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CHAPTER ONE
Introduction

Since Aristotle’s claim that “man is the rational animal” the ability to
reason has been regarded as one the hallmarks of the mental—
organisms, like us, that can reason have minds, whereas organisms,
like snails and pigeons, that could not reason do not have minds. For
Descartes, animals were automata that simply responded to physical
stimulation with no mediating processes of rational thought.
Reasoning was not something that mere machines could do, but only
non-physical souls.

Such dualism about the physical realm and the non-physical
thinking mind is also implicit in our everyday way of explaining our
behaviour using our “folk psychology”. Suppose you see your
neighbour arrive home; you see her pass the garage and look in to see
that the car is gone. When she reaches the door instead of ringing the
doorbell as she has done every night for the last 20 years, she takes
out her key and opens the door. We can explain in an instant why
your neighbour broke her habitual pattern of behaviour. The
explanation will go something like this (Oaksford, 1997, p. 257):

She saw that the car was gone, she therefore inferred that
someone drove it away; because she knows that only her partner
has the keys, she infers that her partner has driven it away; she
further infers that if he is in the car she must believe that he is
not in the house and hence he cannot open the door when she
rings the bell, consequently she takes out her key and opens the
door herself.

There are two important aspects of this mundane, everyday
explanation. First, you attribute certain properties to your neighbour,
“knowing that only her partner has the keys,” and “believing that her
partner is not in the house” and so on. These properties are quite
unlike physical properties, like being tall, round, long or square, in so
far as they can only be identified by what they are about. Second, this
explanation suggests that you make inferences that somehow relate



these properties to each other in a meaningful way, so that if your
neighbour possesses one of these properties, “believing that her
partner is in the car,” then she must possess another, “believing that
her partner is not in the house.” Because it relates non-physical
properties, inference too must be a facet of the non-physical mind.
Consequently dualism about mind and body emerges not only from
preconceived ideas about the existence of immortal souls but also from
our commonsense folk psychological explanations of each other’s
behaviour.

The importance of cognitive psychology and the reason it supplanted
behaviourism, is that it can say something scientific about these odd
properties and the inferential relationships between them. The
emergence of modern formal logic and the consequent development of
computers was the key to being able to talk about these things in purely
physical, scientific terms. Sentences of a language share the property
with mental states like beliefs that they can be identified by what
they are about. Moreover, and crucially, sentences can also be
identified by their purely formal properties— literally the shapes of
the letters and words that make them up. Computers manipulate
symbols formally by virtue of the physical shapes of those symbols. The
key to capturing inference is that modern, formal logic can also
provide a systematic mapping between these formal operations and
what the symbols are about. Consequently, inference can be
mechanised and the result is something that for Descartes would have
been a contradiction: a rational mechanism, i.e. a computer. As for
Aristotle, in the cognitive revolution, reasoning is at the heart of
having something to say about mind. The computer metaphor
potentially provides a mechanistic theory of reasoning and for the
cognitive psychologist “cognition is computation”.

REASONING AND THE ADEQUACY OF
COGNITIVE PSYCHOLOGY

A minimal adequacy condition on the cognitive “paradigm” would
therefore appear to be that people reason logically. Over the last 40
years there has been a great deal of work in cognitive psychology on
people’s logical reasoning abilities (see Evans, Newstead, & Byrne,
1993, for a review). Researchers did not initially view this work as
testing the adequacy of the cognitive paradigm but rather as testing
the similar Piagetian assumption that the goal of cognitive
development was to produce a logically competent adult (e.g. Wason,
1969). The conclusion of this work was that in many areas people seem
unable to reason logically. For example, they do not appear to follow
the logical advice (Popper, 1959) of seeking falsifying evidence when
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testing hypotheses (e.g. Wason, 1960, 1968). Moreover they do not
apply the logical law of modus tollens in conditional inference (e.g.,
Taplin, 1971). Taking an example from our commonsense
psychological explanation, modus tollens prescribes that if you believe
that if he is in the car (p), then he is not in the house (q) and that he is
in the house (not-q) then you ought to believe that he is not in the car
(not-p); or formally: if p then q, and not-q, therefore not-p. In
conditional inference people also erroneously endorse inferential
fallacies such as denying the antecedent, e.g. inferring he is in the
house on discovering he is not in the car; or formally: if p then q, and
not-p, therefore not-q. People also do not always appreciate when
statements involving logical terms, such as “if… then,” are true and
when they are false (e.g. Evans, 1972). The main conclusion of this
work is that people’s reasoning on tasks that have superficially obvious
logical solutions seems prone to various systematic and non-logical
biases.

One consequence of these results in the psychology of reasoning is
that the solution apparently offered by cognitive psychology to the
problem of placing the study of mind on solid, scientific ground may be
illusory (see, for example, Stich, 1985, 1990). However, there are other
possible responses to this problem (some are explored by Oaksford &
Chater, 1991, in a related context, see Chapters 4 and 5). For example,
one could question the ecological validity of these experimental tasks—
perhaps using more realistic real-world materials would facilitate
logical inference. Although this initially seemed a promising line of
research (e.g. Wason & Shapiro, 1971) it became clear that the nature
of the tasks had been altered so that researchers were simply not
investigating the same logical problem (Manktelow & Over, 1987).

Other proposals have involved attempting to explain away the
discrepancy between logic and behaviour. For example, mental
logicians (e.g. Rips, 1994) argue that we implement logic formally but
then miss out some of the rules. In contrast, advocates of mental
models propose that we implement logic by manipulating mental
tokens of what the premises of an argument are about (e.g. Johnson-
Laird, 1983). Other accounts suggest that heuristic processes
responsible for language comprehension produce reasoning errors but
that otherwise people are generally logically competent (e.g. Evans,
1989). All these accounts attempt to preserve some degree of logical
competence. (For completeness we should also mention Pragmatic
Reasoning Schema theory [Cheng & Holyoak, 1985], which abandons
the attempt to explain this behaviour in logical terms but which does
not replace logic with any alternative account of which inferences a
reasoner should make.)
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A MORE RADICAL APPROACH

The papers in this book present a more radical approach. What if the
real inferences people draw in their everyday lives are not actually
logical but conform to the prescriptions of some other formal,
mechanisable theory? First, this possibility would suggest that
people’s behaviour in the reasoning laboratory may be the result of
generalising their normal non-logical strategies to these unfamiliar
logical problems. Second, it would suggest that accounts that attempt
to preserve logic as central to human reasoning, like all those we have
discussed, are misguided—being based on logic they will not be able to
generalise from the laboratory to the real world. Finally, there would
be no need to abandon the central insight behind the cognitive
revolution’s solution to placing the study of mind on a solid,
physicalist footing.

Let us reconsider some of the everyday inferences you went through
to explain your neighbour’s behaviour. The first inference was:

She saw that the car was gone, she therefore inferred that
someone drove it away.

Logically this is an inference by modus ponens: if the car is gone (p),
then someone has driven it away (q) and the car is gone (p), therefore
someone has driven it away (q). However, a crucial aspect of this
inference is that it is uncertain: it is possible that no one drove the car
away even though it is gone, someone may have towed it away, a
helicopter may have removed it, it may have spontaneously
combusted, a trained chimp may have driven it away and so on. Any
of these additional pieces of information would defeat this inference,
which is consequently referred to as a defeasible inference. The
problem with modelling such inferences logically is that classical logic
is monotonic, i.e. no additional information, like that just outlined, can
defeat a logical inference. Although this is a desirable property in
mathematical reasoning it is almost antithetical to the kind of
everyday reasoning that we use to explain our own and others’
behaviour (Oaksford & Chater, 1991).

Could this behaviour be isolated just to this particular inference?
Let us look at the rest of the inferences used to explain your
neighbour’s behaviour. The second inference was:

Because she knows that only her partner has the keys, she infers
that her partner has driven it away.
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First, any of the aforementioned default defeaters would also defeat
this inference. Second, her partner could have lent the keys to a friend;
someone may have stolen them; someone could have hot-wired the car
and so on. All these factors could defeat this inference. The third
inference was:

She further infers that if he is in the car she must believe that he
is not in the house.

This is the first inference to have the feel of non-defeasibility—any
defeater would appear to have to claim that it is causally possible to
be in two places at once. However, he may have crashed the car into
the house, or re-assembled it in the house in which case he can be in
the car and in the house at the same time! In sum, it would appear
that everyday commonsense inferences are defeasible, i.e. they are
uncertain, plausible inferences, they are not certain, logical inferences.

One might argue that people regard these as logically certain
inferences, and only question them when they fail and when
consequently they must revise their beliefs about the situation (Rips,
1994). This strategy would involve questioning the literal truth of, for
example, if the car is gone, then someone has driven it away. But this
surely mischaracterises people’s cognitive attitude towards this and
the million other commonsense generalisations that people use to
guide and explain their behaviour (Oaksford & Chater, 1995b). If in
our commonsense descriptions of the world and of ourselves these are
not candidates for truth then precious little else of what we call our
commonsense knowledge of the world will be candidates for truth. We
would then be in the paradoxical position of having to provide a
system of human inference that is always based on false premises but
which is nonetheless apparently capable of guiding successful action
in the world! There are situations where false beliefs may be
beneficial, e.g. being told falsely that the doctor thinks you will
recover from some life-threatening disease may assist in your
eventual and remarkable recovery. However, such situations certainly
do not seem to be the norm.1

If real human reasoning is uncertain through and through then
rather than model reasoning with standard logic, the calculus of
certainty, perhaps we should use a calculus appropriate to
uncertainty. In this introduction, which provides the background for
the rest of the book, we look at two approaches to uncertainty. One is
given by recent attempts to extend logic to account for uncertainty.
The other, probability theory, which has a much longer history,
models uncertainty directly, and has been characterised as the optimal
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calculus for uncertain reasoning. The tension between logic-based and
probabilistic models of thought is the central theme of this book.

LOGICIST AND PROBABILISTIC APPROACHES TO
UNCERTAINTY

The papers in this book consider the question of how cognitive science
can account for people’s reasoning abilities, given the uncertainty of
everyday inferences. The book is in two parts. Part I considers
standard “logicist” approaches to reasoning, which assume that
human reasoning abilities (and other cognitive processes) are based on
logic. Part II considers our alter native approach which sees reasoning
as based on probability theory, rather than logic.

An initial, and crucial, question which frames our whole approach
is: What is it for a theory of cognitive processes to be “based on” an
abstract normative theory such as logic or probability theory?
Although this seems to be widely recognised as a central question in
the psychology of reasoning, it has received little detailed attention in
the literature (although for exceptional examples see Baron, 1994;
Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991). In common with
all other cognitive scientists, we are attempting to explain human
reasoning in computational terms. Thus, our question becomes: What
is it for a computational theory of cognitive processes to be “based on”
an abstract normative theory? We answer this question by appeal to
Marr’s celebrated account of levels of computational explanation,
which provides a specific, and indeed a crucial, role for normative
theories.

Marr (1982) defined three levels of computational explanation. At
the computational level (the level of Anderson’s rational analysis
which we discuss later on), what gets computed in performing some
task is defined. For example, if we are designing a calculator we want
to know that it computes arithmetic, so that if, for example, you input
“2”, “+”, and “2”, the machine outputs “4”. What goes on between input
and output, i.e. how the calculator computes arithmetic, is specified at
the algorithmic level. At this level the representations and algorithms
that perform arithmetic are defined. So, for example, we may specify
that the algorithm uses Arabic numerals and performs addition, say,
by lining up columns, adding column-wise and then carrying. You can
use many different algorithms to implement arithmetic, each having
its own level of complexity. For example, another way of implementing
addition would be to take 1 from the second number and add it to the
first number until the second number is 0. Although this would take a
lot longer than the first more familiar method, it still respects the
rules of the computational level theory of arithmetic. Finally, at the
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implementational level, the physical structure of the device on which
the algorithm runs is defined.

Most crucially for the present discussion, the computational level of
explanation must have two roles. It must tell you what the device
should compute—i.e. it must be normatively justified. Thus, the
normative theory of arithmetic explains why the device is behaving
appropriately in responding “4”to the query “2+2”. But in application
to human psychology, it is crucial that the normative theory
adequately describes some aspect of human performance. The theory
of arithmetic gives a good description of the behaviour of a calculator,
but a poor description of a telephone. Thus, a computational-level
theory must be both normatively justified, and descriptively adequate
to explaining the behaviour of the device—in the context of psychology,
this “device” is the human mind. We note in the introduction to
Chapter 10 that the dual descriptive and normative function
characteristic of computational-level explanation is also central to the
notion of “rational analysis” introduced by Anderson (1990, 1991a), in
terms of which we frame much of our positive discussion in Part II.

PART I: PROBLEMS WITH LOGICISM

With respect to proposals for dealing with uncertainty in the
psychology of reasoning, computational explanation provides two
adequacy criteria, which we exploit extensively throughout Part I. The
first is that the computational-level theory must be descriptively
adequate with respect to people’s actual reasoning abilities. Here,
empirical constraints come principally not from psychological
experiments, but from intuitively clear-cut cases of uncertain
inference. Logic-based theories have fundamental problems in
accounting even for these basic intuitions. Moreover, we argue that
the reasons why they have problems in accounting for these intuitions
are also the reasons why they are inadequate in capturing the
experimental data. We refer to the descriptive adequacy of a theory of
reasoning as the criterion of completeness*. This is by analogy to the
logical notion of completeness. A complete logical system is one in
which all logical truths can be derived within that system. A
(computational) system that is complete* is one in which all the
intuitively correct inferences can be derived. We shall argue that logic-
based accounts cannot meet this adequacy criterion, and that meeting
completeness* requires a switch to probability theory as the starting
point for computational-level explanation. We explore this alternative
in Part II of the book.

A second adequacy criterion for computational explanation arises at
Marr’s algorithmic level. This criterion is that it must be possible for
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the algorithms postulated by a theory of reasoning to run in real-time
in the brain. Minimally, this requires that these algorithms are
computationally tractable, in the standard sense used in computer
science. In Part I, we argue that the logicist programme in general
fails to meet this criterion (Chapters 2, 3, 4, and 5). Moreover, we
argue that logic-based theories in the psychology of reasoning fare no
better, when generalised from the toy domains typically used in
psychological experiments, to real-world uncertain inference
(Chapters 6, 7, 8, and 9).

Strictly speaking, there is a third adequacy criterion, associated
with Marr’s implementational level—that it must be possible to
implement the algorithms postulated by psychological theories in the
neural hardware of the brain. We argue in Chapter 2 that this is, in
principle, a powerful constraint on cognitive theories. Indeed, it is one
of the plausible motivations for using neurally inspired computational
architectures as the basis for cognitive science, most notably neural
networks. When Chapter 2 was written, we had the hope that neural
network models might inform solutions to problems at the algorithmic
and computational level. With Anderson’s (1990) extension of Marr’s
approach to high-level cognition, as embodied in rational analysis, we
now believe that a more fruitful line of inquiry is to attempt to develop
better computational-level explanations (although, as we argue in our
concluding chapter, there may be important connections between the
probabilistic approach we advocate and neurally inspired connectionist
models).

Logicism and Uncertainty

We have noted that the uncertainty of everyday reasoning poses
problems for logicist accounts of reasoning. In this introduction, we
aim to connect our discussions in Part I with the broader
philosophical, linguistic, logical and computational literatures on logic
and uncertainty. Specifically, these literatures have converged on the
view that standard first-order logic is inadequate to capture everyday
reasoning about the real world. Although some psychologists are well
aware of these literatures, we believe that their implications
concerning the scope of first-order reasoning have not been fully
recognised. Indeed, the very fact that the two leading formal
psychological theories of reasoning, mental logic (e.g. Rips, 1994) and
mental models (e.g. Johnson-Laird & Byrne, 1991) both retain the
standard logical apparatus suggests that the inadequacies of first-
order logic as a model for human reasoning are not universally
accepted. Moreover, this discussion provides a background for the
more detailed treatment of extensions of standard logic, which
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attempt to deal with uncertainty, and which we consider extensively
throughout Part I.

In view of its fundamental importance in human reasoning, we
focus on the conditional, if…then…, construction, which we used
earlier to illustrate the uncertainty of human inference. We first
sketch the standard logical treatment of the conditional, and then
consider its problems and attempted solutions to these problems
within a logical framework.

The standard approach within formal semantics of natural or
logical languages is to provide a recursive definition of the truth of
complex expressions in terms of their parts. The natural language
phrase if p then q is standardly rendered as the material conditional of
logic. The material conditional p  q is true if and only if p is false or q
is true (or both). This semantics licenses the valid rules of inference
modus ponens and modus tollens introduced earlier in discussing our
commonsense examples. There are certain well-known counter-
intuitive properties of this semantics. For example, this semantics
means that any conditional with a false antecedent is true—thus, the
sentence “if the moon is striped, then Mars is spotted” is true
according to the material conditional. But intuitively it is either false
or nonsensical. 

Further problems arise because the material conditional allows
“strengthening of the antecedent”. That is, given the premise if p then
q, we can conclude that if (p and r) then q for any r. Strengthening of
the antecedent seems appropriate in mathematical contexts. If it is a
triangle, it has three sides does imply that, if it is a triangle and it is
blue, it has three sides. Indeed, this is a crucial feature of axiomatic
systems in mathematics— axiomatisation would be impossible if
adding new axioms removed conclusions that followed from the old
axioms. However, strengthening of the antecedent does not apply to
most natural language conditionals, which as we have argued are
uncertain. For example, if it is a bird, then it flies does not allow you
to infer that if it is a bird and it is an ostrich, then it flies. That is, for
natural language conditionals, conclusions can be lost by adding
premises, i.e. strengthening of the antecedent does not hold. Further,
note that whether some additional information r has this effect or not
is content-dependent; for example, if you learn that this bird is a
parrot, the conclusion that it can fly is not lost. The distinction
between inference systems in which strengthening of the antecedent
does or does not hold is of central importance to knowledge
representation in artificial intelligence. Roughly, inference systems
where strengthening of the antecedent holds are known as monotonic
systems (continuously adding premises leads to continuously adding
conclusions, without removing any); inference systems where

1. INTRODUCTION 9



strengthening of the antecedent does not hold are non-monotonic. In
artificial intelligence, it is universally accepted that human everyday
reasoning is uncertain and thus non-monotonic, and that developing
systems for non-monotonic reasoning is a major challenge (Brachman
& Levesque, 1985; Ginsberg, 1987).

Regarding our first problem with material implication, that a false
antecedent guarantees the truth of a conditional, an intuitive
diagnosis is that material implication fails to specify that there be any
connection between the antecedent and consequent—they can simply
be any two arbitrary propositions. Within the logical literature, there
have been two general approaches to capturing this intuition—
relevance logic and modal logic.

Relevance logic, as its name implies, demands that there is a
relationship of “relevance” between antecedent and consequent, where
this is defined in terms of the proof of the consequent involving the
antecedent (Anderson & Belnap, 1975). From a logical point of view,
systems of relevance logic are not well developed. For example, it has
been very difficult to provide a semantics for relevance logics
(Veltman, 1985) which means it is not clear quite what notion of
relevance is being coded by the syntactic rules used in particular
relevance logics. But in any case, the relation of relevance would not
appear to be reducible to notions of proof, particularly not in everyday
contexts, because the uncertain character of reasoning means that
proofs are never possible. So relevance logics do not appear to be a
useful direction for developing a notion of the conditional that applies
to everyday reasoning (we consider relevance-based approaches in
Chapter 5). However, in the psychology of reasoning, Braine (1978) has
advanced a relevance-based account, arguing that people naturally
only assert conditionals when the consequent is deducible from the
antecedent.

The second approach to the conditional employs modal notions, such
as necessity and possibility. Syntactic systems of modal logic and so-
called strict implication based on them were first suggested by
C.I.Lewis (1918). Semantic theories for modal logics were developed
much later by Kripke (1963), which permitted an understanding of the
notions of necessity and possibility that were being encoded in the
syntactic rules. Specifically, Kripke provides a semantics in terms of
“possible worlds”. The idea is that different modal logics can be
understood in terms of different relations of “accessibility” between
possible worlds. In these terms, a proposition is necessary if it is true
in all accessible possible worlds, and it is possible if it is true in some
accessible possible worlds.

The most philosophically important account of conditionals is given
by the Lewis-Stalnaker possible world semantics for the
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counterfactual conditional (D.Lewis, 1973; Stalnaker, 1968). A
counterfactual conditional is one in which the antecedent is known to
be false: “if the gun had gone off, he would have been killed”.
According to material implication, such claims are always true, simply
because their antecedents are false. But clearly this cannot be correct
—under most circumstances, the counterfactual “if he had stubbed his
toe, he would have been killed” will be judged unequivocally false.
Looking at the Lewis-Stalnaker semantics for such claims reveals all
the problems that logical approaches to everyday reasoning must
confront in philosophy and in artificial intelligence.

The intuitive idea behind the Lewis-Stalnaker semantics for a
conditional such as “if the gun had gone off, he would have been
killed” is based on the idea that in the world maximally similar to the
actual world but in which the gun went off, he died. Clearly, the major
issue here is what counts as the world maximally similar to the actual
one. One important criterion is that the physical laws are the same, so
that speeding bullets still tend to kill people, that the gun is pointing
in the same direction, and so on—the only difference is that the gun
went off in this world, whereas it did not in the actual world. But
there is a vast range of specific problems with this account. For
example, it is not at all clear how to construct a world where only a
single fact differs from the actual world. This is problematic because
for this to be true (assuming determinism) the difference in this
crucial fact either implies a different causal history (the bullet was a
dud, the gun was faulty etc.), or different causal laws (pulling triggers
does not make guns go off in this possible world). Moreover, a
different causal history or different causal laws will have different
causal consequences, aside from the single fact under consideration.
Thus, it appears inevitable that the so-called maximally similar world
differs in many ways, rather than just in a single fact, from the actual
world. So by changing one thing, we automatically change many things,
and it is not at all clear what the inferential consequences of these
changes should be. The problem of specifying the ramifications of a
single change to a world (or in an agent’s knowledge about its world)
is immensely difficult—in artificial intelligence this problem has been
called the frame problem (Pylyshyn, 1987) and it has bedevilled
artificial intelligence research for the last 30 years (see Chapters 2 to
4). Hence a theory of conditionals that presupposes a solution to the
frame problem is unlikely to prove satisfactory as a basis for a
psychology of conditional reasoning.

These problems aside, this semantics for the counterfactual (i.e.
where the antecedent—the gun going off—does not apply in the actual
world) has also been applied to the indicative case (where the gun may
or may not have gone off). Simplistically, the hypothetical element of
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an indicative statement such as “if the gun goes off, he is dead” seems
to be captured by the same semantics—the only difference is that we
do not know whether the actual world is one in which the gun goes off
or not. Nonetheless, this kind of semantic account does avoid some of
the absurdities of material implication. Thus, for example, sentences
like “if the moon is striped, then Mars is spotted” are now clearly false
—in worlds maximally similar to the actual world in which the moon
is striped, Mars will still look red. Crucially, it is intuitively clear that
strengthening the antecedent can no longer hold. For example, if it is
a bird, then it flies does not allow you to infer that if it is a bird and it
is an ostrich, then it flies. The worlds in which the antecedents are
evaluated will clearly differ—the world most similar to the actual
world in which something is a bird is not the same as the world most
similar to the actual world in which something is an ostrich. In
particular, in the first world, it will most likely fly (because most birds
fly); but in the second world, it will not fly (because ostriches cannot
fly). These examples suggest that the Lewis-Stalnaker semantics may
provide a more descriptively adequate, or complete*, theory of
conditionals than the material conditional.

For psychological purposes, however, we need an account of the
formal processes that could implement this semantics. People do not
have access to possible worlds—instead they have access to
representations of the world, which they can productively recombine
to produce different representations of the way the world might be or
might not have been. The programme of attempting to mechanise
reasoning about the way the world might be has been taken up by the
study of knowledge representation in artificial intelligence. The
starting point is the notion of a knowledge base, which contains
representations of a cognitive agent’s beliefs about the world. This
approach involves formal representations and formal proof procedures
that operate over these representations and that can be implemented
computationally. However, it is far from clear that formal attempts in
AI can adequately capture the Lewis-Stalnaker semantics and thereby
provide a complete* theory of conditionals.

Let us reconsider strengthening the antecedent, and perhaps the
most well-known approach to this problem within AI. Problems for
strengthening the antecedent arise when the inferences that can be
made from one antecedent intuitively conflict with the inferences that
can be made from another. For example, knowing that Tweety is a
sparrow leads to the conclusion that Tweety flies, whereas knowing
that Tweety is one second old leads to the conclusion that Tweety
cannot fly. This leads to the problem of what we infer when we learn
that Tweety is a one-second-old sparrow, i.e. the problem of what we
infer when the antecedent is strengthened. It is intuitively obvious
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that a one-second-old sparrow cannot fly: that when Tweety is one
second old, the possible world in which Tweety cannot fly is more
similar to the actual world than any other possible world where
Tweety can fly. Although this is intuitively obvious, formally, it not
obvious how to capture this conclusion. Formally we can regard these
two pieces of information as two conditional rules, if something is a
bird it can fly, and if something is one second old it cannot fly. Formal
proposals in AI (e.g. Reiter, 1985) appear unable to break the
symmetry between these rules and specify which of these conflicting
conclusions we should accept. That is, these proposals are not
complete* with respect to our intuitive understanding of how the
Lewis-Stalnaker semantics should be applied. The point here is that
in the example it is our knowledge of what the rules mean and how
the world works that indicate that a one-second-old sparrow is not
going to fly. More generally, it is not the formal properties of
conditionals that determine the subsets of possible worlds in which
they are evaluated in the Lewis-Stalnaker semantics. What matters is
the content of the rules, to which the formal procedures for inference
in logicist AI do not have access.

There have been a variety of alternative proposals within the AI
literature to deal with the problem of strengthening the antecedent, or
default reasoning. The best known are McCarthy’s (1980)
circumscription, McDermott and Doyle’s (1980) non-monotonic logic I,
McDermott’s (1982) non-monotonic logic II, and Clark’s (1978)
predicate completion. However, the problems that we have described
appear to apply equally to all of these approaches (Hanks &
McDermott, 1985, 1986; Shoam, 1987, 1988) (see Chapter 4).
Moreover, approaches based on formal logic within the psychology of
reasoning, for example, mental logics (e.g. Rips, 1994) and mental
models (e.g. Johnson-Laird & Byrne, 1991) also fail to address these
issues, because the approach they adopt formalises the conditional
using the standard logic of material implication. However, as we have
seen, the material conditional completely fails to capture the use of
conditionals in everyday inference (see Chapters 4, 7, and 8).

We have seen that conditional inference is of fundamental
importance to cognitive science, as well as to artificial intelligence,
logic, and philosophy. We have suggested that the difficulties that
arise in capturing conditional inference indicate a very profound
problem for the study of human reasoning and the study of cognition
at large. This is that much of our reasoning with conditionals is
uncertain, and may be overturned by future information; but logic-
based approaches to inference are typically monotonic, and hence are
unable to deal with this uncertainty. Moreover, to the extent that
formal logical approaches embrace non-monotonicity, they appear to
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be unable to cope with the fact that it is the content of rules, rather
than their logical form, which appears to determine the inferences that
people draw. In Part I we explore these issues, and their implications
for logic-based approaches to reasoning and cognition, and we note
that the ramifications of these points are very general, applying to
many psychological proposals that are not explicitly founded on
logical principles. In Part II we take up the suggestion that perhaps
by encoding more of the content of people’s knowledge, using
probability theory, we may more adequately capture the nature of
everyday human inference. This seems to make intuitive sense,
because the problems that we have identified concern how uncertainty
is handled in human inference, and probability theory is the calculus
of uncertainty.

PART II: THE PROBABILISTIC APPROACH AND
RATIONAL ANALYSIS

In Part II we argue that if human reasoning is uncertain then rather
than using the calculus of certainty, i.e. logic, to model such reasoning,
we should use the calculus of uncertainty, i.e. probability theory. In
our work we have adopted this approach and in the following section
we briefly illustrate how it succeeds in accounting for the apparently
irrational behaviour observed on Wason’s selection task. Our
probabilistic approach allows us to construct a “rational analysis” of
reasoning as defined by Anderson (1990) which locates our account at
a particular level of computational explanation. We first introduce
some of the conceptual foundations of probability theory that are
important to the subsequent chapters, and then outline the
probabilistic methods that can be used to explain psychological
phenomena using Anderson’s (1990) rational analysis approach.

Probability Theory and Uncertain Inference

The elements of probability theory and statistics are familiar to
researchers in cognitive psychology and the cognitive sciences
generally. However, statistics are frequently encountered in their role
as tools for data analysis, rather than in their broader context as
methods for inference. It is in this latter context that statistical
methods can plausibly be viewed as models of cognition (and we shall
consider some aspects of the psychological tradition of statistical
modelling, in relation to neural network models). Moreover, because
of the dominance of a limited “data analysis” view of statistics in certain
areas of the cognitive sciences, the claim that neural networks might
be just statistical models is sometimes viewed with incredulity.
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Hence, we begin by sketching the broader view of statistics as very
general mathematical methods for uncertain inference, within which
statistical methods as used in data analysis in the cognitive sciences
form only a small part.

Statistical inference is founded upon the mathematical theory of
probability, and the distinct statistical traditions differ on how this
theory is understood. The interpretation of probability theory has been
controversial since its very beginnings. Nonetheless, the most usual
early interpretation of probability theory was as a tool for formalising
rational thought concerning uncertain situations, such as gambling,
insurance, and the evaluation of court-room testimony (Gigerenzer et
al., 1989). Indeed, the very choice of the word “probability”, which
referred to the degree to which a statement was supported by the
evidence at hand, embodied this interpretation—that is, “probability”
originally signified “rational degree of belief”. Jakob Bernoulli
explicitly endorsed this interpretation when he entitled his definitive
book Ars conjectandi, or The Art of Conjecture (Bernoulli, 1713).

This “subjectivist” conception ran through the eighteenth and into
the nineteenth centuries (Daston, 1988), frequently without clear
distinctions being drawn between probability theory as a model of
actual thought (or more usually, the thought of “rational”, rather than
common, people [Hacking, 1990]) or as a set of normative canons
prescribing how uncertain reasoning should occur. In a sense, then,
early probability theory itself was viewed as a model of mind.

As the distinction between normative and descriptive models of
thought became more firmly established, probability theory was
primarily seen as having normative force, as characterising
rationality; whether or not people actually followed such normative
dictates was seen as a secondary question. A wide variety of
arguments that purport to show that individual degrees of beliefs
should obey the laws of probability calculus have been developed,
based on betting quotients and “Dutch book” arguments (de Finetti,
1937; Ramsey, 1931; Skyrms, 1977), theories of preferences (Savage,
1954), scoring rules (Lindley, 1982) and derivation from minimal
axioms (Cox, 1961; Good, 1950; Lucas, 1970). Although each argument
can be challenged individually, the fact that so many different lines of
argument converge on the very same laws of probability has been
taken as powerful evidence for the view that degrees of belief can be
interpreted as probabilities (e.g. see Earman, 1992 and Howson &
Urbach, 1989, for discussions). The sugges tion that probability theory
can be viewed as a normative theory of uncertain reasoning sets the
bounds of probability theory much wider than the confines in which it
is frequently encountered in introductory textbooks. According to this
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view, probability theory is not just concerned with reasoning about
coins, dice, and accident rates, but is a calculus for rational thought.

Many inferential problems concern the relationship between models
or hypotheses, and observation or data. Some of these problems are
concerned with inferring the probability of various kinds of
observation, given that the structure of the underlying model is
known. So, for example, the model might be a fair coin, and the
question of interest might be the probability that 50 heads or more
will be obtained in 200 throws. Statistical inference, by contrast,
applies in the opposite direction, using observed data to infer the
structure of the underlying model. For example, given the observation
of 50 heads in 200 throws, assessing whether the coin is unbiased,
what its likely bias might be, and with what confidence the bias can
be estimated, all involve statistical inference, because observed data
are used to infer aspects of the underlying model.

The problem of inductive or statistical inference is very general, and
arises, in different guises, in a variety of domains. In epistemology
and the philosophy of science, the problem is that of choosing the
hypothesis or theory that is best supported by a given body of
empirical observations: this is the problem of induction. A particular
approach to statistics, the Bayesian approach, is by far the most well-
developed formal account of inductive reasoning (e.g. see Earman,
1992; Horwich, 1982; Howson & Urbach, 1989). In the context of
psychology, cognitive science and artificial intelligence, machine
learning, pattern recognition and the study of neural networks,
statistical inference corresponds to the problem of learning underlying
structure from experience. It is with this broad sense of the scope of
statistics in view that the claim that the mind is an intuitive
statistician (Gigerenzer & Murray 1987), or that cognitive processes
can be viewed as statistical processes, can be understood. The claim is
not merely that the mind performs t tests or ANOVAS (although this
has been proposed [Kelley, 1967]). It is that the dictates of statistical
theory concerning inductive inference are descriptive, not just
prescriptive, regarding certain aspects of thought.

The project of characterising statistics is complicated by the variety
of different statistical schools, many differences of which stem, as
noted earlier, from different interpretations of the probability calculus.
So far, we have considered the subjectivist interpretation, according to
which probabilities are primarily interpreted as concerning rational
updating of degrees of belief. This viewpoint sees no fundamental
distinction between inference from beliefs about hypotheses to beliefs
about data (the standard probabilistic case), and statistical inference
in the reverse direction. Bayes (1763) showed that inference in the two
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directions can be related by a simple corollary of the axioms of
probability:

This result is the foundation of Bayesian statistics, which allows the
probability of a model or hypothesis Hj given data D to be estimated,
given the probability of the data D given each possible model or
hypothesis Hi, and the prior probability of each Hi. By the application
of Bayes’ theorem, the normal laws of probability can be used to infer
how probable each of a range of hypotheses is, given a data set, simply
by mechanical calculation. Notice that the denominator is the same
whatever hypothesis is under consideration, and acts as a
normalisation factor which ensures that the probabilities P(Hi|D) sum
to 1. It is often treated as a constant, and Bayes’ theorem is then
expressed, as above, by stating that P(Hj|D) is proportional to P(Hj|D)
P(Hj)

According to a subjectivist interpretation, the prior probability P(Hj)
can be interpreted as an initial degree of belief in the hypothesis Hj.
But for alternative views of probability, such as the frequentist
interpretation (according to which probabilities are the limits of
relative frequencies of repeated events, e.g. Fisher, 1922; Von Mises,
1939) and objectivist interpretation (according to which probabilities
are objective properties of the world [Mellor, 1971]), it is difficult to
see how any sense can be made of such probability statements. For
this reason, among others, various alternatives to Bayesian statistics
have since been derived. The principal alternative schools are those of
Fisher (1956, 1970) and Neyman and Pearson (e.g. Neyman 1950),
and most standard statistical tests within the behavioural sciences
(e.g. the f test, the ANOVA, χ2 test) were developed by these schools
(though the standard discussion of such tests in introductory
statistical textbooks frequently blends incompatible elements of these
approaches together—see Gigerenzer et al., 1989). We shall focus on
Bayesian statistical methods henceforth, as it is these, and related
methods, that most closely relate to neural network models.
Furthermore, the subjectivist, Bayesian approach relates probability
and statistics most directly to problems of belief updating, and hence
has the most natural relation to cognitive processing.

At this level of generality, it should be clear that there is no
limitation on the nature or complexity of the models (hypotheses,
theories) that can be assessed using Bayesian statistics, aside from
the fact that they must be well enough specified that the probability
of each data outcome can be calculated given that the model holds.
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That is, hypotheses or theories must constitute probabilistic models.
(In practice, of course, many hypotheses are not well enough specified
for this to be possible, and additional assumptions must be made to
fill out the hypothesis or theory into a full probabilistic model, but we
shall not be concerned with this issue here.)

From a probabilistic point of view, the natural interpretation of
conditionals is in terms of conditional probability. Thus, birds fly (or
more longwindedly, if something is a bird then it flies) can be regarded
as claiming that the conditional probability of something flying, given
that it is a bird, is high. Probability theory naturally allows non-
monotonicity. If all we know about a thing is that it is a bird, then the
probability that it flies might be, say, 0.9 (P[flies|bird]=0.9); but the
probability of it flying given that it is both a bird and an ostrich is 0 or
nearly 0 (P[flies|bird, ostrich]=0). These statements are completely
compatible from the point of view of probability theory. This approach
to the meaning of conditional statements has been proposed in
philosophy by Adams (1966, 1975), and has also been adopted in
artificial intelligence (Pearl, 1988). Problems have been raised with
this probabilistic interpretation of the conditional, essentially
concerning the rather unnatural scenario in which conditionals are
embedded—e.g. if (if P then then R (Lewis, 1976)—although the
relevance of these problems to the design of artificial intelligent
systems and to human cognition is unclear (Pearl, 1988).

The application of probabilistic methods to inference is a vast topic.
In Chapter 16, we consider some of the wider issues and problems for
probabilistic approaches to inference, describing recent developments
such the use of maximum entropy (Jaynes, 1989) and minimum
description length (Rissanen, 1989). For the purposes of this book, the
elementary treatment given earlier is sufficient to serve our goal of
providing a “rational analysis” of human reasoning in the context of a
particularly problematic experimental reasoning task, Wason’s
selection task, which will be the case study discussed in Part II.

Rational Analysis

Chapters 10to 13 present our rational analysis of Wason’s selection
task. Chapter 14 defends the account against a variety of objections
raised by Almor and Sloman (1996), Evans and Over (1996a), and
Laming (1996). Chapter 15 applies the analysis to data obtained by
Sperber, Cara, and Girotto (1995) and relates our rational analysis to
their account based on relevance theory.

The essence of rational analysis (Anderson, 1990) is to view cognitive
processes as approximating some normatively justified standard of
correct performance. Thus, in the context of reasoning, normative
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theories such as logic and probability theory, can be used as the basis
for a description of human reasoning behaviour (Oaksford & Chater,
1995b). The roots of rational analysis derive from the earliest
attempts to build theories of rational thought, i.e. logic and
probability. Probability theory was originally developed as a theory of
how sensible people reason about uncertainty (Gigerenzer et al.,
1989). Thus, the early literature on probability theory treated the
subject both as a description of human psychology, and as a set of
norms for how people ought to reason when dealing with uncertainty.
Similarly, the earliest formalisations of logic (Boole, 1951/1854)
viewed the principles as describing the laws governing thought, as
well as providing a calculus for good reasoning. This early work in
probability theory and logic is a precursor of rational analysis,
because it aims both to describe how the mind works, and to explain
why the mind is rational.

The twentieth century has, however, seen a move away from this
“psychologism” (Frege, 1879, 1950/1884; Hilbert, 1925), and now
mathematicians, philosophers, and psychologists sharply distinguish
between normative theories, such as a probability theory and logic,
which are about how people should reason, and descriptive theories of
the psychological mechanisms by which people actually reason.
Moreover, a major finding in psychology has been that the rules by
which people should and do reason are not merely conceptually
distinct; but they appear to be empirically very different (Kahneman &
Tversky, 1973; Kahneman, Slovic, & Tversky, 1982; Wason, 1966;
Wason & Johnson-Laird, 1972). Whereas very early research on
probability theory and logic took their project as codifying how people
think, the psychology of reasoning has suggested that probability
theory and logic are profoundly at variance with how people think. If
this viewpoint is correct, then the whole idea of rational models of
cognition is misguided: cognition simply is not rational.

Rational analysis suggests a return to the earlier view of the
relationship between descriptive and normative theory—i.e. that a
single theory can, and should, do both jobs. A rational model of
cognition can therefore explain both how the mind works and why it is
successful. But why is rational analysis not just a return to the
conceptual confusion of the past? It represents a psychological
proposal for explaining cognition that recognises the conceptual
distinction between normative and descriptive theories, but explicitly
suggests that in explaining cognitive performance a single account
that has both functions is required. Moreover, contemporary rational
analyses are explicit scientific hypotheses framed in terms of the
computer metaphor, which can be tested against experimental data.
Consequently a rational model of cognition is an empirical hypothesis
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about the nature of the human cognitive system and not merely an a
priori assumption.

The computational metaphor is important because it suggests that
rational analyses should be described in terms of a scheme for
computa tional explanation. Rational analysis provides a
computational-level explanation of cognitive phenomena in the sense
of Marr (1982) that we have already discussed. Moreover, rational
analysis, unlike early developments of logic and probability, aims to
model detailed experimental data on cognitive function—rational
analyses must be descriptively adequate with respect to these data, as
well as being normatively justified. Recent research on rational
analysis spans a wide range of cognitive phenomena, including
memory, categorisation, and search, as well as reasoning (see
Oaksford & Chater, 1998a, for a survey of recent developments in
rational analysis).

So far, we have considered rationality in the abstract—as consisting
of reasoning according to sound principles. But the goals of an agent
attempting to survive and prosper in its ecological niche are more
concrete—it must decide how to act in order to achieves its goals. In
the model we discuss in Part II we will make a very minimal but
crucial assumption about the environment in which reasoners must
act. We call this the “rarity” assumption, which is simply that most
properties about which people reason apply to only a small proportion
of the objects in the world. If this assumption holds then we can view
people’s behaviour as optimal with respect to some goal, e.g.
maximising information gained, or maximising expected utility. This
style of explanation is similar to optimality-based explanations that
have been influential in other disciplines. In the study of animal
behaviour (Kacelnik, 1998), foraging, diet selection, mate selection
and so on, have all been viewed as problems, which animals solve
more or less optimally. In economics, people and firms are viewed as
more or less optimally making decisions in order to maximise utility
or profit.

Models based on optimising, whether in psychology, animal
behaviour, or economics, need not, and typically do not, assume that
agents are able to find the perfectly optimised solutions to the
problems that they face. Quite often, perfect optimisation is
impossible even in principle, because the calculations involved in
finding a perfect optimum are frequently computationally intractable
(Simon, 1955, 1956), and, moreover, much crucial information is
typically not available. The agent must still act, even in the absence of
the ability to derive the optimal solution (Chater & Oaksford, 1996;
Gigerenzer & Goldstein, 1996; Simon, 1956). Thus, there may be a
tension between the theoretical goal of the rational analysis and the
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practical need for the agent to be able to decide how to act in real time,
given the partial information available. This leads directly into the
area of what Simon (1955, 1956) calls bounded rationality. Anderson’s
programme of rational analysis explicitly takes cognitive limitations
into account—that is, the cognitive system is viewed is approximating
a normative standard within the limits imposed by memory and
processing restrictions.

In Part II we develop a rational analysis of a family of reasoning
tasks formulated by Peter Wason (1966, 1968) which we now
introduce. 

Wason’s Selection Task

In Wason’s selection task, an experimenter presents participants with
four cards, each with a number on one side and a letter on the other,
and with a rule of the form if p then q. For example, if there is a vowel
on one side (p), then there is an even number on the other side (q).
The four cards show an “A”(p card), a “K”(not-p card), a “2”(q card) and
a “7”(not-q card). Participants have to select those cards that they
must turn over to determine whether the rule is true or false. It has
been standardly assumed that, logically, participants should select
only the p and not-q cards. However, only 4% of participants make
this response, other responses being far more common—p and q cards
(46%); p card only (33%); p, q, and not-q cards (7%); p and not-q cards
(4%) (Johnson-Laird & Wason, 1970a). These results appear to
suggest that people are very poor at logical reasoning even on such a
superficially simple task.

This is a very robust result that has been taken by many
commentators as casting doubt on human rationality (Stich, 1985,
1990). Even popularisations of human cognition cite the task as
evidence of poor human reasoning performance, suggesting that
similar errors occur outside the laboratory sometimes with tragic
results (e.g. Sutherland, 1992). Indeed Wason’s selection task has
been taken as a benchmark against which to test theories of
reasoning. For example, theories such as Evans’ (1984, 1989) heuristic
account, Cheng and Holyoak’s (1985) pragmatic reasoning schemas,
and Cosmides’ (1989) Darwinian algorithms account were all
introduced via their ability to predict effects in variants of the
selection task.

The central importance of this task to the development of theories
of human reasoning makes it a natural place to begin developing a
probabilistic approach to human inference. We argue that
performance on this task is a reflection of people’s everyday reasoning
strategies which are adapted to the uncertainty of the real world. By
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switching to a probabilistic viewpoint we are able to develop a
rational analysis of performance on a range of different versions of the
selection task. According to our rational analysis, human performance,
far from being in error, in fact displays an optimal adaptation to the
environment. Consequently we are able to provide rational
explanations for what had previously seemed a baffling and irrational
pattern of experimental reasoning performance. So, rather than
representing a blatant example of human irrationality, performance
on this task can be viewed as an example of human rationality.
Crucially, our account reconciles the paradox between the apparent
irrationality of human performance on the selection task and the
manifest success of human reasoning in the everyday, uncertain
world. 

NOTE

1. It may appear that Rips can appeal to the venerable distinction
(Strawson, 1950) between statements (uses of sentences on particular
occasions) and sentences. One could argue that using a rule to predict
the world on a particular occasion involves “mentally asserting” that the
rule holds in that particular context, even though the conditional
sentence if the car is gone, then someone has driven it away is not
invariably true, across all contexts. That is, you must state that the rule
holds on a particular occasion in order to use it in inference. Of course,
on this occasion, the rule may not hold, in which case the mental
assertion is false. But then this means that Rips would have to make
sense of a notion of truth in context (Levinson, 1983), which is precisely
the project of devising schemes of uncertain reasoning, i.e. allowing that
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SUMMARY

The closing chapter of this book has two sections. In the first we
review themost recent evidence on our probabilistic account of the
selection task andsome new extensions to other reasoning tasks. This
review reveals that theprobabilistic approach to the selection task and
to the psychology ofreasoning in general is indeed proving fruitful.
Moreover, the promise toprovide detailed formal models of other
reasoning tasks, thereby revealingthe rational bases of participants’
behaviour, is being fulfilled. In the secondsection we take up the
challenge posed in Part I: Can a probabilisticapproach resolve the
problems for logicism that we have introduced here?Although we do
not shy away from presenting the many problems confronting a
probabilistic approach, we argue that it does provide a
moredescriptively adequate, or complete*, account of reasoning, i.e. it
provides afar securer platform than logicism from which to build
computationalaccounts of human reasoning.



things that are true in one context can be false in extensions of that
context or indeed in completely different contexts. That is, from a logical
point of view, this way of attempting to maintain the idea that everyday
conditional rules can be treated within standard logic, leads directly to
the need to define a notion of truth in context. This move simply
recreates all the problems of dealing with uncertainty, which
notoriously cannot be handled in a standard logical framework.
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PART I

Problems with Logicism

In Chapter 1, we introduced the problems of uncertainty in human
reasoning, and the various proposals of the logicist approach to
cognitive science for dealing with these problems. The papers collected
together in Part I address these logicist proposals and their
difficulties in detail. We suggest that the arguments put forward in
these papers undermine the logicist approach to the psychology of
human reasoning, and also the wider logicist programme in cognitive
science as a whole. 



CHAPTER TWO
Autonomy, Implementation, and

Cognitive Architecture: A Reply to Fodor
and Pylyshyn

INTRODUCTION

In Chapter 1, we noted that logicist cognitive science relies on the idea
that logic can provide a way of solving the fundamental problem of
understanding rational mechanisms. The idea is that logic provides a
computational-level theory of human inference, and that formal, proof-
theoretic operations can provide algorithms for logical inference.
These algorithms are themselves assumed to be implemented
somehow in the brain.

There are two criteria of adequacy that any computational-level
theory of human inference must meet. The first is that it must
adequately capture the pattern of real human inference. In Chapter 4,
we express this constraint by saying that such a computational-level
theory must be complete*, as defined in Chapter 1. The second is that
it must be consistent with constraints from the algorithmic and
implementational levels. That is, there must be tractable algorithms
that at least approximate the computational-level theory, and it must
be possible to implement these efficiently in the human brain.

This chapter deals with both challenges to logicism, starting with
the question of compatibility between levels of analysis. Neuroscience
has provided a wealth of information about the nature of the
biological substrate of cognition. However, it is not immediately
apparent how, or whether, this detailed information about
implementation constrains the algorithmic and computational levels.
Research on connectionism, which studies the computational
properties of networks of neuron-like elements, has, however, begun
to provide tentative suggestions about the form that such constraints
might take. Some of these constraints, particularly concerning the
slowness of neural hardware, and the comparative speed of cognitive
operations, appear to be incompatible with many traditional accounts
of cognition. Specifically, they appear incompatible with accounts using
logic as a computational-level theory.



Fodor and Pylyshyn (1988) defended the logicist position against
connectionist attack. They suggest that the fundamental dispute
between connectionist and logicist cognitive science (which Fodor and
Pylyshyn refer to as “classical” cognitive science) is that connectionists
abandon structured representation. Structured representation is
required to capture the systematicity of thought: that is, to
differentiate the constituents of a relation, and the roles they play.
For example, thinking that John loves Mary and thinking that Mary
loves John appear to be systematically related—the same constituents
occur, but related in different ways. The systematic relationship
between the two thoughts is reflected in natural language by the fact
that the interpretation of each sentence depends on its syntactic
structure. Fodor and Pylyshyn argue that, in the same way, some
internal system of structured representation is required to account for
the relationship between the thoughts themselves. They claim that
connectionist researchers deny that such structured representations
are required by the cognitive system. Fodor and Pylyshyn therefore
take the fundamental dispute between the logicist approach to
cognitive science and connectionism to concern whether or not
cognitive processes operate over structured representations.

In this chapter, we suggest that Fodor and Pylyshyn have
misidentified the fundamental import of connectionist research for
logicist cognitive science, and thus their attempted defence of the
logicist position is not successful. We argue that connectionists and
logicists alike agree on the importance of structured representations;
connectionists are, however, concerned with how structured
representations can be implemented in networks of simple computing
elements, which are assumed to have some (rather abstract) relation
to the neural machinery of the brain.

The substantive dispute between connectionism and logicism
concerns whether or not the two adequacy criteria on logic as a
computational-level theory of cognition can be met. First,
connectionist research has suggested that properties of neural
hardware may significantly constrain algorithmic and computational-
level theories. Specifically, the classical symbolic architecture which
provides the most natural implementation of logic appears unable to
capture many properties of cognition, which connectionist systems
capture successfully—Fodor and Pylyshyn refer to such properties as
the “lures” of connectionism, and argue that they are spurious. Second,
logic cannot model the patterns of human inference, because human
inference is defeasible, whereas logical inference is not—i.e. logic
cannot be complete* with respect to human inference. Attempts to
extend logic to deal with defeasibility appear to fail on both counts—
they are not complete* and they are computationally intractable, and
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therefore cannot be plausibly implemented on any computational
architecture, including the human brain (we deal with these problems
with logical approaches to defeasible inference extensively in later
chapters). In this chapter, we suggest that some of the “lures” of
connectionism seem to provide just the properties required to
implement schemes for defeasible inference.

At one point, directly pursuing a connectionist theory of inference
appeared to us to be a promising direction for research. However, the
appearance of Anderson’s work on “rational analysis”, building on
Marr’s levels of computational explanation, persuaded us that the
project of providing an adequate computational-level theory, or
rational analysis, of human inference was a prerequisite before any
other aspects of computational explanation could be developed.
Therefore, we do not pursue connectionist approaches to inference in
this book, but concentrate instead on the question of completeness*—
i.e. establishing the correct computational-level theory of human
inference. As we note in Part II of this book, probability theory may
provide a more adequate computational-level theory of human
inference. In the final chapter, we discuss the compatibility of
probabilistic computational-level theories with connectionist
implementations.

AUTONOMY, IMPLEMENTATION AND
COGNITIVE ARCHITECTURE: A REPLY TO FODOR

AND PYLYSHYN

Fodor and Pylyshyn’s (1988) defence of the classical symbolic
paradigm against the emergent connectionist paradigm in cognitive
science depends on the assumption that connectionism eschews
structured representation. However, this assumption is belied by the
numerous attempts of connectionists to implement structured
representations in neural networks (Derthick, 1987; Hinton 1981;
Rumelhart, Smolensky, McClelland, & Hinton, 1986; Touretzky &
Hinton, 1985). Thus, the issue of structured representation cannot be
the principal point of disagreement between classicist and
connectionist. We contend that although Fodor and Pylyshyn (1988)
are right to argue that connectionism is an implementational theory,
this does not detract from connectionism’s relevance to psychological
explanation. Fodor and Pylyshyn’s contention that implementational
considerations are irrelevant to psychological explanation only follows
on the assumption that cognitive and implementational levels are
computationally and hence explanatorily autonomous (Fodor &
Pylyshyn, 1988, p. 66). We argue that in attempting to account for the
various alluring properties of connectionist systems, Fodor and
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Pylyshyn (1988) are systematically forced to abandon the autonomy
assumption, thereby assuring the relevance of connectionism to
psychological explanation.

The “Lure” of Connectionism

We now re-examine the various “lures” of connectionism. We argue
that Fodor and Pylyshyn’s objections stem directly from their stand on
autonomy. There are two readings of the claim that the cognitive level
is implementation-independent.

The first reading is that the cognitive level can be formally specified.
This formal specification must be implementable, but is wholly
independent of the particular implementation employed. We can
understand the behaviour of a PROLOG program independently of the
layers of software on which it runs, and the hardware realisation in
the VAX. That such independence of higher levels is possible is a
central result in computability theory. Establishing the notion of a
Universal Programmable Machine demonstrates that hardware places
almost no constraints on the class of implementable virtual machines.
The second reading is that the implementational level cannot affect
higher-level processes. Fodor and Pylyshyn are aware that this is an
absurd position. Pylyshyn (1984) points out that implementation
affects complexity profile, the effects of damage, reliability and so on.
As the second reading is agreed to be absurd, the real nature of the
dispute is whether the cognitive level can be formally specified in an
implementation-independent way. The Classicist believes in formal
autonomy; the Connectionist does not. Fodor and Pylyshyn take formal
autonomy to imply that implementation is irrelevant to cognition. To
explain the lures we will consistently urge that the cognitive level
must interact with properties of the implementation, and so cognitive
performance cannot be explained implementation-independently, pace
formal autonomy. We will also argue that, in any case,
implementational considerations severely constrain the class of
cognitively plausible architectures, even if autonomy can somehow be
preserved. Hence we will conclude that connectionism is relevant to
cognition.

The “lure” of connectionism consists of a series of properties shared
by connectionist devices and the human cognitive system. Fodor and
Pylyshyn argue that the lures are consistent with an appropriately
implemented formally autonomous classical architecture. By contrast
the Connectionist is not convinced that this is possible. To resolve this
issue we now discuss the lures in detail.
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To begin, we must reclassify Fodor and Pylyshyn’s breakdown of the
lures as certain phenomena are cross-classified. They provide the
following list: 

1. Speed
2. Content addressability and pattern recognition
3. The blurring of rule-governed and rule-exceptional behaviour
4. Non-verbal or intuitive processes
5. Resistance to damage and noise
6. Active versus passive storage
7. All-or-none processing, including:

a. Partial rule matching
b. Non-determinism
c. Graceful degradation

8. Brain-style modelling

Some of these issues cluster together. Connectionist approaches to
massively parallel soft constraint satisfaction (6) purchase the
alluring properties of graceful degradation (7c), content addressability
(2), and a property Fodor and Pylyshyn do not mention, automatic
generalisation. Fodor and Pylyshyn group noise and damage tolerance
(5) together, but ignore the former. Noise tolerance and partial pattern
recognition (7a) are special cases of graceful degradation. Damage
tolerance and rule-governed and rule-exceptional behaviour (3) will be
dealt with separately. We thus invoke five clusters:

1. Speed (Fodor and Pylyshyn’s 1)
2. Tolerance of damage (Fodor and Pylyshyn’s 5)
3. Massively parallel soft constraint satisfaction (Fodor and

Pylyshyn’s 2, 5, 7a, 7c)
4. The blurring of rule-governed and rule-exceptional behaviour

(Fodor and Pylyshyn’s 3)
5. Brain-style modelling (Fodor and Pylyshyn’s 8)

Some of the issues that Fodor and Pylyshyn raise are peripheral to
connectionism. The distinction between active and passive memory (6)
concerns whether the control regime is completely distributed
throughout the system (active, no CPU, no interpreter) or completely
centralised (passive, CPU and interpreter). It is not about memories
“doing” or “not doing” things. Thus, their discussion of Kosslyn and
Hatfield (1984) is not germane (pp. 52–3). While many connectionist
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systems possess active memory in this sense, some do not (e.g.
Derthick, 1987; Shastri, 1985).

Non-verbal and intuitive processing (4) are not addressed by Fodor
and Pylyshyn, and so we will not discuss them further. We do not
know the origin of the alleged “lure” of non-determinism (7b). The
macroscopic non-determinism of human behaviour seems equally
compatible with classicism or connectionism. 

Speed
It has been argued that there is an upper bound of about 100 serial
steps on any cognitive process lasting less than a second (Feldman &
Ballard, 1982). The Connectionist claims that the Classicist cannot
account for this fact. However, Fodor and Pylyshyn contend that “All
[the 100-step constraint] rules out is the (absurd) hypothesis that
cognitive architectures are implemented in the brain in the same way
as they are implemented on electronic computers” (1988, p. 55). Yet the
100-step constraint does severely limit the class of cognitively
plausible algorithms. For example, it rules out this algorithm for
addition: subtract 1 from the second number and add 1 to the first
until the second is 0; the sum is the final value of the first. We suspect
that most people can add 1,000,000 and 1,000,000 in less than 1
second. However, our algorithm would require 1,000,000 steps. It is
excluded by the 100-step constraint.

Fodor and Pylyshyn suggest that since “it is not even certain that
the firing of neurons is invariably the relevant implementation
property…the 100 step ‘constraint’ excludes nothing” (p. 55). So,
perhaps we can push up n (the number of steps that can be computed
in less than a second). Connectionists themselves have suggested how
this may be achieved by probabilistic coding (e.g. Hinton & Sejnowski,
1986) and have speculated that fast neuronal changes other than
firing may be computationally important (Von der Malsburg &
Bienenstock, 1986). Only by doing connectionism will we discover what
neural properties are computationally relevant. At best Fodor and
Pylyshyn may hope that n may be significantly greater than 100.
However, even if n is higher by one or two orders of magnitude, the n-
step constraint will still significantly restrict the class of cognitively
plausible algorithms. The substantive practical issue is whether the
Classicist can implement his favourite cognitive algorithms without
violating the n-step constraint. As classicist algorithms typically
require many millions of machine operations, the n-step constraint
presents a non-trivial challenge to the Classicist.
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Tolerance of Damage
The Connectionist claims that classical symbolic computation does not
have the damage tolerance characteristic of human cognition.
Connectionist systems achieve damage tolerance by using distributed
representations. However, Fodor and Pylyshyn argue that “neural
distribution of representations is just as compatible with classical
architectures as it is with connectionist networks” (1988, p. 56). All
the support they adduce for this claim is that “all you need [our
italics] are memory registers that distribute their contents over
physical space” (p. 56). However, distributed representations are
damage tolerant not simply because they have spatially non-localised
coding but because the internal structure of the symbol reflects its
semantic properties, e.g. PEACH and APRICOT will have similar bit
vectors. Arbitrary redundancy is like storing the same piece of
information in many places. If all copies are damaged, however
partially, there is a catastrophic loss of performance. In a non-
arbitrary distributed scheme, similar objects are represented by
similar bit vectors. Therefore, even if the representation is so damaged
that PEACH cannot be reconstructed, a semantically related item will
be selected, for example APRICOT (Hinton, McClelland, &
Rumelhart, 1986, p. 102). This permits an understanding of graded
semantically systematic error.

Massively Parallel Soft Constraint Satisfaction
This lure falls under four subheadings: (i) memory is content-
addressable and pattern recognition easy; (ii) memory is noise
resistant; (iii) rules can be partially satisfied giving (iv) graceful
degradation. These issues are distinguished in Fodor and Pylyshyn,
but are all direct consequences of the connectionist approach to
massively parallel soft constraint satisfaction. Connectionists contend
that standard symbolic computation does not have these properties.
To maintain autonomy Fodor and Pylyshyn must believe that an
appropriate implementation of a classical architecture can capture (i)
to (iv).

In Fodor and Pylyshyn’s reply to the lures, they say nothing about
(i). So arguments that conventional methods such as “hash coding” are
inadequate remain unchallenged (Hinton, McClelland, & Rumelhart,
1986).

Fodor and Pylyshyn identify the problem of noise (ii) to be tolerance
of “spontaneous neural activity” (1988, p. 52). However, it is usually
seen as the problem of achieving reliable computation with a degraded
input. The input may be degraded for many reasons: e.g. noisy
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background conditions (in ordinary speech recognition); errorful
memory retrieval cues (Hinton, McClelland, & Rumelhart, 1986);
stimuli in peripheral vision; internal noise, whether generated by
spontaneous neural activity or physical damage. The section
“Resistance to noise and physical damage” does not mention noise but
it is raised briefly in the discussion of “soft” constraints: “The soft or
stochastic nature of [classical] rule-based processes arises from the
interaction [our italics] of deterministic rules with real-valued
properties of the implementation, or with noisy inputs or noisy
information transmission” (1988, p. 58). This does not constitute an
autonomous solution to the problem of noise, as interaction between
implementation and cognitive architecture simply concedes
autonomy.

Similarly, in discussing (iii), Fodor and Pylyshyn seem immediately
to concede autonomy: “One can have a classical rule system in which
the decision concerning which rule will fire resides in the functional
architecture and depends on continuously varying magnitudes [thus
abandoning autonomy]. Indeed, this is typically how it is done in
practical ‘expert systems’ which, for example, use a Bayesian
mechanism in their production-system rule-interpreter” (1988, p. 58).
Contra Fodor and Pylyshyn the statistical processes of Bayesian
inference in practical expert systems are defined at the level of
cognitive architecture, not functional architecture (Charniak &
McDermott, 1985, p. 460). So the traditional solution is an
autonomous classical model. This approach seems unpromising in the
light of complexity results for standard Bayesian techniques
(Charniak & McDermott, 1985, Chapter 8). So the concession to non-
autonomy is well motivated.

Autonomy is again apparently conceded in discussing (iv). Fodor
and Pylyshyn argue that a classical rule system may capture graceful
degradation: “rules could be activated in some measure depending on
how close their conditions are to holding. Exactly what happens in
these cases may depend on how the rule-system is implemented” [our
italics] (1988, p. 58). To have the activation of a cognitive-level rule
dependent on properties of the implementation completely abandons
autonomy. Fodor and Pylyshyn suggest that it is possible in principle
that some implementation of Newell’s (1969) hierarchy of weak
methods or Laird, Rosenbloom, and Newell’s (1986) universal sub-
goaling may capture graceful degradation. But the Connectionist
doubts that it can be achieved in practice in an autonomous
architecture. In contrast, many connectionist systems have been held
to achieve graceful degradation quite naturally (McClelland,
Rumelhart, & Hinton, 1986). Fodor and Pylyshyn deny this claim
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(1988, pp. 58–9) but in the absence of specific criticisms we must
assume that the lure of graceful degradation stands.

Although Fodor and Pylyshyn separate the aforementioned points,
they are all direct consequences of the fact that connectionist systems
“provide an efficient way of using parallel hardware to implement
best-fit searches… Each active unit represents a ‘microfeature’ of an
item, and the connection strengths stand for plausible
‘microinferences’ between microfeatures. Any particular pattern of
activity of the units will satisfy some of the micro-inferences and
violate others. A stable pattern of activity is one that violates the
plausible microinferences less than any of the neighbouring patterns”
(Hinton, McClelland, & Rumelhart, 1986, pp. 80–1). Given this
intuitive picture we can see how the various lures emerge.

When an arbitrary sufficiently large fragment of a pattern is
presented the microinferences produce the nearest possible completion
(stable state). Hence, any sufficiently large part of the content of the
memory will access the whole memory. That is, memory is content-
addressable (i). If part of the presented fragment is wrong, the
microinferences will still find the best available fit. Hence a degree of
noise can be tolerated (ii). 

This intuitive picture can be generalised from within layer
interactions to between layer interactions generating (iii) and (iv).
Consider a network trained to map each of a set of input patterns onto
a corresponding output pattern. We may treat each input-output pair
as a rule with a “condition” (input) and an “action” (output). Each bit
of the output pattern is a function of all the elements of the input
pattern. Thus the information about which output should be chosen is
distributed throughout the input. Suppose that the input is a slight
distortion of one of the learnt patterns. As the output is a function of
the entire input, the loss of any particular part of the input does not
lead to a catastrophic failure to produce any particular bit of the
correct output. Rather it leads to a slight distortion of the whole output
vector. Hence, as the fidelity of an input is smoothly reduced, the
fidelity of the output smoothly reduces. This is graceful degradation
(iv). This behaviour contrasts with that of conventional schemes,
where either the input error is detected, corrected for, and the right
output chosen, or the error is not detected, and a totally inappropriate
output is produced (or none at all).

Suppose that the presented input pattern is a blend of the learnt
input patterns (suppose we have learnt A  X; B  Y; etc.; a blend of
A:1111100010 and 6:1110000001 might be simply C:1111000011).
What is the pattern Z that C is mapped onto? As the presented input
pattern C is a slight distortion of A, the output it produces, Z, is a
degraded form of the corresponding output X (by graceful
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degradation). However, similarly, Z will be close to the output
corresponding to B. Thus if the input C is a blend of A and B, the
output Z will be a blend of X and Y. Thus an input pattern may
partially match several different rules, to a graded extent. This is
partial rule matching (iii).

The Blurring of Rule-governed and Rule-exceptional
Behaviour

Fodor and Pylyshyn claim that connectionists are committed to a
common etiology for rule-governed and rule-exceptional behaviour
(1988, p. 51). They appear to be adverting to Pinker and Prince’s
(1988) criticisms of Rumelhart and McClelland’s (1986) Past Tense
Learning Model which attempts to learn regular and irregular past
tenses with a single mechanism. From a detailed consideration of the
past tense system in English, Pinker and Prince argue that the model
is unlikely to generalise. However, Fodor and Pylyshyn characterise
the rule-governed versus rule-exceptional distinction in terms of the
surely unrelated competence-performance distinction. The use of went
as the past tense of go is to be attributed to linguistic competence yet
it is rule-exceptional. The Connectionist may wish to blur the etiology
of rule-governed and rule-exceptional behaviour while maintaining a
sharp distinction between competence and performance. 

Fodor and Pylyshyn further conflate the rule-governed-rule-
exceptional distinction with the rule-implicit-rule-explicit distinction
(1988, pp. 59–60). Although the issues surrounding the latter
distinction are important and unresolved, we agree with Fodor and
Pylyshyn that they do not decide between connectionist and classicist.
As we advocate the implementation of high-level cognitive
architectures in connectionist hardware we are committed to the need
for explicit rules in the explanation of cognitive phenomena. However,
with respect to particular behaviours, the Connectionist and Classicist
may differ as to which sort of explanation is appropriate. If one
retains autonomy, there are only two explanatory avenues open: rule-
governed or errorful. Linguistic exceptions are either simply mistakes
or are governed by explicit exceptional rules. It seems that all
regularities must be encoded explicitly. Later on this fact will return
to dog the Classicist’s attempts to model human reasoning.

Brain-style Modelling
Fodor and Pylyshyn characterise this lure as the claim that
connectionist models, in contrast to classical models, are constrained
by the facts of neuroscience (1988, pp. 53–4). However, they claim that
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biology constrains cognitive architecture very little (p. 62) and
further, that the biological plausibility of connectionist models is in
any case problematic (p. 58). We argue that there are good reasons to
work with connectionist models that do not map directly onto neural
structures.

A given cognitive architecture running a particular algorithm will
possess radically different real-time processing characteristics when
implemented in different hardware. So although biological hardware
cannot determine the high-level architecture, it severely constrains
the class of possible cognitive architectures. It is hard to implement
many features of standard architectures in connectionist systems
(Touretzky & Hinton, 1985, for example). It is unclear whether
tolerably efficient implementations of any standard symbolic
architecture are possible. Adversion to Turing machine power is of no
avail here, as we are concerned with real-time processing. We can only
discover what cognitive architectures are compatible with biology by
doing connectionist computer science.

Fodor and Pylyshyn hold that “brain-style” modellers expect biology
to specify properties of the cognitive architecture and counter that
“the structure of ‘higher levels’ of a system are rarely isomorphic, or
even similar, to the structure of the ‘lower levels’ of a system” (1988,
p. 63). This assumes that lower-level properties can only specify
higher-level properties in virtue of an isomorphism. The relationship
between atomic physics and chemistry seems to be an appropriate
counter-example. In any case, the Connectionist need only claim that
the facts of biology constrain rather than specify cognitive
architecture. 

The Lures: Concluding Remarks
Finally, we present some general remarks which argue against Fodor
and Pylyshyn’s response to the “lures” of connectionism. They argue
that the Classicist can deal with the lures in principle. To satisfy the
Connectionist, the Classicist will have to demonstrate this in practice.

The Classicist has Work to do! Fodor and Pylyshyn present no
arguments to show that classical architectures are compatible in
practice with (4.1) speed; (4.2) tolerance of damage; (4.3) massively
parallel soft constraint satisfaction; or (4.5) brain-style modelling. The
onus is on the Classicist to persuade us that a single classical
architecture/implementation can have all these properties.

The Lures are Desirable in Standard Computer Science. If standard
classical architectures can be implemented to use just 100 steps, to
tolerate hardware failure, to implement rapid noise-resistant memory
search and pattern matching, and to degrade gracefully under noisy
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conditions, then this is how they should be implemented. Such
properties would be advantageous in everyday computational
applications. If such implementations are possible, they cannot be
obvious, or we would be running PROLOG on them!

Learning. The most persuasive lure is not mentioned by Fodor and
Pylyshyn. This is that connectionist systems need not be hard wired,
but can learn. Current learning methods such as back-propagation are
not the last word in learning theory. However, the connectionist
approach to learning gives some insight into how genuinely new
structures can spontaneously emerge (Almeida, 1987; Hinton &
Sejnowski, 1986; Rumelhart, Hinton, & Williams, 1986; Pineda, 1987;
Rumelhart & Zipser, 1986; but see Minsky & Papert, 1988, for a
general critique).

By contrast, standard learning models cannot develop new
structures (see Fodor, 1975; Fodor, 1981), as classical learning is just
hypothesis generation and confirmation. Everything that can be
learnt must be representable innately. Such considerations lead to the
conclusion that all concepts (e.g. PROTON) are innate (Fodor 1981;
although see Chater, 1986). Connectionism promises a theory of
learning that sidesteps these difficulties.

What was the Real Nature of the Dispute? Throughout their
discussion of the lures, Fodor and Pylyshyn make no reference to
structured representation or the systematicity of thought. Even for
Fodor and Pylyshyn these issues do not bear on the dispute between
classicist and connectionist approaches. The lures challenge the
Classicist to implement some standard architecture which meets each
lure. We will only know whether this is feasible by attempting to
implement standard architectures in brain-style hardware. And this
will involve doing connectionist computer science.

The connectionist hunch is that this project will prove impossible
and that many computational properties should be directly purchased
from the implementational level. The lures do not decide the issue,
but we have independent grounds to suppose that the classicist
project will prove unworkable. We argue that only by rejecting
autonomy will we understand the computational characteristics of the
mind.

Cognition as Proof Theory

Fodor and Pylyshyn argue that classical cognitive science amounts to
“an extended attempt to apply the methods of proof theory to the
modelling of thought” (1988, pp. 29–30). They seem to be proposing
that we think in a high-level logic programming language (like
PROLOG?) the domain of which is the everyday world. Proof theory

36 RATIONALITY IN AN UNCERTAIN WORLD



guarantees truth-preserving inference. However, most everyday
inferences are not guaranteed to preserve truth, i.e. they are plausible
inferences. These have been discussed under the banners of inductive
inference, abductive inference, and default inference.

Inductive Inference
Classical inductive reasoning involves hypothesis generation and
confirmation (Fodor, 1975). Hence, classical inductive learning models,
e.g. Winston (1977), can only learn new concepts by combining
elements of an innate primitive basis. Fodor (1981) observes that the
primitive basis may have to be as large as the lexicon of a natural
language. Clearly the claim that, for example, PROLOG is innate is
close to a reductio ad absurdum of the classicist theory of induction
(but again, see Chater, 1986).

Abductive Inference
Fodor and Pylyshyn (1988, p. 58) observe that non-demonstrative
inferences like abduction (inference to the best explanation) may be
accommodated by supplementing proof theory with Bayesian
inference techniques (cf. Charniak & McDermott, 1985). However,
these are generally computationally intractable. In medical diagnosis,
heuristic techniques are used to deal with multiple diseases (cf.
Caduceus, in Charniak & McDermott, 1985, p. 474). These heuristics
cannot be justified semantically within the formal system. For Fodor
and Pylyshyn, the heuristics must be implementational details, e.g.
the search strategy of the interpreter. This amounts to computational
non-autonomy. This implementational detail explains Caduceus’
ability to deal with multiple diseases. This amounts to explanatory
non-autonomy. 

Default Reasoning
Just about any everyday generalisation succumbs to indefinitely many
counter-examples. If I see Fred going past my window at 9.00 a.m., I
know he’s about to buy his morning paper. But not if it’s Christmas
day, because there are no papers. And not if he’s being mugged; or if
he’s already reading The Times. These possibilities override our
generalisation that Fred buys a paper just after passing my window
every morning. To preserve autonomy, we must encode the various
conditions that might override our rules, and check that none of them
applies in any specific case. This is the standard approach to default
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reasoning in knowledge representation. Unfortunately we have reason
to suspect that it is unworkable.

Most standard logical schemes are monotonic. If on seeing Fred go
past the window I infer he will buy a newspaper, then if I reason
monotonically, no additional premise can invalidate my conclusion. In
non-monotonic reasoning you can add premises and lose conclusions.

Reiter (1985) attempts to extend standard logic to incorporate non-
monotonicity. McDermott (1986) notes that there are two problems
with Reiter’s approach. First, Reiter’s logic is undecidable in principle
and intractable in practice. Deciding whether a default rule applies
involves consistency checking, which is an NP-hard problem. Second,
the conclusions drawn are usually too weak. Although p is the
conclusion desired, all that follows is p v q, where q is some arbitrary
proposition.

This technical problem need not decide against autonomy in
knowledge representation. However, there are more general
difficulties for the classicist approach. We can invent indefinitely
many conditions which override my inference about Fred buying his
morning paper. For the Classicist, each possibility must be explicitly
encoded in the appropriate rule. To avoid an infinite list of default
clauses we must appeal to a finite taxonomy which captures the
infinitude of specific cases. Perhaps Fred will not get his morning
paper in distracting situations, dangerous situations and so on.
However, what counts as a distracting situation is relative to what
rule we are considering. A road accident might count as a distracting
situation for Fred getting his paper, but not for him getting to work.
So the categories in our taxonomy must be spelt out in detail in each
rule. It is unlikely that such specifications will be forthcoming. This
difficulty with the context-dependence of categories is endemic in
concept combination (Lyon & Chater, 1990). The problem of defaults
infects lexical inference as well as structural inference.

These problems with the classical account of knowledge
representation and inference do not argue for a non-autonomous
account unless we indicate how the implementation can help. Hinton,
McClelland, and Rumelhart (1986, p. 82) discuss an implementation
of semantic nets in connectionist hardware (originally in Hinton, 1981):

If…you learn that chimpanzees like onions you will probably
raise your estimate of the probability that gorillas like onions. In
a network that uses distributed representations, this kind of
generalization is automatic. The new knowledge about
chimpanzees is incorporated by modifying some of the connection
strengths so as to alter the causal effects of the distributed
pattern of activity that represents chimpanzees. The
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modifications automatically change the causal effects of all
similar activity patterns. So if the representation of gorillas is a
similar activity pattern over the same set of units, its causal
effects will be changed in a similar way.

The similarity metric used in automatic generalisation is induced by
pattern similarity and need not be specified by the programmer, but is
learnt by the network (Hinton, 1987). Gorilla has “likes onions” as a
default which may be overridden by explicitly storing information to
the contrary. The default may also be overridden if “gorilla” has a
similar pattern to “orangutan” and orangutans do not like onions. The
similarity metric gives us default rules for free, and the auto-
associative mechanism finds the best fit to the soft constraints. Soft
constraints, the very fabric of connectionist implementations, just are
default rules. This is a paradigm case of the value of non-autonomous
implementations of structured representations. This toy example is
suggestive of how implementation may unburden the cognitive
architecture of the problems created by non-demonstrative inference.

Psychology as Proof Theory

If the domain of psychology is a proof-theoretic cognitive level, then the
following are apparently not psychology: Marr’s (1982) models of low-
level vision; J.R.Anderson’s (1983) spreading activation models of
semantic memory; any of the work on the capacity limitations of
human memory (cf. Fodor, 1983); the whole of neurophysiology,
neuropsychology, and physiological psychology; all the work on
semantic priming; the trace model of speech perception (McClelland &
Elman, 1986), etc. The only experimental work we know of that
explicitly addresses the logical characteristics of the cognitive
architecture is that on deductive reasoning (Evans, 1982, 1983; Wason
& Johnson-Laird, 1972). On Fodor & Pylyshyn’s demarcation
principle, the domain of psychological concern is unexpectedly limited.
What remains is also problematic for the Classicist, as no existing
logical regime is capable of capturing more than an insignificant
fraction of the experimentally observed inferences (Oaksford, 1989;
Oaksford & Stenning, 1988). 

CONCLUSIONS

On a representational theory of mind the central problem for
psychology is providing a semantics for mental states and a
mechanism the causal sequences of which are semantically coherent,
i.e. cognition is computation (Fodor, 1975, 1980, 1983, 1987; Fodor,
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Bever, & Garrett, 1974; Pylyshyn, 1973, 1980, 1984). Fodor and
Pylyshyn claim biological computations are autonomous, i.e. mental
processes are simply an implemented formal system and cognitive
science is proof theory. Fodor and Pylyshyn adduce evidence for
structured representation and take this to decide against
connectionism because of the autonomy assumption. We believe that
this assumption is the real locus of the dispute between classicist and
connectionist approaches. This diagnosis is borne out in the discussion
of the lures, which provide empirical adequacy criteria on an
autonomous architecture. It is unclear whether these criteria can be
met without violating autonomy. Further, autonomous architectures
may fail in principle to handle non-demonstrative inference.
Admittedly, non-autonomous (Derthick, 1987) connectionist
approaches are embryonic. However, to borrow a Fodorian phrase,
they seem to be the only straw afloat. So we must take seriously the
possibility that cognitive architecture is not autonomous from its
implementation. 
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CHAPTER THREE
Connectionism, Classical Cognitive

Science, and Experimental Psychology

INTRODUCTION

This chapter continues the theme of the relationship between
connectionism and logicist, or “classical”, cognitive science. In the last
chapter, we examined the computational properties of symbolic
systems, which are the most natural implementation of logic, and
connectionist systems, which are loosely based on the structure of the
brain. We argued that connectionist systems might be better at
capturing important computational properties of the cognitive system
—these were the “lures” of connectionism which have the potential to
contribute to accounts of everyday, defeasible inference. These
discussions focused on abstract computational issues. In this chapter,
we turn to empirical evidence from the psychology of memory and
inference, which, we argue, supports the conclusion that logicist
cognitive science is not viable, and that connectionism holds the
promise of providing a better alternative.

We argue that classical symbolic computational models of cognition
are at variance with the empirical findings in the cognitive psychology
of memory and inference. Standard symbolic computers are well
suited to remembering arbitrary lists of symbols and performing
logical inferences. In contrast, human performance on such tasks is
extremely limited. Standard models do not easily capture content-
addressable memory or context-sensitive defeasible inference, which
are natural and effortless for people. We argue that connectionism
provides a more natural framework in which to model this behaviour.
In addition to capturing the gross human performance profile,
connectionist systems seem well suited to accounting for the
systematic patterns of errors observed in the human data. These
arguments counter another aspect of Fodor and Pylyshyn’s (1988)
argument: that connectionism is, in principle, irrelevant to psychology.



CONNECTIONISM, CLASSICAL COGNITIVE
SCIENCE, AND EXPERIMENTAL PSYCHOLOGY

There has been an enduring tension in modern cognitive psychology
between the computational models available and the experimental
data obtained. Standard computational models have assumed the
symbolic paradigm: that it is constitutive of cognitive processes that
they are mediated by the manipulation of symbolic structures. Such
schemes easily handle formal inferences, and memory for arbitrary
symbolic material. However, context-sensitive defeasible inference
and content-addressable memory retrieval have remained
problematic. By contrast, in the empirical data on human memory and
inference, the opposite profile is observed. Everyday mundane
reasoning is both context-dependent and defeasible, and yet is
performed easily and naturally, whereas subjects are typically unable
to perform the simplest formal reasoning task (Evans, 1982; Wason &
Johnson-Laird, 1972). In memory, content-addressable access in
knowledge rich domains seems natural and unproblematic for human
subjects, whereas people can retain only very small quantities of
arbitrary material. Despite this tension between experiment and
theory, Fodor and Pylyshyn (1988) have recently reaffirmed what they
term the “classical symbolic paradigm”. That is, they argue that
symbolic cognitive processes are autonomous from their
implementation. Thus they question the relevance of connectionist
theorising for psychology, and suggest that connectionism should be
viewed as a theory of implementation for autonomous classical
architectures. We have argued (Chater & Oaksford, 1990) that
cognitive processes are not autonomous from their implementation,
and that interaction between classical and connectionist models is
required to explain much of cognition, on computational grounds. In
this chapter, we review some empirical grounds for non-autonomous
accounts of cognition. We raise problems for the classical (autonomous)
approach, and suggest that connectionist (non-autonomous) models
may have more explanatory power. Let us briefly summarise the main
points of the debate between classicist and connectionist.

Classicism versus Connectionism

Fodor and Pylyshyn (1988) claim that connectionism eschews
structured representations and thus amounts to an unwitting return
to associationism. 

They raise two problems which must be resolved by any cognitive
theory. First, constituency: how do people keep track of symbols so
that they can play the same role in different representations? Second,
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inference: how do mental states systematically track semantic
relations? However, a large amount of connectionist theorising
explicitly addresses the issue of implementing structured
representations such as semantic networks (Hinton, 1981), frames
and mental models (Rumelhart, Smolensky, McClelland, & Hinton,
1986) in PDP systems. So the issue of structured representations does
not separate the connectionist and classicist approaches. Chater and
Oaksford (1990) have argued that the real locus of the dispute
concerns whether cognitive architecture is computationally and
explanatorily independent of its implementation.

For Fodor and Pylyshyn (1988) psychology is the study of the
symbolic structures and processes that define the cognitive level. They
claim that as connectionist architectures are non-symbolic,
connectionism is properly viewed as a putative implementational
theory for a standard symbolic architecture. As they take the cognitive
architecture to be independent of its implementation, they conclude
that connectionism is irrelevant to psychology. It is this autonomy
assumption that separates classicist and connectionist thinking
(Chater & Oaksford, 1990). The Connectionist believes that (i) the
primitives of the cognitive-level architecture depend on the
implementational substrate (i.e. a neural network), and (ii) the
cognitive processes that psychologists can postulate crucially depend
on these primitives. So a psychological account of memory and
inference should pay close attention to the properties of neural
implementation, and PDP is a preliminary attempt to characterise
these properties. Given any particular psychological phenomenon the
Classicist must give an explanation at the cognitive level, i.e. in terms
of purely symbolic processes. On the other hand, the Connectionist
may freely advert to properties of both the cognitive (symbolic) level
and the implementational (connectionist) level.

The autonomous symbol processing paradigm has an implicit theory
of memory and inference. A memory for an individual is simply a
stored atomic symbol denoting the individual, a property of that
individual is simply another symbol or symbolic structure. That is, a
memory is a proposition encoded in some logical language. Memory is
just a repository for formulae of this language. Inference consists of
formal operations defined over these formulae. On this view the
psychology of memory delimits the capacity and retrieval operations
of the database; the psychology of reasoning specifies the nature of the
theorem prover. Both may set constraints on the nature of the data
structures implemented in human memory (e.g. Collins & Quillian,
1969; Johnson-Laird & Steedman, 1978).

Prima facie this classicist model of cognition makes strong
predictions for human memory and inference. Memory for individuals
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and their properties should be trivial; if the VAX can store and
retrieve arbitrary lists of symbols, then humans should too. Inference
should be trivial; any simple theorem prover can solve two-line
propositional logic problems, so people should find them easy too. In
this article, we will show that these predictions of standard computer
models are in tension with the psychological data on memory and
inference. We will argue that non-autonomous connectionist
explanations, which advert to both implementational and cognitive
levels, may be better able to model human performance. We now
examine the psychological data on memory and inference.

The Psychological Data

The most obvious experimental approach is simply to have subjects
learn arbitrary lists of properties and perform formal reasoning tasks.
On the classicist position it seems that human performance on simple
memory and reasoning tasks should be close to perfect. In the
following sections we adduce evidence that appears to violate these
predictions.

Memory
One principal empirical motivation for the development of
connectionist systems has been the tension between the gross
operating characteristics of human memory and those of standard
symbolic devices. For example, human memory appears to be content-
addressable, and display graceful degradation—human memory
appears tolerant (within bounds) to degraded inputs and damage
(Bobrow & Norman, 1975; Norman & Bobrow, 1975, 1976, 1979). In
contrast, standard symbolic devices are not content-addressable and
they will fail to retrieve a memory trace in the face of damage or
degraded input. In this section we amplify on these criticisms of the
classicist view of memory by considering (i) the abundant evidence on
the limitations of the human memory system, and (ii) the specific way
in which people bind together the properties of individuals in memory.

It has been a fundamental observation in the psychology of human
memory that recall for arbitrary material is severely limited. Short-
term memory tasks for arbitrary material reveal serious memory
capacity limitations. To a first approximation, subjects can only recall
7±2 “items” (Miller, 1956). Human memory performance for such
material is also severely limited in long-term memory tasks (Baddeley,
1976; Lindsay & Norman, 1977). Typically, the only way of improving
performance is by imposing a high-level organisation using mnemonic
strategies (Lorayne & Lucas, 1974). Similarly, short-term memory
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performance is bounded by severe resource limitations which may, in
part, be overcome by the use of high-level recoding strategies or
“chunking” (Miller, 1956). 

Performance is superior with normal structured material because
subjects need only recognise a pre-existing organisation rather than
impose their own (Bartlett, 1932). People seem to be remarkably good
at exploiting redundancy in memory for large amounts of complex,
structured material. For example, people have a reliable recognition
memory for very large numbers of briefly presented photographed
scenes (Shepard, 1967). In contrast, it is extremely hard to recall the
layout of an impoverished visual stimulus, such as the fixed stars.
However, people find it much easier to recall a much richer stimulus,
such as a face. Faces are of course highly redundant, whereas the
position of the stars is not. People attempt to remember such arbitrary
material by imposing meaningful interpretations upon them. In the
case of the stars, the naming of constellations attests to the utility of
such a strategy. In general, the more coherent the subjects find the
material to be, the better it is remembered (Bransford & Johnson,
1973; Craik & Lockhart, 1972).

These data reveal a mismatch in the gross organisation of human
memory and classical computational models. We now turn to more
recent experiments in which the fine detail of memory performance is
examined. The MIT task (Stenning & Levy, 1988; Stenning,
Shepherd, & Levy, 1988) requires subjects to recall the appropriate
bindings of properties to individuals. It thus addresses the question of
how people keep track of structured knowledge about individuals. Two
individuals are described in a short paragraph of text, and on recall
subjects select the properties that attach to each individual. If each
individual has one of two professions, nationalities, temperaments,
and statures there are 136 possible pairs of individuals. The task is to
remember which of these pairs was presented.

Analysis of the pattern of errors reveals the organisation of the
underlying representations. The average error rate is just half a
property wrong per paragraph. Errors are clearly interdependent:
there are more multiple property errors than would be expected if
errors on each dimension were independent. A frequent error is
assigning two different values (say tall and short) to the wrong
individuals. What is difficult is binding, i.e. remembering whether it
was a Polish bishop and a Swiss dentist or a Polish dentist and a
Swiss bishop. It is easy to remember whether they were both Swiss or
both Polish. Further, multiple errors are more common than would be
predicted if each of the eight properties were represented
independently. If the properties for each individual were stored in
separate logical formulae such statistical dependence would not be
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expected. On a classical architecture binding is trivial and so it is
unclear why there should be any interference between separate
memory traces at all.

The patterns of performance revealed here seem wholly unexpected,
on the classicist view. If the very basis of memory is the storing of
formal symbolic structures, then encoding arbitrary lists should be
trivial com pared with storing complex material, where it is opaque
how the stored memory (a face, or the gist of a passage) can even be
represented in propositional form. If such material can be represented
propositionally, then the structures required will surely be extremely
elaborate. On a classical architecture, the property list should be easy
to remember and the complex material hard to remember. Yet the
data on human performance show precisely the reverse.

Adversion to the competence-performance distinction is to no avail
here. If this distinction applies to the study of memory, then (i)
content-addressability, (ii) graceful degradation, and (iii) capacity
limitations provide the data that characterise the competence state
requiring explanation. Similarly, grammaticality judgements in
linguistics characterise the competence state captured by the
competence grammar. Competence theories, moreover, must account
for the majority of the evidence. Otherwise they cease to be falsifiable
empirical theories. The classical model is at variance with findings (i)
and (ii), can only account for (iii) via arbitrarily imposed ad hoc
limitations, and moreover fails to explain subjects’ systematic binding
errors. Hence it could only be preserved as a model of human memory
on the assumption that it is impervious to falsification. In this case
the classical account is not a cognitive model but rather an a priori
assumption concerning the nature of computation in the brain which
could only be legitimised in the absence of a competitor.
Connectionism may provide the competition that promotes the
mismatch between the classical model and the empirical data to
falsificatory status.

Inference
The Classicist has an implicit theory of memory and inference. The
data we have surveyed on memory (Stenning & Levy, 1988) appear to
violate the expectation that a declarative memory should easily keep
track of simple property lists. In this section, we address similar
difficulties with classicist predictions for inference. If symbol
manipulation forms the very basis of cognition, then trivial deductive
inferences should be trivial for human subjects. However, data on
deductive reasoning appear to violate the Classicist’s predictions.
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The conditional if…then construction is central to formal attempts
to characterise inferential processes in logic. However, relative to
normative logical theories the human data present a problem. Human
conditional reasoning appears beset by various non-logical biases
apparently reflecting the influence of content (Evans, 1982; Wason &
Johnson-Laird, 1972), memory (Griggs & Cox, 1982), and prior beliefs
(Pollard & Evans, 1981). Thus, normative conceptions of rationality
appear radically at odds with people’s observed facility for logical
thought. The most striking demon strations of apparently non-logical
performance occur in the Wason selection task (1966).

Wason’s task concerns how people assess evidence relevant to the
truth or falsity of a rule expressed by means of a conditional sentence,
normally using the if… then construction. Subjects are presented with
four cards, each having a number on one side and a letter on the other.
On being presented with a rule such as "if there is a vowel on one
side, then there is an even number on the other" and four cards,
showing, for example, an “A” (p), a “K” (not-p) a “2” (q) and a “7” (not-
q) they would have to select those cards they must turn over to
determine whether the rule is true or false.

The classicist expectation was that performance would depend on
the logical form of the construction used to express the rule.
Responses should be predictable from the truth tables which supply
the meanings of the various logical terms. A conditional, p  q is true
just in case either p is false or q is true; conversely it is false just in
case p is true and q is false. So, the rule is true if and only if each card
has a consonant on one side or an even number on one side.
Conversely, it is false if any card has a vowel on one side and an odd
number on the other. Hence, only the “A” card and the “7” card must
be turned over. If a subject is exhaustively trying to make the rule
true then these are the only undecided cases. If a subject is trying to
make the rule false then these are the only cases with the potential to
do so.

Typical results were: p and q card only (46%); p card only selected
(33%); p, q, and not-q card selected (7%) p and not-q card selected
(4%); others (10%) (Johnson-Laird & Wason, 1970). The logical
response was observed in only 4% of subjects’ responses. Even more
puzzling, on a proof-theoretic account, are the various manipulations
that facilitate performance on this task.

The most significant manipulation to produce a marked facilitation
of the logical response was in thematic variants of the task where
realistic or contentful materials were used. Wason and Shapiro (1971)
employed the following rule: “Every time I go to Manchester I travel
by car”. Presented with four cards indicating travel destinations on one
side and modes of transport on the other, 63% of subjects made the
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logical response. It appears that the more sense subjects can make of
the materials the more likely they are to perform logically. Yet on the
classicist view this is puzzling, as logical reasoning depends only on
the form not on the content of the materials.

Although subjects fail on deductive reasoning tasks that are trivial
in symbolic architectures, human commonsense inference is far more
sophisticated than that of any AI system. On the classical view,
commonsense inference should involve very elaborate logical
reasoning, defined over large sets of premises encoding the relevant
world knowledge. According to this view, commonsense reasoning
should be more difficult than simple deductive reasoning. Yet the data
on human performance show precisely the reverse. Minsky’s (1975/
1977) frame theory was an attempt to capture the structure of the
routinely performed defeasible inferences involved in the
comprehension of even the simplest texts. It is unclear that such
mundane reasoning can be constructed successfully in standard
symbolic architectures (Chater & Oaksford, 1990; McDermott, 1986).

These data present a severe challenge to the classicist view of
cognition as autonomous symbol manipulation. Reasoning appears to
be crucially dependent on assimilating the task to world knowledge
rather than extracting the formal structure of the task description.
Subjects appear to be using commonsense knowledge-rich reasoning
strategies, even when confronted by a formal task. Species of
commonsense, non-demonstrative reasoning, like induction,
abduction, and default inference are unlikely to be formalisable in
logic (from an AI perspective: Israel, 1980; McDermott,1986; from the
philosophy of logic: Harman, 1986; from the philosophy of science:
Kuhn, 1970; Masterman, 1970; from cognitive science: Chater &
Oaksford, 1990 and Oaksford & Chater, 1991). The Classicist
attempts to explain commonsense reasoning in terms of logic, which
may be impossible in principle. So, proof theory cannot be the basis of
cognition. Rather, it seems that whatever (non-logical) processes
underpin commonsense reasoning may also underpin performance on
logical reasoning tasks. (For an account of the data that relies on
commonsense principles of reasoning, see Oaksford, 1989 and
Oaksford & Stenning, 1988.) As with memory, adversion to the
competence-performance distinction is of no avail considering that up
to 96% of the observed behaviour on Wason’s task is beyond the scope
of the competence model.

Theory

Prima facie in both memory and inference tasks, the richer the
informational content of the materials used, the better performance
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seems to be. This seems mysterious on a classical account. To encode a
richer stimulus should require more formulae to be stored in the
declarative database, and so both storage and retrieval should become
harder. On the classical view, resource limitations should become
more acute with richer stimuli. However, the psychological evidence
seems to indicate that in human memory, performance is not impaired
but enhanced with richer stimuli. Turning to inference, on the
classicist account of cognition, commonsense reasoning involves the
construction of elaborate logical derivations. Commonsense reasoning
should be very much harder for human subjects than proof-
theoretically trivial logical deductions. Precisely the opposite
performance profile is observed in the psychological data. 

It seems that as the stimulus is made richer, the subjects’
performance improves. Yet the stimulus must be enriched in an
appropriate way. For example, a property list may be “enriched” by
making it longer, making the properties more complex and so on. An
inference task may be “enriched” by requiring that the subjects must
use more premises, or must construct a more elaborate chain of
deduction. Plainly such “enrichment” of the task will lead to worse
rather than better performance. What sorts of “enrichment” lead to
enhanced performance? We shall discuss this question in memory and
inference in turn.

Memory
One simple suggestion is that the task will only become easier if the
stimuli are made redundant. That is, each portion of the stimulus is
not independent of the rest. Rather, there is organisation within the
stimulus which allows each part (at least to some extent) to be
predicted from the rest. Let us consider an example inspired by Miller
and Selfridge (1950). It is very hard to remember a list of letters such
as:

(1) D P H O J U J P O
However, it is far easier to remember a list of letters that are

organised into some meaningful configuration.
(2) C O G N I T I O N
Remembering this sequence does not feel like remembering a

sequence at all but rather is like remembering a single item, i.e. a
word. In the case of (2) our lexical and morphological knowledge
allows us to exploit the redundancy within the stimulus. This
redundancy allows us to reconstruct the whole item from only a partial
cue. Very simple-mindedly, if you recall that (2) begins COG…, then
you are highly likely to recall the whole word. On the other hand,
recalling that (1) starts DPH…seems to help not at all in
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reconstructing the rest of the list. However, apparently unpredictable
sequences such as (1) can be seen as redundant if they can be
assimilated to appropriate knowledge. And indeed a simple
transformation (shifting each letter along one place in the alphabet)
maps (1) on to (2). So once this is realised sequence (1) becomes as
predictable as (2).

Quite generally, recall has been found to depend on the degree to
which subjects impose an organisation on, or can make sense of the
materials to be learnt. For example, in text comprehension, Bransford
and Johnson (1973) had subjects read a passage with or without the
title Watching a peace march from the fortieth floor: 

“The view was breathtaking. From the window one could see the
crowd below. Everything looked extremely small from such a
distance but the colourful costumes could still be seen. Every one
seemed to be moving in one direction in an orderly fashion and
there seemed to be little children as well as adults. The landing
was gentle and the atmosphere was such that no special suits
had to be worn. At first there was a great deal of activity. Later,
when the speeches started, the crowd quieted down. The man
with the television camera took many shots of the setting and
the crowd. Everyone was very friendly and seemed to be glad
when the music started.”

After hearing the passage Ss were asked to recall it. Most
sentences were recalled well except for the one about the
“landing.” There was extremely low recall for this sentence, and
Ss noted that there was one sentence (i.e. about the landing) that
they could not understand. Even when presented with a “cue
outline” (e.g. Luckily the landing—and the atmosphere—), Ss
exhibited very low ability to remember what the sentence was
about.

A second group of Ss heard the identical passage but with a
different title: A space trip to an inhabited planet. These Ss
showed much better free recall of the “landing” sentence than did
the first group, as well as a greater ability to fill in the gaps in
the cue outline presented above (see Bransford & Johnson,
1973). These results suggest that a sentence that would be
comprehensible in isolation (i.e. “the landing” sentence) can
become incomprehensible when viewed from an inappropriate
context, and that such incomprehensibility has a marked effect
on ability to recall. (Bransford & McCarrell, 1975)

In the present discussion the moral is as follows. If a particular item
to be recalled fits with the context in which it occurs, then it is easier
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to recall. Given that the subjects know what the story is about, the
contents of the sentences become predictable (i.e. redundant). The
pattern of errors indicates that the principles that underlie normal
successful recall relate to knowledge of the world. Given that subjects
know the passage is about a space trip to another planet, the sentence
about the landing is highly predictable. However, when the sentence
violates the expectations of the subjects the sentence is no longer
predictable and so a straightforward redundant coding is not possible.
So it seems that recall is a matter of finding the item that best fits the
residual memory trace given world knowledge. World knowledge
provides a vast interlocking array of defeasible constraints encoding
the predictable organisation of the world. Best-fit matching involves
maximising the degree to which the vast number of contextually
relevant constraints are satisfied. A memory that exploits these
constraints will easily assimilate predictable material because, in as
much as the novel stimuli cohere with existing constraints, only
minimal adjustments will be required to lay down the memory trace.
Much information may be left implicit, as it follows from world
knowledge. If the material is unpredictable, world knowledge cannot
be exploited, and so the information must be encoded explicitly. 

Any such best-fit memory system will possess a variety of properties
of human memories (Bobrow & Norman, 1975; Norman & Bobrow,
1975, 1976, 1979). Generally each part of a memory can function as
the context of recall for the remainder of the memory. A best-fit
memory will use predictability to reconstitute a whole memory from a
sufficiently large arbitrary fragment (i.e. memory is content-
addressable). Such a memory should be resistant to corruption, as a
sufficiently large veridical fragment should be able to reconstitute the
original trace (i.e. memory is noise resistant).

Unorganised material, like arbitrary property lists, is hard to
remember because there are no constraints between the items in the
list. Memory relies on the ability to impose organisation on the
stimulus. So, the more deeply that a stimulus is processed (Craik &
Lockhart, 1972) and the better it is understood, the better memory
performance will be. Mnemonic strategies (Bower, 1970; Lorayne &
Lucas, 1974; Young & Gibson, 1962) can be seen as enriching the
stimulus so as to impose an organisation upon it. So, paradoxically,
remembering more can allow you to remember better (cf. Stenning &
Levy, 1988, on the “Mnemonic Paradox”). It is unclear whether
classical accounts are capable of displaying these properties (Chater &
Oaksford, 1990).

3. CONNECTIONISM AND CLASSICAL COGNITIVE SCIENCE 51



Inference
In inference it has been shown that facilitation is not simply
determined by the use of contentful material (Griggs & Cox, 1982).
Rather, subjects need to be familiar with the rule. Prior experience
with a contentful rule was shown to facilitate reasoning, whereas
contentful rules with which subjects had no prior experience were
shown to be non-facilitatory. Specific experience of a rule means that
it need not be assimilated afresh.

Yet in reasoning this cannot be the whole story. To suggest that
successful reasoning with conditionals requires having reasoned with
them before is altogether too restricting. It precludes people from
generalising experience to novel domains, which is surely the sine qua
non of human rationality and reasoning abilities.

More recent work (Cheng & Holyoak, 1985; Cheng et al., 1986)
serves to indicate that what needs to be right about contentful
material also involves the relations encoded by particular conditional
sentences. When subjects were provided with a rationale explicitly
characterising a permission relation, a significant facilitation was
observed over their performances for both a thematic variant (no prior
experience) and an abstract variant, neither of which was provided
with a rationale. The facilitation to the logical response was explained
in terms of the production rule set which constitutes a permission
schema. This left open the possibility that other pragmatic reasoning
schemas may drive inference when other relations, e.g. causation,
are encoded, producing different patterns of inference. Assimilation of
the task to appropriate world knowledge will facilitate response
profiles that mirror logical performance, without invoking logical
competence. In an abstract test, in which the materials cannot be
assimilated to world knowledge, subjects cannot rely on pragmatic
reasoning schemata, and may have to default to more general non-
logical strategies. Since the rules by which we understand the world
are typically defeasible, as we now show, it is not surprising that
logical inference is so unnatural.

The data reviewed here suggested that the processes of inference
are determined by world knowledge, however such processes may be
implemented. Only by understanding the organisation of the world do
you know that one thing follows from another. For example, you
cannot infer that Fred is going to buy his morning paper from him
passing your window at 9.00 a.m. if you do not know Fred’s habits. On
a proof-theoretic account this knowledge might be encoded in first-
order predicate logic as a statement in some declarative data base,
quantifying over events (e) and times (t):
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However, as we argued earlier, such a strategy cannot work in
general, as all these commonsense generalisations about the
organisation of the world succumb to indefinitely many counter-
examples.

If I see Fred going past my window at 9.00 a.m., I know he’s about
to buy his morning paper. But not if it’s Christmas day, as there are
no papers. And not if he’s been mugged; or if he’s already reading The
Times; or if he falls over and breaks a leg; or if his ferocious wife is
with him wielding a shopping bag, etc. All of these possibilities
override our generalisation that Fred buys a paper just after passing
my window every morning. On a proof-theoretic account the various
conditions that might override our rules must be explicitly encoded,
and a check made that none of them applies in any specific case. This
is the standard approach to defeasible commonsense inference which
has been pursued in the logical/AI literature (de Kleer, 1986;
McCarthy, 1980; Reiter, 1985). However, these approaches all involve
consistency checking, which is an NP-hard problem. This means that
such symbolic methods are computationally intractable (see Oaksford
& Chater, 1991).

As we discussed in the last chapter (p. 37), although this technical
problem does not decide the issue, there are a number of more general
difficulties for symbolic accounts that strongly suggest that they will
be unable to deal with defeasible inference.

Commonsense defeasible inferences, if derivable at all on a proof-
theoretic account, must be extremely complex. For people, these
inferences are just common sense. This mode of inference underlies
comprehension, categorisation, perception, and action (Bransford &
Johnson, 1972, 1973; Bransford, Barclay, & Franks, 1972; Bransford &
McCarrell, 1975; Clark & Haviland, 1977; Minsky, 1975/1977; Murphy
& Medin, 1985). It is the basis of all cognitive performance. People
find this mode of inference easy. So, the computational architecture of
the mind must be so constituted as to facilitate such inferences. But
the classical proposal of an architecture based on symbol
manipulation seems unpromising. So, perhaps the non-logical
performance of tasks such as the selection task is not so surprising in
view of these considerations. The strategies that subjects adopt when
assimilation to world knowledge is impossible are nonetheless likely
to reflect assumptions about the defeasible nature of the rules that we
use to understand the world (Oaksford, 1989).

3. CONNECTIONISM AND CLASSICAL COGNITIVE SCIENCE 53



Modelling

The classical account of mind may be incapable of satisfying several
well-established constraints on human cognition. Roughly, human
memory should be able to implement large-scale best-fit searches by
exploiting the organisation of the world; and the inferences people
draw should be determined by their knowledge of the way the world is
organised (rather than by deductive rules of inference). Next, we first
outline how parallel distributed processing (PDP) captures many of
these desirable properties. We then turn to a specific model of
Stenning and Levy’s (1988) data, which accounts for the observed
dependencies between stored properties as revealed in the analysis of
the error data (already discussed). We also briefly outline how such a
memory system will give rise to automatic generalisation which
begins to suggest an alternative account of the data on human
inference by suggesting a possible mechanism for default inference.

Memory
Let us first recap on the desirable properties of human memory:

1. Human memory is content-addressable.
2. Human memory is noise-resistant.

These are both direct consequences of the parallel distributed
processing approach to massively parallel soft constraint satisfaction
or best-fit searches:

One way of thinking about distributed memories is in terms of a
very large set of plausible inference rules. Each active unit
represents a “microfeature” of an item, and the connection
strengths stand for plausible “microinferences” between
microfeatures. Any particular pattern of activity of the units will
satisfy some of the microinferences and violate others. A stable
pattern of activity is one that violates the plausible
microinferences less then any of the neighbouring patterns.
(Hinton, McClelland, & Rumelhart, 1986, pp. 80–81)

Given this intuitive picture it can be shown informally how the
various properties emerge.

Content-addressability. When an arbitrary sufficiently large
fragment of the pattern is presented, the microinferences act so as to
produce the nearest possible completion (stable state). Hence, any
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sufficiently large part of the content of the memory will address the
whole memory.

Noise-resistance. If part of the presented fragment is wrong (the
fragment is inconsistent with any stored memory), the
microinferences will still find the best available fit. Hence a degree of
noise can be tolerated, because the correct part of the fragment will
ensure that the best-fit pattern prevails.

In addition to being able to capture general properties of human
memory, PDP models have also been used to model the fine structure
of performance on particular memory tasks. For example, Stenning
and Levy (1988) present a parallel distributed processing model of the
MIT task, discussed earlier. The binary features derived in a multiple
linear regression analysis are used to represent the pair of stored
individuals. At retrieval time, the first and second individuals and their
properties must be reconstituted from the complex distributed
representation in terms of matched and mismatched properties and
logical combinations of properties (roughly, these express that someone
is, say, tall and Polish; they make no explicit references to the first or
second individual mentioned). A three-layer network was used, where
the binary input units stand for the features derived from the
regression model. These input units are completely connected to a
layer of 16 hidden units, which in turn are connected to two sets of
four output units corresponding to the two individuals’ properties. Just
as the person can recall the individuals in either order, the network
must be able to identify the individuals at either output location. The
order of recall for the network is specified by an extra binary input.

The network learns the mapping from features to individuals by
cycling through each logically possible input vector, each paired with
its correct output (240 vectors in all). Learning reaches criterion after
about 300 iterations of back-propagation. A good test of the adequacy
of the representation postulated to underlie the human data is
whether corrupting that representation generates similar error
patterns to those found in the human data. The error patterns for the
network were generated by coding the paragraphs human subjects
saw into the input feature representations and then subjecting these
representations to random noise. This involved flipping the values of
the input features with a 3% probability. For comparison, the eight
actual property descriptors were also directly subjected to a similar
corruption with a 5% probability. This amounts to storing (and
corrupting) each individual and their properties independently, as is
most natural in a classical framework. The match of the corrupted
inputs to the observed human error data is good, although not as good
as that of the original regression model. Stenning and Levy (1988)
note various specific similarities and discuss possible explanations for
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these. The direct corruption, on the other hand, leads to quite
different error patterns. So the character of a distributed
connectionist system may model the pattern of performance more
closely than independent conventional symbolic architectures.

Inference
We have argued that an alternative must be found to classical
symbolic accounts of commonsense reasoning. Current symbolic
schemes fail to characterise the most frequently occurring inference
patterns of subjects in deductive reasoning tasks, such as Wason’s
Four Card Problem. Our diagnosis has been that commonsense
inference underlies performance on deductive reasoning tasks and not
the other way round (Oaksford, 1989; Oaksford and Stenning, 1988).
As we discussed in the last chapter (pp. 37– 38), recent connectionist
theorising suggests a promising avenue for research in capturing the
defeasibilty of commonsense inference. Soft constraints, the very
fabric of connectionist models, are just default rules. So, as suggested
in Chapter 2 (p. 38), such models may be able to unburden the
cognitive architecture of the problems created by commonsense
inference.

Classical approaches to commonsense inference have proved to be
computationally intractable due to their reliance on consistency
checking. So, it may be the case that a PDP account is the only straw
afloat in arriving at workable mechanisms for defeasible
commonsense reasoning. Not only do symbolic approaches seem
unable to capture commonsense inferences, the data on Wason’s Four
Card Problem reveal that human reasoning performance is radically at
variance with classical expectations. Treating performance on
deductive reasoning tasks such as Wason’s Four Card Problem as
mediated by commonsense inference can account for the most
frequently occurring response patterns (Oaksford, 1989; Oaksford &
Stenning, 1988). The possibility of PDP implementations provides the
promise of models that can predict the complete response profile,
including the errors. However, on a classical account, all error must be
assigned to performance factors. This seems unsatisfactory when up
to 96% of subjects’ responses on a logically trivial task like the Wason
Four Card Problem are beyond the scope of the competence theory. 

CONCLUSIONS

Fodor and Pylyshyn (Fodor, 1975, 1980, 1983, 1987; Fodor, Bever, &
Garrett, 1974; Fodor & Pylyshyn, 1988; Pylyshyn, 1973, 1984) have,
over a number of years, defined the notion of computation as used in
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cognitive science. Cognition is computation. Computation is
mechanised proof theory. So:

It would not be unreasonable to describe classical cognitive
science as an extended attempt to apply the methods of proof
theory to the modelling of thought. (Fodor & Pylyshyn, 1988, pp.
29–30)

This view carries both theoretical and methodological significance. As
we have seen, the theoretical implications for memory and inference
seem not to accord with the empirical data. The implicit methodology
fares little better.

On a classical symbolic model, errors in memory cannot be
explained at the proof-theoretic, cognitive level, but rather must be
seen as functions of the implementation. Similarly, apparent
deviations from logical performance in conditional reasoning tasks
must also be assigned to performance or implementational factors.
According to the classicist account such error data can therefore only
inform us about the character of the implementation of the cognitive
architecture and not about the cognitive architecture itself. For the
classicist, the study of psychology is the study of cognitive architecture
independent of its implementation. In consequence, the vast bulk of
the empirical considerations discussed in this chapter do not count as
psychological considerations. On such a restricted view of the domain
of psychology, there is little psychology left. If we exclude the study of
errors, then almost all experimental memory, reasoning, and
perceptual research is not psychology. Error methodology is a
ubiquitous and powerful investigative tool in psychological practice.

For example, the pattern of errors in Stenning’s MIT task gives
insight into the normal function of human memory. The subjects
appear to represent the individuals according to a complex task-
specific set of features. For subjects to derive this encoding scheme
means that they have extracted the particular organisation of the
task. For example, as the dimensions are binary, a match-mismatch
strategy is appropriate. The feature set of the multiple regression
gives a redundant encoding of the individuals and their properties.
However, that this encoding is redundant is dependent on the
structure of the memory task. This illustrates the general point that
subjects attempt to find organisation in the material to be
remembered so that it may be encoded redundantly. The MIT task
demonstrates the remarkable facility with which such encoding
strategies are devised and implemented. Such redundant encodings
may be directly tied to a PDP model of retrieval processes. The
exploitation of systematic redundancy by PDP processes operating
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over distributed representations is responsible for many of the
desirable computational properties of these systems—that is, Fodor
and Pylyshyn’s (1988) “lures” of connectionism; see Chapter 1 for
discussion.

For Fodor and Pylyshyn, psychology is taken to be the study of an
autonomous cognitive level, to which implementational considerations
are held to be irrelevant. According to this view, psychologists should
not be interested in connectionism (at best, they claim, a theory of
implementation), just as they should not be interested in error.
However, we have argued:

• Autonomous classical theories are radically at variance with human
data on memory and inference. The limitations, patterns of errors
and interference seem mysterious on the classical view.

• Contra classicist expectations, human performance in memory and
inference improves as the stimulus becomes richer and can engage
the vast interlocking array of defeasible constraints that encodes the
predictable organisation of the world.

• Connectionist systems are able to exploit such redundancy and
thereby emulate the observed characteristics of human memory,
such as content-addressability and graceful degradation.

• Human performance on prima facie symbolic tasks is heavily
influenced by the content of the materials, in the tasks we have
discussed. So in so far as symbolic processes are implemented in
the brain (and Fodor and Pylyshyn’s arguments for structured
representation are persuasive on this point) they crucially interact
with the properties of the implementation. Content effects cannot
be explained proof theoretically!

• This leads naturally to the conclusion that modern cognitive
psychology has always been committed to the interaction of
cognitive and implementational levels. So Fodor and Pylyshyn’s
advocacy of autonomy is a revisionary restriction of the appropriate
domain of psychological concern. If psychologists adopt this novel
stricture then they will not be interested in connectionism.
However, accepting this restriction would deprive cognitive
psychology of most of its subject matter and one of its most potent
explanatory distinctions (i.e. architecture vs. implemementation).
Thus, issues of the implementation of cognitive architecture will
continue to be a major source of constraint in psychological
theorising. Hence, connectionism may naturally be seen as
providing new and important metaphors for thought, rather than
as a psychologically irrelevant implementational theory.
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Much of the data we have reviewed pre-date the emergence of the
proof-theoretic view as the dominant meta-theory for cognitive science.
The apparent incompatibility of data and meta-theory has been
largely ignored. This is wholly legitimate while there is no competing
computational paradigm that can address these data. Puzzling data
only become falsifying data when an alternative explanation becomes
available (Kuhn, 1970; Lakatos, 1970; Putnam, 1974). We believe that
such an alternative computational and theoretical paradigm is now
emerging in which much of this old data can be recast. However, we
agree with the thrust of Fodor and Pylyshyn’s (1988) argument that
psychology must be concerned with structured representations, and
structure-sensitive processes, which were the very stuff of the
symbolic paradigm. We believe that PDP should attempt to capture
structured representations while retaining the desirable
computational properties we have outlined. In particular, we require
that our models be able to deploy rich, context-sensitive world
knowledge in a flexible and tractable way. Further, these models
should be consistent with the empirical data, especially error data.
Whether or not such a goal can be attained will ultimately decide
whether PDP really does constitute a rival to the standard proof-
theoretic orthodoxy. In any case, this reconsideration of the data
provides a challenge to the proof theoretician: it is unclear that this
challenge can be met. 
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CHAPTER FOUR
Against Logicist Cognitive Science I: The

Core Argument

It would not be unreasonable to describe Classical Cognitive
Science as an extended attempt to apply the methods of
proof theory to the modelling of thought.

Fodor & Pylyshyn, 1988, pp. 29–30

INTRODUCTION

In Chapters 2 and 3 we concentrated on the potential of connectionism
to tackle some of the computational and empirical discrepancies
between logicism and some important properties of human cognition.
We noted that there are problems for logicism, both at the
computational, algorithmic, and implementational levels. In this
pivotal chapter we move away from the implementational level and
concentrate on the computational and algorithmic levels of
explanation in considering the prospects for a logicist theory of
everyday, defeasible inference. We focus on two issues. First, at the
computational level, we assess the completeness* (see Chapter 1) of
extensions of logic to capture defeasible inference. Second, at the
algorithmic level, we look in detail at the computational tractability of
these extensions of logic. These issues were raised in passing in
Chapters 2 and 3, but here form the focus of discussion. We again take
Fodor and Pylyshyn’s characterisation (see our opening quote) as a
paradigm of logicist cognitive science against which our arguments
are explicitly directed. However, in this chapter we argue that these
arguments apply more generally to a large class of theories in
cognitive science. In the next chapter, we consider the generality of
our arguments by examining a range of possible attempts to deal with
the problems that we raise. We will argue that these are not successful,
and conclude that the implications of our arguments are very general.



THE CORE ARGUMENT

In this chapter, we shall argue that the plausibility of classical, logicist
cognitive science depends on its ability to provide a proof-theoretic
account of the defeasible inferencing that is implicated in almost every
area of cognitive activity. We shall show that such an account is
unlikely to be forthcoming and hence cognition cannot be seen as
mechanised proof theory.

A proof-theoretic account involves three components: the
specification of (i) a formal language; (ii) a set of syntactic (ie. proof-
theoretic) rules of inference; and (iii) a mechanistic implementation of
(i) and (ii). That is, cognition is an implemented formal logic. This is
the classical, logicist position in cognitive science and artificial
intelligence (Fodor & Pylyshyn, 1988; Hayes, 1978, 1984a). Defeasible
inferences are inferences that can be defeated by additional
information. Inferences licensed by classical logic are monotonic. no
additional premises can invalidate a previously derived conclusion.
This contrasts with everyday, defeasible inference, which is non-
monotonic: the addition of premises may invalidate a previously
derived conclusion. In defeasible, non-monotonic inference it is
possible to add premises and lose conclusions. Defeasible inference
permeates every area of cognitive activity. Thus, at least prima facie,
a logicist account of cognition must postulate proof-theoretic rules
defined for some non-monotonic logic. We assess the practical
attempt, in AI knowledge representation, to carry out this logicist
programme using non-monotonic logics. We note that such logics are
able to draw only unacceptably weak disjunctive conclusions; and that
the theorem-proving algorithms over such logics are computationally
intractable due to their reliance on solving the NP-complete problem of
consistency checking. We suggest that the programme of logicist
cognitive science is infeasible, and reply to a number of plausible
objections to this conclusion.

The structure of the chapter is as follows. We first characterise the
classical, logicist position, using the formulation of two of its most
influential exponents, Jerry Fodor and Zenon Pylyshyn, and adduce
various adequacy criteria on logicist explanations of cognitive
phenomena. We then note that human inferential processes, in
commonsense reasoning, and in a variety of specific cognitive domains,
are quite generally knowledge-rich and defeasible. These difficulties
infect logicist treatments invoking unconscious, implicit inferences in
text comprehension, conceptual reasoning, problem solving,
perception, and even in recent accounts of human performance on
explicit deductive reasoning tasks. Further, to illustrate the nature of
the problem, we then draw on a parallel between these difficulties and
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those experienced in the philosophy of science in attempting to
provide a theory of confirmation, a parallel also noted by Fodor (1983)
(see also Sperber & Wilson, 1986). A specific attempt to deal with
defeasible inference using non-monotonic logics (Reiter, 1985), which
has been proposed within the tradition of knowledge representation in
AI, is then critically examined. We draw the general moral that non-
monotonic logics license only unacceptably weak conclusions, and
cannot be computationally implemented in real-time. There are a
number of proposals that appear to circumvent these problems.
However, in the next chapter we argue, case by case, that such
proposed logicist solutions succumb to the difficulties that we raise, or
amount to a retreat from the logicist position, and conclude that
logicist cognitive science is ill founded.

Logicist Cognitive Science

Fodor and Pylyshyn (Fodor, 1975, 1980, 1983, 1987; Fodor, Bever &
Garrett, 1974; Fodor & Pylyshyn, 1988; Pylyshyn, 1973, 1984) have,
over a number of years, argued that folk-psychological explanation, in
terms of the ascription of propositional attitudes such as beliefs and
desires, must be reconstructed in any proper account of cognitive
activity. According to this view, to have a propositional attitude is to
stand in a certain relation (the relation of believing, desiring or
whatever) to a mental representation, the content of which is the
object of the propositional attitude. Because the contents of
propositional attitudes are described in natural language, the
interpretation of the corresponding mental representations must be at
the level of everyday objects and relations. This is the substance of the
representational theory of mind (see Fodor, 1980). Folk psychology
explains behaviour in terms of inference over propositional attitudes.
Hence, a representationalist reconstruction of folk psychology must
provide mechanisms for drawing inferences over the representations
that capture the content of the propositional attitudes. These
mechanisms are typically taken to be formal operations over
syntactically structured representations. That is, mental operations
are taken to apply purely in virtue of the structural properties of the
representations. These syntactic mental operations must be coherent
with respect to the semantics of the representations being
manipulated. This is the substance of the Computational Theory of
Mind (Fodor, 1980). Currently, the only way in which the semantic
coherence of formal structural manipulation may be guaranteed is by
showing that each manipulation of the representations corresponds to
a sound proof-theoretic derivation in some appropriately interpreted
formal language. In other words, the language of mental
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representation constitutes a logic, in which mental representations
correspond to well-formed formulae, and manipulations over them
correspond to sound logical inferences. According to this view, a
central task of cognitive science is to characterise the logical language
of mental representation, the proof-theoretic rules defined over it, and
the content of the representations employed in the production of
particular behaviours.

For the logicist, this provides a complete psychological explanation
of performance of those behaviours. This proof-theoretic psychological
explanation is autonomous (Chater & Oaksford, 1990; Fodor &
Pylyshyn, 1988, p.66) from the biological substrate underlying
perception, memory, action, and so on. Lower-level biological
explanations are taken to be independent from, and to fall outside the
domain of, psychological explanation. This position may be elucidated
by considering the three levels of explanation that David Marr (1982)
took to constitute a complete account of the performance of a cognitive
task. The claim that cognition is proof theory amounts to a restriction
on the form of the level 1 (computational) theory. That is, a
computational theory of some task must be specified (or at least must
be specifiable) as a proof theory over some interpreted logical
language, and particular representations used in the performance of
the task. Further, the logicist position also places restrictions on the
form of the level 2 (algorithmic) theory. That is, it must characterise
the theorem-proving mechanism that animates the proof theory. This
theorem-prover instantiates the control regime that determines which
inferences are made when, in the performance of the task. This
mechanism is defined over the formal properties of the logical
expressions over which it is operating. It is these first two levels that
the logicist takes to constitute psychological explanation. A level 3
(implementational) theory should constitute an account of how the
theorem-prover specified at level 2 is instantiated in biological
hardware. For the logicist this level is below, and largely independent
of, the level of psychological explanation.

The classical cognitive science picture may be decomposed into four
claims:

1. Cognition is computation.
2. Computation is formal.
3. Formal computation is mechanised proof theory.
4. The internal language over which the proof theory is defined is

interpretable at the level of everyday objects and relations.
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Within the framework of cognitive science, 1 must surely be taken as
axiomatic. There is, however, substantial room for debate about the
implications and status of 2, 3, and 4. 

2. Computation is Formal That is, computational processes operate
purely in terms of the form, syntax or shape of the symbolic structures
over which they are defined. For example, consider the formal
inferences of modus ponens (MP) and modus tollens (MT):

These may be computed without reference to the meanings of the
propositions p, q or the meaning of the connective  The premise “p

 q” is not treated as an atomic, unstructured lump, but as having
syntactic structure: as having “p”,  and “q” as constituents. From
the point of view of formal computation, all that matters for the
application of modus ponens is that the “p” in the second premise has
the same shape as the “p” on the left-hand side of the first premise;
and that the “q” of the conclusion has the same shape as the “q” on the
right-hand side of the first premise. This applies, mutatis mutandis,
for modus tollens. Formal processes need not, as in this case, involve
logical inference. List manipulation, sorting algorithms, sequences of
procedural instructions etc., all count as formal, as they are defined
over the shape rather than the content of their inputs.

Given the wide range of processes and schemes that have been
taken to be computational models of cognition, the claim that
computation is formal is not strictly true. Or rather, the requirement
that computation is formal is prescriptive of the way in which Fodor
and Pylyshyn (1988) would like the term “computation” to be used,
rather than descriptive of the way in which it is used in the range of
literatures involved with mechanistic models of thought. For example,
the mechanism of holographic memory, analogue computational
methods, genetic learning algorithms, and connectionism are not
syntactic—the representations over which they operate typically have
no syntactic structure. A possible confusion may arise, as these
computational mechanisms can be simulated to an arbitrary degree of
accuracy (and in some cases, perfectly) by the formal operations of a
digital computer. However, any system (formal or otherwise) can be
represented by formulae in some formal language, and its behaviour
modelled by structure-sensitive operations over those formulae. It is in
virtue of this fact that the general-purpose digital computer is
general-purpose.

3. Formal Computation is Mechanised Proof Theory. Relevant
information is represented as a set of formulae in a logical language,
and computation proceeds by the operation of a theorem-prover for
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that language. The theorem-prover decides which proof-theoretic rule
to apply and when. Prima facie, theorem proving is a very particular
form of computation. Again a possible confusion arises, because any
computation can be simulated by the operation of an appropriate
theorem-prover. As any computation can be simulated on a Turing
machine, for any computer program, there will be a corresponding
Turing machine, with identical input-output behaviour. Any Turing
machine can be axiomatised in first order logic (Boolos & Jeffrey, 1980),
and hence any computation can be implemented on a theorem-prover
for first order logic. Although any computation can be implemented in
this way, almost invariably they are not.

4. The Internal Language Over Which the Proof Theory is Defined
is Interpretable at the Level of Everyday Objects and Relations. The
formulae over which the proof theory operates could, in principle, have
an arbitrary semantics. As the logicist takes propositional attitudes to
be relations to these formulae, the contents of (at least some of) these
formulae must correspond to the objects of beliefs and desires. In
particular, therefore, the semantics of these formulae will make make
reference to everyday objects and properties—to tables, chairs, people,
colours, feelings, and so on. It is hence unsurprising that the atomic
terms of knowledge representation formalisms in artificial intelligence
and cognitive psychology (such as semantic nets, schemas, production
rules, and so on) stand in close correspondence with the lexical items
of natural language. Indeed, for the sake of transparency, the atomic
terms in AI knowledge representation are typically borrowed from the
vocabulary of natural language. For example, a program that encodes
knowledge about an average taxpayer might start as follows (Clocksin
& Mellish, 1984, p. 87):

average_taxpayer(X):–
not(foreigner(X)),
not((spouse(X,Y), gross_income(Y,Inc),Inc > $3000)),
> gross_income(X, Inc),…

Of course, the logicist is not restricted to postulating representations
defined at the level of tables and chairs. For the purposes of modelling
specific cognitive processes, such as language understanding,
perception and so on, the interpretations of the symbols may be
phonetic, phonemic or syntactic categories, auditory and visual
features, and the like.

The conjunction of assumptions 2, 3, and 4 constitutes a strong
hypothesis about the nature of mental representations and mental
processes. Having characterised the logicist picture, we now discuss
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certain adequacy criteria to which such an account should, at least in
principle, be able to conform. 

Adequacy Criteria for Logicist Explanation

We shall outline two main adequacy criteria which the logicist
programme must be able to meet. First, the proof-theoretic rules of
inference defined over the postulated logical language (or languages)
are capable of characterising the inferences implicated in human
cognition. That is, the proof-theoretic rules must capture what we
take pre-theoretically to be the semantically appropriate defeasible
inferences. In Susan Haack’s (1978) terminology, the logic(s) should be
capable of respecting the appropriate depraved semantics (Haack,
1978, p. 188). So in the case of a non-monotonic logic for defeasible
reasoning, the interpretation of the formalism must map
appropriately onto our commonsense or depraved understanding of
defeasible inference. Some suitable non-monotonic logic must
therefore capture the range of inferences that common sense licenses
or, in other words, it should be complete with respect to the depraved
semantics. By loose analogy with the notion of completeness in
classical logic with respect to a standard formal semantic
interpretation, we shall call this the completeness* criterion. So a
complete* logicist explanation in some domain must provide a logical
language and set of inferential rules, which at least roughly capture
our intuitions about inference in that domain.

Second, logicist explanation should, in principle, be able to provide a
unified account of the cognitive processes within some domain, which
covers each of Marr’s (1982) explanatory levels. We shall call the
constraint that such a unified explanation can be provided, the
coherence criterion. A coherent logicist account would provide a
specification of a logical language in which knowledge is represented,
and a proof theory defined over that language (level 1); a theorem-
prover for that proof theory (level 2); and an explication of how that
theorem-prover is implemented in the brain (level 3).

A coherent logicist explanation must, among other things, be able to
provide a level 2 algorithm appropriate to the level 1 proof theory, and
to implement the level 2 algorithm in neural hardware. In practice the
logicist is wont to insist that these relationships need not constrain
theorising at each of the three levels. Indeed, one of the methodological
appeals of the logicist view is that the implicit independence of each of
the levels appears to license the pursuit of high-level cognitive
theorising, while we remain in comparative ignorance of the operation
of the brain. This tenet of the logicist view (Fodor & Pylyshyn, 1988)
presumably depends upon the following reasoning. Neural hardware
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(level 3) is surely able to implement such a simple symbolic device as a
Turing machine or equivalent. But as any computable algorithm can
be computed by a Turing machine, neural hardware appears to place
no constraint at all on the algorithms that are psychologically
plausible. Moreover, as long as the level 1 theory of the task domain,
specified in terms of a set of proof-theoretic axioms, is decidable, then
there will be many level 2 algorithms for performing the task. By the
previous argument, any such algorithm must be implementable at
level 3, because any algorithm can be implemented in a Turing
machine. So, according to the logicist, psychological explanations at
levels 1 and 2 are relatively independent, that is they are autonomous
(Chater & Oaksford, 1990) from the (level 3) biological substrate.

This line of reasoning may be taken to establish that almost any
explanations postulated at each of the three levels are likely to be in
principle compatible. To establish that logicist explanation is coherent,
this weak, in principle, compatibility between explanatory levels must
be supplemented by a strong compatibility in practice. That is, the
level 1 proof theory must have a level 2 theorem proving algorithm
which is not just computable but computationally tractable. Moreover,
this level 2 algorithm must be able to run (level 3) on biological
hardware with real-time characteristics compatible with the speed
and effectiveness of observed behaviour. Indeed, only given a unified
explanation of each of these levels can precise psychological predictions
be made about the character of real-time performance.

The mere fact that we have a decidable set of proof-theoretic axioms
(at level 1), guarantees only that there is a computable theorem-
proving algorithm; it does not guarantee that any such algorithm is
computationally tractable. In principle computability results are sadly
no guide to practical computational feasibility. Moreover, although
any computable algorithm can be implemented on a Turing machine,
and although the biological substrate is able to implement an
arbitrary Turing machine, the nature of the biological substrate and
the way in which the algorithm is implemented in that substrate will
crucially affect the run-time of the algorithm. Hence the nature of the
hardware of the brain may considerably constrain the class of
psychologically plausible algorithms.

Hence there are two species of doubt that may be raised concerning
the coherence of the logicist programme. First, it may be doubted that
it is possible to implement theorem-proving algorithms postulated by
the logicist in biological hardware such that they satisfy the real-time
processing characteristics of cognitive performance. Second, in many
psychological tasks, it may be doubted that there exists a tractable
level 2 theorem-proving algorithm that instantiates the postulated
level 1 theory. We have argued elsewhere (Chater & Oaksford, 1990)
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that the first species of doubt, the constraint that level 2 algorithms
must be biologically implemented, militates strongly against the
feasibility of an autonomous logicist account. In this chapter, with
regard to the coherence of the logicist position, we concentrate on the
second of these concerns: tractability. We argue that there may be no
tractable algorithms appropriate to the level 1 theory that the logicist
is forced to postulate. Moreover, logicist explanation must be not only
tractable but complete*. That is, the level 1 theory must actually be
able to account for human inferential processes. We shall argue that
the logicist account is also inadequate in this regard: it seems unlikely
that a proof-theoretic level 1 account of human inferential processes
will be forthcoming.

As we are arguing against logicist approaches to cognition on the
grounds that they may be unable to account for the defeasibility of
human inference, it is incumbent upon us to show that human
inference is defeasible, across a range of cognitive domains. It is to
this task that we now turn.

The Defeasibility of Human Inference

Human knowledge is inherently revisable—expectations are routinely
dis-confirmed, norms violated, and what is certain today is discredited
tomorrow. Human knowledge is also invariably partial and inferences
must be drawn on the fly with incomplete knowledge of the relevant
facts. The ability to reason and act appropriately in the face of
overwhelming ignorance is one of human cognition’s most remarkable
and important achievements, and poses one of psychology’s greatest
challenges. In a mysterious and changing world, every conclusion is
revisable and every premise open to question.

Consider, for example, the process of boiling an egg. Perhaps Egon
has learnt from experience that if he puts an egg in boiling water then
five minutes later the egg will be medium-boiled. Having put the egg
in the water as usual, Egon infers that the egg will be ready for his
breakfast in five minutes. Such inferences, however, are radically
defeasible. After all, there might be a power failure or an earthquake,
Egon’s careless brother may upset the pan, there may be salt in the
water, the egg may be at altitude in an Everest base-camp, and so on.
In these situations, Egon’s inference that the egg will be ready to eat
in five minutes time will be defeated.

Such inference is difficult to capture within a proof-theoretic
framework. It is a feature of most standard logics that if a conclusion
follows from some set of premises, then it still follows when additional
premises are added. Logics in which this property holds are monotonic
logics. Such logics are, at least prima facie, inappropriate for
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modelling inference in examples such as the above. According to a
monotonic system of inference, if Egon infers that his egg will be
ready five minutes after putting it in the boiling water he will be unable
to revise this conclusion. So, for example, he must necessarily
continue to expect his egg to be medium-boiled even after his brother
has knocked over the pan. In other words, if Egon were to reason
according to a monotonic logic, then he would be unable to revise his
tentative conclusions however strong the evidence to the contrary.
This appears to imply that the proof theory that the logicist must
postulate to deal with commonsense reasoning must be non-
monotonic.

Non-monotonicity is required to model not just examples such as
the above, but to capture non-demonstrative inference in general.
Consider, for example, inductive reasoning, in which a general rule
must be derived from a set of specific instances. This mode of
reasoning is notoriously non-monotonic—however many premises of
the form “Raven A is black”, “Raven B is black”, etc., are entertained,
the inductive conclusion that “All ravens are black” may be defeated
by a single additional premise “Raven N is white”. The defeasibility of
induction has led many to doubt that induction is a justifiable species
of inference at all. Whether or not induction is philosophically
justifiable, people manifestly induce general laws on which to base
their reasoning and action, from specific observations. So, whether or
not there is a philosophical theory of induction, there must be a
psychological theory of induction. Moreover, for classical cognitive
science the form of this theory must be proof-theoretic. That is, for the
logicist, induction, and all other species of non-demonstrative
inference, must be assimilated to deduction.

In philosophy, other forms of non-demonstrative inference are
typically seen as derivative on induction (Peirce, 1931–1958). In the
previous example, we assumed that Egon had induced the law that
putting the egg in boiling water results in a medium-boiled egg five
minutes later. Having put a particular egg in boiling water, he applies
this law to make the specific prediction that the egg will be medium-
boiled in five minutes. An inference from a particular occurrence of
the antecedent of an inductive law, to a particular occurrence of the
consequent of that law, is known as eductive inference. As we have
already noted, eductive inference, like inductive inference, is non-
monotonic. Similarly, Egon’s brother, who has also induced this law,
may infer that the egg was put in boiling water five minutes earlier,
from the fact that Egon is about to eat a medium-boiled egg. Such an
inference from a particular occurrence of the consequent of an
inductive law, to a particular occurrence of the antecedent of that law,
is known as abductive inference or inference to the best explanation.
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Abductive inference is again notoriously non-monotonic. That the egg
is medium-boiled does not necessarily mean that it must have been in
boiling water for five minutes—Egon may have boiled it for two
minutes in the pressure cooker.

These non-monotonic modes of inference are implicated throughout
almost every area of cognitive activity. The implicit inferences
underlying text comprehension depend on the application of prior
world knowledge to fill out and elaborate the information given in the
text (Bransford, Barclay, & Franks, 1972; Bransford & Johnson, 1972,
1973; Bransford & McCarrell, 1975; Clark, 1977; Minsky, 1975/1977;
Stenning & Oaksford, 1989). All such implicit inferences can be
defeated by subsequent sentences contradicting our implicit
conclusions. Theories of concepts that are concerned to capture the
family resemblance or prototype structure of human categorisation
implicitly recognise the defeasibility of semantic knowledge. So,
although not all birds can fly, the prototypical bird is represented as
flying, the majority of exemplar birds fly, the probability that a bird
flies is high, depending on the theory that one considers (Medin &
Schaffer, 1978; Nosofsky, 1986; Rosch, 1973, 1975). According to
modern constructivist theories of perception, much of perceptual
processing is taken to involve inference to the best explanation about
the state of the environment, given perceptual evidence. The
defeasibility of such inference is evidenced by the possibility of
perceptual illusion and error (Fodor & Pylyshyn, 1981; Gregory, 1977;
McArthur, 1982). Non-demonstrative modes of inference have even
been argued to encroach upon apparently deductive tasks such as
conditional reasoning (Byrne, 1989; Oaksford, 1989; Oaksford,
Chater, & Stenning, 1990). Thus, the whole of cognitive performance
depends upon non-monotonic inferential processes. If these cannot be
elucidated within the logicist, proof-theoretic framework, then almost
every interesting cognitive phenomenon will fall outside the scope of
logicist psychological explanation.

Non-monotonicity and Confirmation in Science

Prima facie, the logicist programme is analogous to the Logical
Positivist’s attempts to provide a theory of confirmation for scientific
theories (Carnap, 1923, 1950; Hempel, 1952, 1965). Roughly, it was
hoped that such a theory could be axiomatised as an inductive logic,
which has the form of deduction in reverse. The claim was that in
induction a statement is confirmed by the truth of its deductive
consequences, whereas in deduction the truth of a statement
guarantees the truth of its deductive consequences. Unfortunately, the
axioms of such putative inductive logics could not be made mutually
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consistent and generated many paradoxes. For example, from very
minimal assumptions about the form of an inductive logic it is possible
to prove that any hypothesis confirms any other hypothesis (Goodman,
1983, originally 1954). The proof is trivial, and exploits the fact that
confirmation appears to flow in both directions between hypotheses
and their consequences. Consider two arbitrary hypotheses H and H’.
The conjunction H  H’ has H as a consequence, and hence, as
confirmation is supposed to be deduction in reverse, H confirms H  H’.
If H  H’ is true then H’ must be true—so according to any sensible
confirmation theory surely H  H’ must confirm H’. Indeed
presumably the strength of this confirmation should be the greatest
possible as, if H  H’ is true, then H’ is definitely true—i.e. maximally
confirmed. We have concluded that H confirms H H’ and H  H’
confirms H’. Assuming transitivity, which again seems necessary for
any inductive logic able to support the elaborate chains of
confirmation in science, this means that H confirms H’ (and, of course
vice versa). As H and H’ were chosen arbitrarily, we have the
paradoxical conclusion that any two hypotheses confirm each other.

Further, Goodman’s (1983) famous “grue” predicate  is grue at t 
 (x is green  t < year 2050) v (x is blue  t ≥ year 2050))) showed that
the problems of confirmation theory could not be resolved by purely
formal considerations. Every emerald that has so far been observed is
both grue and green. Yet the induction to all emeralds are green will
continue to be true after the year 2050, whereas the induction to all
emeralds are grue will clearly fail from the year 2050, after which no
emeralds will be grue. In Goodman’s terms, “green” is a projectible
predicate where “grue” is not. The projectibility of predicates such as
“green” and the non-projectibility of predicates such as “grue” could
not inhere in their formal properties; the projectibility of a property
could not be dependent on the shape of the predicate symbol used to
denote it!

Fodor (1983) raises further problems for the procedures of inductive
confirmation: such non-demonstrative fixation of belief is both
isotropic and Quinean:

By saying that confirmation is isotropic, I mean that the facts
relevant to the confirmation of a scientific hypothesis may be
drawn from anywhere in the field of previously established
empirical (or, of course, demonstrative) truths. Crudely:
everything that the scientist knows is, in principle, relevant to
determining what else he ought to believe. (Fodor, 1983, p. 105)

By saying that scientific confirmation is Quinean, I mean that
the degree of confirmation assigned to any given hypothesis is
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sensitive to properties of the entire belief system. (Fodor, 1983,
p. 107)

That confirmation is Quinean is indicated by criteria of theory
preference which are based on global properties of a system of
scientific beliefs. Properties such as simplicity, plausibility,
conservatism, or projectibility are global properties in just this sense.
Fodor (1983) argues that such global properties cannot be handled by
any current theory of confirmation—and that, in consequence, there is
no serious theory of scientific confirmation.

The failure of a logicist account of the science does not, of course,
necessarily entail that a logicist account of mind will be similarly
unsuccessful. However, there is reason to suppose that ordinary
everyday commonsense inference may be relevantly analogous to
confirmation in science, and hence that a logicist account of one may
stand or fall with a logicist account of the other. Jerry Fodor (1983),
although a staunch advocate of a proof-theoretic account of mind,
argues for the analogy very eloquently. He notes that the problem of
confirmation in science maps rather directly onto the everyday,
commonsense reasoning problem of knowing how to update one’s
beliefs, given that one has performed some action—the notorious, and
ubiquitous frame problem in AI. Fodor considers the predicament of
an artificial robot acting on the world, and trying to revise its beliefs
appropriately in consequence:

How…does the machine’s program determine which beliefs the
robot ought to reevaluate given that it has embarked upon some
or other course of action? What makes the problem so hard is
precisely that it seems unlikely that any local solution will do…
The following truths seem to be self-evident: First, that there is
no fixed set of beliefs…that…are the [only] ones that require
reconsideration… Second, new beliefs don’t come docketed with
information about which old beliefs they ought to affect… Third,
the set of beliefs apt for reconsideration cannot be determined by
reference to the recency of their acquisition, or by reference to
their generality, or by reference to merely semantic relations
between the contents of the belief and the description under
which the action is performed…etc. Should any of these
propositions seem less than self-evident, consider the special
case of the frame problem where the robot is a mechanical
scientist and the action performed is an experiment. Here the
question “which of my beliefs ought I to reconsider given the
possible consequences of my action” is transparently equivalent
to the question “What, in general, is the optimal adjustment of my
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beliefs to my experiences?”. This is, of course, exactly the
question that a theory of confirmation is supposed to answer.
(Fodor, 1983, p. 114)

The frame problem is simply a particular example of a problem in
which defeasible, non-demonstrative inference must be performed in a
knowledge-rich domain:

as soon as we begin to look at…processes…of non-demonstrative
fixation of belief we run into problems that have a quite
characteristic property. They seem to involve isotropic and
Quinean computations; computations that are …sensitive to the
whole belief system. This is exactly what one would expect on the
assumption that non-demonstrative fixation of belief really is
quite like scientific confirmation, and that scientific confirmation
is itself characteristically Quinean and isotropic. (Fodor, 1983,
pp. 114–115)

Of course, Fodor couches his discussion in terms of the fixation of
belief. The same difficulties will arise for the management of any
database over a knowledge-rich domain, whether or not the
statements in that database may appropriately be interpreted as
beliefs.1

Let us sum up the argument so far. Quite generally, it seems that in
domains in which mental processes are held to be inferential, that
inference will typically be non-demonstrative, defeasible inference.
Hence the chal lenge of modelling non-demonstrative inference within
a proof-theoretic framework is central to the feasibility of a logicist
account. Yet the failure of logical positivism to assimilate non-
demonstrative inference to a deductive framework, the failure to
devise a successful inductive logic, the inability to account logically for
scientific knowledge and theory change, and the like, raise the
suspicion that the logicist programme in cognitive science and
artificial intelligence may be unworkable. The analogy with the
philosophy of science serves to indicate the magnitude of the problem
confronting researchers who are attempting to develop non-monotonic
logics.

Suggestive as such general theoretical considerations are, the proof
of the logicist pudding is, of course, entirely in the eating. If the
logicist framework does appear to provide a plausible account of
defeasible inferential processes, then the general theoretical qualms
that we have raised may be put aside. Moreover, profound and
heretofore unrealised implications for the philosophy of science would
result. In the following section we therefore examine the current state
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of the logicist attempt to account for defeasibility, as embodied in the
field of knowledge representation in AI, and argue (i) that logicist
accounts fail, and (ii) that they fail in principled ways.

First, the proof-theoretic rules for the non-monotonic logics that
have been proposed to capture defeasibility do not adequately capture
knowledge-rich human non-demonstrative inference—using the
terminology that we introduced earlier, such logics are not complete*.
In particular, non-monotonic logic appears able to generate only
unacceptably weak dis-junctive conclusions. Second, such non-
monotonic logics do not possess any tractable algorithms—that is, the
computational resources required by theorem-provers for such logics
increase explosively as the number of formulae over which we must
reason increases. Prima facie, this appears to rule out a proof-
theoretic view of cognition for domains in which a large amount of
knowledge must be taken into account. In short, the proof-theoretic
account of defeasibility does not give the right inferential behaviour,
and is computationally intractable. Given the extent to which almost
every cognitive task involves defeasible, non-demonstrative inference,
the domain of the proof-theoretic account may perhaps be
unexpectedly limited.

Artificial Intelligence and the Logicist Approach to
Defeasible Inference

A central challenge of logicist cognitive science is to provide a proof
theory and theorem-proving methods that capture non-monotonic
inference. Workers in artificial intelligence have faced this challenge
most directly, in attempting to build systems that can reason about
real-world, commonsense domains, using mechanised proof theory (for
a general introduction to this approach, see Charniak & McDermott,
1985). In this section, we discuss two difficulties with this approach.
First, that non-monotonic inference licenses only unacceptably weak
conclusions; and second, that theorem proving for such logics is
computationally intractable.

In order to cope with the defeasibility of inferential rules in
examples such as the one given earlier, it is necessary to devise a
logical scheme in which defeasible rules may be encoded. A wide
variety of superficially very different non-monotonic logics have been
proposed. The best known are McCarthy’s (1980) circumscription,
Reiter’s default logic (1980, 1985), McDermott and Doyle’s (1980) non-
monotonic logic I, McDermott’s non-monotonic logic II (1982), and
Clark’s predicate completion (1978). The problems that we shall raise
appear to apply equally to all of these approaches (Hanks &
McDermott, 1985, 1986; Shoam, 1987, 1988).
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Non-monotonic Logics and Weak Conclusions
For concreteness we shall consider a formalisation of defeasible
inference which introduces a meta-theoretic M operator into the object
language of a standard logic (Reiter, 1980, 1985). Defeasible rules (in
AI terminology, default rules) are encoded as follows:

This formula reads:  can be inferred from (|) as long as  is not
provable, given the axioms of the system. So the intuitive
interpretation of  is that  cannot be proved given  (the set of
logical axioms that govern the behaviour of the connectives) and 
(the non-logical axioms that encode the domain-specific knowledge in
the system). In other words, it is consistent to infer  from  and

 The M operator has the unusual property of introducing the meta-
theoretic concept of deducibility  into the object language: i.e.  is
equivalent to (This logically inelegant manoeuvre may be
avoided by interpreting the M operator as a modal operator, and
providing a possible worlds semantics for the resulting logic
[McDermott & Doyle, 1980]. Which formulation is used makes no
difference to the inferences that can be drawn, or to the theorem-
proving algorithms employed.)

Returning to our example of Egon and the egg, suppose that Egon
tells his brother that he has just put an egg in boiling water. Egon’s
brother’s relevant prior knowledge may be encoded in axioms  of
something like the following form—where the premises (4.3) and (4.4)
simply encode the fact that an egg cannot be both hard-boiled and
medium-boiled at the same time:

(4.3)
(4.4)

He now knows that a particular object a, which is an egg, is in boiling
water at time t1 and adds (4.5) to ∆:

(4.5)
As (4.5) matches the first conjunct of the antecedent of (4.1) the
possibility arises that a will be medium-boiled at t1+5. As it is not
possible to derive the negation of this conclusion from the propositions
(4.1) to (4.5), then this conclusion is consistent with the database.
That is, M(a is medium-boiled at t1+5 minutes) holds. Therefore, the
second conjunct of the antecedent of (4.1) is also satisfied. So, the
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consequence that this egg will be medium-boiled in five minutes may
legitimately be inferred.

Egon’s brother now walks into the kitchen, and observes that the
egg must be in the pressure cooker (it is the only pan on the stove). In
our formalism, this amounts to adding (4.6) to ∆:

(4.6)
As (4.6) matches the first conjunct of the antecedent of (4.2) the
possibility arises that a will be hard-boiled at t1+5. As it is not
possible to derive the negation of this proposition from ∆ and (4.6),
then this conclusion is consistent with the database. That is, M(a is
hard-boiled at t1+5 minutes) holds. Therefore, the second conjunct of
the antecedent of (4.2) is also satisfied. So, the consequence that this
egg will be hard-boiled in five minutes may legitimately be inferred.

Yet this situation may seem paradoxical. From ∆ and (4.5), we have
the conclusion that the egg is medium-boiled at t1 4−5 (and hence, by
(4.3), it is not hard-boiled). On the other hand, from A and (4.6) we
have the conclusion that the egg is hard-boiled at t1+5 (and hence by
(4.4), it is not medium-boiled). This may seem counter-intuitive if we
are used to monotonic logics. For in such a logic all the conclusions
that follow from any subset of (4.1)-(4.6) must follow from the
complete set. In particular, (4.1)-(4.6) would imply that egg is both
hard-boiled and not hard-boiled—that is, the axioms are inconsistent.
However, because the logic is non-monotonic, inconsistency does not
follow.

The cases in which the egg is medium-boiled and hard-boiled are
what are known as distinct extensions of ∆. Which extension is
obtained depends on which default rule is used first. If rule (4.1) is
used first to infer that the egg is medium-boiled, rule (4.3) can be used
to infer that it is not hard-boiled. In this extension, it is inconsistent
to assume that the egg is hard-boiled—that is, M(a is hard-boiled at t1
+5 minutes) does not hold. Hence, the contrary default rule (4.2) is
blocked, and hence no contradiction results. Similarly, we can
consider the extension in which rule (4.2) is used first. In this case,
the egg is inferred to be hard-boiled, and hence, by rule (4.2), it cannot
be medium-boiled. Thus, rule (4.1) cannot apply, and no contradictory
conclusion is derived. Given that there are two possible extensions of
(4.1)-(4.6), what conclusions can be derived? The only valid
conclusions are those that hold in all extensions—so rather than
inferring any particular extension, we may infer only the disjunction
of all extensions. In the present case, this is simply that:

This disjunctive conclusion is not intuitively adequate. That default
logics give only such weak conclusions amounts to what McDermott
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(1986) calls the “you don’t want to know” problem. From the point of
view of prediction and action, you don’t want to know that the egg will
be either medium- or hard-boiled—you want to know which! The
performance of the system contrasts with human reasoning. If we
know that the egg is in boiling water and that it is in the pressure
cooker, then we will unambiguously infer that it will be hard-boiled at
t1+5. Whereas the system has no way of resolving conflicting default
conclusions, at least in cases such as this, such resolution is an
effortless feature of human cognition. Hence, to model human
performance, the system must be able to determine how conflicting
pieces of inconclusive evidence bear upon the inferences that may be
drawn. In other words, the system must solve the problem of
appropriately revising its beliefs in the face of incomplete and
conflicting information. Yet this is the problem of non-demonstrative
inference. So in trying to explain non-demonstrative inference, by
invoking non-monotonic logics, we have succeeded only in raising it
again. Given the failure of logical positivist attempts to reconstruct
non-demonstrative inference proof-theoretically, perhaps the failure of
AI to tackle the same problem is unsurprising.

Despite this worrying state of affairs, within the AI community
there have been attempts to tackle the problem of resolving
incomplete and conflicting evidence by using domain-specific
heuristics. Such heuristics are intended to differentiate acceptable
from unacceptable extensions of the logical system. In view of the
generality of the problem that such heuristics are attempting to solve,
it is not surprising that they have been criticised as inadequate
(Hanks & McDermott, 1985; Israel, 1980). Moreover, in so far as
cognitive processes are taken to be semantically justified—i.e. to
corres pond to valid derivations at the level of proof theory—the
postulation of such heuristics in the control strategy of the theorem-
prover constitutes a retreat from the logicist position. However, let us
assume that the problem of resolving conflicting and incomplete
information could be solved by some set of heuristics. Even given this
(apparently counterfactual) assumption, the logicist proof-theoretic
programme appears to be infeasible.

Non-monotonic Logics and Computational Complexity

To complete the programme of logicist cognitive science, it must be
possible to construct tractable algorithms that embody the non-
monotonic proof theory. In particular, the introduction of the M
operator, or equivalent, requires the ability to check whether or not
some premise is consistent with the current contents of the database
ΓΛ∆. Thus, any invocation of a default rule requires a complete
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consistency check over the whole database. However, as we shall see,
consistency checking is computationally intractable.

Consistency checking constitutes a general class of problems in
complexity theory called satisfiability problems. In this section, we
note the intractability of such problems, and the consequent
implausibility of the proof-theoretic account of non-demonstrative
inference.

There are two approaches to computational complexity: a priori
analysis and a posteriori analysis (Horowitz & Sahni, 1978). A
posteriori analysis involves the observation of the run-time
performance of an actual implementation of an algorithm, as the size
of the input, n, is systematically varied. Such empirical observations
can generate approximate values for best, worst, and typical case run-
times. A more theoretically rigorous approach is to attempt to derive
an expression that captures the rate at which the algorithm consumes
computational resources, as a function of the size of n. The crucial
aspect of this function is what is known in complexity theory as its
order of magnitude, which reflects the rate at which resource
demands increase with n. For present purposes, the relevant resource
is the number of times the basic computational operations of the
algorithm must be invoked. Orders of magnitude are expressed using
the “O” notation

For example, O(1) indicates that the number of times the basic
operations are executed does not exceed some constant regardless of
the length of the input. O(n2), O(n3),…, O(ni) indicate that the number
of times the basic operations are executed is some polynomial function
of the input length, such algorithms are polynomial-time computable—
strictly speaking this class includes all algorithms of order lower than
some polynomial function, such as O(log n), O(n log n).

Within complexity theory an important distinction is drawn
between polynomial-time computable algorithms (O(ni) for some i),
and algorithms that require exponential time (for example, O(2n)…
worse). As n increases, exponential time algorithms consume vastly
greater resources than polynomial-time algorithms. This distinction is
usually taken to mark the difference between tractable algorithms
(polynomial-time) and intractable (exponential-time) algorithms.
Applying these distinctions to problems, a problem is said to be
polynomial-time computable if it can be solved by a polynomial-time
algorithm. If all algorithms which solve the problem are exponential-
time, then the problem itself is labelled “exponential-time
computable”.
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An important class of problems the status of which is unclear
relative to this distinction is the class of NP-complete problems. “NP”
stands for non-deterministic polynomial-time algorithms. Problems
that only possess polynomial-time algorithms which are non-
deterministic are said to be “in NP”. NP-complete problems form a
subclass of NP-hard problems. A problem is NP-hard if satisfiability
reduces to it (Cook, 1971).2

A problem is NP-complete if it is NP-hard and is in NP. There are
problems that are NP-hard which are not in NP. For example, the
halting problem is undecidable, hence there is no algorithm (of any
complexity) that can solve it. However, satisfiability reduces to the
halting problem which thus provides an instance of a problem that is
NP-hard but not NP-complete. The class of NP-complete problems
includes such classic families of problems as the travelling salesman
problems—the prototypical example of which is the task of
determining the shortest round-trip that a salesman can take in
visiting a number of cities. It is not known whether any NP-complete
problem is polynomial-time computable, but it is known that if any
NP-complete problem is polynomial-time computable, then they all
are (Cook, 1971). All known deterministic algorithms for NP-complete
problems are exponential-time, and it is widely believed that no
polynomial-time algorithms exist. In practice, the discovery that a
problem is NP-complete is taken to rule out the possibility of a real-
time tractable implementation.

Unfortunately for the proof-theoretic programme of logicist
cognitive science, consistency checking, like all satisfiability problems,
is NP-complete. Hence an instantiation of a non-monotonic logic,
which invokes a consistency check over the whole database every time
a default rule is used, appears to be a hopelessly unpromising account
of real-time defeasible human inference which is invoked rapidly and
effortlessly in almost every cognitive task. 

Do We Need to Appeal to Non-monotonicity?

We have argued against the logicist approach to cognitive science by
showing that human inference is defeasible, that proof theory must
therefore be defined for a non-monotonic logic, and that theorem
proving for such a logic is incomplete* and intractable. The opponent
of the proof-theoretic programme may agree with these points but
argue that the appeal to non-monotonicity is unnecessary to defeat the
logicist programme. In particular, it may be argued that
computational intractability bites equally for standard, monotonic
logics. After all, in almost any logic the general problem of deciding
whether a given finite set of premises logically implies a given
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conclusion is NP-complete (Cook, 1971), and, of course, checking the
validity of arguments is equivalent to checking the consistency of sets
of propositions. According to this line of thought, the considerations of
defeasibility and non-monotonicity that we have stressed appear to be
wholly beside the point. However, there is a crucial difference between
the monotonic and non-monotonic cases. In monotonic logic, if a set of
premises is consistent, any application of a rule of inference will
maintain consistency. This contrasts with the non-monotonic case,
where each time a rule is applied, a new consistency check must be
performed. So, if consistency checking is a problem for monotonic
logics, it is a far greater problem for non-monotonic logics. Hence
models of thought based on proof theory are severely undermined by
the defeasibility of human inference, and the consequent postulation
that the logic of thought must be non-monotonic. For the logicist,
proof theory is supposed to be the basis of all cognitive activity (in
commonsense reasoning, language, perception). If the logic of that
proof theory is non-monotonic, and hence rule application is
intractable, then the logicist position is surely untenable.

NOTES

1. Fodor is concerned to outline an interesting and important distinction—
between central processes of non-demonstrative belief fixation, which
are Quinean and isotropic; and domain-specific processes, in which the
inferential processes are not dependent on the whole belief system, but
only on a prescribed set of information, relevant to that domain. Fodor
takes the demarcation between the former central processes and the
latter informationally encapsulated processes to distinguish areas in
which cognitive science is likely to prove infeasible from areas in which
progress may be made. Note that domain-specific systems may involve
non-demonstrative inference, and that this inference may be Quinean
and isotropic relative to all the knowledge encoded in the module. So the
non-demonstrative defeasible inference that appears to be implicated in
putatively domain-specific processes involved in language
understanding and perception may be just as problematic as the central
processes of commonsense inference. With regard to our concern in this
paper, the key distinction is not between domain-specific and central
processes but between processes that involve knowledge-rich defeasible
inference and are at least prima facie problematic for a logicist account,
and those that do not. Of course, it is possible that this distinction is in
practice rather trivial, all human inference being of the former kind.

2. The satisfiability problem is to determine whether a formula is true for
some assignment of truth values to the variables, and “reduces” is a
technical term of complexity theory (see Horowitz & Sahni, 1978, p.
511).
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CHAPTER FIVE
Against Logicist Cognitive Science II:

Objections and Replies

INTRODUCTION

In the previous chapter, we argued that an extreme version of the
logicist view of cognitive science fails to provide a complete* account
of real human reasoning, and that logic-based approaches to uncertain
reasoning are computationally intractable. But how general are the
implications of these claims? One way of assessing this is by
considering various ways in which our arguments may be countered,
and assessing how successful these are. Specifically, we claim that the
scope of our arguments against logicist cognitive science includes
relevance theory (Sperber & Wilson, 1986), semantic methods of proof
such as mental models (Johnson-Laird, 1983), and heuristic methods
of reasoning.

One possible counter to our arguments that we briefly consider
involves using probability theory, rather than logic, as the
computational-level theory. When we wrote the paper on which
Chapters 4 and 5 are based (Oaksford & Chater, 1991), we could not
see how probability theory could provide a more adequate
computational-level theory of defeasible inference. In Part II of this
book, we show how probability theory can provide a computational-
level theory for explaining human inference, in the context of
providing a theory of human performance on a particular psychological
reasoning task, the Wason selection task. We will consider the degree
to which the problems of defeasible inference that we raise in this
chapter can at least partially be solved by probability theory in
Part II of this book, and suggest that probability theory offers a much
more promising starting point for providing an adequate theory of
human reasoning. Nonetheless, as we shall see in Chapter 16, the
problems of completeness* and tractability remain important
challenges for probabilistic approaches to cognition.

At the end of the paper on which this chapter is based, we
speculated that connectionism might provide a way forward in



providing an adequate theory of human reasoning. As we noted in the
Introduction to Chapter 2, our current position is less optimistic about
the prospects for connectionist approaches to high-level cognitive
processes. We would now suggest instead that the probabilistic
approach, as exemplified in Part II of this book, is the most promising
direction for future research. However, there are close connections
between connectionist networks and probabilistic inference, as we
discuss in Chapter 16—so connectionist networks may, nonetheless,
prove to be part of the solution to the problems of completeness* and
tractability.

OBJECTIONS AND REPLIES

Worst Case Versus Typical Case

The a priori intractability results that we have considered are worst-
case analyses. In practice the possibility remains that in typical cases,
non-monotonic reasoning may be effected without exhausting the
available computational resources. The most direct way to test this
hypothesis is to perform an a posteriori analysis of actual average-
case run-times of implemented non-monotonic logics. However, to the
best of our knowledge, no such implementations exist. Of course, in
computer science, theory is often developed in advance of its
implementation in real systems. Such a situation is healthy if there is
some reason to believe that implementations may be forthcoming—
this does not appear to be the case in current approaches to
defeasibility in the knowledge representation literature. This is of
particular concern for artificial intelligence and cognitive science in
which successful implementation is taken as the benchmark of
theoretical rigour and adequacy. It is not, of course, possible to
distinguish reliably between progressive and degenerating research
programmes, between temporary puzzles for, and outright
falsifications of, some line of research (Lakatos, 1970). However,
increasing theoretical elaboration and decreasing practical success is
surely a straw in the wind.

Heuristics, Tractability, and Completeness*

Apart from the foregoing, there is another reason why a priori
intractability results are not necessarily taken to rule out the
possibility of practical computation. No algorithm—i.e. no procedure
that is guaranteed to solve the computational problem—may be
tractable, and yet there may be more or less reliable heuristics which
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often solve the problem, or at least provide something close enough to
the solution to be useful. These heuristics need not necessarily be
computationally intractable. Computational tractability may be
bought at the price of the reliability of the procedures. Given that
human inference is manifestly unreliable—we are always jumping to
conclusions, forgetting to take into account important considerations,
and so on—it may seem plausible that an appropriate set of heuristics
may be the basis of human defeasible inference. In discussing
heuristics as a method of solving a particular case of the problem of
defeasible inference, the frame problem, Fodor says:

The idea is that, while non-demonstrative confirmation (and
hence, presumably the psychology of belief fixation) is isotropic
and Quinean in principle, still, given a particular hypothesis,
there are, in practice heuristic procedures for determining the
range of effects its acceptance can have on the rest of one’s
beliefs. (Fodor, 1983, p. 115)

We noted earlier that such heuristics have been appealed to in the
attempt to overcome the tendency of non-monotonic logics to give
unavoidably weak disjunctive conclusions. Appropriate heuristics
might, perhaps, systematically favour some possible extensions of
knowledge-base over others— heuristics that take account of the
structure of the world could, it may be hoped, show systematic bias in
favour of what we intuitively consider to be the right extensions. Thus,
the operation of the heuristics implicitly encodes knowledge about the
world. This approach has indeed been pursued in the knowledge
representation literature. Let us consider a famous problem in non-
monotonic reasoning, the Yale shooting problem (Hanks &
McDermott, 1985), and consider an heuristic designed to favour the
“right” answers.

A gun is loaded at some time, and fired at a person at some later
time. The problem is to determine whether or not the person ceases to
be alive. It is assumed that the firing of a loaded gun at a person is
invariably fatal. Further, we assume two defeasible rules: that (i) if a
gun is loaded at some time, then it will typically continue to be loaded
at some later time; and (ii) if a person is alive at some time, that
person will typically be alive at some later time. This scenario creates
a problem analogous to the one we raised earlier with respect to Egon
and the egg. For any non-monotonic or defeasible reasoning system,
two contrary, albeit defeasible, conclusions are warranted: either the
person is not alive at some later time or he is alive at some later time
(Hanks & McDermott, 1986). Observe that this example is a specific
application of non-monotonic logics to the frame problem (see Fodor’s
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comments quoted above). The scenario creates the problem of how to
revise one’s beliefs appropriately concerning the person being alive or
dead given that a shooting has taken place. 

Specific proposals concerning how to resolve the problem of multiple
inconsistent extensions of a non-monotonic theory all invoke some
method of preferring one extension over another. Hanks & McDermott
(1986) propose that if conclusions in two extensions are contraries,
then an earlier defeasible conclusion should defeat later defeasible
conclusions. Thus, in the Yale shooting problem, as rule (i) is invoked
earlier than rule (ii) in the chain of reasoning, the intermediate
defeasible conclusion that the gun is loaded when it is fired is to be
preferred over the defeasible conclusion that the person is alive after
the gun has been fired. This “solution” is justified on the basis of
reflections on the nature of causality (Shoam, 1986). However,
although this move resolves the problem in favour of the putatively
desired defeasible conclusion—that the person is dead at the later
time—such a preference for one extension over another is not
legitimised within the logical system. It is an heuristic based on prior
global knowledge concerning the nature of causality. Its heuristic
status is further confirmed by Loui (1987), who observes that although
this heuristic may accord with intuition in the Yale shooting problem,
there are many other examples where intuitions are violated if the
heuristic is applied across the board. Thus, although such a temporal
precedence heuristic may usually allow the right conclusion (although
even this is disputed, see Loui, 1987), it is not guaranteed to do so.

Other methods for preferring one extension over another (e.g. Loui,
1986; Nute, 1985, 1986; Poole, 1985) all involve explicitly “encoding the
preference information” (Loui, 1987, p. 291). Thus the decision about
what defeasible inferences are licensed is external to the inference
regime, and reflects purely heuristic assumptions usually concerning
the nature of causality. Relative to the isotropic nature of non-
demonstrative inference it is doubtful whether any of these heuristic
assumptions are of general applicability. Moreover, all of these
assumptions are Quinean, they reflect global properties of our causal
knowledge. However, in their implementation in non-monotonic logics
they are imposed externally by the programmer. But to complete the
proof-theoretic programme such properties need to be shown to
emerge from the structure of our world knowledge and cannot be
imposed by fiat. Hence all these “solutions” fail to be complete*.

It is important to note that the kind of heuristics proposed earlier to
circumvent the incompleteness* of non-monotonic logics are distinct
from the equally non-logical decisions enforced by any practical
implementation of logic in for example PROLOG. Practical theorem
proving requires various non-logical control decisions to be made in
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the search strategy of the theorem prover, for example, to employ
backward chaining only, to use loop checkers and to employ the “cut”
operator (Hogger, 1984). These decisions involve the control strategy of
an implementation of logic and as such are wholly independent of the
knowledge to be encoded in a particular data-base. However, the
heuristics proposed earlier specifically involve the very knowledge
that is to be encoded. As we stated earlier, this involves making
heuristic assumptions about how beliefs are appropriately updated.
But this is precisely the problem that, on the proof-theoretic logicist
account, non-monotonic logics were invoked to resolve! McDermott
(1986) proposes a retreat to proceduralism in which it is admitted that
no semantic justification for the heuristics proposed will be
forthcoming. We will discuss this option further later, but observe now
that it directly contradicts Fodor and Pylyshyn’s logicist account of
cognitive science.

It seems that appeal to heuristics is unlikely to repair the
incompleteness* of non-monotonic reasoning; and that, in any case, to
the extent that world-knowledge is embodied in heuristics rather than
represented in the logical language over which the proof theory is
defined, the appeal to heuristics amounts to a rejection of the logicist
account of inference. A further proposal, mentioned by Loui (1987), is
to make reasoning domain-specific. If only information relevant to a
specific domain is employed in a particular inference then certain
desirable consequences may follow. First, if a formal account of
relevance can be defined, then it may be possible to logically delimit
the sets of premises over which reasoning takes place. This may
satisfy the completeness* criterion. Second, by restricting the
premises to the relevant ones, n may be suitably restricted to satisfy
the tractability criterion. We now turn to two proposals concerning the
concept of relevance.

Relevance

Relevance logic restricts the concept of deducibility so as to avoid the
well-known paradoxes of material implication  For example, it
seems bizarre that A  (B  A) follows from assumptions A and B, if

 is held to capture an intuitive notion of implication. Anderson
and Belnap (1975) define a notion of relevant entailment  which
employs a system of indices that attach to assumptions. The indices
guarantee that a logical relation of relevance exists between the
antecedent and consequent of a conditional statement. Only
assumptions B, which rely on assumptions A, will allow (relevant
entailment) to be introduced such that A  B. That is, A  B can
only be concluded when A is part of the subproof of B. In this precise
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logical sense A is relevant to B. It has been proposed, for example, by
Haack (1978), that this notion of relevant entailment could assist in
avoiding the conclusion that confirmation is Quinean. Instead of the
whole of scientific knowledge being the unit of confirmation, she
suggests that it could just be the relevant subset in Anderson and
Belnap’s sense. Moreover, Levesque (1988) proposes that relevant
entailment may be used to effect a tractable selection of relevant
premises from a database for subsequent reasoning processes. 

However, in reasoning in defeasible domains relevant entailment
still violates both the completeness* and tractability criteria. Even
supposing relevant entailment were employed, default rule
application would still remain intractable (Levesque, 1988). There are
also strong grounds to question whether relevant entailment is
complete*. In introducing the complete* criterion we noted that
formal concepts must respect the depraved semantics for the informal
concepts they encode. However, it seems that the notion of deductive
relevance captured in relevant entailment far from exhausts the ways
in which one piece of knowledge may be relevant to another piece of
knowledge. First, Fodor (1983) observes that in science, knowledge in
one domain may be relevant to another domain analogically. Strictly,
considerations of analogical reasoning move outside the domain of
confirmation into the domain of scientific discovery. For example,

what’s known about the flow of water gets borrowed to model the
flow of electricity, what’s known about the structure of the solar
system gets borrowed to model the structure of the atom. (Fodor,
1983, p. 107)

However, analogical reasoning processes are part of our non-
demonstrative reasoning abilities and as such require explanation by
the mechanisms that purport to account for those abilities.

Second, relevant entailment accounts for relevance between
propositions—it is a purely structural notion. However, our intuitions
about relevance appear to be crucially dependent on lexical rather
than structural properties of statements. For example, the fact that
Fred having a heart is relevant to Fred’s having palpitations depends
not on the structure of the two propositions, but on the meaning of
“heart”, “palpitation”, and the causal structure of the world that
putatively links the two. Further, it appears that relevance is not
determined by the extension of the relevant properties. According to
the well-worn philosophical example, having a heart and having
kidneys are coextensive—so if Fred has either property he has them
both. However, although Fred’s having a heart may be relevant to his
having palpitations, his having kidneys may not be.

5. AGAINST LOGICIST COGNITIVE SCIENCE II 87



This clearly suggests that “relevance” is an intensional concept and
hence it might be expected that a well-defined concept of relevance
would be forthcoming via an appropriate possible worlds semantics.
However, the provision of a proper semantics for relevance logics is
notoriously difficult:

The relevance logicians run the risk of turning logical validity
into a clumsy thing. The difficulties they have in providing their
largely proof-theoretic theories with a proper semantics may be
regarded as a symptom of this. The semantic theories which have
thus far been put forward tend to lack the explanatory power
which is to be expected from theories which purport to say what
relevance means (Veltman, 1985, pp. 42–43).

In sum, it would appear that relevance logic fails to meet both our
criteria. Default rule application remains intractable and there are
grounds for considerable doubt over whether relevant entailment is
sufficient to capture the numerous ways in which one piece of
knowledge may be relevant to another piece of knowledge.

However, relevance logic does not exhaust attempts to define a
notion of relevance that may be of more general applicability.
Relevance Theory (Sperber & Wilson, 1986) is an attempt to account
for how a person’s beliefs may be appropriately updated which takes a
less restricted view of relevance and also incorporates various
processing requirements that bear on the issue of tractability. Sperber
and Wilson (1986) first emphasise a disanalogy between their account
of the spontaneous and almost instantaneous updating of beliefs that
occurs in sentence comprehension and the reflective and time-
consuming updating of beliefs that occurs in scientific theorising. It is
the former that they are concerned to explicate. They suggest that the
inferential processes underlying sentence comprehension must exploit
only the accessible information. Sperber and Wilson (1986) then
outline what we will term a hybrid inferential regime consisting of a
restricted deductive mechanism and a non-logical component which is
responsible for updating the confirmation strengths that attach to
propositions stored in memory. The restricted logical component,
which contains no introduction rules, is motivated primarily by issues
of tractability but also represents a substantive claim about the
nature of people’s inferential processes in language comprehension.
Sperber and Wilson (1986) are careful to emphasise that they do not
intend their notion of confirmation strength to be conflated with the
assignment of subjective probabilities to propositions that are
explicitly manipulated in judging the relative strengths of those
propositions. “Confirmation strength” is to be understood as a purely
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processing notion determined by a proposition’s prior history of being
accessed from memory. The concept of relevance is defined relative to
a context C.

Extent condition 1: an assumption is relevant in C to the extent
that its contextual effects in C are large.

Extent condition 2: an assumption is relevant in C to the extent
that the effort required to process it in C is small.

Contextual effects and processing effort are defined in terms of the
hybrid inferential regime introduced earlier. There is a trade-off
between these two “extent conditions” in determining the relevance of
an assumption.

The notion of relevance thus defined may not be helpful given our
present concerns, as it appears to beg the very question we were
hoping the concept of relevance would answer. That is, how do we
choose from all we know the relevant items to update in response to
new information? The foregoing definition is relativised to a context
C, which is understood as the old information available from the
immediately prior discourse and from memory for encyclopaedic or
world knowledge. Sperber and Wilson (1986, pp. 132–137) argue
convincingly that the whole of the latter may be included in C,
although it is suggested that this would violate extent conditions 1
and 2 of the definition. However, as relevance is defined in terms of C,
delimiting C’s extent by appeal to relevance would be viciously
circular. Thus, to avoid the charge of circularity, independent grounds
are required to delimit C. Sperber and Wilson (1986, p. 138) appeal to
the fact that in cognitive psychology and cognitive science knowledge
is generally agreed to be compartmentalised in to “schemata”, “frames”,
“scenarios”, and “prototypes”. However, it was precisely in search of
principled grounds for this compartmentalisation that we embarked
upon this discussion of relevance! “Schemata”, “frames”, “scenarios”,
and “prototypes” are precisely the names appropriated to the domain-
specific units of knowledge that it was hoped that the concept of
relevance would provide, thereby delimiting the isotropy of
confirmation. It seems, therefore, that relevance theory, in order to
define a restricted notion of relevance appropriate to sentence
comprehension, must presuppose a solution to the more global problem
of relevance, which is our present concern.

Apart from this, there are general problems for relevance theory.
We will mention just two. First, Sperber and Wilson’s (1986) account
of their inferential mechanism seems to leave no room for errors of
interpretation. These must be possible because the assumptions
recruited from encyclopaedic memory in discourse are often of a
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defeasible elaborative form (Stenning & Oaksford, 1989). Such
elaborative inferences can be defeated by subsequent discourse, and
hence must be cancelled. This of course suggests that the logic of the
inferential component is going to be non-monotonic even in sentence
comprehension. Thus although introduction rules have been excluded
to the benefit of the systems tractability, default rules will have to be
included which, as we have seen, are unlikely to enhance the
tractability of the system. Second, how the confirmation strengths are
used and updated is currently opaque. The proposal is that as a
proposition in memory is accessed more often so its ability to be
accessed is enhanced. Thus its strength does not have to be explicitly
represented. However, in a symbolic, deductive system, on the lines
Sperber and Wilson (1986) propose, we can see no way of implementing
this proposal. In a symbol system it matters not one jot how often an
item is accessed, every time it is accessed it will be accessed in the
order dictated by the programme—unless some parameter is attached
to the item which is updated each time it is accessed so that the
higher the value of the parameter the more likely it is to be accessed.
But this is exactly the approach Sperber and Wilson eschew. 

It appears that current notions of relevance are inadequate to the
task of determining the relevant domains of knowledge which are
updated in response to new information. Neither relevance logic nor
relevance theory provide any grounds for believing that such an
account is likely to be forthcoming.

Better Ontology

It might be thought that the locus of the problem for the logicist
programme is the insistence that the rules encoding our commonsense
knowledge adopt our everyday ontology of tables, chairs, and so on—
i.e. the ontology implicit in folk-psychological propositional attitude
ascriptions. Perhaps according to some more fine-grained ontology,
what appear to be defeasible rules can be reconstructed as
exceptionless generalisations, thus obviating the need for non-
monotonic reasoning. A search for deterministic rules underlying
apparently non-deterministic phenomena is analogous to Einstein’s
deterministic “hidden variable” interpretation of quantum mechanics.
However, the very error-prone nature of most human perception,
inference, and action appears to militate against the possibility that
people actually employ such an ontology. Any explanation of cognition
must surely account for making mistakes, changing our minds,
reviewing our beliefs in the light of new information, etc. It appears
necessary to explain the defeasibility of human inference, and
impossible to explain it away.
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Further, to retreat to the postulation of an alternative ontology,
which does not correspond to everyday objects and relations, amounts
to giving up point 4 in our characterisation of logicist cognitive science.
This may not be a concern to many working on formalising
commonsense knowledge. For example, Hayes (1984b) attempts to
formalise our implicit understanding of the behaviour of liquids by
postulating representational primitives which do not correspond one
to one with the everyday concepts provided by pre-theoretic
intuitions. Such primitives must be postulated in any case to handle
inferential processes in specific cognitive domains: as we noted
earlier, a variety of linguistic representations appear to be implicated
in language understanding; a complex range of representations is
computed in perceptual processes, and so on.

The rejection of everyday properties and relations as the basis for
internal representation does, however, constitute a significant retreat
for the logicist position of Fodor and Pylyshyn (1988). Fodor (e.g.
1987) and Pylyshyn (1984) argue that scientific cognitive explanation
must be founded on folk-psychological explanation. Specifically, they
advocate the Representational Theory of Mind according to which to
have a propositional attitude is to stand in a certain relation (the
relation of believing, desiring or whatever) to a mental
representation. The content of this mental representation is the object
of the propositional attitude. As the contents of propositional attitudes
are described in natural language, the interpretation of the
corresponding mental representations must be at the level of everyday
objects and relations. No everyday properties and relations, no theory
of propositional attitudes.

Domain-specificity

We have observed that as the size of the knowledge base increases,
the complexity of consistency checking becomes unacceptable, and non-
monotonic logics over that knowledge base becomes unfeasible. If,
however, knowledge can be encoded in small, isolated sets of domain-
specific axioms, perhaps the complexity of consistency checking may
be kept within acceptable bounds. However, it is not sufficient to
maintain consistency within domains; consistency must be maintained
between domains, on the proof-theoretic story. As we noted earlier,
Fodor (1983) is committed to the view that commonsense inference is
precisely a domain that does not admit such modularisation. In
particular, he notes that commonsense inference is isotropic. That is,
any piece of knowledge may be made to bear on any other— there are
no proscribed boundaries over which inferential processes cannot
operate.
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We have already seen that general principles like relevance fail to
provide a basis for the compartmentalisation of knowledge into
specific domains. Such general principles are required, as otherwise it
is opaque as to how such compartmentalisation is achieved, other than
by fiat, from the flux of information that an organism receives in
interacting with its environment. However, let us suppose,
counterfactually, that such compartmentalisation can be achieved. We
now present an example that demonstrates the soundness of Fodor’s
intuition that domain-specificity cannot be the rule in knowledge-
based systems (on the assumption that such demonstration may still
be required).

On any reasonable principles of modularisation, seismographic
knowledge is unlikely to be included in the domain-specific knowledge
that allows Egon to predict that his egg will be medium-boiled in five
minutes. However, suppose Egon is boiling his egg at the seismographic
station monitoring the San Andreas fault. Egon notices the meter
reading shoot off the scale. He infers that the building will be knocked
flat in a few seconds and rushes out of the door. He subsequently
realises that his egg will not be ready as usual, because the pan is
unlikely to remain on the stove. So his knowledge of seismology seems
to be implicated in explaining his expectations about eating eggs. It
could reasonably be countered that Egon might not, in practice, make
this inference in such a desperate situation. However, if knowledge
were organised into completely isolated, domain-specific modules, he
could not, in principle, make this inference, which seems counter-
intuitive. In so far as inference can be based on premises from more
than one knowledge domain, the axioms of each must be mutually
consistent. So, as any knowledge domain may bear on any other, the
global consistency of the entire knowledge base must be maintained,
according to the proof-theoretic view. So appeals to domain-specificity
cannot alleviate the problems of consistency checking for the proof-
theoretic view of commonsense reasoning.

Explicit and Implicit Inference

One line of retreat for the Logicist is to grant that proof theory does
not account for defeasible inference in commonsense reasoning,
language processing, perception, and the like. Perhaps though, it can
account for our explicit, conscious reasoning abilities. In explicit
reasoning, only a very few premises can be entertained (Evans, 1982;
Johnson-Laird, 1983; Wason & Johnson-Laird, 1972). As in these
cases the input length n is small, the onset of the combinatorial
explosion of consistency checking may be avoided. Indeed, some
generally intractable exponential-time algorithms can out-perform
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generally tractable polynomial-time algorithms for small n. The
conjecture that this is so might be supported by the fact that, given
more than about three premises, in an explicit reasoning task,
reasoning performance degrades catastrophically (Johnson-Laird,
1983, pp. 44–45).

There are two reasons why even this retreat may be untenable. First,
performance in explicit deductive reasoning tasks is extremely poor
whatever the number of premises involved. This is, at least prima
facie, puzzling if the basis of our inferential performance is proof
theory (Oaksford, Chater, & Stenning, 1990). Second, performance
even on explicit deductive reasoning tasks appears to be infected by
the effects of stored world knowledge (Byrne, 1989; Cheng & Holyoak,
1985; Cheng, Holyoak, Nisbett, & Oliver, 1986; Cosmides, 1989;
Evans, 1989; Oaksford, 1989). To model the interaction between the
small number of explicitly given premises and the huge amount of
implicit world knowledge appears to require (i) that n is, after all, very
large; and (ii) that a non-monotonic logic may be required to model the
influence of defeasible world knowledge on deductive reasoning
performance.

Can Probabilities Help?

In discussing “relevance” we mentioned that Sperber and Wilson
(1986) explicitly reject the idea of attaching subjective probabilities to
propositions in memory. We now consider the possibility that so doing
may go some way to resolving the problems we have raised. There
seem to be two major ways in which probabilities may help. First, the
defeasibility of rules that embody people’s world knowledge need not
be encoded as default rules, rather it could be conceded that all such
rules are treated as probabilistic. This appears to satisfy the
tractability criterion, as consistency checking over the whole database
would no longer be required. However, we have also observed, in
discussing non-monotonic logics and relevance, that defeasible
inference regimes are required to solve the more general problem of
which rules are to be updated in response to new information, i.e. the
ubiquitous frame problem in AI. Treating all the rules that encode
encyclopaedic world knowledge as probabilistic does not resolve the
problem of which rules apply in a given context. Further problems,
which relate to the completeness* criterion, also arise for this putative
probabilistic solution.

Perhaps the most principled way of assigning probabilities to rules
is given by Adams’ (1966, 1975) probability semantics. Logically, rules
are conditional statements, and hence concern centres on how
probabilities should attach to conditionals. Adams suggests that the
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meaning of a conditional, “if  then  is that the conditional
probability of  given   is high. However, this proposal is
subject to a well known triviality result due to Lewis (1976), the
upshot of which is that such an assignment of probabilities is only
possible on the assumption that  and  are not themselves logically
complex conditional statements. This result seriously restricts the
scope of Adams’ theory in representing very simple reasoning problems
(Veltman, 1985, p.40) and thus strongly suggests that such a proposal
fails to meet the completeness* criterion.

Further grounds to believe that probabilistic rules will fail to be
complete* are suggested by examples where probabilistic rules appear
to act as blocks to further empirical inquiry. An example due to Alice
ter Meulen (1986) can be adapted to illustrate the problem. She poses
the question of what response is appropriate on encountering a
complaisant donkey, given you believe that all donkeys are stubborn.
The latter rule can be represented as a conditional statement and
hence we may ask how it is to be revised in the light of this putative
counter-example. Assuming that one such donkey is not taken to
falsify the rule outright, the probabilistic suggestion would appear to
be that a minor adjustment in the conditional probability assigned to
the rule is required. Having made the adjustment, you can proceed on
your way. However, surely it is at least possible that you want to
inquire in to why this particular donkey does not conform to your
aforementioned belief that all donkeys are stubborn. On so inquiring,
you may discover that the animal was circus-trained, and hence you
would be advised to encode the information that all donkeys are
stubborn except circus-trained donkeys. Such an adjustment would
surely better equip you to draw appropriate inferences on next
encountering a donkey at the circus, than the minor adjustment to the
conditional probabilities suggested by the probabilistic alternative. It
would appear that only if no such default information could be found
(i.e. no hidden variables can be discovered) would the probabilistic
alternative be necessitated. Again it would appear necessary to
explain the defeasibility of human inference, and impossible to explain
it away.

A second proposal concerning how probabilities may help involves
employing probabilities to determine which rules apply in which
contexts. Thus rules are not soft and probabilistic but hard and
logical. However, which rules apply is given by their probabilities of
applying in a given context. This proposal is indistinguishable from
Relevance Theory, except in the explicit use of probabilities which at
least avoids the opaqueness of confirmation strengths in Sperber and
Wilson (1986). If rules have probabilities assigned indicating their
likelihood of applying in a given context, then at least two things are
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required: (i) a probability assignment to each rule for each possible
context, (ii) a means of determining the current context. However, as
with relevance theory, (ii) is just a restatement of the current
problem. If the current context could be determined, then the problem
we have invoked probabilities to resolve would not arise. Moreover, (i)
requires that each rule has a probability assigned for every possible
context. Not only is this an impossible requirement—the range of
possible contexts is simply not known—but the spectre of
intractability must again loom very large. In, for example,
computational accounts of abductive reasoning in medical diagnosis,
which employ Bayesian inference, the number of stored a priori and
conditional probabilities increases explosively with the number of
diseases and symptoms (Charniak & McDermott, 1985). Yet such a
knowledge base must be regarded as trivial in comparison to the
whole of world knowledge. In sum, there are strong grounds for
believing that the probabilistic approach will be subject to
intractability problems and for believing that such approaches violate
the completeness* criterion.

Parallelism

From the discussion so far, it might be thought that the
computational intractability of non-monotonic inference applies only
to serial machines, in which computational operations must be
executed one after the other. Perhaps an appeal to the parallelism of
the brain may alleviate the problem of computational intractability.
However, at best, appeals to parallelism can only reduce the time-
complexity of a computationally explosive algorithm by a constant
factor. All that this can do is slightly delay the onset of the
computational infeasibility. Given that the proof-theoretic view of mind
requires consistency checking over a database that encodes the whole
of an individual’s commonsense knowledge (so that n is, presumably,
very large), the minor gains induced by appeal to parallelism are
unlikely to be significant. 

Semantic Methods of Proof

Within the psychology of reasoning, there is an important debate
about whether or not human deductive reasoning is mediated by
proof-theoretic methods (Braine, 1978; Henle, 1962; Piaget, 1953), or
by semantic methods of proof, such as mental models (Johnson-Laird,
1983). Carrying this debate over to non-demonstrative inference, it
might be thought that such semantic methods may provide an
alternative to the standard proof-theoretic approach. However, such
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semantic methods of proof work by consistency checking. The validity
of an inference from A1, A2,…, An to a conclusion C, is established by
attempting to show that A1, A2,…, An & ¬C is not consistent. The
consistency check is performed by systematically attempting to find a
model according to which each of A1, A2,…, An & ¬C are true. Because
consistency checking, of whatever form, is NP-complete, as the
number of premises in the database increases the computation
becomes intractable, and inferences cannot be made, even in a
monotonic logic. Although semantic methods such as mental models
may elegantly account for some explicit deductive reasoning tasks,
they offer no prospect of providing more tractable mechanisms for
reasoning in knowledge-rich domains.

Proceduralism

McDermott (1986) argues that the failure of proof-theoretic methods
in AI to adequately account for non-monotonic reasoning requires that
the attempt to provide a semantics for knowledge-representation
formalisms must be abandoned. Yet this move amounts to abandoning
the project of accounting for defeasible reasoning. If symbolic
structures are assigned no semantics, then they have no
representational content—that is, they are not about anything. Yet
reasoning processes are defined in virtue of the content of the
representations that they manipulate; to describe an inference as
valid, justified, and legitimate is to appeal to the interpretation of the
symbolic structures. For example, the inference from A and A  B to B
is valid because if A and A  B are both true, then B must be true.
Yet uninterpreted formulae, which are all that the proceduralist can
countenance, cannot be true or false.

The only retreat is to appeal to some form of functional role
semantics (see Block, 1986, for a review and references). That is, the
idea that symbols can acquire meanings via their intrinsic relations to
other symbols. This idea is usually illustrated (see, for example,
Lloyd, 1989, pp. 24–25) by an analogy with learning the meaning of a
term either in a foreign language or in an unfamiliar idiolect of a
speaker’s own language. A previously unencountered term may be
acquired and used appropriately simply by observing its relations to
other words, and its grammatical contexts of use. A speaker may
finally become competent enough to use the term appropriately to
utter truths without ever having learned the precise denotation of the
term, i.e. without access to the full semantic content of the symbol.
However, it is generally agreed that this story cannot work for all the
terms of a language (Lloyd, 1989). At least some, more likely the
majority, of the terms of a speaker’s language must be such that the

96 RATIONALITY IN AN UNCERTAIN WORLD



speaker has access to their full semantic content. Without such access
no sense could be attached to talk of “using a term appropriately to
utter truths”. It is important to observe that Fodor himself does not
believe a word of the functional role story (see Fodor, 1987). Although
this view is easily conflated with Fodor’s (1980) methodological
solipsism, there is nothing methodological about it; this is solipsism
pure, simple, and indefensible. Without appeal to full semantic content,
cognitive science does not have a story to tell about its central
explanatory concept, i.e. representation.

Quite generally, proceduralism abandons all notions of reasoning
and inference, be they deductive, inductive, eductive, or abductive.
Very generally, it is hard to imagine what a cognitive science (logicist
or otherwise) could look like, without the notion of representation.

CONCLUSIONS

We have argued that the plausibility of logicist cognitive science
depends on its ability to provide a proof-theoretic account of defeasible
inference which is implicated in almost every area of cognitive activity.
We assessed the practical attempt in AI to carry out this proof-theoretic
programme using non-monotonic logics, and noted (1) that such logics
are able to draw only unacceptably weak disjunctive conclusions; and
(2) that the theorem-proving algorithms over such logics are
computationally intractable due to their reliance on the NP-complete
problem of consistency checking. We drew the conclusion that the
programme of logicist cognitive science is infeasible, and replied to a
number of plausible objections to this conclusion.

If logicist cognitive science constitutes an inappropriate framework
in which to model cognition, the question arises of what alternative
approach can be provided, which maintains both semantic
interpretability and computational tractability. In discussing the
central dogmas of logicist cognitive science, we repeatedly urged that
the range of computational systems available is far from exhausted by
the traditional symbolic approach. Nevertheless, it is beyond dispute
that this is the approach that has been most thoroughly investigated,
in part because of its early promise in providing a physicalist
grounding for human cognitive processes. However, in virtue of this
fact, it is the approach about which most is known relative to its
abilities to handle cognitive phenomena. From the issues raised here
concerning the defeasibility of human cognitive processes, it is clear
that the conclusion of these investigations is that classical logicist
cognitive science is inadequate. Therefore, it may well be time to
explore the space of possible computational schemes for more
adequate, albeit, as yet, less understood alternatives.
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In this regard, recent work on distributed systems such as neural
networks (e.g. McClelland & Rumelhart, 1986; Rumelhart &
McClelland, 1986) and classifier systems (Holland, Holyoak, Nisbett,
& Thagard, 1986), may perhaps constitute the beginnings of an
alternative approach to mechanisms that deal with defeasible
inference (Chater & Oaksford, 1990; Derthick, 1987; Shastri, 1985).
Both Shastri (1985) and Derthick (1987, 1988) provide efficient
implementations of algorithms for Bayesian inference and default
reasoning respectively, which exploit connectionist systems. However,
both implementations are hand-wired and thus do not exploit the
principle advantage of connectionist systems, i.e. their ability to learn.
Connectionist learning is notoriously slow, and thus our suggestion
that such systems may aid in overcoming the objections to the logicist
programme we raise in this paper may seem suspect. Complexity
results for connectionist learning algorithms are as bad (in fact
usually worse) than the non-monotonic systems we criticise. However,
like is not being compared with like. In the case of non-monotonic
systems the complexity of inference not learning was under discussion:
these systems do not possess learning mechanisms. With regard to
inference in connectionist systems, once a network has learned, it
draws inferences as rapidly as it propagates activity from input to
output. This pattern of complexity mirrors the human case whereas
that of non-monotonic reasoning systems does not. Human learning is
a slow process, but once some piece of knowledge is in place inference
over it is effortless. Connectionist systems appear to display precisely
the same complexity profile. 
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CHAPTER SIX
Reasoning Theories and Bounded

Rationality

INTRODUCTION

In Chapters 4 and 5, we examined the consequences for logicist
cognitive science of the defeasibility of everyday reasoning. We also
considered a wide variety of potential solutions to the problem of
defeasibility that have been proposed within the cognitive sciences,
arguing that these were not successful. These included mental models
theory, which forms one of a small set of highly influential theories
that have been proposed within cognitive psychology to account for
experimental evidence concerning human deductive reasoning. In this
chapter, we consider more generally the extent to which psychological
theories developed to account for human deductive reasoning can
generalise to everyday defeasible reasoning. We argue that it is
crucial that such theories do generalise to everyday defeasible
inference, because, outside mathematical domains, deductive
reasoning appears to find little application. This is because people
need to reason about a world that is uncertain, and that does not
admit of exceptionless generalisations, as argued in Chapter 4. So if
psychological theories of reasoning apply only to deduction, then, as
we remark in this chapter, they may be of no more interest than, say,
the psychology of playing monopoly.

Deductive reasoning theorists, particularly from the mental logic
(Rips, 1994) and mental models (Johnson-Laird & Byrne, 1991)
viewpoints, explicitly view their theories as being involved in almost all
aspects of reasoning and indeed of cognition more generally. In this
chapter, we sug gest that no accounts from the current psychology of
reasoning can successfully “scale up” from constrained laboratory
tasks to deal with the problems of everyday defeasible reasoning.

One of the lessons of artificial intelligence has been that algorithms
that appear successful and tractable in “toy” domains, like the
constrained laboratory tasks used in the psychology of reasoning, tend
to fail completely when generalised to more realistic domains. One of



the most notorious difficulties that artificial intelligence has faced in
generalising to everyday domains is the cluster of problems known as
the “frame problem” (McCarthy, 1977; McCarthy & Hayes, 1969). As
we argue later, the frame problem appears to apply to psychological
theories of reasoning, as well as proposals in artificial intelligence.
This raises the concern that current theories in the psychology of
reasoning may be successful only because they deal directly just with
data from highly simplified laboratory tasks. In this chapter, we
suggest that this concern is real, and that such theories are unlikely
to generalise appropriately from the laboratory to everyday life.
Another way of expressing this concern is that current theories of
reasoning lack “ecological validity”.

We focus largely on the algorithmic level of explanation, arguing
that it is unlikely that existing psychological reasoning theories can
“scale up” to deal with everyday defeasible inference without suffering
from computational intractability. The problem of intractable theories
of human thought and behaviour has a long history throughout the
cognitive and social sciences. It was raised by Simon in the context of
both economics (Simon, 1955) and psychology (Simon, 1956). Simon
advanced the thesis that computationally intractable theories of
“rational choice” must be replaced by theories of “bounded
rationality”—i.e. theories of how the mind satisfactorily approximates
optimal performance with limited cognitive resources (see Arrow,
Colombatto, Perlman, & Schmidt, 1996; Gigerenzer, 1993; Gigerenzer
& Goldstein, 1996). So, in these terms, the question that we address in
this chapter is: Are psychological theories of reasoning, when
generalised to everyday defeasible inference, compatible with bounded
rationality? We argue that they are not, and that they do not
generalise successfully beyond the laboratory.

REASONING THEORIES AND BOUNDED
RATIONALITY

In this chapter we will argue that considerations of bounded
rationality may fundamentally alter our present conception of the
adequacy of psychological theories of reasoning. Since its inception,
cognitive science has been concerned with the limitations on the
cognitive system which inhere in virtue of the organisation of human
memory and the need to act rapidly in real time (Kahneman, Slovic, &
Tversky, 1982; Simon, 1969). Simon (quoted in Baars, 1986, pp. 363–
364), for example, says that:

cognitive limitations have been a central theme in almost all of
the theorizing I’ve done… They are…very important limitations
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on human rationality, particularly if the rationality has to be
exercised in a face-to-face real-time context.

Cognitive limitations mean that people may be incapable of living up
to normative but computationally expensive accounts of their
inferential behaviour,1 i.e. human rationality is bounded.

The two most important limitative findings of cognitive science both
affect human memory. The constraints imposed by people’s limited
short-term memory capacity have been mapped out in some detail
(Baddeley, 1986; Miller, 1956) and have been appealed to in order
explain certain biases in reasoning experiments (Evans, 1983a;
Johnson-Laird, 1983). Perhaps a less well known limitative finding
applies to retrieval from long-term memory.

In artificial intelligence this limitation has been labelled the “frame
problem” (McCarthy & Hayes, 1969; see Pylyshyn, 1987 for
overviews). This term tends to be used generically to describe a
cluster of related problems, which as Glymour (1987, p. 65) observes,
are all of the following form:

Given an enormous amount of stuff, and some task to be done
using some of the stuff, what is the relevant stuff for the task?

Some variant of the frame problem may arise for any task requiring
the deployment of prior world knowledge. In this chapter we will trace
out the consequences of the frame problem for theories of reasoning.
We will argue that a bounded rationality assumption may have to be
made in deductive reasoning research, just as in research into risky
decision making (Kahneman, Slovic, & Tversky, 1982).

We begin by outlining the range of contemporary theoretical
approaches to reasoning based on the taxonomy provided by Evans
(1991) and suggest that bounded rationality provides an additional
criterion of theory preference. We then introduce an important and
implicit assumption, which motivates interest in these theories. This
we have called the generalisation assumption (Oaksford & Chater,
1992). It states that theories of reasoning developed to account for
explicit inference in laboratory reasoning tasks should generalise to
provide accounts of other inferential processes. We will also offer a
general characterisation of these inferential processes. We then
outline more precisely how the limitations of the cognitive system may
argue against certain process accounts by briefly introducing
computational 

Two further theories are directed at explaining content effects and
the errors and biases that infect people’s normal reasoning
performance. Pragmatic reasoning schema theory proposes inference
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rules that are specific to particular domains to account for content
effects. Cheng and Holyoak (1985), for example, invoke a permission
schema to account for the facilitatory effects of thematic content. In
these tasks contentful rules about permission relations were
employed, e.g. if you are drinking alcohol, you must be over 18 years
of age. Lastly the heuristic approach proposes that a variety of
systematic errors and biases in human reasoning may be explained by
the cognitive system employing a variety of short-cut processing
strategies (Evans, 1983a, 1984, 1989).

Evans (1991) was concerned to get reasoning theorists to agree
some common ground rules concerning the adequacy of their theories.
He does so by providing criteria of theory preference—completeness,
coherence, falsifiability, and parsimony—by which to judge reasoning
theories, and seems to view mental models as scoring most highly on
these criteria. We will argue that along with these general criteria—
common to all scientific domains—limitations on long-term memory
retrieval may also provide a valuable criterion by which to assess
reasoning theories.

Cognitive limitations have been appealed to in order to account for
the biases that occur in people’s reasoning. For example, limitations
on short-term memory capacity have been appealed to in order to
motivate the heuristic approach (Evans, 1983b, 1989) and to explain
error profiles in syllogistic reasoning (Johnson-Laird, 1983). Given the
prominence of the frame problem in AI, why has it not also been taken
as a potential source of constraint on theories of reasoning? We believe
there are two reasons. First, no analysis has been provided of these
process theories which might indicate that they are profligate with
computational resources. Second, when accounting for laboratory
tasks the demands of a generalisable theory of inference can be
ignored. We now suggest that contemporary reasoning theories are
intended to generalise appropriately to other inferential modes.

The Generalisation Assumption

Why has the psychology of deductive reasoning been so prominent
within cognitive psychology/science? The principal reason appears to
be the assumption that the principles of human inference discovered
in the empirical investigation of explicit inference will generalise to
provide accounts of most inferential processes. We call this the
generalisation assumption. The generalisation assumption is, for
example, implicit in the subtitle to Johnson-Laird’s (1983) book Mental
Models: Towards a Cognitive Science of Language, Inference and
Consciousness. Little overt human activity involves deductive
inference. Therefore, without the generalisation assumption the study
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of deductive reasoning would warrant little more interest than, say,
the psychology of playing monopoly.

Within artificial intelligence knowledge representation, a similar
generalisation assumption encountered the problem of scaling up.
Quite often programs that worked well in toy domains, i.e. small well-
behaved databases rather like the abstract domains employed in
laboratory reasoning tasks, failed when scaled up to deal with larger
more realistic databases. This was because the inference regimes in
these AI programs were generally computationally intractable, but
this was only apparent when they were scaled up to deal with more
complex, real-world, inferential problems. Although a prominent issue
in AI research (e.g. Levesque & Brachman, 1985; Levesque, 1988;
McDermott, 1986), scaling up has not been an issue in the psychology
of reasoning.

Theories of Reasoning and Bounded Rationality

We will deal with the four theories of reasoning in the order in which
they were introduced: mental logics, mental models, pragmatic
reasoning schemas, and the heuristic approach.

Mental Logics
The contemporary mental logic view explains explicit reasoning
performance by appeal to various natural deduction systems (Gentzen,
1934) with (Braine, 1978) or without (Rips 1983) some specific
assumptions concerning the processes that animate the inference
rules.2 From the perspective of computational complexity, mental logic
accounts appear particularly unpromising. Even for standard
monotonic logics, the general problem of deciding whether a given
finite set of premises logically implies a particular conclusion is NP-
complete (Cook, 1971).3 Moreover, the a priori complexity results we
have already discussed were derived from logical attempts to account
for default reasoning in AI knowledge representation. In consequence
it seems unlikely that the mental logic approach is going to satisfy the
generalisation assumption. There would appear to be only two
possible lines of retreat to avoid the conclusion that most inferential
performance is beyond the scope of the mental logic approach.

Firstly, despite a priori arguments that most human reasoning is
defeasible, people may employ a standard logic in much everyday
reasoning. However, over the last 30 years or so it has been the failure
to observe reasoning performance that accords well with standard,
monotonic logic which has led to questions over human rationality.
When as little as 4% of subjects’ behaviour accords with standard logic
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in tasks where it is appropriate, it seems odd to generalise such an
account to situations where it is not. Nevertheless, it must be
conceded that this is an empirical issue. People may treat everyday
defeasible claims as exceptionless generalisations. This possibility is,
however, sufficiently remote for us to consider it no further.

Second, the generality of mental logics may be restricted to explicit
reasoning and it may be denied that they are intended to cover
implicit inferential processes involved in commonsense reasoning.
Intractability is therefore not an issue because of the small premise sets
involved. This proposal of course explicitly denies that mental logics
can satisfy the generalisation assumption. Moreover, it may not save
the mental logic account from intractability problems. We suggested
earlier that it is highly unlikely that standard monotonic inference is
generalised to everyday defeasible inference. We now argue that the
converse is far more plausible: that explicit reasoning may be
influenced by defeasible inferential processes. If this is the case, then
explanations of human inferential behaviour, even on explicit
reasoning tasks, will have to address the tractability problems we
have raised.

The proposal that explicit reasoning may be influenced by defeasible
inferential processes derives from recent empirical work on conditional
reasoning. It would appear that even in laboratory tasks conditional
sentences may be interpreted as default rules (Oaksford, Chater, &
Stenning, 1990). Byrne (1989) and Cummins, Lubart, Alksnis, and
Rist (1991) have shown that background information derived from
stored world knowledge can affect inferential performance (see also
Markovits, 1984, 1985). Specifically they have shown that the
inferences that are permitted by a conditional statement are
influenced by additional antecedents. For example:

(1) If the key is turned the car starts.
(a) Additional Antecedent: The points are welded.

(1) could be used to predict that the car will start if the key is turned.
This is an inference by modus ponens. However, this inference can be
defeated when information about an additional antecedent (a) is
explicitly provided (Byrne, 1989). Moreover, confidence in this
inference is reduced for rules that possess many alternative
antecedents even when this information is left implicit (Cummins et
al., 1991). In these studies additional antecedents were also found to
affect inferences by modus tollens. If the car does not start, it could be
inferred that the key was not turned, unless, of course, the points
were welded. Modus tollens is defeated when information about an
alternative antecedent is explicitly provided (Byrne, 1989) and
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confidence in it is reduced for rules that possess many alternative
antecedents even when this information is left implicit (Cummins et
al., 1991).

The rules employed in these laboratory tasks are being treated as
default rules. Other evidence indicates that even abstract rules may
be treated in this way. In conditional inference tasks (Taplin, 1971;
Taplin & Staudenmayer, 1973) and Wason’s (1966) selection task,
subjects typically refrain from complexity theory (described more fully
in Chapter 4). We will then show how complexity issues have raised
problems for theories of perception and risky decision making and for
theories of knowledge representation in artificial intelligence. We then
argue that contemporary reasoning theories are all likely to fall foul of
the same problems. We therefore conclude that these theories are
unlikely to be psychologically real.

An important corollary to this argument is that because our
reasoning abilities are bounded, empirically observed deviations from
optimal rationality need raise few questions over our rationality in
practice. The interesting questions are how rational the system needs
to be to qualify as a cognitive system (Cherniak, 1986), and what kind
of mechanism needs to be postulated to implement it (e.g. see Levesque,
1988). To end on a positive note, therefore, we will suggest that,
following Rumelhart, Smolensky, McClelland, and Hinton (1986) and
Rumelhart (1989), recent advances in neural computation may
suggest mechanisms that more adequately address the issues we raise
in this chapter. We will also suggest some ways in which reasoning
research may profitably develop in the future to identify the kind of
rational mechanism (Fodor, 1987) people actually are.

Theories of Reasoning

Evans (1991) offers a four-way classification of reasoning theories and
a three-way characterisation of the questions they must try to answer.
The questions that need to be addressed are: the competence question
—the fact that human subjects often successfully solve deductive
reasoning problems; the bias question—the fact that subjects also
make many systematic errors; the content and context question—the
fact that the content and context of a problem can radically alter
subjects’ responses. Evans (1991) argues that the four theories of
reasoning tend to concentrate on one question or the other, but none
provides a fully integrated account of all three. The first two theories
address the competence question.

The mental logic approach argues for the existence of formal
inference rules in the cognitive system (Braine, 1978; Henle, 1962;
Inhelder & Piaget, 1958; Johnson-Laird, 1975; Osherson, 1975; Rips,
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1983). These rules, for example modus ponens, i.e. given if p, then q
and p you can infer q, rely only on the syntactic form of the sentences
encoding the premises. Thus whatever sentences are substituted for p
and q the same inferences apply. Mental models theory suggests that
the semantic content of the sentences encoding a hypothesis is directly
represented in the cognitive system (Johnson-Laird, 1983; Johnson-
Laird & Byrne, 1991). It is these contents that are subsequently
manipulated in reasoning. Hence the actual meaning of p and q may
be important to the reasoning process. either drawing inferences that
accord with modus tollens or from adopting the strategy of
falsification that is sanctioned by modus tollens. This can be at least
partially explained if it were a general default assumption that all
rules are default rules. If this were the case, then modus tollens may
be suppressed because the rules are treated as defeasible, just as in
Byrne (1989) and Cummins et al. (1991).4

In sum, it seems likely that conditionals employed in explicit
reasoning tasks are treated as default rules. Restricting the
applicability of mental logic approaches to explicit reasoning does not,
therefore, avoid the problems of computational intractability.

The influence of default rules on people’s reasoning would appear to
have been dismissed by mental logicians as interferring pragmatic or
performance factors (Braine, Reiser, & Rumain, 1984; Rumain,
Connell, & Braine, 1983). This is in marked contrast to the reaction of
logicians and AI researchers. These researchers have almost
uniformly abandoned restrictions on what is deducible to the
monotonic case and have been exploring non-monotonic logics to
capture just the phenomenon their mental counterparts dismiss (see,
for example, the collection edited by Ginsberg, 1987). The intuition
behind this reaction seems to be that unless logical methods can be
applied to these cases then most interesting inferences may be beyond
the scope of logical inquiry. Logical inquiry may proceed divorced from
the requirement to provide computationally tractable inference
regimes. Most AI applications and the cognitive science of human
reasoning cannot, however, avoid these problems.

In conclusion, providing a viable theory of human inference must
resolve the issue of intractability. Unfortunately a solution does not
appear to be forthcoming from within the formal, logical approach.
This is not incompatible with continued logical inquiry into systems
that can handle default reasoning. Further, the possibility cannot be
dismissed that some formal notation may be devised which allows for
more tractable implementations. However, the lack of practical
success in devising a tractable logic for default inference suggests that
this may be what Lakatos (1970) referred to as a degenerative
research programme (Oaksford & Chater, 1991). In consequence, it
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seems unlikely that the mental logic approach will satisfy the
generalisation assumption.

Mental Models
The apparent failure of logical accounts to generalise appropriately to
everyday commonsense inference appears to add further weight to the
mental modeller’s claim that “there is no mental logic”. On the mental
models view, the syntactic formalisms adopted by the mental logician
should be abandoned in favour of semantic methods of proof (e.g.
Johnson-Laird 1983; Johnson-Laird & Byrne, 1991). Such methods do
not possess formal, syntactic rules of inference like modus ponens or
modus tollens. Rather the semantic content of premises are directly
manipulated in order to assess whether they validly imply a
conclusion.

In this section we will introduce two interpretations of mental
models. One we refer to as “logical mental models” the other as
“memory-based mental models”.

Logical Mental Models. In recent accounts of mental models the
claim that “there is no mental logic” has been tempered. For example,
“the [mental] model theory is in no way incompatible with logic: it
merely gives up the formal approach (rules of inference) for a
semantic approach (search for counter-examples)” (Johnson-Laird &
Byrne, 1991, p. 212). So the dispute is not about whether there is a
mental logic, but about how it is implemented. On this interpretation
logical mental models may be seen as an attempt to provide the
notation, to which we alluded earlier, which will allow a tractable
implementation of logic.

Mental models contrast with some semantic approaches to
searching for counter-examples but share similarities with others.
Truth tables and semantic tableaux (e.g. Hodges, 1975), which are
unquestionably logical,5 contrast with mental models because they are
defined over standard propositional representations. In this respect
mental models are more related to graphical proof methods such as
Euler’s circles and Venn diagrams. In these semantic proof procedures
the operations that correspond to the steps of a sound logical
derivation are defined over graphical representations of the domains of
the quantifiers.

As Evans (1991) observes, both the mental logic approach and
mental models are attempting to account for human deductive
competence. In assessing the mental models approach, it would be
helpful, therefore, if answers could be found to the same meta-
theoretical questions concerning computational tractability that we
asked of the mental logic approach. Certainly, on the logical mental
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models interpretation, answers to these questions should be possible.
However, none as yet would appear to be available. This makes it
difficult to assess mental models by the same standards we have
applied to mental logics. This is a general problem. Although mental
models are supposed to do the same job as a mental logic, there are no
meta-theoretical proofs that this is the case. Nonetheless, in the
absence of the appropriate proofs, we can speculate about how the
answers to these questions may turn out.

The first tractability question we looked at with mental logics was
the standard case of monotonic inference where we found that the
general problem of deciding validity was NP-complete. While this is
generally the case, the situation is even worse with standard
“semantic approach[es]”. At this point we must head off a possible
confusion. The semantic methods we mentioned earlier, truth tables
and semantic tableaux, are formal proof methods (Hintikka, 1985). In
contrast, the intention behind the “semantic approach” of mental
models is to use model theory as a basis for inference. As Hintikka
(1985) observes, model theory, per se, provides no inferential
mechanisms. However, the models could be exhaustively checked. For
example, the sentence “Gordon is in his room” (indexed to a particular
space-time location, say now) will be true if and only if Gordon is in
his room now, i.e. Gordon actually being in his room now provides a
model for this sentence. Of course, this is a contingent claim and
therefore there are many models in which it is false. Nevertheless you
could check this sentence is true by looking at the arrangement of
objects about which the claim is made. Could you check the validity of
a putative logical truth in a similar way? Logical validity is defined
relative to all models, which are potentially infinite in number.
Moreover, many of them will be infinite in size. Attempting to prove
the logical validity of statements in this way would be impossible, at
least for the finite minds of human beings. In sum, basing a
psychological theory of inference on model theory looks even less
promising than using formal syntactic methods.

Mental models theorists are well aware of this problem (Johnson-
Laird, 1983) and argue explicitly that mental models may provide a
way in which model theory may be developed into a tractable proof
procedure. Mental models only deal with small sets of objects which
represent arbitrary exemplars of the domains described in the
premises. This is analogous to Bishop Berkeley’s claim that reasoning
regarding, say triangles, proceeds with an arbitrary exemplar of a
triangle, rather than the, in his view, obscure Lockean notion of an
abstract general idea. Providing no assumptions are introduced which
depend on the properties of this particular triangle, e.g. that it is
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scalene rather than equilateral, then general conclusions concerning
all triangles may be arrived at.

The introduction of arbitrary exemplars highlights the lack of an
appropriate meta-theory for mental models. There is no exposition of
the rules that guarantee that no illegitimate assumptions are
introduced in a proof. This does not mean that any particular
derivation using mental models has made such assumptions.
Nonetheless, guaranteeing the validity of an argument depends on
ensuring that in a particular derivation one could not make such
assumptions. Hence explicit procedures to prevent this happening
need to be provided. In their absence there is no guarantee (i.e. no
proof) that the procedures for manipulating mental models preserve
validity. That is, it is not known whether, relative to the standard
interpretation of predicate logic, mental models theory provides a
sound logical system.6

While soundness is unresolved, there are strong reasons to suppose
that mental models theory is not complete with respect to standard
logic: although all inferences licensed by mental models may be
licensed by standard logic (soundness), the converse is not the case.
Other graphical methods are restricted in their expressiveness due to
physical limitations on the notation. Venn diagrams for example, can
only be used to represent arguments employing four or fewer monadic
predicates, i.e. predicates of only one variable (Quine, 1959).7 They
therefore only capture a small subset of logic. Although mental models
have been used to represent relations, i.e. predicates of more than one
variable, there is no reason to suppose that mental models will not be
subject to analogous limitations. If so then mental models will not
provide a general implementation of logic.8

The employment of arbitrary exemplars is central to providing a
tractable model-based proof procedure. However, there are no
complexity results for the algorithms that manipulate mental models.
Such demonstrations may be felt unnecessary, if, as with the mental
logic approach, mental models theory were restricted to the explicit
inferences involved in laboratory tasks. However, mental models
theory has been generalised to other inferential modes, including
implicit inference in text comprehension (Johnson-Laird, 1983). These
inferences are defeasible (as we have seen), as are most everyday
inferences people make.9 Further, in many laboratory reasoning
tasks, conditional sentences would appear to be interpreted as default
rules (as already discussed). So in order to provide a general theory of
inference, mental models must account for defeasibility.

Proposals for incorporating default reasoning into mental models
(Johnson-Laird & Byrne, 1991) rely on incorporating default
assumptions into the initial mental model of a set of premises. These
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assumptions will be recruited from prior world knowledge and may be
undone in the process of changing mental models. The problem of
consistency checking can be avoided because no search for counter-
examples to these default assumptions need be initiated. This proposal
does not resolve the problem of default inference. A generalisable
theory of reasoning must address the problem of which default
assumption(s) to incorporate in an initial representation. For
example, suppose you are told “Tweety is a bird”, you may incorporate
the default assumption that Tweety can fly in your mental model
because most birds can fly. However, it would be perverse to
incorporate this assumption if you also knew that Tweety is an ostrich.
To rule out perverse or irrelevant default assumptions requires
checking the whole of world knowledge to ensure that any default
assumption is consistent with what you already know (or some
relevant subset of what you already know). This will involve an
exhaustive search over the whole of world knowledge for a counter-
example to a default assumption.

It could be argued that the problem of searching for counter-
examples for default assumptions is part of theory of memory
retrieval which mental models, as a theory of inference, is not obliged
to provide. Three arguments seem to argue against this suggestion.
First, as we have seen, in AI at least, these memory retrieval
processes are treated as inferential processes and therefore need to be
explained by a theory of inference. Second, the memory retrieval
processes involve the search for counter-examples. This indicates that
in its own terms they are exactly the kind of inferential processes for
which mental models theory should provide an account. Third, such
an argument could only succeed if mental models theory itself did not
already rely heavily on such processes to explain the results of
reasoning tasks.

In recent accounts (e.g. Johnson-Laird & Byrne, 1991) the
explanation of various phenomena depends on the way in which an
initial mental model of the premises is “fleshed-out”. “Fleshing-out”,
for example, determines whether a disjunction is interpreted as
exclusive or inclusive or (Johnson-Laird & Byrne, 1991, p. 45); whether
a conditional is interpreted as material implication or equivalence
(Johnson-Laird & Byrne, 1991, pp. 48–50) which in turn determines
whether inferences by modus tollens will be performed; whether non-
standard interpretations of the conditional are adopted (Johnson-
Laird & Byrne, 1991, p. 67), including content effects whereby the
relation between antecedent and consequent affects the interpretation
(Johnson-Laird & Byrne, 1991, pp. 72–73); confirmation bias in
Wason’s selection task (Johnson-Laird & Byrne, 1991, p.80); and the
search for counter-examples in syllogistic reasoning (Johnson-Laird &

110 RATIONALITY IN AN UNCERTAIN WORLD



Byrne, 1991, p. 119). Fleshing-out depends on accessing world
knowledge. Moreover, the explanatory burden placed on fleshing-out
demands that mental models theory account for the processes
involved. In consequence it is reasonable to expect mental models
theory to provide an account of how relevant defaults are also
retrieved from world knowledge. As this issue is not addressed it seems
unlikely that logical mental models can satisfy the generalisation
assumption.

However, the processes of fleshing-out may suggest another
interpretation of mental models which we briefly present before
closing this section.

Memory-based Mental Models. The explanatory burden placed on
fleshing-out suggests that the memory retrieval processes involved
may be primarily responsible for mental model construction and
manipulation. The representations that appear in, for example,
Johnson-Laird and Byrne (1991) may be better regarded as the
products of processes in which those representations are not explicitly
involved. In other words they are the “appearance[s] before the
footlights of consciousness” (James, 1890/ 1950) of processes that are
not defined over those representations themselves. This contrasts with
logical mental models where the processes that transform one model
into another are defined over the representations that appear on the
pages of, for example, Johnson-Laird and Byrne (1991). 

Memory-based mental models appear to accord with an earlier
thread in mental models theory:

Like most everyday problems that call for reasoning, the explicit
premises leave most of the relevant information unstated.
Indeed, the real business of reasoning in these cases is to
determine the relevant factors and possibilities, and it therefore
depends on knowledge of the specific domain. Hence the
construction of putative counterexamples calls for an active
exercise of memory and interpretation rather than formal
derivation of one expression from others. (Johnson-Laird, 1986, p.
45).

On a memory-based mental models position the “active exercise of
memory and interpretation” would represent the heart of all
inferential processes. Moreover, existing accounts of mental models
could be interpreted as specifying the intended outputs of these
processes given certain inputs. In this respect mental models theory
could therefore be expected to provide a valuable source of constraint
on a future memory-based theory of reasoning. We will return to this
interpretation of mental models later on.
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Summary. Recent accounts of mental models theory appear to favour
an interpretation in terms of a graphical, semantic proof procedure.
On this interpretation, mental models provides an alternative
notation for implementing logic in the mind. This invites a variety of
meta-theoretic questions which need to be answered to assess the
adequacy of logical mental models as a general, tractable,
implementation of logic. Unfortunately answers to these questions are
unavailable. Further, existing proposals for handling default inference
are inadequate. Taken together these considerations argue for a Scots
verdict of “not proven” on logical mental models. However, the
processes of fleshing-out indicate that memory-based mental models,
while less articulated, may act as a valuable source of constraint on a
memory-based theory of inference.

Pragmatic Reasoning Schema Theory
Pragmatic reasoning schema theory emphasises the role of domain-
specific knowledge in reasoning tasks (Cheng & Holyoak, 1985;
Cosmides, 1989). Cheng and Holyoak (1985) suggest that people
possess pragmatic reasoning schemas, which embody rules specific to
various domains such as permissions, causation, and so on.
Permission schema are invoked in explaining the results from some
thematic versions of Wason’s selection task where the rule determines
whether or not some action may be taken. Cheng and Holyoak (1985)
argue that the rules embodied in a permission schema match the
inferences licensed by standard logic, thus explaining the facilitatory
effect of these materials. Similarly, Cosmides (1989) appeals
to domain-specific knowledge of “social contracts” to explain the same
data (but see Cheng & Holyoak, 1989, for a critique). Although
Cosmides’ work on social contracts is important, it is only the
postulation of data-structures specific to particular domains that will
concern us.

We have frequently remarked that if the domains over which the
search for counter-examples were suitably constrained, then
exhaustive searches may be feasible. However, there are two reasons
for suspecting that schema-theoretic or domain-specific approaches in
general will not prove adequate.

First, default reasoning is about how beliefs are appropriately
updated in response to new information (Harman, 1986). Within
philosophy the processes involved have typically been discussed under
the heading of confirmation theory (Fodor, 1983). In arguing that
confirmation, and hence default reasoning, is subject to the frame
problem, Fodor observes that confirmation is characteristically
isotropic:
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By saying that confirmation is isotropic, I mean that the facts
relevant to the confirmation of a scientific hypothesis may be
drawn from anywhere in the field of previously established
empirical (or, of course, demonstrative) truths. Crudely:
everything that the scientist knows is, in principle, relevant to
determining what else he ought to believe. (Fodor, 1983, p. 105)

Domain specificity can assist with intractability only if isotropy is
abandoned. If default reasoning is isotropic, then placing rigorous
boundaries on relevant information would be a move in exactly the
wrong direction. A knowledge organisation that excluded the
possibility of isotropy would be hopelessly inflexible. Although cross-
referencing schemata is a possibility, as Fodor (1983, p.117) points
out: “an issue in the logic of confirmation…[becomes]…an issue in the
theory of executive control (a change which there is, by the way, no
reason to assume is for the better).”

A second reason to suspect that domain-specific approaches are
inadequate concerns the lack of any general principles concerning how
an appropriate compartmentalisation of knowledge is to be achieved.
Such general principles are required as otherwise how knowledge is
organised into discrete compartments from the flux of information that
an organism receives in interacting with its environment remains
opaque (Oaksford & Chater, 1991). Although it may be legitimate to
appeal to compartmentalisation, once appealed to, an account of how
it is achieved must be supplied. Pragmatic reasoning schema theory
does not explicitly address this issue. In consequence it is unlikely that
this theory can satisfy the generalisation assumption. 

Heuristic Approaches
The heuristic approach (Evans, 1983b, 1984, 1989) is that most
concerned with the issue of cognitive limitations (Evans, 1983a). In
computer science the use of heuristics may render a computationally
intractable problem manageable. Tractable, approximate solutions
may be found for many problem instances by employing the generally
intractable algorithm with an heuristic (Horowitz & Sahni, 1978).
Accuracy is traded for speed. In this section we will observe that the
current heuristic approach does not address the intractability problems
we have raised: the heuristics proposed are more often motivated by
appeal to pragmatic rather than processing factors. We will suggest,
however, that with some minor reinterpretation, one heuristic
proposed by Evans (1983b) may address the intractability issue.
Nonetheless, we will conclude that supplementing generally
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intractable algorithms with heuristics is unlikely to provide a general
solution to the problem of intractability.

The not-heuristic (Evans, 1983b, 1984, 1989) is motivated by Wason’s
(1965) proposal that negations are typically used to deny
presuppositions. For example “I did not go for a walk” denies the
presupposition that you went for a walk. The topic of this sentence—
what the sentence is about—is walking and not any of the things I could
have done while not walking. On the basis of this example it was
proposed that the language-understanding mechanism embodies a
not-heuristic (Evans, 1983b). This heuristic treats information about,
for example, what you did while not walking as irrelevant. Attention
is therefore focused only on the named values. More recently this
heuristic has been regarded as a manifestation of a general bias
towards positive information, i.e. information about what something
is rather than what it is not (Evans, 1989; see also Oaksford &
Stenning, 1992).

Such a general preference for positive information may be better
motivated by processing rather than pragmatic considerations. A
general positivity bias may be one aspect of providing a tractable
knowledge base. The frame problem was first noticed in reasoning
about change. In a dynamic representation, the consequences of
something changing had to include all the things that did not change.
For example, along with the information that if your coffee cup is
knocked over your carpet gets wet, all the information about what
does not happen when your coffee cup is knocked over needs to be
encoded. For example, that the window does not open, the lights do
not switch off, and so on. There is a potentially infinite list of things
that do not happen as a consequence of knocking your coffee cup to the
floor, each of which would have to be explicitly represented. However,
the negation-as-failure procedure obviates the need to represent all
this information (Hogger, 1984).10 If, from the current contents of the
database, it cannot be proved that the window opens, then it is
assumed that the window does not open. The upshot is that in a logic
programme no negative information is stored (Hogger, 1984). This
represents a prime case of positivity bias in the service of tractability.

So at least one aspect of the current heuristic approach could
address the tractability issues we have discussed. However, as Evans
(1991) says, the heuristic approach is not an approach to human
reasoning in its own right. It needs to be married to a particular
theory of competence. Such an approach is unlikely to prove adequate,
however. The problem is that:

The use of heuristics in an existing algorithm may enable it to
quickly solve a large instance of a problem provided the heuristic
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“works” on that instance... A heuristic, however, does not “work”
equally effectively on all problem instances. Exponential time
algorithms, even coupled with heuristics will still show
exponential behaviour on some set of inputs. (Horowitz & Sahni,
1978)

There has been no attempt to articulate the sets of heuristics that
would be needed to provide generally tractable inference regimes
either within the heuristic approach or in AI knowledge
representation. Hence, Evans (1991) may well be right that one way to
proceed is to marry the heuristic approach to one or other of the
theories that explicitly address the competence issue. However, it
seems doubtful that an appropriate set of heuristics will be
forthcoming to supplement these theories (Oaksford & Chater, 1991).

Default reasoning in particular presents new problems for the
heuristic approach. Existing accounts of default reasoning fail to
arrive at intuitively acceptable conclusions (McDermott, 1986). Quite
often the only conclusion available is of the form p  not-p, i.e. a
logical truth (Oaksford & Chater, 1991). This is particularly
uninformative. It has been suggested that one way to resolve this
problem is by appeal to various heuristics. These heuristics may also
assist with tractability by cutting down the number of possibilities
that need to be considered. The disjunction here is all that can often
be concluded because each default rule may lead to a different possible
conclusion. Logically the only conclusion that can be drawn therefore
is their disjunction. However, if one default rule can be given
preference, then all these possibilities need not be computed (see
Oaksford & Chater, 1991).11 Again, however, it is not at all clear that
any of the heuristics proposed resolve this issue appropriately for all
instances of a problem (Loui, 1987). In sum, it seems unlikely that an
appropriate set of heuristics will be forthcoming to solve the problem
of computational intractability. In consequence the heuristic approach
is unlikely to satisfy the generalisation assumption.

Summary. In this section we have surveyed existing theories of
reasoning with respect to their ability to appropriately generalise to
every day commonsense reasoning. The mental logic approach was
perhaps the least promising in this respect. This is largely because it
is sufficiently well articulated for the relevant meta-theoretic results
to be available. This was in contrast to the logical mental models
approach. Although there is a possibility that arbitrary exemplars
may provide for a tractable model based inference regime, the absence
of the relevant meta-theoretic results means that it is impossible to
decide one way or the other. However, when it comes to default
reasoning the mental models approach is demonstrably inadequate:
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the real problem is avoided. The possibility remains that memory-
based mental models may nonetheless be explained as emergent
properties of a theory of memory retrieval (this possibility is discussed
later). The two theories perhaps most suited to addressing the
tractability issue, pragmatic reasoning schema theory and the
heuristic approach, were equally unpromising. Without an account of
how compartmentalisation is achieved, schema-theoretic approaches
presuppose a solution, they do not provide one. It moreover seems
unlikely that an appropriate set of heuristics can be specified to
resolve the intractability problem.

Discussion

There are two broad areas that require further discussion in the light
of the arguments we have described. Both concern the issue of
rationality. First, we will discuss philosophical implications for human
rationality. Second, we will discuss the implications for psychological
theories concerned to build rational mechanisms (Fodor, 1987).

Rationality
In this section we will discuss two issues, the implications of
reasoning data for human rationality, and the possible charge that
abandoning rule-based theories leads to relativism.

The intractability results we have reported indicate that a bounded
rationality assumption should be made. This has the consequence
that the empirically observed deviations from normative theories
could not bring human rationality into question. The complexity
results we have discussed indicate that people could not generally be
using the normative strategy. It is only possible to condemn people as
irrational for not using a particular strategy if they could use it. To
think otherwise, would be like condemning us because we cannot
breathe underwater even though we do not possess gills. It could be
argued, however, that for laboratory tasks involving just a few
premises, complexity issues are not a concern. We have partly replied
to this response earlier where we observed that if just one rule is
interpreted as a default rule a feasible real-time inference is doubtful.
It also seems highly unlikely that people have been endowed with all
the logical machinery to solve spontaneously just those tasks small
enough not to tax their limited resources. If nothing else this is
because the empirical data appear to indicate that they just so happen
not to use that machinery! It seems far more parsimonious to suggest
that the strategy that is used in everyday reasoning contexts is
generalised to laboratory tasks.
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It would be irrational to demand that people employ strategies that
they are incapable of using. However, one attractive feature of rule-
based theories is that they come with their own warrant of rationality
as it were. Brown (1988, p. 17) argues that “[on] our classical
conception of rationality …the rationality of any conclusion is
determined by whether it conforms to the appropriate rules.” If rule-
based theories are abandoned there may be no guarantee that the
strategies that replace them are rational: as they will not be rule-
based, they will not carry their own warrant of rationality. This,
moreover, may be seen as the first step on the slippery slope towards
relativism, i.e. the view that there are no universal principles of
rationality.

Johnson-Laird and Byrne (1991) consider the same problem and
conclude that rather than conformity to rules, the search for counter-
examples provides a universal principle of rationality. However, this
provides neither a necessary nor a sufficient condition for rational
judgement. It is not necessary because it is not a principle universally
adhered to in scientific practice which provides our paradigm case of
rational activity (Brown, 1988). Within periods of normal science
(Kuhn, 1962), scientists explicitly refuse to allow core theoretical
principles to be subject to refutation. The search for counter-examples
is also not a sufficient criterion for rational judgement. Continuing to
search for counter-examples indefinitely is not rational when trying to
reach a decision in real-time.

However, the idea that the search for counter-examples provides a
universal criterion of rationality need not be wholly abandoned. It
will, however, need to be supplemented by a theory of judgement:
“Judgement is the ability to evaluate a situation, assess evidence, and
come to a reasonable decision without following rules” (Brown, 1988, p.
137). It is a matter of judgement, for example, when and if counter-
examples are allowed to falsify a core theoretical principle, or when
the search for counter-examples has been sufficiently exhaustive.
Quite frequently we appeal to experts, who have a wealth of
experience and knowledge in order to make these judgements. A good
example is the peer review system. There is no algorithm for
determining whether an experimenter has made sufficient attempts to
dismiss alternative explanations of a hypothesis. In consequence it is
left to a researcher’s peers to decide whether she/he has adequately
dealt with the relevant possibilities. A further example is provided by
the legal concept of precedent. In certain cases a defence lawyer will
seek to find a case in which the facts are as similar as possible and
where a not-guilty verdict was returned. Equally, the prosecution may
seek a similar case where a guilty verdict was returned. Both defence
and prosecution are searching for counter-examples to each other’s
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arguments that on the basis of the evidence the defendant should (or
should not) be convicted. Judgement enters into the decision process,
in two ways. First, the judge of the present case must decide whether
the cases are similar in the relevant respects. Second, the whole
concept of precedent relies on allowing previous judgements to
influence subsequent judgements.

In sum, the claim that we could not employ rule-based theories
could lead to relativism. The search for counter-examples per se is an
inadequate response to this charge. The examples we adduced
indicate that the search for counter-examples must be supplemented
by a theory of judgement before anything like a universal principle is
available.

Rational Mechanisms
Rule-based systems operating over formal symbolic representations
have the advantage that they possess a transparent semantics which
allows us to see how mental representations can be causally
efficacious in virtue of their meaning (Fodor, 1987). If we abandon
rule-based theories do we also abandon the ability to provide causal,
mechanistic explanations of the way representational mental states
mediate behaviour? Part of an answer to this question has already
been provided. If the concept of what it is to be rational changes, then
the form that a theory of rational mechanism must take may also
change. We now consider what kinds of mechanism may be consistent
with our developing conception of rationality. We will first draw on an
analogy with Kahneman and Tverksy’s work on risky decision making,
and then propose that connectionist systems may provide alternative
rational mechanisms.

In response to similar complexity results for Bayesian inference,
Tversky and Kahneman (1974) proposed a qualitatively different
theory to explain risky decision making in which the normative theory
was not retained in any form. The problem of deriving probability
estimates was radically reconceived largely in terms of the processes of
memory retrieval. Their heuristic approach can be contrasted with the
heuristic approach in theories of reasoning. As we mentioned earlier,
within reasoning theory, heuristics are regarded as supplements to a
theory of competence (Evans, 1991). However, in Kahneman and
Tversky’s approach various memory-based heuristics are regarded as
wholesale replacements for the competence theory. We suggest that,
confronted with similar intractability problems, reasoning theorists
should adopt the same response.

What could represent an analogous reconceptualisation of reasoning
mechanisms? Levesque (1988) has suggested that connectionism may
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represent one strategy in the attempt to develop plausible
cognitive mechanisms for inference. Rumelhart, Smolensky,
McClelland, and Hinton (1986) and Rumelhart (1989) have also
suggested that a predictive neural network may form the basis of
people’s reasoning abilities. What kind of reconceptualisation of
reasoning does this involve?

Inference is the dynamics of cognition. In classical approaches
(Chater & Oaksford, 1990; Fodor & Pylyshyn, 1988) inference takes
static symbolic representations and turns them to useful work,
predicting the environment, explaining an experiment, drawing up a
plan of action, and so on. Formal inference over language-like
representations has seemed the only way in which meaning and
mechanism could combine (Fodor, 1987). Connectionism may offer a
very different picture of how to achieve the marriage between
mechanism and meaning. Logic provides a dynamics for
representations of a particular type: atomic symbolic representations
usually map one to one onto our commonsense classification of the
world. Connectionism postulates distributed representations of a very
different kind in which stable patterns of features represent items in
that classification. The dynamics of the system, moreover, are defined
at the featural level and owe more to statistical mechanics than to
logic. Nevertheless it may be that these representations and the
dynamics that transforms one such representation into another can
form the basis of a theory of inference.

Let us consider the problem at a higher level of abstraction.
Inference leads us from one interpreted mental state to another. The
heart of the problem is how to get mental states to track states of the
world systematically or, in other words, how to get the dynamics of
cognition to “hook up“to the dynamics of the world (Churchland &
Churchland, 1983). We see no reason, a priori, why connectionist
systems cannot also perform this function.

While there are serious problems for a connectionist theory of
inference, there may also be advantages. It may be compatible, for
example, with the second interpretation of mental models we offered
earlier (Rumelhart, 1989). Given a set of inputs, a network settles on
an interpretation that least violates the constraints embodied in its
weighted connections between units. These weighted connections
embody the network’s knowledge of a domain. One way of
characterising such a relaxation search, is that prior to input
clamping all the knowledge that is embodied in the network is
potentially relevant to interpreting the input. However, as the net
relaxes into an interpretation only those items most relevant will
remain on. The stable state arrived at can be regarded as the initial
“mental model” of the input. This model may embody default
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assumptions. For example, in the “on-line” schema model (Rumelhart
et al., 1986), a constraint satisfaction network embodied information
about prototypical rooms. If the bath unit was clamped on then units
like toilet, toothbrush, and so on would come on as default values. In
the search for counter-examples intermediate mental models may be
generated by selectively clamping off units and allowing the net to
settle into a new stable state (Rumelhart, 1989).

Further, this mode of operation seems to capture something of what
it means to make a judgement. As we said earlier, determining
whether relevant counter-examples have been exhausted is a matter of
judgement based on what you know. In a simple connectionist system
all that it knows (all its synaptic weights) contributes to determining
what is relevant to interpreting current inputs. The example of
precedent also indicates that counter-examples to novel situations
may be sought by reference to similar situations. The partial pattern-
matching capabilities of networks make them good candidates for
implementing the processes responsible.12

The burden of complexity may also be located in the right place.
Within connectionist systems learning is the computationally
expensive process. Once learnt, however, an inference over the
representations embodied in the network is effortless. In contrast, in
classical systems inference is computationally expensive while
learning is an issue rarely addressed. This may seem like just trading
one complexity problem for another. However, the connectionist
system at least mirrors the difficulty people actually appear to
encounter with learning and inference.

There are serious problems, however. Current network dynamics
are insufficiently articulated to provide an account of the productivity
of language and thinking (Fodor & Pylyshyn, 1988). In particular,
thinking is not a purely predictive process that is triggered by external
events. Indeed, in thinking, people appear able to “un-hook” the
dynamics of cognition from the dynamics of the world, enabling them
to step out of real-time. This will require networks to have their own
intrinsic dynamics to allow thoughts to chain together in the absence
of provoking stimuli. While posing a serious problem there is,
nonetheless, a great deal of work going on in this area (Chater, 1989;
Elman, 1988; Jordan, 1986; Oaksford & Brown, 1994; Rohwer, 1990;
Shastri & Ajjanagadde, 1993). We see no reason to be pessimistic
about its outcome and the consequent prospects for a connectionist
theory of inference.
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CONCLUSIONS

We have argued that an adequate theory of reasoning must be able to
“scale up“to deal with everyday defeasible inferences in real-time. We
observed that no contemporary theory of reasoning provided a
tractable account of everyday inference and that in consequence none
of these theories was likely to be psychologically real. Concentration
on limited laboratory tasks would appear to have led to the
development of theories of dubious ecological validity. Further, it
would appear more likely that people “scale down” their everyday
strategies to deal with laboratory tasks and that this is the source of
the systematic biases observed in human reasoning. Although these
arguments do not bring human rationality into question, they do
demand a reconceptualisation of appropriate mechanisms for
inference. We suggested that connectionist systems may be
appropriate, which appeared consistent with memory-based mental
models and the requirements of a theory of judgement.

In conclusion, empirical research into human reasoning may need to
be more ecologically valid. The boundaries of real inference need to be
mapped out: how do people deal with defeasible knowledge, how do
they make relevance judgements, and how does background
information (Cummins et al., 1991; Byrne, 1989) interact with
reasoning processes? Answers to these questions could be pursued on
two fronts. First the complexification of the laboratory situation. Most
reasoning tasks are still pencil-and-paper exercises (although, see
Mynatt, Doherty, & Tweney, 1977, for example). In contrast the
computer game may offer the prospect of engaging subjects in novel
dynamic environments over which the experimenter has control. In
such environments, context-sensitive rules, varying difficulties of
obtaining information, and differing utilities for correct inference can
be arranged and their consequences for behaviour mapped out.
Second, more direct analyses of real inferential settings such as the
court room and science itself need to be conducted (e.g. Tukey, 1986;
Tweney, 1985). Explaining the inferential processes that obtain in
such real-world settings must be the ultimate goal of a psychological
theory of reasoning.

NOTES

1. It is important to be clear about whose inferential behaviour reasoning
theorists are attempting to explain. Throughout this chapter it is
assumed to be the spontaneous, unassisted, inferential performance of
logically untutored subjects. By “spontaneous and unassisted” we mean
that the subjects are not allowed to use aids such as pencil, paper, or
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computer to make calculations, nor are they able to consult with friends
or experts. By “logically untutored” we mean that subjects should have
no explicit formal logical training. In other words reasoning theorists
are attempting to explain the reasoning abilities that people possess
solely by virtue of genetic endowment and general education.

2. Natural deduction systems contain no axioms and all inferences are
drawn by the application of various inference rule schemata, e.g. p OR q,
not-p q (where “ can be informally glossed as “therefore”).

3. This applies equally well to semantic proof procedures, such as truth
tables and semantic tableaux as to syntactic procedures such as axioms
or natural deduction systems.

4. This would appear to predict that inferences by modus ponens should
also be suppressed in these tasks, which is not the case.

5. We should also note that under standard interpretations, the search for
counter-examples does not distinguish syntactic from semantic
approaches. All proof procedures are regarded as “abortive counter-
model constructions” (Beth, 1955; Hintikka, 1955; see also Hintikka,
1985).

6. There are logical systems that eliminate quantifiers, e.g. combinatory
logic (see Curry & Feys, 1958) and Fine’s (1985) theory of arbitrary
objects. Perhaps a translation between these systems and mental
models may provide the desired results. 

7. This is simply due to the inability to draw more than four overlapping
two-dimensional shapes such that all possible relationships between
them are represented.

8. This is far less important than soundness. However, if mental models
theory is to avoid the charge of ad hoc extension to deal with new
phenomena, then some account of expressiveness must be provided.
Otherwise there can be little confidence that the notation is sufficiently
well understood to perform the functions demanded of it.

9. At the beginning of Johnson-Laird and Byrne (1991) the example of a
classic piece of default reasoning by Sherlock Holmes is provided, which
eloquently illustrates this point.

10. The cost is that logical negation is not fully implemented in such a
database.

11. These possibilities are known as different extensions of a default theory.
A default theory is simply a collection of axioms, including at least one
default rule, which describes the behaviour of particular domain (see
Chapter 4 for discussion).

12. It also suggests that sensible reasoning in novel domains does not
demand an abstract inferential competence sensitive to the logical form
of arguments. Just as with precedent, old judgements are brought to
bear on new problems.
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CHAPTER SEVEN
Bounded Rationality in Taking Risks

and Drawing Inferences

INTRODUCTION

Chapter 6 concentrated on bounded rationality and theories of
deductive reasoning. However, the issue of bounded rationality
applies and has been influential in other reasoning domains.
Specifically, Simon’s ideas about bounded rationality have had a
profound impact on the development of psychological theories of
human probabilistic reasoning and decision making (although see
Lopes, 1992, for arguments that Simon’s influence on some of this
work was limited). This chapter provides a discussion of the concept of
“bounded rationality” as it applies to the theses advanced by two
leading reasoning researchers in the inaugural issue of the journal
Theory and Psychology. Lola Lopes works on human decision making,
and Jonathan Evans works on human deductive inference.

This chapter generalises the arguments developed in Chapter 6 to
apply both to probabilistic and deductive reasoning. We argue that
Lopes’ (1991) assessment of the irrationalist consequences of Tversky
and Kahneman’s (1974) work on heuristics and biases in probabilistic
reasoning is premature because bounded rationality implies that
people could not employ optimal strategies. Considerations of bounded
rationality also provide additional criteria by which to judge the
theories of deductive reasoning discussed by Evans (1991). Judged by
this criterion, theories the goal of which is to explain logically
competent performance are inadequate (Oaksford & Chater, 1991).
Thus Evans’ assessment of the state of current theories of reasoning
requires revision. 

BOUNDED RATIONALITY IN TAKING RISKS AND
DRAWING INFERENCES

This commentary is on two articles that appeared in Theory &
Psychology, volume 1(1), by Lola Lopes (1991) and Jonathan Evans



(1991). Our reasons for offering a joint commentary is that in both
papers an issue appears to be overlooked which has potentially
serious consequences for the theses each author was concerned to
advance. We begin with the article by Lopes.

Heuristics and Biases

Lopes (1991) criticises work in the “heuristics and biases” tradition
because the rhetorical emphasis of the papers reporting this work has
led to an overestimation of human irrationality. The original papers
(Kahneman & Tversky, 1972, 1973; Tversky & Kahneman, 1971,
1973), Lopes argues, were about the processes involved in
spontaneous judgements in risky decision making: were suboptimal
heuristics being employed or were optimal algorithmic procedures
being used? Lopes observes that in the summary article on this early
work by Tversky and Kahneman (1974) in Science, the emphasis
changes from process to cognitive bias. Rather than discuss the
successes of the quick and dirty heuristics they discovered, Tversky
and Kahneman (1974) dealt at length with the lapses from optimal
rationality to which the use of such heuristics may lead. As Lopes
observes, this emphasis set the tone for much subsequent discussion
leading to possibly premature conclusions about the irrationality of
human decision-making and reasoning processes.

Interpreting the influence of a body of work may often depend upon
the perspective adopted. From the perspective of computational
modelling there is an interpretation of the heuristics and biases
literature which fails to lead to any particularly dire conclusions for
human rationality. Kahneman and Tversky were working within the
framework of “bounded rationality” which they attribute to Jerome
Bruner and Herb Simon (see the Preface to Kahneman, Slovic &
Tversky, 1982). The nature of these bounds can best be understood by
taking into account the constraints placed on cognitive processes by
the claim that they are computational processes. A major constraint is
that these processes must be capable of utilisation within the time scale
at which normal human judgements are made. In computer science
these issues are discussed under the heading of computational
complexity theory (see, for example, Garey & Johnson, 1979). Some
computational processes are more complex than others requiring more
computational resources in terms of memory capacity and operations
performed. Measures of complexity are expressed as a mathematical
function relating the length of an input (n)—very roughly the amount
of information which the process must take into account—and the
amount of computa tional resources consumed. Any process that
requires exponentially increasing resources (i.e. increasing at a rate of
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2n, or worse) is regarded as computationally intractable. That is, for
some n this process may not provide an answer in our lifetimes if at
all.

Issues of computational complexity have cropped up quite
frequently in the history of cognitive psychology and artificial
intelligence, perhaps most notably in vision research. Early work on
bottom-up object recognition of blocks worlds resulted in the notorious
combinatorial explosion (see McArthur, 1982, for a review, and
Tsotsos, 1990, for a more recent discussion of complexity issues in
vision research). In the research into risky decision making, it was
realised very early that complexity issues were relevant. Bayesian
inference makes exponentially increasing demands on computational
resources even for problems involving very moderate amounts of
information. A salutary example is provided by the discussion of an
application of Bayesian inference to medical diagnosis problems
involving multiple symptoms in Charniak and McDermott’s (1985)
introduction to Artificial Intelligence. Diagnoses involving just two
symptoms, together with some reasonable assumptions concerning the
numbers of diseases and symptoms a physician may know about,
require upwards of 109 numbers to be stored in memory. As typical
diagnoses may work on upwards of 30 symptoms, even if every
connection in the human brain were encoding a digit, its capacity
would nonetheless be exceeded.

Spontaneous, real-world, risky decisions, even of moderate
complexity are not being made using Bayesian inference processes
because they could not be. As the mind-brain is a limited information
processor the processes of risky decision making cannot be based upon
optimal, algorithmic procedures. This means that the only rationality
to which we can aspire, as individual decision makers, is one bounded
by our limited computational resources. In consequence, the
observation that we do not behave in accordance with Bayes’ theorem
could not impugn our rationality. Our rationality could only be
questioned if we were capable of using the optimal strategy but failed
to do so. Thinking otherwise is akin to condemning us because we do
not fly even though we do not possess wings.

Three further issues deserve mention. First, Lopes and we are
concerned only with individual decision making, without pencil, paper
(computer) or friends as it were. The additional resources available in
groups and societies means that decision making can transcend the
limitations of the individual. The existence of Bayes’ theorem is a
testament to the collective rationality of a culture embodied in modern
mathematics. Second, it could be argued that the laboratory tasks
employed by Kahneman and Tversky would have permitted the use of
the normative strategy because the amount of information (n) was
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kept well within manageable bounds. Thus the fact that the heuristics
were still employed may have some negative implications for human
rationality. However, with no schooling in statistics, the only strategy
available is to generalise those strategies normally employed in more
complex settings to the laboratory task. Restricting the information
could only encourage the use of Bayes’ theorem if it had been
previously learned. Third, Lopes adduces evidence (Gigerenzer, Hell,
& Blank, 1988) that when some problems are presented more
realistically subjects do take account of prior probabilities in
accordance with Bayes’ theorem. From the perspective of bounded
rationality, of course, it is such apparent displays of competence that
create a problem as (i) they do not cohere immediately with the
heuristic approach, and (ii) they could not be a product of a general,
unlearned competence with Bayes’ theorem.

In summary, considerations of bounded rationality temper the
irrationalist consequences of the work on heuristics and biases. Only
by ignoring bounded rationality could the rhetoric of Tversky and
Kahneman (1974) be interpreted as leading to the dire conclusions
drawn by Lopes in her article. Given the unjustifiable presumptions of
normative rationality, which were rife in the psychological literature
at the time, the rhetorical bias of Tversky and Kahneman’s summary
article may have set just the right balance to provide a much needed
corrective.

The Fragmented State of Reasoning Theories

The deductive reasoning literature reviewed by Jonathan Evans
raises directly analogous issues concerning human rationality to those
we have seen in the area of decision making under uncertainty. Evans’
paper discusses the way that research into deductive reasoning has
fragmented of late with different theories answering different
questions raised by the data. He observes that there are three
questions that need to be answered: the competence question—the
fact that human subjects often successfully solve deductive reasoning
problems; the bias question—the fact that subjects also make many
systematic errors; the content and context question—the fact that the
content and context of a problem can radically alter subjects’
responses. The major theories in this area—mental logics, mental
models, schema theories, and heuristic approaches—all tend to
concentrate upon one question or the other, none providing a fully
integrated account of all three. Evans does, however, provide criteria
of theory preference—completeness, coherence, falsifiability, and
parsimony—by which to judge reasoning theories, and seems to view
mental models as scoring most highly on these criteria. Evans’ paper
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is an important and laudatory attempt to get reasoning theorists to
agree some common ground rules concerning the adequacy of their
theories. However, an additional criterion of theory choice may place a
very different complexion on the adequacy of current theoretical
proposals. 

Bounded rationality is not an issue that is frequently discussed in
the deductive reasoning literature. However, issues of computational
complexity may serve as a valuable additional criterion for choosing
between reasoning theories in addition to the general criteria
proposed by Evans, which are common to all areas of scientific inquiry.
To the extent that issues of resource limitation are mentioned in the
reasoning literature they are restricted to discussion of how our
limited short-term memory capacity may lead to systematic errors in
explicit reasoning tasks (Johnson-Laird, 1983). However, one reason
why the deductive reasoning literature has been so prominent within
cognitive psychology/science, is the assumption that the principles of
human inference discovered in the investigation of explicit inference
will generalise to provide accounts of all inferential processes. This is
important because qua computational process, all cognitive processes
can be viewed as inferential (Boolos & Jeffrey, 1980). We will call this
the Generalisation Assumption. The generalisation assumption is, for
example, embodied in the subtitle to Johnson-Laird’s (1983) book
Mental models: Towards a cognitive science of language, inference and
consciousness. Without the generalisation assumption the study of
deductive reasoning would warrant little more interest than, say, the
psychology of doing crosswords.

In artificial intelligence, studying theories of inference and
knowledge representation usually begins by examining their
capabilities in toy domains. Toy domains are specially contrived micro-
worlds about which very little needs to be assumed. There is,
however, a long-standing problem with this approach. Theories of
inference that are adequate in such domains (e.g. the inference engine
in SHRDLU (Winograd, 1972)), tend to fail disastrously when they are
scaled up to deal with real-world inferential problems involving more
information (higher n). This is because they are generally
computationally intractable. A directly analogous issue arises for
psychological theories of reasoning designed to account for laboratory
tasks but with pretensions to satisfy the generalisation assumption. All
the theories that attempt to answer Evans’ competence question hit
computational intractability problems when scaled up to deal with real-
world inferential problems (Oaksford & Chater, 1991). It is, moreover,
a recent realisation that even in explicit reasoning tasks the range of
information (n) taken into account in drawing an inference transcends
that explicitly provided in the task. As Evans observes, Johnson-Laird
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and Byrne’s (1991) “fleshing out” strategy involves the incorporation
of more information, derived from prior world knowledge, to
supplement that explicitly provided, as does the addition of implicit
premises in a mental logic account. Oaksford and Chater (1991) point
out that logics based on syntactic proof procedures, like those
proposed in mental logic accounts, are computationally intractable in
everyday inferential contexts. Moreover, semantic proof procedures,
like mental models, are known to be worse in complexity theoretic
terms than syntactic procedures. Hence the two major contenders to
answer the competence question may not only fail to satisfy the
generalisation assumption, to the extent that explicit inference relies
upon “fleshing out”, they may also be poor contenders as theories of
laboratory reasoning tasks.

In summary, a bounded rationality assumption may also need to be
made in theories of deductive reasoning. On analogy with Bayes’
theorem in decision making under uncertainty, our ability to perform
in accordance with logical dictates cannot be taken as evidence that
we possess a general unlearned logical competence—if, by logical
competence, we mean that we employ a logical system in our
reasoning, be it syntactically or semantically realised. Again, in the
general case, this is because we could not be using such a system and
again, therefore, that we occasionally deviate from logicality could not
impugn our rationality. As mentioned earlier, this means that Evans’
competence question is the problematic one. Again it is reasonable to
assume that whatever quick and dirty mechanisms we have evolved in
order to resolve the complex inferential problems of everyday
reasoning will also be generalised to the laboratory tasks studied by
reasoning theorists. However, apart from Evans’ own proposals
concerning the use of heuristics in the interpretation of premises, we
appear to remain profoundly ignorant of the nature of these
mechanisms. 
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CHAPTER EIGHT
Logicism and Everyday Reasoning:
Mental Models and Mental Logic

INTRODUCTION

In Chapters 5 to 7 we have argued that the defeasibility of everyday
reasoning creates problems for most cognitive scientific approaches
and, in particular, for theories in the psychology of reasoning. In this
chapter we turn to two of our responses to counter-arguments to our
position. The first section of this chapter (Mental Models and
Defeasibility) is based on our response (Chater & Oaksford, 1993) to a
paper by Alan Garnham (1993) directly arguing against our position
presented in Chapters 4 and 5 from the perspective of mental models
theory. The second section (Mental Logics and Defeasibility) is drawn
from Oaksford and Chater (1995b) and responds to arguments often
made by mental logicians (e.g. Politzer & Braine, 1991; Rips, 1994) to
the effect that the human reasoning may not be defeasible because
default rules are always false. They therefore claim that the apparent
defeasibility of human inference is not to be explained by a theory of
inference, but by pragmatic or performance factors. We argue that
neither of these defences against the problems that we raised for
logicist cognitive science is successful.

MENTAL MODELS AND DEFEASIBILITY

Alan Garnham (1993) has provided a lucid and thoughtful challenge
to our arguments against logicist cognitive science (Oaksford &
Chater, 1991; Chapters 4 and 5 in the present volume). He considers
that many of our arguments are misdirected or fallacious, and that we
draw entirely the wrong moral from the comparison of human
reasoners and logic-based artificial reasoning systems. Some of
Garnham’s objections are due to a misreading of our argument
against logicism. We first reiterate the structure of that argument and
then show that many of Garnham’s points are best read as supportive
of our conclusions though critical of our presentation. Garnham’s



central point, that mental models theory supplies a distinct, and
distinctly more promising alternative to logicist cognitive science,
requires a more substantial treatment, however. We argue that
mental models theory provides no defence against the twin difficulties
of intractability and incompleteness* that we raised for logicism.

The Structure of Our Argument

Our argument ran as follows. Firstly, we characterised logicist
cognitive science, the theoretical view of the nature of cognitive
science expounded by Fodor and Pylyshyn (e.g. Fodor, 1975; Fodor &
Pylyshyn, 1988; Pylyshyn, 1984). Roughly, logicism is the view that
cognitive processes are proof-theoretic operations over internal logical
formulae which can be interpreted in terms of our everyday ontology of
tables, chairs, and so on. We took this view as a definite target at
which to aim our arguments, rather than as representative of
cognitive scientists at large; the degree to which our arguments carry
over to variants of logicism is deferred until later in the chapter.

Secondly, we considered how such explanation might fare as an
account of cognitive processes which involve knowledge-rich defeasible
inference (see, for example, Note 1 of Chapter 4). The central
processes (Fodor 1983) involved in commonsense reasoning are
paradigm examples of knowledge-rich processing. To the extent that
aspects of perception, language processing, and so on are also
knowledge-rich, the same problems should apply.

We noted that the central processes involved in what may variously
be thought of as belief revision, commonsense inference or everyday
reasoning are a species of inference to the best explanation (Fodor,
1983). That is, given certain information, the reasoner must infer what
fits best with, what best explains, and is explained by, that
information. Inference to the best explanation is notoriously difficult
to capture within the framework of deductive logic. For one thing,
standard deductive validity entails that if the premises of an argument
are true, then the conclusion must certainly also be true. This means
that standard deductive logic is monotonic. if a conclusion follows
deductively from a set of premises, it will follow from the conjunction
of that set of premises with any other additional information. Yet in
inference to the best explanation a hypothesis that seems plausible in
the light of partial evidence will often seem implausible in the light of
a fuller picture. That is, such inference is invariably tentative rather
than certain and will be non-monotonic.

This mismatch poses a serious problem for logicism: if cognitive
processes are proof-theoretic, and proof theory standardly can only
handle monotonic deductive reasoning, how can the non-
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demonstrative inferences which appear to be cognitively ubiquitous be
explained? We noted that this dilemma had a historical correlate in
the unsuccessful attempts of the logical positivists to cast inference to
the best explanation in science in a deductive mould, and suggested
that a logicist account of central processes would be likely to fare no
better. The argument could have stopped here: to the extent that
commonsense and scientific inference are analogous, it should be
equally easy (or difficult) to model either by proof-theoretic methods.
And it is universally acknowledged in the philosophy of science that
scientific inference cannot be understood in this way (Goodman, 1983/
1954; see also Holland et al., 1986; Thagard, 1988). Rather than rely
solely on this argument by analogy, we turned to a practical test of the
feasibility of logicism: the attempt to model everyday reasoning within
artificial intelligence.

Third, then, we considered logicist work on building computational
models of aspects of commonsense inference. The volume of such work
is vast, and the range of techniques employed is also great (see, for
example, the collection edited by Ginsberg, 1987). Rather than attempt
a survey, we focused on a particular approach, which is closest to the
spirit of logicism, is dominant within artificial intelligence, and to
which other approaches are very intimately related (Hanks &
McDermott, 1985, 1986; Shoam, 1987, 1988). This approach involves
developing non-monotonic logics, in which the addition of premises
can lead to the withdrawal of conclusions, to account for the
revisability of everyday reasoning. Thus, in principle at least, proof
theory over non-monotonic logics may be able to reconcile logicism
with the defeasible character of inference in central processes. We
then raised two serious and apparently fatal problems with the
enterprise. Firstly, non-monotonic logics are generally not able to
capture plausible but revisable everyday inferences. The conclusions
licensed by such logics are, in general, irremediably weak, often to the
point of total vacuity. Thus the attempt to model common sense using
non-monotonic logics has not bridged the gap between proof-theoretic
methods and inference to the best explanation, but simply illustrated
how great that gap is. Secondly, even if non-monotonic logics were
able to model everyday inferences in principle, they would still be
unviable because proof methods for such logics are radically
computationally intractable. In sum, the attempt to fit apparently non-
deductive commonsense reasoning into a deductive framework fails
because it does not specify the right answers, and in practice it is so
intractable that it does not give any answers at all. We concluded that
these considerations undermine the plausibility of logicism as a model
of central cognitive processes.

8. LOGICISM AND EVERYDAY REASONING 131



The fourth step in our argument (Chapter 5) was to consider
possible replies and objections. The thrust of many of the objections
was that if the unnecessarily tight constraints of the logicist position
are loosened, our arguments no longer apply. Variants that we
considered included: using heuristics to supplement purely proof-
theoretic operations, abandoning proof theory altogether and using
entirely procedural symbolic methods, and denying that the internal
language can be interpreted in terms of our commonsense ontology of
tables and chairs. Thus, in this section, the question of how widely the
arguments against the rather specific target of logicism apply to
nearby positions in cognitive science was addressed. Among the
neighbours of logicism that we considered was the use of semantic or
model-based, rather than syntactic methods of proof. Garnham argues
that this dismissal was not compelling, and that such methods do not
succumb to our arguments. We shall discuss this proposal extensively
in the present chapter. The upshot of our discussion was that the
arguments against the specific target of logicism apply very much
more widely; they hit equally forcefully at positions that respect the
spirit, but not the letter, of logicism.

Have We Been Misconstrued?

In the light of this outline (and indeed, in the light of the original text,
where this structure is perhaps less clearly highlighted), many of
Garnham’s points seem somewhat tangential to our argument. So, for
example, Garnham suggests that Marr’s work on vision provides an
existence proof of the possibility of logicist cognitive science. Yet
Marr’s work is certainly not logicist: the operations that Marr
discusses are not proof-theoretic and the internal representations
Marr discusses cannot be interpreted in terms of our commonsense
ontology. Moreover, Marr’s work does not concern knowledge-rich
processes—precisely those processes with which we are concerned.
Indeed, Marr (e.g. 1982) is concerned to avoid knowledge-rich
processes as far as possible, precisely because such processes are so
little understood. So while we entirely agree with Garnham that
Marr’s work is an object lesson in cognitive science, we do not see this
as bearing on the argument against logicism.

Similarly, Garnham provides a detailed analysis of each of the
tenets of logicism, but these do not appear to be at variance with our
position. In each case, Garnham suggests that these claims, while
acceptable to Fodor and Pylyshyn, would not necessarily be common
ground in the cognitive sciences more widely. The implication is that
even if our arguments against logicist cognitive science (on the narrow
Fodor and Pylyshyn reading) are valid, these arguments may not
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generalise to other accounts in the same spirit. Certainly, our
arguments do not necessarily generalise. However, we argued
extensively in the Objections and Replies section of our paper
(reprinted in Chapter 5) that they would appear to generalise in fact:
the numerous variations on logicism we considered appeared to do
nothing to deflect these arguments.

The range of theoretical positions that deviate in one way or
another from Fodor and Pylyshyn’s position is, as Garnham amply
illustrates, very broad indeed. Rather than attempt to set up an all-
inclusive characterisation of accounts of central processes in cognitive
science, we picked the most specific, best worked-out and most
influential account as our primary target. We then considered
piecemeal whether or not variations on the strict logicist position
would be of any help. So while we agree with Garnham that the tenets
of logicism are not by any means universally accepted, this point seems
to be compatible with, rather than inimical to, the conclusions reached
in Chapters 4 and 5.

Furthermore, Garnham suggests that, in replying to possible
objections, we conflate the two problems we identify for non-
monotonic logics: that they do not license inferences strong enough to
capture everyday reasoning (the constraint that we called
“completeness*” and that Garnham calls “adequacy”) and tractability
considerations. Probably, as Garnham suggests, it would have been
helpful to label explicitly which of these problems each of the possible
patches to logicism addressed.

Nonetheless, we are not sure that there is really much room for
confusion between the tractability and completeness* issues in our
original Objections and Replies section (Chapter 5 of this book). As
each of these problems is dealt with in a separate section in the
original argument, and as we stress that completeness* and
tractability pose independent problems for logicist accounts, it is
implicit that a successful objection to our arguments must show how
both of these difficulties can be overcome. In practice, the objections
that we consider can generally only handle one of these objections at
best, and we were concerned to show that even such minimal inroads
could not be sustained.

Garnham goes on to argue that our discussion of the tractability of
non-monotonic logics is beside the point if adequacy criteria cannot be
met. “There is no point in worrying about the computational
properties of a system, if that system can be rejected as a model of
everyday reasoning on the grounds that it is irredeemably
inadequate” (Garnham, 1993, p. 55). “If nonmonotonic logics don’t
capture everyday reasoning, why try to draw conclusions about the
nature of cognitive science on the assumption that its models of
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everyday reasoning will be based on nonmonotonic logic? The obvious
tactic is to look elsewhere” (Garnham, 1993, p. 55). 

It is difficult to disagree with these sentiments. We too suspect that
meeting completeness* (adequacy) poses insuperable problems for
logicist accounts; and hence that the conclusion stands even without
the tractability considerations (actually Garnham thinks that our
conclusions concerning tractability, particularly in relation to human
inference, are wrongheaded in a rather different way, which we
consider later). On the other hand, not all readers may be as
convinced as Garnham by completeness* considerations, and some
may find the second line of attack more compelling. Furthermore, the
tractability problems of non-monotonic logics are an instructive
illustration of the appalling computational tangle that results from
trying to assimilate non-deductive reasoning to a deductive
framework. In any case, it is clear that the only point of disagreement
(if any) concerns economy of presentation and that none of these
points rebuts our conclusions. Regarding Garnham’s additional point,
that given that non-monotonic logic violates completeness*, we should
look elsewhere, again we agree. As we noted earlier, in the Objections
and Replies section of our original paper (see Chapter 5), we devoted
considerable space to a number of possible alternatives.

It seems likely that there is also no substantial disagreement over
our discussion of heuristics, although the use of the term, borrowed
from the literature on knowledge representation in artificial
intelligence, may indeed have puzzled some readers (Garnham, 1993,
pp. 56–58). Certainly, the term “heuristic” is generally used to refer to
a quick but fallible computational trick to shortcut a computationally
expensive algorithmic computation. Accordingly, there is no possibility
that heuristics can give correct answers when the algorithm does not,
only that they can arrive at an answer more quickly. In the present
context, appeal to heuristics in this sense could indeed only address
tractability and certainly not completeness*/adequacy. The sense of
heuristic with which we were working, borrowed from the knowledge
representation literature in artificial intelligence, does, however, place
the onus on heuristics embodying constraints that allow a
computational system to obtain the right (commonsense) inferences,
when application of the proof-theoretic approach would not do so alone
(see e.g. Hanks & McDermott, 1985, 1986; Loui, 1987). Thus Garnham
is entirely right to note, “No wonder O & C conclude that explanatory
power has been shifted from the logic to the heuristics: they are trying
to make the heuristics get things right when the algorithmic
procedure gets things wrong!” (Garnham, 1993, p. 57).

Quite generally, the thrust of Garnham’s comments, while written
as if they were hostile to our position, appears to be read better as a
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series of points concerning how our argument might have been made
more briefly, less confusingly, and so on, and reveals no real points of
disagreement. But in the later parts of his paper, Garnham counters
our arguments directly. 

While granting that logicist cognitive science, strictly characterised,
may fall victim to the kind of arguments that we present, he suggests
that semantic methods of proof, and in particular approaches to
inference within the framework of mental models, may not succumb to
this line of reasoning.

Semantic Methods of Proof

The discussion of semantic methods of proof, in our section Objections
and Replies in the original paper (see Chapter 5), briefly considered
whether or not semantic methods of proof could address the issue of
tractability. Semantic methods of proof are based on the search for a
model that provides a counter-example to the inference, i.e. a model in
which the premises are true but the conclusion is false. If such a model
can be found, the inference is not valid; if there is no such model, then
the inference is valid. As the space of models which must be
considered grows exponentially with the number of premises under
consideration we concluded that semantic methods of proof are
unpromising with respect to providing a solution to the tractability
problem. Indeed, within the study of theorem proving in computer
science, syntactic methods of proof are preferred as being more
tractable than their semantic counterparts.

Garnham grants that semantic methods of proof are
computationally intractable, but argues that when the nature of the
human inferential performance is properly analysed, tractability is
revealed to be a pseudoproblem. He also suggests that semantic
methods, and in particular the mental models framework (Johnson-
Laird, 1983) may be able to address the completeness* problem: that
semantic methods of proof have the potential to account for everyday
inferences. For appeal to semantic methods of proof to be effective,
clearly both of these claims must be upheld. We shall argue that, on
the contrary, neither of them can be defended.

Semantic Methods and Tractability. Garnham provides both
general and specific arguments that complexity is not the problem that
we take it to be. The general argument is: the fact that an algorithm
is intractable does not necessarily mean that it cannot be successfully
used in practice. First we “have no direct argument against the claim
that proof procedures for adequate nonmonotonic logics (if there be
such things) might run into problems only on problems that are never
encountered in everyday life” (Garnham, 1993, p. 60). And second, our
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“arguments do not generalise to model-theoretic accounts that are not
directly related to failed nonmonotonic logics.”

With respect to the first point, it seems to us that the boot is
securely on the other foot. It is up to the proponent of a computational
scheme that is computationally intractable to explain why practical
problems will not in fact arise. In the absence of any reason to suspect
that this is true, there is surely every expectation that such a
remarkably convenient state of affairs will not arise. As non-
monotonic logics (and related schemes) require an (intractable)
consistency check every time a plausible inference is made, and this
consistency check is performed over the entire knowledge base (or at
best over a very large fragment of this knowledge—see the discussion
of domain specificity in the Objections and Replies [Chapter 5] section
of our original paper), it seems extremely unlikely that tractability
problems can be avoided. As we noted in the original paper, the fact
that no reasoning system based on a non-monotonic logic has been
implemented with more than a handful of premises testifies to the
drastic limitations that the problem of intractability imposes.

It is difficult to know what underlies the second point: that our
arguments do not generalise to semantic methods of proof. If semantic
methods of proof offer no succour with respect to tractability, as
Garnham admits, it seems that generalisation to semantic methods
has already been granted.

The specific reasons why Garnham suspects that complexity is not a
problem is that human reasoning is actually susceptible to complexity
considerations. It is, after all, well known that, as the number of
premises in a reasoning task increases beyond two or three, reasoning
performance collapses catastrophically. So, Garnham argues, “if a
semantically-based account of human reasoning predicts that the
problems become intractable, and hence impossible to solve in a
reasonable amount of time, as the number of premises increases, so
much the better. To the extent that it does, it accurately models
human performance” (Garnham, 1993, p. 60).

This argument seems to be entirely beside the point. What is under
consideration is commonsense reasoning, rather than deductive
reasoning. In deductive reasoning, to be sure, human performance is
extraordinarily poor and brittle, and only very minute problems can
be tackled (e.g. Johnson-Laird 1983, pp. 44–45). Yet this stands in
direct contrast to the case of commonsense reasoning, where we
appear to be able effortlessly to recruit vast amounts of knowledge in
drawing plausible conclusions (indeed, the entire knowledge base may
be in play, rather than two or three premises).

What conclusion should we draw from the drastic limitations on
human deductive reasoning, in comparison to our facility at everyday
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reasoning? There are two broad answers, neither of which offers
comfort to the logicist. One possibility is that these different species of
reasoning are effected by entirely different processes, one of which is
very poorly developed and inefficient, and the other of which is
remarkably powerful and fast. If this is correct, then the complexity
profile of human deductive reasoning is irrelevant to the question in
hand (providing a tractable and adequate account of commonsense
inference). 

A second, perhaps more interesting possibility is that the same
mechanism is responsible for both deductive reasoning and the
inference to the best explanation involved in commonsense reasoning.
If so, then the disparity in the levels of human performance between
the two can best be explained by assuming that central processes are
adapted to commonsense reasoning, and only co-opted into performing
deductive reasoning (Oaksford & Chater, 1992, 1993; Oaksford,
Chater, & Stenning, 1990; Oaksford & Stenning, 1992). Consider an
analogy with human locomotion. The properties of the limbs are
presumably highly adapted to walking and running, at which they are
very successful. The limbs are also crucially involved in walking on
one’s hands, to which they are not adapted, and at which performance
is very poor. Structures that originally have one function can, if
necessary, be co-opted to perform some other function. So, one might
imagine, the mental apparatus whose function is commonsense
reasoning may be co-opted to attempt to solve deductive reasoning
problems, although performance would be expected to be poor. If there
is a single underlying mechanism subserving commonsense and
deductive reasoning, then the study of a putative underlying
mechanism should presumably focus on its operation in tasks to which
it is adapted, rather than in tasks for which it is not primarily
designed, just as the study of locomotion focuses on walking and
running rather than on more arcane ways of moving about.

If this is right, theories that are primarily constructed to model
deductive reasoning performance are prima facie unlikely to be good
candidates as theories of commonsense reasoning, just as a theory of
human locomotion that focused on hand-walking data and attempted
to generalise to walking and running would be unlikely to be of value.
This is, however, precisely the strategy that Garnham adopts. He
considers the mental models account of deductive reasoning as a
sound foundation for a model of the general case, commonsense
reasoning, even though he considers that deductive and commonsense
reasoning may well be carried out by the same mechanisms. Our
locomotion analogy would be no more than a straw in the wind in the
absence of independent grounds for believing that mental models are
not an adequate account of commonsense reasoning. It does however
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illustrate why it may be an unreasonable, though not unusual (e.g.
Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991) expectation that
mental models theory will generalise from deductive to non-deductive
reasoning.

We have argued that tractability considerations are both severe and
germane for theories according to which reasoning processes assume
that the cognitive system employs semantic, rather than syntactic,
methods of proof. Thus, with regard to complexity considerations
there seems to be every reason to suppose that semantic methods of
proof cannot be the basis of commonsense inference, over very large
bodies of information, which people so rapidly and routinely perform.
As we shall now see, semantic methods of proof are equally unable to
address the problem of completeness* or adequacy. Just as with
syntactic methods of proof, semantic methods would give the wrong
answers, if they were computationally tractable enough to give any
answers at all.

Semantic Methods and Completeness*. Is it possible that semantic
methods of proof can provide the extra “power” required to account for
the strength of commonsense inferences, where syntactic methods can
only license hopelessly weak conclusions? More specifically, what is the
relationship between semantic methods of logical proof, which
involves constructing models and searching for counter-examples, and
standard syntactic proof-theoretic methods, where a syntactic
consequence relation between formulae is defined, and shown to be
sound (i.e. not to lead from true premises to false conclusions) with
respect to the semantics of the logical formulae?

The answer is disappointing: these proof methods are equivalent in
the conclusions they license. Generally while insisting on the
distinction between the language in which the world is described
(syntax) and the described world (semantics), with respect to proof
theory, logicians do not regard the syntax/semantics distinction as an
appropriate dimension of difference (Scott, 1971). As we have pointed
out elsewhere (Oaksford & Chater, 1993), all proof methods are
formal and syntactic and amount to “abortive counter-model
constructions” (Hintikka, 1955, 1985). Thus, the axiomatic method,
truth tables, semantic tableaux, natural deduction, and the sequent
calculus are all formal proof methods which, if an argument is valid,
represent abortive attempts to find a counter-model (example). Some
confusion may arise, if proof theory and model theory are confounded,
a problem we look at further in the following discussion. For the
moment we note that these proof methods are equivalent with respect
to the inferences they are capable of making (they may, however,
differ in complexity) and hence appeal to different proof procedures
appears to offer no advantage to the beleaguered Logicist.
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The situation is more discouraging still in the context of everyday
non-monotonic reasoning. As noted earlier, in deductive reasoning,
showing that a conclusion follows from a set of premises involves
checking that the conclusion is true in all possible models in which the
premises are true. However, in the case of non-monotonic reasoning it
will be possible, by definition, for the conclusion to be false while the
premises are all true. After all, in such reasoning, inferences are
provisional, and conclusions may have to be retracted in the light of
further information. Thus an exhaustive search for counter-examples
for any non-deductive inference will inevitably be successful and no
inferences will be licensed. Accordingly, it appears that, far from being
readily extendible to commonsense inference, semantic methods of
proof are fundamentally incompatible with it (Garnham makes just
this point, in a slightly different context—Garnham, 1993, p. 62).

It might be said that this argument is too swift. Perhaps semantic
methods of proof are applicable to non-monotonic reasoning, if there
are suitable restrictions on which models are entertained (and
something of this sort seems to be implicit in Garnham’s discussion).
In particular, perhaps the appropriate method of proof in the non-
monotonic case is not to search all possible models exhaustively, but
to entertain only the most plausible models, perhaps even just the
single most plausible model. Consider, for example, the default
inference from learning that Fred ate a banana to assuming that Fred
peeled it first. Certainly, there are many models in which the premise
is true and the conclusion false—Fred may have had the banana
peeled by a friend, eaten it whole, and so on. But these models are
not, at least in the absence of additional information, plausible. Much
more plausible is the model in which Fred peeled and ate the banana
as normal. To reason successfully about these matters, it might be
argued, what is required is just that a plausible, rather than an
implausible model is constructed; if implausible models are
constructed at all, they must be recognised as implausible and
rejected.

This line of reasoning has, in Russell’s phrase, all the virtues of
theft over honest toil. The use of semantic methods of proof is bought
at the expense of assuming as given a mechanism that can distinguish
between plausible and implausible models—and, furthermore, come
up with plausible models spontaneously. In other words, it
presupposes a mechanism that is able to carry out inference to the
best explanation—to devise and assess the plausibility of hypotheses
to explain and be explained by known information. But, of course,
inference to the best explanation is the very cognitive capacity for
which logicism and its allies attempt to account by adverting to
methods of proof, be they syntactic or semantic. An account in which
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the ability to construct just the right model (the best explanation) as a
primitive operation is vacuous.

Semantic methods of proof seem, therefore, inevitably, to founder on
either of these two difficulties. Without some notion of which models
are plausible and which are not, it will invariably be possible to
construct some (implausible) model, even for the most persuasive of
commonsense inferences, and hence semantic methods will license no
commonsense inferences at all. This is an even more extreme version
of the problem of weak conclusions for syntactic methods of proof: the
problem of no conclusion. On the other hand, if some notion of
plausibility of a model is presupposed, then the solution to the problem
of accounting for commonsense reasoning has simply been assumed
rather than explained.

Garnham appears to veer towards the latter course in discussing
how a model-based theory of non-monotonic reasoning might look.
Rather than addressing the problem that building only a very small
number of models requires some way of picking the most plausible
models (that is, inferring the best explanation) Garnham argues that
certain quite unexpected considerations may be sufficient to
distinguish models that should and should not be considered in
reasoning: “The should is more likely to be cashed out in terms of
what people can be expected to do, given their cognitive capacities, in
particular the processing and capacity limitations of short-term
memory, working memory and the organisation and retrieval of
information from long-term memory. Thus, people should consider
revisions of their mental models that are required by a specific piece
of information that has entered working memory, from long-term
memory or elsewhere” (Garnham, 1993, p. 63). This does not,
however, seem to provide any comfort for the advocate of semantic
methods of proof. No doubt the organisation of human memory is
importantly related to human reasoning abilities; indeed, it may very
well be that memory is so organised that in some way plausible
models can readily be accessed, and implausible models cannot, that
relevant information is fed into a short-term store as required and that
irrelevant information is suppressed, and so on. This is just to say
that human commonsense reasoning processes may be profoundly
bound up with human memory, a view with which most theorists
would probably concur; it goes no way at all to providing an account of
how such reasoning occurs, or suggesting how such an account
(presumably somehow implemented within long-term memory itself)
would look like a semantic method of proof.

Apart from appealing to memory, Garnham pursues a rather
different line, adverting to simple strategies which can be used to
guide the model-building process. So, for example, “revisions that
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falsify a conclusion consistent with the current model should not be
considered, unless they are unavoidable” and “A conclusion can be
accepted (tentatively, if it is defeasible) if there is some model of the
premises that will accommodate it” (Garnham, 1993, p. 63).

Yet such proposals are entirely unable to distinguish between good
and bad inferences, at least without covert assumptions concerning
which models are plausible and which are not. With regard to the first
principle, suppose that a reasoner who has learned that Fred ate a
banana, created a model of the situation in which he peeled the
banana before eating it. Suppose the reasoner then learns that Fred
choked on the banana skin and had to be rushed to hospital. A
natural reaction to this additional information is to overturn the
tentative conclusion that Fred peeled the banana before eating it, and
assume instead that he attempted to eat it all at once. This seems
more plausible than alternative models in which Fred peels and eats
his banana and then eats the skin too, or whatever it might be.
However, Garnham’s principle does not allow such a retraction to
occur, because revision of the tentative conclusion is certainly not
unavoidable—just rather unlikely. Unless there is some hidden
appeal to plausibility, and, we would urge, to a prior solution to the
problem of inference to the best explanation, Garnham’s principle will
not allow us to account for the obvious commonsense conclusion.

The second principle fares no better. If any proposition that can be
accommodated by some model of the premises can be accepted (albeit
tentatively) then inferential anarchy appears to follow immediately.
So, for example, there will be a model in which Fred eats a banana
and a pig is sitting on the roof of his house (assuming no information
to the contrary). Thus Garnham’s second principle then licenses this
(bizarre) conclusion which is (tentatively) accepted. Of course, similar
reasoning can also lead to the acceptance of the opposite conclusion
(although, by the first principle, the first of these to be accepted will
preclude the other from being accepted). There is, of course, a very
large difference between models in which there is and is not a pig on
the roof—the latter will, of course, be markedly less plausible, other
things being equal. But we are arguing that plausibility is what is to
be explained, and thus cannot itself be presupposed in explanation.

A natural move to dampen down the inferential chaos that
Garnham’s principles appear to license is to appeal to relevance—
models that make specific assumptions which are entirely irrelevant
to the given information (for example, models that specify the
presence or absence of farmyard animals in the context of fruit-eating)
should be ruled out. But appeal to relevance is just as circular as
appeal to plausibility—only given the ability to infer successfully
what explains what it is possible to know which facts are relevant to
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which other facts (see the discussion of relevance in the Objections
and Replies section of the original paper, now Chapter 5).

Quite generally, the principles that Garnham invokes and others
like them are inevitably doomed to fail, because they do not take into
account what is being reasoned about, what it is plausible to assume,
what is relevant to what, and so on; formal principles such as those we
have just considered will fare no better than the rules of deductive
logic in trying to account for the flexibility of commonsense inference.
And of course appeals to content, plausibility, or relevance are not
open to the advocate of semantic methods of proof as theories of
reasoning, as they assume what is to be explained.

Overall, the difference between Garnham’s position and ours is that
we see the problem of finding the right model as simply a restatement
of the original problem of performing inference to the best explanation,
whereas he treats it as a relatively straightforward matter, to be
explained in terms of memory limitations, relatively simple strategies
and the like. We suspect that one of the most significant contributions
of recent work on knowledge representation in artificial intelligence
has been precisely that it has made clear, in painful detail, that
simple formal proposals about how commonsense knowledge can be
managed almost invariably rely on covert intuitions about what is and
is not plausible; hence, as soon as such proposals are implemented
computationally, or just formalised logically, their shortcomings
become all too readily apparent.

Mental Models and Mental Logics

Our discussion of semantic methods of proof has so far been quite
general, and has not been targeted at any specific proposals
concerning the semantic methods of proof putatively involved in
reasoning. Furthermore, we have assumed that semantic methods of
proof are, like more standard syntactic methods, defined over
formulae of a logical language; psychologised, this means that
semantic methods of proof are defined over an internal mental logic.
Semantic methods of proof are simply an alternative way of passing
from premises to conclusions.

Garnham stresses that mental models theory, which he proposes as
a salvation for logicist cognitive science, is not a theory of mental logic,
and wonders if it is this spurious identification that leads us to
describe mental models theory as a semantic method of proof.
Certainly, in the original paper, and in the preceding discussion, we
have assumed that mental models theory is an alternative method of
proving theorems of logic, rather than an alternative to logic itself.
This is not to run together explanations of human reasoning based on
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mental models and those based on, say, natural deduction (e.g. Braine,
1978; Rips, 1983). The difference between these is precisely the
difference between semantic and syntactic methods of proof (although
as we have mentioned, for the logician this is not a coherent
distinction amongst proof theories). But we are assuming that both of
these explanations are fundamentally explanations in terms of logical
proof, though of rather different sorts. Perhaps there is no substantive
disagreement here: Garnham may be using “theory of mental logic” to
apply only to syntactic proof-theoretic methods, whereas we would
apply the phrase more broadly. However, it may be that the
importance that Garnham attaches to this objection stems from the
view that mental models theory should not be assimilated with proof-
theoretic methods as it is very different in character, in ways that we
have failed to appreciate. For example, he notes that our discussion
“equivocates on the term ‘logic’. Much of the time they write as if the
only hypothesis worthy of consideration is that the system of
operations underlying human reasoning corresponds to some
established logical system (e.g. one of the standard nonmonotonic
logics)…[yet] there are many logics that cannot be reduced to first-
order logic…and which can be formalised model-theoretically. And
although extended model theory has its primary application in
mathematics, there are certainly aspects of everyday reasoning…that
call for formalisations which are model-theoretic and not proof-
theoretic in nature” (Garnham, 1993, p. 63, note 14). 

The thrust of this disagreement is perhaps not entirely clear.
Initially, we are held to equivocate on the term “logic”; yet the follow-
up point is that certain logics that may be important for
understanding everyday reasoning cannot be formalised proof-
theoretically. So it seems that the term “logic” is not in dispute after
all; Garnham has just as wide a notion of logic in mind as we do.
Presumably this means that the question of whether or not a model-
based account is a theory of mental logic is similarly a red herring.
The substantial claim appears to be that model-based accounts of
reasoning are, in principle, more powerful than proof-theoretic
methods.

As discussed earlier, this claim is not correct because the distinction
between semantic and syntactic methods of proof is not one that can
generally be enforced. As we also mentioned earlier, the reason that
the opposite view can seem plausible is due to a conflation between
model-theoretic semantics (which provides truth conditions for
formulae of a logical language) and mental models theory (which
provides an inference mechanism). Providing a semantics and
providing an inference mechanism are, of course, very different things
(see e.g. Hintikka, 1985), yet in Garnham’s discussion the term model-
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theoretic is used to apply to both. When Garnham notes that many
logics can only be formalised model-theoretically, what is meant is that
while higher-order logics can be given a semantics in terms of
abstract, set-theoretic structures, a syntactic proof theory that
captures all and only the valid inferences licensed by that semantics
cannot be provided. The standard semantic notion of validity, that all
models in which the premises are true must also make the conclusion
true, can be applied using such model structures, but the class of
semantically valid inferences cannot be captured using proof-theoretic
rules—there will, in particular, be semantically valid inferences that
any proof theory will be unable to capture. Thus, it will not be possible
to construct a mechanised proof theory that will capture all and only
semantically valid inferences.

This by no means implies that mental models can fare any better,
however. Indeed, for incomplete logics there is provably no mechanism,
based on whatever principles, which will capture all and only valid
inferences (Boolos & Jeffrey, 1980). In practice, semantic methods of
proof become entirely unworkable as the logic becomes more complex,
because the space of possible models becomes enormously large (for
example, in second-order logic, involving each possible set of objects
corresponding to a predicate; in modal logics, involving the
interpretation of a term across each possible world may have to be
considered). Thus, practical attempts to build reasoning systems using
higher-order logics have generally attempted to implement incomplete
syntactic proof theories rather than search for counter-examples
through gigantic sets of possible models. In particular, this means
that the mechanism of mental models theory appears, in general, less
well suited than traditional syntactic proof theory to dealing with the
kind of reasoning that Garnham notes is important in formalising
everyday reasoning.

However, mental models theorists are well aware of these problems
(Johnson-Laird, 1983) and argue explicitly that mental models may
provide a way in which model theory may be developed into a
tractable proof procedure. Mental models only deal with small sets of
objects which represent arbitrary exemplars of the domains described
in the premises. This is analogous to Bishop Berkeley’s claim that
reasoning regarding, say, triangles, proceeds with an arbitrary
exemplar of a triangle, rather than, in his view, the obscure Lockean
notion of an abstract general idea. Providing no assumptions are
introduced that depend on the properties of this particular triangle,
e.g. that it is scalene rather than equilateral, then general conclusions
concerning all triangles may be arrived at.

The introduction of arbitrary exemplars highlights the lack of an
appropriate meta-theory for mental models (Oaksford & Chater,
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1993). Mental models theorists provide no exposition of the rules
which guarantee that no illegitimate assumptions are introduced in a
proof. This does not mean that any particular derivation using mental
models has made such assumptions. Nonetheless, guaranteeing the
validity of an argument depends on ensuring that in a particular
derivation such an assumption could not be made. Hence, explicit
procedures to prevent this happening need to be provided. In their
absence there is no guarantee (i.e. no proof) that the procedures for
manipulating mental models preserve validity. That is, it is not known
whether, relative to the standard interpretation of predicate logic,
mental models theory provides a sound logical system.

While soundness is unresolved, there are strong reasons to suppose
that mental models theory is not complete with respect to standard
logic, i.e. while all inferences licensed by mental models may be
licensed by standard logic (soundness) the converse is not the case.
Other graphical methods of proof, such as Venn diagrams or Euler’s
circles, are restricted in their expressiveness due to physical
limitations on the notation. Venn diagrams, for example, can only be
used to represent arguments employing four or fewer monadic
predicates, i.e. predicates of only one variable (Quine, 1959). They
therefore only capture a small subset of logic. Although mental models
have been used to represent relations (predicates of more than one
variable), there is no reason to suppose that mental models will not be
subject to analogous limitations.

The employment of arbitrary exemplars is also central to providing
a tractable model-based proof procedure (see Oaksford & Chater, 1993).
However, in the absence of complexity results for the algorithms that
manipulate mental models, a demonstration that mental models can
avoid the intractability which bedevils the syntactic approach to non-
monotonic reasoning remains wanting. 

It is perhaps because of a conflation between set-theoretic and
mental models, that mental models accounts do not generally attempt
to define a semantics for their mental models notation. For example,
the following, from the most recent text that Garnham cites (Johnson-
Laird & Byrne, 1991), are the mental model representations of three
possible interpretations of the conditional sentences employed in
Wason’s (1966) selection task.

This is a complex notation, the precise meaning of which is only
specified intuitively. Yet the notation of mental models theory stands
as much in need of a semantics as the notation of standard logic.
Without a well-defined semantics it is impossible to know whether or
not rules postulated for manipulating such models are valid. In this
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sense, then it could perhaps be said that mental models theory, in its
current incarnation, can be distinguished from logic, in being less fully
formalised. It seems unlikely however that this distinction is one
which mental models theory will find to its advantage.

Conclusions

In the paper that Garnham attacks (Chapters 4 and 5 in this volume),
we argued that a logicist cognitive science of central processes cannot
account for the commonsense inferences that people draw, and cannot
be tractably implemented. We argued furthermore that positions
closely related to logicism, including those, such as mental models
theory, that use semantic rather than syntactic methods of proof,
equally succumb to these problems. We have found no persuasive
reason to alter this conclusion in the light of Garnham’s discussion.

MENTAL LOGICS AND DEFEASIBILITY

Mental logicians appear to have dismissed the influence of default
rules on reasoning as an interfering pragmatic or performance factor
(Braine, Reiser, & Rumain, 1984; Rumain, Connell, & Braine, 1983).
This is in marked contrast to the reaction of logicians and AI
researchers. As we have seen in the preceding chapters, these
researchers have almost uniformly abandoned restrictions on what is
deducible to the monotonic case and have been driven to explore non-
monotonic logics to capture just the phenomenon the mental logicians
dismiss (see, for example, the collection edited by Ginsberg, 1987).
Embracing the defeasibility of everyday inference, these researchers
immediately confront unsolved problems at both the algorithmic and
the computational levels. Mental logic researchers, by contrast, have
attempted to avoid these difficulties by maintaining—at least with
respect to the experimental data they consider—that reasoning is in
fact monotonic.

Perhaps the best worked-out example is Politzer and Braine’s
(1991) attempt to deny that some data that we discussed in Chapter 6
from Byrne (1989) and Cummins et al. (1991) reflect defeasible
inferential processes. We outline their position, and argue that it
involves a fundamental misunderstanding of the nature of everyday,
defeasible reasoning.

Politzer and Braine (1991) argue that Byrne’s (1989) results do not
show that additional information can defeat (or suppress) modus
ponens because the premises result in an inconsistency.1 Their
argument is as follows. Byrne presented subjects with premises like,
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(8.1)
(8.2)

in response to which subjects spontaneously make the inference by
modus ponens that she will study late in the library. However, adding
a further premise,

(8.3)
leads to a significant reduction in the number of subjects concluding
that she will study late in the library. Subjects instead conclude that
she may or may not study late in the library. Byrne (1989, p. 76)
describes this effect as showing “that context can suppress…valid…
inferences.” Politzer and Braine (1991) argue that general knowledge
of libraries means that (8.1)-(8.3) are likely to lead subjects to add:

(8.4)
to their premise set because (8.3) “actually expresses a necessary
condition”, i.e.

(8.3′)
But now there is an inconsistency because (8.1) and (8.4) entail

(8.5)
which subjects know to be false. Politzer and Braine argue that
subjects therefore question the literal truth of (8.1) and hence fail to
infer that she will study late. They also suggest that all putative cases
of suppression of modus ponens are cases where one can question the
literal truth of the premises.

Politzer and Braine’s modal argument is not valid. But it is not
necessary to delve into the technicalities (outlined in the appendix to
this chapter) to appreciate that this line of reasoning cannot be sound.
First, intuitively (8.1)–(8.3) do not seem to be mutually inconsistent.
And Politzer and Braine’s argument that they are, given appropriate
world knowledge, is not compelling. The crucial conclusion (8.4) is
intuitively and logically bizarre: it suggests that a contingent truth
about whether somebody studies late in the library implies that it
could be a necessary truth that the library stays open. But whether or
not somebody works late cannot make it necessary (in a logical,
physical, causal, or any other substantive sense of necessity) that the
library stays open, because counter-examples abound: she might
break into the library, be locked in accidentally, may have a key, be a
friend of the librarian, and so on. As we show in the appendix, our
intuition that this inference—that supposedly demonstrates the
inconsistency in (8.1)–(8.3)—is invalid, is supported by the fact that it
is also invalid in modal logic. Given that (8.4) does not follow, even if
we grant that people may infer (8.3′) from world knowledge, the rest
of Politzer and Braine’s (1991) argument collapses.
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Treating these rules as default rules, however, leads to a far more
natural interpretation of these experimental materials. The
“inconsistent” conclusion that the library stays open if she has an
essay to write only looks aberrant because Politzer and Braine
explicitly add (8.4) and (8.5) as derived theorems. This presentation
makes “the library stays open” seem like the consequence of a false
rule (8.5). However, by treating (8.1) as a default rule, we can see “the
library stays open” for what it is—a default assumption. Interpret (8.1)
as above:

(8.1′)

Given (8.2) the second conjunct must be satisfied. This involves
checking whether she will not study late in the library can be proved
from (8.1), (8.2), and (8.3′). Assuming forward and backward chaining
(Rips, 1983, 1994), (8.5′) provides a match that yields the library is
closed as a subgoal. This cannot be proved from (8.1), (8.2), and (8.3′).
However, by the closed world assumption used by AI systems, as we
have noted, (Hogger, 1984) not(the library is closed), i.e. the library is
open, can be inferred.2 Consequently, that she will not study late
cannot be proved either, and hence it is safe to infer that she will
study late in the library. Therefore (8.2) leads to the apparently
undesirable assumption that the library is open. This assumption is
innocuous, however. Informally, you infer that she will study late in
the library because (i) she has an essay to write, and (ii) although you
do not know whether the library is open or not, with no evidence to
the contrary, you assume that it is. Subjects’ willingness to endorse
the conclusion that she has an essay to write is therefore dependent
on their willingness to make this assumption and it is this assumption
that experimenters manipulate in the task. Thus interpreting
conditionals as default rules makes much better sense of the observed
performance in conditional reasoning tasks than the attempt to
maintain a logical interpretation.

Rips (1994) takes a rather different line to Politzer and Braine,
conceding that “defeasible inferences must be extremely common in
everyday thinking, and any general theory in AI or psychology must
accommodate them” (Rips, 1994, p. 270). But he argues that default
reasoning arises in the context of inductive inference and that
although “Oaksford and Chater [1991] may be right that inductive
inference will eventually be the downfall of these [classical logicist]
approaches” (Rips, 1994, p. 411), this does not vitiate the mental logic
approach. Rips argues that non-demonstrative belief fixation may come
about “in other ways than making it the conclusion of an argument”
(Rips, 1994, p. 411). But in addition to these “other ways,” Rips
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assumes that people have considerable resources for deductive
reasoning, and argues for a particular account of these in terms of
natural deduction.

But if our arguments are correct, then this intermediate position is
not tenable. The conclusion that people do not interpret natural
language conditionals logically, but rather interpret them as default
rules (Holyoak & Spellman, 1993; Oaksford & Chater, 1992, 1993)
applies to almost any reasoning that mental logicians attempt to
explain. For example, Rips offers the following example as a
paradigmatic case of deductive inference:

(8.6)

Rips treats this inference as deductive and hence modus ponens
applies. But, in the light of previous discussion, the conditional
premise is clearly about as good an example of a default rule as one
could find. Calvin will not get the coke if the machine is broken, if the
cokes have run out, if the power is turned off, and so on.

It is possible to reply, as seems implicit in Politzer and Braine (1991)
and Rips (1994), that such additional circumstances do not show that
the first premise is defeasible (and therefore that some non-monotonic
inference regime must be invoked), but simply show that it is false,
according to the standard, non-defeasible interpretation of the
conditional. But if this is how people interpret conditionals, then the
only conditionals that people believe true will be those that never admit
of counter-examples. Because any everyday conditional, including (8.
6), admits exceptions, then all such conditionals will be false. Clearly,
people do not reject such conditionals, but freely assert them, argue
about whether they are true, and use them to guide their behaviour.
This makes perfect sense if people interpret conditionals as default
rules; it makes no sense at all if they interpret conditionals logically.

In summary, mental logicians have on the whole attempted to
marginalise defeasible reasoning. One argument is to deny (O’Brien,
1993; Politzer & Braine, 1991) that the empirical evidence supports the
claim that people view the rules used in laboratory task as default
rules (Holyoak & Spellman, 1993; Oaksford & Chater, 1992, 1993). We
showed that these arguments are not valid. However, even if they
were valid, the mental logician would still have to account for the
many clear-cut cases of default inferences that occur in everyday life
outside the laboratory. Rips (1994) attempts to avoid this problem by
arguing that most default inferences are inductive and that such
processes do not have to involve argument. However, we argue that
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even the paradigm examples that mental logicians do intend to
explain are not logically valid, but involve defeasible inference. Given
that standard logic cannot provide an appropriate computational-level
model of defeasible, uncertain reasoning, one might expect that the
mental logician would therefore embrace non-standard, non-
monotonic logics. However, they are rightly cautious—such logics fail
to characterise the intuitively correct inferences and hence could not
provide an appropriate computational-level theory.

APPENDIX: THE VALIDITY OF POLITZER AND
BRAINE’S (1991) MODAL ARGUMENT

We show that Politzer and Braine’s argument is not valid and that it
relies on inappropriately mixing modal and classical arguments.
Politzer and Braine argue that (8.4) and (8.1) lead to (8.5) and that (8.
4) is a necessary truth. On closer examination neither claim is
sustainable. We note first that (8.4) does not follow from (8.3′),
although a similar modal conclusion to (8.4) does follow on the
assumption that the conditional in (8.3′) is interpreted as strict
implication (p could not be true and q false) rather than the material
conditional (p is not true and q false) (Haack, 1978). (A8.1) follows
from not-q

(A8.1)
which means (8.4) should read:

(A8.2)

This inference is valid in Brouwer’s System T, and systems S4 and S5,
which form the basis of most modal logics (Hughes & Cresswell,
1968). In none of these systems, or to our knowledge, in any modal
logic, is the inference that Politzer and Braine’s argument relies on
((not-q  not-p) | = (p  Lq)), a valid inference. As Hughes and
Cresswell (1968, p. 27 n.) observe p  Lq (7) is “often confused [with
(A8.1)] in ordinary discourse, sometimes with disastrous results.” The
result here is that (8.1) and (A8.2) do not entail (8.5), because (A8.1) is
equivalent to Lp  Lq, but (8.1) and (8.2) do not lead to the conclusion
that necessarily she will study late in the library. So, (8.1) and (A8.2)
could not transitively entail (8.5). Consequently, Politzer and Braine’s
argument is not valid. Moreover, far from being a necessary truth (A8.
2) is strictly false, as it is possible that she studies late in the library
while the library remains shut—she could break in, get accidentally
locked in and so on. Thus neither (8.4) nor (A8.2) expresses necessary
truths as Politzer and Braine assert.
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NOTES

1. We here ignore Byrne’s (1991) response to Politzer and Braine (1991)
because we concur with O’Brien (1993) that Byrne misrepresents
Politzer and Braine’s argument.

2. We use an AI interpretation of defaults here for illustration only. As we
noted earlier, such interpretations of default rules are not in general
adequate.
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CHAPTER NINE
The Falsity of Folk Theories;

Implications for Psychology and
Philosophy

INTRODUCTION

In Chapters 2–8, we have concentrated on problems for the programme
of logicist cognitive science at the implementational, algorithmic, and
computational levels. We have focused, in particular, on the problems
raised by the defeasible character of everyday inference. In this
chapter, we consider some wider implications of the defeasible
character of human reasoning for the cognitive sciences and for
philosophy.

Notice that in previous chapters, we have drawn our examples of
reasoning from everyday language—we have considered how people
reason about whether birds fly, cars start, or eggs boil. We have noted
that almost all generalisations of this kind are defeasible, and
therefore they have counter-examples. This seems to be a feature of
our everyday “folk” theories of the world. Most of human everyday
knowledge is made up of default information, rather than strict,
exceptionless generalisations, of the type dealt with by logic.

The question arises, as it did in discussing mental logics in the last
chapter, whether the generalisations that folk theories postulate are
true or not. To assess this, it seems appropriate to compare folk
theories and the generalisations that they support with scientific
theories and their generalisations. In science, we argue that theories
that have been unequivocally rejected in the history of science—
theories commonly thought of as false— typically have the same
default structure as folk theories. For example, their generalisations
typically have many exceptions. In contrast, in science, theories that
are regarded as true, while admitting some defeasibility, aim to
minimise this as much as possible—and the degree to which
defeasibility can be eliminated is related to the degree of confidence
that the theories are correct.

This means that the radical defeasibility of folk theories marks them
as analogous to false scientific theories. Consequently the objects and



relations that folk theories postulate are analogous to the objects and
relations that are postulated by scientific theories that have been
rejected as false. If this analogy is correct, then it suggests that we
should regard “chair”, “anger”, and “molasses” as having the same
status as “phlogiston”, “animal spirits”, and the “luminiferous aether”.

At first sight this might appear to be an outlandish claim. There
may be a crucial and obvious disanalogy between, say, “chairs” and
“phlogiston”: that chairs exist, and can be kicked, picked up, and sat
in, whereas animal spirits do not exist, and cannot be interacted with,
or even perceived. However, this is to confuse two kinds of question.
The first kind concerns the existence of “particulars”, and the second
concerns “universals”.

Suppose that you are sitting on a chair in front of a log fire. One
question you may ask is: Is there anything that you are sitting upon?
Similarly, you may ask: Is there any gaseous matter being given off by
the fire? In both cases, the unequivocal evidence from the senses (e.g.
tactile and visual cues) is that there is something that is being sat
upon, and that there is something gaseous being emitted. To affirm
this is merely to deny complete scepticism about the evidence that the
senses provide about the existence of an external world. However, the
nature of the objects that are supporting or warming you is not
determined by the mere judgement that there are some objects which
have this function. In philosophical terminology, this first type of
question is about the existence of particulars, not the nature of the
general categories, or universals, that apply to those particulars.

But having established that there is something supporting you is not
to have established that you are supported by an instance of the
putative universal chair. This would follow if the meaning of “chair”
were anything that supported you. But clearly this is not correct—you
can be supported by a rock, a table, a bench, or a car seat. It might
also follow if the meaning of “chair” could be analysed as consisting of
some necessary and sufficient set of visual and tactile properties. But
it is now widely agreed that the logical positivist programme of
attempting to define everyday categories in terms of sense data is
unworkable. A standard alternative viewpoint is that the meaning of
everyday terms, such as chair, is determined by their role in the “web
of belief’ in which they figure, in just the same way that terms of
scientific theories, such as phlogiston, are frequently viewed as
“implicitly defined” by their theoretical role. To deny that there is any
such thing as phlogiston is not to deny that there is something given off
from the fire, but rather that the set of beliefs in which phlogiston
figures (specifically, the phlogiston theory of bleaching and burning) is
false. Similarly, to deny that there are any such things as chairs is not
to deny that there is something there when you sit down, but rather
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that the set of beliefs in which the concept “chair” figures (our folk
theories of everyday objects) is false. So our claim that commonsense
theories are false, and that commonsense categories are incoherent
does not have any disturbing consequences.

In psychology, indeed, the idea that the categories into which we
divide up the world do not correspond neatly to physical or other
scientific descriptions of reality is familiar. For example, an “edge”
from the point of view of the visual system does not correspond
straightforwardly to any known physical property of images, and
theorists do not assume that the environment consists of “edges” that
the visual system is attempting to detect. Rather, the idea of an
“edge” is a psychological notion, and it is the product of psychological
processes. It is not possible to understand what an edge is without
understanding the properties of the human visual system— edges do
not fall under any physical description of the world. When the visual
system labels a part of the visual field as containing an edge, it is not
merely responding to a local physical regularity of some kind, but is
interpreting an entire visual image to make best sense of the visual
scene. As perceptual theorists since Helmholtz have argued, this is a
process of unconscious inference, where the interpretation arrived at
must be as consistent as possible with the implicit theories that the
visual system respects. Discovering the implicit theories respected by
the visual system, and how it applies these theories in interpreting
visual input, is a task for perceptual psychology. But the terms in
which the visual system classifies the world are products of
perceptual activity, not part of the world that is being classified. Put
bluntly, chairs are more like edges than they are like protons.

This might suggest that because perceptual psychologists have
made progress in making sense of what an edge is, and how edges are
detected, it should be no more difficult for cognitive psychologists to
make progress in making sense of what a chair is, and how chairs are
detected. But there may be a crucial qualitative difference between
the two cases. It seems at least possible that the principles according
to which the visual system assigns edges are very simple and
restricted, and crucially do not make reference to arbitrary world
knowledge. So it seems plausible that these principles and their
application may be relatively easy to specify. But everyday,
commonsense categories are, by definition, embedded in general world
knowledge. As we discussed in Chapter 4, the isotropic and Quinean
properties of general knowledge raise extremely difficult problems for
the attempt to provide a psychological theory of everyday objects.
Firstly, because general knowledge is isotropic, to understand one
commonsense category may involve understanding arbitrary aspects of
a person’s entire theory of the world, rather than some limited and
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restricted set of principles. Secondly, because general knowledge is
Quinean, to understand how general knowledge is applied in
classifying the world appears to require solving the problem of how a
particular categorisation can be influenced by knowledge as a whole,
rather than being influenced only by a restricted set of principles. So
the problem of providing a psychological explanation of terms in our
everyday theories of the world, such as chair, ice creams, or umbrellas
will be, at the very least, much more difficult that providing an
account of edges or colours. Indeed, this expectation has been amply
borne out by the difficulties experienced within artificial intelligence
in attempting to formalise such everyday concepts. Similar
programmes of formalisation in philosophy, lexical semantics, and law
have been equally unsuccessful.1

If we are right that our folk theories of the world are generally
false, then why are such successful agents as human beings
apparently afflicted with such radically inadequate systems of belief?
This apparent puzzle rests on the misconception that it is possible
that people could guide their actions by a true and complete theory of
their world. But such a theory would have to await the successful
completion of a whole science of human affairs, which remains elusive
to say the least. Moreover, the way science proceeds is by picking and
choosing the most tractable problems, a luxury that the human
cognitive system cannot afford in guiding us through the complexities
of the real world. So although by scientific standards commonsense
theories are false, they are nonetheless useful in guiding our actions.
Successful action for the wrong reasons is not unfamiliar. For
example, if you held the phlogiston theory of bleaching and burning
and decided to build a lighter-than-air craft, this theory would suggest
filling a balloon with the phlogiston emitted from combustion. This
would indeed be a successful strategy but it would succeed for the
wrong reasons. But from the point of view of cognition, success is all
that matters, not whether the reasons for that success are correct. We
suggest that our commonsense theories are analogous to highly
successful but false theories such as Newtonian mechanics, which has
been superseded by general relativity and quantum mechanics, but is
still fundamental to our ability to manipulate our world.

THE FALSITY OF FOLK THEORIES:
IMPLICATIONS FOR PSYCHOLOGY AND

PHILOSOPHY

We assume that commonsense knowledge, including our
commonsense understanding of human behaviour, is organised into
theories. After considering certain difficulties in finding out more
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about these theories, we argue that folk theories are analogous to bad
scientific theories, and that the ontology of common sense is on a par
with epicycles or the yin and yang. That is, folk theories are false, and
the entities that they postulate do not exist. We consider various
possible replies to our arguments, and suggest that the underlying
reason that folk theories are bad science is that common sense must
deal with matters that do not yield to scientific analysis. We draw out
some philosophical and psychological implications of our position.

Introduction

It has become increasingly popular to assume that everyday,
commonsense knowledge is organised into theories. In philosophy, it
has become standard to conceive of our commonsense beliefs about the
mind as a theory: folk psychology (e.g. Fodor, 1987; Stich, 1983). In
developmental psychology there has also been much discussion of the
child’s theory of mind (e.g. Leslie, 1987; Perner, 1991; Wellman,
1990), and more generally there has been an emphasis on children as
theorisers (e.g. Carey, 1988; KarmiloffSmith, 1988). In social
psychology, there has been much study of “lay theories” of a wide
variety of domains (e.g. Furnham, 1987), and everyday thought has
been compared extensively to scientific theorising (Nisbett & Ross,
1980). The psychology of concepts has increasingly stressed that
concepts are theoretically embedded (e.g. Medin & Wattenmaker,
1987; Murhpy & Medin, 1985). In artificial intelligence, commonsense
ideas concerning the everyday world have been formalised as
axiomatic theories, where inference is supported by formal logical
methods, or some variant (Charniak & McDermott, 1985; McCarthy &
Hayes, 1969).

Most researchers who view knowledge as organised into folk
theories shy away from trying to give a precise account of exactly
what a theory is. Viewing theories as made of knowledge does not
amount to a precise and specific doctrine, it seems, but rather to an
emphasis on an analogy between the structure of everyday knowledge
and science, from which talk of theories is borrowed. We believe that
this analogy is a valuable one, and that when taken seriously it yields
significant conclusions for folk psychology and cognitive science.

The structure of the chapter is as follows. We first consider the
problem of how folk theories can be known, stressing that natural
language does not give direct access to them. Nonetheless, we suggest
that it is possible to judge folk theories in broad terms by looking at
the explanations to which they give rise, and we present a range of
arguments to show that these explanations fare poorly when judged
by the standards applied to explanation in science. We conclude that
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folk theories are false. We then consider the status of the ontologies of
our putative folk theories and argue that, from the point of view of
scientific inquiry, they should naturally be viewed as being on a par
with terms of other false theories, such as phlogiston or epicycles. We
conclude that the entities described by folk ontologies do not exist.
Until this point, the discussion appears to take rather a dim view of folk
theories, when compared to science; we attempt to correct this
impression by stressing the differing roles of scientific and folk
theorising. Finally, we briefly draw out some philosophical and
psychological implications of our position.

What Do We Know About Folk Theories?

One of the most pressing and problematic points of difference between
folk and scientific theories is that folk theories are not explicitly
articulated for public consumption, but appear to be buried in the
individual’s cognitive innards. This means that the folk theories that
guide thought and action must somehow be inferred from what agents
do or say.

Naïvely, we might hope that speakers can simply tell us what their
underlying theories are, so that if, for example, people tell us that
they believe that people usually act in their own best interests, then
this is likely to be part of their underlying folk theory of human
behaviour.

A first difficulty with this naïve picture is that social psychologists
have persistently found that people’s reports of their underlying
beliefs do not readily cohere into a single picture of the world, but
often reflect a wide variety of conflicting points of view (e.g. Potter &
Wethrall, 1987). This has led to the view that the ideas expressed in
linguistic behaviour are better thought of as constructed for a specific
purpose, dependent on the particular occasion, rather than as direct
reflections of an underlying fund of knowledge.

A second difficulty is that it is not clear to what extent we are able
to verbalise commonsense knowledge at all. This point has been
stressed across a range of disciplines. For example, the psychology of
memory has stressed the importance of implicit information, which
cannot be verbalised (Schacter, 1987). Coming from a very different
point of view, ethnomethodologists have stressed that shared
commonsense assumptions tend to be inaccessible to individuals;
ethnomethodological investigation attempts to discover such
assumptions by training to violate them, rather than relying on
introspective reports (Garfinkel, 1964; see Place, 1992, for discussion).
A final example is given by philosophical inquiry, in which (among
other things) intuitions concerning meaning, good and evil, or beauty,
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are taken as starting points for constructing theories in the
philosophy of language, ethics, or aesthetics. The very fact that
developing philosophical theories that capture such intuitions is so
extraordinarily difficult is a testament to the fact that any folk
theories underlying these intuitions are not readily available to the
investigator.

These problems in articulating our folk theories of the world have
been an important stumbling block for artificial intelligence. It has
proved to be extremely difficult to specify the knowledge underlying
the most mundane aspects of everyday thought. Specifying such
knowledge is, of course, a prerequisite for putting such knowledge into
a machine, according to standard artificial intelligence methodology.
Attempts to formalise apparently constrained aspects of common
sense, such as the naïve physics of the behaviour of fluids, have been
instructive. First, it is not possible simply to take verbal descriptions
of what people say as the relevant knowledge and embody this in
logical axioms, which can be used as the basis for inference. Instead, it
has been necessary to attempt to formulate extremely complex
underlying theories of the ontology that people are implicitly using
and to devise very complex and subtle principles concerning what
people know about this ontology and how this knowledge can be used
to reason successfully. Such sophistication is required even to begin to
build systems that reason about such everyday matters as the spread
of spilt coffee or the results of leaving a tap running (e.g. Hayes, 1978,
1984a, 1984b). Needless to say, the formalisation of folk psychology
and other more complex domains has scarcely been attempted.

This work suggests that, in general, the terms of folk theories may
not always have correlates in everyday natural language. But terms
of folk theories will be little, if any, easier to understand even if they
do happen to be expressed by the words of natural language. For the
mere existence of a natural language label goes no way at all towards
explaining the meaning of the term and its relation to the rest of the
folk theory. After all, it took enormous theoretical effort to make sense
of intuitive notions of “weight” or “set” (in the sense of collection),
which do have natural language labels. Whether this effort should be
thought of as making coherent previously incoherent ideas, or simply
as making explicit what was really being talked about all along is a
controversial question, to which we shall return briefly later. In any
event, it is clear that even if we are able to identify people’s concepts
with words of natural language, this does not solve the problem of
specifying what these concepts are. Thus, even though we have a
natural language label for “chair”, “elbow”, and “jazz”, and have an
intuitive sense of what these labels are supposed to signify, it is
notoriously difficult to define (Fodor, 1981) or characterise in any way

158 RATIONALITY IN AN UNCERTAIN WORLD



what these terms mean. If knowledge is organised into theories, then
explicating such terms involves specifying the particular folk theories
in which they figure; and, as we have seen, this is extremely difficult
to do.

The upshot of these considerations is that, if common sense consists
of folk theories, then the nature of these theories is unknown and
likely to be subtle, complex, and only indirectly related to explicit
verbal behaviour. The problem of discovering the theories underlying
commonsense thought seems, therefore, to be analogous to, for
example, the problem of discovering the underlying knowledge of
language that governs linguistic behaviour. Lin guistics uses verbal
behaviour (and grammaticality judgements, and the like) as the
starting point for constructing theories of the underlying knowledge
involved in language processing. The resulting linguistic theories are
highly elaborate and sophisticated and are, of course, entirely
inarticulable from the point of view of everyday speakers. It seems
likely to be an equally difficult task to tease out the theories
underlying commonsense thought; and the nature of such underlying
theories is likely to be no more apparent to naïve intuition. In
particular, the ontology of folk theories cannot be assumed to be
limited to the vocabulary of natural language—indeed, restriction to
the ontology of natural language appears to be entirely inadequate to
formalise commonsense thought, which is what drives Hayes (1984a)
to define notions such as “portal”, “enclosure”, “directed surface” in
attempting to formalise the naïve physics of fluids. It seems likely,
then, that much of the ontology of folk theories may be no more
captured by everyday language than are phonemes, island constraints,
or traces.

Are Folk Theories Good Science?

We have argued that folk theories must be inferred from verbal and
other behaviour and are not directly accessible by, for example, verbal
report. Although the details of such theories are hidden, however, it is
nonetheless possible to use the verbal and other behaviour to which
they give rise to assess how such theories fare when considered as
scientific theories. We shall concentrate on assessing the quality of
commonsense explanations and assume that the scientific
respectability of these explanations is a reasonable reflection of the
scientific status of the underlying folk theories. We outline two
arguments why folk explanations are very poor by scientific lights.
The first argument compares folk and scientific ideas in domains that
are well understood by science; the second, more general argument
declares that the ineliminably defeasible character of folk explanation
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is a hallmark of bad science. Given that the underlying folk theories
giving rise to these explanations are hidden, it is just possible, of
course, that these theories are actually consistent, coherent, well-
confirmed and scientifically respectable accounts but that, for some
reason, they give rise to verbal explanations that are confused, ad hoc,
and readily succumb to counter-examples. This possibility is
sufficiently bizarre, and lacking in any evidential support, that we
shall not consider it further, and shall simply judge folk theories by
folk explanations. Let us turn to our two lines of argument.

Where Common Sense and Science Compete
An obvious way to assess how folk theories compare with science is to
consider domains that can be described in both folk and scientific
terms. In such domains, it may be possible to assess the quality of
commonsense thought by directly comparing it against the
corresponding scientific account. We shall concentrate on the physical
sciences in the examples that follow, leaving aside for the present, the
more controversial case of folk psychological explanation.

The development of physics, chemistry, biology, medicine, and so
on, no doubt originates in folk intuitions. However, in modern
accounts of the phenomena of these areas, little or no vestige of this
heritage remains. Rather than supplementing and regimenting folk
intuitions about dynamics, reactions, the basis of life, and the cure of
disease, modern theories have totally discredited and supplanted
these accounts.

There are numerous illustrative examples of folk accounts that even
had a measure of scientific respectability but which now appear
completely unfounded. In physics, the motion of an artillery shell was
commonly conceived of as consisting of a straight line motion along
the line of sight of the gun barrel followed by a vertical descent. In
chemistry, it was commonly believed that there are few constraints on
the ability of substances to transmute from one form to another, which
motivated the search for the “philosopher’s stone”, which would turn
base metals into gold. Even after the development of scientific
chemistry, our folk taxonomy of substances has little or nothing to do
with the periodic table and molecular composition. In biology, the
spontaneous generation of life from decaying substances was a
prevalent view as recently as the seventeenth and eighteenth
centuries. It was thought that flies arose spontaneously from faeces
and even that signets emerged from rotting logs. Equally, folk
accounts of medicine, some of which go under the banner of
“alternative” medicine, do not provide a foundation for, but appear
completely at variance with, modern western medicine. For example,
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the effectiveness of acupuncture is usually justified as bringing the
life forces of the yin and the yang into balance.

These examples show that commonsense conceptions of the world,
while they may provide a historically important starting point in
scientific investigation, are typically superseded and, crucially,
dismissed as false. In particular, the intuitive notions of “impulse” and
“natural place” that underwrote naïve understandings of ballistics are
no longer considered to make sense. Similarly, the philosopher’s stone
and the alchemical conception of transmutation are not thought to
refer to any aspect of the real world. Equally, modern biology does not
countenance the possibility of spontaneous generation. Modern
western medicine claims that the postulates of “alternative” accounts,
such as “life force”, “yin”, and “yang” do not exist. Notice that modern
science does not simply contend that the categories of folk science
happen to have no members. As the entire standpoint of folk theory is
rejected, it becomes difficult or impossible to conceive of what it would
be to encounter an example of such putative categories—the
categories are simply rejected wholesale as completely nonsensical. (Of
course, some of the vocabulary of false naïve theories may survive, for
example, “impulse”, but construed very differently.)

Backing up such historical considerations are experimental studies
of folk beliefs about scientific matters. Modern students of physics are
prone to reveal a bizarre conception of basic physical principles
(McCloskey, 1983). For example, when asked to describe the trajectory
along which a ball will travel after being released from constrained
spiral motion, a common response is that it continues in a spiral
motion, rather than travelling in a straight line (Kaiser, McCloskey, &
Proffitt, 1986). Furthermore, such misconceptions are remarkably
difficult to change by instruction (Carey, 1985, 1986; Gentner &
Stevens, 1983; West & Pines, 1985; see Kuhn, 1989, for discussion). It
is remarkable that we are able to navigate our way through a complex
world so successfully, when our explicitly held beliefs about its
structure seem to be consistently and dramatically off-target.

Now, if folk theories appear to be bad science in domains that are
scientifically well understood, there seems little reason to suppose
they will fare better in domains that are scientifically poorly
understood. It seems reasonable to assume that domains that have
resisted scientific analysis are likely to be especially complex; hence,
in these domains, folk theories are even less likely to provide a
scientifically respectable analysis. In particular, folk psychology, along
with folk economics, folk sociology, and folk theories concerned with
tables, cars, music, and shopping, are all likely to prove to be
scientifically ill founded.
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The Defeasibility of Commonsense Generalisations
In the previous section, we did not consider folk psychology directly,
but drew morals from the firmer ground of explanation of physical
phenomena. In this section, by contrast, we start by considering folk
psychological explanation and extend our conclusions to folk theories
in general. Consider this schematic folk psychological generalisation:

(9.1)

This can be filled out, for example, as a useful rule for parents. “If a
child desires ice cream and has the belief that tidying her room will
lead to her being given ice cream, then she will tidy her room.”
However, bitter experience indicates that this, like other specific
instances of the schema, admits of many counter-examples. For
example, the generalisation will not hold if the child believes that ice
cream will be forthcoming in any case, because her parents are weak
willed. Equally, she may believe that the room is so untidy that it is
not worth the effort, that there is a fierce dog in the room, that her big
sister will take the ice cream anyway, or that there is an alternative,
more desirable, action available, such as watching a favourite
television programme, going swimming, and so on. For this specific
instantiation of the generalisation, it is clear that there will be no way
of ruling out all these possibilities one by one. There cannot be a
clause ruling out the possibility of swimming, one for watching
television, one for each of the possible dangers that might be
encountered in the bedroom, and so on. The only hope of ruling out
such possibilities without specifying an exhaustive and presumably
indefinitely long list of exceptions is to attempt to save the folk
psychological generalisation at the schematic level (Chater &
Oaksford, 1990; Oaksford & Chater, 1991).

However, at the schematic level, too, it is hard to imagine how the
appropriate modification can be achieved. One possibility, which takes
account of the counter-examples just described, might be that the
generalisation should read:

(9.2)

But this, of course, succumbs to further counter-examples. There may
well be a less pressing desire D’, which can be achieved by action A’,
which is less arduous than action A. In this case, it may be judged not
worth going to the extra trouble of performing A, even though the
desire D is the most pressing. Further, it must be possible to perform
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A, and the agent must believe that A can be performed (the child will
not attempt to tidy the room if she believes that the door is locked and
that she cannot get a key). Clearly, further elaboration of the
generalisation by adding extra clauses of the same kind will not help
because further counter-examples can always be generated.

The fact that folk psychological generalisations succumb so readily
to counter-examples is recognised in that they are usually stated as
holding “ceteris paribus” or “everything else being equal”. That is, the
situations in the counter-examples just described are viewed as
situations in which all other things are not equal. Of course, the use of
such a locution does not remove the problem of counter-examples, but
simply changes the problem from one of adding conditions to refine
the original generalisation so that it is always true, to one of
specifying the conditions under which all other things are equal. This
is, of course, simply the original problem in a different guise.

If it is impossible to reconstruct folk psychological generalisations so
they are true, then surely folk psychology must be rejected as a false
account of human behaviour. In consequence, the postulates of the
theory—beliefs, desires, and their kin—should be treated as
incoherent. Beliefs and desires will not figure in a scientific account of
mind any more than the yin and yang figure in modern western
medicine. Putting the point bluntly, folk psychology is false and
beliefs and desires do not exist.

While this kind of argument is reasonably familiar with regard to
folk psychology (see Fodor, 1991; Schiffer, 1987, 1991), which has been
the centre of intense debate (e.g. Churchland, 1986; Fodor, 1987;
Kitcher, 1984), parallel arguments appear to be equally persuasive
with regard to other folk theories, to which much less philosophical
attention has been devoted.

Consider the falsity of the following commonsense generalisations:
“All chairs have legs”; “All birds can fly”; “If you turn the key, the car
starts”. Armchairs do not have legs, swivel chairs have a central
column; ostriches, penguins, and injured birds cannot fly; if the
battery is dead the car will not start. Perhaps these generalisations
are false because they are formulated with insufficient precision—
perhaps not all birds can fly, but all uninjured garden birds can fly.
But what about very young birds, very old birds, birds tangled up in
nets, birds in extremely cold weather or high winds, birds with clipped
wings, and so on? Refining further, we may say that “all birds can fly”
means that every bird will have or has had the ability to fly at some
time in its life— according to this reading, very young, very old, and
entangled birds count as flyers; and transient meteorological
conditions may be ignored; and perhaps having clipped wings counts
as an injury. What, then, of very young abandoned birds, destined to
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starve before they learn to fly; genetically abnormal birds; caged
birds, and so on? The terms used in these attempts to refine the
generalisation themselves equally require refinement in order to save
the original generalisation from counter-examples. What counts as a
garden bird—a turkey in a run at the end of garden? an ostrich in an
African garden? There seems to be no end to this refinement—every
term adduced in refining the original generalisation itself requires
refinement.

This phenomenon has been given many different labels in different
areas of cognitive theory, from cognitive psychology and philosophy to
artificial intelligence. Folk theories are said to be context-sensitive
(Barsalou, 1987); to hold only relative to some background conditions
(Barwise & Perry, 1983); to be defeasible (Minsky, 1975/1977); to
admit exceptions (Holland et al., 1986); to lack generality (Goodman,
1983); and to have intention-relative categories (Winograd & Flores,
1986). These are many ways of saying that every commonsense
generalisation, just like the generalisations of folk psychology,
succumb to endless counter-examples.

We have focused on the fact that folk generalisations have counter-
examples. On the reasonably standard assumption that every good
scientific law is without exceptions, this immediately implies that folk
theories are bad science. But it has been argued that scientific laws
are quite generally defeasible but not thereby false. An extreme
version of this view has been advocated by Cartwright (1983), who
argues that the “phenomenological” laws of science, which are
defeasible, are the only candidates for truth and that “deep”,
putatively exceptionless laws should be rejected as false.

Even independently of the inference from counter-examples to
falsehood, however, folk theories, when judged as scientific theories,
are woefully inadequate—they correspond to bad science rather than
good science. This inadequacy has a number of aspects, including the
inchoate, poorly articulated nature of such theories, internal
inconsistency, the ad hoc character of explanation, lack of predictive
power, and so on. These properties are evident in the commonsense
explanations we have considered here.

So our reaction to folk theories does not presuppose that the laws of
a good scientific theory do not admit some exceptions. We merely
require that there be some distinction between good and bad science
and that common sense falls into the latter category. In view of this,
the discussion could stop here. However, while our arguments do not
hinge on the issue of defeasibility, we actually believe that it is
central to a proper understanding of the distinction between good
theory and bad theory. In particular, we view the abundance of
exceptions to the laws of common sense as the diagnosis for its other
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ailments. An abundance of exceptions goes hand in hand with an
abundance of predictive and explanatory failures, the invocation of ad
hoc rules to account for these exceptions, and an ability to retain
theoretical consistency in the face of endless counter-examples.
Hence, although for the purposes of our argument we need not be
committed to drawing a distinction between the defeasibility of
commonsense generalisations and good scientific laws, we actually
believe maintaining such a distinction to be very important.

In any case, the defeasibility of scientific laws does not offer a
means of maintaining the truth of folk theories. Whether or not
defeasibility can ever be entirely eliminated within scientific theories,
it is uncontroversial that defeasibility should be minimised. The
degree of defeasibility (in conjunction with other factors such as
breadth of coverage and simplicity) is a crucial measure of theoretical
adequacy. As we have already argued, the generalisations of folk
theories are defeasible through and through. So on this score, folk
theories will always be ranked at the bottom.

In this section, we have argued that folk theories are false. We now
argue that this means that the entities of folk theories do not exist.

Folk Entities Do Not Exist

If common sense is organised into theories, then commonsense
categories correspond to the meaning of theoretical terms. If folk
theories are bad science, then, prima facie at least, it seems that their
ontologies should also be rejected. 

After all, because we assume that modern chemistry is true, we
assume that “oxygen” is ontologically respectable—what it refers to is
determined by chemistry. On the other hand, since we reject alchemy,
we assume that “phlogiston” does not apply to anything; it is a term
without reference. That is, terms of the internal theories underlying
commonsense knowledge are analogous to phlogiston rather than to
oxygen. In plain terms, the upshot may be stated: the referents of the
terms of folk theories do not exist.

If this formulation seems shocking (and we have found in
presentations that it certainly does!), we recommend an alternative:
that folk ontologies cannot be used as the basis for scientific
explanation. This leaves open the possibility of making sense of some
notion of existence in some extra-scientific sense. Given the problems
involved in making sense of just one kind of existence, the postulation
that there are two or even more kinds does not strike us as attractive.
We shall continue to use the shocking formulation in the following
discussion.
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The conclusion that folk entities do not exist (or its milder variant)
appears to be too rapid, however. It may be objected that surely the
adoption of a new scientific theory cannot automatically mean the
wholesale rejection of the ontology of the previous theory. After all,
the vocabulary of one theory is typically largely preserved in the new
theory. For example, modern relativistic physics retains mass,
momentum, and so on from Newtonian mechanics, although rejecting
such constructs as the luminiferous aether (the medium through
which light waves were supposed to travel). Or consider the stability of
the term “electron” over the vagaries of the development of twentieth-
century physics (Hacking, 1983). Such examples suggest that some
terms of false theories may refer after all. It might be argued that
“table” and “chair” may be more like “mass” and “momentum” than
“epicycle” and “phlogiston”. Therefore, it may seem entirely plausible
that a significant fragment of folk ontology may exist despite the
falsity of the folk theories in which they are embedded.

One version of this position is that a term may refer not because the
theory in which it currently plays a role is true, but because some
future theory in which it will one day figure is true. This line appears
to be advocated by Putnam (1975), who argues that “gold” was a
referential term even before the chemical composition of gold was
known, and that this coherence is underwritten by the truth of
modern chemistry. This suggestion presupposes that a theoretical
term may continue to have the same reference when the theory in
which it is embedded changes; this is a controversial thesis. Moreover,
adversion to a future true theory is of no avail in attempting to
maintain the coherence of folk categories, as it seems, to put it mildly,
unlikely that “table”, “chair”, and “eating ice cream” will feature in
any future scientific theory. 

There is, however, a more radical way of retaining ontology and
rejecting theory: by denying that the coherence of terms is dependent
on the truth of a theory in which they may be embedded. This position,
entity realism, views entities as prior to theories about them. If it is
denied that ontology is determined by an embedding theory, some
other account of how ontologies are fixed is required. Two possibilities
have been advanced, one that applies specifically to biological
categories and can offer a defence of folk ontologies if they can be
treated in the same way; and one that applies more generally. Very
roughly, the first approach individuates entities historically and the
second individuates entities by their effects. We now consider these in
turn and argue that they do not change our conclusion that, like
phlogiston and epicycles, the entities of folk theories do not exist.

166 RATIONALITY IN AN UNCERTAIN WORLD



Individuation by History
Millikan (1986) aims to explain what makes biological categories
coherent, without assuming that coherence must be guaranteed by
embedding in a true theory, for the now familiar reason that
biological generalisations, like folk generalisations, typically have
counter-examples. She notes that generalisations about, for example,
hearts, like the generalisations about birds, tables, and so on that we
considered earlier, seem to admit of countless exceptions: “A
heart...may be large or small (elephant or mouse), three-chambered or
four-chambered etc., and it may also be diseased or malformed or
excised from the body that once contained it, hence unable to pump
bloody” (Millikan, 1986).

For Millikan, counter-examples to biological generalisations pose no
threat to the coherence of biological categories, since coherence is
judged by other historical-functional standards to which we shall turn
presently. If an appropriate alternative basis for ontological coherence
can be found for biology, this might be applied to folk theories—
indeed, Millikan suggests that folk psychological terms should be
construed as biological categories.

Millikan’s approach is complex, but can be illustrated by an
example:

A heart…falls in the category heart, first, because it was
produced by mechanisms that have proliferated during their
evolutionary history in part because they were producing items
which managed to circulate blood efficiently in the species that
contained them, thus aiding the proliferation of that species. It is
a heart, second, because it was produced by such mechanisms in
accordance with an explanation that approximated, to some
underdefined degree, a Normal explanation for production of the
majority of Normal hearts of that species. By a “Normal
explanation” I mean the sort of explanation that historically
accounted for production of the majority of Normal hearts of that
species. And by a “Normal heart”, I mean a heart that matches in
the relevant respects the majority of hearts that, during the
history of that species, man aged to pump blood efficiently
enough to aid survival and reproduction (Millikan, 1986, p. 51).

This approach turns out, however, to be extremely liberal. Suppose,
for example, you are sceptical about the laws of Freudian
psychoanalytic theory, and doubt the relationship between the failure
to resolve certain conflicts that arise at specific psychosexual stages
and consequent specific forms of neurosis. On the orthodox view, this
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would entail a similar scepticism with respect to the Freudian
categories of, for example, the Oedipus complex, the id, the ego, and
the superego. However, according to Millikan’s account, these
categories can be maintained in the face of scepticism concerning the
laws in which they figure. Consider how the term superego may be
grounded in the same way as Millikan grounds heart:

A superego…falls in the category superego, first, because it was
produced by mechanisms that have proliferated during their
evolutionary history in part because they were producing items
which managed successfully to resolve psychosexual conflicts in
the species that contained them, thus aiding the proliferation of
that species. It is a superego, second, because it was produced by
such mechanisms in accordance with an explanation that
approximated, to some undefined degree, a Normal explanation
for production of the majority of Normal superegos of that
species. By a “Normal explanation” I mean the sort of
explanation that historically accounted for production of the
majority of Normal superegos of that species. And by a “Normal
superego,” I mean a superego that matches in the relevant
respects the majority of superegos that, during the history of
that species, managed to successfully resolve sufficient
psychosexual conflicts to aid survival and reproduction.

For the Freudian theorist such a line of argument might seem to be
extremely appealing. For it appears to establish the coherence of the
fundamental categories of Freudian theory, even though the laws of
Freudian theory may not hold; similar arguments appear to establish
the yin and yang as respectable entities, the purpose of which is
setting life forces in balance. This liberalisation of the criterion for
ontological commitment appears to allow the grounding of the terms
of false theories of all sorts, folk psychology and other folk theories
perhaps included. But if the categories of folk theories exist only in
the sense that the yin and the yang exist, this sense of existence is
surely too weak to be of any interest.

It might seem, however, that there is a crucial difference between
Millikan’s grounding of heart and the apparently analogous grounding
for superego or the yin and yang, however, the first explanation seems
to be intuitively plausible and the second does not. For example, it
seems entirely plausible that the heart has proliferated because of the
survival-related benefits of pumping blood; it may seem far less
plausible that the superego has proliferated because of the survival-
related benefits of resolving psychosexual conflicts; and it seems
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entirely implausible that the yin and yang have proliferated because of
the survival-related benefits of balancing the life forces.

In what, however, does the intuition that these cases are different
consist? Why should the superego and the yin and the yang not
proliferate because of their survival-related benefits? The most
obvious reply is that this is because, unlike hearts, they do not exist.
Yet existence is the very issue that the historical account is supposed
to decide, so this appeal is illegitimate. A further suggestion may be
that while “heart” is a biologically respectable category, the superego
and the yin and the yang are not. But the historical account is
intended to distinguish genuine biological categories from bogus
biological categories, so this appeal too begs the question. Finally it
could be suggested that “heart” plays a role in some true biological
theory, whereas the superego plays a role in an at best highly
controversial theory, and the yin and the yang are parts of a radically
false folk theory of medicine. Yet the historical account is intended to
provide an alternative to this appeal to the truth of the embedding
theory and thus cannot rely upon it. In sum, it seems that the
historical account is entirely neutral between purportedly genuine and
presumably bogus categories. Hence it cannot be used to demonstrate
that folk ontologies have a legitimate basis, despite the falsity of folk
theories.

Individuation by Effects
Although Millikan’s approach to individuating entities theory
independently seems too liberal, an alternative approach, developed in
the philosophy of science, is motivated by the stability of theoretical
terms, such as electron, in the context of dramatically changing
scientific theories. As mentioned earlier, in the last 100 years there
have been a wide variety of very different scientific accounts of the
electron. Nonetheless, it seems natural to view all of these accounts as
theories of the electron. That is, while theories have come and gone,
entities seem to have remained the same.

Hacking (1983) suggests that what is common between the same
entity in different theories is its effects. For example, in theories as
different as the plum pudding model of the atom and contemporary
particle physics, the electron is held to propel a vane in a vacuum (the
“electron wind”); to be sensitive to both electrical and magnetic fields
(as evidenced, for example, in the Maltese cross experiment); to
produce, on average, a three-centimetre track in a cloud chamber, and
so on. That is, although theories about electrons have changed
considerably, the set of effects that electrons have been taken to
explain has remained relatively stable.

9. THE FALSITY OF FOLK THEORIES 169



However, although in some cases the set of effects that a theoretical
account attempts to explain has a real basis, in other cases more than
one entity or property explains what was erroneously supposed to be a
set of phenomena with a coherent basis. For example, the putative
negative weight of phlogiston could be used to explain both the gain in
mass of materials after burning (since phlogiston was released) and
the fact that hot air balloons rise (by trapping phlogiston released from
burning). However, these phenomena have very different origins. The
first is explained by oxidisation during burning and the second is
explained by the expansion of air when heated. Because the set of
phenomena that phlogiston was postulated to explain turned out to
fractionate in just this way, the preservation of the term “phlogiston”
would have been rather confusing from the point of view of Priestley’s
account of bleaching and burning. Thus, a new term “oxygen” was
used to refer to the postulated entity, which explained the gain in
mass of materials after burning.

The criterion of individuation by effects appears to apply equally well
to entities that are dismissed by modern science as to entities that are
accepted. That is, it could explain the stability of the term
“phlogiston” over hundreds of years of chemical theorising just as well
as it explains the preservation of the term “electron” over the last 100
years. It is, therefore, entirely neutral with regard to the existence of
the entities postulated. In particular, it will apply to folk terms
whether they refer or not, and hence provides no defence of the
coherence of folk entities.

In the previous section, we argued that folk theories are bad
science: in this section, we have argued that the ontologies of folk
theories are not scientifically respectable. These conclusions appear to
cast common sense in a very poor light; the next section aims to
correct this impression. Folk theories, while poor science, are
remarkably successful at helping us to make sense of and to act in a
world that is far too complex for scientific analysis to be tractable.

Differing Goals: The Art of the Solvable Versus Coping
with Complexity

Despite the notional goal of explaining all aspects of the natural world,
in practice, science is, to use Medawar’s famous dictum, the art of the
solvable. That is, scientists seek out and explore just those areas
where theories can be built, tested, and applied; they shy away from
areas that presently appear to be intractable to scientific methods.
The ability to choose to focus on tractable matters and to ignore the
intractable marks an important difference between science and
common sense. Folk theories must allow us to make the best possible
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sense of our everyday world and guide our actions as successfully as
possible; to do this they must face up to the full complexity of the
everyday world, which, we suggest science rightly prefers to avoid. 

Most aspects of our everyday world are simply too complex, and too
downright messy, to be the basis of science; there simply is no clear-cut
theory of the behaviour of everyday objects, of the changing patterns of
food supply, of the nature and degree of various types of danger, or,
most challenging of all, of human nature itself. From the point of view
of science, each of the domains is criss-crossed by a myriad different
causal paths, most of which are little understood by science;
furthermore, the complexity of these causes, and their interactions,
makes such matters inherently resistant to scientific analysis.
Consider, for example, the problem of predicting the likely effects of
falling down the stairs: the range of relevant biological and physical
factors—exact layout of the stairs, shape of body, clothing worn, etc.—
make scientific study quite impossible. The scientist may choose to
pick apart these causes, studying gravitation, blood flow, bone
strength, and so on, independently, without ever having to put all
these factors back together to deal with a specific case of falling.

The agent faced with the problem of successfully coping with the
baffling complexity of the everyday world has no such luxury. Folk
theories must provide rough and ready advice—that here falling is
dangerous and extreme care must be taken; that there it is not so
dangerous and it is safe to hurry, and so on. Our folk understanding
of mind provides another good example. Human behaviour appears to
be generated by an extraordinarily complex mix of factors, both
psychological and biological, upon which scientific psychology and
biology have made only partial inroads. Yet folk theories allow us to
make rough and ready assessments of how and why people behave;
and when it comes to guiding action appropriately, such theories, for all
their faults, are much better than nothing.

In general, then, folk theories must deal with aspects of the world
that science avoids as intractable, i.e. it must deal with domains in
which good science is more or less impossible, and rough and ready
generalisation must suffice. Thus, the fact that folk explanations do
not stand up to scientific scrutiny should not be viewed as a criticism
of folk theories; it is an inevitable consequence of the fact that folk
theories must venture where science cannot. If we are right, then the
very domains that folk theories must cover, where scientific analysis
is impossible, means that folk theories will inevitably be bad science;
and that the ontology of common sense will not be scientifically
respectable. We now turn to consider briefly some of the implications
of this perspective for the study of mind.
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CONSEQUENCES AND CONCLUSIONS

We have argued that folk theories are false and that the entities they
postulate do not exist. If we are right in equating the objects and
relations of common sense with the ontology of false scientific theories,
then folk ontologies do not carve nature at the joints any more than
Ptolemaic astronomy. Just as the theory of epicycles was a
remarkable product of human attempts to make sense of the
astronomical world, so our everyday categories “chair”, “home”, and
“friend” represent remarkable products of human attempts to
understand the everyday world of artifacts, dwellings, and human
relationships. The character of common sense is perhaps obscured
because we are so close to its objects; but just because we make
friends, build homes, and manufacture chairs does not lessen the
individual and social achievement of creating the folk theories in
which these terms are embedded. This is the heart of the thesis of this
chapter—common sense is an explanandum, not an explanans. A
science of cognition must explain the basis of our folk theories and
hence cannot use them as its foundation.

This view has significant consequences for the theory of meaning,
whether for natural language or for mental states: it undercuts the
project of devising a theory of reference for the terms of natural
language, as this project is traditionally conceived. Typically, the
problem is viewed as that of specifying some naturalistic relation
between, for example, the symbol “chair” or “ice cream”, and actual
chairs and ice cream. There are a number of suggestions about how
this “naturalisation” problem can be solved. The crudest suggestion is
that the appropriate relation is that the tokening of symbols is caused
by encounters with their referents, or that symbol-tokenings correlate
with such encounters. Causal theories of reference (e.g. Kripke, 1972;
Plantinga, 1974; Putnam, 1975) and informational semantics
(Dretske, 1981; Fodor, 1987, 1990; Stampe, 1977) have devised
extremely sophisticated versions of these views. But if commonsense
categories are incoherent, then there are no chairs or ice cream. A
fortiori, the tokening of the symbols “chair” and “ice cream” cannot be
caused or correlated with instances of chairs and ice cream, because
there are none. A causal/correlational story is no more appropriate for
commonsense categories than it would be for explaining the meaning
of “phlogiston” and “epicycle”. Quite generally, any view that attempts
to explain the meaning of commonsense terms as a relation to the
corresponding category in the environment is simply not applicable—
the naturalisation problem for everyday folk terms cannot, in
principle, be solved.
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As this argument applies just as much to mental states as to natural
language, this view also poses problems for any representational
theory of mind that specifies the content of mental representations in
terms of commonsense, folk categories. For example, any theory that
assumes that mental representations correspond to the contents of
propositional attitudes is ruled out immediately, because there is no
coherent folk ontology to which the contents of the attitudes can map.
In particular, this constitutes a rather nonstandard attack on folk
psychology as a basis for scientific psychology. Typically, folk
psychology is attacked directly on the grounds that it postulates
entities, beliefs, and desires that do not exist. According to our more
general arguments to the falsity of folk theories, the contents of
propositional attitudes are equally in doubt. Hence, if folk theories are
put into doubt, folk psychology is doubly vulnerable: first, because the
integrity of the contents of folk psychology presupposes the truth of
other folk theories; and second, because folk psychology is itself a folk
theory.

A practical consequence of this additional line of attack on folk
psychology is that a putative scientific psychology cannot merely
reject the attitudes while retaining their contents to act as the
interpretations of the representations it postulates. So practical work
in knowledge representation in cognitive science and artificial
intelligence, which is typically neutral with respect to the nature of
the attitudes, nevertheless must be rejected, because they retain the
folk ontology of tables, chairs, and so on. Such considerations apply
just as much to most connectionist approaches to knowledge
representation, where states of networks are interpreted in terms of
folk ontologies (e.g. see papers in McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986). Notice that this applies to
“distributed” as well as “localist” connectionist representation. A
distributed representation of an object in a connectionist network
modelling commonsense inference still relies on a featural
decomposition such that the feature nodes of the network correspond
to the types of which the object represented is a token. The types that
provide the interpretation of the feature nodes are typically the
categories of our folk ontologies. Hence on the current position,
interpreting features is as pressing a problem for connectionism as
interpreting the predicate symbols of the knowledge representation
language is for traditional AI (Christiansen & Chater, 1992, 1993).

In the light of these considerations it is perhaps not surprising that
the areas of cognitive science and cognitive psychology in which most
progress has been made are those that do not involve knowledge-rich
inferential processes. That is, progress is only really apparent in those
areas that, from a philosophical standpoint, as Davies (1992) has
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pointed out, are not really cognitive domains at all. Fodor (1983)
captures the distinction very neatly. He divides the cognitive system
into informationally encapsulated input (and output) “modules”, on
the one hand, and informationally unencapsulated central processes
on the other. Central processes are explicitly identified as those
involving knowledge-rich inferential processes of belief fixation and
revision, i.e. precisely the processes for which our theories postulate
inference over representations the content of which is given in terms of
our folk ontology. Fodor argues that progress in the cognitive sciences
has only been and is only likely to be forthcoming for the
informationally encapsulated input and output modules.

One way of viewing this diagnosis of lack of progress is that
cognitive science has failed to resolve the problems that beset
behaviourism. 

Behaviourists eschewed an introspectionist methodology and
imposed rigorous strictures on psychological practice and theory. In
particular, they demanded that stimulus and response be physically
rather than intentionally characterised. However, as Fodor (1968),
Chomsky (1959), and other pioneers of cognitive science have
observed, in behaviourist theorising (e.g. Skinner, 1957), such
physicalist characterisations were, in practice, supplanted by
inadvertent use of intentional terminology—in particular, the
stimulus and response were not described in the terms of physical (or
other) science, but rather in terms of the experimenter’s commonsense
understanding of the task. Description of the conditioned stimulus as
a pencil and the conditioned response as, say, the act of writing, is
description in terms of folk theories rather than physics. The
cognitivist response was to attempt to legitimise this nonphysicalist,
intentional vocabulary. This presupposed that everyday vocabulary
can be naturalistically grounded as a relation between mental
representations and the world. As the domain of this intentional
vocabulary is folk ontology and the objects of our folk ontology do not
exist, naturalisation is impossible. The assumption that scientific
psychology can be founded on the principal product of psychological
processes— commonsense theories and commonsense ontologies—
whether implicit, as in behaviourism, or explicit, as in contemporary
cognitive science, is unsustainable.

NOTE

1. In philosophy, the logical positivist programme aimed to explain
commonsense knowledge in terms of reductions to logical constructs out
of data; they claimed that where this is not possible (e.g. in much of
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relegious and ethical discourse), the language of commonsense was
meaningless. In lexical semantics, a similar approach has been followed
with the aim to provide componential accounts of the meaning of lexical
terms, using some set of underlying semantic primitives. In the law,
there has been a vast programme of theoretical research aiming to give
precise definitions of legal and everyday terms, in order to remove the
interpretive quality of legal decision making. None of these projects has
proved to be tractable.
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PART II

The Probabilistic Approach

In Part II, we introduce our probabilistic alternative to the logicist
approach to human reasoning. We argue that the uncertainty of
human reasoning is best modelled probabilistically and that when this
is done many of the apparent biases observed in human reasoning can
be understood as reflecting people’s normal reasoning strategies for
dealing with their uncertain world. We concentrate on Wason’s
selection task which has been taken to raise more problems about
human rationality than any other psychological task. 



CHAPTER TEN
A Rational Analysis of the Selection

Task I: Optimal Data Selection

INTRODUCTION

The next four chapters present our core illustrative example of how a
probabilistic approach may resolve some of the fundamental problems
in the study of reasoning. We provide an account of Wason’s selection
task, probably the most intensively studied task in the psychology of
reasoning. In this task, people are asked to assess the relevance of
possible classes of evidence to testing a hypothesis.

One of the reasons that this task has been intensively studied is that
it seems to have a simple structure and an obvious “logical” solution,
but people consistently fail to adopt this logical solution. This has
been viewed as evidence of human irrationality by early investigators
of the task (e.g. Wason & Johnson-Laird, 1972), and has raised issues
of human rationality in philosophy, as we noted in the introduction.
Our probabilistic rational analysis will show that people’s
performance of this task need not be viewed as irrational. In this
chapter we re-introduce the task (which we also discussed briefly in
Chapter 3) and present our rational analysis.

OPTIMAL DATA SELECTION

Over the last 30 years, results in the psychology of reasoning have
raised doubts about human rationality. The assumption of human
rationality has a long history. Aristotle took the capacity for rational
thought to be the defining characteristic of human beings, the capacity
that separated us from the animals. Descartes regarded the ability to
use language and to reason as the hallmarks of the mental that
separated it from the merely physical. Many contemporary
philosophers of mind also appeal to a basic principle of rationality in
accounting for everyday folk psychological explanation whereby we
explain each other’s behaviour in terms of our beliefs and desires
(Cherniak, 1986; Cohen, 1981; Davidson, 1984; Dennett, 1987; also



see Stich, 1990). These philosophers, both ancient and modern, share
a common view of rationality—to be rational is to reason according to
rules (Brown, 1988). Logic and mathematics provide the normative
rules that tell us how we should reason. Rationality therefore seems to
demand that the human cognitive system embodies the rules of logic
and mathematics. However, results in the psychology of reasoning
appear to show that people do not reason according to these rules. In
both deductive reasoning (Evans, 1982, 1989; Johnson-Laird & Byrne,
1991; Wason & Johnson-Laird, 1972) and probabilistic reasoning
(Tversky & Kahneman, 1974) people’s performance appears biased
when compared with the standards of logic and probability theory.

Recently, however, some psychologists and philosophers have
offered a different account of what it is to be rational (Anderson, 1990;
Evans, 1993; Stich, 1990). In particular Anderson (1990) argues that
we must distinguish normative from adaptive rationality. An
organism’s behaviour is rational if it is optimally adapted to its
environment, even if reasoning according to logical rules had no causal
role in producing the behaviour. Such optimality assumptions have
become widespread in contemporary social and behavioural science,
from economics (Simon 1959) to optimal foraging theory (MacFarland,
1977; MacFarland & Houston, 1981). Moreover, Anderson has
extended this approach to provide “rational analyses” of memory,
categorisation, and problem solving (Anderson, 1990, 1991b; Anderson
& Milson, 1989).

In this chapter we apply this approach to Wason’s selection task,
which has raised more doubts over human rationality than any other
psychological task (Cohen, 1981; Manktelow & Over, 1993; Stich,
1985, 1990). As we have seen previously, in the selection task (Wason,
1966, 1968), an experimenter presents subjects with four cards, each
with a number on one side and a letter on the other, and a rule of the
form if p then q, for example if there is a vowel on one side (p), then
there is an even number on the other side (q). The four cards show an
“A”(p card), a “K"(not-p card), a “2”(q card), and a “7”(not-q card) (see
Fig. 10.1). Subjects have to select those cards that they must turn over
to determine whether the rule is true or false. Logically subjects
should select only the p and not-q cards. However, only 4% of subjects
make this response, other responses being far more common: p and q
cards (46%); p card only (33%), p, q and not-q cards (7%), p and not-q
cards (4%) (Johnson-Laird & Wason, 1970a). 

The selection task is a laboratory version of the problem of choosing
the best experiments to test scientific laws. Popper’s (1959) method of
falsification provides the standard normative account of this
situation. Popper argues that, logically, experiments can only falsify
general laws, they cannot confirm them. Hence, scientists should only
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conduct experiments that can falsify a general law. The selection task
provides an opportunity to see whether people spontaneously adopt
Popper’s falsificationist strategy (Wason & Johnson-Laird, 1972).
Logically, the only way to falsify the conditional rule if p then q in the
selection task is to look for cards with p on one side and not-q on the
other. Only two visible card faces are potentially of this type—the p
card and the not-q card. Hence, according to falsification, subjects
should choose only these two cards. However, in the selection task, as
few as 4% of subjects make this card selection. This lack of fit between
normative theory and behaviour is responsible for the widespread
doubts over human rationality we have mentioned.

Contemporary philosophers of science have rejected falsificationism
as unfaithful to the history of science (Kuhn, 1962; Lakatos, 1970) and
to be in any case unworkable (Churchland, 1986; Duhem, 1954;
Putnam, 1974; Quine, 1953). More recent accounts of scientific
inference take a Bayesian probabilistic approach to confirmation
(Earman, 1992; Horwich, 1982; Howson & Urbach, 1989). In
particular, the Bayesian theory of optimal data selection (Federov,
1972; MacKay, 1992) offers a different account of how scientists
should choose experiments, which does not place an exclusive
emphasis on falsification. Using this theory to develop a rational
analysis of the selection task fits well with other rational analyses (e.g.
Anderson 1990) that also employ Bayesian methods. Our rational
analysis will show that we can view behaviour in the selection task as
optimising the expected amount of information gained by turning each
card.

The purpose of a rational analysis is to show that behaviour is
optimally adapted to the environment. Good fits between a rational
analysis and behaviour indicate only that such an analysis provides
an organising frame-work for describing the behaviour. Whether the
behaviour is rational depends on whether the rational analysis
adequately characterises the environment. Anderson (1990) uses
diffuse Bayesian prior distributions to model the environment.
Although we do not use such distributions we do make some
assumptions about the environment that we will not justify until the

FIG. 10.1 The four cards in the abstract version of Wason’s selection task.
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discussion section. In particular we assume that the properties that
figure in causal relations are rare in the environment. We call this the
rarity assumption. We show that we can organise the data on the
selection task on the assumption that subjects act as Bayesian
optimal data selectors with rarity. In the discussion we argue that the
environment respects rarity and hence we can view people’s behaviour
on the selection task as adaptively rational.

The organisation of this chapter is as follows. In the first section, we
develop our rational analysis. In the following sections, we apply this
analysis to a range of selection task data: the standard abstract
results, the non-independence of card selections (e.g. Pollard, 1985),
the negations paradigm (e.g. Evans & Lynch, 1973), tasks that vary
the probabilities of so-called fictional outcomes (Kirby, 1994), the
therapy experiments (e.g. Wason, 1969), the reduced array selection
task (e.g. Johnson-Laird & Wason, 1970b), and the thematic selection
tasks (e.g. Cheng & Holyoak, 1985). Finally, we discuss the
assumptions and implications of our account.

RATIONAL ANALYSIS

In this section we first informally outline the problem of optimal data
selection, and how it applies to the selection task. We then present the
Bayesian approach to optimal data selection. We then apply this
account to derive a rational analysis of the selection task. Finally, we
explore some general properties of the model’s behaviour.

Informal Outline

Optimal data selection involves choosing experiments to decide
between rival hypotheses (Federov, 1972; Good, 1966; Hill & Hunter,
1969; Lindley, 1956; Luttrell, 1985; MacKay, 1992a). For example,
suppose that a metallurgist has various competing hypotheses about
the underlying relationship between temperature and tensile strength.
To decide between these hypotheses the metallurgist must choose new
temperatures at which to test a metal’s tensile strength. Intuitively,
the most informative temperatures will be those where the hypotheses
make divergent predictions (Platt, 1964). The Bayesian theory of
optimal data selection formalises these intuitions.

Everyday hypothesis testing also involves optimal data selection.
Suppose that you are interested in the hypothesis that eating tripe
makes people feel sick. In collecting evidence, should you ask known
tripe-eaters or tripe-avoiders whether they feel sick? Should you ask
people known to be, or not to be, sick whether they have eaten tripe?
This case is analogous to the selection task. Logically, the hypothesis
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can be written as a conditional sentence: if you eat tripe (p) then you
feel sick (q). The groups of people that you may investigate then
correspond to the various visible card options, p, not-p, q, and not-q. In
practice, who is available will influence decisions about who to
investigate. The selection task abstracts from this practical detail by
presenting one example of each potential source of data. In terms of
our everyday example, it is like coming across four people, one known
to have eaten tripe, one known not to have eaten tripe, one known to
feel sick, and one known not to feel sick. You must then judge which
of these people you should question about how they feel or what they
have eaten.

Let us consider informally what seems to be a rational selection of
data in this situation. First, asking a person who has eaten tripe (p) is
likely to be informative. If this person feels sick, then the hypothesis
gains some credence; if not, then this evidence falsifies the hypothesis.
Second, asking whether a tripe-avoider (not-p) feels sick is futile,
because the rule says nothing about how people feel if they have not
eaten tripe. Third, asking whether a person who feels sick (q) has
eaten tripe is worthwhile. The hypothesis will gain credence if they
have eaten tripe, although if they have not, no conclusion appears to be
forthcoming. Fourth, the person who is not feeling sick (not-q) is also
worth questioning. If they have eaten tripe this evidence falsifies the
hypothesis. If they have not, no conclusion appears to be forthcoming.
In this example, it seems that the p card is certain to be informative,
the not-p card certainly will not be, and the q and not-q cards may or
may not be informative. We now introduce the Bayesian approach to
optimal data selection and show how to justify and extend these
intuitions.

The Bayesian Approach

We begin by characterising a participant’s job in the selection task as
selecting data to discriminate between two hypotheses representing
possible states of the world. The first hypothesis represents the belief
that there is no dependency between the antecedent p and the
consequent q of a conditional rule, if p then q. Using our example in
the last section, this is the hypothesis that there is no relationship
between eating tripe and feeling sick. Each hypothesis is
characterised probabilistically as a contingency table (see Table 10.1).
We represent the hypothesis that there is no dependency between p
and q by a contingency table in which p and q are statistically
independent, i.e. P(q\p)=P(q). We call this the “independence model”
or MI (see Table 10.1). This representation is reasonable because the
purpose of scientific laws and everyday contingencies is to render the
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world more predictable. So, for example, if there is a relation between
eating tripe and feeling sick then knowledge of whether someone has
eaten tripe permits you to predict whether they will feel sick. If there
is no relation between these two events then knowing whether
someone ate tripe should give you no more ability to predict whether
they feel sick than when you do not know whether they ate tripe. This
latter situation is well characterised by statistical independence. In
Table 10.1, in MI the probability of p, P(p), is given by the parameter
a, and the probability of q, P(q), is given by the parameter b. For MI,
calculating the joint probabilities in the various cells of the table is
achieved by multiplying the corresponding marginals because these
are the expected joint probabilities assuming independence. To
represent a dependency between p and q we adopt the simplest
strategy of making the minimal change to MI so that the conditional
probability of q given p is 1. So for example, this means that if tripe-
eating and sickness are related then knowing someone has eaten tripe
allows you to predict with certainty that they will be sick. That is, the
probability of someone being sick given that they have eaten tripe is
1, i.e. P(q\p) = 1. This situation is represented in Fig. 10.1 by the
dependence model MD. In MD the joint probability of p and q (P(p,q)) is
set equal to P(p) (i.e. a) and the joint probability of p and not-q is set
to 0, consequently

This minimal change strategy in setting up the dependence model
has various consequences. First, across both models the parameter b
now represents the probability of q given not-p, i.e. P(q\not-p). This is
obvious in MI because assuming independence, P(q\not-p) = P(q) and
in MI we set b = P(q). In MD, b also equals P(q|not-p) because the
values for the not-p cells have not been changed and consequently in
both models

Second, this change
does mean, however, that although b = P(q|not-p) in both models, b
equals P(q) only in MI. In MD, P(q) = a + b(1−a). This reflects the fact

TABLE 10.1 The contingency table of probabilities appropriate for the
dependence model MD[10.1(a)] where there is an exceptionless dependency
between the p and q. 10.1(b) shows the equivalent table for the independence
model MI. a corresponds to the probability of p, P(p), and b corresponds to the
probability of q in the absence of p, P(q\not-p)
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that, for example, if tripe does invariably make people sick, i.e. MD truly
describes the world, then there must be more sick people than tripe-
eaters, i.e. P(q) must be greater than a (P(p)). If this were not true
then there would have to be some tripe-eaters who did not get sick, in
which case MD could not truly describe the world. Third, in most of the
experiments that we will go on to model, although it is reasonable to
assume values for P(p) and P(q) it is not reasonable to assume that
people have estimates of P(q\not-p). Consequently, to set up the models
b is calculated from the following formula which is derived from
rearranging the expression for the expected value of P(q) calculated
over both models:

(10.1)

In this equation P(MD) represents the probability with which the
dependence model is believed true and P(MD)=1−P(MI), where P(MI) is
the probability with which the independence model is believed true.
Equation (10.1) does not demand that P(p) < P(q). However, we assume
that people will not consider testing a hypothesis for which this
constraint does not hold. This is reasonable because if this constraint
does not hold then there is no reason to inquire into the truth or
falsity of the hypothesis by consulting evidence, because it is already
known that MD could not truly describe the world. That is, the
hypothesis is a no-hoper at the outset and so there is no need to work
out what is the best evidence to select.

In order to calculate what is the best evidence to select we first
calculate the uncertainty concerning which hypothesis is true before
selecting any evidence. Our goal will be to select evidence that leads to
the greatest expected reduction in this level of uncertainty. Initial
uncertainty depends on the prior degree of belief in the two models,
i.e. it depends on P(MI) (note that P(MD) = 1−P(MI)). We quantify
uncertainty using Shannon-Wiener information:

(10.2)

Shannon-Wiener information encodes the amount of uncertainty that
is reduced by discovering which is the true hypothesis (note that this
is not quite what we wish to encode, which is how far uncertainty is
reduced by finding possibly inconclusive evidence). This quantity
takes a maximum value when P(MI)=P(MD)=0.5, i.e. it captures the
idea that people are maximally uncertain when they believe that MD
and MI are equally likely to be true (or false). Inserting these values
into equation (10.1), yields a value of information of one bit, that is, if
it is initially assumed that these hypotheses are equally likely, then
finding out which one is true reduces uncertainty by one bit.
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Having determined the uncertainty about which is the true
hypothesis before any evidence is selected the uncertainty after seeing
some evidence must be determined. This means we are now interested
in P(Mi|D), i.e. the probability that a hypothesis is true given some
data. To calculate these values we use Bayes’ Theorem:

(10.3)

which specifies the posterior probability of a hypothesis Mi, given
some data D, P(Mi|D), in terms of the priors of each hypothesis, P
(Mj), and the likelihoods of D given each Mj, P(D|Mj). We treat the
values of the priors P(MI) (and consequently P(MD)), as a free
parameter, which we will usually set to 0.5, i.e. before the experiment
we assume participants are maximally uncertain about which
hypothesis is true. In order to calculate (10.3) the likelihoods therefore
need to be calculated. We illustrate how we do this by our example.
Consider someone who has eaten tripe (p). The data, D, is whether
this person is sick or not (q or not-q). Let us assume that she is sick,
then the probability that she is sick under each hypothesis must be
determined, i.e. the probability that she is sick given she has eaten
tripe under Mi (P(q|p, Mi)) and under MD, (P(q|p, MD)). These values
are straightforwardly calculated from each contingency table in
Table 10.1. Indeed we have already illustrated calculating P(q\p, MD),
in MD, P(q\p, MD)=a/a=1. In MI, P(q\p, MI)=P(q)=ab/a=b. Putting the
values into (10.3) yields the following posterior probability that there
is a dependency between eating tripe and being sick, i.e. the
probability that MD truly describes the world given these data:

and of course the probability that MI truly describes the world, given
these data, is simply 1 minus this value. To calculate the new
uncertainty given the data, these posterior probabilities are simply put
into equation (10.2):

(10.4)

How much this piece of data has reduced our initial uncertainty can
now be calculated, it is simply the initial uncertainty minus new
uncertainty:

(10.5)
We call this quantity the information gain associated with this data
point. 

However, in the selection task participants never actually get to
turn over the cards, i.e. they never actually get to see the data.
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Consequently, rather than actual information gains expected
information gains must be calculated. So for example, if you look at a
person who has eaten tripe you do not know whether they are sick or
not sick; what we calculate, therefore, is the information you could
expect to obtain given either possible outcome. This involves
calculating I(Mi sick) and I(Mi|not-sick). The latter is calculated in
exactly the same way as we have already outlined. To calculate the
expected value these new uncertainties must be weighted by the
probability of finding each type of evidence given someone has eaten
tripe. To calculate these probabilities we compute the expected value
of each data type over both models. So for example, to calculate the
probability that someone is sick, given they have eaten tripe P(q\p)
the expectation is calculated over both models:

(10.6)
The probability of the other possible data point, that having eaten
tripe someone is not sick P(not-q|p), is calculated in the same way.
The new expected uncertainty associated with examining someone
who has eaten tripe (EI(MI\p)) is then calculated by weighting the
information gains associated with each possible data outcome by the
probability of finding that data outcome:

(10.7)
To calculate expected information gain and expressing the quantity in
(10.7) more generally:

(10.8)

This quantity encodes the reduction in uncertainty that can be
expected from examining a card in the selection task. In all these
calculations there are only three free parameters P(MI), P(p), and P
(q). We now illustrate the calculation of expected information gain by
assuming various values for the parameters in our example.

In the remainder of this paper we assume that the properties that
figure in the antecedents and consequents of conditional hypotheses
are rare. So in the general population the number of people who have
eaten tripe or who are sick is small and so the probabilities P(p) and P
(q) will be small. We also assume that P(p) < P(q) for the reasons we
outlined earlier. For the purpose of this illustration we assume P(p)=0.
1 and P(q)=0.2. As we discussed earlier, we also assume that people
are maximally uncertain about which hypothesis truly describes the
world, so P(MI) = 0.5. We calculate expected information gain on the
assumption that you want to know the value of this quantity if you
examine someone who has eaten tripe (p). We begin by constructing
the relevant contingency tables. As we noted earlier, we assume that a
given value of P(q) is an estimate of the expected value calculated
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across both models. To fill out the relevant cell values we therefore
first calculate b using equation (10.1):

This value is then used to construct the contingency tables in Table 10.
2. Notice that the expected value of P(q) = 0.2 (i.e. 0.5(0.1 + 0.142) + 0.
5(0.016 + 0.142)). We introduce a small value of 10-9 for P(p, not-q) in
MI to prevent infinities produced by division by zero.

As we showed earlier, with P(MI) = 0.5, initial uncertainty I(Mi) is
maximal at 1 bit. To calculate the posterior uncertainty for each
possible data outcome we now calculate the relevant likelihoods. The
probability of someone being sick, given they ate tripe in the
dependence model (P(q|p, MD)) is 0.1/0.1 = 1. The probability of
someone being sick, given they ate tripe in the independence model

Consequently,

Given that our tripe-eater is sick, we therefore arrive at a posterior
uncertainty I(Mi\sick) of:

Suppose however that they are not sick. The probability of someone
not being sick, given they ate tripe in the dependence model, P(q\p, MD)
= 10–9/   0.1=10–8. The probability of someone not being sick, given
they ate tripe in the independence model,

 Consequently,

Given that our tripe-eater is not sick, we therefore arrive at a
posterior uncertainty I(Mi|not-sick) of:

TABLE 10.2 The contingency tables for the illustrative example of computing
expected information gain
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We now need to calculate the expected value of these uncertainties. To
do so we need to calculate the expected probabilities of the data, i.e. of
finding that someone is sick given they have eaten tripe (P(q|p)) or
that they are not sick given they have eaten tripe (P(not-q|p)):

The expected uncertainty after examining a tripe-eater is therefore:

Consequently, the expected information that can be gained, or the
expected reduction in uncertainty, from turning this card is:

Having illustrated the calculation of expected information gain we
now look at the general behaviour of the model over the full range of
parameter values.

Model Behaviour

We illustrate the behaviour of the model in Fig. 10.2. The three
parameters, P(p), P(q), and P(MI) define a three-dimensional space.
We calculated E(Ig)s for each card for five values (0.1, 0.3, 0.5, 0.7, 0.9)
of each parameter. The not-p card does not appear in Fig. 10.2
because its E(Ig) value is always zero. 

At each co-ordinate the three boxes represent the E(Ig) values for
the three cards. The area of the box is proportional to the E(Ig) for the
corresponding card.1 Co-ordinates where there are three dots indicate
regions where the inequality P(q) ≥ P(q)P(MD) is violated, and hence
the probability values are inconsistent. Figure 10.2 reveals the
following pattern of expected informativeness for the four cards.

P Card: Is informative in so far as P(q) is low. It is largely
independent of P(p).2

Q Card: Is informative when P(p) and P(q) are both small.
Not-q Card: Is informative to the extent that P(p) is large. It is

independent of P(q).
Not-p Card: Is not informative.

We highlight three aspects of the model’s behaviour. First, variation
in P(MI) rescales the E(Ig) values but does not change their order for
the four cards. In consequence the relative informational value of each
card is insensitive to the priors (but see note 2). Second, E(Ig(not-p)) is
always zero. This is consistent with the intuition that conditional
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rules make no assertions about what occurs if the antecedent is not
satisfied. So, as we suggested earlier, consulting non-tripe-eaters
cannot tell you whether eating tripe causes sickness. Third, when P(p)
and P(q) are small (in the bottom right hand corner of Fig. 10.2), E(Ig
(q)) is greater than E(Ig(not-q)). Figure 10.3 shows the entire region, R,
(shown in black) where E(Ig(q)) > E(Ig(not-q)) in more detail. Here, as
in all subsequent analyses (unless explicitly stated otherwise), P(MI)
is set to 0.5.3 At all other values of P(p) and P(q), either E(Ig(not-q)) is
greater than E(Ig(q)), or these values are undefined.

In modelling experimental data we assume by default that P(p) and
P(q) lie within R, i.e. subjects treat p and q as rare. We refer to this
assumption as the “rarity assumption”. Optimal data selection,
together with the rarity assumption, will allow us to capture a wide
range of experimental results. In Chapter 13 we consider whether the
rarity assumption can itself be rationally justified. But first, in the
next chapter, we use this framework to organise the data on the
selection task. 

FIG. 10.2 Model behaviour. At each (P(p), P(q), P(MI)) co-ordinate the three
boxes represent the E(Ig) values for the three cards. The area of the box is
proportional to the E(Ig) for the corresponding card. Co-ordinates where there
are three dots indicate regions where the inequality P(q) ≥P(q)P(MD)
isviolated, and hence the probability values are inconsistent.
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NOTES

1. We thank Mike Malloch for suggesting this method of visualisation and
for writing the software that generated this figure.

2. However, when P(MI) is low (i.e. P(MD) is high) equation (10.1) reveals
that b can still be low. This leads to high values of E(Ig(p)) when P(MI) is
low, and P(p) and P(q) are high. See the top left-hand corner of
Fig. 10.2.

3. Much theoretical debate concerning the validity of Bayesian statistics
centres on how to assign prior probabilities and there is a complex
literature that considers how to do this (Earman, 1992; Jaynes, 1978;
Skilling, 1989). When we have just two discrete hypotheses (that if p
then q holds, and that p and q are completely independent), the most
obvious prior, that each model has prior probability 0.5, is also the most
theoretically justified (it corresponds to the maximum entropy prior, and
to Bayes’ own principle of indifference: Bayes, 1763). We shall assume
this prior in all subsequent analyses except when it is explicitly varied.

FIG. 10.3 Plot of P(p) against P(q) with P(MI)=0.5, showing the region R (in
black) where E(Ig(q)) > E(Ig(not-q)).
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CHAPTER ELEVEN
A Rational Analysis of the Selection

Task II: Abstract Materials

INTRODUCTION

Having introduced our rational analysis of the selection task, we now
show that it provides a descriptively adequate account of performance
on the abstract, or “indicative” versions of the selection task. In these
versions of the task, the task rule putatively describes the way the
world is, e.g. ravens are black, birds fly, and so on. Typically these
experiments have been conducted with abstract contents, e.g. if there
is an A on one side of a card, then there is a 2 on the other side. For
each version of the task, our strategy will be to introduce the data and
then show how our model accounts for them.

THE ABSTRACT SELECTION TASK

Standard Abstract Results

Data
We described the standard abstract selection task in the last chapter.
Abstract tasks use unfamiliar content and contrast with thematic
tasks that employ familiar everyday contents. We discuss the
thematic tasks in the next chapter.

We conducted a meta-analysis (Wolf, 1986) of the abstract data that
revealed the following ordering in individual card selection
frequencies p > q > not-q > not-p. Table 11.1 shows the results of the
studies included in our meta-analysis.



TABLE 11.1 Studies where an affirmative abstract version of the selection
task has been employed and individual card selection frequencies are reported
or can be inferred from exhaustive reporting of card combinations. For all
studies using Evans’ negations paradigm (Evans & Lynch, 1973), only the
data for the affirmative rule is included.

* Only the Bachelor’s condition is included because the other two conditions
(High School and Master’s) were not comparable to the Ss used in the
remaining studies.
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We included all studies reporting individual card selection
frequencies. We found 13 such studies reporting 34 standard abstract
selection tasks, involving 845 subjects.1 Table 11.1 shows the
frequency of individual card selections for each of these tasks and the
average across studies. We performed a one-way analysis of variance
taking task-instance as the unit of analysis (see Glass, McGaw, &
Smith, 1981, for rationale), card-type as the independent variable, and
proportion of cards selected as the dependent variable.2 This was
highly significant (F[3,99]=271.01, p < 0.0001). Post hoc Tukey HSD
tests revealed that each pairwise comparison between cards was
significant at least at the 0.05 level. This provides strong evidence for
the p > q > not-q > not-p ordering in card selection frequencies.

Model
To model this ordering, we assume that by default subjects are
operating in region R of Fig. 10.3. For every such point in R the
expected information gain is ordered such that

 Average E(Ig) values
sampled across R were: E(Ig (p))=0.76; E(Ig (q)) = 0.20; E(Ig (not-q))=0.
09; E(Ig (not-p))=0.3 This order mirrors the p >q > not-q > not-p
ordering in card selection frequencies. Therefore card selection
frequencies are monotonically related to expected information gain.
This relationship suggests that subjects base their card selections on
the expected information gain of each card. We tested the prediction
that the cards are ordered in this way using Page’s L-test for ordered
alternatives (see Siegel & Castellan, 1988, pp. 184–188). As expected,
this proved to be highly significant (L(N=34, k=4)=1007.5, ZL=9.36, p
< 0.00001).

Non-independence of Card Selections

Data
Some studies have investigated whether card selections are
statistically associated. In an analysis of just the q and not-q cards,
Evans (1977) found that selection of these two cards was statistically
independent. However, in a more detailed meta-analysis of three
experiments, Pollard (1985) found consistent associations between
card selections. He found that similarly valenced cards, i.e. the p and
q cards, and the not-p and not-q cards, are positively associated,
whereas selections of dissimilarly valenced cards, i.e. p and not-p, p
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and not-q, q and not-p, and q and not-q, are negatively associated.
Although these associations are not always statistically significant,
their direction, positive or negative, is consistent across experiments.

We confirmed and extended these findings in a further meta-
analysis. We took data from the studies analysed by Pollard (1985)
and five further studies, three from Oaksford and Stenning (1992)
(designated O & S2, O & S4, and O & S5) and two further unpublished
control experiments (O & S1, O & S3). All these experiments used task
rules with negations varied in their antecedents and consequents, a
manipulation that we discuss in the next section on “The Negations
Paradigm Selection Task”. Table 11.2 shows the results of our meta-
analysis (see the rows labelled “AA” in Table 11.2). For the AA rule
the following identities should be born in mind: TA=p card; FA=not-p
card; TC=q card; FC=not-q card (we explain the TA, FA, TC and FC
categories in the next section).

We performed the meta-analysis following Pollard (1985). We tested
all six possible pairwise associations using Fisher’s exact tests in the
direction of the association present. We assigned a positive or negative
z score to each result, setting z to 0 if the test yielded p > 0.5 in either
direction (because this reveals a two-tailed probability of 1.0). We then
calculated combined z estimates for each comparison and rule form
using Stouffer’s method (Wolf, 1986). Concentrating on the AA rule
form, the combined estimates (see Table 11.2) were all significant
(one-tailed) apart from the positive association between p (TA) and q
(TC). The signs of the associations never reversed for any of the six
pairs across all eight experiments. This was significant in one-tailed
binomial tests (see Siegel & Castellan, 1988, pp. 38– 44) for each of
the six associations (p < 0.005).

Model
To model these associations we make three assumptions about how E
(Ig)s map onto card selections. First, we assume that every card has
some probability of being chosen because some subjects will simply
not perform any, or an appropriate, analysis. In particular, subjects
will sometimes choose the not-p card, with E(Ig (not-p))=0. We account
for this by adding a small fixed constant (0.1) to the E(Ig)s for each
card. Second, because of the four cards present in the selection task, we
assume that card choice is a competitive matter. A card should have a
greater chance of being chosen if it is less distinguishable from
alternatives. One way to ensure that this happens for all four cards,
including the not-p card, is to scale the E(Ig)s by the mean information
available. We do this by dividing the derived score (E(Ig)+0.1) for each
card by the mean of this quantity for all four cards. We refer to this
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value as the “scaled expected information gain” (SE(Ig)). We assume
that subjects choose cards as a monotonic function of their SE(Ig)
value. Third, a reasonable constraint on values for P(p) and P(q) is
that P(q) ≥ P(p), otherwise the dependency model could not hold.

We sampled a variety of points corresponding to pairs of values for P
(p) and P(q) at intervals of 0.025. The points satisfied the inequalities,
P(p) ≤ 0.2, P(q) ≤ 0.2, P(q) ≥ P(p), P(q) ≤ P(p)+0.025. The first two
inequalities enforce the rarity assumption. The third inequality
ensures that the   dependency model can hold. The last inequality
corresponds to the reasonable constraint that although the probability
of q is greater than the probability of p, it is only marginally greater
(Klayman & Ha, 1987). In Chapter 13 we discuss the justification of
this constraint. We calculated SE(Ig)s for all four cards for each pair of
P(p) and P(q) values (the z-scores of the computed SE(Ig)s for each
card appear for the AA rule in Fig. 11.1). We then computed
Spearman rank order correlation coefficients between the SE(Ig)s for
all six card pairs. We used rank correlations because we assume only
that card selection is a monotonic function of SE(Ig). The results of
these analyses appear in the AA column in Table 11.3. The SE(Ig)s for
the similarly valenced cards are positively correlated whereas the SE
(Ig)s for the four dissimilarly valenced card comparisons are
negatively correlated. This pattern of correlations is the same as that
observed experimentally. The agreement in the sign of the correlation
between model and data was significant in a one-tailed binomial test
(p < 0.025). This analysis applies only to the AA or purely affirmative
rule. We now show how to extend this analysis to account for data
from the negations paradigm selection task.

The Negations Paradigm Selection Task

Data
In the negations paradigm selection task (Evans & Lynch, 1973) the
antecedent and consequent of a rule can contain negated constituents
(not-p, not-q). There are four possible conditional rules, the original if
p, then q (AA), together with if p, then not q (AN); if not p, then q
(NA) and if not p, then not q (NN). Each subject performs a selection
task for each of these four rule types.

We have so far described the cards in the selection task in terms of
p, q, not-p, and not-q. In the negations paradigm cards are normally
described in    terms of whether they make the antecedent or
consequent of the rule true or false. For example consider the rule “if
there is not an A on one side, then there is not a 2 on the other side”.
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For this rule the p card (A) and the q card (2) are the false antecedent
(FA) and false consequent (FC) cases respectively. The not-p (K) and
not-q (7) cards are the true antecedent (TA) and true consequent (TC)
cases respectively. The TA, FA, TC, FC logical cases permit a uniform
classification of the cards in the negations paradigm.

Using the negations paradigm, Evans and Lynch (1973) reported an
effect that they called “matching bias”. Subjects tend to select the
cards that are named in the rules, ignoring the negations. For
example, consider the rule “if there is not an A on one side, then there
is not a 2 on the other side”, and the four cards showing an “A”, a “K”,
a “2”, and a “7”. Here the matching response is to select the A (FA)
and the 2 (FC) cards. The confirmatory response is to select the K
(TA) and 7 (TC) cards, and the falsificatory response is to select the K
(TA) and 2 (FC) cards. More recently it has become clear that
matching occurs mainly for the consequent cards (Manktelow &
Evans, 1979; Evans, 1989), whereas antecedent card selections accord
with logical case (subjects choose the TA card in preference to the FA
card for all four rule forms).

Card Orderings. As in the standard selection task, we can describe
these data in terms of orderings over card selections. The ordering in
card selection frequencies for affirmative consequent rules (if p then
q; if not-p then q) is TA > TC > FC > FA. The ordering in card selection
frequencies for negative consequent rules (if p then not-q; if not-p then
not-q) is TA > TC > FC > FA. Both these orders are consistent with
matching.

A meta-analysis confirmed these orderings. We analysed the studies
used in our meta-analysis of non-independence of card selections, less
O & S4 and O & S5. We omitted these studies because they included
manipulations to counteract matching (as we shall see). We performed
a one-way analysis of variance for each rule type (AA, AN, NA, NN)
with card-type as the independent variable and number of cards

TABLE 11.3 Spearman rank order correlation coefficients between SE(Ig)s
foreach card pair for each of the four rule-types in the negations paradigm
selection task. Figures in brackets indicate the combined z-scores for each
pairwise comparison taken from Table 11.2
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selected as the dependent variable. For the affirmative consequent
rules these analyses were significant (AA: F[3, 15]=111.81, MSe=2.75,
p < 0.0001; NA: F[3, 15]=21.19, MSe=6.78, p < .0001). For both rules
the order of mean number of cards selected reflected the TA > TC > FC
> FA order. Each pairwise comparison between cards was significant
at least at the 0.05 level in post hoc Neuman-Keuls tests except for

FIG. 11.1 Comparison of the average SE(Ig)s and the selection frequency for
each card for each of the four rule-types in the negations paradigm selection
task. For purposes of comparison the average SE(Ig)s and the selection
frequencies have been converted to z-scores in order to normalise the scales.
The data are taken from the eight studies mentioned in the text.
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the TA vs. TC and FA vs. FC comparisons for the NA rule. Similar
analyses were also significant for the negated consequent rules (AN: F
[3, 15]=100.64, MSe=4.45, p < 0.0001; NN: F[3, 15]=11.64, MSe=13.69,
p < 0.0005). For both rules the order of mean number of cards selected
reflected the TA > FC > TC > FA order. Each pairwise comparison
between cards was significant at least at the 0.05 level in post hoc
Neuman-Keuls tests except for the FA vs. FC comparison for the AN
rule and the TC vs. FC comparison for the NN rule.

The z-scores of the mean frequencies of card selections for each rule
type are shown in Fig. 11.1 (Data). This table reveals that the
orderings in card selections are weaker for the negative antecedent
rules, NA and NN. The NA rule also appears to cause comprehension
problems. Subjects are significantly slower to comprehend this rule
than each of the other three rule forms (Ormerod, Manktelow, &
Jones, 1993). This result is unexpected because the standard finding
has been that sentences containing negations are harder to
comprehend (Fodor, Fodor, & Garrett, 1975). This would predict that a
sentence with two negations should be harder to comprehend than
similar sentences containing single negations. However, subjects
comprehend the NA rule significantly more slowly than the NN and
the AN rule.

Suppressing Matching. Two experimental manipulations suppress
matching and re-establish the TA > TC > FC > FA order for all four
rule types in the negations paradigm. First, although Manktelow and
Evans (1979) initially found matching even with thematic material,
Reich and Ruth (1982) and Griggs and Cox (1983) found that
matching disappeared when they used more realistic thematic
material. Second, Oaksford and Stenning (1992) found that matching
also disappears when the linguistic framing of the rules is more
appropriate. They argued that rules such as “if there is not an A on one
side then there is a 2 on the other side” are ambiguous. The not-A card
could be the K, or the 2, or the 7 cards. Oaksford and Stenning (1992)
found that removing this ambiguity, suppressed matching and re-
established the TA > TC > FC > FA order for all four rule types.

Non-independence of Card Selections. Pollard (1985) also
investigated associations between card selections for the negations
paradigm. His meta-analysis looked at associations between card
cases (p, not-p, q, not-q). He found positive associations for similarly
valenced cards and negative associations for dissimilarly valenced
cards, not only for the standard affirmative rule (AA), but also for the
remaining three rules (AN: if p, then not-q; NA: if not-p, then q; and
NN: if not-p, then not-q).

Our extended meta-analysis, shown in Table 11.2 shows these
associations in terms of logical case. The overall combined z-score
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(final column in Table 11.2) for each pairwise comparison, treats each
rule in each study as a separate unit of analysis (N=32). The final
column of Table 11.2 shows that the signs of the combined z-scores are
positive for similarly valenced cards (TA vs. TC and FA vs. FC) and
negative for dissimilarly valenced cards (TA vs. FA, TA vs. FC, TC vs.
FA, and TC vs. FC). These results follow the pattern for the standard
selection task that we discussed earlier. 

Although this finding is clear for the similarly valenced rules, AA
and NN, the results for the dissimilarly valenced AN and NA rules are
more ambiguous. We highlight this division in Table 11.3 where we
summarise the combined z-scores for each rule separately (see figures
in brackets).

Model
The key to understanding a variety of effects in the negations
paradigm is the notion of a “contrast set” (Hampton, 1989; Oaksford &
Stenning, 1992). Contrast sets provide the interpretations of negated
constituents. For example, the interpretation of “Johnny didn’t serve
tea” (where the word in italics indicates the focus of a negation) is
that he served a drink other than tea. In terms of set theory, the
superordinate category “drinks” provides the universe of discourse.
Contrast sets are plausible subsets of the complement in a universe of
discourse. In our example, all other drinks less tea form the
complement. When Johnny did not serve tea it is more likely he
served soft drinks rather than, for instance, scotch on the rocks. Soft
drinks is therefore the contrast set, i.e. a plausible subset of the
complement. Background knowledge may restrict the membership of
the intended contrast set even further. So, in our example, coffee is
perhaps the most likely single contrast set member. This indicates
that a negation rarely identifies the complement, i.e. the whole set
consisting of the superordinate category less the named constituent,
as the intended contrast set. More commonly the intention is to
identify much more restricted contrast sets. We now apply this
behaviour of contrast sets to the negations paradigm.

We have good reason to believe that P(TA) or P(TC) are greater
when they are negated. This is because the class of things referred to
by a constituent is generally smaller than the size of the contrast class
defined by its negation. For example, there are many things Johnny
could have drunk, when he did not drink tea.4 However, the intended
contrast set is unlikely to be all drinks other than tea. We made the
reasonable assumption that the probability of a contrast class does
not exceed 0.5.5 We therefore set that the probabilities of un-negated
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constituents to vary between 0 and 0.2 as for the AA rule, and those of
negated constituents to vary between 0.2 and 0.5.

Card Orderings. We have already explained the AA rule. For the
other three rule types we sampled points at 0.025 intervals as in the
section Non-independence of Card Selections. As for the AA rule, we
now outline our rationale for the region over which we sampled points
for each rule form. For the AN rule, P(TA) is low but P(TC) is high. We
therefore sampled points in the region that satisfied the inequalities:
P(p) ≤ 0.2; 0.2 P(q) ≤ 0.5. For the NA rule, P(TA) is high but P(TC) is
low. This rule therefore violates the inequality that P(TC) ≥ P(TA)P(MD)
—see equation (10.1)—i.e. this rule corresponds to the region of the
parameter space in Fig. 10.3 where E(Ig) is undefined. Informally, an
NA rule is like the hypothesis that all black things are ravens. This rule
must be false because there are more black things than ravens (i.e.
the dependency model could not hold). So, to interpret an NA rule as
having a chance of being true involves either revising P(TA) down or
revising P(TC) up. Subjects appear to resolve the ambiguity by revising
P(TA) down. The NA rule then leads to low P(TA) and P(TC) values.
However, it is reasonable to assume that P(TA) is still greater than P
(TC) because the antecedent is negated. We therefore sampled points
that satisfied the inequalities, P(p) ≤ 0.2; P(q) ≤ 0.2; P(q) < P(p); P(q) ≥
P(p)— 0.025. For the NN rule, both P(TA) and P(TC) are high. We
modelled this rule by restricting the values of P(q) and P(p) to the
range 0.2 to 0.5. We therefore sampled points from the region that
satisfied the inequalities, 0.2 ≤ P(p) ≤ 0.5; 0.2 ≤ P(q) ≤ 0.5; P(q) ≥ P(p);
P(q) ≥ P(p)+0.025.

The z-scores of the average SE(Ig) values for points sampled across
the four regions appear in Fig. 11.1. The z-scores of the mean number
of cards selected in the eight studies used in our meta-analysis of the
negations paradigm selection task are also shown. As can be seen,
there was a good fit between data and model (Spearman’s rho(16)=0.
92, p < 0.0001). Finally the need to resolve the ambiguity between
revising .P(TA) down or P(TC) up, accounts for why subjects are
significantly slower to comprehend the NA rule than each of the other
three rule forms (Ormerod et al., 1993).

Suppressing Matching. “Realistic” thematic content restores the TA
> TC > FC > FA ordering in card selection frequencies for all rule forms
(Reich & Ruth, 1982). We argue that this is because prior world
knowledge restricts contrast sets to the most plausible member(s). For
example, if Johnny did not drink tea, then it is most likely that he
drank coffee. In a context where drinking tea is a possibility, drinking
scotch on the rocks, for example, probably is not. Relative to the class
of drinks, tea and coffee are both rare (subject to the caveats in Note 5
at the end of this chapter). Such examples show that familiar
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thematic material reduces contrast set size, thereby re-establishing
rarity. Unrealistic thematic content fails to restore the TA > TC > FC
> FA ordering because it cannot engage prior knowledge to constrain
contrast sets in this way (Manktelow & Evans, 1979).

The same reasoning explains the restoration of the TA > TC > FC >
FA ordering for all rule forms in Oaksford and Stenning (1992). The
intention in this task was for subjects to regard the not-A contrast set
to consist of only the K card. However, the K, 2, and 7 cards are all
potential members of the not-A contrast set. To restrict this contrast
set the materials had to indicate unambiguously that only other
letters are potential contrast set members. Oaksford and Stenning
(1992) used the original vowels and even numbers material used by
Wason (1968). “Vowels” and its complement set “consonants” only
apply to letters. In the context of the task, where K is the only
consonant, it should therefore be clear that K is the only possible
member of the not-A contrast set. The antecedent is therefore
unambiguously about the K card and so rarity again holds. This
predicts the standard—TA > TC > FC > FA—ordering for all four rule
forms as Oaksford and Stenning (1992) found.

Non-independence of Card Selections. Even when negated
constituents are used, similarly valenced cards show positive
associations and dissimilarly valenced cards show negative
associations. We modelled this behaviour in the same way as the AA
which we discussed earlier. We calculated Spearman rank order
correlation coefficients for each card pair for the same sets of points
used to calculate average SE(Ig) values in Table 11.3. These
coefficients appear in Table 11.3 together with the combined z-scores
taken from Table 11.2 (in brackets). We assessed the fit between data
and model in terms of the direction (+ /−) of association or correlation
using the Phi co-efficient (Siegel & Castellan, 1988, pp. 232–235)
which showed a significant fit between data and model (rф=0.64, p < 0.
025). The fit was perfect for the AA and NN rules. For the AN and NA
rules the fit was less good, although the model does capture some of
the interesting differences between the AA/NN rules and the AN/NA
rules. The poorest fit was for the NA rule where subjects must revise P
(TA) down and where they experience comprehension problems. Such
problems may lead to a residual matching tendency. The overall
agreement between data and model was highly significant as assessed
by a one-tailed binomial test (19 agreements vs. 5 disagreements: p <
0.005).
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Probabilities of Fictional Outcomes

Data
Recently, Kirby (1994) explicitly manipulated P(p) in a selection task.
To understand the rationale behind Kirby’s studies, it is necessary
briefly to outline his theoretical account of the selection task. This
account uses the vocabulary of subjective expected utility and signal
detection theories. Kirby starts from the falsificationist assumption
that a subject’s goal is to find p and not-q instances, which he calls an
“inconsistent outcome”. He then assumes that two factors determine
performance. The first factor concerns the probability of an
inconsistent outcome arising from a visible card face (C). So like our
model, Kirby’s takes into account the probabilities of the fictional other
sides of each card (“fictional” because the subjects never turn the
cards). The second factor concerns the utilities associated with a card
choice. There are four possibilities, which Kirby classifies using
signal detection theory: a hit, i.e. choosing a card with a hidden face
that is inconsistent with the rule; a miss, i.e. not choosing such a card;
a false alarm (FA), i.e. choosing a card with a hidden face that is
consistent with the rule; and a correct rejection (CR), i.e. not choosing
such a card.

Kirby proposes that a subject should choose a card when the
posterior odds of an inconsistent outcome exceeds a simple function of
the utilities— see equation (11.1). In deriving predictions for his
experiments 1–3, Kirby assumes that the utilities on the right hand
side of equation (11.1) remain constant.

(11.1)

On this analysis the q and not-p cards have probability 0 of yielding
an inconsistent outcome. Therefore, as with other falsificationist
accounts, Kirby’s predicts that subjects should never turn these cards.
The interest of his account therefore centres on the p and not-q cards.

Kirby notes that in Wason’s (1968) original rule, if a card has a
vowel on one side then it has an even number on the other side, the
posterior odds of finding an inconsistent outcome with the not-q card
are low, i.e. 5/21 (this analysis assumes that each letter is equally
probable and that there are five vowels and 21 consonants). Kirby
suggests that this might be why subjects do not select the not-q card.
Equation (11.1) predicts that these odds will increase if P(p) is larger,
and hence that subjects should choose the not-q card more frequently.
Equation (11.1) predicts no changes for the p, not-q, and q cards,
however.

202 11. ABSTRACT MATERIALS



In Kirby’s experiments 1–3 subjects checked whether a computer
had made a mistake in generating cards with integers between 0 and
a 1000 (or 0 and 100 in experiments 2 and 3) on one side and either a
“+“or “−” on the other side. In experiment 1 subjects were told that the
computer had an error rate of 0.01, and in experiment 2, 0.1. In
experiment 1 the rules were: if there is a 0 on one side, there is a + on
the other side (small P set condition), and if there is a number
between 1 and a 1000 on one side, there is a+on the other side (large P
set condition). If each number is equally probable, then when 0 is the
antecedent P(p) is 1/1001 and when any number between 1 and 1000
is the antecedent P(p) is 1000/1001. In his experiments 2 and 3 Kirby
used three values, so that P(p)=1/100, 50/100 or 90/100.

As he predicted, Kirby found that selections of the not-q card
increased as P(p) increased (see the figures in brackets in Table 11.4).
However, he also found unpredicted movements in the frequency of
card selections for the other cards. As P(p) increased selections of the
p card and q card decreased and selections of the not-p card increased,
although the finding for the q card was not robust. Kirby considers a
variety of possible explanations for these   effects that we now argue
are direct consequences of our model of optimal data selection.

TABLE 11.4 SE(Ig)s for each card using the P(p), P(q) used by Kirby (1994) in
his Experiments 1 to 3, with P(MI)=0.01. Figures in brackets shows the
proportion of these cards selected in Kirby’s experiments. Med.=medium
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Model
From the perspective of optimal data selection, the failure of Kirby’s
model to predict the movements in card selections for the p, not-p, and
q cards (indeed, the failure to predict that subjects should choose the q
and not-p cards at all) is due to its exclusive focus on falsifying
instances. By contrast, in our optimal data selection framework a card
can still be informative even though it could not yield a falsification.
This permits us to model these data straightforwardly.

Our model predicts that the not-q card is informational to the
extent that P(p) is large. Our model therefore predicts Kirby’s
principal finding. It moreover predicts the other changes in the
frequency of card selections that he observed for the p, not-p, and q
cards. The independent variables Kirby manipulated in his
experiments 1 to 3 correspond closely to the parameters of our model.
Kirby varied P(p) directly. We assume that P(q) = P(p). This
assumption is reasonable because Kirby’s materials are binary, i.e.
the antecedent is either 0 or 1 to a 100 (or a 1000) and the consequent
is a 4- or a -. Staudenmayer and Bourne (1978) interpreted the effect
of such material as leading to a biconditional interpretation which is
consistent with the assumption that P(q)=P(p). Kirby provided specific
information about the error rate, i.e. in experiment 1 it was 0.01 and
in experiment 2 it was 0.1. We assume that subjects use the error rate
as an estimate of the probability of the independence model. However,
because an error rate of 0.1 is unreasonably high for a computer, we
assume that subjects take P(MI) to be 0.01 for both experiments 1 and
2. Using these parameter values we calculated SE(Ig)s for all cards in
each condition of Kirby’s experiments 1 and 2. These appear in
Table 11.4 together with the proportions of cards selected in Kirby’s
data (in brackets). In his experiment 3 Kirby provided no error rate
information. Nonetheless it is reasonable to assume that subjects
regard computers as having a low error rate. Hence we used the same
parameter values to model experiment 3 as in experiment 2. As can be
seen from Table 11.4 the fit between data and model is very good. The
correlation for experiment 1 is 0.87 and for experiment 2 it is 0.9. The
fit in experiment 3 is weaker (0.69) but nonetheless significant. This
may be due to subjects assuming a broader range of P(MI) values.

The Therapy Experiments

Data
As their name suggests, these experiments (Wason, 1969; Wason &
Golding, 1974; Wason & Johnson-Laird, 1970) involved therapeutic
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procedures to help subjects see where they were going “wrong”, and to
encourage them to adopt the falsificatory p, not-q selection. The
experimenter engaged subjects in a dialogue concerning their task
performance exposing them by degrees to inconsistencies “between
their initial selections of cards and their subsequent independent
evaluations of specific cards as falsifying or verifying the rule” (Wason
& Johnson-Laird, 1972, p. 179). In Wason (1969), subjects performed
an initial selection task, and were then given three increasingly direct
therapies, weak hypothetical contradiction, strong hypothetical
contradiction, and concrete contradiction. Each therapy was followed
by a further selection task to assess whether it was successful.
Subjects also performed a final selection task making five in all.

The therapies aimed to get agreement that a card with p and not-q
faces falsified the rule. Three therapies laid an increasing emphasis on
the not-q card. The weak hypothetical contradiction therapy focused
on the p card. The strong hypothetical contradiction therapy focused
on the not-q card. Hypothetical contradictions involved asking
subjects what they thought could be on the hidden faces of the cards
and getting them to agree that a p and not-q instance falsified the
rule. In the concrete contra diction therapy, the experimenter turned
over the not-q card to reveal a p on the hidden face.

These attempts at therapy were not wholly successful. By the final
selection task only 42% adopted the falsificatory response. The steps
by which these subjects moved to this response followed two main
patterns (Wason, 1969), which later became the focus of various
“insight” models (as we shall see). In the first, subjects begin with an
initial p card only response, they then move to a p, q, not-q response
and finally to a p, not-q response (i.e. p → p, q, not-q → p, not-q).
Notice that therapy on the not-q card unexpectedly causes some
subjects to choose the q card. In the second, subjects begin with an
initial p, q response, they then move to a p, q, and not-q response and
finally to a p, not-q response (i.e. p and q → p, q, not-q → p and not-q)
(Wason, 1969). Subjects successfully completed the second sequence
less often (just 23.1% of subjects who made the initial p, q selection,
rather than 62.5% of subjects who made an initial p selection [Wason,
1969]).

Various “insight” models attempted to explain these transition
sequences (Bree, 1973; Bree & Coppens, 1976; Goodwin & Wason,
1972; Johnson-Laird & Wason, 1970a; Moshman, 1978; Smalley,
1974). A common feature of these models is that they postulate three
levels of “insight” into the task, which subjects pass through
sequentially and which correspond to the stages in the transition
sequences identified in the last paragraph. Thus, in a state of “no
insight” the subjects turn the p card and possibly also the q card; in a
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state of “partial insight” they turn the p, q, and not-q cards; and in a
state of “complete insight” they turn the p and not-q cards (Johnson-
Laird & Wason, 1970a).

Model
We explain these findings by the way subjects use the ordering in SE
(Ig) values to determine which cards to select:

Let us consider the first transition sequence, which is the most
striking, because therapy concerning the not-q unexpectedly induces
the selection of the q card. The subject initially chooses p only, and
assumes that the SE(Ig) values of the other cards are not high enough
to warrant their being turned. The effect of therapy is to persuade the
subject that the experimenter considers that the not-q is worth
turning. If, as we have assumed, subjects consider card choice to be a
monotonic function of SE(Ig), then they should also turn the q card,
because SE(Ig(q)) > SE(Ig(not-q)). Hence, subjects subsequently choose
p, q, and not-q. Subjects require further therapy to persuade them to
violate monotonicity concerning the informativeness ordering, and
choose only p and not-q. We explain the second transition sequence in
the same way, the only difference is that subjects’ initial card
selections are p, q. Thus we can account for the main transition
sequences observed in the data.

Subjects are reluctant to make the falsificatory response, even when
strongly prompted to do so (only 42% of subjects finally make the p,
not-q selection), because falsification requires them to violate the
informativeness ordering. Our model does not directly predict that the
the first transition sequence should lead to more p, not-q responses.
However, it does suggest a possible explanation. Subjects’ reluctance
to move to the p, not-q response stems from the tendency to want to
turn the q card. It may, therefore, be difficult to persuade subjects not
to turn the q card when they turned it initially. Hence, subjects who
initially select p, q are less likely to complete the transition sequence
than subjects who initially select p only.

The Reduced Array Selection Task

Data
In a reduced array selection task (RAST) subjects choose between the
q and not-q options only (hence “reduced array”) (Johnson-Laird &
Wason, 1970b; Wason & Green, 1984). The stimuli in the original
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RAST consisted of 30 coloured shapes. The experimenter informs the
subjects that there are 15 black shapes and 15 white shapes, each of
which is a triangle or a circle. The shapes are in two boxes, one
containing the white shapes and the other containing the black
shapes. On being presented with a test sentence, e.g. All the triangles
are black, subjects have to assess the truth or falsity of the sentence
by asking to see the minimum number of black or white shapes. In
Johnson-Laird and Wason (1970b), although all subjects chose some
confirmatory black shapes (no subject chose more than 9), they all
chose all 15 potentially falsificatory white shapes. Thus, where
subjects in effect perform multiple selection tasks, they tend to show
falsificatory behaviour.

Wason and Green (1984) report a variant on this task. In one
condition the materials consist of cards coloured on one half and
depicting a shape on the other half. In this condition the rule is
disjoint, e.g. All the cards which have a triangle on one half are red on
the other half (the All the triangles are red rule they describe as
unified). In this condition, Wason and Green (1984) found that
subjects predominantly select the q card. They also observe that their
“experiments show relatively good performance in reasoning about
conditional sentences using the RAST technique” (Wason & Green,
1984, p. 608). Even in the disjoint rule condition there was a
falsificatory response rate of between 29% and 45%, compared to as
low as 4% in the standard selection task.

Model
The RAST makes explicit that the rule applies to a limited domain of
cards or shapes that the experimenter describes as being in a box or a
bag (or, in Wason & Green, 1984, “under the bar”). The experimenter
also informs subjects that in this limited domain there are equal
numbers of q and not-q instances. It follows that P(q)=0.5, violating
the rarity assumption. At this value E(Ig(not-q)) is higher than E(Ig
(q)) (Fig. 10.3), and hence our model predicts more not-q card
selections than q card selections.

Our model does not directly predict that a disjoint rule reduces the
facilitatory effect of the RAST (Wason & Green, 1984). It does suggest
a possible explanation, however. The standard RAST rule specifies
class inclusion, whereas the disjoint rule specifies a relationship
between two distinct items. The latter suggests a causal relationship
which cannot be restricted to the limited domain of cards “in the bag”
or “in the box” (Goodman, 1954). Hence the default rarity assumption
may again be made in the disjoint condition.
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SUMMARY

In this chapter we have shown how the probabilistic model of optimal
data selection we developed in Chapter 10 can be used to explain the
detailed pattern of results observed on abstract versions of Wason’s
selection task. In the next chapter we turn to the thematic versions of
this task where people most often make the p, not-q response which
accords with what would be expected by logic. We will argue, however,
that this response does not reflect an underlying logical competence
but rather a sensitivity to the utilities available in the often very rich
contexts set up in these task versions.

NOTES

1. By “affirmative” we mean that the task rule contained no negations.
Later in this chapter we will look at Evans’ “negations paradigm” where
negations are included in the task rules.

2. While advocating the use of Bayesian statistics in our model, we
continue to use standard statistical tests here.

3. We selected the points by laying a grid over Fig. 3 with a mesh size of 0.
025 on both axes. We then took the average over all points that fell in R.

4. It is possible that the token frequencies of the constituent are so large
that they might outweigh the token frequencies of all the other possible
drinks (i.e. if tea is much the most common drink). But if this is true for
tea, it cannot be true for any other drink. Hence, in the domain of
drinks, negations will still most commonly identify highly probable
contrast classes.

5. Note that this means that the probability of an event and its most
plausible contrast class will rarely sum to 1, although the probability of
an event and its complement must sum to 1.
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CHAPTER TWELVE
A Rational Analysis of the Selection

Task III: Thematic Materials

INTRODUCTION

In this chapter we discuss work on the selection task using thematic
or contentful materials. The particular materials used and the
difference they make to selection task performance is discussed in
detail later. In general, however, the move to thematic materials
marks a shift from indicative task rules to “deontic” task rules, i.e.
rules that state how the world ought to be, such as, if you are drinking
beer, you must be over 18. As Manktelow and Over (1987) pointed
out, this marks a profound shift in the nature of the task and perhaps
of the underlying cognitive processes involved. We argue in this
chapter that while much of the machinery introduced in Chapter 10 is
required, this shift in emphasis requires a move to a model where
people are regarded as maximising the expected utility of turning a
card rather than the amount of information that can be gained about
its truth or falsity.

THE THEMATIC SELECTION TASK

Most recent work on the selection task has concentrated on how
thematic content affects reasoning (e.g. Cheng & Holyoak, 1985, 1989;
Cosmides, 1989; Evans, 1989; Gigerenzer & Hug, 1992; Girotto et al.,
1992; Griggs & Cox, 1982; Jackson & Griggs, 1990; Johnson-Laird &
Byrne, 1991, 1992; Manktelow & Over, 1987, 1990a, 1990b, 1991;
Rumelhart, 1980). In the selection task, this work originated in the
attempt to facilitate falsificatory reasoning (Johnson-Laird, Legrenzi,
& Legrenzi, 1972; Wason & Shapiro, 1971). For example, subjects may
have to imagine that they are an immigration official enforcing the
rule that If a passenger’s form says “ENTERING” on one side, then
the other side must include cholera (Cheng & Holyoak, 1985; Cheng et
al., 1986), or they may have to imagine that they are a tribal elder
enforcing the rule that If a man eats cassava root, then he must have



a tattoo on his face (Cosmides, 1989). Subjects are also given a rationale
for enforcing the rule (the prevention of disease, and that cassava root
is a rare aphrodisiac that only married men, who have their faces
tattooed, are allowed to eat). These thematic rules have typically
facilitated the selection of the p and not-q cards.

Researchers now generally accept that these versions of the task
address people’s abilities at deontic reasoning, that is, reasoning
concerning what ought to be the case (Manktelow & Over, 1987,
1990a, 1990b, 1991). In the abstract tasks subjects “are asked to
decide whether an indicative condi tional is true or false, while in…
[the deontic tasks]…they are asked whether a conditional obligation
has or has not been violated. A conditional obligation, of course, is not
falsified when it is violated” (Manktelow & Over, 1990b, p. 114). Thus
a subject’s task in the deontic versions is very different to that
confronted in the abstract versions of the selection task. However, we
argue that the same probabilistic framework we used for the abstract
selection task also applies to these data.

We describe these findings following Gigerenzer and Hug’s (1992)
classification by rule type and perspective. We also discuss recent
work by Kirby (1994a), who manipulated probabilities and utilities in
a thematic task, in a separate section Utilities and Probabilities of
Fictional Outcomes.

Rule Type and Perspective

Data

There are two dimensions on which the pattern of cards selected in
the thematic selection task depends. The first is rule type. Cheng and
Holyoak (1985) use rules like If a passenger’s form says “ENTERING”
on one side, then the other side must include cholera, which they
describe as “permissions”. However, as Manktelow and Over (1987,
1990a, 1990b, 1991), observe, these rules are actually of the form of an
obligation, i.e. people who want to carry out the action described in
the antecedent are obliged to satisfy the condition stipulated in the
consequent. Obligations are of the form: if action (p) then must
condition (q). A corresponding permission would be If a passenger’s
form includes cholera on one side, then they may enter the country.
Here people who have satisfied the condition described in the
antecedent are permitted to perform the action described in the
consequent. A permission is of the form: if condition (p) then may
action (q). Notice that in going from an obligation to a permission,
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action and condition switch their clausal positions between antecedent
and consequent of the conditional sentence.

The second dimension on which the pattern of card selections
depends is the perspective a subject must adopt. Using an obligation
rule, Cheng and Holyoak (1985) had subjects adopt the role of
enforcers of the rule, i.e. subjects had to imagine they were
immigration officials checking immigration forms. They found that
subjects were more likely to select the p and not-q card combination
under these conditions. Cosmides (1989) replicates this finding (as do
Gigerenzer & Hug, 1992), and shows that from the enforcer’s
perspective, a permission (what Cosmides calls a “switched social
contract”) led subjects to select the not-p and q cards. (Notice that both
these responses still correspond to selection of the action and not-
condition pair.) Using the obligation rule, Cosmides (1989) also asked
subjects to adopt the role of inquirers into whether a deontic rule was
in force. She found similar results to those found in the abstract
selection task.

Manktelow and Over (1991) were the first to argue that social role or
perspective was an important factor in the deontic selection task.
They induced response shifts between the p, not-q selections and the
not-p, q selections by asking subjects to adopt different perspectives.
They used a permission rule and two perspectives: what we have been
calling the enforcer’s perspective, and what we shall refer to as the
actor’s perspective. For the enforcer’s perspective Manktelow and
Over (1991) found the same not-p and q card selections as Cosmides
(1989, see also Gigerenzer & Hug, 1992), but for the actor’s
perspective they found that subjects predominantly chose the p and
not-q cards. We illustrate the reason for this change using the
permission form of the cholera rule. From the enforcer’s perspective
cheaters are people who try to enter the country without having been
inoculated against cholera, i.e. relative to the permission rule the not-
p and q instances. However, for an actor, i.e. someone trying to enter
the country, the enforcer cheats if having had the inoculations the
actor is still not let in to the country, i.e. again relative to the
permission rule, the p and not-q instances. Gigerenzer and Hug (1992)
show that the actor’s perspective on an obligation led subjects to select
the not-p and q cards, because an obligation reverses the clausal
position of action and condition. Gigerenzer and Hug (1992) also
manipulated the same rules systematically along both dimensions
(except the inquirer’s perspective) for the first time.
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Model
The thematic selection task requires that we refocus our existing
probabilistic model away from rule testing and onto rule use. In
modelling rule testing we used our basic probability model defined by
the dependence and independence matrices (Table 10.1) to calculate
expected information gain. 

In modelling rule use we use these probability models to calculate
expected utilities and argue that subjects use the rules to maximise
expected utility.

We assume that there is a small fixed cost for turning any card.
This cost is implicit in the task, because the instructions say that
subjects should only pick the cards which they “would have to” (Cheng
& Holyoak, 1985), or “must” (Manktelow & Over 1991) turn. We
further assume that subjects associate particular utilities with
particular card combinations, dependent on the perspective they
adopt and on the particular rule.

The enforcer’s goal is to discover instances of rule violation, i.e.
where the actor performs the action without satisfying the condition.
We model this by assigning a positive utility to instances of rule
violation that is larger than the cost of turning over a card (otherwise
subjects would have no incentive to turn cards at all). Subjects in the
enforcer’s perspective associate no other cards with positive utility. In
particular, this means that whether someone performs the action
when they satisfy the condition is not the enforcer’s concern. The
actor’s goal is to discover instances of unfairness, where the enforcer
disallows the action even though the actor satisfies the condition. We
model this by assigning a positive utility to uncovering instances of
unfairness that is larger than the cost of turning over a card. Subjects
in the actor’s perspective associate no other cards with positive utility.
In particular, this means that whether someone performs the action
when they do not satisfy the condition is not the actor’s concern. The
inquirer’s goal is to discover whether the rule holds, just as in the
abstract tasks. The inquirer has no direct involvement in the situation
and therefore has no relevant utilities concerning it. We adopted the
inquirer’s perspective in modelling the abstract task, and the same
analysis applies to the inquirer’s perspective in thematic tasks.

We summarise the utilities assigned to the enforcer’s and the actor’s
perspective in Table 12.1. In this table we have adopted the
convention that   p corresponds to the condition and q to the action, i.e.
we assume a permission rule.1

We assume that subjects do not know whether the rule is being
obeyed. For simplicity, we assign equal prior probabilities to the rule
being obeyed and the rule being ignored, i.e. P(MI) and P(MD) are
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equal. The interpretation of the parameter P(MI) changes between the
abstract and thematic tasks. In the abstract task it represented the
probability that the independence model is true of the world. In the
thematic task it represents the probability that an individual is
disobeying the rule. With this modification, we model the task in
exactly the same way as in the abstract selection task, except that we
introduce utilities with respect to the model.

To model the card selections in the enforcer’s and actor’s
perspective, we calculate expected utilities for each card as follows (we
use the abbreviations “act” for action, and “con” for condition):

(12.1)
(12.2)
(12.3)
(12.4)

Where the conditional probabilities P(x| y) are the expected values
calculated with respect to the two models:

(12.5)
In equations (12.1) to (12.4) the expected utility of each card is
calculated as the weighted sum of the probabilities of each possible
outcome given the visible face of the card. The weights are the utilities
(U()) of each outcome.

We derived expected utilities for each card by sampling points in the
parameter space defined by P(p) and P(q) at intervals of 0.1 in the
range 0.1 to 0.9, with the utilities specified earlier (−0.1 fixed cost, and
+5 for the target). We sampled over a whole range of values for P(p)
and P(q) because for deontic rules it is not reasonable to prejudge
rarity. For example, in monitoring passengers, whether most or only
some of the passengers are entering will depend on factors such as the

TABLE 12.1 Utilities of card combinations for the enforcer and actor
perspectives. We assigned a small negative utility (-0.1) to every combination
of cards, which is derived from the assumption of a fixed cost for turning any
card. For the enforcer’s perspective, we assigned a large positive utility (+5) to
finding cases where the action occurs but the condition is not satisfied (not-
condition). For the actor’s perspective, we assigned a large positive utility (+5)
to finding cases where the condition is satisfied but the action is not
performed (not-action). All that is important in the choice of these numerical
values is that the positive utility is large in comparison to the fixed cost
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particular flight. If Manila is the flight destination, then most
passengers will be entering. However, if the passengers are on the
long-haul flight from London to Sydney, then only some passengers
may be entering, the rest will be in transit. We show the average
expected utilities in Table 12.2 for the enforcer’s perspective [12.2(i)]
and for the actor’s perspective [12.2(ii)].

The enforcer seeks the case where the actor performs the action but
does not satisfy the condition. In the model, selecting the face that
denotes the   action being performed and the face that denotes the
condition not being satisfied maximises expected utility. Table 12.2(i)
shows that only the cards showing the action and not-condition have
positive expected utilities. Hence subjects should turn only these
cards. For an obligation, if p (action) then must q (condition), this
corresponds to selecting the p and not-q cards. For a permission, if p
(condition) then may q (action), this corresponds to selecting the not-p
and q cards.

The actor seeks the case where although the actor satisfies the
condition the enforcer disallows the action. In the model, selecting the
face that denotes the condition being satisfied and the face that
denotes the action not being taken maximises expected utility.
Table 12.2(ii) shows that only the cards showing the not-action and
condition face have positive expected utilities. Hence subjects should
turn only these cards. For an obligation, if p (action) then must q
(condition), this corresponds to selecting not-p and q cards. For a
permission, if p (condition) then may q (action), this corresponds to
selecting the p and not-q cards.

In sum, our model makes the predictions for card selections in the
deontic selection task shown in Table 12.3. These predictions agree
perfectly with the results of the studies indicated. We also predict that
a permission rule with an inquirer’s perspective will lead to the
standard abstract results because from the inquirer’s perspective our
standard abstract model should apply.

TABLE 12.2 Average expected utilities for each card face (action, not-action,
condition, not-condition) for (i) the enforcer’s perspective, and (ii) the actor’s
perspective
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Utilities and Probabilities of Fictional Outcomes

Data
Kirby (1994) has recently demonstrated that the utilities and
probabilities of outcomes affect card selections in the deontic selection
task. Equation (11.1) again forms the basis of his analysis. In his
experiment 4, Kirby used a drinking age deontic rule as used by Griggs
and Cox (1982): if a person is drinking beer, then the person must be
over 21 years of age. Kirby used the following cards: “drinking beer”
(p), “drinking ginger-ale” (not-p), “22   years of age” (q), “19 years of
age” (not-q). This rule is an obligation rule and subjects must adopt
the enforcer’s perspective which predicts the p and not-q response.
Kirby argued that the high frequency of not-q card selections found by
Griggs and Cox (1982) may be due to the high probability of finding a
19-year-old drinking beer. He therefore provided two additional not-q
cards that varied this probability, “12 years of age” and “4 years of
age”—the younger the person the less likely they are to be drinking
beer.

In the same experiment Kirby (1994) varied the utilities of making
correct and incorrect decisions. In a DON’T CHECK condition, the
instructions read: “However, keep in mind that your employer does
not want you to offend innocent customers, and you could be fired if
you check an innocent person0148”. From equation (11.1) these
instructions should increase the cost of a false alarm. Kirby therefore
predicted an overall decrease in the number of cards selected. In a
DON’T MISS condition, the instructions read: “However, keep in mind

TABLE 12.3 Patterns of card selections observed in the thematic selection
task for different rule types (Obligation vs. Permission) and perspective
(Enforcer, Actor, and Inquirer), indicating the studies reporting these results

 

12. THEMATIC MATERIALS 215



that your employer is very concerned about illegal drinking, and you
could be fired if you miss a guilty person”. From equation (11.1) these
instructions should increase the cost of a miss. Kirby therefore
predicted an overall increase in the number of cards selected. In a
CHECK condition, the instructions read, “However, keep in mind that
your employer is very concerned about illegal drinking, and you could
receive a large bonus if you catch a guilty person”. From equation (11.
1) these instructions should increase the benefit of a hit. Kirby
therefore predicted an overall increase in the number of cards selected.
He compared these data to a baseline condition with no manipulation
of these utilities.

In his experiment 4, consistent with prediction, Kirby observed a
trend for fewer selections for not-q cards with a lower probability of an
incon sistent outcome. Moreover, the DON’T CHECK condition led to
fewer card selections than the baseline and the DON’T MISS condition
led to more card selections than the baseline, as predicted. Similar
effects were not observed for the CHECK condition. Kirby argues that
this was because this condition involved a less extreme benefit, and
subjects weight costs more than benefits (Kahneman & Tversky,
1979).

Model
Modelling Kirby’s (1994) data is straightforward. First, in the abstract
task we set the parameter MI to the error rate in Kirby’s experiments
1 to 3. For the thematic task this parameter reflects the probability
that an individual is disobeying the rule. We therefore varied this
parameter to model the effect of the various ages of potential violators
(not-q cards). We set MI to 0.4 for the 4-year-olds and then
incremented by 0.1 for the 12-year-olds (MI=0.5) and the 19-year-olds
(MI=0.6). These values seemed reasonable because even though 4-
year-olds in general are unlikely to be drinking beer, the probability
of 4-year-olds in a bar drinking is far higher. Certainly the subjects in
Kirby’s experiment 4 felt it necessary to check the 4-year-olds, the
proportion of these cards being turned never dropping below 0.39.

To capture the effects of the different instructions we varied the
utilities specified in Table 12.1 for the enforcer’s perspective. The
DON’T CHECK condition increases the cost of a false alarm. We model
this directly by increasing the costs for all cells other than the action,
not-condition cell, as any of the outcomes corresponding to these cells
represents a false alarm. We cannot increase costs too much, however,
otherwise they will outweigh the benefits for all possibilities and
enforcers will carry out no checks at all. We therefore increased the
costs from −0.1 to −0.5. We doubt whether subjects make the
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distinction between a cost for a miss and a benefit for a hit. It seems
more reasonable to assume that the cognitive interpretation of costs
for misses is benefits (failure to incur a cost) for hits. Therefore, the
DON’T MISS condition is a more extreme version of the CHECK
condition. We, therefore, model the DON’T MISS condition by
increasing the utility of the action, not-condition cell in Table 12.1 for
the enforcer’s perspective from 5 to 7.

We illustrate the behaviour of the model with P(p)=P(q)=0.5. (Any
pair of values in the range 0.1 to 0.9 displays the same behaviour in
response to variations in MI and the utilities.) Figure 12.1 shows the z-
scores of the expected utilities for each card for the BASELINE, the
DON’T CHECK, and the DON’T MISS conditions compared to the z-
scores of Kirby’s observed frequencies of card selections. The fit
between data and model was good with a correlation of 0.94 (p < 0.
0001). As in the abstract task, our model captures effects that Kirby’s
model cannot explain. From equation  (11.1) Kirby must predict
increases and decreases in card selections for all cards. However,
while there were overall increases and decreases according to equation
(11.1) in Kirby’s data (see Fig. 12.1 not-q cards), these effects were
only in line with prediction for the p and not-q cards. There were no
significant changes in the proportion of cards selected for the not-p or
q cards, and where Kirby found differences they were counter to the
predictions of equation (11.1). In contrast, our model predicts no
changes for these cards in response to Kirby’s manipulations, which is
consistent with Kirby’s results.

SUMMARY FOR THEMATIC TASKS

Our account of the thematic selection task is consistent with some
recent proposals. It supplements our standard probability model with
a maximum expected utility account of the role of perspectives.
Following Manktelow and Over (1991, 1992) and Gigerenzer and Hug
(1992) the notion of a perspective is the main explanatory concept.
Moreover, we have built on Manktelow and Over’s (1991) qualitative
explanation of the influence of perspectives in terms of subjective
utilities. Our emphasis on the distinction between rule testing and
rule use is also consistent with Jackson and Griggs’ (1990) finding
that the checking (rule use) context is a more important factor in
reasoning in these tasks than their deontic nature. Our proposals are
also in the spirit of Gigerenzer and Hug’s (1992, pp. 169) expectation
that “the two fields [i.e. deductive and probabilistic reasoning] will
converge in the next few years.” In this light, perhaps the most
important feature of our model is how well it accounts for Kirby’s
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recent data (Kirby, 1994) where both probabilities and utilities are
explicitly varied in a deontic task.

FIG. 12.1 Comparison of the average expected utilities and the selection
frequency for each card in each condition in Kirby’s (1994) experiment 4. For
purposes of comparison the expected utilities and the selection frequencies
have been converted to z-scores in order to normalise the scales.
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NOTE

1. We could have equally adopted an obligation rule and hence let p be the
action and q the condition. However, this is only a convention and the
expected utilities come out the same either way.
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CHAPTER THIRTEEN
A Rational Analysis of the Selection

Task IV: Implications

INTRODUCTION

The last three chapters have outlined a rational analysis of the
selection task, modelling detailed patterns of data from both
indicative and deontic versions of the task. In this chapter, we explain
in detail how our account relates to Anderson’s (1990) methodology for
rational analysis. We compare our rational analysis to other accounts
of the selection task and to other accounts of reasoning more
generally. Finally, we consider the level of detail at which our rational
analysis should be related to process-based accounts of reasoning
performance, and we relate our work to the wider programme of
understanding human behaviour as rational.

IMPLICATIONS

The detailed account of performance on the selection task that we
have outlined in the last three chapters is complex, so before dealing
with the implications of our account, a brief informal summary is in
order. We have seen how the standard abstract selection task can be
viewed as an inductive reasoning task: subjects must choose which
card-turning experiments they expect to yield the most information
about which of two hypotheses are true. One hypothesis is that a
dependency of the form if p then q exists, the other is a foil
hypothesis, that p and q are independent. We defined expected
information gain as the expected decrease in information-theoretic
uncertainty between these two hypotheses in response to some data.
We formalised expected information gain, E(Ig), using the theory of
optimal data selection from statistics. We then assumed that card
selection frequencies are a monotonic function of the expected
information gain associated with each card.

The model of the standard selection task has only three free
parameters: the prior probability of the independence model, P(MI),



the probability of p, P(p), and the probability of q, P(q). We explain the
majority of the effects on the abstract selection task by assuming that
p and q are rare by default, and that experimental manipulations
influence these parameters by moving them away from their default
values. When parameters P(p) and P(q) are low the ordering in
expected information gain corresponds to the standard pattern of card
selection frequencies (p > q > notq > not-p). With the standard results
as a baseline we explained the associations between card selections by
making two minimal assumptions about the nature of the decision
process that translates expected information gains into card
selections. These assumptions allowed us to compute scaled E(Ig)s
that showed the same pattern of associations found in the empirical
data. We accounted for the negations paradigm selection task, using
the same assumptions and by allowing P(p) and P(q) to vary according
to an account of contrast sets. Our account also captures all of Kirby’s
(1994) recent data where he explicitly varies P(p). Further, our model
accounts for unexpected selection transitions in the therapy
experiments, and for the facilitation of the logical response in the
reduced array selection task.

Following Manktelow and Over (1987, 1990a, 1991), we assume
that the strikingly different results observed in many thematic
selection tasks stem from the deontic nature of the rules used. Such
rules are not hypotheses to be tested, but rules that must be obeyed.
We model the thematic task using decision theory together with the
same basic probability models used to model the abstract task.
Subjects have utilities concerning various outcomes, which depend on
their perspective towards the rule. We assume that they choose cards
to maximise expected utility. The assumption that subjects follow this
rational policy captures a broad range of data on the thematic
selection task. In particular it captures the effects of perspective and
rule type that have been much studied recently; it also captures
Kirby’s (1994) data where utilities and probabilities have been
explicitly varied in a deontic selection task.

Relation to Rational Analysis

Our model provides a rational analysis of the selection task in the
sense of Anderson (1990, 1991a, 1991b; Anderson & Milson, 1989).
According to Anderson (1990) rational analysis involves six steps: 

1. Specify precisely the goals of the cognitive system.
2. Develop a formal model of the environment to which the system is

adapted.
3. Make minimal assumptions about computational limitations.
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4. Derive the optimal behaviour function given 1–3 above.
5. Examine the empirical evidence to see whether the predictions of

the behavioural function are confirmed.
6. Repeat, iteratively refining the theory.

We assume that the goals (1) involve selecting relevant data; that the
structure of the environment (2) is given by the frequency of
properties occurring in that environment, and that the costs (3) are
incurred in looking at irrelevant data. We derived an optimal
behavioural function using Bayesian optimal data selection (4) and
compared this to the empirical evidence (5). In sum, our model
demonstrates the utility of Anderson’s (1990) approach by showing
how it can organise data on human reasoning that has previously
seemed the most recalcitrant to rational explanation.

Relations to Theories of Deductive Inference

We deal with the relation of our model to theories of deductive
inference in two parts. First, we look at the relations between our
model and theories of deductive inference taken to account for the
same data. Next we look at some recent probabilistic approaches in
reasoning research to which our account is more closely related.

Theories of Deductive Inference
Evans (1991) has proposed a taxonomy of deductive reasoning
theories that divides the four principal approaches into two classes:
those that deal with the issue of deductive competence, and those that
do not. On the one hand, mental logic accounts (Braine, 1978; Rips,
1983, 1990) and mental models (Johnson-Laird, 1983; Johnson-Laird
& Byrne, 1991) are theories of deductive competence. On the other
hand, domain-specific approaches, such as pragmatic reasoning
schemas (Cheng & Holyoak, 1985) and social contract theory
(Cosmides, 1989), and heuristic or “relevance” approaches (Evans,
1983, 1984, 1989), account for the content effects and biases found in
deductive reasoning tasks. We look first at the relations between our
model and accounts of deductive competence.

Accounts of Deductive Competence
According to the mental logic approach (e.g. Braine, 1978; Rips, 1983,
1990) deductive reasoning involves an abstract logical competence
implemented in something like the syntactic rules of a standard logical
system. 
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This approach does not attempt to explain the selection task. Rips
(1990) argues that the selection task is a “loose” probabilistic task,
rather than a “tight” deductive task. We agree, and note that our
theoretical account shows how the selection task can be modelled in
probabilistic terms. Consequently, selection task data cannot be used
as an argument against a mental logic and hence the case against a
mental logic is weaker than perhaps it once was.

The mental models framework (e.g. Johnson-Laird, 1983; Johnson-
Laird & Byrne, 1991) proposes that people do not reason by
manipulating syntactic rules, but by manipulating representations of
the semantic contents of an argument. Mental models has problems
with accounting for the data on the selection task. For example,
Johnson-Laird and Byrne (1991) claim that subjects who do not turn
the not-q card do not represent it in their mental model. This suggests
that when an experimental manipulation draws explicit attention
towards this card subjects should select it. However, in the therapy
experiments, where the experimenter focuses attention on the not-q
card and its falsifying properties, the majority of subjects still do not
select it.

Problems of predictive failure to one side, mental models has most
difficulty in accounting for the influence of probabilities and utilities
on reasoning performance. Johnson-Laird and Byrne (1992) argue
that such factors only enter into the construction of appropriate
mental models and hence they need not incorporate these factors in
their framework. Garnham (1993) has attempted a similar argument
in defending mental models theory from the criticism that it fails to
account for everyday inference (Chater, 1993; Chater & Oaksford,
1993; Oaksford, 1993; Oaksford & Chater, 1991, 1992, 1993;
Oaksford, Chater, & Stenning, 1990). In our view, theories of everyday
inference (Galotti, 1989) will involve how factors such as probabilities
and utilities interact with reasoning processes (see also Gigerenzer &
Hug, 1992). Mental models theorists, on the other hand, appear to
believe that they already have a theory of everyday inference
(Garnham, 1993; Johnson-Laird & Byrne, 1991). However, this is only
true if the mechanisms that construct just the right kinds of mental
model are assumed as primitive. As Chater and Oaksford (1993, see
also Kirby, 1994) observe, this line of argument has, in Russell’s
phrase, all the virtues of theft over honest toil— most interesting
inferential processes are presupposed and not explained (Oaksford &
Chater, 1993).

In closing we observe that, in contrast to Kirby’s (1994) account, our
model does not require an abstract logical competence. Kirby’s signal
detection theory analysis defines hits as revealing a logically
inconsistent outcome, and hence presupposes an understanding of
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conditional logic. In our model we characterise the hypotheses
probabilistically by the matrices in Table 10.1. Thus our account
divorces selection task performance more completely from theories of
deductive competence than Kirby’s account. 

Accounts of Biases and Content Effects
Our principle criticism of approaches put forward to account for biases
and content effects is that they lack the generality of our model.
Domain-specific approaches such as pragmatic reasoning schema
theory (Cheng & Holyoak, 1985) and social contract theory (Cosmides,
1989) deal only with the data from the thematic task. Both these
accounts assume domain-specific rules for checking for violators in
deontic contexts. The main difference is that on pragmatic reasoning
schema theory these rules are learned whereas on social contract
theory they are innate. The emphasis on domain-specific information
is compatible with our account (see also, Kirby, 1994). Specific domain
knowledge may influence the parameters in our model, and the
utilities subjects employ, as noted in the previous chapter.

The heuristic approach of Evans (1983, 1984, 1989) deals only with
the data from the abstract task. Evans (1983, 1984, 1989) proposed
that various heuristic processes involved in language understanding
may explain the biases observed in the abstract selection task. In
particular, Evans has applied this approach to matching bias, which
we discussed in Chapter 11. However, Oaksford and Stenning (1992)
have shown that the particular heuristics Evans proposes are
unnecessary to account for these data.

Relation to Probabilistic Approaches

There have been some “loose” probabilistic approaches (Rips, 1990) to
the selection task (Fischhoff & Beyth-Marom, 1983; Klayman & Ha,
1987; Rips, 1990) and to the related Wason [1960] 2–4–6 task
[Hoenkamp, 1989]). Fischhoff and Beyth-Marom (1983) and Rips
(1990) both adopted a Bayesian approach, but as part of more general
frameworks for looking at hypothesis testing and loose reasoning
tasks respectively. In consequence neither of these Bayesian
approaches went beyond accounting for the standard p and q card
selections which is perhaps why they have had little influence on
selection task research. Similar comments apply to Klayman and Ha
(1987, 1989) who generalised their “positive test strategy” from
Wason’s (1960) 2–4–6 task to the selection task. They based this
strategy on a demonstration that the likelihood of finding
disconfirming evidence was higher when using positive instances of a
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hypothesis than when using negative instances of a hypothesis (as in
falsification). In sum, these earlier accounts pointed the way to our
probabilistic treatment of the selection task but were never
themselves sufficiently developed to account for the range of data
reviewed here.

Only Kirby (1994) tries to explain both the abstract and the
thematic tasks from a probabilistic or decision-theoretic perspective.
The main failing of Kirby’s otherwise excellent work is that his theory
can explain so little of his important data. This is because his analysis
requires that subjects con centrate solely on finding falsifying
instances. In contrast our Bayesian analysis explains all of Kirby’s
data straightforwardly.

Interestingly our model bears close relation to probabilistic
approaches to causal reasoning, an area that until now has been
treated as unrelated to the selection task. Anderson (1990) also uses
Bayesian model comparison in his model of causal estimation that
provides a rational explanation of biases in the analysis of 2×2
contingency tables (e.g. Schustack & Sternberg, 1981). Cheng and
Novick (1990, 1992) have also taken a probabilistic approach to both
causal inference and to causal attribution (see e.g. McArthur, 1972) in
their probabilistic contrast model. Cheng and Novick (1990, 1992) do
not propose a full Bayesian treatment of these data. However, their
emphasis on probabilistic contrasts is similar to our emphasis on
information gain in deciding between hypotheses. In both cases
subjects are assumed to concentrate on probabilistic differences. We
may, moreover, be able to derive the probabilistic contrast model from
our Bayesian framework. We can compare an independence model and
a model (or family of models) in which a contingency holds (or
parameterised family of models, each representing a different
contingency reliability) not just for a single data point (as in the
current analysis), but for an entire set of data. This could provide the
basis for a normative analysis of experiments on contingency
judgements, causal reasoning, and causal attribution. This opens up
the exciting possibility of unified rational explanations of formerly
disparate phenomena in the reasoning field.

Finally our model is consistent with a growing trend in accounting
for putative biases in inferential behaviour using rational
probabilistic models. Anderson’s work is the most comprehensive of
such approaches, applying Bayesian methods to a variety of cognitive
phenomena (Anderson, 1990, 1991a, 1991b; Anderson & Milson, 1989).
Gigerenzer (Gigerenzer, Hell, & Blank, 1989; Gigerenzer, Hoffrage, &
Kleinbölting, 1991; Gigerenzer & Murray, 1987) has also applied
probability theory to explaining biases in reasoning tasks and Cheng
and Novick’s (1990, 1992) work is also consistent with this trend.
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Rationality

There are two issues about rationality that require discussion. The
first concerns the actual parameter values that we have chosen in our
analyses and whether we can provide them with a rational
justification. The second concerns the normative status of our rational
analysis.

Parameter Values
We have explained the data on the selection task by assuming that p
and q are rare by default, and that experimental manipulations
influence the parameters P(p) and P(q) by moving them away from
their default values. An initial and important point is that our model
organises a wide range of data in a single theoretical framework. This
argues strongly that subjects behave as Bayesians with the rarity
assumption. This in itself is an important discovery, even if we could
not rationally justify the rarity assumption. Testing the validity of
this assumption will require an environmental analysis of the type
Anderson (1990) proposes. However, we argue that there is evidence
to support the view that most lexicalised properties refer to objects
and events that are rare in our environment. In consequence,
subjects’ behaviour in the selection task may be optimally adapted to
that environment and hence rational.

First, note that no other parameter values are better justified. For
example, the principle of indifference(Keynes, 1921) that P(q)=P(p)=0.
5 is only reasonable on the assumption of complete ignorance.
However, subjects have extensive prior experience with other
conditional rules. If these generally relate properties that respect
rarity then it is reasonable for subjects to extrapolate from prior
experience and assume that a novel task rule also respects rarity.
Other possibilities are equally questionable. For example, Kirby (1994)
argues that the probability of finding a vowel (p) on the back of an odd
number (not-q) is low because there are 5 vowels but 21 consonants.
However, the level of letter-types may not be the relevant level at
which to assess these probabilities. It could equally be the level of
letter-tokens in experience that is the determining factor.

The rarity assumption organises data from more than the selection
task. We mentioned earlier that, in the 2–4-6 task, Klayman and Ha
(1987) showed that positive tests were more likely to yield falsifying
evidence than negative tests. This result also relies on a rarity
assumption, or what Klayman and Ha call a “minority phenomenon”
assumption. That is, the properties that figure in hypotheses about
their causes are in the minority. For example, AIDS only has an
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incidence of about 10–4 to 10–5 in the population. A hypothesis of the
form “if you have contracted HIV, then you will develop AIDS” will
therefore respect the rarity assumption. This is because scientists are
unlikely to put much stock in this hypothesis if P(HIV) > P(AIDS)
[this is a further application of our constraint that P(q) ≥ P(p)].
Further, Anderson’s (1990) work on causal inference indicates that
subjects make a rarity assumption in causal estimation from 2×2
contingency tables. In fitting parameters to Schustack and
Sternberg’s (1981) data, Anderson derived expected prior probabilities
of an effect of 0.27 and of a cause of 0.25. Given a causal (if cause then
effect) relation, these results confirm the rarity assumption and the
reasonable constraint that while P(q) is greater than P(p) it can only
be marginally greater. In sum, the rarity assumption appears capable
of organising a great deal of data on human reasoning. 

Normative Status
As we mentioned in the introduction, Anderson (1990) draws the
distinction between normative and adaptive rationality (see also,
Evans, 1993; Stich, 1990). Normative rationality concerns reasoning
according to the rules of a formal logico-mathematical theory.
Following such rules provides the standard account of rationality
going back to Plato (see Brown, 1988). Adaptive rationality concerns
whether behaviour is optimally adapted to the environment. We have
shown that in the selection task subjects’ behaviour can be regarded
as rational in the second sense, i.e. as optimally adapted to an
environment where the properties that enter into predictive relations
are rare. Although we have used a normative mathematical theory to
derive this rational analysis, there is no requirement that people
achieve this optimal adaptation by following the rules of the
normative theory. Hence while our account argues for the adaptive
rationality of reasoning on the selection task it need not address the
question of normative rationality.

However, although a rational analysis does not require that people
make Bayesian calculations it does not preclude this either. A range
of views is possible. At one extreme, we can view the calculations
involved in deriving the rational analysis as specifying a set of mental
operations carried out by the subject. This view attributes people with
sophisticated, though not necessarily explicit (Reber, 1989),
probabilistic reasoning abilities. It also corresponds to the view that
people are not only adaptively rational but are also normatively
rational. At the opposite extreme, as we have mentioned, a rational
analysis may just specify which behaviour is optimal, and remain
neutral about the mental operations underlying that behaviour. The
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reason that people conform to our analysis of the selection task, might
be due to innate constraints or learning, rather than sophisticated
probabilistic calculation. Between these two extremes, that all the
calculations of the rational analysis are internally computed, and that
none is, lies a smooth continuum of intermediate positions, which
assume that some aspects of the analysis are calculated internally,
and others are not.

The view taken towards rational analysis has behavioural and
computational significance. In so far as people calculate optimal
behaviour internally, subjects’ knowledge of the specifics of the task
can influence those calculations. For example, in the Reduced Array
Selection Task we assume that the way in which the materials violate
the rarity assumption influences subjects’ behaviour. If subjects
performed no calculation, but simply applied learned or innate
strategies, then it is unlikely that such parameter changes would
affect their performance. It is, of course, possible that subjects choose
between various strategies that do not involve calculation depending
on the specifics of the situation. Nonetheless, in general, the more
flexible subjects’ behaviour to relevant aspects of the task,
the stronger the case for internal calculation, and the less plausible
non-computational strategies. We will need to conduct further
empirical work to assess which aspects of our rational analysis of the
selection task people internally calculate, and which they have
prestored.

In so far as people make internal calculations of our rational
analysis, we must consider the computational feasibility of those
calculations. The calculations of our analysis of the selection task are
very simple. However, as we have argued elsewhere (Chater &
Oaksford, 1990; Oaksford & Chater, 1991, 1992, 1993), plausible
reasoning theories must “scale up” from laboratory reasoning tasks to
everyday inferential processes. Simple Bayesian calculations rapidly
lead to the notorious combinatorial explosion (e.g. Charniak &
McDermott, 1985). Recently Pearl (1988) has proposed a novel and
more tractable implementation of Bayesian inference using Bayesian
networks. However, this method too does not scale well (Dagum &
Luby, 1993). These problems are not specific to probabilistic inference,
but apply equally to logical reasoning (Oaksford & Chater, 1991).

The problems of computational tractability suggest that a scaled-up
rational analysis would have to pay considerably more attention to
computational limitations (step 3 in Anderson’s account of rational
analysis), than is required for modelling laboratory tasks. In Simon’s
(1959) terms, this means that people should be modelled as having
bounded rationality (see also Oaksford & Chater, 1992, 1993).
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CONCLUSIONS

Chapters 10–13 have provided a rational analysis of the selection task,
which accords closely with the empirical data, using a Bayesian
account of hypothesis testing. This account contrasts sharply with the
standard falsificationist model. The poor fit between this model and
the empirical data has led to doubts about whether humans are
rational. We suggest that people are rational, but that we must define
rationality in terms of optimal performance in real-world, uncertain,
inductive tasks, rather than purely in terms of deductive logic.
Clarifying the detailed relationship between normative theory and
observed behaviour suggests a programme of empirical investigation
and theoretical generalisation to related tasks which we discuss in the
closing chapter. In conclusion, our model establishes that subjects’
behaviour while performing the selection task need have no negative
implications for human rationality. 
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CHAPTER FOURTEEN
Rational Explanation of the Selection

Task

INTRODUCTION

The last four chapters outlined a rational analysis of the selection
task, which appears to reconcile human performance with rational,
probabilistic norms. This model, originally presented in Oaksford and
Chater (1994a), attracted three extended commentaries (Almor &
Sloman, 1996; Evans & Over, 1996a; Laming, 1996). This chapter
summarises these commentaries and replies to them.

Evans and Over (1996a) suggest that the expected information gain
measure is inappropriate from a normative point of view, because
information gain can be negative—it is possible to be more uncertain
after conducting an experiment than before. This has a rather counter-
intuitive flavour—because even in this case, the experiment has still
provided useful information, even though it is associated with a
negative information gain. We note that this query poses no problems
for our account. First, our rational analysis assumes that cards are
chosen in order to maximise expected information gain, which cannot
be negative. Second, we can switch to a new measure, the Kullback-
Liebler distance between the probabilities before and after the
experiment (turning the card) is conducted, which is always positive.
It turns out that using this measure requires no changes whatever to
our rational analysis, because the expected value of Kullback—
Liebler distance is mathematically identical to the expected value of
information gain. Evans and Over also attempt to propose an
alternative account, which they label “epistemic utility”. But the
nature of this account is unclear. They provide desiderata, based on
their distinction between rationality1 and rationality2, which we
discuss in Chapter 16, to the effect that an account of the selection
task based on epistemic utility should be based on the goals of the
agent, criticising expected information gain for having no reference to
such goals. But the alternative measure they appear to endorse, the
expected absolute log-likelihood ratio, also has no reference to goals,



and hence appears to fail by their own criteria as an appropriate
measure of “epistemic utility”. Moreover, the expected absolute log-
likelihood ratio measure also fails from an empirical standpoint,
because infinite log-likelihood ratios arise for cases of falsification.
Hence the expected value of any experiment where there is a non-zero
probability of falsification is also infinite. This means that the Evans
and Over’s proposal implies that people should prefer the p and not-q
cards in the selection task, which have infinite expected log-likelihood
ratios, to the q and not-p cards. Thus, Evans and Over’s proposal
collapses onto the standard “logical” account which provides such a
poor fit with the empirical data. There are various ways in which
Evans and Over’s proposal could be modified to avoid this difficulty—
but it is unclear whether any of them would fit the broad sweep of
empirical data captured by the information gain account outlined
earlier. It is also worth noting that a log-likelihood-based measure has
the disadvantage of being limited to cases in which there are just two
hypotheses to be compared—expected information gain applies
however many hypotheses are involved. Presumably this additional
generality may be important in providing a complete account of how
people decide how to select information, outside the narrow confines
of the selection task. Evans and Over also discuss some empirical data
which they suggest may be difficult to account for using our rational
analysis. Oaksford and Chater (1998b) provide an extended optimal
data selection model that captures these data and a variety of other
results.

Laming (1996) attacks the normative soundness of our account on
statistical grounds. This is puzzling, because the approach to optimal
data selection that we used, based on expected information gain, is well
established in the Bayesian statistical literature (e.g. Lindley, 1956).
The fundamental source of Laming’s disagreement stems from his
insistence that probabilities be interpreted in frequentist terms,
rather than the subjective interpretation of probability that we
explicitly adopt, and which is the starting point for Bayesian statistics
(see Chapter 1 for a discussion of these different interpretations of
probability). Thus, whereas it makes sense, from a Bayesian point of
view, to speak of the probability that a hypothesis is true, or the
probability that there is a 7 on the back of a card, this makes no sense
at all for Laming. The hypothesis is either true or not; the card either
has a 7 on the back or it does not—so for Laming, these probabilities
must be 0 or 1. Having misconceived the interpretation of probability
that we use, Laming is therefore unable to provide sensible
interpretations for the formulae that we developed in our account. But
once the appropriate interpretation of probability is adopted, Laming’s
concerns disappear. It might appear that there may be a genuine
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debate concerning the appropriate interpretation of probability in this
context—after all, in mathematics and science there are substantive
debates over the appropriate interpretation of probability. But in this
psychological context the issue does not arise— because probabilities
are used to represent states of knowledge or uncertainty for cognitive
agents, the subjectivist conception is, inevitably, in play.

Laming also argues that our mathematical treatment implicitly
allows at least five substantive psychological assumptions, which we
do not justify. We argue that these assumptions make sense both from
a normative point of view and in accounting for the empirical data.
Further, Laming offers a “correct Bayesian” re-analysis of the
selection task as a putative alternative to our account. But we show
that this “correct Bayesian” analysis is not Bayesian at all.

Almor and Sloman (1996) provide some interesting new
experimental data, which, they argue, are not readily accounted for by
our rational analysis. They argue that the distinction between deontic
and indicative tasks, which we model separately, is misleading. They
show that they can set up tasks using standard indicative rules where
participants predominantly select the p and not-q cards. In reply we
argue that those tasks where Almor and Sloman find this response
the materials that they use are either deontic, and so our model in
Chapter 12 explains their results, or “analytic”, i.e. true by definition.
No one has used analytic rules in a selection task before, and no one
makes predictions for what should happen when they are.
Consequently, we conclude that Almor and Sloman’s interesting data
do not bear on the models we presented in Chapters 10 and 12.

RATIONAL EXPLANATION OF THE SELECTION
TASK

Research on Wason’s (1966, 1968) selection task brings human
rationality into question because of the mismatch between subjects’
performance and what is “logically correct”. Recently, Oaksford and
Chater (1994a) vindicate human rationality by providing a rational
analysis (Anderson, 1990, 1991a) of the selection task. Oaksford and
Chater observe that the selection task is an inductive, rather than a
deductive, reasoning task—subjects must assess the truth or falsity of
a general rule from specific instances. In particular, subjects face a
problem of optimal data selection (Lindley, 1956): they must decide
which of four cards (p, not-p, q, not-q) are likely to provide the most
useful data to inductively assess a conditional rule, if p then q. The
standard “logical” solution is to select just the p and the not-q cards.
Oaksford and Chater argue that this solution presupposes a
“falsificationist” approach to inductive reasoning (Popper, 1959),
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which dictates that people should only collect data in order to
disconfirm, not to confirm, hypotheses. In contrast, Oaksford and
Chater’s rational analysis uses a Bayesian, rather than a
falsificationist, approach to inductive confirmation (Earman, 1992;
Horwich, 1982; Howson & Urbach, 1989), and specifically to optimal
data selection (Lindley, 1956; MacKay, 1992). According to this
approach, people assess whether to select a card by the expected
information gain [E(Ig)] from turning that card.

Oaksford and Chater’s account differs from most previous accounts
of the selection task in three ways (a partial exception being Kirby,
1994a). First, it provides an explicit alternative to the “logical” view of
what is rational behaviour in the task. Second, Oaksford and Chater
specify their model formally, so that they could derive predictions
mathematically, rather than by appeal to intuition. Third, it provides
quantitative fits with the full range of empirical data.

EVANS AND OVER

Evans and Over (1996) argue that our model is inadequate on two
counts. First, it is not normatively justified, because the E(Ig) measure
has some counter-intuitive properties. Second, it is descriptively
inadequate, with respect to Kirby’s (1994a) and Pollard and Evans’s
(1983) results. We respond to these points in turn, and then consider
Evans and Over’s residual arguments.

Is Our Theory Normatively Justified?

Evans and Over suggest that “even as a normative proposal,
[Oaksford and Chater’s] approach has serious problems” (p. 7) because
of cases of the following kind: the subject begins with P(H)=0.25, and
after turning the card, changes to P(H)=0.75. As Evans and Over show,
the amount of uncertainty is the same as before; and hence
information gain (Ig) is 0. So Ig seems an inappropriate measure of the
value of information, because the subject has clearly learned
something important from turning the card. Evans and Over also note
that turning a card can lead to less certainty about whether the rule is
true—again, turning the card intuitively provides useful information,
although Ig is negative. This is a relatively minor matter, because
expected information gain, E(Ig), is always positive (this result follows
from the analysis in the appendix to this chapter), and all our
calculations concern expected values. Nonetheless, Evans and Over do
point out an unattractive feature of our E(Ig) measure. 

We can take Evans and Over’s insight into account by choosing a
different measure of the amount of information obtained by turning a
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card. Intuitively, Evans and Over’s point is that a card is informative
depending on the magnitude of the difference between your degree of
belief in the rule before and after turning the card. If it turns out that
you must revise your belief from certainty that the rule is true or false,
to less certainty, then the card has still been informative.

How can we formalise this suggestion? We need to compare the
probability distributions representing the new and old degrees of belief.
These probability distributions contain just two values: P(MD), the
probability that the conditional rule is true, and P(MI) the probability
that antecedent and consequent are independent. To measure the
difference between the new and old distributions we use the standard
information-theoretic measure: the Kullback-Liebler distance, D,
between the new and old probability distributions (Kullback & Liebler,
1951; see the appendix for details1). D is always positive, and is 0 only
when the two distributions are identical (i.e. turning the card has not
led to any revision of previous beliefs). Specifically, D is positive in the
cases Evans and Over mention, where Ig is negative or 0.

Taking on board Evans and Over’s point then, we can switch from Ig
to D to assess the informativeness of a card. Remarkably, this
requires no change whatever in the theoretical analysis in the original
paper! It turns out that although the new and old measures are very
different, their expected value is provably always the same (we prove
this result in the appendix). Because we base all our predictions on
expected information gain, this means that we can switch to expected
Kullback-Liebler distance with no theoretical revision whatsoever
(apart from expository differences). In somewhat different forms, this
result is well known in the information-theoretic literature (see e.g.
Cover & Thomas, 1991; MacKay, 1992).

Is Our Theory Descriptively Adequate?

Our model always assumes that participants interpret the four cards
in the selection task as a sample from a larger population of cards,
over which the conditional rule is defined. Evans and Over observe
that this interpretation does not seem to apply to Kirby’s or Pollard
and Evans’ experiments, where subjects know there are exceptions to
the rule. Consequently they argue that the rule can only apply to the
four cards. On this assumption they then generate predictions from
our model that seem to conflict with the data. We make three points
here. First, the occurrence of exceptions does not entail that an
exceptionless rule must apply just to the four cards. For example, in
Kirby’s experiments the rule could apply to the cards the machine
subsequently produces.2 Second, we have argued elsewhere that
everyday con ditional rules are not interpreted as exceptionless

234 RATIONALITY IN AN UNCERTAIN WORLD



(Chater, 1993; Chater & Oaksford, 1990, 1993; Oaksford, 1993;
Oaksford & Chater, 1991, 1992, 1993, 1995b, see Chapters 2–9). It is
straightforward to produce a more realistic model by incorporating an
exceptions parameter. As Oaksford and Chater (1998b) show, when
this is done the model’s predictions seem to be unchanged and the fits
appear comparable to the original model.3 Third, to derive their
predictions for Pollard and Evans’ experiment, Evans and Over assume
that participants estimate P(p) and P(q) from the data. However,
Pollard and Evans’ learning phase uses a prediction task that focuses
attention on P(q\p). P(q\p) does not determine P(p) and P(q).
Consequently, it is reasonable to argue that participants adopt default
rarity values for P(p) and P(q) in computing information gain. As
Oaksford and Chater (1998b) show, when this is done, the predictions
of the optimal data selection model are in line with Pollard and
Evans’ data. Therefore Pollard and Evans’ results are not inconsistent
with optimal data selection.

Residual Arguments

Evans and Over make three residual points, that we briefly address.
First, Evans and Over distinguish between

Rationality1: reasoning or acting in such a way as to achieve
one’s goals

Rationality2: reasoning or acting in conformity with a relevant
normative system such as formal logic or probability theory. (p. 4)

and then note “it may…appear that [Oaksford and Chater] have
provided a rational1…account of the problem. On reflection we fear
that this is not so. They have in fact substituted one rational2 analysis
for another” (p. 5). This suggests that rational2 analysis is not a good
thing. However, because Evans and Over give no argument
supporting this claim, there is nothing to which we can reply. Also,
Evans and Over give no argument why our model is not a rational1
account. In our model, the subjects’ goal is to reduce their uncertainty
in indicative selection tasks, and to maximise expected utility in
deontic tasks. Consequently, our account is a rational1 theory by
Evans and Over’s definition.4

Second, the title of Evans and Over’s paper suggests that they have
an alternative account, “epistemic utility”, but they leave this concept
undefined throughout the paper.5 Evans and Over say that
“intuitively, people’s subjective epistemic utility is measured by the
relevance of some data for them given their goals” (p. 7). Without an
account of relevance or goals, this is uncontroversial—both Oaksford
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and Chater and Evans and Over believe that explaining the selection
task involves specifying people’s goals, and what relevance means. For
Oaksford and Chater, a subject’s goal is to reduce uncertainty, and
relevance means expected reduction in uncertainty. Evans and Over
offer no alternatives. Instead, they state that “it is not our purpose
here to propose alternative formalisms to define normative standards
for epistemic utility” (p. 8). They do however suggest the absolute
value of log-likelihood ratios as a measure of epistemic utility. But
this measure is insensitive to goals, and hence is not a measure of
epistemic utility by their own criterion. In conclusion, Evans and
Over, by their own admission, do not have a coherent notion of
“epistemic utility” to compare with our account.

Third, Evans and Over say that we “provide no psychological theory
to explain subjects’ selection whatever” (p. 3). However, Evans and
Over do not explain (i) what they mean by “psychological theory”; (ii)
why being a psychological theory (in their sense) is a good thing; and
(iii) why our theory is not psychological. It is therefore difficult to
respond to this claim. Our model quantitatively fits data from a wide
range of experiments, and hence appears to be a psychological model
of sorts. Perhaps Evans and Over are using “psychological theory” to
mean an algorithmic-level account, rather than a rational analysis.
Following Anderson (1990, 1991a, 1994), we assume that a complete
psychological theory requires both levels of explanation but that
rational analysis is prior to the algorithmic level (Oaksford & Chater,
1995b). Having specified a rational analysis, two questions arise: (i)
are there algorithmic-level accounts that implement the rational
analysis?; and (ii) if there are many such accounts, how can these be
distinguished empirically? Regarding (i), because our rational analysis
involves simple mathematical relationships, we can provide many
different algorithmic-level accounts. Regarding (ii), because our
rational analysis already captures the bulk of the empirical data, any
implementation would capture these data. Therefore, without
additional data, speculation at the algorithmic level seems premature.

Summary

None of Evans and Over’s criticisms of our account is persuasive.
First, we accommodated their theoretical objections about information
gain without change to the theory by using an alternative measure—
expected Kullback— Liebler distance. Second, we have shown that
Kirby’s and Pollard and Evans’ data support, rather than contradict,
our account. Third, Evans and Over’s account of “epistemic utility”
contradicts their own criteria. Fourth, Evans and Over do not
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consistently apply their rational1/rational2 distinction. Finally, Evans
and Over’s claim that our theory is not “psychological” is unsupported.

We now turn to Laming’s discussion of our paper and argue that it
too provides no grounds to abandon the view that our model is the
most compelling and comprehensive account of the selection task
currently available. 

LAMING

Laming (1996) argues that our optimal data selection model makes
implausible psychological assumptions, and that a “correct” Bayesian
analysis of the selection task makes the same predictions as the
“logical” solution. We discuss Laming’s arguments in the order they
arise.

How to Construct a Psychological Theory

Here we address each point in Laming’s section “Constructing
psychological theories,” which provides an overview of Laming’s
arguments.

First, Laming argues that the optimal data selection relies on
arbitrary and psychologically implausible assumptions. These
assumptions are not arbitrary, but were derived from the theory of
optimal data selection (Chaloner & Verdinelli, 1994; Good, 1960;
Lindley, 1956; Luttrell, 1985; MacKay, 1992a) and Bayesian
epistemology (Earman, 1992; Horwich, 1982; Howson & Urbach, 1989;
Mackie, 1963).6 What is remarkable is that these assumptions,
derived to solve normative problems in statistics and in epistemology,
also make accurate predictions in the selection task. Further, as we
will show, each of these assumptions has a psychological justification.

Second, Laming objects to the information measure (Shannon-
Wiener) used in the optimal data selection model because “to be
psychologically meaningful, the measure of information has to relate
to the question put to the subjects” (Laming, 1996, p. 6, our italics).
We argue that to be psychologically meaningful, an information
measure has to relate to the question that participants think they have
been asked. Experimenters cannot legislate for how people
understand psychological tasks. The interpretation people adopt is an
empirical matter which must be determined by fitting theoretical
models to data. Because the optimal data selection model fits the data
whereas Laming’s model does not, it would seem that subjects may
indeed interpret the problem as one of optimal data selection.

Third, Laming notes correctly that in deriving the optimal data
selection model we use the subjective, rather than the “objective”,
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interpretation of probability. He argues that the subjective/objective
distinction is “irrelevant to the validity of the theory” (Laming, 1996,
p. 6). We argue, on the contrary, that the subjective interpretation is
crucial, and failure to realise this leads Laming to misunderstand our
model, and to propose an inappropriate alternative. On the
frequentist interpretation (Laming’s “objective” interpretation),
probabilities are limiting frequencies in a repeated experiment (e.g.
Von Mises, 1939). Accordingly, probabilities can only be assigned to
events that are repeatable, so that limiting frequencies are defined.
The frequentist view underlies classical approaches to hypothesis
testing (e.g. Fisher, 1922; Neyman & Pearson, 1928). On the
subjective interpretation, probabilities are degrees of belief (Keynes,
1921; Ramsey, 1931). Accordingly, probabilities can be assigned to all
statements including those describing unrepeatable events.
Consequently, the probability that, for example, Oswald shot
Kennedy, is well defined, whereas on the frequentist interpretation it
is not. The subjective interpretation underlies the Bayesian approach
(Cox, 1946; de Finetti, 1937; Good, 1960; Lindley, 1971; Ramsey,
1931; Rosenkrantz, 1981).

Finally, Laming argues that our data fits are not impressive,
assuming we set parameters arbitrarily. We show later that we did not
set parameter values arbitrarily, but by reference to the literature on
Bayesian epistemology. Moreover, we show that these parameter
values, as with our other assumptions, are psychologically plausible.
We now turn to Laming’s specific points.

Optimal Data Selection and Testing Statistical
Hypothesis

The role of Laming’s tutorial section “Testing Statistical Hypotheses”
seems to be twofold. First, it gives the impression that the optimal
data selection account is suspect. Second, it provides the background
for Laming’s “correct” Bayesian analysis. We address these issues in
turn.

First, our analysis is not suspect, but represents a straightforward
application of a Bayesian measure of the information provided by an
experiment, introduced by Lindley (1956), one of the world’s leading
Bayesian statisticians. Lindley (1956, p. 987) argues that “the
measure of information [provided by an experiment] is given by
Shannon’s function [i.e. Shannon-Wiener information]” and that “prior
probability distributions are…basic to the study. It seems obvious to
the author that prior distributions, though usually anathema to the
statistician, are essential to the notion of experimental information.
To take an extreme case, if the prior distribution is concentrated on a
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single parameter value [or a single hypothesis], that is if the state of
nature is known, then no experiment can be informative.”7 Thus we
have simply applied long-standing ideas from Bayesian statistics8 and
therefore Laming’s suggestion that our information measure is
suspect misses the mark.

Second, Laming states that the use of priors is the essence of
Bayesian statistics. However, as we discuss below, this misrepresents
the Bayesian approach, which actually depends on the subjective
interpretation of probability (Howson & Urbach, 1989; Lindley, 1971).
Further, Laming recommends estimating parameters using maximum
likelihood, which has no Bayesian justification (Lindley, 1971). This is
particularly inappropriate in the selection task, where no data are
available on which to base such estimates. These problems lead
Laming to his “correct” Bayesian analysis, which, as we shall see, is
not really Bayesian.

Psychological Assumptions

We now come to the core of Laming’s argument: that the optimal data
selection model does not apply to the selection task and that it fits the
data only by using arbitrary and psychologically implausible
assumptions. He makes six specific points to which we reply
individually. First, however, we outline two important issues bearing
on Laming’s arguments.

Rational Analysis and Task Interpretation
Laming states that the task set cannot be captured by our model. This
presupposes that the purpose of rational analysis is to specify what
people should do given the task description—rational analysis only
has a normative function. However, as Oaksford and Chater (1995b)
argue, the purpose of rational analysis is to characterise the task
participants think they have been set. A rational analysis must be
both normatively justified and descriptively adequate. In practice this
means that we are concerned with modelling people’s actual
behaviour rather than deriving models of the experimenter’s
preconceived ideas about what the task investigates.

The distinction between the task set as viewed by experimenter and
participant is familiar in the reasoning literature. For example,
critiques of Piaget’s reasoning studies (Bower, 1974; Bryant &
Trabasso, 1978; Donaldson, 1978; Harris, 1975) argue that many
tasks were not understood by children. When presented in a more
child-centred way, reasoning previously absent would emerge.
Another example is Smedslund’s (1970; and see Evans, 1993)
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observation that you cannot assess whether people reason logically,
independent of their task interpretation. A final example is the
observation that “errors” in probabilistic reasoning may occur because
the materials violate people’s natural ways of representing
probabilistic information (Birnbaum, 1983; Gigerenzer, Hell, & Blank,
1988; Gigerenzer & Murray, 1987), so that the task that the
participants tackle is not the task that the experimenter intended.

In summary, rational analysis characterises both how participants
interpret and solve a problem. Consequently, Laming’s claim that we
do not model the task people have been set is irrelevant because this
was not our goal.

Bayesian Epistemology and Rarity
Laming argues that the data fits that the optimal data selection
model reveals rely on setting parameters arbitrarily. We now show
that our rarity assumption, which determines the parameter values
we used, is not arbitrary but derives directly from the literature on
Bayesian epistemology.

We now quote an influential Bayesian epistemologist (Horwich,
1982) discussing Mackie’s (1963) solution to one of the paradoxes of
confirmation theory (Goodman, 1983). The “ravens paradox” is that
non-Bayesian confirmation theory entails that a non-black, non-
raven, e.g. a pink flamingo, confirms the hypothesis that all ravens
are black:

The central idea of Bayesian accounts is that our background
assumptions concerning the proportion of ravens and black objects in
the universe affect the extent to which hypotheses are confirmed by
various kinds of evidence. Suppose we believe that the proportion of
things which are ravens is very small: call it x; and the proportion of
black things y. Then our relevant background assumptions may be
represented by the following table:

Thus we suppose that the subjective probability of observing a black
raven P(BR) is xy; and similarly, P(BnotR)=(1−x)y, P(not B R)=x(1−y),
and P(notBnot R)=(1−x)(1−y).

Now consider the table which according to Mackie, would represent
the further supposition—All ravens are black:

If H is true, there are no non black ravens. (Horwich, 1982, p. 56)
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Mackie’s argument implies that although a non-black, non-raven
“will tend to confirm ‘All ravens are black,’ it will do so only to a
negligible degree and will not carry as much weight as the observation
of a black raven” (Horwich, 1982, p. 57) as long as x ≈ 0, i.e. if rarity
holds. Thus, contrary to Laming, the parameters of our model were not
set simply to fit the data. Our goal was to see whether Bayesian
models that resolve conceptual problems in epistemology could also
model human behaviour. 

We now take the six specific assumptions that Laming identifies
and show (i) that they are normatively justified, and (ii) that they
make psychological sense.

1.
Shannon-Wiener Information

Laming’s criticism of our use of Shannon-Wiener information has
several problems. First, as we have seen, it is standard in Bayesian
optimal data selection (Good, 1960; Lindley, 1956, 1971; MacKay,
1992a). We suspect that Laming’s objection derives from his view that
optimal data selection does not apply to the task that participants are
set. But as we have already noted, our goal was to model the task that
participants think they have been set.

Second, Laming claims that using the information measure used in
our model is statistically inappropriate. He algebraically transforms
our E(Ig) measure into his equation (10), which measures “the
expected information from a single event in favour of the
communication channel being functional (Hi and Dk related) and
against the alternative that they are independent” (p. 27). Laming’s
equation (10) is expected Kullback-Liebler distance which is shown in
our equation (A4), in the appendix to this chapter. Hence, Laming’s
analysis confirms our own. However, Laming argues that his
interpretation using communication channels invalidates our model.
This argument rests on the false assumption that if a formula has one
interpretation, it cannot have another. Rather than invalidating our
original interpretation, Laming has simply shown that the
information measure we used has yet another interpretation.

Third, Laming objects that this measure does not discriminate
between hypotheses. However, it does discriminate between
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hypotheses (Fedorov, 1972, Chapters 6 and 7). Discrimination
depends on sequential sampling and recomputation of information
gain to determine the optimal data to select next. This involves
iteratively recomputing the priors at each stage in the standard
Bayesian way. By selecting data using E(Ig) the posteriors converge on
the true hypothesis using the minimum number of observations. So the
measure used in our model can discriminate between hypotheses. Of
course the selection task is not a sequential sampling task—
participants never see the data. Nevertheless, Bayesian hypothesis
testers should use their prior beliefs to select data that will optimise
discrimination between models in the long run.

Laming also argues that the optimal data selection model is
paradoxical: participants must already possess the information they
should derive from the data. The “paradox” arises because Laming
uses a frequentist, whereas to derive the optimal data selection model
we used a subjectivist, interpretation of probabilities. According to the
frequentist interpretation, the probability of uncovering a particular
number or letter having turned the card (P(Dk|Hi)) must be either 0
and 1 (as Laming notes later). This is because however many times
you turn the card, it will give the same result, and hence the limiting
frequencies can only take the values 0 (you never reveal the number
or letter) or 1 (you always reveal the number or letter). However, in
the selection task, participants do not know what is on the other side
of the card, and hence cannot assign these probabilities (in the
frequentist sense). But we use these probabilities in our calculations.
Laming concludes, therefore, that our account assumes that
participants must know what is on the back of the card, even before
they have turned it.

Laming’s difficulty is inevitable on his frequentist interpretation.
But on the subjectivist interpretation, there is no difficulty. The P(Dk|
Hi) captures degrees of belief about what is on the back of the card,
before it is turned. Because participants are not certain what is on the
back of the card, these probabilities will take intermediate values,
rather than being 0 or 1, depending on prior knowledge. This approach
is standard in Bayesian statistics (e.g. Lindley, 1971). It also makes
psychological sense, reflecting the psychologically reasonable
assumption that prior knowledge will affect where we look for
evidence.

In summary, the information measure we use makes both
normative and psychological sense.
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2.
Rationality

Laming objects that our rational recommendations do not provide a
perfect fit with the experimental data, e.g. only 89% of participants
choose the p-card, which is the most informative card. But requiring a
perfect fit between theory and data seems entirely unreasonable, and
is not demanded of any other psychological theory.

Laming also states that “a rational Bayesian theory ought to look
like this: calculation shows that some particular card offers the
greatest expected gain of information, and that card is the universal
first choice. Depending on what is discovered on the underside of the
card, one or other of the remaining cards is chosen next because it
offers the greatest expected gain of information of those remaining”
(Laming, 1996, p. 25). That is, Laming is correct that a Bayesian
analysis of the task assumes sequential sampling. But he is wrong to
conclude that such an analysis is inappropriate to the selection task,
where participants choose cards without turning them over. As
mentioned in the last section, it is perfectly rational to select data to
minimise the length of a sequential sample required to discriminate
hypotheses, before that sample becomes available. 

3.
Bayesian Analysis

We are unclear about Laming’s argument here. He appears to believe
that, for the Bayesian, priors must be set from previous data, if they
are not to reflect mere bias. Because, in the selection task, the
participant sees no data, he assumes priors cannot meaningfully be
set. But Bayesian analysis must always begin from some priors before
data are observed, on pain of infinite regress. The question of how
priors should be set to take account of general knowledge is a major
issue in Bayesian statistics (Berger, 1985; Box & Tiao, 1973; Lindley,
1971). Moreover, we argue that people have a great deal of prior
knowledge about conditionals (e.g. that rarity almost always holds),
which is taken to be relevant to the task.

4.
Characterisation of the Task

Here, Laming’s objection seems to arise from his frequentist
interpretation of the probabilities in our model. He imagines the
situation in which there are many vowels, some with odd and some
with even numbers on their undersides—in this context, the
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probability that a randomly chosen vowel has an even number on the
back may lie between 0 and 1 (if you repeatedly choose a random card
with a vowel uppermost many times, the limiting frequency will be in
proportion to the number of vowels with odd and even numbers on their
undersides). Laming argues that we are implicitly committed to this
set-up, if our intermediate probability values are to make sense.

But, because our account is Bayesian, all probabilities are degrees
of belief, and hence no fictitious repeated experiments need be
imagined to make sense of the probability statements in our theory.
Further, there is evidence that participants do interpret the cards as
being drawn from a larger population when only confronted with four
cards (Beattie & Baron, 1988). Moreover, when the experimenter
draws the four cards from a larger pack in front of each subject before
they perform the task (Evans & Lynch, 1973; Oaksford & Stenning,
1992) the results are the same as in the standard task.

Laming also argues that we do not consider the full range of
possible hypotheses. In our model the rule is compared with a
particular independence model, rather than a fully general “foil” model.
This assumption was not introduced arbitrarily to fit the data. As the
quote from Horwich reveals, Mackie used the same characterisation of
people’s background knowledge to resolve the ravens paradox.
Moreover, although Laming downplays explaining the data, the fact
that our simple model accurately captures the empirical results must
be a virtue. Other researchers may propose alternative rational
analyses, should these be necessary to capture further empirical
data. 

Laming also objects to our assumption that participants
discriminate between two particular instances of MD and MI rather
than comparing these models in the abstract. This is reasonable,
because the values of a and b reflect particular degrees of belief in the
antecedent being true, and in the consequent being true, when the
antecedent is false. This assumption is psychologically innocuous.
These values relate to people’s degrees of belief about the proportions
of various properties in their environments. It is psychologically
reasonable to assume that people have access to this information. This
assumption also makes normative sense—it resolves an important
paradox in the logic of confirmation.

In sum, our choice of models makes both normative and
psychological sense.
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5.
Identification of Model Parameters

Laming objects that we equate parameters a and b between models.
As we saw in the quote from Horwich, Mackie (1963) makes a similar
assumption, except that Mackie equates P(p) and P(q) between
models, whereas we equate P(p) (a) and P(q|not-p) (b). Laming’s
objection is unclear because he endorses our rationale for equating
these parameters, as we now see.

Equating a between models, as Laming notes, is equivalent to
asserting that the antecedent (p) has the same probability in each. As
we argued, if, by contrast, the probability of p were, say, higher in MD
than in MI, this would mean that observing p and not-p instances
alone (without being able to see both sides of the cards) would
discriminate between models (by the application of Bayes’ theorem).
Laming’s response is puzzling: “Not true…[The conditional rule] says
nothing about the relative frequencies of vowels [p cards] and
consonants [not-p cards]” (p. 22). This is puzzling because Laming
agrees that the conditional rule says nothing about the frequencies of
p and not-p cards, which implies that it should not be possible to
discriminate between models by observing one side of the cards. It is
this intuition that requires equating the parameter a between models.

Similarly, we equated b, the probability of q in the absence of p,
between models. Laming (1996, p. 21) argues that our “models are
formulated the way they are in order to accommodate the relatively
uncommon selection of the ‘K’.” He then proposes alternative models
in which the “2” card receives zero information gain rather than the
“K” card as in the optimal data selection model. The suggestion is that
our decision to keep b constant between models was made solely to fit
the data. However, this assumption was constrained both
psychologically and normatively. Psychologically it reflects the finding
that participants regard false antecedent instances, i.e. the not-p
cases, to be irrelevant to the truth or falsity of a conditional rule. This
was established using an independent experimental paradigm—the
truth-table task (Evans, 1972; Evans & Newstead, 1977; Johnson-
Laird & Tagart, 1969). Further, normatively, Quine (1959) has
suggested that conditional sentences do not assert a conditional, but
rather assert the consequent, q, conditional on the antecedent, p. From
this logical point of view, cases where the antecedent is false, not-p
cases, are irrelevant to the truth or falsity of a conditional rule. No
such evidence or normative proposals exist in support of the models
Laming proposes in which the “2” card has zero information gain.
Consequently, Laming’s alternative model is irrelevant.
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6.
The Rarity Assumption

Laming objects to the rarity assumption—that P(p) and P(q) are low.
He suggests that the rarity assumption has a bizarre consequence in
the standard selection task. If the antecedent and consequent of the
rule if there is a vowel on one side of the card there is an even number
on the other are rare, then most cards must have consonants on one
side and odd numbers on the other. However, the rarity assumption
again makes perfect normative and psychological sense.

Normatively, the quotation from Horwich reveals that the rarity
assumption is critical to Mackie’s resolution of the ravens paradox.
Moreover, Horwich’s (1982) own analysis of this paradox assumes that
P(not-p & not-q) ≈ 1. Consequently, the assumption that Laming
appears to find bizarre is precisely the one that allows Bayesian
confirmation theory to avoid paradox. Again we based our
assumptions on Bayesian epistemology and did not introduce them
simply to fit the data. What is remarkable is that an assumption
derived for this normative purpose should prove so valuable in
modelling empirical data.

Psychologically, we argued that people’s everyday encounters with
conditionals influence their behaviour in the selection task, and that
in everyday contexts rarity almost invariably holds. Thus, everyday
strategies for hypothesis testing may be adapted to an environment
where rarity is the norm. Moreover, we assumed that these default
strategies are a major influence on behaviour, even when participants
do not know whether rarity holds. We (1994a, pp. 627–628) provided
two lines of experimental support for this claim, that explaining
results on Wason’s (1960) 2–4-6 task (Klayman & Ha, 1987) and
causal reasoning (Anderson, 1990) both require rarity. More
generally, we have argued extensively that people transfer their
reasoning strategies from the everyday world to the laboratory
(Chater & Oaksford, 1990, 1993; Oaksford & Chater, 1991, 1992,
1995a, 1995b). In sum, contrary to Laming, the rarity assumption is
normatively and psychologically reasonable.9 

Data Coverage
Laming then argues that “all these assumptions [in our rational
analysis] are invoked to match merely the rank order of the
frequencies with which the different cards are selected for inspection
[in the standard selection task] ... Moreover, if that rank order had
been other than it is, it would simply have dictated different
parameter values and assumptions. For that reason there is no need
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to examine Oaksford and Chater’s treatment beyond the basic
experimental paradigm” (p. 30). Laming’s argument is wrong in two
respects. First, we did not set our parameters arbitrarily.
Consequently, according to his own reasoning, Laming must consider
the other data that our model explains. Second, even if the
parameters of our model were set in order to explain the rank order in
the standard task, then the other data would provide a test of the
model.

We showed good fits with data from most of the studies reported on
the selection task since Wason’s (1966, 1968) original papers. For
example, the model captures the associations between card selections
observed in abstract selection tasks (Pollard, 1985), data from the
reduced array selection task (Johnson-Laird & Wason, 1970), the
negations paradigm (e.g. Evans & Lynch, 1973; Manktelow & Evans,
1979), tasks with “fictional” outcomes (Kirby, 1994a), the therapy
experiments (Wason, 1969; Wason & Johnson-Laird, 1970) and a
range of thematic selection task results (e.g. Cheng & Holyoak, 1985;
Cosmides, 1989; Gigerenzer & Hug, 1992; Manktelow & Over, 1991).
These studies are not a homogeneous set, consisting of many near
replications. On the contrary, they show that varying the nature of
the task produces radically different results. Our rational analysis
explains this variation. Further, no other account of the selection task
attempts this breadth of data coverage.

We now turn to the second part of Laming’s argument, that a
“correct” Bayesian analysis confirms the standard “logical” solution.

Laming’s “Correct” Bayesian Analysis

Laming gives a “correct” Bayesian analysis of the selection task. He
assumes that the conditional probabilities of an odd or even number
on the back of, say, the “A” must be one or zero, depending on whether
the underside actually is odd or even. For Laming, that participants
do not know whether the underside of the card is odd or even is not
grounds for some intermediate probability because he does not
interpret probabilities as degrees of belief. Laming argues that
participants should turn only the “A” and “7” cards in the standard
task, in line with the standard “logical” account.

Laming’s “correct” Bayesian analysis is mathematically correct, but
it is not Bayesian, because it begins by rejecting the fundamental
principle of Bayesian statistics, that probabilities are degrees of
belief. Laming states that “the essence of Bayesian analysis is the
inclusion of the priors, not that they be subjective” (Laming, 1996, p.
11). This is a common misunderstanding, against which Bayesians
often warn (e.g. Howson & Urbach, 1989; Lindley, 1971). Contrasting
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the Bayesian approach with the frequentist view, Howson and Urbach
(1993, p. 11) say, “The other strand of inductive probability treats the
probabilities as a property of our attitude toward them; such
probabilities are then interpreted, roughly speaking, as measuring
degrees of belief. This is called the subjectivist or personalist
interpretation. The scientific methodology based on this idea is
usually referred to as the methodology of Bayesianism” Laming
confuses the use of Bayes’s theorem (an uncontroversial theorem of
probability theory), and Bayesian statistics (a vigorous, though
controversial, approach to statistical inference).

In summary, Laming’s “correct” Bayesian account poses no
problems for our rational analysis. Laming grants that his account
does not fit the empirical data—for Laming, participants’ behaviour is
simply not rational. However, our rational analysis shows that
behaviour can be viewed as rational. It does not, and could not, show
that it is rational on any defensible view of rationality. Therefore, the
fact that Laming’s non-Bayesian account gives different prescriptions
is irrelevant.

Summary

Laming misrepresents our rational analysis because he is concerned
with the task set, rather than the task that participants think they
have been set, and because he misinterprets the statistical basis of
our theory. Rational analysis must be normatively justified and
descriptively adequate. Our model is normatively justified because it
is based on Bayesian optimal data selection. It is descriptively
adequate because it provides fits to a wide range of data, without
setting parameters arbitrarily.

ALMOR AND SLOMAN

Almor and Sloman (1996) argue that the optimal data selection model
cannot account for data where p and not-q card responses are elicited
without using deontic materials. Almor and Sloman use four rules that
they claim are not deontic, and for which it is not clear whether the
rarity assumption holds. However, the logical p and not-q card
response predominates for these rules. They conclude that we cannot
explain these data. Moreover, Almor and Sloman argue that their
results are not compatible with any theory that uses the distinction
between deontic and indicative tasks to explain so-called “facilitation”
effects, i.e. choosing the p and not-q cards.10 

Almor and Sloman raise the important issue of how to explain p and
not-q responses in non-deontic selection tasks. Such results threaten
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any theory that rules out p and not-q responding for non-deontic tasks.
They are less threatening to the optimal data selection model because
it also allows p and not-q responses when the materials violate rarity.
However, as Almor and Sloman argue, it is unclear whether their
materials do violate rarity.

There have been other demonstrations of p and not-q responses in
abstract tasks without violating rarity (Green, 1995; Green &
Larking, 1995; Platt & Griggs, 1993, 1995). However, they are only
problematic on a strong interpretation of our claims, that violating
rarity is not only sufficient but is also necessary for the p and not-q
response. Although Almor and Sloman and these other experiments
suggest that rarity violation may not be a necessary condition for the
p and not-q response they do not question that rarity violation is a
sufficient condition. Moreover, there is evidence that rarity violation
is indeed sufficient for the p and not-q response (Kirby, 1994a, 1994b;
Oaksford & Chater, 1995b; Sperber, Cara, & Girotto, 1995).
Consequently, inducing high p, not-q selections without violating
rarity is consistent with our account.

However, we argue that Almor and Sloman obtain high p, not-q
selections only by altering the task. Almor and Sloman’s materials are
either analytic, i.e. true by definition and so our model does not apply,
or they are deontic and so our maximum expected utility model
applies. We first contrast Almor and Sloman’s experiments with other
studies revealing the p and not-q response in the abstract task.

The p and not-q Response in the Abstract Task

Other experiments revealing high p, not-q selections use
manipulations to force a logical interpretation of the rule (Green, 1995;
Green & Larking, 1995; Platt & Griggs, 1993, 1995). For example,
Platt and Griggs (1995) explicitly provide the logical interpretation,
telling participants that “A card with an A on its letter side can only
have a 4 on its number side, but a card with a B on its letter side can
have either a 4 or an 5 on its number side.” They also told participants
to look for cards that violated this rule.11 Green (1995) first told
participants to imagine and write down all the different possible
combinations of letters and numbers for each card. Participants then
had to imagine which combinations could violate the rule. Finally they
were asked to indicate which cards had such a combination. With this
amount of coercion observing high p, not-q selections is not surprising.
What is more surprising is how few participants gave the p and not-q
response. In most of Green’s (1995) experiments, in the full
externalisation condition (that we have outlined already) more than
50% of participants still did not make the p and not-q response. Platt

14. EXPLANATION OF THE SELECTION TASK 249



and Griggs (1993, 1995) and Green and Larking (1995) found similar
results. It seems that participants’ natural reasoning strategies are
very resistant even to these quite extreme attempts to force a logical
interpretation in the abstract selection task.12

Almor and Sloman’s experiments contrast with these because Almor
and Sloman do not use any additional instructions to force a logical
interpretation but they achieve similar-sized effects. Therefore, Almor
and Sloman’s manipulations are of more theoretical interest.

Deontic and Analytic Rules

We argue that Almor and Sloman’s rules are either deontic or
analytic.13 However, even in their “abstract” experiment Almor and
Sloman cue participants into realistic settings that have plausible
deontic interpretations. Consequently, we could argue that our
maximum expected utility account of the deontic selection task
explains all of Almor and Sloman’s results. That model predicts the p
and not-q response for obligation rules and an enforcer’s perspective
which could reasonably characterise Almor and Sloman’s materials.
However, as we noted earlier, we believe that the analytic nature of
two of Almor and Sloman’s rules affects their results.

We can contrast standard rules with each of Almor and Sloman’s by
asking what the reaction would be to a counter-example. Consider two
standard rules:

(14.1)

(14.2)

(14.1) is a standard selection task rule. It represents a claim about the
way the world is, like (14.2). The reaction to the counter-example, A3,
is that the rule is false.14 Contrast this with the reaction to a p, not-q
instance of Almor and Sloman’s rules:

(14.3)

(14.4)

In both (14.3) and (14.4) the “counter-examples” seem to violate the
meaning of “large object” and “strong force”, e.g. large objects require
large containers otherwise they would not be large. Similarly, strong
forces overcome weak forces otherwise they would not be strong. This
contrasts with the indicative rules in (14.1) and (14.2).
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Another test is to append “It must be the case that” to each of (14.1)
to (14.4). Although this results in true sentences for (14.3) and (14.4)
it is nonsense for (14.2), i.e. it is simply not true that “It must be the
case that if it is a raven then it is black” and similarly for (14.1). (14.1)
and (14.2) make contingent claims about how the world might be. (14.
3) and (14.4), in contrast make definitional or analytic claims about
how the world must be for these terms to apply. Analyticity matters
for our account because it is about how people optimally select data to
determine the truth of a rule. But when a rule is analytically true [P
(MD)=1] there is no uncertainty, and so no data (no card selections)
can reduce it. Consequently, optimal data selection does not apply to
analytic materials. It is therefore not surprising that Almor and
Sloman’s results differed from results in standard selection tasks. No
current theory of the selection task makes predictions when the
conditional rule is analytic. Consequently, Almor and Sloman’s
experiments require a novel theoretical analysis from any point of
view. Almor and Sloman’s remaining rules have a different
interpretation:

(14.5)

Winning prize has no distinctive quality implies that the rule is still in
force.

(14.6)

Product breaks under normal conditions implies that the rule is still
in force.

We argue that Almor and Sloman’s contexts encourage participants
to understand (14.5) and (14.6) deontically. For example, in (14.5),
participants adopt the perspective of a journalist investigating prize-
winning products. The criterion for winning the prize (having a
distinctive quality) defines a norm, i.e. which products ought to win
prizes. The rule is deontic. Specifically, the journalist is interested in
whether these norms really determine which products win prizes
(rather than, for example, prizes being awarded by corrupt means).

A final test is to append “It should be the case that” to (14.2) and
(14.6). Although this makes sense for (14.5) and (14.6) it is nonsense
for (14.2), i.e. “It should be the case that if it is a raven then it is
black”. It is equally nonsensical for (14.3) and (14.4), for example—it
is not that you should store large objects in large containers, it is that
you have to! Given the deontic interpretation of (14.5) and (14.6), we
can explain these data using our maximum expected utility model.

All the rules that Almor and Sloman use differ from the rules
normally used in the abstract selection task. For Almor and Sloman’s
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rules it does not make sense to collect information to see whether they
are true or false. Therefore, the optimal data selection model could not
apply to any of them, and hence is not challenged by Almor and
Sloman’s results.

CONCLUSION

Evans and Over and Laming have given us the chance to elaborate
the theoretical foundations and empirical consequences of our optimal
data selection model. The information measure we used, to which
Evans and Over and Laming object for different reasons, is standard
in Bayesian optimal data selection, and can be reinterpreted to meet
Evans and Over’s concerns. Further, the assumptions to which
Laming objects make sound normative sense, being derived from
Bayesian epistemology. Our model also makes sound psychological
sense, both because its assumptions are psychologically reasonable,
and because it is consistent with further data that Evans and Over
believe to be problematic. Further, Almor and Sloman’s data showing
that analytic rules also elicit high p, not-q selections do not question
that the model provides a sufficient condition for the p and not-q
response in the abstract task. Nor does it question the theoretical
distinction many researchers in this area have drawn between
abstract and deontic tasks. In sum, neither Evans and Over, Laming,
nor Almor and Sloman provide grounds to question the view that the
optimal data selection model provides the most compelling and
comprehensive explanation of the selection task currently available.

NOTES

1. Note it is not a true distance—e.g. it is not symmetrical.
2. However, subjects could interpret the rule as exceptionless, but applying

to some set of cards not including those that have been shown to include
errors, such as cards that the computer will print in future. Intuitively,
this is analogous to a person checking whether a machine is now working
after observing a breakdown. Consequently our original model of Kirby’s
data could apply to participants’ interpretation of the experimental set-
up.

3. This may be unsurprising given that we have allowed ourselves the
luxury of an extra parameter. However, as Oaksford and Chater (1998b)
show, the model’s predictions turn out to be insensitive to large
variations of this parameter. Consequently, its function is to achieve a
better mapping between task and model, not to achieve better data fits.

4. Discussions of the rational1/rational2 distinction (Evans, Over, &
Manktelow, 1993; Evans, 1993) do not appear to be consistent. Evans
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(1993) identifies rationality1 as rationality of purpose and rationality2
as rationality of process and claims “the notion of maximizing utility is
clearly a case of rationality1” (p. 8). We use maximising utility to explain
deontic selections tasks, but Evans and Over argue that this account is
a rational2 theory. It is also unclear why Evans and Over imply that
rational2 explanation is a bad thing, given that Evans (1993) states that
rationality2 explanation is often successful in psychology (he cites the
example of learning theory).

5. Further, we could not find a formal account of epistemic utility to
compare with E(Ig), in any of the references Evans and Over cite. 

6. In the original submission of our paper (Oaksford & Chater, 1994a) to
Psychological Review we clearly outlined the origins of our assumptions.
However, for reasons of journal space, the reviewers suggested, and we
agreed, that this material should be left out. Consequently, Laming’s
critique was very welcome for the opportunity it afforded us to make the
origins of our assumptions explicit.

7. We note that Lindley, somewhat confusingly, but for sound reasons (see
Lindley, 1956, p. 989) introduces a sign reversal. We followed this
convention, which caused some confusion which both Evans and Over
and Laming pointed out. In our appendix, and elsewhere (Oaksford &
Chater, 1995b, 1995c) we adopt the standard convention of not reversing
the sign.

8. Laming, by contrast, recommends against using Shannon’s measure and
the use of prior distributions.

9. Klayman and Ha’s minority phenomena assumption is somewhat less
restrictive than our rarity assumption, specifying only that probabilities
are less than 0.5.

10. Note that if we are right, the view underlying this terminology, that
participants performance is “facilitated” from an initially irrational
baseline, is wrong (see also Manktelow & Over, 1987). Almor and
Sloman are careful to avoid this misleading terminology.

11. As Platt and Griggs (1995) observe the use of much modal terminology,
i.e. “can”, “can only”, and the violation instruction may well have
induced a deontic context that produced the facilitation.

12. Two of these studies, Green (1995) and Platt and Griggs (1995), claim to
show that probabilistic manipulations fail to have the effects predicted
either by Kirby (1994a) or by Oaksford and Chater (1994a). However, in
both cases the experimenters have embedded the probabilistic
manipulation in other manipulations, which we outlined in the text,
designed to force a logical interpretation of the rule. Consequently, how
these data bear on Oaksford and Chater’s model is obscure—other
factors so confound the data as to make them uninterpretable.
Moreover, as Platt and Griggs (1995) concede, they cannot be sure that
participants’ subjective probabilities were appropriately calibrated to
the letter and number frequencies used in these experiments. This is
especially true because they make no distinction between type and
token frequencies which Oaksford and Chater (1994a) argue may be an
important factor. Green (1995) and Platt and Griggs (1995), assume
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that what matters to people’s everyday hypothesis testing is that there
are 5 vowels and 21 consonants, i.e. the frequencies of letter types.
However, as Oaksford and Chater (1994a) argue, it is more likely that
people’s prior experience with particular letter and number tokens
provide the priors they use in optimal data selection.

13. All Almor and Sloman’s rules also use the modal “must” in the
consequent. In contrast, the rules used in other studies eliciting p and
not-q responses were explications of standard abstract rules. Almor and
Sloman, however, used this modal in all rules in their experiments so this
is unlikely to be a factor.

14. However participants may not interpret the occurrence of a falsifying
instance, A3, immediately as meaning that the rule is false, as (14.2)
reveals. It makes sense to seek evidence for the truth or falsity of this
generalisation, however, observing a white raven would not necessarily
lead you to reject (14.2) as a very useful rule. As Oaksford and Chater
(1991, 1992, 1993, 1995b) have argued, most of the rules that make up
our world knowledge admit some exceptions.

APPENDIX

Proof of the Equivalence of Expected Information Gain
and Expected Kullback-Liebler Distance

Consider hypotheses, h, and data, d. The uncertainty associated with
h before the data are collected is:

(A14.1)

This is sometimes known as the surprisal of h. The uncertainty
associated with h after the data are collected is:

(A14.2)
That is, the same as (A14.1), but with the appropriate revision of the
probability. Information gain, Ig, is therefore:

(A14.3)

We are interested in the expectation of this quantity, with respect to
the joint distribution of h and d. In symbols, expected information
gain, E(Ig) is:

(A14.4)
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The calculations in (A14.4) simply write out the expectation explicitly.
Now let us turn to our new approach, based on the difference between
new and old distributions. The Kullback-Liebler distance from a
distribution P’(x) and a distribution P(x) is:

(A14.5)

The distribution of interest here is the distribution of belief in the
available hypotheses, h. The new distribution is given by the P(h|d)
values, which take the data into account; the old distribution is given
by the P(h) values. Applying (A14.5), the Kullback-Liebler distance
from the new to the old distribution is:

(A14.6)

We are already summing over hypotheses, so we need take
expectations only over data (taking expectations over the joint
distribution of h and d produces the same result). The expected value
of D, E(D), is given by: 

(A14.7)

That is, expected information gain (E(Ig)) equals expected Kullback-
Liebler distance (E(D)). As all the calculations in Oaksford and Chater
(1994a) involve E(Ig), we can adopt E(D) without altering any
substantive aspect of the original analysis. Further, D has none of the
counter-intuitive properties that Evans and Over point out for Ig. 
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CHAPTER FIFTEEN
Information Gain Explains Relevance,

Which Explains the Selection Task

INTRODUCTION

In this chapter we consider how the rational analysis of the selection
task that we have discussed in the last five chapters relates to an
alternative approach developed by Dan Sperber, Francisco Cara, and
Vitorio Girotto (Sperber, Cara, & Girotto, 1995) in an article entitled
Relevance Explains the Selection Task. They present a set of new
experiments that they attempt to explain in terms of Sperber and
Wilson’s (1986) Relevance Theory, which we discussed in Chapter 5.
In this chapter, we suggest that the notion of expected information
gain that is central to our rational analysis can be thought of as giving
a quantitative explanation of the meaning of “relevance” in the
context of this task. Thus, we suggest that a relevance-based account
of the selection task is not necessarily an alternative to our rational
analysis, but can be viewed as entirely compatible with it. We
therefore reconsider the experimental data that Sperber et al. argue
favour their relevance account, and show that the data can be
modelled successfully using information gain. Hence our conclusion,
echoing the title of Sperber et al.’s article, that information gain
explains relevance, which, in turn, explains the selection task.

INFORMATION GAIN EXPLAINS RELEVANCE,
WHICH EXPLAINS THE SELECTION TASK

Sperber et al. (1995) argue that relevance theory (Sperber & Wilson,
1986) explains the selection task. The main tenet of relevance theory
is that relevant information has the greatest cognitive effects for the
least processing effort. Sperber et al. construct experimental materials
that they take to vary the cognitive effect and the processing effort
required to solve the selection task. They argue that the results of
their experiments conclusively support the relevance account, and
discount other explanations of selection task performance. In



particular, they suggest that their data and their approach are not
compatible with our rational analysis (Anderson, 1990) of the selection
task that uses “information gain” to determine card selection. By
contrast, in this chapter, we argue that the information gain and
relevance accounts are compatible, rather than in competition. Our
notion of expected information gain provides a quantitative measure of
relevance appropriate to the selection task. We demonstrate the
validity of this interpretation by showing that the information gain
account can explain the experimental results of Sperber et al. (1995).

Why do Sperber et al. (1995) conclude that information gain and
relevance approaches are incompatible? First, they contend that the
information gain approach does not explain important aspects of the
data in the empirical literature, which, they argue, the relevance
account can handle. In particular, they argue that the information
gain account does not address the facilitation of the “logical” p, not-q
response when the consequent of the task rule contains a negation
(Evans & Lynch, 1973; Oaksford & Stenning, 1992). However, as we
seen in earlier chapters, the rational analysis provides a detailed
quantitative analysis of these experiments, including data from Evans
and Lynch (1973), Griggs and Cox (1983), Manktelow and Evans
(1979), Oaksford and Stenning (1992), Pollard (1985), and Reich and
Ruth (1982). Overall, we have shown that theoretically derived
expected information gains correlate highly, and significantly, with
the observed data.

Second, Sperber et al. (1995) argue that their own data (experiment
2) are incompatible with the rational analysis account. Given the
large range of experimental data for which our theory provides a
quantitative explanation, it is not clear how to interpret a single
anomaly, even if it was completely inexplicable in terms of the theory.
Moreover, it is not clear that the relevance account is compatible with
the range of data covered by the information gain approach (which
provides a comprehensive, quantitative analysis of the majority of the
past literature). The Bayesian approach that we adopt in our model of
the selection task is in explicit opposition to falsificationism—you can
always explain away a single inconsistent result (Duhem, 1914/1954;
Quine, 1953). What is important is the ability of a theory to account
for the broad pattern of replicable results. In any case, we shall argue
that there is a plausible interpretation of experiment 2, which is
compatible with the information gain account.

Third, along with almost all existing accounts of the selection task,
they accuse the information gain account of falling “short of either
predicting or ruling out good performance (more than 50% correct) on
yet untested varieties of the task.” Sperber et al. argue that their
relevance account does provide predictions. We are at a loss to know
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what differentiates all these other views from the relevance account in
relation to predictive power. In particular, we have made predictions
from the information gain account, which we mention in Oaksford and
Chater (1994a), and which have been tested experimentally (see
Chapter 16 for discussion). Further, we note that Oaksford and
Chater (1994a) formulated the information gain theory and submitted
it for publication before Kirby’s (1994a) results were available.
Oaksford and Chater’s (1994a) subsequent analysis showed that the
information gain theory predicted Kirby’s results.

We have suggested that the information gain account may be a way
of making a relevance account of the selection task formally precise.
We now show how to apply our rational analysis to model the
experiments of Sperber et al.

Recall that Oaksford and Chater (1994a) (see Chapter 10)
calculated SE(Ig)s for each card assuming that the properties
described in p and q are rare. They motivate the “rarity assumption”
from the observation that it seems to apply to the vast majority of
everyday conditional sentences. They also cite support for this view
from the literature on other reasoning tasks (Klayman & Ha, 1987;
Anderson, 1990). Hence, Oaksford and Chater (1994a) argue that
people’s strategies for dealing with conditional rules will tend, by
default, to be adapted to the case where rarity holds.

Adopting the rarity assumption, the order in SE(Ig) is:

This corresponds to the observed frequency of card selections in
Wason’s task: n(p) > n(q) > n(not-q) > n(not-p), where n(x) denotes the
number of cards of type x selected. This account thus explains the
predominance of p and q card selections as a rational inductive
strategy. This ordering holds only when P(p) and P(q) are both low.
We noted in Chapter 11 that task manipulations that suggest that
this condition does not hold (at least one of P(p) or P(q) is high) leads
to alternative orderings, predominantly that:

This ordering is more consistent with Popperian falsificationism,
where the p and not-q instances are favoured. The effect of rarity and
its violation will enable us to account for many of the results of
Sperber et al.

Oaksford and Chater (1994a) also show how their model generalises
to all the main patterns of results in the selection task. Specifically, it
accounts for the non-independence of card selections (Pollard, 1985),
the negations paradigm (e.g. Evans & Lynch, 1973), the therapy
experiments (e.g. Wason, 1969), the reduced array selection task
(Johnson-Laird & Wason, 1970b), work on so-called fictional outcomes
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(Kirby, 1994a) and deontic versions of the selection task (e.g. Cheng &
Holyoak, 1985) including perspective and rule-type manipulations (e.g.
Cosmides, 1989; Gigerenzer & Hug, 1992), and the manipulation of
probabilities and utilities in deontic tasks (Kirby, 1994a).

Modelling the Results of Sperber et al.

We now apply the information gain account to Sperber et al.’s four
experimental studies in turn, and argue that these studies confirm
this account. The basic strategy of these experiments is to show that
in a “relevance” condition, participants consistently select the p and
not-q cards, whereas these selections are much less frequently
observed in an “irrelevance” condition, where the p, q card selection
dominates. Our approach to modelling experiments 1–3 will be to
show that in the relevance condition the materials violate rarity,
whereas they adhere to rarity in the irrelevance cases. We provide a
more quantitative analysis of the richer data obtained in Sperber et
al.’s experiment 4.

Experiment 1
Sperber et al.’s experiment 1 contrasts a relevance condition
concerning what they call the “virgin mothers” problem, with an
irrelevance condition consisting of a standard abstract selection task.
The irrelevance condition uses standard materials, and hence we
assume that the default rarity assumption applies, giving the normal
ordering: n(p) > n(q) > n(not-q) > n(not-p). This is exactly the ordering
found in Sperber et al.’s data: n(p)=25 > n(q)=11 > n(not-q)=8 > n(not-
p)=1 (N=27).

The “virgin mothers” problem employs the rule “if a woman has a
child, she has had sex”. In this rule, both the antecedent and the
consequent violate the rarity assumption, because the majority of
women have children, and the majority of women have had sex.
Therefore, we would predict that not-q card selections will exceed q
card selections leading to the overall pattern: n(p) > n(not-q) > n(q) >
n(not-p). As before, this is exactly the ordering found in Sperber et
al.’s data: n(p)=26 > n(not-q)=23 > n(q) = 2 > n(not-p)=1 (N=27).

Experiment 2
In experiment 2, both relevance and irrelevance conditions involve
contentful materials, concerning the visit to Padua of a group of
English schoolchildren. Volunteers are required to look after these
children, and there is speculation over the sex and marital status of
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people who put themselves forward as volunteers. The relevance
condition uses the rule: “if a volunteer is male, then he is married”.
The irrelevance condition uses the rule: “if a volunteer is male, then
he is dark haired”. Unlike experiments 1 and 3, it much less clear how
to assign the probabilities in this experiment, because it depends on
participants’ assumptions about the people who are likely to put
themselves forward in this type of situation. The uncertainty here is
paralleled by the uncertainty in Sperber et al.’s account of the task.
They assert that “if a volunteer is male, then he is married” is
relevant on the ground that its counter-example is lexicalised (i.e.
bachelor); and that “the most salient cognitive effect of the conditional
statement is on the presence of bachelors among the volunteers.”
Although these are perhaps reasonable speculations concerning how
participants represent the problem, these assertions do not follow from
any well-specified theory of relevance. Therefore, if the information
gain account can also provide a plausible interpretation, then it
should be favoured as an account of the computation of relevance in this
context.

We suggest that in the volunteering context, participants assume
that male volunteers will be rare (the instructions for the relevance
condition explicitly reflect this). So, we argue that rarity holds for the
antecedent in both the relevance and the irrelevance conditions. In
the irrelevance condition, the consequent is “dark-haired”, which is
presumably rare.1 Therefore, we would predict that q card selections
will exceed not-q card selections leading to the overall pattern: n(p) >
n(q) > n(not-q) > n(not-p). This is exactly the ordering found in
Sperber et al.’s data: n(p)=16 > n(q)=12 > n(not-q)=7 > n(not-p)=5
(N=19).

In the relevance condition, the consequent is “married”. Because
most people are married this violates the rarity assumption.
Importantly on the information gain account if either P(p) or P(q) is
high (or they are both high) then the expected information gain
associated with the not-q card exceeds that associated with the q card.
Therefore because P(q) is high, i.e. the materials violate rarity for the
consequent alone, the theory still predicts the ordering: n(p) > n(not-
q) > n(q) > n(not-p). As before, this is exactly the ordering found in
Sperber et al.’s data: n(p)=15 > n(not-q)=13 > n(q)=5 > n(not-p)=1
(N=17).

Experiment 3
Sperber et al.’s experiment 3 contrasts two problems about
employment. In the irrelevance condition, the rule is: “if a person is
older that 65, then this person is without a job”. Because most people
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are younger than 65, and most people are in work, both antecedent
and consequence adhere to the rarity assumption, and hence the
theory predicts the standard ordering: n(p) > n(q) > n(not-q) > n(not-
p). This is exactly the ordering found in Sperber et al.’s data: n(p)=15
> n(q)=10 > n(not-q)=9 > n(not-p)=5 (N = 20).

In the relevance condition, the rule is: “if a person is of working age,
then this person has a job”. Because most people are of working age,
and most people have a job, both antecedent and consequent violate
the rarity assumption. Therefore, the theory predicts the ordering: n(p)
> n(not-q) > n(q) > n(not-p). As before, this is exactly the ordering
found in Sperber et al.’s data: n(p)=19 > n(not-q)=17 > n(q)=6 > n(not-
p)=2 (N=20).

Experiment 4
Sperber et al. used four conditions in experiment 4 corresponding to
all possible combinations of high and low cognitive effects (Ec+/Ec-)
and high and low effort (Et+/Et-). The materials used were very
similar to those used by Kirby (1994a) and involved a machine that is
printing double-sided cards with letters on one side and numbers on
the other side. The rule used was “if a card has a 6 on the front, it has
an E on the back”. We interpret all the conditions in this experiment
as directly setting the parameters of the information gain account. In
showing how we assume that participants interpret “numbers” as
referring to the numerals (1, 2,…, 8, 9).

In the high cognitive effects and low effort (Ec+/Et-) condition
participants are told that the machine prints a 4 or a 6 on the front of
a card at random, it then prints an E on the back if there is a 6 on the
front, and an E or an A at random if there is a 4 on the front. p (6) and
not-p (4) are therefore equiprobable and so P(p)=0.5. When there is a 6
on the front there is always an E printed on the back, so the
probability of p, q is 0.5. When there is a 4 on the front then whether
an A or an E gets printed on the back is equiprobable, so the
probability of not-p, q is 0.25. Therefore the probability of q, P(q)=P(p,
q)+P(not-p, q)=0.75.

In the high cognitive effects and high effort condition (Ec+/Et +),
participants are told that the machine prints a number on the front of
a card at random, it then prints an E on the back if there is a 6 on the
front, and a letter at random if there is not a 6 on the front. p(6) is
therefore and not-p (not 6) is and so When there is a 6 on
the front there is always an E printed on the back, so the probability of
p, q is When there is another number on the front then a letter is
printed at random on the back so the 

Therefore, the probability of q,
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In the low cognitive effects and low effort condition (Ec−/Et−),
participants are told that the machine prints a 4 or a 6 on the front of
card at random, it then prints an E or an A at random on the back.
Therefore, p(6) is 0.5, not-p (not 6) is 0.5, q(E) is 0.5, and not-q(not E)
is 0.5. So P(p)=P(q) = 0.5.

In the low cognitive effects and high effort condition (Ec–/Et +),
participants are told that the machine prints a number on the front of
card at random, it then prints a letter at random on the back.
Therefore p(6) is  not-p (not 6) is q(E) is and not-q(not E) is So P
(p)= and P(q) =

In the high cognitive effects conditions (Ec+/Et−, Ec+/Et +),
participants are told that the machine has broken down but that Mr
Bianchi has now fixed it. In the low cognitive effects conditions (Ec−/
Et−, Ec–/Et +), participants are told that the machine has broken
down and that Mr Bianchi thinks that the task rule is now in force
(rather than the card faces being printed at random as they should
be). In both cases an expert informs participants that the rule is in
force. Participants should therefore assign a low value to the
probability that the independence model holds, i.e. P(MI) should be
low. We therefore set P(MI) to 0.1 and then used the parameter values
derived earlier to compute scaled expected information gains for each
card in each condition of Sperber et al.’s (1995) experiment 4.
However, in our model, the values of and in the Ec-/
Et+ condition are inconsistent. It is a constraint on our model that P(q)
> P(p), otherwise the dependence model cannot hold. A similar
problem arises for rules with negated antecedents (see Oaksford &
Chater, 1994a, pp. 617–618) and was resolved by arguing that
participants must revise P(p) down so that it is less than P(q).
Confronting the same situation, this is what we assume participants
do here and so we reset P(p) in the Ec−/Et+ condition to

Figure 15.1 shows the z-scores of (i) SE(Ig)s for each card in each
condition of Sperber et al.’s experiment 4 and (ii) the individual card-
selection frequencies they observed (as before this simply normalises
the scores on the same scale, to give a beter feel for the fit between
data and model). The fit between data and model is very good (r(14)=0.
89, p < 0.0001). This result indicates that information gain may well
provide an excellent measure of relevance in this task.

Sperber et al. (1995) go on to apply their relevance approach to
other versions of the selection task, in particular the recently much
studied deontic versions (e.g. Cheng & Holyoak, 1985, 1989;
Cosmides, 1989; Gigerenzer & Hug, 1992; Girotto et al., 1992; Griggs
& Cox, 1982; Jackson & Griggs, 1990; Johnson-Laird & Byrne, 1991,
1992; Manktelow & Over, 1987, 1990b, 1991; Rumelhart, 1980). They
argue that their approach is to be preferred because it generalises to
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these data. However, Oaksford and Chater (1994a, 1995a) also
provide a further quantitative measure of relevance based on expected
utilities that provides excellent fits to the data on the deontic selection
task. So, again, Oaksford and Chater (1994a) provide a more
compelling, formal account of relevance in this domain. 

FIG. 15.1 Comparison of the SE(Ig)s and the selection frequency for each card
in each condition of Sperber et al.’s (1995) Experiment 4. For purposes of
comparison the SE(Ig)s and the selection frequencies have been converited to
z-scores in order to normalise the scales. r(14) = 0.89 (p < 0.0001). Ec+/Et
−=High effects and low effort condition; Ec+Et+= High effects and high effort
condition; Ec−/Et−=low effects and low effort condition; Ec−/Et+=Low effects
and high effort condition.
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CONCLUSIONS

This chapter has shown that information gain can provide a
quantitative account of relevance in the selection task and that
consequently Sperber et al.’s relevance approach and our information
gain (and expected utility) approach are compatible rather than in
competition. Evans (1989, 1993) has also advocated the view that
participants select those cards in the selection task that they view as
relevant or salient. Sperber et al. suggest that Evans fails to “develop
an explicit notion [of relevance] of his own.” However, recently Over
and Evans (1994) have suggested that “epistemic utility” may provide
a quantitative measure of relevance in the same way as information
gain. It remains to be seen whether epistemic utility can be
appropriately formalised and applied to the range of selection task
results in the same way as Oaksford and Chater’s information gain
and expected utility measures. Nevertheless the goal of uncovering
suitable relevance measures now seems firmly established.

Why are relevance measures needed? The principal reason concerns
the computational intractability of current theories of reasoning
(Chater & Oaksford, 1990, 1993; Oaksford & Chater, 1991, 1992,
1993, 1995b). All current theories tacitly assume that participants
only represent the most relevant or plausible information from which
to draw inferences. In artificial intelligence (AI) the problem of
retrieving relevant information from memory in order to draw
inferences is known as the frame problem (Glymour, 1987). This
problem has bedevilled work in AI knowledge representation since the
1960s (McCarthy & Hayes, 1969). However, people do not seem to be
prone to these problems—from the vast store of world knowledge
people seem unerringly to access the most relevant and plausible
information to solve a problem or to interpret a situation. As Sperber
and Wilson (1986) identified, what linguistics and psychology requires
is a well-defined theory of relevance. As Oaksford and Chater’s (1994a)
model reveals, developing formal relevance measures may also resolve
many out-standing problems in the psychology of reasoning.

NOTE

1. One might object that the assumption of rarity for dark hair is not
appropriate for the Italian participants who took part in this study.
However, we suspect that the task instructions force an interpretation
in which dark hair is relatively rare (i.e. a particularly strict standard of
what counts as dark must be in play). This is because the task
instructions state: “Mrs Bianchi, who has strong views on many things,
says: ‘Men with dark hair love children! I bet you, if a volunteer is male,
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then he is dark haired’.” Conversational maxims suggest that utterances
such as “Men with dark hair love children!” must be informative. For
this utterance to be informative requires that most men have not got
dark hair, otherwise, very little information will be conveyed because
most men will be assumed to love children, irrespective of the
statement. This line of thought suggests an interesting possible
relationship between the pragmatic principles that relevance theory was
designed to explain, and probabilistic measures of information. It may
be that pragmatics affects reasoning via its impact on people’s
subjective probabilities.
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CHAPTER SIXTEEN
Current Developments and Future

Directions

In this chapter we consider current developments and future directions
in reasoning research suggested by the approach we have been
developing in this book. We first discuss recent empirical
developments, including new areas of human reasoning that are
susceptible to a probabilistic analysis. We also trace the relation
between our research programme and recent empirical work on
probabilisitic reasoning. Second, we look at wider theoretical issues
relating to a probabilistic account. Specifically we consider the extent
to which the probabilistic approach deals with the problems of
completeness* and tractability that framed the discussion of logicist
cognitive science in Part I. We also consider the relations between our
approach and some influential recent proposals concerning human
rationality.

EMPIRICAL EVIDENCE

In this section we describe the recent empirical evidence that is
emerging in the literature on probabilistic approaches to reasoning
and, in particular, to the selection task. We first look at two sets of
experiments on the selection task where the probabilistic effects
predicted by Oaksford and Chater (1994a, see Chapters, 10, 11, 12,
and 13) are in evidence (Oaksford, Chater, Grainger, & Larkin, 1997;
Oaksford, Chater, & Grainger, 1997). Some of these experiments
revealed unpredicted effects of “sequential sampling”, which is allowed
in the reduced array version of this task that we discuss first. We
therefore also show how the optimal data selection model may explain
these effects (Oaksford & Chater, 1998b). We then look at some recent
experiments confirming the prediction of the optimal data selection
model that people treat negated categories in the rules in the selection
task like high-probability categories (see Chapter 11). Perhaps one
problem with our approach is the apparent assumption that while
people are poor logicians they may be good probabilistic reasoners.
This assumption seems to be belied by the work of Tversky and



Kahneman (1974) showing that people are as error-prone in their
probabilistic reasoning as in their logical reasoning. We argue that
such a criticism assumes the wrong computational level of explanation
and that anyway there is recent evidence that people are far better
probabilistic reasoners than Tversky and Kahneman supposed.
Finally, we turn to some recent extensions of the probabilistic
approach to other modes of reasoning, specifically, syllogistic
reasoning and conditional inference.

The Reduced Array Selection Task

Oaksford, Chater, Grainger, and Larkin (1997) have used the reduced
array selection task (“RAST”) to test the predictions of the optimal
data selection model. In a reduced array selection task (RAST)
participants choose between the q and not-q options only (hence
“reduced array”, Johnson-Laird & Wason, 1970; Wason & Green,
1984). The stimuli in the original RAST consisted of 30 coloured
shapes. The experimenter informs the participants that there are 15
black shapes and 15 white shapes, each of which is a triangle or a
circle. The shapes are in two boxes, one containing the white shapes,
and the other containing the black shapes. On being presented with a
test sentence, e.g. All the triangles are black, participants have to
assess the truth or falsity of the sentence by asking to see the least
number of black or white shapes. In Johnson-Laird and Wason (1970),
although all participants chose some confirmatory black shapes (no
participant chose more than nine), they all chose all 15 potentially
falsificatory white shapes. Thus, where participants in effect perform
multiple selection tasks, they tend to show falsificatory behaviour.
Wason and Green (1984) report a variant on the RAST, and Girotto
and Light and their colleagues (Girotto, 1988; Girotto, Light, &
Colbourn, 1988; Girotto, Blaye, & Farioli, 1989; Light et al., 1989)
have used it in developmental studies using thematic content.

In Chapter 11 we suggested the following explanation for the basic
findings on the RAST. The RAST makes explicit that the rule applies
to a limited domain of cards or shapes that the experimenter describes
as being in a box or in a bag. The experimenter also informs
participants that in this limited domain there are equal numbers of q
and not-q instances. It follows that P(q)=P(not-q)=0.5, violating the
rarity assumption. If participants are sensitive to these
experimentally given frequencies, then this leads to a value of SE(Ig
(not-q)), which is higher than SE(Ig(q)). Consequently, optimal data
selection predicts more not-q card selections than q card selections as
is typically observed in the RAST.
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Oaksford, Chater, Grainger, and Larkin (1997) tested this
explanation of performance on the RAST by systematically varying P
(q). They used stacks of cards depicting coloured shapes on one side,
rather than boxes of coloured shapes. The numbers of cards in each
stack were varied to achieve the probability manipulation. By varying
these probabilities they showed that the proportions of q and not-q
cards selected varied in accordance with the optimal data selection
model, i.e. as P(q) falls, q card selections rose and not-q card selections
fell.

Figure 16.1 shows the results of Oaksford, Chater, Grainger, and
Larkin’s (1997) Experiment 1. The principal prediction they made was
that the discrimination between the SE(Ig)s for each card should
determine the difference in the number of q (n(q)) and the number of
not-q (n(not-q)) cards  selected, i.e. as P(q) rises so should n(not-q)—n
(q). This difference measure, which Oaksford and Stenning (1992)
called the consequent falsification index (“CFI”), is shown by the line
in Fig. 16.1. As can be seen, it increased steadily and significantly as P
(q) rose. Moreover, individual trends for the q and the not-q cards
were also observed in line with predictions of the optimal data

FIG. 16.1 The results of Oaksford, Chater, Grainger, and Larkin’s (1997)
Experiment 1. The cross-hatched bars indicate the proportion of q cards
selected in each condition and the black bars indicate the proportion of not-q
cards selected in each condition. The line connecting the filled squares shows
the consequent falsification index (CFI) in each condition. The error bars show
a single standard deviation.
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selection model. As P(q) rose, so there was a significant increase in the
number of not-q cards selected and there was a significant decrease in
the number of the q cards selected.

A possible alternative explanation for these effects is that
participants were selecting cards from the smallest stack or were
selecting cards at random. In the low P(q) condition the smallest stack
corresponded to the q card and in the high P(q) the smallest stack
corresponded to the not-q card. Consequently, a small stack bias could
explain the pattern of selections in Oaksford, Chater, Grainger, and
Larkin’s (1997) experiment 1. However, they argue that if this were
the case then participants should also select from the smallest stack if
the stacks contained just the antecedent, p and not-p, cards. But the
optimal data selection model predicts that participants should select
the p card in preference to the not-p card in all conditions. In their
experiment 2, Oaksford, Chater, Grainger, and Larkin (1997)
therefore used just these cards with the same probability conditions
as in experiment 1 but now varying P(p). As predicted, participants
selected the p card in preference to the not-p card in all conditions.
However, every theory of the selection task predicts that the p card
should be preferred to the not-p card. Although, as Oaksford, Chater,
Grainger, and Larkin (1997) point out, all other theories only
incorporate this preference post hoc. Only the optimal data selection
model shows how this preference emerges as a consequence of a formal
theory of the task. Nonetheless, to confirm further that a small stack
bias or random selection was not responsible for the results of
experiment 1, the experiment was repeated but this time having
participants select cards from equal sized stacks of cards. This was
achieved by having the experimenter deal 10 cards from different
sized packs, so although the probability information was available the
stack sizes were the same. The results of this experiment, Oaksford,
Chater, Grainger, and Larkin’s experiment 3, replicated their
experiment 1 confirming that the effects were indeed due the
probability manipulation.

There was one discrepancy between the results of experiments 1
and 3 and the predictions of the optimal data selection model. In the
medium P(q) condition, where P(q)=0.5 and hence rarity is violated,
participants tended to select marginally more q cards than not-q
cards. As Oaksford, Chater, Grainger, and Larkin point out, one
possible cause of this result could be a lack of sensitivity to probability
manipulations at the lower end of the probability scale. However,
another possibility is that sequential sampling influences participants’
selections. One possible reason for this is that in the RAST when
rarity is violated participants should only select not-q cards, which in
these experiments always had a not-p on the other side. According to
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Bayesian updating, observing just such data, i.e. not-p, not-q
instances, will allow participants to come to believe that the rule is
true. However, this is counter-intuitive. It means, for example, that
you could come to believe that “all ravens are black” simply by
observing non-black, non-ravens, e.g. pink flamingos. This is the
ravens paradox of standard confirmation theory (Goodman, 1954),
which the rarity assumption resolves (see Chapter 14). However,
when rarity is violated people may want to see at least one black
raven before coming to the conclusion that “all ravens are black”. If
the effects observed for the medium P(q) condition were the result of
sequential sampling then they should disappear for the first card
selected, i.e. participants should prefer the not-q card to the q card for
the high and the medium P(q) condition. Oaksford, Chater, Grainger,
and Larkin (1997) tested this hypothesis in their experiment 4.
Consistent with the optimal data selection model, participants made
more initial not-q card selections than initial q card selections in the
high and in the medium P(q) conditions. Consequently the effects for
the medium P(q) condition seem to be the result of sequential
sampling.

Oaksford, Chater, Grainger, and Larkin (1997) offered several
possible explanations of the effects of the medium P(q) condition. More
recently Oaksford and Chater (1998b) have proposed that a principled
solution can be derived within the optimal data selection framework.
Oaksford, Chater, Grainger, and Larkin (1997) assumed that only
prior beliefs, P(MI), in the two hypotheses (models) were revised trial-
by-trial, i.e. they assumed that P(p) and P(q) are fixed at the
beginning of the experiment and that they remain fixed throughout
regardless of sequential sampling. The participants in their
experiments were told the values of P(p) and P(q) in the form of
frequency statements and, moreover, they also had stacks of cards in
front of them that concretely reflected these frequencies. Although
these procedures may successfully encourage participants to utilise
these probabilities in their initial assessment of which card to select,
it may not, and perhaps should not, prevent them from actively
updating these probabilities when they begin to sample the actual
cards. Oaksford, Chater, Grainger, and Larkin (1997) speculated that
subjects may revise P(p) and P(q) trial-by-trial in the RAST and that
this may explain the apparent failure of the optimal data selection
model to predict the results for the medium P(q) condition.

Oaksford and Chater (1998b) make two assumptions about how
participants should update their beliefs about P(MI), P(p) and P(q).
First, people are conservative in revising their beliefs. Consequently
Oaksford and Chater (1998b) assume that participants revise their
degree of belief in a hypothesis by only a half of what Bayes’ theorem
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would recommend. So if Bayes recommended that your degree of
belief in the independence hypothesis should be revised from 0.5 to 0.
3, i.e. it should be decreased by 0.2, Oaksford and Chater (1998b)
assume that you only revise your degree of belief by half this amount,
i.e. from 0.5 to 0.4. More formally, on trial n your conservative degree
of belief in the independence model, ConsP(MI)n, is:

(16.1)
Second, Oaksford and Chater (1998b) assume that if people revise
their degrees of belief about P(p) and P(q), this is because they lack
confidence in the values they have been given. This lack of confidence
is embodied by assuming that participants regard the values they are
given for P(p) and P(q) as being based on a small sample size. This
will influence the magnitude of the effects of sequential sampling on
participants’ estimates of P(p) and P(q) (Gigerenzer, 1994). For
example, if you have seen 1000 things and 100 of them are black, then
seeing one more black thing is not going to change your degree of
belief very much, i.e. from 0.1 to 0.1009. But if you had seen ten
things only one of which was black, then seeing one more black thing
will almost double your degree of belief, i.e. from 0.1 to 0.182. So a
small sample size is more susceptible to revision than a large sample
size. Oaksford and Chater (1998b) assumed that participants base the
initial values of P(p) and P(q) on an assumed sample size of six cards.

Figure 16.2 shows the predicted sequence of card selections for the
Medium P(q) condition in Oaksford, Chater, Grainger, and Larkin
(1997). The filled diamonds show the learning curve as P(MI) → 0
after a card is selected at each trial. The open triangles show the
cumulative frequency of not-q card selections and the open squares
show the cumulative frequency of q card selections. These are the
selections dictated by optimal data selection at each trial. As can be
seen in this condition as a consequence of updating P(p) and P(q) on-
line, a point is reached where the frequency of q card selections
exceeds that of not-q selections. The reason for this behaviour is that
as participants select not-q cards their estimates of P(p) and P(q) will
go down because these are all not-p, not-q instances. Moreover,
although in the normal range P(MI) has little effect on the ordering of
SE[Ig()]s, as P(MI) → 0, it would appear that rarity becomes relaxed,
i.e. higher values of P(q) can still lead to SE[Ig(q)] > SE[Ig(not-q)]. This
factor is responsible for the prediction of long sequences of q card
selections as P(MI) approaches the stopping criterion (P(MI) < 0.01).
Figures 16.3 and 16.4 show similar graphs of the predicted trial-by-
trial behaviour in the Low P(p) and the High P(p) conditions
respectively.
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In summary, a revised optimal data selection model that allows
that during sequential sampling participants are learning both about
which hypothesis is true and about the distribution of p and q cards
seems able to model the Medium P(q) condition in the RAST. Optimal
data selection also captures the basic findings for the Low and
Medium P(q) conditions as well as predicting response alternations
that Oaksford, Chater, Grainger, and  Larkin (1997) noticed in
participants’ card selections. This account relies heavily on the
particular sequence of cards used in the RAST. Future research
should concentrate on testing different models’ predictions for trial-by-
trial effects when the structure of sequential samples are
systematically varied. In the next section we turn to some more recent
evidence regarding the status of the optimal data selection model.

Contrast Sets and Probability Effects

Oaksford, Chater, Grainger, and Larkin’s (1997) results establish that
effects of probability manipulations predicted by the optimal data
selection account are observed in the data on the selection task. The
reduced array task has, however, been regarded as an anomaly in the
literature since it was first introduced because it reveals conflicting

FIG. 16.2 Simulation results showing the predicted sequence of card
selections for the Medium P(q) condition in Oaksford, Chater, Grainger, and
Larkin (1997). The filled diamonds show the learning curve as P(MI) → 0 after
a card is selected at each trial. The open triangles show the cumulative
frequency of not-q card selections and the open squares show the cumulative
frequency of q card selections.
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results to the standard task. Consequently it is important that
probabilistic manipulations can also be shown to have the predicted
effects on the standard four card selection task. Recently Oaksford,
Chater, and Grainger (1997) have tested the predictions of optimal
data selection using a variety of probabilistic manipulations in this
task version. They systematically varied P(p) and P(q) to produce four
rule types: Low-P(p), Low-P(q) (henceforth “LL”); Low-P(p), High-P(q)
(“LH”); High-P(p), Low-P(q) (“HL”); and High-P(p), High-P(q) (“HH”).
This allowed Oaksford, Chater, and Grainger (1997) to test the
predictions of Oaksford and Chater’s (1994a) account of the negations
paradigm selection task which relied on Oaksford and Stenning’s
(1992) “contrast set” account of processing negations and which we
discussed in Chapter 11. In the negations paradigm selection task (e.g.
Evans & Lynch, 1973) the antecedent and consequent of a rule can
contain negated constituents (not-p, not-q). There are four possible
conditional rules, the original if p, then q (AA), together with if p, then
not q (AN); if not p, then q (NA) and if not p, then not q (NN). Each
participant performs a selection task for each of these four rule types.

Recall from Chapter 11 that in the negations paradigm, the cards
are normally described in terms of whether they make the antecedent
or consequent of the rule true or false, i.e. using the TA (true

FIG. 16.3 Simulation results showing the predicted sequence of card
selections for the Low P(q) condition in Oaksford, Chater, Grainger, and
Larkin (1997). The filled diamonds show the learning curve as P(MI) → 0 after
a card is selected at each trial. The open triangles show the cumulative
frequency of not-q card selections and the open squares show the cumulative
frequency of q card selections.
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antecedent); FA (false antecedent); true consequent (TC); and FC
(false consequent) labelling. The principal finding was the existence of
a matching effect whereby people select cards named in the rule and
ignore the negations. This predicts the following ordering in card
selection frequencies. For the affirmative consequent rules (if p then
q; if not-p then q) the order is TA > TC > FC > FA. For the negative
consequent rules (if p then not-q; if not-p then not-q) the order is TA >
FC > TC > FA.

As we argued in Chapter 11, the key to understanding a variety of
effects in the negations paradigm is the notion of a “contrast set”
(Oaksford & Stenning, 1992). Contrast sets provide the
interpretations of negated constituents. For example, the
interpretation of “Johnny did not serve tea” (where the word in italics
indicates the focus of a negation) is that he served a drink other than
tea. In terms of set theory, the superordinate category “drinks”
provides the universe of discourse. Contrast sets are plausible subsets
of the complement in a universe of discourse. In our example, all other
drinks less tea form the complement. When Johnny did not serve tea
it is more likely he served soft drinks rather than, for instance, scotch
on the rocks. “Soft drinks” is therefore the contrast set, i.e. a plausible

FIG. 16.4 Simulation results showing the predicted sequence of card
selections for the High P(q) condition in Oaksford, Chater, Grainger, and
Larkin (1997). The filled diamonds show the learning curve as P(MI) → 0 after
a card is selected at each trial. The open triangles show the cumulative
frequency of not-q card selections and the open squares show the cumulative
frequency of q card selections.
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subset of the complement. Background knowledge may restrict the
membership of the intended contrast set even further. So, in our
example, coffee is perhaps the most likely single contrast set member.
This indicates that a negation rarely identifies the complement, i.e.
the whole set consisting of the superordinate category less the named
constituent, as the intended contrast set. More commonly the
intention is to identify more restricted contrast sets. This behaviour of
contrast sets may explain the negations paradigm.

There is good reason to believe that P(TA) or P(TC) are greater
when they are negated. This is because the class of things referred to
by a constituent is generally smaller than the size of the contrast set
defined by its negation. For example, there are many things Johnny
could have drunk, when he did not drink tea. This behaviour of
contrast sets suggests that negated constituents can be regarded as
defining high-probability categories. This suggests the following
equivalences between the rules used in a negations paradigm and the
rules Oaksford, Chater, and Grainger (1997) investigated: AA LL;
AN LH; NA  HL; and NN HH. In Chapter 11 we modelled
negated constituents as high-probability categories and affirmative
constituents as low-probability categories. We showed very close fits
between the optimal data selection model and the data (see Fig. 11.1).
In the present experiments optimal data selection predicts that
varying high-and low-probability antecedents and consequents should
produce analogous behaviour in the selection task to varying negated
and unnegated antecedents and consequents respectively.

In Chapter 10 we argued that it is a constraint on the optimal data
selection model that P(q) > P(p), otherwise the dependence model
cannot hold (Oaksford & Chater, 1994a, 1995a; Oaksford, Chater,
Grainger, and Larkin , 1997). This constraint affects the HL rule,
which is like asserting that “if something is black then it is a raven”—
you do not need to look for evidence to know that this rule is false
because you already know that there are many more black things than
ravens! A similar problem arises for NA rules on the contrast set
account of negations (Oaksford & Chater, 1994a; Oaksford & Stenning,
1992). In order to resolve the inconsistency in being asked to test a
rule already known to be false, we argued in Chapter 11 that
participants revise P(p) down so that it is less than P(q). This means
that on the optimal data selection account an HL rule will be treated
like an LL rule in the same way as we argued in Chapter 11 that NA
rules are treated like AA rules. This aspect of the optimal data
selection account has recently been confirmed by Green, Over, and
Pyne (1997). Green et al. found that participants’ estimates of the
probability of finding a p card on the back of the not-q card,
systematically underestimated P(p) such that P(p) < P(q), even though
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in the experimental materials P(p) > P(q) and participants’ estimates
of P(q) were accurate. As Oaksford (1998) points out, this finding is
consistent with participants revising down P(p) when P(q) > P(p) as
Oaksford and Chater (1994a) suggested happened under these
circumstances.

Exploiting the correspondence between negated categories and high-
probability categories allows the following predictions to be made. We
would expect an ordering over card selections within rules analogous
to that found in the negations paradigm. So for the low P(q) rules (LL
and HL) the order is p > q > not-q > not-p, and for the high P(q) rules
(LH and HH) the order is p > not-q > q > not-p. Within cards we would
also expect more q card selections for the low P(q) rules than the high
P(q) rules, and more not-q card selections for the high P(q) rules than
the low P(q) rules. We use Oaksford, Chater, and Grainger’s (1997)
experiment 4 to illustrate their results in Fig. 16.5. In this experiment
they used abstract material very like those used in Oaksford, Chater,
Grainger, and Larkin (1997) in order to encourage participants to use
the probability information. That is, they used stacks of cards (p, not-
p, q, and not-q) to convey the frequency information and dealt one
card off each stack to create the standard four card task. Figure 16.5
reveals all the effects of probability manipulations based on the
predictions of the optimal data selection model.

FIG. 16.5 Results of Oaksford, Chater, and Grainger’s (1997) experiment 4
showing the frequency of card selections in each condition.
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Oaksford, Chater, and Grainger (1997) also used other materials
that approximated the results of experiment 4 to varying degrees.
Their experiment 1 used contentful rules the antecedents and
consequents of which were pre-tested for probability of occurrence.
Although the results for the consequent cards produced highly
significant trends in the directions predicted by optimal data selection,
the materials in experiment 1 did not lead to n(q) < n(not-q) for the LH
and HH rules. Oaksford, Chater, and Grainger (1997) argue that this
was due to the naturalistic materials that allowed participants to
redefine the reference classes against which they assessed
probabilities. For example, with reference to all foods, the likelihood
that you are consuming tea as opposed to any other food is low.
However, with reference just to all drinks, the likelihood that you are
consuming tea is far higher. In experiment 2, Oaksford, Chater, and
Grainger (1997) ruled out the possibility of redefining reference
classes by using the closed world provided by the voting behaviour of
members of Parliament. The results of this experiment were consistent
with optimal data selection—effects of both P(p) and P(q) on not-q and
q card selections were again observed. Moreover, using the closed
domain Oaksford, Chater, and Grainger (1997) now observed n(q) < n
(not-q). However, this occurred for the LH and HL rules, and not for
the HH rule. This was consistent with participants’ assessments of the
relevant probabilities for the HL rules but not for the HH rules which
participants appeared to treat like an LL rule. Oaksford, Chater, and
Grainger suggest that these effects may be due to the particular
materials they had used in this experiment and therefore in their last
two experiments they moved to using abstract materials. In their
experiment 3 they used the probability manipulations implicit in
Sperber et al.’s (1995) experiment 4 and noted by Oaksford and
Chater (1995c; see Chapter 15). They also used two levels of
relevance: the factor identified by Sperber et al. as being responsible
for leading to more responses that accord with logic in the selection
task. Although there were significant probabilistic effects as predicted
by optimal data selection, Oaksford, Chater, and Grainger (1997) also
found effects of relevance. The final experiment in Oaksford, Chater,
and Grainger (1997), as we have discussed (the results are shown in
Figure 16.5), confirmed all the effects predicted by optimal data
selection.

Contrast Sets and Matching
In their experiments, Oaksford, Chater, and Grainger (1997) have
assumed that high-probability categories should behave like negated
categories. As their experimental designs more closely resembled
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those normally used with the negations paradigm, i.e. abstract
materials and completely within subjects, so their results more closely
approximated a negations paradigm result. This is important as it
suggests a rational explanation of the matching phenomenon that we
described in Chapter 11. This phenomenon, whereby people
apparently ignore the negations in a task rule and simply match the
named item, has, perhaps more than any other effect, led to questions
over human rationality. Although we should stress that its discoverer,
Jonathan Evans (Evans, 1972; Evans & Lynch, 1973), has always
sought a rational explanation of why people do this: as we shall see,
Evans (e.g. 1984, 1989) concentrates on various interpretive
heuristics. We have shown that similar effects are obtained using
high-probability categories. However, showing that high-probability
categories behave like negated categories does not demonstrate
directly that people interpret negations in terms of contrast sets. In this
section we argue that the current evidence supports the contrast set
account and not the Evans heuristic account. First we argue that data
on the interpretation of negations in discourse support the contrast
set account and second we show that recent evidence apparently
contradicting that account (Evans, Clibbens, & Rood, 1996) needs to
be reinterpreted.

The fundamental prediction of Evans’ relevance account is that a not-
heuristic focuses participants’ attention on the named item, ignoring
the negation. This idea is based on Wason’s (1965) suggestion that the
normal discourse function of a negation is to deny a presupposition,
e.g. “the train is not late” is used to deny the presupposition that it
normally is late, i.e. the focus of attention is still on the lateness of the
train. Consequently, the central prediction of Evans’ presuppositional
account is that people’s attention remains focused on the named
constituent in the scope of a negation. However, this suggestion is not
consistent with the results of MacDonald and Just (1989). Attention is
normally interpreted as facil-itating the activation level of an
attended item’s corresponding representation. Yet MacDonald and
Just provide evidence that negations inhibit the representations of
constituents in their scope. Using a sentence probe task in on-line
sentence comprehension, MacDonald and Just (1989) found that
participants were slower to read a probe word if it occurred in the
scope of a negation in a sentence they had just read. MacDonald and
Just interpret their results to indicate that a negation inhibits the
activity levels of the representations of constituents in its scope and
hence that negation typically directs attention away from a negated
constituent. These dis-course effects are not consistent with Evans’
(1989) explanation of the not-heuristic.
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However, the effects observed by MacDonald and Just are
consistent with constructing contrast sets. It is simply not true that
negations always deny presuppositions. For example, “the train is not
late”, said ironically on the platform to a fellow traveller may well
focus attention on its normal late arrival. However, said anxiously to
the ticket seller this utterance may focus attention on your urgent
need for the train to be on time. The focusing effects of negations are
simply not uniform. According to the contrast set account negations
normally focus attention on the contrast set, i.e. consistent with
MacDonald and Just, away from the negated constituent. Within the
semantic and pragmatic literature this view of negation is known as
the “otherness theory”. This account goes back to Plato and has been
espoused by Mabbott (1929) and Ryle (1929) and more recently by
Apostel (1972). For example, “When I say ‘Mrs. Smith’s hat is not
green’ I can equivalently say ’…but some other colour’” (Ryle, 1929, p.
85); or, similarly, “psychological negation means only the disjunction
of a few [perhaps one] alternatives lying in some sense ‘close’ to the
negated sentence” (Apostel, 1972, pp. 396–397). In sum, contrary to the
not-heuristic, but consistent with the contrast set account, negations
normally focus attention away from the negated constituent (C) and
onto the relevant contrast set (Cc). In Oaksford, Chater, and
Grainger’s experiments it is the claim that, with respect to a reference
class R, P(Cc|R) is normally greater than P(C|R) that determine their
predictions.

Recently Evans, Clibbens, and Rood (1996) have argued that their
findings using explicit negations in the selection task are consistent
with the not-heuristic but not with the contrast set account. A
negation is used explicitly when its referent includes a negation. So,
for example, if I say “the card with not a 2 on it”, an explicit use would
be a card with “not 2” written on it. This contrasts with an implicit
use where the card would have, say, “7“written on it. Evans, Clibbens,
and Rood (1996) observed that explicit negations radically reduced
participants’ tendency to match in the selection task. Rather than
select the cards that match, i.e. in our example the 2 card,
participants would select the cards that are the verifying TA and TC
cases, i.e. in our example the card with “not 2” written on it. A similar
result, i.e. getting participants to select the TA and TC cards for all
four rules, has been found using thematic material by Reich and Ruth
(1982) and using binary material by Oaksford and Stenning (1992).
Oaksford and Chater (1994a) argue that such materials allowed very
constrained contrast sets to be identified such that P(Cc|R) ≈ P(C|R).
Consequently the default rarity assumption held for all rules.
However, such an account cannot explain the results of Evans et al.
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We now argue that Evans, Clibbens, and Rood’s (1996) experiments
provide little support for Evans’ heuristic account. When explicit
negations are used a very simple strategy can explain people’s
behaviour. Evans (1972; Evans & Lynch, 1973) uses “matching” to
describe ignoring the negation and simply matching the named item.
However, there is more than one way to match. Oaksford (1989)
suggested that when explicit negations are used on the instances,
participants can match the whole antecedent or consequent clause
including the negation. Let us call this the “matching2” strategy.
Evans et al. show that when using explicit negations participants
predominantly select the TA and the TC cards for all rules. This
selection is exactly what the matching2 strategy predicts because
these cards always represent the matching2 cards for all rules. That
participants resort to this strategy given such materials is of course of
little theoretical interest to understanding people’s normal everyday
reasoning behaviour. In contrast, the similar results found by
Oaksford and Stenning (1992) and Reich and Ruth (1982) without
using explicit negations, cannot be explained away by such a trivial
strategy and consequently remain of theoretical interest. It was these
results that we showed in Chapter 11 could be explained by the
optimal data selection model assuming the contrast set account of
nega tions. In conclusion, results using explicit negations on the cards
need not be taken to question the contrast set account.

Summary
There is a growing body of evidence supporting the optimal data
selection model. These data confirm that people are indeed highly
sensitive to probabilistic information and readily take it into account
in their reasoning about data selection. This of course runs counter to
the predictions of logical-based accounts of this task, like mental
models or mental logic, that insist that people are attempting, but
failing, to solve a logical task. This view lacks credibility in the light
of these results and the fact that people’s reasoning must have
adapted to cope with the uncertainty of the real world.

Probabilistic Reasoning

The approach we have taken in this book might be characterised as
arguing that although people are poor at logical reasoning they are
nonetheless good at probabilisitic reasoning. We have shown how a
probabilistic model of Wason’s selection task can be used to provide a
computational-level account that indicates that people’s behaviour is
rational, i.e. it seems to conform to the prescriptions of our model.
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However, this behaviour seems to be at odds with established results
that appear to show that people are also very poor probabilistic
reasoners (e.g. Tversky & Kahneman, 1974; Kahneman, Slovic, &
Tversky, 1982). For example, people seem to be insensitive to base
rates, i.e. in applying Bayes’ theorem people often provide estimates
of posterior probabilities that seem to reflect only the likelihoods and
not the priors. People also seem to be over-confident in their
probability judgements, i.e. they do not seem to be well calibrated to
the actual frequencies of events in the world. Moreover, people also
seem prone to the conjunction fallacy. That is, they violate the
probabilistic law that the joint probability of any two events cannot be
greater than either individual event, i.e. P(A) ≥ P(A, B) ≤ P(B).

There are two points to make here. First, our account of optimal
data selection is framed at the computational level, i.e. it
characterises what is being computed not how. That people’s behaviour
well approximates the norm provided by optimal data selection, which
is thereby descriptively adequate, does not necessarily mean that
people are doing complex probabilistic computations in their heads. As
we argued in Chapter 13, they could approximate the norm by a small
set of hard-wired heuristics (Gigerenzer & Goldstein, 1996). To the
extent that this is the case we would expect people to be relatively
insensitive to probabilistic manipulations (see Oaksford, Chater,
Grainger, & Larkin, 1997). However, we have seen in the last section
that people are sensitive to a variety of probabilistic manipulations in
the selection task. Consequently it would appear that people may be
performing some form of rudimentary probabilistic calculations.
Again, these may bear no direct relation to the explicit manipulation
of probability values using the rules of probability theory represented
in our model. For example, later we introduce recent interpretations
of neural networks as mechanisms for Bayesian inference. However, if
people are responding appropriately to probabilistic manipulations
then this behaviour does seem inconsistent with their systematically
falling into error on probabilisitic reasoning tasks.

Our second point then is that according to recent analyses many of
the apparent errors and biases observed in probabilistic reasoning are
a consequence of presenting the probabilistic information in an
unnatural format (Gigerenzer & Hoffrage, 1995). Most often in
experiments of this type people are given the probabilistic information
in terms of explicit probability statements or percentages, e.g. 0.05 or
5%. However, Gigerenzer and Hoffrage (1995) argue that this is
unnatural given the normal sampling situation where we build up
frequency information as a result of multiple encounters with objects
and events. What you discover by such a process is, for example, that
something like 95 out of the 100 ravens you have examined are black.
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Mathematically this information can be expressed as 95% of ravens
are black, or the probability of a bird being black given it is a raven is
0.95. However, this loses information about sample size (see our
discussion of sequential sampling) and moreover, it seems
unnecessary to make this conversion of the information format.
Gigerenzer and Hoffrage suggest that if people naturally represent
frequencies then presenting probabilistic information in this form
should facilitate reasoning. We illustrate research showing that
Gigerenzer and Hoffrage appear to be correct in the three areas where
biases have been observed and which we introduced earlier.

Experiments revealing base rate neglect usually present the
information as follows, using the mammogram problem:

A 30-year-old woman discovers a lump in her breast and goes to
her doctor. The doctor knows that only 5% of women of the
patient’s age and health have breast cancer (C). A mammogram
(breast x-ray) is taken. It indicates cancer 80% of the time in
women who have breast cancer but falsely indicates breast
cancer in healthy patients 20% of the time. The mammogram
(M) comes out positive. What is the probability that the patient
has cancer?

Most participants in an experiment such as this give estimates that
the woman has cancer given a positive mammogram of around 0.8,
which appears to ignore the prior that most women of her age, i.e. 95%
do not have breast cancer. However, a simple change in the
instructions reverses this finding:

A 30-year-old woman discovers a lump in her breast and goes to
her doctor. The doctor knows that only 5 out of every 100 women
of the patient’s age and health have breast cancer (C). A
mammogram (breast x-ray) is taken. For 80 out every 100 women
who have breast cancer it gives a positive result. The
mammogram (M) comes out positive. What is the probability
that the patient has cancer?

Gigerenzer and Hoffrage argue that the frequency information also
allows a simpler version of Bayes’ theorem to be used, hence reducing
cognitive load.

In discussing over-confidence, Gigerenzer points out that like is not
being compared with like. People are typically asked a series of
general knowledge questions and are asked to rate their confidence in
each answer. To determine over-confidence, their average confidence
rating is compared with the frequency of correct answers. That is,
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people are asked repeatedly about their beliefs in single events, and
then their average performance on this task is compared with their
relative frequency of correct answers. Gigerenzer observes that these
can be independent judgements. To test whether over-confidence
arises when like is compared with like, at the end of the task
Gigerenzer also asked people to estimate their relative frequency of
correct answers. Comparing their estimates with their actual
frequency of correct answers revealed no evidence of over-confidence.
That is, when like is compared with like, people seem well calibrated
in judging their own likelihood of success.

The conjunction fallacy seems also to emerge because of the
unnatural presentation of probabilities. People are typically given
information such as:

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned
with issues of discrimination and social justice, and also
participated in anti-nuclear demonstrations.

They are then asked to estimate the probability that (i) Linda is a
bankteller, and (ii) Linda is a feminist bankteller. People typically
estimate (ii) as more likely than (i), violating the conjunction rule.
However, if people are asked this question using a frequency format
such as: There are 100 people who fit the description; how many of
them are: (i) bank tellers, (ii) bank tellers and active in the feminist
movement, then they do not estimate (i) as less likely than (ii),
conforming to the conjunction rule.

In summary, it would appear that people are not as bad at
probabilistic reasoning as the evidence from the heuristics and biases
programme had led us to believe. Moreover, as we have noted already,
the theoretical accounts of reasoning we have discussed do not require
that people possess quanti tatively accurate probabilistic reasoning
abilities. Thus, any apparent tension between the probabilistic
approach to the rational analysis of reasoning that we advocate and
experimental data on human probabilistic reasoning is illusory.

Extending the Probabilistic Approach

We are currently extending the probabilistic approach to a variety of
other argument forms, e.g. syllogistic reasoning and conditional
reasoning.
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Syllogistic Reasoning
Syllogistic reasoning involves two quantified statements of the form,
All X are Y (A), No X are Y (E), Some X are Y (I), or Some X are not Y
(O). Some combinations of premises yield logically valid conclusions,
e.g. All X are Y, All Y are Z (AA) yields the logically valid conclusion,
All X are Z; others do not, for example, No Y are X, Some Y are not Z
(EO), has no valid conclusion. If people were reasoning logically then
they should be able to draw all and only the valid conclusions
indicating that nothing necessarily follows from the invalid syllogisms.
However, people have graded difficulty with drawing the valid
syllogisms. Moreover, they make systematic errors on the invalid
syllogisms, offering conclusions where none follows.

Chater and Oaksford (1997) adopt a probabilistic approach to
syllogisms, arguing that people use their knowledge of the
informational strength (probabilistically defined) of premises to guide
conclusion construction. It turns out that the most informative
conclusion that can follow from a syllogism is given by the least
informational premise. Moreover, for most valid syllogisms the least
informational premise also provides the form of the conclusion. Thus
selecting the form of the least informational premise as the form of
the conclusion will usually produce a valid conclusion if there is one.
If this strategy is over-generalised it can also explain the systematic
errors made on the invalid syllogisms. Consequently we can show that
a very simple strategy can explain syllogistic reasoning performance.
Moreover, this probabilistic account has the advantage that not only
can it explain the data from the 64 syllogisms that use the standard
logical quantifiers (as we have seen), it also extends naturally to the
144 syllogisms that result from combining these with the generalised
quantifiers (Barwise & Cooper, 1981), Most and Few, which have no
logical interpretation.

Conditional Inference
Conditional inferences, like the everyday examples with which we
introduced this book in Chapter 1, involve two premises, one
conditional, If A then B, and one categorical, either, A, not-A, B, or
not-B. For example, given If A then B, and not-A, people are asked to
say whether not-B follows. Endorsing this argument is to endorse the
logical fallacy of denying the antecedent (DA). Interesting biases arise
when negations are used in the conditional premise, e.g. If not-A, then
not-B, and not-A, therefore not-B is an instance of the valid inference
form modus ponens (MP). Evans observed a bias towards accepting
conclusions containing a negation, like the MP inference just
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described (using a different rule an affirmative conclusion follows by
MP, e.g. If not-A, then B, not-A, therefore B).

This effect, which Evans, Newstead, & Byrne (1993) call negative
conclusion bias, may have a straightforward explanation, on the
assumption that people endorse arguments to the extent that the
conditional probability of the conclusion given the categorical premise
is high (Oaksford, Chater, & Larkin, 1997). This will depend on the
probabilities of A and of B and on the conditional probability relating
the two. So if we look at DA the conditional probability that needs to
be high is P(not-B|not-A). The probability of a negated category is
higher than an affirmative category (Oaksford & Chater, 1994a;
Oaksford & Stenning, 1992), for example, the probability that you are
not drinking whiskey as you read this chapter is higher than the
probability that you are. To illustrate very simply how negative
conclusion bias could arise, let us assume that you believe the rule is
false. On the account of Wason’s selection task outlined earlier, this
means that you believe that A and B are independent. Consequently P
(not-B not-A)=P(not-B), i.e. you should endorse the DA inference if the
probability of the conclusion is high. And because negated conclusions
have a higher probability than affirmative conclusions, the former
should be endorsed more often.

So the probabilistic rational analysis that we developed for the
selection task appears to carry over relatively directly to conditional
reasoning. Moreover, we saw in the previous section that it provides a
promising theoretical direction for research on syllogistic reasoning.
This raises the apparently paradoxical possibility that explaining all of
the key experimental paradigms for studying human deductive
reasoning requires viewing people’s performance as approximating to
probabilistic rather than deductive inference. In short, people reason
probabilistically even when faced with what the experimenter intends
to be a deductive reasoning task. This possibility seems independently
plausible in the light of the uncertainty of everyday reasoning that
has been a theme of this book. Reasoning strategies are adapted to
deal with uncertainty in everyday life—and therefore these strategies
are likely to be carried over by people into laboratory settings. Thus,
paying closer attention to everyday reasoning may provide the key to
giving a detailed analysis of laboratory performance.

RATIONALITY RECONSIDERED

We have argued that apparently irrational behaviour on laboratory
tasks, in particular on Wason’s selection task, may, nonetheless, be
given a rational analysis. In this way, we have argued that, on the
right conception of rationality, people are rational both in everyday
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life and in the laboratory. This reaffirmation of human rationality is
reassuring—because if our own rationality cannot be presupposed,
then it seems inevitable that we must accept complete and
devastating scepticism about the possibility of argument,
interpretation of evidence, and consequently about our ability to have
knowledge about the world or each other. But, although reassuring,
this reaffirmation of rationality from the perspective of probability
theory raises a number of difficult and controversial theoretical
issues. Specifically, we reconsider the constraints of completeness*
and tractability, which, we argued in Part I, logicist approaches are
unable to meet. To what extent can probability theory capture the
intuitions underlying everyday human inference? To what extent can
probabilistic calculations be implemented in a tractable way? We then
consider the possibility that rational norms may be dispensable in an
account of reasoning—arguing that this viewpoint appears to leave
the adaptiveness of human thought completely unexplained. Finally,
we consider the possible origins of human rationality—what
connections might there be between rationality, adaptation, and
evolution?

Completeness*: Probability and Human Uncertain
Inference

A complete* theory of inference would provide a full rational analysis
of human inferential intuitions and judgements. Of course, this does
not mean that it would precisely predict every piece of human
reasoning—because such a rational analysis may only be
approximately implemented in the cognitive system (we shall consider
questions of implementation in the next section). But a complete*
theory would provide a full explication of human rationality. Put in
these terms, it is clear that completeness* is a very strong criterion
indeed. Logic fails at the outset because it is a calculus of certainty,
whereas almost all of human inference is uncertain; probability is at
least a calculus of uncertainty. But how far does this take us to
towards a complete* theory of reasoning?

There is a superficially plausible line of argument that probability
theory, despite its remarkable simplicity, is complete*. In order to
make sense of probability theory as a general theory of reasoning, we
must adopt a subjective interpretation of probabilities—probabilities
express degrees of belief about possible states of the world. According
to the subjective interpretation, stating that the probability of a coin
falling heads is 0.5 means that I have a 0.5 degree of belief that it will
fall heads; similarly, with respect to the probability of it falling tails.
Thus, P(Heads)=P(Tails)=0.5 expresses the fact that I believe that the
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coin will fall heads and tails to an equal degree. In particular, the
statement involves no assumption that the coin is “unbiased”. Thus, if
I am told that the coin is biased, but not in which direction, the
probabilities expressing my degrees of belief in each outcome will
remain unchanged. This example, of a coin with a known bias of an
unknown type, nicely illustrates what is distinctive about the
subjective interpretation of probability and why it is appropriate as a
starting point for a rational analysis of reasoning. The subjective view
captures the fact that a reasoner has no evidence to believe in one
outcome more than the other, even once the fact of a bias is known.
But according to non-subjective views of probability, the bias,
although unknown, introduces an asymmetry between the
probabilities of each outcome. Thus, according to the frequentist
interpretation (e.g. Von Mises, 1939), where probabilities are viewed
as limiting frequencies in an imaginary experiment in which the event
of interest (here, the coin toss) is endlessly repeated, the side in favour
of which the bias operates, has a higher probability—because it will,
in the long run, occur more frequently in the imaginary experiment.
Similarly, according to the propensity theory (e.g. Mellor, 1971),
according to which probabilities are properties of coins and other
objects in just the same way as mass and volume, a higher probability
is assigned to the side on which the coin has a propensity to fall.
Thus, non-subjective views allow differences in probability which are
not known to the reasoner—and hence, such interpretations are not
appropriate if the goal is to use probability theory as the basis for a
theory of reasoning. By contrast, the subjective interpretation views
the very meaning of probability in terms of the reasoner’s beliefs. (Of
course, non-subjective interpretations of probability may be most
appropriate interpretations of probability theory in some contexts.)

Accepting the subjectivist view, we assume that beliefs are, in
general, associated with probabilities that express the degree to which
they are believed. There are, of course, constraints on what sets of
beliefs are appropriate. For example, if I associate A with probability
0.5, then I should associate not-A with probability 0.5; and A and B
with a probability between 0 and 0.5; and so on. These constraints can
be turned into a theory of how people should reason with
probabilities. Specifically, there has been a wide variety of arguments
that purport to show that individual degrees of belief should obey the
standard laws of the probability calculus that have been developed,
based on betting quotients and “Dutch book” arguments (de Finetti,
1937; Ramsey, 1931), theories of preferences (Savage, 1954), scoring
rules (Lindley, 1982), and derivation from minimal axioms (Cox, 1946,
1961; Good, 1950). Although each argument can be challenged
individually, the fact that so many different lines of argument
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converge on the very same laws of probability has been taken as
powerful evidence for the view that degrees of belief can be
interpreted as probabilities (see e.g. Earman, 1992; Howson &
Urbach, 1989; for discussion). The suggestion that probability theory
can be viewed as a normative theory of uncertain reasoning sets the
bounds of probability theory much wider than the confines in which it
is frequently encountered in introductory textbooks. According to this
view, probability theory is not just concerned with reasoning about
coins, but is a general calculus for rational thought.

These arguments for the normative correctness of the laws of
probability theory appear to imply that probability theory may,
despite its simplicity, constitute a complete* theory of human
uncertain inference. The story appears to be: assume that knowledge
is encoded by a set of beliefs associated with probabilities; and assume
that inference can proceed by the application of the laws of probability.
This appears to give a general approach to uncertain inference—and
thus, potentially, to meeting the completeness* criterion.

In reality, however, matters are not so simple for two reasons. First,
it is not clear how to encode knowledge in terms of probabilities, as we
shall see—particularly when there are infinitely many options to
choose between, or where there are options that have simply not been
considered at all. Second, from the perspective of successfully guiding
the cognitive system, it is crucial that probabilities are not merely
internally consistent (which is all that we have considered so far in
describing the subjective interpretation), but also that these
probabilities are somehow appropriately connected to the real world.
With these issues in mind, we now briefly consider some ways in
which probability is incomplete* as a theory of uncertain reasoning,
and approaches to overcoming these limitations.

Probability Theory and Capturing Everyday Inference
Imagine you arrive home to find that the front door of your house has
been broken open. Various possible explanations might spring to mind
— perhaps you have been burgled; perhaps a relative has locked
themselves out and had to break in; and so on. To apply a probabilistic
analysis, we require prior probabilities for each possibility. But where
are these to come from? Past experience can only be applied very
indirectly, particularly if you have never been burgled before. But by
using past experience, one is not really assigning prior probabilities at
all—we are deriving probabilities from other knowledge (e.g. the
prevalence of burglary in the area, whether any relatives are staying
in the house). But this just pushes the problem of assigning priors
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back one step further—what probabilities are assigned to these
beliefs, and how were they derived? An infinite regress threatens.

Now let us consider the evidence at the scene. Noticing that the
television is missing from its usual location might appear to be
evidence for the burglary hypothesis. Thus, making this observation
might reasonably be expected to increase whatever prior probability is
initially assigned to this possibility. But what prior specifies that
missing televisions increase the probability of burglary? This
knowledge, too, is presumably derived from more basic information—
e.g. that burglars aim to steal things such as televisions, and (for that
matter) that stolen televisions are no longer located in the house from
which they are stolen. Notice that this knowledge must interact
appropriately with other information that may be present—if it is
recalled the television has been taken to the shop for repair, then
noticing that it is missing gives no evidence whatever in favour of the
supposition that a burglary has taken place. Appreciating that this is
so requires further knowledge (e.g. that televisions are not returned
by the shop, but await collection; even that televisions cannot be in
two places at once, and so on). Thus, interpreting a piece of evidence
requires a wealth of background knowledge; and each piece of
background knowledge appears to presuppose a wealth of further
background knowledge.

In short, where are the priors from which inference can begin? Each
piece of information to which we would like to assign a prior appears
to depend on other pieces of information—hence its probability must
be calculated rather than specified a priori. This connects with what
Fodor (1983) called the isotropy and Quineanness of world knowledge
that we discussed in Part I. Isotropy is the property that all world
knowledge is interconnected, however indirectly. Isotropy implies that
attempting to assign a prior to any piece of world knowledge, we will
instead be forced to view the probability associated with that
knowledge itself—the search through the network of world knowledge
for pieces of information for which genuine priors can be associated
will never stop! But if the justification for (and hence the subjective
probability of) each piece of knowledge depends on the others, then it
seems that priors can never be assigned, and probabilistic inference
can never begin. Quineanness merely compounds the problem. The
Quineanness of world knowledge, in probabilistic terms, is that
probabilities cannot be assigned to pieces of knowledge one by one—
rather they can only be assigned to entire systems of belief, and only
then to the individual pieces of knowledge of which those systems are
made up. Thus, we cannot assign a probability to a burglary in
isolation without considering entire accounts of the events that may
have taken place and, in view of the connections between these
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accounts and the rest of world knowledge stemming from isotropy,
entire systems of belief about the world.

The moral is that probability theory alone does not provide a theory
of everyday reasoning—let alone a complete* theory of everyday
reasoning. The deep problems faced by cognitive science and artificial
intelligence in attempting to formalise everyday inference with logical
methods still apply when probabilistic methods are used.
Nonetheless, there are a number of interesting directions within a
probabilistic framework, which may move towards developing
probabilistic accounts of everyday inference.

One approach is simply to ignore these deep problems, and to use
idealised small-scale models of reasoning about particular domains.
In artificial intelligence, this is the approach adopted in developing
probabilistic expert systems (e.g. Pearl, 1988), which we consider
briefly later. The hope is that, in practice, we can simply assume certain
background knowledge to be given, and to consider what follows from
it using probabilistic methods. Indeed, this is the general approach of
applied probability theory throughout science—idealisation
assumptions are made about the world, and to the extent that these
hold, and other factors can be ignored, such probabilistic analysis can
be extremely valuable. In psychology, similarly, sweeping prior
assumptions can be made and used to derive predictions according to
the laws of probability—a great deal of work in the rational analysis
paradigm (e.g. Anderson, 1990, 1991a) including our work on the
selection task outlined in Part II of this book, takes this pragmatic
strategy. Thus, the difficult questions of the origins of knowledge are
evaded; but specific accounts of aspects of the knowledge in particular
domains and the way it is used can be formulated.

In conjunction with this first pragmatic approach, there has been a
great deal of research across a range of disciplines concerning how
knowledge should be represented and used in probabilistic inference—
this work may inform the development of rational analyses of human
inference.

One important research area, for example, aims to address the fact
that in almost all real-world inference problems, only very partial
probabilistic information is available. To take a famous idealised
example (e.g. Jaynes, 1989), suppose that we learn only that the
average score when a die is thrown is abnormally high (e.g. 4.5,
whereas a “fair” die would average 3.5), what probabilities should we
estimate for the individual faces of the die? Intuitively, 5 and 6 would
seem to receive an increased probability; 1 and 2 would seem to
receive a decreased probability. But what is the justification for this
inference; and how might it be justified? The most widely accepted
solution to this problem is that we should assign the probabilities so
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as to make the minimal possible assumptions about the die—in the
sense that the maximum uncertainty concerning how it will fall is
maintained, consistent with the given average. This is known as the
principle of maximum entropy (Jaynes, 1989) and has been widely
applied in practical problems in science as well as used as a principle
in artificial intelligence (Paris, 1992). Under specified problems of this
kind are not merely mathematical curiosities—almost all everyday
inference problems seem to be drastically under-specified in this way
(Osherson, Shafir, & Smith, 1993; see also, Over & Jessop, 1998, who
propose an application of maximum entropy in the selection task).
Thus, in assessing the likely cause of the burglary, we may take
account of the fact that crime is particularly high in the
neighbourhood—but this is only relevant given that this general
knowledge can be converted into a probability concerning the relevant
sub-case: crime in which doors are broken open—i.e. only those that
are consistent with the evidence. Specific information about this sort
of crime is not available— only information about general prevalence;
this is analogous to knowing only the average sum of the die, but
needing to make inferences about a specific sub-case: e.g. the
probability that it will show a “5”. Moreover, of course, the specific
sub-case is even more specific—this particular putative crime occurred
at a particular type of house, with a certain degree of visibility to the
neighbours, during a certain time period, and so on. General
knowledge about the effects of these factors is not sufficient to specify
the resultant probability that a crime has occurred, because it is not
clear how these factors interact in the specific case. A principle such
as maximum entropy is required to fill in the gaps between general
knowledge and its specific application.

Another way in which knowledge is typically under-specified is in
terms of prior probabilities. In scientific applications of probabilistic
methods, estimating, for example, a physical magnitude such as the
mass of a star requires specifying some prior distribution concerning
what values this magnitude might have. Frequently, it is completely
unclear how this prior should be set. Similarly, in cognitive contexts,
it is equally unclear what priors should be assigned to alternative
explanations—even given world knowledge. The principle of maximum
entropy can also be applied in this context—the prior that is the least
informative is chosen—although in the context of continuous
distributions, there is the apparently paradoxical consequence that
the recommendation of the maximum entropy principle (and many
other criteria) depends on the choice of measuring unit. A range of other
standard criteria for determining priors are also possible, such as
“non-informative” priors (Box & Tiao, 1973) and minimum message
length priors (Wallace & Boulton, 1968; Wallace & Freeman, 1987).
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Setting of priors of this kind is typically crucial if specifying a
probabilistic account of cognition—thus, for example, Anderson’s
(1990, 1991a) rational analyses rely extensively on a particular kind
of non-informative prior, the “Dirichlet” prior.

The problem of setting priors is more problematic when considering
how to apportion prior probability between entire classes of model,
rather than merely assigning priors to a particular magnitude or
parameter in a single model. Most classical statistical methods
familiar in the behavioural sciences (e.g. those based on the
generalised linear model, such as the ANOVA, linear regression and
so on) take a particular type of statistical model for granted, and do
not deal with the question of how models can be compared (except in a
relatively ad hoc way). In such methods, the class of models is
presupposed (e.g. the relation between input and output variables is
linear, quadratic or whatever)—the goal of inference is to decide, for
example, what is the slope and intercept of the linear relationship. In
the context of everyday reasoning, this framework is too restrictive,
because everyday reasoning typically involves deciding between
qualitatively different types of explanation of the data—that is,
entirely different classes of model. But over the last 40 years,
statistical methods have been generalised to the problem of comparing
different classes of model, using concepts such as the VC-dimension
(see e.g. Vapnik, 1995) and minimum description length (MDL)
(Rissanen, 1987, 1989). Of these, the latter approach is perhaps the
most straightforward to explain, as well as the most psychologically
attractive. The principle is that alternative explanations should be
compared with respect to the brevity with which they allow the data
to be encoded in some description language. Thus, we define an
“explanation” of the data to be a way of reconstructing that data—and
we favour the shortest explanation. This principle is strongly
reminiscent of the simplicity principle in perceptual organisation
originated by the Gestalt psychologists, and it nicely captures the
ubiquitous intuition in everyday and scientific reasoning that simple
explanations are to be preferred (see Chater, 1997a, 1997b, for
discussion). Moreover, the principle of favouring short description
lengths can also be viewed as a principle of assigning highest
probability to the simplest explanation—specifically, description
lengths are associated with log-probabilities. Thus, a choice of
description language can be viewed as automatically inducing a prior
probability distribution over all hypotheses, explanations, and data
that can be expressed in that language—they are assigned a prior
probability dependent on the length of the shortest encoding that they
have in that language. This remarkably simple approach to setting
priors and to inference under uncertainty is also backed up by a rich

292 RATIONALITY IN AN UNCERTAIN WORLD



mathematical theory, based on Kolmogorov complexity theory (Li &
Vitányi, 1997).

The MDL principle also promises to help tackle, at least at a
conceptual level, the deep problems raised by the isotropy and
Quineanness of general knowledge. The principle can be applied to
entire systems of belief, where the data to be explained are, in Quine’s
phrase, the entire tribunal of experience. The system of belief that
provides the shortest description overall should be favoured.
Quineanness is respected because the entire belief system is assessed
together; and isotropy is respected because the inferential relations
between different parts of the system of beliefs can be arbitrarily rich.
Moreover, this avoids the problem of having to face the apparently
endless search for propositions to which genuine priors can be
assigned—because prior probabilities may be associated with entire
belief systems at a stroke. But although theoretically attractive, the
MDL principle is bedevilled by the fact that finding the shortest code
length for a given set of data is provably not merely computationally
intractable (like the logic-based approaches to uncertain inference
that we discussed in Part I) but provably uncomputable—i.e. the
shortest description length cannot be found even aside from
restrictions of computing speed. Nonetheless, the MDL principle may
be a useful contribution to the rational analysis of human uncertain
reasoning because it provides a simple objective that the cognitive
system may follow: choose the simplest possible explanation of what is
known that the cognitive system can find.

Independence and Relevance
In representing knowledge in probabilistic terms, whether in building
rational analyses of thought or in any other application, perhaps the
most crucial issue concerns the structural relationships between
pieces of information. Does learning A raise or reduce the probability
of B, or are A and B independent? How does the answer to this
question change if C is known; or if D can be ruled out? What if E is
also known? These questions are fundamentally qualitative in
character—what is critical is the general form of the dependencies
between pieces of information, rather than the actual numbers
involved (Pearl, 1988). From the point of view of the cognitive system,
this suggests that the structural relationships between propositions
may be cognitively fundamental, rather than numerical calculations.

How can these structural relationships be expressed? One
important recent development (e.g. Pearl, 1988) is the development of
graphical models to express the dependencies between propositions.
The idea is that pieces of information can be viewed as nodes in a
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graph, in which the edges of the graph represent dependencies. Thus,
an entire system of knowledge can be viewed as a network of nodes
and links capturing the relations between them. So, in this notation,
if there is no path of edges connecting two pieces of information, A and
B, then they are independent (P(A)=P(A, B)). If the only path between
A and B is via C, then the two are conditionally independent, given

 —that is, if we know C, then learning A
tells us nothing about B and vice versa. A rich range of dependencies
can be expressed in these terms—which makes the structural
relations between factors explicit. In particular, “hidden variables”
may be introduced, to capture complex dependencies—these
correspond to nodes concerning pieces of information about which no
immediate knowledge is available, but which may be postulated to
explain dependencies between pieces of information about which
knowledge is available. Furthermore, these graphical structures may
include a “direction” associated with each link, representing the
direction of causality (see Glymour & Cheng, 1998, for an application
of these ideas to causal inference); there are learning algorithms for
such structures, which can be very directly related to neural network
learning algorithms.

In short, a rich field of inquiry concerning the probabilistic
representation of dependencies between knowledge is emerging. We
may hope that future research in the psychology of reasoning and
knowledge representation may be able to apply some of these ideas.
Certainly existing research has recognised the fundamental
importance for the cognitive system of finding dependencies and
recognising independence—frequently under the heading of relevance.
But, as we discussed in Chapters 4, 5, and 15, relevance is frequently
taken as a given, or explained in circular terms; and in developing
rational analyses, theorists are forced to makes sweeping assumptions
about what depends on what, so that theorising can begin. We may
hope that future research, using recent technical developments
sketched here, may lead to a more fundamental understanding of this
crucial aspect of cognition.

Summary
We hope in this section to have shown that although probability
theory does not constitute a complete* theory of human everyday
inference it offers a promising direction for future research. There is a
wealth of profound issues that have not been addressed successfully in
either the logical or the probabilistic framework, stemming from the
incompleteness of the knowledge on which probabilistic inference
must be based. Mere internal consistency in accordance with the

294 RATIONALITY IN AN UNCERTAIN WORLD



probabilistic axioms is not, therefore, enough to give a rational
analysis of human thought. But recent technical research, some of
which we have briefly sketched here, does give rise to promising
possible directions for future research. To provide an adequate
rational analysis, of course, it must be possible to explain how the
cognitive system deals with the incompleteness of the available
knowledge in a way that is both normatively and descriptively
adequate. On the normative side, whatever principles are used,
whether drawing on maximum entropy, minimum description length,
or applying graphical models, must be justifiable—it must be possible
to explain why they lead to good inference. Here, the literature in
statistics, computational learning theory, and philosophy of science, as
well as the degree of success of practical applications based on these
methods, may be drawn on to assess the justification for these methods.
On the descriptive side, they must capture the empirical data. Here,
we must rely first on qualitative fits between the behaviour of such
models and common sense, which is the object of study; and the ability
of specific rational analyses based on these principles to explain
empirical data. This will require not only capturing existing cognitive
psychological data, but also developing experimental paradigms for
the systematic investigation of how people reason with incomplete
information (Osherson, Shafir, & Smith, 1993). Developing rational
analyses of everyday reasoning with incomplete information which
can meet these criteria presents a major challenge for future research
not just for the study of reasoning but for the cognitive sciences in
general. The project is immensely difficult but of fundamental
importance to understanding the nature of human rationality. 

Tractability: Constraints on Rational Mechanisms

The move to rational analysis leaves open the possibility that people
approximate the rational model using cheap, fast, and frugal
heuristics rather than a full-scale, and possibly intractable
implementations of a probabilistic account of knowledge
representation and reasoning. This may give considerable scope to
resolving some of the problems of intractability that we discussed in
Part I. Moreover, it is in the spirit of recent approaches in psychology
(Gigerenzer & Goldstein, 1996) and in artificial intelligence (e.g.
Brooks, 1991) that much of human reasoning and decision making is
achieved by crude tricks. Perhaps one problem with this approach is
that the flexibility in response to probabilistic manipulations revealed
in our experiments seems to argue for more general systems of
knowledge representation and reasoning that are responsive to quite
subtle changes in information. This of course leads to the problems we
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discussed in the last section. In reality it is likely that the cognitive
system combines cheap heuristics with some limited general
inferential capacity. Consequently it makes sense for us to consider the
tractability of general models for probabilistic inference. Here we will
see that issues of computational tractability are still a pressing
concern.

In Part I of this book, we attacked logic-based approaches to
cognition, and in particular non-monotonic logics, because of their
computational intractability. But switching from logic to probability
theory does not solve the problem of tractability. In the general case,
probabilistic calculations are typically computationally intractable.
Suppose that we have n binary variables—then there will be a
probability that is associated with each of the 2n combinations of these
variables. So just listing these possibilities requires exponential
memory, and calculating with them will require exponential time—
i.e. such calculations will be computationally intractable. Thus the
transition from logic to probability appears to have gained little
regarding tractability, even though it may represent significant
progress regarding completeness*.

But the general case is also the worst case; when strong
independence assumptions can be made, so that, for example, the
probability distribution over the n variables can be compactly
represented in graphical form, as described earlier, then the number of
pieces of information to be stored is radically reduced (to, essentially,
probabilities associated with each node and each link between nodes),
and much more efficient probabilistic calculations can be made over
such networks. Moreover, such networks can, in principle, run on what
may be a computationally plausible parallel, distributed “neural
network” computational architecture (Feldman & Ballard, 1982;
Rumelhart & McClelland, 1986), where nodes of the graph correspond
to numerical processors, and the edges of the graph correspond
to communication links between processors. Thus, as we noted earlier,
probabilistic models can be mapped onto neural network methods.
Moreover, the connection between probabilistic and neural network
models can be run in reverse—broad classes of neural network model
can be interpreted as specifying particular classes of probabilistic
models (see, for example, Chater, 1995; MacKay, 1992b, 1992c;
McClelland, 1998; Neal, 1993, for discussion of this connection). All
this is reassuring—probabilistic methods, although generally
intractable, may be more tractable in specific cases, and moreover can
run naturally, and in parallel, in neurally plausible hardware.
Moreover, the connection with neural networks is reassuring because
neural networks are demonstrably implementable, and demonstrably
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successful in learning interesting classes of problems relevant to
cognition.

We stress, however, that optimism regarding the tractability of
probabilistic models of the mind must be cautious for two reasons.
First, neural networks themselves face problems of tractability as
they are scaled-up in size (Dagum & Luby, 1993). For example, the
settling time (roughly, the time in which the probabilities of interest
can be reliably “read off’ the model) for a network corresponding to a
graphical probabilistic model increases explosively with the number of
nodes and training items. Moreover, learning the probabilities in such
models from experience (“training” in neural network terminology) is
also, in general, intractable. We have already noted that the general
learning problem, at least according to the MDL principle is not
merely intractable but uncomputable. Second, neural networks face a
problem of scaling up along a different dimension—of the complexity
of the knowledge represented. This is the notorious problem of
implementing structured representations in neural networks, which
we touched on in Chapter 2. Structured representations do not
represent propositions as indivisible atoms, but display their internal
structure—thus, in standard predicate logic, a representation of the
statement All artists are beekeepers,   beekeeper(x)), reveals the
internal structure of the proposition in a way that representing it as
an unanalysed state of a node in a neural network does not.
Structured representations are required in order to store and use any
reasonably rich body of knowledge; but despite a great deal of
research, efficient implementations of structured representations in
neural networks have yet to be developed. For example, one of the
leading approaches, Smolensky’s tensor product representation
(Smolensky, 1990) requires explosively large numbers of nodes in the
network as the number of propositions to be represented increases,
and is also very slow for retrieving information. Moreover, in
probability theory more generally, it has not been clear how to deal
with inferences that depend on the structure of propositions, which
are traditionally treated by logic. Indeed, representation of structure
in a probabilistic framework is still relatively undeveloped, despite
having been an important research goal since Carnap’s attempt
to develop a formal theory of inductive inference, based on logical
representations and probabilistic inference (Carnap, 1950, 1952). In
view of these issues, it remains as a challenge for future research to
provide computationally tractable implementations of probabilistic
inference which can scale up to deal with large amounts of structured
representations. Nonetheless, the probabilistic approach to uncertain
inference provides a range of promising directions for future work
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which aim to show how the cognitive system can implement (some
approximation) to rational principles for uncertain reasoning.

Are Norms of Rationality Dispensable?

We have stressed the importance of norms of rationality in explaining
cognition; we have suggested that it is by showing how reasoning
conforms with such norms (to some approximation) that such
inference is successful.

Recently, however, it has been proposed by a number of theorists
that normative rationality may not be relevant to cognition; instead, a
notion of adaptive rationality, which is defined in terms of success in
dealing with real environments, rather than following norms, is
required instead. Gigerenzer and Goldstein (1996) argue that human
reasoning violates classical norms of rationality but nonetheless is
adapted to the problems that it faces in the real world. Thus
Gigerenzer and Goldstein (1996, p. 651) state that this approach
implies that “the minds of living systems should be understood
relative to the environment in which they evolved rather than to the
tenets of classical rationality “Evans and Over’s (1996b) distinction
between rationality1 and rationality2 points to the same distinction—
they too argue that it is adaptive rationality, rather than normative
rationality, that explains the success of human cognition.

The emphasis on the adaptive success of reasoning in the real world
is, of course, entirely consistent with the rational analysis approach
that we have been advancing; indeed, the idea of adaptive rationality
was first broached by Anderson (1990) in introducing the notion of
rational analysis. Moreover, Marr’s (1982) account of cognitive
explanation, on which Anderson’s notion is built, was distinctive from
previous work in computational vision precisely because it stressed
studying the adaptive problem that the visual system faces in the
natural environment. But rational analysis does not use adaptive
rationality to supplant normative rationality—rather it explains the
adaptive success of cognitive strategies in terms of their
(approximate) adherence to rational norms, coupled with information
about the nature of the environment (e.g. in the explanation of the
abstract selection task outlined in Part II, the rational norms were
given by the principles of Bayesian optimal data selection, and the key
assumption concerning the environment was rarity). Thus, adaptive
rationality is explained in terms of normative rationality, rather than
being used instead of normative rationality.

Gigerenzer and Goldstein (1996) and Evans and Over (1996b) argue,
from very different points of view, that cognitive algorithms may be
adaptively successful in real-world problems without approximating
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any normative rational standard, and moreover that many algorithms
used by the cognitive system may be of this type. One expression of
this view is that “adaptive rationality”, i.e. that which underlies
successful performance in the real world, need not involve following
the classical norms of rationality. The issue of whether adaptive
rationality (success in the real world) requires normative rationality
(approximation to some rational theory) is an important open problem.
One viewpoint, with which we have sympathy, is that any adaptively
successful algorithm must be approximating some rational standard,
otherwise the success of the algorithm is rendered a matter of
miraculous coincidence. An opposing viewpoint is that there are other
modes of successful performance, which lie outside the scope of
rational theories.

Perhaps the only way of addressing this issue is practical.
Researchers in statistics, machine learning, neural networks, animal
behaviour, and economics have typically assumed that adaptive
rationality can be understood in terms of normative rationality. They
have therefore pursued a research programme that attempts to
explain the adaptive rationality of statistical methods, machine
learning, or neural network algorithms, animal foraging strategies, or
individual choices, by their approximation to rational standards. We
suspect that only by pursuing this approach in cognitive science— by
developing candidate rational analyses—will the question of whether
adaptive rationality requires adherence to some normative rational
standard be answered (see Kacelnik, 1998).

An interesting case study here is animal learning theory, which
grew out of the behaviourist tradition. Animal learning theory
provides a set of descriptive principles about how animals learn,
under certain restrictive conditions. It provides no justification that
following these rules will lead to successful behaviour. It has been
suggested that learning theory provides an example of a psychological
theory that concerns adaptive rationality, but for which no normative
rational basis is available (Evans, 1993; Evans & Over, 1996b). But
this appearance is misleading. First, in the absence of some normative
justification for the principles of learning theory, it is currently not
clear whether these principles are adaptively rational or not. These
principles are derived under restrictive laboratory conditions, which
are very different from the natural environments of the animals
(typically rats and pigeons) that animal learning theorists have
investigated, as ethologists have been keen to point out. This raises the
concern that the principles of animal learning theory do not capture
an aspect of adaptive rationality, but instead reflect a non-rational set
of phenomena, which are side-effects of cognitive mechanisms that are
unable to employ their genuinely adaptive functions because of the
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reduced character of the experimental set-up. Such concerns can,
however, be put aside if some rational justification for these principles
can be found. Second, rather than abandoning rational analysis, it is
possible instead to attempt to understand how the environment must
be for the principles of learning theory to be adaptive—that is,
constructing a rational analysis, which has the principles of animal
learning theory as an implementation.

This project has recently been carried out to some extent, and is an
ongoing topic of research. At a qualitative level, Dickinson (1980) aims
to explain why the various principles of animal learning have a
rational basis; more formally, it has been noted that certain learning
principles are rational, given certain environmental assumptions.
Thus, for example, asymptotic results of learning according to the
Rescorla-Wagner learning rule of classical conditioning (which serves
as a simple and reasonably general summary of some of the most
important learning phenomena) implements a kind of Bayesian
inference. Specifically, this learning rule specifies how an animal
learns the connection between a set of cues (e.g. a light or a tone) and
some outcome (e.g. a mild shock or some food). The Bayesian analysis
of Rescorla-Wagner assumes that the animal calculates (presumably
some approximation to) the probability of the outcome, given the cues,
using Bayes’ theorem, with the environmental assumption that the
cues are conditionally independent given the outcome (that is, if the
outcome is known, then the value of any one cue carries no
information about the values of any of the others). Moreover, recently
Cheng (1997) and Shanks (1995) have argued that, under certain
conditions, at asymptote the Rescorla-Wagner model computes the
normative probabilistic contrast. These kinds of analysis explain why
following the principles of animal learning theory is adaptive—and
moreover gives evidence that the results of animal learning
experiments are genuinely tapping adaptive learning processes that
may be of importance in the natural environment. Thus, animal
learning theory provides a good illustration of how adaptive
rationality is usefully supplemented by a normative rational analysis,
rather than displacing normative rationality.

We suggest that in any debate of this kind, there should be a
methodological imperative to explore explanations based on normative
rationality— only by doing so can the scope and limitations of this
approach be assessed; and we caution that normative explanation
cannot be abandoned wholesale, without losing the ability to explain
why the cognitive system under study is adaptive. In the next section
we address the recent distinction between rationality1 and
rationality2 drawn by Evans and Over (1996b) which relates to our
present concern with adaptive and normative rationality. We
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argue that this distinction, as it is drawn in the literature, is confused
and unhelpful in understanding human reasoning.

Can Rationality1 Exist Without Rationality2?
Evans and Over (1997) distinguish between two notions of

rationality:
Rationality1: Thinking, speaking, reasoning, making a decision,

or acting in a way that is generally reliable and efficient for
achieving one’s goals.

Rationality2: Thinking, speaking, reasoning, making a decision,
or acting when one has a reason for what one does sanctioned by
a normative theory. (Evans & Over, 1997, p. 2)

They argue that “people are largely rational in the sense of achieving
their goals (rationality1) but have only a limited ability to reason or act
for good reasons sanctioned by a normative theory (rationality2)”
(Evans & Over, 1997, p. 1). If this is right, then achieving one’s goals
can be done without following any normative theory—i.e. without
there being a justification for the actions, decisions or thoughts that
lead to success: rationality1 does not require rationality2. That is,
Evans and Over are committed to the view that thoughts, actions, or
decisions that cannot be normatively justified can, nonetheless,
consistently lead to practical success. This claim appears to be both
strong and far-reaching. However, we argue that the case that Evans
and Over make for it is not compelling.

Specifically, we note (i) that the notion of rationality2 has a range of
interpretations, none of which is consistently adopted by Evans and
Over. We then argue: (ii) that rationality1 is in need of explanation in
terms of rationality2, according to what we take to be the most
natural reading of rationality2; (iii) that the goal of much functional
explanation in the social and biological sciences is precisely to explain
rationality1 in terms of rationality2, and that this is an appropriate
goal for psychology—it underwrites the programme of the rational
analysis of cognition (Anderson, 1990, 1991a; Oaksford & Chater,
1994a); (iv) that rationality1 appears to be entirely mysterious unless
tied to some rationality2 explanation.

Evans and Over’s definition of rationality2, quoted earlier, depends
on explaining what it is to have “a reason for what one does
sanctioned by a normative theory”. But in what this consists is not
made clear. Possible interpretations, among many others, include:

A. Being able verbally to justify one’s cognitive processes by
reference to some explicit and publicly known normative theory
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(e.g. to be able to write down principles of, say, probability theory,
decision theory or logic which reconstruct the reasons behind one’s
action). 

B. Having the rules of a normative theory explicitly represented in
some system of internal representation, and used to guide thought
and action, whether or not these rules may be verbally reported.
(The normative theory guides thought and behaviour just as a
theory of grammar guides language production and
understanding.)

C. Having one’s cognitive processes operate according to rules of
some calculus which can be viewed as normatively justified. These
rules may or may not be explicitly represented by the cognitive
system. (The normative theory governs thought and behaviour.)

D. Having one’s cognitive processes approximate, to some degree, the
dictates of some normative theory.

We shall see that the choice of interpretations A to D of rationality2 is
crucial in understanding the relation between rationality2 and
rationality1 and that Evans and Over do not settle on a particular
reading.

But note that in elaborating on rationality2 in the context of
deductive reasoning research, Evans and Over introduce further
issues, not hinted at in their definition: “As we use the term,
rationality2 requires that participants respond to the instructions of
the experiment, for example by suspending prior beliefs, assuming the
premises and drawing only conclusions which necessarily follow” (p.
2). This claim does not follow from Evans and Over’s definition—an
experimental participant may be sanctioned by a normative theory (in
any of sense A to D in our list) and entirely flout the intentions and
expectations of the experimenter.

This suggests an orthogonal source of variation in the concept of
rationality2, that it requires either:

(i) Being sanctioned by some normative theory.
(ii) Being sanctioned by the normative standard that the

experimenter has in mind, and following the experimental
instructions, as interpreted by the experimenter.

This source of variation combines with all interpretations A to D and
so we have at least eight very different ways of understanding
rationality2. Evans and Over appear to use different interpretations of
rationality2 at different points in their argument.

Regarding (i) and (ii), we have seen that Evans and Over appear
committed to (ii). This is crucial in the psychology of reasoning. For
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example, experimenters who adopt a falsificationist view of theory
testing will view people’s performance in Wason’s (1966, 1968)
selection task as exhibiting a failure of rationality2. Experimenters
adopting a Bayesian optimal data selection account (Oaksford &
Chater, 1994a, 1995c, 1996) may view people’s performance as
successfully conforming to this normative standard, and hence as
rational2. 

But if Evans and Over intend (ii), then, prima facie, rationality2 is a
notion of very limited application. First, it appears to have no
application outside the experimental context, and hence has no
implications for everyday reasoning, for there will be no experimenter
to interpret the task that the person has been set and what normative
standard they should use to solve it. Second, and more importantly,
general claims about people’s rationality2 cannot be made—because
the status of such claims will depend on what normative standard the
experimenter has in mind.

Each of senses A to C also appears to be in play in Evans and Over’s
discussion. Interpretation A is implicated in, for example,
“Rationality2 involves…conscious explicit reasoning, providing good
reasons for the actions we take” (Evans and Over, 1997, p. 27). On the
other hand, senses B or C appear to be relevant in Evans and Over’s
discussion of what they call the “rational2 agendum”, which concerns
“whether people solve reasoning problems…by the application of
inference rules embedded in a natural logic, or by manipulation of
mental models” (Evans & Over, 1997, p. 4). On the mental logic
approach people’s behaviour is guided by logical rules embedded in
the cognitive system, although they are not necessarily available to
conscious access (sense B). In contrast, on the mental models
approach, behaviour is governed by logical rules but they are not
embedded in the cognitive system, which operates by different,
semantic, principles (sense C) that nonetheless are capable, in theory,
of perfectly capturing logical inference.

Each of these different readings has very different implications for
the nature of the cognitive system. Consequently it is unclear what
substantive claim Evans and Over wish to make by the introduction
of this terminology. As far as the rational analysis approach is
concerned it is sense D that is important. Conformity to a normative
system simply means that we have a justification for why people
behave as they do without making further assumptions about the
mechanisms that achieve this. This is wholly familiar: throughout the
biological and social sciences, a major goal is explaining why thought,
action, and behaviour is efficient and successful (i.e. is rational1). In
the study of animal behaviour, the animal is assumed to forage, select
a mate, or signal to other animals, in such a way as to approximate
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(often quite crudely) the dictates of a normative theory (i.e. their
behaviour can be seen as rational2). To the extent that the animal
conforms to an appropriate normative theory (typically couched in a
decision- or game-theoretic framework), the fact that its behaviour is
successful can be explained. Conversely, if there is no normative
theory to which behaviour approximates, then the success of
behaviour is unexplained (Kacelnik, 1998). For example, as we have
discussed, it has been a pressing concern in animal learning—Evans
and Over’s principal example of a pure rational1 theory— to provide a
normative justification for why the principles underlying learning are
adaptively successful. As we pointed out, recently Cheng (1997) and
Shanks (1995) have shown that, for example, the Rescorla-Wagner
model (Rescorla & Wagner, 1972) computes the normative
probabilistic contrast at asymptote. So rather than embracing Evans
and Over’s concept of rationality1, animal learning theorists have been
busy trying to relate descriptive and normative models. The whole
point of rational analysis is that this is the only sensible way to
proceed.

Evans and Over (1996b, 1997), on the other hand, reject this
conventional wisdom—they claim that success can somehow be
achieved without following normative principles. According to rational
analysis, normative principles are important in explaining cognition,
because they provide putative explanations of why cognitive processes
work. But if cognitive processes do not follow or approximate any
normative principles, then their success is entirely mysterious. Agents
are simply held to do, to choose, or to think the right thing by non-
rational means. What could such a means be? Evans and Over provide
no answers to this question.

Rationality, Domain Specificity, and Evolution

Another line of attack on the role of norms of rationality in explaining
human reasoning comes from the viewpoint that reasoning is not
governed by general principles, but is instead governed by domain-
specific strategies, which are innate, and have developed in response
to evolutionary selectional pressures. This viewpoint has been
recently widely advocated, although in a number of different varieties
(e.g. Cosmides, 1989; Cosmides & Tooby, 1996; Cummins, 1996a,
1996b). A principal line of argument used by these theorists is based
on Wason’s selection task, which we have extensively considered in
Part II. Specifically, they argue that the radically different patterns of
performance in the abstract and thematic versions of the selection
task can be explained by assuming that deontic tasks engage
particular domain-specific reasoning strategies, which lead to a
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facilitation of reasoning. We briefly argue that claims made on this
basis are not persuasive, in the light of the discussion of our rational
analysis of the selection task.

First, we consider a possible argument based on levels of
performance in the two tasks. According to early interpretations of the
selection task, the “logical” response was assumed to be normatively
correct for both tasks— but only to be “correctly” chosen in deontic
contexts (Cheng & Holyoak, 1985). Thus, deontic contexts were viewed
as “facilitating” reasoning—and hence it might seem appropriate to
assume that reasoning is subserved by domain-specific knowledge,
and that only when this knowledge can be applied is reasoning
successful. For example, Cosmides (1989) assumes that knowledge of
“social contracts” (concerning the making and breaking of agreements
between individuals) underwrote “successful” performance in deontic
tasks. The assumption is that people reason poorly in abstract tasks
because they are floundering, unable to apply domain-specific
knowledge. But our rational analysis treats abstract and deontic tasks
as having different rational bases and hence different correct
solutions. Moreover, according to each rational analysis, the modal
response that people choose in both the abstract and deontic selection
tasks is correct. Thus, there is no prima facie reason to assume that
people reason “better” in deontic tasks. Of course, it might be possible
to argue that, according to some more subtle measure of performance,
people perform better in the deontic tasks (for example, perhaps a
higher percentage of people make the “correct” selections; or perhaps
correct deontic performance emerges earlier developmentally—see
Harris & Nuñez, 1996; Cummins, 1996b). But this argument would
still be invalid, because although deontic and indicative selection
tasks may appear similar, the rational analysis reveals them to be
profoundly different: their rational analyses are based on different
underlying concepts (maximising expected information gain versus
maximising expected utility), lead to different correct answers, and
presumably have different levels of difficulty. Indeed, comparing
deontic and indicative reasoning in any context appears to be a
comparison between apples and oranges. Thus, it is not at all clear
what criterion might be used to show that deontic reasoning is
superior to indicative reasoning, let alone draw the conclusion that
deontic reasoning must be subserved by innate domain-specific
knowledge.

Second, the fact that rational analyses of deontic and indicative
tasks have different solutions undermines the argument that the
effect of domain-specific knowledge must cause the change in
reasoning performance. Of course, to some degree knowledge must be
involved in solving deontic reasoning tasks—in that knowledge
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determines the role (actor or enforcer) that it is appropriate to adopt
when performing this task. Thus, for example, in the well-known
deontic selection task context used by Cheng and Holyoak (1985), our
knowledge of immigration procedure will tell us that immigration
officers are likely to behave as enforcers (attempting to stop people
who are not correctly immunised entering the country); and human
rights activists are likely to behave as actors (trying to ensure that
people who are correctly immunised are allowed to enter the country).
But, in this sense, knowledge enters into any reasoning task—because
knowledge is required to understand how the task should
meaningfully be tackled. But there seems no reason to suppose that
some particular body of domain-specific knowledge, concerning social
contracts or anything else, is being drawn upon.

Third, even if the selection task did establish the importance of
particular domain-specific knowledge in reasoning, this would in no
way show that this knowledge was innately specified and the product
of natural selection (Cosmides, 1989; Cosmides & Tooby, 1996;
Cummins, 1996). Arguments for the role of natural selection in
determining this domain-specific knowledge typically stress the
fundamental role of this putative knowledge during evolutionary time
—specifically, knowledge of social contracts or principles of social
interaction more broadly are held to have been critical determinants
of reproductive success.

But the mere prevalence, and importance, of deontic reasoning about
social interactions offers no argument for its innateness. A vast range
of knowledge and abilities are important in development, such as
object permanence, the structure of space, natural language,
perceptual and motor capacities, and so on—and these have been
crucial to survival and hence reproductive success during evolutionary
time. Indeed, these seem at least as fundamental to development as
the aspect of human social behaviour concerned with deontic rules.
Some theorists would argue that some of these capacities are
underwritten by innate information (perhaps even innate “modules”)
(e.g. Fodor, 1983; Shallice, 1988). Others (e.g. behaviourists) would
argue that none is underwritten by innate modules; and intermediate
positions of many kinds are of course possible. Thus, simply noting the
importance of an ability for human development either currently or
during our evolutionary history, does not, in itself, count as evidence
that this ability is innate.

Thus, claims concerning the importance of selectional pressures in
shaping the special character of deontic reasoning are not convincing.
It seems entirely likely that social reasoning poses problems that are
of enormous importance from the point of view of natural selection.
But it is clear that people can solve these problems. The question at
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issue is: to what degree are problems of social reasoning (and
reasoning with deontic rules in particular) solved by innate structures
and to what extent are they solved by learning? Let us use the two
most extreme views for illustration. Suppose that social reasoning is
underwritten by an innate module (e.g. Cummins, 1996b). It seems
entirely plausible that evolutionary pressures will increase the
adaptiveness of this module, just as for other innately specified
structures, such as the hands or the lungs. Suppose, by contrast, that
social reasoning is underwritten by learning. Then, evolutionary
pressures will not act on an innate module, because there will be no
innate module to act upon. Instead, these pressures might, for
example, act upon the learning mechanism itself, to improve learning
either in general, or learning about specifically social reasoning. The
point is this: evolutionary considerations provide no argument that
innate modules must have been produced by evolutionary pressures.
Evolutionary pressures are pressures to solve problems somehow:
they do not determine that a problem is solved by innate modules, by
learning, or by some combination of the two. 

We have argued that the selection task does not provide evidence
that human reasoning is shaped by innate domain-specific knowledge.
But we do suggest that, quite generally, reasoning is shaped by
adaptation to the environment. Normative principles must typically
be supplemented by assumptions about the nature of the environment
in order to give a rational analysis of cognitive tasks. Thus, Marr’s
analysis of vision involved quite detailed specification of the
constraints in the structure of the visual world, concerning the opacity
and continuity of surfaces, the behaviour of light, and so on; on the
other hand, the rational analysis of some aspects of memory may
require only assumptions about the distribution of times at which
pieces of information are re-used (Anderson & Schooler, 1991), and
our rational analysis of the abstract selection task relies only on our
rarity assumption—that natural language predicates typically refer to
relatively small minorities of objects in the environment. But in all
these cases the contribution of the environment is crucial, because
only when the relevant environmental constraints are understood is it
possible to determine what assumptions can be used in conjunction
with normative principles to provide an explanation of how successful
cognitive performance is possible.

CONCLUSION

In this book, we have argued that the cognitive science of human
reasoning has mischaracterised the level and nature of human
reasoning performance, because it has used logic as its normative
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standard. Almost all everyday inference is uncertain, and, thus,
human reasoning should be assessed using probability theory, the
calculus of uncertainty, rather than logic, the calculus of certainty.

In Part I, we argued against the logicist paradigm, in the
psychology of reasoning, but also as a basis for computational models
of knowledge representation in cognitive science and artificial
intelligence. Such reasoning systems fail to capture everyday
inferences—they are not complete*; and they are also typically
computationally intractable. We also showed how these arguments
bear on the psychology of reasoning and we responded to a variety of
possible counter-arguments from within the mental logics and mental
models approaches. Finally we showed that our account has
implications for the philosophy of mind. In Part II, we argued that
adopting a probabilistic viewpoint allows the development of rational
analyses for human reasoning, rather than being forced to condemn
much of people’s reasoning performance as invalid when compared
against logical norms. We showed how to construct a rational analysis
of the task that has been taken to raise most questions about human
rationality—Wason’s selection task. We defended this view against
objections, and showed how recent data from work by Sperber et al.
(1995) could be interpreted as supporting the optimal data selection
model. Finally in this chapter we have outlined further empirical work
consistent with our probabilistic model, we have outlined areas of
further research, and we have outlined the problems and prospects for
probabilistic theories of knowledge representation and reasoning more
generally.

In summary, the discussions in this book have argued for a
profound shift in the cognitive science of human reasoning, from a
logicist perspective to a perspective founded on the view that the
fundamental goal of the cognitive system is to deal with the
uncertainty of the everyday world. This shift leads to a radical
reformulation of the theoretical foundations of reasoning research.
This reformulation promises to provide rational explanations for what
had previously seemed a confusing and irrational pattern of
experimental reasoning performance. Consequently we hope to have
gone some way to resolving the paradox between the apparent
irrationality of human performance on laboratory reasoning tasks and
the manifest success of human everyday inference. 
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