

The e Hardware Verification Language

This page intentionally left blank

The e Hardware Verification Language

Sasan Iman

SiMantis Inc.
Santa Clara, CA

Sunita Joshi

SiMantis Inc.
Santa Clara, CA

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

http://www.springerlink.com

eBook ISBN: 1-4020-8024-7
Print ISBN: 1-4020-8023-9

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

http://www.ebooks.kluweronline.com
http://www.springeronline.com

To our loving families

This page intentionally left blank

Table of Contents

Table of Contents

Reader Feedback

Foreword

Preface

vii

xvii

xix

xxi

Chapter 1: Introduction 1
1.1
1.2
1.3
1.4
1.5
1.6

Design of e
Learning e
Programming in e
Book Structure
Book Conventions and Visual Cues
Summary

1
2
4
5
6
7

Part 1: Verification Methodologies and Environment Architecture

Chapter 2: Verification Methodologies

9

2.1 Functional Verification
2.1.1
2.1.2
2.1.3
2.1.4

Black-Box vs. White-Box Verification
Verification Challenges
Simulation Based Verification
Verification Terminology

11
12
13
14
16
18
18
19
19

2.2 Verification Metrics and Verification Quality
2.2.1
2.2.2

Granularity
Productivity

2.2.3
2.2.4
2.2.5
2.2.6

Effectiveness
Completeness
Verification Environment Reusability
Simulation Result Reusability

2.3 Directed Test Based Verification

20
20
20
21
22
23
23
24
26
27
29
29
29

31
32
33
33
34
35
35
37
38
39
40
41
41
41
42
43
45
46
49
50

2.3.1
2.3.2

Task Driven Verification Methodology
Verification Quality

2.4 Constrained Random Test Based Verification
2.4.1 Random Based Verification and Practical Considerations

2.5 Coverage Driven Verification
2.5.1 Verification Quality

2.6
2.7

The Enabling Technology: Hardware Verification Languages
Summary

Chapter 3: Anatomy of a Verification Environment
3.1 Verification Plan

3.1.1
3.1.2
3.1.3
3.1.4

Simulation Goals
Verification Views
Verification Checks
Debugging and the Verification Plan

3.2 Verification Environment Architecture
3.2.1
3.2.2

CPU Verification
Verification Bus Functional Model

3.2.2.1
3.2.2.2

BFM Features
VBFM User Interface

3.2.3 Verification Scenario Generation
3.2.3.1
3.2.3.2
3.2.3.3

Verification Environment Initialization
Verification Environment Configuration
Data and Scenario Generation

3.2.4
3.2.5
3.2.6

Monitors
Data Collector
Data Checking

3.3
3.4

Module Level vs. System Level Verification
Summary

Part 2: All About e

Chapter 4: e as a Programming Language

51

53
53
54
55
56
58
58

4.1 e Programming Paradigm
4.1.1
4.1.2

Declarative Programming
Aspect-Oriented Programming

4.2 Struct and the Struct Instance Hierarchy
4.2.1
4.2.2

Data References
global and sys

viii The e Hardware Verification Language

4.3 Execution Flow
4.3.1
4.3.2

Merging User Code into the Implicit Execution Order
Steps to Writing an e Program

4.4 Structure of an e Program
4.4.1
4.4.2
4.4.3

Lexical Conventions
Code Segments
Comments

4.5 Statements
4.5.1 Import statements

4.5.1.1 Import Order Dependency
4.5.2 struct Declaration Statement

4.5.2.1
4.5.2.2

Struct Data Members
Methods

4.5.3 Type and Subtype Declaration Statements
4.5.3.1
4.5.3.2
4.5.3.3

Enumerated Type Declarations
Scalar Subtype Declarations
Struct Subtype Declarations

4.5.4 Extension Statements
4.6 Concurrency and Threads

4.6.1 Events and Temporal Expressions
4.6.1.1 Temporal Expressions

4.6.2
4.6.3
4.6.4

Time Consuming Methods (TCMs)
Thread Control
Semaphores

4.6.4.1
4.6.4.2

Mutual Exclusion
Thread Synchronization

4.7 Summary

60
60
61
63
63
63
64
64
65
65
65
66
66
67
67
68
68
69
71
72
73
74
75
78
78
79
80

81
82
83
85
87
88
89
90
90
91
93
94
95
97
98

Chapter 5: e as a Verification Language
5.1 Constrained Random Generation

5.1.1
5.1.2
5.1.3

Random Generation
Generation Constraints
Pre-Run vs. On-the-Fly Generation

5.2 HDL Simulator Interface
5.2.1 Multi-Valued Logic

5.3 HDL Simulator Synchronization
5.3.1 Notion of Time

5.4
5.5
5.6

Units
e-Ports
Packing and Unpacking
5.6.1
5.6.2

Packing
Unpacking

5.7
5.8

Coverage
Summary 101

ix

Part 3: Topology and Stimulus Generation

Chapter 6: Generator Operation
6.1 Generator Execution Flow

6.1.1
6.1.2

pre_generate()
post_generate()

6.2
6.3

Constraint Types
Generation Steps and the Constraint Solver
6.3.1
6.3.2
6.3.3
6.3.4

Item Generation Order
Reduction
Constraint Evaluation
Set-Scalar

6.4
6.4.1
6.4.2
6.4.3

6.5

Controlling the Generation Order
when Blocks
Explicit Order Definition
value()

Generation and Program Execution Flow
6.5.1
6.5.2

Static Analysis
On-the-Fly Generation

6.5.2.1
6.5.2.2

Data Allocation: new
Data Generation: gen

6.6 Summary

Chapter 7: Data Modeling and Stimulus Generation
7.1

7.1.1
7.1.2
7.1.3

7.1.3.1
7.2

7.2.1
7.2.2
7.2.3

7.3

Data Model Fields
Physical Fields
Determinant Fields
Utility Fields

Avoiding Data Generation Inconsistencies
Data Model Subtypes

Field Value Customization
Conditional Fields
Conditional Fields and Generation Constraints

Data Abstraction Translation
7.3.1
7.3.2

Packing: Logical View to Physical View
Unpacking: Physical View to Logical View

7.3.2.1
7.3.2.2

Lists
Subtypes

7.4 Data Generation Constraints
7.4.1
7.4.2
7.4.3

Abstract Ranges
Coordinated Ranges
Default Ranges

7.5 Summary

Chapter 8: Sequence Generation

x The e Hardware Verification Language

103

105
105
106
107
108
109
109
111
111
112
112
114
114
114
115
115
116
116
118
120

121
122
122
123
123
125
126
127
128
128
130
130
131
131
133
134
134
135
135
136

137

8.1
8.2
8.3

Verification Scenarios as Sequences
Sequence Generation Architecture
Homogeneous Sequences
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

Verification Environment Enclosing a Sequence Generator
Verification Item Definition
Driver and Sequence Creation
Verification Environment Attachment

8.3.5.1
8.3.5.2

8.3.6
8.3.6.1
8.3.6.2

8.3.7

Merging New Sequence Kind with the Default Start Point
Over-riding the Default Start Point to a New Sequence Kind

Sequence Generator Flow Customization
8.4 Sequence Synchronization

8.4.1
8.4.1.1
8.4.1.2

Sequence and Sequence Driver Interaction
Push Mode
Pull Mode

8.4.2
8.5 Heterogeneous Sequences

8.5.1
8.5.2

Implementation Using Virtual BFMs
Implementation Using Virtual Drivers

8.6 Summary

Part 4: Response Collection, Data Checking, and Property Monitoring

Chapter 9: Temporal Expressions
9.1
9.2

Temporal Expression Basics
Temporal Expression Evaluation
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

Evaluation Abstract Model
Sequence Temporal Operator
Evaluation Threads and Program Context

Detach Operator
exec Construct

9.3 Temporal Operators
9.3.1
9.3.2

Base Temporal Operators
Atomic Temporal Operators

9.3.2.1
9.3.2.2
9.3.2.3
9.3.2.4

fail
and
or
First Match Variable Repeat [from..to]

9.3.3 Composite Temporal Operators
9.3.3.1
9.3.3.2

not
Fixed Repetition

User Defined Sequences
Flat Sequences
Hierarchical Sequences

Default Sequence Generation Starting Point

Multiple Sequence Synchronization

138
140
142
143
144
144
145
146
146
147
148
149
149

149
151
152
153
154
154
155
155
156
161

163

165
165
167
167
169
170
171
172
172
173
173
173
173
174
175
176
176
176

xi

9.3.3.3
9.3.3.4
9.3.3.5

True Match Variable Repeat
Yield
eventually

9.4
9.5

Temporal Operator Arithmetic
Temporals Dictionary
9.5.1
9.5.2

English Phrases and event Definitions
English Phrases and Property Checking:

9.6 Performance Issues
9.6.1
9.6.2
9.6.3
9.6.4

Over-sampling
Missing Sampling Event
Unanchored Sequences
Nested Sampling

9.7 Summary

Chapter 10: Messages
10.1
10.2

Messaging Strategy
Message Actions
10.2.1
10.2.2
10.2.3
10.2.4

Message Tags
Verbosity
Format Type
Action Block

10.3 Message Loggers
10.3.1
10.3.2
10.3.3

sys.logger
Message Handling Using Loggers
Configuring Loggers

10.3.3.1
10.3.3.2
10.3.3.3

Using Commands
Using Methods
Using Constraints

10.4 Summary

Chapter 11: Collectors and Monitors
11.1
11.2

11.2.1

Monitor Architecture
Protocol Checking

Protocol Checks
11.2.1.1
11.2.1.2
11.2.1.3

Monitor Events
Temporal Struct Members
Protocol Checking Reports

11.2.2
11.2.2.1
11.2.2.2

Protocol Checker Activation
Static Checker Activation
Dynamic Checker Activation

11.3 Collection and Reporting
11.3.1 Data and Transaction Collection

11.3.1.1
11.3.1.2
11.3.1.3

Sending collected data to scoreboard:
Sending to a Checker
Sending to a File

xii The e Hardware Verification Language

176
177
177
177
179
179
183
184
185
186
186
187
188

189
190
191
192
193
193
193
194
194
195
196
196
197
197
198

199
201
202
203
203
204
204
204
205
205
205
207
208
208

199

11.3.2
11.3.3

Event Extraction
Reporting

11.3.3.1
11.3.3.2

Messages
Message Loggers

11.4 Summary

Chapter 12: Scoreboarding
12.1
12.2

Scoreboard Implementation
Scoreboard Configuration Types
12.2.1
12.2.2

Driver/BFM Based Scoreboard
Monitor Based Scoreboard

12.3 Attaching Scoreboards to the Environment
12.3.1
12.3.2
12.3.3

Direct Method Call
Using Hook Methods
Using Events

12.4 Scoreboarding Strategies
12.4.1
12.4.2

End-to-end Scoreboarding
Multistep Scoreboarding

12.5 Summary

Part 5: Coverage Modeling and Measurement

Chapter 13: Coverage Engine
13.1
13.2
13.3

Coverage Collection Steps
Coverage Terminologies
Scalar Coverage Constructs
13.3.1
13.3.2
13.3.3
13.3.4

Coverage Groups
Basic Coverage Items
Sampling Events
Coverage Buckets

13.3.4.1
13.3.4.2
13.3.4.3
13.3.4.4
13.3.4.5

Bucket Ranges
Default Buckets
Illegal Buckets
Ignored Buckets
Bucket Grading

13.4 Composite Coverage Items
13.4.1
13.4.2

Cross Coverage Items
Transition Coverage Items

13.5 Coverage Extension
13.5.1
13.5.2

Coverage Group Extension
Coverage Item Extension

13.6
13.7

Minimizing Coverage Collection Overhead
Summary

Chapter 14: Coverage Modeling

xiii

209
210
210
210
211

213
214
215
216
216
217
217
218
219
220
220
220
222

223
225
225
226
227
227
229
231
232
233
235
235
236
236
236
237
238
239
240
240
241
243

245

14.1
14.2

Coverage Planning and Design
Coverage Implementation
14.2.1 Coverage Model Organization

14.2.1.1
14.2.1.2

Hierarchical Coverage Models
Multi-dimensional Coverage Models

14.2.2 Coverage Data Source
14.2.2.1
14.2.2.2
14.2.2.3

DUV Signal Coverage
State Machine Coverage
Coverage of Generated Data

14.3
14.3.1
14.3.2
14.3.3
14.3.4

Coverage Grading
Changing Default Weights
Changing Default Goals
Ungradeable Items
Illegal and Ignored Items

14.4
14.5

Coverage Analysis
Summary

Part 6: e Code Reuse

Chapter 15: e Reuse Methodology
15.1
15.2

eVCs: e Verification Components
Packages and Package Libraries
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6

Naming Conventions
Directory Structure
Accessing Files
LIBRARY_README.txt File
PACKAGE_README.txt File
any_env unit

15.3 Features
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7

eVC Environment
eVC Agents
Configuration Settings
Sequence Generator and Driver
e-Port Interface
BFM
Monitor

15.4 Summary

Chapter 16: si_util Package
16.1 Stop-Run Controller

16.1.1
16.1.2
16.1.3
16.1.4

Stop-Run Controller and Stop-Run Interface
Migrating to Using Stop-Run Interfaces
Multiple Stop-Run Groups in the Same Module
Multiple Stop-Run Groups across the Hierarchy

246
247
247
248
250
251
252
253
255
256
258
259
259
261
261
262

265

267
268
269
270
271
272
273
273
274
274
276
276
277
277
277
277
277
278

279
280
281
281
283
285

xiv The e Hardware Verification Language

16.1.5 Modular Stop-Run Control
16.2 Memory Package

16.2.1 si_util_mem_mgr Memory Manager
16.2.1.1 Memory Segment Placement Style

16.2.2 si_util_mem Sparse e Memory Core
16.3
16.4
16.5
16.6

Native e Time Manager
Signal Generator
Native e Float Arithmetic Package
Summary

Part 7: Appendices
e BNF Grammar 305

e Reserved Keywords 331

eRM Compliance Checks 333
C.1
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9

Packaging and Name Space Compliance Checks
Architecture Compliance Checks
Reset Compliance Checks
Checking Compliance Checks
Coverage Compliance Checks
Sequences Compliance Checks
Messaging Compliance Checks
Monitor Compliance Checks
Documentation Compliance Checks

C.10
C.11

General Deliverables Compliance Checks
End of Test Compliance Checks

Index

286
288
288
290
291
293
295
299
301

303

334
336
336
338
338
339
339
340
340
342
342

343

xv

This page intentionally left blank

Reader Feedback

Functional verification is a dynamic and fast growing field where verification methodologies
are continuously enhanced and improved. At the same time, the e language is in the process of
being adopted as IEEE standard 1647 where its syntactical and semantic features will be sum-
marized and detailed in a language reference manual. In consideration of these dynamics, this
book will continue to be updated to reflect the ongoing events in the verification community.
We encourage you, as the reader, to help enhance this book by sending us your feedback on top-
ics that you feel should be explained more concisely or more clearly; and we welcome com-
ments on errors or inconsistencies that we may have overlooked in this first edition. Please send
us your feedback via E-mail to theehvl@simantis.com.

This page intentionally left blank

Foreword

I am glad to see this new book on the e language and on verification. I am especially glad to see
a description of the e Reuse Methodology (eRM). The main goal of verification is, after all,
finding more bugs quicker using given resources, and verification reuse (module-to-system,
old-system-to-new-system etc.) is a key enabling component.

This book offers a fresh approach in teaching the e hardware verification language within
the context of coverage driven verification methodology. I hope it will help the reader under-
stand the many important and interesting topics surrounding hardware verification.

Yoav Hollander
Founder and CTO, Verisity Inc.

This page intentionally left blank

Preface

This book provides a detailed coverage of the e hardware verification language (HVL),
state of the art verification methodologies, and the use of e HVL as a facilitating verification
tool in implementing a state of the art verification environment. It includes comprehensive
descriptions of the new concepts introduced by the e language, e language syntax, and its asso-
ciated semantics. This book also describes the architectural views and requirements of verifica-
tion environments (randomly generated environments, coverage driven verification
environments, etc.), verification blocks in the architectural views (i.e. generators, initiators, col-
lectors, checkers, monitors, coverage definitions, etc.) and their implementations using the e
HVL. Moreover, the e Reuse Methodology (eRM), the motivation for defining such a guide-
line, and step-by-step instructions for building an eRM compliant e Verification Component
(eVC) are also discussed.

This book is intended for a wide range of users, including junior verification engineers
looking to learn basic concepts and syntax for their project, to advance users looking to
enhance the effectiveness and quality of a verification environment, to developers working to
build eVCs, and also as a reference work for users seeking specific information about a verifi-
cation concept and its implementation using the e HVL.

Acknowledgements

The e hardware verification language could not have existed without the creativity, hard work,
and diligence of people at Verisity Inc. Verification methodologies as discussed in this book
were either created or impactedby Verisity’s continuous effort to address the functional verifi-
cation challenge. We are grateful to Verisity and its employees for their hard work to create e
and to keep it at the leading edge of verification technologies.

In the writing of this book, we have been fortunate to be supported by great engineers and
technologists who have provided us with comments, feedbacks, and reviews of the material
herein. We would like to acknowledge the following individuals for their active participation in
the review process: Corey Goss, Michael McNamara, Kumar Malhotra, Michael McNamara,
Patrick Oury, Andrew Piziali, Al Scalise, Efrat Shneydor, Mark Strickland, and Hari Tirumalai.

Sasan Iman
Sunita Joshi
Santa Clara, CA

xxii The e Hardware Verification Language

CHAPTER 1 Introduction

1.1 Design of e

The e hardware verification language is designed to support the special requirements of func-
tional verification. e provides abstractions that are specifically targeted to better implementa-
tions of functional verification concepts. Creating a language that provides native support for
verification concepts gives the following benefits:

Less code for engineers to write, which leads to higher productivity when implementing
a verification environment
Less code also means fewer errors in building the verification environment because the
number of errors in a program is proportional to the lines of code in that program
Greater runtime efficiency as verification abstractions are optimized in the language
runtime engine
Provides an easy interface with HDL simulators

The e programming language was created, supported, and enhanced by Verisity Inc. of
Mountain View, CA. The Specman Elite® tool suite is also produced byVerisity and provides
the runtime and development environments for the e language. Specman Elite provides the nec-
essary utilities for writing, debugging, integrating, reporting, and configuring e programs.
Although Specman Elite and the e language are closely tied, the e language exists indepen-
dently of this runtime environment. Therefore, this book mainly focuses on verification tasks
and their implementation using the e language independent of Specman Elite®. The implicit
assumption is that an e program should be able to run in any runtime environment developed
for the language and should not depend on specific implementations of any runtime environ-
ment. Consequently, this book does not describe Specman Elite in any detail.

CHAPTER 1

As of this writing, e is in the process of standardization as IEEE P1647. The goal of this
standardization process is to develop a standard verification language based on the e language,
by clearly specifying:

The e language constructs
The e language interaction with standard simulation languages of interest
The libraries currently used in conjunction with e
New features of interest

Once this process is completed, the language grammar and a language reference manual
will be produced by the working group for this standard. The latest status of this standardiza-
tion effort can be obtained by visiting www.ieee1647.org.

1.2 Learning e

Programming languages are not the end but a means to more efficient implementations of con-
cepts. We learn a new programming language not because we find new language constructs and
syntaxes fascinating, but because they are useful in making us become better problem solvers.
Thus, the first step in learning a new language is to understand the underlying concepts that
first motivated the development of that language. These concepts are rooted in the problem that
a language was created to addresses as well as the methodology that is the approach of choice
for solving such problems as a conceptual level.

Functional verification is the specific problem e is designed to address. Methodologies for
performing functional verification have evolved over the years in order to meet the verification
demands of increasingly complex systems. Detailed understanding of the latest functional veri-
fication methodologies is essential to learning the e language.

Before a methodology can be implemented in a programming language, it has to be repre-
sented with an architectural view. This architectural view consists of components, modules, and
tasks that have direct correspondence to constructs and abstractions provided in that language.

This book describes the evolution of functional verification methodologies culminating in
the development of coverage driven verification methodology (chapter 2). The architectural
view for effective application of this methodology and its components are described in chapter
3. As previously stated, in most cases, an architectural view is created with the specific facili-
ties of a language in mind. In the case of e, language features and facilities were motivated by
the architecture that leads to the best implementations of coverage driven verification method-
ology. Before learning the e language, it is important to gain a good understanding of coverage
driven methodology and the architectural view for its verification environment. Such a detailed
understanding promotes the learning to become an expert in using e to build a robust and com-
plete verification environment rather than mere proficiency in the e language.

2 The e Hardware Verification Language

Introduction

New languages are designed to support new, or a mix of new and existing programming
paradigms. A programming paradigm describes the view that a programmer has of program
execution. For example, in object-oriented programming, a program is viewed as a collection
of communicating objects. In imperative programming, a program is viewed as a state and
instructions that change this state. Learning how a new language is used is more involved than
just learning the syntax of that language. A good part of becoming an expert in a programming
language is understanding how to best implement the solution to a problem using the program-
ming paradigms supported by that language. Programmers often learn the syntax of a new lan-
guage only to use this new knowledge to implement a program using concepts from their
previous programming experiences. For example: for someone already familiar with the
BASIC programming language, an important step in learning C++ is to learn object-oriented
programming. It is easy to learn C++ syntax and use it to write a program in the style of
BASIC. But doing so would defeat the purpose behind the creation of C++ and would render
learning C++ a futile effort.

Effective functional verification requires a mix of different programming paradigms. e
supports imperative, object oriented, aspect oriented, and declarative programming paradigms.
It is important to learn these programming paradigms and understand the proper use of utilities
supporting these paradigms. Having a clear understanding of the usefulness of each paradigm
to each verification task leads to a better verification program that takes full advantage of these
paradigms. Chapter 4 describes e as a programming language and covers these programming
paradigms.

Still, a language cannot be learned completely in a short time. Becoming an expert in a
new language, its programming paradigms, and appropriate methodologies requires practice,
and a conscious effort to expand beyond the subset that you know at any given time. The best
approach to learning e is to focus on the verification tasks and language programming para-
digms rather than the language constructs. You should start by building the smallest and most
trivial verification environment on your own. I often come across verification engineers who in
spite of having one or more years of experience in e, are unable to write the most basic program
in e simply because their job only required them to learn a subset of the language and to work
on an already existing program. Learning e is best accomplished by building a skeleton e pro-
gram for a verification environment, and enhancing the components in this verification envi-
ronment by learning more about how each component is designed and operated.

Functional verification has now become a major part of any design project consisting of
multiple verification developers. Such developers will create code, but often also use code from
other vendors or previous projects. As such, software programming concepts designed to facil-
itate code reuse and multiple team development efforts are an important part of building a veri-
fication environment. Solid understanding of the e Reuse Methodology (eRM) helps in
building e verification components that can be reused and combined with components devel-
oped by other teams. eRM is therefore especially important in working within larger verifica-
tion environment development projects.

A systematic approach to learning the e language includes the following steps:

3

CHAPTER 1

Learn functional verification methodologies especially coverage driven verification.
Understand the recommended verification environment architecture for performing
coverage driven verification.
Understand programming paradigms supported by the e language, and their usefulness
for different verification tasks.
Learn eRM to understand how to structure software so that it is reusable and can be
used combined other independently developed modules.
Learn to build the most basic verification environment from scratch, even if all its com-
ponents have no content.
Learn the underlying operation of different language facilities (i.e. random generation,
temporal expressions, sequences, etc.). Once you know how these facilities work and
what operations they support, the appropriate syntax can be referenced and remembered
as you become more familiar with the language.
Focus first on just enough syntax so that you can build a syntactically correct program
to create the desired module hierarchy and method calls.

1.3 Programming in e

Program development consists of 4 main stages:

Logistic Planning
Analysis
Design
Implementation

Logistic planning is concerned with software organization issues such as directory struc-
ture, naming conventions, future plans for reuse across projects generations, etc. In the analysis
stage, establish a clear understanding of the problem that needs to be solved. During the design
stage, key concepts for a solution are identified. During the implementation phase, the solution
identified in the design stage is implemented in a program.

Issues discussed in the e Reuse Methodology guidelines (eRM) should be used to plan the
logistics of a verification project. Issues that must be considered during this phase include:

Software Directory Structure
Packaging Information and Documentation
Naming Conventions

Use the analysis phase to gain a good understanding of the problem. In the case of func-
tional verification, the problem is usually solved using one of the verification methodologies
discussed in chapter 2. Selecting the best methodology, however, depends on the specific
requirements of the verification task and can be determined by comparing the advantages and
disadvantages of the different methodologies discussed in this chapter. Given any non-trivial
verification task, a coverage driven verification methodology is recommended.

4 The e Hardware Verification Language

Introduction

The design phase corresponds to creating an architectural view of the selected methodol-
ogy. The architectural view for a verification project is discussed in chapter 3. The implementa-
tion phase consists of building the modules in the verification environment architecture so that
the desired behavior is achieved.

The following general guidelines should be used when building a verification environment
in the e language:

Break up the activities in the verification environment according to the architectural
representation described in chapter 3.
Model verification environment modules using the unit construct.
Model the interface between these modules as abstract port definitions using e-Ports.
Model abstract data types using the struct construct.
Organize the program implementation into two dimensions: modules and aspects. Mod-
ules define the core implementation of each module. Aspects span modules and define
properties or functions of these core implementations that can be changed or enhanced.
Implement environment modules in the following order:

Stimulus Generators
Collectors and Monitors
Protocol and Data Checking
Coverage Collection

Follow eRM guidelines for integrating existing e verification components (eVCs) into
the verification environment.

1.4 Book Structure

This book consists of 7 parts:

Part I: Describes functional verification methodologies and environment architecture
independent of any programming language. Topics discussed will be used to motivate
the features of the e language (chapters 2 and 3).
Part II: Introduces e as a programming and verification language. The descriptions in
these chapters are meant to give reader a comprehensive understanding of features of
the e language (chapters 4 and 5).
Part III: Describes the operation of the constrained random generation utility in e, and
discusses details of creating the verification environment, stimulus generation, and ver-
ification scenario generation (chapters 6, 7, and 8).
Part IV: Describes the details of temporal expressions and messages, and the architec-
ture and implementation of monitors, collectors, data checkers, and protocol checkers
(chapters 9, 10, 11, and 12).
Part V: Describes the concepts of coverage collection and issues related to coverage col-
lection and coverage analysis (chapters 13 and 14).
Part VI: Describes the e Reuse Methodology (eRM) and covers in detail the contents of

5

CHAPTER 1

si_util utility package (chapters 15 and 16).
Appendices: Describes the grammar for the e language in the BNF format. Also gives
the list of e keywords, and provides checklists for following the eRM guidelines
(Appendices A, B, and C).

1.5 Book Conventions and Visual Cues

The visual cues in this book are shown in the following table. These conventions are used to
enhance your understanding of the material. e keywords are shown using “times bold” typeset
to prevent confusion when these terms are included in the main text flow. For example writing
“the is also extension mechanism can be used” leads to ambiguities which are clarified when
the appropriate keyword typeset is used as shown in the following: “the is also extension mech-
anism can also be used.”

New terms are indicated with the appropriate typeset wherever a definition for these terms
are given. By providing a different typeset for new terms, these terms can easily be located and
their definition found.

Sample e programs are shown either as e program fragments or as e programs. An e pro-
gram refers to a code segment that can be compiled by an e compiler as shown in the text. The
following is an example of an e program:

Visual Cue

Times

Arial

Arial Bold

Times Bold

Times Italic Underlined

Description

Book text

e program text

e program text in book descriptive text

e keywords

New Terms

e Programs are indicated by the solid lines before and after the example body. Code frag-
ments refer to sample code that cannot be loaded into an e compiler without adding missing
parts of the program. The following shows an example of a code fragment:

6 The e Hardware Verification Language

1
2
3
4
5

<‘
extend sys {

};
‘>

d: uint;

Introduction

1
2
3
4

struct data {
payload: uint;
is_legal: bool;

};

1.6 Summary

This chapter provided an overview on how this book is best used for learning the e language,
and how to use e to solve your verification problems. While reading this book, your first focus
should be on understanding the methodologies and the programming paradigms that make e the
language of choice for building your verification environment. Your knowledge of syntax will
grow as you gain more experience in writing verification programs and building verification
environments. As you learn e, keep in mind that the full power of a programming language is
unleashed only when used as intended.

7

This page intentionally left blank

PART 1

Verification Methodologies
and Environment Architecture

This page intentionally left blank

CHAPTER 2 Verification
Methodologies

In recent years, significant advances in chip and system fabrication technologies have afforded
designers the ability to implement digital systems with ever increasing complexity. This trend
has led to a productivity gap between design methodologies and implementation technologies
where because of this gap, designs produced by existing methodologies do not yield enough
gates per engineer per month to meet the strict time-to-market deadlines inherent in competitive
markets. The realization that functional verification now consumes anywhere between 50% to
70% of the design cycle, has brought functional verification center stage in the effort led by the
design community to close this productivity gap.

The focus on functional verification has consisted of a multi-faceted approach where veri-
fication productivity improvements are made possible through introduction of:

New verification methodologies better suited for the verification of complex systems
Reusable verification components
Hardware Verification languages to facilitate the new verification paradigms

Verification methodologies and reusable components are abstract concepts that lead to
verification productivity improvements, while new hardware verification languages are the
enabling technology for these new concepts. This chapter presents the basics of functional ver-
ification and suggests metrics for measuring the quality of a verification methodology. It then
presents the evolution of verification methodologies from task based verification to coverage
driven constrained random based verification and beyond. The verification metrics introduced
in this chapter will be used to motivate the introduction of new verification methodologies.

CHAPTER 2

2.1 Functional Verification

The typical design flow and its associated design and verification tasks are shown in figure 2.1.
All design activity starts from the design specification. The task of a design team is to create a
hardware implementation through their interpretation of the design specification. This initial
implementation is translated into the final implementation through a series of steps where
appropriate design automation tools are used to move from one level of abstraction to the next
at each step. For example in an ASIC design flow starting at the RT level, the initial RTL imple-
mentation is created by the design team from the design specification. The RTL implementa-
tion is then synthesized into a netlist targeting the target implementation technology. This
netlist is then processed through physical design stages to prepare the final mask information
used for semiconductor fabrication.

Perhaps the most tedious and error prone step in the design flow is the manual translation
of the design specification into the initial design implementation. Generally speaking, other
design tasks are less prone to functional errors because of the high degree of automation
involved in performing these later steps. The main reasons for functional errors in a design are:

Ambiguities in the design specification
Misunderstandings by the designer even when the specification is clear
Implementation errors even when the implementation goal is clear

The primary goal of Functional Verification is to verify that the initial design implementa-
tion is functionally equivalent to the design specification.

12 The e Hardware Verification Language

Verification Methodologies

2.1.1 Black-Box vs. White-Box Verification

From a functional verification point of view, it is sufficient to verify a design implementation
by checking its behavior on its boundary (i.e. input and output ports). If a property of a device
cannot be verified through its ports, then that property is either not controllable (i.e. cannot be
activated), or not observable. This verification approach is called Black-Box verification. The
diagram in figure 2.2 shows the verification architecture for performing black-box verification.
Note that in this approach, a reference model is required to check that the response generated
by the device is in fact the expected response.

The features that give a design implementation its performance edge are often not visible
through device ports. For example, in an instruction accurate CPU verification environment, a
CPU with an instruction pipeline would functionally seem to behave the same as a CPU with-
out an instruction pipeline. To verify the correct operation of this instruction pipeline, it is nec-
essary to examine the design and monitor the instruction pipeline behavior and verify that it is
providing the performance improvement that the CPU designers intended. In another example,
consider the settings for FIFO thresholds that are used to trigger FIFO read or write operations.
Correct operation of such threshold settings would be very hard to verify without visibility into
the device. Even though it is possible to create a cycle accurate reference model to check for
such internal behaviors through the device ports, the effort associated with building such an
accurate model would make black-box verification impractical in most instances.

Even in cases where a specific feature may be verified through device ports, the difference
between the time the bug is activated and the time that bug is observed would make any causal-
ity analyses difficult to track. To enhance debugability, introduce monitors that track internal
properties with the potential to become sources of device malfunctions.

White-Box and Gray-Box verification approaches are two alternative approaches that
overcome limitations of black-box verification. White-Box Verification (figure 2.3) refers to
verifying a design through checkers (assertion checkers and monitors) without using a refer-
ence design. Gray-Box Verification (figure 2.3) refers to verifying a design by using a reference
model but using checkers (assertions checkers and monitors) to improve verification productiv-
ity.

13

CHAPTER 2

White-box functional verification is usually used for smaller modules in the early stages of
the design process. This verification approach is hard to reuse and hard to mange. On the other
hand, Black-box testing is easy to reuse as the verification project moves from module level to
system level. However, the long latency for detecting bugs, the potential to miss critical internal
state bugs, and the need to build a detailed reference model make Black-box verification diffi-
cult to use in practice. Gray-box testing allows the verification engineer to strike the right bal-
ance between design property checking and building a reference model. Therefore, gray-box
verification is the approach that provides the most benefit throughout the verification flow.

2.1.2 Verification Challenges

As digital devices get more complex and time-to-market requirements become shorter, extra
pressure is placed on verification engineers to complete exponentially more complex verifica-
tion projects in shorter time periods. A number of challenges must be addressed in order to deal
with the increasing complexity of successfully completing a functional verification project.
These challenges are:

Productivity
Efficiency

14 The e Hardware Verification Language

Verification Methodologies

Reusability
Completeness

Verification Productivity is defined as the ability to handle larger designs in a shorter time.
For design engineers, these productivity gains have been made possible by moving from tran-
sistor level design to gate level design to RT and system level design methodologies. By
designing at the RT level, design engineers can plan much larger circuits than if they were
designing using discrete transistors. The same type of productivity gains must be afforded to
verification engineers to allow them to deal with increasingly larger devices. Such productivity
gains are achieved by moving to higher levels of abstraction both in terms of verification utili-
ties and functional blocks that are being verified. New methodologies taking advantage of such
new abstractions should be introduced so that the gap between design and verification produc-
tivity can be bridged.

Verification Efficiency is a measure of human intervention required to complete a verifica-
tion task. With the increasing complexity of devices, it is desirable to reduce manual interven-
tion or manual handling to as little as possible. Verification efficiency is increased by means of
automation in the verification environment and through introduction of verification tool utili-
ties, which with appropriate verification methodology, lead to a reduction of manual interven-
tion.

Verification Reusability refers to the ability to reuse an existing verification environment,
or pieces of an existing verification environment for new projects or later generations of the
same project. Reusability is addressed by developing a modular architecture for the verification
environment where modules boundaries are identified as pieces that are reuse-candidates in
new projects. Additional gains can be made through better documentation of the verification
architecture and the use of software programming and maintenance techniques available that
simplify code enhancement

Verification Completeness is the goal to cover as much of the design functionality as pos-
sible. Improving verification productivity, efficiency, and reusability will provide more time to
focus on improving verification completeness. It is also possible to further improve complete-
ness by introducing verification methodologies that focus on this issue and facilities that give
greater visibility to verification progress.

Clearly, addressing these challenges effectively is only possible through a comprehensive
and multi-faceted approach. In short, these verification challenges must be addressed through:

New verification methodologies
Moving to higher levels of abstraction
Using modular design techniques
Measuring verification progress
Reducing manual effort through automation
Improved software development environment
Better documentation
Using software development techniques
New verification language features (utilities) to facilitate these new methodology and

15

CHAPTER 2

software development requirements

2.1.3 Simulation Based Verification

The fundamental operation in simulation based verification is the process of device state activa-
tion followed by device response checking (figure 2.5). In this operation, the device is placed in
a specific state and correct device response at that state is checked. Note that in this representa-
tion, a device state may refer to a simple device state as defined by the contents of its registers
and status of its state machines. A state in this representation may also represent an operating
mode of the device where the device may go through many simple states while operating in that
mode. For example, in a state machine, the device state in this diagram may refer to a specific
state of the state machine, while for a bus interface module, a state may refer to write or read
operation cycles for the interface module.

All functional verification requirements can be described as a series of such fundamental
operations. Figure 2.6 shows a conceptual representation of the verification space for a given
device. This representation describes the relationship between simulation steps in terms of the
stimulus required to move the device into a given state.

At the beginning of a verification project, the verification team establishes Goal States in
the verification space that must be reached sometime during the simulation run. The aim of ver-
ification would be to generate the necessary stimulus to put the device into these goal states. As
the device moves into new states on its way to the goal state, checkers guarantee the correct
device response at each step. Because of the abstract definition of a device state where each
state may also represent a device operating mode, it is possible to define a hierarchical verifica-

16 The e Hardware Verification Language

Verification Methodologies

tion space where at the higher levels, such a diagram describes correct device operation as it
moves from one mode of operation to another, while at lower levels, such a diagram represents
correct device operation at the most detailed level.

Consider a state machine and its corresponding verification space shown in figure 2.7. In
this representation, each state in the verification space corresponds to a state in the original
state machine. In addition, the necessary check at each step is that the current state is valid
based on previous state and the input values, and that the output generated at that state is as
expected.

The verification space for a bus interface module, shown in figure 2.8, gives verification
targets in terms of modes of operation for the bus interface module.

It should be noted that verification goals often depend not only on reaching a specific
state, but also on how that verification target is reached. For example, in the finite state machine
shown in figure 2.7, it is possible to reach state ARM through two different input combinations.
Measuring verification progress therefore requires that not only target states are considered but
also how these target states were reached.

17

CHAPTER 2

2.1.4 Verification Terminology

The verification space as described in the previous section, is used to define the terminology for
functional verification.

Each interesting scenario that should be verified is a Verification Scenario (VS). A verifi-
cation scenario is described in terms of a sequence of verification state traversals in the verifi-
cation space. A Verification Item is the verification step (i.e. simulation run) that verifies the
correctness of one or more verification scenarios. This can happen if a simulation run traverses
a path in the verification space that spans multiple verification scenarios. The collection of ver-
ification scenarios form the Verification Plan (VP). The Verification Suite is the collection of
verification items that verifies all scenarios in a verification plan. The design implementation
that is being verified is the Device Under Verification (DUV). The Verification Environment
(VE) (i.e. Verification Bench) is the collection of DUV and all verification related constructs.

In the context of verification environment development, Physical Level refers to signal
descriptions at the bit and bit vector levels. Physical views are used to describe DUV at the
hardware level. Logical View refers to any abstracted view in the design or environment. A log-
ical view of data traffic may correspond to the data frame representation of physical level val-
ues. A logical view of a DUV may correspond to its user interface at a task level (i.e. write to
device, read from device). Physical Interface refers to ports that are described at the physical
level. Logical Interface refers to port interfaces that are described at a logical level.

2.2 Verification Metrics and Verification Quality

Verification methodologies are adopted according to their benefit. It is therefore necessary to
identify a number of metrics that will be used to measure the effectiveness of a verification
methodology. This section presents a number of verification metrics that will be used through-
out this chapter to discuss the merits of different verification methodologies. The metrics pre-
sented in this section are closely related to the verification challenges discussed in section
2.1.2. Some of these metrics are measured quantitatively while others are used as qualitative
guidelines for discussing merits of verification methodologies.

The following metrics are considered in measuring the value of a verification methodol-
ogy:

Granularity
Productivity
Effectiveness
Completeness
Reusability of theVerification Environment
Reusability of the Simulation Data

Verification Quality refers to the combination of these verification metrics.

18 The e Hardware Verification Language

Verification Methodologies

2.2.1 Granularity

Verification Granularity is a qualitative metric used to measure the degree of detail (i.e. granu-
larity) that should be considered in crafting a verification plan, and subsequently completing
the verification project. The ultimate goal is to allow verification engineers to deal with verifi-
cation concepts at the highest level of abstraction possible. It is important to note that in func-
tional verification, it is ultimately the traffic at the physical level (logic values on device
signals) that should be verified. In this context, moving to a higher level of abstraction is only
possible if the handling of the layer hidden under this newly introduced abstraction can be auto-
mated without loss of any detail at the physical level.

The move to a higher level of abstraction comes in two forms:

Verification Goal Abstraction:
Deal with less detailed tasks

Higher Level Verification Language Constructs
Write less code for same task
Make fewer mistakes in developing the environment

Verification goal abstraction allows the verification engineer to concentrate on higher
level data constructs instead of logic values on device wires. For example, by providing an eth-
ernet verification component, a verification engineer can define a verification goal as “injecting
a valid ethernet packet” instead of having to describe the sequence of activity that will lead to
such a packet at the device port. In this case, the ethernet verification component handles all the
detail necessary to inject a valid packet. It is therefore important to pay careful attention to the
design and usage of verification components used to architect a verification environment.

More powerful Language constructs allow the verification engineer to implement the
same task in fewer lines of code and therefore a shorter time. As is commonly known in soft-
ware development, the number of bugs in a software program is proportional to the number of
lines of code. Thus, by reducing the verification code size, the potential for errors in verifica-
tion code is also reduced.

2.2.2 Productivity

Verification Productivity is a measure of the amount of manual effort that is involved in a veri-
fication project. This manual effort consist of:

Developing the verification environment
Verifying all verification scenarios in the verification plan
Maintaining the verification environment
Migrating the verification environment for next project

Maintaining and migrating a verification environment includes measures that should be
anticipated during the development of the verification environment. The main focus in devel-
oping a methodology for improving productivity is to minimize the amount of manual effort

19

CHAPTER 2

required to develop the environment and create the set of items that verify all scenarios in the
verification plan.

As in most engineering tasks, there is a fine balance between the effort spent on environ-
ment development and the effort required to create the set of all necessary verification items
(verification suite). The more time is spent on development, the less time spent on creating the
verification suite, and vice vera. For example, if the verification environment is complex
enough to handle all corner cases automatically, then the manual effort required to test corner
cases is very small. In general, considering all possible corner cases in a verification environ-
ment can be very time consuming and it is often best to verify such extreme corner cases
through manually created verification items. The remainder of this chapter provides methodol-
ogy guidelines that help in striking the right balance between these two efforts.

2.2.3 Effectiveness

During simulations runs, the goal is to verify all the scenarios described in the verification plan.
Verification Effectiveness provides a measure for the contribution of a simulation run to the
overall task of verifying all the scenarios in the verification plan. Ideally, all time spent in run-
ning any simulation should improve verification plan coverage.

2.2.4 Completeness

Verification Completeness is a measure of the portion of device function verified during the
course of the verification project. Generally, no verification plan can completely specify all fea-
tures and all possible corner cases. Although it is relatively easy to define a measure of com-
pleteness for a verification plan (i.e. measure how many scenarios have been covered), it is
difficult to measure completeness when referring to all possible features of a design.

Since completing all verification scenarios in a verification plan is a required goal for the
verification project, then verification completeness is concerned with the part of device func-
tion that may not be specified explicitly in a verification plan but is indirectly verified during
the verification project.

In a verification environment where each scenario is explicitly verified (i.e. directed veri-
fication), completeness of device verification is hardly extended beyond the verification plan
scenarios. However, in a verification methodology where verification scenarios are randomly
generated and device response is automatically checked, it is highly likely that many scenarios
beyond the initial verification plan are also verified.

2.2.5 Verification Environment Reusability

Verification Environment Reusability may be defined in two ways:

Reusing verification environment for next generations of the same design

20 The e Hardware Verification Language

Verification Methodologies

Reusing verification environment modules and utilities while moving from module
level verification to system level verification

The main assumption in re-using a verification environment across design generations is
that design generations have similar profiles and features, though slightly modified or
enhanced. The main challenge in achieving this target is to anticipate future design changes and
to identify modules and features that are expected to change. By defining clear architectural
boundaries between pieces that are expected to change and the pieces that are expected to
remain the same, the environment migration tasks can be drastically reduced.

Reusing the verification environment through the project life-cycle is a more pressing
requirement for projects where turnaround time is very important. As verification tasks move
from module level verification to system level verification, verification is less focused on gen-
eration and more attention is placed on collection, monitoring, and coverage collection. A gen-
eral guideline for achieving this target is to architect the verification environment such that the
required pieces for system level verification (monitors, checkers, coverage collectors) can func-
tion independently from the generators.

2.2.6 Simulation Result Reusability

Simulation Results refers to the data that is collected during simulation runtime. It is often the
case that after a long simulation run is completed, either the need to check some additional
properties is realized, or it would be useful to find out if a certain scenario was in fact exercised
during the simulation run. At one extreme, if a signal change dump of all signals during the
simulation run is available, all such questions can be answered by analyzing the simulation data
dump. At another extreme, if no data is stored, then the entire simulation has to be rerun for any
question to be answered. The right approach is obviously to strike a good balance between the
amount of collected data and the types of questions that may need to be answered after a simu-
lation run is completed. Simulation Result Reusability refers to the ability to selectively define
the information collected during simulation run so that post-simulation analysis can be per-
formed without having to re-run the simulation.

Consider a multiplier design that multiplies two 16 bit numbers. If we collect a list of all
pairs of numbers that have been multiplied during simulation, we can answer any question on
whether the multiplier has been tested for a given pair of numbers without having to rerun the
simulation. Not only is it is important to collect the numbers seen on each input port, but the
correlation between these input values should also be recorded.

Data reusability is usually considered as part of coverage collection strategy. During cov-
erage collection, it is very important to collect information on specific coverage questions, and
also to anticipate future questions that may arise and if possible, collect the necessary data to
answer such questions without having to rerun the simulation.

21

CHAPTER 2

2.3 Directed Test Based Verification

Directed Test based verification is a brute force technique for completing a verification project.
In this approach, a specific verification item is created for each verification scenario and new
facilities are implemented, or the existing infrastructure is enhanced to support the require-
ments for each new verification scenario.

The one and only potential advantage of a directed test based verification methodology is
that project progress is almost linearly proportional to the amount of time spent on the project
(figure 2.9). In this approach, verification progress is made one time-consuming and small step
at a time. A directed test based verification methodology may be recommended for a verifica-
tion environment that lacks modern verification tools and languages, or for projects where very
little time is available to complete the verification phase and therefore insufficient time is
devoted to target full verification. Studying directed test based verification is useful for two rea-
sons: first, the need for more advanced verification methodologies is motivated by studying the
shortcomings of this approach. Second, a directed test based approach may be used as part of
other verification methodologies to cover very hard to reach corner case verification require-
ments.

The fundamental steps in directed test based verification are very simplistic. These steps
are:

Complete the verification plan
Sort the scenarios in the verification plan according to some priority considerations
For each scenario, enhance the existing environment, or build new infrastructure to ver-
ify that specific scenario
Add the completed verification item to the verification suite for regression

22 The e Hardware Verification Language

Verification Methodologies

The sorting of verification scenarios in this approach may depend on multiple factors,
including the importance of the features that are verified, the natural order of verification code
development as the verification environment is being enhanced, and the order of development
for the device under verification.

2.3.1 Task Driven Verification Methodology

Directed test based verification in its most fundamental form interacts with the DUV using
physical level signals. This low level interaction and modeling introduces major inefficiencies
in building the verification environment and verifying scenarios. Task Driven Verification
Methodology is a variant of the directed test based verification methodology where logical
views are used to improve verification productivity (figure 2.10). In task driven verification
methodology:

Traffic is defined at a higher level of abstraction (frames, packets, instructions etc.).
Verification tasks are defined at a logical level (write to port, read from port, issue
instruction, etc.)
Verification utilities are developed to support these new data structure and task defini-
tions
Verification scenarios are created one scenario at a time using the available verification
utilities

2.3.2 Verification Quality

The brute nature of directed test based verification leads to significant loss of productivity. In
such cases, the most fundamental shortcoming is that each verification scenario has to be con-
sidered independently and human interaction is required to set up the verification environment,
generating the necessary traffic, and checking results for each verification scenario. At the
same time, the verification plan may describe scenarios using ranges of acceptable values for
each parameter. Using a directed test based approach, the values for these parameters have to be
specifically decided, and often, additional scenarios created for corner cases consist of specific
combinations of such parameters. The main problem with this approach is that it is difficult and
time consuming to enumerate values for different parameters and come up with corner case
conditions.

23

CHAPTER 2

Additionally, because of the amount of hard-coded values in a directed test based
approach, such a verification environment is hard to maintain and not easily portable even
across very similar projects.

To summarize, the advantages of task driven verification methodology are:

Improves productivity over the most basic task driven verification methodology by
introducing tasks and abstract data types
Useful as part of a more comprehensive verification methodology to cover very specific
corner cases

The disadvantages, however, include:

Requiring human interaction to create and check each scenario, leading to very low pro-
ductivity
Requiring detailed enumeration of all scenarios and corner cases (often too numerous to
be possible) leading to verification incompleteness
Difficult to use, tedious to maintain, and impossible to port across projects because of
extreme customization of each verification item

Random generation of data and scenarios is used to improve on the shortcomings of task
driven verification methodology. This verification methodology in described in the next sec-
tion.

2.4 Constrained Random Test Based Verification

Randomization is a powerful technique, which, when used appropriately, can drastically
improve verification quality. A closer look at the anatomy of a verification scenario can lead to
a better understanding of the way randomization is leveraged to improve verification quality.

A verification scenario describes a well defined order of low level transactions in the veri-
fication environment where a set of data and parameter values are associated with each low
level transaction1. Ideally, a set of atomic transactions can be defined where any verification
scenario is composed of a sequence of these atomic transactions. Each atomic transaction will
require a set of data and parameter objects to complete its activity. Obviously, not all sequences
of such atomic transactions lead to meaningful scenarios. At the same time, not all possible data
and parameter combinations are allowed for a given atomic transaction. The legality of valid
data and parameters may depend on the context (i.e. order of an atomic transaction within a
sequence).

24 The e Hardware Verification Language

1. A parameter modifies the behavior of a transaction while data does not. For example, for a bus read trans-
action, read burst size is a transaction parameter since it modifies the number of bus cycles, etc., while address
to read from is considered transaction data since the transaction behavior is generally independent of its value.

Verification Methodologies

Assume a list of such atomic transactions and their corresponding valid orderings, valid
data content, and valid parameter content is available for a DUV. It is then straight forward to
see that given enough time, all verification scenarios in the verification plan can be created by
generating random sequences of these atomic transactions along with their corresponding data
and parameters, while constraining the random generation to the subset of valid sequences, data
values, and parameter settings.

Constrained Random Test Based leverages the concept of randomization to automatically
generate constrained random sequences that by exercising the necessary device functions, ver-
ify the scenarios in the verification plan. This methodology leads to immediate and significant
gains in verification productivity and completeness.

Using this methodology, it is no longer necessary to individually implement and verify
each scenario in the verification plan (as is the case for directed test based verification) there-
fore improving verification productivity. At the same time, random generation of scenarios
leads to far more scenario activations than could possibly be listed in a verification plan. This
increase in the number of scenarios randomly generated leads to significant improvement in
verification completeness and greater confidence in design correctness.

Practical deployment of constrained random based verification requires significant
changes in verification environment implementation. The most fundamental requirement mov-
ing from directed test based verification to constrained random based verification is that the
verification environment should be able to properly handle all types of activity generated by the
random generation process. In directed test based verification, each scenario is built explicitly
and the environment’s response to that scenario could also be implemented while verifying the
specific scenario. For constrained random based verification, any valid sequence of atomic
transactions (including the ones that may not be in the verification plan) as well any valid data
may be generated during simulation therefore the environment has to be implemented to handle
all such activity.

Note that the verification environment supporting randomly generated data and scenarios
should not only support the generation and successful completion of all possible scenarios, but
also automatically check that correct system behavior was observed at every stage of randomly
generated scenarios.

It is clear that since scenarios are generated randomly, verification progress can only be
measured as each new scenario is generated, and verification progress is not known before sim-
ulation is run. This is in contrast to directed test based verification where verifying all directed
tests guarantees complete coverage of the verification plan. This means that the verification
environment supporting constrained random based generation should also include the neces-
sary infrastructure to measure verification progress as simulation continues.

A finite state machine is a design style wherein the benefits of constrained random based
verification are immediately obvious. In this design style, the verification plan simply consists
of traversing all possible edges between states.

Generator:

25

CHAPTER 2

Generate Random states constraining the state to the valid set of states
Generate Random inputs

Checks:
Check that the correct next state is reached after each clock cycle
Check that correct output is produced while in each state

Coverage:
Collect the set of all states reached
Collect the set of all inputs applied while in a given state.

An important issue to consider is that complete verification of a finite state machine
requires that the next state value is checked for all possible input combinations. This require-
ment is not practical, however, for any real size finite state machine description.

2.4.1 Random Based Verification and Practical Considerations

Constrained random based verification, in its most ideal application (i.e. state machine testing),
is very effective in improving the verification quality. But in real designs, a number of consid-
erations make a fully randomized environment (i.e. verifying all possible device behavior in
one simulation run) difficult to achieve. These factors include:

The extensive effort required to build a verification infrastructure capable of supporting
all scenarios
Extremely low probability of reaching some corner case conditions without very spe-
cific constraint; even for very long simulation runs
Not enough time to wait for eventual verification of all scenarios
Randomly repeating the same verification scenario leading to low effectiveness

Sometimes during verification environment development it becomes clear that adding
support for a randomly generated corner case condition would require extensive effort. Under
such conditions it is advisable to build a directed test that verifies that specific corner case con-
dition. Note that this corner case condition may in fact have its own randomly generated data
and parameters but the assumption in running such a scenario is that a customized verification
environment is required for handling that specific scenario.

Additionally, many parameters exist in a modern DUV and it is practically impossible to
reach a specific corner case condition by a generic set of random generation constraints. Under
such conditions, it is advisable to create a specific verification item with very specific con-
straints on random generation such that corner case condition occurs with very high likelihood.
At the same time, it is generally the case that different sets of random generation constraints
will lead to the generation of different groups of verification scenarios. Therefore, it is neces-
sary to create multiple verification items where each verification item is focused on a group of
verification scenarios.

To summarize, a constrained random based verification environment will in practice
include:

26 The e Hardware Verification Language

Verification Methodologies

Verification environment infrastructure targeted to specific corner cases that require
special handling
Multiple Verification Items each having random generation constraints that lead to dif-
ferent types of verification scenarios or very specific corner case conditions.

2.5 Coverage Driven Verification

As described in the previous section, constrained random based verification methodology leads
to significant improvements in verification completeness and productivity. However the poten-
tial gains promised by this approach may be difficult to harness without a clear strategy for
measuring verification progress.

To that end, important questions that must be answered during constrained random based
verification are:

Did constrained random generation reach all verification goals?
Did constrained random generation reach any interesting non-goal verification states?
How much did each simulation run contribute to completing the verification plan?
How should generation constraints be modified for the next simulation run?

Coverage Driven Verification methodology is the unification of coverage collection and
constrained random based verification where the results of coverage collection are used to
answer the above questions in order to guide random based verification methodology to a suc-
cessful completion.

Coverage driven verification methodology is based on four fundamental concepts:

Raising the level of abstraction for verification tasks
Constrained random generation of verification data and scenarios
Automatic checking of simulation results
Coverage collection to measure verification progress and guide random generation to
cover missing scenarios

Verification project life-cycle for coverage driven verification methodology is shown in
figure 2.11. This project life-cycle is divided into four main phases:

Phase 1: Verification Plan Development
Phase 2: Verification Infrastructure Implementation
Phase 3: Verification Environment Bring-up
Phase 4: Constrained Random Verification
Phase 5: Corner Case Verification

In the first phase, the verification plan is developed based on the DUV engineering speci-
fication and design engineer feedback. The goal should be to make the verification plan as
complete as possible in this first phase as the implementation of the verification infrastructure

27

CHAPTER 2

will depend on the requirements of the verification plan. The verification plan will be updated
and extended during the project lifetime, however, to include missing scenarios or add new
DUV features as the DUV is being completed by the design team.

In the second phase, the necessary infrastructure for supporting the verification plan is
implemented. In phase three, some simulation runs using strict generation constraints are made
to check for correct functionality of this implementation. Even though some verification
progress is made in this phase, the goal is to complete the infrastructure and check for its cor-
rect operation. Phases two and three may require a few iteration before phase four is started.

In phase four, the least amount of constraint is used during random generation in order to
cover as many verification scenarios as possible in any given simulation run. Results from cov-
erage collection are used to monitor the effectiveness of each simulation run and to modify gen-
eration constraints to guide scenario generation towards missing verification scenarios. Each
verification item corresponding to a simulation run will potentially cover many verification
scenarios which will be measured by coverage collection facilities. During this phase, succeed-
ing simulation runs will have stricter generation constraints to guide the generation towards the
missing the scenarios. Consequently, the contribution to overall verification progress may be
reduced with new verification runs.

In the phase five, corner case conditions requiring specific modifications to the verifica-
tion infrastructure are completed. Ideally, any verification scenario that does not require a cus-
tomized verification infrastructure should be covered in the fourth phase. Corner case
conditions covered in this phase will look more like task based verification even though some
parameters and data values of corner case conditions may be randomly generated.

28 The e Hardware Verification Language

Verification Methodologies

2.5.1 Verification Quality

Coverage driven verification methodology provides the best quality of all verification
approaches. Verification granularity is high since concepts from task driven verification are
used to allow verification engineers to deal with more abstract verification tasks. Using the
concept of constrained random generation provides very high verification productivity because
human interaction is neither required for generating nor checking every individual verification
scenario. Verification effectiveness is high as coverage collection is used to gain confidence in
usefulness of every simulation run. At the same time, verification completeness is also high
since coverage collection provides good confidence that all verification scenarios in the verifi-
cation plan have been covered. Random generation of data and verification scenarios leads to
covering more verification scenarios than the ones listed in the verification plan. In that regard,
running a simulation beyond the point where the verification plan is fully covered leads to fur-
ther confidence that additional scenarios not listed in the verification plan are also covered.
Additionally, judicious collection of coverage allows for reusing simulation results to answer
further questions about a simulation run after the run is completed.

2.6 The Enabling Technology: Hardware
Verification Languages

The ability to successfully apply coverage driven verification methodology to a verification
project depends on the availability of a verification language that supports the requirements for
such a methodology. A hardware verification language should provide:

A software development environment that:
provides a powerful debugging interface
promotes software development practices (i.e. object oriented programming)

Simulation Related Facilities that support:
Concurrency
HDL Simulator Interface

Verification related constructs for:
Random generation
Automatic checking
Coverage collection

2.7 Summary

This chapter introduced functional verification and motivated the need for an effective func-
tional verification methodology. A set of verification metrics were introduced to provide a

29

CHAPTER 2

means for contrasting and motivating the introduction of new verification methodologies.
Directed test based verification, constrained random based verification, coverage driven verifi-
cation, and autonomous verification environments were discussed and the introduction of each
new methodology was motivated by the verification metrics discussed in this chapter.

This chapter strongly emphasized that the ever increasing complexity of verifying new
digital systems can only be managed by increasing productivity; and this increase in productiv-
ity is only possible through automation, reuse, and by moving to higher levels of abstraction.
Coverage driven verification provides the best combination of all available approaches for
achieving a good balance between the effort required to build a verification infrastructure and
completing the project on time and before the deadline.

Chapter 3 describes the verification environment architecture that is used for applying
coverage driven verification.

30 The e Hardware Verification Language

CHAPTER 3

The verification methodologies discussed in chapter 2 present verification metrics and
approaches that lead to good verification quality. This chapter addresses the verification envi-
ronment architecture and verification utilities needed to allow the application of the methodolo-
gies discussed in chapter 2. The discussion in this chapter is independent of any specific tool
and will illustrate the architectural implementation of the methodologies introduced in chapter
2 as well as further motivate the requirements and features of a hardware verification language.

The steps in completing a verification project, at a high level, are:

Extract the verification plan from the design specification
Build the Verification Environment
Perform Verification Activity (i.e. coverage driven verification in figure 2.11)

In a verification project, all activity is guided by and measured against the verification
plan. The features of the verification environment are guided by the requirements of the verifi-
cation plan, and the completion of the verification project is also measured against the scenar-
ios listed in the verification plan. As such careful attention to verification plan development is
essential.

This chapter discusses verification plan development and presents the verification envi-
ronment architecture and components that facilitate the advanced verification methodologies
discussed in chapter 2.

Anatomy of a Verification
Environment

CHAPTER 3

3.1 Verification Plan

Once the verification plan is available, the verification environment architecture is imple-
mented to facilitate the verification of all scenarios in the verification plan. In addition, cover-
age metrics directly reflect the portion of the verification scenarios that have been verified. In
this respect, once the verification plan is available, the quality of verification can be measured
with respect to the verification plan.

Building a verification plan is somewhat subjective and requires collective decision mak-
ing across the design and verification teams. Decisions must be made on what features are
important to verify and what features can be left out or assumed verified as a consequence of
other verifications. In other words, building the verification plan is subjective and depends on
the business and technical requirements of the project. The distinction between creating the
verification plan and other verification steps makes the verification plan the biggest potential
pitfall in building a successful product, and can mean the difference between success and fail-
ure.

The verification space for a DUV is best described as a set of simulation states and the
necessary conditions to take the DUV into a given state (figure 5.6). For a finite state machine
design, this view of the verification space is in direct correlation with the physical implementa-
tion of the DUV where the view of the verification space is in one-to-one correspondence with
the state machine description. For a more complex device, each state in this view may corre-
spond to an operation state of the device for a given verification scenario.

Given such a verification space for a DUV, a set of simulation Goal States are defined
such that correct device operation, while reaching all such goal states, verifies correct device
implementation Given the verification space and its corresponding simulation goals, a Verifica-
tion Plan is the set of all verification scenarios that verify the correct operation of DUV for
each goal state. A Verification Scenario in its most generic form describes the cause-and-effect
sequence of taking the DUV to a desired goal state while automatic checks confirm correct
device behavior. Using this abstraction, a verification scenario is described by:

Goals: Simulation goal to be seen sometime during the simulation
Input Sequences: Input sequences to apply to take the DUV to the desired simulation
goal
Checks: Checks to perform in goal state, and while reaching the goal state in order to
verify correct DUV operation

32 The e Hardware Verification Language

The verification plan is the master document for all verification activity. The building of the
verification plan is perhaps the most important step in completing functional verification. The
verification plan is used as a guide to:

Architect the verification environment
Decide what scenarios to verify
Define coverage metrics for measuring verification progress

Anatomy of a Verification Environment

Once simulation goals are defined and the necessary checks for each simulation goal iden-
tified, the specification of the input sequence naturally follows from the device specification.
Thus, identifying the relevant simulation goals and the necessary checks are critical tasks in
developing a verification plan.

3.1.1 Simulation Goals

Verification progress in general can be measured in terms of the number of goal states
reached during simulation. This assumption is valid when the verification criteria for a goal
state is independent of the path that leads to that goal state. However, it is often the case that the
goal state, as well as the path taken to a goal state, will be significant to the verification sce-
nario. If verification coverage is to be measured in terms of goal states, then the goal state is
duplicated for each relevant path leading to that goal state. For example, in figure 3.1, the orig-
inal verification space has two goal states A and B. For goal state B, it is only important that
state B is reached, For goal state A, however the path leading to that state is relevant to the veri-
fication task. The verification space is therefore modified to include two goal states A1 and A2.
In this new verification space, verification is complete (full verification coverage is achieved)
when all goal states A1, A2, and B are reached.

A Port-Based Verification View describes the DUV behavior as observed through its inter-
face ports. This view is an integral part of verification for I/O modules such as memory inter-
face modules, CPU bus attachment units, and standardized serial and parallel ports (i.e.

3.1.2 Verification Views

Two views must be covered when defining attributes to be included in the definition of a goal
state:

Port-Based view
Function-Based view

33

A Simulation Goal defines a goal state to be observed sometime during DUV simulation. The
simulation goal is defined at a given time instance and may include the following information:

Valid and invalid values on key attributes
Valid and invalid spatial relationships between key attributes

CHAPTER 3

ethernet, USB, UART, etc.). In this verification view the following items are described in a ver-
ification item:

Attributes defined by pin values
Attributes defined by data structures passing through DUV pins
Interaction between such attributes

A Function-Based Verification View describes verification scenarios for internal operation
of the DUV as described in its specification. Even though a DUV behavior, once in use, is only
visible through its interface ports, a function-based verification plan is necessary for two
important reasons. First, most DUVs have special functionality that is intended to improve
device performance. Examples of such functionality include FIFO threshold specifications, or
cache coherency protocols in microprocessors. Even if the FIFO thresholds for FIFO
read/writes are not working as expected, the device will seem to function normally through its
interface ports. At the same time, even though a CPU’s performance will be severely degraded
without a memory cache, the bus behavior or CPU program will still function. In such cases
special attention must be paid to device features that are critical to optimal performance but are
not immediately visible through its port behavior. A second important consideration is the
cause-and-effect relationships at DUV ports, which usually takes many cycles to complete, and
any intermediate problems would be hard to track to its source. Therefore, by verifying the
internal functional steps to implement port behavior, it is easier to locate the source of any
problem that may be identified at the device ports.

Function based verification items should consider:

DUV states that implement specific device features
Simulation goals that describes such DUV states

In general it is not possible to verify all DUV features. It is therefore important to set some
guidelines to assure a comprehensive and efficient verification plan. Some guidelines to
remember while developing a verification plan are:

Break down the verification plan into port-based and function-based parts.

Include a simulation goal for each Normative Statement1 in the function specification
Exclude simulation goals that are checked as part of other verification scenarios

3.1.3 Verification Checks

Once the verification goals are defined, it is necessary to check that the device reaching that
state, and at that state is performing as expected.

In general, a device behavior needs to be checked for two conditions:

Device does not produce invalid outputs or behavior on its ports or internal signals

1. Normative Statements are necessary requirements in a specification in order to properly allow a piece of
equipment to attach to another piece of equipment.

34 The e Hardware Verification Language

Anatomy of a Verification Environment

Device responds appropriately to all valid stimulus on its input ports

Note that in the context of verification, a valid stimulus is defined as all stimuli that the
device is expected to handle properly. It is possible that in a higher abstraction, such stimulus
may be considered “invalid input,” but if the device specification allows for special handling of
such higher level protocol “invalid input” then, this special handling is considered part of the
DUV operation and the input stimulus that activates this functionality is considered valid input
in the context of DUV verification. For example, an ethernet device is expected to reject mal-
formed ethernet packets received on its ports. From the perspective of ethernet packets, such
packets are invalid, but such a malformed packet is still a valid verification input stimulus and
should be applied as part of the verification effort.

In building a verification plan, it is important to list clearly all valid and invalid port condi-
tions that a device is expected to handle properly. As will be described later in this chapter, it is
this list that dictates the required features of the verification environment from the bus func-
tional models to the monitors and collectors.

Checks fall into two categories: Syntax Checks and Timing Checks. Syntax Checks refer
to checking attributes and signal values on DUV ports and internal signals to verify valid com-
binations. Timing Checks refer to temporal checks across DUV signals that check correct com-
pliance with expected timing behavior.

3.2 Verification Environment Architecture

35

3.1.4 Debugging and the Verification Plan

A verification plan is expected to expose potential problems in the DUV. It is important, how-
ever, to provide a means for tracking a problem to its source quickly. In developing a verifica-
tion plan, the following considerations should be made to improve debugging features:

Define verification items in terms of many small operations, as opposed to identifying
the verification space in terms of a few simulation goals.
For each verification scenario, define checks not only for the goal state, but also for all
intermediate states that lead to the goal state.

Verification tasks move in lockstep with the design effort. Therefore, a verification environ-
ment architecture should reflect the requirements of the design project phase. Two such phases
of a verification project are the module level and system level verification phases. Having a
reusable module level verification environment for system level verification is an important
consideration when defining a verification environment architecture. This section on verifica-
tion environment architecture focuses on module level verification. Section 3.3 contrasts sys-
tem level and module level verification and shows how the relevant parts of a module’s
verification environment is migrated to its system level verification environment.

CHAPTER 3

The architectural view of a module level verification environment is shown in figure 3.2.
Note that in this view, the attachment of the verification environment is shown for only one
DUV port.

In this figure, DUV is the device that is being verified. Top-level HDL creates a layer
where the DUV is connected to other HDL modules that are necessary for its operation. Clock
and reset generation modules, if in HDL, are also placed in this layer.

VBFM is the module that provides an abstract view of the DUV to the verification envi-
ronment and also contains the necessary features for supporting verification operations. The
generator creates the necessary stimulus and environment settings to produce the specific sce-
nario that is to be verified. The monitor checks for properties that should be maintained during
the simulation runtime. The collector extracts output generated by DUV and forms actual data
items that are then checked against expected data during data checking phase. The predictor
acts as the reference model for the DUV and generates the expected results for data checking
operations. The data checker uses the results of the predictor and the collector to compare

36 The e Hardware Verification Language

The prominent features of this verification architecture are:

Device Under Verification (DUV)
HDL Top-level
Verification Bus Functional Model (VBFM)
Generator
Collector
Monitor
Predictor
Data Checker
Coverage Collector

Anatomy of a Verification Environment

expected and actual data values. Throughout the simulation,. coverage collectors record infor-
mation that indicate which scenarios have been verified.

Note that data checking module connectivity (i.e.collector, predictor, Scoreboard) depends
on the points at which data checking is performed. Therefore the connectivity shown in figure
3.2 may change depending on data checking strategy.

The remainder of this section presents a discussion on issues related to VBFM, generation,
and checking tasks.

The architecture shown in figure 3.3 is best suited for data communication devices where
device ports act as ports for data traffic. CPU verification would require additional consider-
ations. The main goal in verifying a CPU implementation is verifying that the CPU executes
instructions correctly and that system busses comply with the bus specifications. This means
that CPUs are usually verified by executing a program that is residing in its memory. In other
words, the stimulus for CPU verification is the program that resides in memory. Often, such
programs are self-checking programs where the correct execution of the program is verified by
checking for specific conditions in CPU registers and memory locations. Because of this
approach, the stimulus generation for CPU verification is usually a pre-verification step where
programs are generated before verification starts. Each assembly program in this case verifies
one or many scenarios in the verification plan. To complete the verification, each assembly pro-
gram is loaded into the CPU memory and the simulation is run for that specific program.

After a program is loaded into the CPU memory, the CPU verification environment
becomes a self-contained verification environment. This means that no input is injected and no
output is collected from the environment2. Therefore, monitors are key for a CPU verification

2. CPUs have additional features such as interrupts that require external stimulus.

37

3.2.1 CPU Verification

CHAPTER 3

environment to provide visibility into the state of device operation. The location of these check-
ers is shown in figure 3.3.

It is possible to create a CPU verification environment where the CPU instructions are
dynamically created during the simulation process. In this approach, new instructions are gen-
erated and returned in response to each memory instruction fetch cycle. The advantage of this
approach is that the mix of instructions may be modified to guide the verification to cover dif-
ferent parts of the verification plan.

3.2.2 Verification Bus Functional Model

A device uses complex protocols at its ports to communicate with outside devices. Hiding this
physical level port complexity from the verification environment allows the verification envi-
ronment to interact with the DUV at a higher level of abstraction. Such abstraction of a physical
port interface forms a more productive easy to use verification environment. A Bus Functional
Model (BFM) is a module that provides the verification environment with a logical view of the
physical bit level activity at the DUV ports. The abstraction provided by a BFM facilitates task
driven verification methodology (figure 2.10).

A BFM, in its most basic form, is very similar to a module that would be attached to a
device port in its final application environment. This means that the goal in building a BFM is
to duplicate the port functionality of a module that will connect to the DUV, and at the same
time provide a friendlier user interface to simplify interactions with the DUV. Examples include
a BFM attached to CPU system bus providing a simplified interface to the complex handshak-
ing on the bus, and an ethernet BFM that translates an abstract ethernet packet into serial bit
stream corresponding to ethernet traffic.

Even though the function of a BFM described above is sufficient for simple checking of
device behavior, these functions must still be extended to include features needed by verifica-
tion requirements. Such enhancements depend on the verification plan and the conditions that
should be generated to cover all verification items.

A Verification Bus Functional Models should provide:

A simplified logical interface for interacting with the device
Handling bit level interaction with DUV ports for all allowed modes of DUV port oper-
ation
Means to inject errors that the DUV is expected to handle gracefully
Fault tolerant features for graceful recovery from faulty device operation
Means to set and query configuration settings
Status collection and reporting as related to BFM interaction with the DUV

A VBFM should be able to generate error conditions as part of its feature set. This is nec-
essary to make sure the device correctly handles error conditions at its ports. In addition, a
VBFM should be configurable so that it can accommodate different verification scenarios. A
VBFM should also not fail (i.e. it should either terminate gracefully or continue to search for

38 The e Hardware Verification Language

Anatomy of a Verification Environment

next valid activity) when detecting a bug in the device, so that automated simulation runs can
progress without interruption and continue to look for further errors.

Two important consideration in building a VBFM are:

Feature Set
User Interface

These topics are discussed in later subsections.

3.2.2.1 BFM Features

An Active VBFM is a VBFM that interacts with the DUV by both applying input and reacting to
outputs. An active VBFM, in its simplest form, should be able to generate all valid input
sequences to the DUV and be able to react to all sequences that may be observed on the DUV
output ports. It should also support handshaking sequence required at the DUV port to commu-
nicate with the DUV. This specification should be immediately identifiable from the DUV
functional specification.

As previously mentioned, VBFM includes additional features beyond the basic function of
a BFM to facilitate verification operations. The specifics of these additional features is not as
clear, however, as the specification for the basic functionality of the BFM. As a trivial example,
assume a DUV port signal is expected to be low for only one clock cycle at a time, and different
errors are detected by DUV when this signal stays low for two, three, or four clock cycles. One
approach to adding this feature to the BFM is to define 3 BFM transactions that keep this signal
low for two, three, or four clock cycles. Generating error conditions would then require a
request to the BFM by specifying the desired transaction. A different approach would be to
allow for a parameterized transaction where the number of cycles that this signal is low is
defined along with the transaction request. This trivial example shows that there are different
ways of defining the feature set of a BFM that achieve the same effect. Some guidelines to con-
sider while defining the enhanced set of feature for a BFM are:

Analyze verification sequences defined in the verification plan to identify the minimum
set of BFM features that can be combined in different ways to construct the required
verification sequences.
In creating a logical abstraction, a BFM hides details of its interaction with the DUV
port (i.e. hides handshaking mechanisms). Identifying the types of errors that should be
created in this physical interaction as part of the verification requirement. Identifying
the types of information that should be recorded when errors are observed in this lost
detail. Add capability to the logical interface to create such errors and to query error sta-
tus.
Choose a parameterized BFM feature over multiple BFM features that are essentially
the same but different in a way that can be parameterized (i.e. error definition in above
example).

39

CHAPTER 3

3.2.2.2 VBFM User Interface

A VBFM should have the following user interface:

User Request Interface (types of request and parameters for each request)
Configuration interface (set configuration and get configuration)
Status Interface (get status)
Interrupt Interface (using software events)

As discussed, a VBFM’s feature set should be defined to allow for implementation of all
verification sequences defined in the verification plan. To that end, the verification sequences
are divided into a set of actions that define an interaction between the VBFM and the DUV, and
a set of questions about the result of interactions between the VBFM and the DUV. These
actions are combined in different ways to construct verification scenarios, and the answer to
these questions are used in performing checks on successful completion of a verification
sequence.

Parameters passed to a VBFM request include user data as well as other information
required for each type of action. For example a memory write action to a system bus VBFM
requires address and data value, control information such as burst size, and error information
indicating if any error should be injected on the bus while performing the write operation.

Parameters common across multiple requests to VBFM should be defined as configuration
settings for the VBFM. A configuration interface should be defined to allow for setting and
querying the status of VBFM configuration. For example, in a bus write action, the burst size is
usually the same for consecutive write operations so it can be set as a configuration setting for
the BFM. However, the error injection feature however is more closely tied to each action
request and is therefore a parameter that is passed to the BFM with each action request.

The set of questions that need to be answered by a VBFM are included in the status setting
of the BFM and a status interface is defined for accessing this information.

A VBFM should generally be able to provide event information at its user interface, such
as passing the DUV clocking information to the verification environment. Note that this clock
maybe generated inside the VBFM and then used in the DUV and the verification environment,
or it maybe taken from the DUV environment. Regardless, the VBFM should pass such clock-
ing information to the verification environment as needed by the verification requirements.
Moreover, an active VBFM may need to indicate to the verification environment it has com-
pleted its latest interaction with the DUV. An event is used to pass such indications to the veri-
fication environment.

General guideline for defining the interface for a VBFM are:

Identify all requests to VBFM from the set of actions that must be supported by VBFM
Identify the required parameters for each request
Define the Configuration Interface as the set of request parameters that do not change
often across multiple requests
Define the Status Interface so that VBFM related questions during checking can be

40 The e Hardware Verification Language

Anatomy of a Verification Environment

answered
Define events that will be useful for interaction with the BFM (i.e. clk, reset, different
events for different types of activity, etc.)

Figure 3.4 shows an example user interface for a CPU bus VBFM.

41

3.2.3 Verification Scenario Generation

Generation is the process of creating the necessary stimulus to activate a given verification sce-
nario. In order to generate a verification scenario, the following items should be considered:

Verification Environment Initialization
DUV and Verification Environment Configuration
Data Generation
Sequence of Activities that comprise the Verification Scenario

3.2.3.1 Verification Environment Initialization

Verification Environment Initialization refers to all data initialization that takes place before
simulation starts. Environment initialization includes:

Memory pre-loading
Setting values to registers in the DUV that can only change before simulation is started
Assigning values to DUV pins that can only change before simulation is started
Verification environment settings

3.2.3.2 Verification Environment Configuration

Verification Environment Configuration refers to setting of all DUV and verification environ-
ment parameters that can change during simulation runtime. These parameters include:

Runtime configurable DUV parameters
VBFM configuration parameters as described in section 3.2.2.

CHAPTER 3

The goal in setting these parameters is to direct the simulation to a desired verification sce-
nario. Note that if there is only one verification scenario in a simulation run, then initialization
and configuration steps can be folded into the same step. However, for a simulation run that
includes multiple scenarios, configuration can potentially changed to guide the simulation
toward different scenarios during the simulation runtime.

3.2.3.3 Data and Scenario Generation

Generating a verification scenario involves generating the traffic that flows through the DUV
ports, indicating how this data is treated by the verification environment as it flows through the
ports, in what order the data is applied, and what configuration changes (DUV, or verification
environment configuration settings) are required to move the simulation toward the goal verifi-
cation state. The information the generator needs to produce is divided into two categories:

Data information: traffic and how the verification environment treats it
Sequence information: how the generated data is used to form a verification scenario

In a verification context, data is not simply the traffic that flows through DUV ports, but
also the information that describes how a given data item is handled by the verification environ-
ment (i.e. injecting errors while sending a packet). Note that information that identifies a given
verification scenario (i.e. how many packets to send) is not considered as part of data items. In
a verification context, data items include:

Data packets flowing through DUV ports.
Information on errors that the generated data should contain. Such errors relate to the
data abstraction that is being generated (i.e. generate an ethernet packet with checksum
error).
Information on errors to be injected by the VBFM while interacting with DUV to send a
generated data packet.

A verification scenario consists of a series of steps in the verification space that directs the
DUV into a goal state. In this view, generating a verification scenario consists of generating the
sequence of operations that leads the DUV into the goal state.

Requirements for generating such a sequence of operations leading to a verification sce-
nario are:

Such sequences should be parameterizable.
Simultaneous interaction with different DUV ports is required to create most verifica-
tion scenarios. Synchronization between multiple sequences at different DUV ports is
required to facilitate complex verification scenarios
Complex verification sequences are usually a combination of less complex verification
scenarios. Ability to generate sequences that are composed of smaller sequences is
important in generating complex sequences.
Complex verification scenarios require interactions with the DUV where output gener-
ated by the DUV affects the generated sequence. It should be possible to define a
sequence of operations that depend on DUV output.

42 The e Hardware Verification Language

Anatomy of a Verification Environment

To complete the verification, a set of verification sequences is generated where each veri-
fication sequence covers a set of verification scenarios. The goal is to come up with a set of ver-
ification sequences that completely covers all verification scenarios in the verification plan.

3.2.4 Monitors

Monitors, also known as Protocol Checkers and Protocol Analyzers, verify that the traffic at
DUV ports or DUV internal signals follow the requirements of the design specification. Moni-
tors are passive components, which means that they do not interact with theDUV. Instead, they
only sample DUV signals and check the protocol according to rules that are built into the mon-
itor.

Monitors are usually placed at DUV ports or internal signals where device operation is
defined based on well defined protocols (busses, standard ports, etc.), or where specific proper-
ties should be maintained (i.e. FIFO operations). Monitors are defined based on a set of proper-
ties that should be maintained throughout the simulation. Note that monitors do not require a
reference model as the properties that should be maintained is built into the monitor.

Protocols are defined as a set of properties for signal attributes of DUV signals. Signal
Attributes specify the allowed values on a DUV signal or a bus. Protocols define two types of
properties:

Syntax Properties: Description of valid attributes and combinations of valid attributes
that can appear on DUV signals
Timing Properties: Description of valid attribute sequences across multiple clock cycles

Syntax checks are in general easy to make. All that needs to be done for syntax checks are:

When to check syntax
What are the values allowed at the time and place of checking

Timing checks are more difficult to because of complex inter-relationships between signal
values across multiple clock cycles. Steps to define timing checks are:

Break down the protocol into a number of timing properties that should be maintained
throughout the simulation
Define simple timing check operations that can be used to implement all timing proper-
ties.
Implement all properties in terms of these basic properties.

The following example shows basic protocol definition for a memory bus interface and the
description for its protocol checking module. Example of read and write bus cycles for this
example are shown in figure 3.5.

43

Example: Memory I/O module Interface Monitor:
Signals are:

ToMemory: Addr, Size, WriteEnable, ReadEnable
From Memory: MemReady
Bidir: Data

CHAPTER 3

Device Operation Definition:
Write:

CPU asserts Addr, Size, WriteEnable
Memory should assert Mem Ready within 4 clock cycles
CPU can de-assert Addr and Size once MemReady is asserted
CPU continues to assert WriteEnable during write operation
When CPU samples MemReady at asserted value, it provides data in next cycles
Memory continues to assert MemReady during write operation
At the end of an operation, both CPU and memory de-assert all signals

Read:

Protocol Checking steps:
Define a sampling time:

Use the clock rising edge common to both CPU and memory
Define basic events:

WriteEnableAsserted:WriteEnable asserted at rising edge of clock
ReadEnableAsserted: ReadEnable asserted at rising edge of clock
cpuEnableAsserted: one of ReadEnable or WriteEnable asserted
MemReadyAsserted: MemReady asserted at rising edge of clock
AddrChanged: value of Addr changed during the previous clock cycle
SizeChanged: value of Size changed during the previous clock cycle

Define Value Holders:
SizeValue: Value of Size at time of cpuEnableAsserted

Monitoring Properties:
Syntax Checks:

44 The e Hardware Verification Language

CPU asserts Addr, Size, ReadEnable
Memory asserts MemReady, and Data [Addr] within 8 clock cycles
For next Size clock cycles, memory provides following data values on Data
Memory continues to assert MemReady throughout the read operation
CPU can de-assert Addr, Size, once MemReady is asserted

Anatomy of a Verification Environment

If cpuEnableAsserted, then no AddrChanged or SizeChanged before MemRead-
yAsserted
If readEnableAsserted, then MemReadyAsserted happens within 8 clock cycles
If writeEnableAsserted, then MemeReadyAsserted happens within 4 clock cycles
If cpuEnableAsserted, then no cpuEnableDeasserted until MemReadyAsserted
and then MemReadyDeasserted
If MemReadyAsserted, then no MemReadyDeasserted for Size Value clock
cycles, followed by MemReadyDeasserted at next clock cycle.

45

SizeValue is always in [1,2,4]
Temporal checks:

If these checks are performed during the simulation process and observe all valid scenar-
ios at this interface, then correct operation of the memory interface is completely verified. Note
however that verifying the correct operation of the interface does not mean that the memory
device is working correctly. An important step in checking the function of the memory is to
check that the data was written and read back correctly from the memory, and that memory con-
tains the expected data based on the history of write operations performed during the simula-
tion. Data collecting and checking are discussed in the next sections.

3.2.5 Data Collector

Data Collection is the step to extract data from the simulation environment while removing
handshaking and timing information used to move or manipulate the data in the DUV. For
example, in a memory write operation, the collected data from the memory bus is the address,
the data to be written, and the size of this operation. All handshaking and control signal infor-
mation are removed while collecting such data.

Data collection can be done as part of the monitor or as part of the BFM. This positioning
of the collector depends on the following factors:

BFMs are needed for module level verification, but not necessarily for system level ver-
ification. Therefore it is better to place data collectors in the monitor module so that
they can be used as part of the system level simulation environment.
Data collection may be done at the DUV ports or at some internal signals of the DUV.
For internal signals, then the collector is best implemented within the monitor. For port
signals, the collector may be a part of the BFM functionality.

As mentioned before, a data collector extracts data from the environment according to a
data abstraction level. Case in point: for the memory bus, the collected data is in the form of
memory transaction operations. The following guidelines can be used to decide the type of
information that should be extracted by a data collector module:

Control timing information is usually a part of protocol definition. All such timing
information that is checked by the monitor can be dropped from collected data.
What is the minimum amount of data that should be collected to check for correct data
movement and manipulation? This decision depends on the data checking strategy.

CHAPTER 3

For example, one strategy for verifying correct memory module operation, is to extract all
write transactions from the bus and update a model of the memory with the data write transac-
tion. This data model is then used to compute the expected result when a read operation is
encountered. To follow this strategy, this is the information that should be collected:

3.2.6 Data Checking

Reference Model
Collector
Scoreboard

46 The e Hardware Verification Language

Transaction Type (read/write)
Transaction Address
Transaction Size
Data values (read/write)

Data Checking operation is done to verify that DUV handles and moves data according to its
specification. At its most accurate level, Data Checking consists of a cycle accurate reference
model where device output are compared to reference values.

It is usually not necessary to perform cycle accurate checking since protocol checking
already verifies cycle accurate behavior of the design. In the majority of cases, transaction level
checking is sufficient. At the same time, data checking may only be needed across a few DUV
ports or even between internal signals in the DUV. In such cases, a reference model that
describes DUV behavior across data checking points is sufficient. A data checking strategy is
defined by:

Ports or internal signals across which data checking is performed (i.e. switch ports,
internal CPU bus to memory interface)
Data abstraction for data movement through these ports
How the abstracted data is expected to change and move through DUV (requiring a ref-
erence model)

Figure 3.6 shows a pictorial view of data checking environment. Note that in this diagram,
packet source is not indicated. The components of this architecture are:

Anatomy of a Verification Environment

The reference model need only be as accurate as the type of checking that is being done.
For example, if the data checking is being done at every cycle, then the reference model has to
be cycle accurate. Also the reference model only need to describe the DUV behavior across the
points where data checking is being performed.

The scoreboard is basically a list that is used to hold the expected data until DUV produces
the data that will match that specific data item. The reference model is often encapsulated with
the scoreboard. A scoreboard has the following features:

Allow for ordered and unordered matching of data/transactions
For ordered matching:

Flag skipped expected transactions as error
For unordered matching:

Have a time-out feature for unmatched expected transactions
Provide for initial ignore of mismatched data (in case of devices that require to sync up
before operating correctly)
Provide end of simulation check to make sure all expected transactions have found a
match

The design of the collector should also reflect the abstraction used in comparison. For
example, if the data is being compared at every cycle, then the collector simply samples signal
values at every cycle, but if the comparison is done at a higher abstraction, then the collector
must take the necessary steps to extract the necessary data at that level of abstraction.

Questions to answer in designing a data checking strategy are:

At what abstraction level does the data movement and modification need to be checked?
Where is the scoreboard placed (the source and destination of data)?
How do you handle initial and ending conditions (first match, last match)?
Is the order of transactions important in scoreboarding?

The following examples show the scoreboarding strategy for a memory subsystem.

47

CHAPTER 3

Figure 3.7 shows the architecture for verifying the functionality of the memory system
described in the previous section. This architecture consists of:

A reference model: This reference model includes a memory model. The function of
reference model is:

Upon a write transaction, it updates its internal memory content
Upon a read transaction, it places a read transaction inside the scoreboard. The
expected value of the read transaction are extracted from its internal memory
model.

A Monitor: To check that all relevant protocols are correctly followed.
A collector: extracts memory transactions from the memory interface. Note that in this
model, the collector is implemented as part of the monitor.

Figure 3.8 shows an example where the same memory subsystem is used in a system with
multiple CPU attachments. The bus fabric, including its arbitration module is now a part of the
DUV. In this case, the data checking strategy should check that all transactions generated at the
CPU interfaces do in fact arrive at the memory interface port. For this new data checking
requirement:

No reference model is required since transactions are transferred from CPU interface to
the memory interface without any modifications.
Transactions may arrive in different order than the order they were issued because of
arbitration in the bus fabric
Read and Write transactions are checked for both data and address.

48 The e Hardware Verification Language

Anatomy of a Verification Environment

3.3 Module Level vs. System Level Verification

During the design flow, modules are initially designed based on input/output specifications.
Systems are then constructed by combining these modules where each module port is con-
nected to ports of other modules. During module design phase, most of the errors are in the
function of the module. During system level verification, however, the majority of the errors
are detected in port interfaces and in the communication between modules.

During module level verification, other modules that drive ports of the module under veri-
fication are not present. Therefore such stimulus should be generated by the verification envi-
ronment while monitors and data checkers operate to verify correct functionality of the module.
During system level verification, all or most of the traffic is generated by system modules and
the verification environment is mostly responsible for protocol and data checking across mod-
ule boundaries. It is therefore important to architect a module level verification so that its mon-
itors and data checkers can easily be migrated to the verification environment of the system
containing this module.

Figure 3.9 shows a module level verification environment architecture that is readily reus-
able during system level verification. In this architecture, the DUV module has one input port
and one output port. Monitors are attached to these ports to monitor protocols and to collect
data from these ports. The collected data from the input port is passed to a predictor that will
predict the expected output on the output port. The expected output produced by the predictor is
then compared against the data item collected on the output port. In this architecture, input data
is applied to the input port by the generator. Therefore it is easier from an implementation per-
spective to simply have the generator pass the input data to the predictor. However, if extra
effort is made to add a collector to the input port to pass the output of this collector to the pre-
dictor, then the complete protocol and data checking environment for this module can be reused
during system level verification. As shown in this figure, during system level verification, even
though the generator module is replaced by another DUV module, the monitors, predictors, and
scoreboards are directly reused.

The configuration shown in figure 3.9 is an ideal case where the DUV module implements
a simple input/output function. In complex modules, building a scoreboarding strategy that can
completely function based on a module’s ports requires significant effort. A good strategy for
defining module level verification environment features is to first decide which features of this
environment should be reused during system level verification and then build the environment
so that the features (i.e. monitoring, data checking) are independent of the stimulus generation
modules.

49

CHAPTER 3

3.4 Summary

This chapter presented the architecture of a verification environment and outlined important
issues that need to be considered for verification blocks of this architecture. The structure and
responsibilities of the generator, the collector, the monitor, and data checking modules were
introduced and issues related to the design of these components were enumerated.

50 The e Hardware Verification Language

PART 2

All About e

This page intentionally left blank

CHAPTER 4 e as a Programming
Language

The e hardware verification language is a high level programming language specifically archi-
tected for hardware verification projects. The e language is a powerful and productive verifica-
tion tool not only for its high level programming constructs and features, but also because of its
suitability for modeling projects.

Programming languages are identified by the following properties:

Programming Paradigm
Execution Flow
Data Model
Program Structure

A detailed understanding of these properties is the key to learning any new language. This
chapter introduces e as a programming language and focuses on its programming properties.
The discussion will provide an overview of e and describe the basic language constructs neces-
sary for a beginner to write an e program. Features of e are covered in detail in chapter 5. Veri-
fication abstractions and features of the e language are discussed in chapter 3.

4.1 e Programming Paradigm

A programming paradigm is a methodology for how software systems are constructed. A pro-
gramming paradigm provides the programmer with a view of the program execution. A partial
list of programming paradigms includes:

Imperative Programming: Traditional view of programming, consisting of a program

CHAPTER 4

state (i.e. data variables) and a sequence of instructions that change this program state.
Declarative Programming: Describes relationships between data variables in terms of
fixed rules and produces results during the program runtime using these rules.
Object-Oriented Programming: Runtime environment is viewed as a collection of com-
municating objects, each having data members and methods that operate on its data.
Aspect-Oriented Programming; Runtime environment is viewed as potentially having
different views or aspects that require the core implementation to be modified or
enhanced based on a specific aspect’s requirements.

High level languages are defined and architected to support one or more of these program-
ming paradigms, according to their intended application. To support these paradigms, a lan-
guage provides specific constructs that closely match the imposed view of the preferred
paradigm. For example, the class construct in C++ is introduced to support the notion of
object-oriented programming. Note that these programming paradigms are generally not con-
tradictory concepts and a programming language may use or support multiple programming
paradigms. For example, C++ is an object-oriented imperative programming language.

e is an imperative, declarative, object oriented, aspect oriented programming language.
Imperative and object-oriented programming paradigms are commonly used and extensively
covered in software programming literature. Declarative and aspect-oriented programming are
powerful paradigms supported by the e language that can provide great benefits when used
appropriately. These paradigms are discussed in more details in the following sections.

4.1.1 Declarative Programming

Declarative programs view the runtime environment as a collection of data variables and a set
of fixed rules maintained between these variables. It is the responsibility of the program com-
piler to use built-in inference rules to declare relationships between variables and use the decla-
rations to perform operations during program runtime.

Declarative programming style is used extensively in solving Constraint Satisfaction
Problems1 . Constraint satisfaction problems are used in the random generation feature of e
when constraint declarations are used to specify relationships between fields that are to be gen-
erated. The important observation is that these constraint declarations are processed by the e
compiler and are taken into account during the program runtime every time any of the involved
data objects are generated. Consider the following e code fragment:

1
2
3

struct data_pair {
data1:uint;
data2: uint;

1. Constraint-satisfaction problems are
tem that satisfy a number of constraint

mathematical problems where one must find states or objects in a sys-
s or criteria.

54 The e Hardware Verification Language

e as a Programming Language

4
5

keep data1 > data2;
};

– constraint declaration

By specifying the constraint declaration describing the relationship between data1 and
data2 in object data_pair, anytime an object of type data_pair is generated during the program
runtime, the required relationship between data1 and data2 is automatically maintained without
having to re-specify it again. At the same time, any time data1 is generated for an object of type
data_pair, it is always set to a larger value than that of data2.

Temporal expressions are another powerful feature of the e language. Temporal expres-
sions use events to represent functions of events and data variables at different times during
program execution. It is possible to use a declarative statement to define an event to be a func-
tion of another event, as shown in the following e code fragment:

1
2
3

struct event_holder
event A is @B; -- event declaration using a temporal expression

};

The result of this declaration is that at anytime during program execution, event A is emit-
ted when event B is executed.

Random generation and temporal expressions are discussed later in their corresponding
sections. However the important point in this discussion is that the declarative approach for
specifying program properties provides great flexibility in defining program properties that
should be maintained throughout the program execution. This flexibility will prove specially
useful for verification tasks.

4.1.2 Aspect-Oriented Programming

In programming terminology, a concern is defined as the problem a program is trying to solve.
Separation of concerns is an important goal in program design where a program is broken up
into distinct features that overlap as little as possible. The main problem that a program is try-
ing to solve is called the core concern of that program. An aspect is defined as part of a pro-
gram function that cross-cuts its core-concerns, therefore violating the separation of concerns
requirement.

Another possible view of aspect oriented programming is that every major feature of a
program is an aspect. A program is then created by weaving these aspects into the implementa-
tion of that program’s core concern.

55

CHAPTER 4

Consider an ethernet port interface module that provides an internal DMA-based bus inter-
face for its local interface. In the terminology of software programming, the core concern of
this module is to provide local bus to ethernet port interface. The core concern can be broken
into two distinct concerns consisting of the DMA controller and the ethernet Media Access
Controller (MAC). The separation of concerns is maintained for these two since the operation
of these two modules are essentially independent and communicate only through their respec-
tive ports. Reporting and coverage collection are two verification related aspects of this mod-
ule. Verification status reporting requires that both these modules be enhanced to print
messages when necessary during simulation runtime, and coverage collection requires that each
module be enhanced to collect coverage data during the simulation runtime. An aspect that
relates to the function of these modules may require that the range of supported packet sizes be
reduced for specific applications in which case, both sub-modules must be modified to reduce
the range of supported packet sizes.

In concrete terms, aspect-oriented programming allows for redefining and customizing
objects representing modules or data, for the specific requirements of their intended usage. In
this type of programming, a core implementation is created that solves the main problem, mod-
els the main functionality of a system, or represent a data item. Language constructs that sup-
port aspect oriented programming are then used to customize this core implementation without
modifying the original program that models the core implementation.

Aspect-oriented style of programming is supported extensively in the e language. The def-
initions for data types, objects, and methods can all be extended after the core implementation
is completed. This feature of the e language is particularly powerful in a verification project
where the verification scenario can be viewed as an aspect of the verification environment,
where the core e program is extended to create the aspect that represents that specific verifica-
tion scenario.

4.2 Struct and the Struct Instance Hierarchy

In e, objects are modeled using the struct construct. Structs may have different types of mem-
bers including data, events, coverage groups, methods, etc. However, struct members that con-
tribute to the struct instance hierarchy consist of a single or a list of predefined scalar types,
user defined scalar types, or user defined object types. For example, a data packet containing a
payload field of eight bits, a parity bit field, and a list of 4 flag bits is modeled by the following
e code fragment:

1
2
3

struct data_payload {
data: uint(bits:8);
parity: bit;

56 The e Hardware Verification Language

e as a Programming Language

4
5

flag_bits[4]: list of bit;
};

In this example, the struct keyword is used to define the data_payload object. A struct
may also include other previously declared structs as one of its members. To define a data
packet that includes a data payload object:

1
2
3
4

struct data_packet {
header: uint(bits:4);
payload: data_payload;

};

The struct instance hierarchy for a struct definition is a tree of struct instances whose
leaves are scalar types and whose nodes are data objects instantiated in its parent struct. For
example, the struct hierarchy for the data_packet object is shown in figure 4.1.

As with all object oriented programming languages, methods can be defined for a struct.
For example:

1
2
3
4
5
6
7
8

struct data_payload {
data: uint(bits:8);
parity: bit

set_parity(p: bit) is {
parity = p;

};
};

57

CHAPTER 4

In e, every struct object has a number of predefined methods. These predefined methods
are the mechanism used to control the order of execution in the runtime environment, as will be
shown in section 4.3.

4.2.1 Data References

In an e program, Data References are used to access data objects2. The usage of references in e
contrasts with using both pointers and references in programs like C++. Reference accesses
have multiple advantages over pointer access:

Dereference operators are not needed with references, while they have to be used with
pointers. This leads to cleaner code.
The memory location pointed at by a reference is implicitly managed by the program
and can even change during the program runtime during garbage collection. Therefore
the programmer does not need to explicitly manage memory addresses.

4.2.2 global and sys

All data objects in e reside in the global name space global. It is important to keep this organi-
zation in mind for a number of reasons.

global is the root of all name resolution scopes. This means that global is the last scope
checked for a data reference that is not declared in a local scope (i.e. within a struct, or a
method body). As a consequence, any declaration made in global can be used in any context in
an e program, assuming that a local declaration does not hide the declaration at the global level.

global also contains many data structures that are used by the e runtime environment to
monitor and control program execution. At times it is useful to peek into these data structures to
learn about the runtime environment of the program.

global contains the predefined struct sys3. sys plays an important role both in instantiating
user defined data and also in the order of program execution. All user data should be instanti-
ated under sys. In that sense, sys is the root of the struct hierarchy containing all user data.
Although it is possible for the user to instantiate data objects under global, this method in not
generally recommended because of the special handling of sys during program execution.

As mentioned, sys is a predefined object and therefore adding user defined data instantia-
tions to sys is only possible through extension of its base definition. This is only possible
through an aspect oriented utilities provided in e that allow the definition of structs4 to be
changed without modifying the base definition. For example, an instance of data_packet, as

2. In an e program, pointers can be used but only for parameters for method calls.
3. sys is in fact a unit which is a special form of a struct. Units are described later in this book.
4. struct is only one of extendible constructs in e. Other extendible language constructs are discussed in sec-
tion 4.5.4.

58 The e Hardware Verification Language

e as a Programming Language

defined in section 4.2, is added to the struct hierarchy using the following e code fragment. In
addition, the definition for data_payload struct is extended in this example to include the new
member checksum.

1
2
3
4
5
6
7

extend data_packet {
checksum: uint(bits:8);

};

extend sys {
dp: data_payload;

};

Note that extension to a struct may in fact exist in either the same file or one separate
from the file containing the original definition, but the final effect after reading all files in the
compiler is the collective result of all extensions to a struct definition. The global struct hierar-
chy for the above example is shown in figure 4.2. This figure also shows other members of glo-
bal struct hierarchy that is created by the e program runtime environment. Only the struct
hierarchy below sys is shown in expanded form in this figure.

59

CHAPTER 4

4.3 Execution Flow

The e language is architected for the specific requirements of verification projects. As such, e
uses a predefined execution flow that is more appropriate for verification tasks. Clear under-
standing of this flow is essential to learning and programming in e. This section describes the
execution flow of an e program.

In most programming languages, program execution starts from a predefined procedure
call (i.e. main() in C or C++) and follows a path dictated by the user’s software program. The
execution flow in e however, follows a predefined order, which is built into the runtime engine
that executes an e program. As mentioned earlier, this predefined order of execution is orga-
nized to fit the requirements of a verification project.

Verification tasks are generally divided into a number of phases. These phases directly
reflect the verification requirements of the methodologies used for verifying complex digital
systems. These phases are broadly divided into:

Initialization
Pre-Run Generation
Simulation Run
Post-Run Result Checking
Finalization

Initialization is the beginning phase where the environment is initialized with values that
define the specific verification behavior for the current simulation. During the generation
phase, the stimulus and environment settings are generated. Actual design simulation takes
place during the simulation run phase. During the post-run result checking phase, simulation
results are checked. During finalization phase, verification activity is summarized and final-
ized. Note that it is only during simulation runtime that simulation time is advanced. Other ver-
ification phases are performed in zero simulation time.

The e runtime environment follows an implicit order of execution that mirrors these verifi-
cation phases. The implicit execution flow for an e program is shown in figure 4.3. Note that in
this diagram, simulation time is advanced only in the simulation runtime phase. The notion of
advancing time is discussed in more detail in section 5.3.1.

4.3.1 Merging User Code into the Implicit Execution Order

In an e program, every struct has predefined methods that correspond directly to the implicit
program execution order. Predefined methods of a struct that relate to this execution order are:

init()
pre_generate()
post_generate()
run()
check()

60 The e Hardware Verification Language

e as a Programming Language

finalize()

Because of its special role in the execution flow, sys has additional predefined methods
that can be extended. One important predefined sys method is setup() which is called during
the initialization phase.

The runtime engine for an e program executes the predefined methods of every struct in a
predefined order. The do_test() pseudo code in figure 4.4 shows this predefined order. Upon
running an e program, the execution flow follows the order shown in do_test(). The user pro-
gram is merged into the main program execution flow by extending the predefined methods
marked in figure 4.4 with bold typeset5. Method extension will be discussed as part of exten-
sion mechanisms.

Note that in the actual implementation of the runtime environment, predefined global
methods are used to create the flow shown in figure 4.4. In addition to creating this flow, these
predefined global methods handle environment management tasks.

4.3.2 Steps to Writing an e Program

The programming steps required to complete a software program in e are:

Design the program using object oriented programming principles
Define user defined objects using structs
Create user data struct hierarchy by extending sys

5. The generate() method is the method that assigns random values to scalar struct members. Even though this
method can in principal be extended, this extension is not recommended.

61

CHAPTER 4

Insert user’s program in the predefined execution flow by extending predefined meth-
ods of sys and other user-defined structs

For instance, the following e code fragment shows a simple e program that has one
instance of data_packet and sets the data_payload content before the generation phase and sets
the parity bit during run time phase:

1
2
3
4
5
6
7

extend sys {
my_data: data_packet;

pre_generate() is also {
my_data.payload.data

};
= 8’b0;

62 The e Hardware Verification Language

e as a Programming Language

8
9
10
11

run() is also {
my_data.payload.set_parity(1’b0);

};
};

Observe that predefined methods of data packet could also be extended to accomplish the
same behavior.

4.4 Structure of an e Program

4.4.1 Lexical Conventions

User-defined names in e consists of any length combinations of alphabet characters, under-
score, and digits (i.e. _, A-Z, a-z, 0-9). Valid names cannot start with a number. Though under-
scores may appear at the beginning of a name, this is not recommended as these names have a
unique meaning in the e language. Also, reserved keywords in the e language (see appendix B)
cannot be used as user defined names. Figure 4.5 shows examples of valid and invalid names in
the e language.

e is a case sensitive language. A period is used to designate struct hierarchy traversal (i.e.
packet.header). Also, in e, code blocks are enclosed with braces and end with a semicolon:
{...;...;...;};

4.4.2 Code Segments

e programs are a collection of Code Segments. The beginning and end of a code segment are
marked with begin-code <’ and end-code ‘> markers. The begin-code and end-code markers
must be the only text on the line containing these markers (i.e. the line must start with the
marker and end with the marker therefore containing only 2 characters). Each code segment is
composed of multiple statements.

63

CHAPTER 4

The most trivial e program (no program) is:

1
2

<’
‘>

4.4.3 Comments

All text outside code segments are considered to be comments. Additionally, comments within
code segments can be marked with a double dash (--) or double slashes (//). Since multiple code
segments can be included in the same file, it is possible to end a code segment, add comments,
and then start a new code segment.

The most trivial e program fully commented is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

this line is a comment since it is outside a code segment
this line is also a comment

<’
-- this is a comment inside a code segment
// this is also a comment inside a code segment
‘>

this line is also a comment after the end of previous code segment

<’
-- more comments in a new code segment
// additional comments for the new code segment
‘>

end of file comments here

4.5 Statements

An e program is collection of code segments each consisting of a number of statements. The
more commonly used statements are:

import statements
type declarations
struct/unit declarations
extensions

These statements are described in the following sections.

64 The e Hardware Verification Language

e as a Programming Language

4.5.1 Import statements

Import statements are used to tell the compiler to load another e program file before compiling
the current e program file. Import statements must appear before all other statements inside the
first code segment in a file. A simple e program using the import statement is:

1
2
3
4
5
6
7
8
9
10
11
12

First code segment:
<’
import header.e;
import packet.e;
-- other user code after import statements in this code segment
‘>

Second Code Segment:
<’
-- import statements are NOT allowed in this code segment
-- other user code in this code segment
‘>

4.5.1.1 Import Order Dependency

When importing files one at a time, care should be taken to import each file only after import-
ing all files that contain declarations used in the file being imported. However this dependency
may at times be difficult to track, and also circular dependencies may exist between declara-
tions and instantiations in each imported file. Under such conditions, it is possible to import
multiple files at the same time so that the e compiler can resolve the dependencies between
code segments in these files. The files that are imported together are placed within parentheses
as shown in this example:

1
2
3
4
5
6
7

<’
import (beader.e,

extend sys {
p: packet;

};
‘>

packet.e);

4.5.2 struct Declaration Statement

The struct statement is used to define new composite data types. Structs contain data members
to store data and methods to perform operations on its data members. Structs may also contain
other verification related constructs (i.e. keep statements, events, coverage definitions, etc.).
These fields are discussed in detail in their corresponding sections.

65

CHAPTER 4

4.5.2.1 Struct Data Members

Struct data members may be scalar members, list members, or composite data types (i.e. previ-
ously defined structs).

Examples of scalar data members include:

1
2
3
4
5
6
7

struct data_holder {
data1:
flag:
time1:
data2:
packet1:

};

uint[0.. 100] (bits:7);
bool
time;
uint(bits:16);
packet;

As shown in this example, other user-defined structs (i.e. packet) can be used as a type for
a struct member. Examples of list data members include:

1
2
3
4
5
6

struct data_holder {
data_list: list of uint;
bool_list: list of bool;
data_list[16]: list of uint;
packet_list[2]: list of packet;

};

In this example, the size of the list is explicitly set to 16. Keyed lists can also be defined to
allow for searching lists using values of list members.

4.5.2.2 Methods

Methods are struct members that are used to perform operations on struct data members, or any
other value that the method can access. Methods are either procedures or functions and may or
may not consume time. Examples of methods are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

struct data_holder {
data: uint (bits:16);

set_data(val: uint (bits:16)) is {
data = val;

};

get_data_version 1(): uint (bits:16) is {
return data;

};
get_data_version2(): uint(bits:16) is {

result = data;
};

};

66 The e Hardware Verification Language

e as a Programming Language

Methods are defined by specifying the name, the parameter list, the return type (if any)
and the actions in the method. The above example shows two variations of returning a value in
a method. In the first version (get_data_version1()), the value for data is explicitly returned by
issuing a return statement. In the second version (get_data_version2()), the return value for the
method is returned by assigning it to the reserved keyword result. When the method returns
after completion, the value of result is returned.

4.5.3 Type and Subtype Declaration Statements

The following Boolean and numeric types are predefined in e:

int,
uint,
bit,
nibble,
byte,
time,
bool

New scalar subtypes, enumerated types, and struct subtypes can be defined in an e pro-
gram. The following sections provide an overview of these constructs.

4.5.3.1 Enumerated Type Declarations

Enumerated types are defied by specifying the possible values for the new type as shown in this
code fragment. The new type can then be used to define the type for new data objects.

1
2
3
4
5
6
7
8

type color_t: [RED, BLUE,

extend sys {
color: color_t;
run() is also {

color = RED;
};

};

GREEN];

The enumerated values of the new type can be used in all expressions including the assign-
ment shown in this example.

67

CHAPTER 4

4.5.3.2 Scalar Subtype Declarations

Scalar subtypes are defined by modifying the bit size and/or the range for a predefined type. If
both bit size and the range are specified for a subtype, then the smaller range will be the effec-
tive range of a scalar subtype.

1
2
3
4

type int_subrange: int [0..100] (bits:12);
type int_subrange1 : int[0..100] (bits:3);
type int16: int (bytes:2);
type int100: int [0..100];

The subtype declaration shown in this example limits the range for int_subrange to
between 0 and 100, and sets the size of the field to 12 bits. This example limits the range for
int_subrange1 to 0 to 7 since the bit size of 3 only allows for values up to 7 to be represented.,
Either the bit size or the range can be omitted in this construct as shown in this example.

4.5.3.3 Struct Subtype Declarations

When declaring a struct, it is possible to use one of its members as a subtype determinant. The
struct definition can then be customized for its different subtypes indicated by different values
of this subtype determinant field.

In this example, a pixel is defined to have either a RED or a BLUE color. Depending on its
color, the tone is defined to have different types representing different variations of BLUE or
RED. The when construct is used to define subtypes of pixel so that the struct members are dif-
ferent depending on the value of color field. This example also shows the syntax for instantiat-
ing these subtypes where they are instantiated under sys. Figure 4.6 shows the instance
hierarchy starting at sys for this example.

68 The e Hardware Verification Language

e as a Programming Language

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

<‘
type color: [RED, BLUE];
type red_tone: [RED1, RED2, RED3];
type blue_tone: [BLUE1, BLUE2, BLUE3];
struct pixel {

color1: color;
when RED pixel {

rtone: red_tone;
id: uint;

};
when BLUE pixel {

btone: blue_tone;
is_real: bool;

};
};

extend sys {
r: RED pixel;
b: BLUE pixel;

};
‘>

4.5.4 Extension Statements

The aspect oriented features of e allows different language constructs to be extended after their
initial definition. The constructs that can be extended are structs/units, methods/TCMs, enu-
merated types, coverage groups and items, and events. Extension of structs, methods in structs,
and enumerated types are described in this section. Extension of remaining constructs are
described in their corresponding chapters.

Enumerated types are extended as shown in this example:

1
2

type color: [RED, BLUE, GREEN];
extend color: [YELLOW];

After processing the two lines, the definition for color will include four colors of RED,
BLUE, GREEN, and YELLOW. Note that the original declaration of a type and its extensions
may be located in different files. An enumerated type can also be extended multiple times.

Structs can also be extended using the extend mechanism. For example:

1
2
3

struct packet {
header: packet_header;

};

69

CHAPTER 4

4
5
6
7

extend packet {
data[16]: list of uint(bits:16);

};

In addition, method definitions in a struct may also be extended. Methods are extended
using keywords of is empty, is undefined, is first, is only, and is also.

For example, the following code adds outf actions to the set_data() method so that a text is
printed before and after the assignment operation in this method:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

struct data_holder {
data: uint (bits:16);

set_data(val: uint (bits: 16)) is {
data = val;

};

set_data(val: uint (bits: 16)) is first {
outf(“this text is printed before val is assigned to data”);

}:

set_data(val: uint (bits: 16)) is also {
outf(“this text is printed after val is assigned to data”);

};
};

To override the definition for a method, the is only keyword is used. The definition for the
set_data() method is changed in the following example to assign the value (val+1) to the data
field.

1
2
3
4
5
6
7
8
9
10
11

struct data_holder {
data: uint (bits: 16);

set_data(val: uint (bits:16)) is {
data = val;

};

set_data(val: uint (bits:16)) is only {
data = val +1;

};
};

70 The e Hardware Verification Language

e as a Programming Language

When using is empty, an empty action block is defined for a method. This means that no
error will be reported when using this extension mechanism. Using is undefined removes any
previous block defined for a method. The is undefined extension for a method can only be used
after defining an action block for that method.

Extensions to a method are applied in the same order that the compiler processes the
extension definitions. For example, if the first extension that is processed is an is only type,
then the original definition of the method is completely replaced and all following extensions
are applied to the new method definition. The method signature (name, parameter list, return
type) should be exactly the same in the original definition as all extensions of that method.

4.6 Concurrency and Threads

Concurrency is a powerful programming concept that allows for intuitive and effective model-
ing of systems that are composed of concurrently operating objects. Due to inherent concur-
rency of hardware models, and the requirements for interacting with such models, supporting
concurrency is in fact considered a requirement for languages that are used for design and veri-
fication of hardware systems.

The two fundamental concepts in concurrent programming are processes and resources. A
process refers to sequential execution of a task and has its own thread of execution. Resources
refer to the necessary elements required for executing a process (i.e. memory space, I/O
devices, etc.). A concurrent program consists of two or more processes. Processes that share the
same address space are called light-weight-processes or threads. Concurrency support in most
programming languages is targeted for the same address space as the program itself. Sharing
the address space allows multiple threads to access the same variables in the program runtime
environment and therefore allows threads to communicate through these shared variables. The
processes in an e program share the same address space and are therefore considered threads.
Therefore this discussion is focused on threads.

In a multi-threaded language such as e, mechanisms should be provided for suspending a
running thread and to restart a suspended thread in order to give all threads an opportunity to
execute. Similarly, the language should provide support for communication between multiple
threads. To support concurrent programming, a language should provide utilities for support-
ing:

Concurrently running threads
Thread synchronization
Starting new threads
Suspending a running thread
Ending (removing) a running thread
Restarting a suspended thread

71

CHAPTER 4

The e programming language has full support for concurrent programming. Events and
Temporal Expressions are used for thread synchronization (i.e. deciding on when to start a new
thread or restart a suspended thread). Additional constructs are provided for thread control,
including creating new threads and suspending threads. Time Consuming Methods (TCMs) are
used to further facilitate start of new threads and for enabling more detailed thread synchroniza-
tion. These language features are discussed in the subsequent sections.

The runtime environment for an e program consists of a thread scheduler that has knowl-
edge of all software threads at any given time during the program runtime. At each iteration of
its main loop, this scheduler identifies all qualified threads (i.e. threads that are ready to be
resumed based on their restart conditions). It then restarts each qualified thread from the point
where it was suspended until that thread suspends under its own control (i.e. by calling thewait
or sync action, calling a TCM which includes an implicit sync at its sampling event, or termi-
nating). A new iteration starts when all qualified threads at the previous iteration have been
restarted. Each iteration of this scheduler corresponds to one rick of the runtime environment.

4.6.1 Events and Temporal Expressions

In the e language, events are used to synchronize execution between threads6. Events can be
emitted explicitly or implicitly. The event keyword is used to define an event. The emit action
is used to explicitly emit an event. Events are emitted automatically by describing an event as a
function of other events and Boolean conditions. Temporal expressions are used to describe
such functions.

The following e program shows an example of defining and emitting named events. It also
shows how events are used with the on construct.

1
2
3
4
5
6
7
8
9
10
11
12
13

struct transmitter {
event transmit_completed;
transmit_count: uint;
keep transmit_count == 0;

on transmit_completed {
transmit_count += 1;

};

post_transmit_operations() is {
emit transmit_completed;

};
};

6. Events are also used to synchronize to external simulators. This topic is discussed as part of verification
support in the e language.

72 The e Hardware Verification Language

e as a Programming Language

The e language defines a number of predefined events that are emitted by the e program
execution environment. The most fundamental predefined event is sys.any. This event is emit-
ted for every iteration of the thread scheduler.

4.6.1.1 Temporal Expressions

Temporal Expressions are used to describe temporal behavior using events and temporal opera-
tors. Temporal expressions produce events that are triggered when the temporal expression
evaluation succeeds. Temporal expressions can be used in the following constructs:

wait and sync actions in time consuming methods
to define named events, and in expect or assume struct members

A temporal expression is evaluated at every occurrence of its sampling event. A sampling
event is defined by attaching it to a temporal expression as follows:

TE @sampling-event

The sys.any predefined event is the default sampling event for all temporal expressions. A
sampling period is the time between current occurrence of a sampling event and the previous
occurrence of a sampling event. Sampling period is an important concept in evaluating tempo-
ral expressions since the temporal operators are based on how temporal expressions evaluate
during the sampling period.

All temporal expressions are constructed by combining Base Temporal Expressions using
temporal operators. The base temporal expressions are:

Event Base TE:
Change Base TE:

Boolean Base TE:

@named-event @sampling-event
rise(scalar exp) @sampling-event
fall(scalar exp) @sampling-event
change(scalar exp) @sampling-event
true(boolean-expression) @sampling-event

For event base temporal expressions, the temporal expression succeeds if named-event is
emitted at any time during the sampling period specified by the sampling event of the temporal
expression. In contrast, a Boolean base temporal expression succeeds only if the Bool-

ean-expression evaluates to true when the sampling event is emitted. In other words, a Boolean
base temporal expression is evaluated only when the sampling event is activated. Similarly,
scalar expressions for a change base temporal expression are evaluated only at occurrence of
the sampling event. Figure 4.7 shows examples of how these base temporal expressions are
evaluated.

Some commonly used temporal operators are:

Logical Operators:
Transition Operators:
Fixed Repetition Operator:
Sequence Operator:

(not TE), (TE and TE), (TE or TE)
rise(scalar exp), fall(scalar exp), change(scalar exp)
[exp]*TE
{TE; TE}

Examples that use these temporal operators include:

73

TE1:
TE2:

((not @A) or @B) @clk
([12]* @A) @clk

CHAPTER 4

TE3:
TE4:

{not @A; [3]*@B} @clk
cycle @clk

TE1 succeeds when event A is not detected or event B is detected during a sampling period
of event clk. TE2 succeeds when event A occurs 12 times in the previous 12 sampling periods
defined by event clk. TE3 succeeds when event A in not detected during one sampling period
and event B is detected in the following 3 sampling periods of event clk. In TE4, cycle is an
alias for the sampling event (i.e. @clk). In essence, TE4 succeeds when event @clk occurs. Tem-
poral operators are discussed in detail in chapter 9.

4.6.2 Time Consuming Methods (TCMs)

Time consuming methods (TCMs) are methods that consume simulation time. TCMs are cre-
ated by tagging a method with a sampling event. TCMs may contain synchronization actions
(which use temporal expressions). The default sampling event of a TCM is used as the default
sampling event for any temporal expression that is evaluated as part of executing that TCM.

In this example, method inject_packet() is a time consuming methods since it is tagged with
the default sampling event@clk.

1
2
3
4

struct packet {
inject_packet() @clk is {
};

};

74 The e Hardware Verification Language

e as a Programming Language

TCMs may be called only from other TCMs while regular methods may be called from
both TCMs and regular methods.

4.6.3 Thread Control

In multi-threaded languages, the program runtime for a program execution consists of many
Runtime Cycles. A runtime cycle refers to a slice of time where all Qualified Threads are given
a chance to execute. A qualified thread during a runtime cycle is a thread whose requirements
for reactivation are satisfied. During each such cycle, all qualified threads are executed until
each thread either exits or is suspended. At this time, the current runtime cycle is completed and
a new runtime cycle is started. Within the context of hardware simulation, advancement from
one runtime cycle to the next is used to model progression of simulation time7, while the execu-
tion within a runtime cycle is assumed to take place in zero simulation time.

To support concurrent programming, the e language provides:

Concurrency Actions: start, first of, all of
Synchronization Actions: wait, sync

The start action is used to explicitly start a new thread. The thread that issued the start
action, and the new thread become independent threads that are suspended and restarted inde-
pendently of each other and based on their suspend and resume conditions. The first of and all
of actions are used to start new threads while suspending the thread that issued these actions.
For the all of action, the original thread is resumed after all started threads are completed. For
first of action, upon completion of any of the threads that were started, all started threads are
ended and the original thread continues its execution. A visual representation of this behavior is
shown in figure 4.8.

wait and sync actions both cause the executing thread to suspend until the temporal
expression attached to these actions succeeds. For sync action, the thread continues to execute
if the temporal expression attached to the sync action succeeds in the same tick. The thread sus-
pended by a wait action requires the sampling event of the TCM to emitted once before it
resumes. A visual representation of this behavior is shown in figure 4.9.

The following example demonstrates how new threads are suspended and resumed using
the wait and sync actions:

1
2
3
4
5

struct packet_injector {
event clk;
injector() @clk is {

wait cycle;
inject_next_packet();

7. It is in general possible to have multiple runtime cycles without advancing the simulation time, as is the
case with HDL simulator delta cycles.

75

CHAPTER 4

6
7
8
9
10
11
12
13
14
15

};

wait cycle;
inject_next_packet();

};
run() is also {

start injector();
}:

extend sys {

};
packet_injector;

In this example, named event clk in packet_injector is emitted from other parts of the pro-
gram not shown in this example. The clk event is used as the default sampling event for the
injector() TCM. The run() method of packet_injector is extended to start the injector() TCM.
injector() waits for the first occurrence of the default sampling event (i.e. clk). It then injects the
next packet. It then suspends waiting for the next default sampling event (waiting for a cycle).
After getting restarted, it injects the next packet. It then returns (i.e. method completes) which
terminates the thread started in the run() method. At that time, since there are no more sleeping
threads, the run phase of program execution completes and the next phase is started.

The use of first of and all of actions are shown in this example:

76 The e Hardware Verification Language

e as a Programming Language

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

struct packet_injector {
event clk;
injector() @clk is {

inject_next_packet();
first of {

{wait cycle};
{wait [2]*cycle};
{wait [3]*cycle);

};
};
run() is also {

start injector();
};

}:
extend sys {

packet_injector;
};

In this example, the first of statement completes after one occurrence of event clk since
among the three threads that are started in this action, the first thread completes first and within
one cycle. In this example, if the first of action is changed to an all of action, then this action
will complete after 3 occurrences of the clk event since the longest running thread takes 3 clock
cycles.

Rules to keep in mind when working with threads:

Only TCMs can be started using the start action.
The start action can be called in either methods or TCMs.
first of and all of actions can only be used in TCMs.
The sampling event of a TCM containing a synchronization action (i.e wait, sync) is the
default sampling event for evaluating the temporal expression attached to these syn-

77

e as a Programming Language

The above discussion applies only to cases where one resource is being shared across mul-
tiple threads. In cases where multiple resources are required for a code segment (i.e. a write
operation that requires exclusive access to two or more DUV ports), then use of semaphores as
outlined above may lead to a deadlock. For a discussion of mutex algorithms that avoid such
deadlocks, the user is referred to any text covering concurrent programming.

4.6.4.2 Thread Synchronization

Thread synchronization is modeled as a producer-consumer type interaction. In this type of
synchronization, threads marked as producers can only resume when the resource they have
produced has been consumed. Threads marked as consumers can only resume when they con-
sume a product that is made available by a producer. This concept is shown in figure 4.10. Note
that multiple producers and multiple consumers can synchronize through the same resource. In
this case, a producer will resume when its product is consumed by any of the consumers, and a
consumer resumes when a product is made available to it by any of the producers.

Rendezvous semaphores are provided in e using the rdv_semaphore and are used to
implement this type of synchronization. The use of these semaphores is shown in the following
example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<’
extend sys {

rsem: rdv_semaphore;

produce_and_place_in_fifo(id: uint) is empty;
take_from_fifo_and_consume(id: uint) is empty;

producer(id: int) @any is {
while TRUE {

produce_and_place_in_fifo(id);
rsem.up(); -- wait for a consumer to use the

};
};

consumer(id: int) @any is {
while TRUE {

resource that was just produced.

rsem.down(); -- wait for a producer to make a resource available
take_from_fifo_and_consume(id);

}:
};

run() is also {
start producer(1);

79

CHAPTER 4

24
25
26
27
28
29

start producer(2);
start consumer(3);
start consumer(4);

};
};
‘>

In the above, each consumer calls the up() predefined method of the semaphore to wait for
a consumer to call the down() predefined method. Every time a product is consumed by a con-
sumer, both threads for producer and consumer resume. In this case, the thread for producer
resumes first, followed immediately by the thread for the consumer.

4.7 Summary

This chapter introduced the concepts and structures in e that describe the organization of e as a
programming language. The discussion presented e as a powerful programming language that
can be used for effective implementation of general purpose programs. The concepts of aspect
oriented programming, declarative programming, and concurrent programming constructs in e
make e a good candidate for a slew of programming environments. The e programming lan-
guage provides an extensive set of abstractions and constructs for verification projects. The
verification aspects of the e language are discussed in chapter 5.

80 The e Hardware Verification Language

CHAPTER 5 e as a Verification
Language

The e language is a powerful hardware verification language architected on the requirements of
verification methodologies essential to successful completion of complex verification projects.
e not only provides the necessary constructs to facilitate the successful and efficient develop-
ment of verification programs, it also guides the programmer towards a programming style that
is better suited to recommended verification methodologies. The execution order of an e pro-
gram, as described in the previous chapter, is one example of the close relationship between e
and verification projects. This chapter describes the e constructs that facilitate the implementa-
tion of e verification programs.

The abstractions required for implementing a verification program are directly tied into
the activities that are performed during a verification project. Verification related constructs and
abstractions in the e language are in direct correlation with the verification facilities required
for implementing these verification activities. Verification activities include:

Simulation Abstraction
Generating Stimulus
Driving Stimulus
Collecting Device Response and Result Checking
Measuring Verification Progress and Coverage Collection

Table 5.1 lists these verification activities and the verification facilities and e language fea-
tures that are required for performing these activities. This chapter introduces the e language
features listed in this table.

CHAPTER 5

Table 5.1: Verification Activities and e Language Features

Verification Activity

Simulation Abstraction

Stimulus generation

Driving Stimulus

Result Checking

Coverage

Verification Facility

Notion of Concurrency

Constrained Random Generation

Stimulus Variation for Specific Verifi-
cation Requirements

Interfacing with HDL Simulator

Associating Verification Objects with
Simulation Module Instances

Synchronizing with HDL Simulator

Moving from Data Abstraction to
Physical Abstraction

Applying Stimulus

Collecting data from HDL Simulator

Moving from Physical Abstraction to
Data Abstraction

Data Checking

Timing Protocol Checking

Coverage

e Language Feature

Concurrency and Thread Control

Constrained Random Generation

Extension Mechanisms

HDL Interface, e-ports

Units

Events, Temporal Expressions

Packing

Methods, TCMs

HDL Interface, e-Ports

Unpacking

Scoreboarding

Temporal Expression

Coverage

5.1 Constrained Random Generation

The constrained random generation feature in e randomly creates a struct hierarchy for data
objects and assigns random values to its scalar fields (leaf nodes)1. This generation capability is
an implicit phase of the execution order in an e program when the struct hierarchy rooted at sys
is randomly generated and populated. Generation can also be used explicitly during the simula-
tion runtime. The pseudo code given in figure 4.4 shows the order of generation for a struct
hierarchy.

1. A struct hierarchy may in fact have different valid structures. Different valid struct hierarchies for the same
object type are possible due to: 1) struct members that are lists of structs with potential different size lists, and
2) struct subtypes which may have different members all together depending on the struct type.

82 The e Hardware Verification Language

e as a Verification Language

In the absence of any generation constraints, generation routines populate scalar fields of a
struct hierarchy with fully random values in the range of each scalar type (i.e. an enumerated
scalar type is assigned a value from its possible enumerated values).

Fully randomized value assignment is not particularly useful since any realistic scenario
for generating values requires valid or interesting ranges to be defined for data objects and that
relationships between separate fields are defined during generation. The generation facility in e
provides a powerful constraint solver engine that allows concise and easy constraint specifica-
tion for the randomly generated values. In section 5.1.1, the e generation mechanism without
constraints is described. Constraint specification and usage is introduced in section 5.1.2.

5.1.1 Random Generation

In e, the fundamental generation activity is the assignment of random values to members of a
struct. For a struct without any subtype definitions, a random value is generated for struct mem-
bers in their order of appearance in the struct declaration so that for each member:

if a scalar type: assign random value in its full range
if a scalar subtype: assign random value in its valid range
if an enumerated type: assign random value from enumerated literals
if a list: generate list size, and then generate list items one at a time starting from the
first list element
if a struct: generate this member struct using this same procedure before moving on to
next struct member

The steps described above lead to a depth first order of generation for struct members
where the struct hierarchy rooted at a struct member, which itself is a struct, is fully generated
before moving to the next struct member.

It is possible to prevent generation for a struct member by prefixing that struct member
with the “!” character. Such fields will not be assigned during random generation process. The
generation order for such an e code segment is shown in figure 5.1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

‘<
type address_type: [LAN, NET];
struct address {

Ian: uint(bits:48);
type: address_type;

};
struct packet {

!size: uint; -- will not be generated.
src: address;
dest: adress;

};
extend sys {

packet;
};
‘>

83

CHAPTER 5

Even in the absence of generation constraints, the generation order may change from the
default order for a struct that has subtypes. For struct subtypes, one or more members of that
struct are used as subtype determinant struct members. Subtype determinant members are often
used to create struct subtypes that could potentially have different members. Therefore in order
to generate a struct subtype, it is necessary to first assign a value to the subtype determinant
members of that struct. The generation order is therefore modified to assign a value to subtype
determinant members before any of the members specific to that subtype are assigned a value.
The affect of subtype definition for the following e program is shown in figure 5.2.

1
2
3

<’
type address_type: [LAN, WAN];
struct address_16 {

84 The e Hardware Verification Language

e as a Verification Language

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Ian: uint(bits:16);
net16: uint(bits:16);

};
struct address_32 {

Ian: uint(bits:16);
net32: uint(bits:32);

};
struct packet {

data[16]: list of uint;
when LAN packet {

addr16: address_16;
};
when WAN packet {

addr32: address_32;
};
atype: address_type;

};
extend sys {

packet;
};
‘>

5.1.2 Generation Constraints

It is often necessary to constrain the generation process so that a specific verification scenario
or a group of verification scenarios can be targeted. e provides a powerful constraint solver
engine that allows constraints to specify:

A range of valid values for generated fields
Relationships that should be maintained between generated fields

The keep keyword is used to specify constraints for generated fields. In this example, con-
straints are specified to limit the valid range for length and height and to define a relationship
between these members:

1
2
3
4
5
6
7
8
9

struct rectangle {
length: uint;
keep length in [1..20];

height: uint;
keep height in [1..20];

keep height < length;
};

During the generation process, the constraint solver generates values for length and width

so that the specified constraints are met.

85

CHAPTER 5

Constraint definitions in e are declarative statements, meaning these constraints are
declared as struct members and are considered anytime their affected fields are generated any-
where in the e program, or anytime during the simulation runtime.

It is often desirable to have a default constraint for a field, which can later be changed
depending on stimulus generation requirements. The keep soft keyword is used to define a
default constraint that can be overridden in later extensions or in subtypes of a struct using a
keep statement. For example:

1
2
3
4
5
6
7
8

10
11
12
13

type box_type: [SQUARE, RECTANGLE];
struct box {

type: box_type;

length: uint;
height: uint;

keep soft height == length;

when RECTANGLE box {
keep height < length;

};
};

In this example, if the box type is generated to SQUARE, then the default soft constraint
will guarantee that the generated values for length and height are equal when randomly gener-
ated. However if the type is generated to be RECTANGLE, then the constraint defined in the
RECTANGLE subtype will override the default constraint. During the generation phase, soft con-
straints are applied only if they do not contradict the combination of all the hard constraints for
that field. This means that a soft constraint is applied if it reduces the valid range for a field.
Also, soft constraints are applied in the reverse order that they are processed by the e compiler.
For example:

1
2
3
4
5
6
7
8

struct box {
length: uint;
height: uint;
keep soft length == height;
keep soft length < height-1;
keep length in [10..20];
keep height in [1..11];

};

In the above example, first the hard constraints on lines 6 and 7 are considered. Then the
second soft constraint on line 5 is considered and rejected as it contradicts with the collective

86 The e Hardware Verification Language

9

e as a Verification Language

result of all hard constraints. The soft constraint on line 4 is considered next, and is accepted
because it can be satisfied while considering the collective effect all previous constraints.

Constraints can affect the generation order that was described in the previous section.
Constraints fall into two categories:

Unidirectional Constraints
Bidirectional constraints

Bidirectional constraints do not affect the order of generation. Unidirectional constraints
however require a special ordering of the generated fields and therefore affect the order of gen-
eration. Table 5.2 shows examples of unidirectional constraints and the resulting order imposed
on fields used in these constraints.

Table 5.2: Unidirectional Constraints

Operation Type

Multiply/Divide

Method Call

Bit Extraction

When Subtype

Explicit Order

Example

keep area = height *length

keep area = compute_area(length, height)

keep length == height[a:b]

when SMALL’size box {keep length== l;};

keep gen (length) before (height)

Generation Order

height, length, and then area

length, height, and then area

a and b, followed by length,
followed by height

first size, then length

length and then height

5.1.3 Pre-Run vs. On-the-Fly Generation

As discussed earlier, a generation phase is performed as part of the execution flow of an e pro-
gram. This implicit generation phase is performed before the simulation run is started and is
called the pre-run generation phase. As part of this step, the struct hierarchy rooted at sys is
generated and populated with random values meeting the declared constraints. Any data object
instantiated under sys will be generated as part of this pre-run generation phase.

It is possible to generate values during simulation runtime and specify additional con-
straints during run time generation. In the following example, calling the user-defined method
gen_at_runtime() during simulation runtime assigns constrained random values to the fields of
packet_injector struct. Note that constraints are declared for packet struct members in the defini-
tion of packet struct on lines 3 and 5. Additional constraints are also declared for packet struct
members for the specific instance of this struct in packet_injector struct on lines 11 and 12.
Additional constraints are also specified during the on-the-fly generation steps for packet mem-
bers, and also for the number of packets to be generated. Due to combination of all specified
constraints, during the runtime generation, the generated value for packet.header is in the range

87

CHAPTER 5

4 to 5, value for packet.data in the range 3 to 4, value for num_packets_to_gen in the range 10 to
50.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

struct packet {
header: uint;

data:

};

keep header < 10;
byte;
keep data > 1;

struct packet_injector {
num_packets_to_gen: uint;

keep num_packets_to_gen in [1..100];
packet;

keep packet.header > 3;
keep packet.data < 5;

gen_at_runtime() is {

};
};

gen packet keeping {
.header in [1..5];
.data in [3..10];

};
gen num_packets_to_gen keeping {

it in [10..50];
};

5.2 HDL Simulator Interface

Seamless interface with the hardware simulation environment is considered another important
requirement of a verification language. e provides extensive support for HDL simulator access.

Signals in the hardware simulator can be accessed and modified directly from an e pro-
gram. To access an HDL signal, its name is placed in single quotes (‘). The following example
shows the assignment of value 1’b1 to signal HDL_signal_name in the HDL simulator.

‘HDL_signal_name’ = 1’b1;

If the name of the signal is provided by a variable, then that variable is further placed in
parenthesis before being placed in single quotes. For example, given e string variables
signal_name (a string) and signal_id (a uint), the following notation can be used to assign a value
to that signal:

‘HDL_signal_path/(signal_name)_(signal_id)’ = 1’b1;

The following program shows the interface mechanism for simulator signals:

88 The e Hardware Verification Language

e as a Verification Language

1
2
3
4
5
6
7
8
9
10
11
12
13
14

struct hdl_interface {
signal_name: string;

keep signal_name == “~/top/data[8:0]”;
signal_value: uint(bits:9);

write_and_read() is {
signal_value = ‘(signal_name)’;
‘(signal name)’ = signal value;

};
write_and_read_direct() is {

signal_value = ‘~/top/data[8:0]’;
‘~/top/data[8:0]’ = signal_value;
};

};

In this example, method write_and_read() uses a string variable as the HDL simulator signal
name. In method write_and_read_direct(), signal names are specified directly.

When driving HDL signals from an e program, it is possible to use force and release state-
ments to assign and remove the assignment of a hard value to an HDL signal. In e, the verilog
variable and vhdl driver statements are used to describe specifically how an HDL signal is
driven from the e program (when to drive, how long to drive, when to stop driving).

5.2.1 Multi-Valued Logic

e predefined scalar types support only two-valued logic. As a result, x and z values are trans-
lated into binary values when read from the HDL simulator. When reading HDL signals:

all x values are translated into a binary zero
all z values are translated into a binary one

HDL signals can be driven with x or z from an e program:

1
2
3
4
5

struct hdl_interface {
drive_x_and_z() is {
‘~/top/data[3:0]’ = 4’b01xz;
};

};

It is also possible to detect if an HDL signal has an x or z value. The @z operator returns a
1 if an HDL signal has a z value. @x operator returns a 1 if an HDL signal has an x value.

89

CHAPTER 5

1
2
3
4
5
6
7
8
9
10
11

struct hdl_interface {
data: uint(bits:4);
xdata: uint(bits:4);
zdata: uint(bits:4);
drive_and_read_x_and_z() is {

‘~/top/data[3:0]’ = 4’b01xz;
data = ‘~/top/data[3:0]’;
xdata = ‘~/top/data[3:0]@x’;
zdata = ‘~/top/data[3:0]@z’;

};
};

-- assigning 4 valued logic to HDL signal
-- data is set to 4’b0101
-- xdata is set to 4’b0010
-- zdata is set to 4’b0001

Comments on lines 7,8, and 9 show the values of data, xdata, and zdata t that will be
printed after reading signal values from the HDL simulator.

5.3 HDL Simulator Synchronization

The e language provides the predefined event sim to synchronize operation with the HDL sim-
ulator. This predefined event is used as the sampling event for temporal expressions that moni-
tor signal changes in the HDL simulator. The following usage of sim event is allowed:

After analyzing all such expressions in the e program, the e compiler automatically creates
the necessary interface to the HDL simulator so that a every time a monitored HDL signal is
changed, a call back will be made from the simulator to the e program runtime environment.

An event that is defined using the @sim predefined event can be used as sampling events
for TCMs and as part of temporal expressions. In doing so, it is possible to synchronize thread
execution in an e program to signal transitions in the HDL simulator.

event rise_event
event fall_event
event change_event
event event_detect

is rise(‘hdl_signal_name’) @sim
is fall(‘hdl_signal_name’) @sim
is change(‘hdl_signal_name’) @sim
is change(‘verilog_event_name’) @sim

5.3.1 Notion of Time

All thread executions that take place in the same runtime cycle (i.e. tick) are assumed to take
place in zero simulation time. When a simulator is attached to the e runtime environment, the
predefined variable sys.time is updated with the HDL simulator time value every time a call-
back is made to the e runtime environment. In an HDL simulator, it is generally possible for
multiple delta cycles to take place at the same simulation time. Under such conditions, multiple

90 The e Hardware Verification Language

e as a Verification Language

callbacks to the e runtime environment may also take place at the same simulation time. The
predefined event sys.new_time is emitted when simulation time is advanced.

When no simulator is attached to the e runtime environment‚ the sys.time variable counts
the number of sys.any events that have occurred since the beginning of program execution.

5.4 Units

Verification modules that interact with an HDL simulator must be relocatable. If a verification
module interacts with a number of signals in an HDL module‚ then the implementation of the
verification module should only depend on the HDL module with which it interacts‚ and should
not depend on where in the HDL design hierarchy this HDL module is located. This require-
ment serves two purposes:

Simplifies migration from module level to system level simulation
Improves verification module reusability

During module level verification‚ an HDL module resides at the top level HDL design
hierarchy. During system level verification‚ however that same HDL module will be placed in
its final position in the system level design hierarchy. The same verification module should be
usable without any modifications as the project moves from module level to system level veri-
fication.

Additionally‚ an HDL module can be instantiated multiple times in the system level envi-
ronment. For example‚ the same ethernet port implementation is instantiated multiple times in
an ethernet switch. The verification module for the ethernet port should therefore be usable for
all instances of this port without requiring any modifications.

The unit construct is used for building relocatable e verification modules. Units are the
same as structs in all aspects‚ except the following:

Units are generated only during the pre-run phase and cannot be generated during runt-
ime.
Units are instantiated with an additional is instance keyword. If the is instance key-
word is missing for a field‚ then that field is assumed to be a reference to a unit instance.
Units are associated with a specific HDL hierarchy path. All HDL signal references
inside a unit (unless using an absolute path starting with “~/”) are assumed to be relative
to the unit HDL path. This path is specified using the predefined unit method
hdl_path().
The predefined get_enclosing_unit() method of a struct or unit instance can be used to
find the closest ancestor unit of a given type in its instance hierarchy.
Units can only be instantiated in units.

91

These unit features are demonstrated in the following example. In this example‚ an
hdl_interface unit is first instantiated under sys. The HDL path for this instance is set to the

CHAPTER 5

absolute path of “~/hdl_top”. Unit hdl_interface is declared next. Data member value to_write of
this unit is a value that will be written to HDL signals. This unit also instantiates an hdl_writer
unit and sets its HDL path to “channel”. Note that this HDL path is relative to the HDL path of
the unit where hdl_interface will be instantiated. Next‚ unit hdl_writer is declared. This unit has a
string member signal_name‚ which is the target HDL signal for the write operation. This name is
constrained to “data‚” which again‚ is relative to the HDL path of the hdl_writer unit. hdl_writer
unit also contains a pointer to the hdl_interface unit that contains it. The get_enclosing_unit()
method is used to constrain the value of this reference to the closest parent of hdl_writer which is
of type hdl_interface. Finally‚ the write() method of hdl_writer writes the value of value_to_write to
the HDL simulator.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

|

unit hdl_interface {
value_to_write: uint(bits:9);

keep soft value_to_write in [1..50];

hdl_writer is instance;
keep hdl_writer.hdl_path() == “channel”;

};
unit hdl_writer {

signal_name: string;
keep signal_name == “data”;

hdl_interface_ref: hdl_interface; -- this is a reference
keep hdl_interface_ref == get_enclosing_unit(hdl_interface);

write() is {
‘(signal_name)’ = hdl_interface_ref.value_to_write;

};
};
extend sys {

hdl_if: hdl_interface is instance;
keep hdl_if.hdl_path() == “~/hdl_top”

} ;

Analysis of this e program shows that after generation and during run time:

sys.hdl_interface has an HDL path of ~/hdl_top
sys.hdl_interface.hdl_writer has an HDL path of ~/hdl_top/channel
sys.hdl_interface.hdl_writer.hdl_interface_ref is set to sys.hdl_interface
Method sys.hdl_interface.hdl_writer.write() writes the value sys.hdl_interface.value to.write
HDL signal ~/hdl_top/channel/data

92 The e Hardware Verification Language

e as a Verification Language

5.5 e-Ports

Verification code modularity can be drastically improved if the interface for a module is
defined using an abstract port model that makes no assumptions about how it is finally con-
nected to other modules. The advantage of this approach is that the internal function of the
module can be implemented using the definition for this abstract port‚ and module connectivity
issues can be decided when the module is being instantiated.

e-Ports provide the port abstraction that facilitates the port modeling approach. e-Ports
can be used to connect:

e modules to e modules
e modules to external simulators

e-Ports have the following properties:

can only be declared inside units
can be used to pass data or events
have one of in‚ out‚ or inout directions
are accessed by appending “$” to the reference name (i.e. data$ is the value of port data)
must be bound to either an external simulated object or another e-port object. Dangling
e-ports lead to compilation errors unless they are explicitly indicated by binding them to
empty port.

Consider a verification module that has an interface consisting of a read_p port and write_p‚
and a clk_p port that only requires clock transition information. Assume that read_p and write_p
are each seven bits wide. When using this verification module‚ read_p‚ write_p‚ and clk_p may
be connected to another e module‚ or to signals in an HDL simulator. Then assume that in one
possible configuration‚ two verif_module instances are connected such that each module’s
write_p drives the other module’s read_p. If the clk event ports of both modules are driven by an
HDL signal named clk. Then the implementation of this verification module using e-ports is
shown in the following e program:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<‘
unit verif_module {

write_p: out simple_port of uint(bits:7) is instance;
read_p: in simple_port of uint(bits:7) is instance;
clk_p: in event_port is instance;

event clk is @clk_p$;

write(value: uint(bits:7)) is {
write_p$ = value;

}:
read():uint(bits:7) is {

result = read_p$;
};

};
extend sys {

vm_1: verif_module is instance;
keep vm_1.hdl_path() == “~/top”;

93

CHAPTER 5

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

|

};
‘>

keep bind(vm_1.clk_p‚ external);
keep vm_1.clk_p.hdl_path() == “clk”;
keep vm_1.clk_p.edge() == fall;

vm_2: verif_module is instance;
keep vm_2.hdl_path() == “~/top”;

keep bind(vm_2.clk_p‚ external);
keep vm_2.clk_p.hdl_path() == “clk”;
keep vm_2.clk_p.edge() == rise;

keep bind(vm_1.read_p‚ vm_2.write_p);
keep bind(vm_1.write_p‚ vm_2.read_p);

In implementation of verif_module:

read_p and write_p ports are implemented using the simple_port construct‚ each having
type uint(bits:7).
clk_p port is implemented using an event_port construct.
Port values are accessed by using write_p$‚ read_p$‚ and clk_p$ for both reading the port
values and assigning values to ports.
Event clk is defined based on event port clk_p.

In instantiating and connecting the two modules:

event port vm_1.clk_p is defined to trigger at the falling edge of ~/top/clk since the effec-
tive name of the clk signal is the combination HDL path for verif_module instance and
e-port path name.
event port vm_1.clk_p is defined to trigger at the rising edge of ~/top/clk.
vm_1.read_p is bound to vm_2.write_p
vm_1.write_p is bound to vm_2.read_p

e-ports provide many options for customization and configuration of the ports. e ports can
be used to implement buffer ports (queue models). e-ports also provide efficient utilities for
interfacing to multi-valued signals in the HDL simulator.

5.6 Packing and Unpacking

Two important verification activities are injecting stimulus into the device under verification
and collecting device response. It is often the case that abstract data types travel through device
ports in a serial bit stream format. An ethernet packet consisting of fields of different lengths
travels on an ethernet link in a bit serial format. In a verification program‚ however‚ verification
data is usually handled at a higher level of abstraction to improve programming productivity. A
verification language should therefore provide a utility to translate between an abstract data

94 The e Hardware Verification Language

e as a Verification Language

type (i.e. an ethernet packet) and a bit serial form. In the e language‚ packing and unpacking
mechanisms provide support for this type of translation between logical to physical data
abstractions. The following subsections provide an overview of these operations. Packing and
unpacking are further described in section 7.3.

5.6.1 Packing

In e‚ structs are used to model abstract data types. A common packing operation is serializing
the contents of a struct data object. The following considerations apply when performing a
packing operation on an abstract data type modeled by a struct:

Struct members may need to be serialized in different orders (i.e. first to last‚ last to
first)
Each scalar struct member may be serialized in a different order (i.e. little-endian‚
big-endian‚ and potentially many other variations)
A struct data object may include composite struct members‚ necessitating a recursive
packing mechanism
Not all members of a struct may need to be included in the serialized stream since an
abstract data type may contain struct members that are used for status and control

The packing mechanism in the e language uses the concept of packing options‚ and physi-
cal fields to support these requirements.

The pack_options predefined struct is used in the packing utility to specify what order‚
what direction‚ and what groupings scalar fields of structs and lists are serialized. This option is
also used to specify post processing operations on the final serialized bit stream through swap-
ping bits across different groupings (i.e. swap every two bytes‚ etc.). The e runtime environ-
ment provides specific instances of this struct for some commonly used packing requirements.
Commonly used predefined instances include packing.low‚ packing.high‚ and packing.net-
work2. For example‚ when using packing.low‚ members of a struct are serialized in the order
they appear in the e program. In contrast‚ when using packing.high‚ members of a struct are
serialized in the reverse order of their appearance in the e program. For both these options‚ the
least significant bit of each scalar member appears first in the serialized stream. Using pack-
ing.network is similar to packing.high except that when using packing.network‚ the serial-
ized bit stream is post processed where the final bit stream is byte-order reversed when its size
is a multiple of 8. The description of these predefined instances in this section is meant to illus-
trate the flexibility that the pack_options predefined struct afford a programmer in customizing
the packing operation for the specific requirements of his verification task.

Struct Physical Fields are used to specify members of a struct that should be included in
the packing process‚ struct Virtual Fields are all members of a struct that are not physical fields.
Physical fields of a struct are marked with a “%” mark before the member name.

2. These instances are located under global where packing is a predefined member of global‚ and low‚ high‚
and networking are some predefined members of packing.

95

CHAPTER 5

The syntax for pack() method3 is:

result = pack(option: pack_options‚ item1: expression,.....,itemn: expression);

Note that multiple items may be passed to the pack action. Each item may have a com-
pound or scalar type‚ and packing options related to the order of including items in the serial-
ized bit stream applies to contents of each compound item and the order of items as listed in the
pack action. Figure 5.3 shows the pseudo codes for the pack() method. As shown‚ this
pseudo code‚ pack() recursively calls the predefined do_unpack() method of each
composite item to be packed while packing only the physical fields of composite
items. The do_unpack() method of struct may be extended to modify or enhance the
packing behavior. This figure also shows the options in the pack_options predefined

struct and how they are used during the packing operation.

The following code fragment shows an example of a packing operation.

96 The e Hardware Verification Language

3. pack() and unpack() are pseudo-methods. Pseudo-methods look similar to regular methods but are not
bound to any structs.

e as a Verification Language

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

struct abstract_subdata {
valid: bool;
%val1:uint(bits:2);

keep val1 == 2'b10;
%val2: uint(bits:3);

keep val2 == 3'b100;
};
struct abstract_data {

!packed_data_low: list of bit; --note: not generated
!packed_data_high: list of bit; --note: not generated
data1: abstract_subdata;
%data2: uint(bits:4);

keep data2 == 4’b1000;

post_generate() is also {
packed_data_high = pack(packing.high‚ data1‚ data2);
print packed_ data_ high using bin;

-- prints bit list: 101001000 (first bit on right)
packed_data_low= pack(packing.low‚ data1‚ data2);
print packed_data_low using bin;

-- prints bit list: 100010010 (first bit on right)
};

};
extend sys {

abstract_data;
};

Observations about this example include:

Only physical fields (data1.val1‚ data1.val2‚ data2) are included in the packing.
The ordering of scalar fields for serialization spans through compound fields‚ and
across multiple items defined for a pack action. For example‚ the sequence of scalar
items that are packed are (data1.val1‚ data1.val2‚ data2). The ordering consideration for
packing.low and packing.high options are applied to this sequence of items and not
just to items indicated in the pack action.

5.6.2 Unpacking

Unpacking is the reverse operation of packing. During unpacking‚ a list of bits is split across
multiple scalar fields‚ most commonly the fields of a struct. Unpacking is in general a more
complex operation than packing. The reason for this additional complexity is twofold:

During packing‚ the size of lists that are participating in packing process are known.
During unpacking‚ however‚ this size may not be known. Consider unpacking a list of
bits of size 10 into two lists of bits whose sizes are not known before hand. How should
these 10 bits be divided between the two lists that are the target of unpacking operation?
Structs may have subtypes that contain different sizes and numbers of physical fields.
The struct member that identifies its subtype may in fact be part of the data that is being

97

CHAPTER 5

unpacked into a struct. Unpacking into such struct data structures may require special
handling.

If the target fields of the unpacking operation have no struct subtypes that are indicated by
physical fields‚ and all target lists have predefined fixed sizes‚ then the unpacking operation is
the exact opposite of the packing process. Concepts of pack_options‚ and struct physical fields
are used exactly as they are used in the packing operation. The predefined struct pack_options
is used to specify the order and format that unpacking is done‚ and serial bits are only unpacked
into physical fields. The syntax for the unpack() method is:

unpack(option: pack_options‚ serial_data: expression‚ item1: expression,.....,itemn: expression);

Serial data may be represented in many forms (i.e. bytes‚ list of bit‚ list of byte‚ uint‚ etc.)
but the most common form is a list of bits. The serial data is unpacked into the items specified
in the unpack method using the same method described for the pack operation. If the size of
serial data is less than the minimum amount of data to fill all specified items‚ then an error con-
dition is reported‚ but a larger data size is acceptable.

Unpacking for variable size lists and structs with subtypes requires that the default
unpacking mechanism modified or extended with additional steps to extract list sizes and iden-
tify struct subtypes as information becomes available during the unpacking progresses.

Figure 5.4 shows the pseudo code for the unpack() and do_unpack() methods. As shown‚
the unpack() method the do_unpack() predefined method of structs that they manipulate. Note
that during the unpacking process‚ the order of unpacking follows the order of field definition
regardless of the packing options. However‚ if packing options indicate that the bit stream is
packed in reverse order of field definition‚ then the bit stream is processed from high index bits
towards the bit at index 0. To modify the default behavior of unpack operation‚ this predefined
struct method must be extended or redefined.

5.7 Coverage

Measuring verification progress is an essential part of a verification environment that relies on
randomly generated values. In this type of randomized environment‚ it is necessary to keep
track of how a specific verification step contributes to the completion‚ and measuring the total
progress of completing the verification plan. Functional coverage collection provides the means
to measure the verification progress. Coverage is collected by first defining a metric‚ which
defines the verification progress and then collecting information from the simulation environ-
ment to measure this metric. Metrics for measuring coverage are based on:

Device port traffic
Temporal and spatial correlations between port traffic
Device state
Device state transitions

98 The e Hardware Verification Language

e as a Verification Language

Consider a finite state machine that is specified by its states‚ state transitions‚ and input
combinations that lead to state transitions. Steps to verifying the functionality of this finite state
machine consists of verifying that all possible states are visited‚ all possible state transitions
have occurred‚ and that state transitions occur for the correct combination of inputs. Collecting
coverage on these metrics will provide full confidence that the finite state machine is fully ver-
ified when all these metrics are fully covered. Based on this simple example‚ the following lan-
guage utilities are required for measuring coverage for a finite state machine:

99

CHAPTER 5

Collecting information on signal values
Collecting information on signal transitions (temporal information)
Collecting information on combinations of signal values at the same time (spatial infor-
mation)
Specifying the times when spatial information should be collected
Specifying the times across which temporal information should be collected

The requirements for collecting coverage for any verification project can be abstracted to
the requirements stated for a finite state machine. Note that although collecting coverage on a
state and the input combinations is sufficient for measuring verification progress for a simple
finite state machine‚ the same approach is not practical even for a moderately complex device
since state space enumeration is not a practical approach. This means that to collect coverage
for a device‚ all utilities are required so that the coverage collection metrics can be defined in
terms of properties that are specifically extracted from the verification plan.

In the e language‚ the concept of coverage groups provides coverage collection utilities. A
coverage group is a struct member sensitized to an event in that struct. All collection and transi-
tion measurement are performed according to the occurrence of this event. A coverage group
supports coverage collection for:

Basic Coverage Items
Transition Coverage Items
Cross Coverage Items

Basic Coverage Items are specified to indicate a scalar whose value should be tracked
upon the occurrence of the sampling event of the coverage group. This scalar value may be an e
data object or potentially an HDL signal name. Transition Coverage Items collect information
on two consecutive values of a previously defined basic item across the sampling event. Cross
Coverage Items collect information on the cross product of two or more previously defined
basic items at the same sampling event.

The coverage group for collecting coverage for a struct representing a finite state machine
is shown in this example:

100 The e Hardware Verification Language

1
2
3
4
5
6
7
8
9
10
11
12

type FSM_state: [RESET=2’b00‚ START=2’b01‚ LOOP=2’b10‚ END=2’b11];
struct FSM {

event clk_rise is rise(‘~/fsm/clk’)@sim;

cover clk_rise is {
item state: FSM_state = ‘~/fsm/state’;
item inp_A: bit = ‘~/fsm/A’;
item inp_B: bit = ‘~/fsm/B’;
transition state;
cross inp_A‚ inp_B;

};
};

e as a Verification Language

It is possible to specify additional options for a coverage group based on how information
should be collected for its items. Options range from specifying a Boolean expression that qual-
ifies a specific occurrence of the sampling event for coverage collection‚ to specifying the type
of information that should be collected for each item. It is also possible to specify additional
options for each item in a coverage group. The full range of these options are discussed in a
detailed discussion of coverage constructs.

After the simulation run is completed‚ the coverage collected during the runtime is ana-
lyzed to measure the contribution of that verification run to the completion of all tasks in the
verification plan. It is possible to tap into the coverage collection database during runtime to
guide the generation towards verification scenarios that have not been generated yet. It is
important to observe that gaining more knowledge about the state of verification progress by
collecting coverage creates new opportunities for how the verification flow can be improved.

5.8 Summary

This chapter introduced concepts and structures in e that describe the organization of e as a ver-
ification language. The discussion in this chapter highlighted the verification facilities required
for effective programming of verification activities and presented the specific features of the e
language that fulfill those needs.

Chapters 4 and 5 introduce the e language as an effective programming and verification
language. Details of these constructs are further explained in chapter 5.

101

This page intentionally left blank

PART 3

Topology and Stimulus
Generation

This page intentionally left blank

CHAPTER 6 Generator Operation

6.1 Generator Execution Flow

The fundamental generator activity for a data type is to create its struct hierarchy and to popu-
late the scalar members of this hierarchy with random values. Generation constraints control
the hierarchy structure (in case of struct subtypes)‚ the generation order‚ and also the range for
the generated values. This chapter focuses on details of this operation. Issues regarding use of
generation during program runtime are discussed in section 6.5.

The following example shows a simple struct definition and constraints for its fields.

Random generation is a fundamental operation in implementing a coverage driven verification
methodology. The e hardware verification language provides constructs that support the full
range of random generation requirements.

Detailed understanding of the generation mechanism is an essential part of programming
in e. The understanding proves specially useful as program size increases and the relationships
between generated data items grow in complexity. A detailed understanding of generation is
especially useful in both tracing a constraint conflict to its source‚ and also in making sure that
random generation behavior follows the intended implementation.

This chapter provides a detailed look at e generation constructs and the details of the gen-
eration constraint solver. Issues related to constraints and how they affect both generation and
the generation order are also discussed.

CHAPTER 6

1
2
3
4
5
6
7
8
9
10

<'
struct data_packet_s {

data: list of byte;
keep data.size()== 0x100;

address: uint;
keep address in [0x100000..0x200000];

check: bool;
keep soft check == FALSE;

};
‘>

In this example‚ simple constraints are specified for each struct member.

The generator for compound data types (i.e. structs‚ lists) is implemented in terms of basic
operation of generating constrained random values for scalar data items. The do_generate()
method (figure 4.4) shows the generation execution flow for a compound data type. Note that
generation order within a compound data type may be affected by generation constraints‚ there-
fore‚ this flow uses method next_member_to_gen() to select the next member that should be
generated. This flow implies a depth-first-order for the generation of the struct hierarchy. As
shown‚ the implementation of the generator is based on the following four methods.

next_member_to_gen()
pre_generate()
generate()
post_generate()

The generate() method is used to assign a constrained random value to a scalar data item.
Once the constraints for a scalar data item are known‚ then creating a random value in that
range is easily accomplished. The power of the generator is therefore in its ability to analyze
multiple constraints to choose the next scalar value to generate and the constraints to use during
that generation. Section 6.3 presents the e constraint solver and section 6.4 shows how con-
straints can affect generation order. The remainder of this section shows how pre_generate()
and post_generate() predefined struct methods are used to control the generation behavior.

6.1.1 pre_generate()

pre_generate() is a predefined method of all structs. It is initially empty but is extended to indi-
cate the operations that should take place before members of a struct are generated. In this
example‚ the value of member x of xyz_s struct is assigned in pre_generate() method. Note that
x is designated as a do-not-generate field by prefixing it with “!”‚ and therefore the value
assignment to in pre_generate() is not over-written by the generation phase. Running this pro-
gram has the effect that when instance xyz_i in sys is generated‚ after generation x will have a
value of 10‚ where y and z will be generated randomly to satisfy the specified constraint.

106 The e Hardware Verification Language

Generator Operation

1
2
3
4
5
6
7
8
9
10
11
12

struct xyz_s {
!x: int;
y: int;
z: int;
keep z = x*y;
pre_generate() is also {

x = 10;
};

};
extend sys {

xyz_i: xyz_s;
};

6.1.2 post_generate()

The post_generate() method of a struct is executed after the generator has completed assigning
values to all members of that struct. This method is used as a place holder for all post-process-
ing operations that should be performed after random value generation. Post processing activi-
ties depend on the specific requirements of a project and may‚ for example‚ include computing
non-generated struct members from the randomly generated values and printing information on
the screen after generation for a struct is completed. User code is added to this method by
extending post_generate().

The following example shows the use of post_generate() method to compute non-gener-
ated values‚ and to print the generated values on the screen. In this example‚ a new field z1 is
added to struct xyz_s‚ and in the post_generate() method‚ z1 is assigned. The value of z1 will
also printed every time a data object of type xyz_s is generated.

1
2
3
4
5
6
7

extend xyz_s {
!z1: uint;
post_generate() is also {

z1 =z/20;
print z1;

};
};

107

CHAPTER 6

6.2 Constraint Types

Constraints affect both the generation order and generated values. Different types of constraints
are defined in this section. These definitions are used in the next sections to describe the behav-
ior of the generation utility.

Simple Constraints are constraints that have only one clause alternative. Some examples
of simple constraints include:

keep x < 10;
keep not (y in [10..100]);
keep y < x;
keep (y == a * b) and (z == a - b);
keep not (z == filter(x)) and (y in [3..5]);

Compound Constraints are constraints with more than one clause alternative. Compound
constraints include:

or Constraints: (A or B)
imply Constraints: (A => B)
Boolean Equivalence Constraints: (A == B)
Boolean Non-Equivalence Constraints: (A!= B)

Note that imply constraints‚ boolean equivalence constraints‚ and boolean non-equiva-
lence constraints are in fact short-hand notations for an equivalent or constraint1 :

Constraint (A => B) is equivalent to (not A or B).
Constraint (A == B) is equivalent to ((not A and not B) or (A and B))
Constraint (A!= B) is equivalent to ((not A and B) or (A and not B))

Also note that for an imply constraint‚ there is no requirement to generate A before gener-
ating B. Either B or A can be generated first to satisfy the required boolean clause.

Some examples of compound constraints are:

keep (x < 10) or (x > 100);
keep (x< 10)or(y > 10);
keep (x < a * b) or (y == filter(x));
keep (z < y) => (z > 20);
keep (x==1) == (y==2);

Note that any constraint can be re-written as a multiple-clause or constraint where each
clause is a simple constraint.

Constraints are further divided into unidirectional and bidirectional. These constraints are
described in section 5.1.2.

1. Boolean equivalence and Boolean non-equivalence are in fact the familiar exclusive-nor and exclusive-or
boolean operators.

108 The e Hardware Verification Language

Generator Operation

6.3 Generation Steps and the Constraint Solver

The e generator uses a constraint solver to generate random values subject to generation con-
straints. This constraint solver applies an iterative process to derive the collective effect of all
constraints on the generated data items. The results of the constraint solver is passed to the step
that assigns random values to scalar fields. The application of the constraint solver and the
Set-Scalar steps are repeated until all data items are generated. The constraint solver is applied
only to items that do not have generation order dependency. So first‚ an ordered list of item
groups is created to allow the constraint solver to be applied to items within each group.

The iterative steps performed by the generator are:

1: Create an ordered list of item groups‚ where items in a group have to be generated
before items in the next group can be generated‚ and no generation order exists for items
in the same group.
2: For Each Group:
3: Apply Constraint Solver: iterative application of:

• Constraint Reduction
• Constraint Evaluation

4: Set-Scalar: assign next item using the reduced set of constraints created by the con-
straint solver‚ back to constraint solver if more items remain in group
5: If more groups remain‚ back to step 2.

These steps are described in more detail in the following sections.

6.3.1 Item Generation Order

Unidirectional constraints imply generation ordering dependencies between items that are to be
generated. Consider the following constraints:

keep x > a * b;
keep usable_area < compute_area(length‚ width);

These constraints require that a and b be generated before x is generated‚ and that length
and width are generated before usable_area is generated.

Unidirectional constraints can potentially lead to multiple groups of items that must be
generated in a given order. Consider the following constraints:

keep x > a * b;
keep z > x * y;
keep volume > compute_volume(z)
keep area == a*b;

In this example‚ a and b must be generated before x and before area‚ x and y must be gener-
ated before z‚ and z must be generated before volume. These ordering requirements is illustrated
in figure 6.1. One possible grouping of generation items to satisfy these requirements is also
shown in the figure. This grouping is not unique. For example‚ area can be placed in group 2‚ 3
or 4‚ and y can be placed in group 1 or 2.

109

CHAPTER 6

Beware that circular dependencies during this analysis can lead to a situation where the
requirements for grouping items cannot be satisfied. Adding a constraint requiring that vol be
generated before y leads to a circular dependency and causes an error condition in the generator.

Note that during generation‚ one item (scalar or compound object) is completely generated
before generation moves to the next item. Therefore‚ constraints that apply to members of dif-
ferent structs can potentially lead to circular dependencies when same constraints placed on
members of the same struct would not lead to a circular dependency. Consider the following
example:

1
2
3
4
5
6
7
8
9
10

struct xyz_s {
data1: uint;
data2: uint;

};
extend sys {

xyz1_i: xyz_s;
xyz2_i: xyz_s;
keep xyz1_i.data1 == compute_vol(xyz2_i.data2);
keep xyz2_i.data1 == compute_vol(xyz1_i.data2);

};

The constraint on line 8 requires that xyz2_i be generated before xyz1_i even though the
constraint is on members of these structs. The constraint on line 9 requires the reverse‚ there-
fore creating a circular dependency that will lead to an error condition during generation.

Once groups of items are created‚ then each group is passed to the next generation step.
Within each group‚ items are assigned random values based on their order of appearance in the
code.

110 The e Hardware Verification Language

Generator Operation

6.3.2 Reduction

The reduction step combines simple constraints to produce more narrowly defined constraint
ranges for items in the same generation group.

For example‚ given the following simple constraints:

keep x< 10;
keep not y < 6;
keep x > 5;
keep y< x;
keep z > y;

The reduction step produces the following reduced constraints:

keep x in[7..9];
keep y In [6..];
keep z in [7..];

The reduction steps performed at this stage are well defined and no alternatives exist in
how these constraints may be reduced. The results of this step are deterministically defined
based on the given set of constraints.

6.3.3 Constraint Evaluation

The constraint evaluation step uses the results obtained from the constraint reduction step to
reduce compound constraints into simple constraints. Consider the following example:

keep y < 10;
keep x < y;
keep (x > 9) or (y < 5);

Leading to simplified constraints:

keep y in [0..4];
keep x in [0..3];

Since no more compound constraint are left‚ operation moves to the Set-Scalar step.

111

The first two constraints are simple constraints that are reduced to:

keep y in [0..9];
keep x in [0..8];

During the constraint evaluation phase‚ this new result is combined with the compound
constraint to reduce it to the simple constraint:

keep y< 5

The original compound constraint is then marked as considered and does not come into
consideration again. At this point‚ iteration continues since a compound constraint was reduced
to a simple constraint. In the new iteration‚ constraint reduction is applied to the following three
constraints:

keep y < 10;
keep x < y;
keep y < 5;

CHAPTER 6

In general‚ it is possible to have simple and compound constraints that can no longer be
simplified using the reduction and evaluation steps. In such cases‚ generation moves to the
set-scalar step to assign a random value to one of the items. This value is then used in the next
iteration of reduction and evaluation to further simplify the constraints during the next iteration.

6.3.4 Set-Scalar

The Set-Scalar step assigns random values subject to the simplified constraints obtained from
the constraint reduction and evaluation steps. During this step:

The next item to be assigned a value is based on the order of fields definition in thee
program.
For lists‚ list item n-1 is assigned before list item n is assigned.

For example‚ if field y was defined first‚ then y is assigned a random value in the range o to
4‚ say 2. In the next iteration of the reduction and evaluation steps‚ the range for x is reduced to
a random number between 0 and 1.

6.4 Controlling the Generation Order

It is often useful to explicitly change the default generation order. Controlling the generation
order is sometimes necessary to control the distribution of the generated values‚ and to also pre-
vent generation constraint contradictions.

Generation order can affect value distribution for the generated items. Consider the exam-
ple shown in figure 6.2. In this example‚ all constraints are bidirectional and the generation
order is completely based on fields definition order. If x is generated first‚ then it is assigned a
value of either 0 or 1 with equal probability. That means probability of y being in range [0..9] is
the same as probability of y being in range [10..99]. Therefore‚ if x is generated first‚ then gen-
eration of y is highly biased toward numbers in the [0..9] range However‚ if y is generated first‚
then all values in the range [0..99] are generated with equal probability‚ but then generation ofx

is biased toward value 1. Depending on the desired value distribution‚ either x or y may need to
be generated first.

Generation order may also lead to unexpected constraint contradictions that cannot be
detected during the static analysis phase and depend on the actual random values that are gener-
ated during runtime. Consider the following e code fragment:

1
2
3
4

struct transaction {
opcode1: uint;
opcode2: uint;
kind: [DATA‚ CNTL];

112 The e Hardware Verification Language

Generator Operation

5
6
7 };

In this example‚ the value of kind is used to control the allowed values and the relationship
between values for opcode1 and opcode2. If kind is generated first‚ then no generation contradic-
tions will ever occur. However‚ if kind is generated last‚ then generating this data object will
almost always lead to a generation contradiction. The reason is that the value of opcode1 and
opcode2 will be generated to values other than the allowed values and the allowed combination‚
and when the generator attempts to generate the value for kind‚ it realizes that the specified con-
straints can never be satisfied.

Generation order can be controlled by using the following constructs:

Replacing imply constraints with when blocks.
Explicitly defining the generation order using the gen before construct.
Using value().
Using method calls.

113

keep kind== DATA => opcode1== 1 and opcode2 == 2;
keep kind== CNTL => opcode1== 2 and opoode2 ==3;

CHAPTER 6

6.4.1 when Blocks

Replacing imply statements with when blocks leads to a more readable program and also elim-
inates the occurrence of runtime generation contradictions. The previous example can be cor-
rected as shown below:

1
2
3
4
5
6
7
8
9
10
11

struct transaction {
opcode1: uint;
opcode2: uint;
kind: [DATA‚ CNTL];
when DATA transaction {

keep opcode1 == 1 and opcode2
};
when CNTL transaction {

keep opcode1 == 2 and opcode2
};

};

==2;

==3;

Use of the when block eliminates any possibility of a generation contradiction by forcing
the generator to assign a value to kind first.

6.4.2 Explicit Order Definition

Runtime generation contradictions can be prevented by adding explicit ordering instructions to
the generator. This approach is shown in the following code segment.

1
2
3
4
5

struct transaction {
opcode1: uint;
kind: [DATA‚ CNTL];
keep gen (kind) before (opcode1);

};

6.4.3 value()

Using value() in a simple constraint assures that value of its parameter is generated before any
other item involved in that constraint. Use of value() is demonstrated in the following example
constraints:

keep x < y + z; bi-directional constraints. Items ordering is decided by field ordering
keep value(x) < y + z; item x is generated before either y or z
keep x < value(y) + z; item y will be generated before either x or z

114 The e Hardware Verification Language

keep x < value(y+z); items x is generated after generating both items y and z

However‚ a compound constraint‚ using the value() construct has no effect on the genera-
tion order. This is because in a compound constraint alternative clauses exist that allows the
generator to bypass the ordering imposed by value(). Therefore‚ the example for transaction

struct could not be corrected by using the value() construct.

6.5 Generation and Program Execution Flow

Generation is an integral part of the execution flow of an e program. The phases of the program
execution and generation activities during each phase are shown in figure 6.3. These generation
activities are:

Static Analysis during the setup and initialization phase.
Pre-Generation of the struct hierarchy rooted at sys.
On-the-fly generation activity during simulation runtime.

Pre-generation of sys struct hierarchy was discussed in section 4.3. Issues related to the
static analysis and on-the-fly generation are discussed in this section.

6.5.1 Static Analysis

During the initialization phase‚ a static analysis phase is performed on all constraints specified
in the e program. This static analysis consists of the initial reductions and evaluations that are
done in the setup phase before simulation starts. No scalar assignment is performed during the
static analysis phase.

115

Generator Operation

CHAPTER 6

Static analysis provides the following benefits:

Prevents generation errors by identifying generation constraints that lead to generation
contradictions.
Performs constraint reduction and evaluation for type definition and not for each type
instance. Not repeating these steps for each instance can lead to savings in program
runtime.

Static analysis does not take into account the following constraint types:

Constraints that depend on runtime values
keep x == ‘hdl_signal’;

Constraints with method call
keep x == f(y);

Soft constraints

6.5.2 On-the-Fly Generation

During simulation runtime‚ it is usually necessary to allocate new data objects and to generate
their value. While the declared constraints for a data object (defined as part of struct definition)
should be considered during on-the-fly generation‚ it should be possible to specify additional
constraints while generating data values during runtime. These additional constraints are used
to reflect the requirements of the specific instance of the object that is being generated.

The ability to allocate new data objects raises the issue of software memory management
to ensure that all allocated memory no longer needed is freed. Garbage Collection is a powerful
feature of the e language that provides for automatic management of memory that is no longer
needed. The garbage collection works by keeping track of number of data references for each
allocated memory chunk. Once the number of reference is reduced to zero‚ then that memory
chunk is returned to the pool of available memory space. The power of garbage relieves the
programmer from having to actively manage the memory space. However‚ the programmer
does need to make sure that if a data object is no longer needed‚ then all references to that
object in the program are destroyed.

e provides constructs for allocating new data objects and for on-the-fly generation of data
values. It is also possible to specify additional constraints during on-the-fly generation. The
usage of these constructs are described in the following sections.

6.5.2.1 Data Allocation: new

Keyword new is used to create and initialize a new struct. No generation is performed on the
allocated data object. To populate the struct hierarchy rooted at the newly allocated data‚ an
explicit generation step should be performed. The syntax for this action is:

new [struct-type [[(name)] with {action;...}]]

116 The e Hardware Verification Language

Generator Operation

name in above syntax refers to the new name given to the allocated data object. If the struct
type is not indicated‚ then the data object type is derived from the context of the type of variable
that holds the result of this statement.

The steps performed while creating a new struct are:

Allocate memory space for the struct type
Invoke the init() method of the struct to initialize all struct members with default values
Invoke the run() method of the struct (unless new expression is in a method that is
invoked before sys.run()‚ for example in sys.setup()).
Execute the action block.

The default values assigned by invoking the init() method are:

Scalar fields: set to 0
Enumerated fields: set to first enumerated literal (index 0) in its definition.
Sized Lists: size is set to the specified size. Each list member is then set to a default
value according to the rules for assigning scalar default values.
Un-sized Lists: set to NULL.
Structs: set to NULL.

Note that since the default value for all scalar members is NULL‚ then the data allocation
creates a shallow struct where no struct hierarchy exists below the created data object.

Consider the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<'
struct packet {

kind: [DATA‚ CONTROL‚ ACK];
len: int [4..10];
data: list of byte;

keep data.size() == len;
address: uint;

keep address in [0x10000..0x20000];
};

extend sys {
post_generate() is also {

var apkt: ACK packet;
var pkt: packet = new;
print pkt;
apkt = new ACK packet;
print apkt;
pkt = new packet (p) with {

p.len = 5;
};
print pkt;

};
};
'>

In this example‚ variable pkt is of the type packet. The action on line 14 allocates a new
data object and assigns all its fields to default values (no generation is performed). The action

117

on line 15 allocates a new data object of type packet where the type field is set to ACK. Action
starting on line 16‚ allocates a new data object of type packet and as a post processing step‚ sets
the len field of the allocated object to value 5. Note that in this assignment‚ the previous data
object pointed to by variable pkt is lost and will be freed by the garbage collection utility.

Running this e program will produce the following results:

Specman c> test
Doing setup ...
Generating the test using seed 1...
pkt = packet-@0: packet

@c
0 kind: DATA
1
2
3

0
1
2
3

0
1
2
3

len:
data:
address:

apkt = ACK packet -@1: ACK packet

kind:
len:
data:
address:

pkt = packet-@2: packet

kind:
len:
data:
address:

0
(empty)
0

@c
ACK
0
(empty)
0

@c
DATA
5
(empty)
0

Even though the value for len must be between 4 and 10 as defined by the subtype declara-
tion on line 4‚ the default value is still set to 0 since len is a scalar. Also note that data is set to
NULL since it is an un-sized list. Also kind is set to DATA since DATA is the first enumerated lit-
eral in its definition.

6.5.2.2 Data Generation: gen

The gen action populates the struct hierarchy for a data object with constrained random values.
The syntax for this action is:

gen gen-item [keeping {[it].constraint-bool-exp; ...}]

gen-item above refers to the data item to be generated. This data item can be any instance
of a scalar or compound data type. If it is a struct‚ the instance for which it is allocated and all
the field values inside are generated according to the constraints.

If the gen-item is a field struct member‚ then random values are assigned to the gen-item
given the constraints applied via “keeping”. Other constraints existing for that item in the
enclosing struct and its children are also considered‚ but constraints defined at a higher level
than the enclosing struct are not considered when generating the values.

Different instances of the same struct will have different gen action.

118 The e Hardware Verification Language

CHAPTER 6

Generator Operation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

struct packet {
len: int[0..10];
kind: [DATA‚ CONTROL‚ ACK];
data: list of byte;
address : uint;

};
extend sys {

pkt_x: packet;
pkt_y: packet;
run() is also {

gen pkt_x keeping {
.data.size()==0x100;

};
gen pkt_y keeping {

.data.size()== 0x10;
};

};
};

Soft constraints can be specified with a gen action. The soft constraints applied with the
gen action are added to any other declarative soft constraints that apply to the generated fields.
Example of soft constraint usage is shown in the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

struct packet {
len: int [0..10];
kind: [DATA‚ CONTROL‚ ACK];
data: list of byte;
address: uint;

};
unit Imn {

! pkt: packet;
m_gen() is {

for i from 1 to 100 {
gen pkt keeping {

soft it.len == select {
10: [0..1];
50: [3..7];
20: [8..9];
20: [10];

};
};

};
};

};

In this example‚ 10% of the time‚ len is in the range of [0..1]‚ 50% of the time in range
[3..7]‚ 20% of the time in range [8‚9]‚ and 20% of the time len will equal 10.

119

CHAPTER 6

The gen action is usually used inside a TCM to create consecutive data packets that will be
injected into a DUV port. In such cases‚ generation of the data packet has to be synchronized
with the DUV operation. Synchronization actions are used to achieve this goal while the gen
action is used to generate the packet that is to be injected. Use of TCMs and gen is shown in
the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<‘
struct packet {

len:int[0..10];
kind: [DATA‚ CONTROL‚ ACK];
data: list of byte;
address: uint;

};
unit pkt_driver {

event drv_clk is rise(‘clk’) @sim;

gen_ctrl_pkt() @drv_clk is {
var pkt : packet;
for i from 0 to 10 {

gen pkt keeping {
it.len in [0..2];
it.kind == CONTROL;

};
drive_control_packet(pkt); -- TCM driving the packet.
wait cycle;

};
};

extend sys {
drv_i: pkt_driver is instance;

keep drv_i.hdl_path() == ‘top.system’;
};
'>

6.6 Summary

This chapter discussed issues on how the generator operation fits in program execution flow. It
also presented the operation of the constraint solver and how random values are assigned to
generated items. Constraint types were presented and the effect of these constraints on genera-
tion order was presented. This chapter also motivated the need to control generation order by
showing that accepting the default order may lead to unacceptable random value distributions
and also unexpected generation contradictions. The means to explicitly control the generation
order was also presented.

The use of the generator to create clocks‚ resets‚ the verification environment‚ and also the
verification stimulus will be described in the following chapter.

120 The e Hardware Verification Language

CHAPTER 7 Data Modeling and
Stimulus Generation

In a modern verification environment‚ data is generated and stored using abstract representa-
tions. This abstract representation leads to a more productive and modular programming style.
Productivity is gained by eliminating the need to deal with the details of operations for physical
data manipulation. Modular representation of data items allows operations on all instances of a
data type to be encapsulated along with its abstract representation. This modularity in turn leads
to further increase in productivity by improving code readability and ease of maintenance.

An abstract data item includes fields that are not necessarily present in the item’s physical
manifestation. Such fields include flags‚ status‚ and subtype determinants of a data type which
are used to guide constrained random generation for that data type‚ and to store information
about that abstract data item collected from physical data.

Data items existing in a verification environment are either generated in the environment
or derived from physical signals (i.e DUV ports or internal signals). As such‚ it is necessary to
provide mechanisms to translate between the physical view of a data item and its logical
abstraction. Encapsulating such operations as part of data type‚ allows the verification environ-
ment and verification suite developers to focus on verification details rather than the tedium of
performing data translations.

This chapter describes data modeling in e and discusses data type structure‚ organization‚
and operations required for creating abstract data types that can lead to easier and more produc-
tive use of the verification environment.

CHAPTER 7

7.1 Data Model Fields

Abstract data objects are not necessarily associated with a specific location in the design or ver-
ification hierarchy. These objects may flow through the verification environment and can be
allocated‚ generated‚ and/or freed during the program and simulation runtime. As a result‚ data
objects are modeled using the struct construct. Observe the following considerations when
developing a data model:

A data model may contain information that does not exist in the physical equivalent of
that data model. As such‚ special considerations must be made to differentiate between
these two types of information. This differentiation is required so that operations on this
data type can be done accordingly.
An abstract data model may have different structures‚ or specific field values‚ depend-
ing on its subtype specification. Data modeling should therefore allow for subtype spec-
ification and customization of such subtypes.
A data model may require special fields to guide generation and to store information
about its status if extracted from physical data. A data model should therefore provide
such fields‚ as required by the data being modeled‚ and both consider and update these
values while performing operations on this data type.

The e language provides mechanisms and techniques for supporting the considerations
above. These issues are discussed in the following sections.

7.1.1 Physical Fields

In the e language‚ concepts of physical fields and virtual fields are used to differentiate between
fields that only exist in the physical equivalent of a data type. Struct member definitions corre-
sponding to physical fields are preceded by a %. Consider the following example showing a
partial description for a UART frame:

1
2
3
4
5
6
7

<’
struct uart_frame {

frame_size: uint;
keep frame size in [5..8];

%bits[frame_size] : list of bit;
};
‘>

Depending on the configuration‚ aUART frame may contain anywhere from 5 to 8 bits. In
above example‚ frame_size is a virtual field that corresponds to the number of bits in the frame.
The size of this frame is hard constrained to keep it in the legal range. bits is a physical fields
whose size is derived from frame_size.

Note that physical and virtual information are differentiated to guide the packing and
unpacking steps. Also‚ this makes it easier to identify physical fields while reading an e pro-
gram.

122 The e Hardware Verification Language

Data Modeling and Stimulus Generation

7.1.2 Determinant Fields

Determinant Fields are virtual fields of a data type that identify its subtypes. Determinant fields
are used in defining when subtypes of a struct‚ or in extending that subtype in the same or a
separate file. Determinant fields can be used to enhance the definition of the UART frame to
indicate whether this packet contains a parity bit‚ and how the parity bit is calculated:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<’
struct uart_frame {

parity_type: [NONE‚ EVEN_PARITY‚ ODD_PARITY];
frame_size : uint;

keep frame_size in [5..8];
%bits[frame_size] : list of bit;
when EVEN_PARITY uart_frame {

%even_parity: bit;
keep even_parity == compute_even_parity(bits);
compute_even_parity(lob: list of bit): bit is {

return lob.sum(it)[0:0];
};

};
when ODD_PARITY uart_frame {

%odd_parity: bit;
keep odd_parity == compute_odd_parity(bits);
compute_odd_parity(lob: list of bit): bit is {

return ~lob.sum(it)[0:0];
};

};
};
‘>

In this example‚ field parity_type is used to indicate the type of parity that this frame con-
tains. The when construct is used to extend the base definition of this struct to add physical
fields corresponding to even and odd parities depending on parity_type. Though the same fields
name could be selected for both parity types‚ different names are used to further differentiate
between the two types. By using parity_type in a when construct‚ that field is generated before
any field defined within any subtype definition. bits is also passed to these methods to force the
generator to generate the contents of bits before attempting to compute the parity.

Additional constraints are specified to set parity to its correct value. These constraints
include the user defined methods compute_odd_parity() and compute_even_parity(). Note that
these methods are very simple and the operation performed in the body of each method could
replace the method call in its corresponding constraint. However a method call is used to dem-
onstrate use of user defined methods in constraint definitions.

7.1.3 Utility Fields

As previously mentioned‚ an abstract data model may include information that is not present in
its physical form. For example‚ in the above example‚ frame_size is a utility field as it is not
present as a UART frame travels on a link‚ but in this case‚ it was used to model the frame.

123

CHAPTER 7

Two common uses of a utility field are index fields indicating the position of a data item in
a list of items‚ and flags for guiding the generation flow.

The following e program shows a simple example of using an index field to keep track of
the position of data item in a generated list.

1
2
3
4
5
6
7
8
9
10
11
12
13

<’
struct data_frame {

indx: uint;
%data: byte;

};
extend sys {

data_frame_list: list of data_frame;
keep data_frame_list.size() == 10;
for each in data_frame_list {

keep.indx == index;
};

};
‘>

In this example‚ the for each construct is used to constrain the indx field of each list mem-
ber to the index of that member within the list. In this case‚ the index value is used to report
information for a data item. Note that the same technique can be used to assign ordered values
to physical data fields which can be useful for checking the transmission of consecutive data
items in the verification environment.

A common use of a utility field is to guide the generator into creating specific variations of
a data object. For example‚ a UART frame may include a field indicating if correct parity
should be generated for that frame. The previous example is enhanced below to include a flag
indicating whether the parity error should be generated to its correct value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

struct uart_frame {
has_parity_error: bool;

keep soft has_parity_error == FALSE;
parity_type: [NONE‚ EVEN_PARITY‚ ODD_PARITY];
frame_size : uint;

keep frame_size in [5..8];
%bits[frame_size] : list of bit;
when EVEN_PARITY uart_frame {

%even_parity: bit;
keep even_parity == compute_even_parity(bits‚has_parity_error);
compute_even_parity(lob: list of bit‚ has_err: bool): bit is {

return (has_err ? (lob.sum(it)[0:0]) : (~lob.sum(it)[0:0]));
};

};
when ODD_PARITY uart_frame {

%odd_parity: bit;
keep odd_parity == compute_odd_parity(bits‚ has_parity_error);
compute_odd_parity(lob: list of bit‚ has_err: bool): bit is {

return (has_err ? (~lob.sum(it)[0:0]) : (lob.sum(it)[0:0]));
};

};

124 The e Hardware Verification Language

<’

Data Modeling and Stimulus Generation

23
24

};
‘>

Passing has_parlty_error to the methods computing either the odd or even parity modified
the previous example where has_parity_error is used to indicate if parity should be generated
correctly. The advantage of this approach is that by passing has_parity_error to a method call in
a constraint‚ has_parity_error is generated before the parity field is generated. In this case‚ the
generation order is controlled so that correct generation order is maintained.

It is possible to implement the above enhancement by only using generation constraints‚
without modifying the methods that compute the parity value. However‚ if not used carefully‚
this approach may lead to potential pitfalls during the generation phase.

7.1.3.1 Avoiding Data Generation Inconsistencies

Consider a data item whose definition is shown in this example:

1
2
3
4
5
6

<’
struct data_frame {

%data: byte;
keep data == compute data() ;

};
‘>

Now consider adding a generation flag and the necessary constraints to generate erroneous
data values. The goal in this new implementation is to always generate consistent values where
the value for gen_err indicates if data has a valid value.

1
2
3
4
5
6
7
8

<’
struct data_frame {

gen_err: bool;
keep soft gen_err == FALSE;

%data: byte;
keep gen_err => data != compute data() ;

};
’>

Although this implementation may seem correct at first‚ it can lead to inconsistent genera-
tion results! Since the imply constraint in this example does not impose an order and the
method call in this constraint does not have a parameter‚ the only generation order is dictated by
the order of appearance of fields gen_err and data. In the above implementation‚ where gen_err
is generated before data‚ the generated data item content is always consistent. However‚ if data
is generated first (i.e. because of other generation considerations or if gen_err is defined after
data)‚ inconsistencies may result. Assume data is generated to a value other than the value
returned by the compute_data() method‚ then the constraint on line 6 does not impose any
restrictions on the value of gen_err. In the absence of any other constraint on gen_err‚ the soft
constraint on line 4 forces the generator to assign its value to false. Thus‚ leading to an inconsis-

125

CHAPTER 7

tent state for this data item where gen_err is false but data is not equal to the correctly calculated
value returned by compute_data().

Such an issue may be resolved using a number of different approaches. One is to explicitly
force the generator to generate gen_err before data using a gen before constraint. Another
approach would be to pass the value of gen_err to the method that computes a value for data.
The UART frame example followed this approach. Again‚ the advantage of this approach is
that the generation order is explicitly defined.’

Another interesting approach to solving this problem is to replace the imply constraint on
line 6 with a Boolean equivalence constraint. With this new change‚ if the value of data is
assigned to a value other than the one returned by compute_data()‚ then the constraint on line 6
still imposes a hard constraint on gen_err (in this case forces it to be set to true). An additional
benefit of this approach is that this generation constraint can be used to compute the value of
gen_err flag when assigning data into this data object.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<’
struct data_frame {

gen_err: bool;
keep soft gen_err == FALSE;

%data: byte;
keep gen_err == (data != compute_data()):

};
extend sys {

dframe: data_frame;
run() is also {

dframe.data = 10;
gen dframe.gen_err;

};
‘>

The value of data for the instance dframe of data type data_frame is set to 10. An explicit
generation action on gen_err of dframe (line 12)‚ then uses the constraint on line 6 to generate
the correct value for gen_err field of dframe. This approach can be used when unpacking data
into a data object to compute virtual fields of that data object.

7.2 Data Model Subtypes

The specification of any non-trivial data model includes field value customization and condi-
tional fields. Data field customization refers to attaching special meaning to specific values of
data fields (i.e. tags‚ tokens‚ etc.). Conditional field refers to a data field that is present only
under specific conditions. The ethernet packet shown in figure 7.1 shows examples of both
these concepts. SIZED and QTAGGED are two commonly used ethernet packet formats. The
TAG field in an ethernet packet is used to indicate the type of ethernet packet. Additionally‚ the

126 The e Hardware Verification Language

Data Modeling and Stimulus Generation

data payload portion of the ethernet packet for QTAGGED packets, contains a substructure that
consists of its own flags, tags, and data payload.

Using data subtypes is a common approach used to implement both these requirements.
These topics are discussed in the following sections.

7.2.1 Field Value Customization

As shown for an ethernet packet, data definitions may include fields that are used to control the
valid range or the exact value of other data fields. In an ethernet packet, the tag field indicates
the packet type.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<’
struct ethernet_packet {

type: [SIZED‚ QTAGGED];
%dest: uint(bits:48);
%src: uint(bits:48);
%tag: uint(bits:16);
when SIZED ethernet_packet {

keep tag in [46.. 1536];
};
when QTAGGED ethernet_packet {

keep tag ==0x8100;
>;

};
‘>

The above implementation assigns the value of tag to the correct range depending on the
packet type. Modeling of the data payload field containing conditional fields is described in the
next section.

127

CHAPTER 7

7.2.2 Conditional Fields

As shown in figure 7.1‚ the structure of data payload in an ethernet packet depends on its type.
In a SIZED ethernet packet‚ the tag field contains the size of the data payload in bytes. In a
QTAGGED ethernet packet‚ the tag field is set to a constant value and the qtag field contains
the size of the data payload. The implementation of the ethernet packet to include conditional
fields of QTAGGED type is shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13

<‘
extend SIZED ethernet_packet {

%data[tag]: list of byte;
};
extend QTAGGED ethernet_packet {

%up: uint(bits:3);
%cfi: bit;
%lanid: uint(bits:12);
%qtag: uint(bits:16);

keep qtag in [44..1534];
%data[qtag]: list of byte;

};
‘>

In this implementation‚ the SIZED subtype is extended to include a data payload with its
length specified by the tag field. The QTAGGED subtype is extended to include additional
fields and a data payload whose size is defined by field qtag.

7.2.3 Conditional Fields and Generation Constraints

It is often necessary to generate data types where the fields that need to be constrained only
exist in a subtype of that data type. Multiple approaches can be used to specify generation con-
straints for conditional fields of a data type as part of the generation step. It is also possible to
enhance the data model to make constraint specification(s) for conditional fields easier.

The easiest approach for specifying constraints for a subtype conditional field of a data
object is to specify the data subtype in the declaration of that object. In this example‚ epkt is
defined as a QTAGGED packet and therefore qtag and lanid conditional fields can be used
directly during constraint specification.

1
2
3
4
5
6
7

extend sys {
run() is also {

var epkt: QTAGGED ethernet_packet;
gen epkt keeping {

.qtag == 1300;

.lanid == 0x123;
};

128 The e Hardware Verification Language

Data Modeling and Stimulus Generation

8
9

};
};

Sometimes a packet may need to be generated either as QTAGGED or SIZED. In such cases‚
the packet subtype cannot be specified as part of its declaration. Instead‚ Tick Notation must be
used to specify the necessary constraints:

1
2
3
4
5
6
7
8
9
10

extend sys {
run() is also {

var epkt: ethernet_packet; -- packet subtype not defined in declaration
gen epkt keeping {

.type == QTAGGED;

.QTAGGED’qtag == 1300;

.QTAGGED’lanid == 0x123;
};

};
};

In the above example‚ the conditional fields qtag and lanid are specified using the tick
notation as part of their subtype. Tick notation constraints only take effect when the generated
data has the subtype indicated in that notation. For instance‚ if the constraints defined on line 5
in the above example are removed‚ then the generated epkt may have subtype of either
QTAGGED or SIZED. Constraints on lines 6 and 7 are only taken into consideration if the gen-
erated type is QTAGGED and are ignored if type is generated as SIZED.

It is often convenient to add additional utility fields to a data model to make constraints
simpler to specify. In the case of an ethernet packet‚ the goal is often to generate a packet with
special data size constraints. The implementation of a data packet is extended below to make
size constraint specification more straight forward.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<‘
extend ethernet_packet {

psize: uint;
when SIZED ethernet_packet {

keep tag == psize;
}:
when QTAGGED ethernet_packet {

keep qtag == psize;
};

};
extend sys {

run() is also {
var epkt: ethernet_packet;
gen epkt keeping {

.psize == 200;
};

};

129

CHAPTER 7

18
19

};
‘>

Given the above enhancement‚ the packet size can be constrained as shown by directly
constraining psize (a field in the base definition and not any of the subtypes). Of course care
should be taken in constraining size‚ since data payload size limit is different for each subtype
and specifying the wrong size for a subtype will lead to generation contradictions.

7.3 Data Abstraction Translation

Translations between an abstract data type (i.e a logical view) and its physical view are a com-
monly used operation when interacting with a DUV. Translating from a logical view to a physi-
cal view consist of creating a bit stream that represents the contents of a data object. Translating
from a physical view to a logical view consists of translating a stream of bits into an abstract
view. The e language provides packing and unpacking utilities to support both these activities.
The following section describes the details of these operations.

7.3.1 Packing: Logical View to Physical View

The e language provides the pack() operation to group the physical fields of a data object into a
bit stream. As described in section 5.6‚ the packing operation creates a list of bits according to
the pack options specified when calling the method.

As mentioned in section 5.6‚ the default behavior of pack option can be modified by
extending the definition for the do_pack() method. Since the packing operation can be con-
trolled through the pack_options structure‚ there are few cases where the default packing
behavior may need to be modified. Possible scenarios where the this modification may be
required include:

Enhancing the packing operation to update program fields storing packing statistics and
adding debugging information as packing proceeds.
Since pack options passed to the pack() method apply to all items being packed‚ then
changing packing options for one specific struct in the struct hierarchy or one specific
item requires modification to the pack() method.
Even though unlikely‚ a struct member may need to be included in the packing but not
in the unpacking (or vice versa). In such a case‚ this field is defined as a virtual field and
explicitly included in the packing operation by overriding the default packing operation.

The following code fragment shows an example of the packing order of dataframe set to
packing.low regardless of the packing option specified for the pack() method that packs
objects of type dataframe. The struct member data1 is also included in the packing result for
dataframe objects‚ even though it is not a physical field.

130 The e Hardware Verification Language

Data Modeling and Stimulus Generation

1
2
3
4
5

struct dataframe {
data1 :uint(bits:10);
%data2: uint(bits:12);
do_pack(options:pack_options‚ I: *list of bit) is only {

var lob : list of bit =
6 lob = pack(packing.low‚ data1‚ data2);
7
8
9

l.add(lob);
};

};

7.3.2 Unpacking: Physical View to Logical View

Unpacking is the reverse operation of packing. Unpacking is a more difficult operation to pro-
gram‚ however‚ because of the reasons described in section 5.6. Because of these consider-
ations‚ special attention must be paid to unpacking into lists and unpacking into structs whose
structure depends on the data that is being unpacked. These issues are discussed.

7.3.2.1 Lists

Unpacking into data models that contain variable size lists requires special considerations to
achieve proper unpacking behavior.The unpack() method applies the following rules when
unpacking into lists:

Sized Lists: Unpack and create new list items until size is reached.
Un-sized Lists: Unpack until no more data is available.
Lists with existing Size: Unpack until all existing list items are replaced with new
unpacking data.

Based on these unpacking rules‚ it is suggested to only use sized lists in data models
because if a struct member is un-sized and has a size of zero‚ then any unpacking into the struct
will not progress beyond the un-sized list‚ and all remaining data is unpacked into that un-sized
list.

A good approach for testing the unpacking of data into a data object is to first pack that
data then unpack the pack results. The unpack result should be the same as the original data
content. In the following discussion this approach is considered in analyzing the behavior of the
unpacking operation.

Consider dataframe shown in the following example.

1
2
3
4

<‘
struct dataframe {

%size: byte;
%data[size]: list of bit;

131

CHAPTER 7

5
6

};
‘>

The following rules are useful in analyzing packing and unpacking behavior:

During packing‚ the packing order may be data and then size‚ or size followed by data
depending on packing options (i.e. packing.high‚ packing.low).
During unpacking‚ size is always unpacked first‚ followed by data. Packing options only
affect how data is extracted from the bit stream (i.e. for packing.low‚ size is extracted
from lowest bits of the bit stream‚ for packing.high size is extracted from higher signif
icant bits of the bit stream).
While unpacking data into a sized list‚ the value of size should already be set to its cor
rect value.

This analysis indicates that as long as the size field for a sized list is a physical field and is
defined before that list‚ the default unpacking method does not need to be modified.

However‚ consider a case where list size is not a physical field. Two possibilities exists:

List size is derived from the environment.
List size is derived from the data that is being unpacked.

If the list size is derived from the verification environment and its configuration‚ then this
field should be set before calling unpack() for this data object.

The more interesting scenario is where the list size must be derived from the data that is
being unpacked into a data object. One solution is to process the bit stream before calling
unpack() to set the size field. As mentioned‚ the goal of data model development is to encapsu-
late as much of the data manipulation operations in the data model itself. Therefore it is best
that extraction of size be performed implicitly as part of calling the unpack() method. This is
accomplished by extending the predefined do_unpack() method.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<‘
struct dataframe {

size1: byte;
%data1[size1]:list of bit;
size2: byte;
%data2[size2]: list of bit;
do_unpack(options:pack_options‚ I: list of bit‚ from: int):int is first {

size1 = extract_size1(l‚ from);
size2 = extract_size2(l‚ from);

};
};
extend sys {

dframe_list: list of dataframe;
dframe: dataframe;
unpack_dframes(lob: list of bit) is {

unpack(packing.low‚ lob‚ dframe);
dframe_list.clear(); – make list of size zero.
unpack(packing.low‚ lob‚ dframe_list);

}:

132 The e Hardware Verification Language

Data Modeling and Stimulus Generation

20
21

};
’>

In the above example‚ the do_unpack() method of dataframe is extended to compute the
values for size1 and size2 fields when do_unpack() is first called. The default implementation
of do_unpack() then continues to unpack the correct amount of data intodata1 and data2 fields.

Encapsulating field extraction as part of the data model definition (i.e. extending
do_unpack()) not only hides extraction complexity from the verification environment user‚ but
also allows a single bit stream to be unpacked into multiple data objects or even a list of data
objects. In the above example‚ two unpack operations are shown. The call to unpack() on line
16 unpacks enough bits from lob to populate fields of dframe. Assuming dframe_list size is zero‚
the call to unpack() on line 17 creates as many items in dframe_list as allowed by the available
data in lob.

7.3.2.2 Subtypes

A data model structure may look completely different depending on its subtype. This means
that subtype determinant fields affecting each field must be known as the unpack operation
moves from one field to next. Since subtype determinant fields are usually enumerated types‚ it
is likely that they are not set to correct values as part of the unpacking process. Consequently‚
additional code must be developed to extract the necessary subtype determinant fields before or
during the unpacking process.

This problem solving approach is essentially the same as for managing list sizes described
in the previous section. The ethernet packet example is enhanced to support unpacking in the
following code fragment.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<‘
extend ethernet_packet {

do_unpack(options:pack_options‚ I: list of bit‚ from: int):int is first {
var tagvalue : uint(bits:16) = extract_tag_from_list(l‚ from);
if(tagvalue<1537){

type = SIZED;
} else if (tagvalue == 0x8100) {

type = QTAGGED;
} else {

error(“lnvalid tag field while unpacking in ethernet_packet”);
};

};
};
‘>

133

CHAPTER 7

7.4 Data Generation Constraints

A data model includes hard constraints as part of defining field valid ranges or field relation-
ships. It is useful to include additional constraints to improve a data model’s ease of use.
Approaches to achieving this goal are discussed in the following sections. The following imple-
mentation of a rectangle is used to motivate and illustrate these concepts.

1
2
3
4
5
6
7
8

<‘

struct rectangle {
width: uint;

keep width in [1.. 1000];
height: uint;

keep height in [1.. 1000];
};
‘>

7.4.1 Abstract Ranges

Special ranges of data values usually correspond to abstract properties of that data object. For
example‚ a a rectangle may be defined as WIDE or NARROW‚ and TALL or SHORT depending on
the settings of its width and height parameters. The definition for such abstract properties is
usually a part of the context that the data object.

Using abstract ranges is useful for simplifying constraint specification when working with
a data model. Defining such abstract properties as enumerated types and then using them as
subtype determinants is a robust way to allow constraint definition.

Using abstract ranges also allows for easier specification of non-continuous ranges when-
ever these ranges are constrained in the subtype that is defined by that abstract property. The
rectangle data model is extended in the following code fragment to define abstract properties
and allow for using these abstract properties when using this data type.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<‘
extend rectangle {

height type: [SHORT‚ AVERAGE‚ TALL‚ SHORT_OR_TALL];
width type: [NARROW‚ MEDIUM‚ WIDE‚ WIDE_OR_NARROW];
when SHORT rectangle { keep height < 100 ; };
when AVERAGE rectangle { keep height in [100..900] ; };
when TALL rectangle { keep height > 900 ; };
when SHORT_OR_TALL rectangle {

keep height < 100 or height > 900;
};
when NARROW rectangle { keep width < 100 ; };
when MEDIUM rectangle { keep width in [100..900] ; };
when WIDE rectangle < keep width > 900 ; };
when NARROW_OR_WIDE rectangle {

keep width < 100 or width > 900;
};

};

134 The e Hardware Verification Language

Data Modeling and Stimulus Generation

18
19
20
21
22
23

extend sys {
d1: SHORT rectangle;
d2: NARROW rectangle;
d3: NARROW_OR_WIDE rectangle;

};
‘>

In this example‚ NARROW_OR_WIDE‚ and TALL_OR_SHORT are abstract non-continuous
ranges. By defining these abstract properties‚ it is no longer necessary to remember the exact
definition of these abstract properties during verification code development

7.4.2 Coordinated Ranges

Coordinated ranges refer to interesting constraints that define specific combinations of differ-
ent data fields. The following example shows use of coordinated ranges to define ANY‚ SMALL‚
MEDIUM‚ and LARGE rectangle types‚ where no coordinated constraints are applied for ANY.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<‘
extend rectangle {

rectangle_type: [ANY‚ SMALL‚ MEDIUM‚ LARGE];
when SMALL rectangle {

keep width_type== NARROW and height_type== SHORT;
};
when LARGE rectangle {

keep width_type==WIDE and height_type==TALL;
};
when MEDIUM rectangle {

keep not (width_type==NARROW and height_type!=SHORT) and
not (width_type==WIDE and height_type==TALL);

}:
};
extend sys {

d1: SMALL rectangle;
d2: rectangle;
keep soft d2.rectangle_type == {

10: SMALL;
20: MEDIUM;
30: LARGE;

}:
};
‘>

7.4.3 Default Ranges

A data model should include default constraints that provide typical behavior for that data type.
Soft constraints are used to specify default constraints. However‚ though using soft constraints
to provide default behavior is a powerful technique for defining typical behavior‚ use of soft
constraints may lead to problems when the default constraints must be overridden. The e lan-

135

CHAPTER 7

guage provides a mechanism to remove sort constraints if it is necessary to do so. The follow-
ing extension of rectangle implementation illustrates this issue in more detail.

1
2
3
4
5
6
7
8
9
10

<‘
extend rectangle {

keep soft rectangle_type == SMALL;
};
extend sys {

d1: rectangle;
keep d1. rectangle_type.reset_soft();
keep d1.rectangle_type in [SMALL‚ MEDIUM];

};
‘>

In the above example‚ the definition of rectangle is extended to include a soft constraint to
set the default rectangle type to SMALL. The hard constraint on line 8 indicates that while gener-
ating the value for d1‚ rectangle type should be generated to either SMALL or MEDIUM with equal
likelihood. However without the reset_soft() constraint on line 7‚ rectangle type will always be
generated as SMALL since the soft constraint on line 3 does not contradict the hard constraint on
line 8. By adding the reset_soft() constraint on line 7‚ all soft constraints applied to
rectangle_type (including the one on line 3) are ignored

7.5 Summary

Data is either generated in the verification environment or collected from the physical data
extracted from the DUV. This chapter described the structure of a data model and how physical‚
subtype determinant‚ and utility fields are used to model and manage a data object. Packing was
described in this chapter as a means of translating a data object into a bit stream so that it could
drive physical DUV ports. Unpacking was described as the means to populate data structure
fields from serial data collected from the DUV. Special techniques for enhancing the definition
of a data model were introduced in order to simplify constraint definition when a data model is
being used in a verification environment.

Chapter 8 discusses how sequences of data items are generated to form special verification
scenarios. Building of a verification environment is discussed in chapter 11.

136 The e Hardware Verification Language

CHAPTER 8 Sequence Generation

Verification scenarios are created through a series of interactions between the verification envi-
ronment and the DUV. Considering that in a modern verification environment interactions with
the DUV take place through a BFM‚ a verification scenario is more accurately defined as a
series of interactions with a BFM. Interactions with a BFM take place through its user interface
defined as a set of transactions‚ packets‚ or instructions. Thus‚ a verification scenario is imple-
mented as a sequence of items where each item represents an atomic step in interacting with a
BFM.

As discussed in chapter 2‚ such sequences should be randomly generated in order to gain
the full benefits of constrained random verification methodology. A good random sequence
generation utility should have the ability to:

Parameterize and set generation constraints
Synchronize between multiple sequences at different DUV ports
Define hierarchical sequences (sequence of sequences)
Define reactive sequences (sequences responding to DUV output)
Define layered sequences (sequences driving sequences)

The e language provides full support for constrained random sequence generation and the
necessary utilities to support the desired sequencing features. This chapter will first present an
overview of sequence implementation and then discusses the details of using sequences to cre-
ate verification scenarios for the verification requirements listed above.

CHAPTER 8

8.1 Verification Scenarios as Sequences

A verification scenario is described using the following three components:

VerificationItem
Verification Sequence
Verification Item Driver

A Verification Item describes an atomic verification activity. An atomic verification activ-
ity is carried out as a whole. Theoretically‚ a verification item may describe an operation as
complex as the full configuration cycle of a DUV‚ or as simple as injecting a single packet into
a DUV port. But since complex atomic verification activities are often implemented as a
sequence of simpler operations‚ in most cases a verification item will describe simple opera-
tions such as read/write‚ a configuration step‚ or a data packet injection. A verification item
might include randomly generated parameters. For instance‚ the payload size for a verification
item corresponding to a valid ethernet packet can be generated randomly. A sequence then‚ is
the random generation of its verification items‚ and a Generated Instance of an Item refers to
such a generation step.

A Flat Verification Sequence contains only verification items‚ and describes the number of
and properties of its verification items. These properties include:

Required item orderings
Data Dependencies between verification items
Synchronization mechanism with the simulator
How to drive each verification item into the verification environment

The number of items in a verification scenario may be generated randomly if it is relevant
to the goal of that verification sequence.

As an example‚ a verification scenario for an ethernet port may indicate that between 5 to
10 valid ethernet packets with data size between 50 and 200 bytes must be injected into a DUV
port. In this case‚ the verification item is defined as a valid ethernet packet of between 50 to 200
bytes of data. The verification sequence indicates that it contains 5 to 10 ethernet packets‚ and
the number of items is also randomly generated.

A more complex verification scenario might involve writing to a memory location and
then reading that same memory location to check that the memory write/read operation works
as expected. In this case‚ the verification item is either a memory write or a memory read oper-
ation. The address and data values may both be generated randomly but the address for both
read and write operations must be the same. The verification sequence indicates that write is
followed by the read operation and also indicates that the address for both operations must be
the same.

A Hierarchical Verification Sequence contains verification subsequences as well as verifi-
cation items. A verification sequence might consist of 5 memory write operations followed by a
write/read sequence. In this instance‚ the flat verification sequence above is a subsequence of

138 The e Hardware Verification Language

Sequence Generation

this new verification sequence. A Virtual Verification Sequence refers to a hierarchical verifica-
tion sequence that contains only other sequences and no verification items.

A Verification Item Driver is needed to apply the generated item to the verification envi-
ronment. For an ethernet packet‚ the item driver is the step that passes a data packet to the eth-
ernet BFM. For a more complex item (i.e. performing a multi-cycle configuration step) the item
driver may be implemented as a method that implements that required task. A verification item
driver operates in two modes:

Push Mode
Pull Mode

In the push mode‚ the verification item is driven into the verification environment once it
is generated. In this case‚ the synchronization mechanism generating the sequence determines
when an item is driven into the environment. In the pull mode‚ the verification environment
asks the sequence to provide it with the next item. In the latter case‚ synchronization between
driving sequence items into the environment and the simulation is controlled by the agent pull-
ing the next verification item.

Verification sequences are further divided into homogeneous and heterogeneous
sequences. All verification items in a Homogeneous Verification Sequence have the same item
kind. Verification items of the same kind are items that can be injected into the verification
environment using the same item driver (and hence the same BFM). A Heterogeneous Verifica-
tion Sequence contains verification items that have different kinds. A hierarchical sequence
whose items all have the same type is still considered homogeneous regardless of the kind of
items contained in its subsequences. For example‚ verification items in a homogeneous verifi-
cation sequence may correspond to ethernet packets that have different payload size ranges and
are injected into the same ethernet port. Verification items in a heterogeneous verification
sequence may correspond to ethernet packets that are sent to two different ethernet ports
(requiring two different BFMs). A flat heterogeneous sequence can be modeled using a hierar-
chical sequence consisting only of homogeneous sequences. The predefined sequence genera-
tion utilities in e do not support flat heterogeneous sequences‚ so all heterogeneous sequences
must be modeled as hierarchical sequences containing only heterogeneous sequences.

The order that a sequence is created is not affected by how a sequence item is driven into
the environment. Therefore‚ for the purposes of this discussion‚ sequence generation and the
steps for driving sequence items are discussed separately.

Figure 8.1 shows the graphical view of a sequence definition and the steps for generating
an instance of the sequence. A sequence definition includes:

Action Block
Member Verification Items and/or Verification Subsequences

The structure of a sequence generator is defined by its member verification items and ver-
ification subsequences. However‚ these members are only the templates that specify the types
of items and subsequences that can be generated. The action block is used to generate item and
subsequence instances and to specify the order and dependencies between items and subse-

139

CHAPTER 8

quences generated. As constrained random generation is a required feature of sequence genera-
tion‚ generation constraints can be specified in the action block for verification items and
subsequences that are being generated. In figure 8.1‚ the generation of an item or subsequence
is signified by the do action. In this figure‚ the action body indicates that item A must be gener-
ated first‚ followed by item B‚ and then again item A.

Figure 8.2 shows an example of generating a hierarchical sequence using the view
described in figure 8.1. In this example‚ Seq3 is a virtual sequence generated recursively
according to the action blocks specified for each of its subsequences. The sequence generated is
shown on the vertical time axis in this figure. No assumption is made about how each item is
driven into the verification environment or how it synchronizes with the simulator because
these decisions are separate from how a sequence is actually generated and will be discussed
later in the chapter.

8.2 Sequence Generation Architecture

The e language contains built-in facilities for generating and driving sequences into the verifi-
cation environment. The architectural view of sequence generation and sequence driving con-
structs of the e language is shown in Figure 8.3. This view consists of 4 main components1:

Sequence Item: Specifies the items that form the sequence (i.e. ethernet packet).

140 The e Hardware Verification Language

Sequence Generation

Sequence Generator: Generates a sequence of items according to the specifications in
its action block.
Sequence Driver: Synchronizes with the sequence generator to receive the generated
items.
BFM: The generated item is injected into the environment by the BFM.

1. A heterogeneous sequence requires access to multiple BFMs‚ one for each item kind generated by that
sequence. Therefore this architectural view may in fact contain multiple drivers and multiple BFMs. These
topics are discussed in detail in section 8.5.

141

CHAPTER 8

Some properties of this architecture:

Sequence generator interacts only with the sequence driver to inject the generated items
into the environment one at a time.
A new item is generated by the sequence generator only after the previous generated
item is passed to driver.
Sequence generator is physically located inside the sequence driver. This structure has
implications on how sequence generators are made to interact with multiple drivers
when implementing heterogeneous sequences.
Sequence driver interacts with the BFM to inject the items it receives from the sequence
generator into the verification environment. The BFM interacts only with the driver.
The BFM shown in this architecture is an abstract component that contains the knowl-
edge of how a verification item can be injected into the environment. For ethernet pack-
ets‚ this BFM is an ethernet device equivalent‚ while for an item corresponding to a
configuration step for this BFM corresponds to the method calls necessary to perform
the specified environment configurations.
The sequence generator and sequence driver each have their own execution threads.
The driver and sequence threads interact only for passing a generated item to the driver.
Synchronization between these two threads is achieved through built-in mechanisms in
the predefined driver and sequence constructs.

The sequence generator produces a series of verification items. The sequence driver is
oblivious of how this sequence is internally created in the generator2 and interacts with the
sequence generator only when a sequence item is handed off from the sequence generator to the
sequence driver. The operation process of the sequence generator can be described in two steps:

Step1: Sequence Generator operation
Step2: Sequence Driver operation

In section 8.3‚ the implementation of a sequence generator will be explained using the
default item driving mechanism. Section 8.4 focuses on different modes of driving items and
transferring a generated item to the BFM. The discussion in these two sections is limited to
homogeneous sequences in order to keep the focus on a single driver and single BFM imple-
mentation. Heterogeneous sequences require multiple sequence drivers and BFMs‚ and are dis-
cussed in section 8.5.

8.3 Homogeneous Sequences

The e language provides predefined constructs for the driver‚ sequence‚ and items. These con-
structs are:

2. The sequence may have been generated using a hierarchical or a flat sequence.

142 The e Hardware Verification Language

Sequence Generation

any_sequence_driver: a unit describing the sequence driver
any_sequence_item: a struct describing a sequence item
any_sequence: a struct describing a sequence generator and its sequence

These predefined constructs contain the predefined implementation that performs all
generic operations for creating a sequence generator and driving the generated items into the
environment. All user defined drivers‚ sequences‚ and sequence items are derived from these
predefined constructs using like inheritance. By using like inheritance all predefined methods
and features of these predefined constructs become available to user defined constructs. User
defined sequences are implemented by extending these predefined constructs to specify addi-
tional information necessary to customize the implementation. The user defined steps are:

Define Item Structure: Structure of the items being generated
Name Sequence Kind: A name for the sequence being created
Name Sequence Driver: A name for driver that interacts with the BFM
Define Sequence Driver Interaction: Where sequence driver is placed in the environ-
ment‚ and how items generated by the sequence generator move to the BFM.
Define Sequence Generator Structure: Items and subsequences contained in the
sequence generator
Define Sequence Action Block: How items and subsequences are generated

For hierarchical sequences‚ the above operations must be performed for each sequence
kind. Once a sequence kind is defined‚ then it can be used as a subsequence in other sequences.

8.3.1 Verification Environment Enclosing a Sequence Generator

Consider the following e program used to implement a partial verification environment for
injecting an ethernet packet:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<'
struct eth_packet {

type: [SIZED‚ QTAGGED];
size: uint;
src: uint(bits:48);
dest: uint(bits:48);
-- implementation now shown

};
unit eth_bfm {

agent: eth_agent; -- pointer

inject_packet(packet: eth_packet): bool is {
-- implementation not shown

};
};

unit eth_agent {
event clock;

bfm: eth_bfm is instance;
keep bfm.agent == me;

};

143

CHAPTER 8

23
24
25
26
27

extend sys {
eth_agent: eth_agent is instance;

};
’>

This environment consists of an ethernet agent that contains a BFM used for injecting
packets into the DUV ethernet port. A partial list of eth_packet fields is also shown. These fields
will be used to create different variations of ethernet packets during the sequence generation
process. The master clock is located in the eth_agent and in the complete environment is driven
by its clock source.

8.3.2 Verification Item Definition

The first step in creating a sequence is to define a verification item by extending the predefined
any_sequence_item construct:

1
2
3
4

struct eth_packet_item like any_sequence_item {
packet: eth_packet;
keep packet.size < 500;

};

The item is defined as containing a member packet which holds the generated ethernet
packet during sequence generation. Note that constraints can be applied along with the defini-
tion of this item. These constraints will hold throughout the sequence generation process. In
this example‚ all generated packets in the sequence will have a size less than 500.

8.3.3 Driver and Sequence Creation

The next step in creating a sequence is to create the driver and the sequence generator‚ and is
demonstrated in the following e code fragment:

1
2
3
4
5

sequence eth_sequence using
Item = eth_packet_item‚
createcd_driver = eth_driver‚
created_kind = eth_sequence_kind;

144 The e Hardware Verification Language

Sequence Generation

The sequence construct is an e statement specified at the highest level of e code hierarchy
in parallel with struct‚ unit‚ extend‚ import and other e statements. The item type‚ driver
name‚ and the sequence kind name are specified along with this statement. The item type is the
name of the item that was created for the ethernet packet. The effect of this statement is:

A sequence driver named eth_driver is created.
A sequence generator named eth_sequence is created. This sequence generator is a
member of eth_driver structure.
An enumerated type named eth_sequence_kind is created
MAIN‚ RANDOM‚ and SIMPLE sequence kinds are added to enumerated type
eth_sequence_kind and corresponding sequence generator structure and action block are
specified for each kind. These predefined kinds are created to facilitate a default behav-
ior and are discussed later in this chapter.

8.3.4 Verification Environment Attachment

Next‚ the created sequence driver is attached to the existing verification environment and how
data is moved from the sequence generator to the BFM is specified. This step is shown in the
following code fragment:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

extend eth_agent {
driver: eth_driver is instance;

keep driver.agent == me;
};

extend eth_driver {
agent: eth_agent;
event clock is only @agent.clock;

keep bfm_interaction_mode == PUSH_MODE;
send_to_bfm(item: eth_packet_item) @clock is only {

item.status = agent.bfm.inject_packet(item. packet);
};

};

The sequence driver is included in the environment by extending eth_agent unit. Addition-
ally‚ eth_driver is extended to create a field to hold a pointer to the agent it is contained in. The
clock for the driver is also redefined to be that of the agent. In this example‚ driver is configured
as a PUSH_MODE driver which means that an item is passed to the BFM anytime that item is
ready‚ and therefore injection time is controlled by the sequence generator. To accomplish this
setting‚ the bfm_interaction_mode of the driver is constrained to PUSH_MODE and the pre-
defined driver method send_to_bfm() is redefined to pass the generated item to the BFM.
Other BFM interaction modes are explained in section 8.4.

145

CHAPTER 8

8.3.5 User Defined Sequences

What remains is the definition of new sequence kinds and customization of the environment to
merge the new sequence into the default sequence generation flow. Creating a new sequence
kind requires specifying the structure of the sequence (i.e. what items‚ and what subsequences
it holds) and the action block that will define exactly how each instance is generated.

To complete this step‚ the enumerated type for sequence kind is extended to add a new
kind that corresponds to the new sequence being generated. The sequence structure is then
defined by extending the subtype corresponding to this newly defined sequence kind. The fol-
lowing sections present details of flat and hierarchical sequence implementation.

8.3.5.1 Flat Sequences

A flat sequence refers to a sequence that has no subsequence. A flat sequence is implemented
by defining its structure (member verification items)‚ and the action block specifying the con-
straints and sequence that item instances are generated. Consider the following e code segment:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

extend eth_sequence_kind: [SEND_MIXED_PKTS];
extend SEND_MIXED_PKTS eth_sequence {

min_size: uint;
keep soft min_size == 300;

!sized:eth_packet_item;
keep sized.packet.type == SIZED;

!qtagged: eth_packet_item;
keep qtagged.packet.type == QTAGGED;

body() @ driver.clock is only {
do sized keeping {

.packet.size > min_size;
};
do qtagged keeping {

.packet.size > min_size + 50;
};
do sized keeping {

.packet.size > min_size + 100;
};

};
};

In the above code‚ the new sequence kind SEND_MIXED_PKTS is defined. This is a flat
sequence that contains only items. The SEND_MIXED_PKTS subtype of eth_sequence is then
extended to include two items‚ both of type eth_packet_item‚ that are constrained to generate
either SIZED or QTAGGED packets. Both these items are marked as non-generated since they are
generated by specific generation actions in the sequence generator. The action block for this
sequence is specified by extending the body() predefined method. The do action is a predefined
action of the e language that can only be used in methods defined in sequences. A generation

146 The e Hardware Verification Language

Sequence Generation

constraint may be specified for a do action. Sequence member min_size is used to show how
sequences can be parameterized. The soft constraint for min_size sets its value to 300 in the
absence of any other constraints. The use of this field is shown later in this section when build-
ing a hierarchical sequence. In this example‚ the action block first generates an item instance of
type eth_packet_item with type SIZED and item packet size in range[301 ..499]. The type is set to
SIZED because of the declarative constraint in defining sized (line 4 in above code). The item
packet size is larger than 300 because of constraints specified with the do action‚ and item
packet size will be less than 500 because of the declarative constraint when specifying the
structure for eth_packet_item. The sequences of items generated are:

eth_packet_item with packet type = SIZED and size in [301..499];
eth_packet_item with packet type = QTAGGED and size in [351..499];
eth_packet_item with packet type = SIZED and size in [401.499];

Every time a new item is generated‚ it is passed to the BFM in PUSH_MODE by calling the
send_to_bfm() predefined method.

8.3.5.2 Hierarchical Sequences

A hierarchical sequence can now be created using the SEND_MIXED_PKTS sequence and other
items. This is shown in the following example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

extend eth_sequence_kind: [SEND_SHORT_AND_MIXED_PKTS];
extend SEND_SHORT_AND_M1XEDJ>KTS eth_sequence {

!short: eth_paoket_ltem;
keep short.packet.size in [60..80];

!mixed.seq: SEND_MIXED_PKTS eth.sequence;

body() @ driver.dock Is only {
do short;
do mixed. seq keeping {

.mln size ==350;
}:
do short keeping {

.packet.slze == 70;
}:

};
};

In this example‚ SEND_SHORT_AND_MIXED_PKTS is a hierarchical sequence that contains
one item short and one subsequence send_mixed_pkts_seq. The action block specifies the
sequence using these sequence members to generate item instances. The min_size parameter of
SEND_MIXED_PKTS is used in the action block as a parameter for that subsequence to change its
default behavior. In this example‚ the sequences of items generated are:

eth_packet_item with packet type in [SIZED‚ QTAGGED] and size in [60..80];
eth_packet_item with packet type = SIZED and size in [351 ..499];
eth_packet_item with packet type = QTAGGED and size in [401..499];

147

eth_packet_item with packet type = SIZED and size in [451.499];
eth_packet_item with packet type in [SIZED‚ QTAGGED] and size = 70;

8.3.6 Default Sequence Generation Starting Point

In e‚ the predefined sequence kinds MAIN‚ SIMPLE‚ and RANDOM are defined as part of
processing the sequence construct. The implementation for these predefined sequence imple-
mentations is shown in figure 8.4. The default implementation of the sequence driver includes
an instantiation of the MAIN sequence subtype. Therefore‚ the MAIN sequence type is the start
point of a sequence generator. As shown in figure 8.4‚ the MAIN sequence randomly produces
sequences of kind SIMPLE‚ and other user defined sequence kinds. In the absence of any user
defined sequence kinds‚ the default behavior of the sequence generator is to generate count
instances of SIMPLE subsequence and exit. The SIMPLE sequence simply generates one instance
of the item and exits. In this system‚ user defined sequence kinds can be added to the flow by
either over-riding the default flow or by merging the user sequence into the default flow.

148 The e Hardware Verification Language

CHAPTER 8

Sequence Generation

8.3.6.1 Merging New Sequence Kind with the Default Start Point

A new user defined sequence kind is by default merged into the sequence generation flow since
the MAIN sequence type generates random subsequence kinds that are of kind SIMPLE or any
user defined sequence kinds. More precise control can be achieved by using the following code
fragment:

1
2
3
4

extend MAIN eth_sequence {
keep sequence.kind == [SEND_SHORT_AND_MIXED_PKTS];
keep count == 1 ;

};

Above‚ the MAIN sequence is constrained so that it only generates one subsequence
which is constrained to be the new sequence kind.

8.3.6.2 Over-riding the Default Start Point to a New Sequence Kind

One approach towards merging user defined sequence kind into the flow is to completely
over-ride the default behavior of the MAIN sequence. This approach is shown in the following
user defined replacement of the default flow:

1
2
3
4
5
6
7

extend MAIN eth _sequence {
!my_seq: SEND_SHORT_AND_MIXED_PKTS eth_sequence;

body() @driver.clock is only {
do my_seq;

};
};

The generation order for this sequence is shown in figure 8.5.

8.3.7 Sequence Generator Flow Customization

The sequence driver for a sequence starts that sequence in its run() method (see section 8.4).
Once a sequence has been started‚ it goes through a predefined order of execution. The pseudo
code for sequence generation flow is shown in figure 8.6. Note that this pseudo code is only
accurate to the extent that it reflects the sequence generator operational flow.

As mentioned‚ the sequence driver starts the default sequence (i.e. MAIN) by calling its
start_sequence() method in its run() method. This method starts the internal_body() method

149

CHAPTER 8

for that sequence. The execution flow for internal_body() is shown in figure 8.6 and consists
of calling pre_body()‚ body()‚ and post_body() methods. Note that all methods are by default
empty and therefore if no extension is performed for these methods in a new sequence kind‚
then the sequence simply exits. The action block for a sequence is implemented using the do
action. This action can be called for a subsequence or for an item. The flow for each of these
cases is shown in methods do_sequence() and do_item(). The following observations can be
made about these methods:

Methods emit events throughout their operation. These events can be used to synchro-
nize or learn about the internal operation of a sequence generator.
Only do_item() method interacts with the driver. Synchronization with the sequence
driver and its BFM are done while in do_item() method. The interaction between
do_item() method and the driver is explained in section 8.4.
The methods indicated in this figure with BOLD typeset can be extended by to merge
the user’s program with the default flow. Since some of these methods are TCMs‚ addi-
tional implementation specific synchronization can be obtained by using wait state-
ments in these TCMs.
For subsequences‚ the internal_body() method is not started‚ but it’s do_sequence()
method is called by its parent sequence. As a result‚ pre_body() and post_body() meth-
ods of a sequence are not executed unless that sequence is explicitly started through its
start_sequence() method.

150 The e Hardware Verification Language

Sequence Generation

In the generation order shown in figure 8.5‚ start_sequence() method is called by the
sequence driver. do_item() method is called for all do actions on items and do_sequence()
methods is called on all do actions on subsequences. Using the diagram in figure 8.5‚ it is easy
to determine the order of method calls for the generates items and subsequences. Given this
predefined ordering‚ the user code can then be merged into this flow‚ according to the specific
requirements of the generations scenario.

8.4 Sequence Synchronization

Synchronization between a verification environment and a sequence as it generates items- takes
place through the sequence driver. The pseudo code representing the internal implementation of
the sequence driver is shown in figure 8.73 . As shown in this implementation‚ the sequence

151

CHAPTER 8

driver contains a predefined MAIN sequence. This sequence is generated in the run() method
of the driver and then its start_sequence() method is called. The sequence driver can be in
either PULL_MODE or PUSH_MODE. In PUSH_MODE‚ once a new item is generated by
the sequence generator‚ that item is passed to the BFM by the driver. In the PULL_MODE‚ the
BFM asks the driver for the next item once it is ready to process that item. If the driver is con-
figured to be in the PUSH_MODE‚ then method send_loop() is started in its run() method.
The use of PULL_MODE vs. PUSH_MODE is discussed in the following subsections.

8.4.1 Sequence and Sequence Driver Interaction

The sequence driver and the sequence generator each have their own execution thread. The
synchronization between the sequence generator and sequence driver is accomplished through
handshaking between the do_item() method of the sequence generator and get_next_item()
method and item_done event of the sequence driver. This handshaking mechanism is shown in
figure 8.8. Both PULL_MODE and PUSH_MODE are implemented using the get_next_item()
method. The driver also contains the try_next_item() which behaves the same as

3. Multiple threads of do_item() method can run in parallel for the same sequence generator‚ which means that
all these threads must synchronize with the same sequence driver. Even though it is not shown explicitly in
this pseudo code‚ each thread running do_item() maintains the required handshaking protocol to pass its gen-
erated item to the sequence driver.

152 The e Hardware Verification Language

Sequence Generation

get_next_item() if an item is available in the driver queue. Otherwise‚ try_next_item() returns
immediately with a NULL return value.

8.4.1.1 Push Mode

In the push mode‚ the driver injects the next generated item into the environment as soon as that
item is available. If the driver is configured as push mode‚ then predefined method send_loop()
of the driver is started in the run() method of the driver. The use of get_next_item() and
item_done event are clearly shown in the implementation of send_loop() shown in figure 8.7.
If the driver is configured in the push mode‚ then all that remains is to extend the definition for
the send_to_bfm() to perform the necessary steps. Configuration of the eth_driver in push mode
was shown in section 8.3.4.

153

CHAPTER 8

8.4.1.2 Pull Mode

In the pull mode‚ the driver does not start its send_loop() method. Instead it is up to the BFM to
issue the get_next_item() method and to also emit the item_done event. The implementation
of eth_driver in pull mode is shown in the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

extend eth_bfm {
inject_pkt(epkt: eth_packet) is {

--implementation now shown
};

execute_items() @agent.clock is {
var eitem: eth_packet_item;
while TRUE {
eitem = agent.driver.get_next_item();
inject_pkt(eitem.packet);
emit agent.driver.item_done;

}
};

run() is also {
start execute_items();

};
};

8.4.2 Multiple Sequence Synchronization

It is possible to have multiple sequences pass items to the same sequence driver. An example of
a sequence with multiple threads generating items for the same driver is shown in the following
sequence kind:

1
2
3
4
5
6
7
8
9
10
11
12

extend eth_sequence_kind: [SEND_PARALLEL];
extend SEND_PARALLEL eth_sequence {

!mixed_seq1: SEND_MIXED_PKTS eth_sequence;
!mixed_seq2: SEND_MIXED_PKTS eth_sequence;

body() @ driver.clock is only {
all of {

{do mixed_seq1 keeping {.min_size == 100;};
{do mixed_seq2 keeping {.min_size == 200;};

};
};

};

154 The e Hardware Verification Language

Sequence Generation

The synchronization mechanism between a sequence generator and the driver takes into
account that multiple threads from the same sequence implementation may be passing items to
the driver and operates in a first-come-first-serve manner.

8.5 Heterogeneous Sequences

Items in a heterogeneous sequence are injected into the environment using different BFMs.
These items may all have the same or different types. A sequence that injects ethernet packets
into two different ports of a DUV is considered a heterogeneous sequence even though all its
items have the same type. A sequence that injects ATM and ethernet packets into two DUV
ports is also a heterogeneous sequence since it requires two different BFMs to inject its item.

Consider the ethernet packet sequence generated in figure 8.5. In that implementation, all
the generated items were injected into the environment using the same BFM. The case shown
in figure 8.9 where the packet is generated must be sent to different BFMs. In this instance, the
implementation of eth_packet must be changed to a heterogeneous sequence to support the two
target BFMs.

Two approaches can be used to implement heterogeneous sequences: 1) using virtual
BFMs, 2) using virtual Drivers. These approaches are discussed in the next subsections.

8.5.1 Implementation Using Virtual BFMs

A virtual BFM refers to an abstract BFM that can handle item types that are headed to multiple
BFMs. In this implementation, the definition for an item is extended to identify the destination
BFM for an item. The abstract BFM will then send a generated item to its corresponding BFM.

155

CHAPTER 8

The abstract BFM approach can only be used in the PUSH_MODE driver mode. With this
approach the same sequence driver is used to drive items for different BFMs. In push mode, all
BFMs are waiting to receive the next item and the abstract BFM can decide which BFM should
receive the new item. However, in pull mode, BFMs will request for items when they are ready
to handle that data item. Since all BFMs request items from the same driver, then the driver will
provide each BFM with the next generated item on a first-come-first-serve basis. The effective
order of BFM pull operations may not be the one required by the sequence, and this leads to
corrupted sequence item distribution between BFMs.

In the following example, the implementation of the ethernet packet sequence generator is
modified using an abstract BFM to send the generated items to the BFMs indicated in figure
8.9:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

extend eth_packet {

};
dest_bfm: [BFM1, BFM2];

extend eth_bfm {

};

bfm1: eth_port_bfm;
bfm2: eth_port_bfm;
inject_packet(packet: eth_packet) is only {

if(packet.dest_bfm == BFM1) {
bfm1.inject_packet(packet);

} else {
bfm2.inject_packet(packet);

};

extend SEND_MIXED_PKTS eth_sequence {

};

keep sized. packet.dest_bfm == BFM2;
keep qtagged. packet.dest_bfm == BFM2;

extend SEND_SHORT_AND_MIXED_PKTS eth_sequence {

};
keep short.packet.dest_bfm == BFM1;

In this implementation, the eth_packet is extended to include a destination field. The
implementation of eth_bfm is extended to include two BFMs and method inject_packet() is
extended to redirect the generated packet to the BFM indicated by its dest_bfm field. The defini-
tions for SEND_MIXED_PKTS and SEND_SHORT_AND_MIXED_PKTS eth_sequence structs have also
been extended to indicate the destination BFM for its items. It should be emphasized that this
implementation will only work for PUSH_MODE interaction mode.

8.5.2 Implementation Using Virtual Drivers

A virtual driver is a sequence driver that contains no sequence items and is used to drive other
sequence drivers. Virtual drivers can be used to implement a robust heterogeneous sequence
that works for both PULL_MODE and PUSH_MODE configuration of the environment.

156 The e Hardware Verification Language

Sequence Generation

A virtual driver is implemented using the sequence statement without defining any item.

1
2

sequence virtual_eth_sequence using
created_driver = virtual_eth_driver;

The approach for building a heterogeneous sequence using virtual drivers is as follows:

1. Create an item type for each item generated by the sequence.
2. Define a new sequence using the sequence statement for each item type that is to be generated by

the scenario. Extend each driver to setup the desired BFM interaction mode.
3. Create a virtual driver using the sequence statement. Extend the driver structure to contain pointers

to all drivers in the environment.
4. Instantiate a driver in the environment for each BFM that is used to drive items from the sequence.

Customize each driver instance to point to the BFM used for driving its items.
5. Extend the virtual driver to include pointers to all BFM drivers instantiated in step 4.
6. At this point, the virtual driver and BFM drivers each include a sequence. The driver field of each

sequence points to its own driver. Disable the sequences for BFM drivers (over-ride their body()
method) and modify the MAIN subtype of the virtual sequence to generate a sequences using the
sequence definitions for each item type.

7. Extend each sequence to include a pointer to the virtual driver. This extension is not necessary for
the virtual sequence since its driver field already points to the virtual driver. When building a new
sequence, update this pointer by adding the necessary constraints. This is an example of parame-
ters passing across sequences. The virtual driver contains pointers to all BFM drivers and by keep-
ing this pointer updated during sequence generation, all subsequences have access to BFM drivers.

8. When using a do action on a subsequence, constrain the driver field of that sequence to point to the
appropriate driver, which should be available from the pointer to the virtual driver.

The steps for building the sequence generator for the sequence shown in figure 8.9 is
shown in the following implementation. Note that in this sequence, item types are the same but
sent to different BFMs.

Assume the verification environment has the following structure:

1
2
3
4
5
6
7
8
9
10
11
12
13

struct eth_packet {

};

type: [SIZED, QTAGGED];
size: uint;
src: uint(bits:48);
dest: uint(bits:48);
-- implementation now shown

unit eth_bfm {

}:

agent: eth_agent; -- pointer
inject_packet(packet: eth_packet): bool is {

-- implementation not shown
};

157

CHAPTER 8

The environment consists of an agent that contains two instantiation of the same BFM.
Each BFM has a pointer to its agent container. Only one sequence item type is necessary since
only ethernet packets are being generated. This is implemented as:

1
2
3
4

struct

};

eth_packet_item like any_sequence_item {
packet: eth_packet;
status: bool;

The next step is to define a new sequence for each item type being generated and to extend
the driver for that sequence for attachment to its BFM. In this case, only one BFM sequence for
ethernet packet item is required.

1
2
3
4
5
6
7
8

10
11
12
13
14

sequence eth_sequence using
item = eth_packet_item,
created_driver = eth_driver,
created_kind = eth_sequence_kind;

extend eth_driver {

};

bfm: eth_bfm;
event clock is only @bfm.agent.clock;

keep bfm_interaction_mode == PUSH_MODE;
send_to_bfm(item: eth_packet_item) @clock is first {

item.status = bfm. inject_packet(item. packet);
};

Next, a virtual sequence and its corresponding virtual driver are created. The virtual driver
is extended to contain a pointer for each driver it must drive.

158 The e Hardware Verification Language

14
15
16
17
18
19
20
21
22
23
24
25
26

unit eth_agent {
event clock is @sys.any;

bfm1 : eth_bfm is instance;
keep bfm1. agent == me;

bfm2: eth_bfm is instance;
keep bfm2.agent == me;

};

extend sys {

};
eth_agent: eth_agent is instance;

9

Sequence Generation

1
2
3
4
5
6
7
8
9
10

sequence virtual_eth_sequence using
created_driver = virtual_eth_driver;

extend virtual_eth_driver {

};

agent: eth_agent;
event clock is only @agent.clock;

driver1: eth_driver; -- pointer
driver2: eth_driver; -- pointer

Following that, all sequence drivers are instantiated in eth_agent and appropriate con-
straints are set to set the pointers in virtual driver point at BFM drivers.

1
2
3
4
5
6
7
8
9
10

extend eth_agent {

};

edriver1: eth_driver is instance;
keep edriver1.bfm == bfm1;

edriver2: eth_driver is instance;
keep edriver2.bfm == bfm2;

vdriver: virtual_eth_driver is instance;
keep vdriver.driver1 == edriver1;
keep vdriver.driver2 == edriver2;
keep vdriver.agent == me;

Then the eth_sequence is extended to add a pointer to the pointer to virtual pointer. This
pointer is used to pass the pointer to the virtual driver in the sequence generation hierarchy.

1
2
3
4

extend eth_sequence {
vdriver: virtual eth_driver; -- pointer

keep soft vdriver == NULL;
};

Next the default definition for eth_sequence is modified to disable its sequence thread. The
definition for virtual_eth_sequence is also redefined so that the sequence generates a sequence
of type eth_sequence. The constraint on line 6 sets the virtual driver pointer inside the subse-
quence. By default, a subsequence inherits the driver for its parent sequence. The constraint on
line 11 over-rides this default behavior and forces the driver for theeth_seq subsequence to use
driver1 which is connected to bfm1.

159

CHAPTER 8

1
2
3
4
5
6
7
8
9
10
11
12
13

extend MAIN eth_sequence {

};
keep count == 0;

extend MAIN virtual, eth_sequence {

};

!my_seq: SEND_SHORT_AND_MIXED_PKTS eth_sequence;
keep my_seq.vdriver == driver;

body() @driver.clock is only {

};

do my_seq keeping {
.driver == driver.driver1 ;

};

The sequence kinds for eth_sequence sequence are now defined while the virtual driver
pointer is updated for all subsequences and using any driver that is required for a subsequence.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

extend eth_sequence kind: [SEND_SHORT_AND_MIXED_PKTS];
extend SEND_SHORT_AND_MIXED_PKTS eth_sequence {

};

!short_eitem: eth_packet_item;
keep short_eitem.packet.size in [60..80];

!send_mixed_pkts_seq: SEND_MIXED_PKTS eth_sequence;
keep send_mixed_pkts_seq.vdriver == vdriver;

body() @ driver.clock is only {

};

do short_eitem;
do send_mixed_pkts_seq keeping {

.driver == vdriver.driver2;

.min_size == 350;
};
do short_eitem keeping {.packet.size == 70;};

In the code above, the definition for SEND_MIXED_PKTS is as defined in section 8.3. The
definition for SEND_SHORT_AND_MIXED_PKTS however is modified by adding a constraint on
line 6 to update the virtual driver pointer, and a constraint on line 11 to specify the driver that is
to be used while performing the do action for a subsequence. The do action on line 10 can be
issued multiple times in the body() method each time using a different driver, causing the gen-
erated items to be sent to different BFMs. Creating a virtual driver pointer in this case allows
subsequences at any depth of the sequence hierarchy to use any driver available in the environ-
ment.

160 The e Hardware Verification Language

Sequence Generation

Figure 8.10 shows a pictorial view of driver assignment while the sequence is being gener-
ated. In this diagram, items i2, i3, and i4 are driven by driver2 and items i1 and i5 are driven by
driver 1.

Note that this implementation will work as expected in both pull and push operation mode.
When in pull mode, each BFM will request the next item when it is ready to drive it. Assume
the sequence is generating item i3 and both bfm1 and bfm2 try to pull the next item. The pull
action by bfm2 will block until the sequence generator moves back to driver1 which is when
item i5 is being generated. Therefore, even if both BFMs request the next item at the same time,
only the BFM that is targeted by the sequence generator will receive the generated item. Also,
each driver may be configured to operate either in push or pull mode. This is an important prop-
erty that allows the creation of complex handshaking mechanisms between multiple BFMs.

Even though the above example was constructed for a sequence with same item types, the
same technique can be used to generate sequences with different types of items and those using
different BFMs.

8.6 Summary

This chapter introduced the concept of sequences and how they are used to generate verifica-
tion scenarios. The architecture and implementation of sequences in the e language were
explained and approaches for building homogeneous and heterogeneous sequences were dis-
cussed. Homogeneous sequences are used when only BFM is required for driving the generated
sequence. Heterogeneous sequences are used with multiple BFMs. The concept of virtual
sequences and virtual drivers were also introduced and used to implement heterogeneous
sequences that will operate with any combination of pull and push modes from its multiple
drivers.

161

This page intentionally left blank

PART 4

Response Collection, Data
Checking, and Property Moni-

toring

This page intentionally left blank

CHAPTER 9 Temporal Expressions

Temporal expressions are a powerful method for defining and identifying complex behaviors
that span multiple program runtime ticks. Once a specific temporal behavior has been described
using a temporal expression, its definition is used to achieve thread synchronization and imple-
ment property assertions, which in turn are used to implement monitors and protocol checkers.

Temporal expressions provide a declarative approach for defining temporal behavior and
afford the programmer the benefits of declarative programming discussed in chapter 4. More-
over, assertion checking is implemented using declarative constructs to check that a desired
temporal behavior maintained throughout the program execution.

This chapter describes temporal expressions in detail and introduces temporal operators
that are used to combine events and base temporal expressions to describe complex program
behavior. This chapter also describes common temporal behaviors and their equivalent imple-
mentation in e.

9.1 Temporal Expression Basics

Base temporal expressions were introduced in section 4.6.1.1. One important property of base
temporal expressions is that they are evaluated within one sampling period of their sampling
event (either in the sampling period or at the sampling event). As such, these base expressions
define only properties that can be identified in a single sampling period. The conditions for a
base temporal expression to succeed are described in section 4.6.1.1.

CHAPTER 9

Temporal expressions describe behaviors that span multiple sampling periods, and are
constructed by using temporal operators to combine base and non-base temporal expressions.
The conditions for a composite temporal expression to succeed are defined recursively based
on the success of base temporal expressions and the temporal operator that is being used.

The Sequence Temporal Operator is used to create temporal expressions:

{temporal_subexp1;temporal_subexp2;..} @sampling_event

In this definition, each temporal sub-expression may be a base temporal expression or a
temporal expression defined by the sequence operator. Each temporal sub-expression separated
by the semicolon operator is evaluated over successive occurrences of the sampling event. The
evaluation for each temporal sub-expression begins in the sampling period following that in
which the preceding temporal sub-expressions succeeded. The temporal expression defined by
the sequence operator succeeds when its last temporal sub-expression succeeds. The evaluation
for this sequence fails if evaluation of any of these temporal sub-expressions fails.

An example of using temporal expressions is shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<’
unit config_env {

};
‘>

event clk is rise('top.clk')@sim;
event start_sim is rise('top.start_sim')@clk;

configure() @clk is {
wait {fall('top.reset'); [2]; @start_sim};
-- configure here

};

run() is also {
start configure();

};

In the above example, 'rise('top.clk')@sim', 'rise('top.start_sim')@clk', ‘fall('top.reset')’, and
‘@start_sim’ are base temporal expressions. The temporal expression used with the wait action
on line 7 is defined using base temporal expressions and the repeat temporal operator (see sec-
tion 9.3.3.2). The sampling event for this temporal expression is the default sampling event for
the configure() TCM which is clk.

Figure 9.1 shows the visual notation used to indicate stages of evaluation for a temporal
expression. This figure also shows the stages of evaluation for the complex temporal expres-
sion on line 7 of above example. As shown in the figure, the valuation of the temporal expres-
sion sequence starts after the first occurrence of fall(‘top.reset’). There is a 2 cycle wait after
evaluation starts. However, since there is no occurrence of a start_sim event, evaluation fails.
With the second occurrence of fall(‘top.reset’) the evaluation of the temporal expression
sequence is again started. After a 2 clk cycles, event sim_start occurs and the evaluation of the
sequence succeeds. Temporal expression evaluations are discussed in detail in section 9.2.1
using an abstract model of temporal expression evaluation presented in section 9.2.1

166 The e Hardware Verification Language

Temporal Expressions

9.2 Temporal Expression Evaluation

A number of factors affect the evaluation of temporal expressions. These factors include pro-
gram context, temporal operators used to create the expression, temporal expression attachment
to a specific thread, and number of sub-threads needed to evaluate multiple ways the same tem-
poral expression may succeed. A clear understanding of these factors is important for under-
standing the expected behavior of a temporal expression and for building temporal expressions
that match the intended behavior. Temporal expression evaluations are discussed in detail in
section 9.2.1 using an abstract model of temporal expression evaluation. Section 9.2.3 dis-
cusses factors related to concurrent evaluation of temporal expressions and how temporal
expression evaluations are started.

9.2.1 Evaluation Abstract Model

Evaluation of a temporal expression always begins with a single thread. As evaluation
progresses, multiple threads that run in parallel may be created to evaluate the multiple ways a
temporal expression may succeed. The creation of new evaluation sub-threads are controlled by
the temporal operators used to construct a temporal expression.

Figure 9.2 shows the abstract model used to describe the operation of a temporal operator.
This model consists of the following components:

Number of Evaluation Sub-threads
Success Equation

167

CHAPTER 9

Termination Condition
Failed Status

The number of sub-threads for a temporal operator is defined by the function of that oper-
ator. For example, an or operator requires two sub-threads while a repeat operator requires only
one sub-thread. Sub-threads may span multiple cycles of the sampling event and do not neces-
sarily take the same number of cycles to complete. The terminate condition is defined either as
ALL or ANY. For the ALL conditions, sub-threads must complete before the evaluation for an
operator terminates. For an ANY condition, all sub-threads are terminated once any of the
sub-threads terminate. The success equation defines the times at which evaluation ofan opera-
tion succeeds. The evaluation of a temporal operator may result in multiple successes. Evalua-
tion ofa temporal operator fails when all evaluation sub-threads terminate without the temporal
expression ever succeeding. Failed status for a temporal expression is raised when a failed sta-
tus is identified in the last cycle of evaluation. This abstract model is used for defining the
behavior of each temporal operator in section 9.3.

The evaluation model of base temporal expressions requires only one cycle of the sam-
pling event, and only one thread (using the main evaluation thread). The success equation for
base temporal expressions was described in section 4.6.1.1. Evaluation flow of all temporal
expressions is described recursively in terms of the evaluation model of its temporal operators
and the evaluation model of base temporal expression.

168 The e Hardware Verification Language

Temporal Expressions

9.2.2 Sequence Temporal Operator

The syntax for the sequence operator is:

The evaluation flow for a temporal expression created by the temporal operator
is described as follows:

Number of Evaluation Sub-threads: the first temporal sub-expression in the

sequence, is evaluated in the thread that started the evaluation. For any successful tem-
poral sub-expression at position n, a new evaluation sub-thread is started for tempo-
ral sub-expression This new evaluation thread is started at the sampling event

following the one in which succeeded. An evaluation sub-thread is terminated if the

temporal sub-expression it is evaluating never succeeds (i.e. fails), or when it evaluates
the last sub-expression in the sequence.
Success Equation: The temporal expression created by a sequence operator succeeds
when any of the sub-threads evaluating the last temporal sub-expression in the sequence
succeeds.
Termination Condition: The evaluation of a sequence temporal expression terminates
with all its evaluation sub-threads have terminated.

Figure 9.3 shows an example of how the evaluation of a sequence temporal expression
progresses in terms of the evaluation model of the sequence operator and evaluation flow of its
temporal sub-expressions. Observations on this evaluation are:

Evaluation starts at time 0 by evaluating temporal expression T1 in the main thread.
T1 Succeeds once at cycle 1 and once at cycle 3.
Evaluation A of T2 starts at cycle 1 and succeeds once at cycle 3.
Evaluation B of T2 starts at cycle 3 and succeeds 2 times at cycle 4 and 5.
Evaluation A of T3 starts at time 3 and fails at time 5.
Evaluation B of T3 starts at time 4 and succeeds at time 6. This sub-thread of evaluation
is terminated since the fail operator is used for sub-expression T3. Evaluations along
this thread will not continue.
Evaluation C of T3 starts at time 5 and fails at time 7.
Evaluation A of T4 starts at time 5 and succeeds at times 6 and 8. Both these successes
are reported for the temporal expression T and the sub-thread is terminated since T4 is
the last sub-thread in the sequence.
Evaluation B of T4 starts at time 7 and succeeds at time 9. This success is reported for
the temporal expression T and sub-thread is terminated since T4 is the last sub-expres-
sion in the sequence.
Evaluation flow for this temporal expression terminates at time 9 when all evaluation
sub-threads have terminated.

In this example, the evaluation started with one thread, and grew to three sub-thread, two
of which produced three successes for the evaluation of this temporal expression.

169

CHAPTER 9

Given the abstract model of temporal operators, the behavior for any temporal expression
is computed using the procedure illustrated in figure 9.3. Start of an evaluation is controlled by
the temporal expression context and is discussed in section 9.2.3. The temporal operators in the
e language are described using the evaluation model in section 9.3.

9.2.3 Evaluation Threads and Program Context

Evaluation threads for temporal expressions are derived from the context of that temporal
expression. Temporal expressions may be used in

Declarative Statements
Sequential Actions

Declarative statements include event, expect, and assume struct members. Sequential
actions include the wait and sync (section 4.6.3).

Evaluation of a temporal expression used in a sequential action is started when that action
is reached during program execution. The default sampling event of the TCM containing that

170 The e Hardware Verification Language

Temporal Expressions

sequential action is used as the default sampling event for any temporal expression contained in
that TCM. Even though a temporal expression may succeed multiple times for the same evalu-
ation, the evaluation of a temporal expression used in a sequential action is terminated when it
succeeds for the first time.

Evaluation of a temporal expression used in a declarative statement is started in the run()
method of that struct, and a new evaluation of that temporal expression is started at every
occurrence of its sampling event thereafter. Each evaluation of this temporal expression is con-
tinued until all sub-threads for evaluating that temporal expression complete.

Events in a struct definition can be used to define the temporal expressions for other
events. Under such conditions, the temporal expression for each event definition runs in its own
evaluation thread. Consider the following example:

1
2
3
4
5
6
7
8
9

<‘
struct event_holder {

event A is {fall(‘reset’); rise (‘clk’)} @sim;
event B is rise(‘simulation_stop’) @sim;
event C is rise(‘simulation_start’) @sim;
event D is {@C;@A;@B} @sim;
event E is {@C; { fall(‘reset’); rise (‘clk’)}; @B}@sim;

};
‘>

In this example, events A, B, C, and D are all evaluated in their own evaluation threads.
As such, the detail of each evaluation is not visible to the other temporal expressions. Evalua-
tion for event D can only check if event A succeeded during its sampling event. This is an
important observation in evaluating temporal expressions since it allows for concurrent evalua-
tion of expressions. For example, by the time event A is emitted, fall(reset) and rise(clk) have
been detected in consecutive cycles. Event D checks that by its second evaluation cycle,
fall(reset) followed by rise(clk) has been observed. Event E however is evaluating this sequence
as part of its own evaluation thread and is therefore consuming the necessary cycles to evaluate
this sub-expression. Depending on the expected temporal behavior, either method may need to
be used.

9.2.4 Detach Operator

Detach operator is used to explicitly create a new thread that runs in parallel with the evaluation
thread of its containing temporal expression. The evaluation of a sub-thread started by the
detach operator starts at the same time as the evaluation thread for its parent temporal expres-
sion.

The Detach Temporal Operator creates an implicit event which is then used to replace the
detached temporal expression. In the following example, events D and E are equivalent.

1
2

<’
struct even_holder {

171

CHAPTER 9

3
4
5
6
7
8
9

event A is {fall(‘reset’); rise (‘clk’)} @sim;
event B is rise(‘simulation_stop’) @sim;
event C is rise(‘simulation_start’) @sim;
event D is {@C;@A;@B} @sim;
event E is {@C; detach({fall(‘reset’); rise (‘clk’)}); @B}@sim;

};
‘>

9.2.5 exec Construct

The exec construct allows a non-time-consuming procedural code-block to be attached to
a temporal expression such that once that temporal expression succeeds that code-block is exe-
cuted. This construct allow for procedural code to be inserted in the evaluation flow of a tempo-
ral sequence. Since temporal sequences are composed of a series of temporal sequences, the
exec construct allows for non-time-consuming procedural code to be inserted in the evaluation
flow of a temporal sequence.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<’
extend exec_ex {

data : list of uint;
event clk is rise ('top.clock')@sim;
event load_data is (

rise('top. valid') exec {
var tmp_data : uint = 0×1000;
for i from 1 to 100 {

data.add(tmp_data);
 tmp_data = tmp_data + 0×10;

};
[..];
fall(‘top. valid’) exec {

outf(“valid deasserted”);
};

} @clk;
};
‘>

In the above example, the data list is populated with 100 integers when a rise in signal
top.valid is detected. Also a message a printed when a fall in signal top.valid is detected.

9.3 Temporal Operators

Temporal operators are divided into three categories:

Base Temporal Operators
Atomic Temporal Operators
Composite Temporal Operators

172 The e Hardware Verification Language

Temporal Expressions

Base Temporal Operators are used to create base temporal expressions from variables in
the e program or in the external simulator. Atomic Temporal Operators define a new type of
operation that is described in terms of the evaluation model presented in section 9.2.1. Compos-
ite Temporal Operators are described in terms of atomic temporal operators1.

9.3.1 Base Temporal Operators

Base temporal operators are used to create base temporal expressions. Use of these operators
was discussed in section 4.6.1.These operators are:

true, change, fall, rise, @ unary event operator

9.3.2 Atomic Temporal Operators

Atomic temporal operators are:

sequence, detach, fail, and, or, first-match-variable-repeat

The sequence operator was described in section 9.2.2. Detach operator was described in
section 9.2.4. The remaining base temporal operators are described in the following subsec-
tions.

9.3.2.1 fail

Temporal expression fail T succeeds if failed termination condition (section 9.2.1) is raised at
the end of the evaluation flow for temporal expression T. This operator does not change the
evaluation flow for temporal expression T, and T evaluates according to its own evaluation
flow. This operator does, however, modify the sense of success for this temporal expression.
Temporal expression fail T consumes as many sampling event cycles as required for the evalu-
ation of temporal expression T to terminate.

9.3.2.2 and

The syntax for the and operator is:

The evaluation flow for temporal expression T defined using the and operator is described
as follows:

Number of Evaluation sub-threads: Each temporal sub-expression of the and operator is
evaluated in a separate evaluation sub-thread. Each sub-thread is started when the eval-

1. Even though composite operators are
these operators is not necessarily based

described in terms of atomic operators, the actual implementation of
on using the atomic operators.

173

CHAPTER 9

uation of the temporal expression T is started. For the above notation, evaluation flow
for T will consist of n evaluation sub-threads.
Success Equation: Temporal expression T succeeds when all its sub-threads start evalu-
ating in the same sampling period and succeed in the same sampling period. The evalu-
ation flow for an and operator can succeed only one time.
Termination Condition: The evaluation of temporal expression T terminates when any
of its evaluation sub-threads succeeds, or when all sub-threads terminate. The reason is
clear: if any sub-threads continue to evaluate when at least one sub-thread terminates,
then there is no possibility for all sub-threads to succeed at the same time and the evalu-
ation of T should fail.

One important consequence of the evaluation of the and operator is that the and of two
separate temporal expressions which take different number ofcycles to evaluate will never suc-
ceed. The temporal expression for event D in the example below will never succeed even
though definition for event C is the same as that of {@A;@B} in the temporal expression for
event D. The reason is that the sub-thread evaluating @C for the and operation on line 4 always
evaluates in one cycle while a sub-thread evaluating{@A;@B} requires two cycles to complete.

1
2
3
4
5

<’
struct event_holder {

};
6 ‘>

event C is {@A;@B} @sys.any;
event D is { {@A;@B} and @C} @sys.any; -- event D is never emitted.

9.3.2.3 or

The syntax for the or operator is:

as follows:

Number of Evaluation sub-threads: Each temporal sub-expression of the or operator is
evaluated in a separate evaluation sub-thread. Each sub-thread is started when the eval-
uation of the temporal expression T is started. For the above notation, the evaluation
flow for T will consist of n evaluation sub-threads.
Success Equation: Temporal expression T succeeds when any of its evaluation
sub-threads succeed. The evaluation flow for anor operation may potentially succeed
as many times as the number of sub-expressions in the or expression.
Termination Condition: The evaluation of temporal expression T terminates when all of
its evaluation sub-threads terminate.

Figure 9.4 shows an evaluation of a temporal expression that is the OR of two temporal
sub-expressions. The first sub-expression {@req; @ack}@pclk,succeeds at the first ack occur-
rence (second pclkoccurrence). The second sub-expression {@re; [1]; @ack}@plck, succeeds at

174 The e Hardware Verification Language

The evaluation flow for temporal expression T defined using the or operator is described

Temporal Expressions

the second ack occurrence (third pclk). When req occurs again at the fourth pclk occurrence, a
new evaluation of the sequence starts. This evaluation succeeds upon the occurrence of ack at
the fifth pclkcycle. Evaluation of the second sub-expression continues at the sixthpclk, where it
terminates. The evaluation started at cycle 10 fails because both its sub-threads fail without
generating any successes.

9.3.2.4 First Match Variable Repeat [from..to]

The syntax for the first match variable repeat operator is:

min and max are unsigned integers and if missing, are assumed to have a value of zero and
MAXUINT respectively.

The evaluation flow for temporal expression T is described as follows:

Number of Evaluation sub-threads: Temporal expression T as shown above is computed
(max-min+1) parallel sub-threads (section 9.3.3.2) each evaluating fixed repetition
expression {[count]*T1;T2} where each sub-thread count ranges from win to max. Note
that if min is zero, then the part of the expression requiring a match for expression Tl
immediately succeeds.
Success Equation: Temporal expression T succeeds when any of its evaluation
sub-threads succeed. The evaluation flow for the first match variable repeat operator
may succeed only once.
Termination Condition: The evaluation of temporal expression T terminates when the

175

This operator can only be used within a sequence operator as shown above. Parameters

CHAPTER 9

first of its evaluation sub-threads succeed, or when all sub-threads terminate.

9.3.3 Composite Temporal Operators

Composite temporal operators are:

not, fixed-repetition, true-match-variable-repeat, yield, eventually

The definition of composite temporal operators in terms of atomic temporal operators is
discussed in the following sections.

9.3.3.1 not

The syntax for the not operator is:

The not operator is equivalent to the following temporal expression:

This means that temporal expressions T and T1 evaluate in separate threads that are started
independently. The not operator always terminates in one cycle of the sampling event, regard-
less of how many cycles T1 needs to complete its evaluation. This is evident since thefail oper-
ator in above equation operates on an implicit event which is generated by the detached thread
and fail operation on an event always completes in one cycle.

9.3.3.2 Fixed Repetition

The syntax for the fixed repetition operator is:

The fix repetition operator is equivalent to the following temporal expression:

(with count elements in the sequence)

If the value of count is 0, then temporal expression T succeeds at all times in the same
cycle of the sampling event.

9.3.3.3 True Match Variable Repeat

The syntax for the true-match-variable-repeat operator is:

The true-match-variable-repeat operator is equivalent to the following temporal expres-
sion:

176 The e Hardware Verification Language

Temporal Expressions

Parameters min and max are unsigned integers and if missing, are assumed to have a value
of zero and MAXUINT respectively. The evaluation flow for true-match-variable-repeat opera-
tor may succeed as many as (max-min+1) times.

9.3.3.4 Yield

The syntax for the yield operator is:

The yield operator is equivalent to the following temporal expression:

Even though the equivalent representation of the yield operator has two or sub-expres-
sions, evaluation of a yield operator may only succeed once because of the use both failed and
succeeded versions of T1 in the two or sub-expressions.

9.3.3.5 eventually

The syntax for the eventually operator is:

The eventually operator is equivalent to the following temporal expression:

The quit event is a predefined event of all structs and is emitted when the quit() method of
a struct is called as the run phase of the program is completing. The eventually operator suc-
ceeds if temporal expression occurs sometime before the quit event is emitted. This operator
is usually used in conjunction with the yield operator in an expect struct member to monitor
that an event B occurs before simulation ends after occurrence of some event A, (i.e. @A =>
eventually @B).

9.4 Temporal Operator Arithmetic

Often, temporal expressions that use a combination of different operators may seem difficult to
understand. In such cases, a temporal expression can be reduced to a temporal expression con-
sisting only of base temporal expressions and atomic temporal operators. Applying the evalua-
tion model for the atomic temporal operators then provides a systematic approach for
understanding the expected behavior of a complex temporal expression.

Consider the following event definition:

177

CHAPTER 9

1
2
3
4
5
6
7
8
9

<’
struct event_holder {

event x is {
~[2..3]*{@A;@B} ;
(@C => {@D;@F}) or (@C and not({@D;@F;@F})) ;
@G

} @clk;
};
‘>

The composite temporal operators in this event can be reduced to atomic operators to
make the cycle by cycle evaluation of this event easier to understand:

1
2
3
4
5
6
7
8
9
10

 <’
struct event_holder {

event P is {@D;@F;@F} @clk;
event X is {

{@A;@B;@A;@B} or {@A;@B;@A;@B;@A;@B} ;
fail(@C) or {@C;@D;@F} or (@C and fail(@P)) ;
@G

}@clk;
};
‘>

The temporal evaluation model for sequence, and, or, and fail operators can be used to
evaluate the expected behavior or event x.

Many interesting reductions can be derived for temporal operators. For example. assuming
the same sampling event, the following two properties hold for and and or temporal operators:

1
2
3
4
5
6
7
8
9
10
11
12
13

<’
struct

};
'>

event_holder {
event P is {@D;@F;@F} @clk;
event X is {

}@clk;

{@A;@B;@A;@B;fail(@C);@G} or
{@A;@B;@A;@B;@C;@D;@F;@G} or
{@A;@B;@A;@B;fail(@P);@G} or
{@A;@B;@A;@B;@A;@B;fail(@C);@G) or
{@A;@B;@A;@B;@A;@B;@C;@D;@F;@G) or
{@A;@B;@A;@B;@A;@B;fail(@P);@G}

178 The e Hardware Verification Language

{...;(T1 or T2);(T3 or T4);...} = {...;T1;T3;...} or {...;T1;T4;...} or {...;T2;T3;...} or {...;T2;T4;...}
fail(@C) or (@C and fail(@P)) = fail(@C) or fail(@P) since @C and @P evaluate in one cycle

Using the above two equivalence relationships, definition for event x can be further enu-
merated to the following description:

Temporal Expressions

9.5 Temporals Dictionary

The operators introduced in section 9.3 can be used to define complex temporal behaviors that
are used to emit events, or to assert properties using the check struct member. The following
two subsections provide translations between common temporal behaviors and their equivalent
implementation.

9.5.1 English Phrases and event Definitions

One event

Two or more events occur at same time

Event e1 occurs before event e2

event clk is rise('top.clock')@sim;

event e1 is (change('top.signal1') and rise('top.signal2)@clk;
event e2 is (fall('top.signal1') and change('top.signal2) and change('top.signal3'))@clk;

event e3 is {@e1 ; @e2}@clk;

This description is equivalent to event e2 occurs after e1 occurs.

Event e2 occurs N cycle after e1 occurs
event e4 is {@e1; [N-1]; @e2}@clk;

If N=3 then e2 occurs 2 cycles after e1 occurs. This description is equivalent to event e1
occurs N cycle before e2 occurs.

Event e2 occurs within N cycles after e1 occurs
event e5 is {@e1; [..2] ;@e2}@clk;

In above example, event e5 is emitted if event e2 occurs after 1, 2, or 3 cycles of sampling
event after the occurrence of e1.

Event e2 occurs some time interval after e1 occurs
event e6 is {@e1; [..]; @e2}@clk;

The exec construct can be used to measure the time interval between e2 and e1.

event e6 is {
@e1 exec {e1_time = sys.time};
[..];
@e2 exec { out("e2_time is = " , sys.time - e1_time , "cycles after e1_time") };

} @clk;

179

CHAPTER 9

Sequence (event e2 occurring 2 cycles after e1) repeated N times
event e7 is {@assertion.start_of_test; [N]* {[..]; detach({@e1;[1];@e2;})}}@clk;

The detach operator creates an independent evaluation thread for temporal sub-expression
{@e1;[1];@e2;}. If N = 3 then event e7 is emitted after the above temporal sequence is repeated 3
times.

Event Z occurs within N1 to N2 cycles after either e1or e2 occurs

An example of a condition for triggering event e8 for N1=2 and N2=4 is shown below.

180 The e Hardware Verification Language

event e8 is {(@e1 or @e2); @Z }@clk;

Temporal Expressions

Event e1 occurs N cycles after a flag 'FLAG' becomes true
event e9 is {true(FLAG); [N-1]; @e1 }@clk;

An example of a condition for triggering event e9 for N=3 is shown below.

Event e1 does not occur within N cycles before event e2
event e10 is {[N] * not @e1; e2 }@clk;

An example of a condition for triggering event e10 for N=4 is shown below.

181

CHAPTER 9

Event Z occurs after e1 and before event e2
event e11 is{

@e1;
[..]*not@e1;
(@Z and not @e1);
[..] * not @e1;
@e2;

};

--e1 occurs
--e1 does not occur for any number of cycles
-- Z occurs and e1 does not occur
--e1 does not occur for any number of cycles
--e2 occurs.

An example of a condition for triggering event e11 is shown below.

Event Z occurs after e1 occurs with no occurrence of e2 in between
event e12 is {

@e1;
[..]* not @e2;
@Z;

}@clk;

--e1occurs
--e2 does not occur for any number of cycles
--Z occurs.

182 The e Hardware Verification Language

Temporal Expressions

An example of a condition for triggering event e12 is shown below.

9.5.2 English Phrases and Property Checking:

Section 9.5.1 showed translations between English phrases and temporal expressions used for
defining events. Temporal expressions are used in the check struct member to perform property
checking. This section explains the conversion of English phrases to temporal expressions used
for property checking.

Event e2 should occur N cycle after event e1

If a check is to be done to determine that an event/expression occurred before or after
another event/expression, it can be done as follows.

The following example shows the implementation of the check that an event e1 is
expected to occur N cycles before another event e2. This check is equivalent to checking that
event e2 is expected to occur N cycle after e1.

1 <‘
2 struct check_ex {
3
4
5
6
7
8
9

event e1 is rise('top.data_sent')@clk;
event e2 is rise('top.ack')@clk;

expect @e1 => {[N-1]; @e2} @clk
else dut_error("the event e2 did not occur one cycle after e1 happened");

}:
‘>

183

CHAPTER 9

Event e2 should occur within N1 to N2 cycles after e1 occurs

The implementation of this check for N1=3 and N2=5 is shown below.

expect @e1 => {[2..4]; @e2}@clk
else dut_error ("the ack did not happen within 3-4 cycles after data was sent");

Event e2 should eventually happen after e1
expect @e1 => {eventually @e2}@clk

else dut_error ("the ack did not happen ever, eventhough data was sent");

Event e2 must occur N cycles after e1, with no repetition of e2 before e1
expect @e1 => {[N-1]* not @e1 ;@e2}@clk

else dut_error ("the ack happened before the next data could be sent");

Event e2 should not occur N cycles after e1 has occurred
expect @e1 => {[N] * not @ev_2} @clk

else dut_error ("the ack occurred before 2 cycles after which data was sent") ;

Event e1 should have occurred N cycles before e2
expect @e2 => detach ({@e1 ; [N+1]})@clk

else dut_error ("the event e1 did not happen 2 cycles before e2 happened.");

Event e1 must have happened sometime within N cycles before e2
expect @e2 => detach ({@e1; ~[N+1..]})@clk

else dut_error ("the ack happened before the data could be sent");

There must be no more than N occurrences of Z after e1 and before e2
expect (@e1 => {~[..N-1]*{[..];@Z}; [..] * not @Z; @e2})@clk

else dut_error ("the data_write_done happened after the ack was sent");

Event e1 must not occur more than N times throughout the test
expect @session.start_of_test=> [N+1] * {[..]; @e1}@clk

else dut_error ("the test occurred less or more than 16 times.");

9.6 Performance Issues

Evaluation of temporal expressions is performed by evaluation threads that are started at every
new sampling event of a temporal expression. As such, indiscriminate use of temporal expres-
sions may degrade simulation performance. This section discusses performance issues that can
happen with temporals and tips to overcome such issues and to enhance performance.

184 The e Hardware Verification Language

Temporal Expressions

9.6.1 Over-sampling

Temporal expressions are created using base temporal expressions. Base temporal expres-
sions are defined based on the value or change in value of signals in the DUV or e data values.
Over-sampling refers to sampling a data value or a DUV signal more number of times than
required while evaluating a base temporal expression. If a signal used in a temporal expression
does not change very frequently then sampling it at each clock cycle is considered over-sam-
pling.

Consider the following example:

Struct agent has 2 events declared. If signal top.reset changes only once or twice during
the simulation, then the event rstshould not be sampled on @clk, as @clk event occurs very fre-
quently. In this case event rst should use event @sim instead of @clk for its sampling event.
This change reduces the number of times temporal expression for event rst is evaluated. By
using @sim as the sampling event, evaluation occurs only when the signal top.reset changes in
simulator. If @clk is used, then the temporal expression for rst is evaluated every time event clk
occurs.

Also in the drive() TCM, the temporal expression used in the wait action has sampling
event @clk by default as it is inside a TCM. Signal top.start_test occurs only in the beginning,
thus sampling it on every @clk event also leads to over-sampling. Thus, explicitly specifying
@sim as the sampling event for this temporal expression eliminates over-sampling. Note that by
changing the default sampling event to @sim, the wait action computes when rise of signal
top.start_test is detected and not necessarily when event @clk is emitted. Therefore it is neces-
sary to use the sync action to synchronize the execution flow with the @clk event.

1
2
3
4
5
6
7
8
9
10

<'
extend agent {

event clk is rise ('top.clock')@sim;
event rst rise('top.reset')@sim;

drive() @clk i{
wait rise('top.start_test') @sim;
sync @clk;
-- body of driver here.

};

185

1
2
3
4
5
6
7
8
9
10

<'
extend agent {

event clk is rise ('top.clock')@sim;
event rst rise('top.reset')@clk;

drive() @clk is {
wait rise('top.start_test');

};
};
'>

CHAPTER 9

11
12

};

9.6.2 Missing Sampling Event

Predefined event sys.any is the default sampling event for all temporal expressions that do not
have a sampling event specified explicitly or derived from context. This event is the most fre-
quently occurring event in the simulation runtime (occurs whenever any event occurs) and can
result in over-sampling of the temporal expression.

In the above example, All the clocks in DUV are synchronized to top.clock. Event e1 is
defined to occur upon rise of top.signal1, but there is no sampling event. Hence @sys.any is
used as the sampling event. Event evx is the event which occurs when e3 happens in the cycle
following e2. Since no sampling event is specified, sys.any is used as the default sampling
event. Thus, the sampling of the DUV signal happens more frequently than required even
though sampling at event @clk is sufficient to achieve the desired behavior

The solution for this issue is to specify a proper sampling event for all temporal expres-
sions. The above example is corrected as follows:

9.6.3 Unanchored Sequences

Another reason performance hit can occur when in the coding, any sequence is defined
which starts with a frequent event.

An anchor temporal expression is defined as a temporal expression that when satisfied,
starts the evaluation of a temporal sequence. An anchored temporal sequence is a sequence that
has an anchor temporal expression. Unanchored sequences are prone to over-sampling. This is
shown in this example.

186 The e Hardware Verification Language

1
2
3
4
5
6
7

extend agent {
event clk is rise('top.clock')@sim;
event e1 is rise('top.signal1');
event e2 is fall('top.signal2')@sim;
event e3 is change ('top.signal3')@sim;
event evx is { @e2 ;@e3};

};

1
2
3
4
5
6
7

exten

};

d agent {
event clk is rise('top.clock')@sim;
event e1 is rise('top.signal1')@clk;
event e2 is fall('top.signal2')@clk;
event e3 is change ('top.signal3')@clk;
event evx is {@e2 ;@e3} @clk;

Temporal Expressions

event ev_y is { [2000]* true(‘top.rst’ == 1’b0) ; [..]; @e1} @clk;

In this example, a new evaluation for event ev_y is started at every clock cycle searching
for the first 2000 times top.rst is inactive at the clk sampling event. The resources required for
starting all these evaluations may in fact exceed the limits of the e runtime environment.

The real intent in defining this example however is to detect evente1 sometime after 2000
cycles have passed since reset became inactive. By adding an anchor expression to the temporal
expression for event ev_y, the number of started evaluation can be reduced to one.This
enhancement is shown blow:

event ev_y is {fall(‘top.rst’) ; [1999]* true(‘top.rst' == 1’b0) ; [..] ; @e1} @clk;

9.6.4 Nested Sampling

Nested sampling refers to using different sampling events for evaluating the same tempo-
ral expression. Nested sampling can be specified explicitly by over-riding the default sampling
event or overriding the default sampling events in a TCM. Use of nested sampling reduces the
potential for evaluation optimizations performed by the program runtime environment. There-
fore, it is best to minimize use of nested sampling as much as possible. Consider the following
example:

1
2
3
4
5
6
7
8
9

<’
extend agent {

event clk_1 is rise('top.clk1')@sim;
drive1 ()@clk is {

wait (@evz ; @evu)@clk_1;
-- body of drive1

};
};

In the above example, nested sampling is used for evaluation of condition on line 5. The
default sampling event for the method is @clk and this default is overridden in the wait action to
event @clk_1. Enhancement of this program shown below removes the nested sampling and
improves performance.

1
2
3
4
5
6
7
8
9
10

<’
extend agent {

‘>

event clk_1 is rise('top.clk1')@sim;
event ev_zu is (@evz;@evu)@clk_1;
drive1() @clk is {

wait @clk_zu;
-- body of drive1

};

187

‘>

};

CHAPTER 9

In this enhancement, event @ev_zu is emitted using its own independent evaluation thread.
The wait action on line 6 samples event@clk_zu using sampling event@clk.

9. 7 Summary

This chapter introduced temporal expressions and temporal operators. Temporal operators are
divided into base temporal operators, atomic temporal operators, and composite temporal oper-
ators. Base operators are used to translate values and transitions in signal values into temporal
expressions. Atomic temporal operators provide unique temporal evaluations. An abstract eval-
uation model for a temporal operator was presented and evaluation of atomic temporal opera-
tors were described using this abstract model. Composite temporal operators were described in
terms of atomic operators.

This chapter also presented a temporal dictionary showing implementation of common
event definitions and check phrases. Issues affecting performance of temporal expressions eval-
uations were discussed.

188 The e Hardware Verification Language

CHAPTER 10 Messages

The messaging feature in e provides a standard and uniform mechanism for printing informa-
tive text to screen or to log files. Typical uses for messaging include:

Program Tracing Information
Debugging Aid
Simulation Run Summaries

Program tracing prints messages at the occurrence of a specific event. This is useful for
printing messages that a user requires upon a specific event. Debugging prints detailed mes-
sages during the simulation run to help understand unexplained behavior. Simulation run sum-
maries print information at the beginning or end of some specific activity.

The messaging utility in e allows the user to insert and display formatted as well as col-
ored messages to the screen. The messages can be enabled or disabled as needed by the user.

Messaging is different from out() and outf() actions since it allows the user to disable or
enable messages and control messaging behavior by routing messages through configurable
message handler constructs (loggers). Messaging in e is also different from the dut_error()
usage since messages do not necessarily indicate error conditions and do not increment error
counts as is done with the dut_error() action.

Details on messaging are described in this chapter. Section 10.1 describes the messaging
strategy and its advantages. Section 10.2 describes the message action syntax. Message loggers
are described in section 10.3.

CHAPTER 10

10.1 Messaging Strategy

Tags are used to categorize messages into user-defined groups. Message destinations can
be a file, or the display terminal. The messaging format specifies the amount of data printed for
a message (long, short, etc.). Verbosity is defined by an enumerated list specifying ordered list
of verbosity levels (i.e. HIGH, MEDIUM, LOW). The verbosity setting for a message logger is
used to filter messages based on the verbosity setting(s) (e.g. a logger verbosity setting of
MEDIUM indicates that all messages handled by this logger should be printed only if their ver-
bosity is set to MEDIUM or lower). Logger depth gives the number of levels in the sys unit
hierarchy that separates a logger instance from sys. As such, a logger instantiated in sys has a
depth of 0.

A message logger is identified by its tag, destination, and depth. This identification mech-
anism is used to decide which message loggers should handle a given message action. Once a
message logger is identified as one of the handlers for a message action, its format, and verbos-
ity settings are used to control the message output through that logger.

A message action consists of a tag specification, a verbosity setting, and a text message
that contains the message. Every message action is aware of the unit in which it is initiated.
Method get_unit() is a predefined method of all structs used to identify the unit containing a
message action.

The message handling mechanism consists of two steps: Identifying all loggers that should
handle a message, and then deciding how each of those loggers processes a message action.

Identifying handling loggers for a message action consists of the following steps:

190 The e Hardware Verification Language

The messaging strategy provided in e is based on two constructs: message actions, and message
loggers. Message actions are used to initiate a messaging activity and to provide the text printed
on the destination for that message (i.e. file, terminal). Message loggers control the format and
destination of messaging activity initiated by a message action.

Message loggers include the following properties:

One or more tags
Destination
Messaging format
Verbosity
Unit hierarchy depth

Identify the hierarchical path from sys to the unit containing the message action.
Create a list of all loggers instantiated in units on this hierarchical path.
For message loggers on this list that have the same tag and destination, keep only the
message logger whose depth is closest to the unit containing the message action.

Handling the message action consists of the following steps:

For each logger identified as a handler, print the message action if the verbosity level

Messages

for the action is the same or lower than the verbosity setting for that logger.
If verbosity level satisfies the verbosity requirement for a logger, then format the mes-
sage according to the logger format requirements and send to the logger destination.

The messaging utility in e allows filters to be defined as message and logger properties.
The ability to define tags, destinations, formats, and filters provides a utility for creating a pow-
erful reporting mechanism for a verification environment.

Details of message loggers and message actions are described in the following sections.

10.2 Message Actions

A message action is initiated using the message action. The syntax for this construct is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<'
unit uart_tx {

//uart_evc : uart;
data[8]: list of bit;
sout_tmp[11]: list of bit;
event clk is rise('top.clk')@sim;
event reset_start is rise('top.reset')@sim;
event reset_end is fall('top.reset')@sim;
event tx_ready is rise('top.txready')@sim;
data_drv()@clk is {

wait @reset_start;
message(LOW, " uart_module", me, "is reset") {

};

-- beginning of message action block
var uart_id: uint;
--compute uart_id so it can be printed below.
print uart_id;

wait[1000]*cycle;
wait @reset_end;
message(LOW, "uart_module", me, "reset is removed");
while TRUE {

var start :bit = 1'b0;
var stop : bit= 1'b1;
//gen data;
var num_of_frame: uint = 100;
var parity : bit;

wait @tx_ready;
message(HIGH, "uart module", me, "transmit data is", sout_tmp);

191

message([tag], verbosity, exp, ...) [action-block]
messagef([tag], verbosity, format, exp, ...) [action-block]

messagef allows the user to format the output string by specifying a format string as part
of the syntax. Action block is used to provide additional text producing code, and the text pro-
duced by this action block is processed along with text provided with the message parameters.

Examples of calling the message action in procedural code are shown below.

CHAPTER 10

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

for j from 0 to num_of_frame {
gen data;
for i from 0 to 7 {

parity= bitwise_xor(data[i]);
};
sout_tmp = {start; data; parity; stop};
message(HIGH, "uart module" , me , "transmit data is", sout_tmp);
for i from 0 to 10 {

'top.sout'= sout_tmp[i];
};
sout_tmp.clear();

}; // for j

}; // for while
}; // data_drv

}; // uart tx
'>

10.2.1 Message Tags

192 The e Hardware Verification Language

Message tags are used to link a messaging action with a specific message logger. It is a pre-
defined enumerated type named message_tag and is defined as:

type message_tag : [NORMAL];

The default tag for a message is NORMAL.

Type message_tag can be extended to create new tag values needed for messaging con-
trol:

extend message_tag: [UART_XMT];

If the tag is not provided with a message action, then the default tag is used. NORMAL is
the default message TAG for all messages that do not provide a message tag.

message(HIGH, "uart module ", me, " transmit data is", sout_tmp);

is equivalent to:

message(NORMAL,HIGH, "uart module ", me, " transmit data is", sout_tmp);

The following is an example of a specific message tag in the message action:

message(UART_XMT_DATA, MEDIUM, "uart module ",uart_evc, “transmit data is”, sout_tmp);

This message action is handled by loggers tagged with a UART_XMT_DATA tag value. Tags
can be used to enable a message action during specific debugging modes only. Thus:

message(DEBUG, MEDIUM, "uart module ",me, “transmit data is”, sout_tmp);

In this approach, a message logger can be created to handle only messages that are used
for debugging purposes. Such a logger would be enabled only during debugging mode.

Messages

10.2.2 Verbosity

This parameter provides different levels of verbosity for filtering messages. Verbosity is identi-
fied by the enumerated type message_verbosity. Possible values for this parameter are:

NONE: means messages cannot be disabled.
LOW: used for messages that are displayed only once in a test run.
MEDIUM: used for messages displayed once per transaction.
HIGH: used for messages displayed with some details.
FULL: used for messages displayed with a lot more details.

10.2.3 Format Type

The message output format is chosen from Short, Long, and None. This setting is configured
using commands or constraints as shown later in this chapter.

Short format is the default output format. The syntax for this format is:

[time] short-name-path: message

The syntax for Long format is:

[time]short-name-path (verbosity) source in struct-instance:
message

For format None, the text is printed as it is provided in the messaging action.

Given string “Reset Occurred” as the text for a messaging action, the following messages
will be printed for formats None, Short, and Long respectively:

1
2
3
4
5
6
7
8
9
10

193

10.2.4 Action Block

The action block is used for any procedural block that is to be executed when printing a mes-
sage (i.e. computing values to be printed as part of message action text). An example of using
an action block is shown below:

Reset Occurred
[12030] AHB_0 M1: Reset Occurred
[12300] AHB_0 M1 (HIGH) at line 12 in @vr_ahb_send in vr_ahb_bfm-@77: Reset Occurred

<’
extend xyz {

the_packet : packet;
m()@clk {

message(HIGH, "Master ", me, " received packet:"){
print the_packet;

};
}:

};
‘>

CHAPTER 10

Message actions cannot be used in any program execution flow initiated inside the action
block for another message action. This means a message action cannot be used in an action
block, and moreover, no method containing a message action can be called either directly or
recursively inside an action block.

Execution of an action block is dependent on the setting for the message action and its
handling message loggers, so it is not guaranteed that the procedural code in an action block is
always executed. Therefore, no part of the program essential for correct operation of the verifi-
cation environment should be placed in an action block.

10.3 Message Loggers

Message loggers manage outputs from message actions. Messaging actions create the out-
put message and send it to message loggers for further formatting. These loggers further filter
the message text using the verbosity setting, reformat the text according to the format settings,
and then direct these messages to their destination set for the logger. The predefined unit
message_logger contains the implementation for a logger.

A message logger is instantiated inside a unit, becoming part of unit hierarchy.

1
2
3
4
5

<’
extend protocol_checker {

log_out : message_logger is instance;
};
‘>

sys.logger is the default logger in e. It has Low verbosity, NORMAL tag, and sends mes-
sages to the screen. These settings can be changed using constraints and Specman commands.

In the example shown below, three message actions are shown. Since no tag is specified in
any of these messages, the default NORMAL tag is used. And since no message loggers are
instantiated, sys.logger is the only logger present in the environment. The default tag accepted
by sys.logger is NORMAL with default LOW verbosity. All three message actions below are
handled by sys.logger; however only the first message action is printed and the last two are fil-
tered because of their verbosity setting.

1
2

<’
extend sys {

194 The e Hardware Verification Language

sys.logger is a default message logger that is by default instantiated under sys.

The functions handled by message loggers are:

10.3.1 sys.logger

Messages

3
4
5
6
7
8
9

run() is also {
message(LOW, “Reset is removed”);
message(MEDIUM, “the num of transactions”,
message(HIGH, “the transactions are done”);

}:

‘>

num_transaction);

10.3.2 Message Handling Using Loggers

Consider the example shown below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<’
extend sys {

};
aud_env : env is instance;

extend env {

};

i2s_agent : agent is instance;
logger : screen_log is instance;
filelogger : file_log is instance;

extend agent {

};

data_gen : data_generator is instance;
logger : agent_screen_log is instance;
filelogger : agent_file_log is instance;

extend data_generator {

};
‘>

run() is also {
message(l2_S, LOW, “Reset Detected”);

};

The unit containing the message action on line 17 is sys.aud_env.i2s_agent.data_gen. Call-
ing get_unit() a predefined method will return sys.aud_env.i2s_agent.data_gen. Message loggers
on the hierarchy path from this unit to sys are:

195

sys.logger (NORMAL, screen, 0)
sys.aud_env.logger (NORMAL, screen, 2)
sys.aud_env.filelogger (NORMAL, screen, 1)
sys.aud_env.i2s_agent.logger (I2_S, screen, 1)
sys.aud_env.i2s_agent.filelogger (I2_S, screen, 2)

The tag, destination, and depth for each logger is shown in parenthesis. All the loggers that
ignore the message tag are removed from this list. The message loggers that will handle the
message action above are:

sys.aud_env.i2s_agent.logger (I2_S, screen, 1)
sys.aud_env.i2s_agent.filelogger (I2_S, screen, 2)

The predefined method accept_message() of each of above message logger is used to
decide whether or not the message action is accepted by that logger. If this method returns

};

CHAPTER 10

FALSE, then the message is filtered. This method will return TRUE by default but can be
extended to change the default behavior.

If a message is accepted by a logger, then the predefined method format_message() is
called to format the message text and send it to the logger destination. The default behavior for
this method is based on the format setting of the logger (None, Long, Short) and may be
extended by the user to change the desired format.

10.3.3 Configuring Loggers

The default configuration for a user defined message logger is:

Verbosity NONE (ignores all input)
Destination is to the screen
No write to any file
Empty tag list {}

The default setting for sys.logger is:

Verbosity LOW
Destination is to the screen
No write to any file
Tag NORMAL

There are three approaches to configure loggers:

Commands (any time during the run)
Methods of the logger
Constraints (the most common way)

10.3.3.1 Using Commands

The commands are specifically for a tool that interprets e code. The commands shown in this
section refer to Specman Elite.

All the commands refer to sys.logger unless the logger name is specified using -logger
option, to identify a particular logger or all the loggers. The –logger=all option refers to all the
loggers.

Some of the commands to configure message loggers are shown below.

set message [-logger=exp|all] Specifies which message logger is being
addressed by the command. If the–logger option Is
not given then the command refers to sys.logger

set message[-logger=exp|all] units=exp[on|off]
Specifies which units are being watched by the log-
ger

set message[-logger=exp|all] screen[on|off]
Turns the writing to screen by the logger on and off.

196 The e Hardware Verification Language

Messages

show message Shows a short summary of all the loggers which
includes a list of tags, high verbosity and number of
message actions.

show message –units[=exp] Show all units, each with its associated loggers.

10.3.3.2 Using Methods

The next way to configure message loggers is to use predefined methods of message loggers.
These of the predefined methods are shown below.

set_units(root: any_unit, to: message_on_off)
This method is used to set the unit tree under root
to be either on or off for the message logger.

set_screen(to:message_on_off) .Turns the writing to screen by the logger on and off.
show_message(all :bool, full:bool)

Shows a summary of all the loggers with full ver-
bosity.

show_units(root: any_unit) Shows all the units with their associated loggers.

Constraints are used during pre-run generation to set the fields of the logger. These fields are
used during post_generate() to configure the logger.

In the example below, the use of constraints for configuring a message logger is shown.
message_logger is a predefined unit, hence it is extended.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<’
extend message_logger {

// The message tags for selecting the actions for this logger
m_tags: list of message_tag;

keep soft m_tags == {};

// The verbosity for selecting the actions for the logger
m_verbosity: message_verbosity;

keep soft m_verbosity == NONE;

// The modules wildcard for selecting the actions for the logger
m_modules: string;

keep soft m_modules == "*";

// The pattern to match against the string in the message action
m_string_pattern: string;
keep soft m_string_pattern == "...";

// File name the logger should write to (or none if "")
// Default extension for the file name is ".elog".
m_to_file: string;

keep soft m_to_file == "";

// True if we want the message_logger to write to screen
m_to_screen: bool;

keep soft m_to_screen == TRUE;

197

10.3.3.3 Using Constraints

CHAPTER 10

27
28 ‘>

Note that only one file can be associated with a logger via constraints. Using the com-
mands and method calls, additional files can be associated with a logger.

The fields shown above can be constrained for each instance of a logger by providing con-
straints for an instance in its containing unit. This is shown in the following example:

1
2
3
4
5
6
7

<‘
unit env {

filelogger : file_log is instance;

};
‘>

keep filelogger.m_verbosity == LOW;
keep filelogger.m_to_screen == TRUE;

10.4 Summary

This chapter introduced the concept of messaging used in e. Messaging is based on message
loggers and message actions. Message loggers are instantiated as part of the environment struct
hierarchy and message loggers handle message actions depending on their tags and destination
settings, Loggers also provide filtering and formatting utilities that can be customized for each
message logger.

The messaging mechanism provided in e facilitates the development of a uniform and cus-
tomizable reporting strategy for a verification environment composed of components devel-
oped independently. Therefore, taking advantage of the messaging features described in this
chapter, allows for easier development, customization, and integration of a verification compo-
nent.

198 The e Hardware Verification Language

};

CHAPTER 11

A Monitor module tracks the activity in DUV signals to perform protocol checking, and
also to collect data and report status. A monitor is a passive component of the verification envi-
ronment and it does not drive any DUV signals.

A monitor collects output from a DUV, prints output messages, performs protocol check-
ing, and facilitates coverage collection. Extracted events and status information collected by a
monitor is used by other components in the verification environment (i.e. Scoreboard) .It is
important that a monitor implementation be independent of the information collected by active
blocks in a verification environment (i.e. BFM). This independence allows a monitor to be used
when active components are removed during system level verification.

Issues related to design and implementation of monitors are discussed in this chapter. Sec-
tion 11.1 discusses considerations for designing and architecting a monitor. Section 11.2 pre-
sents approaches for implementing the protocol checking functionality of a monitor. Section
11.3 presents approaches for collecting and status reporting use of a monitor.

11.1 Monitor Architecture

A monitor is an important verification module in implementing a coverage driven verifica-
tion methodology. A monitor facilitates automatic protocol checking, property checking, and
collects the data necessary for scoreboarding and coverage measurement. A monitor should be:

A Passive Module
Independent of BFMs and Drivers

Collectors and Monitors

CHAPTER 11

Relocatable

It should be possible to add or remove monitors to a verification environment without
affecting the stimulus generation and driving activity in the environment. This allows the same
monitor to be used in both module and system level verification environments. A monitor has
to be a passive module1 so that it can be added or removed from the environment without
affecting the stimulus and sequence generation activity. The operation of a monitor must also
be independent of BFMs and drivers so that when these verification modules are removed dur-
ing system level verification, the monitor can be used without any modification. Figure 11.1
shows how a monitor is reused in the system level verification environment after the stimulus
generator and the verification BFM are replaced by a DUV submodule.

A monitor may need to be attached to different DUV ports of the same type. Therefore the
monitor implementation has to be relocatable (see section 5.4) so that multiple instances of the
same monitor can be attached to different points in the HDL hierarchy. Monitors must therefore
be implemented using the e unit construct. The following e code fragment shows the imple-
mentation of a monitor for a UART module:

1. A passive module never drives any DUV signals.

200 The e Hardware Verification Language

Collectors and Monitors

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

<’
unit si_uart_monitor {

};

rcv_monitor_port : in simple_port of bit is instance;
rcv_frame : si_uart_frame;

xmt_monitor_port : in simple_port of bit is instance;
xmt_frame : si_uart_frame;

event frame_transfer_started;
event frame_transfer_ended;
event frame_receive_started;
event frame_receive_ended;

break_count : uint;
keep soft break_count == 0;

timeout_count : uint;
keep soft timeout_count == 0;

unit si_uart_agent {

};

monitor : si_uart_monitor is instance;
keep monitor.agent == me;

struct si_uart_frame {

};
‘>

has_parity_error : bool;
has_framing_error : bool;
size : uint ; //size of data bits in the transmitted frame.

Keep size in [5..8];

The monitor is modeled using a unit and is instantiated inside a UART agent. The monitor
has two input ports of type bit that are used to monitor the receive and transmit ports of a UART
module. The structure of a UART packet is also shown in above example.

The fundamental function of a monitor is to track and look at DUV signals to check for
correct protocol and other device properties that require inspection during simulation runtime.
A monitor’s implementation is enhanced with additional features to facilitate other activities
supported by a monitor (e.g. collection and reporting). Protocol checking is discussed in section
11.2. Collection and reporting functions of a monitor are discussed in section 11.3.

11.2 Protocol Checking

201

Protocol checking is implemented using a combination of declarative and procedural
statements. Declarations of temporal struct members (on, expect, assume) are used to check
for design properties. At the same time, TCMs containing wait and sync actions are used to
check for complex protocols across many cycles.

CHAPTER 11

Protocol checking is an important function provided by a monitor. At times however, run-
ning protocol checking is not required during the simulation flow. The conditions for whether
to run a checker or not depend on DUV conditions during the simulation or on verification
requirements of a simulation run. Protocol checkers lead to runtime overhead, and therefore it
may be desirable to deactivate a checker depending on the DUV state. At the same time, if ver-
ification is focused on specific modules of a system, then it may not be necessary to include a
protocol checker in the simulation run.

To support the requirement to selectively enable a protocol checker, create a protocol
checker as an independent unit instantiated under a monitor unit only when a determinant field
in the monitor indicates the presence of a protocol checker. This approach is shown in the fol-
lowing e code fragment:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

<’
unit si_uart_checker {

}:

monitor: si_uart_monitor; -- pointer to monitor
-- add checker expect members
protocol_check()@rclk is also {

--implement checker method
};
run() is also {

start protocol_check();
};

extend si_uart_monitor {

};
‘>

has_checker : bool;

// checker is instantiated only when has_checker is TRUE, else no checker.
when TRUE’has_checker si_uart_monior {

checker : si_uart_checker is instance;
keep checker.monitor == me;

};

In the above, determinant struct member has_checker is used to instantiate a checker under
the monitor unit.

11.2.1 Protocol Checks

A protocol checker is implemented by building temporal expressions based on events generated
inside monitors. These monitor events are extracted from the DUV and allow for the protocol
checker to be implemented without specific knowledge as to how an event is emitted in the
monitor. These temporal expressions corresponding to DUV properties are then used with tem-
poral struct members or in TCMs to check for any protocol errors. These topics are discussed in
the subsequent subsections.

202 The e Hardware Verification Language

Collectors and Monitors

Monitor events refer to the events extracted by a monitor. These events are used by the
checker to check for any protocol errors. The most common event is the clock on which the sig-
nals are sampled and signal timings are checked. Other events refer to significant changes in
the DUV control signals, which define transactions and protocols. For instance, the occurrence
of an interrupt in a system or start of a transaction refer to specific events.

The following example shows extracted events in a monitor that facilitate the checker
implementation.

1
2
3
4
5
6
7
8
9

<’
extend si_uart_monitor {

};
‘>

event clk is @agent.rclk;
event rcvport_rise is rise(agent.bfm.rcv_port$) @clk;
event rcvport_fall is fall(agent.bfm.rcv_port$) @clk;
event frame_transfer_started is true(agent.bfm.start) @rcvport_rise;
event frame_transfer_ended is true(agent.bfm.end) @rcvport_fall;

Temporal struct members are used in declarative statements to perform protocol checking
based on events and data values extracted by the monitor.

Use of on and expect temporal struct members are shown in the following examples:

1
2
3
4
5
6
7
8
9
10
11
12
13

<’
extend si_uart_checker {

};
‘>

event frame_transfer_started is @monitor.frame_transfer_started;
event frame_transfer_ended is @monitor.frame_transfer_ended;

on frame_receive_ended {

};

num_of_transfer += 1;
lf(rnonitor.rcv_frame.has_parity_error) {

message(LOW, “frame has parity error”);
};

1
2
3
4
5
6
7
8
9
10

<’
extend si_uart_checker {

event rcvport_rise is @monitor.rcvport_rise;
event rcvport_fall is @monitor.rcvport_rise;

expect @rcvport_rise => [31] * not @rcvport_fall
else dut_error("error in transmission:Data should change every 16 clock cycles");

expect @rcvport_fall => [31] * not @rcvport_rise
else dut_error("error in transmission:Data should change every 16 clock cycles");

203

11.2.1.1 Monitor Events

11.2.1.2 Temporal Struct Members

CHAPTER 11

11
12

};
‘>

Reports may need to be printed based on the success or failure of protocol checking activity.
Reports can be printed using the print action or out() method call. Reports can also be printed
by using the check and dut_error constructs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<’
extend si_uart_checker {

};
‘>

check() @clk is {

}:

gen has_parity_error;
if (parity_type != NO_PARITY) {

paradd = 1
} else {

paradd = 0;
}:
check that l.size() == (size+paradd) else

dut_error("Size of collected data bits doe not match the expected value);
return from + size + paradd;

The use of the message construct and message loggers allows the user to control the ver-
bosity and format of the printed messages.

204 The e Hardware Verification Language

11.2.1.3 Protocol Checking Reports

11.2.2 Protocol Checker Activation

Checkers added to an e verification environment increase simulation overhead. It is there-
fore important to provide a mechanism for selectively disabling protocol checkers. Checkers
can be disabled or enabled using either constraint during pre-run generation or by using method
calls.

11.2.2.1 Static Checker Activation

Static checker activation designates whether a specific protocol checker should be acti-
vated during any particular simulation run. Static activation is required when the need for a
checker is determined by factors that can be decided before simulation begins. For example, the
verification environment for a system supporting multiple protocols consisting of PCI, ethernet,
UART, and serial ATA includes protocol checkers for all its sub-blocks. For a verification engi-
neer working on the UART module, the protocol checker for all other blocks is not required.
Thus having a choice whether to disable the other checkers will reduce the simulation time.

Collectors and Monitors

Static checker activation is implemented by using generation constraints and a determi-
nant struct member for the monitor to decide if a protocol checker should be included in the
environment (see page 202).

During regression runs, only critical checkers should be enabled in order to reduce the
regression time. For debugging purposes, only the relevant checkers for a particular feature
should be enabled. This selective enabling and disabling of checkers leads to a reduction in
simulation time overhead.

11.3 Collection and Reporting

In addition to protocol checking, a monitor also performs functions that facilitate the oper-
ation of other modules in the verification environment. These functions include:

205

11.2.2.2 Dynamic Checker Activation

Dynamic checker activation refers to the enabling or disabling of a checker depending on
DUV signal values or transitions. For dynamic checker activation, constant polling of DUV
signals should be avoided. Checkers should be enabled or disabled based on events extracted
from the DUV signals relevant to starting or stopping the checking. Consider a system where
protocol checker chkr1 is dedicated to checking the functionality of a calculus engine when
FIFO overflow and underflow conditions occur and chkr2 is used to check the functionality in
normal FIFO conditions. In this case, only chkr1 should be enabled when the FIFO full or
empty conditions occur and disabled otherwise.

Data and Transaction Collection
Coverage Collection
Event Extraction
Reporting using the Messaging Feature

Coverage collection is described in chapters 13 and 14. The remaining operations and
their implementations are discussed in the following subsections.

11.3.1 Data and Transaction Collection

Data collection is an important function provided by a monitor, as the collected data is
used in other functions provided by a monitor (i.e. scoreboarding, checking). This data can be
packet data, serial/parallel data, transaction data, instructions, or commands, etc. The collected
data for an ethernet packet is the complete ethernet packet and frames. Similarly, the collected
data for USB traffic maybe one of bulk, control, isochronous, or control type packets For a
UART interface, the data is a complete UART frame.

CHAPTER 11

Data collection should be synchronized to a clock that reflects the time where valid data is
present on the DUV signals. For example, when collecting a memory write transaction, it is
necessary to identify bus idle cycles so that only valid data is collected from the bus. To sum-
marize, the collector function of a monitor must understand the handshaking mechanism used
to transfer data over DUV signals so that it can extract abstract data packets and frame from the
physical traffic over the DUV signals.

Following example shows an e code fragment where a UART frame is collected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<’
extend si_uart_monitor {

};
‘>

incoming_bits : list of bit;
keep incoming_bits.size() == 0;

rcv_bit_value() : bit is {
result = rcv_port$; // receving from the port.

};
message(MEDIUM , “receiving data bits =” , result);

rcv_next_data_bit() is {
incoming_bits.add(rcv_bit_value()); //The incoming bits getting collected.

};
rcv_stop_bit(): @sys.any is {

};

-- now unpack the bits collected into rcv_frame;
gen rcv_frame keeping {

.has_parity_error == FALSE;

.has_framing_error == framing_error

.size == config.get_word_length();

.parity_type == config.get_parity_selection();

.stop_bit_type == config.get_stop_bit_length();
};
unpack(packing.low, incoming_bits, rcv_frame);
emit agent.monitor.frame_receive_ended;

incoming_bits.clear();
framing_error = FALSE;

These TCMs defined above are then used in a finite state machine to start and stop data
collection:

1
2
3
4
5
6
7
8
9
10
11
12
13

<’
extend si_uart_monitor {

rcv_state : si_uart_receive_state;
keep rcv_state == IDLE;

rcv_fsm()@rclk is {
state machine rcv_state {

IDLE => IDLE {

};
wait until true(not rcv_next_bit_is_zero())@rclk;

IDLE => START {
wait until true(rcv_next_bit_is_zero())@rclk;
wait until [7]*cycle;

206 The e Hardware Verification Language

Collectors and Monitors

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

};
START => SHIFT {

SHIFT => STOP {

};
// actions taken in a state
IDLE {

out(“RCV FSM in IDLE State”);
} ;

START {
out(“RCV FSM in START State”);
emit frame_receive_started;

};

SHIFT {
out (“ rcv FSM in SHIFT state”);
rcv_next_data bit();

};

STOP_1BIT {
out (“ rcv FSM in SHIFT state”);
chk_stop_bit();
rcv_stop_bit();

};

};
}; // rcv_state

}; // si_uart_monitor
‘>

After collecting data, the following step is to use the collected data in scoreboarding, the
protocol checker, or to store the collected data to a log file. These issues are discussed next.

Data collected from the DUV ports may need to be sent to a Scoreboard if the signals tracked by
the monitor are part of the signal path checked by a Scoreboard. Using monitors is the preferred
approach for attaching scoreboards to the verification environment (see section 12.3).
Approaches for using the monitor to attach a Scoreboard to a verification environment were dis-
cussed in section 12.3 and include using a hook method or events to call a method that inject
the collected data into the Scoreboard.

Example below uses a direct method call to inject the collected data into the Scoreboard.

1
2
3
4
5
6
7
8

<’
extend si_uart_monitor {

rcv_stop_bit(): @sys.any is {
-- now unpack the bits collected into rcv_frame;
gen rcv_frame keeping {

} ;
unpack(packing.low, incoming_bits, rcv_frame);

207

11.3.1.1 Sending collected data to Scoreboard:

CHAPTER 11

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

};
};

emit agent.monitor.frame_receive_ended;

// send the data collected to Scoreboard
compute agent.scoreboard.insert_next_frame(

deep_copy(rcv_frame), TRUE, FALSE);

incoming_bits.clear();
framing_error = FALSE;
};

unit si_uart_agent {
Scoreboard : si uart_scoreboard is instance;

};
‘>

11.3.1.2 Sending to a Checker

A protocol checker requires access to data collected from the DUB by the monitor. This
data may be required for syntax checking or for deciding protocol behavior, which at times may
depend on DUV signal values. In the following example, the checker verifies that any time
event packet_started is emitted in the monitor, then in the next cycle, value of packet_data col-
lected by monitor is set to 1’b0. In this approach, packet_data is collected and stored in the mon-
itor, but the checker uses the collected data directly from the monitor.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<’
extend si_uart_monitor {

};

has_checker: bool;
keep soft has_checker == TRUE;

when has_checker si_uart_monitor {
checker: si_uart_checker is instance;

keep checker.monitor == me;
};

unit si_uart_checker {

};
‘>

monitor: si_uart_monitor; -- up pointer

expect @monitor.packet_started => true(monitor.packet_data == 1’b0)@monitor.clk;

11.3.1.3 Sending to a File

Collecting and storing data in a file is a common necessity as the collected data may need
to be processed by a post-processing script. If audio data is generated through an input file, then
by storing the output data in a file it is possible to compare the files using a file, compare utility.
Message actions and message loggers are used to store the collected data in a file (see chapter
10).

208 The e Hardware Verification Language

Collectors and Monitors

11.3.2 Event Extraction

A monitor should extract timings related to DUV data activity since the operation of the
protocol checker depends on this signal timing and activity relationship. This timing informa-
tion is collected by extracting events from the DUV signals. These events are defined based on
the specific checking requirements for a protocol. Examples of these events include an event
indicating the time valid data arrives on the interface, the event indicating when a valid transac-
tion ends, and the event indicating when a specific instruction like enabling a register happens.
These events are then passed to other blocks (i.e. protocol checker) to check the timings and
validity of control signals. For a basic data item, a monitor usually provides events such as
item_started and item_ended. The monitor collects the item_data as soon as the item_started event
occurs and ends collecting when the item_ended event occurs and then passes the collected data
to its needed destinations. The example below shows the approach for emitting an event indi-
cating the end of receiving a packet.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<’
extend si_uart_monitor {

};
‘>

event frame_receive_ended;
rcv_stop_bit(): @sys.any is {

};

-- now unpack the bits collected into rcv_frame;
gen rcv_frame keeping {

};
unpack(packing.low, incoming_bits, rcv_frame);
emit frame_receive_ended;

The events extracted by the monitor are also very useful in determining the coverage
information. For instance, a coverage group sampling event should be defined in the monitor
containing that coverage group. The following shows an example of a coverage group in a
monitor that uses event frame_receive_started as its sampling event.

1
2
3
4
5
6
7
8
9

<’
extend si_uart_monitor {

cover frame_receive_started {

};
‘>

};

item rcv_frame;
item rcv_state;
item has_parity_error;

209

CHAPTER 11

11.3.3 Reporting

A monitor should not only collect data and extract events but also print messages and log
verification information for debugging purposes. Use of message and message loggers are
described in the following subsections.

11.3.3.1 Messages

A message refers to the information printed on the screen or into a file when a particular
event happens. Printing of messages is associated with the occurrence of data error or protocol
error specifying when and where the error occurred. It is, however, important to print messages
whenever an important event occurs as error at a particular point in time is a cumulative effect
of many other events. Messages can be printed when the data is collected (i.e. start of every
data frame), when a control signal changes, or when information is being passed to other
blocks/components of verification environment. The following example shows the use of mes-
sage construct for reporting purposes.

1
2
3
4
5
6
7
8
9
10
11
12

<’
extend si_uart_monitor {

} ;
‘>

rcv_bit_value() : bit is {

};

result = rcv_port$; // receving from the receiver port.
message(MEDIUM , “receiving DUV output data bits =” , result);

rcv_xmt_bit_value() : bit is {

};

result = rcv_xmt_data_port; // receving from the xmt port.
message(MEDIUM , “receiving DUV input data bits =” , result);

11.3.3.2 Message Loggers

Message loggers are used to manage the output from message actions by filtering and for-
matting the messages and sending them user defined destinations such as a file or screen. By
using a logger different trace levels can be defined so that by using these levels the verbosity of
messages can be controlled.

The implementation of a messaging scheme for messages filtered based on three tags
INFO, WARN, and ERROR is shown in the following:

1
2
3
4
5
6
7
8
9

<’
extend message_tag : [INFO,WARN,ERROR];
extend message_logger {

verbosity : message_verbosity;
tags : list of message_tag;

};
extend si_uart_checker{

logger1: message_logger is instance;
keep soft logger1 .verbosity == LOW;

210 The e Hardware Verification Language

Collectors and Monitors

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

};
‘>

keep soft logger1.tags == {INFO};
Iogger2: message_logger is instance;

keep soft Iogger2.verbosity == HIGH;
keep soft Iogger2.tags == {ERROR};

check() @rclk is also {

};

wait @frame_receive_ended;
If (parity_type == EVEN_PARITY andparity_value == ODD_PARITY) {

message(ERROR, HIGH, “the parity has error”, has_parity_error);
} else
If (parity_type == EVEN_PARITY andparity_value == EVEN_PARITY) {

message(INFO, HIGH, “the parity has no error”,
};

has_parity_error);

In this implementation, message tag for logger1 is set to INFO and the message tag for
Iogger2 is set to ERROR. Therefore, all message actions with tag INFO are handled by logger1,
and messages with tag ERROR are handled by logger2. Therefore, message action on line 18 is
handled by Iogger2 and printed since its verbosity level matches the setting for the verbosity for
logger2. Message action on line 21 is handled by logger1, but since its verbosity setting is higher
than the verbosity setting for logger1, the message is filtered. Messages are described in detail
in chapter 10.

11.4 Summary

This chapter introduced the concept of monitors, collectors, and checkers. Monitors are the ver-
ification modules that contain collectors, checkers, and reporting utilities. Checkers are used
for protocol checking and are modeled as a checker instance that is contained in a monitor. The
monitor extracts the data and emits the events that are required by the checkers to implement
the necessary property checking statements. Monitors contain collectors used to collect cover-
age and data and transactions used in scoreboards and checkers.

Monitors must be implemented as passive modules that do not depend on the verification
BFM or any active modules. This guideline allows for a monitor to be used without a BFM
being present in the environment, therefore allowing for the easy migration of a monitor to the
system level verification environment.

211

This page intentionally left blank

CHAPTER 12 Scoreboarding

Earlier chapters in this book described the driver and monitor blocks of a verification environ-
ment. A driver injects stimulus data into the DUV input ports. A monitor performs protocol
checking and data collection. Data checking is used to verify that data movement through the
DUV meets the expected DUV behavior. A Scoreboard is the verification environment block
that handles the data checking. Scoreboarding refers to the methodology used to perform data
checking using a Scoreboard.

In scoreboarding, a data item (i.e. packet, instruction, etc.) that is driven in to the DUV is
posted in a Scoreboard. The response data received from the DUV is also posted in to the score-
board and the two data items are compared according to the expected behavior of the DUV.

The role of Scoreboard in the verification environment is shown in figure 12.1. The pack-
ets injected into the DUV by the driver are posted into the Scoreboard where the expected DUV
output is computed using a predictor. This expected output is placed in the Scoreboard expected
list. After the collector receives the DUV output, it is posted in to the Scoreboard and compared
against the expected list. In the example shown in this figure, pkt1 and pkt2 are received cor-
rectly and matched in the Scoreboard. However pk3 is not generated by the DUV and pkt4 is the
next packet that is collected. Comparing pkt4 in the Scoreboard leads to a mismatch as pkt3 was
the next expected packet.

The predictor in a Scoreboard deals only with data checking behavior. Timing checks
related to the data output are handled in other blocks such as protocol checker.

Every input injected into the DUV has a matching output if indicated by the Scoreboard
predictor. To verify this behavior, two types of properties are checked in a Scoreboard:

Checks to make sure that no output data corresponding to input data is missed

CHAPTER 12

Checks to make sure that no extra data should appear at the DUV output ports.

12.1 Scoreboard Implementation

A Scoreboard is implemented using a struct as it is not associated with any HDL component. A
Scoreboard contains the following fields:

1
2

<’
struct si_uart_scoreboard {

214 The e Hardware Verification Language

List of expected transactions
List of actual transactions
Predictor Method
Injector Method
Match Method

The predictor method is used to create an expected transaction based on the transaction
injected into the DUV. An expected transaction is added to the end of the list of expected trans-
actions. An actual transaction is collected from the DUV output. Every actual transaction that
has been compared against the Scoreboard contents can be discarded. Therefore, the list of
actual transactions is created only when necessary to maintain a record of actual transactions
that have been checked against the Scoreboard (i.e. performing data comparison only after all
transactions have been collected). The Scoreboard user calls the injector method to insert an
input transaction into the Scoreboard. A match method is called by the user to match a DUV
output transaction against the Scoreboard.

The following example shows a generic Scoreboard implementation for a UART module:

Scoreboarding

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

};
‘>

expected_uart_frames : list of si_uart_frame;
actual_uart_frames : list of si_uart_frame;

predictor(in_transaction: si_uart_frame): si_uart_frame is {
--build predictor based on expected DUV behavior;

};
insert(in_transaction: si_uart_frame) is {

expected_uart_frames.add(predictor(in_transaction));
};
match(actual_transaction : si_uart_frame): bool is {

-- insert into actual list if necessary
actual_uart_frames.add(actual_transaction);
--implement the comparison and matching actions

};

When a new transaction is injected into the DUV, that transaction is passed to the score-
board using method insert(). This method uses method predictor() to create the expected output
transaction for the input transaction. The result produced by the predictor is placed on the
expected list of transactions.

During DUV output response collection, the collected transaction is matched against the
Scoreboard contents by calling the match() method. This method is implemented based on the
requirements of how transactions should be compared. In the most generic case, the matching
compares the incoming actual transaction against the first transaction on the list of expected
transactions and checks that all fields are exactly equal. These steps may be modified depend-
ing on the specific requirements of a DUV.

Unique IDs can also be used to match the data items. These unique IDs are usually carried
in the data payload portion of transaction and are specially generated during stimulus genera-
tion. The ID of the received transaction should match the ID of the injected data transaction.
The content of the data items for both transactions is compared only after transactions IDs are
matched. An error is issued if there is a mismatch.

Data comparisons between actual and expected data items should be performed during the
simulation runtime. This approach allows expected data and collected actual transactions to be
discarded after the matching; therefore preventing memory limitations for long simulation runs.
Sometimes it might be necessary to store the data processed by a Scoreboard. In such cases, it is
best to print to a file and then discard its data.

12.2 Scoreboard Configuration Types

Scoreboards receive data from two places: source data injected into the DUV that is used to cre-
ate the expected transaction, and actual data collected from the DUV output. The actual data
item is collected at the DUV output by the monitor or collector. The injected data can be placed

215

CHAPTER 12

into a Scoreboard by either a monitor or a driver. These configurations are discussed in the fol-
lowing sections.

12.2.1 Driver/BFM Based Scoreboard

In this type of Scoreboard, the source data is injected by the BFM that drives the data into the
DUV port. Figure 12.1 shows the configuration for this type of Scoreboard.

Advantages of using a Driver/BFM based Scoreboard are:

Can build the Scoreboard quickly as it does not require extra code for collecting the
source data from the environment. Whenever a BFM injects data to DUV, the same data
is directed to the Scoreboard.
Better performance because no extra TCMs are required for capturing signals and
reconstructing data.

12.2.2 Monitor Based Scoreboard

In this type of Scoreboard, the source data item is injected into the Scoreboard by the mon-
itor. The monitor tracks the interface port through which input data is injected. As part of this
process, the monitor collects injected data items on this DUV port and inserts them into the
Scoreboard whose source data is collected from the monitored input port. In this configuration,
both source data for a Scoreboard and the actual data collected from output ports are collected
by monitors. Figure 12.2 shows the configuration for a monitor based Scoreboard.

216 The e Hardware Verification Language

Scoreboarding

Monitor based scoreboards are very useful when migrating from a module level verifica-
tion to system level verification. When moving from module level to system level verification,
the driver verification component for a module is replaced by the DUV component driving that
module in the system level environment. Since monitor based scoreboards do not rely on driver
components and extract the source data from the environment, they can be used without modi-
fication during system level verification. This concept was illustrated in figure 3.9.

Advantage of using a monitor based Scoreboard are:

The migration from module level verification environment to system level verification
is easy. No additional effort is required and an existing Scoreboard can still be used in
the system level environment.

12.3 Attaching Scoreboards to the Environment

As discussed earlier the interface to a Scoreboard is usually through a BFM/driver or a monitor.
The interface between the BFM and Scoreboard, or monitor and Scoreboard should be main-
tained in such a way that it is easy to modify or extend when the verification environment
moves from module level to system level. The ports, events, or any fields that are going to be
used for providing input to the Scoreboard should be put in a separate file so as to provide
enough flexibility while moving from one verification environment to another. The following
subsections describe techniques for attaching a Scoreboard to the verification environment.

12.3.1 Direct Method Call

As soon as the driver/BFM sends the data item to the DUV, a method can be called in the driver
or the monitor to insert the same data into the Scoreboard. Using this approach for a driver is
shown in the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13

<'
extend evc_driver {

};
'>

!data_item : packet;

main_tcm()@clk is {
for i from 0 to n-1 {

};
};

gen data_item;
bfm.send_data_to_duv(data_item);
sb.insert(data_item);

217

CHAPTER 12

In this case, method send_data_to_duv() is used for injecting data_item into the DUV port.
data_item is inserted into the Scoreboard at the same time by calling the insert() method of the
Scoreboard.

Using direct methods calls is easy to implement. However, it requires that driver and
Scoreboard implementations be closely tied to one another. To improve reusability, it is better to
remove this dependency between the driver or monitor and the Scoreboard. Techniques for
achieving this goal are shown in the next subsections.

12.3.2 Using Hook Methods

An empty hook method can be declared in the driver or the monitor with data_item as its
parameter. When attaching the Scoreboard to the environment, this hook method can be
extended to pass data_item to the Scoreboard. This approach is shown in the following exam-
ple:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<'
extend evc_monitor {

process_captured_data(data_item: packet_type) is empty;

a_monitor_tcm() @clk is {
var captured_data_item : packet_type;

};
};
‘>

// capture the data item from the DUV interface
captured_data_item = capture();
//.. .. and it is ready to be inserted into Scoreboard
process_captured_data(captured_data_item);
//.. .. Continue operation

In the above, the hook method process_captured_data() is declared as an empty method.
After the monitor TCM a_monitor_tcm() captures the data_item using method capture(), it is
passed to the hook method. At this point, the hook method is empty and code will function even
without a Scoreboard in place.

The next step is to extend the hook method to include the necessary code for passing the
collected data to the Scoreboard. This step is shown in the example below where the collected
data is passed to the Scoreboard.

1
2
3
4
5
6
7

extend evc_monitor {
process_captured_data(data_item: packet) is also {

sys.sb.insert(data_item);
};

218 The e Hardware Verification Language

<'

'>
};

Scoreboarding

If there are one or more monitors using the same Scoreboard and the Scoreboard requires
information from the monitor collecting the data, then the monitor can be passed to the score-
board using the following modification:

1
2
3
4
5
6
7

<'
extend evc_monitor {

process_captured_data(data_item: packet) is also {
sys.sb.insert(data_item , me);

};
'>

};

This approach is notable for its reusability, and it also isolates monitor and driver imple-
mentation and scoreboarding. In this approach, the hook mechanism can be used not only for
scoreboarding, but also for any other steps that require information from the collected data.

12.3.3 Using Events

Another approach for attaching a Scoreboard to a verification environment is implementing the
drivers and monitors so that an event is emitted when the BFM drives a data item into the envi-
ronment; or when the monitor collects a data item. This approach is shown in the following
example:

1
2
3
4
5
6
7
8
9
10
11
12

<'
extend evc_monitor {

};
'>

event data_ready_to_be_processed;
captured_data_item : packet ;
a_monitor_tcm () @ clk is {

};

//data item ready to be posted after monitor captures it
captured_data_item = capture();
emit data_ready_to_be_processed;
// continue code...

The event data_ready_to_be_processed is used in the Scoreboard to pull the data from the
relevant field captured_data_item as shown below:

1
2
3
4
5
6
7
8
9

<'
extend Scoreboard {

env_pointer : evc_env; // pointer to the evc environment
event data_sent is @env_pointer.monitor.data_ready_to_be_processed;
on data_sent {

insert (env_pointer.monitor.captured_data_item);
};

};
'>

219

CHAPTER 12

12.4 Scoreboarding Strategies

Scoreboarding can be performed across DUV ports, or in multiple steps by checking cor-
rect data transfer through each DUV sub-block. Strategies are selected based on the specific
Scoreboarding application. These strategies are described in the following subsections.

12.4.1 End-to-end Scoreboarding

A DUV consists of many sub blocks. But for end-to-end scoreboarding, a DUV acts as a
single block. The Scoreboard looks only at the data items going in and the data items coming
out of the DUV ports.

An end-to-end scoreboarding strategy has the following advantage:

The end-to-end scoreboarding approach is useful when DUV modules are not very
complex and debugging at module level is not required. The amount of code to be writ-
ten is less, and therefore fast to develop.

This approach has the following disadvantages:

The end-to-end scoreboarding approach is not good for complex designs with big mod-
ules because debugging becomes difficult. If there is an error, then all the modules will
be targeted for debugging.
Module implementations cannot be checked independently.

12.4.2 Multistep Scoreboarding

In a multistep scoreboarding strategy, each sub-block in the DUV has its own Scoreboard.
In this approach data checking is done across sub-blocks.

Figure 12.3 shows the setup for multistep scoreboarding. Here, the verification environ-
ment is sub-divided into parts for each DUV sub-block. In this case, the DUV consists of two
sub-blocks with one Scoreboard for each module. The sub-block verification environments are
combined to create the chip level verification environment once the verification environments
for each sub-block is created. The DUV in this instance consists of module1 and module2. Dis-
connecting the driver from module2 and driving its input from the output of module1 creates the
chip level environment. All other verification modules are transferred without modification
from the module level verification environment.

Multistep scoreboarding is helpful for easy migration from a module level verification to
chip level verification, but the size of the code increases because each module now has its own
monitor and Scoreboard.

A multi-step scoreboarding strategy has the following advantage:

220 The e Hardware Verification Language

Scoreboarding

A multi step Scoreboard is a good implementation for complex designs with big mod-
ules. The development and testing can be split into small sub-blocks and multistep
scoreboard expedites debugging at each sub block level.
All the modules or sub blocks of a bigger system can be verified independently by dif-
ferent engineers simultaneously.
Debugging for errors is easy and quick since the environment can indicate which block
caused the error. Instead of debugging the whole system, a specific module can be tar-
geted. This is useful for catching bugs that might otherwise be filtered out when the data
path goes from one block to another.
The migration from module level to system level environment is very straightforward.

This approach has the following disadvantages:

The amount of code to be written increases.
This approach may not be necessary for small designs where a simple end-to-end score-
board a would save environment development time.

221

CHAPTER 12

12.5 Summary

This chapter introduced the concept of scoreboarding and presented different approaches for
configuring scoreboards. A generic implementation of a scoreboard was presented and
approaches for connecting a scoreboard to the verification environment were discussed.

Multistep and end-to-end scoreboarding strategies were introduced along with their
advantages and disadvantages in the context of migrating from a module to system level verifi-
cation.

222 The e Hardware Verification Language

PART 5

Coverage Modeling and Mea-
surement

This page intentionally left blank

CHAPTER 13 Coverage Engine

A coverage tool monitors signal values in the DUV and verification environment before pass-
ing the collected data to the coverage engine. The coverage engine then collects and analyses
functional coverage information based on the data collected by the coverage monitor before
generating reports based on the collected data.

The data collected by a coverage engine is used to produce the following report types:

Combination of features, DUV data, states and transitions of fields and events
Whether verification goals are met
Value distribution for data items that are randomly generated

13.1 Coverage Collection Steps

Coverage collection is the first step in determining functional coverage of a DUV. During this
phase, all the required data for measuring coverage is collected. Coverage collection is imple-
mented using the following steps:

1.

2.
3.

4.
5.

Scalar data objects in the DUV and in the verification code that are necessary for collecting func-
tional coverage information are identified. These objects define the coverage items
The type of coverage collection should be defined for each coverage item (i.e. transition, etc.)
A sampling event is decided for each coverage item. Coverage information for that data object is
collected upon occurrence of this sampling event.
Coverage items with the same sampling event are grouped into coverage groups.
Coverage buckets are defined for each coverage item. A coverage bucket identifies scalar values
that need to be differentiated during coverage collection.

CHAPTER 13

6.

7.
8.

The necessary e program is developed to implement the coverage items, groups, buckets, and cus-
tomization of each.
The coverage engine automatically collects coverage data during the program runtime.
Functional Coverage reports are produced using the data collected in the coverage engine.

The following sections describe the implementation of these coverage concepts in the e
language.

13.2 Coverage Terminologies

The following coverage terminologies are used in this chapter.

A Coverage Item defines the data object that should be sampled for coverage collection. A
coverage item can be a field, variable, or HDL signal from the DUV. For example, in the verifi-
cation of an ethernet switch or a router the values of the length and address of each data packet
should be collected for covering the full range of possible address and lengths.

A Coverage Group is a construct used to group items with the same sampling event. For
example, the two items for collecting packet length and address information are defined inside
a coverage group. All items in a coverage group are sampled upon the occurrence of its sam-
pling event.

A Coverage Bucket is a symbolic representation for the container, which stores a single or
a range of values for an item. For each item that collects coverage data on a CPU instruction
type, one bucket is assigned for each instruction type. For an item that collects data on data
packet length ranging in value from 64 to 1024 byte, a bucket may represent values in the range
[64..511] and in a second bucket, values in the range [512..1024].

A Cross Item is an item that collects the data for the combination of all possible values of
two or more items. A Transition Item is an item that collects data for value transitions of a data
object at the occurrence of the sampling event.

A Bucket Hit or a Hit refers to the case when the sampled value for a data object falls in
the range specified for a bucket. Coverage Goal specifies the target number of hits for a bucket
of an item. If coverage goal for a bucket is set to at least 10 hits, then that goal has been covered
100% only if the bucket is hit 10 times. A Coverage Hole refers to a bucket whose coverage
goal has not been reached. Coverage Grading refers to measuring the coverage percentage of
each bucket using values in the range [0..1.0]. A bucket with no hit shall has a 0 grade and the
one that has reached the required hits has a grade of 1.0.

226 The e Hardware Verification Language

Coverage Engine

13.3 Scalar Coverage Constructs

Scalar coverage collection refers to collecting information about the value of a data object sam-
pled at specific time instances indicated by a sampling event,; and filtered according to certain
boolean qualifiers. Questions answered by scalar coverage analysis include:

How many times an ADD instruction was executed by the CPU?
How many ethernet packets of size less than 50 were observed on the link?
How many memory read bus transactions were observed on the bus while system ini-
tialization was in progress?

This section describes the basic concepts of scalar coverage modeling and the language
constructs for implementing these models. Information about the relationship between data
objects across cycles and across different design signals is provided by composite coverage
analysis. Composite coverage is discussed in section 13.4.

13.3.1 Coverage Groups

A Coverage Group is a struct member that contains all coverage items that use the same event
for sampling item values. The cover construct is used to model coverage groups. A previously
defined event in the same struct is used to identify the coverage group. Coverage groups are
defined using the following syntax:

cover event_type is empty;
cover event-type [using coverage-group-option,...]is {

coverage-item-definition;...

};

In this syntax, event_type is a previously defined event for the parent struct of the coverage
group. event_type is used as the name of group. Whenever this event occurs the coverage data
for the group is collected. coverage-item-definition is used to define the coverage items inside the
coverage group. Coverage item definitions are discussed in the next section. Now, consider the
following example:

2
3
4
5
6
7
8
9
10
11
12

<’
type cmd : [LOAD, MEM_LOAD, ADD, SUB, MULT. DIV, NOP];
struct cpu_inst{

};
‘>

opcode : cmd;
data_size : byte;
event inst_cov;
cover inst_cov is {

};

item opcode1;
item data_size;

227

1

CHAPTER 13

In the above, coverage group inst_cov is defined inside struct cpu_inst. Note that inst_cov is

declared as an event in the same struct. Whenever event ins_cov occurs, the value of opcode
and data_size items in the cover group are collected.

The following options can be used when defining a coverage group:

no_collect = bool

text = string
when = bool-exp

global = bool

radix = dec|hex|bin

weight = uint

When True, no coverage data is collected for the
coverage group.
string describes the coverage group.
bool-exp is used to filter event occurrences during
which coverage items are sampled. Coverage
items are sampled only when bool-exp evaluates
to TRUE.
when True, this coverage group becomes a global
coverage group. The sampling event for a global
coverage group is expected to occur only once,
otherwise a DUT error is generated.
Specifies the format for displaying the collected
values in the buckets.
This option specifies the grading weight of the cur-
rent group relative to other groups. It is a nonnega-
tive integer with a default of 1.

Above options are used in the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

<’
type usb_pkt_type : [bulk, control, iso, intr];
struct pkt { data: byte;};
struct usb_pkt{

};

datapkt : pkt;
num_pkt : uint;
size : uint;
pkt_type : usb_pkt_type;
event data_sent;
cover data_sent using no_collect is {

item data: uint(bits:8) = datapkt.data using radix = HEX;
};

struct usb_trans {
init_done : bool;
num_err : uint;
event state_change;
event reset_event;
event trans_done;
cover reset_event using global is {

item reset : bit = ‘top.usb.reset’;
};
cover state_change using

text = "USB transaction state-machine",
when = (init_done == TRUE) is {

item st: byte = ‘top. usb.main_trans state’;
};
cover trans_done using weight = 3 is {

item len: uint (bits: 8) = sys.i_usb_pkt.size;
item num_err ;

228 The e Hardware Verification Language

Coverage Engine

31
32
33
34
35
36
37

};
};

extend sys {
i_usb_pkt :: usb_pkt;
i_usb_trans : usb_trans;

};
‘>

The following observations can be made for the above example:

no_collect option: The coverage group pkt_data does not save coverage data.
text option: The text “USB transaction state machine” appears at the beginning of the
data for the group in the ASCII coverage report.
when option: Coverage is collected for st when the state_change event occurs and
init_done is TRUE.
global option: The reset_event is expected to occur only once. If it occurs more than
once a DUT error is issued.
weight option: The trans_done coverage group is assigned a weight of 2. If there are 10
other coverage groups that all have default weights of 1, the trans_done group contrib-
utes (2/12)*grading(trans_done) to the all grade.

13.3.2 Basic Coverage Items

A basic coverage item is used for collecting coverage information for the value of a data object
at the occurrence of a sampling event. A basic coverage item may collect coverage information
on a struct member, or DUV signals. A basic coverage item is defined in the cover construct
may correspond to an existing struct member or collect coverage data on the result of an
expression based on e and DUV signal values. Coverage items are defined in the e cover con-
struct.

per_instance = bool

no_collect = bool

no_trace = bool

When set to TRUE, coverage information for sepa-
rate instances of struct or units are collected and
graded separately.
When set to TRUE, no coverage data is collected
for this coverage item.
When set to TRUE, this item is not traced by tje
simulator.

229

item item-name[:type=exp] [using coverage-item-option, …]

In this syntax, exp is the expression that produces the data value used for coverage collec-
tion, type is the type of data produced by exp. Simple examples of item definition were shown
in the previous section.

The coverage item construct has various options available that can be used for defining a
coverage item with a variety of features. These options show the strength of the tool and give
flexibility to the user for determining the coverage according to the functionality of the DUV
and coverage collection requirements.

CHAPTER 13

text = string
when = bool-exp
ranges ={range(parameters);…}

ignore = item –bool-exp

illegal = item-bool-exp
radix= DEC | HEX | BIN

weight= uint

name = alt-name

This option provides a descriptive text.
The item is sampled only when bool-exp is True.
Provides the range of values defining the buckets
for the current item. See below for range syntax.
Defines the values that can be ignored completely,
and thus not used while generating coverage
report.
Specifies illegal values for the current item.
Specifies the radix for items of type int & uint. The
default is decimal.
Specifies the weight of the current item in a cover-
age group with respect to other items. Default is 1 .
Assigns an alternative name for specific items like
cross or transition item. This option cannot be
extended by using also.

The range construct is used to define bucket ranges for a verification item. The syntax for
this construct is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<’
type state_type: [INIT, RESET, RUN];
extend sys {

init_done : bool;
state: state_type;

};
struct packet {

pkt_type : [ETH , UART, USB];
pkt_len: uint(bits: 12);
addr: byte;

event send;
cover send is {

item pkt_type using per_instance;
item len : uint(bits: 12) = pkt_len using ranges = {

};

range((16..255], "small");
range([256..3k-1], "medium");
range(|3k..4k-1), "big");

item illegal: bool = (pkt_len < 16 or pkt_len > 4000) using

230 The e Hardware Verification Language

range(range: range, name: string,
every-count: int, at_least-num: int

The range construct has 4 parameters. The first parameter, range, provides the range for
the buckets, such as a bucket with range[2..10] or a bucket with range [1] only. The second
parameter, name, assigns a name to the range. every-count gives the number of buckets within a
range. If the range is defined to [0..256] and every_count is 16 then 16 buckets each with a range
of 16 will be created. This option cannot be used if the name parameter is used. at_least speci-
fies the minimum number of samples for each bucket. Anything less than that number is con-
sidered a hole. So, if a bucket is required to have 3 minimum samples but has only 2 hits during
the run, then that bucket is counted as a hole in the coverage report.

Coverage item usage is shown in the following example:

Coverage Engine

21
22
23
24
25
26
27

};
‘>

};

when = (sys.init_done==TRUE);
item state: state_type = sys.state using text = "packet transmit state";
item start_addr : byte = addr using

ranges = {range([0..255], "", 32, 16)};

In the above example, using the per_instance option for the pkt_type item, collects and
grades coverage information for all other items in the same coverage group separately for each
possible value of pkt_type. The range for start_addr item is set to 0 to 255 where this range is
further divided into 32 sub-ranges each having a range of 8 values. The at_least option is set to
16 and indicates that a bucket with less than 16 hits is considered a hole.

13.3.3 Sampling Events

A coverage item is sampled at the occurrence of the sampling event for its parent coverage
group. Selecting the correct sampling event is therefore important in generating accurate cover-
age reports. For example, coverage should be collected on bus transaction types only when bus
is in use and at the stage where the transaction type is being signaled on the bus. Similarly, cov-
erage information for a CPU instruction execution unit should only be collected when a new
instruction is being executed. Consider the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<’
type op_type : [LOAD,MEM_LOAD,ADD, SUB, MULT, DIV.NOP];
unit cpu {

};
‘>

opcode : op_type;
value : uint;
interrupt : bool;
event cpu_exec is rise(‘top.cpu.exec’) @sim;

//indicates start of inst execution

cover cpu_exec {

};

item opcode;
item value;
item intrpt;

As shown, the cpu_exec event occurs when the signal top.cpu.exec rises. The coverage
group for this event samples values for opcode, value, and interrupt at the occurrence of event
cpu_exec.

Defining a sampling event dedicated to collecting coverage is recommended. With this
approach, it is possible to control coverage collection more explicitly. The following example
demonstrates how coverage on a packet is collected when the sampling event for its coverage
group is explicitly emitted as new packets are generated.

231

CHAPTER 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<’
unit driver {

pkt : packet;
event clk is rise(‘top.clk’);
drive()@clk is{

for i from 0 to 10 {
gen pkt;
emit pkt.cov;
--drive pkt here.

wait cycle;
};

};
run() is also {

start drive();
};

};
struct packet {

event cov;
addr: uint;
data: byte;
cover cov is {

item addr;
item data;

};
};

26 ‘>

13.3.4 Coverage Buckets

The values sampled for a coverage item are organized using coverage buckets. These values are
then used to analyze the results ofcoverage collection. It is important to specify the following
bucket properties for a coverage item accurately:

Ranges ofvalues for buckets
Minimum number of required hits for a bucket
Illegal buckets and buckets that should be ignored

By default, a coverage bucket refers to each possible value of a coverage item. However,
the definition for a bucket can be altered to include a range ofpossible values. The range of its
possible values and the grouping of these values determine the number of buckets for a cover-
age item.

In the example below, opcode1 is an item for which coverage needs to be collected. This
item has a type defined by the cmd enumerated type with 7 possible values. Therefore opcode 1
by default has 7 buckets, one for each possible value of its enumerated type.

1
2
3
4
5
6

<’
type cmd : [LOAD, MEM_LOAD, ADD, SUB, MULT, DIV, NOP];
struct cpu_inst {

opcode1 : cmd;
data_size : byte;

keep data_size in [1..100];

232 The e Hardware Verification Language

Coverage Engine

7
8
9
10
11
12 };

event inst_cov;
cover inst_cov is {

item opcode1 ;
item data_size;

};

13 ‘>

During a simulation run, a bucket hit occurs every time the sampled value for opcode1
matches the bucket range. Therefore, in a series of 10 samples, if the sampled values for
opcode1 are LOAD, NOP, NOP, ADD, LOAD, SUB, SUB, DIV, SUB, LOAD then the corresponding
bucket hits are shown in figure 13.1

The default range for a bucket can be redefined using the range construct. In the above example,
coverage item data_size by default has 100 buckets. The ranges for the buckets can be redefined
so that only 7 buckets are created with each bucket receiving a hit for a range of values. The
hits for each bucket for the sequence of sampled values 10,15,45,87,46,23,12,98,9 is shown in
figure 13.2.

13.3.4.1 Bucket Ranges

Every possible value of a coverage item is assigned one bucket by default. But if the number of
possible values is very large, then to improve performance, a bucket should be assigned a range
of values to reduce the total number of buckets. The ranges e construct is used to define bucket

233

CHAPTER 13

ranges. The ranges to be assigned to coverage items should be decided when defining the cov-
erage model. Coverage result analysis should be performed based on the ranges covered by the
bucket.

Consider the length field for an ethernet packet. Packet length can have values from 0 to
2048. Assigning a bucket to each value leads to significant overhead during simulation time. To
eliminate this unnecessary overhead, the valid range for the packet length can be divided into
sub-ranges where one bucket is used for each sub-range. It is not necessary for all buckets to
have equal range, as each bucket can represent a different range of values. The code below
shows the assignment of ranges for buckets.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

struct frame {

};
‘>

legal: bool;
length: uint;

keep length in [0..2048];
event send_frame;
cover send_frame is {

item length using ranges = {

};
};

range([64..65], "short_legal");
range ([66-512], "normal_legal1");
range([513-1024], "normal_legal2");
range([1025-1516], "normal_legal3");
range([1517], "big_legal1");
range([1518], "big_Iegal2");

In this example, the ranges for the item length are defined, creating 7 buckets consisting of
6 ranges that are explicitly defined, and one bucket for all remaining values. The last bucket is
used for values [0..63,1519..204] which were not included in any of the explicitly defined sub-
ranges. A name is also assigned to each bucket.

For some applications, assigning equal ranges to buckets of an item may be acceptable.
This can be done as shown below:

1
2
3
4
5
6
7
8
9
10
11
12

<’
struct frame {

};
‘>

addr : uint;
keep addr in [0×101..0×200];

event send_frame;
cover send_frame is {

item addr using ranges = {
range([0×101.. 0×200], NULL, 32);

};
};

234 The e Hardware Verification Language

<’

Coverage Engine

In this instance, the range for address is divided equally into 32 sub-ranges creating 8
buckets where the first bucket has the range [0x101..0x120], the second [0x121..0x140], and so
on.

13.3.4.2 Default Buckets

Default buckets are used for a coverage item if the ranges construct is not used to explicitly
define bucket ranges. The default buckets are defined as follows:

Bool: one bucket for TRUE and one for FALSE.
Enumerated Types: One bucket is allocated for each enumerated value.
int or uint less than 32 bits: If the number of possible values is less than 16, then one
bucket is allocated for each value.
Types for which the range is not implicit: One bucket is created for each value.

The items for which bucket ranges are explicitly defined, an others bucket is automati-
cally created for all item values that do not belong to one of the explicitly defined buckets.

1
2
3
4
5
6
7
8
9
10

<’
struct inst {

op2: byte;
keep op2 in [1..24];

event inst_driven;
cover inst_driven is {

item op2 using ranges = {range([1..16], "", 4)};
};

};
‘>

In the above example, the range for field op2 is [1..24] while defining it as a coverage
item, but only range [1..16] is defined by 4 buckets. Sampled values in the range [17..24] are
placed in bucket others which is the default bucket.

13.3.4.3 Illegal Buckets

Some values for a coverage item may be considered illegal during the program runtime because
of DUV or verification environment requirements. Such values or ranges of values must be
declared as illegal during coverage collection. Coverage item option illegal is used to specify
invalid ranges for a coverage item.

1
2
3
4
5
6
7
8
9

<’
struct frame {

length: uint;
event send_frame;
cover send_frame is {

item length using
ranges = {

range([64..127], "short_legal");
range([127..1518], "long_legal");

235

CHAPTER 13

10
11
12
13
14

};
‘>

};

},
illegal = (length <64 or length==1519);

In the above example, the illegal option is used to define all packets smaller than 64 and
larger than 1513 bytes as illegal. If during coverage collection a value in the illegal range is
sampled, a runtime error is generated.

13.3.4.4 Ignored Buckets

Some item values can be ignored completely when analyzing coverage results. The ignore
option is used to remove a value or ranges of values from any consideration during coverage
collection.

1
2
3
4
5
6
7
8

<’
struct cpu_instruction {

9
};
‘>

itype: [NOP, ADD, SUB, MULT, DIV];
event send_inst;
cover send_inst is {

item itype using ignore = (itype==NOP);
};

Coverage above is collected on the instruction type. Even though a NOP instruction is
expected to occur, these NOP instructions are completely ignored during coverage collection.

13.3.4.5 Bucket Grading

Coverage Grading refers to measuring the coverage for buckets of coverage items. Coverage
grade for a bucket is calculated to a value between 0 and 1.0 using the equation (num-
ber-of-hits/minimum-required-hits). Each bucket has a parameter for the required minimum
number of hits which is specified using the at_least option. If a bucket has more hits than the
minimum required, then its grade is set to 1.0. Figure 13.3 shows an example of coverage grad-
ing for values samples for a CPU instruction type. Grading is discussed in section 14.3.

13.4 Composite Coverage Items

Composite coverage collection refers to collecting coverage information about correlation of
values between a number of data objects. This correlation may be defined as relationship
between values of different data objects sampled at the same time using the same sampling
event, or changes in the value of single data object across multiple sampling events.

236 The e Hardware Verification Language

Coverage Engine

Questions that can be answered by composite coverage analysis include:

How many bus read transactions for address range [0x100..0x200] were observed dur-
ing system initialization?
How many ethernet packets of size in range [0x100..0x200] with destination address
0xA6B3:D87E:82AB?
How many times a CPU ADD instruction execution was followed by a CPU DIV
instruction execution while the CPU was executing an interrupt service routine?

Composite coverage items include cross coverage items and transition coverage items,
and are described in the next subsections.

13.4.1 Cross Coverage Items

Cross coverage provides information about values for multiple data objects sampled at the
same time. The number of possible values for cross coverage is the cross product of possible
values for each item that is included in the cross coverage. Consider two items A with possible
values and B with possible values The cross coverage of A and B has the
possible values

A Cross Coverage Item is defined in terms of previously defined coverage items in a cov-
erage group. The cross construct is used to define a cross items. The syntax for this construct is:

cross item-name1, item-name2, … [using coverage-item-option,….]

The options for the cross coverage are as follows:

name = label Label specifies a name for the cross coverage

text = string

when = bool-exp

at_least=num

item. The default name is ‘cross__item-a__item-b’.
String provides text description for the cross cover-
age item.
Item is sampled only when bool-exp evaluates to
TRUE.
num specifies the minimum number of samples
each bucket should have so that it is not consid-

237

CHAPTER 13

Ignore = item-bool-exp

illegal = item-bool-exp

weight = uint

ered a hole.
Defines cross values that can be ignored and
excluded from coverage measurement.
Defines cross values that are illegal. A DUT errors
is generated when an illegal cross value is sam-
pled.
Specifies the weight of the current cross item rela-
tive to other items.

The following example shows a definition for a cross item based on the definitions for
opcode and reg coverage items.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<’
type cpu_opcode: [ADD, SUB, OR, AND, JMP];
type cpu_reg : [LOAD_REG, EN_REG , INT_REG];
struct inst {

};

opcode : cpu_opcode;
opcode1 : cpu_opcode;
opcode2 : cpu_opcode;
reg : cpu_reg;
event inst_drv ;
cover inst_drv is {

};

item opcode;
item opcode1;
item opcode2;
item reg;
cross opcode, reg using

when = (opcode != ADD and reg!= LOAD_REG),
name = cross_exclude_ADD_LOAD;

cross opcode, reg using
illegal = (opcode == JMP and reg == INT_REG),
name = cross_with_illegal_JMP_INT;

cross opcode1, opcode2;
cross cross_exclude_ADD_LOAD, cross__opcode1__opcode2;

25 ‘>

Two cross items are defined based on the items opcode and reg in the above code. For the
first cross on line 11, the cross coverage collection is filtered by using the when option on line
12, and for second cross definition on line 14 an illegal case is defined. The default name for
both cross items on lines 11 and 14 is cross__opcode_reg. To prevent naming conflicts between
the two cross items, a new name is assigned for each cross item using the name option.

It is possible to define a cross item based on other cross items. In above example, cross
items defined on lines 18 and 21 are used to define a new cross item on line 22.

13.4.2 Transition Coverage Items

A transition coverage item is used to collect coverage information for transitions across the
sampling events for data values. The syntax for a transition coverage item is:

238 The e Hardware Verification Language

Coverage Engine

The various options for transition coverage item are as follows:

name = label

text = string

when = bool-exp

at_least=num

ignore = item-bool-exp

illegal= item-bool-exp

weight = uint

Label specifies a name for the transition coverage
item. The default name is ‘transition_ _ item-name’.
String provides text description for the transition
coverage item.
Item is sampled only when bool-exp evaluates to
TRUE.
num specifies the minimum number of samples
each bucket should have so that it is not consid-
ered a hole.
Defines transition values that can be ignored and
excluded from coverage measurement.
Defines transition values that are illegal. A DUT
error is generated when an illegal transition value
is sampled.
Specifies the weight of the current transition item
relative to other items.

Definition of the coverage transition item, by default, creates a variable called
prev_item-name that holds the previous sampled value of item-name. This variable can be used in
constructing boolean expressions that depend on the previous sampled value of a transition
item.

The following program shows an example of transition coverage item definition.

1
2
3

<’

4
5
6
7
8
9
10

struct processor {

};
‘>

st: machine_state;
event state_change is change('top.processor.cur_state') @sim;
cover state_change is {

};

item st;
transition st using illegal = (prev_st == START and st == LOAD1);

In the above example variable pre_st is used to define transition START -> LOAD1 as illegal.
All other transitions are collected as part of coverage collection.

13.5 Coverage Extension

Coverage groups and coverage item can be extended to add new items, or to change or add new
option settings. Coverage extension is discussed in the following sections.

239

transition item-name [using coverage-item-option]

CHAPTER 13

13.5.1 Coverage Group Extension

An existing coverage group can be extended using the is also e keyword. A coverage group can
be defined as an empty in the beginning and extended later by adding the declarations ofnew
items. This is shown in the example below.

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

<'
struct inst {

};
'>

<'

event trans_done;
cover trans_done is empty;

extend inst {

};

len: uint;
data: byte;
cover trans_done is also {

};

item len;
item data;

10 ‘>

13.5.2 Coverage Item Extension

Coverage items are extended by using also e keyword. Use of using also to extend or
change a when, illegal, or ignore option, a special variable named prev is automatically cre-
ated. This variable holds the result of all previous when, illegal, or ignore calculations before
the current extension. Therefore prev can be used to extend the boolean expressions for when,
illegal, or ignore options before the current extension of the coverage item.

The default or user assigned name of a coverage item is used for extending a coverage
item. The default name for each coverage item type was described in its corresponding section.

Consider the following coverage group definition:

1
2
3
4
5
6
7
8
9
10
11

<'
struct packet {

length: uint (bits: 12);
type : [ETH , UART, USB];
event send;
cover send is {

};

item length;
item type;
cross length, type;
transition type;

240 The e Hardware Verification Language

Coverage Engine

12
13

};
‘>

2
3
4
5
6
7
8
9

<’
extend packet {

cover send is also {

};
};
‘>

item length using also radix = HEX;
item cross__length__type using also illegal = (type == ETH);
item transition__type using also illegal = (prev_type == USB and type == ETH);

1
2
3
4
5
6
7
8
9
10

extend packet {

};
‘>

cover send is also {

};

item length using also radix = BIN;
item cross__length__type using also illegal = (prev and type == UART);
item transition__type using also

illegal = (prev or (prev_type == USB and type == UART));

13.6 Minimizing Coverage Collection Overhead

In order to collect the necessary coverage information, the coverage engine continuously sam-
ples data values throughout the program runtime and stores the sampled data in a database. The
collected data consists of a counter for each bucket of each coverage item where the counter is
incremented every time a bucket is hit during the program runtime. It is clear that if left
unchecked, the storage space for storing coverage results and coverage program runtime over-
head can lead to inefficiencies in maintaining and using the verification environment. It is
therefore important to follow guidelines to limit these overheads.

241

The definition of send coverage group is extended in the following code segment. The
simple item length is extended to use a HEX radix for report outputs. The cross item is extended
using its default name to indicate that ETH is an illegal type during cross coverage collection.
Transition item is extended by using its default name where a transition from USB->ETH is
defined to be illegal.

The definition of send coverage group is further extended in the following code fragment.
Simple item length is extended to use a BIN radix for report outputs. The cross item is extended
to add a new option for illegal cross values. In this case, type UART is defined to be illegal in
addition to all previously calculated illegal conditions (i.e. prev means type == ETH). The transi-
tion item is extended by including transaction USB->UART to the illegal list.

1

<'

CHAPTER 13

The size of collected data is directly proportional to the number of buckets defined in the
coverage model. Therefore, the amount of stored data is directly proportional to:

the number of buckets for scalar coverage items
the product of the number of buckets for each member of a cross coverage item
the square of the number of buckets for the base item of a transition coverage item
the number of instances of a struct if coverage information for that struct is collected for
each instance

Given the above observations, data storage can be reduced by:

Making sure that all coverage item definitions are really needed for coverage measure-
ment.
Reducing the number of buckets for scalar types using the ranges option. Reducing the
number of buckets for scalar coverage items will directly lead to reducing the number of
buckets for cross and transition coverage items.
Reducing the number of buckets for scalar coverage items by using the ignore option.
Using the ignore option directs the coverage collector to bypass coverage collection for
buckets specified by the ignore option parameters. Reducing the number of buckets for
scalar items will indirectly reduce the number of buckets for composite items using this
scalar item. Consider three scalar coverage items A, B, and C with number of buckets

and a cross coverage item D which crosses A, B, and C; and a transition

coverage item E which is defined in terms of item A. Removing one bucket from the
definition for item A, removes buckets for coverage item D and buck-

ets from item E.
Reducing the number of buckets for composite coverage items by using the ignore
option.
Using the no_collect option to remove coverage collection for scalar items that are only
used to construct composite coverage items.
Collecting per-instance coverage only for units which cannot be generated during pro-
gram runtime (static number of instances), or only for structs that are generated only a
few times during the program runtime.

Program runtime overhead is directly proportional to:

Frequency of sampling event for coverage groups.
Whether or not a coverage item is sampled at its sampling event based on its filter set-
tings.

Program runtime overhead is minimized by:

Minimizing the amount of data that needs to be collected.
Judiciously selecting sampling events.
Using the when option for coverage groups to minimize the number of times a coverage
group items are sampled
Using the when option for coverage items to minimize the number of times a coverage
item is sampled.

242 The e Hardware Verification Language

Coverage Engine

13.7 Summary

This chapter introduced the concepts of coverage groups, coverage items, and coverage buckets
and described their use in implementing a coverage model. Each of these constructs allows the
user to specify options for controlling the behavior of that construct. These options were pre-
sented along with their use in creating a coverage model.

Composite coverage items were introduced as an extension of scalar coverage items to
collect coverage about multiple data values while using cross coverage items, or collecting cov-
erage about transitions in the value of a data object using the transition coverage item. Cover-
age extension was presented to facilitate the application of aspect oriented programming style
to coverage modeling. Constructs for extending coverage groups as well as coverage items
were presented. Approaches for reducing the impact of coverage collection to program runtime
performance were also introduced with guidelines for reducing the amount of collected data.

This chapter focused on describing the basics of coverage collection and their implemen-
tation in the e language. Coverage collection methodology is described in the next chapter.

243

This page intentionally left blank

CHAPTER 14 Coverage Modeling

Chapter 13 described coverage concepts and the utilities provided in e that support coverage
collection facilitating the implementation of coverage collection and analysis of the collected
data.

This chapter will describe coverage modeling. A Coverage Model includes all aspects
related to coverage data collection and handling. Developing a coverage model consists of the
following phases:

Coverage Planning and Design
Coverage Implementation
Coverage Grading
Coverage Analysis

During coverage planning, a coverage plan is derived from the verification plan and its
element details are identified. During the coverage implementation phase, the coverage plan is
implemented so that during simulation runs, coverage data is collected. Coverage grading
describes the approach used to specify quantitative measures for simulation goals, and comput-
ing the coverage grade which give a measure of the portion of simulation goals that have been
reached. During coverage analysis phase, the results of coverage grading is used to identify
enhancements to the simulation environment and simulation rerun constraints that will lead to
improving DUV coverage as specified in the coverage plan.

Section 14.1 describes coverage planning and design. Coverage implementation is dis-
cussed in section 14.2. Coverage grading and analysis are discussed in sections 14.3 and 14.4
respectively.

CHAPTER 14

14.1 Coverage Planning and Design

A coverage plan is derived from a verification plan. Detailed steps for developing a verification
plan were described in section 3.1. Given a verification plan, a Coverage Plan describes the
information necessary to identify whether or not a specific verification item or scenario has
occurred. A coverage plan is only focused on detecting the occurrence of verification scenarios,
with the implicit assumption that the environment checkers will confirm correct device opera-
tion for each observed scenario.

In the Coverage Design phase, information necessary to implement the coverage plan is
defined. This information includes:

What elements of environment or design represent plan attributes
When to sample based on events in the environment or design
Where in the environment architecture should each coverage be placed

The code necessary to capture the elements of a coverage plan is developed in the Cover-
age Development phase.

The structure of an ethernet packet was described in section 7.2. A partial verification plan
for an ethernet port is shown in table 14.1. This verification plan describes the type of scenarios
that should be observed on the DUV receive port (i.e. BFM transmit port), and consists of 4
columns. Column 1 lists the destination address for the packet (multicast or unicast). Column 2
lists the packet types that should be injected into the device port for each destination type. Col-
umn 3 lists the ranges of interest for each destination and packet type. Note that the required
ranges for QTAGGED and SIZED packets are different due how ethernet packet types are
defined. Column 4 lists the LANID field that is only valid for QTAGGED type packets. In this
verification plan, only LANID values of 1 and 2 should be generated. Column 5 gives a brief
description of each verification item.

The coverage plan and its design are shown on table 14.2. The first column describes the
item that should be included in the coverage implementation. Column 2 lists the buckets that
define ranges of interest for each item. Each bucket is described with a range and a condition.
The condition refers to the packet type, which in this case, impacts the range of interest for
packet size. Information regarding the required number of hits for each bucket may need to be
specified with each bucket. Column 3 lists the location where coverage item should be sam-
pled; in this case the BFM that transmits a packet to the DUV. Column 4 lists the time when the
coverage should be collected. Here, coverage is collected when a packet is successfully trans-
mitted to the DUV, which implies that incomplete packet transmissions (i.e. due to collisions)
are not counted as part of coverage measurement. The actual coverage implementation will
consist of cross and transition items that is created by combining the items listed in table 14.2.

246 The e Hardware Verification Language

Coverage Modeling

Table 14.1: Partial Verification Plan for an ethernet Port

Destination

Unicast

Multicast

Type

SIZED

QTAGGED

SIZED

Size

<46

46

[47..1535]

1536

>1536

<44

44

[45..1533]

1534

>1534

1536

LANID

--

--

--

1,2

1,2

1,2

1,2

1,2

Description

Small Illegal

Small Corner-case

legal

Large Corner-case

Large Illegal

Small Illegal

Small Corner-case

legal

Large Corner-case

Large Illegal

Large Corner-case

14.2 Coverage Implementation

Coverage model implementation depends on the source of, and the relationship between the
data objects sampled during coverage collection. These considerations and their corresponding
coverage implementation are described in the subsequent sections. Section 14.2.1 describes the
implementation of different coverage model organizations that describe the relationship
between coverage data items. Section 14.2.2 discusses implementation of coverage collection
for different data sources (i.e. DUV signals, generated data, state machine behavior).

14.2.1 Coverage Model Organization

Coverage model organization is divided into hierarchical models and multi-dimensional mod-
els. A Hierarchical Coverage Model is used to collect coverage in cases where a value X is
only valid for particular values of a value Y (i.e LANID is only defined when ethernet packet
type is QTAGGED in table 14.2). A Multi-dimensional Coverage Model is used to collect cover-
age in cases where values for data object X have different meanings for each value of Y. (i.e.
small corner case condition for SIZED packet is considered legal size packet for QTAGGED
packet in table 14.2). These models are described in the following subsections.

247

--

--

--

CHAPTER 14

Table 14.2: Partial Coverage Plan Design for an ethernet Port

Item

destination

type

size

LANID

Buckets

Condition

none

none

SIZED

QTAGGED

QTAGGED

Range

[Multicast,
Unicast]

[SIZED,
QTAGGED]

[1..45]

[46]

[47..1535]

[1536]

[1537..]

[1..43]

[44]

[47..1533]

[1534]

[1535..]

[1]

[2]

Location

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

XMT BFM

Sampling Time

Upon completion of packet xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion of packet xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion of packet xmt in XMT BFM

Upon completion of packet xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

Upon completion of packet xmt in XMT BFM

Upon completion ofpacket xmt in XMT BFM

14.2.1.1 Hierarchical Coverage Models

A hierarchical coverage model is used to collect coverage when definition of a coverage item or
a coverage group is only meaningful under conditions defined by other parameters in the envi-
ronment. Hierarchical coverage models are implemented using struct subtypes.

In the example below, struct instruction has a determinant field size, which can be WIDE or
REGULAR. For each subtype of this struct, the definition of cov_sample coverage group is
extended to include coverage items that are relevant only for their corresponding subtype.

1
2
3
4
5

<’
struct inst {

size: [WIDE, REGULAR];
event cov_sample;
cover cov_sample is {};

248 The e Hardware Verification Language

Coverage Modeling

6
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

};
‘>

<'
extend inst {

};

when WIDE inst {

};

cover cov_sample is also {

};

item len: uint (bits: 3) = sys.len;
item data: byte = data;
item mask;

when REGULAR inst {

};

cover

};

cov_sample is also {
item reg_addr;
item wr_data;
item rd_data;

18 '>

New coverage groups can be introduced for struct subtypes. Such coverage groups contain
coverage items relevant only to their corresponding struct subtype. All sampling events for
conditional coverage groups should be declared in base definition of a struct and not in its sub-
type.

In the example below, the struct operation includes the determinant field opcode. Coverage
group ready3 is defined on line 20 only for subtype ADD of struct operation. Note that event
ready3, which is used as sampling event for this coverage group is defined in the base definition
of the struct.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<’
struct

};

operation {
opcode: [ADD, SUB];
op1: uint;
op2: uint;
op3: uint;

event ready is rise('top.ready');
event ready3 is rise('top.op3ready'); // Must define here

cover ready is {

};

item op1;
item op2;
cross op1, op2;

extend operation {
when ADD operation {

//event ready3 is rise('top.op3ready'); // Can't define here
cover ready3 is {

item op1;
item op2;
item op3;

249

CHAPTER 14

24
25
26
27
28

};
‘>

};
};

cross op1, op2, op3;

14.2.1.2 Multi-dimensional Coverage Models

The true meaning of data samples collected during coverage collection are often clear only in
combination with other data values during the simulation. Thus, for example, the ethernet
packet in section 7.2, the packet sizes that indicate corner case conditions are different depend-
ing on the packet type being transmitted. Also, when collecting coverage data on CPU instruc-
tions, the value of instruction parameters should only be considered in correlation to the
instruction that is being executed as the corner case conditions for add and divide operations are
different.

Cross items are used to implement multi-dimensional coverage models. In the example
below, the items opcode, op1, and op2 are defined in the coverage group inst_driven. The item
opcode is constrained to have only two values ADD, SUB and op1 to have values REG0 and REG1.
The coverage item op2 can have values in the range [1..24] with buckets defined for the ranges
[1..4], [5..8], [9..12], [13..16], and a bucket for the remainder range [17..24].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<’
type cpu_opcode: [ADD, SUB, OR, AND, JMP, LABEL];
type cpu_reg: [REG0, REG1, REG2, REG3];
struct instruction {

};
‘>

opcode: cpu_opcode;
keep opcode in [ADD, SUB];

op1: cpu_reg;
keep op1 in [reg0, reg1];

op2: byte;
keep op2 in[1..24];

event inst_driven;
cover inst_driven is {

};

Item opcode;
item op1;
item op2 using ranges = {range([1..16], "", 4)};
cross opcode, op1, op2 using name = opcode_op1_op2;

Results of coverage collection for 10 samples of cross item are shown below.

Sample
1
2
3
4
5
6
7

opcode
ADD
SUB
ADD
SUB
SUB
ADD
ADD

op1
reg0
reg1
reg1
reg0
reg1
reg0
reg0

op2
2
3
16
1
12
9
17

250 The e Hardware Verification Language

Coverage Modeling

8
9
10

SUB
SUB
ADD

reg0
reg1
reg1

15
10
11

This data can be organized as shown in figure 14.1 to get a clear understanding of the reg-
isters and data values that were used with each instruction type.

14.2.2 Coverage Data Source

Coverage data is collected through sampling of data values that correspond to coverage items.
The type of collected data can range from data values in the e program to DUV signals. In addi-
tion, the data that is collected may correspond to composite constructs in the verification envi-
ronment or the DUV. Based on these considerations, coverage item implementation is
categorized in to three types: DUV signal coverage, generated data coverage, and finite state
machine coverage. These implementations are discussed in the following subsections.

251

CHAPTER 14

14.2.2.1 DUV Signal Coverage

All verification activities are directed at driving DUV ports and collecting and checking DUV
ports and internal signal values. As such, collecting coverage on DUV signal values is an
important part of coverage collection. Issues regarding coverage collection for DUV signals are
discussed in this section.

The first step in collecting DUV signal coverage is to identify all important DUV signals
that need to be sampled during coverage measurement. Special attention must be paid to the
following signal types:

Main Interface Signals
Control Signals
State Variable Signals
Signals Indicating Exceptions (i.e. overflow, underflow)
Interrupt Signals

Sometimes it is necessary to collect coverage on a condition computed from a number of
DUV signals. In such a case, it is best to create a variable in the e program and assign it based
on DUV signal values and collect coverage on this variable in the e program.

The second step is to define a sampling event to sample the DUV signals. This sampling
should be based on another DUV signal like a clock, or a signal that indicates a specific condi-
tion in the design (i.e. register load, state transition, etc.). Although an existing event definition
in the verification program can be used for collecting coverage, it is better to define a new event
solely for coverage collection. Using a dedicated event keeps the coverage environment sepa-
rate from the rest of the verification environment.

Some examples of DUV signal sampling are shown below:

Sampling one signal where the sampling event is the change in the signal itself
event cov_valid is change (‘top.controller.valid’) @sim;
cover cov_valid is {

item valid: bit = ‘top.controller.valid’;
};

Sampling more than one signal at the same time. All coverage items in this case are
sampled based upon a change in signal top.controller.valid.

item ready: bit = ‘top.controller.ready’;
item read: bit = ‘top.,controller.read_sig’;
item write : bit = ‘top,write_sig’;

In the last step, coverage groups containing coverage items for DUV signals are placed in
coverage groups located in the unit that interacts with the DUV level of hierarchy that contains
the signals being sampled. By placing the coverage groups in the appropriate unit, coverage can
be collected for all HDL signals corresponding to different instances of that unit. In this case,
coverage should be collected for each instance of that unit. Define any cross or transition items
for the combinations of values according to the coverage based test plan.

252 The e Hardware Verification Language

Coverage Modeling

1
2
3
4
5
6
7
8
9
10
11

<'
struct st_controller {

};

'>

event cov_valid is change (‘top.controller.valid’) @sim;
cover cov_valid is {

};

item valid: bit = 'top.controller.valid' using per_instance;
item ready : bit = 'top.controller.ready';
item read: bit = top.controller.read_sig’;
item write : bit = 'top,write_sig';

14.2.2.2 State Machine Coverage

State machines are commonly used to implement DUV controllers. Measuring coverage on all
visited states and transitions of a state machine is an important steps in coverage collection.

The first step in collecting coverage on a state machine is to establish the relationship
between the states of the state machine and the equivalent state variable in the e code. This is
accomplished by using the HDL define-file to declare an enumerated type in the e program cor-
responding to valid states of that state machine. Consider the state machine shown in figure
14.2 and the following HDL define-file that assigns constants to strings in the HDL code:

// file rtl_define.v
`define state0 2'b00
`define state1 2'b01
`define state2 2'b10
`define state3 2'b11

Import the above HDL file into the e program and use the defined values to declare a new
enumerated type:

253

CHAPTER 14

1
2
3
4

<’
verilog import rtl_define.v
type my_state : [ST0=`state0, ST1 = `state1, ST2=`state2, ST3=`state3];
‘>

Next, define the struct/unit in which this enumerated type is used:

1
2
3
4
5

<’
struct state_xyz {

st : my_state;
}:
‘>

Now, declare the sampling event based on the signal that causes the state machine to
change its state. This signal is usually the state machine clock.

1
2
3
4
5

<’
extend state_xyz{

event st_cov is rise(‘top.xyz.clock’)@sim;
};
‘>

Next, define the cover group based on this sampling event and declare a coverage item for
the state:

1
2
3
4
5
6
7

<’
extend state_xyz {

};
‘>

cover st_cov {
item st;

};

State transitions are an important part of state machine coverage collection. The following
example shows how to use the transition operator to collect coverage on state transitions while
checking that illegal transitions do not occur for this coverage item.

1
2
3
4
5
6
7
8
9
10
11
12
13

<’
type machine_state: [START, LOAD1, LOAD2, EXEC, STOP];
extend sys {

xyz : state_xyz ;
is_illegal_transition(ps :my_state, cs: my_state) :bool is {

result = ps==ST0 and cs==ST2 or
ps==ST0 and cs==ST3 or
ps==ST1 and cs==ST1 or
ps==ST1 and cs==ST3 or
ps==ST2 and cs==ST1 or
ps==ST2 and cs==ST2 or
ps==ST3 and cs==ST1 or
ps==ST3 and cs==ST2;

254 The e Hardware Verification Language

Coverage Modeling

14
15
16
17
18
19
20
21
22
23
24

};
};

struct state_xyz {
event st_cov;
st: my_state;
cover st_cov is {

};
‘>

item st;
transition st using illegal = sys.is_illegal_transition(prev_st, st);

}:

In this example, struct state_xyz is instantiated under sys. A method is also defined in sys
that detects whether a transition is illegal. The transition item on line 28 uses this method to
flag illegal transitions during coverage collection. Note that the boolean expression defined for
the illegal option is computed in the context of global and therefore an absolute path for the
method is_illegal_transition() is required. For this reason, method is_illegal_transition() is declared
under sys.

14.2.2.3 Coverage of Generated Data

Collecting coverage on the randomly generated DUV stimulus is an important part of coverage
collection. Not only does it provide data on the covered verification scenarios, but also the
effectiveness of the implementation of the random stimulus generation steps. Another impor-
tant part of collecting this coverage data from the generated data is to determine the time for
sampling data values. Data generated and fed continuously to a DUV, such as packets, transac-
tions, or instructions should be sampled when injected into theDUV.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<'
extend sys {

i_swtch : switch is instance;
keep i_swtch.hdl_path() == 'top.switch';

};
unit switch {

event clk is rise('clock');
event send_pkt;
i_pkt : uint;
driver() @clk is {

while TRUE {
if ('valid' ==1) {

};
};

};

gen i_pkt;
send(i_pkt);
emit send_pkt;
wait [1]*cycle;

cover send_pkt is {
item i_pkt;

};
run() is also{

start driver();
};

255

1

CHAPTER 14

26
27

};
'>

Data values that change infrequently (i.e. configuration options) can be sampled at the
start or end of the test. For configuration data define, emit, and use the events that signify these
changes. The predefined method finalize() is used to emit event end_of_test below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<’'
struct uart {

};
‘>

fifo_mode : bool;
num_stop_bit: uint(bits:2);
event end_of_test;
finalize() is also {

emit end_of_test;
};
cover end_of_test is {

};

item fifo_mode;
item num_stop_bit;

14.3 CoverageGrading

Coverage grading is the process of measuring the portion of coverage goals that have been met
in the currently completed simulation runs. coverage grading assigns a grade to each construct
in the coverage model (i.e. coverage buckets, bucket sets, items, and groups), and then com-
putes a global coverage grade based on individual coverage grades; the grade for each coverage
construct is computed recursively. First a coverage grade is computed for each bucket. Cover-
age grade for a bucket is computed using its goal setting and its number of hits. The goal for a
bucket specifies the number of desired samples for that bucket. Next, the grade for each cover-
age item is computed using the grades for its bucket(s), and the grade for the coverage group is
computed from the grades for its coverage item(s).

Each coverage bucket, item, and group has an assigned weight that indicates the impact of
the grade for that construct to the overall grade calculation.

Coverage grades can be computed using two different formulas: a linear formula, and a
root-mean-square formula. Syntax for selecting the coverage grade formula is:

set_config(cover, grading_formula, linear|root_mean_square)

A linear coverage grade assigns the same significance to consecutive hits in buckets
whose goals have not been met. The equations for computing linear bucket grades, item grades,
group grades, global grade are shown below:

256 The e Hardware Verification Language

Coverage Modeling

With a root-mean-square formula, earlier hits for buckets whose goals have not yet been
met contribute more the overall grade (i.e. first hit in a bucket affects overall coverage grade
most). The equations for computing root-mean-square bucket grades, item grades, group
grades, and the global grade are shown below:

For coverage groups that collect coverage per-instance, each instance is calculated as a
separate group.

To summarize, in order to setup coverage grade calculation:

Assign weights for coverage buckets, items, and groups (default weight is 1).
Assign goal for coverage buckets (default goal is 1).
Select coverage calculation formula (default is linear).

Figure 14.3 shows an example of a coverage model hierarchy, the hits for each bucket, and
how overall coverage grade is calculated using a linear grade equation and default weight and
goal values.

Item and bucket weights, and bucket goals are discussed in more detail in the following
subsections.

257

CHAPTER 14

14.3.1 Changing Default Weights

All coverage group and items have a pre-assigned default weight. The weight of an item deter-
mines the importance of that item relative to other items in the coverage group. The weight of a
coverage group determines the importance of that group with respect to the other groups in the
coverage model. The default weight for any coverage group or item in the coverage model is 1.
This weight can be forced to be 0 or to a value greater than 1. Making the weight 0 for an item
or group removes the item from coverage grading. Increasing the weight for a group or item
increases its contribution to the overall coverage grade. Depending on the verification require-
ments, some items may also need to be given higher weights than other items.

The weight is assigned using the weight option for coverage group or item.

1
2
3
4
5
6
7
8
9
10
11
12
13

<'
struct packet {

};
'>

addr : uint;
keep addr in [0x101..0x200];

length : uint;
data[10] : list of byte;
cover cov_pkt {

};

item addr;
item length using weight = 2; // weight of 2 assigned for length.
Item data ;

Figure 14.4 shows an example of grade calculation using modified weight set-
tings for coverage items and groups.

258 The e Hardware Verification Language

Coverage Modeling

14.3.2 Changing Default Goals

Every coverage bucket requires a goal number of hits in order to be considered completely cov-
ered. The default value for this goal is 1. This goal can be changed using the at_least option
when defining coverage items, as shown below:

1
2
3
4
5
6
7
8
9
10

<'
struct inst {

};
'>

op2: byte;
keep op2 in [1..24];

event inst_driven;
cover inst_driven is {

item op2 using ranges = {range([1..16], "", 4)}, at_least = 2;
};

Figure 14.5 presents an example of grade calculation for the example in figure 14.4 where
bucket goals have been changed from their default value.

14.3.3 Ungradeable Items

Some coverage items may have a very large number of buckets. For example, coverage items
of type int or uint that have no limit over their range of values have a very large number of
buckets. Items that have a very large number of buckets are considered Ungradeable and do not
participate in coverage grading. An Ungradeable item can be collected but will not contribute
towards the coverage by assuming its goal to be 0. The maximum limit for the items with no
specific limit is set using option like max_int_bucket, which specifies a maximum value for

259

CHAPTER 14

the number of buckets, which can be assigned for each item. If this limit is exceeded, the item
becomes ungradeable.

The following guidelines are used to differentiate between gradeable and ungradeable
coverage items:

For simple items, boolean and enumerated types are always gradeable
String types are always ungradeable
Coverage item of type int and uint are gradeable only if the range of possible values is
less than the maximum configurable value for the coverage tool (default is 16).
For cross item, items containing ungradeable items are also ungradeable.
For transition items, items that have transitions of gradeable items are gradeable and
transition items from ungradeable items cannot be graded.

Use of these guidelines is shown in the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<'
extend packet {

};
'>

cover cov_packet is {
item x: byte = x;
item y: byte = y using

// x is ungradeable (256 values)
// y becomes gradeable (8 buckets: [0..31], etc.)

ranges = { range([0..255], "", 32)};
item z: uint(bits: 3) = z;
item xyz : int = xyz;
cross x,y;
cross y,z;
transition x;
transition z;

};

// z is gradeable (8 values)
// xyz is ungradeable2**32 values possible
// ungradeable as x is ungradeable item
// gradeable as both items are gradeable.
// ungradeable as x is ungradeable item
// gradeable as z is gradeable.

260 The e Hardware Verification Language

Coverage Modeling

14.3.4 Illegal and Ignored Items

Coverage items that are declared illegal or ignored using coverage item options, do not contrib-
ute to any coverage grading because the goal set for those items is 0.

14.4 Coverage Analysis

Coverage grades identify coverage holes that still remain in spite of the simulation runs that
have already been completed. Such coverage grades can be used to:

Identify inefficiencies in the coverage plan
Decide whether or not to run further simulation cycles using the current constraints for
random generation to improve coverage
Identify changes in the generation constraints or enhancements to the verification envi-
ronment that would cover missing scenarios

Careful studying of individual values for item and group coverage grades identify cover-
age holes for the current set of simulation runs. Given a coverage hole, the flow chart in figure
14.6 shows the methodology used to improve the coverage.

After a simulation run, coverage grades are computed and coverage holes identified. The
first step in coverage analysis is to decide whether or not this coverage hole represents an
important verification scenario. If the represented case is not important or relevant, the cover-
age model should be fixed. In some cases, the ignore option can be used to exclude the cover-
age hole from consideration during coverage grade calculation.

If the coverage hole corresponds to a relevant case, then that hole may be covered if the
simulation is run for additional cycles. It is important that the missing case occurs with good
probability using the existing random generation constraints; otherwise, many simulation runs
will be wasted before the coverage hole is covered. If running more cycles will cover the miss-
ing case, then more simulation cycles should be run.

If running more simulation cycles does not cover the missing case with good probability,
then the environment has to be analyzed to examine if changing the generation constraints is
sufficient to cover the missing case. If not, then the environment has to be enhanced so that
with new generation constraints, the missing case is generated. Either way, new generation con-
straints are added and specified before running new simulation cycles.

The above flow is repeated until no more coverage holes remain. Though this flow is
described in terms of one coverage hole at a time, this analysis should be done simultaneously
for all coverage holes obtained after each simulation run to cover multiple holes after each new
simulation run. Thus, the flow shown in the shaded area in figure 14.6 should be done for all or
most of the coverage holes detected after each simulation run. A new simulation run should
start only after the necessary changes for all analyzed coverage holes have been made.

261

CHAPTER 14

14.5 Summary

This chapter presented the flow for building a coverage plan, and how to implement the neces-
sary code to collect coverage according to the coverage plan. Coverage collection styles were
discussed as part of the subject of on coverage implementation, and examples were presented
for different implementation styles.

262 The e Hardware Verification Language

Coverage Modeling

Coverage grade calculation, used to measure verification progress, was described using
equations in terms of bucket, item, and group goals and weights. The use of coverage grades to
refine simulation runs for the purpose of increasing verification coverage was also described.

This page intentionally left blank

PART 6

e Code Reuse

This page intentionally left blank

CHAPTER 15 e Reuse Methodology

Code reuse is an important concept in bridging the design and verification productivity gap. A
significant portion of design productivity is gained by using existing blocks or off-the-shelf
design IPs to construct larger, more complex systems. Applying the same reuse concept to ver-
ification of these complex systems makes it possible to significantly reduce verification effort
as design size grows.

A design IP is a pre-designed block with well-defined functionality and port behaviors. In
practice, any block that can be packaged for later use in the current or a different project can be
considered a design IP. Ideally, the verification environment for a design IP would be used in
creating the verification environment for the system using this IP. In practice, verification envi-
ronments for design IPs are actually highly specialized without much consideration for verifi-
cation reuse. Lack of planning for future reuse leads to difficulties in merging multiple
verification environments and complicates adding or reusing verification code; even for
slightly different verification requirements. But taking verification reuse into consideration in
the early stages of architecting and building a module level verification environment facilitates
verification reuse without demanding extra effort for building that environment.

This chapter presents the e Reuse Methodology (eRM), with considerations for building
reusable verification environments. Section 15.1 discusses the requirements for building e Ver-
ification Components. Section 15.2 presents guidelines for preventing conflicts during the
deployment of eVCs from multiple sources. Section 15.3 presents architectural features that
would make an eVC reusable for a variety of verification requirements. The reuse guidelines
discussed in this chapter are described in the context of eVC development. These guidelines
should be followed for any verification environment development in order to facilitate its reuse
in future projects.

CHAPTER 15

15.1 eVCs: e Verification Components

An e Verification Component (eVC) is a configurable and reusable verification environ-
ment that focuses on a specific architecture or protocol (i.e. PCI-Express, ethernet, USB,
AMBA, etc.).

An eVC provides a complete verification environment for applying coverage driven veri-
fication methodology to the protocol targeted by the eVC. In that regard, an eVC architecture is
very similar to the verification environment architecture shown in figure 3.2. An eVC contains
a complete set of components for stimulus generation, device response collection, scoreboard-
ing, protocol checking, and coverage collection.

Ideally, an eVC is a plug-and-play verification environment that can be used either as a
stand-alone environment or to build larger verification environments. The internal implementa-
tion of an eVC is usually not visible to the eVC user, but knowledge of its interface and config-
uration parameters is sufficient to use an eVC.

At one extreme, productized eVCs focus on a standardized engineering specification that
is used in multiple projects and in multiple companies. A productized eVC comes with exten-
sive documentation, well designed and flexible user interface, and an implementation that is
usually encrypted in order to hide the intellectual property of the eVC developer. A shareware
eVC or a project specific eVC may correspond to a subcomponent of a system level design,
where the verification environment for that subcomponent is used during module level design
and verification, and later in building the system level verification environment.

An eVC can be used as an independent verification environment, or as a component in a
larger verification environment. The component level verification environment composed of
smaller eVCs may actually be used to build a system level verification environment. Therefore,
any verification environment can be considered an eVC and should be designed with such reuse
considerations in mind. The distinction between a verification environment and an eVC is
therefore somewhat indistinct. In general, an eVC is targeted for use in more than one verifica-
tion setting.

Each eVC in a verification environment composed of eVCs from multiple sources should
satisfy the following requirements:

No interference between eVCs
No name space collision
No complex SPECMAN_PATH or directory dependencies
Handles dependencies on common modules
No dependencies on different versions of Specman Elite and utilities
No timing dependencies
No dependencies on global settings

Common look and feel, similar activation, similar documentation
Common way to install eVCs
Common way to patch eVCs

268 The e Hardware Verification Language

e Reuse Methodology

Common tracing and debugging
Handles DUT errors
Gets eVC identification
Waveform viewer data
Custom visualization
Common way of specifying simulator-specific material
Common way to do back-door initialization
Common programming interface to standard blocks
Common eVC taxonomy
Common style of documentation

Support for combining eVCs (control, checking, layering, etc.)
Common way to configure eVCs
Common way to write tests
Common way to create sequences
Common way to do checking
Combined determination of end of test
Common way to do layering of protocols
Common way to do combined coverage

Support for modular debugging
Understands combined constraints
Reconstructs the behavior of a single eVC in the verification environment

Commonality in implementation
Common data structures
Common eVC testing methodology
Common way to use ports and packages

Above requirements are stated for the perspective of the eVC user. These usage require-
ments translate into guidelines for eVC developers, which are discussed in the following chap-
ters.

15.2 Packages and Package Libraries

Reusable verification components are organized using verification packages and verification
libraries. A Verification Package is a grouping that consists of:

Verification Code
Documentation
Examples
Versioning Information
PACKAGE_README.txt File

269

CHAPTER 15

A verification package may contain an eVC or a shareware utility. Reusable verification
code is distributed by transferring package directories.

Verification packages have two main types:

Environment Packages
Utility Packages

Environment Packages are used to instantiate a new verification sub-environment in the
process of creating a verification environment. The environment instantiated in this type of
package is defined using the any_env predefined unit (section 15.2.6). eVCs and shareware
packages are built as environment packages. Utility Packages do not provide an environment
that can be instantiated, but instead provide useful utilities that can be used throughout the ver-
ification environment. Chapter 16 describes a utility package that provides useful additions to
the core language constructs.

A Package Library contains multiple verification packages. These packages may be
grouped based on vendor, project, version, or another user defined requirement. A package
library is placed on the default path that is searched with the e import statement. All references
to packages inside a package are treated relative to the library path (see section 15.2.3).

15.2.1 Naming Conventions

Package names should be unique across all verification package producers (eVC vendors,
shareware donations, utility providers). Other than for the obvious reasons being able to
uniquely identify package providers, packages with the same name cannot be placed in the
same library directory.

Package name uniqueness is guaranteed by centrally allocating package name prefixes to
verification package providers. This central management is currently handled through Verisity
Inc. Table 15.1 shows a list of currently assigned name prefixes.

Names inside a verification package should be selected so that a name conflict never arises
when loading multiple packages provided by different vendors, or different developers. Name
conflicts can happen for two reasons:

Importing files with the same name, even if in different directories
e program name space conflicts

The import statement in an e program can only be used for files that have different names
even if these files reside in two different directories. If two files with the same name are
imported into an e program, then the second import statement is ignored. It is therefore neces-
sary to guarantee that file names in different packages are distinctly different. Pre-pending all
file names with a unique package name guarantees that file names originating in different pack-
ages will never be the same.

Object definitions in different packages must always use unique names. If the same unit
name is used in multiple packages for different purposes, then loading these packages at the

270 The e Hardware Verification Language

e Reuse Methodology

Table 15.1: Predefined Package Name Prefixes

Prefix

erm

evc

ex

rf

shr

si

sn

vr

Reserved For

Various eRM utilities supplied by Verisity Inc.

Various general utilities supplied by Verisity Inc., such as evc_util.

Small, example packages.

Specman Elite reflective facility.

Shareware that does not use a company name prefix. For example, if a user
wants to donate a register creation package as shareware, s/he can call it
“shr_register”.

SiMantis Inc. provided eVCs.

Internal Specman Elite entities.

Verisity Inc. provided eVCs

same time will lead to conflicts when parsing the loaded program(s). Identifiers in e statements:
including type statements, struct/unit statements, define statements, and extend statements,
always require unique names. Enumeration literals, struct members, and struct methods, how-
ever, do not require unique names, as these objects will be qualified by the unique name of the
object containing them.

15.2.2 Directory Structure

The directory structure for a package library containing two verification packages is shown in
figure 15.1. The library directory contains the verification package directory roots, as well as
the file LIBRARY_README.txt (section 15.2.4). The program runtime environment uses this
file to read information about the contents of that library. Each package directory contains files
PACKAGE_README.txt and demo.sh and subdirectories e, examples, and docs. File
PACKAGE_README.txt provides information to the environment about the contents of the
package (section 15.2.5). File demo.sh is used to run a complete demo of the package. The docs
directory contains all the documentation for the package. The examples directory contains
examples that showcase the special and default features of the package. One of these exam-
ples is the example run by the demo.sh file. The examples directory also contains an
EXAMPLES_README.txt file that describes the contents of the examples directory.
Additionally, a configuration template file should be included in the examples direc-
tory to demonstrate how the user can configure the eVC to fit various requirements.
The e directory contains all the e programs for the package. This directory may be
flat, or the root of a directory sub hierarchy. Either of these two structures can be used
if correct accessing method (section 15.2.3) is used for the files in this sub-hierarchy.

271

CHAPTER 15

A package may contain other directories necessary to organize the package. However
these additional subdirectories are used on a case-by-case basis.

15.2.3 Accessing Files

Package relative names should be used in specifying file locations. For example, to import a
file named vr_atm_top.e in the e directory of a package named vr_atm, the following import
statement is used:

import vr_atm/e/vr_atm_top.e;

Package vr_atm is placed in a package library whose path is already included in the
SPECMAN_PATH indicating the list of directories to be searched. Using this approach, new
packages are added to an existing environment by simply placing the package under a package
library already in the SPECMAN_PATH list of directories. No changes to SPECMAN_PATH
will be required. The following guidelines should be followed when specifying imported file:

Imports within a package should be local (with respect to the e directory of that pack-
age) as much as possible. This approach will ensure that all files for a package are
imported from within the same package even if multiple versions of that package exists
on the search path.
Import statements should never use “../” to traverse up a directory hierarchy, as the
expected behavior can be different than expected if the directory path includes soft
links.
Package relative paths should always be used for files that reside in a different eVC or

272 The e Hardware Verification Language

e Reuse Methodology

utility package. This approach guarantees that the needed file will always be found
regardless of the package library that contains it.

Occasionally, the need may arise to use a different version of a package that is already
included in one of the package libraries. Package Shadowing is used to achieve this goal. When
importing a file, the import statement loads the first copy of that file that it finds in its search
paths. By placing the desired version of a package in a library that is defined first in the path list
in environment variable SPECMAN_PATH, the import statement loads the desired version of
that file even though both versions are available on the search path.

To make this file access strategy usable with other tools in the operating systems, the
sn_while.sh shell script is used to derive the absolute file path name for a package relative file
name.

15.2.4 LIBRARY_README.txt File

The format of this file is:

1 * Title: This is the project-wide shareware library.

The Title field in this file is used to provide information about the contents of this library.

15.2.5 PACKAGE_README.txt File

This file contains a number of headers that describe the contents of the package. Header names
are case and blank insensitive. A header is started with * and is followed by a colon. A header
line may contain the header as well as a description required for that header, or the header
description may continue on the following lines. Headers Title, Name, and Version are manda-
tory and have to be included in all PACKAGE_README.txt files. The following listing shows
an example of header types and their description.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

* Title: Verisity AHB eVC
--Should be on one line.
-- Another example: An IEEE 335 foo-transfer protocol eVC

* Name: vr_ahb_evc
-- Must be the same as the package name

* Version: 3.3
-- Can also be e.g.: 0.1 (Experimental Version)

* Modified: 14-Jul-2001
-- Please use dates in exactly that format

* Category: eVC
-- Can be eVC, shareware, or utility for now

* Support: evc_support@verisity.com
-- Where to send requests for support, questions, etc..

* Documentation: docs/user_man.pdf
-- File name containing the documentation
-- Note: File names should be specified relative to the package dir

* Release notes: docs/rel_notes.txt

273

CHAPTER 15

18
19
20
21
22
23
24
25
26
27
28
29

* Description:
The Verisity AHB eVC is...

* Directory structure:
This package contains the following directories:
el - All e sources

* Installation:
To install it:
....1.

* To demo: run demo.sh
-- A description of how to run a demo from scratchg.: 0.

15.2.6 any_env unit

The any_env unit is a predefined unit used as the base definition for all environments in a pack-
age. For example, the top level eVC environment vr_xbus_env for the vr_xbus is defined using
like inheritance from the any_env unit, as shown below:

1
2

unit vr_xbus_env like any_env {
};

At the end of sys generation, the runtime environment prints a banner that provides infor-
mation about the title and version number of all instances of the any_env unit. Using this infor-
mation, it is possible to trace the name and version number of all loaded packages after a
verification run is completed.

The any_env unit has a number of predefined methods that are used in the execution flow
and can be used by the user to modify their behavior. These methods are described in table
15.2.

15.3 Features

The typical eVC architecture is shown in figure 15.2. In this view, the eVC top level contains
multiple agents that all interact with the same DUV port. The actual configuration of an eVC is
dependent on the DUV port properties with which it interacts. An eVC consists of the follow-
ing subcomponents:

eVC Environment
Agent
Configuration Settings

274 The e Hardware Verification Language

....

...

e Reuse Methodology

Table 15.2: Predefined Methods of any_env

Method
type

Description
User

Extendable

get_name()

get_file(fname)

ge_title()

get_version()

show_banner()

show_status():

add_wave_info()

string

string

string

string

none

none

none

Computed from definition file of package.

Return the full file name (starting with “/”) of fname, looking
for it under the package directory (as it exists now). For an
empty string - return the package directory. Issues an error if it
does not exist.

Return the title of the package. By default, returns
PACKAGE_README.txt title.

Return the version of that package, as a stringBy default,
returns PACKAGE_README.txt version.

Print the banner for this instance of the env. By default, shows
a single line, with get_title() and get_version(). User can mod-
ify it, adding, for example, copyright notice and a short
description of the configuration of this instance.

Print the current status of this instance of the env. By default,
empty.

Add waveform info for that package. By default, empty.

No

No

Yes

Yes

Yes

Yes

Yes

Sequence Generator and Driver
e-Port Interface
BFM
Monitor

These subcomponents are described in the following sections.

275

Return

CHAPTER 15

15.3.1 eVC Environment

An eVC environment instance is created by instantiating the top level environment of an eVC
created by using like inheritance on any_env predefined unit. One eVC environment instance is
created for each DUV port that must be supported by an eVC. If multiple ports with same func-
tionality exist, then multiple instances are created. Each eVC instance communicates with one
port of the DUV.

An eVC environment may contain a single or multiple agents. Even when the environment
contains only one agent, the environment and agent hierarchy should be maintained.

15.3.2 eVC Agents

An eVC environment may contain multiple agents if it connects with a DUV port that supports
multiple agent interaction (i.e. a bus interface). The environment instance for a serial type inter-
face will only contain one agent.

If the environment contains multiple agents for the same port, then it is not necessary to
have a monitor for each agent, as all monitors would be monitoring the same port. In this case,
either the monitor is moved inside the eVC environment, or only one of the agent monitors is
activated.

Agents are classified as active or passive.Active agents are further defined as proactive or
reactive agents. Passive Agents do not drive any DUV signals. Active Agents, on the other hand,
drive DUV signals. Proactive Agents initiate transactions while Reactive Agents only drive
transactions only in response to a request.

Agents should use a determinant field to define subtypes corresponding to its active or
passive modes. The predefined type erm_active_passive_t should be used for this field, as
shown below:

1
2
3
4

--Predefined in evc_util: erm_active_passive_t: [ACTIVE, PASSIVE];
extend vr_atm_agent_u {

active_passive: erm_active_passive_t;
};

Passive agents do not require a BFM or a sequence driver. The implementation for a pas-
sive agent consists only of a monitor, port interface descriptions, and configuration fields. The
active/passive determinant field should be used to include the BFM and the sequence driver
only for active agents:

276 The e Hardware Verification Language

e Reuse Methodology

1
2
3
4
5
6
7
8

unit vr_atm_agent_u {

};

active_passive: erm_active_passive_t;
monitor: vr_atm_monitor_u is instance;
when ACTIVE vr_atm_agent_u {

bfm: vr_atm_bfm_u is instance;
seq_driver: vr_atm_sequence_driver is instance;

};

15.3.3 Configuration Settings

A group of fields that allow configuration of the agent’s attributes and behavior.

15.3.4 Sequence Generator and Driver

The sequence generator is used to generate and drive scenarios using the BFM. The generation
of scenarios using sequences is described in detail in chapter 8.

15.3.5 e-Port Interface

An eVC interacts with its outside environment through e-Ports. The advantage of using e-Ports
is that no assumptions need to be made about the name or location of port signal connections
while the eVC is being developed. During deployment, the port connections are customized
according to its deployment requirements. During deployment, the agent ports may be con-
nected to signals in an external simulator, or to ports of an e-based module.

eVC ports should be defined in the eVC top-level environment. All agents in the same
environment connect to the same signals and can therefore use the common ports defined in the
eVC top level environment to interact with the outside device. e-Ports are discussed in section
5.5.

15.3.6 BFM

The design and architecture of a verification BFM is described in detail in section 3.2.2.

15.3.7 Monitor

Monitors are used for both passive and active agents. Monitors are independent imple-
mentations and do not depend on the BFM in any form. The reason for this is because passive
agents only contain one monitor and therefore a monitor should be able to operate independent

277

CHAPTER 15

of the BFM. Monitors can emit events when they notice interesting things happening in the
DUV or on the DUV interface. They can also check for correct behavior or collect coverage.
Monitors also only sample signals from the ports and do not drive any values. Monitors are thus
passive components.

15.4 Summary

This chapter presented code reuse issues and introduced concepts of e Reuse Methodology
(eRM) and e Verification Components as an embodiment of eRM. Issues related to organization
and architecture of eVCs development was presented. This chapter focused mostly on deploy-
ment and architectural issues of code reuse. Sequence generation and messaging are also two
important considerations in code reuse and these issues are discussed in their corresponding
chapters.

278 The e Hardware Verification Language

CHAPTER 16 si_util Package

This chapter describes the contents of the si_util eRM compatible utility package1. The utilities
provided by this package are:

Stop-Run Controller: provides a declarative approach for managing simulation termina-
tion conditions across multiple modules. This utility can be integrated into the imple-
mentation of an existing verification environment with minimal changes.
Memory Package: provides a memory manager that can manage an e based or HDL
based memory core. Also provides an e based sparse memory core where sparsity can
be configured from fully sparse to fully instantiated.
Native e Time Manager: provides a native e based time wheel that handles time values
in the e environment in the absence of an attached simulator. Time management auto-
matically transitions to HDL based time when an HDL simulator is attached.
Signal Generator: provides a declarative approach to generating clocks, resets, and tim-
ers. Also includes a centralized mechanism for controlling the stopping and restarting of
user defined groups of signals. Uses the time manager utility.
Native e Float Arithmetic Package: Provides a native implementation of IEEE compli-
ant floating point operations that eliminates the need to use non-e programs to perform
float operations.

The Motivation for these utilities and their usage methodology are described in the subse-
quent sections.

1. The si_util package may be downloaded from the SiMantis Inc. web site by visiting www.simantis.com.

CHAPTER 16

16.1 Stop-Run Controller

In an e program, the run execution phase is completed by calling the predefined stop_run()
method. Given a verification environment composed of independently developed modules, a
centralized mechanism is necessary to decide when the stop_run() method should be called.

The e language provides an objection mechanism that can be used to synchronize the
end-of-test condition between multiple agents by using the predefined raise_objectlon() and
drop_objection() methods. The Stop-Run Controller mechanism of the si_util package pro-
vides a modular and declarative approach for managing the end of simulation condition for
independently developed modules.

One approach for deciding when to call thestop_run() method is to define a stop-run-con-
dition (simulation end condition) for each module of the verification environment hierarchy. In
this approach, the stop-run-condition for each module is defined in terms ofthe stop-run-condi-
tions for its sub-modules and any agents inside that module (i.e. methods, etc.) that might par-
ticipate in calling stop_run(). The formalization of this approach consists of the following
abstract objects:

Stop-run agent
Stop-run group

A stop-run agent corresponds to a module, activity, or event in the verification environ-
ment that impacts the decision for calling stop_run(). Examples of a stop-run agent include:

A generator module that requires program execution to continue until the module has
generated all its items
A collector module that requires program execution to continue until it has collected a
required number of items.
A statistic collection activity (i.e. coverage grade, random generation profile, etc.) that
requires program execution to continue until it has reached a user defined value

A stop-run group defines a grouping of stop-run agents that requires all agents in that
group to complete their activity before program execution can be stopped. Multiple stop-run
groups may exist corresponding to different requirements. Examples of stop-run groups
include:

Group of all agents that use coverage measurement to decide program termination
Group of all agents that require generators to complete before program execution is
ended

A visual representation of this model is shown in figure 16.1. The verification environ-
ment hierarchy shown in this figure contains a number of stop-run agents at different levels of
the hierarchy. A possible grouping of these stop-run agents into stop-run groups is also shown.
This grouping implies that for the run execution phase to end, either agent F has to terminate, or
agents A, B, and D should all terminate, or agents C and F should both terminate.

280 The e Hardware Verification Language

si_util Package

16.1.1 Stop-Run Controller and Stop-Run Interface

The si_util package provides a declarative approach for modeling the stop-run model consisting
of stop-run agents and stop-run groups. The declarative style of this utility contrasts with the
procedural style of using objection mechanisms to implement an end of test strategy. The fol-
lowing predefined structs are provided in the si_util package:

si_util_stop_run_controller: controller used for modeling stop-run groups
si_util_stop_run_controller_if: interface used to connect stop-run agents with groups

Details of these structs are shown in tables 16.1, 16.2, and 16.3. A stop-run interface struct
is used to attach a stop-run agent to a group. This struct has a method stop_run() which is used
by each stop-run agent to indicate that it has completed its operation. Each stop-run interface
struct includes a pointer to a stop-run controller. Agents are placed in stop-run groups by con-
straining the controller pointer for each instance of the stop-run interface. Each of these structs
also includes a name field that can be constrained to provide meaningful messages as different
agents indicate that they no longer require the simulation execution to continue by calling the
stop_run() method of the interface struct.

16.1.2 Migrating to Using Stop-Run Interfaces

Consider the code fragment shown below:

281

CHAPTER 16

Table 16.1: si_util_stop_run_controller_if struct member

Struct
Type Valid Range Description

name

srunc

string

si_util_stop_run_controller

Name is used when reporting on the inter-
face status
Default: “SRUNCIF”

Constrained during instantiation to the
stop-run controller that this interface
belongs to. If not constrained, then internal
stop-run controller is used forming a
stop-run group consisting of only this
interface.

1
2
3
4
5
6

<'
unit module1 {

stop_this_module() is {
stop_run();

};
};

In the above, the predefined global stop_run() method is used to stop the simulation. The
migration of this example to an implementation using a stop-run interface is shown below:

282 The e Hardware Verification Language

Table 16.2: si_util_stop_run_controller_if methods

Method
Name Parameters

Return
Type

Description

stop_run() none none
Indicates that the stop-run interface con-
taining this method no longer objects to
end of simulation run.

Table 16.3: si_util_stop_run_controller struct member

Struct
Member Type Valid Range Description

name

srunc

string

si_util_stop_run_controller

Name used when reporting on the interface
status
Default: “SRUNC”

Constrained during instantiation to the
stop-run controller that this interface
belongs to. If not constrained, then internal
stop-run controller is used instead; forming
a stop-run group consisting of only this
interface.

Member

si_util Package

1
2
3
4
5
6
7

<'
unit module1 {

srunc_if: si_util_stop_run_controller_if; -- uses its internal stop-run controller
stop_this_module() is {

srunc_if.stop_run();
};

};

In the example modification, a stop-run interface is instantiated; but instead of using the
global stop_run() method, the stop_run() method of this interface is used when stopping the
simulation on line 5. Since the srunc member of srunc_if is not constrained to point to any other
stop-run controllers, an internal stop-run controller is used inside the interface struct. In the
above implementation, the simulation stops with the method call on line 5. This behavior is
identical to the code sample using the global stop_run() method. Approaches for combining
multiple stop-run interfaces into stop-run groups are discussed next.

16.1.3 Multiple Stop-Run Groups in the Same Module

Use of these constructs for stop-run agents at the same level of hierarchy are shown for the
example in figure 16.2. In this instance, 4 stop-run agents exist at the same level of hierarchy.
These agents are placed in two groups so that the program run phase is completed when both
agents A and C, or both agent B and D indicate the end of their need for simulation to continue.
As shown in the figure, 4 stop-run interfaces are instantiated for the four stop-run agents. Two
stop-run controllers are also instantiated to create the stop-run groups shown in this figure. The
e program implementing this example is shown below:

283

CHAPTER 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

<'
import si_util/e/si_util_top.e;
unit srun_demo {

}:

group1_srunc: si_util_stop_run_controller;
keep group1_srunc.name == "SRUNC GROUP1";

group2_srunc: si_util_stop_run_ controller;
keep group2_srunc.name == "SRUNC GROUP2";

agent_A_srunc_if: si_util_stop_run_controller_if;
keep agent_A_srunc_if.name == "SRUNC AGENT A";
keep agent_A_srunc_if.srunc == group1_srunc;

agent_B_srunc_if: si_util_stop_run_controller_if;
keep agent_B_srunc_if.name == "SRUNC AGENT B";
keep agent_B_srunc_if.srunc == group2_srunc;

agent_C_srunc_if: si_util_stop_run_controller_if;
keep agent_C_srunc_if.name == "SRUNC AGENT C";
keep agent_C_srunc_if.srunc == group1_srunc;

agent_D_srunc_if: si_util_stop_run_controller_if;
keep agent_D_srunc_if.name == "SRUNC AGENT D";
keep agent_D_srunc_if.srunc == group2_srunc;

generator() @sys.any is {
-- generator body here
wait [3]*cycle;
agent_A_srunc_if.stop_run();

};
collector() @sys.any is {

-- collector body here
wait [2]*cycle;
agent_B_srunc_if.stop_run();

};
timer() @sys.any is {

};

-- timer body here
wait [4]*cycle;
agent_C_srunc_if.stop_run();

monitor() @sys.any is {

};

-- monitor body here
wait [5]*cycle;
agent_D_srunc_if.stop_run();

run() is also {

};

start generator();
start collector();
start timer();
start monitor();

extend sys {
demo: srun_demo is instance;

}:

'>

In the above program, the si_util package is imported on line 2. Stop run controllers are
instantiated on lines 4 and 6, and their names are assigned using a generation constraint. The

284 The e Hardware Verification Language

si_util Package

stop run interfaces are instantiated on lines 9, 12, 15, and 18, their names are assigned using
constraints and their stop-run group membership is defined using generation constraints where
their srunc pointers are set to stop-run controllers for their corresponding groups. In this exam-
ple, the 4 stop-run agents are TCMs corresponding to a generator, a collector, a monitor, and a
TCM that end the simulation based on a timer value. For each agent, the stop_run() method of
their corresponding instance is called. In this example, a wait statement is added to each TCM
to mimic program behavior when TCMs take different times to call the stop_run() method.

The output generated by the stop-run controllers is shown in the following.

Running the test ...
+D->000000000 SRUNC GROUP1 Registered (name, id)=(SRUNC AGENT A, 0)
+D->000000000 SRUNC GROUP2 Registered (name, id)=(SRUNC AGENT B, 0)
+D->000000000 SRUNC GROUP1 Registered (name, id)=(SRUNC AGENT C, 1)
+D->000000000 SRUNC GROUP2 Registered (name, id)=(SRUNC AGENT D, 1)
+D->000000002 SRUNC GROUP2 Unregistered (name, id)=(SRUNC AGENT B,
+D->000000003 SRUNC GROUP1 Unregistered (name, id)=(SRUNC AGENT A,
+D->000000004 SRUNC GROUP1 Unregistered (name, id)=(SRUNC AGENT C,
+D->000000004 SRUNC GROUP1 All users stopped. Now stopping
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed

0)
0)
l)

As shown above, at time 0, all agents are registered with their corresponding stop-run
groups. At time 2, stop-run agent B calls stop_run(). At time 4, stop-run agent C calls the
stop_run() method. At this time, since both agents A and C have removed their requirements
that simulation continue, simulation end condition is satisfied for group 1 and run phase of pro-
gram execution terminates.

16.1.4 Multiple Stop-Run Groups across the Hierarchy

The implementation of the stop-run strategy for the example in figure 16.1 is shown below:

1 <'
2 import si_util/e/si_util_top.e;
3 extend sys {
4 m1: module1 is instance;
5 };
6 unit module1 {
7 group2_srunc: si_util_stop_run_controller;
8 keep group2_srunc.name == "SRUNC GROUP2";
9 group3_srunc: si_util_stop_run_controller,
10 keep group3_ srunc.name == "SRUNC GROUP3";
11
12 agent_F_srunc_if: si_util_stop_run_controller_if;
13 keep agent_F_srunc_if.name == "SRUNC AGENT F";
14 keep agent_F_srunc_if.srunc == group3_srunc;
15
16 m2: module2 is instance;
17 keep m2.group2_srunc == group2_srunc;
18 keep m2.group3_srunc == group3_srunc;
19 m3: module3 is instance;
20 keep m3.group2_srunc == group2_srunc;
21 };
22

285

CHAPTER 16

23 unit module2 {
24 group2_srunc: si_util_stop_run_controller;
25 group3_srunc: si_util_stop_run_controller;
26
27 m4: module4 is instance;
28 keep m4.group2_srunc == group2_srunc;
29
30 agent_C_srunc_if: si_util_stop_run_controller_if;
31 keep agent_C_srunc_if.name == "SRUNC AGENT C";
32 keep agent_C_srunc_if.srunc == group3_srunc;
33 };
34 unit module3 {
35 group1_srunc: si_util_stop_run_controller;
36 keep group1_srunc.name == "SRUNC GROUP1";
37 group2_srunc: si_util_stop_run_controller;
38
39 agent_D_srunc_if: si_util_stop_run_controller_if;
40 keep agent_D_srunc_if.name == "SRUNC AGENT D";
41 keep agent_D_srunc_if.srunc == group2_srunc;
42 agent_E_srunc_if: si_util_stop_run_controller_if;
43 keep agent_E_srunc_if.name == "SRUNC AGENT E";
44 keep agent_E_srunc_if.srunc == group1_srunc;
45 };
46 unit module4 {
47 group2_srunc: si_util_stop_run_controller;
48
49 agent_A_srunc_if: si_util_stop_run_controller_if;
50 keep agent_A_srunc_if.name == "SRUNC AGENT A";
51 keep agent_A_srunc_if.srunc == group2_srunc;
52 agent_B_srunc_if: si_util_stop_run_controller_if;
53 keep agent_B_srunc_if.name == "SRUNC AGENT B";
54 keep agent_B_srunc_if.srunc == group2_srunc;
55 };
56 '>

The following observation can be made about this implementation:

A stop-run interface is instantiated in each unit containing a stop-run agent.
The stop-run controller for each stop-run group is instantiated in the unit that is the
youngest parent of units containing the stop-run agents of that group.
The pointer for each stop-run group instance is passed to lower levels of the hierarchy
by using generation constraints until it is used to constrain the srunc field of a stop-run
interface.

A visual representation of the above implementation is shown in figure 16.3.

16.1.5 Modular Stop-Run Control

The stop-run controller utility provided by the si_util package gives an effective mechanism for
merging the stop-run requirements of multiple modules. Consider the following two indepen-
dently developed modules:

286 The e Hardware Verification Language

si_util Package

1 <'
2 unit module1 {
3 srunc: si_util_stop_run_controoler;
4 srunc_if: si_util_stop_run_controller_if;
5 keep srunc_if.srunc == srunc;
6
7 stop_this_module() is {
8 srunc_if.stop_run();
9 };
10 };
11 unit module2 {
12 srunc: si_util_stop_run_controoler;
13 srunc_if: si_util_stop_run_controller_if;
14 keep srunc_if.srunc == srunc;
15
16 stop_this_module() is {
17 srunc_if.stop_run();
18 };
19 };
20

Now consider an environment built by combining these two modules:

1 <'
2 extend sys {
3 m1: module1 is instance;
4 m2: module2 is instance;
5 };
6 '>

The run execution phase of the above environment will end when either of the two mod-
ules call their corresponding stop_this_module() method. Each module has its own instance of a
stop-run controller which corresponds to different stop-run groups. Since these two stop-run

287

CHAPTER 16

controllers are not related, program execution ends when either of the two modules exist. To
merge the stop-run mechanism for these two modules, the above code can be enhanced as fol-
lows:

1
2
3
4
5
6
7

<‘
extend sys {

global_srunc: si_util_stop_run_controller;
keep m1.srunc == global_srunc;
keep m2.srunc == global_srunc;

};
’>

With the above enhancement, the stop-run groups of the two modules are merged into one
group corresponding to global_srunc. The run execution phase completes only when both mod-
ules have satisfied their exit conditions.

16.2 Memory Package

Memory management in e consists of two packages:

Memory Manager
Sparse Memory Core

The memory manager provides the necessary utilities to manage an e based or HDL based
memory block. This utility provides a mechanism for allocating and de-allocating memory seg-
ments of user-defined size. The sparse memory core models a memory block that can be used
either in combination with the memory manager or independently. These utilities are described
in the next sections.

16.2.1 si_util_mem_mgr Memory Manager

A memory manager is required in any scenario where multiple independent agents use the same
memory block for their specific requirements. The memory manager is also needed in situa-
tions where memory segments of different sizes must be allocated and de-allocated throughout
the simulation runtime. Generally, it is possible to manage a memory block without using a
memory manager by manually partitioning a memory block according to the verification or
system requirements. The difficulty with manual partitioning, however, is that any future
changes in the memory profile would require a complete re-write of the memory partitions.
Using a memory manager eliminates the need for manual partitioning, as well as the need to
redefine partitions every time the system changes. A memory manager can be configured to
randomly place the allocated segments in the memory block, and this leads to better coverage
of system memory access mechanisms.

The following services are provided by a memory manager:

288 The e Hardware Verification Language

si_util Package

Allocates memory segments with a user defined size
Defines the granularity of memory allocation (byte, half-word, word, etc.)
De-allocates (i.e. frees) a previously allocated memory segment to return it to the pool
of available memory locations
Defines reserved memory regions in the memory block so that memory in that region is
not used during allocation
Controls random placement of newly allocated memory segments within the space of
available pool of memory

In general, a memory manager is not directly connected to a memory block. It only pro-
vides a database of reserved and available memory regions, and the mechanisms to reserve
(allocate) and cancel a reserved memory segment (free). The addresses provided by the mem-
ory manager are then used to access either an e based or HDL based memory core.

A memory manager is implemented by instantiating the si_util_mem_mgr struct. Details of
this struct are shown in tables 16.4 and 16.5.

Table 16.4: si_util_mem_mgr struct member

Struct
Member

size

alignment

placement

Type

uint(bits:64)

uint(bits:64)

si_util_mem_placement_style

Valid Range

powers of 2

powers of 2,
less than size

BINARY_BUCKETS
ANYSIZE_BUCKETS

Description

Defines the size of memory core
being managed by this memory man-
ager
Default: 32

Gives the alignment for allocated
memory. This setting implies the
minimum allocated memory seg-
ment size (i.e. the minimum allocated
size for alignment of 2 is 4 bytes).
Default: 1

The names correspond to memory
mangement styles. See section
16.2.1.1 for a description.
Default: BINARY_BUCKETS

Use of memory manager is shown in the example below:

1 <‘
2 unit memory_module {
3 mgr: si_util_mem_mgr;
4 keep mgr.size == 2048;
5 keep mgr.alignment == 4;
6 keep mgr.placement == BINARY_BUCKETS;
7 write_to_memory(addr:uint(bits:64), data:byte) is {
8 -- write to HDL or e based memory
9 };
10 read_from_memory(addr:uint(bits:64)): byte is {

289

CHAPTER 16

Table 16.5: si_util_mem_mgr methods

Method
Name

alloc()

alloc_fixed()

free()

Parameters

size: uint(bits:64)

addr: uint(bits:64)
size: uint(bits:64)

addr: uint(bits:64)

Return
Type

addr: uint(bits:64)

bool

Description

Allocates memory of size passed in as
parameter. Returns the address for the allo-
cated memory segment.

Tries to allocate memory of the given size
starting at location pointer at by addr.
Returns TRUE if successful, FALSE, oth-
erwise.

Returns the allocated memory segment
corresponding to addr to the available
memory pool.

11 -- read data from HDL or e based memory;
12 };
13 memory_access() is {
14 var addr: uint(bits:64) = mem.alloc(48);
15 var data: byte =10;
16 write_to_memory(addr, data);
17 data = read_from_memory(addr);
18 mem.free(addr);
19 };
20 };
21 ’>

16.2.1.1 Memory Segment Placement Style

Memory managers operate by maintaining a list of free and allocated memory ranges. In the
most generic form, a memory manager maintains buckets corresponding to memory ranges of
different sizes. A new memory segment can only be allocated from memory ranges in buckets
whose size is equal or larger than the requested memory size. When an available memory range
is used to allocate a new memory segment, it is removed from its bucket, and the remaining
pieces created by taking away the allocated portion are placed in buckets corresponding to the
size of these new pieces. De-allocating a memory segment corresponds to returning the allo-
cated memory segment to the pool of free memory ranges and merging it with its neighboring
free memory ranges.

Different approaches can be implemented to maintain free buckets and selecting which
free memory range a new memory segment is allocated from. Two memory segment placement
approaches are provided by the si_util_mem_mgr construct:

BINARY_BUCKETS
ANYSIZE_BUCKETS

BINARY_BUCKETS placement style refers to a mechanism where the memory manager
maintains only powers-of-2 bucket sizes (i.e. 1,2,4,8, etc.), and breaks free memory ranges into

290 The e Hardware Verification Language

si_util Package

sizes corresponding to these buckets. For example, if allocating a memory segment of size 8
from an available memory range of 64, it breaks the free memory range into one memory range
of size 32, one of size 16, and 2 of size 8. It then uses a memory range of size 8 to allocate the
requested memory and places the newly created ranges into their corresponding buckets. Also,
for allocating a new memory segment, this placement approach uses only the smallest bucket
that can accommodate the requested memory size. This placement strategy has the following
properties:

It leads to very small memory fragmentation and therefore provides very good memory
utilization.
It is efficient both for allocating and de-allocating memory segments.
Randomization for memory segment placement is limited for the following reasons:

The start of memory segments are aligned with powers-of-2 addresses
Similar size memory segments tend to be grouped in the same memory regions

ANYSIZE_BUCKETS placement style maintains buckets of any size, and selects a free mem-
ory range of any size (i.e. not just the smallest size that can accommodate the requested size)
for allocating a new memory segment. The properties of this placement style are:

It leads quickly to high memory fragmentation so that large memory segments cannot
be allocated because the placement of smaller memory segments are so spread-out.
Memory segment allocation and de-allocation not very efficient because of the method
for selecting a free range during allocation, and merging free ranges during de-alloca-
tion.
Randomization is high as a new memory segment can start at any location in the mem-
ory space as long as the requested size can be accommodated at that starting address.

In general, it is best to use theBINARY_BUCKETS placement style when verifying the mem-
ory segment is not the main focus and memory is used as a utility to support the verification
activity. The ANYSIZE_BUCKETS placement style should be used to focus on verifying the mem-
ory operation or a DMA engine that interacts with a memory core.

16.2.2 si_util_mem Sparse e Memory Core

The si_util package provides a sparse memory core. The si_util_mem construct is used to
instantiate an e based memory. Details of this construct are shown in tables 16.6 and 16.7.

The memory core provided in this package is a sparse memory model. This means that not
all memory locations are physically present in the memory core. Sparse models are useful in
situations where memory cores are very large and physically allocating space for all the mem-
ory space is impractical or inefficient. A sparse memory model introduces overheads in space
and runtime complexity of the memory model. This overhead is directly proportional to the
granularity of this sparsity. For example, granularity of 1 byte indicates that space for each byte
is physically present if that byte is used. Granularity of 16 bytes would indicate that a 16 byte
page of memory is present if any of its bytes are used.

291

CHAPTER 16

Table 16.6: si_util_mem struct members

Struct
Member

size

granularity

qualify_reads

default_value

Type

uint(bits:64)

uint(bits:64)

bool

byte

Valid Range

powers of 2

powers of 2,
less than size

Description

Defines the size of memory core
Default is 32

Specifies the size of sparse-blocks that
store the memory content. Setting to 1
creates a fully sparse memory core.
Setting to size creates a fully instanti-
ated memory core.
Default: 1

If set to TRUE, creates a runtime error
when reading a memory location that
has not been written to.
Default: TRUE

Default value returned when reading
locations that has not been written to.
Default: 0

Table 16.7: si_util_mem_mgr methods

Method
Name

write()

write_list()

read()

read_list()

Parameters

addr: uint(bits:64)
data: byte

addr: uint(bits:64)
data_list: list of byte

addr: uint(bits:64)

addr:uint(bits:64)
size: uint

Return
Type

byte

list of byte

Description

Writes data to the memory location pointed
at by addr.

Writes the list of data bytes to the memory
locations starting at addr.

Returns the byte stored at location addr.

Returns the list of bytes stored at locations
addr to addr+size-1.

The granularity of si_util_mem construct can be configured by constraining the granularity
struct member of its instance. As indicated in table 16.6, constraining this parameter to 1 leads
to a fully sparse memory model, and constraining this parameter to the memory size, leads to a
fully instantiated memory where memory is modeled as one chunk of space. The setting of this
parameter is application dependent. As a guideline, this parameter can be set to the average size
of the memory expected to be allocated in this memory.

The implementation of this memory core is totally independent of the memory manager.
Any byte in this memory can be read or written. The feature allows this memory model to be
used in environments where the memory access addresses are generated in the DUV.

292 The e Hardware Verification Language

The following example shows the use of this memory model along with the memory man-
ager example shown in section 16.2.1.

si_util Package

1 <'
2 extend memory_module {
3 mem: si_util_mem;
4 keep mem.size == 2048;
5 keep mem.granularity ==64;

7 write_to_memory(addr:uint(bits:64),data:byte) is only {
8 mem.write(addr, data);
9
10 read_from_memory(addr:uint(bits:64)):byte is only {
11 result = mem.read(addr);
12 };
13 };
14 '>

16.3 Native e Time Manager

The goal of any simulation environment is to predict a system’s behavior over time. Therefore,
time management is the fundamental requirement of any simulation environment. An e pro-
gram is usually connected to an HDL simulator, therefore time management is by default rele-
gated to the simulation kernel.

Time handling in e when connected to an HDL simulator is summarized as follows:

At any simulation tick, sys.time reflects the time in the HDL simulator.
Predefined delay() method call is used to support a notion of absolute time intervals
(usable only in temporal expressions).
Activity is synchronized to events derived from HDL signals, therefore inheriting the
timing of these HDL signals.

In the absence of an HDL simulator, where every program runtime tick is assumed to rep-
resent a constant passage of time. Program behavior in the absence of an HDL simulator is
summarized as follows:

At any program runtime tick, sys.time reflects the number of ticks since the beginning
of program execution.
A constant time interval is assumed for a sampling period of sys.any event (i.e. time
between occurrences of two sys.any events is assumed to be a constant value).
Clocks of different periods are constructed by counting the number of sys.any events.
The predefined delay() method cannot be used.

Handling time in the absence of an HDL simulator is very inefficient for anything but the
most trivial scenarios. At the root of this inefficiency is the fact that for accurate time represen-
tation, the constant delay assumed for the sampling period of sys.any should be the largest

293

 };

6

CHAPTER 16

common denominator for all time values represented during program runtime. For example,
consider generating two clocks with periods of 997 ns and 1009 ns respectively. These time
values are prime numbers and the largest common denominator for these periods is 1 ns. This
means that in the absence of an HDL simulator, accurate time representation while generating
these two clocks requires that the sampling period for each sys.any event to represent the pas-
sage of 1 ns. This requirement basically leads to a program that can potentially run up to 1000
times slower than a program that handles time values more efficiently.

In addition to the inefficiency, code development and reuse become next to impossible
with the strategy described above. During code development, knowing all time values in
advance will be required for computing the largest common denominator of these time values.
Code reuse also becomes almost impossible because with the addition of any new clock or time
calculation requirement, all time passage assumptions have to be recalculated! One approach to
solving these problems is to assign the smallest possible time passage to a sys.any event. Even
though this approach simplifies time handling, it is impractical as it significantly slows down
the program.

An e program may be used to develop complex environments in the absence of an HDL
simulator. Such situations include the following:

The e language is a powerful modeling language that may be used to model a complete
device or environment. In such cases, native handling of time is a requirement for effec-
tive use of the language.
Often, verification code is developed without attaching to the DUV or an HDL simula-
tor. This approach holds especially true when developing an eVC. An HDL simulator is
attached in the later phases of the development to complete the implementation.

The si_util package provides a time management utility that introduces the notion of time
in the absence of an attached HDL simulator. This package provides the following features:

A notion of time passage when no HDL simulator is attached.
Automatic transition of time handling to the HDL simulator when attached.
Efficient handling of time management through implementation of a time wheel

The time manager provided by the si_util package is automatically instantiated in the glo-
bal name space as si_util_time_mgr and is used mostly to support the implementation of clocks
and other time based data structures as described in section 16.4. This utility also maintains a
parameter called si_util_time in the global name space that holds the current time value as com-
puted by the si_util time manager. The method update_sys_time() is used to indicate to the envi-
ronment whether or not the value of sys.time should be updated with the value of si_util_time.

Under a default setting, sys.time is updated with the value of si_util_time. But since sys.time
maintains the number of runtime ticks in the absence of an attached HDL simulator, and some
legacy codes may depend on this value, it may be necessary to maintain the old behavior for
sys.time. Methods and TCMs provided by the time manager are detailed in table 16.8.

The following program shows an example of using these methods:

294 The e Hardware Verification Language

si_util Package

Table 16.8: global.si_util_time_mgr method and TCMs

Method
Name

update_sys_time()

wait_for()

wait_until()

Parameters

flag: bool

time_interval: time

time_value: time

Sampling
Event

sys.any

sys.any

Description

Indicates if sys.time should mirror the time
value for si_util_time.
Default: YES

A TCM that suspends the calling thread for
time_interval amount of time

A TCM that suspends the calling method
until time_value time.

1 <’
2 extend sys {
3 run() is also {
4 si_util_time_mgr.update_sys_time(TRUE);– TRUE is the default setting
5 start time_consuming_example();
6 };
7
8 time_consuming_example()@sys.any is {
9 si_util_time_mgr.wait_until(10 ps);
10 print si_util_time: -- prints "si_util_time = 10000 "
11 si_util_time_mgr.wait_for(10ns);
12 print si_util_time; -- prints "si_util_time = 10010000"
13 stop_run();
14 };
15 };
16 ‘>

Although this program terminates at time 10.01 ns, it only consumes two runtime ticks.

16.4 Signal Generator

Periodic and aperiodic signal generation is a common requirement in a verification environ-
ment. The si_util package provides predefined constructs that allow signals to be created in a
declarative fashion. The implementation of these signal generation constructs are based on the
time management utility described in section 16.3.

The signal generation facility can generate signals of the following types:

Periodic: is used to implement clocks
Pulse: is used to implement reset and other types of pulses
Edge: is used to implement timers.

295

CHAPTER 16

In addition, a signal management facility is also provided to provide for stopping and
restarting of groups of signals. Examples of such signal groups include clocks that may need to
be stopped during a reset pulse, or timers that need to be restarted after a reset is deactivated.

The signal generation utility provided by the si_util package is based on the following con-
structs:

si_util_signal_mgr
si_util_signal

Details of these constructs are shown in tables 16.9, 16.11, and 16.12. Table 16.13 shows
the struct members for different signal types.

Table 16.9: si_util_signal_mgr methods

Method
Name

stop()

restart()

mask()

Parameters

flag: bool

Return
Type

Description

Stops all activity for signals whose mgr field points
at this signal manager

Restarts all activity for signals whose mgr field
points at this signal manager.

If flag is TRUE, masks all events generated by all
signals whose mgr field points at this signal man-
ager. The signals continue to operate. If flag is
FALSE, then any masking is removed.

Table 16.10: si_util_signal struct members

Struct
Member

type

mgr

Type

si_util_signal_type

si_util_signal_mgr

Valid Range

CLOCK
JITTERED_CLOCK
EDGE
PULSE

powers of 2,
less than size

Description

Is used to indicate the signal types.
Default: CLOCK.

specifies the signal manager that man-
ages this signal.

The program below shows an example using signal generators and signal managers to
selectively control groups of generated signals.

296 The e Hardware Verification Language

1
2
3
4
5

<’
extend sys {

clk_mgr1: si_util_signal_mgr;
clk_mgr2: si_util_signal_mgr;

si_util Package

Table 16.11: si_util_signal events

Event
Name

rise

fall

change

Description

emitted when signal rises

emitted when signal falls

emitted when signal changes

Table 16.12: si_util_signal methods

Method
Name

stop()

restart()

mask()

Parameters

flag: bool

Return
Type Description

Stops all activity for this signal.

Restarts all activity for this signal.

If flag is TRUE, masks all events generated by this
signal. The signal continues to operate. If flag is
FALSE, then any masking is removed.

6 clk1: CLOCK si_util_signal;
7 keepclk1.init_value == 1'b0;
8 keep clk1.lead_time == 6;
9 keep clk1.high_time == 4ns ;
10 keep clk1.low_time == 4ns ;
11 keep clk1.mgr == clk_mgr1;
12
13 clk2: CLOCK si_util_signal;
14 keep clk2.init_value = = 1'b0;
15 keep clk2.lead_time = = 12;
16 keep clk2.high_time == 2ns ;
17 keep clk2.low_time == 2ns ;
18 keep clk2.mgr == clk_mgr2;
19
20 edge1: EDGE si_util_signal;
21 keep edge1.init_value == 1'b0;
22 keep edge1.low_time == 12ns ; -- only low_time is specified since init_val = 0
23 keep edge1.mgr == clk_mgr1;
24
25 edge2: EDGE si_util_signal;
26 keep edge2.init_value == 1'b1 ;
27 keep edge2. high_time == 28ns ; -- only high_time is specified since init_val = 1
28 keep edge2.mgr == clk_mgr2;
29
30 reset_pulse: PULSE si_util_signal;
31 keep reset_pulse.init_value == 1'b0;
32 keep reset_pulse.low_time == 23ns ;
33 keep reset_pulse.high_time == 17ns ;
34
35 event reset_rise is @reset_pulse.rise;
36 event reset_fall is @reset_pulse.fall;

297

CHAPTER 16

Table 16.13: si_util_signal subtype struct members

Signal
Type

EDGE

PULSE

CLOCK

JITTER_CLOCK

Members

init_value

high_time

low_time

init_value

high_time

low_time

init_value

high_time

low_time

lead_time

init_value

high_time

low_time

lead_time

jitter

Member
Type

bit

time

time

bit

time

time

bit

time

time

time

bit

time

time

time

uint [0..99]

Description

Signal value at time 0

Time for signal at value 1 . Only used if init_value is 1

Time for signal at value 0. Only used if init_value is 0.

Signal value at time 0.

Time for signal at value 1 during pulse.

Time for signal at value 0 during pulse.

Signal value at time 0.

Time for signal at value 1.

Time for signal at value 0.

Time during which signal stays at init_value before tog-
gling starts.

Signal value at time 0.

Time for signal at value 1.

Time for signal at value 0.

Time during which signal stays at init_value before tog-
gling starts.

Jittered value defined as a percentage of high_time and
low_time. During each calculation of the next transition
time, high_time and low_time are randomly increased or
decreased by the specified jitter percentage. Jitter does not
apply to lead_time.

37
38 on reset_rise {
39 clk_mgr1.stop();
40 clk_mgr2.mask(TRUE)
41 };
42
43 on reset_fall {
44 clk_mgr1.restart();
45 clk_mgr2.mask(FALSE);
46 };
47 };
48 ‘>

298 The e Hardware Verification Language

si_util Package

Figure 16.4 shows the behavior for the above program. Here, two signal managers are
defined where clk1 and edge1 signals are controlled by clk_mgr1, and clk2 and edge2 are man-
aged by clk_mgr2. Reset signal reset_pulse is generated using a PULSE signal. On the rise of
reset pulse, all signals controlled by clk_mgr1 are stopped (clk1, edge1) and their values are
returned to their initial value. Also at that time, all signals controlled by clk_mgr2 are masked
(clk2, edge2) where even though signals changes occur, no events are generated based on these
transitions. On the falling edge of the reset pulse, all signals controlled by clk_mgr1 are restarted
and the mask for signals controlled by clk_mgr2 is removed so that events are generated as these
signals continue to transition.

16.5 Native e Float Arithmetic Package

The float arithmetic utilities provided in the si_util package are designed to perform floating
point arithmetic operations not inherently supported by e language. This implementation is
compliant with the IEEE 854 standard for floating point arithmetic. The decimal base is used
for performing these floating point operations.

The format for the internal representation of float numbers is given by:

In this representation, sign is either 0 or 1 representing a positive or a negative number
respectively. Coefficient is an integer which is either zero or a positive number. Exponent is a
signed integer. The si_util_floatholder struct is used to represent float numbers.

Arithmetic operations supported by the float package are described in table 16.14. These
methods are a member of global name space and can be called anywhere in ane program.

299

CHAPTER 16

This package also allows the user to configure the context of the floating point operations.
The context is defined by the precision and the rounding mechanisms. These parameters are
explained in detail in the package documentation.

Table 16.14: Float Arithmetic Operations

Method
Name

si_util_string_to_float()

si_util_float_to_string()

si_util_fdiv()

si_util_fmult()

si_util_fsub()

si_util_fadd()

si_util_fpow()

si_util_fmax()

si_util_fmin()

si_util_fdiv_int()

si_util_fremainder()

si_util_fabs()

si_util_minus()

si_util_round_int()

Parameters

A: string

A: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder
B: si_util_floatholder

A: si_util_floatholder

A: si_util_floatholder

A: si_util_floatholder

Return
Type

si_util_floatholder

string

si_util_floatholder

si_util_floatholder

si_util_floatholder

si_util_floatholder

si_util_floatholder

si_util_floatholder

si_util_floatholder

int

si_util_floatholder

si_util_floatholder

si_util_floatholder

int

Description

Creates float number from string.

Creates a string from a float

result = A/B

result = A*B

result = A - B

result = A + B

result = A to the power of B

result = MAX(A, B)

result = MIN(A, B)

return integer part of A/B

return the remainder of A/B

result = absolute value of A

result = -A

round A to the nearest integer

The following program shows an example of using floating point arithmetic:

1 ' <’
2 extend struct {
3 float_operations() is {
4 var f1: si_util_floatholder;
5 var f2: si_util_floatholder;
6 var f3: si_util_floatholder;

300 The e Hardware Verification Language

si_util Package

7
8
9
10
11
12
13
14

16.6 Summary

This chapter presented the si_util package. This package provides utilities that are meant to
enhance the power and usefulness of an e program. The utilities provided in this package at the
time of this writing include mechanisms to coordinate end of runtime across multiple modules,
a memory management and sparse memory core package, a time management and signal gen-
eration utility, and a nativee float arithmetic package.

The utilities provided in si_util are packaged as an eRM compliant reusable component.
This package can be loaded into any environment requiring the utilities provided by this pack-
age without generating any conflicts with other packages in the environment.

301

f1 = si_util_string_to_float(“0.6666666666”);
f2 = si_util_string_to_float(“1.2E+6”);
f3 = si_util fdiv(f2,f1);
print si_util_float_to_string(f3);

};
};
‘>

This page intentionally left blank

PART 7

Appendices

This page intentionally left blank

APPENDIX A e BNF Grammar

Up to date as of Fri Mar 19 2004.

module :=
statement_list

statement_list :=
statements

statements :=
statement

| statements ‘;’ statement

statement :=
| package_statement
| struct_statement
| extend_struct_statement
| type_statement
| extend_type_statement
| routine_statement
| simulator_statement
| unit_statement
| sequence_statement
| method_type_statement
| c_export_statement

package_statement :=
package id

struct_statement :=
package_or_null struct id like_opt ‘{‘ struct_member_list ’}’

like_opt :=
| like id

extend_struct_statement :=
extend struct_type ‘{‘ struct_member_list ‘}’

type_statement :=
package_or_null type id ‘:’ scalar_type

extend_type_statement :=
extend id ‘:’ ‘[‘ enum_item_list ‘]’

routine_statement :=
package_or_null routine id ‘(‘ parameter_list ‘)’ type_opt routine_name_opt

routine_name_opt:=
| is c routine id

last_semi_opt:=
| ‘;’

c_export_ statement :=
c export id c_export_opt

c_export_opt:=
|‘.’ id ‘(‘ ‘)’

package_or_null :=
| package

encap :=
| package
| private
| protected

sequence_statament :=
package_or_null sequence id sequence_opt

sequence_opt:=
| using seq_name_pair_list

306 The e Hardware Verification Language

seq_name_pair_list:=
seq_name_pair

| seq_name_pair_list ‘,’ seq_name_pair

seq_name_pair :=
id ‘=’ struct_type

method_type_statement :=
package_or_null method type id ‘(‘ parameter_list ‘)’ opt_return opt_event

opt_return :=
| ‘:’ type

opt_event :=
| ‘@’ event

struct_member_list :=
struct_members

struct_members :=
struct_member

| more_struct_members struct_member

struct_member :=
| field_declaration
| method_declaration
| subtype_declaration
| constraint_declaration
| coverage_declaration
| temporal_declaration
| simulator_member
| attribute
| cvl_declaration

field_declaration :=
encap id field_type_specifier opt_instance

| encap field_property id field_type_specifier opt_instance

field_property:=
‘!’

| ‘%’
I ‘!’ ‘%’
| ‘%’ ‘!’

field_type_specifier :=
| ‘[‘ expr ‘]’ ‘:’ list_type
I ‘:’ type

307

method_declaration :=
encap method_name ‘(‘ parameter_list ‘)’ type_opt method_specifier action_block

| encap method_name ‘(‘ parameter_list ‘)’ type_opt is empty
| encap method_name ‘(‘ parameter_list ‘)’ type_opt is undefined
| encap method_name ‘(’ parameter_list ‘)’ type_opt is c routine id
| encap method_name ‘(‘ parameter_list ‘)’ type_opt ‘@’ event method_specifier action_block
| encap method_name ‘(‘ parameter_list ‘)’ type_opt ‘@’ event is empty
| encap method_name ‘(‘ parameter_list ‘)’ type_opt ‘@’ evenl is undefined
| encap method_name ‘(‘ parameter_list ‘)’ type_opt method_specifier

foreign_opt dynamic c routine
libname_opt

method_name :=
method_name

method_name :=
method_id

parameter_list :=
| parameters

parameters :=
parameter

| parameters ',' parameter

parameter :=
id

| id ‘:’ type
| id ‘:’ ‘*’ type

type_opt :=
| ‘:’ type

method_specifier :=
member_specifier

| is inline
| is inline only

foreign_opt:=
| foreign

member_specifier :=
is

| is also
| is first
| is only

308 The e Hardware Verification Language

libname_opt:=
| id ‘:’
| id
| id ‘:’ id

subtype_declaration :=
encap when struct_subtype ‘{‘ struct_member_list ‘}’

constraint_declaration :=
keep constraint_spec

list_of_constraint_spec_or_null:=
| list_of_constraint_spec last_semi_opt

list_of_constraint_spec:=
constraint_spec

| list_of_constraint_spec ‘;’ constraint_spec

constraint_spec:=
constraint_expr
 gen before subtypes ‘(‘ field_list ‘)’
 reset gen before subtypes ‘(‘ ‘)’

field_list :=
id

field_list‘,’ id

attribute :=
attribute id id ‘=’ attribute_expr

attribute_expr :=
id

unit_statement :=
package_or_null unit id like_unit_opt ‘{‘ struct_member_list ‘}’

like_unit_opt :=
| like id

opt_instance :=
| is instance

cvl_declaration :=
cvl_method

| cvl_call
| cvl_ callback

309

cvl_method :=
cvl method opt_async method_name ‘(‘ parameter_list ‘)’ opt_event cvl_routine

cvl_call :=
cvl call opt_async method_name ‘(‘ parameter_list ‘)’ opt_event cvl_routine

cvl_callback :=
cvl callback opt_async method_name ‘(‘ parameter_list ‘)’ opt_event cvl_routine

opt_async :=
| async

cvl_routine :=
| is c routine target_struct

target_struct :=
id

| id ‘.’ id

hdl_path :=
‘” hdl_pathname ‘”

simulator_statement :=
simulator_member

| simulator_restricted_member

simulator_member :=
verilog simulator id
vhdl simulator id
verilog task hdl_path ‘(‘ vtask_parameter_list ‘)’
verilog function hdl_path ‘(‘ vfunc_parameters ‘)’ v_size_opt
verilog variable hdl_path options_opt
verilog code expr
vhdl code ‘{‘ verilog_command_list last_semi_opt ‘}’
vhdl procedure hdl_path options_opt
vhdl function ‘” id ‘”options_opt
vhdl driver hdl_path options_opt
vhdl object hdl_path

simulator_restricted_member:=
verilog time verilog_timescale

| vhdl time vhdl_timescale

verilog_command_list :=
verilog_command

| verilog_command_list ‘;’ verilog_command

310 The e Hardware Verification Language

|

|
|
|
|
|
|
|
|
|

verilog_command :=
STRING_LITERAL

vtask_parameter_list :=
| vtask_parameters

vtask_parameters :=
vtask_parameter

| vtask_parameters ‘,’ vtask_parameter

vtask_parameter :=
id ‘:’ expr vtask_parameter_options_opt

vtask_parameter_options_opt :=
| ‘:’ vtask_io

vtask_io :=
in

| id
| inout

vfunc_parameters :=
| vfunc_parameter_list

vfunc_parameter_list :=
vfunc_parameter

| vfunc_parameter_list ‘,’ vfunc_parameter

vfunc_parameter :=
id v_size_opt

v_size_opt :=
| ‘:’ expr

verilog_action:=
force hdl_path ‘=’ force_rhs

| release hdl_path

force_rhs:=
expr

| verilog_literal

verilog_timescale :=
NUMERIC_LITERAL id ‘/’ NUMERIC_LITERAL id

311

vhdl_timescale :=
NUMERIC_LITERAL id

action_block :=
‘{‘ action_list ‘}’

action_list :=
actions

actions :=
action

| actions ‘;’ action

action:=
e_action

e_action :=
| var_action
| assign_action
| conditional_action
| iterative_action
| method_call_action
| start_tcm_action
| compute_action
| return_action
| try_action
| check_action
| gen_action
| emit_action
| time_consuming_action
| print_action
| verilog_action
| debug_action
| dut_error_action
| do_seq_action
| action_block

var_action :=
var id type_opt init_opt

| var id “:=” expr

init_opt :=
| ‘=’ expr

conditional_action :=
break

| continue
| if_action
| case_action

312 The e Hardware Verification Language

if_action :=
if expr then_opt action_block else_part_opt

then_opt :=
| then

else_part_opt :=
| else action_block
| else if_action

case_action :=
case ‘{‘ case_list ’}’

| case binary_expr ‘{‘ case_list ’}’

case_list :=
cases last_semi_opt

cases :=
case

| cases ‘;’ case

case :=
expr colon_opt action_block

| default

colon_opt :=
| ‘:’

default :=
default
colon_opt action_block

iterative_action :=
repeat do_opt action_block until expr

| while expr do_opt action_block
| for id from expr up_down binary_expr step_opt do_opt action_block
| for ‘{’ action ‘;’ expr ‘;’ action’}’ do_opt action_block
| for each iterated_type_opt itemname_opt indexname_opt

in expr do_opt action_block
| for each iterated_type_opt itemname_opt indexname_opt

in reverse expr do_opt action_block
| for each file itemname_opt matching expr do_opt action_block
| for each line itemname_opt in file expr do_opt action_block

up_down :=
to

| down to

313

iterated_type_opt :=
| struct_type
| enumerated_type

itemname_opt :=
| ‘(‘ id ‘)’

indexname_opt :=
| using index ‘(‘ id ‘)’

do_opt :=
| do

step_opt :=
| step expr

try_action :=
try
action_block else_try_opt

else_try_opt :=
| else action_block

check_action :=
check name_opt that_opt expr opt_block dut_error_opt

| assert expr else_error_opt

name_opt :=
| ‘<‘ id ‘>’

that_opt :=
| that

dut_error_opt:=
| else dut_error ‘(‘ argument_list ‘)’ opt_block

dut_error:=
dut error

| dut errorf

else_error_opt :=
| else error ‘(‘ exprs ‘)’

method_call_action :=
method_invocation

| method_port_invocation

314 The e Hardware Verification Language

action_opt:=
action_block

| with_opt

expr_or_default:=
expr

| default

opt_config_param:=
| ‘,’ exprs

compute_action :=
compute expr

return_action :=
return expr_opt

assign_action :=
Ival_expr assign_operator expr

assign_operator :=

“+=”
“-=”

 “*=”
“/=”
“%=”
“<<=”
“>>=”
“&=”
“^=”
“l=”
“and=”
“ or=”
“<=”
 “&&=”
“||=”

gen_action :=
gen reduced_gen_action_item itemname_opt keeping_opt

| gen qualified_id itemname_opt keeping_opt

keeping_opt :=
| keeping ‘{‘ constraint_list ‘}’

print_action :=
print exprs options_opt

315

‘=’|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

do_seq_action:=
do when_qualified_id itemname_opt keeping_opt

debug_action:=
message ‘(‘ argument_list ‘)’ opt_block

| messagef ‘(‘ argument_list ‘)’ opt_block

dut_error_action:=
dut error ‘(‘ argument_list‘)’ opt_block

| dut errorf ‘(‘ argument_list ‘)’ opt_block

opt_block :=
| action_block

when qualified id :=
id

| struct_qualifier when_qualified_id

qualified_id:=
path_id

| struct_qualifier qualified_id

path id :=
id

l id‘[‘ expr ‘]’
| me
| path_id ‘.’ id
| path_id ‘.’ id ‘[‘ expr ’]’
| path_id ‘.’ as_a ‘(‘ type ‘)’

reduced_gen_action_item :=
‘.’ id
| ‘.’ id ‘[‘expr ‘]’
| reduced_gen_action_item ‘.’ id
| reduced_gen_action_item‘.’ id ‘[‘ expr ‘]’
| reduced_gen_action_item ‘.’ as_a ‘(‘ type ‘)’

coverage_declaration :=
cover id opt_cov_field coverage_group_option

coverage_group_option:=
options_opt member_specifier ‘{‘ cover_item_list ‘}’

| is empty
| using also options opt_cover_item_list

cover_item_list :=
| cover_items last_semi_opt

316 The e Hardware Verification Language

opt_cover_item_list :=
| is also ‘{‘ cover_item_list ‘}’

cover_items :=
cover_item

| cover_items ‘;’ cover_item

cover_item :=
item id item_options_opt

| item id ‘:’ type ‘=’ expr options_opt
| transition id item_options_opt
| cross item_name_list item_options_opt

Item_name_list :=
id

| item_name_list ‘,’ id

opt_cov_field:=
| ‘(‘ expr ‘)’

item_options_opt:=
|using options
| using also options

temporal_declaration :=
encap event id event_option

| on id opt_defer do_opt action_block
| encap expect_declaration

opt_defer :=
| ‘$’

event_option:=
| is temporal_expr
| is only temporal_expr

expect_declaration:=
expect id
expect temporal_expr dut_error_opt
expect id expect_specifier temporal_expr dut_error_opt
assume id
assume temporal_expr dut_error_opt
assume id expect_specifier temporal_expr dut_error_opt

expect_specifier:=
is

| is only

317

|
|
|
|
|

emit_action :=
emit event

start_tcm_action :=
| start method_invocation
| start method_port_invocation

time_consuming_action :=
all of action_block

| first of action_block
| wait
| wait until_opt temporal_expr
| sync
| sync temporal_expr
| state machine expr until_state_opt ‘{‘ transition_list ‘}’

until_opt :=
| until

until_state_opt :=
| until id

transition_list :=
last_semi_opt

| transitions last_semi_opt

transitions :=
transition

| transitions ‘;’ transition

transition :=
id “=>” id action_block

| ‘*’ “=>” id action_block
| id action_block

event :=
id

| field_access
| primitive_expr ‘$’

temporal_expr :=
temporal_inclusive_expression

| temporal_expr ‘@’ event

temporal_inclusive_expression :=

| temporal_inclusive_expression “=>” temporal_or_expression

318 The e Hardware Verification Language

temporal_or_expression

temporal_or_expression :=
temporal_and_expression

| temporal_or_expression or temporal_and_expression

temporal_and_expression :=
temporal_exec_expression

| temporal_and_expression and temporal_exec_expression

temporal_exec_expression :=
temporal_sampling_expression

| temporal_sampling_expression exec action_block

temporal_sampling_expression :=
temporal_eventual_expression

| temporal_eventual_expression ‘@’ event

temporal_eventual_expression :=
temporal_repeat_expr

| eventual temporal_repeat_expr
| not temporal_eventual_expression

temporal_repeat_expr :=
temporal_unaryexpr
‘[‘ range ‘]’ temporal_repeat_opt
‘[‘ expr ‘]’ temporal_repeat_opt
‘~’ ‘[‘ range ‘]’ temporal_repeat_opt

temporal_primitive :=
cycle

| detach ‘(‘ temporal_expr ‘)’
| true ‘(‘ expr ‘)’
| rise ‘(‘ expr ‘)’
| fall ‘(‘ expr ‘)’
| change ‘(‘ expr ‘)’
| delay ‘(‘ expr ‘)’
| ‘(‘ temporal_expr ‘)’
| ‘{‘ temporal_sequence last_semi_opt ‘}’
| consume ‘(‘ ‘@’ event ’)’

temporal_sequence :=
temporal_expr

| temporal_sequence ‘;’ temporal_expr

temporal_repeat_opt :=
| ‘*‘ temporal_exec_expression

temporal_unaryexpr :=
temporal_primitive

|‘@’ event
| fail temporal_unaryexpr

319

|
|
|

type :=
non_port_type

| port_type

non_port_type:=
regular_type

| list_type

regular_type :=
scalar_type

| struct_subtype

scalar_type :=
id

| enumerated_type
| scalar_type scalar_modifier

enumerated_type :=
‘{‘ enum_item_list ‘]’

scalar_modifier :=
‘[‘ ranges]‘

| ‘(‘ scalar_unit ‘:’ expr ‘)’
| ‘(‘ scalar_unit ‘:’ ‘*‘ ‘)‘

enum_item_list :=
| enum_items

enum_items :=
enum_item

| enum_items ‘,’ enum_item

enum_item :=
id enum_num_opt

enum_num_opt :=
| ‘=’ expr

scalar_unit :=
bits

| bytes

struct_type :=
id

| struct_subtype

320 The e Hardware Verification Language

struct_subtype :=
struct_qualifier struct_type

struct_qualifier :=
id

| id ‘” id
| FALSE ‘” id
| TRUE ‘” id

list_type :=
list of type

| list ‘(‘ id ‘:’ id ‘)’ of type

port_type :=
io_type simple port of non_port_type

| io_type buffer port of non_port_type
| io_type event port
| serve_client call port of non_port_type
| io_type method port of id

io_type :=
| id
| in
| inout

serve_client :=
id

constraint_expr :=
binary_expr

select :=
select ‘{‘ selection_list last_semi_opt ‘}’

selection_list :=
selection

| selection_list ‘;’ selection

selection :=
expr ‘:’ expr

port_binding :=
bind ‘(‘ expr ‘,’ port_bind_target port_constraint ‘)’

port_bind_target :=
expr

| UNDEFINED

321

port_constraint :=
| ‘,’ ‘{‘ constraint_list ‘}’

Ival_expr :=
id

| field_access
| primitive_expr ‘[‘ range_element ‘]’
| hdl_path
| bit_extract
| bit_concat
| primitive_expr ‘$’

primitive_expr :=
lval_expr

| me
| literal
| ‘(‘ binary_expr ‘)’
|new
| method_invocation
| method_port_invocation
| ‘[‘ ranges ‘]’
| cast
| select
| port_binding

new :=
new

| new struct_type itemname_opt with_opt

with_opt :=
| with action_block

field_access :=
primitive_expr ‘.’ when_field_access

| ‘.’ when_field_access
| when_field_access_pair

when_field_access :=
id

| when_field_access_pair

when_field_access_pair:=
FALSE ‘” id

| TRUE ‘” id
| when_field_access ‘” id

bit_extract :=
primitive_expr ‘[‘ expr_opt ‘:’ expr_opt slice_opt ‘]’

322 The e Hardware Verification Language

slice_opt:=
| ‘:’ scalar_type

bit_concat:=
‘%’ ‘{‘ bit_elements ‘}’

bit_elements :=
expr

| bit_elements ‘,’ expr

method_port_invocation :=
primitive_expr ‘$’ ‘(‘ argument_list ‘)’

method_invocation :=
primitive_expr ‘.’ called_method_name ‘(‘ argument_list ‘)’

| ‘.’ called_method_name ‘(‘ argument_list ‘)’
| id_or_special_method ‘(‘ argument_list ‘)’
| hdl_path ‘(‘ argument_list ‘)’
| all_values ‘(‘ scalar_type ‘)’
| get all units ‘(‘ struct_type ‘)’
| primitive_expr ‘.’ get enclosing unit ‘(‘ struct_type ‘)’
| getenclosing unit ‘(‘ struct_type ‘)’
| primitive_expr ‘.’ try enclosing unit ‘(‘ struct_type ‘)’
| try enclosing unit ‘(‘ struct_type ‘)’
| primitive_expr ‘.’ seq_method ‘(’ type ‘)’ itemname_opt
| ‘.’ seq_method ‘(‘ type ‘)’ itemname_opt
| seq_method ‘(‘ type ‘)’ itemname_opt

called_method_name :=
method_name

id_or_special_method :=
method_id

seq_method:=
in sequence

| in unit

argument_list :=
| exprs

cast :=
primitive_expr ‘.’ as_a ‘(‘ type ‘)’

| ‘.’ as_a ‘(‘ type ‘)’

ranges :=
range_element

| ranges ‘,’ range_element

323

range_element :=
expr

| range

range :=
expr_opt “..” expr_opt

list_elements_or_null:=
| list_elements last_semi_opt

list_elements :=
expr

| list_elements ‘;’ expr

unary_expr :=
primitive_expr

| now ‘@’ event
| ‘{‘ list_elements_or_null ‘}’
| ‘{‘ list_elements_or_null ‘}’ ‘[’ range_element ‘]’
| ‘{‘ list_elements_or_null ‘}’ ‘.’ id ‘(‘ argument_list ‘)’
| unary_operator unary_expr
| primitive_expr unary_post_operator
| Ival_expr time_unit
| literal time_unit
| constraint_for_each_expr
| text_expansion_exp
| “<<“ STRING_LITERAL

unary_operator :=
not

| ‘|’
| ‘&’
| ‘^’
| nor
| nand
| nxor
| ‘+’

| ‘~’
| ‘!’

unary_post_operator :=
is empty

| is not empty

binary_expr :=
boolean_imp_expression

| boolean_imp_expression ‘?’ expr ‘:’ expr

324 The e Hardware Verification Language

| ‘-’

boolean_imp_expression :=
logical_OR_expression

| boolean_imp_expression “=>” logical_OR_expression

logical_OR_expression :=
logical_AND_expression

| logical_OR_expression boolor_operator logical_AND_expression

boolor_operator :=
“||”

| or

logical_AND_expression :=
inclusive_OR_expression

| logical_AND_expression booland_operator inclusive_OR_expression

booland_operator :=
and

| “&&”

inclusive_OR_expression :=
exclusive_OR_expression

| inclusive_OR_expression ‘|’ exclusive_OR_expression

exclusive_OR_expression :=
AND_expression

| exclusive_OR_ expression exclusive_operator AND_expression

exclusive_operator :=
‘^’

| nxor

AND_expression :=
in_expression

| AND_expression ‘&’ in_expression

in_expression :=
match_expression

| in_expression IN_operator match_expression

IN_operator :=
in

| in range
| not in

match_expression :=
relational_expression

| match_expression match_operator relational_expression

325

match_operator :=

| “!~”

relational_expression :=
member_expression

| relational_expression neq_operator relational_rhs
| verilog_literal neq_operator member_expression

relational_rhs:=
member_expression

| verilog_literal

neq_operator :=
“==”

|“!=”
| verilog_operator

verilog_operator :=

| “!==”

member_expression:=
equality_expression

| member_expression is a struct_type
| member_expression is a struct_type ‘(‘ id ‘)’
| member_expression is not a struct_type

equality_expression :=
soft_expression

| equality_expression eq_operator soft_expression

soft_expression :=
shift_expression

| soft shift_expression

eq_operator :=
“<=”

| “>=:”
| ‘<’
| ‘>’

shift_expression :=
additive_expression

| shift_expression shift_operator additive_expression
| gen ‘(‘ gen_item_list ‘)’ before ‘(‘ gen_item_list ‘)’

326 The e Hardware Verification Language

‘~’

“===”

shift_operator :=
“<<”

| “>>”

additive_expression :=
multiplicative_expression

| additive_expression additive_operator multiplicative_expression

additive_operator :=

| ‘+’

multiplicative_expression :=
unary_expr

| multiplicative_expression multiplicative_operator unary_expr

multiplicative_operator :=
‘*’

| ‘/’
| ‘%’
| within

exprs :=
expr

| exprs ‘,’ expr

expr :=
binary_expr

expr_opt :=
| expr

opt_index :=
| Index ‘(’ id ‘)’

opt_prev:=
| prev ‘(’ id ‘)’

constraint_for_each_expr :=
for each itemname_opt in gen_item do_opt

‘{’ constraint_list ‘}’
| for each itemname_opt using opt_index opt_prev in gen_item

do_opt ‘{’ constrain_list ‘}’

gen_item_list :=
gen_item

| gen_item_list ‘,’ gen_item

327

‘-’

gen_item :=
primitive_expr

constraint_list :=
| constraints last_semi_opt

constraints :=
constraint_expr

| constraints ‘;’ constraint_expr

verilog_literal :=
BASED_LITERAL

time_unit:=
hr

| min
| sec
| ms
| us
| ns
| ps
| fs

text_expansion_exp :=
text begin text_list text end

text_list :=
‘(‘ expr ‘)’
| STRING_LITERAL
| text_list‘(’ expr ‘)’
| text_list STRING_LITERAL

options_opt :=
| using options

options :=
option

| options ‘,’ option

option :=
id

| id ‘=’ expr
| when ‘=’ expr
| range_option

range_option :=
ranges ‘=’ ‘{‘ cover_ ranges last_semi_opt ‘}’

cover_ranges :=

328 The e Hardware Verification Language

cover_range
| cover_ranges ‘;’ cover_range

cover_range :=
range ‘(’ ‘[’ ranges ‘]’ optional_range_param ‘)’

| range ‘(’ id optional_range_param ‘)’

optional_range_param :=
|‘,’ exprs

literal :=
STRING_LITERAL
| NUMERIC_LITERAL
| char literal
| TRUE
| FALSE
| NULL
| UNDEF
| MAX_INT
| MIN_INT

id :=
id

329

This page intentionally left blank

APPENDIX B e Reserved Keywords

all of

assert

bit

bytes

compute

cross

default

down to

emit

fail

force

if

int

is empty

All_values

assume

Bits

c export

computed

cvl call

define

Dut_error

event

Fall

from

#ifdef

is

is first

and

Async

bool

case

consume

Cvl callback

delay

each

exec

File

gen

#ifndef

Is a

Is inline

as a

attribute

break

change

continue

cvl method

detach

edges

expect

first of

global

in

is also

is instance

as_a

before

byte

check that

cover

cycle

do

else

extend

for

hdl pathname

index

is c routine

is not a

is not empty

keeping

matching

not

or

range

reverse

soft

string

time

type

var

verilog task

vhdl code

vhdl simulator

within

is only

Key

Me

Not in

others

ranges

Rise

start

sync

To

Uint

verilog code

verilog time

vhdl driver

vhdl time

Is undefined

like

nand

now

pass

release

routine

state machine

sys

transition

unit

verilog function

verilog timescale

vhdl function

when

item

line

new

on

prev

repeat

select

step

that

true

until

verilog import

verilog trace

vhdl procedure

while

keep

list of

nor

only

print

return

session

struct

then

try

using

verilog simulator

verilog variable

vhdl driver

with

332 The e Hardware Verification Language

APPENDIX C

Packaging and Name Space Compliance Checks
Architecture Compliance Checks
Reset Compliance Checks
Checking Compliance Checks
Coverage Compliance Checks
Sequences Compliance Checks
Messaging Compliance Checks
Monitor Compliance Checks
Documentation Compliance Checks
General Deliverables Compliance Checks
Visualization Compliance Checks
End of Test Compliance Checks

eRM Compliance Checks

eRM Compliance checks are defined for different categories. These categories are:

These checks are listed in tables in the following sections.

For each check, RQ=Required, RC=Recommended, and ST=Statistical.

C.1 Packaging and Name Space Compliance Checks

Table C.1: eRM Packaging and Name Space Compliance Checks

Check

Legal package name

Legal directory name

Valid README file

Valid distribution for-
mat

Valid directory struc-
ture

Demo script available

Demo script running

Loading with golden
eVC

Simulator support

Simulator support
documented

Valid file names

Valid type names

Valid ‘define’ name

Type extensions

Top file

Examples documented

Examples docu-
mented - details

Version number

Description

Does the package have a legal package name including company prefix
and a unique intra-company package name?

Is the package directory named consistently with the package name?

Is there a legal PACKAGE_README.txt file at the top level of the pack-
age?

Is the package distributed as package_version_version.tar.gz?

Is the package.s directory structured correctly

Does the package have a demo.sh file to demonstrate the package, located
at the top level of the package?

Does it run

Does the eVC run properly with the golden eVC loaded?

Are the simulators supported by the demo documented in the
PACKAGE _README.txt file?

Are the simulators supported by the package documented in the manual?

Do all source code filenames in the package start with the package name?

Do all type names have a legal package prefix?

Do all .define. names have a legal package prefix?

Do all extensions to types defined outside the package have fields that
start with legal package prefix?

Is the top-level file of the eVC placed in the e subdirectory and called
package_top.e?

Is there a EXAMPLES_README.txt file in the examples directory
detailing the contents?

Are all examples documented?

Does the version number in PACKAGE_README.txt file match the ver-
sion number in the top file?

Type

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

334 The e Hardware Verification Language

Table C.1: eRM Packaging and Name Space Compliance Checks

Check

Tar file

Global extends

Enum extensions

Global extends nam-
ing

Configuration tem-
plate

Package encapsulation

Package name

Multiple packages

Protection

Description

Is the tar file named and organized according to eRM standards?

Are there no extends to sys or global?

If an enum from some other package is extended, do the new values start
with the package prefix?

If sys or global is extended, are the extensions prefixed with the package
prefix?

Are there config templates in the examples directory?

Does all the code of the eRM package belong to one or moree packages
(other than main)?

Does the top file belong to an e package whose name is identical to the
eRM package?

If there is more than one e package, do they all have the same prefix?

How many public and non-public named types and members are there?

Type

RQ

RC

RQ

RQ

RQ

RQ

RQ

RQ

ST

335

C.2 Architecture Compliance Checks

Table C.2: eRM Architecture Compliance Checks

Check

Signal definition

HW access

Instantiation

Monitors

Active agents

BFM

eVC name

Agent names

BFM driving signals

ACTIVE agents with
BFM sequence driv-
ers

BFM Sequence driv-
ers in ACTIVE
agents

Scoreboarding

Description

Are there signals defined (i.e. .sig_. strings)? Are they all within agents and
.env. units?

Is all HW access done via .sig_. strings?

Are all agents instantiated in envs?

Are all monitors in envs or agents?

Do all ACTIVE agents have a BFM in them?

Are all BFMs instantiated in ACTIVE agents?

Does the env have a .name, field?

Do all agents have a .name. field?

Are all DUT signals driven only by BFMs?

Do all ACTIVE agents have a BFM sequence driver?

Are all BFM sequence drivers in ACTIVE agents?

Are hooks provided for scoreboarding?

Type

RC

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RC

C.3 Reset Compliance Checks

Table C.3: eRM Reset Compliance Checks

Check

Reset Support

Reset checks

Multiple resets

Description

Does the package correctly respond to resets (of any length) generated within
the DUT at the start of the test Resets..

Are there sufficient checks to ensure that the DUT behaves correctly after reset
is de-asserted

Does the package manage multiple resets during the test?

Type

RQ

RQ

RQ

336 The e Hardware Verification Language

Table C.3: eRM Reset Compliance Checks

Check

Multiple reset
checks

Programmable resets

Clock generator

Working with DUT
supplied clock

Use of clocks

Description

Are there sufficient specific checks relating to the DUT’s response to asser-
tion/de-assertion of reset?

Does the package provide a mechanism for generating programmable reset(s)
and can this feature be disabled?

Does the package provide a (sufficiently programmable) clock generator?

Does the package work with DUT supplied clock?

Which parts are running on unqualified clock?

Type

RQ

RC

RQ

RQ

ST

337

C.4 Checking Compliance Checks

Table C.4: eRM Checking Compliance Checks

Check

Checks and expects

Protocol checking

DUT error messages

Error messages

DUT errors

Error message docu-
mentation

Scoreboard

Description

How many checks and expects are there?

Does the package provide sufficient DUT checking (e.g. protocol checkers) to
cover all possible DUT errors?

Do all expects and checks have non-default dut_error message?

Do all error messages provide sufficient detail for the user to identify the area
and instance of the package/DUT that produced the error?

How many dut_errors were defined?

Are all checks (both for DUT errors and user errors) sufficiently documented?

Does the package provide (where appropriate) toolkits to enable the user to
code complex data flow checking tasks e.g. does the package provide a score-
board either already integrated‚ or as a generic tool?

Type

ST

RQ

RQ

ST

ST

RQ

RC

C.5 Coverage Compliance Checks

Table C.5: eRM Coverage Compliance Checks

Check

Coverage groups

Coverage items

Coverage crosses

Coverage results

Description

How many coverage groups are defined?

How many coverage items are defined?

How many coverage crosses are defined?

Is the coverage report produced after testing this eVC included in the package?

Type

ST

ST

ST

RQ

338 The e Hardware Verification Language

C.6 Sequences Compliance Checks

Table C.6: eRM Sequences Compliance Checks

Check

Virtual sequence
driver (SD) pointers

Subdrivers

SD statistics

Read/Write methods

Read/Write wrappers

Predefined sequence
types

Error injection

Error injection . vir-
tual fields

Description

Do virtual sequence drivers have pointers to one or more other sequence driv-
ers?

Do all virtual sequence drivers have subdrivers?

How many sequence drivers exist? How many of them are BFM/virtual?

How many sequences have their read()/write() methods extended?

How many sequence drivers implement read()/write() methods?

How many predefined sequence types are provided?

Do the sequence items provide sufficient ability to inject errors into the gener-
ated data stream(s)?

Are virtual fields appropriately employed?

Type

RQ

RC

ST

RC
ST

ST

ST

RQ

RC

C. 7 Messaging Compliance Checks

Table C.7: eRM Messaging Compliance Checks

Check

Loggers

File loggers

Logger instantiation

Message actions

Message tags

Short name and short name
style

Logger constraints

Description

Is there a screen logger in the env and in each agent?

Are there file loggers defined in the package?

Are all message loggers instantiated in env unite‚ agents moni-
tors or in sys?

How many message actions are there? At what verbosity lev-
els are these actions?

How many message TAGs were defined?

Do short_name() and short_name_style() return non-empty
strings?

Are all loggers constrained using only soft constraints?

Type

RQ

RC

RQ

ST

ST

RC

RC

339

C.8 Monitor Compliance Checks

Table C.8: eRM Monitor Compliance Checks

Check

Error extraction

Description

For sequence items that collect output from the DUT‚ is there a sufficient num-
ber of virtual fields provided to indicate formatting errors detected in the data
structure?

Type

ST

Table C.9: eRM Documentation Compliance Checks

Check

Release notes

Documentation

Features and con-
trols

Constrainable fields

Usable fields

Installation and
demo

Package architecture

Examples

Reset

eVC structure

Recommended prac-
tice

Description

Are release notes provided in the docs directory?

Which documentation files exist in the /docs directory (.doc‚ .pdf)?

Does the documentation cover all features and controls?

Does the documentation describe all user-constrainable fields and indicate
when they are generated and what default constraints are applied to them?

Does the documentation describe all non-user-constrainable fields that users
may use to control their constraints?

Does the documentation describe the installation and demo processes?

Does the documentation describe the architecture of the package and give an
overview of its intended use?

Does the documentation give sufficient examples to cover the most likely user
scenarios?

Does the documentation explain whether the package manages multiple resets
during the test?

Are diagrams provided to explain the structure of the eVC? Typical environ-
ments and configurations; how to use scoreboarding; the class diagram of the
main units and structs.

Does the documentation clearly differentiate between what is good and bad
practice when using the package (e.g. which structs should and should not be
extended)?

Type

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

RQ

C. 9 Documentation Compliance Checks

340 The e Hardware Verification Language

Table C.9: eRM Documentation Compliance Checks

Check

Support policies

Documentation for-
mat

Proper documenta-
tion

SD documentation

BFM documented

Description

Does the documentation clearly define the support polices for the package and
indicate contact information for obtaining support?

If the documentation is to be distributed electronically‚ does it clearly print both
on color and B&W printers and on both European A4 and US Letter paper
sizes?

Are concepts introduced before being referred to?

Are all sequence-driver test interfaces sufficiently documented?

Are all BFMs documented (their API and behavior)

Type

RQ

RC

RC

RQ

RQ

341

C.10 General Deliverables Compliance Checks

Table C.10: eRM General Deliverables Compliance Checks

Check

eVC name

Protocol name and
version

New functionality

Customer feedback

Support model

Test plan

Code lines

Description

Name and version number of protocol or architecture the eVC models.

New functionality added since previous release.

Number of customer engagements this eVC has been involved in. Provide
customer quotes or feedback indicating satisfaction level‚ likes and dislikes if
available.

Description of the post sales support model for this eVC. (e.g. on-site sup-
port for 7 days‚ then telephone support).

Test plan for the eVC and/or a description of how this eVC was tested (e.g. 5
tests were written and feedback gathered from 3 beta sites).

How many lines of code are there?

Type

RQ

RQ

RQ

RQ

RQ

RQ

ST

C.11 End of Test Compliance Checks

Table C.11: eRM End of Test Compliance Checks

Check

End of test Future

Description

see section 16.1

Type

342 The e Hardware Verification Language

Index

Symbols B
! 83 base temporal expressions 73‚ 165
$ port reference 93 base temporal operators 173
% 95‚ 122 basic coverage item 100‚ 229
@ unary event temporal operator 173 begin-code 63
@sim 185 BFM 38‚ 40‚ 45‚ 141‚ 145‚ 147‚ 150‚ 155
@x 89 BFM features 39
@z 89 bidirectional constraints 87

black-box verificatio n13
A body() 146‚ 150
abstract data types 24 boolean equivalence constraints 108
abstract ranges 134 boolean non-equivalence constraints 108
accept_message() 195 bus functional model 38
active agents 276‚ 277‚ 336
active VBFM 39 C
all of 75‚ 76‚ 77‚ 154‚ 174‚ 331 change temporal operator 173
and temporal operator 173 check 138‚ 179‚ 183‚ 204
any_env 270‚ 274‚ 275‚ 276 check that 331
any_sequence 143‚ 144‚ 151‚ 152‚ 158 check() 60
any_sequence_driver 143 code segments 63
any_sequence_item 143‚ 151 composite coverage items 236
aspect 55 composite data type 65
aspect-oriented programming 54 composite temporal operators 173
assume 73‚ 170‚ 331 compound constraints 108‚ 111‚ 112
at_least 230‚ 231‚ 236‚ 237‚ 239‚ 259 compound data generation 106
atomic temporal operators 172‚ 173 concurrency 29‚ 71‚ 82

concurrency actions 75

concurrency and processes 71
concurrency and resources 71
concurrency rules in e 77
concurrency support 71
Conditional Field 128
configuration 41‚ 268‚ 340
configuration interface 40
constrained random test based 25
constrained random test based verification 25
constraint evaluation step 109‚ 111‚ 112
constraint reduction step 109‚ 111‚ 112
constraint satisfaction problem 54
constraint set-scalar step 112
coordinated ranges 135
core concern 55
cover construct 227‚ 229
coverage 82
coverage analysi s227‚ 237‚ 245‚ 261
coverage bucket 226‚ 232
coverage bucket hit 226
coverage bucket range 232
coverage data collection 245
coverage data source 251
coverage design 246
coverage development 246
coverage driven verification methodology 27
coverage goal 226
coverage grading 226‚ 236‚ 245‚ 256‚ 258‚

259‚ 261
coverage group 226
coverage group extension 240
coverage group sampling event 100
coverage groups 100‚ 225‚ 227‚ 229‚ 239‚

249‚ 338
coverage hole 226
coverage illegal bucket 232
coverage item 225‚ 226‚ 227‚ 228‚ 229‚ 230‚

231‚ 233‚ 234‚ 235‚ 236‚ 237‚ 238‚
242‚ 246‚ 249‚ 258‚ 338

coverage item extension 240
coverage item range construct 230
coverage model 227‚ 234‚ 242‚ 243‚ 245‚

247‚ 248‚ 250‚ 251‚ 256‚ 257‚ 261
coverage plan 246
coverage sampling event 225‚ 231
CPU verification 37
cross construct 237
cross coverage 237‚ 238‚ 239‚ 241

cross coverage items 100‚ 237
cross item 226
cycle accurate data checking 47

D
data abstraction 42‚ 45‚ 46‚ 82‚ 95
data abstraction translation 130
data checking 36‚ 46‚ 48‚ 82
data collection 45‚ 205
data collector 45
data generation 41‚ 42‚ 118
data generation constraints 134
data generation inconsistencies 125
data modeling conditional field 126
data modeling determinant Fields 123
data modeling using struct 122
data references 58
declarative programming 54
default buckets 235
default ranges 135
delay() 293
detach temporal operator 171‚ 173‚ 18
device under verification 18
directed test based verification

methodology 22
do 130‚ 146‚ 147‚ 150
do_generate() 106
do_item() 150‚ 151‚ 152
do_pack() 130
do_sequence() 150‚ 151
do_test() 61
do_unpack() 96‚ 98‚ 132‚ 133
down() 80
drop_objection() 280
dut_error() 189‚ 203‚ 204
DUV 18
DUV invalid behavior 34
DUV invalid outputs 34
DUV signal coverage 252
DUV valid stimulus 35

E
e programming paradigms 54
e programming steps 61
e Reuse Methodology 267
e Verification Component (eVC) 268
emit 72
end-code 63

344 The e Hardware Verification Language

end-to-end scoreboarding 220
enumerated types 67
environment packages 270
e-port configuration 94
e-ports 93‚ 94‚ 275
eRM 267
erm_active_passive_t 276
eVC 270‚ 276‚ 277
eVC agents 276
eVC architectural requirements 268
eVC environment 276
event_port port type 94
events 72‚ 170
eventually temporal operator 177
exec 172‚ 179
expect 73‚ 170‚ 177
expected transactions 47
extension statements 64

F
fail temporal operator 169‚ 173
finalization phase 60
finalize() 61‚ 256
first of 75‚ 76‚ 77
first-match-variable-repeat temporal

operator 175
fixed-repetition-temporal-operator 73
flat verification sequence 138‚ 142‚ 146
float arithmetic package 279‚ 299
for each 124
force action 89
format_message() 196
functional verification 12
function-based verification view 34

G
garbage collection 116
gen 118‚ 119‚ 120
generate() 106
generated instance of a verification item 138
generation constraints 26‚ 27‚ 28‚ 83‚ 84‚ 261
generation oeder using when block s113
generation order using gen befo re113
generation order using value ()113
generation order using when block s114
generation set-scalar step 109
generation static analysis 115
get_enclosing_unit() 91

get_next_item() 152‚ 153‚ 154
get_unit() 190
global 58‚ 59‚ 228‚ 229‚ 255
goal states 16‚ 32
gray-box verificatio n13

H
HDL path 91
HDL signal 88‚ 92
HDL signal attributes 43
HDL signal coverage 252
HDL signal driving 89
HDL signal monitored 90
HDL signal x value 89
HDL signal z value 89
hdl_path() 91
heterogeneous verification sequence 139
Heterogeneous verification sequences 155
heterogeneous verification sequences 139‚

141‚ 142
hierarchical coverage model 247
hierarchical sequence 147
hierarchical verification sequences 137‚ 138‚

139‚ 140‚ 143‚ 146‚ 147
homogeneous verification sequences 139

I
ignore 230‚ 238‚ 239‚ 240‚ 242‚ 261
ignored coverage Items 261
illegal 230‚ 235‚ 238‚ 239‚ 240‚ 255
illegal Bucket 235
illegal coverage items 261
imperative programming 53
implicit execution order 60
imply 108‚ 114‚ 125‚ 126
imply constraints 108‚ 113
import statement 270
import statements 64‚ 270
in port direction 93
init() 60‚ 117
initialization runtime phase 60
inout port direction 93
internal_body() 149‚ 150
is also 70‚ 240
is empty 70
is first 70
is instance 91
is only 70‚ 71

345

is undefined 70
item_done event 152‚ 154

K
keep 85
keep soft 86

L
layered sequences 137
Lexical Conventions 63
LIBRARY_README.txt 273
like inheritance 143
linear coverage grading 256
lock() 78
locker 78
logical interface 18
logical temporal operators 73
logical view 18
long message output format 193

M
MAIN sequence kind 145‚ 148
max_int_bucket 259
memory manager 288
memory package 279
message action 191
message_logger 194‚ 197
message_tag 192
messagef action 191
methods 66
monitor architecture 199
monitor event extraction 209
monitors 43
multi-dimensional coverage model 247
multistep scoreboarding 220
multi-valued logic 89
mutex problem 78
mutual exclusion 78

N
name 230‚ 237‚ 238‚ 239
no_collect 228‚ 229‚ 242
no_trace 229
none message output format 193
normative statements 34
not temporal operator 176

O
objection mechanism 280
object-oriented programming 54
on 72
on-the-fly generation 87‚ 115‚ 116
or constraints 108
or temporal operator 168‚ 174
others 235
out port direction 93
out() 189‚ 204
outf() 70‚ 189

P
pack action 97
pack() 96‚ 130
pack_options 95‚ 98‚ 130
package configuration settings 277
package directory structure 271
package e-port interface 277
package features 274
package library 270‚ 271‚ 272
package monitor 277
package name 273
package naming conventions 270
package sequence driver 277
package sequence generator 277
package shadowing 273
package title 273
package version 273
PACKAGE_README.txt 273
packages 269
packing 97
packing.high 95‚ 97‚ 132
packing.low 95‚ 130‚ 132
packing.network 95
passive agents 276
per_instance 229‚ 231
physical fields 95‚ 122
physical interface 18
physical leve 118
port-based verification view 33
post_body() 150
post_generate() 60‚ 106‚ 107
post-run result checking phase 60
pre_body() 150
pre_generate() 60‚ 106
pre-run generation 87
pre-run generation phase 60‚ 87‚ 197

346 The e Hardware Verification Language

prev 240‚ 241
proactive agents 276
programming concern 55
programming paradigm 53
protocol analyzers 43
protocol checker activation 204
protocol checkers 43
protocol checking 202
protocol checks 202

Q
qualified threads 75
quit() 177

R
radix 228‚ 230
raise_objection() 280
random generation 24‚ 25‚ 26‚ 27‚ 28‚ 29
RANDOM sequence kind 145‚ 148
random test based verification

methodology 24
range 147
ranges 230‚ 242
rdv_semaphore 79
reactive agents 276
reactive sequences 137
reference model 13‚ 14‚ 36‚ 43‚ 46‚ 47‚ 48
release action 89
release() 78
relocatable verification module 91
rendezvous semaphores 79
reset_soft() 136
result 67
result checking 82
return 67
rise temporal operator 173
root-mean-square coverage grading 257
run() 60‚76‚ 117‚ 149‚ 152‚ 153‚ 171
runtime cycles 75

S
sampling event 73‚ 74‚ 75‚ 76‚ 77‚ 90‚ 165‚

168‚ 228
sampling event missing 186
sampling period 73‚ 74‚ 165
scalar range 68
scalar subtype 68
scalar subtypes 67‚ 68‚ 83

scenario generation 28‚ 41‚ 42
scoreboard configuration 215
scoreboard data checking 220
scoreboard end of simulation check 47
scoreboard ordered matching 47
scoreboard time-out feature 47
scoreboarding memory transactions 48
self-contained verification environment 37
semaphore code region 78
semaphore construct 78
semaphores 78
send_to_bfm() 145‚ 147‚ 153
separation of concerns 55
sequence 145‚ 157
sequence do action 140
sequence driver 276
sequence driver PULL_MODE 152
sequence driver PUSH_MODE 145‚ 152
sequence generator properties 137
sequence statement 148
sequence temporal operator 73‚ 166
setup() 61
short message output format 193
si_util_floatholder 299
si_util_mem 291
si_util_mem_mgr 288
si_util_signal 296
si_util_signal_mgr 296
si_util_stop_run_controller 281
si_util_stop_run_controller_if 281
si_util_time_mgr 294
signal generator 279
signal generator‚ Edge 295
signal generator‚ Periodic 295
signal generator‚ Pulse 295
sim event 90
simple constraints 106‚ 108‚ 111
SIMPLE sequence kind 145‚ 148
simple_port port type 94
simulation abstraction 82
simulation goa 133
simulation result reusability 21
simulation results 21
simulation run phase 60
sparse memory core 288
SPECMAN_PATH 268‚ 272
start 75‚ 77
start_sequence() 149‚ 151‚ 152

347

state machine 25‚ 26
state machine coverage 99‚ 253
state machine coverage groups 100
state machine verification 16
state machine verification space 17‚ 32
stimulus generation 82
stimulus injection 82‚ 94
stop_run() 78‚ 280
stop-run agent 280
stop-run controller 279
stop-run group 280
struct 56‚ 57‚ 59‚ 60‚ 65‚ 143
struct data members 66
struct declaration statement 65
struct instance hierarchy 56‚ 57‚ 59
struct subtype 67‚ 68‚ 82‚ 98
struct/unit declarations 64
subtype determinant struct members 84
sync 73‚ 75‚ 170
synchronization actions 75
sys 58‚ 59‚ 82‚ 87
sys extension 61
sys generation 115
sys message logger 190
sys predefined methods 61
sys pre-generation 115
sys.any 73‚ 91‚ 186
sys.logger 194‚ 196
sys.new_time 91
sys.time 90‚ 293

T
task driven verification methodology 23
TCMs 120
temporal evaluation termination

condition 168
temporal evaluaton success equation 167
temporal expression evaluation 167
temporal expression evaluation model 167
temporal expression reductions 178
temporal expressions 72
temporal operator 73
temporal operators 73‚ 166‚ 167
temporal struct members 203
text 228‚ 229‚ 230‚ 237‚ 239
thread creation 71
thread resume 71
thread scheduler 72

thread suspension 71
thread synchronization 71‚ 165
thread termination 71
threads 71‚ 76‚ 77
tick and thread scheduling 72
tick notation 129
time consuming methods 72‚ 74
time manager 279
transaction collection 205
transaction level data checking 46
transition coverage 242
transition coverage items 100‚ 226‚ 237‚ 238‚

255
transition temporal operators 73‚ 254
true temporal operator 173
true-match-variable-repeat temporal

operator 176
try_next_item() 152‚ 153
type and subtype declaration statements 67
type declarations 64

U
ungradeable coverage items 259
unidirectional constraints 87‚ 109
unit 91‚ 143
unpack() 98‚ 131‚ 132‚ 133
up() 80
user data struct hierarchy 61
using also 240
utility packages 270

V
value() 114‚ 115
VBFM 36‚ 37‚ 38‚ 39‚ 40‚ 41‚ 42
VBFM configuration interface 40
VBFM configuration parameters 41
VBFM configuration settings 38
VBFM error injection 38
VBFM status interface 40
VE 18
verification benc h18
verification bus functional models 36‚ 38
verification code reuse 267‚ 278
verification completeness 15‚ 20
verification effectiveness 20
verification efficiency 15
verification environment 18
verification environment architecture 35‚ 36

348 The e Hardware Verification Language

verification environment configuration 41
verification environment initialization 41
verification environment reusability 20
verification granularity 19
verification item 18‚ 138
verification item driver 139
verification plan 18‚ 32
verification productivity 15‚ 19
verification quality 18
verification reusability 15
verification scenario 18‚ 32‚ 138
verification suite 18
verification views 33
verilog variable 89
vhdl driver 89
virtual BFM 155
virtual driver implementation 156
virtual fields 95‚ 122
virtual verification sequence 139
VS 18

W
wait 73‚ 75‚ 166‚ 170‚ 185‚ 187
weight 228‚ 229‚ 230‚ 238‚ 239‚ 258
when 114‚ 123‚ 228‚ 229‚ 230‚ 237‚ 238‚ 239‚

240‚ 242
white-box verification 13

Y
yield temporal operator 177

349 The e Hardware Verification Language

	Cover
	Table of Contents
	CHAPTER 1 Introduction
	CHAPTER 2 Verification Methodologies
	CHAPTER 3 Anatomy of a Verification Environment
	CHAPTER 4 e as a Programming Language
	CHAPTER 5 e as a Verification Language
	CHAPTER 6 Generator Operation
	CHAPTER 7 Data Modeling and Stimulus Generation
	CHAPTER 8 Sequence Generation
	CHAPTER 9 Temporal Expressions
	CHAPTER 10 Messages
	CHAPTER 11 Collectors and Monitors
	CHAPTER 12 Scoreboarding
	CHAPTER 13 Coverage Engine
	CHAPTER 14 Coverage Modeling
	CHAPTER 15 e Reuse Methodology
	CHAPTER 16 si_util Package
	Appendices
	Index

