the LSBs of DCT coefficients, thus the increase in discontinuities will
be smaller. This increase or lack of increase in the discontinuities is used
to estimate the message size which is being carried by a stego image. In a
related work Wang et al. [44] use a statistical approach and show how em-
bedding in DCT domain affects differently the distribution of neighboring
pixels which are inside blocks or across blocks. These differences could be
used to distinguish between clean and stego images.

6.2. Universal steganalysis

The steganalysis techniques described above were all specific to a particular
embedding algorithm. A more general class of steganalysis techniques pio-
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neered independently by Avcibas et al. [2,3,4] and Farid et al. [25,26], are
designed to work with any steganographic embedding algorithm, even an
unknown algorithm. Such techniques have subsequently been called Uni-
versal Steganalysis or Blind Steganalysis Techniques. Such approaches es-
sentially design a classifier based on a training set of cover-objects and
stego-objects obtained from a variety of different embedding algorithms.
Classification is done based on some inherent “features” of typical natural
images which can get violated when an image undergoes some embedding
process. Hence, designing a feature classification based universal steganal-
ysis technique consists of tackling two independent problems. The first is
to find and calculate features which are able to capture statistical changes
introduced in the image after the embedding process. The second is coming
up with a strong classification algorithm which is able to maximize the dis-
tinction captured by the features and achieve high classification accuracy.

Typically, a good feature should be accurate, monotonic, and consistent
in capturing statistical signatures left by the embedding process. Detection
accuracy can be interpreted as the ability of the measure to detect the
presence of a hidden message with minimum error on average. Similarly,
detection monotonicity signifies that the features should ideally be mono-
tonic in their relationship to the embedded message size. Finally, detection
consistency relates to the feature’s ability to provide consistently accurate
detection for a large set of steganography techniques and image types. This
implies that the feature should be independent on the type and variety of
images supplied to it.

In [4] Avcibas et al. develop a discriminator for cover images and stego
images, using an appropriate set of Image Quality Metrics (IQM’s). Objec-
tive image quality measures have been utilized in coding artifact evaluation,
performance prediction of vision algorithms, quality loss due to sensor in-
adequacy etc. In [4] they are used not as predictors of subjective image
quality or algorithmic performance, but specifically as a steganalysis tool,
that is, as features used in distinguishing cover-objects from stego-objects.

To select quality metrics to be used for steganalysis, the authors use
Analysis of Variance (ANOVA) techniques. They arrive at a ranking of
IQM’s based on their F-scores in the ANOVA tests to identify the ones
that responded most consistently and strongly to message embedding. The
idea is to seek IQM’s that are sensitive specifically to steganography effects,
that is, those measures for which the variability in score data can be ex-
plained better because of some treatment rather than as random variations
due to the image set. The rationale of using several quality measures is
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Fig. 10. Scatter plot of 3 image quality measures showing separation of marked and
unmarked images. (Figure taken from [4].)

that different measures respond with differing sensitivities to artifacts and
distortions. For example, measures like mean-square-error respond more to
additive noise, whereas others such as spectral phase or mean square HVS-
weighted (Human Visual System) error are more sensitive to pure blur;
while the gradient measure reacts to distortions concentrated around edges
and textures. Similarly embedding techniques affect different aspects of im-
ages. Fig. 10 shows separation in the feature plane between stego images
and cover images, for 3 example quality metrics.

A second technique proposed by Avcibas et al. [2] looks at seventh
and eight bit planes of an image and calculates several binary similarity
measures. The approach is based on the fact that correlation between con-
tiguous bit-planes is affected after a message is embedded in the image.
The authors conjecture that correlation between the contiguous bit planes
decreases after a message is embedded in the image. In order to capture
the effect made by different embedding algorithms several features are cal-
culated. Using the obtained features a MMSE linear predictor is obtained
which is used to classify a given image as either a cover image or an image
containing hidden messages.

A different approach is taken by Farid et al. [25,26] for feature extrac-
tion from images. The authors argue that most of the specific steganaly-



June 6, 2007 10:16 WSPC/Lecture Notes Series: 9in x 6in chapter5

Image Steganography and Steganalysis: Concepts and Practice 203

sis techniques concentrate on first order statistics, i.e. histogram of DCT
coefficients, but simple counter measures could keep the first order statis-
tics intact thus making the steganalysis technique useless. So they propose
building a model for natural images by using higher order statistics and
then show that images with messages embedded in them deviate from this
model. Quadratic mirror filters (QMF) are used to decompose the image,
after which higher order statistics such as mean, variance, skewness, and
kurtosis are calculated for each subband. Additionally the same statistics
are calculated for the error obtained from an optimal linear predictor of
coefficient magnitudes of each subband, as the second part of the feature
set.

In all of the above methods, the calculated features are used to train a
classifier, which in turn is used to classify clean and stego images. Differ-
ent classifiers have been employed by different authors, Avcibas et al. use
a MMSE Linear predictor, whereas Farid et al. [25,26] use a Fisher linear
discriminant [15] and also a Support Vector Machine (SVM) [6] classifier.
SVM classifiers seem to have much better performance in terms of classifi-
cation accuracy compared to linear classifiers since they are able to classify
non-linearly separable features. All of the above authors have reported good
accuracy results in classifying images as clean or containing hidden mes-
sages after training with a classifier. Although, direct comparison might be
hard as is in many classification problems, due to the fact that the way
experiments are setup or conducted vary.

7. Conclusion

The past few years have seen an increasing interest in using images as
cover media for steganographic communication. There have been a multi-
tude of public domain tools, albeit many being ad-hoc and naive, available
for image based steganography. Given this fact, detection of covert commu-
nications that utilize images has become an important issue. In this tutorial
we have reviewed some fundamental notions related to steganography and
steganalysis.

Although we covered a number of security and capacity definitions, there
has been no work successfully formulating the relationship between the two
from the practical point of view. For example it is understood that as less
information is embedded in a cover-object the more secure the system will
be. But due to difficulties in statistical modelling of image features, the
security versus capacity trade-off has not been theoretically explored and
quantified within an analytical framework.
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We also reviewed a number of embedding algorithms starting with the
earliest algorithm proposed which was the LSB technique. At some point
LSB seemed to be unbreakable but as natural images were better under-
stood and newer models were created LSB gave way to new and more
powerful algorithms which try to minimize changes to image statistics. But
with further improvement in understanding of the statistical regularities
and redundancies of natural images, most of these algorithms have also
been successfully steganalysed.

In term of steganalysis, as discussed earlier, there are two approaches,
technique specific or universal steganalysis. Although finding attacks spe-
cific to an embedding method are helpful in coming up with better em-
bedding methods, their practical usage seems to be limited. Since given
an image we may not know the embedding technique being used, or even
we might be unfamiliar with the embedding technique. Thus universal ste-
ganalysis techniques seem to be the real solution since they should be able
to detect stego images even when a new embedding technique is being em-
ployed.
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Association rules are “if-then rules” with two measures which quantify
the support and confidence of the rule for a given data set. Having their
origin in market basket analysis, association rules are now one of the
most popular tools in data mining. This popularity is to a large part due
to the availability of efficient algorithms. The first and arguably most
influential algorithm for efficient association rule discovery is Apriori.

In the following we will review basic concepts of association rule dis-
covery including support, confidence, the apriori property, constraints
and parallel algorithms. The core consists of a review of the most im-
portant algorithms for association rule discovery. Some familiarity with
concepts like predicates, probability, expectation and random variables
is assumed.

1. Introduction

Large amounts of data have been collected routinely in the course of day-

to-day management in business, administration, banking, the delivery of

social and health services, environmental protection, security and in pol-

itics. Such data is primarily used for accounting and for management of

the customer base. Typically, management data sets are very large and

constantly growing and contain a large number of complex features. While

these data sets reflect properties of the managed subjects and relations, and

are thus potentially of some use to their owner, they often have relatively

low information density. One requires robust, simple and computationally

efficient tools to extract information from such data sets. The development

and understanding of such tools is the core business of data mining. These

tools are based on ideas from computer science, mathematics and statistics.

209
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The introduction of association rule mining in 1993 by Agrawal, Imielin-

ski and Swami [2] and, in particular, the development of an efficient

algorithm by Agrawal and Srikant [3] and by Mannila, Toivonen and

Verkamo [13] marked a shift of the focus in the young discipline of data

mining onto rules and data bases. Consequently, besides involving the tra-

ditional statistical and machine learning community, data mining now at-

tracted researchers with a variety of skills ranging from computer science,

mathematics, science, to business and administration. The urgent need for

computational tools to extract information from data bases and for man-

power to apply these tools has allowed a diverse community to settle in

this new area. The data analysis aspect of data mining is more exploratory

than in statistics and consequently, the mathematical roots of probability

are somewhat less prominent in data mining than in statistics. Computa-

tionally, however, data mining frequently requires the solution of large and

complex search and optimisation problems and it is here where mathemat-

ical methods can assist most. This is particularly the case for association

rule mining which requires searching large data bases for complex rules.

Mathematical modelling is required in order to generalise the original tech-

niques used in market basket analysis to a wide variety of applications.

Mathematical analysis provides insights into the performance of the algo-

rithms.

An association rule is an implication or if-then-rule which is supported

by data. The motivation given in [2] for the development of association

rules is market basket analysis which deals with the contents of point-of-

sale transactions of large retailers. A typical association rule resulting from

such a study could be “90 percent of all customers who buy bread and

butter also buy milk”. Insights into customer behaviour may also be ob-

tained through customer surveys, but the analysis of the transactional data

has the advantage of being much cheaper and covering all current cus-

tomers. Compared to customer surveys, the analysis of transactional data

does have some severe limitations, however. For example, point-of-sale data

typically does not contain any information about personal interests, age and

occupation of customers. Nonetheless, market basket analysis can provide

new insights into customer behaviour and has led to higher profits through

better customer relations, customer retention, better product placements,

product development and fraud detection.

Market basket analysis is not limited to retail shopping but has also

been applied in other business areas including
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• credit card transactions,

• telecommunication service purchases,

• banking services,

• insurance claims, and

• medical patient histories.

Association rule mining generalises market basket analysis and is used in

many other areas including genomics, text data analysis and Internet in-

trusion detection. For motivation we will in the following mostly focus on

retail market basket analysis.

When a customer passes through a point of sale, the contents of his

market basket are registered. This results in large collections of market

basket data which provide information about which items were sold and, in

particular, which combinations of items were sold. The small toy example in

the table of figure 1 shall illustrate this further. Each row corresponds to a

market basket id market basket content

1 orange juice, soda water

2 milk, orange juice, bread

3 orange juice, butter

4 orange juice, bread, soda water

5 bread

Fig. 1. Five grocery market baskets.

market basket or transaction containing popular retail items. An inspection

of the table reveals that:

• Four of the five baskets contain orange juice,

• two baskets contain soda water

• half of the baskets which contain orange juice also contain soda

• all the baskets which contain soda also contain juice

These rules are very simple as is typical for association rule mining. Sim-

ple rules are understandable and ultimately useful. In a large retail shop

there are usually more than 10,000 items on sale and the shop may service

thousands of customers every day. Thus the size of the collected data is

substantial and even the detection of simple rules like the ones above re-

quires sophisticated algorithms. The efficiency of the algorithms will depend

on the particular characteristics of the data sets. An important feature of
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many retail data sets is that an average market basket only contains a small

subset of all items available.

The simplest model for the customers assumes that the customers choose

products from the shelves in the shop at random. In this case the choice of

each product is independent from any other product. Consequently, asso-

ciation rule discovery will simply recover the likelihoods for any item to be

chosen. While it is important to compare the performance of other models

with this “null-hypothesis” one would usually find that shoppers do have

a more complex approach when they fill the shopping basket (or trolley).

They will buy breakfast items, lunch items, dinner items and snacks, party

drinks, and Sunday dinners. They will have preferences for cheap items, for

(particular) brand items, for high-quality, for freshness, low-fat, special diet

and environmentally safe items. Such goals and preferences of the shopper

will influence the choices but can not be directly observed. In some sense,

market basket analysis should provide information about how the shoppers

choose. In order to understand this a bit further consider the case of politi-

cians who vote according to party policy but where we will assume for the

moment that the party membership is unknown. Is it possible to see an

effect of the party membership in voting data? For a small but real illus-

trative example consider the US Congress voting records from 1984 [12],

see figure 2. The 16 columns of the displayed bit matrix correspond to the

16 votes and the 435 rows to the members of congress. We have simplified

the data slightly so that a matrix element is one (pixel set) in the case of

votes which contains “voted for”, “paired for” and “announced for” and the

matrix element is zero in all other cases. The left data matrix in figure 2

is the original data where only the rows and columns have been randomly

permuted to remove any information introduced through the way the data

was collected. The matrix on the right side is purely random such that each

entry is independent and only the total number of entries is maintained.

Can you see the difference between the two bit matrices? We found that for

most people, the difference between the two matrices is not obvious from

visual inspection alone.

Data mining aims to discover patterns in the left bit matrix and thus

differences between the two examples. In particular, we will find columns or

items which display similar voting patterns and we aim to discover rules re-

lating to the items which hold for a large proportion of members of congress.

We will see how many of these rules can be explained by underlying mech-

anisms (in this case party membership).

In this example the selection of what are rows and what columns is
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voting data random data
Fig. 2. 1984 US House of Representatives Votes, with 16 items voted on.

somewhat arbitrary. Instead of patterns regarding the items voted on one

might be interested in patterns relating the members of Congress. For ex-

ample one might be interested in statements like “if member x and member

y vote yes then member z votes yes as well. Statements like this may reveal

some of the interactions between the members of Congress. The duality of

observations and objects occurs in other areas of data mining as well and

illustrates that data size and data complexity are really two dual concepts

which can be interchanged in many cases. This is in particular exploited in

some newer association rule discovery algorithms which are based on formal

concept analysis [8].

By inspecting the data matrix of the voting example, one finds that the

items have received between 34 to 63.5 percent yes votes. Pairs of items

have received between 4 and 49 percent yes votes. The pairs with the most

yes votes (over 45 percent) are in the columns 2/6, 4/6, 13/15, 13/16 and

15/16. Some rules obtained for these pairs are: 92 percent of the yes votes

in column 2 are also yes votes in column 6, 86 percent of the yes votes in

column 4 are also yes votes in column 6 and, on the other side, 88 percent

of the votes in column 13 are also in column 15 and 89 percent of the yes

votes in column 16 are also yes votes in column 15. These figures suggest

combinations of items which could be further investigated in terms of causal
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relationships between the items. Only a careful statistical analysis may

provide some certainty on this. This and other issues concerning inference

belong to statistics and are beyond the scope of this tutorial which focusses

on computational issues.

2. Itemsets and Associations

In this section a formal mathematical model is derived to describe itemsets

and associations to provide a framework for the discussion of the apriori al-

gorithm. In order to apply ideas from market basket analysis to other areas

one needs a general description of market baskets which can equally describe

collections of medical services received by a patient during an episode of

care, subsequences of amino acid sequences of a protein, and collections or

words or concepts used on web pages. In this general description the items

are numbered and a market basket is represented by an indicator vector.

2.1. The datamodel

In this subsection a probabilistic model for the data is given along with

some simple model examples. For this, we consider the voting data example

again.

First, the items are enumerated as 0, . . . , d − 1. Often, enumeration

is done such that the more frequent items correspond to lower numbers

but this is not essential. Itemsets are then sets of integers between 0 and

d − 1. The itemsets are represented by bitvectors x ∈ X := {0, 1}d where

item j is present in the corresponding itemset iff the j-th bit is set in x.

Consider the “micromarket” with the items juice, bread, milk, cheese and

potatoes with item numbers 0, 1, 2, 3 and 4, respectively. The market basket

containing bread, milk and potatoes is then mapped onto the set {1, 2, 4}
and is represented by the bitvector (0, 1, 1, 0, 1). From the bitvector it is

clear which elements are in the market basket or itemset and which are

not.

The data is a sequence of itemsets which is represented as a bitmatrix

where each row corresponds to an itemset and the columns correspond to

the items. For the micromarket example a dataset containing the market

baskets {juice,bread, milk}, {potato} and {bread, potatoes} would be rep-

resented by the matrix




1 1 1 0 0

0 0 0 0 1

0 1 0 1 0



 .



June 5, 2007 19:42 WSPC/Lecture Notes Series: 9in x 6in chapter6

The Apriori Algorithm 215

In the congressional voting example mentioned in the previous section the

first few rows of matrix are

1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0

1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0

0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0

and they correspond to the following “itemsets” (or sets of yes-votes):

1 3 4 5 6 8 10 13 14

1 2 3 6 8 9 10 11 13 14

4 5 6 8 9 15

2 4 6 8 9 11 12 15

1 3 7 9 10 11 13 16.

It is assumed that the data matrix X ∈ {0, 1}n,d is random and thus

the elements x
(i)
j are binary random variables. One would in general have

to assume correlations between both rows and columns. The correlations

between the columns might relate to the type of shopping and customer,

e.g., young family with small kids, weekend shopping or shopping for a

specific dish. Correlations between the rows might relate to special offers of

the retailer, time of the day and week. In the following it will be assumed

that the rows are drawn independently from a population of market baskets.

Thus it is assumed that there is a probability distribution function p : X→
[0, 1] with

∑

x∈X

p(x) = 1

where X = {0, 1}d. The probability measure with distribution p is denoted

by P and one has P (A) =
∑

x∈A p(x).

The data can be represented as an empirical distribution with

pemp(x) =
1

n

n
∑

i=1

δ(x− x(i))

where δ(x) is the indicator function where δ(0) = 1 and δ(x) = 0 if

x 6= 0. (For simplicity the empty market basket is denoted by 0 instead

of (0, . . . , 0).) All the information derived from the data is stored in pemp

but some sort of “smoothing” is required if one would like to generalise

insights from the empirical distribution of one itemset collection to another
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to separate the noise from the signal. Association rule discovery has its own

form of smoothing as will be seen in the following.

The task of frequent itemset mining consists of finding itemsets which

occur frequently in market baskets. For this one recalls that the itemsets

are partially ordered with respect to inclusion (the subset relation) and we

write x ≤ y if the set with representation x is a subset of the set with

representation y or x = y. With this partial order one defines the support

of an itemset x to be

s(x) = P ({z | x ≤ z}) (1)

which is also called the anticummulative distribution function of the prob-

ability P . The support is a function s : X → [0, 1] and s(0) = 1. By

construction, the support is antimonotone, i.e., if x ≤ y then p(x) ≥ p(y).

This antimonotonicity is the basis for efficient algorithms to find all frequent

itemsets which are defined as itemsets for which s(x) ≥ σ0 > 0 for some

user defined σ0.

Equation (1) can be reformulated in terms of p(x) as

s(x) =
∑

z≥x

p(z). (2)

For given supports s(x), this is a linear system of equations which can be

solved recursively using s(e) = p(e) (where e = (1, . . . , 1) is the maximal

itemset) and

p(x) = s(x) −
∑

z>x

p(z).

It follows that the support function s(x) provides an alternative description

of the probability measure P which is equivalent to p. However, for many

examples the form of s(x) turns out to be simpler. In the cases of market

baskets it is highly unlikely, that market baskets contain large numbers of

items and so approximations with s(x) = 0 for x with a large number of

nonzero components will usually produce good approximations of the item-

set distribution p(x). This leads to an effective smoothing mechanism for

association rule discovery where the minimal support σ0 acts as a smooth-

ing parameter which in principle could be determined from a test data set

or with crossvalidation.

2.1.1. Example: The random shopper

In the simplest case all the bits (items) in x are chosen independently

with probability p0. We call this the case of the “random shopper” as it
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corresponds to a shopper who fills the market basket with random items.

The distribution is in this case

p(x) = p
|x|
0 (1− p0)

d−|x|

where |x| is the number of bits set in x and d is the total number of items

available, i.e., number of components of x. As any z ≥ x has at least all the

bits set which are set in x one gets for the support

s(x) = p
|x|
0 .

It follows that the frequent itemsets x are exactly the ones with few items,

in particular, where

|x| ≤ log(σ0)/ log(p0).

For example, if one is interested in finding itemsets which are supported by

one percent of the data records and if the probability of choosing any item

is p0 = 0.1 the frequent itemsets are the ones with at most two items. For

large shops one would typically have p0 much smaller. Note that if p0 < σ0

one would not get any frequent itemsets at all.

The random shopper is of course not a realistic model for shopping

and one would in particular not expect to draw useful conclusions from

the frequent itemsets. Basically, the random shopper is the market bas-

ket equivalent of noise. The above discussion, however, might be used to

guide the choice of σ0 to filter out the noise in market basket analysis. In

particular, one could choose

σ0 = min
|x|=1

s(x).

Note that in the random shopper case the rhs is just p0. In this case, all

the single items would be frequent.

A slight generalisation of the random shopper example above assumes

that the items are selected independently but with different probabilities

pj . In this case one gets

p(x) =

d
∏

j=1

p
xj

j (1− pj)
1−xj

and

s(x) =

d
∏

j=1

p
xj

j .
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Fig. 3. Supports for all the votes in the US congress data (split by party).

In examples one can often find that the pj , when sorted, are approximated

by Zipf ’s law, i.e,

pj =
α

j

for some constant α. It follows again that itemsets with few popular items

are most likely.

However, this type of structure is not really what is of interest in as-

sociation rule mining. To illustrate this consider again the case of the US

Congress voting data. In figure 3 the support for single itemsets are dis-

played for the case of the actual data matrix and for a random permutation

of all the matrix elements. The supports are between 0.32 and 0.62 for the

original data where for the randomly permuted case the supports are be-

tween 0.46 and 0.56. Note that these supports are computed from the data,

in theory, the permuted case should have constant supports somewhere

slightly below 0.5. More interesting than the variation of the supports of

single items is the case when 2 items are considered. Supports for the votes

displayed in figure 4. are of the form “V2 and Vx”. Note that “V2 and

V2” is included for reference, even though this itemset has only one item.

In the random data case where the vote for any pair {V2,Vx} (where Vx
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Fig. 4. Supports for pairs of votes in the US congress data (split by party).

is not V2) is the square of the vote for the single item V2 as predicted

by the “random shopper theory” above. One notes that some pairs have

significantly higher supports than the random ones and others significantly

lower supports. This type of behaviour is not captured by the “random

shopper” model above even if the case of variable supports for single items

are allowed. The following example attempts to model some this behaviour.

2.1.2. Example: Multiple shopper and item classes

Consider now the case of some simple structure. Assume that there are

two types of shoppers and two types of items. Assume that the items are

x = (x0, x1) where the vectors xi correspond to items of class i. In practice,

the type of items might have to be discovered as well. Consider that the

shoppers of type i have a probability πi of filling a market basket where here

i = 0, 1. Assume that it is not known to which type of shopper a market

basket belongs. Finally, assume that the difference between the two types

of shoppers relates to how likely they are to put items of the two types into

their market basket. Let pi,j denote the probability that shopper of type i

puts an item of type j into the market basket. In this case the probability
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distribution is

p(x) = π0 p
|x0|
00 p

|x1|
01 (1− p00)

d0−|x0|(1− p01)
d1−|x1|

+ π1 p
|x0|
10 p

|x1|
11 (1− p10)

d0−|x0|(1− p11)
d1−|x1|.

This is a mixture model with two components. Recovery of the parameters

from the data of mixture models uses the EM algorithm and is discussed

in detail in [14]. Note that π0 + π1 = 1.

For frequent itemset mining, however, the support function is considered

and similarly to the random shopper case can be shown to be:

s(x) = π0p
|x0|
00 p

|x1|
01 + π1p

|x0|
10 p

|x1|
11 .

Assume that the shopper of type i is unlikely to purchase items of the other

type. Thus p00 and p11 are much larger than p10 and p01. In this case the

frequent itemsets are going to be small (as before), moreover, one has either

x0 = 0 or x1 = 0, thus, frequent itemsets will only contain items of one

type. Thus in this case frequent itemset mining acts as a filter to retrieve

“pure” itemsets.

A simple application to the voting data could consider two types of

politicians. A question to further study would be how closely these two

types correspond with the party lines.

One can now consider generalisations of this case by including more

than two types, combining with different probabilities (Zipf’s law) for the

different items in the same class and even use itemtypes and customer types

which overlap. These generalisations lead to graphical models and Bayesian

nets [11,5]. The “association rule approach” in these cases distinguishes it-

self by using support functions, frequent itemsets and in particular, is based

on binary data. A statistical approach to this type of data is “discriminant

analysis” [7].

2.2. The size of itemsets

The size of the itemsets is a key factor in determining the performance of

association rule discovery algorithms. The size of an itemset is the equal to

the number of bits set, one has

|x| =
∑

i=1

xi

if the components of x are interpreted as integers 0 or 1 this is a real valued

random variable or function defined on X. The expectation of a general real
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random variable f is

E(f) =
∑

x∈X

p(x)f(x).

The expectation is monotone in the sense that f ≥ g ⇒ E(f) ≥ E(g) and

the expectation of a constant function is the function value. The variance

of the random variable corresponding to the function f is

var(f) = E
(

(f −E(f))2
)

.

For an arbitrary but fixed itemset x ∈ X consider the function

ax(z) =

d
∏

i=1

zxi

i .

Thus function takes values which are either 0 or 1 and ax(z) = 1 iff x ≤ z

as in this case all the components zi which occur to power 1 in ax(z)

are one. Note that ax(z) is a monotone function of z and antimonotone

function of x. Moreover, one has for the expectation E(ax) = s(x) and

variance var(ax) = s(x)(1 − s(x)). The term 1− s(x) is the support of the

complement of the itemset x. The values for the expectation and variance

are obtained directly from the definition of the expectation and the fact

that ax(z)2 = ax(z) (holds for any function with values 0 and 1).

Our main example of a random variable is the length of an itemset,

f(x) = |x| =
d

∑

j=1

xj .

The average length of itemsets is the expectation of f and one can see that

E(|x|) =
∑

|z|=1

s(z).

The variance of the length is also expressed in terms of the support as

var(|x|) =
∑

|x||z|=1

(s(x ∨ z)− s(x)s(z))

where x ∨ z corresponds to the union of the itemsets x and z.

With the expectation and using the Markov inequality one gets a simple

bound on the probability of large itemsets as

P ({x | |x| ≥ m}) ≤ E(|x|)/m.

The expected length is easily obtained directly from the data and this bound

gives an easy upper bound on probability of large itemsets. Of course one
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could just as easily get a histogram for the size of itemsets directly from

the data. Using the above equation one gets an estimate for the average

support of one-itemsets as E(|x|)/d.

Consider now the special example of a random shopper discussed pre-

viously. In this case one gets E(|x|) = dp0. The distribution of the length

is in this case binomial and one has:

P (|x| = r) =

(

d

r

)

pr
0 (1− p0)

d−r.

Moreover, for very large d and small p0 one gets a good approximation

using the Poisson distribution

p(|x| = r) ≈ 1

r!
e−λλr.

with λ = E(|x|).
The apriori algorithm which will be discussed in the following works

best when long itemsets are unlikely. Thus in order to choose a suitable

algorithm, it is important to check if this is the case, e.g., by using the

histogram for the length |x|.

2.3. The itemset lattice

The search for frequent itemsets benefits from a structured search space as

the itemsets form a lattice. This lattice is also intuitive and itemsets close

to 0 in the lattice are often the ones which are of most interest and lend

themselves to interpretation and further discussion.

As X consists of sets or bitvectors, one has a natural partial ordering

which is induced by the subset relation. In terms of the bitvectors one can

define this component-wise as

x ≤ y :⇔ xi ≤ yi.

Alternatively,

x ≤ y :⇔ (xi = 1⇒ yi = 1, i = 1, . . . , d) .

If xi = 1 and x ≤ y then it follows that yi = 1. Thus if the corresponding

itemset to x contains item i then the itemset corresponding to y has to

contain the same item. In other words, the itemset corresponding to x is a

subset of the one corresponding to y.

Subsets have at most the same number of elements as their supersets

and so if x ≤ y then |x| ≤ |y|.
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Bitvectors also allow a total order by interpreting it as an integer φ(x)

by

φ(x) =

d−1
∑

i=0

xi2
i.

Now as φ is a bijection it induces a total order on X defined as x ≺ y iff

φ(x) < φ(y). This is the colex order and the colex order extends the partial

order as x ≤ y ⇒ x ≺ y.

The partial order has a smallest element which consists of the empty set,

corresponding to the bitvector x = (0, . . . , 0) and a largest element which

is just the set of all items Zd, corresponding to the bitvector (1, . . . , 1).

Furthermore, for each pair x, y ∈ X there is a greatest lower bound and a

least upper bound. These are just

x ∨ y = z

where zi = max{xi, yi} for i = 0, . . . , d − 1 and similarly for x ∧ y. Conse-

quently, the partially ordered set X forms a Boolean lattice. We denote the

maximal and minimal elements of X by e and 0.

In general, partial order is defined by

Definition 1: A partially ordered set (X,≤) consists of a set X with a

binary relation ≤ such that for all x, x′, x′′ ∈ X:

• x ≤ x (reflexivity)

• If x ≤ x′ and x′ ≤ x then x = x′ (antisymmetry)

• If x ≤ x′ and x′ ≤ x′′ then x ≤ x′′ (transitivity)

A lattice is a partially ordered set with glb and lub:

Definition 2: A lattice (X,≤) is a partially ordered set such that for each

pair of elements of X there is greatest lower bound and a least upper bound.

We will call a lattice distributive if the distributive law holds:

x ∧ (x′ ∨ x′′) = (x ∧ x′) ∨ (x ∧ x′′).

where x∨y is the maximum of the two elements which contains ones when-

ever at least one of the two elements and x ∧ x′ contains ones where both

elements contain a one. Then we can define:

Definition 3: A lattice (X,≤) is a Boolean lattice if

(1) (X,≤) is distributive
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(2) It has a maximal element e and a minimal element 0 such that for all

x ∈ X:

0 ≤ x ≤ e.

(3) Each element x as a (unique) complement x′ such that x ∧ x′ = 0 and

x ∨ x′ = e.

The maximal and minimal elements 0 and e satisfy 0∨x = x and e∧x = x.

In algebra one considers the properties of the conjunctives ∨ and ∧ and a

set which has conjunctives which have the properties of a Boolean lattice

is called a Boolean algebra. We will now consider some of the properties of

Boolean algebras.

The smallest nontrivial elements of X are the atoms :

Definition 4: The set of atoms A of a lattice is defined by

A = {x ∈ X|x 6= 0 and if x′ ≤ x then x′ = x}.

The atoms generate the lattice, in particular, one has:

Lemma 5: Let X be a finite Boolean lattice. Then, for each x ∈ X one has

x =
∨

{z ∈ A(X) | z ≤ x}.

Proof: Let Ax := {z ∈ A(B)|z ≤ x}. Thus x is an upper bound for Ax,

i.e.,
∨

Ax ≤ x.

Now let y be any upper bound for Ax, i.e.,
∨

Ax ≤ y. We need to show

that x ≤ y.

Consider x ∧ y′. If this is 0 then from distributivity one gets x = (x ∧
y) ∨ (x ∧ y′) = x ∧ y ≤ y. Conversely, if it is not true that x ≤ y then

x ∧ y′ > 0. This happens if what we would like to show doesn’t hold.

In this case there is an atom z ≤ x ∧ y′ and it follows that z ∈ Ax. As

y is an upper bound we have y ≥ z and so 0 = y ∧ y′ ≥ x ∧ y′ which is

impossible as we assumed x ∧ y′ > 0. Thus it follows that x ≤ y.

The set of atoms associated with any element is unique, and the Boolean

lattice itself is isomorph to the powerset of the set of atoms. This is the key

structural theorem of Boolean lattices and is the reason why we can talk

about sets (itemsets) in general for association rule discovery.

Theorem 6: A finite Boolean algebra X is isomorphic to the power set

2A(X) of the set of atoms. The isomorphism is given by

η : x ∈ X 7→ {z ∈ A(X) | z ≤ x}
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{}

{bread} {coffee} {juice}{milk}

{bread, coffee} {milk, coffee}{milk, bread} {milk, juice} {bread. juice} {coffee, juice}

{milk, coffee, juice} {bread, coffee, juice} {milk, bread, coffee} {milk, bread, juice}

{milk, bread, coffee, juice}

Fig. 5. Lattice of breakfast itemsets.

0000

0110 1100

1011 11010111

1111

0100 1000

101010010011

00100001

0101

1110

Fig. 6. Lattice of bitvectors.

and the inverse is

η−1 : S 7→
∨

S.

In our case the atoms are the d basis vectors e1, . . . , ed and any element

of X can be represented as a set of basis vectors, in particular x =
∑d

i=1 ξiei

where ξi ∈ {0, 1}. For the proof of the above theorem and further informa-

tion on lattices and partially ordered sets see [6]. The significance of the

theorem lays in the fact that if X is an arbitrary Boolean lattice it is equiva-

lent to the powerset of atoms (which can be represented by bitvectors) and

so one can find association rules on any Boolean lattice which conceptually

generalises the association rule algorithms.

In figure 5 we show the lattice of patterns for a simple market basket

case which is just a power set. The corresponding lattice for the bitvectors

is in figure 6. We represent the lattice using an undirected graph where the

nodes are the elements of X and edges are introduced between any element

and its covering elements. A covering element of x ∈ X is an x′ ≥ x such
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Fig. 7. The first Boolean lattices.

that no element is “in between” x and x′, i.e., any element x′′ with x′′ ≥ x

and x′ ≥ x′′ is either equal to x or to x′.

In Figure 7 we display the graphs of the first few Boolean lattices.

We will graph specific lattices with (Hasse) diagrams [6] and later use the

positive plane R
2
+ to illustrate general aspects of the lattices.

In the following we may sometimes also refer to the elements x of X

as item sets, market baskets or even patterns depending on the context.

As the data set is a finite collection of elements of a lattice the closure of

this collection with respect to ∧ and ∨ (the inf and sup operators) in the

lattice forms again a boolean lattice. The powerset of the set of elements of

this lattice is then the sigma algebra which is fundamental to the measure

which is defined by the data.

The partial order in the set X allows us to introduce the cumulative

distribution function as the probability that we observe a bitvector less

than a given x ∈ X:

F (x) = P ({x′|x′ ≤ x}) .

By definition, the cumulative distribution function is monotone, i.e.

x ≤ x′ ⇒ F (x) ≤ F (x′).

A second cumulative distribution function is obtained from the dual order

as:

F ∂(x) = P ({x′|x′ ≤ x}) .

It turns out that this dual cumulative distribution function is the one which

is more useful in the discussion of association rules and frequent itemsets

as one has for the support s(x):

s(x) = F ∂(x).
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From this it follows directly that s(x) is antimonotone, i.e., that

x ≤ y ⇒ s(x) ≥ s(y).

The aim of frequent itemset mining is to find sets of itemsets, i.e., subsets

of X. In particular, one aims to determine

L = {x | s(x) ≥ σ0}.

From the antimonotonicity of s, it follows that

x ∈ L and x ≥ y ⇒ y ∈ L.

Such a set is called an down-set, decreasing set or order ideal. This algebraic

characterisation will turn out to be crucial for the development and analysis

of algorithms.

The set of downsets is a subset of the power set of X, however, there

are still a very large number of possible downsets. For example, in the case

of d = 6, the set X has 64 elements and the power set has 264 ≈ 1.81019

elements and the number of downsets is 7,828,354. The simplest downsets

are generated by one element and are

↓ x = {z | z ≤ x}

For example, one has

X =↓ e.

Consider the set of itemsets for which the (empirical) support as defined by

a data base D is nonzero. This is the set of all itemsets which are at least

contained in one data record. It is

L(0) =
⋃

x∈D

↓ x.

This formula can be simplified by considering only the maximal elements

Dmax in D:

L(0) =
⋃

x∈Dmax

↓ x.

Any general downset can be represented as a union of the “simple

downsets” generated by one element. It follows that for some set Z ⊂ X of

maximal elements one then has

L =
⋃

x∈Z

↓ x.
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The aim of frequent itemset mining is to determine Z for a given σ0. Al-

gorithms to determine such Z will be discussed in the next sections. Note

that L ⊂ L(0 and that the representation of L can be considerably more

complex than the representation of L(0). As illustration, consider the case

where e is in the data base. In this case L(0) = X =↓ e but e is usually not

going to be a frequent itemset.

2.4. General search for itemsets and search for rules

The previous subsections considered the search for itemsets which were

frequently occurring in a database. One might be interested in more general

characterisations, maybe searching for itemsets for which the income from

their sale amounted to some minimum figure or which combined only certain

items together. Thus one has a criterion or predicate a(x) which is true

for items of interest. It is assumed that the evaluation of this criterion is

expensive and requires reading the database. One would now like to find all

“interesting” items and would like to do this without having to consider all

possible itemsets. This search for interesting itemsets is considerably more

challenging. In some cases one finds, however, that the sets to be found

are again downsets and then similar algorithms can be employed. Often,

however, one has to resort to heuristics and approximate methods.

Once frequent itemsets are available one can find strong rules. These

rules are of the type “if itemset x is in a record than so is itemset y”. Such

a rule is written as x ⇒ y and is defined by a pair of itemsets (x, y) ∈ X
2.

The proportion of records for which this rule holds is called the confidence,

it is defined formally as

c(x⇒ y) =
s(x ∨ y)

s(x)
.

A strong rule is given by a rule x ⇒ y for which x ∨ y is frequent, i.e.,

s(x ∨ y) ≥ σ0 for a given σ0 > 0 and for which c(x ⇒ y) ≥ γ0 for a given

γ0 > 0. The constants σ0, γ0 are provided by the user and their careful

choice is crucial to the detection of sensible rules. From the definition it

follows that the confidence is the conditional anticumulative distribution,

i.e.,

c(ax ⇒ ay) = F δ(y|x)

where F δ(y|x) = F δ(y ∨ x)/F δ(x) is the conditional cumulative distribu-

tion function. Now there are several problems with strong association rules

which have been addressed in the literature:
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• The straight-forward interpretation of the rules may lead to wrong in-

ferences.

• The number of strong rules found can be very small.

• The number of strong rules can be very large.

• Most of the strong rules found can be inferred from domain knowledge

and do not lead to new insights.

• The strong rules found do not lend themselves to any actions and are

hard to interpret.

We will address various of these challenges in the following. At this stage

the association rule mining problem consists of the following:

Find all strong association rules in a given data set D.

A simple procedure would now visit each frequent itemset z and look at

all pairs z1, z2 such that z = z1 ∨ z2 and z1 ∧ z2 = 0 and consider all rules

az1
⇒ az2

. This procedure can be improved by taking into account that

Theorem 7: Let z = z1 ∨ z2 = z3 ∨ z4 and z1 ∧ z2 = z3 ∧ z4 = 0. Then if

az1
⇒ az2

is a strong association rule and z3 ≥ z1 then so is az3
⇒ az4

.

This is basically “the apriori property for the rules” and allows pruning

the tree of possible rules quite a lot. The theorem is again used as a nec-

essary condition. We start the algorithm by considering z = z1 ∨ z2 with

1-itemsets for z2 and looking at all strong rules. Then, if we consider a

2-itemset for z2 both subsets y < z2 need to be consequents of strong rules

in order for z2 to be a candidate of a consequent. By constructing the con-

sequents taking into account that all their nearest neighbours (their cover

in lattice terminology) need to be consequents as well. Due to the inter-

pretability problem one is mostly interested in small consequent itemsets

so that this is not really a big consideration. See [16] for efficient algorithms

for the direct search for association rules.

3. The Apriori Algorithm

The aim of association rule discovery is the derivation of if-then-rules based

on the itemsets x defined in the previous subsection. An example of such

a rule is “if a market basket contains orange juice then it also contains

bread”. In this section the Apriori algorithm to find all frequent itemsets

is discussed. The classical Apriori algorithm as suggested by Agrawal et al.

in [3] is one of the most important data mining algorithms. It uses a breadth
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first search approach, first finding all frequent 1-itemsets, and then discov-

ering 2-itemsets and continues by finding increasingly larger frequent item-

sets. The three subsections of this section consider first the problem of the

determination of the support of any itemset and the storage of the data

in memory, then the actual apriori algorithm and finally the estimation of

the size of candidate itemsets which allows the prediction of computational

time as the size of the candidates is a determining factor in the complexity

of the apriori algorithm.

3.1. Time complexity – Computing supports

The data is a sequence x(1), . . . , x(n) of binary vectors. We can thus repre-

sent the data as a n by d binary matrix. The number of nonzero elements

is
∑n

i=1 |x(i)|. This is approximated by the n times expected length, i.e.,

nE(|x|). So the proportion of nonzero elements is E(|x|)/d. This can be very

small, especially for the case of market baskets, where out of often more

than 10,000 items usually less than 100 items are purchased. Thus less

than one percent of all the items are nonzero. In this case it makes sense

to store the matrix in a sparse format. Here we will consider two ways to

store the matrix, either by rows or by columns. The matrix corresponding

to an earlier example is












1 1 0 0 0

1 0 1 1 0

1 0 0 0 1

1 1 0 1 0

0 0 0 0 1













.

First we discuss the horizontal organisation. A row is represented simply

by the indices of the nonzero elements. And the matrix is represented as a

tuple of rows. For example, the above matrix is represented as
[

(1, 2) (1, 3, 4) (1, 5) (1, 2, 4) (5)
]

In practice we also need pointers which tell us where the row starts if

contiguous locations are used in memory.

Now assume that we have any row x and a az and would like to find

out if x supports az, i.e., if z ≤ x. If both the vectors are represented in the

sparse format this means that we would like to find out if the indices of z

are a subset of the indices of x. There are several different ways to do this

and we will choose the one which uses an auxiliary bitvector v ∈ X (in full

format) which is initialised to zero. The proposed algorithm has 3 steps:



June 5, 2007 19:42 WSPC/Lecture Notes Series: 9in x 6in chapter6

The Apriori Algorithm 231

(1) Expand x into a bitvector v: v ← x.

(2) Extract the value of v for the elements of z, i.e., v[z]. If they are all

nonzero, i.e., if v[z] = e then z ≤ x.

(3) Set v to zero again, i.e., v ← 0.

We assume that the time per nonzero element for all the steps is the same

τ and we get for the time:

T = (2|x|+ |z|)τ.

In practice we will have to determine if az(x) holds for mk different

vectors z which have all the same length k. Rather than doing the above

algorithm mk times one can extract x once and one so gets the algorithm

(1) Extract x into v: v ← x.

(2) For all j = 1, . . . , mk check if v[z(j)] = e, i.e., if z(j) ≤ x.

(3) Set v to zero again, i.e., v ← 0.

With the same assumptions as above we get (|z(j)| = k) for the time:

T = (2|x|+ mkk)τ.

Finally, running this algorithm for all the rows x(i) and vectors z(j) of

different lengths, one gets the total time

T =
∑

k

(2

n
∑

i=1

|x(i)|+ mkkn)τ

and the expected time is

E(T ) =
∑

k

(2E(|x|) + mkk)nτ.

Note that the sum over k is for k between one and d but only the k for

which mk > 0 need to be considered. The complexity has two parts. The

first part is proportional to E(|x|)n which corresponds to the number of

data points times the average complexity of each data point. This part

thus encapsulates the data dependency. The second part is proportional to

mkkn where the factor mkk refers to the complexity of the search space

which has to be visited for each record n. For k = 1 we have m1 = 1 as

we need to consider all the components. Thus the second part is larger

than dnτ , in fact, we would probably have to consider all the pairs so that

it would be larger than d2nτ which is much larger than the first part as



June 5, 2007 19:42 WSPC/Lecture Notes Series: 9in x 6in chapter6

232 M. Hegland

2E(|x|) ≤ 2d. Thus the major cost is due to the search through the possible

patterns and one typically has a good approximation

E(T ) ≈
∑

k

mkknτ.

An alternative is based on the vertical organisation where the binary

matrix (or Boolean relational table) is stored column-wise. This may require

slightly less storage as the row wise storage as we only needs pointers to

each column and one typically has more rows than columns. In this vertical

storage scheme the matrix considered earlier would be represented as
[

(1, 2, 3, 4) (1, 4) (2) (2, 4) (3, 5)
]

The storage savings in the vertical format however, are offset by extra

storage costs for an auxiliary vector with n elements.

For any az the algorithm considers only the columns for which the com-

ponents zj are one. The algorithm determines the intersection (or elemen-

twise product) of all the columns j with zj = 1. This is done by using the

auxiliary array v which holds the current intersection. We initially set it

to the first column j with zj = 1, later extract all the values at the points

defined by the nonzero elements for the next column j ′ for which zj′ = 1,

then zero the original ones in v and finally set the extracted values into the

v. More concisely, we have the algorithm, where xj stands for the whole

column j in the data matrix.

(1) Get j such that zj = 1, mark as visited

(2) Extract column xj into v: v ← xj

(3) Repeat until no nonzero elements in z unvisited:

(a) Get unvisited j such that zj = 1, mark as visited

(b) Extract elements of v corresponding to xj , i.e., w ← v[xj ]

(c) Set v to zero, v ← 0

(d) Set v to w, v ← w

(4) Get the support s(az) = |w|

So we access v three times for each column, once for the extraction of

elements, once for setting it to zero and once for resetting the elements.

Thus for the determination of the support of z in the data base we have

the time complexity of

T = 3τ

d
∑

j=1

n
∑

i=1

x
(i)
j zj .
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A more careful analysis shows that this is actually an upper bound for the

complexity. Now this is done for mk arrays z(s,k) of size k and for all k.

Thus we get the total time for the determination of the support of all az

to be

T = 3τ
∑

k

mk
∑

s=1

d
∑

j=1

n
∑

i=1

x
(i)
j z

(s,k)
j .

We can get a simple upper bound for this using x
(i)
j ≤ 1 as

T ≤ 3
∑

k

mkknτ

because
∑d

j=1 z
(s,k)
j = k. This is roughly 3 times what we got for the pre-

vious algorithm. However, the x
(i)
j are random with an expectation E(x

(i)
j )

which is typically much less than one and have an average expected length

of E(|x|)/d. If we introduce this into the equation for T we get the approx-

imation

E(T ) ≈ 3E(|x|)
d

∑

k

mkknτ

which can be substantially smaller than the time for the previous algorithm.

Finally, we should point out that there are many other possible al-

gorithms and other possible data formats. Practical experience and more

careful analysis shows that one method may be more suitable for one data

set where the other is better for another data set. Thus one carefully has

to consider the specifics of a data set. Another consideration is also the size

k and number mk of the z considered. It is clear from the above that it is

essential to carefully choose the “candidates” az for which the support will

be determined. This will further be discussed in the next sections. There is

one term which occurred in both algorithms above and which characterises

the complexity of the search through multiple levels of az, it is:

C =

∞
∑

k=1

mkk.

We will use this constant later in the discussion of the efficiency of the

search procedures.

3.2. The algorithm

Some principles of the apriori algorithm are suggested in [2]. In particu-

lar, the authors suggest a breadth-first search algorithm and utilise the
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L0
L1
L2

L3
L4

Fig. 8. Level sets of Boolean lattices.

Algorithm 1 Apriori

C1 = A(X) is the set of all one-itemsets, k = 1

while Ck 6= ∅ do

scan database to determine support of all ay with y ∈ Ck

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.

end while

apriori principle to avoid unnecessary processing. However, the problem

with this early algorithm is that it generates candidate itemsets for each

record and also cannot make use of the vertical data organisation. Conse-

quently, two groups of authors suggested at the same conference a new and

faster algorithm which determines candidate itemsets before each data base

scan [3,13]. This approach has substantially improved performance and is

capable of utilising the vertical data organisation. We will discuss this al-

gorithm using the currently accepted term frequent itemsets. (This was in

the earlier literature called “large itemsets” or “covering itemsets”.)

The apriori algorithm visits the lattice of itemsets in a level-wise fashion,

see Figure 8 and Algorithm 1. Thus it is a breadth-first-search or BFS

procedure. At each level the data base is scanned to determine the support

of items in the candidate itemset Ck. Recall from the last section that

the major determining parameter for the complexity of the algorithm is

C =
∑

k mkk where mk = |Ck|.
It is often pointed out that much of the time is spent in dealing with

pairs of items. We know that m1 = d as one needs to consider all single

items. Furthermore, one would not have any items which alone are not

frequent and so one has m2 = d(d − 1)/2. Thus we get the lower bound

for C:

C ≤ m1 + 2m2 = d2.
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As one sees in practice that this is a large portion of the total computations

one has a good approximation C ≈ d2. Including also the dependence on

the data size we get for the time complexity of apriori:

T = O(d2n).

Thus we have scalability in the data size but quadratic dependence on the

dimension or number of attributes.

Consider the first (row-wise) storage where T ≈ d2nτ . If we have

d = 10, 000 items and n = 1, 000, 000 data records and the speed of the

computations is such that τ = 1ns the apriori algorithm would require 105

seconds which is around 30 hours, more than one day. Thus the time spent

for the algorithm is clearly considerable.

In case of the second (column-wise) storage scheme we have T ≈
3E(|x|)dnτ . Note that in this case for fixed size of the market baskets the

complexity is now

T = O(dn).

If we take the same data set as before and we assume that the average

market basket contains 100 items (E(|x|) = 100) then the apriori algorithm

would require only 300 seconds or five minutes, clearly a big improvement

over the row-wise algorithm.

3.3. Determination and size of the candidate itemsets

The computational complexity of the apriori algorithm is dominated by

data scanning, i.e., evaluation of az(x) for data records x. We found earlier

that the complexity can be described by the constant C =
∑

k mkk. As mk

is the number of k itemsets, i.e., bitvectors where exactly k bits are one we

get mk ≤
(

m
k

)

. On the other hand the apriori algorithm will find the set Lk

of the actual frequent itemsets, thus Lk ⊂ Ck and so |Lk| ≤ mk. Thus one

gets for the constant C the bounds

∑

k

k|Lk| ≤ C =
∑

k

mkk ≤
d

∑

k=0

(

d

k

)

k.

The upper bound is hopeless for any large size d and we need to get better

bounds. This depends very much on how the candidate itemsets Ck are

chosen. We choose C1 to be the set of all 1-itemsets, and C2 to be the set

of all 2-itemsets so that we get m1 = 1 and m2 = d(d− 1)/2.
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The apriori algorithm determines alternatively Ck and Lk such that

successively the following chain of sets is generated:

C1 = L1 → C2 → L2 → C3 → L3 → C4 → · · ·

How should we now choose the Ck? We know, that the sequence Lk satisfies

the apriori property, which can be reformulated as

Definition 8: If y is a frequent k-itemset (i.e., y ∈ Lk) and if z ≤ y then

z is a frequent |z|-itemset, i.e., z ∈ L|z|.

Thus in extending a sequence L1, L2, . . . , Lk by a Ck+1 we can choose the

candidate itemset such that the extended sequence still satisfies the apriori

property. This still leaves a lot of freedom to choose the candidate itemset.

In particular, the empty set would always be admissible. We need to find

a set which contains Lk+1. The apriori algorithm chooses the largest set

Ck+1 which satisfies the apriori condition. But is this really necessary? It

is if we can find a data set for which the extended sequence is the set of

frequent itemsets. This is shown in the next proposition:

Proposition 9: Let L1, . . . , Lm be any sequence of sets of k-itemsets which

satisfies the apriori condition. Then there exists a dataset D and a σ > 0

such that the Lk are frequent itemsets for this dataset with minimal support

σ.

Proof: Set x(i) ∈ ⋃

k Lk, i = 1, . . . , n to be sequence of all maximal item-

sets, i.e., for any z ∈
⋃

k Lk there is an x(i) such that z ≤ x(i) and x(i) 6≤ x(j)

for i 6= j. Choose σ = 1/n. Then the Lk are the sets of frequent itemsets

for this data set.

For any collection Lk there might be other data sets as well, the one chosen

above is the minimal one. The sequence of the Ck is now characterised by:

(1) C1 = L1

(2) If y ∈ Ck and z ≤ y then z ∈ Ck′ where k′ = |z|.

In this case we will say that the sequence Ck satisfies the apriori condition.

It turns out that this characterisation is strong enough to get good upper

bounds for the size of mk = |Ck|.
However, before we go any further in the study of bounds for |Ck | we

provide a construction of a sequence Ck which satisfies the apriori condi-

tion. A first method uses Lk to construct Ck+1 which it chooses to be the
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maximal set such that the sequence L1, . . . , Lk, Ck+1 satisfies the apriori

property. One can see by induction that then the sequence C1, . . . , Ck+1

will also satisfy the apriori property. A more general approach constructs

Ck+1, . . . , Ck+p such that L1, . . . , Lk,Ck+1, . . . , Ck+p satisfies the apriori

property. As p increases the granularity gets larger and this method may

work well for larger itemsets. However, choosing larger p also amounts to

larger Ck and thus some overhead. We will only discuss the case of p = 1

here.

The generation of Ck+1 is done in two steps. First a slightly larger set is

constructed and then all the elements which break the apriori property are

removed. For the first step the join operation is used. To explain join let the

elements of L1 (the atoms) be enumerated as e1, . . . , ed. Any itemset can

then be constructed as join of these atoms. We denote a general itemset by

e(j1, . . . , jk) = ej1 ∨ · · · ∨ ejk

where j1 < j2 < · · · < jk . The join of any k-itemset with itself is then

defined as

Lk on Lk := {e(j1, . . . , jk+1) | e(j1, . . . , jk) ∈ Lk,

e(j1, . . . , jk−1, jk+1) ∈ Lk}.
Thus Lk on Lk is the set of all k + 1 itemsets for which 2 subsets with

k items each are frequent. As this condition also holds for all elements in

Ck+1 one has Ck+1 ⊂ Lk on Lk. The Ck+1 is then obtained by removing

elements which contain infrequent subsets.

For example, if (1, 0, 1, 0, 0) ∈ L2 and (0, 1, 1, 0, 0) ∈ L2 then

(1, 1, 1, 0, 0) ∈ L2 on L2. If, in addition, (1, 1, 0, 0, 0) ∈ L2 then (1, 1, 1, 0, 0) ∈
C3.

Having developed a construction for Ck we can now determine the

bounds for the size of the candidate itemsets based purely on combinatorial

considerations. The main tool for our discussion is the Kruskal-Katona the-

orem. The proof of this theorem and much of the discussion follows closely

the exposition in Chapter 5 of [4]. The bounds developed in this way have

first been developed in [9].

We will denote the set of all possible k-itemsets or bitvectors with ex-

actly k bits as Ik. Subsets of this set are sometimes also called hypergraphs

in the literature. The set of candidate itemsets Ck ⊂ Ik.

Given a set of k-itemsets Ck the lower shadow of Ck is the set of all

k − 1 subsets of the elements of Ck :

∂(Ck) := {y ∈ Ik−1 | y < z for some z ∈ Ck}.
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Table 1. All bitvectors with two bits out of five set and their integer.

(0,0,0,1,1) 3
(0,0,1,0,1) 5
(0,0,1,1,0) 6
(0,1,0,0,1) 9
(0,1,0,1,0) 10
(0,1,1,0,0) 12
(1,0,0,0,1) 17
(1,0,0,1,0) 18
(1,0,1,0,0) 20
(1,1,0,0,0) 24

This is the set of bitvectors which have k− 1 bits set at places where some

z ∈ Ck has them set. The shadow ∂Ck can be smaller or larger than the

Ck. In general, one has for the size |∂Ck| ≥ k independent of the size of Ck.

So, for example, if k = 20 then |∂Ck| ≥ 20 even if |Ck | = 1. (In this case we

actually have |∂Ck| = 20.) For example, we have ∂C1 = ∅, and |∂C2| ≤ d.

It follows now that the sequence of sets of itemsets Ck satisfies the

apriori condition iff

∂(Ck) ⊂ Ck−1.

The Kruskal-Katona Theorem provides an estimate of the size of the

shadow.

First, recall the mapping φ : X→ N, defined by:

φ(x) =

d−1
∑

i=0

2ixi ,

and the induced order

y ≺ z :⇔ φ(y) < φ(z)

which is the colex (or colexicographic) order. In this order the itemset

{3, 5, 6, 9} ≺ {3, 4, 7, 9} as the largest items determine the order. (In the

lexicographic ordering the order of these two sets would be reversed.)

Let [m] := {0, . . . , m− 1} and [m](k) be the set of all k-itemsets where

k bits are set in the first m positions and all other bits can be either 0 or 1.

In the colex order any z where bits m (and beyond) are set are larger than

any of the elements in [m](k). Thus [m]k is just the set of the first
(

m−1
k

)

bitvectors with k bits set.

We will now construct the sequence of the first m bitvectors for any m.

This corresponds to the first numbers, which, in the binary representation

have m ones set. Consider, for example the case of d = 5 and k = 2. For this
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case all the bitvectors are in table 1. (Printed with the lowest significant

bit on the right hand side for legibility.)

As before, we denote by ej the j − th atom and by e(j1, . . . , jk) the

bitvector with bits j1, . . . , jk set to one. Furthermore, we introduce the

element-wise join of a bitvector and a set C of bitvectors as:

C ∨ y := {z ∨ y | z ∈ C}.

For 0 ≤ s ≤ ms < ms+1 < · · · < mk we introduce the following set of

k-itemsets:

B(k)(mk, . . . , ms) :=

k
⋃

j=s

(

[mj ]
(j) ∨ e(mj+1, . . . , mk)

)

⊂ Ik.

As only term j does not contain itemsets with item mj (all the others

do) the terms are pairwise disjoint and so the union contains

|B(k)(mk, . . . , ms)| = b(k)(mk, . . . , ms) :=

k
∑

j=s

(

mj

j

)

k-itemsets. This set contains the first (in colex order) bitvectors with k bits

set. By splitting off the last term in the union one then sees:

B(k)(mk, . . . , ms) =
(

B(k−1)(mk−1, . . . , ms) ∨ emk

)

∪ [mk](k) (3)

and consequently

b(k)(mk, . . . , ms) = b(k−1)(mk−1, . . . , ms) + b(k)(mk).

Consider the example of table 1 of all bitvectors up to (1, 0, 0, 1, 0).

There are 8 bitvectors which come earlier in the colex order. The highest

bit set for the largest element is bit 5. As we consider all smaller elements

we need to have all two-itemsets where the 2 bits are distributed between

positions 1 to 4 and there are
(

4
2

)

= 6 such bitvectors. The other cases have

the top bit fixed at position 5 and the other bit is either on position 1 or

two thus there are
(

2
1

)

= 2 bitvectors for which the top bit is fixed. Thus

we get a total of

(

4

2

)

+

(

2

1

)

= 8

bitvectors up to (and including) bitvector (1, 0, 0, 1, 0) for which 2 bits are

set. This construction is generalised in the following.
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In the following we will show that b(k)(mk, . . . , ms) provides a unique

representation for the integers. We will make frequent use of the identity:

(

t + 1

r

)

− 1 =

r
∑

l=1

(

t− r + l

l

)

. (4)

Lemma 10: For every m, k ∈ N there are numbers ms < · · · < mk such

that

m =

k
∑

j=s

(

mj

j

)

(5)

and the mj are uniquely determined by m.

Proof: The proof is by induction over m. In the case of m = 1 one sees

immediately that there can only be one term in the sum of equation (5),

thus s = k and the only choice is mk = k.

Now assume that equation (5) is true for some m′ = m − 1. We show

uniqueness for m. We only need to show that mk is uniquely determined

as the uniqueness of the other mj follows from the induction hypothesis

applied to m′ = m−m−
(

mk

k

)

.

Assume a decomposition of the form (5) is given. Using equation (4)

one gets:

m =

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · ·+
(

ms

s

)

≤
(

mk

k

)

+

(

mk − 1

k − 1

)

+ · · ·+
(

mk − k + 1

1

)

=

(

mk + 1

k

)

− 1

as mk−1 ≤ mk − 1 etc. Thus we get
(

mk

k

)

≤ m ≤
(

mk + 1

k

)

− 1.

With other words, mk is the largest integer such that
(

mk

k

)

≤ m. This

provides a unique characterisation of mk which proves uniqueness.

Assume that the mj be constructed according to the method outlined

in the first part of this proof. One can check that equation (5) holds for

these mj using the characterisation.

What remains to be shown is mj+1 > mj and using inductions, it is

enough to show that mk−1 < mk. If, on the contrary, this does not hold
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and mk−1 ≥ mk, then one gets from (4):

m ≥
(

mk

k

)

+

(

mk−1

k − 1

)

≥
(

mk

k

)

+

(

mk

k − 1

)

=

(

mk

k

)

+

(

mk − 1

k − 1

)

+ · · ·+
(

mk − k + 1

1

)

+ 1

≥
(

mk

k

)

+

(

mk−1

k − 1

)

+ · · ·+
(

ms

s

)

+ 1 by induction hyp.

= m + 1

which is not possible.

Let N (k) be the set of all k-itemsets of integers. It turns out that the

B(k) occur as natural subsets of N (k):

Theorem 11: The set B(k)(mk, . . . , ms) consists of the first m =
∑k

j=s

(

mj

j

)

itemsets of N (k) (in colex order).

Proof: The proof is by induction over k − s. If k = s and thus m =
(

mk

k

)

then the first elements of N (k) are just [mk](k). If k > s then the

first
(

mk

k

)

elements are still [mk](k). The remaining m −
(

mk

k

)

elements all

contain bit mk. By the induction hypothesis the first bk−1(mk−1, . . . , ms)

elements containing bit mk are Bk−1(mk−1, . . . , ms) ∨ emk
and the rest

follows from (3).

The shadow of the first k-itemsets B(k)(mk, . . . , ms) are the first k− 1-

itemsets, or more precisely:

Lemma 12:

∂B(k)(mk, . . . , ms) = B(k−1)(mk, . . . , ms).

Proof: First we observe that in the case of s = k the shadow is simply set

of all k − 1 itemsets:

∂[mk]k = [mk](k−1).

This can be used as anchor for the induction over k − s. As was shown

earlier, one has in general:

B(k)(mk, . . . , ms) = [mk]k ∪
(

B(k−1)(mk−1, . . . , ms) ∨ emk

)
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and, as the shadow is additive, as

∂B(k)(mk, . . . , ms) = [mk](k−1) ∪
(

B(k−2)(mk−1, . . . , ms) ∨ emk

)

= B(k−1)(mk, . . . , ms).

Note that B(k−1)(mk−1, . . . , ms) ⊂ [ml]
(k−1).

The shadow is important for the apriori property and we would thus

like to determine the shadow, or at least its size for more arbitrary k-

itemsets as they occur in the apriori algorithm. Getting bounds is feasible

but one requires special technology to do this. This is going to be developed

further in the sequel. We would like to reduce the case of general sets of

k-itemsets to the case of the previous lemma, where we know the shadow.

So we would like to find a mapping which maps the set of k-itemsets to the

first k itemsets in colex order without changing the size of the shadow. We

will see that this can almost be done in the following. The way to move the

itemsets to earlier ones (or to “compress” them) is done by moving later

bits to earlier positions.

So we try to get the k itemsets close to B(k)(mk, . . . , ms) in some sense,

so that the size of the shadow can be estimated. In order to simplify no-

tation we will introduce z + ej for z ∨ ej when ej 6≤ z and the reverse

operation (removing the j-th bit) by z− ej when ej ≤ z. Now we introduce

compression of a bitvector as

Rij(z) =

{

z − ej + ei if ei 6≤ z and ej ≤ z

z else .

Thus we simply move the bit in position j to position i if there is a bit in

position j and position i is empty. If not, then we don’t do anything. So we

did not change the number of bits set. Also, if i < j then we move the bit

to an earlier position so that Rij(z) ≤ z. For our earlier example, when we

number the bits from the right, starting with 0 we get R1,3((0, 1, 1, 0, 0)) =

(0, 0, 1, 1, 0) and R31((0, 0, 0, 1, 1)) = (0, 0, 0, 1, 1). This is a “compression”

as it moves a collection of k-itemsets closer together and closer to the vector

z = 0 in terms of the colex order.

The mapping Rij is not injective as

Rij(z) = Rij(y)

when y = Rij(z) and this is the only case. Now consider for any set C of

bitvectors the set R−1
ij (C) ∩ C. These are those elements of C which stay
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in C when compressed by Rij . The compression operator for bitsets is now

defined as

R̃i,j(C) = Rij(C) ∪ (C ∩ R−1
ij (C)).

Thus the points which stay in C under Rij are retained and the points

which are mapped outside C are added. Note that by this we have avoided

the problem with the non-injectivity as only points which stay in C can

be mapped onto each other. The size of the compressed set is thus the

same. However, the elements in the first part have been mapped to earlier

elements in the colex order. In our earlier example, for i, j = 1, 3 we get

C = {(0, 0, 0, 1, 1), (0, 1, 1, 0, 0), (1, 1, 0, 0, 0), (0, 1, 0, 1, 0)}
we get

R̃i,j(C) = {(0, 0, 0, 1, 1), (0, 0, 1, 1, 0), (1, 1, 0, 0, 0), (0, 1, 0, 1, 0)}.
Corresponding to this compression of sets we introduce a mapping R̃i,j

(which depends on C) by R̃i,j(y) = y if Ri,j(y) ∈ C and R̃i,j(y) = Ri,j(y)

else. In our example this maps corresponding elements in the sets onto each

other. In preparation, for the next lemma we need the simple little result:

Lemma 13: Let C be any set of k itemsets and z ∈ C, ej ≤ z, ei 6≤ z. Then

z − ej + ei ∈ R̃i,j(C).

Proof: There are two cases to consider:

(1) Either z − ej + ei 6∈ C in which case z − ej + ei = R̃i,j(z).

(2) Or z− ej + ei ∈ C and as z− ej + ei = R̃i,j(z− ej + ei) one gets again

z − ej + ei ∈ R̃i,j(C).

The next result shows that in terms of the shadow, the “compression”

R̃i,j really is a compression as the shadow of a compressed set can never

be larger than the shadow of the original set. We suggest therefor to call it

compression lemma.

Lemma 14: Let C be a set of k itemsets. Then one has

∂R̃i,j(C) ⊂ R̃i,j(∂C).

Proof: Let x ∈ ∂R̃i,j(C). We need to show that

x ∈ R̃i,j(∂C)

and we will enumerate all possible cases.



June 5, 2007 19:42 WSPC/Lecture Notes Series: 9in x 6in chapter6

244 M. Hegland

First notice that there exists a ek 6≤ x such that

x + ek ∈ R̃i,j(C)

so there is an y ∈ C such that

x + ek = R̃i,j(y).

(1) In the first two cases R̃i,j(y) 6= y and so one has (by the previous

lemma)

x + ek = y − ej + ei, for some y ∈ C, ej ≤ y, ei 6≤ y.

(a) First consider i 6= k. Then there is a bitvector z such that y = z+ek

and z ∈ ∂C. Thus we get

x = z − ej + ei ∈ R̃i,j(∂C)

as z ∈ ∂C and with lemma 13.

(b) Now consider i = k. In this case x + ei = y − ej + ei and so

x = y − ej ∈ ∂C. As ej 6≤ x one gets

x = R̃i,j(x) ∈ R̃i,j(∂C).

(2) In the remaining cases R̃i,j(y) = y, i.e., x + ek = R̃i,j(x + ek). Thus

x+ ek = y ∈ C and so x ∈ ∂C. Note that R̃i,j actually depends on ∂C!

(a) In the case where ej 6≤ x one has x = R̃i,j(x) ∈ R̃i,j(∂C).

(b) In the other case ej ≤ x. We will show that x = R̃i,j(x) and, as

x ∈ ∂C one gets x ∈ R̃i,j(∂C).

i. If k 6= i then one can only have x + ek = R̃i,j(x + ek) if either

ei ≤ x, in which case x = R̃i,j(x), or x−ej +ei +ek ∈ C in which

case x− ej + ei ∈ ∂C and so x = R̃i,j(x).

ii. Finally, if k = i, then x + ei ∈ C and so x − ej + ei ∈ ∂C thus

x = R̃i,j(x).

The operator R̃i,j maps sets of k itemsets onto sets of k itemsets and

does not change the number of elements in a set of k itemsets. One now

says that a set of k itemsets C is compressed if R̃i,j(C) = C for all i < j.

This means that for any z ∈ C one has again Rij(z) ∈ C. Now we can move

to prove the key theorem:

Theorem 15: Let k ≥ 1, A ⊂ N (k), s ≤ ms < · · · < mk and

|A| ≥ b(k)(mk, . . . , ms)
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then

|∂A| ≥ b(k−1)(mk, . . . , ms).

Proof: First we note that the shadow is a monotone function of the un-

derlying set, i.e., if A1 ⊂ A2 then ∂A1 ⊂ ∂A2. From this it follows that it

is enough to show that the bound holds for |A| = b(k)(mk, . . . , ms).

Furthermore, it is sufficient to show this bound for compressed A as

compression at most reduces the size of the shadow and we are looking for

a lower bound. Thus we will assume A to be compressed in the following.

The proof uses double induction over k and m = |A|. First we show

that the theorem holds for the cases of k = 1 for any m and m = 1 for any

k. In the induction step we show that if the theorem holds for 1, . . . , k − 1

and any m and for 1, . . . , m − 1 and k then it also holds for k and m, see

figure 9.
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Fig. 9. Double induction.

In the case of k = 1 (as A is compressed) one has:

A = B(1)(m) = {e0, . . . , em−1}
and so

∂A = ∂B(1)(m) = {0}
hence |∂A| = 1 = b(0)(m).

In the case of m = |A| = 1 one has:

A = B(k)(k) = {e(0, . . . , k − 1)}
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and so:

∂A = ∂B(k)(k) = [k](k−1)

hence |∂A| = k = b(k−1)(k).

The key step of the proof is a partition of A into bitvectors with bit 0 set

and such for which bit 0 is not set: A = A0∪A1 where A0 = {x ∈ A|x0 = 0}
and A1 = {x ∈ A|x0 = 1}.

(1) If x ∈ ∂A0 then x + ej ∈ A0 for some j > 0. As A is compressed it

must also contain x + e0 = R0j(x + ej) ∈ A1 and so x ∈ A1 − e0 thus

|∂A0| ≤ |A1 − e0| = |A1|.

(2) A special case is A = B(k)(mk, . . . , ms) where one has |A0| = b(k)(mk−
1, . . . , ms − 1) and |A1| = b(k−1)(mk − 1, . . . , ms − 1) and thus

m = b(k)(mk, . . . , ms) = b(k)(mk − 1, . . . , ms − 1)

+ b(k−1)(mk − 1, . . . , ms − 1)

(3) Now partition ∂A1 into 2 parts:

∂A1 = (A1 − e0) ∪ (∂(A1 − e0) + e0).

It follows from previous inequalities and the induction hypothesis that

|∂A1| = |A1−e0|+ |∂(A1−e0)+e0| = |A1|+ |∂(A1−e0)| ≥ b(k−1)(mk−
1, . . . , ms − 1) + b(k−2)(mk − 1, . . . , ms − 1) = b(k−1)(mk, . . . , ms) and

hence

|∂A| ≥ |∂A1| ≥ b(k−1)(mk, . . . , ms)

This theorem is the tool to derive the bounds for the size of future candidate

itemsets based on a current itemset and the apriori principle.

Theorem 16: Let the sequence Ck satisfy the apriori property and let

|Ck| = b(k)(mk, . . . , mr).

Then

|Ck+p| ≤ b(k+p)(mk, . . . , mr)

for all p ≤ r.

Proof: The reason for the condition on p is that the shadows are well

defined.
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First, we choose r such that mr ≤ r + p− 1, mr+1 ≤ r + 1 + p− 1, . . .,

ms−1 ≤ s− 1 + p − 1 and ms ≥ s + p− 1. Note that s = r and s = k + 1

may be possible.

Now we get an upper bound for the size |Ck|:

|Ck| = b(k)(mk, . . . , mr)

≤ b(k)(mk, . . . , ms) +

s−1
∑

j=1

(

j + p− 1

j

)

= b(k)(mk, . . . , ms) +

(

s + p− 1

s− 1

)

− 1

according to a previous lemma.

If the theorem does not hold then |Ck+p| > b(k+p)(mj , . . . , mr) and thus

|Ck+p| ≥ b(k+p)(mj , . . . , mr) + 1

≥ b(k+p)(mk, . . . , ms) +

(

s + p− 1

s + p− 1

)

= b(k+p)(mk, . . . , ms, s + p− 1).

Here we can apply the previous theorem to get a lower bound for Ck:

|Ck| ≥ b(k)(mk, . . . , ms, s + p− 1).

This, however is contradicting the higher upper bound we got previously

and so we have to have |Ck+p| ≤ b(k+p)(mj , . . . , mr).

As a simple consequence one also gets tightness:

Corollary 17: For any m and k there exists a Ck with |Ck| = m =

b(k+p)(mk, . . . , ms+1). such that

|Ck+p| = b(k+p)(mk, . . . , ms+1).

Proof: The Ck consists of the first m k-itemsets in the colexicographic

ordering.

In practice one would know not only the size but also the contents of any

Ck and from that one can get a much better bound than the one provided

by the theory. A consequence of the theorem is that for Lk with |Lk| ≤
(

mk

k

)

one has |Ck+p| ≤
(

mk

k+p

)

. In particular, one has Ck+p = ∅ for k > mp − p.
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4. Extensions

4.1. Apriori TID

One variant of the apriori algorithm discussed above computes supports

of itemsets by doing intersections of columns. Some of these intersections

are repeated over time and, in particular, entries of the Boolean matrix

are revisited which have no impact on the support. The Apriori TID [3]

algorithm provides a solution to some of these problems. For computing

the supports for larger itemsets it does not revisit the original table but

transforms the table as it goes along. The new columns correspond to the

candidate itemsets. In this way each new candidate itemset only requires

the intersection of two old ones.

The following demonstrates with an example how this works. The exam-

ple is adapted from [3]. In the first row the itemsets from Ck are depicted.

The minimal support is 50 percent or 2 rows. The initial matrix of the tid

algorithm is equal to















1 2 3 4 5

1 0 1 1 0

0 1 1 0 1

1 1 1 0 1

0 1 0 0 1















Note that the column (or item) four is not frequent and is not considered

for Ck. After one step of the Apriori tid one gets the matrix:















(1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5)

0 1 0 0 0 0

0 0 0 1 1 1

1 1 1 1 1 1

0 0 0 0 1 0















Here one can see directly that the itemsets (1, 2) and (1, 5) are not frequent.

It follows that there remains only one candidate itemset with three items,

namely (2, 3, 5) and the matrix is















(2, 3, 5)

0

1

1

0
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Let z(j1, . . . , jk) denote the elements of Ck. Then the elements in the trans-

formed Boolean matrix are az(j1,...,jk)(xi).

We will again use an auxiliary array v ∈ {0, 1}n. The apriori tid algo-

rithm uses the join considered earlier in order to construct a matrix for

the frequent itemsets Lk+1 from Lk. (As in the previous algorithms it is

assumed that all matrices are stored in memory. The case of very large data

sets which do not fit into memory will be discussed later.) The key part of

the algorithm, i.e., the step from k to k + 1 is then:

(1) Select a pair of frequent k-itemsets (y, z), mark as read

(2) expand xy =
∧

i xyi

i , i.e., v ← xy

(3) extract elements using xz , i.e., w ← v[xz ]

(4) compress result and reset v to zero, v ← 0

There are three major steps where the auxiliary vector v is accessed. The

time complexity for this is

T =

n
∑

i=1

(2|(x(i))y|+ |(x(i))z|)τ.

This has to be done for all elements y∨z where y, z ∈ Lk. Thus the average

complexity is

E(T ) =
∑

k

3nmkE(xy)τ

for some “average” y and xy =
∧

i xyi

i . Now for all elements in Lk the

support is larger than σ, thus E(xy) ≥ σ. So we get a lower bound for the

complexity:

E(T ) ≥
∑

k

3nmkστ.

We can also obtain a simple upper bound if we observe that E(xy) ≤
E(|x|)/d which is true “on average”. From this we get

E(T ) ≤
∑

k

3nmk
E(|x|)

d
τ.

Another approximation (typically a lower bound) is obtained if we assume

that the components of x are independent. In this case E(xy) ≈ (E(|x|)/d)k

and thus

E(T ) ≥
∑

k

3nmk(E(|x|)/d)kτ.
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From this we would expect that for some rk ∈ [1, k] we get the approxima-

tion

E(T ) ≈
∑

k

3nmk(E(|x|)/d)rkτ.

Now recall that the original column-wise apriori implementation required

E(T ) ≈
∑

k

3nmkk(E(|x|)/d)τ

and so the “speedup” we can achieve by using this new algorithm is around

S ≈
∑

k kmk
∑

k(E(|x|)/d)rk−1mk
.

which can be substantial as both k ≥ 1 and E(|x|)/d)rk−1 < 1. We can see

that there are two reasons for the decrease in work: First we have reused

earlier computations of xj1 ∧ · · · ∧ xjk
and second we are able to make use

of the lower support of the k-itemsets for larger k. While this second effect

does strongly depend on rk and thus the data, the first effect always holds,

so we get a speedup of at least

S ≥
∑

k kmk
∑

k mk
,

i.e., the average size of the k-itemsets. Note that the role of the number mk

of candidate itemsets maybe slightly diminished but this is still the core

parameter which determines the complexity of the algorithm and the need

to reduce the size of the frequent itemsets is not diminished.

4.2. Constrained association rules

The number of frequent itemsets found by the apriori algorithm will of-

ten be too large or too small. While the prime mechanism of controlling

the discovered itemsets is the minimal support σ, this may often not be

enough. Small collections of frequent itemsets may often contain mostly

well known associations whereas large collections may reflect mostly ran-

dom fluctuations. There are effective other ways to control the amount of

itemsets obtained. First, in the case of too many itemsets one can use con-

straints to filter out trivial or otherwise uninteresting itemsets. In the case

of too few frequent itemsets one can also change the attributes or features

which define the vector x. In particular, one can introduce new “more gen-

eral” attributes. For example, one might find that rules including the item

“ginger beer” are not frequent. However, rules including “soft drinks” will
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have much higher support and may lead to interesting new rules. Thus one

introduces new more general items. However, including more general items

while maintaining the original special items leads to duplications in the

itemsets, in our example the itemset containing ginger beer and soft drinks

is identical to the set which only contains ginger beer. In order to avoid this

one can again introduce constraints, which, in our example would identify

the itemset containing ginger beer only with the one containing softdrink

and ginger beer.

Constraints are conditions for the frequent itemsets of interest. These

conditions take the form “predicate = true” with some predicates

b1(z), . . . , bs(z).

Thus one is looking for frequent k-itemsets L∗
k for which the bj are true,

i.e.,

L∗
k := {z ∈ Lk | bj(z) = 1}.

These constraints will reduce the amount of frequent itemsets which need

to be further processed, but can they also assist in making the algorithms

more efficient? This will be discussed next after we have considered some

examples. Note that the constraints are not necessarily simple conjunctions!

Examples:

• We have mentioned the rule that any frequent itemset should not con-

tain an item and its generalisation, e.g., it should not contain both soft

drinks and ginger beer as this is identical to ginger beer. The constraint

is of the form b(x) = ¬ay(x) where y is the itemset where the “softdrink

and ginger beer bits” are set.

• In some cases, frequent itemsets have been well established earlier. An

example are crisps and soft drinks. There is no need to rediscover this

association. Here the constraint is of the form b(x) = ¬δy(x) where y

denotes the itemset “softdrinks and chips”.

• In some cases, the domain knowledge tells us that some itemsets are pre-

scribed, like in the case of a medical schedule which prescribes certain

procedures to be done jointly but others should not be jointly. Finding

these rules is not interesting. Here the constraint would exclude certain

z, i.e., b(z) = ¬δy(z) where y is the element to exclude.

• In some cases, the itemsets are related by definition. For example the

predicates defined by |z| > 2 is a consequence of |z| > 4. Having discov-

ered the second one relieves us of the need to discover the first one. This,
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however, is a different type of constraint which needs to be considered

when defining the search space.

A general algorithm for the determination of the L∗
k determines at ev-

ery step the Lk (which are required for the continuation) and from those

outputs the elements of L∗
k. The algorithm is exactly the same as apriori

or apriori tid except that not all frequent itemsets are output. See Algo-

rithm 2. The work is almost exactly the same as for the original apriori

algorithm.

Algorithm 2 Apriori with general constraints

C1 = A(X) is the set of all one-itemsets, k = 1

while Ck 6= ∅ do

scan database to determine support of all z ∈ Ck

extract frequent itemsets from Ck into Lk

use the constraints to extract the constrained frequent itemsets in L∗
k

generate Ck+1

k := k + 1.

end while

Now we would like to understand how the constraints can impact the

computational performance, after all, one will require less rules in the

end and the discovery of less rules should be faster. This, however, is not

straight-forward as the constrained frequent itemsets L∗
k do not necessar-

ily satisfy the apriori property. There is, however an important class of

constraints for which the apriori property holds:

Theorem 18: If the constraints bj , j = 1, . . . , m are anti-monotone then

the set of constrained frequent itemsets {L∗
k} satisfies the apriori condition.

Proof: Let y ∈ L∗
k and z ≤ y. As L∗

k ⊂ Lk and the (unconstrained frequent

itemsets) Lk satisfy the apriori condition one has z ∈ Lsize(z).

As the bj are antimonotone and y ∈ L∗
k one has

bj(z) ≥ bj(y) = 1

and so bj(z) = 1 from which it follows that z ∈ L∗
size(z).

When the apriori condition holds one can generate the candidate item-

sets Ck in the (constrained) apriori algorithm from the sets L∗
k instead of
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from the larger Lk. However, the constraints need to be anti-monotone. We

know that constraints of the form az(j) are monotone and thus constraints

of the form bj = ¬az(j) are antimonotone. Such constraints say that a cer-

tain combination of items should not occur in the itemset. An example of

this is the case of ginger beer and soft drinks. Thus we will have simpler

frequent itemsets in general if we apply such a rule. Note that itemsets have

played three different roles so far:

(1) as data points x(i)

(2) as potentially frequent itemsets z and

(3) to define constraints ¬az(j) .

The constraints of the kind bj = ¬az(j) are now used to reduce the

candidate itemsets Ck prior to the data scan (this is how we save most).

Even better, it turns out that the conditions only need to be checked for

level k = |z(j)| where k is the size of the itemset defining the constraint.

(This gives a minor saving.) This is summarised in the next theorem:

Theorem 19: Let the constraints be bj = ¬az(j) for j = 1, . . . , s. Further-

more let the candidate k-itemsets for L∗
k be sets of k-itemsets such that

C∗
k = {y ∈ Ik | if z < y then z ∈ L|z| and bj(y) = 1}

and a further set defined by

C̃k = {y ∈ Ik | if z < y then z ∈ L|z| and if |z(j)| = k then bj(y) = 1 }.
Then C̃k = C∗

k .

Proof: We need to show that every element y ∈ C̃k satisfies the constraints

bj(y) = 1. Remember that |y| = k. There are three cases:

• If |z(j)| = |y| then the constraint is satisfied by definition

• If |z(j)| > |y| then z(j) 6≤ y and so bj(y) = 1

• Consider the case |z(j)| < |y|. If bj(y) = 0 then az(j) (y) = 1 and

so z(j) ≤ y. As |z(j)| < |y| it follows z(j) < y. Thus it follows that

z(j) ∈ L∗
z(j) and, consequently, bj(z

(j)) = 1 or z(j) 6≤ z(j) which is not

true. It follows that in this case we have bj(y) = 1.

From this it follows that C̃k ⊂ C∗
k . The converse is a direct consequence of

the definition of the sets.

Thus we get a variant of the apriori algorithm which checks the constraints

only for one level, and moreover, this is done to reduce the number of

candidate itemsets. This is Algorithm 3.
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Algorithm 3 Apriori with antimonotone constraints

C1 = A(X) is the set of all one-itemsets, k = 1

while Ck 6= ∅ do

extract elements of Ck which satisfy the constraints az(j) (x) = 0 for

|z(j)| = k and put into C∗
k

scan database to determine support of all y ∈ C∗
k

extract frequent itemsets from C∗
k into L∗

k

generate Ck+1 (as per ordinary apriori)

k := k + 1.

end while

4.3. Partitioned algorithms

The previous algorithms assumed that all the data was able to fit into

main memory and was resident in one place. Also, the algorithm was for

one processor. We will look here into partitioned algorithms which lead to

parallel, distributed and out-of-core algorithms with few synchronisation

points and little disk access. The algorithms have been suggested in [15].

We assume that the data is partitioned into equal parts as

D = [D1, D2, . . . , Dp]

where D1 = (x(1), . . . , x(n/p)), D2 = (x(n/p+1), . . . , x(2n/p)), etc. While we

assume equal distribution it is simple to generalise the discussions below to

non-equal distributions.

In each partition Dj an estimate for the support s(a) of a predicate

can be determined and we will call this ŝj(a). If ŝ(a) is the estimate of the

support in D then one has

ŝ(a) =
1

p

p
∑

j=1

ŝj(a).

This leads to a straight-forward parallel implementation of the apriori al-

gorithm: The extraction of the Lk can either be done on all the processors

redundantly or on one master processor and the result can then be com-

municated. The parallel algorithm also leads to an out-of-core algorithm

which does the counting of the supports in blocks. One can equally develop

an apriori-tid variant as well.

There is a disadvantage of this straight-forward approach, however. It

does require many synchronisation points, respectively, many scans of the

disk, one for each level. As the disks are slow and synchronisation expensive
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Algorithm 4 Parallel Apriori

C1 = A(X) is the set of all one-itemsets, k = 1

while Ck 6= ∅ do

scan database to determine support of all z ∈ Ck on each Dj and sum

up the results

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.

end while

this will cost some time. We will not discuss and algorithm suggested by [15]

which substantially reduces disk scans or synchronisation points at the cost

of some redundant computations. First we observe that

min
k

ŝk(a) ≤ ŝ(a) ≤ max
k

ŝk(a)

which follows from the summation formula above. A consequence of this is

Theorem 20: Each a which is frequent in D is at least frequent in one

Dj .

Proof: If for some frequent a this would not hold then one would get

max ŝj(a) < σ0

if σ0 is the threshold for frequent a. By the observation above ŝ(a) < σ0

which contradicts the assumption that a is frequent.

Using this one gets an algorithm which generates in a first step frequent k-

itemsets Lk,j for each Dj and each k. This requires one scan of the data, or

can be done on one processor, respectively. The union of all these frequent

itemset is then used as a set of candidate itemsets and the supports of all

these candidates is found in a second scan of the data. The parallel variant

of the algorithm is then Algorithm 5. Note that the supports for all the levels

k are collected simultaneously thus they require only two synchronisation

points. Also, the apriori property holds for the Cp
k :

Proposition 21: The sequence Cp
k satisfies the apriori property, i.e.,

z ∈ Cp
k & y ≤ z ⇒ y ∈ Cp

|y|.
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Algorithm 5 Parallel Association Rules

determine the frequent k-itemsets Lk,j for all Dj in parallel

Cp
k :=

⋃p
j=1 Lk,j and broadcast

determine supports ŝk for all candidates and all partitions in parallel

collect all the supports, sum up and extract the frequent elements from

Cp
k .

Proof: If z ∈ Cp
k & y ≤ z then there exists a j such that z ∈ Lk,j . By

the apriori property on Dj one has y ∈ L|y|,j and so y ∈ Cp
|y|.

In order to understand the efficiency of the algorithm one needs to esti-

mate the size of the Cp
k . In the (computationally best case, all the frequent

itemsets are identified on the partitions and thus

Cp
k = Lk,j = Lk.

We can use any algorithm to determine the frequent itemsets on one par-

tition, and, if we assume that the algorithm is scalable in the data size the

time to determine the frequent itemsets on all processors is equal to 1/p of

the time required to determine the frequent itemsets on one processor as

the data is 1/p on each processor. In addition we require to reads of the

data base which has an expectation of nλτDisk/p where λ is the average

size of the market baskets and τDisk is the time for one disk access. There

is also some time required for the communication which is proportional to

the size of the frequent itemsets. We will leave the further analysis which

follows the same lines as our earlier analysis to the reader at this stage.

As the partition is random, one can actually get away with the determi-

nation of the supports for a small subset of Cp
k , as we only need to determine

the support for az for which the supports have not been determined in the

first scan. One may also wish to choose the minimal support σ for the first

scan slightly lower in order to further reduce the amount of second scans

required.

4.4. Mining sequences

The following is an example of how one may construct more complex struc-

tures from the market baskets. We consider here a special case of sequences,

see [10,1]. Let the data be of the form

(x1, . . . , xm)
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where each xi is an itemset (not a component as in our earlier notation).

Examples of sequences correspond to the shopping behaviour of customers

of retailers over time, or the sequence of services a patient receives over time.

The focus is thus not on individual market-baskets but on the customers.

We do not discuss the temporal aspects, just the sequential ones.

In defining our space of features we include the empty sequence () but

not components of the sequences are 0, i.e.,

xi 6= 0.

The rationale for this is that sequences correspond to actions which occur in

some order and 0 would correspond to a non-action. We are not interested

in the times when a shopper went to the store and didn’t buy anything at

all. Any empty component itemsets in the data will also be removed.

The sequences also have an intrinsic partial ordering

x ≤ y

which holds for (x1, . . . , xm) and (y1, . . . , yk) when ever there is a sequence

1 ≤ i1 < i2 < · · · < im ≤ k such that

xi ≤ yis
, s = 1, . . . , m.

One can now verify that this defines a partial order on the set of se-

quences introduced above. However, the set of sequences does not form

a lattice as there are not necessarily unique lowest upper or greatest

lower bounds. For example, the two sequences ((0, 1), (1, 1), (1, 0)) and

((0, 1), (0, 1)) have the two (joint) upper bounds ((0, 1), (1, 1), (1, 0), (0, 1))

and ((0, 1), (0, 1), (1, 1), (1, 0) which have now common lower bound which

is still an upper bound for both original sequences. This makes the search

for frequent itemsets somewhat harder.

Another difference is that the complexity of the mining tasks has grown

considerably, with |I| items one has 2|I| market-baskets and thus 2|I|m

different sequences of length ≤ m. Thus it is essential to be able to deal

with the computational complexity of this problem. Note in particular, that

the probability of any particular sequence is going to be extremely small.

However, one will be able to make statements about the support of small

subsequences which correspond to shopping or treatment patterns.

Based on the ordering, the support of a sequence x is the set of all

sequences larger than x is

s(x) = P ({x|x ≤ y}) .
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This is estimated by the number of sequences in the data base which are in

the support. Note that the itemsets now occur as length 1 sequences and

thus the support of the itemsets can be identified with the support of the

corresponding 1 sequence. As our focus is now on sequences this is different

from the support we get if we look just at the distribution of the itemsets.

The length of a sequence is the number of non-empty components. Thus

we can now define an apriori algorithm as before. This would start with the

determination of all the frequent 1 sequences which correspond to all the

frequent itemsets. Thus the first step of the sequence mining algorithm is

just the ordinary apriori algorithm. Then the apriori algorithm continues

as before, where the candidate generation step is similar but now we join

any two sequences which have all components identical except for the last

(non-empty) one. Then one gets a sequence of length m + 1 from two such

sequences of length m by concatenating the last component of the second

sequence on to the first one. After that one still needs to check if all subse-

quences are frequent to do some pruning.

There has been some arbitrariness in some of the choices. Alternatives

choose the size of a sequence as the sum of the sizes of the itemsets. In this

case the candidate generation procedure becomes slightly more complex,

see [1].

4.5. The FP tree algorithm

The Apriori algorithm is very effective for discovering a reasonable num-

ber of small frequent itemsets. However it does show severe performance

problems for the discovery of large numbers of frequent itemsets. If, for

example, there are 106 frequent items then the set of candidate 2-itemsets

contains 5 · 1011 itemsets which all require testing. In addition, the Apriori

algorithm has problems with the discovery of very long frequent itemsets.

For the discovery of an itemset with 100 items the algorithm requires scan-

ning the data for all the 2100 subsets in 100 scans. The bottleneck in the

algorithm is the creation of the candidate itemsets, more precisely, the num-

ber of candidate itemsets which need to be created during the mining. The

reason for this large number is that the candidate itemsets are visited in a

breadth-first way.

The FP tree algorithm addresses these issues and scans the data in a

depth-first way. The data is only scanned twice. In a first scan, the frequent

items (or 1-itemsets) are determined. The data items are then ordered based

on their frequency and the infrequent items are removed. In the second scan,
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the data base is mapped onto a tree structure. Except for the root all the

nodes are labelled with items, each item can correspond to multiple nodes.

We will explain the algorithm with the help of an example, see table 2 for

the original data and the records with the frequent itemsets only (here we

look for support > 0.5).

Table 2. Simple data base and data base after removal of the items with less than 50%
support.

items s > 0.5

f, a, c, d, g, i, m, p f, c, a, m, p
a, b, c, f, l,m, o f, c, a, b, m
b, f, h, j, o,w f, b
b, c, k, s, p c, b, p

a, f, c, e, l, p,m, n f, c, a, m, p

Initially the tree consists only of the root. Then the first record is read

and a path is attached to the root such that the node labelled with the

first item of the record (items are ordered by their frequency) is adjacent to

the root, the second item labels the next neighbour and so on. In addition

to the item, the label also contains the number 1, see Step 1 in figure 10.

Then the second record is included such that any common prefix (in the

c : 1

a : 1

m : 1

p : 1

f : 1

c : 2

a : 2

m : 1

p : 1

f : 2

b : 1

m : 1

c : 3 b : 1 b : 1

p : 1a : 3

m : 2

p : 2

f : 4 c : 1

b : 1

m : 1

Step 1 Step 2 Step 5

Fig. 10. Construction of the FP-Tree.

example the items f,c,a is shared with the previous record and the remaining

items are added in a splitted path. The numeric parts of the labels of the

shared prefix nodes are increased by one, see Step 2 in the figure. This is

then done with all the other records until the whole data base is stored
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in the tree. As the most common items were ordered first, there is a big

likelihood that many prefixes will be shared which results in substantial

saving or compression of the data base. Note that no information is lost

with respect to the supports. The FP tree structure is completed by adding

a header table which contains all items together with pointers to their first

occurrence in the tree. The other occurrences are then linked together so

that all occurrences of an item can easily be retrieved, see figure 11.

c : 3 b : 1 b : 1

p : 1a : 3

m : 2

p : 2

f : 4

{}

c : 1

b : 1

m : 1

4

4

3

3

3

3

f

c

a

b

m

p

item support

header table

Fig. 11. Final FP-Tree.

The FP tree does never break a long pattern into smaller patterns the

way the Apriori algorithm does. Long patterns can be directly retrieved

from the FP tree. The FP tree also contains the full relevant information

about the data base. It is compact, as all infrequent items are removed and

the highly frequent items share nodes in the tree. The number of nodes is

never less than the size of the data base measured in the sum of the sizes

of the records but there is anecdotal evidence that compression rates can

be over 100.

The FP tree is used to find all association rules containing particular

items. Starting with the least frequent items, all rules containing those items

can be found simply by generating for each item the conditional data base

which consists for each path which contains the item of those items which

are between that item and the root. (The lower items don’t need to be

considered, as they are considered together with other items.) These con-

ditional pattern bases can then again be put into FP-trees, the conditional

FP-trees and for those trees all the rules containing the previously selected

and any other item will be extracted. If the conditional pattern base con-
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tains only one item, that item has to be the itemset. The frequencies of

these itemsets can be obtained from the number labels.

An additional speed-up is obtained by mining long prefix paths sepa-

rately and combine the results at the end. Of course any chain does not

need to be broken into parts necessarily as all the frequent subsets, together

with their frequencies are easily obtained directly.

5. Conclusion

Data mining deals with the processing of large, complex and noisy data.

Robust tools are required to recover weak signals. These tools require highly

efficient algorithms which scale with data size and complexity. Association

rule discovery is one of the most popular and successful tools in data mining.

Efficient algorithms are available. The developments in association rule dis-

covery combine concepts and insights from probability and combinatorics.

The original algorithm “Apriori” was developed in the early years of data

mining and is still widely used. Numerous variants and extensions exist of

which a small selection was covered in this tutorial.

The most recent work in association rules uses concepts from graph

theory, formal concept analysis and statistics and links association rules

with graphical models and with hidden Markov models.

In this tutorial some of the mathematical basis of association rules was

covered but no attempt has been made to cover the vast literature discussing

numerous algorithms.
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