
Lecture Notes in Computer Science 1974
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Sanjiv Kapoor Sanjiva Prasad (Eds.)

FST TCS 2000:
Foundations of
Software Technology
and Theoretical
Computer Science

20th Conference
New Delhi, India, December 13-15, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Sanjiv Kapoor
Sanjiva Prasad
Indian Institute of Technology, Delhi
Department of Computer Science and Engineering
Hauz Khas, New Delhi 110016, India
E-mail:{skapoor/sprasad}@cse.iitd.ernet.in

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

FST TCS 2000: Foundations of software technology and theoretical
computer science : 20th conference ; proceedings, New Delhi, India,
December 13 - 15, 2000. Sanijv Kapoor ; Sanijva Prasad (ed.). – Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;
Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1974)
ISBN 3-540-41413-4

CR Subject Classification (1998): F.3, D.3, F.4, F.2, F.1, G.2

ISSN 0302-9743
ISBN 3-540-41413-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN 10781381 06/3142 5 4 3 2 1 0

Preface

The Foundations of Software Technology and Theoretical Computer Science con-
ference (FST TCS) is a well-established annual event in the theoretical computer
science community. The conference provides a forum for researchers to present
interesting new results in several areas of theoretical computer science. The con-
ference is now in its twentieth year and has continued to attract high-quality
submissions and reputed invited speakers.

This year’s conference attracted 141 submissions (of which 5 were withdrawn)
from over 25 countries. Each submission was reviewed by at least three referees,
with most receiving more than four reviews. The Program Committee met in
New Delhi on 5 and 6 August 2000, with many members participating electron-
ically over the Internet. The discussions continued over the Internet for several
days and we finally selected 36 papers for presentation at the conference and
inclusion in the proceedings. We thank the Program Committee for their su-
perlative efforts in finding top quality reviewers and working extremely hard to
ensure the quality of the conference. We also thank all our reviewers for provid-
ing detailed and informative feedback about the papers. Rich Gerber’s START
program greatly simplified managing the submissions and the PC work.

We are grateful to our six invited speakers, Peter Buneman, Bernard Chazelle,
Allen Emerson, Martin Grötschel, José Meseguer, and Philip Wadler for agree-
ing to speak at the conference and for providing written contributions that are
included in the proceedings.

With the main conference this year, there are two satellite workshops — on
Recent Advances in Programming Languages and on Computational Geometry.

FST TCS is being hosted this year by the Indian Institute of Technology,
Delhi, after a hiatus of eight years. We thank the Organizing Committee for
their efforts and several others who have been generous with their time and
energy in assisting us — Mohammed Sarwat, Kunal Talwar, Surender Baswana,
Rohit Khandekar, and Harsh Nanda, in particular.

We express our gratitude for the financial and other support from the various
sponsors, IBM India Research Laboratory, New Delhi, in particular. We also
thank TCS (TRDDC), Tata Infotech, Silicon Automation Systems, Cadence
Design Systems, IIT Delhi, and others.

We also thank the staff at Springer-Verlag, especially Alfred Hofmann, for
making the production of these proceedings flow very smoothly.

December 2000 Sanjiv Kapoor
Sanjiva Prasad

Organization

FST TCS 2000 is organized by the Department of Computer Science, IIT Delhi,
under the aegis of the Indian Association for Research in Computer Science
(IARCS).

Program Committee

Pankaj Agarwal (Duke)
Manindra Agrawal (IIT, Kanpur)
Tetsuo Asano (JAIST)
Vijay Chandru (IISc, Bangalore)
Rance Cleaveland (Stony Brook)
Anuj Dawar (Cambridge)
Sampath Kannan (U Penn)
Sanjiv Kapoor (IIT, Delhi) (Co-chair)
Kamal Lodaya (IMSc, Chennai)
Madhavan Mukund (CMI, Chennai)
Gopalan Nadathur (Minnesota)
Seffi Naor (Bell Labs and Technion)
Tobias Nipkow (TU Munich)
Luke Ong (Oxford)
C. Pandu Rangan (IIT, Chennai)
Paritosh Pandya (TIFR)
Benjamin Pierce (U Penn)
Sanjiva Prasad (IIT, Delhi) (Co-chair)
Sridhar Rajagopalan (IBM, Almaden)
Abhiram Ranade (IIT, Bombay)
Dave Sands (Chalmers)
A. Prasad Sistla (U Illinois, Chicago)
Michiel Smid (Magdeburg)
Mandayam K. Srivas (SRI)

Organizing Committee

Sandeep Sen (IIT, Delhi) (Chair)
Naveen Garg (IIT, Delhi) (Treasurer)
S.N. Maheshwari (IIT, Delhi)

VIII Organization

Referees

Mark Aagaard
Parosh Abdulla
Andreas Abel
Luca Aceto
Bharat Adsul
Salvador Lucas Alba
Eric Allender
Rajeev Alur
Roberto Amadio
Henrik R. Andersen
Andre Arnold
Anish Arora
S. Arun-Kumar
Amitabha Bagchi
Paolo Baldan
Chitta Baral
Franco Barbanera
Adi Ben-Israel
Stefan Berghofer
Karen Bernstein Jeffrey
Pushpak Bhattacharya
Ingrid Biehl
Somenath Biswas
Marcello Bonsangue
V. S. Borkar
E. Boros
Ahmed Bouajjani
Julian Bradfield
Roberto Bruni
Didier Caucal
Supratik Chakraborty
Manuel Chakravarty
Bernadette Charron
Andrea Corradini
Flavio Corradini
Jean-Michel Couvreur
Mary Cryan
Geir Dahl
Mads Dam
Vincent Danos
Alex Dekhtyar
Rocco De Nicola
Deepak Dhar
Catalin Dima

Juergen Dingel
Gilles Dowek
Deepak D’Souza
Phan Minh Dung
Bruno Dutertre
Sandro Etalle
Leonidas Fegaras
Sandor Fekete
Amy Felty
Gerard Ferrand
Rudolf Fleischer
Wan Fokkink
Phyllis Frankl
Lars-Ake Fredlund
Ari Freund
Daniel Fridlender
Jan Friso Groote
Philippa Gardner
Naveen Garg
Paul Gastin
Simon Gay
Yael Gertner
F. Geurts
Neil Ghani
John Glauert
Ganesh Gopalakrishnan
Andy Gordon
R. Govindarajan
Bernd Grobauer
Gopal Gupta
Peter Habermehl
Thomas Hallgren
Mikael Hammar
Ramesh Hariharan
Tero Harju
James Harland
Sariel Har-Peled
Reinhold Heckmann
Nevin Heintze
Fergus Henderson
Rolf Hennicker
Jesper G. Henriksen
Andreas Herzig
Michael Hicks

Pat Hill
Yoram Hirshfeld
Joshua Hodas
Haruo Hosoya
Alan Hu
Michaela Huhn
Graham Hutton
Costas Iliopoulos
Anna Ingolfsdottir
Mathew Jacob
Radha Jagadeesan
R. Jagannathan
David Janin
Alan Jeffrey
Thierry Jeron
Somesh Jha
Felix Joachimski
Bengt Jonsson
Charanjit Jutla
Kyriakos Kalorkoti
Ravi Kannan
Deepak Kapur
S. Sathya Keerthi
Ravindra Keskar
Sanjeev Khanna
Moonjoo Kim
Kamala Kirthivasan
Barbara König
Jochen Konemann
Goran Konjevod
Guy Kortsarz
Marc van Kreveld
Ajay Kshemakalyani
Herbert Kuchen
V. S. Anil Kumar
K. Narayan Kumar
S. Ravi Kumar
Vijay Kumar
Orna Kupferman
Jim Laird
Charles Lakos
Leslie Lamport
Cosimo Laneve
Kung-Kiu Lau

Organization IX

Bill Leal
Xavier Leroy
Christos Levcopoulos
Jean-Jacques Levy
Patrick Lincoln
C. E. Veni Madhavan
P. Madhusudan
Meena Mahajan
Anil Maheshwari
Jean-Yves Marion
Narciso Mart-Oliet
John Matthews
Guy McCusker
B. Meenakshi
Ron van der Meyden
Adam Meyerson
Tiusanen Mikko
Jon Millen
Dale Miller
Swarup Mohalik
Faron Moller
Remi Morin
Ben Moszkowski
Shin-Cheng Mu
Supratik Mukhopadhyay
Ketan Mulmuley
Andrzej Murawski
Anca Muscholl
Alan Mycroft
Lee Naish
Kedar Namjoshi
Y. Narahari
Giri Narasimhan
Tom Newcomb
Joachim Niehren
Martin Odersky
David von Oheimb
Atsushi Ohori
Friedrich Otto
Linda Pagli
Catuscia Palamidessi
Prakash Panangaden
Marina Papatriantafilou
Michel Parigot
Lawrence C. Paulson

Francois Pessaux
Antoine Petit
Ion Petre
Frank Pfenning
Jean-Eric Pin
Amir Pnueli
Bernard Pope
Ernesto Posse
K. V. S. Prasad
T. K. Prasad
Femke van Raamsdonk
J. Radhakrishnan
N. Raja
Sriram Rajamani
C. R. Ramakrishnan
Rajeev Raman
R. Ramanujam
K. Rangarajan
S. Srinivasa Rao
Julian Rathke
Laurent Regnier
Jakob Rehof
M. Rodriguez-Artalejo
W.-P. de Roever
Suman Roy
Abhik Roychoudhury
Oliver Ruething
Jan Rutten
Mark Ryan
Peter Ryan
Andrei Sabelfeld
Thomas Santen
A. Sanyal
Andre Schiper
Thomas Schreiber
Friedrich Schroeer
Nicole Schweikardt
Jonathan P. Seldin
Peter Selinger
Sandeep Sen
Sanjit Seshia
Anil Seth
Peter Sewell
J. Shahabuddin
Natarajan Shankar

Priti Shankar
Anil Shende
Bruce Shepherd
Rajeev Shorey
Amir Shpilka
R. K. Shyamasundar
Joseph Sifakis
Robert de Simone
Arindama Singh
Gurdip Singh
D. Sivakumar
G. Sivakumar
Milind Sohoni
Oleg Sokolsky
S. Sridharan
Y. N. Srikant
Aravind Srinivasan
Mark-Oliver Stehr
Andrew Stevens
Charles Stewart
Colin Stirling
Chris Stone
K. G. Subramaninan
K. V. Subrahmanyam
V. R. Sule
Eijiro Sumii
S. P. Suresh
Carolyn Talcott
Prasad Tetali
Hendrik Tews
Denis Therien
P. S. Thiagarajan
Hayo Thielecke
Henk van Tilborg
Mikko Tiusanen
Philippas Tsigas
John Tucker
Frits Vaandrager
Kasturi Varadarajan
Moshe Vardi
Vasco T. Vasconcelos
Helmut Veith
Santosh Vempala
S. Venkatesh
R. Venugopal

X Organization

Oleg Verbitsky
V. Vinay
Sundar Vishwanathan
Mahesh Viswanathan
Walter Vogler

Igor Walukiewicz
Pascal Weil
Herbert Wiklicky
Thomas Wilke
Harro Wimmel

James Worrell
Eric van Wyk
Kwangkeun Yi
Clement Yu
Shiyu Zhou

Table of Contents

Invited Presentations

Model Checking: Theory into Practice . 1
E. Allen Emerson

An Algebra for XML Query . 11
Mary Fernandez, Jerome Simeon, and Philip Wadler

Irregularities of Distribution, Derandomization, and Complexity Theory . . 46
Bernard Chazelle

Rewriting Logic as a Metalogical Framework . 55
David Basin, Manuel Clavel, and José Meseguer

Frequency Assignment in Mobile Phone Systems . 81
Martin Grötschel

Data Provenance: Some Basic Issues . 87
Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan

Contributions

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a
Network and Its Connections with Principal Partition 94

Sachin B. Patkar and H. Narayanan

On-Line Edge-Coloring with a Fixed Number of Colors 106
Lene Monrad Favrholdt and Morten Nyhave Nielsen

On Approximability of the Independent/Connected Edge Dominating
Set Problems . 117

Toshihiro Fujito

Model Checking CTL Properties of Pushdown Systems 127
Igor Walukiewicz

A Decidable Dense Branching-Time Temporal Logic 139
Salvatore La Torre and Margherita Napoli

Fair Equivalence Relations . 151
Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

Arithmetic Circuits and Polynomial Replacement Systems 164
Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

XII Table of Contents

Depth-3 Arithmetic Circuits for S2
n(X) and Extensions of the

Graham-Pollack Theorem . 176
Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

The Bounded Weak Monadic Quantifier Alternation Hierarchy of
Equational Graphs Is Infinite . 188

Olivier Ly

Combining Semantics with Non-standard Interpreter Hierarchies 201
Sergei Abramov and Robert Glück

Using Modes to Ensure Subject Reduction for Typed Logic Programs
with Subtyping . 214

Jan–Georg Smaus, François Fages, and Pierre Deransart

Dynamically Ordered Probabilistic Choice Logic Programming 227
Marina De Vos and Dirk Vermeir

Coordinatized Kernels and Catalytic Reductions: An Improved FPT
Algorithm for Max Leaf Spanning Tree and Other Problems 240

Michael R. Fellows, Catherine McCartin, Frances A. Rosamond,
and Ulrike Stege

Planar Graph Blocking for External Searching . 252
Surender Baswana and Sandeep Sen

A Complete Fragment of Higher-Order Duration µ-Calculus 264
Dimitar P. Guelev

A Complete Axiomatisation for Timed Automata . 277
Huimin Lin and Wang Yi

Text Sparsification via Local Maxima . 290
Pilu Crescenzi, Alberto Del Lungo, Roberto Grossi, Elena Lodi,
Linda Pagli, and Gianluca Rossi

Approximate Swapped Matching . 302
Amihood Amir, Moshe Lewenstein, and Ely Porat

A Semantic Theory for Heterogeneous System Design 312
Rance Cleaveland and Gerald Lüttgen

Formal Verification of the Ricart-Agrawala Algorithm 325
Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

On Distribution-Specific Learning with Membership Queries versus
Pseudorandom Generation . 336

Johannes Köbler and Wolfgang Lindner

Table of Contents XIII

Θp
2-Completeness: A Classical Approach for New Results 348

Holger Spakowski and Jörg Vogel

Is the Standard Proof System for SAT P-Optimal? . 361
Johannes Köbler and Jochen Messner

A General Framework for Types in Graph Rewriting 373
Barbara König

The Ground Congruence for Chi Calculus . 385
Yuxi Fu and Zhenrong Yang

Inheritance in the Join Calculus . 397
Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

Approximation Algorithms for Bandwidth and Storage Allocation
Problems under Real Time Constraints . 409

Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

Dynamic Spectrum Allocation: The Impotency of Duration Notification . . . 421
Bala Kalyanasundaram and Kirk Pruhs

The Fine Structure of Game Lambda Models . 429
Pietro Di Gianantonio and Gianluca Franco

Strong Normalization of Second Order Symmetric λ-Calculus 442
Michel Parigot

Scheduling to Minimize the Average Completion Time of Dedicated
Tasks . 454

Foto Afrati, Evripidis Bampis, Aleksei V. Fishkin, Klaus Jansen,
and Claire Kenyon

Hunting for Functionally Analogous Genes . 465
Michael T. Hallett and Jens Lagergren

Keeping Track of the Latest Gossip in Shared Memory Systems 477
Bharat Adsul, Aranyak Mehta, and Milind Sohoni

Concurrent Knowledge and Logical Clock Abstractions 489
Ajay D. Kshemkalyani

Decidable Hierarchies of Starfree Languages . 503
Christian Glaßer and Heinz Schmitz

Prefix Languages of Church-Rosser Languages . 516
Jens R. Woinowski

Author Index . 531

Model Checking:

Theory into Practice

E. Allen Emerson�

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas at Austin, Austin TX-78712, USA

emerson@cs.utexas.edu

http://www.cs.utexas.edu/users/emerson/

Abstract. Model checking is an automatic method for verifying correct-
ness of reactive programs. Originally proposed as part of the disserta-
tion work of the author, model checking is based on efficient algorithms
searching for the presence or absence of temporal patterns. In fact, model
checking rests on a theoretical foundation of basic principles from modal
logic, lattice theory, as well as automata theory that permits program
reasoning to be completely automated in principle and highly automated
in practice. Because of this automation, the practice of model checking
is nowadays well-developed, and the range of successful applications is
growing. Model checking is used by most major hardware manufactur-
ers to verify microprocessor circuits, while there have been promising
advances in its use in software verification as well. The key obstacle to
applicability of model checking is, of course, the state explosion problem.
This paper discusses part of our ongoing research program to limit state
explosion. The relation of theory to practice is also discussed.

1 Introduction

There is a chronic need for more effective methods of constructing correct and
reliable computer software as well as hardware. This need is especially press-
ing for concurrent, distributed, real-time, or, more generally, reactive systems,
which can exhibit, unpredictably, any one of an immense set of possible ongoing,
ideally infinite, behaviors. Many safety critical and economically essential real-
world applications are reactive systems. Examples include: computer operating
systems, computer network communication protocols, on-board avionics control
systems, microprocessors, and even the internet.

The traditional approach to program verification involves the use of axioms,
and inference rules, together with hand proofs of correctness. Because of the in-
herent difficulty and sheer tediousness of manual proof construction, this manual,
proof-theoretic strategy has, by-and-large, fallen from favor. While this approach
has introduced fundamental principles such as coherent design and compositional
proofs, the evidence suggests that it does not scale to real systems.
� This work was supported in part by NSF grant CCR-980-4736 and TARP project
003658-0650-1999.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 1–10, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 E. Allen Emerson

We have developed an alternative model-theoretic strategy for program rea-
soning (cf. [7]). The informal motivation is that, while manual proofs are not
feasible, it ought to be possible to devise fully automated design and reason-
ing methods using the basic model theory of modal temporal logic. Temporal
logic, a tensed form of modal logic, has been shown to provide a most useful
approach to specifying and reasoning about the complex and ongoing behavior
reactive systems [27]. The linear temporal logic LTL provides modalities corre-
sponding to natural language tenses such as Fp (eventually p), Gp (henceforth
p), Xp (nexttime p), and pUq (eventually q and p until then) that are well-suited
to describing ongoing behavior along a (discrete) timeline corresponding to an
execution sequence of a reactive program. Additional expressiveness is gained
through use of the path quantifiers A (for all futures) and E (for some future)
in the branching time logics CTL and CTL* (cf. [9]).

The automation of model-theoretic reasoning is permitted by the fact that
core decision problems for temporal and classical modal logic are decidable. This
provides a means, in principle, of letting programs reason about programs. Thus,
it is significant that the following key problems associated with (propositional)
temporal logic are decidable, in some cases efficiently. First, there is the sat-
isfiability problem: given temporal logic specification f , does it have a model
M? Second, there is the model checking problem: Is candidate Kripke structure
model M a genuine model of temporal specification f?. Satisfiability asks if f is
realizable in some model, and is useful in automatic program synthesis. Model
checking decides if f is true in a particular model, and caters for automatic
program verification.

We introduced model checking as an algorithmic method of verifying cor-
rectness of finite state reactive programs [7] (cf. [4], [6], [30]). Model checking
has turned out to be one of the more useful approaches to verification of reac-
tive systems, encompassing not only finite state but some finitely represented,
infinite state systems as well. Our original approach is based on fixpoint compu-
tation algorithms to efficiently determine if a given finite state transition graph
defines a model of correctness specification given in the temporal logic CTL.
An advantage of this algorithmic approach is that it caters for both verification
and debugging. The latter is particularly valuable in the early stages of systems
development when errors predominate and is widely used in industrial applica-
tions. Symbolic model checking, which equals our original fixpoint based model
checking algorithm plus the data structures for symbolic state graph represen-
tation using binary decision diagrams [3] (cf. [24]), is now a standard industrial
tool for hardware verification.

The remainder of the paper is organized as follows. In section 2 we describe
some recent technical advances in limiting state explosion. In section 3 we discuss
factors relevant to the transition of model checking from theory into practice.
Some closing remarks are given in section 4.

Model Checking: Theory into Practice 3

2 Limiting State Explosion

The most common calls from industrial users of formal verification tools are for
(a) increased capacity of the tool to handle really large programs/designs, and
for (b) increased automation. Model checking is especially popular in industrial
usage because it is fully automated in principle. However, model checking’s ca-
pacity is still limited. Model checking’s capacity and utility are limited primarily
by space complexity, and secondarily by time complexity. It is important that
(the representation of) the state graph of the program being verified fit within
the main memory of the computer on which the model checking tool is running,
so as to avoid the slow down of many orders of magnitude which occurs when
paging to disk. Of course, the underlying theoretical vexation is the well-known
problem of combinatorial state explosion: e.g., if each sequential process of a par-
allel system has just 10 local states, a system with 1000 processes, could have
as many as 101000 global system states. A better handle on state explosion is
essential to increasing the capacity of model checking tools. Thus, a good deal of
effort has been devoted to limiting state explosion and making model checking
more space efficient.

The technique of abstraction is central to the effective management of state
explosion. In general terms, abstraction means the replacement of an intractably
large system by a much smaller, abstract system through suppression of inessen-
tial detail and elimination of redundant information. The abstracted system
should still preserve relevant information about the original system, and a de-
sirable attribute is that the abstracted system should be equivalent in some
appropriate sense to the original system. In the sequel, we will describe some of
our work on abstraction utilizing the regularity of structure present in many re-
active systems composed of multiple similar subcomponents, and mention some
related open problems.

2.1 Symmetry

Symmetry Quotient Reduction. One useful approach to abstraction exploits the
symmetry inherent in many concurrent systems composed of multiple inter-
changeable subprocesses or subcomponents. Using symmetry we have been able
to verify a resource controller system with 150 processes and about 1047 states
in roughly an hour on a Sparc. We developed a “group-theoretic” approach to
symmetry reduction in [14]. The global state transition graph M of such sys-
tems often exhibits a great deal of symmetry, characterized by the the group of
graph automorphisms of M . The basic idea is to reduce model checking over the
original, intractably large structure M to model checking over the smaller quo-
tient structure M , where symmetric states are identified. The quotient graph
can be exponentially smaller. Technically, let G be any group contained in
Aut M ∩ Auto f , where Aut M is the group of permutations of process in-
dices defining automorphisms of M and Auto f is the group of permutations
that leave f and crucial subformulas thereof invariant. We define an equivalence
relation on states of M so that s ≡G t iff t = π(s) for some permutation π ∈ G.

4 E. Allen Emerson

The quotient M is obtained by identifying states that are ≡G-equivalent. Then,
because G respects both the symmetry of the structure M and the (“internal”)
symmetry of the CTL* specification formula f , we can show M, s |= f iff
M, s̄ |= f , where s̄ represents the equivalence class [s] of states symmetric to
s. Since it turns out, in many practical cases, to be both easy and efficient to
construct the quotient, we have reduced the problem of model checking CTL*
properties over an intractably large structure to model checking over a relatively
small structure, with the proviso that the symmetry of the structure is appro-
priately respected by the specification. Other work on symmetry may be found
in, e.g., [21], [19], [5].

Annotated Symmetry Quotient Reductions. One can also “trade group theory
for automata theory”. In [15] we introduced a powerful alternative method. This
method is also more uniform in that it permits use of a single annotated quotient
M = M/Aut M for model checking for any specification f , without computing
and intersecting with Auto f . The idea is to augment the quotient with “guides”,
indicating how coordinates are permuted from one state to the next in the quo-
tient. An automaton for f designed to run over paths through M , can be modified
into another automaton run over M using the guides to keep track of shifting co-
ordinates. This automata-theoretic method is much more more expressive than
the purely “group-theoretic approach” above. In particular, we can show that
the automata-theoretic approach makes it possible to efficiently handle reasoning
under fairness assumption, unlike the purely “group-theoretic” approach above.
Another augmented “model-theoretic” approach is introduced in [16], accom-
modating both fairness and discrete real-time in the uniform framework of the
Mu-calculus.

Open problems related to quotient symmetry reduction. Despite the expres-
sive power of annotated symmetry quotient reduction, efficiently handling of
general specifications in which all process indices participate along a path still
seems a difficult one. It would be interesting, and useful for hardware verifi-
cation, to see if the work on fair scheduling (e.g., GF ex 1 ∧ . . .GF exn) could
be adapted to efficiently handle, e.g., the tighter requirement of round-robin
scheduling ((ex 1; ex 2; . . . exn)ω)) of an otherwise fully symmetric system. Such
a composite seems to possess only cyclic symmetry, thereby limiting compres-
sion.

Simple Symmetry. Another important type of syntactic reasoning based on
symmetry we call simple symmetry (originally dubbed state symmetry in [14]).
It simplifies reasoning based on the symmetry of the specification, the structure,
and individual states, and does not entail calculating a quotient structure. For in-
stance, with an appropriately symmetric start state and with appropriate global
symmetry, an individual process (or component) is correct iff all processes are
correct. It permits “quantifier inflation” and “quantifier reduction”: M, s |= f1 iff
M, s |= ∧

i fi, provided all fj are identical up to re-indexing. Quantifier inflation
via simple symmetry was used in [26] to facilitate verification of memory arrays,
and more recently to radically reduce case analysis in [25]. In [16] we provided
some powerful instances of the application of simple symmetry. Model checking

Model Checking: Theory into Practice 5

E(FP1 ∧ . . . ∧ FPn) is an NP-complete problem, apparently requiring time ex-
ponential in n in the worst case. We use simple symmetry to show that for a
system that (a) is fully symmetric; (b) has fully symmetric start state s0; and
(c) is already known to be re-settable so that AGEFs0 holds, the above property
then amounts to EFP1, which is in polynomial time. This can be quite useful,
since many systems do possess such symmetry and re-settability is a common
requirement for many hardware circuits and embedded systems anyway. Many
more useful applications of simple symmetry are possible.

Approximate Symmetry. In conversations we have had with industrial hard-
ware engineers, it comes out that while symmetry reduction is often applicable
due to the presence of many similar subcomponents, there are also many in-
stances where it is not — quite — applicable. That is, the systems are not
genuinely symmetric but “approximately” symmetric, for example, because of
one different component or slight differences among all components. This limits
the scope of utility of symmetry reduction techniques.

In [17] and [10] we proposed and formalized three progressively “looser” no-
tions of approximate symmetry: near symmetry, rough symmetry, and, finally,
virtually symmetry. Each can be applied to do group-theoretic quotient reduc-
tion to various asymmetric systems. The correspondence established in each case
between the original large structure and the small quotient structure is exact, a
bisimulation (up to permutation), in fact. Near symmetry can permit symmetry
reduction on systems comprised of 2 similar but not identical processes. Rough
symmetry can accommodate, e.g., for fixed k ≥ 2, systems with k similar but not
identical process, prioritized statically. Rough symmetry can handle the read-
ers writers problem for k readers and � writers. Virtual symmetry is yet more
general and can accommodate dynamically varying priorities.

Additional open problems related to symmetry. There are number of impor-
tant unsolved problems here. One is to broaden the scope of approximate sym-
metry reduction as much as possible. Obviously, a system that is “absolutely”
asymmetric is going to lack sufficient regularity and redundancy to permit iden-
tification of approximate symmetries for reduction. Finding a sufficiently broad
notion of approximate symmetry that is flexible enough to cover every useful
applications is open, and perhaps an inherently ill-posed problem. But a prac-
tical solution is highly desirable. One possibility is to formulate a very general
notion of approximate symmetry parameterized by degree of divergence from
actual symmetry. We might look for a notion that is universally applicable in
principle, but which (a) may in general result in a collapsed graph that is only
loosely corresponds, say by a conservative or liberal abstraction, to the original
structure; but (b) which progresses toward exact abstraction as the system ap-
proaches genuine symmetry. Our previous work with virtual general symmetry
suggests a measure based on the number of “missing” arcs. Another technical
problem that would have significant practical ramifications would be to extend
approximate symmetry to annotated quotient structures (cf. [15], [16]).

6 E. Allen Emerson

2.2 Parameterized Verification

Symmetry quotient reductions, and many other abstraction methods, address
reasoning about systems with k processes for a possibly large natural number
constant k. It is often more desirable to reason about systems comprised of
n homogeneous processes, where n is a natural number parameter. This gives
rise to the Parameterized Model Checking Problem (PMCP): decide whether a
temporal property is true for all (sufficiently large) size instances n of a given
system. The advantage is that one application of PMCP settles all cases of
interest; there is then no need to be concerned whether a system known to be
correct for 100 processes might fail for 101 processes or 1000 processes. In general,
PMCP is undecidable (cf. [AK86]). But because of its practical importance many
researchers have addressed this problem, obtaining interesting results and partial
solutions (cf., e.g., [23], [2], [18], [22]). But most of these have potentially serious
limitations, e.g., they require human assistance (“process invariants”, etc.), are
only partially automated (may not terminate), are sound but not complete, or
lack a well-defined domain of applicability.

Parameterized Synchronous Systems. In [12] we formulated an algorithm for
determining if a parameterized synchronous system satisfies a specification. The
method is based on forming a single finite abstract graph (cf. [Lu84]) which en-
codes the behavior of concrete systems of all sizes n. An abstract state s records
for a state s, which process locations are occupied. The theory we developed in
[12] we later applied in [13] to verify correctness of the Society of Automotive
Engineers SAE-J1850 protocol. This protocol operates along a single wire bus
in (Ford) automobiles, and coordinates the interactions of (Motorola) micro-
controllers distributed among the brake units, the airbags, the engine, etc. The
general goal is to verify parameterized correctness so that the bus operates cor-
rectly no matter how many units are installed on the bus. (Thus, the same bus
architecture could be used in small cars and large trucks.) The specific property
we verified, by using a meta-tool built on-top of SMV, was that higher priority
messages could not be overtaken by lower priority messages.

Open problem related to parameterized synchronous systems. A restriction on
the mathematical model used in [12] is that conventional mutual exclusion al-
gorithms cannot be implemented in it (cf. [18]), roughly because a system with
1 processes in a local state is, by definition of the abstract graph, indistinguish-
able from one with strictly more than 1 processes in that local state. It would
be desirable to overcome this limitation. One possibility is to refine the abstract
graph to distinguish between exactly 1 vs. 2 vs. 3 or more processes in an ab-
stract state, to accommodate mutual exclusion. Or perhaps this method could
be adjoined with use of a signal token as in [11], possession of which arbitrates
among competing processes.

Reducing Many Processes to Few. In recent work [EK00] we give a fully au-
tomatic (algorithmic), sound and complete solution to PMCP in a rather broad
framework. We consider asynchronous systems comprised of many homogeneous
copies of a generic process template. The process template is represented as
a synchronization skeleton [8], where enabling guards have a special charac-

Model Checking: Theory into Practice 7

ter, either disjunctive or conjunctive. Correctness properties are expressed using
CTL*\X (CTL* minus the nexttime X) We reduce model checking for systems
of arbitrary size n to model checking for systems of size (up to) a small cutoff size
c. This establishes decidability of PMCP as it is only necessary to model check
a finite number of relatively small systems. In a number of interesting cases,
we can establish polynomial time decidability. For example, we can reduce the
problem of checking mutual exclusion for a critical section protocol to reasoning
about systems with 2 processes. We emphasize this algorithmically establishes
correctness for systems of all sizes n. This method generalizes and has been ap-
plied to systems comprised of multiple heterogeneous classes of processes, e.g.,
m readers and n writers.

3 Theory and Practice in Model Checking

In this section we discuss factors related to the usefulness of and use of model
checking. The core theoretical principles underlying model checking rest on a
few basic ideas including, e.g. some from modal logic (the finite model theorem),
lattice theory (the Tarski-Knaster theorem permitting branching time modal-
ities to be calculated easily), and automata theory (the language containment
approach). These ideas are well-known. It has also become increasingly clear that
model checking is useful in practice. Model checking is employed by most major
hardware companies, e.g., Cadence, IBM, Intel, and Motorola, for verification
and debugging of microprocessors circuits. Model checking is showing promise
for the verification of software, and is being used or is under investigation by,
e.g., Lucent, Microsoft, NASA. We would now like to offer an account of why it
is that model checking turns out to be useful in practice. It involves the following
factors.

Model checking = search ∧ efficiency ∧ expressiveness. Plainly, efficiency is
key. Impressive progress has been made with symbolic data structures such as
BDDs, and significant advances with various forms of abstraction are ongoing.
But expressiveness is also key. An efficient automated verification method that
could not express most of the important correctness properties of interest would
be of little use, as would a method that lacked the modeling power to capture
reactive systems of interest. It seems model checking fares well on these fronts.

Temporal logic provides a powerful and flexible language for specification.
Overall, it is quite adequate to the task of reasoning about reactive systems.
This is perhaps a bit surprising when we recall that we are using propositional
temporal logic. But the work of Kamp [20], showing that LTL is essentially
equivalent to the First Order Language of Linear Order, does provide a measure
of expressive completeness. It is certainly the case that there are properties such
as “P holds at every even moment, and we don’t care about the odd moments”
which are not expressible in LTL. However, they are expressible in the frame-
work of ω-fsa’s which means that our technical model checking machinery is
still applicable. The author, in fact, views automata as just generalized formu-
lae of temporal logic. Automata and temporal logic, broadly speaking, are the

8 E. Allen Emerson

same thing. The advantage of temporal logic, which is sometimes important in
practice, is the close connection with tensed natural language.

A finite state framework suffices. At least it does in practice for most of the
applications most of the time. This is genuinely surprising, but, there are several
reasons for it. First, from the standpoint of specifications, most all propositional
modal and temporal logics, including LTL and CTL, have the (bounded) finite
model property. If a formula f in such a logic is satisfiable in any model, then it
is satisfiable in a finite model (of size bounded by some function of the length of
f , e.g., exp(|f |)). If a system can be specified in propositional temporal logic,
it can be realized by a finite state program. Two decades of experience shows
that many (of at least the crucial parts of) reactive systems can be specified
in propositional temporal logic, and hence should be realized by a finite state
program. Second, from the standpoint of the reactive programs themselves, we
see that most solutions to synchronization problems presented in the literature
are, indeed, finite state. Typically, in a concurrent program, we can cleanly sepa-
rate out the finite state synchronization skeletons [7] of the individual processes,
which synchronize and coordinate the processes, from the sequential code. For
example, in the synchronization skeleton for the solution to the mutual exclusion
problem, we abstract out the details of the code manipulating the critical sec-
tion and obtain just a single node. In the field we are starting to see a trend in
model checking of software of abstracting out the irrelevant sequential parts and
boiling down the program to a system of finite state synchronization skeletons.

Model checking is highly automated. It is fully automated in principle and
highly automated in practice. Human intervention is sometimes required in
practice for such things as determining a good variable ordering when doing
BDD-based symbolic model checking. It can also be required in doing certain
abstractions to get the model to be checked. For instance, in the case where
one is verifying a module in isolation, typically a human must understand the
environment in which the module operates and provide an abstraction of the
environment for the module to interact with. Still, model checking is highly au-
tomated even in practice. Model checking seems to be more popular in industrial
usage than theorem proving because of the high degree of automation. Theorem
provers, while having in principle unbounded capacity, require human expertise
to supply key lemmas, and, a skilled “operator” of the tool. In practice, the op-
erator is usually someone with a Ph.D. in CS, EE, or, quite often, Mathematics.
For this reason, deployment of theorem provers may be hindered in an indus-
trial setting. Due to the automation of model checkers, they can successfully be
used by engineers and programmers at the M.S. or B.S. level. In management’s
view, this facilitates the wide-scale deployment of verification technology in the
organization.

4 Conclusion

There is nowadays widespread interest in Computer Aided Verification of reac-
tive systems, as evidenced by the attention paid to the topics at FST-TCS, as

Model Checking: Theory into Practice 9

well as such conferences as CAV, TACAS, CONCUR, FMCAD, etc. The reason
is that such automated techniques as model checking as well as partially auto-
mated theorem proving have by now been shown to actually work on a variety
of “industrial strength” examples. Pnueli [28] argues that, due to the success of
techniques such as model checking on actual applications, we are on the verge of
an era of Verification Engineering. Of course, there is still a gulf between what
we need to do and what we currently have the capacity to do. Basic advances
as well as concerted engineering efforts are called for. One popular, and valu-
able, idea is the integration of theorem provers with model checkers; a number
of researchers are pursuing this topic. For the present, however, this researcher’s
primary interest is still to try to push the idea of model-theoretic automation as
far as possible, aspiring to Completely Automated Verification.

References

1. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters, 15, pages 307-309, 1986.

2. M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with
Many Identical Finite State Processes. Information and Control, 81(1), pages 13-
31, April 1989.

3. R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation” IEEE
Transactions on Computers, 35(8): 677-691 (1986).

4. E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic”, Logics of Programs Workshop, IBM
Yorktown Heights, New York, Springer LNCS no. 131, pp. 52-71, 1981.

5. E. M. Clarke, R. Enders, T. Filkorn, S. Jha, “Exploiting Symmetry In Temporal
Logic Model Checking”, Formal Methods in System Design, vol. 9, no. 1/2, pp.
77-104, Aug. 96.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications”, ACM Trans. on
Prog. Lang. and Sys (TOPLAS) 8(2): 244-263 (1986).

7. E. A. Emerson, Branching Time Temporal Logic and the Design of Correct Con-
current Programs, Ph.D. Dissertation, Harvard University, 1981.

8. E. A. Emerson, E M. Clarke, “Using Branching Time Temporal Logic to Synthe-
size Synchronization Skeletons”, Science of Computer Programming, 2(3): 241-266
(1982)

9. E. A. Emerson, J. Y. Halpern: “ ‘Sometimes’ and ‘Not Never’ Revisited: On
Branching versus Linear Time Temporal Logic”, Journal of the Assoc. Comp.
Mach. (JACM), 33(1): 151-178 (1986).

10. E. A. Emerson, J. Havlicek, and R. J. Trefler, “Virtual Symmetry”, LICS’00, pp.
121-132.

11. E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. In Conference Record
of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 85-94, 1995.

12. E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Syn-
chronous Systems. In Computer Aided Verification, Proceedings of the 8th Inter-
national Conference. LNCS , Springer-Verlag, 1996.

13. E. A. Emerson and K. S. Namjoshi, “Verification of Parameterized Bus Arbitration
Protocol”, Conference on Computer Aided Verification (CAV), pp. 452–463, 1998.

10 E. Allen Emerson

14. E.A. Emerson and A.P. Sistla,. Symmetry and Model Checking. In Formal Methods
in System Design, vol. 9, no. 1/2, pp. 105-131, Aug. 96.

15. E. A. Emerson and A. P. Sistla, ”Utilizing Symmetry when Model-Checking under
Fairness Assumptions: An Automata-Theoretic Approach”, ACM Trans. on Prog.
Lang. and Systems (TOPLAS), pp. 617–638, vol. 19, no. 4, July 1997.

16. E. A. Emerson and R. J. Trefler, “Model Checking Real-Time Properties of Sym-
metric Systems”, MFCS 1998: 427-436.

17. E. A. Emerson, R. J. Trefler, “From Asymmetry to Full Symmetry: New Techniques
for Symmetry Reduction in Model Checking”, CHARME 1999: 142-156.

18. S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J.
ACM,39(3), July 1992.

19. C. Ip and D. Dill. Better verification through symmetry. In Formal Methods in
System Design, vol. 9, no. 1/2, pp. 41-76, Aug. 1996.

20. Kamp, J. A. W., “Tense Logic and the Theory of Linear Order”, Ph.D. thesis,
University of California, Los Angeles, 19868.

21. R. P. Kurshan, Computer Aided Verification, Princeton Univ. Press, 1994.
22. R.P. Kurshan and K. McMillan. A Structural Induction Theorem for Processes.

In Proceedings of the Eight Annual ACM Symposium on Principles of Distributed
Computing, pages 239-247, 1989.

23. B. Lubachevsky. An Approach to Automating the Verification of Compact Parallel
Coordination Programs I.Acta Informatica 21, 1984.

24. K. McMillan, Symbolic Model Checking, Ph.D. Dissertation, CMU, 1992.
25. K. McMillan, Verification of Infinite State Systems by Compositional Model Check-

ing, CHARME’99.
26. M Pandey and R. E. Bryant, “Exploiting Symmetry When Verifying Transitor-

Level Circuits by Symbolic Trajectory Evaluation”, CAV 1997: 244-255.
27. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the eighteenth Sym-

posium on Foundations of Computer Science. 1977.
28. A. Pnueli, “Verification Engineering: A Future Profession” (A. M. Turing Award

Lecture), Sixteenth Annual ACM Symposium on Principles of Distributed Com-
puting (PODC 1990), San Diego, August, 1997;
http://www.wisdom.weizmann.ac.il/~amir/turing97.ps.gz

29. F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence
Protocols. IEEE Transactions on Parallel and Distributed Systems, August 1995.

30. J-P. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems
in CESAR”, International Symposium on Programming, Springer LNCS no. 137,
pp 337-351, 1982.

31. A. P. Sistla, Parameterized Verification of Linear Networks Using Automata as
Invariants, CAV, 1997, 412-423.

32. I. Vernier. Specification and Verification of Parameterized Parallel Programs. In
Proceedings of the 8th International Symposium on Computer and Information
Sciences, Istanbul, Turkey, pages 622-625,1993.

33. P. Wolper and V. Lovinfosse. Verifying Properties of Large Sets of Processes with
Network Invariants. In J. Sifakis(ed) Automatic Verification Metods for Finite State
Systems, Springer-Verlag, LNCS 407, 1989.

An Algebra for XML Query

Mary Fernandez1, Jerome Simeon2, and Philip Wadler3

1 ATT Labs, mff@research.att.com
2 Bell Labs, Lucent Technologies, simeon@research.bell-labs.com

3 Avaya Labs, wadler@avaya.com

Abstract. This document proposes an algebra for XML Query. The
algebra has been submitted to the W3C XML Query Working Group. A
novel feature of the algebra is the use of regular-expression types, similar
in power to DTDs or XML Schemas, and closely related to Hasoya,
Pierce, and Vouillon’s work on Xduce. The iteration construct involves
novel typing rules not encountered elsewhere (even in Xduce).

1 Introduction

This document proposes an algebra for XML Query.
This work builds on long standing traditions in the database community. In

particular, we have been inspired by systems such as SQL, OQL, and nested
relational algebra (NRA). We have also been inspired by systems such as Quilt,
UnQL, XDuce, XML-QL, XPath, XQL, and YATL. We give citations for all
these systems below.

In the database world, it is common to translate a query language into an
algebra; this happens in SQL, OQL, and NRA, among others. The purpose of
the algebra is twofold. First, the algebra is used to give a semantics for the query
language, so the operations of the algebra should be well-defined. Second, the
algebra is used to support query optimization, so the algebra should possess a
rich set of laws. Our algebra is powerful enough to capture the semantics of
many XML query languages, and the laws we give include analogues of most of
the laws of relational algebra.

In the database world, it is common for a query language to exploit schemas
or types; this happens in SQL, OQL, and NRA, among others. The purpose of
types is twofold. Types can be used to detect certain kinds of errors at compile
time and to support query optimization. DTDs and XML Schema can be thought
of as providing something like types for XML. Our algebra uses a simple type
system that captures the essence of XML Schema [35]. The type system is close
to that used in XDuce [19]. Our type system can detect common type errors and
support optimization. A novel aspect of the type system (not found in Xduce)
is the description of projection in terms of iteration, and the typing rules for
iteration that make this viable.

The best way to learn any language is to use it. To better familiarize readers
with the algebra, we have implemented a type checker and an interpreter for the
algebra in OCaml[24]. A demonstration version of the system is available at

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 11–45, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

12 Mary Fernandez, Jerome Simeon, and Philip Wadler

http://www.cs.bell-labs.com/~wadler/topics/xml.html#xalgebra

The demo system allows you to type in your own queries to be type checked and
evaluated. All the examples in this paper can be executed by the demo system.

This paper describes the key features of the algebra. For simplicity, we restrict
our attention to only three scalar types (strings, integers, and booleans), but we
believe the system will smoothly extend to cover the continuum of scalar types
found in XML Schema. Other important features that we do not tackle include
attributes, namespaces, element identity, collation, and key constraints, among
others. Again, we believe they can be added within the framework given here.

The paper is organized as follows. A tutorial introduction is presented in
Section 2. Section 3 explains key aspects of projection and iteration. A summary
of the algebra’s operators and type system is given in Section 4. We present some
equivalence and optimization laws of the algebra in Section 5. Finally, we give
the static typing rules for the algebra in Section 6. Section 7 discusses open
issues and problems.

Cited literature includes: SQL [16], OQL [4,5,13], NRA [8,15,21,22],
Quilt [11], UnQL [3], XDuce [19], XML Query [33,34], XML Schema [35,36],
XML-QL [17], XPath [32], XQL [25], and YaTL [14].

2 The Algebra by Example

This section introduces the main features of the algebra, using familiar examples
based on accessing a database of books.

2.1 Data and Types

Consider the following sample data:

<bib>
<book>
<title>Data on the Web</title>
<year>1999</year>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>

</book>
<book>
<title>XML Query</title>
<year>2001</year>
<author>Fernandez</author>
<author>Suciu</author>

</book>
</bib>

Here is a fragment of a XML Schema for such data.

An Algebra for XML Query 13

<xsd:group name="Bib">
<xsd:element name="bib">
<xsd:complexType>
<xsd:group ref="Book"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:complexType>
</xsd:element>

</xsd:group>

<xsd:group name="Book">
<xsd:element name="book">
<xsd:complexType>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="year" type="xsd:integer"/>
<xsd:element name="author" type="xsd:integer"
minOccurs="1" maxOccurs="unbounded"/>

</xsd:complexType>
</xsd:element>

</xsd:group>

This data and schema is represented in our algebra as follows:

type Bib =
bib [Book*]

type Book =
book [
title [String],
year [Integer],
author [String]+

]
let bib0 : Bib =

bib [
book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

],
book [
title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
]

14 Mary Fernandez, Jerome Simeon, and Philip Wadler

The expression above defines two types, Bib and Book, and defines one global
variable, bib0.

The Bib type consists of a bib element containing zero or more value of type
Book. The Book type consists of a book element containing a title element
(which contains a string), a year element (which contains an integer), and one
or more author elements (which contain strings).

The Bib type corresponds to a single bib element, which contains a forest
of zero or more Book elements. We use the term forest to refer to a sequence of
(zero or more) elements. Every element can be viewed as a forest of length one.

The Book type corresponds to a single book element, which contains one
title element, followed by one year element, followed by one or more author
elements. A title or author element contains a string value and a year element
contains an integer.

The variable bib0 is bound to a literal XML value, which is the data model
representation of the earlier XML document. The bib element contains two book
elements.

The algebra is a strongly typed language, therefore the value of bib0 must
be an instance of its declared type, or the expression is ill-typed. Here the value
of bib0 is an instance of the Bib type, because it contains one bib element,
which contains two book elements, each of which contain a string-valued title,
an integer-valued year, and one or more string-valued author elements.

For convenience, we define a second global variable book0, also bound to a
literal value, which is equivalent to the first book in bib0.

let book0 : Book =
book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]

2.2 Projection

The simplest operation is projection. The algebra uses a notation similar in
appearance and meaning to path navigation in XPath.

The following expression returns all author elements contained in book0:

book0/author
==> author ["Abiteboul"],

author ["Buneman"],
author ["Suciu"]

: author [String]+

The above example and the ones that follow have three parts. First is an expres-
sion in the algebra. Second, following the ==>, is the value of this expression.

An Algebra for XML Query 15

Third, following the :, is the type of the expression, which is (of course) also a
legal type for the value.

The following expression returns all author elements contained in book ele-
ments contained in bib0:

bib0/book/author
==> author ["Abiteboul"],

author ["Buneman"],
author ["Suciu"],
author ["Fernandez"],
author ["Suciu"]

: author [String]*

Note that in the result, the document order of author elements is preserved and
that duplicate elements are also preserved.

It may be unclear why the type of bib0/book/author contains zero or more
authors, even though the type of a book element contains one or more authors.
Let’s look at the derivation of the result type by looking at the type of each
sub-expression:

bib0 : Bib
bib0/book : Book*
bib0/book/author : author [String]*

Recall that Bib, the type of bib0, may contain zero or more Book elements,
therefore the expression bib0/book might contain zero book elements, in which
case, bib0/book/author would contain no authors.

This illustrates an important feature of the type system: the type of an
expression depends only on the type of its sub-expressions. It also illustrates
the difference between an expression’s run-time value and its compile-time type.
Since the type of bib0 is Bib, the best type for bib0/book/author is one listing
zero or more authors, even though for the given value of bib0 the expression
will always contain exactly five authors.

2.3 Iteration

Another common operation is to iterate over elements in a document so that
their content can be transformed into new content. Here is an example of how
to process each book to list the authors before the title, and remove the year.

for b in bib0/book do
book [b/author, b/title]

==> book [
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"],
title ["Data on the Web"]

],

16 Mary Fernandez, Jerome Simeon, and Philip Wadler

book [
author ["Fernandez"],
author ["Suciu"],
title ["XML Query"]

]
: book [

author[String]+,
title[String]

]*

The for expression iterates over all book elements in bib0 and binds the vari-
able b to each such element. For each element bound to b, the inner expression
constructs a new book element containing the book’s authors followed by its
title. The transformed elements appear in the same order as they occur in bib0.

In the result type, a book element is guaranteed to contain one or more
authors followed by one title. Let’s look at the derivation of the result type to
see why:

bib0/book : Book*
b : Book
b/author : author [String]+
b/title : title [String]

The type system can determine that b is always Book, therefore the type of
b/author is author[String]+ and the type of b/title is title[String].

In general, the value of a for loop is a forest. If the body of the loop itself
yields a forest, then all of the forests are concatenated together. For instance,
the expression:

for b in bib0/book do
b/author

is exactly equivalent to the expression bib0/book/author.
Here we have explained the typing of for loops by example. In fact, the

typing rules are rather subtle, and one of the more interesting aspects of the
algebra, and will be explained further below.

2.4 Selection

Projection and for loops can serve as the basis for many interesting queries. The
next three sections show how they provide the power for selection, quantification,
join, and regrouping.

To select values that satisfy some predicate, we use the where expression.
For example, the following expression selects all book elements in bib0 that
were published before 2000.

An Algebra for XML Query 17

for b in bib0/book do
where value(b/year) <= 2000 do

b
==> book [

title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

The value operator returns the scalar (i.e., string, integer, or boolean) content
of an element.

An expression of the form

where e1 do e2

is just syntactic sugar for

if e1 then e2 else ()

where e1 and e2 are expressions. Here () is an expression that stands for the
empty sequence, a forest that contains no elements. We also write () for the
type of the empty sequence.

According to this rule, the expression above translates to

for b <- bib0/book in
if value(b/year) < 2000 then b else ()

and this has the same value and the same type as the preceding expression.

2.5 Quantification

The following expression selects all book elements in bib0 that have some author
named “Buneman”.

for b in bib0/book do
for a in b/author do
where value(a) = "Buneman" do
b

==> book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

18 Mary Fernandez, Jerome Simeon, and Philip Wadler

In contrast, we can use the empty operator to find all books that have no
author whose name is Buneman:

for b in bib0/book do
where empty(for a in b/author do

where value(a) = "Buneman" do
a) do

b
==> book [

title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

The empty expression checks that its argument is the empty sequence ().
We can also use the empty operator to find all books where all the authors

are Buneman, by checking that there are no authors that are not Buneman:

for b in bib0/book do
where empty(for a in b/author do

where value(a) <> "Buneman" do
a) do

b
==> ()
: Book*

There are no such books, so the result is the empty sequence. Appropriate use
of empty (possibly combined with not) can express universally or existentially
quantified expressions.

Here is a good place to introduce the let expression, which binds a local
variable to a value. Introducing local variables may improve readability. For
example, the following expression is exactly equivalent to the previous one.

for b in bib0/book do
let nonbunemans = (for a in b/author do

where value(a) <> "Buneman" do
a) do

where empty(nonbunemans) do
b

Local variables can also be used to avoid repetition when the same subexpression
appears more than once in a query.

2.6 Join

Another common operation is to join values from one or more documents. To
illustrate joins, we give a second data source that defines book reviews:

An Algebra for XML Query 19

type Reviews =
reviews [
book [
title [String],
review [String]

]*
]

let review0 : Reviews =
reviews [
book [
title ["XML Query"],
review ["A darn fine book."]

],
book [
title ["Data on the Web"],
review ["This is great!"]

]
]

The Reviews type contains one reviews element, which contains zero or more
book elements; each book contains a title and review.

We can use nested for loops to join the two sources review0 and bib0 on
title values. The result combines the title, authors, and reviews for each book.

for b in bib0/book do
for r in review0/book do
where value(b/title) = value(r/title) do
book [b/title, b/author, r/review]

==>
book [

title ["Data on the Web"],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]
review ["A darn fine book."]

],
book [

title ["XML Query"],
author ["Fernandez"],
author ["Suciu"]
review ["This is great!"]

]
: book [

title [String],
author [String]+
review [String]

]*

20 Mary Fernandez, Jerome Simeon, and Philip Wadler

Note that the outer-most for expression determines the order of the result.
Readers familiar with optimization of relational join queries know that relational
joins commute, i.e., they can be evaluated in any order. This is not true for the
XML algebra: changing the order of the first two for expressions would pro-
duce different output. In Section 7, we discuss extending the algebra to support
unordered forests, which would permit commutable joins.

2.7 Restructuring

Often it is useful to regroup elements in an XML document. For example, each
book element in bib0 groups one title with multiple authors. This expression
regroups each author with the titles of his/her publications.

for a in distinct(bib0/book/author) do
biblio [
a,
for b in bib0/book do
for a2 in b/author do
where value(a) = value(a2) do
b/title

]
==> biblio [

author ["Abiteboul"],
title ["Data on the Web"]

],
biblio [

author ["Buneman"],
title ["Data on the Web"]

],
biblio [

author ["Suciu"],
title ["Data on the Web"],
title ["XML Query"]

],
biblio [

author ["Fernandez"],
title ["XML Query"]

]
: biblio [

author [String],
title [String]*

]*

Readers may recognize this expression as a self-join of books on authors. The
expression distinct(bib0/book/author) produces a forest of author elements
with no duplicates. The outer for expression binds a to each author element,

An Algebra for XML Query 21

and the inner for expression selects the title of each book that has some author
equal to a.

Here distinct is an example of a built-in function. It takes a forest of ele-
ments and removes duplicates.

The type of the result expression may seem surprising: each biblio element
may contain zero or more title elements, even though in bib0, every author
co-occurs with a title. Recognizing such a constraint is outside the scope of
the type system, so the resulting type is not as precise as we might like.

2.8 Aggregation

We have already seen several several built-in functions, such as children,
distinct, and value. In addition to these, the algebra has five built-in ag-
gregation functions: avg, count, max, min and sum.

This expression selects books that have more than two authors:

for b in bib0/book do
where count(b/author) > 2 do
b

==> book [
title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: Book*

All the aggregation functions take a forest with repetition type and return an
integer value; count returns the number of elements in the forest.

2.9 Functions

Functions can make queries more modular and concise. Recall that we used the
following query to find all books that do not have “Buneman” as an author.

for b in bib0/book do
where empty(for a in b/author do

where value(a) = "Buneman" do
a) do

b
==> book [

title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

22 Mary Fernandez, Jerome Simeon, and Philip Wadler

A different way to formulate this query is to first define a function that takes a
string s and a book b as arguments, and returns true if book b does not have
an author with name s.

fun notauthor (s : String; b : Book) : Boolean =
empty(for a in b/author do

where value(a) = s do
a)

The query can then be re-expressed as follows.

for b in bib0/book do
where notauthor("Buneman"; b) do
b

==> book [
title ["XML Query"],
year [2001],
author ["Fernandez"],
author ["Suciu"]

]
: Book*

We use semicolon rather than comma to separate function arguments, since
comma is used to concatenate forests.

Note that a function declaration includes the types of all its arguments and
the type of its result. This is necessary for the type system to guarantee that
applications of functions are type correct.

In general, any number of functions may be declared at the top-level. The
order of function declarations does not matter, and each function may refer to
any other function. Among other things, this allows functions to be recursive
(or mutually recursive), which supports structural recursion, the subject of the
next section.

2.10 Structural Recursion

XML documents can be recursive in structure, for example, it is possible to define
a part element that directly or indirectly contains other part elements. In the
algebra, we use recursive types to define documents with a recursive structure,
and we use recursive functions to process such documents. (We can also use
mutual recursion for more complex recursive structures.)

For instance, here is a recursive type defining a part hierarchy.

type Part =
Basic | Composite

type Basic =
basic [
cost [Integer]

]

An Algebra for XML Query 23

type Composite =
composite [
assembly_cost [Integer],
subparts [Part+]

]

And here is some sample data.

let part0 : Part =
composite [
assembly_cost [12],
subparts [
composite [
assembly_cost [22],
subparts [
basic [cost [33]]

]
],
basic [cost [7]]

]
]

Here vertical bar (|) is used to indicate a choice between types: each part is either
basic (no subparts), and has a cost, or is composite, and includes an assembly
cost and subparts.

We might want to translate to a second form, where every part has a total
cost and a list of subparts (for a basic part, the list of subparts is empty).

type Part2 =
part [
total_cost [Integer],
subparts [Part2*]

]

Here is a recursive function that performs the desired transformation. It uses
a new construct, the case expression.

fun convert(p : Part) : Part2 =
case p of
b : basic =>
part[
total_cost[value(b/cost)],
subparts[]

]
| c : composite =>

let s = (for q in children(c/subparts) do convert(q)) in
part[
total_cost[

24 Mary Fernandez, Jerome Simeon, and Philip Wadler

value(c/assembly_cost) +
sum(for t in s/total_cost do value(t))

],
subparts[s]

]
end

Each branch of the case is labeled with an element name, basic or composite,
and with a corresponding variable, b or c. The case expression checks whether
the value of p is a basic or composite element, and evaluates the corresponding
branch. If the first branch is taken then b is bound to the value of p, and the
branch retuns a new part with total cost the same as the cost of b, and with no
subparts. If the second branch is taken then c is bound to the value of p. The
function is recursively applied to each of the subparts of c, giving a list of new
subparts s. The branch returns a new part with total cost computed by adding
the assembly cost of c to the sum of the total cost of each subpart in s, and
with subparts s.

One might wonder why b and c are required, since they have the same value
as p. The reason why is that p, b, and c have different types.

p : Part
b : Basic
c : Composite

The types of b and c are more precise than the type of p, because which branch
is taken depends upon the type of value in p.

Applying the query to the given data gives the following result.

convert(part0)
==> part [

total_cost [74],
subparts [
part [
total_cost [55],
subparts [
part [
total_cost [33],
subparts []

]
]

],
part [
total_cost [7],
subparts []

]
]

]
: Part2

An Algebra for XML Query 25

Of course, a case expression may be used in any query, not just in a recursive
one.

2.11 Processing Any Well-Formed Document

Recursive types allow us to define a type that matches any well-formed XML
document. This type is called UrTree:

type UrTree =
UrScalar

| ~ [UrTree*]

Here UrScalar is a built-in scalar type. It stands for the most general scalar
type, and all other scalar types (like Integer or String) are subtypes of it. The
tilde (~) is used to indicate a wild-card type. In general, ~[t] indicates the type
of elements that may have any tag, but must have children of type t. So an
UrTree is either an UrScalar or a wildcard element with zero or more children,
each of which is itself an UrTree. In other words, any single element or scalar
has type UrTree.

The use of UrScalar is a small, but necessary, extension to XML Schema,
since XML Schema provides no most general scalar type. In contrast, the use of
tilde is a significant extension to XML Schema, because XML Schema has no
type corresponding to ~[t], where t is some type other than UrTree*. It is not
clear that this extension is necessary, since the more restrictive expressiveness of
XML Schema wildcards may be adequate. Also, note that UrTree* is equivalent
to the UrType in XML Schema.

In particular, our earlier data also has type UrTree.

book0 : UrTree
==> book [

title ["Data on the Web"],
year [1999],
author ["Abiteboul"],
author ["Buneman"],
author ["Suciu"]

]
: UrTree

A specific type can be indicated for any expression in the query language, by
writing a colon and the type after the expression.

As an example, we define a recursive function that converts any XML data
into HTML. We first give a simplified definition of HTML.

type HTML =
(UrScalar
| b [HTML]
| ul [(li [HTML])*]
)*

26 Mary Fernandez, Jerome Simeon, and Philip Wadler

An HTML body consists of a sequence of zero or more items, each of which is
either: a scalar; or a b element (boldface) with HTML content; or a ul element
(unordered list), where the children are li elements (list item), each of which
has HTML content.

Now, here is the function that performs the conversion.

fun html_of_xml(t : UrTree) : HTML =
case t of
s : UrScalar =>
s

| e =>
b [name(e)],
ul [for c in children(e) do li [html_of_xml(c)]]

end

The case expression checks whether the value of x is a subtype of UrScalar or
otherwise, and evaluates the corresponding branch. If the first branch is taken,
then s is bound to the value of t, which must be a scalar, and the branch returns
the scalar. If the second branch is taken, then e is bound to the value of t, which
must not be a scalar, and hence must be an element. The branch returns the
name of the element in boldface, followed by a list containing one item for each
child of the element. The function is recursively applied to get the content of
each list item.

Applying the query to the book element above gives the following result.

html_of_xml(book0)
==> b ["book"],

ul [
li [b ["title"], ul [li ["Data on the Web"]]],
li [b ["year"], ul [li [1999]]],
li [b ["author"], ul [li ["Abiteboul"]]],
li [b ["author"], ul [li ["Buneman"]]],
li [b ["author"], ul [li ["Suciu"]]]

]
: Html_Body

2.12 Top-Level Queries

A query consists of a sequence of top-level expressions, or query items, where each
query item is either a type declaration, a function declaration, a global variable
declaration, or a query expression. The order of query items is immaterial; all
type, function, and global variable declarations may be mutually recursive.

A query can be evaluated by the query interpreter. Each query expression
is evaluated in the environment specified by all of the declarations. (Typically,
all of the declarations will precede all of the query expressions, but this is not
required.) We have already seen examples of type, function, and global variable
declarations. An example of a query expression is:

An Algebra for XML Query 27

query html_of_xml(book0)

To transform any expression into a top-level query, we simply precede the ex-
pression by the query keyword.

3 Projection and Iteration

This section describes key aspects of projection and iteration.

3.1 Relating Projection to Iteration

The previous examples use the / operator liberally, but in fact we use / as
a convenient abbreviation for expressions built from lower-level operators: for
expressions, the children function, and case expressions.

For example, the expression:

book0/author

is equivalent to the expression:

for c in children(book0) do
case c of
a : author => a

| b => ()
end

Here the children function returns a forest consisting of the children of the
element book0, namely, a title element, a year element, and three author elements
(the order is preserved). The for expression binds the variable v successively to
each of these elements. Then the case expression selects a branch based on the
value of v. If it is an author element then the first branch is evaluated, otherwise
the second branch. If the first branch is evaluated, the variable a is bound to the
same value as x, then the branch returns the value of a. If the second branch
is evaluated, the variable b is bound to the same value as x, then then branch
returns (), the empty sequence.

To compose several expressions using /, we again use for expressions. For
example, the expression:

bib0/book/author

is equivalent to the expression:

for c in children(bib0) do
case c of
b : book =>
for d in children(b) do
case d of
a : author => d

28 Mary Fernandez, Jerome Simeon, and Philip Wadler

| e => ()
end

| f => ()
end

The for expression iterates over all book elements in bib0 and binds the variable
b to each such element. For each element bound to b, the inner expression returns
all the author elements in b, and the resulting forests are concatenated together
in order.

In general, an expression of the form e / a is converted to the form

for v1 in e do
for v2 in children(v1) do
case v2 of

v3 : a => v3

| v4 => ()
end

where e is an expression, a is a tag, and v1, v2, v3, v4 are fresh variables (ones
that do not appear in the expression being converted).

According to this rule, the expression bib0/book translates to

for v1 in bib0 do
for v2 in children(v1) do
case v2 of
v3 : book => v3

| v4 => ()
end

In Section 5 we introduce laws of the algebra, which allow us to simplify this to
the previous expression

for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end

Similarly, the expression bib0/book/author translates to

for v5 in (for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end) do

for v6 in children(v5) do
case v6 of
v7 : author => v7

| v8 => ()
end

An Algebra for XML Query 29

Again, the laws will allow us to simplify this to the previous expression

for v2 in children(bib0) do
case v2 of
v3 : book =>
for v6 in children(v3) do
case c of
v7 : author => d

| v8 => ()
end

| v4 => ()
end

These examples illustrate an important feature of the algebra: high-level opera-
tors may be defined in terms of low-level operators, and the low-level operators
may be subject to algebraic laws that can be used to further simplify the ex-
pression.

3.2 Typing Iteration

The typing of for loops is rather subtle. We give an intuitive explanation here,
and cover the detailed typing rules in Section 6.

A unit type is either an element type a[t], a wildcard type ~[t], or a scalar
type s. A for loop

for v in e1 do e2

is typed as follows. First, one finds the type of expression e1. Next, for each unit
type in this type one assumes the variable v has the unit type and one types
the body e2. Note that this means we may type the body of e2 several times,
once for each unit type in the type of e1. Finally, the types of the body e2 are
combined, according to how the types were combined in e1. That is, if the type
of e1 is formed with sequencing, then sequencing is used to combine the types
of e2, and similarly for choice or repetition.

For example, consider the following expression, which selects all author ele-
ments from a book.

for c in children(book0) do
case c of
a : author => a

| b => ()
end

The type of children(book0) is

title[String], year[Integer], author[String]+

30 Mary Fernandez, Jerome Simeon, and Philip Wadler

This is composed of three unit types, and so the body is typed three times.

assuming c has type title[String] the body has type ()
” year[Integer] ” ()
” author[String] ” author[String]

The three result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

(), (), author[String]+

as the type of the iteration, and simplifying yields

author[String]+

as the final type.
As a second example, consider the following expression, which selects all

title and author elements from a book, and renames them.

for c in children(book0) do
case c of
t : title => titl [value(t)]

| y : year => ()
| a : author => auth [value(a)]
end

Again, the type of children(book0) is

title[String], year[Integer], author[String]+

This is composed of three unit types, and so the body is typed three times.

assuming c has type title[String] the body has type titl[String]
” year[Integer] ” ()
” author[String] ” auth[String]

The three result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

titl[String], (), auth[String]+

as the type of the iteration, and simplifying yields

titl[String], auth[String]+

as the final type. Note that the title occurs just once and the author occurs one
or more times, as one would expect.

As a third example, consider the following expression, which selects all basic
parts from a sequence of parts.

An Algebra for XML Query 31

for p in children(part0/subparts) do
case p of
b : basic => b

| c : composite => ()
end

The type of children(part0/subparts) is

(Basic | Composite)+

This is composed of two unit types, and so the body is typed two times.

assuming p has type Basic the body has type Basic
” Composite ” ()

The two result types are then combined in the same way the original unit types
were, using sequencing and iteration. This yields

(Basic | ())+

as the type of the iteration, and simplifying yields

Basic*

as the final type. Note that although the original type involves repetition one
or more times, the final result is a repetition zero or more times. This is what
one would expect, since if all the parts are composite the final result will be an
empty sequence.

In this way, we see that for loops can be combined with case expressions
to select and rename elements from a sequence, and that the result is given a
sensible type.

In order for this approach to typing to be sensible, it is necessary that the unit
types can be uniquely identified. However, the type system given here satisfies
the following law.

a[t1 | t2] = a[t1] | a[t2]

This has one unit type on the left, but two distinct unit types on the right, and so
might cause trouble. Fortunately, our type system inherits an additional restric-
tion from XML Schema: we insist that the regular expressions can be recognized
by a top-down deterministic automaton. In that case, the regular expression
must have the form on the left, the form on the right is outlawed because it
requires a non-deterministic recognizer. With this additional restriction, there is
no problem.

4 Summary of the Algebra

In this section, we summarize the algebra and present the grammars for expres-
sions and types.

32 Mary Fernandez, Jerome Simeon, and Philip Wadler

4.1 Expressions

Figure 1 contains the grammar for the algebra, i.e., the convenient concrete
syntax in which a user may write a query. A few of these expressions can be
rewritten as other expressions in a smaller core algebra; such reducible expres-
sions are labeled with “*”. We define the algebra’s typing rules on the smaller
core algebra. In Section 5, we give the laws that relate a user expression with its
equivalent expression in the core algebra. Typing rules for the core algebra are
defined in Section 6.

We have seen examples of most of the expressions, so we will only point out
details here. We define a subset of expressions that correspond to data values.
An expression is a data value if it consists only of scalar constant, element,
sequence, and empty sequence expressions.

We have not defined the semantics of the binary operators in the algebra. It
might be useful to define more than one type of equality over scalar and element
values. We leave that to future work.

4.2 Types

Figure 2 contains the grammar for the algebra’s type system. We have already
seen many examples of types. Here, we point out some details.

Our algebra uses a simple type system that captures the essence of XML
Schema [35]. The type system is close to that used in XDuce [19].

In the type system of Figure 2, a scalar type may be a UrScalar, Boolean,
Integer, or String. In XML Schema, a scalar type is defined by one of fourteen
primitive datatypes and a list of facets. A type hierarchy is induced between
scalar types by containment of facets. The algebra’s type system can be general-
ized to support these types without much increase in its complexity. We added
UrScalar, because XML Schema does not support a most general scalar type.

A type is either: a type variable; a scalar type; an element type with literal
tag a and content type t; a wildcard type with an unknown tag and content type
t; a sequence of two types, a choice of two types; a repetition type; the empty
sequence type; or the empty choice type.

The algebra’s external type system, that is, the type definitions associated
with input and output documents, is XML Schema. The internal types are in
some ways more expressive than XML Schema, for example, XML Schema has no
type corresponding to Integer* (which is required as the type of the argument
to an aggregation operator like sum or min or max), or corresponding to ~[t]
where t is some type other than UrTree*. In general, mapping XML Schema
types into internal types will not lose information, however, mapping internal
types into XML Schema may lose information.

4.3 Relating Values to Types

Recall that data is the subset of expressions that consists only of scalar constant,
element, sequence, and empty sequence expressions. We write � d : t if data d
has type t. The following type rules define this relation.

An Algebra for XML Query 33

tag a
function f
variable v
integer cint ::= · · · | −1 | 0 | 1 | · · ·
string cstr ::= "" | "a" | "b" | · · · | "aa" | · · ·
boolean cbool ::= false | true
constant c ::= cint | cstr | cbool

operator op ::= + | - | and | or
| = | != | < | <= | >= | >

expression e ::= c scalar constant
| v variable
| a[e] element
| ~e[e] computed element
| e , e sequence
| () empty sequence
| if e then e else e conditional
| let v = e do e local binding
| for v in e do e iteration
| case e of v:p => e | v => e end case
| f(e;. . .;e) function application
| e : t explicit type
| empty(e) emptiness predicate
| error error
| e + e plus
| e = e equal
| children(e) children
| name(e) element name
| e / a projection ∗
| where e then e conditional ∗
| value(e) scalar content ∗
| let v : t = e do e local binding ∗

pattern p ::= a element
| ~ wildcard
| s scalar

query item q ::= type x = t type declaration
| fun f(v:t;...;v:t):t = e function declaration
| let v : t = e global declaration
| query e query expression

data d ::= c scalar constant
| a[d] element
| d , d sequence
| () empty sequence

Fig. 1. Algebra

34 Mary Fernandez, Jerome Simeon, and Philip Wadler

tag a
type name x
scalar type s ::= Integer

| String

| Boolean

| UrScalar

type t ::= x type name
| s scalar type
| a[t] element
| ~[t] wildcard
| t , t sequence
| t | t choice
| t* repetition
| () empty sequence
| ∅ empty choice

unit type u ::= a[t] element
| ~[t] wildcard
| s scalar type

Fig. 2. Type System

� cint : Integer

� cstr : String

� cbool : Boolean

� c : UrScalar

� d : t

� a[d] : a[t]

� d : t

� a[d] : ~[t]

� d1 : t1 � d2 : t2

� d1 , d2 : t1 , t2

� () : ()

An Algebra for XML Query 35

� d : t1

� d : t1 | t2

� d : t2

� d : (t1 | t2)

� d1 : t � d2 : t*

� (d1, d2) : t*

� () : t*

We write t1 <: t2 if for every data d such that � d : t1 it is also the case
that � d : t2, that is t1 is a subtype of t2. It is easy to see that <: is a partial
order, that is it is reflexive, t <: t, and it is transitive, if t1 <: t2 and t2 <: t3
then t1 <: t3. We also have that ∅ <: t for any type t, and a[t] <: ~[t]. We have
s <: UrScalar for every scalar type s. We have t1 <: (t1 | t2) and t2 <: (t1 | t2)
for any t1 and t2. If t <: t′, then a[t] <: a[t′] and t ∗ <:t′∗. And if t1 <: t′1 and
t2 <: t′2 then t1, t2 <: t′1, t

′
2.

We write t1 = t2 if t1 <: t2 and t2 <: t1. Here are some of the equations that
hold.

UrScalar = Integer | String | Boolean
(t1, t2), t3 = t1, (t2, t3)
t, () = t
(), t = t
t1 | t2 = t2 | t1
(t1 | t2) | t3 = t1 | (t2 | t3)
t | ∅ = t
∅ | t = t
t1, (t2 | t3) = (t1, t2) | (t1, t3)
(t1 | t2), t3 = (t1, t3) | (t2, t3)
t, ∅ = ∅
∅, t = ∅
a[t] | ~[t] = ~[t]
t∗ = () | t, t∗

We also have that t1 <: t2 if and only iff t1 | t2 = t2.
We define t? and t+ as abbreviations, by the following equivalences.

t? = () | t
t+ = t, t∗

36 Mary Fernandez, Jerome Simeon, and Philip Wadler

e/a
⇒ for v1 in e do

for v2 in children(v1) do

case v2 of

v3 : a => v3

| v4 => ()

(1)

where e1 then e2

⇒ if e1 then e2 else () (2)

value(e)
⇒ case children(e) of

v1 : UrScalar => v1

| v2 => v2 : ∅

(3)

let v : t = e1 do e2

let v = (e1 : t) do e2 (4)

Fig. 3. Definitions

5 Equivalences and Optimization

5.1 Equivalences

Figure 3 contains the laws that relate the reducible expressions (i.e., those labeled
with “*” in Figure 1) to equivalent expressions. In these definitions, e1

{
e2/v

}

denotes the expression e1 in which all occurrences of v are replaced by e2.
In Rule 1, the projection expression e/a is rewritten as described previously.

Rule 2 rewrites a where expression as a conditional, as described previously.
Rule 3 rewrites value(e) as a case expression which checks whether the content
of e is a scalar value, and if so, returns it. If e is not scalar value, its value
is returned with the empty choice type, which may indicate an error. Rule 4
rewrites the let expression with a type as a let expression without a type by
moving the type constraint into the expression.

5.2 Optimizations

Figure 4 contains a dozen algebraic simplification laws. In a relational query
engine, algebraic simplifications are often applied by a query optimizer before
a physical execution plan is generated; algebraic simplification can often reduce
the size of the intermediate results computed by a query interpreter. The purpose
of our laws is similar – they eliminate unnecessary for or case expressions, or
they enable other optimizations by reordering or distributing computations. The
set of laws given is suggestive, rather than complete.

An Algebra for XML Query 37

E ::= if [] then e1 else e2

| let v = [] do e
| for v in [] do e
| case [] of v1:p => e1 | v2 => e2 end

for v in () do e ⇒ () (5)

for v in (e1 , e2) do e3

⇒ (for v in e1 do e3) , (for v in e2 do e3) (6)

for v in e1 do e2

⇒ e2

{
e1/v

}
, if e : u (7)

case a[e0] of v1:a => e1 | v2 => e2 end

⇒ e1

{
a[e0]/v1

}
(8)

case a′[e0] of v1:a => e1 | v2 => e2 end

⇒ e2

{
a′[e0]/v2

}
, if a �= a′ (9)

for v in e do v ⇒ e (10)

E[if e1 then e2 else e3]
⇒ if e1 then E[e2] else E[e3] (11)

E[let v = e1 do e2]
⇒ let v = e1 do E[e2] (12)

E[for v in e1 do e2]
⇒ for v in e1 do E[e2] (13)

E[case e0 of v1:p => e1 | v2 => e2 end]
⇒ case e0 of v1:p => E[e1] | v2 => E[e2] end (14)

Fig. 4. Optimization Laws

Rules 5, 6, and 7 simplify iterations. Rule 5 rewrites an iteration over the
empty sequence as the empty sequence. Rule 6 distributes iteration through
sequence: iterating over the sequence e1 , e2 is equivalent to the sequence of
two iterations, one over e1 and one over e2. Rule 7 eliminates an iteration over
a single element or scalar. If e1 is a unit type, then e1 can be substituted for
occurrences of v in e2.

Rules 8 and 9 eliminate trivial case expressions.
Rule 10 eliminates an iteration when the result expression is simply the

iteration variable v.

38 Mary Fernandez, Jerome Simeon, and Philip Wadler

Rules 11–16 commute expressions. Each rule actually abbreviates a number
of other rules, since the context variable E stands for a number of different
expressions. The notation E[e] stands for one of the six expressions given with
expression e replacing the hole [] that appears in each of the alternatives. For
instance, one of the expansions of Rule 13 is the following, when E is taken to
be for v in [] do e.

for v2 in (for v1 in e1 do e2) do e3

⇒ for v1 in e1 do (for v2 in e2 do e3)

Rules 7 and 10 together with the above expansion of Rule 13 are exactly
analogous to the three monad laws used with list, bag, and set comprehensions
in nested relational algebra [6,8,22,21] algebra, and derived from a similar use in
functional programming [28]. In effect, these three laws show that the for loop
introduced here is the analogue of a monad for semi-structured data.

Note that the sophisticated type rule for for loops ensures that the left side of
Rule 10 is well typed whenever the right side is. (Originally, a less sophisticated
type rule was used, for which this is not the case.)

In Section 3.1 we claimed that the expression bib0/book translates to

for v1 in bib0 do
for v2 in children(v1) do
case v2 of
v3 : book => v3

| v4 => ()
end

and that this simplifies to

for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end

We can now see that the translation happens via Rule 1, and the simplification
happens via Rule 7.

In that Section, we also claimed that the expression bib0/book/author
translates to

for v5 in (for v2 in children(bib0) do
case v2 of
v3 : book => v3

| v4 => ()
end) do

for v6 in children(v5) do
case v6 of
v7 : author => v7

An Algebra for XML Query 39

| v8 => ()
end

and that this simplifies to

for v2 in children(bib0) do
case v2 of
v3 : book =>
for v6 in children(v3) do
case c of
v7 : author => d

| v8 => ()
end

| v4 => ()
end

We can now see that the translation happens via two applications of Rule 1, and
the simplification happens via Rule 7 and the above instance of Rule 13.

To reiterate, these examples illustrate an important feature of the algebra:
high-level operators may be defined in terms of low-level operators, and the low-
level operators may be subject to algebraic laws that can be used to further
simplify the expression.

6 Type Rules

We explain our type system in the form commonly used in the programming
languages community. For a textbook introduction to type systems, see, for
example, Mitchell [23].

6.1 Environments

The type rules make use of an environment that specifies the types of variables
and functions. The type environment is denoted by Γ , and is composed of a
comma-separated list of variable types, v : t or function types, f : (t1; . . . ; tn) →
t. We retrieve type information from the environment by writing (v : t) ∈ Γ to
look up a variable, or by writing (f : (t1; . . . ; tn) → t) ∈ Γ to look up a function.

The type checking starts with an environment that contains all the types
declared for functions and global variables. For instance, before typing the first
query of Section 2.2, the environment contains: Γ = bib0 : Bib, book0 : Book.
While doing the type-checking, new variables will be added in the environment.
For instance, when typing the query of section 2.3, variable b will be typed
with Book, and added in the environment. This will result in a new environment
Γ ′ = Γ, b : Book.

40 Mary Fernandez, Jerome Simeon, and Philip Wadler

6.2 Type Rules

We write Γ � e : t if in environment Γ the expression e has type t.
The definition of for uses an auxiliary type judgement, given below, and the

definition of case uses an auxiliary function, given below.

Γ � cint : Integer

Γ � cstr : String

Γ � cbool : Boolean

(v : t) ∈ Γ

Γ � v : t

Γ � e : t

Γ � a[e] : a[t]

Γ � e1 : String Γ � e2 : t

Γ � ~e1[e2] : ~[t]

Γ � e1 : t1 Γ � e2 : t2

Γ � e1 , e2 : t1 , t2

Γ � () : ()

Γ � e1 : Boolean Γ � e2 : t2 Γ � e3 : t3

Γ � if e1 then e2 else e3 : (t2 | t3)

Γ � e1 : t1 Γ, v : t1 � e2 : t2

Γ � let v = e1 do e2 : t2

Γ � e1 : t1 Γ ; for v : t1 � e2 : t2

Γ � for v in e1 do e2 : t2

Γ � e0 : u u′ | t′ = splitp(u) Γ, v1 : u′ � e1 : t1 Γ, v2 : t′ � e2 : t2

Γ � case e0 of v1:p => e2 | v2 => e3 end : (t1 if u′ �= ∅) | (t2 if t′ �= ∅)

(f : (t1; . . . ; tn) → t) ∈ Γ
Γ � e1 : t′1 t′1 <: t1

· · ·
Γ � en : t′n t′n <: tn

Γ � f(e1; . . . ; en) : t

An Algebra for XML Query 41

Γ � e : t

Γ � empty(e) : Boolean

Γ � error : ∅

Γ � e : t′ t′ <: t

Γ � (e : t) : t

Γ � e1 : Integer Γ � e2 : Integer

Γ � e1 + e2 : Integer

Γ � e1 : t1 Γ � e2 : t2

Γ � e1 = e2 : Boolean

Γ � e : Integer*

Γ � sum e : Integer

Γ � e : t

Γ � count e : Integer

Γ � error : ∅

The definition of for uses the following auxiliary judgement. We write Γ �
v : tet′ if in environment Γ where the bound variable of an iteration v has type
t1 that the body e of the iteration hast type t2.

Γ, v : u � e : t′

Γ ; for v : u � e : t′

Γ ; for v : () � e : ()

Γ ; for v : t1 � e : t′1 Γ ; for v : t2 � e : t′2
Γ ; for v : t1 , t2 � e : t′1 , t′2

Γ ; for v : ∅ � e : ∅

Γ ; for v : t1 � e : t′1 Γ ; for v : t2 � e : t′2
Γ ; for v : t1 | t2 � e : t′1 | t′2

Γ ; for v : t � e : t′

Γ ; for v : t* � e : t′*

42 Mary Fernandez, Jerome Simeon, and Philip Wadler

To determine the types in a case expression, we use the function splitp(t),
where p is a pattern (either an element a, or a wildcard ~, or a scalar s) and t
is a type. For mnemonic convenience we write a[t′] | t′′ = splita(t) or ~[t′] | t′′ =
split~(t) or s′<:s | t′ = splits(t) but one should think of the function as returning
a pair consisting of two types t and t′, or in the last instance a scalar type s′

and a type t′. The function splitp(t) is undefined if type t involves sequencing,
since a case expression acts on elements or scalars, not sequences.

splita(s) = a[∅] | s
splita(a[t]) = a[t] | ∅
splita(a′[t]) = a[∅] | a′[t] if a �= a′

splita(~[t]) = a[t] | a[t]
splita(t1 | t2) = a[t′1 | t′2] | (t′′1 | t′′2) where a[t′i] | t′′i = splita(ti)
splita(∅) = a[∅] | ∅

split~(s) = ~[∅] | s

split~(a[t]) = ~[t] | ∅
split~(~[t]) = ~[t] | ∅
split~(t1 | t2) = ~[t′1 | t′2] | (t′′1 | t′′2) where ~[t′i] | t′′i = split~(ti)
split~(∅) = ~[∅] | ∅

splits(s′) = s′ <: s | ∅ if s′ <: s
= ∅ <: s | s′ otherwise

splits(a[t]) = ∅ <: s | a[t]
splits(~[t]) = ∅ <: s | ~[t]
splits(t1 | t2) = (s1 | s2) <: s | (t′1 | t′2) where si <: s | t′i = splits(ti)
splits(∅) = ∅ <: s | ∅

6.3 Top-Level Expressions

We write Γ � q if in environment Γ the query item q is well-typed.

Γ � type x = t

Γ, v1 : t1, . . . , vn : tn � e : t′ t′ <: t

Γ � f(v1:t1;...;vn:tn):t = e

Γ � e : t′ t′ <: t

Γ � let v : t = e

Γ � e : t

Γ � query e

We extract the relevant component of a type environment from a query item
q with the function environment(q).

An Algebra for XML Query 43

environment(type x = t) = ()
environment(fun f(v1:t1;...; vn:tn):t) = f : (t1; . . . ; tn) → t
environment(let v : t = e) = v : t

We write � q1 . . . qn if the sequence of query items q1 . . . qn is well typed.

Γ = environment(q1), . . . , environment(qn)
Γ � q1 · · · Γ � qn

� q1 . . . qn

7 Discussion

The algebra has several important characteristics: its operators are orthogonal,
strongly typed, and they obey laws of equivalence and optimization.

There are many issues to resolve in the completion of the algebra. We enu-
merate some of these here.

Data Model. Currently, all forests in the data model are ordered. It may be
useful to have unordered forests. The distinct operator, for example, produces
an inherently unordered forest. Unordered forests can benefit from many opti-
mizations for the relational algebra, such as commutable joins.

The data model and algebra do not define a global order on documents.
Querying global order is often required in document-oriented queries.

Currently, the algebra does not support reference values, which are defined
in the XML Query Data Model. The algebra’s type system should be extended
to support reference types and the data model operators ref and deref should
be supported.

Type System. As discussed, the algebra’s internal type system is closely related to
the type system of XDuce. A potentially significant problem is that the algebra’s
types may lose information when converted into XML Schema types, for example,
when a result is serialized into an XML document and XML Schema.

The type system is currently first order: it does not support function types
nor higher-order functions. Higher-order functions are useful for specifying, for
example, sorting and grouping operators, which take other functions as argu-
ments.

The type system is currently monomorphic: it does not permit the definition
of a function over generalized types. Polymorphic functions are useful for fac-
toring equivalent functions, each of which operate on a fixed type. The lack of
polymorphism is one of the principal weaknesses of the type system.

Operators. We intentionally did not define equality or relational operators on
element and scalar types undefined. These operators should be defined by con-
sensus.

It may be useful to add a fixed-point operator, which can be used in lieu of
recursive functions to compute, for example, the transitive closure of a collection.

44 Mary Fernandez, Jerome Simeon, and Philip Wadler

Functions. There is no explicit support for externally defined functions.
The set of builtin functions may be extended to support other important

operators.

Recursion. Currently, the algebra does not guarantee termination of recursive
expressions. In order to ensure termination, we might require that a recursive
function take one argument that is a singleton element, and any recursive invo-
cation should be on a descendant of that element; since any element has a finite
number of descendants, this avoids infinite regress. (Ideally, we should have a
simple syntactic rule that enforces this restriction, but we have not yet devised
such a rule.)

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison Wesley,
1995.

2. Richard Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

3. P. Buneman, M. Fernandez, D. Suciu. UnQL: A query language and algebra for
semistructured data based on structural recursion. VLDB Journal, to appear.

4. Catriel Beeri and Yoram Kornatzky. Algebraic Optimization of Object-
Oriented Query Languages. Theoretical Computer Science 116(1&2):59–94,
August 1993.

5. Francois Bancilhon, Paris Kanellakis, Claude Delobel. Building an Object-
Oriented Database System. Morgan Kaufmann, 1990.

6. Peter Buneman, Leonid Libkin, Dan Suciu, Van Tannen, and Limsoon Wong.
Comprehension Syntax. SIGMOD Record, 23:87–96, 1994.

7. David Beech, Ashok Malhotra, Michael Rys. A Formal Data Model and Alge-
bra for XML. W3C XML Query working group note, September 1999.

8. Peter Buneman, Shamim Naqvi, Val Tannen, Limsoon Wong. Principles of
programming with complex object and collection types. Theoretical Computer
Science 149(1):3–48, 1995.

9. Catriel Beeri and Yariv Tzaban, SAL: An Algebra for Semistructured Data
and XML, International Workshop on the Web and Databases (WebDB’99),
Philadelphia, Pennsylvania, June 1999.

10. R. G. Cattell. The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
1997.

11. Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML
Query Language for Heterogeneous Data Sources. International Workshop on
the Web and Databases (WebDB’2000), Dallas, Texas, May 2000.

12. Vassilis Christophides and Sophie Cluet and Jérôme Siméon. On Wrapping
Query Languages and Efficient XML Integration. Proceedings of ACM SIG-
MOD Conference on Management of Data, Dallas, Texas, May 2000.

13. S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on
Database Programming Languages, pages 226–242, New York, August 1993.

14. S. Cluet, S. Jacqmin and J. Siméon The New YATL: Design and Specifications.
Technical Report, INRIA, 1999.

15. L. S. Colby. A recursive algebra for nested relations. Information Systems
15(5):567–582, 1990.

An Algebra for XML Query 45

16. Hugh Darwen (Contributor) and Chris Date. Guide to the SQL Standard: A
User’s Guide to the Standard Database Language SQL Addison-Wesley, 1997.

17. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. In International World Wide Web Conference, 1999.
http://www.research.att.com/~mff/files/final.html

18. J. A. Goguen, J. W. Thatcher, E. G. Wagner. An initial algebra approach
to the specification, correctness, and implementation of abstract data types.
In Current Trends in Programming Methodology, pages 80–149, Prentice Hall,
1978.

19. Haruio Hosoya, Benjamin Pierce, XDuce : A Typed XML Processing Language
(Preliminary Report) WebDB Workshop 2000.

20. M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. Proceed-
ings of ACM SIGMOD Conference on Management of Data, pages 393–402,
San Diego, California, June 1992.

21. Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate
functions. Journal of Computer and Systems Sciences, 55(2):241–272, October
1997.

22. Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multi-
dimensional arrays: Design, implementation, and optimization techniques.
SIGMOD 1996.

23. John C. Mitchell Foundations for Programming Languages. MIT Press, 1998.
24. The Caml Language. http://pauillac.inria.fr/caml/.
25. J. Robie, editor. XQL ’99 Proposal, 1999.

http://metalab.unc.edu/xql/xql-proposal.html.
26. H.-J. Schek and M. H. Scholl. The relational model with relational-valued

attributes. Information Systems 11(2):137–147, 1986.
27. S. J. Thomas and P. C. Fischer. Nested Relational Structures. In Advances in

Computing Research: The Theory of Databases, JAI Press, London, 1986.
28. Philip Wadler. Comprehending monads.Mathematical Structures in Computer

Science, 2:461-493, 1992.
29. Philip Wadler. A formal semantics of patterns in XSLT. Markup Technologies,

Philadelphia, December 1999.
30. Limsoon Wong. An introduction to the Kleisli query system and a commentary

on the influence of functional programming on its implementation. Journal of
Functional Programming, to appear.

31. World-Wide Web Consortium XML Query Data Model, Working Draft, May
2000. http://www.w3.org/TR/query-datamodel.

32. World-Wide Web Consortium, XML Path Language (XPath): Version 1.0.
November, 1999. /www.w3.org/TR/xpath.html

33. World-Wide Web Consortium, XML Query: Requirements, Working Draft.
August 2000. http://www.w3.org/TR/xmlquery-req

34. World-Wide Web Consortium, XML Query: Data Model, Working Draft. May
2000. http://www.w3.org/TR/query-datamodel/

35. World-Wide Web Consortium, XML Schema Part 1: Structures, Working
Draft. April 2000. http://www.w3.org/TR/xmlschema-1

36. World-Wide Web Consortium, XML Schema Part 2: Datatypes, Working
Draft, April 2000. http://www.w3.org/TR/xmlschema-2.

37. World-Wide Web Consortium, XSL Transformations (XSLT), Version 1.0.
W3C Recommendation, November 1999. http://www.w3.org/TR/xslt.

Irregularities of Distribution, Derandomization,

and Complexity Theory�

Bernard Chazelle

Department of Computer Science,
Princeton University, and NEC Research Institute

chazelle@cs.princeton.edu

Abstract. In 1935, van der Corput asked the following question: Given
an infinite sequence of reals in [0, 1], define

D(n) = sup
0≤x≤1

∣∣∣ |Sn ∩ [0, x] | − nx
∣∣∣,

where Sn consists of the first n elements in the sequence. Is it possible for
D(n) to stay in O(1)? Many years later, Schmidt proved that D(n) can
never be in o(log n). In other words, there are limitations on how well
the discrete distribution, x �→ |Sn ∩ [0, x] |, can simulate the continuous
one, x �→ nx. The study of this intriguing phenomenon and its numer-
ous variants related to the irregularities of distributions has given rise
to discrepancy theory. The relevance of the subject to complexity theory
is most evident in the study of probabilistic algorithms. Suppose that
we feed a probabilistic algorithm not with a perfectly random sequence
of bits (as is usually required) but one that is only pseudorandom or
even deterministic. Should performance necessarily suffer? In particular,
suppose that one could trade an exponential-size probability space for
one of polynomial size without letting the algorithm realize the change.
This form of derandomization can be expressed by saying that a very
large distribution can be simulated by a small one for the purpose of the
algorithm. Put differently, there exists a measure with respect to which
the two distributions have low discrepancy. The study of discrepancy the-
ory predates complexity theory and a wealth of mathematical techniques
can be brought to bear to prove nontrivial derandomization results. The
pipeline of ideas that flows from discrepancy theory to complexity the-
ory constitutes the discrepancy method. We give a few examples in this
survey. A more thorough treatment is given in our book [15]. We also
briefly discuss the relevance of the discrepancy method to complexity
lower bounds.

1 Facts from Discrepancy Theory

Let (V,S) be a set system, where V = {v1, . . . , vn} is the ground set and S =
{S1, . . . , Sm}, with Si ⊆ V . We wish to color the elements of V red and blue so
� Proceedings of FSTTCS-2000. This work was supported in part by NSF Grant CCR-
96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 46–54, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Irregularities of Distribution, Derandomization, and Complexity Theory 47

that, within each Si, no color greatly outnumbers the other one. To do that, we
choose a function χ that maps each vj ∈ V to an element in {−1, 1}, and we
define the discrepancy of the set Si to be

χ(Si) =
∑

vj∈Si

χ(vj).

The maximum value of |χ(Si)|, over all Si ∈ S, is the discrepancy of the set
system under the given coloring. The discrepancy of the set system itself, denoted
by D∞(S), refers to its minimum discrepancy under all possible colorings. The
L2 norm creates an easier environment to work with, and so we also define

D2(S) def= min
χ

√
χ(S1)2 + · · ·+ χ(Sm)2 ,

where the minimum is taken over all colorings χ : V 	→ {−1, 1}. The discrepancy
can be characterized by using matrices, which is sometimes more convenient. Let
A be the incidence matrix of the set system (V,S): the n columns are indexed
by the elements of V and the m rows are the characteristic vectors of the sets
Si, so that Aij is 1 if vj ∈ Si and 0 otherwise. The discrepancy of the set system,
also denoted by D∞(A), can be expressed as the L∞ norm of a column vector.
Generally, for any p ∈ {1, 2, . . . ,∞}, we have Dp(A) = minx∈{−1,1}n ‖Ax‖p .
The following result of Spencer [44] is tight.

Theorem 1. Any set system (V,S) such that |V | = |S| = n has O(
√
n) dis-

crepancy.

For general set systems with m sets, the bound becomes O(
√
n ln(2m/n)). A

simple, elegant result concerns the case of small-degree set systems. The degree
refers to the maximum number of sets containing a given element. The classical
Beck-Fiala theorem [7] states that:

Theorem 2. The discrepancy of a set system of degree at most t is less than
2t.

Techniques for proving lower bounds often involve spectral arguments and, in
particular, harmonic analysis. The latter comes from the fact that set systems are
often defined by using a convolution operator, which the Fourier transform diag-
onalizes. Bounding the eigenvalues gives us a handle on the L2-norm discrepancy.
Perhaps the simplest result obtained in this manner is Roth’s 1

4 -Theorem [40].

Theorem 3. Any two-coloring of the integers {1, . . . , n} contains an arithmetic
progression whose discrepancy is Ω(n1/4).

There exists a wealth of techniques and results for geometric set systems. In
such cases, it is useful to define the notion of volume discrepancy. Consider the
problem of placing a set P of n points in the unit cube [0, 1]d to minimize the
discrepancy with respect to axis-parallel boxes. The (volume) discrepancy of a
box B =

∏d
k=1 [pk, qk) is defined as

D(B) def= n · vol (B)− |P ∩B|.

48 Bernard Chazelle

Theorem 4. There is a set of n points in [0, 1]d such that the volume discrep-
ancy of any box in [0, 1]d is O(log n)d−1 in absolute value.

Here is a construction in two dimensions [46,47]. Given a nonnegative integer
m, let

∑
i≥0 b1(i) 2

i be its binary decomposition, and let

x1(m) =
∑
i≥0

b1(i)
2i+1

∈ [0, 1).

The numbers x1(m), for 0 ≤ m < n, form the classical van der Corput sequence.
We can use it to define the bit-reversal point set:{

(x1(m),m/n)
∣∣∣ 0 ≤ m < n

}
.

This easily generalizes to d dimensions. Choose d− 1 relatively prime numbers:
2 = p1, p2, . . . , pd−1. The integer m has a unique decomposition in base pk,
m =

∑
i≥0 bk(i)p

i
k, so we can define

xk(m) =
∑
i≥0

bk(i)
pi+1

k

.

The point set

P =
{(

x1(m), . . . , xd−1(m),
m

n

)
: 0 ≤ m < n

}
is called Halton-Hammersley [25] and satisfies Theorem 4.

What about the L2 norm? Let P be a set of n points in the unit square.
Given a box Bq of the form [0, q1) × [0, q2), where q = (q1, q2), the discrepancy
of Bq is

D(Bq) = n · area (Bq)− |P ∩Bq|.
We define the L2-norm discrepancy of P as

D2(P) def=

√∫
[0,1]2

D(Bq)2 dq.

The following result is by Davenport [22].

Theorem 5. It is possible to find a set P of n points in [0, 1]2 such that D2(P) =
O(

√
logn).

We forsake the Halton-Hammersley construction and, instead, turn to a con-
struction based on irrational lattices. Take the set of n = 2k − 1 points of the
form (

{jϕ }, |j|
n

)
,

Irregularities of Distribution, Derandomization, and Complexity Theory 49

for all j (|j| < k), where {x} def= x (mod 1) is the fractional part of x and
ϕ = 1

2 (
√
5 + 1) is the golden ratio. The only property we use about the golden

ratio is the size of the partial quotients of its continued fraction expansion, so
many other choices exist for Theorem 5.

We generalize the discrepancy to Rd in the obvious manner. Given a point
q = (q1, . . . , qd) in the unit cube [0, 1]d, let Bq denote the box [0, q1)×· · ·×[0, qd).
Fix a set P of n points in [0, 1]d, and as usual define the volume discrepancy
D(Bq) at a point q ∈ [0, 1]d as D(Bq) = nq1 · · · qd − |P ∩Bq|. We write D2(P) =√∫

[0,1]d D(Bq)2 dq. The following bound is due to Roth [39], and shows the
optimality of Theorem 5.

Theorem 6. Given a set P of n points in [0, 1]d, the mean-square discrepancy
for axis-parallel boxes satisfies

D2(P) > c(log n)(d−1)/2,

for some constant c = c(d) > 0.

In two dimensions, we have this interesting lower bound by Schmidt [41],
which shows a rare divergence between L2 and L∞ behaviors.

Theorem 7. Given n points in [0, 1]2, there exists a box B such that |D(B)| =
Ω(log n).

We now consider rotated boxes. Given a set P of n points in [0, 1]2, the
discrepancy of a (rotated) box R is defined naturally as D(R) = n · area (R ∩
[0, 1]2)−|P ∩R|. By rotated box, we mean any rectangle not necessarily parallel
to the axes. The following upper bound was established by Beck; see Beck and
Chen’s book [6].

Theorem 8. It is possible to place n points in the unit square [0, 1]2, so that
any (rotated) box R satisfies |D(R)| = O(n1/4

√
logn).

A quasi-matching lower bound was first proven by Beck [5], using his beautiful
Fourier transform method (other proof techniques exist).

Theorem 9. Given n points in the unit square [0, 1]2, there exists a rotated box
R such that |D(R)| = Ω(n1/4).

The same bound holds for disks as well. The proof, by Montgomery [34,35],
also uses harmonic analysis.

Theorem 10. Given n points in the unit square [0, 1]2, there exists a disk K
such that |D(K)| = Ω(n1/4).

50 Bernard Chazelle

2 Sampling

The red-blue discrepancy of a set system tells us how well we can sample its
ground set by choosing about half of its elements. What about different sample
sizes? For example, given a collection of n points in the plane, is it possible to
choose a subset of constant size, such that any disk that encloses at least one
percent of the points also includes at least one sample point? Surprisingly, the
answer is yes. The surprise is that the sample size can be kept independent of
n. The magic lies in the notion of VC dimension.

Let (V,S) be a (finite or infinite) set system. Given Y ⊆ V , let (Y,S|Y)
denote the set system induced by Y , ie, { Y ∩ S |S ∈ S }. A subset Y of V is
said to be shattered (by S) if S|Y = 2Y , ie, every subset of Y (including the
empty set) is of the form Y ∩ S, for some S ∈ S. The supremum of all sizes of
finite shattered subsets of X is called the Vapnik-Chervonenkis dimension (or
VC-dimension for short) of the set system.

Let (V,S) be a finite set system, where |V | = n and |S| = m. Given any
0 < ε < 1, a set N ⊆ V is called an ε-net for (V,S) if N ∩ S �= ∅, for any S ∈ S
with |S|/|V | > ε. A set A ⊆ V is called an ε-approximation for (V,S) if, for any
S ∈ S, ∣∣∣∣ |S||V | −

|A ∩ S|
|A|

∣∣∣∣ ≤ ε.

Equivalently, given a random v uniformly distributed in V , for each S ∈ S,∣∣∣Prob[v ∈ S]− Prob[v ∈ S | v ∈ A]
∣∣∣ ≤ ε.

The following was proven by Chazelle and Matoušek [18], building on the foun-
dational work in [16,26,29,48].

Theorem 11. Let (V,S) be a set system of VC-dimension d. Given any r ≥ 2,
a (1/r)-approximation for (V,S) of size O(dr2 log dr) can be computed in time
O(d)3d(r2 log dr)d|V |.

Theorem 12. Let (V,S) be a set system of VC-dimension d. Given any r ≥ 2, a
(1/r)-net for (V,S) of size O(dr log dr) can be computed in time
O(d)3d(r2 log dr)d|V |.

Note that the set systems are usually understood as members of an infinite
family; for example the set of all points in R2 and the set of all disks. The term
range space is often used in the literature to refer to such a family.

3 Geometric Algorithms

Suppose that we are given a set H of n hyperplanes in Rd. We wish to subdivide
Rd into a small number of simplices, so that none of them is cut by too many
hyperplanes. Given a parameter ε > 0, a collection C of closed full-dimensional

Irregularities of Distribution, Derandomization, and Complexity Theory 51

simplices is called an ε-cutting if: (i) their interiors are pairwise disjoint, and
together they cover Rd; and (ii) the interior of any simplex of C is intersected
by at most εn hyperplanes of H .

Cuttings are among the most useful, versatile tools in computational ge-
ometry, as they lay the grounds for efficient divide-and-conquer [1,2,20,26,27].
Using some of the sampling technology for finite VC dimension discussed earlier,
Chazelle [11] proved the following:

Theorem 13. Given a collection H of n hyperplanes in Rd, for any r > 0,
there exists a (1/r)-cutting for H of optimal size O(rd). A full description of the
cutting, including the list of hyperplanes intersecting the interior of each simplex,
can be found deterministically in O(nrd−1) time.

Here are some direct applications of cuttings: Point location is understood
here as the problem of preprocessing an arrangement of n hyperplanes in Rd so
that, given a query point, the face of the arrangement that contains the point
can be found quickly. Simplex range searching is the problem of preprocessing n
points in Rd so that given a query simplex the points inside it can be counted
quickly.

Theorem 14. Point location amongnhyperplanes in Rd can be done in O(log n)
query time, using O(nd) preprocessing.

Theorem 15. To decide whether n points and n lines in the plane are free of
any incidence can be done in n4/3 ·O(log n)1/3 time.

Theorem 16. Given n points in Rd, there exists a data structure of size m
(for any n ≤ m ≤ nd), which allows simplex range searching to be done in time
O(n1+ε/m1/d) per query, for any fixed ε > 0.

A far more involved application of cuttings and the discrepancy method gives
the following result (and its corollary), which was proven by Chazelle [12]. The
complexity is tight in the worst case.

Theorem 17. The convex hull of a set of n points in Rd can be computed
deterministically in O(n logn+ n�d/2) time, for any fixed d > 1.

Theorem 18. The Voronoi diagram of a set of n points in Ed can be computed
deterministically in O(n logn+ n
d/2�) time, for any fixed d > 1.

Applications to linear and quadratic programming include the following re-
sults by Chazelle and Matoušek [18].

Theorem 19. The ellipsoid of minimum volume that encloses a set of n points
in Rd can be computed in time dO(d2)n.

52 Bernard Chazelle

Theorem 20. Linear programming with n constraints and d variables can be
solved in dO(d)n time.

These last two results build on important previous work. In particular, we
mention the general formalism for linear programming developed by Sharir and
Welzl [43], known as LP-type. The first algorithm for linear programming with a
running time linear in the number of constraints was found by Megiddo [32,33].
Subsequent improvements were found in [19,21,23,24,42].

4 Linear Circuit Complexity

Let A be an n-by-n matrix with 0/1 elements. Consider the task of assembling
A by forming a sequence of column vectors U1, . . . , Us ∈ Zn, where s ≥ n and
(i) (U1, . . . , Un) is the n-by-n identity matrix; (ii) A = (Us−n+1, . . . , Us); and
(iii) for any i = n + 1, . . . , s, there exist j, k < i and αi, βi ∈ Z, such that
Ui = αiUj + βiUk. The minimum length s of any sequence that satisfies these
three conditions is called the complexity ofA. It is easy to see that all 0/1 matrices
have complexity O(n2) and that a random one has complexity Ω(n2/ logn).

The complexity of A is the same as the linear circuit complexity of computing
ATx. (A circuit consists of gates that can add linear forms.) For the case where
|αi|, |βi| = O(1) (which is to be understood from now on), Chazelle’s spectral
lemma [14] gives us a line of attack:

Lemma 1. The complexity of an n-by-n 0/1 matrix A is Ω(maxk k logλk),
where λk is the k-th largest eigenvalue of ATA.

Of course, the same lemma applies to the circuit complexity as well. A recent
variant by Chazelle and Lvov [17] gives us another powerful tool which bypasses
the need to bound individual eigenvalues.

Lemma 2. The complexity of an n-by-n 0/1 matrix A is

Ωε

(
n log

(
trM/n− ε

√
trM2/n

))
,

where M = ATA and ε > 0 is an arbitrarily small constant.

The complexity of range searching relates to the complexity of certain ge-
ometric matrices. A box matrix refers to a set system formed by points and
axis-parallel boxes. Simplex matrices, on the other hand, denote the incidence
matrices of set systems formed by points and simplices in Rd. The following
results, by Chazelle [9,10,13,14], make heavy use of the discrepancy method.

Theorem 21. There are n-by-n box matrices of circuit complexity Ω(n log logn)
in R2 and monotone circuit complexity Ω(n(log n/ log logn)d−1) in Rd.

Theorem 22. There are n-by-n simplex matrices of circuit complexityΩ(n log n)
and monotone circuit complexityΩ(n4/3) in R2.

Recall that the monotone circuit model disallows the use of subtraction.
While the monotone complexity of these problems is essentially resolved (there
are quasi-matching upper bounds), the nonmonotone case is still wide open.

Irregularities of Distribution, Derandomization, and Complexity Theory 53

References

1. Agarwal, P.K. Partitioning arrangements of lines II: Applications, Disc. Comput.
Geom. 5 (1990), 533–573.

2. Agarwal, P.K. Geometric partitioning and its applications, in Computational Ge-
ometry: Papers from the DIMACS Special Year, eds., Goodman, J.E., Pollack, R.,
Steiger, W., Amer. Math. Soc., 1991.

3. Agarwal, P.K., Erickson, J. Geometric range searching and its relatives, in Ad-
vances in Discrete and Computational Geometry, eds. Chazelle, B., Goodman,
J.E., Pollack, R., Contemporary Mathematics 223, Amer. Math. Soc., 1999, pp.
1–56.

4. Alon, N., Spencer, J.H. The Probabilistic Method, Wiley-Interscience, 1992.
5. Beck, J. Irregularities of distribution, I, Acta Math. 159 (1987), 1–49.
6. Beck, J., Chen, W.W.L. Irregularities of Distribution, Cambridge Tracts in Math-

ematics, 89, Cambridge University Press, 1987.
7. Beck, J., Fiala, T. “Integer-making” theorems, Discrete Applied Mathematics 3

(1981), 1–8.
8. Beck, J., Sós, V.T. Discrepancy theory, in Handbook of Combinatorics, Chap. 26,

eds., Graham, R.L., Grötschel, M., Lovász, L., North-Holland, 1995, pp. 1405–1446.
9. Chazelle, B. Lower bounds on the complexity of polytope range searching, J. Amer.

Math. Soc. 2 (1989), 637–666.
10. Chazelle, B. Lower bounds for orthogonal range searching: II. The arithmetic

model, J. ACM 37 (1990), 439–463.
11. Chazelle, B. Cutting hyperplanes for divide-and-conquer, Disc. Comput. Geom. 9

(1993), 145–158.
12. Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Com-

put. Geom. 10 (1993), 377–409.
13. Chazelle, B. Lower bounds for off-line range searching, Disc. Comput. Geom. 17

(1997), 53–65.
14. Chazelle, B. A spectral approach to lower bounds with applications to geometric

searching, SIAM J. Comput. 27 (1998), 545–556.
15. Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge

University Press, 2000.
16. Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in

geometry, Combinatorica 10 (1990), 229–249.
17. Chazelle, B., Lvov, A. A trace bound for the hereditary discrepancy, Proc. 16th

Annual ACM Symp. Comput. Geom. (2000), 64–69. To appear in Disc. Comput.
Geom.

18. Chazelle, B., Matoušek, J. On linear-time deterministic algorithms for optimization
problems in fixed dimension, J. Algorithms 21 (1996), 579–597.

19. Clarkson, K.L. Linear programming in O(n × 3d2
) time, Inform. Process. Lett. 22

(1986), 21–24.
20. Clarkson, K.L. New applications of random sampling in computational geometry,

Disc. Comput. Geom. 2 (1987), 195–222.
21. Clarkson, K.L. Las Vegas algorithms for linear and integer programming when the

dimension is small, J. ACM 42 (1995), 488–499.
22. Davenport, H. Note on irregularities of distribution, Mathematika 3 (1956), 131–

135.
23. Dyer, M.E. On a multidimensional search technique and its application to the

Euclidean one-centre problem, SIAM J. Comput. 15 (1986), 725–738.

54 Bernard Chazelle

24. Dyer, M.E., Frieze, A.M. A randomized algorithm for fixed-dimensional linear pro-
gramming, Mathematical Programming 44 (1989), 203–212.

25. Hammersley, J.M. Monte Carlo methods for solving multivariable problems, Ann.
New York Acad. Sci. 86 (1960), 844-874.

26. Haussler, D., Welzl, E. ε-nets and simplex range queries, Disc. Comput. Geom. 2
(1987), 127–151.

27. Matoušek, J. Construction of ε-nets, Disc. Comput. Geom. 5 (1990), 427–448.
28. Matoušek, J. Geometric range searching, ACM Comput. Surv. 26 (1994), 421–461.
29. Matoušek, J. Approximations and optimal geometric divide-and-conquer, J. Com-

put. Syst. Sci. 50 (1995), 203–208.
30. Matoušek, J. Derandomization in computational geometry, J. Algorithms 20

(1996), 545–580.
31. Matoušek, J. Geometric Discrepancy: An Illustrated Guide, Algorithms and Com-

binatorics, 18, Springer, 1999.
32. Megiddo, N. Linear-time algorithms for linear programming in R3 and related

problems, SIAM J. Comput. 12 (1983), 759–776.
33. Megiddo, N. Linear programming in linear time when the dimension is fixed, J.

ACM 31 (1984), 114–127.
34. Montgomery, H.L. On irregularities of distribution, in Congress of Number Theory

(Zarautz, 1984), Universidad del Páıs Vasco, Bilbao, 1989, pp. 11–27.
35. Montgomery, H.L. Ten Lectures on the Interface Between Analytic Number Theory

and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, No.
84, Amer. Math. Soc., Providence, 1994.

36. Motwani, R., Raghavan, P. Randomized Algorithms, Cambridge University Press,
1995.

37. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods,
CBMS-NSF, SIAM, Philadelphia, PA, 1992.

38. Pach, J., Agarwal, P.K. Combinatorial Geometry, Wiley-Interscience Series in Dis-
crete Mathematics and Optimization, John Wiley & Sons, Inc., 1995.

39. Roth, K.F. On irregularities of distribution, Mathematika 1 (1954), 73–79.
40. Roth, K.F. Remark concerning integer sequences, Acta Arithmetica 9 (1964), 257–

260.
41. Schmidt, W.M. Irregularities of distribution, VII, Acta Arithmetica 21 (1972), 45–

50.
42. Seidel, R. Small-dimensional linear programming and convex hulls made easy, Disc.

Comput. Geom. 6 (1991), 423–434.
43. Sharir, M., Welzl, E. A combinatorial bound for linear programming and related

problems, Proc. 9th Annual Symp. Theoret. Aspects Comput. Sci., LNCS, 577,
Springer-Verlag, 1992, pp. 569–579.

44. Spencer, J. Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985),
679–706.

45. Spencer, J. Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, 1987.
46. van der Corput, J.G. Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38

(1935), 813–821.
47. van der Corput, J.G. Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38

(1935), 1058–1066.
48. Vapnik, V.N., Chervonenkis, A.Ya. On the uniform convergence of relative fre-

quencies of events to their probabilities, Theory of Probability and its Applications
16 (1971), 264–280.

Rewriting Logic as a Metalogical Framework

David Basin1, Manuel Clavel2, and José Meseguer3

1 Institut für Informatik, Universität Freiburg, Germany
2 Department of Philosophy, University of Navarre, Spain
3 Computer Science Laboratory, SRI International, USA

Abstract. Ametalogical framework is a logic with an associated method-
ology that is used to represent other logics and to reason about their
metalogical properties. We propose that logical frameworks can be good
metalogical frameworks when their logics support reflective reasoning
and their theories always have initial models.
We present a concrete realization of this idea in rewriting logic. Theo-
ries in rewriting logic always have initial models and this logic supports
reflective reasoning. This implies that inductive reasoning is valid when
proving properties about the initial models of theories in rewriting logic,
and that we can use reflection to reason at the metalevel about these
properties. In fact, we can uniformly reflect induction principles for prov-
ing metatheorems about rewriting logic theories and their parameterized
extensions. We show that this reflective methodology provides an effec-
tive framework for different, non-trivial, kinds of formal metatheoretic
reasoning; one can, for example, prove metatheorems that relate theo-
ries or establish properties of parameterized classes of theories. Finally,
we report on the implementation of an inductive theorem prover in the
Maude system, whose design is based on the results presented in this
paper.

1 Introduction

A logical framework is a logic with an associated methodology that is employed
for representing and using other logics, theories, and, more generally, formal sys-
tems. A number of logical frameworks have been proposed and to compare them
and analyze their effectiveness, it is helpful to distinguish between their intended
applications. In particular, we can distinguish between logical frameworks, where
the emphasis is on reasoning in a logic, in the sense of simulating its derivations
in the framework logic, and metalogical frameworks, where the emphasis is on
reasoning about logics and even about relationships between logics. Metalogi-
cal frameworks are more powerful, as they include the ability to reason about
a logic’s entailment relation, as opposed to merely being adequate to simulate
entailment.

Induction plays a central rôle in distinguishing logical frameworks from their
metalogical counterparts. In a logical framework, representations of proof rules
are used to construct derivations of (object logic) entailments. This approach is
taken in logical frameworks like Isabelle [34] and the Edinburgh LF [22]. There,

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 55–80, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

56 David Basin, Manuel Clavel, and José Meseguer

one may formalize logics and theories where induction is present within the
theory (e.g., Peano Arithmetic), but induction is not present over the theories.
That is, the framework does not support induction over the terms and proofs of
a theory. In contrast, in a metalogical framework, it is essential to have induction
over theories. Standard proof-theoretic arguments usually require induction over
the formulae or derivations of the object theory. Induction is essential too for
computer science applications, like reasoning about operational semantics.

1.1 Reflective Metalogical Frameworks

In this paper, we propose a new approach to metalogical frameworks motivated
by the following observation. A logic’s syntax and proofs can be viewed as alge-
bras, whose carrier sets are inductively built from syntax and proof constructors.
A logical framework and a metalogical framework can share these as a common
basis. However, whereas for a logical framework the application of these con-
structors suffices to simulate derivations of the object logic, for a metalogical
framework, our representation must additionally preserve the inductive nature
of these algebras. That is, a formalization in the metalogic should have an initial
model corresponding to the syntax and proofs of the formalized object logic.

Our proposal is that for some logical frameworks—namely, those that are
reflective and whose theories have initial models—we can take the step from a
logical framework to a metalogical framework by reflecting at the metalevel the
induction principles for the formalized logics. We sum this up with the slogan
“logical frameworks with reflection and initiality are metalogical frameworks”.

After making this idea precise, we give a concrete realization of it using
rewriting logic and present an example. Our example is a standard one in metar-
easoning: the deduction theorem for minimal logic (of implication). Rewriting
logic is not the only candidate for a reflective metalogical framework, but we
believe it is a good one. Rewriting logic has been demonstrated to be a good
logical framework [11,23,24,30,36,37] and it is balanced on a point where it is
expressive enough to naturally formalize different entailment systems, but it is
weak enough so that its theories always have initial models. This means that
there are sound induction principles for reasoning with respect to these models.
To prove metatheorems about theories in rewriting logic and their parameterized
extensions, the key is to reflect these reasoning principles at the metalevel.

Overall, we see our contributions as both theoretical and practical. Theo-
retically, our work contributes to answering the question “what is a metalogical
framework?” by proposing reflective logical frameworks, whose theories have ini-
tial models, as a possible answer. Moreover, it illuminates the interrelationship
between logical and metalogical frameworks, and the rôle of reflection as a key
ingredient for turning a logical framework with initial models into a metalogical
one. Practically, we provide evidence that rewriting logic, combined with reflec-
tion, is an effective metalogical framework that can be used for nontrivial kinds
of metatheoretic reasoning.

Rewriting Logic as a Metalogical Framework 57

1.2 Related Work

Various approaches have been considered in the past to strengthen logical frame-
works so that they can function as metalogical frameworks. All of these differ
significantly from our proposal both in their logical basis and in the rôle of
reflection in metareasoning.

One approach is to formalize theories in a framework logic supporting some
notion of module, where each module is explicitly equipped with its own in-
duction principle. For example, in [3], theories were formalized by collections of
parameterized modules (Σ-types) within the Nuprl type theory (a constructive,
higher-order logic), and each module included its own induction principle for
reasoning about terms or proofs. This approach is powerful and can be used, for
example, to relate different theories formalized in this way.

An alternative approach is to formalize theories directly using inductive def-
initions in a framework logic or framework theory that is strong enough to for-
malize the corresponding induction principles. A simple example of this is the
first-order theory FS0 of [19], which has been used by [25] to carry out ex-
periments in formal metatheory. In FS0, inductive definitions are terms in the
framework theory, which has an induction rule for reasoning about such terms.

Another common choice is to formalize theories as inductive definitions
in strong “foundational” framework logics such as higher-order logic or set-
theory [21,33], or in a type theory like the calculus of constructions with in-
ductive definitions [32]. In higher-order logic and set theory one can internally
develop a theory of inductive definitions, where inductive definitions correspond
to terms in the metatheory (e.g., formalized as the least fixedpoint of a mono-
tonic function) and, from the definition, induction principles are formally derived
within the framework logic. Alternatively, in the calculus of constructions, given
an inductive definition, induction principles are simply added, soundly, to the
metalogic. Current research in this area focuses on appropriate induction prin-
ciples for logics that support higher-order abstract syntax [17,26,35].

Organization

The remainder of our paper is organized as follows. In Section 2 we present the
idea of a reflective metalogical framework and abstractly formalize our require-
ments for such a metalogic. In Section 3 we present background material on
rewriting logic, membership equational logic, and the Maude language. In Sec-
tion 4 we discuss induction principles for membership equational theories and
present a simple notion of parameterized membership equational theory. In Sec-
tion 5 we discuss how rewriting logic can be used as a logical framework, and in
Sections 6 and 7 we show how to combine initiality and reflection to use rewrit-
ing logic as a metalogical framework. In particular, we show how to reflect, in
a uniform way, induction principles for reasoning, at the metalevel, about the-
ories and their parameterized extensions. After this, we present in Section 8 an
example of formal metareasoning using rewriting logic as a metalogical frame-
work, namely the proof of the deduction theorem, and we draw conclusions in
Section 9.

58 David Basin, Manuel Clavel, and José Meseguer

2 Reflective Metalogical Frameworks

In this section we begin by defining reflective logics. Based on this, we then
describe properties sufficient for a reflective logical framework to function as a
reflective metalogical framework.

2.1 Reflective Logics

Intuitively, a reflective logic is a logic in which important aspects of its metathe-
ory, such as theories and entailment, can be represented and reasoned about in
the logic. A general axiomatic notion of reflective logic was recently proposed
in [7,14]. The notion is itself expressed in terms of the more general axiomatic
notion of an entailment system [27], which captures the entailment relation of a
logic. For our purposes here, an entailment system E consists of the following:

1. a class Sign of signatures, where each signatureΣ ∈ Sign specifies the syntax
of a language;

2. a function sen assigning to each signature Σ ∈ Sign a set sen(Σ) of its
sentences;

3. for each signature Σ ∈ Sign , an entailment relation �Σ , where �Σ ⊆
P(sen(Σ)) × sen(Σ) and �Σ satisfies the properties of reflexivity, mono-
tonicity, and transitivity (or cut); in what follows, we omit the subscript of
�Σ when Σ is clear from the context.

A theory in E = (Sign, sen,�) is then a pair T = (Σ,Γ) consisting of a signature
Σ ∈ Sign and a set of sentences Γ ⊆ sen(Σ). We can extend the entailment
relation to theories in the obvious way by defining (Σ,Γ) � ϕ iff Γ � ϕ, for
ϕ ∈ sen(Σ).

Definition 1 Given an entailment system E and a nonempty set of theories C
in it, a theory U is C-universal if there is a function, called a representation
function,

(�) :
⋃

T∈C
({T } × sen(T)) −→ sen(U) ,

such that for each T ∈ C, ϕ ∈ sen(T),

T � ϕ iff U � T � ϕ . (1)

If, in addition, U ∈ C, then the entailment system E is called C-reflective. Fi-
nally, a reflective logic is a logic whose entailment system is C-reflective for C,
the class of all finitely presentable theories in the logic.

Rewriting Logic as a Metalogical Framework 59

2.2 Requirements for a Reflective Metalogical Framework

We now consider what we require from a logical framework so that it can func-
tion as a metalogical framework. As indicated in Section 1.2, various approaches
to formal metareasoning have been proposed in the past. Our approach is based
on reflective reasoning and initiality, and here we present, abstractly our require-
ments for this. They are:

1. the logical framework is weak enough so that there are valid induction prin-
ciples for reasoning about all its theories,

2. the logical framework is expressive enough so that it really is a viable logical
framework, and

3. the logical framework is reflective.

Note that 1 specifies a requirement on the framework logic and can be alter-
natively formulated in an abstract and logic-independent way. If the framework
logic is such that its theories have initial models, then an appropriate form of
inductive reasoning is always valid when proving sentences with respect to the
initial models of its theories. This method is very general; for example, for equa-
tional logic, induction and initiality are equivalent concepts [31].1

We now explain why the requirements listed above are sufficient for turning a
logical framework into a metalogical framework. If requirement 2 is satisfied, then
logics and their entailment relations can be represented as theories in the logical
framework, and if requirement 1 is also satisfied, then these representations can
preserve the inductive nature of the algebras characterizing the syntax and proofs
of the logics that they represent. As a consequence, proof-theoretic arguments
requiring induction over the formulae or over the derivations of a logic can be
applied in the framework logic. This is enough when proving theorems about a
logic. These theorems can be formalized as sentences about the initial model of
the theory representing the object logic under consideration, and can be proved
by induction.

However, when dealing with metatheorems we often require something more.
Metatheorems may relate different logics in a family of logics. Consider, for ex-
ample, the deduction theorem for minimal logic (of implication). This is actually
a metatheorem not about a particular deduction system, but rather a metathe-
orem that relates different deduction systems: one in which A → B is proved
and a second (which is obtained from the first by adding the axiom A) in which
B is proved. In our setting, this means that sentences formalizing metatheorems
should relate initial models of different theories. Here is where reflection plays a
decisive rôle. Namely, if the logical framework satisfies requirement 3, then: (3a)
1 Since the notion of initiality is very general, the corresponding inductive reasoning
principles may in each case take different forms. For example, in an equational logic
allowing infinitary operations of arity smaller than a given regular cardinal α, the
inductive principles will be transfinite. We are mainly interested in logical frameworks
suitable for representing finitary logics. Therefore, we will in practice be interested
in a finitary framework logic whose theories have initial models and whose induction
principles are also finitary.

60 David Basin, Manuel Clavel, and José Meseguer

it contains a universal theory where the metalevel of its logic can be reflected,
and (3b) the universal theory is itself a theory in the logical framework. By 3b
and 1 the universal theory has an initial model. The key then is to exploit 3a in
order to formalize relationships between the initial models of object theories as
theorems about the initial model of the universal theory, and turn, by reflection,
induction principles for reasoning about the initial models of object theories into
induction principles for reasoning about the initial model of the universal theory.

In the following sections, we will give a concrete instance of these ideas for
the case of rewriting logic. In particular, we will show that for a certain class of
rewriting logic theories the induction principles for reasoning, at the metalevel,
about these theories correspond, in a simple way, to the induction principles for
reasoning about the inductive properties of the theories. Moreover, by reasoning
by induction in the universal theory we can inductively reason about properties
satisfied by families of theories. This provides us with capabilities analogous to
what is possible in metalogical frameworks based on parameterized inductive
definitions.

3 Background

In this section we provide background material on rewriting logic, membership
equational logic, and the Maude language. The material presented here is stan-
dard. We postpone discussion of the reflective aspects to Section 6.

3.1 Rewriting Logic

Rewriting logic [28] is a simple logic whose sentences are sequents of the form
t −→ t′, with t and t′ Ω-terms on a given signature Ω. Theories in rewriting logic
are triples (Ω,E,R), with Ω a signature of operators, E a set of Ω-equations,
and R a collection of (possibly conditional [28]) Ω-rewrite rules.

The inference rules of rewriting logic [28] allow the derivation of all rewrites
possible in a given theory. Thus, from the logical point of view, we can think of
rewriting logic as a framework logic in which formulae are formalized as elements
of the initial model of an equational theory (Ω,E) and an inference system is
formalized by expressing each inference rule as a (possibly conditional) rewrite
rule. Rewriting is understood modulo the equations E. This supports a flexible
and abstract kind of inference where the equations can take care of structural
bookkeeping. For example, when formalizing sequent calculi, structural rules
for sequents can be “internalized” by rewriting modulo appropriate equational
axioms such as associativity, associativity-commutativity, and so on.

Since a rewrite theory (Ω,E,R) has an underlying equational theory (Ω,E),
rewriting logic is parameterized by the choice of the equational logic. An attrac-
tive choice in terms of expressiveness is membership equational logic [29], a logic
that has sorts, subsorts, overloading of function symbols, and is capable of ex-
pressing partiality using equational conditions. Since we can view an equational

Rewriting Logic as a Metalogical Framework 61

theory (Ω,E) as a rewrite theory (Ω,E, ∅), there is an obvious sublogic inclu-
sion, MEqtl ⊆ RWLogic, from membership equational logic into rewriting logic.
Both membership equational logic and rewriting logic have initial models [28,29],
which provide the basis for reasoning by induction.

3.2 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full
account of the syntax and semantics of membership equational logic can be found
in [6,29]. Here we define the basic notions needed in this paper.

A signature in membership equational logic is a tripleΩ = (K,Σ, S) withK a
set of kinds, Σ a K-kinded signature Σ = {Σw,k}(w,k)∈K∗×K , and S = {Sk}k∈K

a pairwise disjoint K-kinded family of sets. We call Sk the set of sorts of kind
k. The pair (K,Σ) is what is usually called a many-sorted signature of function
symbols; however we call the elements of K kinds because each kind k now has
a set Sk of associated sorts, which in the models will be interpreted as subsets of
the carrier for the kind. Also, as usual, we denote by TΣ the K-kinded algebra
of ground Σ-terms, and by TΣ(X) the algebra of Σ-terms on the K-kinded set
of variables X .

The atomic formulae of membership equational logic are either equations
t = t′, where t and t′ are Σ-terms of the same kind, or membership assertions
of the form t : s, where the term t has kind k and s ∈ Sk. Sentences are Horn
clauses on these atomic formulae, i.e., sentences of the form

∀(x1, . . . , xm). A1 ∧ . . . ∧An ⇒ A0 ,

where each Ai is either an equation or a membership assertion, and each xj is a
K-kinded variable. For example, Figure 1 gives a set of membership equational
axioms specifying minimal logic of implication, where SentConstant, Formula,
and Theorem are sorts formalizing sentential constants, formulae, and theorems,
respectively.2 A theory in membership equational logic is a pair (Ω,E), where
E is a finite set of sentences in membership equational logic over the signature
Ω. The way in which partiality is expressed in membership equational logic is
by the fact that terms always have a kind, but may not have a sort. Terms for
which a sort cannot be established from the axioms E correspond to undefined
or error elements.

We employ standard semantic concepts from many-sorted logic. Given a sig-
nature Ω = (K,Σ, S), an Ω-algebra is a many-kinded Σ-algebra (that is, a
K-indexed-set A = {Ak}k∈K together with a collection of appropriately kinded
functions interpreting the function symbols in Σ) together with an assignment
to each sort s ∈ Sk of a subset As ⊆ Ak. Hence, sorts can be thought of as
unary predicates that semantically denote subsets of the appropriate kind. An
algebra A and a (kind-respecting) valuation σ, assigning to variables of kind

2 Note that we write the object logic connective ! in infix. We will consider this
example in more detail in Section 5.

62 David Basin, Manuel Clavel, and José Meseguer

∀A.A :SentConstant ⇒ A :Formula,
∀A.A :Theorem ⇒ A :Formula,
∀(A,B). A :Formula ∧ B :Formula ⇒ A!B :Formula,
∀(A,B). A :Formula ∧ B :Formula ⇒ A!(B!A) :Theorem,
∀(A,B, C). A :Formula ∧ B :Formula ∧ C :Formula
⇒ (A!B)!((A!(B!C))!(A!C)) :Theorem,

∀(A,B). A :Formula ∧ B :Formula ∧ (A!B) :Theorem ∧ A :Theorem
⇒ B :Theorem

Fig. 1. Membership equational axioms for minimal logic.

k values in Ak, satisfy an equation t = t′ iff σ(t) = σ(t′), where we overload
notation by identifying σ with its unique homomorphic extension to Σ-terms.
We write A, σ |= t = t′ to denote such a satisfaction. Similarly, A, σ |= t :s holds
iff σ(t) ∈ As.

Note that an Ω-algebra is nothing but a K-kinded first-order model with
function symbols Σ and an alphabet of unary predicates {Sk}k∈K . Therefore,
the satisfaction relation can be extended to Horn and first-order formulae φ over
these atomic formulae in the standard way. We write A |= φ when the formula
φ is satisfied for all valuations σ, and then say that A is a model of φ. Similarly,
a theory (Ω,E) in membership equational logic is simply a Horn theory for the
associated signature, when Ω is viewed as first-order K-kinded signature. As
usual, for φ a first-order sentence in the language of Ω, we write (Ω,E) |= φ
when all the models of the set E of sentences are also models of φ.

Theories in membership equational logic have initial models [29]. This pro-
vides the basis for reasoning by induction, as is explained in detail in Section 4.1.
We write (Ω,E) |� φ to denote that the initial model of the membership equa-
tional logic theory (Ω,E) is also a model of φ. Note that even though we restrict
the axioms E to Horn clauses, we will employ first-order formulae φ to formalize
properties satisfied by the initial model, that is, inductive properties.

3.3 The Maude System

The Maude system [9,13] implements rewriting logic and has been designed with
the explicit aims of supporting executable specification and reflective computa-
tion. Theories are specified in Maude by modules, of which there are two kinds:
functional modules and system modules. Maude’s functional modules are theories
in membership equational logic. Equations in Maude’s functional modules are
assumed to be Church-Rosser and terminating; they are executed by the Maude
rewrite engine according to the rewriting techniques and operational semantics
developed in [6]. Maude’s system modules are rewrite theories. The rules in a
system module are not necessarily Church-Rosser or terminating.

The semantics of a functional (respectively system) module is initial, i.e., such
a module denotes the initial model in membership equational logic (respectively
rewriting logic) of the theory thus specified. The syntax for functional modules

Rewriting Logic as a Metalogical Framework 63

fmod MINIMAL is

sorts SentConstant Formula Theorem .

subsort SentConstant < Formula .

subsort Theorem < Formula .

op ! : Formula Formula -> Formula .

vars A B C : Formula .

mb A ! (B ! A) : Theorem .

mb (A ! B) ! ((A !(B ! C)) ! (A ! C)) : Theorem .

cmb B : Theorem if (A ! B) : Theorem and A : Theorem .

endfm

Fig. 2. The module MINIMAL.

is of the form fmod (Ω,E) endfm, with (Ω,E) a membership equational theory
meeting the requirements mentioned above. Figure 2 gives an example of a func-
tional module in Maude syntax, where LATEX symbols are used instead of ASCII
characters to improve readability. Note that Maude’s syntax for functional mod-
ules is syntactic sugar for introducing finite sets of membership axioms (Figure 2
is just the sugared version of Figure 1), and we will use it from now on to present
membership equational theories. In particular, (possibly conditional) equations
and membership axioms in Maude are Horn clauses in membership equational
logic; any operation declaration op f:s1 . . . sn -> s corresponds to the Horn
clause

∀(x1, . . . , xn). x1 :s1 ∧ . . . ∧ xn :sn ⇒ f(x1, . . . , xn) :s ,

where xi is a variable of kind ki and si ∈ Ski , for i ∈ {1, . . . , n}; also, any subsort
declaration subsort s < s′ can be reduced to the sentence

∀x. x :s ⇒ x :s′ ,

where x is a variable of kind k and s, s′ ∈ Sk. Finally, kinds are not explicitly
defined in Maude modules, but are instead inferred by the system as determined
by the different connected components of the poset of sorts.

As additional syntactic sugar, we shall often write ∀x : s. φ(x) as shorthand
for the formula ∀x. x :s ⇒ φ(x), for x a variable of kind k and s ∈ Sk. Moreover,
for the formula x :s ⇒ φ(x), we will say that “x is of sort s (in φ).”

4 Induction and Parameterization

In this section we introduce two concepts that play key rôles in the rest of the
paper. We define an induction principle for membership equational theories and
show how such theories can also be parameterized. We introduce these concepts
in a simple setting that is adequate to illustrate the main ideas and carry out
applications.

64 David Basin, Manuel Clavel, and José Meseguer

4.1 Induction Principles for Membership Equational Theories

Given that membership equational logic is a subset of equational Horn logic
(indeed, they can be shown to be equivalent [29]) it follows immediately that
any theory (Ω,E) has a unique (up to isomorphism) initial model [20]. The
following is an induction principle for reasoning about properties of sorts, with
respect to this model.

Definition 2 (Induction over sort definitions) Let T = (Ω,E) be a theory
in membership equational logic and let s be a sort in some Sk. Let C[T,s] =
{C1, . . . , Cn} be those sentences in E that specify s, i.e., those Ci of the form

∀(x1, . . . , xpi). A1 ∧ . . . ∧Aqi ⇒ A0 , (2)

where, for some t of kind k and s ∈ Sk, A0 is t :s.
For τ a first-order formula with free variable x of sort s over the signature

Ω, an induction principle for (Ω,E), with respect to x :s and τ(x) is the formula

ψ1 ∧ . . . ∧ ψn ⇒ ∀x :s. τ(x) (3)

where, for 1 ≤ i ≤ n and Ci of the form (2), ψi is

∀(x1, . . . , xpi). [A1]τ ∧ . . . ∧ [Aqi]τ ⇒ [A0]τ (4)

and, for 0 ≤ j ≤ qi,

[Aj]τ =
{
τ(u) if Aj = u :s, for u of kind k
Aj otherwise

For a given membership equational theory (Ω,E), the above defines an induction
schema (ind), given by (3), in many-kinded first-order logic over the signature
Ω.3 Note that for qi = 0, the nullary conjunction in the antecedent of (4) is true
and the implication can be replaced with the succedent τ(t).

In the initial model of a membership equational theory, sorts are interpreted
as the smallest sets satisfying the axioms in the theory, and equality is inter-
preted as the smallest congruence satisfying those axioms. Alternatively, the sets
interpreting sorts can be characterized as being inductively generated in stages.
This corresponds to the fixedpoint characterization of the least Herbrand model
of a collection of Horn clauses [38], and the induction principle we have given
formalizes induction over the stages in which the set is inductively defined [1]. By
induction over the stages of the inductive definition of a sort s, which amounts
to an induction over the proof that some ground term of kind k is of sort s,
we can establish that reasoning in the membership equational theory (Ω,E),
augmented by (ind), is sound.
3 This induction schema cannot be directly formalized in the sublogic membership
equational logic, since it is not, in general, a sentence in membership equational
logic. However, as we will later see, inference rules for (many-kinded) first-order
theories—like this induction schema—can be encoded in rewriting logic and can be
used to prove properties, at the metalevel, about membership equational theories.

Rewriting Logic as a Metalogical Framework 65

Theorem 1 (Soundness) Let (Ω,E) be a membership equational theory. If
(Ω,E ∪ {(ind)}) � τ , then (Ω,E) |� τ .

As an example, consider the membership equational theory for minimal logic
previously given in Figure 1. Definition 2 gives rise to the following induction
principle over the sort Theorem:

[∀(A,B). (A :Formula ∧ B :Formula ⇒ τ(A→(B→A))) ∧
∀(A,B,C). (A :Formula ∧ B :Formula ∧ C :Formula
⇒ τ((A→B)→(A→(B→C))→(A→C))) ∧

∀(A,B). (A :Formula ∧ B :Formula∧ τ(A→B) ∧ τ(A) ⇒ τ(B)]
⇒ ∀A :Theorem. τ(A)

This axiom formalizes induction over the structure of proofs in minimal logic.
Note that other induction principles are possible. In particular (ind) takes

all of the sentences that specify membership in s as constituting the inductive
definition of s. In some cases, a subset of the sentences (sometimes called gen-
erators or constructors) is sufficient to characterize an inductive definition. Of
course additional proof obligations then arise, e.g., sufficient completeness of the
chosen subset (see [6,10]).

4.2 Parameterized Membership Equational Theories

When carrying out metalogical reasoning, we often reason not about a fixed
theory, but about a parameterized family of theories. There are many different
ways in which a theory in membership equational logic may be parameterized.
For the purposes of this paper it will be enough to consider the notion of a
parameterized extension of a given theory T which, intuitively, describes the
extensions of T by a parametric set of new axioms.

Definition 3 Let T = (Ω,E) be a theory in membership equational logic with
Ω = (K,Σ, S). Then, a parameterized extension of T (by parameters V , and
axioms G) is a membership equational theory TG[V] = (Ω[V], E ∪ G), with
Ω[V] = (K,Σ ∪ V, S), where the K-kinded signatures Σ and V are mutually
disjoint and V consists only of constants. We call TG[V] a parameterized mem-
bership equational theory.

Let β : V −→ TΣ be a K-kinded function. Then, TG[β] = (Ω,E ∪ β(G))
denotes an instance of TG[V], where β(G) is the homomorphic extension of β
to axioms.

The substitution β is used to generate instances of a parameterized mem-
bership equational theory. Namely, the new axioms G are instantiated so that
all instances of variables in V are replaced by ground terms. For example, if
G = {f(v) : s} and β(v) = q(a, b), then the parametric axiom f(v) : s is
translated as β(f(v) : s) = f(q(a, b)) : s. The result is well-kinded under the
(non-parameterized) signature Ω.

66 David Basin, Manuel Clavel, and José Meseguer

fmod MINIMALΞ[X] is
sorts SentConstant Formula Theorem .

subsort SentConstant < Formula .

subsort Theorem < Formula .

op X : -> Formula .

op ! : Formula Formula -> Formula .

vars A B C : Formula .

mb X : Theorem .

mb A ! (B ! A) : Theorem .

mb (A ! B) ! ((A !(B ! C)) ! (A ! C)) : Theorem .

cmb B : Theorem if (A ! B) : Theorem and A : Theorem .

endfm

Fig. 3. The module MINIMALΞ [X].

Figure 3, provides an example of a parameterized module MINIMALΞ [X], with
X a parameter of the kind of the sort Formula, and Ξ a set that contains only the
parametric axiom X:Theorem. We will later see how this parameterized module
can be used to formalize the deduction theorem.

5 Rewriting Logic as a Logical Framework

As we have already said, from the logical point of view we can think of rewriting
logic as a framework logic in which an inference system can be formalized by
expressing each inference rule as a (possibly conditional) rewrite rule in a rewrite
theory (Ω,E,R). Note that rewriting logic is noncommittal about the structure
and properties of the formulae expressed by Ω-terms. They are user-definable as
an algebraic data type satisfying equational axioms, so that rewriting deduction
takes place modulo such axioms. Because of this ecumenical neutrality and the
simplicity of the rules of the logic, rewriting logic can be effectively applied as a
logical framework. In [11,23,24,30,36,37], many examples of logic representations
are given, including first-order linear logic, sequent presentations of modal and
propositional logics, Horn logic with equality, the lambda calculus, and higher-
order pure type systems, among others. In all such examples, the representational
distance between the object logic and its representation in rewriting logic is
virtually zero, that is, the representations are direct and reasoning with them
faithfully simulates reasoning in the original logics.

In fact, there are several ways of conservatively representing a logic (with a
finitary syntax and inference system) in rewriting logic. As mentioned before,
a simple and direct way is to turn the inference rules into rewrite rules, which
may be conditional if the inference rules have side conditions. Alternatively, we
can use the underlying membership equational logic to represent theoremhood
in a logic as a sort in a membership equational theory. Conditional membership
axioms then directly support the representation of rules as schemas, which is
typically used in presenting logics and formal systems. The module MINIMAL,

Rewriting Logic as a Metalogical Framework 67

presented previously in Figure 2, represents minimal logic in membership equa-
tional logic using this idea. A formula A is a theorem in minimal logic if and
only if A is a term of sort Theorem in MINIMAL. Note that this representation
preserves the inductive nature of the set of theorems and proofs in minimal logic.

Similarly, we can represent theoremhood in a parameterized family of logics
as a sort in a parameterized membership equational theory.4 As an example,
consider the parameterized theory MINIMALΞ [X] in Figure 3, with X a parameter
of the kind of the sort Formula, and Ξ a set that contains only the parametric
axiom X:Theorem. This parameterized theory represents the family of logics that
includes any extension of minimal logic with a new axiom in the following sense:
a formula B is a theorem in minimal logic extended with a new axiom A if and
only if B is a term of sort Theorem in MINIMALΞ [A], where MINIMALΞ [A] is the
instance MINIMALΞ [β] of MINIMALΞ [X], with β(X) = A.

The ability to represent parameterized families of logics is important for using
rewriting logic also as a metalogical framework, and we will give an example of
this in the experimental work reported on in Section 8.

6 Reflection in Rewriting Logic and Maude

In this section we explain how rewriting logic is reflective and how the Maude sys-
tem implements reflective rewriting logic deduction. We also introduce a Boolean
function that reflects at the metalevel the membership relation in membership
equational logic, which will be used in later sections. Finally, we explain how
to combine the use of rewriting logic as a logical framework and the reflective
capabilities of Maude to build a theorem prover for carrying out inductive proofs.

6.1 Reflection in Rewriting Logic

Rewriting logic is reflective [7,15,16]. There is a universal theory UNIVERSAL, and
a representation function (�) encoding pairs consisting of a rewrite theory T
and a sentence in it as sentences in UNIVERSAL. For any finitely presented rewrite
theory T (including UNIVERSAL itself) and any terms t, t′ in T , the representation
function is defined by

T � t −→ t′ = 〈T , t〉 −→ 〈T , t′〉 ,
where T , t, t′ are terms in UNIVERSAL. Then, the equivalence (1) in Section 2
holds for rewriting logic (as proved in [7,15,16]) and takes the form

T � t −→ t′ iff UNIVERSAL � 〈T , t〉 −→ 〈T , t′〉 .
4 A sort in a parameterized membership equational theory can be used to represent
theoremhood in a family of logics if and only if there is a one–to–one correspon-
dence between logics in the family and instances of the parameterized membership
equational logic theory, and this correspondence is such that theoremhood in a logic
in the family can be represented as membership in this sort in the corresponding
instance of the parameterized membership equational logic.

68 David Basin, Manuel Clavel, and José Meseguer

6.2 Reflection in Maude

Maude’s language design and implementation make systematic use of the fact
that rewriting logic is reflective to give the user a well-defined gateway to
the metatheory of rewriting logic. This entry point is the predefined module
META-LEVEL, which is a (partial) specification in Maude of UNIVERSAL [8]. In the
module META-LEVEL, a Maude term t is reified as an element t of a data type
Term of terms, and a Maude module T , i.e., a membership equational theory,
is reified as a ground term T in a data type Module of modules. See [8] for a
complete definition of the module META-LEVEL and of the metarepresentation
map for theories and terms.

The metarepresentation of a parameterized membership equational theory
TG[V] is similar to that of an unparameterized theory T , except that parameters
are treated in a special way. The parametric nature of TG[V] is expressed in its
metarepresentation TG[V] by the fact that each parameter v ∈ V is represented
by a (meta-) variable v of sort Term.

Note that since, in Definition 3, a parameterized theory TG[V] is technically
defined as an ordinary membership equational theory (plus some extra informa-
tion), one could metarepresent TG[V] as an ordinary theory, and then one would
get a ground term of sort Module, instead of a term with variables. Therefore,
our notation TG[V] is potentially confusing, since it depends on whether TG[V] is
metarepresented as a parameterized entity or as an unparameterized one. Rather
than introducing new notation, we have chosen to solve the possible ambigui-
ties by the context in which they occur. In particular, having introduced TG[V]
as a parameterized membership equational theory, TG[V] will always denote
the metarepresentation of TG[V] as a parameterized entity. The same rule ap-
plies when metarepresenting parameterized terms in parameterized membership
equational theories.

To reason about metarepresented (parameterized) theories we have defined,
in an extension META-IND of META-LEVEL, a Boolean function (: in) that re-
flects at the metalevel the membership relation in membership equational logic.
(The theory is so named because it is in this theory that we will prove inductive
metatheorems.) In particular, (t :s in T) checks, at the metalevel, whether the
ground term t has the sort s in the functional module T . Specifically, this check
of membership is based on the equivalence

T � t :s ⇐⇒ META-IND � t:s in T = true.

In [2] we give the full specification of (: in) for a restricted subclass C of
modules. Members of C are modules that correspond, basically, to membership
equational theories whose axioms are Horn clauses that only involve membership
assertions (no equations). The Boolean function (: in) will play a key rôle in
the rest of this paper.

In what follows, C will always denote the above mentioned subclass of mod-
ules. In addition, for any parameterized membership equational theory TG[V],
we write TG[V] ∈ C iff for any instance TG[β] of TG[V], TG[β] ∈ C. We also write

Rewriting Logic as a Metalogical Framework 69

V for the set of variables of sort Term that metarepresent the parameters v ∈ V
in TG[V].

6.3 Building an Inductive Theorem Prover

In Section 4.1 we have presented induction principles for reasoning about first-
order formulae over sorts defined in functional modules, i.e., membership equa-
tional theories. Here we explain how to combine the use of rewriting logic as a
logical framework and the reflective capabilities of Maude to build a theorem
prover for carrying out inductive proofs. The paper [10] provides further details
on building theorem proving tools in Maude.

To build an inductive theorem prover, we use rewriting logic to specify its
inference system (as explained in Section 5) and reflection to define strategies
that control rule application. Strategies are needed here since inference rules will
be specified as rewrite rules that are not necessarily Church-Rosser or terminat-
ing. Hence, it is important to have some way of controlling the application of
these rewrite rules in order to drive rewriting in some desired direction. Maude
users can control rewriting by specifying, at the metalevel, their own rewriting
strategies. (See [7,9] for more details on defining strategies in Maude.)

Our inductive theorem prover—the ITP tool5—has a reflective design. The
functional module T , about which we want to prove inductive theorems, is at
the object level. An inference system I for inductive proofs uses T as data
and therefore is specified as a system module ITP-RULES at the metalevel. In
particular, ITP-RULES encodes syntax and proof rules for first-order logic as well
as the induction over sort definitions introduced in Definition 2. Finally, different
proof tactics to guide the application of the rewrite rules specifying the inference
rules in I are strategies, which are defined at the meta-metalevel in a module
ITP-TACTICS.

Operationally, to use the ITP tool, the user submits as an initial goal the pair
formed by (the metarepresentation) of a functional module and (the representa-
tion of) the first-order sentence over its signature that is to be proved, and then
this goal is successively transformed by rewriting—using the inference rules as
rewrite rules—into different sets of subgoals, until (in the case of a successful
proof) no subgoals are left. The application of the inference rules as rewrite rules
is controlled by the user using strategies.

Finally, note that building the theorem prover using different levels of re-
flection results in a modular design with a clean separation between the logical
and the control components. For example, we can simply extend the tool by
specifying additional inference rules in the module ITP-RULES without changing
the strategy language defined in the module ITP-TACTICS and vice versa.

5 http://sophia.unav.es/~clavel contains the most recent version of this tool.

http://sophia.unav.es/~clavel

70 David Basin, Manuel Clavel, and José Meseguer

7 Rewriting Logic as a Metalogical Framework

We now show how the induction principles introduced in Section 4.1 for reason-
ing in membership equational theories can be uniformly reflected for reasoning,
at the metalevel, about membership equational theories and their parameter-
ized extensions. The results presented in this section provide the basis for using
rewriting logic as a metalogical framework.

7.1 Inductive Theorems versus Inductive Metatheorems

The induction principle presented in Section 4.1 is well-suited for proving prop-
erties of ground terms of sort s in a given membership equational theory (Ω,E),
with Ω = (K,Σ, S), and s a sort in some Sk, when these properties are ex-
pressible as first-order formulae over the signature Ω; when this is the case, a
property P holds if the first-order formula that expresses P holds in the initial
model of (Ω,E). Of course, there are many interesting properties satisfied by
ground terms of sort s that cannot be expressed as first-order formulae over
the signature Ω, despite the fact that they are typically proved by induction
over the definition of the sort s, e.g., properties that relate different membership
equational theories. Many of these properties can be naturally expressed, at the
metalevel, as first-order formulae over the signature of META-IND. Consider, for
example, the following property: let T = (Ω,E) ∈ C and T ′ = (Ω′, E′) ∈ C be
membership equational theories; then the property

if t is a ground term of sort s in T ,
then t is also a ground term of sort s′ in T ′

is not expressible as a first-order formula over either T or T ′. Notice that,
using the Boolean function (: in), we can express this as a first-order formula
at the metalevel, namely,

∀x : Term. (x:s in T = true ⇒ x:s′ in T ′ = true) . (5)

The situation is similar when proving properties of ground terms of sort s for
all instances TG[β] of a parameterized theory TG[V] ∈ C. Consider the following
generalization of the above statement. Let TG[V] ∈ C be a parameterized exten-
sion of T = (Ω,E), with V = {v1, . . . , vn}, and ki the kind of the parameter vi.
Then we might formalize that for all instances TG[β] of TG[V]

if t is a ground term of sort s in TG[β],
then t is a ground term of sort s′ in T ′.

Again, we cannot express this property as a first-order formula over the signature
of any particular instance of TG[V]. Notice, however, that, using the Boolean
function (: in), we can formalize this as

∀(V : Term, x : Term). ((v1 :s1 in T = true ∧ . . . ∧ vn :sn in T = true)

⇒ (x :s in TG[V] = true ⇒ x :s′ in T ′ = true)) , (6)

where, for each parameter vi ∈ V , si is a sort in Ski .

Rewriting Logic as a Metalogical Framework 71

We claim that instances of both (5) and (6) can be proved by induction
in a way that mirrors their expected inductive proofs (we will show this for a
particular example in Section 8). To see this, the crucial observation—allowing
us to mirror inductive reasoning over a sort s in a theory T (or in a parameterized
extension TG[V]) by inductive reasoning over META-IND—is the following. Let s
be a sort in T defined by a set of Horn clauses {C1, . . . , Cn}. By the definition
of the Boolean function (: in), the set of ground terms u of sort Term such
that

u:s in T = true (7)

is precisely the set of terms of the form u = t, for t a ground term of sort s
in T , and can be defined inductively by a set of Horn clauses {C1, . . . , Cn}
that reflect, at the metalevel, the set of Horn clauses {C1, . . . , Cn}. The idea is
that we can then use {C1, . . . , Cn} to derive an induction rule (ind) to prove
metaproperties about the ground terms of sort s in T , in exactly the same way
as we obtained the induction rule (ind) from {C1, . . . , Cn} in Definition 2. Since
each Ci mirrors at the metalevel the corresponding Ci, inductive metareasoning
with (ind) also mirrors inductive reasoning with (ind). Notice that, when dealing
with parameterized extensions, the resulting induction rule (ind) will have to be
universally quantified over the variables representing the parameters.

7.2 Metalevel Inference Rules for Parameterized Theories

We now formalize the above intuitions and introduce a new inference rule for
proving a broad class of metatheorems about parameterized membership equa-
tional theories. These metatheorems correspond to inductive properties of the
initial model of the module META-IND of the general form

∀(V : Term, x : Term). ((v1:s1 in T = true ∧ . . . ∧ vm:sm in T = true)

⇒ ((x:s in TG[V] = true ∧ Φ) ⇒ φ)) ,

where φ and Φ range over first-order formulae over the signature of the module
META-IND. The formulae (5) and (6) above are instances of this general form. In
the case of (5), the nonparameterized theory T constitutes a trivial parameter-
ized extension T∅[∅] of itself.

The soundness of the inference rule that we introduce is based on the fact
that, for any instance TG[β] of TG[V], the set of terms of sort Term that metarep-
resent terms of sort s in TG[β] is inductively defined. In essence, the new inference
rule reflects at the metalevel the induction principle defined in Definition 2 for
reasoning over the terms of sort s in any instance of TG[V].

First, we define for any parameterized extension TG[V] = (Ω[V], E ∪ G) ∈
C, with Ω[V] = (K,Σ ∪ V, S), and any sort s in some Sk, a set of clauses
C [TG[V],s], that mirrors, at the metalevel, the set of Horn clauses C[TG[V],s] that
inductively define the terms of sort s in TG[V]. (Recall that parameters in V are
metarepresented as variables of sort Term.) Then, we define an inference rule for
proving certain metatheorems about TG[V].

72 David Basin, Manuel Clavel, and José Meseguer

Definition 4 Let TG[V] = (Ω[V], E∪G) ∈ C be a parameterized extension, with
Ω[V] = (K,Σ ∪ V, S), and let s0 be a sort in some Sk, such that C[TG[V],s0] =
{C1, . . . , Cn} is the set of sentences of the form

∀(x1, . . . , xpi). t1 :s1 ∧ . . . ∧ tqi :sqi ⇒ t0 :s0

that specify s0 in TG[V].
We define C [TG[V],s0] = {C1, . . . , Cn}, where, for 1 ≤ i ≤ n, Ci is

∀(x1, . . . , xpi).
t̂1:s1 in TG[V] = true ∧ . . . ∧ t̂qi:sqi in TG[V] = true

⇒ t̂0:s0 in TG[V] = true ,

where {x1, . . . , xpi} are variables of the kind of the sort Term, and, for 0 ≤ i ≤ qi,
t̂i is the metarepresentation of the term ti, except that any variable x in ti is not
metarepresented but, instead, it is replaced by a (meta-) variable x of the kind
of the sort Term. Note that, in general, some clauses in C[TG[V],s0] may contain
free variables.

Definition 5 Let TG[V] = (Ω[V], E∪G) ∈ C be a parameterized extension, with
Ω[V] = (K,Σ ∪ V, S) and V = {v1, . . . , vm}. Let s0 be a sort in some Sk and
let C[TG[V],s0] = {C1, . . . , Cn} be those sentences of the form

∀(x1, . . . , xpi). t1 :s1 ∧ . . . ∧ tqi :sqi ⇒ t0 :s0, (8)

that specify s0 in TG[V]. Finally, let τ be a first-order formula, with free variable
x of the kind of the sort Term, of the form

∀V :Term. ((v1:z1 in T = true ∧ . . . ∧ vm:zm in T = true)

⇒ ((x:s0 in TG[V] = true ∧ Φ) ⇒ φ)) ,

where, for each parameter vi ∈ V , zi ∈ Ski , for ki the kind of vi.
An inductive inference rule for META-IND, with respect to x and τ(x) is the

formula

(∀V : Term. (v1:z1 in T = true ∧ . . . ∧ vm:zm in T = true)
⇒ [C1]τ ∧ . . . ∧ [Cn]τ)

⇒ ∀x : Term. τ(x) ,
(9)

where, for each Ci of the form (8), Ci is defined as in Definition 4, and [Ci]τ is
the formula

∀(x1, . . . , xpi).
[t̂1:s1 in TG[V] = true]τ ∧ . . . ∧ [t̂qi:sqi in TG[V] = true]τ

⇒ [t̂0:s0 in TG[V] = true]τ

where, for 0 ≤ j ≤ qi,

[t̂j:sj in TG[V] = true]τ =
{
(Φ ⇒ φ)(t̂j) if sj = s0
t̂j:sj in TG[V] = true otherwise.

The soundness of the inference rule (9) is proved in [2].

Rewriting Logic as a Metalogical Framework 73

7.3 Building a Inductive Metatheorem Prover

In Section 6.3 we indicated how it is possible to use reflection in Maude to
design modular, extensible, theorem proving tools. In particular, we explained
the reflective design of the ITP tool and how we implemented the inference
rule (3) for induction over sort definitions. For carrying out formal metatheory,
we have also extended the ITP tool with the inductive inference rule (9). It is
this extended version of the tool that we have used in the experimental work
reported on in the next section.

8 An Example

In this section we give an example that illustrates how rewriting logic can be
used as a reflective metalogical framework. Our example is a standard one in
metareasoning, namely, the deduction theorem.

8.1 The Deduction Theorem for Minimal Logic

We present here the deduction theorem for minimal logic of implication. This
theorem is interesting for several reasons. To begin with, it is a central metathe-
orem that holds for Hilbert systems for many logics and justifies proof under
temporary assumption in the manner of a natural deduction system. Moreover,
although relatively simple, it illustrates some subtle aspects of formal metarea-
soning. For example, it is actually a metatheorem not about a particular deduc-
tion system, but rather a metatheorem that relates different deduction systems:
one in which A → B is proved, and a second (which is obtained from the first by
adding the axiom A) in which B is proved. Indeed, since A is an arbitrary for-
mula, the standard statement of the deduction theorem is actually a statement
about the relationship between a family of pairs of deduction systems.

For A and B formulae, we write �M A to denote that A is a theorem in
minimal logic, and �M[A] B to denote that if minimal logic is extended with
the additional axiom A, then B belongs to the resulting set of theorems. The
deduction theorem then states that, for any formulae A and B in minimal logic,

if �M[A] B then �M A→B . (10)

This metatheorem is proven by induction on the structure of derivations in
minimal logic extended with the axiom A.

Formalization. Consider now the representation of minimal logic in rewrit-
ing logic provided by MINIMAL in Figure 2, and its parameterized extension
MINIMALΞ [X] introduced in Figure 3. Recall that MINIMAL represents minimal
logic in the sense that a formula A is a theorem in minimal logic if and only if
A is a term of sort Theorem. We can rephrase the deduction theorem as follows:
for any formulae A and B, if B is a term of sort Theorem in MINIMALΞ [A], then
A→B is a term of sort Theorem in MINIMAL.

74 David Basin, Manuel Clavel, and José Meseguer

Notice that this theorem states an implication between the truth of two
membership assertions over two different membership equational theories (in
fact, a whole family of such pairs, since A is a parameter). Hence, to formalize
the deduction theorem, we must move up a level, to META-IND. We claim that
the following formula formalizes the deduction theorem as a metatheorem about
the initial model of META-IND:

∀(X , B) : Term. (11)
((X:Formula in MINIMAL = true ∧ B:Formula in MINIMAL = true)
⇒ (B:Theorem in MINIMALΞ [X] = true

⇒ (X→B):Theorem in MINIMAL = true)) ,

where in the term denoted by X→B the (meta-) variables X and B of sort Term
are not metarepresented as if they were object level variables, but are instead
preserved as (meta-) variables. From now on, we will follow the same convention
for terms of this kind, i.e., terms that include elements of sort Term in META-IND.

When performing metareasoning we must reason about terms being well-
sorted with respect to particular theories, in this case, the membership equa-
tional theory MINIMAL. For this reason, we have explicitly assumed in our for-
malization of the deduction theorem the well-typedness of X and B. Of course,
standard textbook proofs also require this, but such well-formedness details are
usually glossed over as trivial. The correctness of the formalization then follows
from the definition of the Boolean function (: in) and the fact that MINIMAL
is a conservative representation of minimal logic.

Note, incidentally, that the requirement that B is a formula in minimal logic
is actually superfluous and can be dropped (we will do so for the proof below).
It is provable (again by induction) that any theorem in any extension of minimal
logic with a new axiom is also a formula in minimal logic.

Proof of the Deduction Theorem. We show here how we prove (11). Note
that our proof mirrors the standard proof of the deduction theorem.

To prove (11) in META-IND we apply the reflected version of the induction
principle for the sort Theorem in the parameterized extension MINIMALΞ [X], that
is, the corresponding instance of the inference rule (9). This reduces proving (11)
to proving the formula given in Figure 4. Notice that the four conjuncts corre-
spond to the cases involved in proving the deduction theorem by induction over
the proof that B is a theorem in minimal logic extended with the axiom A. The
first formalizes the case when B is X . The next two conjuncts formalize the cases
where B is either an instance of the K or S axiom schemata. The final conjunct
formalizes the case of B being proved by an instance of modus ponens.

By the theorem of constants for membership equational logic [29], we can
reduce proving this formula to proving the four conjuncts that result from re-
placing the variable X by a new constant symbol x of sort Term, under the
assumption that

x:Formula in MINIMAL = true. (12)

Rewriting Logic as a Metalogical Framework 75

∀X : Term.[
X:Formula in MINIMAL = true

⇒
[(X!X):Theorem in MINIMAL = true

∧
(∀(A,B). (A:Formula in MINIMALΞ [X] = true ∧

B:Formula in MINIMALΞ [X] = true)

⇒ (X!(A!(B!A))):Theorem in MINIMAL = true)
∧
(∀(A,B, C). (A:Formula in MINIMALΞ [X] = true ∧

B:Formula in MINIMALΞ [X] = true ∧
C:Formula in MINIMALΞ [X] = true)

⇒ (X!((A!B)!((A!(B!C))!(A!C)))):Theorem in MINIMAL

= true)
∧
(∀(A,B). (A:Formula in MINIMALΞ [X] = true ∧

B:Formula in MINIMALΞ [X] = true ∧
X!(A!B):Theorem in MINIMAL = true ∧
X!A:Theorem in MINIMAL = true)

⇒ (X!B):Theorem in MINIMAL = true)]]

Fig. 4. Goal resulting after induction

The proof of each of the resulting conjuncts mirrors the proof of the corre-
sponding case in the standard inductive proof of the deduction theorem. In
what follows, MINIMALΞ [x] denotes the term of sort Module that results from
MINIMALΞ [X] by replacing the free variable X of sort Term by the new constant
symbol x. Consider, for example, how we prove the third conjunct:

∀(A,B,C). (13)
A:Formula in MINIMALΞ [x] = true ∧
B:Formula in MINIMALΞ [x] = true ∧
C:Formula in MINIMALΞ [x] = true

⇒ (x→((A→B)→((A→(B→C))→(A→C))):Theorem
in MINIMAL = true) .

Using the theorem of constants again, we can reduce proving (13) to proving

x→((a→b)→((a→(b→c))→(a→c))):Theorem
in MINIMAL = true , (14)

76 David Basin, Manuel Clavel, and José Meseguer

under the assumptions that a, b, c are new constants of sort Term such that

a:Formula in MINIMALΞ [x] = true ∧
b:Formula in MINIMALΞ [x] = true ∧
c:Formula in MINIMALΞ [x] = true .

(15)

Note that, from the assumptions (12) and (15), by using the fact (which must
be proven separately) that any theorem in any extension of minimal logic with a
new axiom is a well-formed formula in minimal logic, we can derive the formula

a:Formula in MINIMAL = true ∧
b:Formula in MINIMAL = true ∧
c:Formula in MINIMAL = true ∧
x:Formula in MINIMAL = true .

(16)

Finally, we prove (14) using the equations in META-IND and (16). This proof
mirrors the proof that, for any formulae X , A, B, and C,

X→((A→B)→((A→(B→C))→(A→B))) (17)

is a theorem in minimal logic; in particular, this proof mirrors proving (17) by
modus ponens, using the following instance of the S axiom

(A→B)→((A→(B→C))→(A→C))

and the following instance of the K axiom

[(A→B)→((A→(B→C))→(A→C))]
→ (X→[(A→B)→((A→(B→C))→(A→C))]) .

8.2 Other Examples and Experience

We have used rewriting logic as a reflective metalogical framework to carry out
a number of other proofs in formal metatheory based on more sophisticated
versions of the deduction theorem for minimal logic. In particular, we have
proved results similar to those of Basin and Matthews [4,5], who have shown
how metatheorems that are parameterized by their scope of application can be
proved using a theory of parameterized inductive definitions as a metatheory. For
example, they present a generalized version of the deduction theorem that can
be applied to all extensions of the language and axioms of minimal logic. From
their theorem it follows that the deduction theorem holds for the minimal logic
of implication and for any propositional extension of it, but not necessarily for
extensions to modal logics (which would require adding new rules, as opposed to
new axioms). Although rewriting logic is based on a rather different foundation
than those considered in [5], our representation of the object logic is quite simi-
lar and—abstracting away from the details involved in moving between levels of
representation—the basic structure of the proofs is also similar.

Rewriting Logic as a Metalogical Framework 77

One promising area to apply our results is program transformation and
metaprogramming. From a reflective declarative point of view, programs that
transform other programs are first-order functions acting on terms that metarep-
resent theories, and the properties that they satisfy are metatheorems, as they
are understood in this paper. This reflective declarative methodology has been
used in [12] to specify polytypic programs like map and cata in Maude. Ac-
cordingly, polytypic programs are specified as metalevel functions that add to a
module the equations defining the desired object function by structural induction
over the sort definitions. Properties of polytypic programs, like the functoriality
of map, are then metatheorems that can be proved, as it is showed in [12], using
the corresponding induction rule (Definition 5).

Here we would also like to comment on our experience in proving these the-
orems and on the issue of managing proofs that combine reasoning at differ-
ent levels. To the working logician or computer scientist, reflective metalogical
frameworks may seem complicated and not particularly user-friendly since there
is quite a bit of encoding involved in stating a metatheorem and in carrying out
its proof. In particular, reasoning can involve three or more levels (object, meta,
meta-meta, ...).6

In our case, we have been able to avoid many of the practical problems of
working with a reflective hierarchy by exploiting the reflective capabilities of
Maude to build tools and suitable interfaces that hide levels of reflection. As
part of our work, we have built an interface—fully specified in Maude—to in-
teract with the ITP inductive theorem prover described in Sections 6.3 and 7.3.
As already explained, ITP automatically extracts from a theory the induction
principles for reasoning over its sorts (Definition 2), and (in its metaprover exten-
sion) the induction rules that correspond to reflecting those induction principles
at the metalevel when the task at hand is to prove a metatheorem (Definition 5).
Proving an inductive theorem then amounts to computing a strategy at the meta-
metalevel, or at the meta-meta-metalevel if the theorem is, as in the case of (11),
a metatheorem about the initial model of META-IND. Fortunately, the interface
we use hides all these levels of encoding from the user. Hence the user can ac-
tually abstract away many of the metarepresentation details and focus on the
essential structure of proofs of theorems.

9 Conclusion

We have presented, both abstractly and concretely, a new approach to metathe-
oretic reasoning based on using reflective logical frameworks whose theories have
initial models. Initial experiments demonstrate that the machinery for reflective
deduction in membership equational logic provides a rich foundation for formal-
izing and proving metatheorems. Our experiments show, for example, that one
6 Although note that reasoning about a logic encoded as an inductive definition in
a logical framework like Isabelle also involves multiple levels, e.g., the framework’s
metalogic, the theory of inductive definitions, and the object logic. Moreover, there
is often an additional language for writing tactics.

78 David Basin, Manuel Clavel, and José Meseguer

can prove metatheorems similar to those provable in logical frameworks based on
parameterized inductive definitions, and that one has considerable flexibility in
moving between theories and proving theorems that relate theories or establish
properties of parameterized classes of theories. In essence, we can do this because
the requirements that such metatheorems pose on the metatheory—namely, that
one can build families of sets using parameterized inductive definitions and that
one can reason about their elements by induction—are realizable in membership
equational logic using reflection.

There are a number of directions for further work. One concerns generaliz-
ing our notion of a parameterized theory. Currently we can reason at the met-
alevel about families of theories that are parameterized by sets of new constants
and new axioms, which may make use of the new constants. For proving other
metatheorems it would be useful to develop a more general theory representation
calculus where one could reason at the metalevel about families of theories that
are parameterized by arbitrary sets of new sorts, operators, and axioms. In par-
ticular, this would allow us to prove metatheorems involving the more general
parameterized modules of Full Maude [9,18].

Also, our example illustrates how it is possible to carry out proofs similar to
those possible in stronger framework logics. However, it would be interesting to
have a more formal comparison of the relative strengths of membership equa-
tional logic with reflection versus stronger metalogics like higher-order logic or
set theory. Finally, related to this is the question of how easy it is to reflect induc-
tion principles other than structural induction, e.g., induction over an arbitrary,
user-definable well-founded order.

Acknowledgments

This research was supported by DARPA through Rome Laboratories Contract
F30602-C-0312, by DARPA and NASA through Contract NAS2-98073, by Office
of Naval Research Contract N00014-99-C-0198, and by National Science Foun-
dation Grant CCR-9900334. The authors also thank Narciso Mart́ı-Oliet for his
careful reading of a draft of this paper and his detailed suggestions for improving
the exposition.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook
of Mathematical Logic, pages 739–782. North-Holland, Amsterdam, 1977.

2. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
Technical report, September 2000, http://maude.csl.sri.com.

3. D. Basin and R. Constable. Metalogical frameworks. In G. Huet and G. Plotkin,
editors, Logical Environments, pages 1–29. Cambridge University Press, 1993.

4. D. Basin and S. Matthews. Scoped metatheorems. In International Workshop on
Rewriting Logic and its Applications, volume 15, pages 1–12. Electronic Notes in
Theoretical Computer Science (ENTCS), September 1998.

http://maude.csl.sri.com

Rewriting Logic as a Metalogical Framework 79

5. D. Basin and S. Matthews. Structuring metatheory on inductive definitions. In-
formation and Computation, 2000. To appear.

6. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

7. M. Clavel. Reflection in General Logics and in Rewriting Logic with Applications
to the Maude Language. PhD thesis, University of Navarre, 1998.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Met-
alevel computation in Maude. In C. Kirchner and H. Kirchner, editors, Second
International Workshop on Rewriting Logic and its Applications, volume 15 of
Electronic Notes in Theoretical Computer Science, pages 3–23, Pont-à-Mousson,
France, September 1998. Elsevier.

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com.

10. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proceedings of the CafeOBJ Symposium ’98,
Numazu, Japan. CafeOBJ Project, April 1998.

11. M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In J. Wing and J. Woodcock, editors, FM’99 — Formal Methods,
volume 1709 of Lecture Notes in Computer Science, pages 1684–1703. Springer-
Verlag, 1999.

12. M. Clavel, F. Durán, and N. Mart́ı-Oliet. Polytypic programming in Maude. To
appear in Proc. WRLA 2000, ENTCS, Elsevier, 2000.

13. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, First International Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science, pages
65–89, Asilomar (California), September 1996. Elsevier.

14. M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In
G. Kiczales, editor, Proceedings of Reflection’96, pages 263–288, San Francisco
(California), April 1996. Xerox PARC.

15. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, First International Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science, pages
125–147, Asilomar (California), September 1996. Elsevier.

16. M. Clavel and J. Meseguer. Reflection in condition rewriting logic. Manuscript.
Submitted for publication, 2000.

17. J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher-
order abstract syntax. In Proceedings of the 3rd International Conference on Typed
Lambda Calculi and Applications (TLCA’97), volume 1210 of Lecture Notes in
Computer Science, Nancy, France, April 1997. Springer-Verlag.

18. F. Durán. A Reflective Module Algebra with Applications to the Maude Language.
PhD thesis, University of Málaga, 1999.

19. S. Feferman. Finitary inductively presented logics. In Logic Colloquium ’88. North-
Holland, 1988.

20. J. Goguen and J. Meseguer. Models and equality for logical programming. In
H. Ehrig, G. Levi, R. Kowalski, and U. Montanari, editors, Proceedings TAP-
SOFT’87, volume 250 of Lecture Notes in Computer Science, pages 1–22. Springer-
Verlag, 1987.

21. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.

http://maude.csl.sri.com

80 David Basin, Manuel Clavel, and José Meseguer

22. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, January 1993.

23. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. Technical Report SRI-CSL-93-05, SRI International, Computer Science Lab-
oratory, August 1993. To appear in D. Gabbay, ed., Handbook of Philosophical
Logic, Kluwer Academic Publishers.

24. N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks. In D. Gab-
bay, editor, What is a Logical System?, pages 355–392. Oxford University Press,
1994.

25. S. Matthews, A. Smaill, and D. Basin. Experience with FS0 as a framework theory.
In G. Huet and G. Plotkin, editors, Logical Environments, pages 61–82. Cambridge
University Press, 1993.

26. R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax.
In Twelfth Annual IEEE Symposium on Logic in Computer Science, June 1997.

27. J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic Collo-
quium’87, pages 275–329. North-Holland, 1989.

28. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

29. J. Meseguer. Membership algebra as a semantic framework for equational spec-
ification. In F. Parisi-Presicce, editor, Proceedings of WADT’97, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer-Verlag, 1998.

30. J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwicht-
enberg, editors, Computational Logic, NATO Advanced Study Institute, Markto-
berdorf, Germany, July 29 - August 6, 1997. Springer-Verlag, 1998.

31. J. Meseguer and J. A. Goguen. Initiality, induction and computability. In M. Ni-
vat and J. C. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541.
Cambridge University Press, 1985.

32. C. Paulin-Mohring. Inductive Definitions in the System Coq — Rules and Prop-
erties. In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed
Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Sci-
ence, 1993.

33. L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
Proceedings of the 12th International Conference on Automated Deduction (CADE-
12), volume 814 of Lecture Notes in Artificial Intelligence, Nancy, France, June
1994. Springer-Verlag.

34. L. C. Paulson. Isabelle : a generic theorem prover; with contributions by Tobias
Nipkow, volume 828 of Lecture Notes in Computer Science. Springer, Berlin, 1994.

35. C. Schürmann and F. Pfenning. Automated theorem proving in a simple meta-
logic for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of the 15th
International Conference on Automated Deduction (CADE-15), volume 1421 of
Lecture Notes in Computer Science, pages 286–300, Lindau, Germany, July 1998.
Springer-Verlag.

36. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In
Proc. of LFM’99: Workshop on Logical Frameworks and Meta-languages, 1999.
http://www.cs.bell-labs.com/~felty/LFM99/.

37. M.-O. Stehr, P. Naumov, and J. Meseguer. A proof-theoretic approach to the
HOL-Nuprl connection with applications to proof translation. Manuscript, SRI
International, http://www.csl.sri.com/~stehr/fi_eng.html, February 2000.

38. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. J. ACM, 23:733–42, 1976.

http://www.cs.bell-labs.com/~felty/LFM99/
http://www.csl.sri.com/~stehr/fi_eng.html

Frequency Assignment in Mobile Phone Systems

Martin Grötschel

Konrad-Zuse-Zentrum f¨ur Informationstechnik and
Technische Universit¨at Berlin

Wireless Communication and Frequencies

Wireless communication technology is the basis of radio and television broadcasting, it
is used in satellite-based cellular telephone systems, in point-to-multipoint radio access
systems, and in terrestrial mobile cellular networks, to mention a few such systems (see
[5] for more detailed information).

Wireless communication networks employ radio frequencies to establish communica-
tion links. The available radio spectrum is very limited. To meet today’s radio commu-
nication demand, this resource has to be administered and reused carefully in order to
control mutual interference. The reuse can be organized via separation in space, time, or
frequency, for example. The problem, therefore, arises to distribute frequencies to links
in a “reasonable manner”. This is the basic form of the frequency assignment problem.
What “reasonable” means, how to quantify this measure of quality, which technical side
constraints to consider cannot be answered in general. The exact specification of this
task and its mathematical model depend heavily on the particular application consid-
ered.

Mobile Cellular Networks, GSM

I will concentrate here on terrestrial mobile cellular networks, an application that has
revolutionized the telephone business in the recent years and is going to have further
significant impact in the years to come. Even in this special application the frequency as-
signment problem has no universal mathematical model. I will focus on the GSM stan-
dard (GSM stands for “General System for Mobile Communication”), which has been
in use since 1992. GSM is the basis of almost all cellular phone networks in Europe.
It is employed in more than 100 countries serving several hundred million customers.
The new worldwide standard UMTS (Universal Mobile Telecommunication System)
is expected to become commercially available around 2002. It is frequently covered in
the public press at present because of the enormous amounts of money telephone com-
panies are paying in the national frequency auctions. UMTS handles frequency reuse
in an even more intricate manner than GMS: frequency or time division are used in
combination with code division multiple access (CDMA) technology.

Channel Spectrum

The typical situation in GSM frequency planning is as follows. A telephone company
(let us call it theoperator) has bought the right to use a certain spectrum of frequencies

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 81–86, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

82 Martin Grötschel

[fmin, fmax] in a particular geographical region, e.g., a country. The frequency band is
– depending on the technology utilized – partitioned into a set ofchannels, all with the
same bandwidth∆. The available channels are usually denoted by1, 2, . . . , N , where
N = (fmax − fmin)/∆. In Germany, for instance, an operator of a mobile phone
network owns about 100 channels. On each channel available, one can communicate
information from a transmitter to a receiver. For bidirectional traffic a second channel
is needed. In fact, if an operator buys a spectrum[fmin, fmax] he automatically obtains
a paired spectrum of equal width for bidirectional communication. One of these spectra
is used for mobile to base station (up-link), the other for base station to mobile (down-
link) communication.

BTSs, TRXs, and Cells

To serve his customers an operator has to solve a number of nontrivial problems. In an
intitial step the geographical distribution of the communication demand for the plan-
ning period is estimated. Based on these figures, a communication infrastructure has
to be installed capable to serve the anticipated demand. The devices handling the radio
communication with the mobile phones of the customers are called Base Transceiver
Stations (BTS). They have radio transmission and reception equipment, including an-
tennas and all necessary signal processing capabilities. An antenna of a BTS can be
omni-directional or sectorized. The typical BTS used today operates three antennas
each with an opening angle of 120 degrees. Each such antenna defines acell. These
cells are the basic planning units (and that is why mobile phone systems are also called
cellular phone systems).

The capacity of a cell is defined by the number of transmitter/receiver units, called
TRXs, installed for this antenna. The first TRX handles the signalling and offers capac-
ity for up to six calls (by time division). Additional TRXs can typically handle 7 or 8
further calls – depending on the extra signalling load. No more than 12 TRXs can be
installed for one antenna, i.e., the maximum capacity of a cell is in the range of 80 calls.
That is why areas of heavy traffic (e.g., airports, business centers of big cities) have to
be subdivided into many cells.

BSCs, MSCs, and the Core Network

In a next planning step, the operator has to locate and install the so called Base Station
Controllers (BSCs). Each BTS has to be connected (in general via cable) to such a
BSC, while a BSC operates several BTSs in parallel. A BSC is, e.g., in charge of the
management of hand-overs.

Every BSC, in turn, is connected to a Mobile Service Switching Center (MSC). The
MSCs are connected to each other through the so calledcore network, which has to
carry the “backbone traffic”. The location planning for BSCs and MSCs, the design of
the topology of the core network, the optimization of the link capacities, routing, fail-
ure handling, etc., constitute major tasks an operator has to address. We do not intend
to discuss here the roles of all the devices that make up a mobile phone network and

Frequency Assignment in Mobile Phone Systems 83

their mutual interplay in detail. This brief sketch is just meant to indicate that telecom-
munication network planning is quite a complex task.

Channel Assignment, Hand-Over

We have seen that the TRXs are the devices that handle radio communication with the
mobile phones of the customers. The operators in Germany maintain networks of about
5,000 to 15,000 TRXs and have around 100 channels available. Thus, the question arises
how to best distribute the channels to the TRXs.

An operational mobile phone emits signals that allow the network to roughly keep track
of where the mobile phone is currently located. This is done via so called control chan-
nels. Whenever a communication demand arises, the system decides which TRX is
going to handle the communication. This decision is based on the signal strengths of
the various TRXs that are able to communicate with the phone as well as on the current
traffic. The mobile phone is tuned to the channel of the TRX that presently appears to
serve the phone best. If the phone moves (e.g., in a car) the communication with its cur-
rent TRX may become poor. The system monitors the reception quality and may decide
to use a TRX from another cell. Such a switch is called hand-over.

This short discussion shows that a mobile phone typically is not only in one cell. In fact,
some cells must overlap, otherwise hand-overs are not possible.

Interference

Whenever two cells overlap and use the same channel, interference (signal-to-noise
ratio at the receiving end of a connection) occurs in the area of cell intersection. More-
over, antennas may cause interference far beyond their cell limits. The computation of
the level of interference is a difficult task. It depends not only on the channels, the sig-
nals’ strength and direction, but also on the shape of the environment, which strongly
influences wave propagation. There are a number of theoretical methods and formulas
with which interference can be quantified. Most mobile phone companies base their
analysis of interference on some mathematical model taking transmitter power, dis-
tances, fading and filtering factors into account. The data for these models typically
come from terrain and building data bases but may also include vegetation data. They
combine this with practical experience and extensive measurements. The result is an
interference prediction model with which the so calledco-channel interference that oc-
curs when two TRXs transmit on the same channel is quantified. There may also be
adjacent-channel interference when two TRXs operate on channels that are adjacent
(i.e., one TRX operates on channeli, the other on channeli + 1 or i − 1).

Reality is a bit more complicated than sketched before. Several TRXs (and not only
two) operating on the same or adjacent channels may interfere with each other at the
same time. And what really is the interference between two cells? It may be that two
cells interfere only in 10% of their area but with high noise or that they interfere in
50% of their area with low noise. What if interference is high but almost no traffic is

84 Martin Grötschel

expected? How can a single “interference value” reflect such a difference in the inter-
ference behaviour? There is no clear answer.

The planners have to investigate such cases in detail and have to come up with a rea-
sonable compromise. The result, in general, is a number, theinterference value, which
is usually normalized to be between 0 and 1. This number should – to the best of the
knowledge of the planners – characterize the interference between two TRXs (in terms
of the model, the technological assumptions, etc., used by the operator).

Separation and Blocked Channels

There are also hard constraints. If two or more TRXs are installed at the same location
(or site), there are restrictions on how close their channels may be. For instance, if a
TRX operates on channeli, a TRX at the same site is not allowed to operate on channels
i+1, i−1. Such a restriction is called co-siteseparation. Separation requirements may
even be tighter if two TRXs are not only co-site, but also serve the same cell. Separation
requirements may apply also to TRXs that are in close proximity.

The situation is even more complex. Due to government regulations, agreements with
operators in neighbouring regions, requirements from military forces, etc., an operator
may not be allowed to use its whole spectrum of channels at every location. This means
that, for each TRX, there may be a set of so calledblocked channels.

Interference Graph

A feasible assignment of channels to TRXs clearly has to satisfy all separation con-
straints. Blocked channels must not be used. What should one do about interference?

On our way to an adequate mathematical representation of all technical constraints let
us first introduce theinterference graph G = (V, E). G has a node for every TRX, two
nodes are joined by an edge, if interference occurs when the associated TRXs operate
on the same channel or on adjacent channels or if a separation constraint applies to
the two TRXs. With each edgevw ∈ E, two interference values, denoted bycco(vw)
and cad(vw), are associated; the numbercco(vw) is the co-channel interference that
occurs when TRXsv andw operate on the same channel whilecad(vw) denotes the
interference value coming up whenv andw operate on adjacent channels. In general,
cco(vw) ≥ cad(vw). If a separation constraint applies tov andw then a suitable large
number is allocated tocco(vw) andcad(vw).

Two “Natural” Approaches

A first attempt to solve the frequency assignment problem is obvious. We try to find a
spectrum, i.e., a number of channels1, . . . , N such that theN available channels can
be assigned to TRXs so that no interference occurs.

No interference is, of course, a good aim, but this task is unrealistic for several reasons.
A mobile phone network is a “living system”, i.e., new BTSs, antennas, etc., are in-
stalled regularly, old ones are replaced by new ones with different characteristics. It is

Frequency Assignment in Mobile Phone Systems 85

impossible to change the spectrum each time the network changes. Moreover, the num-
ber of channels may be fixed or channels may only be available in bundles (i.e., one may
buy 75, 100 or 125, but nothing else). Frequencies are expensive and cost reasons may
require that some interference is tolerated. In fact, some interference may be unavoid-
able. We have data of mobile phone systems where the largest clique in the interference
graph is about twice as large as the number of available channels and where the largest
degree of a node is ten times as large as the number of available channels.

Another classic choice for the solution of the frequency assignment problem is the
following. We choose a threshold valuet and consider the graphGt = (V, Et) where
Et := {ij ∈ E | cco

vw ≥ t}. Now we try to find the coloring number ofGt, or try to
colorGt with N colors. In other words, we consider interference belowt tolerable and
try to find an assignment of channels to TRXs such that as few channels as possible are
used (a color represents a channel, no two nodes with the same color are not allowed
to be adjacent) or we try to use the available channels so that no “high interference”
occurs. Of course, if for a given thresholdt no feasible coloring can be found, one has
to modify t and try again.

This approach is unable to handle separation constraints and ignores adjacent channel
interference. It was the “standard approach” in the early days of the mobile phone era
but did not prove efficient in the more complex environment we have today.

Minimizing Interference

There are several other ways of modelling the frequency assignment problem mathe-
matically, see [5]. For reasons of brevity I will focus on an approach that was employed
in a joint project of the Konrad-Zuse-Zentrum and E-PLUS, one of the four operators
in Germany, and which has resulted in very satisfactory channel assignments.

Let G = (V, E) be the interference graph introduced before. LetC = [1, . . . , N]
be the set of available channels, and let, for each TRXv ∈ V , Bv denote the subset
of channels blocked at nodev. The valuescco(vw), cad(vw) denote, for each edge
vw ∈ E, the co-channel and adjacent-channel interference arising when TRXsv and
w operate on the same or on adjacent channels. Moreover, letd(vw) ∈ Z+ denote the
separation necessary between the channels assigned to TRXsv andw. Thus, the input
to a frequency assignment problem is a7-tuple(V, E, C, {Bv}v∈V , d, cco, cad), briefly
callednetwork here. Afrequency assignment for the network is a functiony : V → C.
It is calledfeasible if it satisfies the following side constraints

y(v) ∈ C\Bv for all v ∈ V

|y(v) − y(w)| ≥ d(vw) for all vw ∈ E

The objective is to minimize the sum of co- and adjacent-channel interference, more
formally:

min
y feasible

∑

vw∈E:
y(v)=y(w)

cco(vw) +
∑

vw∈E:
|y(v)−y(w)|=1

cad(vw) (FAP)

86 Martin Grötschel

This version of the frequency assignment problem is a generalization of list colorings
in graph theory and it is related to the well known T-coloring problem.

There are several ways to reformulate (FAP) in terms of other standard models of com-
binatorial optimization, e.g., there is a stable set model and a so called orientation model
which is related to linear ordering.

Several modifications of FAP have to be considered in practice. No operator wants
to change all channel assignments whenever a new plan has to be computed. Some
assignments have to stay fix (that is easy to achieve), sometimes one looks for the
smallest number of channel adjustments within a certain range of interference, or one
requires that, e.g., at most 100 of the assignments are changed.

FAP is difficult in terms of complexity theory. Deciding whether a TRX network allows
a feasible assignment isNP-complete; the optimization problem is stronglyNP-hard.

FAP is also difficult in practice. Nobody can solve realistic instances to optimality.
Satisfactory lower bounds on the objective function value are very hard to obtain. All
approaches based on polyhedral combinatorics and linear programming have failed so
far. There is some hope to exploit semidefinite relaxations of FAP.

The whole available “zoo” of heuristics has been tried for the solution of FAPs. Consid-
erable improvements over previous approaches can be achieved. There are some spec-
tacular successes, but at present, the gap between lower and upper bounds – computable
in practice – is still very large.

In my talk on this subject I will elaborate on the mathematical modelling of the FAP,
on the development of heuristics and on the approaches with which lower bounds have
been computed. I will present examples from practice that show what can be achieved
today and how this mathematical approach compares to more traditional planning tech-
niques.

This lecture is based on joint work of the telecommunications group at the Konrad-
Zuse-Zentrum, particular on the work of Andreas Eisenbl¨atter [3]. Further references
are [1], [2], [4]. The FAP website [5] is another excellent source of information.

References

[1] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin, “Frequency Assignment in
Cellular Phone Networks”,Annals of Operations Research, 76:73-93 (1998).

[2] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin, “The orientation model for
Frequency Assignment Problems”, Technical Report TR 98-013, Konrad-Zuse-Zentrum f¨ur
Informationstechnik Berlin, (1998a).

[3] A. Eisenblätter, “Frequency Assignment in GSM Networks: Models, Heuristics, and Lower
Bounds”, Ph.D. Thesis, TU Berlin 2000, to appear.

[4] A.M.C.A. Koster, “Frequency Assignment – Models and Algorithms”, Ph.D. Thesis, Uni-
versiteit Maastricht, Maastricht, The Netherlands (1999).

[5] FAP Web – A Website about Frequency Assignment Problems,http://fap.zib.de

Data Provenance: Some Basic Issues

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan

University of Pennsylvania

Abstract. The ease with which one can copy and transform data on
the Web, has made it increasingly difficult to determine the origins of a
piece of data. We use the term data provenance to refer to the process
of tracing and recording the origins of data and its movement between
databases. Provenance is now an acute issue in scientific databases where
it is central to the validation of data. In this paper we discuss some of
the technical issues that have emerged in an initial exploration of the
topic.

1 Introduction

When you find some data on the Web, do you have any information about how
it got there? It is quite possible that it was copied from somewhere else on the
Web, which, in turn may have also been copied; and in this process it may well
have been transformed and edited. Of course, when we are looking for a best
buy, a news story, or a movie rating, we know that what we are getting may be
inaccurate, and we have learned not to put too much faith in what we extract
from the Web. However, if you are a scientist, or any kind of scholar, you would
like to have confidence in the accuracy and timeliness of the data that you are
working with. In particular, you would like to know how it got there.

In its brief existence, the Web has completely changed the way in which data
is circulated. We have moved very rapidly from a world of paper documents
to a world of on-line documents and databases. In particular, this is having a
profound effect on how scientific research is conducted. Let us list some aspects
of this transformation:

– A paper document is essentially unmodifiable. To “change” it one issues a
new edition, and this is a costly and slow process. On-line documents, by
contrast, can be (and often are) frequently updated.

– On-line documents are often databases, which means that they have explicit
structure. The development of XML has blurred the distinction between
documents and databases.

– On-line documents/databases typically contain data extracted from other
documents/databases through the use of query languages or “screen-scrap-
ers”.

Among the sciences, the field of Molecular Biology is possibly one of the
most sophisticated consumers of modern database technology and has generated

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 87–93, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

88 Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan

a wealth of new database issues [15]. A substantial fraction of research in ge-
netics is conducted in “dry” laboratories using in silico experiments – analysis
of data in the available databases. Figure 1 shows how data flows through a
very small fraction of the available molecular biology databases1. In all but one
case, there is a Lit – for literature – input to a database indicating that this is
database is curated. The database is not simply obtained by a database query
or by on-line submission, but involves human intervention in the form of addi-
tional classification, annotation and error correction. An interesting property of
this flow diagram is that there is a cycle in it. This does not mean that there is
perpetual loop of possibly inaccurate data flowing through the system (though
this might happen); it means that the two databases overlap in some area and
borrow on the expertise of their respective curators. The point is that it may
now be very difficult to determine where a specific piece of data comes from.
We use the term data provenance broadly to refer to a description of the origins
of a piece of data and the process by which it arrived in a database. Most im-
plementors and curators of scientific databases would like to record provenance,
but current database technology does not provide much help in this process for
databases are typically rather rigid structures and do not allow the kinds of ad
hoc annotations that are often needed for recording provenance.

GERD

TRRD

GenBank

BEAD

EpoDB

TransFac
GAIA

Swissprot

Lit

Lit
Lit

OnlOnl

Lit
Lit

Lit

Lit

Onl

Fig. 1. The Flow of Data in Bioinformatics

The databases used in molecular biology form just one example of why data
provenance is an important issue. There are other areas in which it is equally
acute [5]. It is an issue that is certainly broader than computer science, with legal
1 Thanks to Susan Davidson, Fidel Salas and Chris Stoeckert of the Bioinformatics
Center at Penn for providing this information.

Data Provenance: Some Basic Issues 89

and ethical aspects. The question that computer scientists, especially theoretical
computer scientists, may want to ask is what are the technical issues involved
in the study of data provenance. As in most areas of computer science, the hard
part is to formulate the problem in a concise and applicable fashion. Once that is
done, it often happens that interesting technical problems emerge. This abstract
reviews some of the technical issues that have emerged in an initial exploration.

2 Computing Provenance: Query Inversion

Perhaps the only area of data provenance to receive any substantial attention
is that of provenance of data obtained via query operations on some input
databases. Even in this restricted setting, a formalization of the notion of data
provenance turns out to be a challenging problem. Specifically, given a tuple t
in the output of a database query Q applied on some source data D, we want to
understand which tuples in D contributed to the output tuple t, and if there is a
compact mechanism for identifying these input tuples. A natural approach is to
generate a new query Q′, determined by Q, D and t, such that when the query
Q′ is applied to D, it generates a collection of input tuples that “contributed
to” the output tuple t. In other words, we would like to identify the provenance
by inverting the original query. Of course, we have to ask what we mean by con-
tributed to? This problem has been studied under various names including “data
pedigree” and “data lineage” in [1, 9, 7]. One way we might answer this question
is to say that a tuple in the input database “contributes to” an output tuple if
changing the input tuple causes the output tuple to change or to disappear from
the output. This definition breaks down on the simplest queries (a projection or
union). A better approach is to use a simple proof-theoretic definition. If we are
dealing with queries that are expressible in positive relational algebra (SPJU)
or more generally in positive datalog, we can say that an input tuple (a fact)
“contributes to” an output tuple if it is used in some minimal derivation of that
tuple. This simple definition works well, and has the expected properties: it is
invariant under query rewriting, and it is compositional in the expected way.
Unfortunately, these desirable properties break down in the presence of negation
or any form of aggregation. To see this consider a simple SQL query:

SELECT name, telephone
FROM employee
WHERE salary > SELECT AVERAGE salary FROM employee

Here, modifying any tuple in the employee relation could affect the presence of
any given output tuple. Indeed, for this query, the definition of “contributes to”
given in [9] makes the whole of the employee relation contribute to each tuple
in the output. While this is a perfectly reasonable definition, the properties of
invariance under query rewriting and compositionality break down, indicating
that a more sophisticated definition may be needed.

Before going further it is worth remarking that this characterization of prove-
nance is related to the topics of truth maintenance [10] and view maintenance

90 Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan

[12]. The problem in view maintenance is as follows. Suppose a database (a view)
is generated by an expensive query on some other database. When the source
database changes, we would like to recompute the view without recomputing
the whole query. Truth maintenance is the same problem in the terminology of
deductive systems. What may make query inversion simpler is that we are only
interested in what is in the database; we are not interested in updates that would
add tuples to the database.

In [7] another notion of provenance is introduced. Consider the SQL query
above, and suppose we see the tuple ("John Doe", 12345) in the output. What
the previous discussion tells us is why that tuple is in the output. However, we
might ask an apparently simpler question: given that the tuple appears in the
output, where does the telephone number 12345 come from? The answer to this
seems easy – from the "John Doe" tuple in the input. This seems to imply that
as long as there is some means of identifying tuples in the employee relation,
one can compute where-provenance by tracing the variable (that emits 12345)
of the query. However, this intuition is fragile and a general characterization is
not obvious; it is discussed in [7].

We remark that this second form of provenance, where-provenance, is also
related to the view update problem [3]: if John Doe decides to change his tele-
phone number at the view, which data should be modified in the employee
relation? Again, where-provenance seems simpler because we are only interested
in modifications to the existing view; we are not interested in insertions to the
view.

Another issue in query inversion is to capture other query languages and
other data models. For example, we would like to describe the problem in object-
oriented [11] or semistructured data models [2] (XML). What makes these models
interesting is that we are no longer operating at the fixed level of tuples in the
relational model. We may want to ask for the why- or where-provenance of some
deeply nested component of some structure. To this end, [7] studies the issue
of data provenance in a “deterministic” model of semistructured data in which
every element has a canonical path or identifier. Work on view maintainence
based on this model has also been studied in [14]. This leads us to our next
topics, those of citing and archiving data.

3 Data Citation

A digital library is typically a large and heterogeneous collection of on-line docu-
ments and databases with sophisticated software for exploring the collection [13].
However many digital libraries are also being organized so that they serve as
scholarly resources. This being the case, how do we cite a component of a digital
library. Surprisingly, this topic has received very little attention. There appear
to be no generally useful standards for citations. Well organized databases are
constructed with keys that allow us uniquely to identify a tuple in a relation.
By giving the attribute name we can identify a component of a tuple, so there
is usually a canonical path to any component of the database.

Data Provenance: Some Basic Issues 91

How we cite portions of documents, especially XML documents is not so
clear. A URL provides us with a universal locator for a document, but how
are we to proceed once we are inside the document? Page numbers and line
numbers – if they exist – are friable, and we have to remember that an XML
document may now represent a database for which the linear document structure
is irrelevant. There are some initial notions of keys in the XML standard [4]
and in the XML Schema proposals [16]. In the XML Document Type Descriptor
(DTD) one can declare an ID attribute. Values for this attribute are to be unique
in the document and can be used to locate elements of the document. However
the ID attribute has nothing to do with the structure of the document – it is
simply a user-defined identifier.

In XML-Schema the definition of a key relies on XPath [8], a path description
language for XML. Roughly speaking a key consists of two paths through the
data. The first is a path, for example Department/Employee, that describes the
set of nodes upon which a key constraint is to be imposed. This is called the
target set. The second is another path, for example IdCard/Number that uniquely
identifies nodes in the target set. This second part is called the key path, and
the rule is that two distinct nodes in the target set must have different values
at the end of their key paths. Apart from some details and the fact that XPath
is probably too complex a language for key specification, this definition is quite
serviceable, but it does not take into account the hierarchical structure of keys
that are common in well-organized databases and documents.

To give an example of what is needed, consider the problem of citing a
part of a bible, organized by chapter, book and verse. We might start with
the idea that books in the bible are keyed by name, so we use the pair of paths
(Bible/Book, Name). We are assuming here that Bible is the unique root. Now
we may want to indicate that chapters are specified by number, but it would
be incorrect to write (Bible/Book/Chapter, Number) because this says that
that chapter numbers are unique within the bible. Instead we need to specify a
relative key which consists of a triple, (Bible/Book, Chapter, Number). What
this means is that the (Chapter, Number) key is to hold at every node specified
by by the path Bible/Book.

A more detailed description of relative keys is given in [6]. While some basic
inference results are known, there is a litany of open questions surrounding
them: What are appropriate path languages for the various components of a
key? What inference results can be established for these languages? How do
we specify foreign keys, and what results hold for them? What interactions are
there between keys and DTDs. These are practical questions that will need to
be answered if, as we do in databases, use keys as the basis for indexing and
query optimization.

92 Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan

4 Archiving and Other Problems Associated with
Provenance

Let us suppose that we have a good formulation, or even a standard, for data
citation, and that document A cites a (component of a) document B. Whose
responsibility is it to maintain the integrity of B? The owner of B may wish to
update it, thereby invalidating the citation in A. This is a serious problem in
scientific databases, and what is commonly done is to release successive versions
of a database as separate documents. Since one version is – more or less – an
extension the previous version, this is wasteful of space and the space overhead
limits the rate at which one can release versions. Also, it is difficult when the
history of a database is kept in this form to trace the history of components
of the database as defined by the key structure. There are a number of open
questions :

– Can we compress versions so that the history of A can be efficiently recorded?
– Should keeping the cited data be the responsibility of A rather than B?
– Should B figure out what is being cited and keep only those portions?

In this context it is worth noting that, when we cite a URL, we hardly ever give
a date for the citation. If we did this, at least the person who follows the citation
will know whether to question the validity of the citation by comparing it with
the timestamp on the URL.

Again, let us suppose that we have an agreed standard for citations and
that, rather than computing provenance by query inversion (which is only possi-
ble when the data of interest is created by a query,) we decide to annotate each
element in the database with one or more citations that describes its provenance.
What is the space overhead for doing this? Given that the citations have struc-
ture and that the structure of the data will, in part, be related to the structure
of the data, one assumes that some form of compression is possible.

Finally, one is tempted to speculate that we may need a completely different
model of data exchange and databases to characterize and to capture provenance.
One could imagine that data is exchanged in packages that are “self aware”2 and
somehow contain a complete history of how they moved through the system of
databases, of how they were constructed, and of how they were changed. The
idea is obviously appealing, but whether it can be formulated clearly, let alone
be implemented, is an open question.

References

[1] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a
database visualization environment. In ICDE, pages 91–102, 1997.

[2] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From Rela-
tions to Semistructured Data and XML. Morgan Kaufman, 2000.

2 A term suggested by David Maier

Data Provenance: Some Basic Issues 93

[3] T. Barsalou, N. Siambela, A. Keller, and G Wiederhold. Updating relational
databases through object-based views. In Proceedings ACM SIGMOD, May 1991.

[4] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. World Wide Web Consortium (W3C), Feb 1998.
http://www.w3.org/TR/REC-xml.

[5] P. Buneman, S. Davidson, M. Liberman, C. Overton, and V. Tannen. Data prove-
nance. http://db.cis.upenn.edu/∼wctan/DataProvenance/precis/index.html.

[6] Peter Buneman, Susan Davidson, Carmem Hara, Wenfei Fan, and Wang-Chiew
Tan. Keys for XML. Technical report, University of Pennsylvania, 2000.
http://db.cis.upenn.edu.

[7] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A
Characterization of Data Provenance. In International Conference on Database
Theory, 2001. To appear, available at http://db.cis.upenn.edu.

[8] James Clark and Steve DeRose. XML Path Language (XPath). W3C Working
Draft, November 1999. http://www.w3.org/TR/xpath.

[9] Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In ICDE,
pages 367–378, 2000.

[10] Jon Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
[11] R. G. G. Cattell et al, editor. The Object Database Standard: Odmg 2.0. Morgan

Kaufmann, 1997.
[12] A. Gupta and I. Mumick. Maintenance of materialized views: Problems, tech-

niques, and applications. IEEE Data Engineering Bulletin, Vol. 18, No. 2, June
1995., 1995.

[13] Michael Lesk. Practical Digital Libraries: Books, Bytes and Bucks,. Morgan
Kaufmann, July 1997.

[14] Hartmut Liefke and Susan Davidson. View maintenance for hierarchical semistruc-
tured data. In International Conference on Data Warehousing and Knowledge
Discovery, 2000.

[15] Susan Davidson and Chris Overton and Peter Buneman. Challenges in Integrating
Biological Data Sources. Journal of Computational Biology, 2(4):557–572, Winter
1995.

[16] World Wide Web Consortium (W3C). XML Schema Part 0: Primer, 2000.
http://www.w3.org/TR/xmlschema-0/ .

Fast On-Line/Off-Line Algorithms for Optimal
Reinforcement of a Network and Its Connections

with Principal Partition

Sachin B. Patkar1 and H. Narayanan2

1 Department of Mathematics, Indian Institute of Technology - Bombay,
Mumbai-400 076, India.

patkar@math.iitb.ernet.in
2 Department of Electrical Engg., Indian Institute of Technology - Bombay,

Mumabi-400 076, India.
hn@ee.iitb.ernet.in

Abstract. The problem of computing the strength and performing opti-
mal reinforcement for an edge-weighted graph G(V, E, w) is well-studied
[1,2,3,6,7,9]. In this paper, we present fast (sequential linear time and
parallel logarithmic time) on-line algorithms for optimally reinforcing
the graph when the reinforcement material is available continuosly on-
line. These are first on-line algortithms for this problem. Although we
invest some time in preprocessing the graph before the start of our al-
gorithms, it is also shown that the output of our on-line algorithms is
as good as that of the off-line algorithms, making our algorithms viable
alternatives to the fastest off-line algorithms in situtations when a se-
quence of more than O(|V |) reinforcement problems need to be solved.
In such a situation the time taken for preprocessing the graph is less that
the time taken for all the invocations of the fastest off-line algorithms.
Thus our algorithms are also efficient in the general sense. The key idea
is to make use of the theory of Principal Partition of a Graph. Our results
can be easily generalized to the general setting of principal partition of
nondecreasing submodular functions.

1 Introduction

Let G(V,E) denote a graph with V as the vertex set and E as the set of edges.
We use G(V,E,w) to denote a graph G(V,E) with nonnegative edge-weights
given by w(.).

A fundamental problem concerning practical networks is that of making the
connectivity reliable in the face of failure of individual edges. Cunningham [3]
defined strength of a graph G(V,E,w) as

min
∅�=X⊆E

w(X)
number of additional components created by destroying X

which is same as, min∅�=X⊆E
w(X)

r(E)−r(E−X) , where r(Z) denotes the rank of the
subgraph on edge set Z, which is defined as the sum of the ranks of the connected

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 94–105, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 95

components of the subgraph on Z. Recall that the rank of a connected graph
equals the number of vertices minus one. Thus the strength of a graph is a
measure of its invulnerability.

In [3] Cunningham considered the problem of computing the strength of a
graph G(V,E,w), and optimal reinforcement of the edge-weights to raise the
strength to a prescribed level.

In this paper we show the relation between these problems and the notion
of the Principal Partition (PP) of a graph. We show that computing the PP of
a graph beforehand allows us to solve the “successive (on-line) reinforcement”
problem very efficiently. Furthermore, it also gives us a lot of information about
the relationship between the amount of reinforcement material available and
maximum strength realizable by utilizing it. Throughout, the algorithms based
on PP are extremely simple and efficient.

The problem of computing optimal reinforcement to strengthen a graph
G(V,E,w) is as follows:

Problem 1. Main Problem: Optimal Reinforcement of a Graph
Given G(V,E,w) and the required strength λ̂, find a vector of increase (zero
increase allowed) in the weights of the edges such that with the resulting edge-
weights the graph has strength equal to λ̂ and the total increase is minimum.
(We are not permitted to introduce new edges.)

Using the well known ideas from “fractional programming” [3,4], one sees
that it would suffice to consider the following family (parameterized by real
values λ) of problems:

min
X⊆E

{w(X)− λ ∗ (r(E) − r(E −X))}.

or equivalently,
max
X⊆E

{w(X)− λ ∗ r(X)}.

This latter is the Weighted Principal Partition Problem
Given a graph G(V,E) and a real positive weight assignment w to the edges, to
find for each real λ, the collection of all subsets of E which maximize w(.)− λ ∗
r(.).

It turns out that it is sufficient to consider not more that r(E) values of λ to
solve this problem completely. Using these “critical values” the PP (the above
collection of subsets) can be constructed and stored efficiently [6,16,17,19].

It may be remarked that efficient algorithms for computation of PP for the
real weights case have already been given in [10,14,16,17] earlier. But to reveal the
connection between the classical idea of PP and the “strength and reinforcement”
problem, we present a new approach to computation of the required information
from the PP, which runs in the same time as required by the previous best
algorithms in [16,17].

The problem of computing strength and optimal reinforcement has been stud-
ied and solved efficiently by several researchers [1,2,3,6,7,9]. The best algorithms

96 Sachin B. Patkar and H. Narayanan

are due to Gabow [7] and Cheng and Cunningham [2]. They solve the prob-
lems of computing strength and min-cost optimal reinforcement each in time
O(|V |2|E| log(|V |2/|E|)). It may be remarked that, there are no known faster
algorithms for the unit-cost optimal reinforcement problem. The ideas underly-
ing the best algorithms also appeared in [1,3,9]. We may also mention that the
many of the fast algorithms mentioned above are based on ideas from [8]. The
connection of the problem of computing the strength with the classical problem
of Principal Partition was brought out by Fujishige [6], who related the strength
to the smallest critical value in a principal partition of a dual of the rank function
of the given graph. We extend this connection of principal partition to optimal
reinforcement, too, using it to build fast oracles suitable for on-line real-time
computations.

We mainly consider the practical problem of doing optimal reinforcement.
After computation of a certain skeleton of the principal partition, called Principal
Sequence, we solve the problem of optimal reinforcement in fast time (sequential
linear time and parallel logarithmic time) for every successive request of optimal
reinforcement. Thus our algorithm is indeed on-line and real-time too. When the
number of requests for successive optimal reinforcement is larger that O(|V |),
our algorithms turn out to be faster than the fastest off-line algorithms due to
[7] [2], without any loss of quality of output.

We solve the following problems which relate to on-line version of the optimal
reinforcement problem:

Problem 2. Problem (P1):
Given a graph G(V,E,w), build an efficient oracle for the function W (.) that
maps the required strength λ to the minimum total amount of weight augmen-
tation to be performed to increase the strength to λ.

The following is an “inverse” of the above problem:

Problem 3. Problem (P2):
Given a graph G(V,E,w) and a specified amount W of total weight augmenta-
tion permitted, find the maximum strength achievable by using the amount W
to augment weights of the edges. Note that we are not permitted to decrease
any of the existing weights.

Now consider the following practical situation: Reinforcement material is
made available in arbitrary quantities at arbitrary intervals. At every stage when
the reinforcement arrives, we are required to utilize the reinforcement fully and
optimally (that is, without saving some amount for future use, and making
sure that the graph is strengthened to the best level using the current lot of
reinforcement).

Furthermore, at any stage, the cumulative augmentation (or reinforcement)
should look as if it were the optimal reinforcement done if the whole reinforce-
ment were made available in one go and we were supposed to utilize it optimally.

We formally model the above scenario as the following problem and solve it
in this paper:

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 97

Problem 4. Problem (P3):
Given a graph G(V,E,w), build the oracles for the family of monotonic non-
decreasing functions:

{fe : [λt,∞] → R+ | e ∈ E},

which satisfy the following:
For λ ≥ λt, {fe(λ) | e ∈ E} represent the weight augmentations to be carried
out for each edge e ∈ E such that the strength of the graph G(V,E) goes up to
λ. Furthermore,

∑
e∈E fe(λ) is required to be minimum.

Thus the decisions as to how much weight to be augmented for a given edge
in the current stage would be taken by querying the above oracles. We would
like these oracles to be efficient so that the above decisions could be taken in
real-time, and we also want an efficient algorithm for building this family of
oracles. It is clear that as a consequence of building the above oracles, we would
have on-line and real-time algorithm to solve the problem of reinforcement of
a graph optimally.

Now we review the literature for PP briefly: The PP of a graph for the case
λ = 2 was constructed by Kishi and Kajitani (see [16] for details). For arbi-
trary real λ the problem was solved for matroids independently by Narayanan
[13] and Tomizawa [19]. Extensive work has been done on these problems and
their generalization to matroids, particularly in Japan [5,6,10,11,14,16,17,19].
Details may be found in [6,16]. Principal Partition problem also has many sig-
nificant applications- to Electrical Network theory (see, for instance, [11,16]),
Fault tolerant computing [12] and to Engineering Systems in general [11]. Using
the Principal Partition of a graph, approximate algorithms were designed for
an NP-hard problem of computing Min-k-cut of a graph (see [15]). Patkar and
Narayanan [16,17] gave an O(|E||V |3log|V |) algorithm for computing the whole
Weighted Principal Partition of the graph.

Due to lack of space, certain details are omitted. Interested reader is referred
to [18] for complete version of this paper.

2 Preliminaries and Notation

We deal throughout with finite sets. A function f on the subsets of S is said
to be submodular if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) . . . ∀A,B ⊆ S. f
is said to be supermodular iff −f is submodular. We say that a function is
normalized if takes value 0 on the emptyset. A function f is nondecreasing if
X ⊆ Y ⇒ f(X) ≤ f(Y). A normalized, nondecreasing and submodular function
is also called a polymatroid function.

G(V,E) ×Z denotes the graph obtained by contracting E−Z from G(V,E).
Note that we maintain G × Z as a multigraph, that means, every edge in G ×
Z corrsponds to some edge in the original graph G. G(V,E) • Z denotes the
subgraph of G(V,E) induced by Z. By abuse of notation r(G) denotes the rank

98 Sachin B. Patkar and H. Narayanan

of the set of edges of the graph G. Note that r(.) is normalized, nondecreasing
and submodular function.
V(X) denotes the set of vertices spanned by the edge set X . E(U) denotes the
set of edges having both the endpoints in U . The subgraph of G on U ⊆ V is
denoted by (U, E(U)). Note that w(.)− k ∗ r(.) is a supermodular function when
k ≥ 0.

The following fact from the literature on the submodular functions [6,16,19]
is very basic and useful.

Theorem 1. [6,13,16,19] Let W be a set and U ⊆ W . Let f : 2W → R be a
submodular (supermodular) function. Then the subsets which minimize (maxi-
mize) the function f(.) over all those subsets of W which contain U , form a
lattice under the usual operations of union and intersection. In particular there
exist unique smallest and largest such sets.

3 Some Relevant Properties of Principal Partition

Some properties of the Principal Partition which are relevant to this paper are
as follows [16,19]:

1. There is a unique maximal set Xk and a unique minimal set Xk at which
w(.) − k ∗ r(.) reaches the maximum. We call these sets critical sets in the
Principal Partition of the graph.

2. If k1 ≥ k2, it can be shown that Xk1 ⊆ Xk2 .
3. For finitely many values of k, Xk �= Xk. Such values are called critical values

in the Principal Partition of the graph.
4. There are at most r(E) critical values in the Principal Partition of the graph.
5. Let λ1 > λ2 > λ3 . . . > λt be the sequence of all critical values. The last

critical value λt (see [6]) is equal to the strength of the given graph G under
the edge-weights w. We also take λ0 = ∞ as a convention.
Furthermore, Xλi = Xλi+1 for i = 1, 2, . . . , t − 1, and Xλ1 = ∅, Xλt = E.
The sequence Xλ1 ⊂ Xλ2 . . . Xλt ⊂ Xλt is called the Principal Sequence.

The following characterization of strength (thus that of smallest critical
value) is implicit in [3].

Lemma 1. Let G(V,E,w) be the given graph with edge-weights given by w(.).
Let σ be such that w(Z)−σ∗r(Z) = w(E)−σ∗r(E) = maxX⊆E{w(X)−σ∗r(X)}
for a proper subset Z ⊂ E. Then σ is the strength of G(V,E,w). The converse
also holds.

We state the following result about the computation of the Principal Se-
quence of G(V,E,w) which will follow from the algorithm in Section 7.

Theorem 2. The Principal Sequence of G(V,E,w) can be computed using
O(|V |) invocations of the subroutine that computes the strength of a given sub-
graph of G(V,E,w).

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 99

4 An Algorithm Based on Principal Partition for
Minimum-Weight Reinforcement

In this section we present an algorithm which will perform minimum-weight
reinforcment using the Principal Sequence which is assumed to be available.
The ideas from this algorithm will be used to build on-line algorithm (using the
oracles as described in Problem (P3)) in the later section. We start with the
following definition.

Definition 1. Let X0 ⊂ X1 ⊂ X2 . . . ⊂ Xt (with X0 = ∅ and Xt = E) be the
Principal Sequence of G(V,E,w). Let λ1 > λ2 . . . > λt be the sequence of critical
values. Let Ei = Xi −Xi−1, and Gi = (G •Xi)× (Xi −Xi−1) for i = 1, 2, . . . t.

Thus Gi is a minor of G obtained by first restricting it to Xi and then con-
tracting out the subset Xi−1. By one of the properties of PP, λt is the strength
of G(V,E,w). We wish to increase the strength to λ̂ by augmenting the weight
function w to suitable ŵ. We also require that the total augmentation in the
weights, that is (ŵ − w)(E), is as small as possible.

4.1 Algorithm 1

Our algorithm is as follows:
Algorithm 1

– Let p be smallest index such that λ̂ > λp. Thus λp−1 ≥ λ̂ > λp.
– Let Fp be a subset of edges of E that forms a spanning forest of Gp. Recall
that we maintain Gi’s (graphs after contraction) as multigraphs, that means,
every edge in Gi corrsponds to some edge in the original graph G.

– We add λ̂− λp to the weight of each of the edges in Fp.
– For each j from p+ 1 to t we do something similar:

• Let Fj be a subset of edges of E that forms a spanning forest of Gj .
• We add λ̂− λj to the weight of each of the edges in Fj .

4.2 Proof of Correctness of Algorithm 1

We need to prove the following.

Theorem 3. Algorithm 1 uses minimum weight augmentation in order to in-
crease the strength of a graph G(V,E,w) to a prescribed level. Furthermore, the
minimum weight augmentation required to increase the strength from λt to λ̂
equals

∑t
j=p(λ̂− λj) ∗ rank(Gj).

To prove the theorem 3 we will use the following definitions and results.

Definition 2. Let Ĝ(V̂ , Ê) be a graph with rank function r(.) on the subset of
edges. Let ŵ(.) be a non-negative weight function on the edges of this graph and
let λ be a non-negative real. We say that the graph is molecular with respect to
(ŵ, λ) if

ŵ(∅)− λ ∗ r(∅) = ŵ(Ê)− λ ∗ r(Ê) = max
X⊆Ê

{ŵ(X)− λ ∗ r(X)} (1)

100 Sachin B. Patkar and H. Narayanan

We need a few lemmas.
By the characterization of strength (lemma 1) it is clear that,

Lemma 2. A graph is molecular w.r.t. (ŵ, λ), if and only if its strength is
equal to λ when the edge-weights are given by ŵ(.), and the total edge-weight of
such a graph is equal to (λ ∗ rank of the graph).

The proofs of the following lemmas (lemma 3 and lemma 4) will easily follow
from the algorithm given in a later section that constructs the PP of G(V,E,w).

Lemma 3. For each i = 1, 2, . . . t, the strength of G • (E1 ∪ E2 ∪ . . . Ei) equals
λi.

Lemma 4. Let Gi be as defined before for i = 1, 2, . . . t. Strength of Gi is equal
to λi and it is molecular with respect to (w, λi).

We state the following lemmas without proofs (see [18] for complete details).

Lemma 5. Let σ be the strength of G(V,E,w). Let F be any spanning forest
of G(V,E). If we increase the weights of each edge of F by α, then the strength
of the weight-augmented graph is at least σ + α. Furthermore, if G(V,E,w) is
molecular w.r.t. (w, σ) then the resulting strength is equal to σ + α, and the
resulting graph is molecular w.r.t. (w′, σ + α), where w′ denotes the augmented
weights.

Lemma 6. Let G′(V ′, E′) be a graph with edge-weights w′. Let σ be the strength
of G′. Let ∅ �= Z ⊆ E′ such that G′ • Z has strength σ1 that is at least as large
as σ. Further suppose G′ × (E′ −Z) is molecular w.r.t. (w′, σ). Let σ1 ≥ λ ≥ σ.
Then addition of weight λ− σ to any spanning forest F of G′ × (E′ − Z) raises
the strength of G′ to λ.

We state a simple lemma about strength after any contraction or augmenta-
tion operation. The proof follows immediately from the definitions.

Lemma 7. Strength of a graph does not decrease after any augmentation or
contraction.

Now we are ready to prove theorem 3.
Proof of Theorem 3:
We first establish that the resulting weight function, provides the required
strength, that is, λ̂ to the graph G(V,E).

We use the following notation: Ĝi = G• (E1∪ . . . Ei). Gi is as defined before,
and let ri(.) denote the rank function of Gi for i = 1, 2, . . . , t.

We prove by induction on i = p, p+1, . . . , t, that after the augmentation step
on Gi, Ĝi has strength λ̂, but the strength of Ĝi+1 remains at λi+1.
Induction base: Lemma 3 and lemma 4 tell us that prior to augmentation step
the strength of Gp is λp, strength of Ĝp−1 is λp−1 and strength of Ĝp is λp.

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 101

If p = 1 the we make use of lemma 5 to conclude that strength of Ĝp becomes
λ̂. Otherwise, we apply lemma 6 to Ĝp, Ĝp−1 and Gp. This establishes that after
the augmentation step on Gp, the strength of Ĝp becomes λ̂. But, under the
augmented weights, the strength of Ĝp+1 remains at λp+1 as

strength of Ĝp+1 ≤ strength of Gp+1 = λp+1.

and the strength of Ĝp+1 would not decrease from its earlier value of λp+1 after
augmentation step (The inequality in the above follows from the lemma 7). Thus
the induction base is proved:

The proof of the inductive hypothesis is along similar lines as above. In fact,
the key idea is once again the use of lemma 6.

Now we establish that the weight added is minimum that is required to increase
the strength to the prescribed level, λ̂.

Towards this, one may look at the graph obtained from G(V,E) by contract-
ing out the set of edges E1 ∪ E2 . . . Ep−1. The resulting graph is on the set of
edges Ep ∪ Ep+1 . . . Et. Let G′ denote this resulting graph.

We once again make use of the lemma 7. For the strength of G(V,E) to be
λ̂, it is required that the strength of G′ should be at least λ̂. Thus, G′ must have
at least λ̂ ∗ rank(G′) as the total weight of the edges after the augmentation.

Now rank(G′) =
∑t

j=p rank(Gj). Thus the weight of the the edges of G′ is
at least

∑t
j=p λ̂ ∗ rank(Gj).

But original weight of the edges of G′ was
∑t

j=p λj ∗ rank(Gj). This follows
from molecularity of Gj w.r.t. (w, λj) and lemma 2 .

Thus the minimum weight augmentation required to increase the strength
from λt to λ̂ equals

t∑

j=p

(λ̂− λj) ∗ rank(Gj).

But then, our algorithm has used exactly the same (as above) amount of
weight augmentation for increasing the strength, thus our algorithm has per-
formed minimum weight augmentation of edge weights to increase the
strength from λt to λ̂. q.e.d

5 Minimum Weight Successive Augmentation to Increase
the Strength of a Graph

In this section we show how the ideas underlying Algorithm 1 can be used to
solve Problem (P3).

To show this, we make use of the spanning forests F1, F2, . . . Ft of the graphs
G1, G2, . . . , Gt, respectively.

Define for λ > λt,

fe(λ) = λ− λj if e ∈ Fj and λ > λj

= 0 otherwise (2)

102 Sachin B. Patkar and H. Narayanan

Time required to build efficient oracles for the functions fe(.), e ∈ E, is clearly
dominated by the time required for finding the sets E1, E2, . . . , Et, which (by
theorem 2) may be done by O(|V |) invocations of Cheng and Cunningham’s or
Gabow’s algorithm from [2,7].

After choosing the spanning forests F1, F2, . . . Ft, we remember in each oracle
for fe(.) the pair (j, λj) if e ∈ Fj for some j, and if no such j exists the oracle
returns 0.

Clearly, each oracle fe(.) answers in constant time.

Theorem 4. If we use ideas in Algorithm 1, then the time required to solve
Problem (P3) is (|V | ∗ Tstrength), where Tstrength denotes the time required
to compute the strength of graph G(V,E,w). The space complexity of the oracle
for fe(.) for any edge e ∈ E is also O(1). Furthermore, each of the oracle of
Problem (P3) requires constant time to provide answer, if it is fed with the
input λ.

From the above discussion and Algorithm 1 we get the following lemma.

Lemma 8. The function W (.) that maps strength λ to the minimum total weight
augmentation required to increase the strength to λ is given by the following
piecewise linear function: W : [λt,∞] → R+ and it satisfies,

– W (λt) = 0,
– and the slope of W (.) in the domain interval [λi+1, λi] is equal to∑t

j=i+1 r(Gj).

Thus an efficient oracle W (.) as well as its inverse map could be built easily,
after having computed the graphs G1, G2, . . . , Gt by O(|V |) invocations of the
algorithm that finds strength of a graph (on a sequence of smaller and smaller
graphs).

Note that in then construction of the above oracle for W (.), one could make
use of the values λ1, . . . , λt and the slopes of W (.) in the domain intervals
[λi+1, λi] for i = 0, 1, 2, . . . , t− 1.

With this information in the oracle, the oracle and its inverse can provide
the answers in time logarithmic in |V |. Thus we have a good solution for
problems Problem (P1) and Problem (P2)

6 Another Algorithm for Optimal Reinforcement of a
Graph

We now present another, slightly modified, algorithm which would give a tech-
nique for a different approach for solving Problem (P3) (see [18] for details).
Algorithm 2

– Let p be smallest index such that λ̂ > λp. Thus λp−1 ≥ λ̂ > λp.
– Let F̂p be a subset of edges of E that forms a spanning forest of

G× (Ep ∪ Ep+1 ∪ . . . Et).

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 103

– We add λ̂− λp to the weight of each of the edges in F̂p.
– For each j from p+ 1 to t we do something similar:

• Let F̂j be a subset of edges of E that forms a spanning forest of

G× (Ej ∪Ej+1 ∪ . . . Et).

• We add λ̂− λj to the weight of each of the edges in F̂j .

Theorem 5. The above algorithm computes a minimum weight augmentation
to increase the strength from λt to λ̂.

7 An Algorithm to Compute Principal Sequence

In what follows, we describe a new approach based on Cunningham’s algorithm
[3] for computation of the Principal Sequence of a graph.

A simple modification of Cunningham’s [2,3] algorithm computes σ and the
smallest proper subset Z ⊂ E such that

w(Z)− σ ∗ r(Z) = w(E) − σ ∗ r(E) = max
X⊆E

{w(X)− σ ∗ r(X)} (3)

7.1 Computation of Principal Sequence Using the Subroutine to
Compute the Strength

Let µ1 denote the strength of G(V,E,w). Let H1 denote the largest subset of E
such that

w(E−H1)−µ1 ∗ r(E−H1) = w(E)−µ1 ∗ r(E) = max
X⊆E

{w(X)−µ1 ∗ r(X)}. (4)

Let µ2, H2 be obtained by performing the above procedure on the graph

G(V,E) • (E −H1).

Let µ3, H3 be obtained by performing the above procedure on the graph

G(V,E) • (E − (H1 ∪H2))

and so on
In general, let µi, Hi be obtained by performing the above procedure on the
graph

G(V,E) • (E − (H1 ∪H2 ∪ . . .Hi−1)).

We stop the above process when we find µt and Ht such that

E = H1 ∪H2 ∪ . . . ∪Ht.

Noting that the sequence of ranks of successive subgraphs is strictly decreasing,
one sees that,

Lemma 9. t ≤ r(E).

104 Sachin B. Patkar and H. Narayanan

7.2 Proof of Correctness of the Above Algorithm for Computation
of the Principal Sequence

The discussion in this section will establish that the above algorithm has indeed
built the Principal Sequence of the rank function of an edge-weighted graph.

Let µ1, µ2, . . . µt and H1, H2, . . . Ht be as defined above, for an edge-weighted
graph G(V,E,w). Let us define λi = µt+1−i, and Ei = Ht+1−i. We also follow
the convention that λ0 = ∞ and E0 = ∅.

We make use of the following technical lemma (see [18] for proof).

Lemma 10. Let σ be the strength of G(V,E,w). Let Z be the smallest (proper)
subset of E such that

w(Z)− σ ∗ r(Z) = w(E) − σ ∗ r(E) = max
X⊆E

{w(X)− σ ∗ r(X)} (5)

then,

1. G(V,E)×(E−Z) is molecular w.r.t. (w, σ), and therefore has strength equal
to σ.

2. If Z �= ∅ then, G(V,E) • Z has strength strictly greater than σ.

We will use the following well-known characterization of the Principal Se-
quence (see [16], pp.404).

Theorem 6. [13,16,19] Z0 ⊂ Z1 ⊂ . . . ⊂ Zl, with Z0 = ∅ and Zl = E, is the
Principal Sequence of G(V,E,w) if and only if there exists γ1 > γ2 . . . > γl

such that for each i = 1, 2, . . . , l, (G•Zi)×(Zi−Zi−1) is molecular w.r.t. (w, γi).
Furthermore, the Principal Sequence exists and is unique.

Thus using theorem 6 and lemmas 2 3 4 it is clear that,

Theorem 7. The algorithm to preprocess the graph has decomposed the edge set
E into E1, E2, . . . , Et such that Gi (as defined before) is molecular w.r.t. (w, λi)
for i = 1, 2, . . . , t. The nested sequence of sets

∅ ⊂ E1 ⊂ (E1 ∪ E2) . . . ⊂ (E1 ∪ E2 . . . Et) (= E)

is the Principal Sequence of the graph G(V,E,w).

Using lemma 9 and the above theorem we obtain theorem 2.

8 Acknowledgement

We thank the anonymous referees for pointing out a few discrepancies. We also
thank DST-India and NRB-India, (grant no. 98DS018, 98NR002) for financial
support.

Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network 105

References

1. Barahona, F.: Separating from the dominant of spanning tree polytope,
Oper. Res. Letters, vol. 12, 1992, pp.201-203.

2. Cheng, E. and Cunningham, W.: A faster algorithm for computing the
strength of a network, Information Processing Letters, vol. 49, 1994, pp.209-
212.

3. Cunningham, W.: Optimal attack and reinforcement of a network, JACM,
vol. 32, no. 3, 1985, pp.549-561.

4. Dinkelbach, W.: On nonlinear fractional programming, Management Sci.,
vol. 13, 1967, pp.492-498.

5. Edmonds, J.: Submodular functions, matroids and certain polyhedra, Proc.
Calgary Intl. conference on Combinatorial Structures, 1970, pp.69-87.

6. Fujishige, S.: Submodular Functions and Optimization, Annals of Discrete
Mathematics, North Holland, 1991.

7. Gabow, H.N.: Algorithms for graphic polymatroids and parametric s-sets J.
Algorithms, vol. 26, 1998, pp.48-86.

8. Gallo, G., Grigoriadis, M. and Tarjan, R.E.: A fast parametric network flow
algorithm, SIAM J. of Computing, vol. 18, 1989, pp.30-55.

9. Gusfield, D.: Computing the strength of a graph, SIAM J. of Computing,
vol. 20, 1991, pp.639-654.

10. Imai, H.: Network flow algorithms for lower truncated transversal polyma-
troids, J. of the Op. Research Society of Japan, vol. 26, 1983, pp. 186-210.

11. Iri, M. and Fujishige, S.: Use of matroid theory in operations research, cir-
cuits and systems theory, Int. J. Systems Sci.,vol. 12, no. 1, 1981, pp. 27-54.

12. Itai, A. and Rodeh, M.: The multi-tree approach to reliability in distributed
networks, in Proc. 25th ann. symp. FOCS, 1984, pp. 137-147.

13. Narayanan, H.:Theory of matroids and network analysis, Ph.D. thesis, De-
partment of Electrical Engineering, I.I.T. Bombay, 1974.

14. Narayanan, H.: The principal lattice of partitions of a submodular function,
Linear Algebra and its Applications, 144, 1991, pp. 179-216.

15. Narayanan, H., Roy, S. and Patkar, S.B.: Approximation Algorithms for
min-k-overlap Problems, using the Principal Lattice of Partitions Approach,
J. of Algorithms, vol. 21, 1996, pp. 306-330.

16. Narayanan, H.: Submodular Functions and Electrical Networks, Annals of
Discrete Mathematics-54, North Holland, 1997.

17. Patkar, S. and Narayanan, H. : Principal lattice of partitions of submodu-
lar functions on graphs: fast algorithms for principal partition and generic
rigidity, in Proc. of the 3rd ann. Int. Symp. on Algorithms and Computation,
(ISAAC), LNCS-650, Japan, 1992, pp. 41-50.

18. Patkar, S. and Narayanan, H. : Fast On-line/Off-line Algorithms for Optimal
Reinforcement of a Network and its Connections with Principal Partition,
Technical Report, Industrial Mathematics Group, Department of Mathemat-
ics, IIT Bombay, available from authors via e-mail, 2000.

19. Tomizawa, N.: Strongly irreducible matroids and principal partition of a
matroid into strongly irreducible minors (in Japanese), Transactions of the
Institute of Electronics and Communication Engineers of Japan, vol. J59A,
1976, pp. 83-91.

On-Line Edge-Coloring with a Fixed Number of

Colors

Lene Monrad Favrholdt and Morten Nyhave Nielsen

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

{lenem,nyhave}@imada.sdu.dk

Abstract We investigate a variant of on-line edge-coloring in which
there is a fixed number of colors available and the aim is to color as many
edges as possible. We prove upper and lower bounds on the performance
of different classes of algorithms for the problem. Moreover, we determine
the performance of two specific algorithms, First-Fit and Next-Fit.

1 Introduction

The Problem. In this paper we investigate the on-line problem Edge-Coloring
defined in the following way. A number k of colors is given. The algorithm is
given the edges of a graph one by one, each one specified by its endpoints. For
each edge, the algorithm must either color the edge with one of the k colors, or
reject it, before seeing the next edge. Once an edge has been colored the color
cannot be altered and a rejected edge cannot be colored later. The aim is to
color as many edges as possible under the constraint that no two adjacent edges
receive the same color.

Note that the problem investigated here is different from the classical version
of the edge coloring problem, which is to color all edges with as few colors as
possible. In [2] it is shown that, for the on-line version of the classical edge
coloring problem, the greedy algorithm (the one that we call First-Fit) is optimal.

The Measures. To measure the quality of the algorithms, we use the competitive
ratio which was introduced in [6] and has become a standard measure for on-
line algorithms. For the problem Edge-Coloring addressed in this paper, the
competitive ratio of an algorithm A is the worst case ratio, over all possible input
sequences, of the number of edges colored by A to the number of edges colored
by an optimal off-line algorithm.

In some cases it may be realistic to assume that the input graphs are all
k-colorable. Therefore, we also investigate the competitive ratio in the special
case where it is known that the input graphs are k-colorable. This idea is sim-
ilar to what was done in [1] and [3]. In these papers the competitive ratio is
investigated on input sequences that can be fully accommodated by an optimal
off-line algorithm with the resources available (in this paper the resource is, of
course, the colors). Such sequences are called accommodating sequences. This

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 106–116, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On-Line Edge-Coloring with a Fixed Number of Colors 107

is generalized in [4], where the competitive ratio as a function of the amount of
resources available is investigated.

This paper illustrates an advantage of analyzing accommodating sequences,
apart from tailoring the measure to the type of input. A common technique when
constructing a difficult proof is to start out investigating easier special cases. In
our analysis of the general lower bound on the competitive ratio, the case of
k-colorable input graphs was used as such a special case.

The Algorithms. We will mainly consider fair algorithms. A fair algorithm is
an algorithm that never rejects an edge, unless it is not able to color it. Two
natural fair algorithms are Next-Fit and First-Fit described in Sections 4 and 5
respectively.

The Graphs. The lower bounds on the competitive ratio proven in this paper
are valid even if we allow multigraphs. The adversary graphs used for proving
the upper bounds are all simple graphs. Thus, the upper bounds are valid even if
we restrict ourselves to simple graphs. Furthermore, the adversary graphs are all
bipartite except one which could easily be changed to a bipartite graph. Thus,
the results are all valid for bipartite graphs too.

The Proofs. Due to space limitations we have omitted the details of some of the
proofs. The full version can be found in [5].

2 Notation and Terminology

We label the colors 1, 2, . . . , k and let Ck = {1, 2, . . . , k}.
Km,n denotes the complete bipartite graph in which the two independent

sets contain m and n vertices respectively.
The terms fairD, fairR, on-lineD, and on-lineR denote arbitrary on-line algo-

rithms from the classes “fair deterministic”, “fair randomized”, “deterministic”,
and “randomized”, respectively, for the Edge-Coloring problem. The term
off-line denotes an optimal off-line algorithm for the problem.

3 The Competitive Ratio

We begin this section with a formal definition of the competitive ratio for the
problem Edge-Coloring.

Definition 3.1. For any algorithm A and any sequence S of edges, let A (S) be
the number of edges colored by A and let OPT(S) be the number of edges colored
by an optimal off-line algorithm. Furthermore, let 0 ≤ c ≤ 1.

An on-line algorithm A is c-competitive if there exists a constant b such that
A (S) ≥ c ·OPT(S) − b, for any sequence S of edges.

The competitive ratio of A is CA = sup{c | A is c-competitive}.

108 Lene Monrad Favrholdt and Morten Nyhave Nielsen

3.1 A Tight Lower Bound for Fair Algorithms

In this section a tight lower bound on the competitive ratio for fair algorithms
is given. Note that it is not possible to give a general lower bound greater than
0, since the algorithm that simply rejects all edges have a competitive ratio of 0.

Theorem 3.2. For any fair on-line algorithm A for Edge-Coloring, CA ≥
2
√

3 − 3 ≈ 0.4641.

Proof. Let Ec denote the set of edges colored by fairR, let Eu denote the set of
edges colored by off-line and not by fairR, and let Ed denote the set of edges
colored by both off-line and fairR. Thus, Eu ∪ Ed are the edges colored by off-
line, and Ed ⊆ Ec. Similarly, for any vertex x, let dc(x), du(x), and dd(x) denote
the number of edges incident to x colored by fairR, not colored by fairR, and
colored by both fairR and off-line respectively. Let c be a constant such that
0 ≤ c < 1

2 . Then fairR is c-competitive for any c such that |Ec| ≥ c(|Ed|+ |Eu|),
or |Ec| − c|Ed| ≥ c|Eu|.

Now, the intuition is that, for each edge e ∈ Ec, fairR earns one unit of some
value. If fairR can buy all edges in Eu ∪ Ed paying the fraction c of a unit for
each, then |Ec| ≥ c(|Ed| + |Eu|). fairR starts out buying all edges in Ed, paying
c for each. The remaining value is distributed to the edges in Eu in two steps.
In the first step, each vertex x receives the value m(x) = 1

2

(
dc(x) − cdd(x)

)
.

Note that
∑

x∈V m(x) = |Ec| − c|Ed|. In the next step, the value on each vertex
is distributed equally among the edges in Eu incident to it. Thus, each vertex
x with du(x) ≥ 1 gives the value mu(x) = m(x)

du(x) to each edge in Eu incident
to it. Note that

∑
(x,y)∈Eu

(
mu(x) + mu(y)

) ≤ ∑
(x,y)∈Eu

(
mu(x) + mu(y)

)
+∑

du(x)=0 m(x) =
∑

x∈V m(x) = |Ec| − c|Ed|. Thus, if mu(x) + mu(y) ≥ c for
any edge (x, y) ∈ Eu, then c|Eu| ≤ ∑

(x,y)∈Eu

(
mu(x) + mu(y)

) ≤ |Ec| − c|Ed|
and fairR is c-competitive.

The inequalities below follow from two simple facts. (1) For any vertex x ∈ V ,
dd(x) + du(x) ≤ k, since off-line can color at most k edges incident to x. (2) For
each edge (x, y) ∈ Eu, dc(x) + dc(y) ≥ k, since fairR is a fair algorithm. For any
edge (x, y) ∈ Eu,

mu(x) + mu(y) =
1
2

(
dc(x) − cdd(x)

du(x)
+

dc(y) − cdd(y)
du(y)

)
(1)

≥ 1
2

(
dc(x) − cdd(x)

k − dd(x)
+

dc(y) − cdd(y)
k − dd(y)

)
(2)

≥ 1
2

(
dc(x) − cdd(x)

k − dd(x)
+

k − dc(x) − cdd(y)
k − dd(y)

)
Calculations show that this expression is greater than or equal to c as long as
c ≤ 2

√
3 − 3. �

In section 4 it is shown that values of k exist for which the competitive ratio
of Next-Fit is arbitrarily close to 2

√
3−3. Thus, the result in Theorem 3.2 is tight.

The next theorem in conjunction with Theorem 3.2, shows that all deterministic
fair algorithms must have very similar competitive ratios.

On-Line Edge-Coloring with a Fixed Number of Colors 109

3.2 An Upper Bound for Fair Deterministic Algorithms

Theorem 3.3. No deterministic fair algorithm A for Edge-Coloring is more
than 1

2 -competitive.

Proof. We construct a simple graph G = (V1 ∪ V2, E) in two phases. In Phase
1, only vertices in V1 are connected. In Phase 2, vertices in V2 are connected to
vertices in V1. Let |V1| = |V2| = n for some large integer n.

In Phase 1, the adversary gives an edge between two unconnected vertices
x, y ∈ V1 with a common unused color. Since the edge can be colored, fairD will
do so. This process is repeated until no two unconnected vertices with a common
unused color can be found. At that point Phase 1 ends. For any vertex x, let
Cu(x) denote the set of colors not represented at x. At the end of Phase 1, the
following holds true. For each color c and each vertex x such that c ∈ Cu(x),
x is already connected to all other vertices y with c ∈ Cu(y). Since x can be
connected to at most k other vertices, there are at most k vertices y �= x such
that c ∈ Cu(y). Thus,

∑
x∈V1

Cu(x) ≤ k(k + 1).
The edges given in Phase 2 are the edges of a k-regular bipartite graph with

V1 and V2 forming the two independent sets. Note that, by König’s Theorem [7],
such a graph can be k-colored.

From Phase 2, fairD gets at most k(k + 1) edges, but off-line rejects all edges
from Phase 1 and accepts all edges from Phase 2, giving a performance ratio
of at most

1
2 (nk−k(k+1))+k(k+1)

nk = nk+k(k+1)
2nk = 1

2 + k+1
2n . If we allow n to be

arbitrarily large, this can be arbitrarily close to 1
2 . �

3.3 A General Upper Bound

Now follows an upper bound on the competitive ratio for any type of algorithm
for Edge-Coloring, fair or not fair, deterministic or randomized.

Theorem 3.4. For any algorithm A for Edge-Coloring CA ≤ 4
7 .

Proof. In Fig. 1, the structure of the adversary graph is depicted. Each box
contains k vertices. When two boxes are connected, there are k2 edges in a
complete bipartite graph between the 2k vertices inside the boxes. Note that
such a graph can be k-colored. The edges of the graph are divided into n levels,
level 1, . . . , n. The adversary gives the edges, one level at a time, according to
the numbering of the levels. The edges of level i are given in three consecutive
phases:

1. Hi: Internal (horizontal) edges at level i. In total k2 edges.
2. Vi: Internal (vertical) edges between level i and level i+1. In total 2k2 edges.
3. Ei: External edges at level i. In total 2k2 edges.

Let XHi
be a random variable counting how many edges on-lineR will color

from the set Hi, and let XVi and XEi count the colored edges from Vi and Ei

respectively. For i = 0, . . . , n, let EXTi and INTi be random variables counting

110 Lene Monrad Favrholdt and Morten Nyhave Nielsen

H1
V1 V1

E1 E1

H2
V2 V2

E2 E2

.

.

.
.
.
.

Hn−1
Vn−1 Vn−1

En−1 En−1

Hn
Vn Vn

En En

Fig.1. Structure of the adversary graph for the general upper bound on the
competitive ratio.

the sum of all external and internal edges, respectively, colored by on-lineR after
level i is given, i.e., EXTi =

∑i
j=1 XEj

and INTi =
∑i

j=1(XVj
+ XHj

). Note
that EXT0 = INT0 = 0.

If the adversary stops giving edges after Phase 1 of level i, off-line will color
k2(2i−1) edges in total, namely the edges in the sets E1, E2, . . . , Ei−1, and Hi. If
the adversary stops giving edges after Phase 2 (or 3) of level i, off-line will color
2k2i edges, namely the edges in the sets E1, E2, . . . , Ei−1, and Vi. The proof is
divided into two cases.

Case 1: There exists a level i ≤ n, where E[EXTi] > 2
7k2i.

Let i denote the first level such that E[EXTi] > 2
7k2i. Assume that the num-

ber of edges colored by on-lineR is at least 4
7 of the number of edges colored by

off-line. If the adversary stops the sequence after Phase 1 of level i, the following
inequality must hold:
(1) E[INTi−1] + E[EXTi−1] + E[XHi] ≥ 4

7k2(2i − 1).
If the adversary stops the sequence after Phase 2 of level i, the following inequal-
ity must hold:
(2) E[INTi] + E[EXTi−1] ≥ 4

7k22i.
If on-lineR is 4

7 -competitive, both inequalities must hold. Adding inequalities (1)
and (2) yields
(3) 2

(
E[INTi−1] + E[EXTi−1]

)
+ 2E[XHi

] + E[XVi
] ≥ 16

7 k2i − 4
7k2.

Now, E[INTi−1] ≤ 1
2

(
2k2(i − 1) − E[EXTi−1] − E[XVi−1]

)
+ E[XVi−1],

E[EXTi−1] ≤ 2
7k2(i − 1), and E[XVi−1] + 2E[XHi] + E[XVi] ≤ 2k2 − E[XEi] <

12
7 k2. Inserting these inequalities into (3) we arrive at a contradiction. Thus, in

this case on-lineR is not 4
7 -competitive.

Case 2: For all i ≤ n, E[EXTi] ≤ 2
7k2i.

The expected number of edges colored by on-lineR is
E[INTn] + E[EXTn] ≤ 1

2 (2k2n − E[EXTn] − E[XVn
]) + E[XVn

] + E[EXTn] =
k2n+ 1

2 (E[EXTn−1]+E[XEn]+E[XVn]) ≤ k2n+ 1
2 (2

7k2(n−1)+2k2) = 8
7k2n+

6
7k2.

On-Line Edge-Coloring with a Fixed Number of Colors 111

Thus, we get an upper bound on the performance ratio of
8
7k2n+ 6

7 k2

2nk2 = 4
7 + 3

7n ,
which can be arbitrarily close to 4

7 , if we allow n to be arbitrarily large. �
Thus, even if we allow probabilistic algorithms that are not necessarily fair, no

algorithm is more than 0.11 apart from the worst fair algorithm when comparing
competitive ratios.

4 The Algorithm Next-Fit

The algorithm Next-Fit (NF) is a fair algorithm that uses the colors in a cyclic
order. Next-Fit colors the first edge with the color 1 and keeps track of the
last used color clast. When coloring an edge (u, v) it uses the first color in the
sequence 〈clast +1, clast +2, . . . , k, 1, 2, . . . , clast〉 that is not yet used on any edge
incident to u or v, if any.

Intuitively, this is a poor strategy and it turns out that its competitive ratio
matches the lower bound of section 3.1. Thus, this algorithm is mainly described
here to show that the lower bound cannot be improved.

When proving upper bounds for Next-Fit, it is useful to note that any coloring
in which each color is used on exactly n or n + 1 edges, for some n ∈ N, can
be produced by Next-Fit, for some ordering of the request sequence. The colors
just need to be permuted so that the colors used on n + 1 edges are the lowest
numbered colors.

Theorem 4.1. inf
k∈N

CNF(k) = 2
√

3 − 3 ≈ 0.4641.

Proof. The adversary constructs a graph GNF in the following way. It chooses
an x ∈ Ck as close to (

√
3 − 1)k as possible and then constructs a (k − x)-

regular bipartite graph G1 = (L1 ∪ R1, E1) with |L1| = |R1| = k and a graph
G2 = (L2 ∪R2, E2) isomorphic to Kx,x. Now, each vertex in R1 is connected to
each vertex in L2 and each vertex in R2 is connected to each vertex in L1. Call
these extra edges E12. The graph GNF for k = 4 is depicted in Fig. 2.

R2 L1 R1 L2 R2

Fig.2. The graph GNF when k = 4, showing that CNF(4) ≤ 13
28 ≈ 0.4643.

Assume first, that k−x ≤ 1. In this case |L1| ≤ |L2|+1, so G1 and G2 can be
colored by Next-Fit with Ck−x and Ck \ Ck−x respectively. After this, Next-Fit

112 Lene Monrad Favrholdt and Morten Nyhave Nielsen

will not be able to color any of the edges in E12. It is possible however, to color
all edges in E1 ∪ E12 with k colors, because the subgraph of GNF containing
these edges is bipartite and has maximum degree k. Thus, for any x ∈ Ck, the
competitive ratio of Next-Fit can be no more than |E1|+|E2|

|E1|+|E12| = k(k−x)+x2

k(k−x)+2kx =
k2−kx+x2

k2+kx . This ratio attains its minimum value of 2
√

3− 3 when x = (
√

3− 1)k.
Thus, by allowing arbitrarily large values of k, it can be arbitrarily close to
2
√

3 − 3.
If k−x > 1, then |L1| > |L2|+ 1 and thus it is not possible to make Next-Fit

color all edges in G1 using only Ck−x. In this case more copies of GNF are needed.
Let m be the smallest positive integer such that m(k−x) is a multiple of k. Then
mx is a multiple of k as well. In general, m copies of GNF , G1

C, G2
C, . . . , Gm

C , are
used. A k-coloring of the m copies of GNF in which each color is used the same
number of times can be obtained in the following way. In Gi

C, G1 is colored with
the colors (k−x)(i−1)+1 mod k, (k−x)(i−1)+2 mod k, . . . , (k−x)i mod k,
and G2 is colored with the remaining colors in Ck. �

5 The Algorithm First-Fit

The algorithm First-Fit (FF) is a fair algorithm. For each edge e that it is able
to color, it colors e with the lowest numbered color possible.

Theorem 5.1. inf
k∈N

CFF(k) ≤ 2
9

(
√

10 − 1) ≈ 0.4805.

Proof. The adversary graph GFF of this proof is inspired by the graph GNF . It
is not possible, though, to make First-Fit color the subgraph G2 of GNF with
Ck \ Cx. Therefore, the graph is extended by the subgraph G′

2 isomorphic to
G2. Each vertex in R2 is connected to exactly k − x vertices in L′

2 and vice
versa. Now, E2 denotes the edges in G2 and G′

2 and the edges connecting them.
Finally, 2kx new vertices are added, and each vertex in R2 ∪ L′

2 is connected to
k of these vertices. Let E3 denote the set of these extra edges. The graph GFF

for k = 4 is depicted in Fig. 3.

R′
2 L1 R1 L2 R2 L′

2 R′
2

Fig.3. The graph GFF when k = 4, showing that CFF(4) ≤ 25
52 ≈ 0.4808.

On-Line Edge-Coloring with a Fixed Number of Colors 113

If the edges in G1 and the edges connecting G2 and G′
2 are given first (one

perfect matching at a time), followed by the edges in G2 and G′
2 (one perfect

matching at a time), it is obvious that First-Fit will color the edges in the
desired way. After this, First-Fit will not be able to color any more edges of
GFF . On the other hand it is possible to k-color the set E1 ∪E12 ∪E3 of edges.
Thus, the competitive ratio of First-Fit can be no more than |E1|+|E2|

|E1|+|E12|+|E3| =
k(k−x)+2x2+x(k−x)

k(k−x)+2kx+2kx = k2+x2

k2+3kx . This ratio attains its minimum value of 2
9 (
√

10 −
1), when x = 1

3 (
√

10 − 1)k. Thus, for the graph GFF , the optimal (from an
adversary’s point of view) value of x is an integer as close as possible to 1

3 (
√

10−
1)k, and by allowing arbitrarily large values of k, the ratio can be arbitrarily
close to 2

9 (
√

10 − 1). �

6 k-Colorable Graphs

Now that we know that the competitive ratio cannot vary much between different
kinds of algorithms for the Edge-Coloring problem, it would be interesting to
see what happens if we know something about the input graphs — for instance
that they are all k-colorable. In this section we investigate the competitive ratio
in the case where the input graphs are known to be k-colorable.

6.1 A Tight Lower Bound for Fair Algorithms

Theorem 6.1. Any fair algorithm for Edge-Coloring is 1
2 -competitive on k-

colorable graphs.

Sketch of the Proof. As in the proof of Theorem 3.2 the idea is that each col-
ored edge is worth one unit of some value. The value of each colored edge e is
distributed equally among its endpoints and, from there, redistributed to the
uncolored edges adjacent to e. If each uncolored edge receives a total value of
at least one, then there are at least as many colored edges as uncolored edges.
Let dc and du be defined as in the proof of Theorem 3.2. Then each uncol-
ored edge (x, y) receives the value 1

2

(
dc(x)
du(x) + dc(y)

du(y)

)
≥ 1

2

(
dc(x)

k−dc(x) + dc(y)
k−dc(y)

)
≥

1
2

(
dc(x)

k−dc(x) + k−dc(x)
dc(x)

)
≥

1
2

(
k/2
k/2 + k/2

k/2

)
= 1. The first inequality above follows from the fact that dc(x) +

du(x) ≤ k, since the graph is k-colorable. The second inequality follows from the
fact that dc(x) + dc(y) ≥ k, since fairR is fair. �

In Section 4 it is shown that, on k-colorable graphs, the competitive ratio of
the algorithm Next-Fit is 1

2 for all even k. Thus, the result in Theorem 6.1 is
tight.

114 Lene Monrad Favrholdt and Morten Nyhave Nielsen

6.2 An Upper Bound for Deterministic Algorithms

Theorem 6.2. For any deterministic algorithm A for Edge-Coloring, CA ≤
2
3 , even on k-colorable graphs.

Sketch of the Proof. The edges are given in two phases. In Phase 1, a large k
2 -

regular bipartite graph G = (L∪R, E) is given. After Phase 1, the vertex set L
is divided in subsets according to the colors represented at each vertex. Vertices
with the same color sets are put in the same subset. The same is done to R.
Now, look at one such subset S. Assume that it has size n and that the number
of colors represented at each vertex is d. In Phase 2, n

2 new vertices are added
and connected to the vertices in S, creating a bipartite graph B in which the
new vertices have degree k, and the vertices in S have degree k

2 . Thus, looking
at the whole graph, the total vertex degree of the vertices in B is 3

2nk. on-lineD

can color at most k − d edges incident to each of the new vertices. Therefore,
looking at the subgraph colored by on-lineD, the total degree of the vertices in
B is at most 2 · n

2 (k − d) + nd = nk. Since each of the vertices given in Phase 2
is connected to only one of the sets L and R, the whole graph is bipartite. Thus,
off-line colors all of the edges. �

6.3 The Algorithm Next-Fit

Theorem 6.3. On k-colorable graphs, CNF(k) ≤
{

1
2 , if k is even
1
2 + 1

2k2 , if k is odd

Proof. The adversary constructs a graph GNF in the following way. First it
constructs two complete bipartite graphs G1 = (L1∪R1, E1) with |L1| = |R1| =
�k

2 � and G2 = (L2∪R2, E2) with |L2| = |R2| = �k
2 �. G1 can be colored with �k

2 �
colors using each color �k

2� times, and G2 can be colored with �k
2 � colors using

each color �k
2 � times. The edges in these two graphs are given in an order such

that Next-Fit colors G1 with C� k
2 � and G2 with Ck \ C� k

2 �. Now, each vertex in
R1 is connected to each vertex in L2 and each vertex in R2 is connected to each
vertex in L1. Let E12 denote these edges connecting G1 and G2. Next-Fit is not
able to color any of the edges in E12. It is, however, possible to color all edges in
GNF with Ck, since the graph is bipartite and has maximum degree k. Thus, in
the case where the input graphs are all k-colorable, the competitive ratio of Next-
Fit can be no more than |E1|+|E2|

|E1|+|E2|+|E12| = � k
2 �2+� k

2 	2
� k

2 �2+� k
2 	2+2� k

2 �� k
2 	

, which reduces to
1
2 when k is even, and to 1

2 + 1
2k2 when k is odd. �

6.4 The Algorithm First-Fit

The following theorem is an immediate consequence of Lemma 6.5 and Lemma 6.6.

Theorem 6.4. On k-colorable graphs, CFF(k) = k
2k−1 .

On-Line Edge-Coloring with a Fixed Number of Colors 115

R2 L1 R1 L2 R2

Fig.4. The graph GNF when k = 5

Thus, for small values of k, the competitive ratio of First-Fit on k-colorable
graphs is significantly larger than that of Next-Fit, but the difference tends to
zero as k approaches infinity.

Lemma 6.5. On k-colorable graphs, CFF(k) ≥ k
2k−1 .

Proof. Let E be the edge set of an arbitrary k-colorable graph G. Assume that
First-Fit is given the edges in E in some order. For c ∈ Ck, let Ec denote the set
of edges that First-Fit colors with the color c. We will prove by induction on c
that, for all c ∈ Ck,

∑c
i=1 |Ei| ≥ c

2k−1 |E|.
For the base case, consider c = 1. By the definition of First-Fit, each edge

in E \ E1 is adjacent to at least one edge in E1. Furthermore, since G is k-
colorable, each edge in E1 is adjacent to at most 2(k − 1) other edges. Thus,
|E| ≤ 2(k − 1)|E1| + |E1|, or |E1| ≥ 1

2k−1 |E|.
For the induction step, let c ∈ Ck. Each edge in E \ ∪c

i=1Ei is adjacent to at
least one edge in Ec. Moreover, since each edge in Ec is adjacent to at least c−1
edges in ∪c−1

i=1Ei, each edge in Ec is adjacent to at most 2(k−1)−(c−1) = 2k−c−1
edges in E \ ∪c

i=1Ei. Therefore, |Ec| ≥ 1
2k−c |E \ ∪c−1

i=1 Ei|. Thus,
∑c

i=1 |Ei| ≥∑c−1
i=1 |Ei| + |E|−Pc−1

i=1 |Ei|
2k−c = |E|+(2k−c−1)

Pc−1
i=1 |Ei|

2k−c ≥ |E|+(2k−c−1) c−1
2k−1 |E|

2k−c =
c

2k−1 |E| �

Lemma 6.6. On k-colorable graphs, CFF(k) ≤ k
2k−1 .

Outline of the Proof. Inspired by the proof of Lemma 6.5, we construct a bipar-
tite graph G and a First-Fit coloring of G such that all vertices have degree k
and no edge is adjacent to more than one edge of each color. For such a graph
the analysis in the proof of Lemma 6.5 is tight, meaning that First-Fit colors
exactly k

2k−1 of the edges in G. Since G is bipartite, it can be k-colored off-line.
�

7 Conclusions

We have proven that the competitive ratios of algorithms for Edge-Coloring
can vary only between approximately 0.46 and 0.5 for deterministic algorithms
and between 0.46 and 0.57 for probabilistic algorithms (it can, of course, be

116 Lene Monrad Favrholdt and Morten Nyhave Nielsen

lower for algorithms that are not fair). Thus, we cannot hope for algorithms
with competitive ratios much better than those of Next-Fit and First-Fit. In the
case of k-colorable graphs the gap is somewhat larger: the (tight) lower bound
for fair algoritms is 1

2 and the upper bound for deterministic algorithms is 2
3 .

In this case we have no upper bound on the competitive ratio for probabilistic
algorithms.

We have shown that the performance of Next-Fit matches the lower bound
on the competitive ratio in both the general case and in the special case of
k-colorable graphs. Furthermore, we have found the exact competitive ratio of
First-Fit on k-colorable graphs. For small values of k it is significantly better
than that of Next-Fit, but for large values of k they can hardly be distinguished.
In the general case, First-Fit is at most 0.016 better than Next-Fit. We believe
that the competitive ratio of First-Fit is larger than that of Next-Fit but we
have not proven it.

References

[1] Yossi Azar, Joan Boyar, Lene M. Favrholdt, Kim S. Larsen, and Morten N. Nielsen.
Fair versus unrestricted bin packing. In Seventh Scandinavian Workshop on Algo-
rithm Theory, volume 1851 of Lecture Notes in Computer Science, pages 200–213.
Springer-Verlag, 2000.

[2] Amotz Bar-Noy, Rajeev Motwani, and Joseph Naor. The greedy algorithm is opti-
mal for on-line edge coloring. Information Processing Letters, 44(5):251–253, 1992.

[3] J. Boyar and K. S. Larsen. The seat reservation problem. Algorithmica, 25(4):403–
417, 1999.

[4] J. Boyar, K. S. Larsen, and M. N. Nielsen. The accommodating function — a
generalization of the competitive ratio. In Sixth International Workshop on Algo-
rithms and Data Structures, volume 1663 of Lecture Notes in Computer Science,
pages 74–79. Springer-Verlag, 1999.

[5] Lene M. Favrholdt and Morten N. Nielsen. On-line edge-coloring with a fixed
number of colors. Preprints 1999, no. 6, Department of Mathematics and Computer
Science, University of Southern Denmark, Odense.

[6] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Com-
petitive snoopy caching. Algorithmica, 3:79–119, 1988.

[7] Douglas B. West. Introduction to Graph Theory, page 209. Prentice Hall, Inc.,
1996.

On Approximability of the

Independent/Connected Edge Dominating Set
Problems

Toshihiro Fujito

Department of Electronics, Nagoya University
Furo, Chikusa, Nagoya, 464-8603 Japan

fujito@nuee.nagoya-u.ac.jp

Abstract. We investigate polynomial-time approximability of the prob-
lems related to edge dominating sets of graphs. When edges are unit-
weighted, the edge dominating set problem is polynomially equivalent to
the minimum maximal matching problem, in either exact or approximate
computation, and the former problem was recently found to be approx-
imable within a factor of 2 even with arbitrary weights. It will be shown,
in contrast with this, that the minimum weight maximal matching prob-
lem cannot be approximated within any polynomially computable factor
unless P=NP.
The connected edge dominating set problem and the connected vertex
cover problem also have the same approximability when edges/vertices
are unit-weighted, and the former problem is known to be approximable,
even with general edge weights, within a factor of 3.55. We will show
that, when general weights are allowed, 1) the connected edge domi-
nating set problem can be approximated within a factor of 3 + ε, and
2) the connected vertex cover problem is approximable within a fac-
tor of lnn + 3 but cannot be within (1 − ε) ln n for any ε > 0 unless
NP ⊂ DTIME(nO(log log n)).

1 Introduction

In this paper we investigate polynomial-time approximability of the problems
related to edge dominating sets of graphs. For two pairs of problems consid-
ered, it will be shown that, while both problems in each pair have the same
approximability for the unweighted case, they have drastically different ones
when optimized under general non-negative weights.

In an undirected graph an edge dominates all the edges adjacent to it, and an
edge dominating set (eds) is a set of edges collectively dominating all the other
edges in a graph. The problem EDS is then that of finding a smallest eds or,
if edges are weighted, an eds of minimum total weight. Yannakakis and Gavril
showed that EDS is NP-complete even when graphs are planar or bipartite of
maximum degree 3 [24]. Horton and Kilakos extended this NP-completeness
result to planar bipartite graphs, line and total graphs, perfect claw-free graphs,
and planar cubic graphs [14]. A set of edges is called a matching (or independent)

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 117–126, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

118 Toshihiro Fujito

if no two of them have a vertex in common, and a matching is maximal if
no other matching properly contains it. Notice that any maximal matching is
necessarily an eds, because an edge not in it must be adjacent to some in it,
and for this reason it is also called an independent edge dominating set, and
the problem IEDS asks for computing a minimum maximal matching in a given
graph. Certainly, a smallest maximal matching cannot be smaller than a smallest
eds. Interestingly, one can construct a maximal matching, from any eds, of no
larger size in polynomial time [13], implying that the size of a smallest eds equals
to that of a smallest maximal matching in any graph. Thus, EDS and IEDS are
polynomially equivalent, in exact or approximate computation, when graphs are
unweighted. Based on this and the fact that any maximal matching cannot be
more than twice larger than another one, it has been long known that either
problem, without weights, can be approximated within a factor of 2, and even
with weights, EDS was very recently shown approximable within a factor of
2 [4,7]. We will present, in contrast with this, strong inapproximability results
for weighted IEDS.

We next consider EDS with connectivity requirement, called the connected
edge dominating set (CEDS) problem, where it is asked to compute a connected
eds (ceds) of minimum weight in a given connected graph. Since it is always
redundant to form a cycle in a ceds, the problem can be restated as that of going
after a minimum tree whose vertices “covers” all the edges in a graph, and thus,
it is also called tree cover. Although enforcing the independence property on EDS
solutions does not alter (increase) their sizes as stated above, the connectivity
condition certainly does (just consider a path of length 5). The vertex cover
(VC) problem is another basic NP-complete graph problem [16], in which a
minimum vertex set is sought in G s.t. every edge of G is incident to some
vertex in the set, and when a vertex cover is additionally required to induce a
connected subgraph in a given connected graph, the problem is called connected
vertex cover (CVC) and known to be as hard to approximate as VC is [8]. These
problems are closely related to EDS and CEDS in that an edge set F is an
eds for G iff V (F), the set of vertices touched by edges in F , is a vertex cover
for G, and similarly, a tree F is a ceds iff V (F) is a connected vertex cover.
Since one can easily obtain a cvc of size |F | + 1 from a ceds F (tree), and
conversely, a ceds of size |C|−1 from a cvc C, these two problems have the same
approximability for the unweighted case. The unweighted version of CEDS or
CVC is also known to be approximable within a factor of 2 [22,2]. It is not known,
however, if CEDS and CVC can be somehow related even if general weights are
allowed, and the algorithm scheme of Arkin et al. for weighted CEDS gives
its approximation factor in the form of rSt + rwvc(1 + 1/k), for any constant
k, where rSt(rwvc) is the performance ratio of any polynomial time algorithm
for the Steiner tree (weighted vertex cover, resp.) problem [2]. By using the
currently best algorithms for Steiner tree with rSt = 1 + ln 3/2 ≈ 1.55 [21] and
for weighted vertex cover with rwvc = 2− log logn/ logn [3] in their scheme, the
bound for weighted CEDS is estimated at 3.55. After improving this bound to
3 + ε, we will show that weighted CVC is as hard to approximate as weighted

On Approximability of the Independent/Connected Edge 119

set cover is, indicating that it is not approximable within a factor better than
(1−ε) lnn unless NP ⊂ DTIME(nO(log log n)) [6]. Lastly, we present an algorithm
approximating weighted CVC within a factor of rwvc+H(∆−1) ≤ ln(∆−1)+3,
where H(k) is the kth Harmonic number and ∆ is the maximal vertex degree of
a graph.

Since EDS is exactly the (vertex) dominating set problem on line graphs, it is
worth comparing our results with those for independent/connected dominating
set problems. The connected dominating set is as hard to approximate as set
cover is, but can be approximated within a factor of lnn+3 for the unweighted
case [9], and within 1.35 lnn for the weighted case [10]. The independent domi-
nating set problem (also calledminimum maximal independent set), on the other
hand, cannot be approximated, even for the unweighted case, within a factor of
n1−ε for any constant ε > 0, unless P=NP [12].

2 Independent Edge Dominating Set

To show that it is extremely hard to approximate IEDS, let us first describe a
general construction of graph Gφ for a given 3SAT instance (i.e., a CNF formula)
φ, by adapting the one used in reducing SAT to minimum maximal independent
set [15,12] to our case. For simplicity, every clause of φ is assumed w.l.o.g. to
contain exactly three literals. Each variable xi appearing in φ is represented in
Gφ by two edges adjacent to each other, and the endvertices of such a path
of length 2 are labeled xi and x̄i; let Ev denote the set of these edges. Each
clause cj of φ is represented by a triangle (a cycle of length 3) Cj , and vertices
of Cj are labeled distinctively by literals appearing in cj ; let Ec denote the set
of edges in these disjoint triangles. The paths in Ev and triangles in Ec are
connected together by having an edge between every vertex of each triangle and
the endvertex of a path having the same label. The set of these edges lying
between Ev and Ec is denoted by Eb. It is a simple matter to verify that, for
a 3SAT instance φ with m variables and p clauses, Gφ constructed this way
consists of 3(m+ p) vertices and 2(m+ 3p) edges.

Lemma 1. Let M(G) denote a minimum maximal matching M in G. For any
3SAT instance φ with m variables and p clauses, and for any number t, there
exists a graph Gφ on 3(m + p) vertices and 2(m + 3p) edges, and a weight
assignment w : E → {1, t} such that

w(M(Gφ)) =
{≤ m+ p if φ is satisfiable
> t otherwise .

Proof. Let w(e) = 1 if e ∈ Ev ∪ Ec and w(e) = t if e ∈ Eb. Suppose that φ is
satisfiable, and let τ be a particular truth assignment satisfying φ. Construct a
matching Mτ in Ev by choosing, for each i, the edge with its endvertex labeled
by xi if τ(xi) is true and the one having an endvertex labeled by x̄i if τ(xi) is
false. Consider any triangle Cj in Ec. Since τ satisfies φ, at least one edge among
those in Eb connecting Cj and Ev must be dominated by Mτ . This means that

120 Toshihiro Fujito

all the edges in Eb between Cj and Ev can be dominated by Mτ , plus one edge
on Cj . Let Mc denote the set of such edges, each of which taken this way from
each Cj . Then, Mτ ∪Mc is clearly a minimal matching since it dominates all
the edges in Gφ. Since all the edges in Mτ ∪Mc are of weight 1, its weight is
|Mτ ∪Mc| = m + p. On the other hand, if φ is not satisfiable, there is no way
to dominate all the edges in Eb only by any matching built inside Ev ∪Ec, and
hence, any maximal matching in Gφ must incur a cost of more than t. ��

The computational hardness of approximating weighted IEDS easily follows
from this lemma:

Theorem 1. For any polynomial time computable function α(n), IEDS cannot
be approximated on graphs with n vertices within a factor of α(n), unless P=NP.

Proof. Given a 3SAT instance φ with m variables and p clauses, construct a
graph Gφ and assign a weight w(e) ∈ {1, t} to each edge e ∈ E, as in the proof
of Lemma 1. Since Gφ consists of 3(m + p) vertices and (m + p)α(3(m + p))
is computable in time polynomial in the length of φ, m + 3p, we can set t =
(m + p)α(3(m + p)) = (m + p)α(n). If a polynomial time algorithm A exists
approximating IEDS within a factor of α(n), then, when applied to Gφ, A will
output a number at most (m + p)α(n) if φ is satisfiable, and a number greater
than t = (m+p)α(n) if φ is not satisfiable. Hence, A decides 3SAT in polynomial
time. ��

It is additionally pointed out in this section that IEDS is complete for exp-
APX, the class of NP optimization problems polynomially approximable within
some exponential factors [1], by slightly modifying the construction used in
Lemma 1 and allowing zero weight on edges. Previously, a more general prob-
lem, minimum weight maximal independent set, was shown to be exp-APX-
complete [5].

Definition 1. Minimum Weighted Satisfiability (MinWSAT) is the problem de-
fined by

Instance: a CNF formula φ with nonnegative weights w(x) on the variables
appearing in φ.

Solution: truth assignment τ , either satisfying φ or setting all the variables to
“true”. The latter is called a trivial assignment.

Objective: minimize w(τ) =
∑

τ(x)=truew(x).

Theorem 2. The weighted IEDS problem is complete for exp-APX.

Proof. MinWSAT is known to be exp-APX-complete [19], and we reduce it to
weighted IEDS. Given φ and weights w on its variables, define Gφ as before and
edge weights w′ such that

w′(e) =

w(xi), if e ∈ Ev and its endvertex is labeled by xi∑

i w(xi), if e ∈ Eb

0, otherwise .

On Approximability of the Independent/Connected Edge 121

If a maximal matching in Gφ contains no edges in Eb, it must have an edge in
Ev labeled either xi or x̄i for each i. So, from an MinWSAT instance 〈φ,w〉 and
a maximal matching M in Gφ, a truth assignment τ for φ can be recovered in
such a way that

τ =
{
truth assignment corresponding to M ∩Ev, if M ∩ Eb = ∅
trivial assignment, otherwise .

It is then straightforward to verify that any algorithm for IEDS with performance
guarantee of α can be used to approximate MinWSAT within a factor at most
α. ��

3 Connected Edge Dominating Set

We first consider a restricted version of CEDS; for a designated vertex r called
root, an r-ceds is a ceds touching r, and the problem r-CEDS is to compute an
r-ceds of minimum weight. Given an undirected graph G = (V,E) with edge
weights w : E → Q+, let G = (V,E) denote its directed version obtained by
replacing each edge {u, v} of G by two directed ones, (u, v) and (v, u), each of
weight w({u, v}). For the root r, a non-empty set S ⊆ V −{r} is called dependent
if S is not an independent set in G. Suppose T ⊆ E is an r-ceds, and let T
denote the directed counterpart obtained by choosing, for each pair of directed
edges, the one directed away from the root to a leaf. Clearly, w(T) = w(T).
Moreover, let T be represented by its characteristic vector xT ∈ {0, 1}E, and,
for any x ∈ QE and F ⊆ E, let x(F) =

∑
a∈F xa. Then, xT satisfies the linear

inequality x(δ−(S)) ≥ 1 for all dependent sets S ⊆ V , where δ−(S) = {(u, v) ∈
E | v ∈ S, u �∈ S}, because, when an edge exists inside S, at least one arc of T
must enter it. Thus, the following linear programming problem is a relaxation
of r-CEDS:

Zceds = min
∑

a∈E w(a)xa

s.t.
x(δ−(S)) ≥ 1 ∀ dependent set S ⊆ V − {r}
0 ≤ xa ≤ 1 ∀a ∈ E

(1)

Lemma 2. For any feasible solution x ∈ QE of (1), let V+(x) = {u ∈ V |
x(δ−({u})) ≥ 1/2}. Then, V+(x) ∪ {r} is a vertex cover for G.

Proof. Take any edge e = {u, v} ∈ E, and assume r �∈ e. Then, {u, v} is a depen-
dent set, and x(δ−({u, v})) ≥ 1, which implies either x(δ−({u})) or x(δ−({v}))
is at least 1/2. Thus, {u, v} ∩ V+(x) �= ∅. ��

From this lemma it is clear that any tree T ⊆ E containing all the vertices
in V+(x) ∪ {r} is an r-ceds for G, and, in searching for such T of small weight,
it can be assumed w.l.o.g. that the edge weights satisfy the triangle inequality
since any edge between two vertices can be replaced, if necessary, by the shortest

122 Toshihiro Fujito

path between them. Then, the problem of finding such a tree of minimum weight
is called the (metric) Steiner tree problem: Given G = (V,E) with edge weight
w : E → Q+ and a set R ⊆ V of required vertices (or terminals), find a minimum
weight tree containing all the required vertices and any others (called Steiner
vertices). For this problem Rajagopalan and Vazirani considered the so called
bidirected cut relaxation [20]:

Zsmt = min
∑

a∈E w(a)xa

s.t.
x(δ−(S)) ≥ 1 ∀ valid set S ⊆ V − {r}
0 ≤ xa ≤ 1 ∀a ∈ E

(2)

where the root r is any required vertex and a set S ⊆ V − {r} is valid if it
contains a required vertex. Based on this relaxation, they designed a primal-dual
approximation algorithm for metric Steiner tree and showed that it computes
a Steiner tree of cost at most (3/2 + ε)Zsmt and that the integrality gap of (2)
is bounded by 3/2, when restricted to graphs in which Steiner vertices form
independent sets (called quasi-bipartite graphs). Our algorithm for r-CEDS is
now described as:

1. Compute an optimal solution x for (1).
2. Let V+(x) = {u ∈ V | x(δ−({u})) ≥ 1/2}.
3. Compute a Steiner tree T with R = V+(x) ∪ {r}, the set of required

vertices, by the algorithm of Rajagopalan and Vazirani.
4. Output T .

It is clear that this algorithm computes an r-ceds for G, except for one special
case in which R = {r} and so, T = ∅; but then, it is trivial to find an optimal
r-ceds since G is a star centered at r. Not so clear from this description is
polynomiality of its time complexity, and more specifically, that of Step 1. It
can be polynomially implemented by applying the ellipsoid method to (1), if the
separation problem for the polytope Pceds corresponding to the feasible region
of (1), is solved in polynomial time [11]. So, let y be a vector in QE . It is easily
tested if 0 ≤ ya ≤ 1 for all a ∈ E. To test whether y(δ−(S)) ≥ 1 for every
dependent set S, we consider y as a capacity function on the arcs of G. For
every arc a, not incident upon r, contract a by merging its two endvertices into
a single vertex va, and determine an (r, va)-cut Ca of minimum capacity by, say
the Ford-Fulkerson algorithm. It is then rather straightforward to see that

min{y(Ca) | a ∈ E − δ({r})} = min{y(δ−(S)) | S ⊆ V − {r} is dependent}

where δ({r}) is the set of arcs incident to r. So, by calculating |E − δ({r})|
minimum capacity (r, va)-cuts, we can find a dependent set S of minimum cut
capacity y(δ−(S)). If y(δ−(S)) ≥ 1, we thus conclude that y ∈ Pceds, while, if
not, the inequality x(δ−(S)) ≥ 1 is violated by y and a separation hyperplane is
found.

On Approximability of the Independent/Connected Edge 123

Notice that our graph G is quasi-bipartite when V+(x) ∪ {r} is taken as the
set of required vertices since it is a vertex cover for G, and for the approximation
quality of solutions, we have1

Theorem 3. The algorithm above computes an r-ceds of weight at most (3 +
ε)Zceds.

Proof. Let x ∈ QE be an optimal solution of (1), and T be an r-ceds computed
by the algorithm. As mentioned above, it was shown that w(T) ≤ (3/2+ ε)Zsmt

when graphs are quasi-bipartite [20]. So, it suffices to show that 2x is a feasible
solution of (2) with R = V+(x) ∪ {r} for then, Zsmt ≤ 2

∑
a∈E w(a)xa = 2Zceds,

and hence, w(T) ≤ 2(3/2+ε)Zceds. To this end, let S ⊆ V −{r} be any valid set.
If S is not an independent set in G, it is dependent, ensuring that x(δ−(S)) ≥ 1.
Suppose now S is an independent set. Since it is a valid set, S contains a vertex
u(�= r) in V+(x). But then, x(δ−({u})) ≥ 1/2, and, since S is an independent
set in G, 2x(δ−(S)) ≥ 2x(δ−({u})) ≥ 1. Thus, in either case, 2x satisfies all the
linear constraints of (2). ��
Since the integrality gap of (2) is bounded by 3/2 for quasi-bipartite graphs, we
have

Corollary 1. The integrality gap of (1) is bounded by 3.

Lastly, since any ceds is an r-ceds for some r ∈ V , by applying the algorithm
with r = u for each u ∈ V and taking the best one among all computed, CEDS
can be approximated within a factor of 3 + ε.

4 Connected Vertex Cover

Savage showed that non-leaf vertices of any depth first search tree form a vertex
cover of size at most twice the smallest size [22]. Since such a vertex cover clearly
induces a connected subgraph, it actually means that a cvc of size no more than
twice larger than the smallest vertex cover always exists and can be efficiently
computed. When vertices are arbitrarily weighted, however, the weighted set
cover problem can be reduced to it in an approximation preserving manner, as
was done for node-weighted Steiner trees [18] and connected dominating sets [9]:

Theorem 4. The weighted set cover problem can be approximated within the
same factor as the one within which weighted CVC can be on bipartite graphs.

Proof. From a set cover instance (U,F) and w : F → Q+, where F ⊆ 2U and
∪S∈FS = U , construct a bipartite graph G as a CVC instance, using a new
vertex c, with vertex set (U ∪ {c}) ∪ F s.t. an edge exists between c and every
S ∈ F , and between u ∈ U and S ∈ F iff u ∈ S. All the vertices in U and c are
1 Independently of our work, Koenemann et al. recently obtained the same perfor-

mance guarantee by the essentially same algorithm [17].

124 Toshihiro Fujito

assigned with zero weights, while every vertex S ∈ F inherits w(S), the weight
of set S, from (U,F).

For a vertex subset V ′ of G let Γ (V ′) denote the set of vertices adjacent to
a vertex in V ′. Clearly, F ′ ⊆ F is a set cover for (U,F) iff U ⊆ Γ (F ′) in G,
and moreover, for any set cover F ′, F ′ ∪ U ∪ {c} is a cvc of the same weight.
On the other hand, for any cvc C for G, U ⊆ Γ (C ∩ F), i.e., C ∩ F is a set
cover, of the same weight because, if not and u �∈ Γ (C ∩ F) for some u ∈ U ,
Γ ({u})∩C = ∅, and hence, there is no way to properly cover an edge incident to
u by C. Thus, since it costs nothing to include c and vertices in U , any cvc for G
can be assumed to be in the form of F ′ ∪U ∪{c} s.t. F ′ is a set cover for (U,F),
with its weight equaling to that of F ′. Therefore, any algorithm approximating
CVC within a factor r can be used to compute a set cover of weight at most r
times the optimal weight. ��
Due to the non-approximability of set cover [6], it follows that

Corollary 2. The weighted CVC cannot be approximated in a factor better than
(1− ε) lnn for any ε > 0, unless NP ⊂ DTIME(nO(log log n)).

One simple strategy for approximating weighted CVC, which turns out to
yield a nearly tight bound, is to compute first a vertex cover C ⊆ V for G =
(V,E), and then to augment it to become connected by an additional vertex set
D ⊆ V − C. While many good approximation algorithms are known for vertex
cover, we also need to find such D of small weight. This problem is not exactly
same as but not far from the weighted set cover, because it can be seen as a
specialization of the submodular set cover problem [23], which in general can
be stated simply as minD⊆N{w(D) | f(D) = f(N)}, given (N, f) where N is a
finite set and f : 2N → IR+ is a nondecreasing, submodular set function on N .
For our case, take N = V −C, and f(D) = κ(C)− κ(C ∪D) defined on V −C,
where κ(F) denotes the number of connected components in the subgraph G[F]
induced by F . Then, using the fact that V −C is an independent set in G, it can
be verified that f thus defined is indeed nondecreasing and submodular. Also
notice that G[C∪D] is connected iff f(D) = κ(C)−1 = f(V −C). This way, the
problem of computing minimum D ⊆ V − C such that G[C ∪D] is connected,
is formulated exactly by the submodular set cover problem for (V − C, f).

The greedy algorithm for submodular set cover, adapted to our case, is now
described as:

1. Initialize D ← ∅.
2. Repeat until G[C ∪ D] becomes connected.
3. Let u be a vertex minimizing w(v)/(f(D ∪ {v})− f(D)) among

v ∈ V − C.
4. Set D ← D ∪ {u}.
5. Output D.

It was shown by Wolsey that the performance of the greedy algorithm for sub-
modular set cover generalizes the one for set cover:

On Approximability of the Independent/Connected Edge 125

Theorem 5 ([23]). The greedy algorithm for submodular set cover computes a
solution of weight bounded by H(maxj∈N f({j})) times the minimum weight.

Since maxj∈N f({j}) ≤ ∆− 1, in our case, for a graph of maximal vertex degree
∆, the greedy heuristic works with an approximation factor bounded by H(∆−
1) ≤ 1 + ln(∆− 1).
Theorem 6. The algorithm above computes a cvc of weight at most rwvc +
H(∆− 1) ≤ ln(∆− 1) + 3 times the minimum weight.

Proof. Let C∗ be an optimal cvc and C∪D be the one computed by the algorithm
above for G, where C is a vertex cover of weight at most twice that of the
minimum vertex cover, and D is the greedy submodular set cover for (V −C, f).
Clearly, w(C) ≤ 2w(C∗). Observe that G[C∗ ∪ C] remains connected because
any superset of a cvc is still a cvc. But then, it means that C∗ − C ⊆ V − C is
a submodular set cover for (V − C, f). We thus conclude that

w(C ∪D) ≤ 2w(C∗) +H(∆− 1)w(C∗ − C) ≤ (2 +H(∆− 1))w(C∗) .

��

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag, Berlin Heidelberg New
York (1999)

2. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour
covers of a graph. IPL 47 (1993) 275–282

3. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. In: Annals of Discrete Mathematics, Vol. 25. North-Holland
(1985) 27–46

4. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10

-approximation algorithm for
a generalization of the weighted edge-dominating set problem. In: Proc. 8th ESA
(to appear)

5. Crescenzi, P., Kann, V., Silvestri, R., Trevisan, L.: Structure in approximation
classes. In: Proc. COCOON 95. Lecture Notes in Computer Science, Vol. 959.
Springer-Verlag (1995) 539–548

6. Feige, U.: A threshold of ln n for approximating set cover. In: Proc. the Twenty-
Eighth Annual ACM Symp. Theory of Computing. ACM (1996) 314–318

7. Fujito, T., Nagamochi, H.: Polyhedral characterizations and a 2-approximation
algorithm for the edge dominating set problem. (submitted)

8. Garey, M.R., Johnson, D.S.: The rectilinear Steiner-tree problem is NP-complete.
SIAM J. Applied Math. 32(4) (1977) 826–834

9. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4) (1998) 374–387

10. Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner
trees and connected dominating sets. Information and Computation (to appear)

126 Toshihiro Fujito

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin (1988)

12. Halldórsson, M.M.: Approximating the minimum maximal independence number.
IPL 46 (1993) 169–172

13. Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)
14. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Discrete Math.

6(3) (1993) 375–387
15. Irving, R.W.: On approximating the minimum independent dominating set. IPL

37 (1991) 197–200
16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W. (eds.): Complexity of Computer Computations. Plenum Press, New
York (1972) 85–103

17. Koenemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved approximations
for tour and tree covers. In: Proc. APPROX 2000 (to appear)

18. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms 19(1) (1995) 104–115

19. Orponen, P., Mannila, H.: On approximation preserving reductions: Complete
problems and robust measures. Technical Report C-1987-28, Department of Com-
puter Science, University of Helsinki (1987)

20. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric
Steiner tree problem. In: Proc. 10th Annual ACM-SIAM Symp. Discrete Algo-
rithms. ACM-SIAM (1999) 742–751

21. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proc. 11th Annual ACM-SIAM Symp. Discrete Algorithms. ACM-SIAM (2000)
770–779

22. Savage, C.: Depth-first search and the vertex cover problem. IPL 14(5) (1982)
233–235

23. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 4(2) (1982) 385–393

24. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Applied
Math. 38(3) (1980) 364–372

Model Checking CTL Properties of Pushdown

Systems

Igor Walukiewicz�

Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warsaw, POLAND,

igw@mimuw.edu.pl

Abstract. A pushdown system is a graph G(P) of configurations of a
pushdown automaton P . The model checking problem for a logic L is:
given a pushdown automaton P and a formula α ∈ L decide if α holds in
the vertex of G(P) which is the initial configuration of P . Computation
Tree Logic (CTL) and its fragment EF are considered. The model check-
ing problems for CTL and EF are shown to be EXPTIME-complete and
PSPACE-complete, respectively.

1 Introduction

A pushdown system is a graph G(P) of configurations of a pushdown automaton
P . The edges in this graph correspond to single steps of computation of the
automaton. The pushdown model checking problem (PMC problem) for a logic
L is: given a pushdown automaton P and a formula α ∈ L decide if α holds
in the vertex of G(P) which is the initial configuration of P . This problem is
a strict generalization of a more standard model checking problem where only
finite graphs are considered.

In this paper we consider PMC problem for two logics: CTL and EF. CTL is
the standard Computation Tree Logic [4, 5]. EF is a fragment of CTL containing
only operators: exists a successor (∃◦α), and exists a reachable state (∃Fα).
Moreover, EF is closed under conjunction and negation. We prove the following:

– The PMC problem for EF logic is PSPACE-complete.
– The PMC problem for CTL is EXPTIME-complete.

The research on the PMC problem continues for some time. The decidability
of this problem for monadic second order logic (MSOL) follows from [8] (for
a simpler argument see [2]). This implies decidability of the problem for all
those logics which have effective translations to MSOL. Among them are the µ-
calculus, CTL∗ as well as the logics considered here. This general result however
gives only nonelementary upper bound on the complexity of PMC. In [9] an
EXPTIME-completeness of PMC for the µ-calculus was proved. This result was
slightly encouraging because the complexity is not that much bigger than the

� The author was supported by Polish KBN grant No. 8 T11C 027 16.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 127–138, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

128 Igor Walukiewicz

complexities of known algorithms for the model checking problem over finite
graphs. In [1] it was shown that the PMC problems for LTL and linear time
µ-calculus are EXPTIME-complete.

The PMC problem for EF was considered already in [1]. It was shown there
that the problem is PSPACE-hard. Moreover it was argued the the general
method of the paper gives a PSPACE algorithm for the problem. Later, a closer
analysis showed that there is no obvious way of implementing the method in
polynomially bounded space [6]. The algorithm presented here follows the idea
used in [9] for the µ-calculus.

The EXPTIME hardness results for the alternation free µ-calculus and LTL
show two different reasons for the hardness of the PMC problem. One is un-
bounded alternation, the other is the ability to compare two consecutive blocks
of states on a path. The reachability problem for pushdown systems is of course
solvable in polynomial time (see [7] for a recent paper on this problem). Over
finite graphs the model checking problem for CTL reduces to a sequence of
reachability tests. This suggested that PMC problem for CTL may be PSPACE-
complete. In this light EXPTIME-hardness result is slightly surprising. The ar-
gument combines ideas from the hardness results for the µ-calculus and LTL. It
essentially shows that ∃Gα operator (there is a path on which α always holds)
is enough to obtain EXPTIME-hardness. This result makes EF logic more in-
teresting as it is a fragment of CTL that disallows ∃Gα but still allows ∀Gα (for
all paths α always holds).

Next section gives definitions concerning logics and pushdown systems. Sec-
tion 3 presents an assumption semantics of EF. This semantics allows to for-
mulate the induction argument in the correctness proof of the model check-
ing algorithm. The proof is described in Section 4. The final section presents
EXPTIME-hardness result of the PMC problem for CTL.

2 Preliminaries

In this section we present CTL and EF logics. We define pushdown systems and
the model checking problem.

CTL and EF logics Let Prop be a set of propositional letters; let p, p′, . . . range
over Prop.

The set of formulas of EF logic, Form(EF), is given by the grammar: α ::=
p | ¬α | α∧β | ∃◦α | ∃Fα. For CTL the grammar is extended with the clauses:
∃(α1Uα2) | ∃¬(α1Uα2).

The models for the logic are labelled graphs 〈V,E, ρ〉; where V is the set of
vertices, E is the edge relation and ρ : Prop → P(V) is a labelling function
assigning to each vertex a set of propositional letters. Such labelled graphs are
called transition systems here. In this context vertices are also called states.

Let M = 〈V,E, ρ〉 be a transition system. The meaning of a formula α in a
state v is defined by induction. Tha clauses for propositional letters, negation
and conjunction are standard. For the other constructs we have:

Model Checking CTL Properties of Pushdown Systems 129

– M, v � ∃◦α if there is a successor v′ of v such that M, v′ � α.
– M, v � ∃Fα if there is a path from v to v′, s.t. M, v′ � α.
– M, v � ∃(αUβ) if there is a path from v to v′, s.t. M, v′ � β and for all the
verticies v′′ on the path other than v′ we have M, v′′ � α.

– M, v � ∃¬(αUβ) if there is a maximal (i.e., infinte or finite ending in a vertex
without successors) path π from v s.t. for every vertex v′ on π with M, v′ � β
there is an earlier vertex v′′ on π with not M, v′′ � α.

We will freelly use abbreviations:

α ∨ β = ¬(¬α ∧ ¬β) ∀◦α = ¬∃◦¬α ∀Gα = ¬∃F¬α
Using these one can convert every formula of EF logic to an equivalent positive
formula where all the negations occur only before propositional letters.

Pushdown systems A pushdown system is a tuple P = 〈Q,Γ,∆, q0,⊥〉 where Q
is a finite set of states, Γ is a finite stack alphabet and ∆ ⊆ (Q× Γ)× (Q× Γ ∗)
is the set of transition rules. State q0 ∈ Q is the initial state and symbol ⊥ ∈ Γ
is the initial stack symbol.

We will use q, z, w to range over Q, Γ and Γ ∗ respectively. We will write
qz �∆ q′w instead of ((q, z), (q′, w)) ∈ ∆. We will omit subscript ∆ if it is clear
from the context.

In this paper we will restrict ourselves to pushdown systems with transition
rules of the form qz � q′ and qz � qz′z. Operations pushing more elements
on the stack can be simulated with only polynomial increase of the size of a
pushdown system. We will also assume that ⊥ is never taken from the stack,
i.e., that there is no rule of the form q⊥� q′ for some q, q′.

Let us now give the semantics of a pushdown system P = 〈Q,Γ,∆, q0,⊥〉.
A configuration of P is a word qw ∈ Q × Γ ∗. The configuration q0⊥ is the
initial configuration. A pushdown system P defines an infinite graph G(P) which
nodes are configurations and which edges are: (qzw, q′w) ∈ E if qz �∆ q′, and
(qzw, q′z′zw) ∈ E if qz �∆ q′z′z; for arbitrary w ∈ Γ ∗.

Given a valuation ρ : Q → P(Prop) we can extend it to Q × Γ ∗ by putting
ρ(qw) = ρ(q). This way a pushdown system P and a finite valuation ρ define a,
potentially infinite, transition system M(P, ρ) which graph is G(P) and which
valuation is given by ρ as described above.

The model checking problem is:

given P , ρ and ϕ decide if M(P, ρ), q0⊥ � ϕ

Please observe that the meaning of ϕ in the initial configuration q0⊥ depends
only on the part of M(P, ρ) that is reachable from q0⊥.

3 Assumption Semantics

For this section let us fix a pushdown system P and a valuation ρ. Let us ab-
breviate M(P, ρ) by M .

130 Igor Walukiewicz

We are going to present a modification of the semantics of EF-logic. This
modified semantics is used as an induction assumption in the algorithm we are
going to present later. From the definition of a transition system M it follows
that there are no edges from vertices q, i.e., configurations with the empty stack.
We will look at such vertices not as dead ends but as places where some parts
of the structure where cut out. We will take a function S : Q → P(Form(EF))
and interpret S(q) as an assumption that in the vertex q formulas S(q) hold.
This view leads to the following definition.

Definition 1. Let S : Q → P(Form(EF)) be a function. For a vertex v of G(P)
and a formula α we define the relation M, v �S α as the least relation satisfying
the following conditions:

– M, q �S α for every α ∈ S(q).
– M, v �S p if p ∈ ρ(v).
– M, v �S α ∧ β if M, v �S α and M, v �S β.
– M, v �S α ∨ β if M, v �S α or M, v �s β.
– M, v �S ∃◦α for v �∈ Q if there is a successor v′ of v such that M, v′ �S α.
– M, v �S ∀◦α for v �∈ Q if for every successor v′ of v we have that M, v′ �S α.
– M, v �S ∃Fα if there is a path from v to v′, s.t. M, v′ �S α or v′ = q for

some state q ∈ Q and ∃Fα ∈ S(q).
– M, v �S ∀Gα iff for every path π from v which is either infinite or finite

ending in a vertex from Q we have that M, v′ �S α for every vertex v′ of π
and moreover if π is finite and ends in a vertex q ∈ Q then ∀Gα ∈ S(q).

Of course taking arbitrary S in the above semantics makes little sense. We
need some consistency conditions as defined below.

Definition 2. A set of formulas B is saturated if

– for every formula α either α ∈ B or ¬α ∈ B but not both;
– if α ∈ B and β ∈ B then α ∧ β ∈ B;
– if α ∈ B then α ∨ β ∈ B and β ∨ α ∈ B for arbitrary β;
– if α ∈ B then ∃Fα ∈ B.

Definition 3 (Assumption function). A function S : Q → P(Form(EF)) is
saturated if S(q) is saturated for every q ∈ Q. A function S is consistent with
ρ if S(q) ∩ Prop = ρ(q) for all q ∈ Q. We will not mention ρ if it is clear from
the context. We say that S is an assumption function (for ρ) if it is saturated
and consistent.

Lemma 1. For every assumption function S and every vertex v of M : M, v �S

α iff not M, v �S ¬α.

The next lemma says that the truth of α depends only on assumptions about
subformulas of α.

Model Checking CTL Properties of Pushdown Systems 131

Definition 4. For a formula α, let cl(α) be the set of subformulas of α and
their negations.

Lemma 2. Let α be a formula. Let S, S′ be two assumption functions such that
S(q) ∩ cl(α) = S′(q) ∩ cl(α) for all q ∈ Q. For every v we have that: M, v �S α
iff M, v �S′ α.

We have asumed that the initial stack symbol ⊥ cannot be taken from the
stack. Hence no state q is reachable from configuration q0⊥. In this case our
semantics is equivalent to the usual one:

Lemma 3. For arbitrary S and α we have M, q0⊥ �S α iff M, q0⊥ � α.

We finish this section with a composition lemma which is the main property
of our semantics. We will use it in induction arguments.

Definition 5. For a stack symbol z and an assumption function S we define
the function S ↑z by: S ↑z (q′) = {β : M, q′z �S β}, for all q′ ∈ Q.

Lemma 4 (Composition Lemma). Let α be a formula, z a stack symbol and
S an assumption function. Then S ↑z is an assumption function and for every
configuration qwz′ reachable from qz′ we have:

M, qwz′z �S α iff M, qwz′ �S↑z α

4 Model Checking EF

As in the previous section let us fix a pushdown system P and a valuation ρ.
Let us write M instead of M(P, ρ) for the transition system defined by P and ρ.

Instead of the model checking problem we will solve a more general problem
of deciding if M, qz �S β holds for given q, z, S and β. A small difficulty here
is that S is an infinite object. Fortunately, by Lemma 2 to decide if M, qz �S β
holds it is enough to work with S restricted to subformulas of β, namely with
S|β defined by S|β(q′) = S(q′)∩ cl(β) for all q′ ∈ Q. In this case we will also say
that S is extending S|β.
Definition 6. Let α be a formula, q a state, z a stack symbol, and S : Q →
P(Form(EF)) a function assigning to each state a subset of cl(α). We will say
that a tuple (α, q, z, S) is good if there is an assumption function S such that
S|α = S and M, qz �S α.

Below we describe a procedure which checks if a tuple (α, q, z, S) is good. It
uses an auxiliary procedure Search(q, z, q′) which checks whether there is a path
from the configuration qz to the configuration q′.

– Check(p, q, z, S) = 1 if p ∈ ρ(q);
– Check(α ∧ β, q, z, S) = 1 if Check(α, q, z, S) = 1 and Check(β, q, z, S) = 1;

132 Igor Walukiewicz

– Check(¬α, q, z, S) = 1 if Check(α, q, z, S) = 0;
– Check(∃◦α, q, z, S) = 1 if either

• there is qz � q′ and α ∈ S(q′); or
• there is qz � q′z′z and Check(α, q′, z′, S

′
) = 1, where S

′
is defined by:

S
′
(q′′) = {β ∈ cl(α) : Check(β, q′′, z, S) = 1}, for all q′′ ∈ Q.

– Check(∃Fα, q, z, S) = 1 if either
• Check(α, q, z, S) = 1; or
• there is qz � q′ and ∃Fα ∈ S(q′); or
• there is qz � q′z′z and q′′ ∈ Q for which Search(q′, z′, q′′) = 1 and
Check(∃Fα, q′′, z, S) = 1; or

• there is qz � q′z′z with Check(∃Fα, q′, z′, S
′
) = 1 for S

′
defined by:

S
′
(q′′) = {∃Fα : Check(α, q′′, z, S) = 1} ∪ {¬∃Fα : Check(α, q′′, z, S) =

0} ∪ {β ∈ cl(α) : Check(β, q′′, z, S) = 1}, for all q′′ ∈ Q.
– In other cases Check(α, q, z, S) = 0.
– Search(q1, z, q2) = 1 if either

• there is q1z � q2; or
• there is q1z � q′1z′z and q′2 ∈ Q for which Search(q′1, z′, q′2) = 1 and
Search(q′2, z, q2) = 1.

Lemma 5. We have Search(q1, z, q2) = 1 iff there is a path from the configura-
tion q1z to the configuration q2. The procedure can be implemented on a Turing
machine working in O(|Q|2|Γ |) time and space.

Proof
The proof of the correctness of the procedure is easy. The procedure can be
implemented using dynamic programming. The implementation can construct a
table of all good values (q1, z, q2). �

Lemma 6. Procedure Check(α, q, z, S) can be implemented on a Turing ma-
chine working in Sp(|α|) = O((|α| log(|Q|)|Q||Γ |)2) space.

Proof
The proof is by induction on the size of α. All the cases except for α = ∃Fβ are
straightforward.

For α = ∃Fβ consider the graph of exponential size which nodes are of the
form Check(∃Fβ, q, z, S) for arbitrary q, z, S. The edges are given by the rules:

– Check(∃Fβ, q1, z, S) → Check(∃Fβ, q2, z, S) whenever q1z � q′1z
′z and

Search(q′1, z
′, q2) = 1;

– Check(∃Fβ, q1, z1, S1) → Check(∃Fβ, q2, z2, S2) if q1z1 � q2z2z1 and S2

is defined by S2(q′′) = {β ∈ cl(α) : Check(β, q′′, z1, S1) = 1} ∪ {¬∃Fα :
Check(α, q′′, z1, S1) = 0} ∪ {∃Fα : Check(α, q′′, z1, S1) = 1}

Model Checking CTL Properties of Pushdown Systems 133

Observe that by induction assumption we can calculate whether there is an edge
between two nodes using space Sp(|β|). A node Check(∃Fβ, q, z, S) is successful
if either Check(β, q, z, S) = 1 or there is qz � q′ with ∃Fβ ∈ S(q′).

It is easy to see that Check(∃Fβ, q, z, S) = 1 iff in the graph described above
there is a path from the node Check(∃Fβ, q, z, S) to a successful node.

We need O(log(|Q|)|Γ ||Q||β|) space to store a node of the graph. So we
need O((log(|Q|)|Γ ||Q||β|)2) space to implement Savitch algorithm performing
deterministic reachability test in this graph. We also need S(|β|) space for an
oracle to calculate edges and O(|Q|2|Γ |) space for Search procedure. All this fits
into Sp(|∃Fβ|) space. �

Remark: It does not seem that this lemma follows from the fact that alter-
nating machines with bounded alternation can be simulated by deterministic
ones with small space overhead (c.f. the theorem attributed in [3] to a personal
communication from A. Borodin).

Lemma 7. A tuple (α, q, z, S) is good iff Check(α, q, z, S) = 1

Proof
The proof is by induction on the size of α. The case when α is a propositional
letter is obvious. The case when α = ¬β follows from Lemma 1. The case for
conjunction is easy using Lemma 2. We omit the case for α = ∃◦β because the
arguments is simpler than in the case of F operator.

Case α = ∃Fβ. Suppose that (α, q, z, S) is good. This means that there is
an assumption function S such that S|α = S and M, qz �S α. By the definition
of the semantic, there is a vertex v reachable from qz such that M, v �S β or
v = q′ and ∃Fβ ∈ S(q′). Suppose that v is such a vertex at the smallest distance
from qz. We show that Check(α, q, z, S) = 1 by induction on the distance to v.

If v = qz then, as β is a subformula of α, we have by the main induction
hypothesis that Check(β, q, z, S) = 1. So Check(α, q, z, S) = 1. If qz � q′ and
∃Fβ ∈ S(q′) then we also get Check(α, q, z, S) = 1. Otherwise we have qz �
q′z′z and q′z′z is the first vertex on the shortest path to v.

Suppose that on the path to v there is a configuration of the form q′′z for
some q′′. Assume moreover that it is the first configuration of this form on the
path. We have that Search(q′, z′, q′′) = 1 and M, q′′z � ∃Fβ. As the distance
to v from q′′z is smaller than from qz, we get Check(∃Fβ, q′′, z, S) = 1 by the
induction hypothesis. Hence Check(α, q, z, S) = 1.

Otherwise, i.e., when there is no configuration of the form q′′z on the path
to v, we know that v = q′′wz′z for some q′′ ∈ Q and w ∈ Γ ∗. Moreover we
know that q′′wz′ is reachable from q′z′. By Composition Lemma we have that
M, q′′wz′ �S↑z β. Let S1 be a function defined by S1(q1) = (S ↑z)|β(q1) ∪
{¬∃Fβ : β �∈ S ↑z (q1)}∪{∃Fβ : β ∈ S ↑z (q1)}. It can be checked that S1 can be
extended to an assumption function S1. By Lemma 2 we have M, q′′wz′ �S1 β.
Hence M, q′z′ �S1 ∃Fβ. We have Check(∃Fβ, q′, z′, S1) = 1 from induction
hypothesis. By definition of S1 and the induction hypothesis we have that
S1(q1) = {γ ∈ cl(β) : Check(γ, q1, z, S) = 1} ∪ {¬∃Fβ : Check(β, q1, z, S) =
0} ∪ {∃Fβ : Check(β, q1, z, S) = 1}. Which gives Check(α, q, z, S) = 1.

134 Igor Walukiewicz

For the final case suppose that α = ∃Fβ and that Check(α, q, z, S) = 1. We
want to show that (α, q, z, S) is good using additional induction on the length
of the computation of Check(α, q, z, S). Let S be an assumption function such
that S|α = S.

Skiping a couple of easy cases suppose that there is qz � q′z′z and that
we have Check(∃Fβ, q′, z′, S

′
) = 1 for S

′
defined by S

′
(q′′) = {γ ∈ cl(β) :

Check(γ, q′′, z, S) = 1} ∪ {¬∃Fβ} or S
′
(q′′) = {γ ∈ cl(β) : Check(γ, q′′, z, S) =

1}∪{∃Fβ} depending on whether Check(β, q′′, z, S) = 0 or not. By the induction
hypothesis, M, q′z′ �S′ ∃Fβ for an assumption function S′ such that S′|α = S

′

Consider S ↑z. We have that S ↑z |β = S′|β by the induction hypothesis.
It is also the case that for every q′′ ∈ Q, whenever ∃Fβ ∈ S′(q′′) then ∃Fβ ∈
S ↑z (q′′). Hence, by Lemma 2 and the definition of our semantics, we have that
M, q′z′ �S↑z ∃Fβ. By Composition Lemma we have M, q′z′z �S ∃Fβ. Which
gives M, qz �S ∃Fβ. So (α, q, z, S) is good. �

5 Model Checking CTL

In this section we show that the model checking problem for pushdown systems
and CTL is EXPTIME hard. The problem can be solved in EXPTIME as there
is a linear translation of CTL to the µ-calculus and the model checking for the
later logic can be done in EXPTIME [9].

Let M be an alternating Turing machine using n tape cells on input of size n.
For a given configuration c we will construct a pushdown system P c

M , valuation
ρM , and a CTL formula αM such that: M(P c

M , ρM), q0⊥ � αM iff M has an
accepting computation from c. As P c

M and αM will be polynomial in the size of
c this will show EXPTIME hardness of the model checking problem.

We will do the construction in two steps. First, we will code the acceptance
problem into the reachability problem for a pushdown system extended with
some test operations. Then, we will show how to simulate these tests in the
model checking problem.

We assume that the nondeterminism of M is limited so that from every
configuration M has at most two possible moves. A move is a pair m = (a, d)
where a is a letter to put and d is a direction for moving the head. We use c �m c′

to mean that c′ is obtained from c by doing the move m. The transition function
of M assigns to each pair (state,letter) a pair of moves of M . A computation of
M can be represented as a tree of configurations. If the machine is in a universal
state then the configuration has two sons corresponding to the two moves in the
pair given by the transition function. If the machine is in an existential state
then there is only one son for one of the moves from the pair.

An extended pushdown system is obtained by adding two kinds of test transi-
tions. Formally each of the kinds of transitions depends on a parameter n which is
a natural number. To make notation clearer we fix this number in advance. Tran-
sition q�A q′ checks whether the first n letters from the top of the stack form
an accepting configuration of M . Transition q �M q′ checks, roughly, whether

Model Checking CTL Properties of Pushdown Systems 135

the first 2n letters from the top of the stack form two configurations such that
the first is the successor of the second. A formal definition of these transitions
is given below when we define a particular extended pushdown system.

Let us fix n as the size of input to our Turing machine. We define an extended
pushdown system EPM simulating computations of M on inputs of size n. The
set of states of the system is Q = {q, qM , qA}. The stack alphabet is Γ = ΓM ∪
QM ∪MovesM ×MovesM ∪{E,L,R}; where ΓM is the tape alphabet of M , QM

is the set of states of M ; MovesM is the set of moves of M ; and E, L, R are
new special letters which stand for arbitrary, left and right element of a pair
respectively. Before defining transitions of EPM let us formalize the definition
of �A and �M transitions. These transitions add the following edges in the
graph of configurations of the system:

– For a transition q �A q′ and for an arbitrary w ∈ Γ ∗ we have the edge
qcw → q′cw if c is an accepting configuration of M .

– For a transition q�M q′, for an arbitrary w ∈ Γ ∗ and a letter ? ∈ {E,L,R}
we have the edge qc′?(m1,m2)cw → q′c′?(m1,m2)cw if (m1,m2) is the move
form a configuration c and c �m c′ where m = m1 if ? = L; m = m2 if ? = R;
and m ∈ {m1,m2} if ? = E.

Finally, we present the transition rules of EPM . Below, a′ stands for any
letter other than E, L or R. We use c, c′ to stand for a configuration of M , i.e.,
a string of length n+ 1.

q� qA qAc�A q

qa′ � qMc′L(m1,m2)a′ qM �
M q

qa′ � qMc′E(m)a′ qL(m1,m2)� qMc′R(m1,m2)
qR(m1,m2)c� q qE(m)c → q

It is easy to see that the transitions putting or taking a whole configuration
from the stack can be simulated by a sequence of simple transitions working
with one letter at the time. In the above, transition qAc�A q (which removes a
configuration and at the same time checks whether it is accepting) is not exactly
in the format we allow. Still it can be simulated by two transitions in our format.
We use G(EPM) to denote the graph of configurations of EPM , i.e., the graph
which vertices are configurations and which edges correspond to one application
of the transition rules.

The idea behind the construction of EPM is described by the following
lemma.

Lemma 8. For every configuration c of M we have that: M accepts from c iff
in the graph G(EPM) of configurations of EPM configuration q is reachable from
configuration qc.

Proof
We present only a part of the argument for the left to right direction. The
proof proceeds by induction on the height of the tree representing an accepting
computation of M on c.

136 Igor Walukiewicz

If c is an accepting configuration then we have a path qc → qAc → q in
G(EPM).

Suppose now that the first move of M in its computation is (m1,m2) and it
is an existential move. Then we have a path:

qc → qMc′E(m1,m2)c → qc′E(m1,m2)c → · · · → qE(m1,m2)c → q

where the existence of a path qc′E(m1,m2)c → · · · → qE(m1,m2)c follows from
the induction hypothesis.

Suppose now that the first move of M in an accepting computation from c
is (m1,m2) and it is a universal move. We have a path:

qc → qMc′L(m1,m2)c → qc′L(m1,m2)c → · · · → qL(m1,m2)c →
qMc′′R(m1,m2)c → qc′′R(m1,m2)c → · · · → qR(m1,m2)c → q.

Once again the existence of dotted out parts of the path follows from the induc-
tion hypothesis.

This completes the proof from the left to right direction. The opposite direc-
tion is analogous. �

The next step in our proof is to code the above reachability problem into
the model checking problem for a normal pushdown system. First, we change
extended pushdown system EPM into a normal pushdown system PM . We add
new states qTA, qTM , qF and qa

R for every letter a of the stack alphabet. The
role of qTA and qTM is to initiate test performed originally by �A and �M

transitions, respectively. State qF is a terminal state signalling success. States
qa
R are used in the test. They take out all the letters from the stack and give
information about what letters are taken out. In the rules below c, c′ range over
configurations; a, b over single letters; and a′ over letters other than E, L or R.

qa′ � qAa′ qA � q, qTA

qa′ � qMc′L(m1,m2)a′ qM � q, qTM

qa′ � qMc′E(m1,m2)a′ qL(m1,m2)� qMc′R(m1,m2)
qR(m1,m2)c� q qE(m1,m2)c → q

qTAa� qa
R qTMa → qa

R

qa
Rb� qb

R q⊥ → qF⊥

Recall that ⊥ is the initial stack symbol of a pushdown automaton. As before
we use G(PM) to denote the graph of configurations of PM .

To simplify matters we will use states also as names of propositions and take
valuation ρM such that in a state q′ exactly proposition q′ holds, i.e., ρM (q′) =
{q′}.

First we take two EF formulas Accept and Move such that:

– M(PM , ρM), qTAw � Accept iff w starts with an accepting configuration of
M .

Model Checking CTL Properties of Pushdown Systems 137

– M(PM , ρM), qTMw � Move iff w is of the form c′?(m1,m2)cw′, (m1,m2) is
the move of M , and c �m c′ where m = m1 if ? = L; m = m2 if ? = R; and
m ∈ {m1,m2} if ? = E.

From states qTA and qTM the behaviour of PM is deterministic. It only takes
letters from the stack one by one. The formula Accept is

∨
i=1,...,n+1 ∃◦ iqF

R

where qF
R signals an accepting state of M . The formula Move is slightly more

complicated as it needs to code the behaviour of M . Still its construction is
standard.

The formula we are interested in is:

α = ∃[
(q ∨ qA ∨ qM) ∧ (qA ⇒ ∃◦(qTA ∧Accept)) ∧

(qM ⇒ ∃◦(qTM ∧Move))
]
U qF

It says that there is a path going only through states q, qA or qM and ending
in a state qF . Moreover, whenever there is a state qA on the path then there
is a turn to a configuration with a state qTA from which Accept formula holds.
Similarly for qM .

Lemma 9. For every word w over the stack alphabet: q is reachable from qw in
G(EPM) iff M(PM , ρM), qw⊥ � α.

Proof
The proof in both directions is by induction on the length of the path. We will
only present a part of the proof for the direction from left to right.

If in G(EPM) the path is qw → qAw → q then in G(PM) we have:
qaw⊥ q⊥

qTAw⊥
qw⊥

The edge qAw → q exists in G(EPM) only if w is an accepting configuration.
Hence, we have that M(PM , ρM), qTAw � Accept and consequently we have the
thesis of the lemma.

If the path is qw → qMc′?(m1,m2)w → qc′?(m1,m2)w → · · · then in G(PM)
we have:

. . .qc′?(m1,m2)w⊥qMc′?(m1,m2)w⊥qw⊥
qTMc′?(m1,m2)w⊥

The edge qMc′?(m1,m2)w → qc′?(m1,m2)w exists inG(EPM) only when the
stack content c′?(m1,m2)w satisfies the conditions of�M transition. This means
that M(PM , ρM), qTMc′?(m1,m2)w⊥ � Move. From the induction assumption
we have M(PM , ρM), qc′?(m1,m2)w � α. Hence M(PM , ρM), qw � α. �

Theorem 1. The model checking problem for pushdown systems and CTL is
EXPTIME-complete

138 Igor Walukiewicz

Proof
The problem can be solved in EXPTIME as there is a linear translation of CTL
to the µ-calculus and the model checking for the later logic can be done in
EXPTIME [9].

To show hardness part let M be an alternating Turing machine as considered
in this section. For an input word v of length n we construct in polynomial time
a pushdown system P v

M , valuation ρM and a formula αM such that: v is accepted
by M iff M(P v

M , ρM), q0⊥ � ∃◦n+1α. Let cv
0 be the initial configuration of M on

v. It has the length n+ 1.
Valuation ρM and formula αM are ρ and α as described before Lemma 9.

The system P v
M is such that started in q0⊥ it first puts the initial configuration

cv
0 on the stack and then behaves as the system PM .
By Lemma 8 we have that M has an accepting computation from cv

0 iff there
is a path from qcv

0 to q in G(EPM). By Lemma 9 this is equivalent to the fact
that M(PM , ρM), qcv

0⊥ � αM . By the construction of P v
M this the same as saying

that M(P v
M , ρM), q0⊥ � ∃◦n+1αM . �

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Applications to model checking. In CONCUR’97, volume 1243 of LNCS,
pages 135–150, 1997.

[2] D. Caucal. On infinite transition graphs a having decidable monadic theory. In
ICALP’96, LNCS, 1996.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

[4] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Workshop on Logics of Programs, volume 131 of
LNCS, pages 52–71. Springer-Verlag, 1981.

[5] E. A. Emerson. Temporal and modal logic. In J. Leeuven, editor, Handbook of
Theoretical Computer Science Vol.B, pages 995–1072. Elsevier, 1990.

[6] J. Esparza. Private communication.
[7] J. Esparza, D. Hansel, and P. Rossmanith. Efficient algorithms for model checking

pushdown systems. In CAV ’00, LNCS, 2000. to appear.
[8] D. Muller and P. Schupp. The theory of ends, pushdown automata and second-order

logic. Theoretical Computer Science, 37:51–75, 1985.
[9] I. Walukiewicz. Pushdown processes: Games and model checking. In CAV’96, vol-

ume 1102 of LNCS, pages 62–74, 1996. To appear in Information and Computation.

A Decidable Dense Branching-Time Temporal

Logic�

Salvatore La Torre1,2 and Margherita Napoli2

1 University of Pennsylvania
2 Università degli Studi di Salerno

Abstract. Timed computation tree logic (Tctl) extends Ctl by al-
lowing timing constraints on the temporal operators. The semantics of
Tctl is defined on a dense tree. The satisfiability of Tctl-formulae is
undecidable even if the structures are restricted to dense trees obtained
from timed graphs. According to the known results there are two possible
causes of such undecidability: the denseness of the underlying structure
and the equality in the timing constraints. We prove that the second one
is the only source of undecidability when the structures are defined by
timed graphs. In fact, if the equality is not allowed in the timing con-
straints of Tctl-formulae then the finite satisfiability in Tctl is decid-
able. We show this result by reducing this problem to the emptiness prob-
lem of timed tree automata, so strengthening the already well-founded
connections between finite automata and temporal logics.

1 Introduction

In 1977 Pnueli proposed Temporal Logic as a formalism to specify and verify
computer programs [Pnu77]. This formalism turned out to be greatly useful for
reactive systems [HP85], that is systems maintaining some interaction with their
environment, such as operating systems and network communication protocols.
Several temporal logics have been introduced and studied in literature, and now
this formalism is widely accepted as specification language for reactive systems
(see [Eme90] for a survey).

Temporal logic formulae allow to express temporal requirements on the oc-
currence of events. Typical temporal operators are “until”, “next”, “sometimes”,
“always”, and a typical assertion is “p is true until q is true”. These operators
allow us only to express qualitative requirements, that is constraints on the tem-
poral ordering of the events, but we cannot place bounds on the time a certain
property must be true. As a consequence traditional temporal logics have been
augmented by adding timing constraints to temporal operators, so that asser-
tions such as “p is true until q is true within time 5” can be expressed. These
logics, which are often referred to as real-time or quantitative temporal logics,
are suitable when it is necessary to explicitly refer to time delays between events
and then we want to check that some hard real-time constraints are satisfied.
� Work partially supported by M.U.R.S.T. grant TOSCA.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 139–150, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

140 Salvatore La Torre and Margherita Napoli

Besides the usual classification in linear and branching-time logics, real-time
logics are classified according to the nature of the time model they use. Temporal
logics based on discrete time models are presented in [EMSS90, JM86, Koy90,
PH88]. An alternative approach is to model time as a dense domain. Temporal
logics with this time model are Mitl [AFH96], Tctl [ACD93], Stctl [LN97],
and Gctl [PH88]. For more about real-time logics, see [AH93, Hen98].

In this paper we are interested in branching-time temporal logics which use
a dense time domain and in particular we will consider the satisfiability problem
in Tctl that was introduced by Alur et al. in [ACD93]. Given a formula ϕ we
want to determine if there exists a structure M satisfying it. The syntax of Tctl
is given by augmenting the temporal operators of Ctl [CE81] (except for the
“next” which is discarded since it does not have any meaning in a dense time
domain) with a timing constraint of type ≈ c, where ≈ is one among <, ≤, >, ≥,
and =, and c is a rational number. The semantics of Tctl is given on a dense
(or continuous) tree. It turns out that the satisfiability problem in Tctl is
undecidable even if the semantics is restricted to dense trees obtained from timed
graphs (finite satisfiability [ACD93]), that is, timed transition systems where the
transitions depend also on the current value of a finite number of clock variables.

Another real-time branching-time temporal logic is Stctl [LN97] which is
obtained by restricting both the semantics and the syntax of Tctl. Instead
of a dense tree, a timed ω-tree is used to define the semantics of formulae,
and the equality is not allowed in the timing constraints. With these restric-
tions the Stctl-satisfiability problem turns out to be decidable. This result
is obtained by reducing the Stctl-satisfiability problem to the the emptiness
problem of finite automata on timed ω-trees, which is shown to be decidable in
[LN97]. Introducing the equality in the timing constraints causes the loss of the
decidability. A similar kind of result was observed in Mitl, where the decid-
ability is lost when the restriction to non-singular intervals is relaxed [AFH96].
In this paper we prove that this indeed holds also for the finite satisfiability in
Tctl. In particular, we reduce the finite satisfiability problem of Tctl-formulae
without equality in the timing constraints, to the emptiness problem of timed
tree automata, via translation to the satisfiability problem of Tctl-formulae
with respect to a proper subclass of Stctl-structures. Restricting the class of
Stctl-structures is necessary since along any path of a timed graph the truth
assignments of the atomic propositions vary according to a sequence of left-closed
right-open intervals, while in general in Stctl-structures the truth assignments
change according to sequences of time intervals which are alternatively singular
and opened. Having defined the language of a logic as the set of formulae which
are satisfiable, as a consequence of the previous result we have that Tctl inter-
preted on timed graphs is language equivalent to a proper restriction of Stctl.
Moreover, in this paper we also introduce a concept of a highly-deterministic
timed tree automaton with the aim of matching the concept of regular tree in
ω-tree languages. The use of the theory of timed tree automata to achieve the de-
cidability of the Tctl finite satisfiability, strengthens the relationship between
finite automata and temporal logics, also in the case of real-time logics. In a

A Decidable Dense Branching-Time Temporal Logic 141

recent paper [DW99] an automata-theoretic approach to Tctl-model checking
has been presented. There the authors introduced timed alternating tree auto-
mata and rephrased the model-checking problem as a particular word problem
for these automata. For timed alternating tree automata, this decision problem
is decidable while the emptiness problem is not decidable.

The rest of the paper is organized as follows. In section 2 we recall the main
definitions and results from the theory of timed tree automata, and we introduce
a concept of highly-deterministic timed tree automaton. In section 3 we recall
the temporal logics Tctl and Stctl with the related decidability results. The
main result of this paper is presented in section 4, where the finite satisfiability
in Tctl is shown to be decidable via reduction to the emptiness problem of
timed tree automata. Finally, we give our conclusions in section 5. Due to lack
of space some proofs are omitted, for a full version of the paper see [URL].

2 Timed Tree Automata

In this section we recall some definitions and results concerning to timed au-
tomata [AD94, LN97], and introduce the concept of highly-deterministic timed
tree automaton.

Let Σ be an alphabet and dom(t) be a subset of {1, . . . , k}∗, for an integer k >
0, such that (i) ε ∈ dom(t), and (ii) if v ∈ dom(t), then for some j ∈ {1, . . . , k},
vi ∈ dom(t) for any i such that 1 ≤ i ≤ j and vi �∈ dom(t) for any i > j. A
Σ-valued ω-tree is a mapping t : dom(t) −→ Σ. For v ∈ dom(t), we denote with
pre(v) the set of prefixes and with deg(v) the arity of v. A path in t is a maximal
subset of dom(t) linearly ordered by the prefix relation. Often we will denote a
path π with the ordered sequence of its nodes v0, v1, v2, . . . where v0 is ε. A timed
Σ-valued ω-tree is a pair (t, τ) where t is a Σ-valued ω-tree and τ , called time
tree, is a mapping from dom(t) into the set of the nonnegative real numbers
+

such that (i) τ(v) > 0, for each v ∈ dom(t)−{ε} (positiveness), and (ii) for each
path π and for each x ∈
+ there exists v ∈ π such that

∑
u∈pre(v) τ(u) ≥ x

(progress property). Nodes of a timed ω-tree become available as the time elapses,
that is, at a given time only a finite portion of the tree is available. Each node
of a timed ω-tree is labelled by a pair (symbol, real number): for the root the
real number is the absolute time of occurrence, while for the other nodes is the
time which has elapsed since their parent node was read. Positiveness implies
that a positive delay occurs between any two consecutive nodes along a path.
Progress property guarantees that infinitely many events (i.e. nodes appearing
at input) cannot occur in a finite slice of time (nonzenoness). We denote with γv
the absolute time at which a node v is available, that is γv =

∑
u∈pre(v) τ(u). In

the rest of the paper, we will consistently use γ to denote absolute time, i.e. time
elapsed from the beginning of a computation, and τ to denote delays between
events. Moreover, we will use the term tree to refer to a Σ-valued ω-tree for some
alphabet Σ and the term timed tree to refer to a timed Σ-valued ω-tree.

Now we recall the definition of timed Büchi tree automaton. It is possible to
extend this paradigm by considering other acceptance conditions such as Muller,

142 Salvatore La Torre and Margherita Napoli

Rabin, or Streett [Tho90]. Timed Muller tree automata as well as timed Büchi
tree automata were introduced and studied in [LN97]. To define timed automata
we introduce the notion of clock, timing constraint, and clock valuation. A finite
set of clock variables (or simply clocks) is used to test timing constraints. Each
clock can be seen as a chronograph which is synchronized to a unique system
clock. Clocks can be read or set to zero (reset): after a reset, a clock automatically
restarts. Timing constraints are expressed by clock constraints. Let C be a set of
clocks, the set of clock constraints Ξ(C) contains boolean combinations of simple
clock constraints of type x ≤ y + c, x ≥ y + c, x ≤ c, and x ≥ c, where x, y ∈ C
and c is a rational number. A clock valuation is a mapping ν : C −→
+. If ν
is a clock valuation, λ is a set of clocks and d is a real number, we denote with
[λ → 0](ν + d) the clock valuation that gives 0 for each clock x ∈ λ and ν(x) + d
for each clock x �∈ λ.

A Büchi timed tree automaton is a 6-tuple A = (Σ,S, S0, C,∆, F), where:
• Σ is an alphabet;

• S is a finite set of locations;

• S0 ⊆ S is the set of starting locations;

• C is a finite set of clocks;

• ∆ is a finite subset of
⋃
k≥0(S ×Σ × Sk × (2C)k ×Ξ(C));

• F ⊆ S is the set of accepting locations.
A timed Büchi tree automaton A is deterministic if |S0| = 1 and for each

pair of different tuples (s, σ, s1, . . . , sk, λ1, . . . , λk, δ) and (s, σ, s′1, . . . , s
′
k, λ

′
1, . . . ,

λ′k, δ
′) in ∆, δ and δ′ are inconsistent (i.e., δ ∧ δ′ =false for all clock valuations).

A state system is completely determined by a location and a clock valua-
tion, thus it is denoted by a pair (s, ν). A transition rule (s, σ, s1, . . . , sk, λ1, . . . ,
λk, δ) ∈ ∆ can be described as follows. Suppose that the system is in the state
(s, ν), and after a time τ the symbol σ is read. The system can take the transition
(s, σ, s1, . . . , sk, λ1, . . . , λk, δ) if the current clock valuation (i.e. ν+τ) satisfies the
clock constraint δ. As a consequence of the transition, the system will enter the
states (s1, ν1), . . . , (sk, νk) where ν1 = [λ1 → 0](ν+ τ), . . . , νk = [λk → 0](ν+ τ).
Each node of a timed tree has thus a location and a clock valuation assigned,
according to the transition rules in ∆. Formally, this is captured by the concept
of run. A run of A on a timed tree (t, τ) is a pair (r, ν), where:
• r : dom(t) −→ S and ν : dom(t) −→
C+;

• r(ε) ∈ S0 and ν(ε) = ν0, where ν0(x) = 0 for any x ∈ C;

• for v ∈ dom(t), k = deg(v): (r(v), t(v), r(v1), . . . , r(vk), λ1, . . . , λk, δ) ∈ ∆,
ν(v) + τ(v) fulfils δ and ν(vi) = [λi → 0](ν(v) + τ(v)) ∀i ∈ {1, . . . , k}.
Clearly, deterministic timed automata have at most one run for each timed

tree. A timed tree (t, τ) is accepted by A if and only if there is a run (r, ν) of
A on (t, τ) and a path π such that r(u) ∈ F for infinitely many u on π. The
language accepted by A, denoted by T (A), is the set of all timed trees accepted
by A. In the following we refer to (timed) Büchi tree automata simply as (timed)
tree automata.

A Decidable Dense Branching-Time Temporal Logic 143

For a timed tree automaton the set of states is infinite. However, they can be
finitely partitioned according to a finite-index equivalence relation over the clock
valuations. Each equivalence class, called clock region, is defined in such a way
that all the clock valuations in an equivalence class satisfy the same set of clock
constraints from a given timed automaton (see [AD94] for a precise definition).
Given a clock valuation ν, [ν] denotes the clock region containing ν. A clock
region α′ is said to be a time-successor of a clock region α if and only if for any
ν ∈ α there is a d ∈
+ such that ν + d ∈ α′. The region automaton of a timed
tree automaton A is a transition system defined by:
• the set of states R(S) = {〈s, α〉 | s ∈ S and α is a clock region for A};

• the set of starting states R(S0) = {〈s0, α0〉 | s0 ∈ S0 and α0 satisfies x = 0
for all x ∈ C};

• the transition rules R(∆) such that: (〈s, α〉, σ, 〈s1, α1〉, . . . , 〈sk, αk〉) ∈ R(∆)
if and only if (s, σ, s1, . . . , sk, λ1, . . . , λk, δ) ∈ ∆ and there is a time-successor
α′ of α such that α′ satisfies δ and αi = [λi → 0]α′ for all i ∈ {1, . . . , k}.

The region automaton is the key to reduce the emptiness problem of timed
tree automata to the emptiness problem of tree automata. Given a timed tree
language T , Untime(T (A)) is the tree language {t | (t, τ) ∈ T }. We will denote
by R(A) the timed tree automaton accepting Untime(T (A)) and obtained by
the region automaton (see [LN97] for more details).
Theorem 1. [LN97] For timed Büchi tree automata:

• Emptiness problem is decidable in time exponential in the length of timing
constraints and polynomial in the number of locations.
• Closure under union and intersection holds.
We end this section by introducing for timed tree automata a concept which

captures some of the properties that regular trees have in the context of tree
languages. We will use this notion to relate timed tree automata to timed
graphs. A timed tree automaton A = (Σ,S, S0, ∆,C, F) is said to be highly
deterministic if Untime(T (A)) contains a unique tree, and for s ∈ S, e =
(s, σ, s1, . . . , sk, λ1, . . . , λk, δ) ∈ ∆ and e′ = (s, σ′, s′1, . . . , s′h, λ

′
1, . . . , λ

′
h, δ

′) ∈ ∆
imply that e = e′. The second property of highly-deterministic timed tree auto-
mata simply states that there is at most one transition rule that can be executed
in each location s ∈ S. A timed tree automaton A′ = (Σ,S′, S′

0, ∆
′, C, F ′) is

contained in A = (Σ,S, S0, ∆,C, F) if S′ ⊆ S, S′
0 ⊆ S0, ∆′ ⊆ ∆, and F ′ ⊆ F .

Clearly, T (A′) ⊆ T (A) holds. We recall that a regular tree contains a finite num-
ber of subtrees. Given a timed tree automaton A = (Σ,S, S0, ∆,C, F), and a
regular run r of R(A) on a regular tree t ∈ T (R(A)), we define a shrink of r
and t as the labelled directed finite graph G = (V,E, lab) such that there is a
mapping θ : dom(t) −→ V such that:
• for any u, u′ ∈ dom(t), θ(u) = θ(u′) implies that deg(u) = deg(u′), and for

each i = 1, . . . , deg(u), θ(ui) = θ(u′i);

• E = {(θ(u), θ(ui), i) |u ∈ dom(t) and i ≤ deg(u)}, and (v, v′, i) ∈ E is an
edge from v to v′ labelled by i;

• for v ∈ V , lab(v) = (r(u), t(u)) for any u such that v = θ(u).

144 Salvatore La Torre and Margherita Napoli

From the definition of regular tree, such a graph G always exists. Thus, the
following theorem holds.

Theorem 2. Given a timed tree automaton A, T (A) is not empty if and only
if there exists a highly-deterministic timed tree automaton contained in A.

Later in the paper we will use the following property. Given a highly-determi-
nistic timed tree automaton A, there exists a highly-deterministic timed tree au-
tomaton A′ such that T (A) = T (A′) and for each transition rule (s, σ, s1, . . . , sk,
λ1, . . . , λk, δ) of A′ we have that si �= sj for i �= j. We call such an automaton
a graph-representable timed tree automaton, since it corresponds to a labelled
directed graph such that for any ordered pair of locations (s, s′) there is exactly
an edge connecting s to s′ in the graph.

3 Timed Computation Tree Logic

In this section we recall the real-time branching-time temporal logics Tctl
[ACD93] and Stctl [LN97].

Let AP be a set of atomic propositions, the syntax of Tctl-formulae is given
by the following grammar:

ϕ := p | ¬ϕ |ϕ ∧ ϕ | ∃[ϕU≈cϕ] | ∀[ϕU≈cϕ]

where p ∈ AP , ≈∈ {<, ≤, >, ≥}, and c is a rational number. Notice that
the Tctl-syntax given in [ACD93] allows the use of equality in the timing
constraints. Here we restrict the syntax to obtain our decidability result.

Before giving the semantics of Tctl, we introduce some common notation.
The constant False is equivalent to ϕ∧¬ϕ, the constant True is equivalent to ¬
False, 3≈cϕ and 2≈cϕ are equivalent to TrueU≈cϕ and ¬3≈c¬ϕ, respectively.
In the rest of the paper with AP we denote the set of atomic propositions of the
considered Tctl-formulae. If it is not differently stated, with ≈ we refer to a
relational operator in {<,≤, >,≥}, and with c to a rational number. We define
a dense path through a set of nodes S as a function ρ :
+ −→ S. With ρI we
denote the restriction of ρ to an interval I and with ρ[0,b) · ρ′ the dense path
defined as (ρ[0,b) ·ρ′)(d) = ρ(d), if d < b, and (ρ[0,b) ·ρ′)(d) = ρ′(d−b), otherwise.
The semantics of Tctl is given with respect to a dense tree. A Σ-valued dense
tree M is a triple (S, µ, f) where:
• S is a set of nodes;

• µ : S −→ Σ is a labelling function;

• f is a function assigning to each s ∈ S a set of dense paths through S,
starting at s, and satisfying the tree constraint: ∀ρ ∈ f(s) and ∀t ∈
+,
ρ[0,t) · f(ρ(t)) ⊆ f(s).
Given a 2AP -valued dense tree M = (S, µ, f), a state s, and a formula ϕ, ϕ

is satisfied at s in M if and only if M, s |= ϕ, where the relation |= is defined as
follows:

A Decidable Dense Branching-Time Temporal Logic 145

• for p ∈ AP , M, s |= p if and only if p ∈ µ(s);

• M, s |= ¬ψ if and only if not(M, s |= ψ);

• M, s |= ψ1 ∧ ψ2 if and only if M, s |= ψ1 and M, s |= ψ2;

• M, s |= ∃[ψ1U≈cψ2] if and only if ∃ρ ∈ f(s) and ∃d ≈ c such that M,ρ(d) |=
ψ2 and for each d′ such that 0 ≤ d′ < d, M,ρ(d′) |= ψ1;

• M, s |= ∀[ψ1U≈cψ2] if and only if ∀ρ ∈ f(s), ∃d ≈ c such that M,ρ(d) |= ψ2

and M,ρ(d′) |= ψ1 for each d′ such that 0 ≤ d′ < d.
We say that M is a Tctl-model of ϕ if and only if M, s |= ϕ for some s ∈ S.
Moreover, a Tctl-formula ϕ is said to be satisfiable if and only if there exists a
Tctl-model of ϕ.

We define the closure of a Tctl-formula ϕ, denoted by cl(ϕ), as the set of
all the subformulae of ϕ and the extended closure, denoted by ecl(ϕ), as the set
cl(ϕ) ∪ {¬ψ | ψ ∈ cl(ϕ)}. Moreover, we define Sϕ ⊆ 2ecl(ϕ) as the collection of
sets Ψ with the following properties:
• ψ ∈ Ψ =⇒ ¬ψ �∈ Ψ ;

• ψ1 ∧ ψ2 ∈ Ψ =⇒ ψ1 ∈ Ψ and ψ2 ∈ Ψ ;

• α[ψ1U≈cψ2] ∈ Ψ , α ∈ {∀, ∃} =⇒ ψ1 ∈ Ψ or (ψ2 ∈ Ψ and (0 ≈ c));

• Ψ is maximal, that is for each ψ ∈ ecl(ϕ): either ψ ∈ Ψ or ¬ψ ∈ Ψ .
Note that Sϕ contains the maximal sets of formulae in ecl(ϕ) which are consis-
tent, in the sense that given an Ψ ∈ Sϕ and a dense tree (S, µ, f), the fulfilment
at a given s ∈ S of a formula in Ψ does not prevent all the other formulae in
Ψ from being satisfied at s. From now on we only consider Tctl-formulae, thus
we will refer to them simply as formulae. In the rest of this section we recall two
semantic restrictions to Tctl that have been considered in literature.

3.1 Finite Satisfiability

A first restriction of Tctl-semantics consists of considering only dense trees
defined by runs of a timed graph [ACD93]. A timed graph is a tuple G =
(V, µ, s0, E, C, Λ, ξ), where:
• V is a finite set of vertices;

• µ : V −→ 2AP is a labelling function;

• s0 is the start vertex;

• E ∈ V × V is the set of edges;

• C is a finite set of clocks;

• Λ : E −→ 2C maps each edge to a set of clocks to reset;

• ξ : E −→ Ξ(C) maps each edge to a clock constraint.
A timed graph is a timed transition system, where vertices correspond to lo-

cations and edges to transitions. A state is given by the current location and the
array of all clock values. When a clock constraint is satisfied by the clock valua-
tion of the current state, the corresponding transition can be taken. A transition
e forces the system to move, instantaneously, to a new state which is described

146 Salvatore La Torre and Margherita Napoli

by the target location of e, and the clock values obtained by resetting the clocks
in the reset set of e. Any computation of the system maps reals to states. This
concept is captured by the notion of run. Given a state (s, ν) of a timed graph
G, an (s, ν)-run of G is an infinite sequence of triples (s1, ν1, τ1), (s2, ν2, τ2), . . .
where:
• s1 = s, ν1 = ν, and τ1 = 0;

• for i > 1 si ∈ S, τi ∈
+, and νi is a clock valuation;

• ei = (si, si+1) ∈ E, νi+1 = [Λ(ei) → 0](νi + τi+1), (νi + τi+1) satisfies
the enabling condition ξ(ei), and the series of reals τi is divergent (progress
condition).

An (s, ν)-run can be also seen as a real-valued mapping ρ(d) defined as ρ(d) =
(si, νi + d− γi) for d ∈
+ such that γi ≤ d < γi+1 (ρ is also said to be a dense
path of G). Notice that a dense path ρ gives for each time a truth assignment of
the atomic propositions. Moreover, the truth values stay unchanged in intervals
of type [γi, γi+1). The dense tree M defined by a timed graph G is a tuple
(S ×
n, µ′, f) where µ′(s, ν) = µ(s) and f(s, ν) is the set of all the paths
corresponding to (s, ν)-runs of G. For a formula ϕ, we say that G |= ϕ if and
only if M, (s0, ν0) |= ϕ where ν0(x) = 0 for any clock x ∈ C. Thus a formula ϕ is
finitely satisfiable if and only if there exists a timed graph G such that G |= ϕ.

3.2 Restricting the Semantics to Timed Trees

In this section we recall the temporal logic Stctl which is obtained restricting
the Tctl-semantics to dense trees obtained from 2AP × 2AP -valued ω-trees. An
Stctl-structure is a timed 2AP × 2AP -valued ω-tree (t, τ) with τ(ε) = 0. Given
an Stctl-structure (t, τ) we denote by topen and tsing the functions defined as
(topen(v), tsing(v)) = t(v) for each v ∈ dom(t). An open and a singular interval
along the paths in (t, τ) correspond to each node v �= ε: topen(v) and tsing(v)
are the sets of the atomic propositions which are true in these two intervals.
For v = ε, only tsing(ε) is meaningful. Given a path π = v0, v1, v2, . . . in an
Stctl-structure (t, τ), a dense path in (t, τ) corresponding to π and shifted by
d is a function ρπd :
+ −→ 2AP such that for any natural number i:

ρπd (d′) =
{
tsing(vi) if d+ d′ = γvi

topen(vi+1) if γvi < d + d′ < γvi+1 .

Thus any dense path in (t, τ) corresponds to a sequence of alternatively open and
singular intervals where the truth values stay unchanged. Clearly, an STCTL-
structure has a dense time semantics on paths and a discrete branching-time
structure. In particular, an Stctl-structure (t, τ) defines the dense tree M t,τ =
(S, µ, f) where (1) S = {(vi, d) | v ∈ dom(t) and 0 < d ≤ τ(vi)} ∪ {(ε, 0)}, (2)
µ(ε, 0) = tsing(ε), µ(vi, d) = topen(vi) if d < τ(vi), and µ(vi, d) = tsing(vi)
otherwise, and (3) f(ε, 0) is the set of all dense paths ρπ0 of (t, τ) and f(vi, d)
is the set of all the dense paths ρπγv+d of (t, τ). For a formula ϕ, we say that
(t, τ) |= ϕ, i.e. (t, τ) is an Stctl-model of ϕ, if and only if M t,τ , (ε, 0) |= ϕ.

A Decidable Dense Branching-Time Temporal Logic 147

Thus a formula ϕ is Stctl-satisfiable if and only there exists an Stctl-model
of ϕ.

In [LN97] the problem of Stctl-satisfiability is reduced to the emptiness
problem of timed tree automata. In particular, given a formula ϕ it is possible
to construct a timed tree automaton accepting a nonempty language if and only
if ϕ is Stctl-satisfiable. Moreover, all the accepted trees are Stctl-models of
ϕ. The corresponding construction leads to the following results.

Theorem 3. [LN97] Given a formula ϕ, if ϕ is Stctl-satisfiable then there
exists an Stctl-model (t, τ) of ϕ such that:

• for each v ∈ dom(t), deg(v) ≤ 2 maxs∈Sϕ |{∃ψ | ∃ψ ∈ s}| + 1, and

• there exists a mapping η : dom(t) −→ Sϕ × Sϕ such that M t,τ , (v, d) |= ψ
for each ψ ∈ µ(v, d), where Mη,τ = (S, µ, f).

Moreover, there exists a timed ω-tree automaton Aϕ with O(2|ϕ|) states and
timing constraints of total size O(|ϕ|) such that (t, τ) is an Stctl-model of ϕ
satisfying the above properties if and only if (t, τ) ∈ T (Aϕ).

By the above Theorems 1 and 3 the satisfiability problem in Stctl is decid-
able in exponential time.

4 Decidability of Finite Satisfiability

In this section we prove the main result of this paper. We show that the finite
satisfiability of formulae is decidable. This result is obtained by proving that a
formula is finitely satisfiable if and only if is satisfiable over a particular class
of Stctl-structures, the left-closed right-open Stctl-structures. Then we show
that the satisfiability of formulae on these structures is decidable via a reduction
to the emptiness problem of timed tree automata. Finally, we prove that the
set of formulae which are Stctl-satisfiable strictly contains the set of finitely-
satisfiable formulae.

Let LFin be the language of formulae that are finitely-satisfiable. We start
providing a characterization of LFin based on a subclass of Stctl-structures. Let
(t, τ) be an Stctl-structure, (t, τ) is said to be a left-closed right-open Stctl-
structure if tsing(v) = topen(vi) for any v ∈ dom(t) and 1 ≤ i ≤ deg(v). Before
to show that the set of formulae which are finitely-satisfiable is exactly the set of
formulae which are satisfiable over left-closed right-open Stctl-structures, we
prove that the existence of a left-closed right-open Stctl-model of a formula
is decidable. The decision procedure we give is obtained, as for the Stctl-
satisfiability, via a reduction to the emptiness problem of timed tree automata.

Lemma 1. Given a formula ϕ, there exists a timed tree automaton A such that
(1) T (A) is not empty if and only if there is a left-closed right-open Stctl-
model of ϕ, and (2) for each (t, τ) ∈ T (A) there exists a function η : dom(t) −→
Sϕ×Sϕ such that M t,τ , (v, d) |= ψ for each ψ ∈ µ(v, d), where Mη,τ = (S, µ, f).
Moreover, the existence of a left-closed right-open Stctl-model of ϕ can be
checked in exponential time.

148 Salvatore La Torre and Margherita Napoli

The next two lemmata show that the finitely-satisfiable formulae are exactly
the formulae which are satisfiable over left-closed right-open Stctl-structures.

Lemma 2. Given a formula ϕ, if ϕ is finitely satisfiable then ϕ is satisfiable on
a left-closed right-open Stctl-structure.

Proof. Let G be a timed graph such that G |= ϕ. For each subformula ψ = ∃ψ′

of ϕ such that G |= ψ, we denote by ρψ a dense path in G such that ψ is satisfied
on ρψ . Let Π be the set of all these paths ρψ. If Π is empty, then we add to Π
an arbitrary dense path of G. Consider the dense tree obtained deleting all the
paths from G but the paths in Π . Since there are only a finite number of such
paths, this tree can be mapped into a left-closed right-open Stctl-structure
(t, τ) such that (t, τ) |= ϕ.

Lemma 3. Given a formula ϕ, if ϕ has a left-closed right-open Stctl-model
then ϕ is finitely satisfiable.

Proof. From Lemma 1 we have that there exists a timed tree automaton Aϕ
accepting left-closed right-open Stctl-models of ϕ, if there are any. We can
consider a new timed tree automaton A′

ϕ accepting 2AP -valued ω-trees ob-
tained from the timed trees (t, τ) ∈ T (Aϕ) by disregarding topen(v) for each
v ∈ dom(t) (we recall that for left-closed right-open Stctl-structures tsing(v) =
topen(vi)). Clearly, T (A′

ϕ) is not empty, and hence by Theorem 2, there ex-
ists a highly-deterministic timed tree automaton contained in A′

ϕ and, as a
consequence, there exists a graph-representable timed tree automaton A′ =
(2AP , S′, s0, ∆′, S′) such that T (A′) ⊆ T (A′

ϕ). Let G be a timed graph (S′, µ, s0,
E, C, Λ,∆) such that µ(s) = σ, ∆(e) = δ for any e = (s′, s) ∈ E, ei = (s, si) ∈ E
and Λ(ei) = λi for i = 1, . . . , k if and only if (s, σ, s1, . . . , sk, λ1, . . . , λk, δ) ∈ ∆′.
Notice that, due to the properties of A′, G is well defined. Denoted as ν0 the clock
valuation mapping each clock to 0, by the above construction we have that each
〈s0, ν0〉-run ρ of G is a continuous path of a timed tree (t, τ) ∈ T (A′), and on
the other hand, for each (t, τ) ∈ T (A′) any continuous path ρ′ in (t, τ) is also an
〈s0, ν0〉-run of G. Moreover, by Lemma 1 since T (A′) ⊆ T (A′

ϕ), for (t, τ) ∈ T (A′)
there is a timed tree (η, τ) such that η : dom(t) −→ Sϕ×Sϕ and M t,τ , (v, d) |= ψ
for each ψ ∈ µ(v, d), where Mη,τ = (Sη, µ, f) is the dense tree corresponding
to (η, τ). Notice that η is independent by the choice of (t, τ) ∈ T (A′), since A′

is highly deterministic. Thus, since A′ is graph-representable, η defines in an
obvious way a labelling function η′ of the G vertices such that G |= ψ for each
ψ ∈ η′(s0). Since (t, τ) |= ϕ, it holds that Mη,τ , (v, d) |= ϕ and thus ϕ ∈ η′(s0).
Hence G |= ϕ, and ϕ is finitely satisfiable.

Directly from the last two lemmata we have the following theorem.

Theorem 4. A Tctl-formula ϕ is finitely satisfiable if and only if ϕ has a
left-closed right-open Stctl-model.

As a consequence of the above results, the membership problem in LFin is
decidable in exponential time and can be reduced to the emptiness problem of
timed tree automata.

A Decidable Dense Branching-Time Temporal Logic 149

Theorem 5. The finite satisfiability of Tctl-formulae is decidable in exponen-
tial time.

Proof. By Theorem 4, we have that ϕ is finitely satisfiable in Tctl if and only
if ϕ has a left-closed right-open Stctl-model. Thus by Lemma 1, the finite
satisfiability of Tctl-formulae is decidable in exponential time.

We end this section by proving that the set LFin is a proper subset of LSTCTL,
where LSTCTL is the language of the Stctl-satisfiable formulae. By Theorem 4
we have that LFin ⊆ LSTCTL. The strict containment can be proved by showing
that there exists a Formula ϕ such that ϕ is Stctl-satisfiable but is not finitely
satisfiable.

Example 1. Consider the formula ϕ = ∀2≤c p∧∀2>c ¬p. Let (t, τ) be an Stctl-
structure such that (1) for any i ≤ deg(ε), tsing(ε) = topen(i) = tsing(i) = p and
τ(i) = c, and (2) tsing(v) = topen(v) = ¬p for any other v ∈ dom(t). Clearly
(t, τ) is an Stctl-model of ϕ, and thus we have that ϕ ∈ LSTCTL. Moreover
ϕ �∈ LFin since truth assignments of a dense path in a timed graph vary on
left-closed right-open intervals.

Thus we have the following lemma.

Lemma 4. LFin is strictly contained in LSTCTL.

5 Conclusions

In this paper we have proved the decidability of the finite satisfiability of the
Tctl-formulae that do not contain the equality in the timing constraints. The
result is obtained by reducing this problem to the emptiness problem for timed
tree automata. The presented construction uses as intermediate step the decid-
ability of formulae on left-closed right-open Stctl-structures. According to the
previously known results there were two possible causes of the undecidability
of Tctl-finite satisfiability: the denseness of the underlying structure and the
equality in the timing constraints. Our results prove that the only source of un-
decidability when the structures are defined by timed graphs is the presence of
the equality in the timing constraints. We have also compared Tctl to Stctl,
via the language of the formulae which are satisfiable in each of them. The inter-
esting result we obtained is that the satisfiability problem in Tctl is decidable
on a set of structures more general than those obtained from timed graphs. As
a consequence there exists a more general formulation of dense trees with dense
branching time that matches the language of formulae which are satisfiable in
Stctl. Finally, we prove our results by relating to the theory of timed tree au-
tomata, so strengthening the already well-founded connections between the field
of logics and the field of finite automata.

Acknowledgements

We would like to thank Rajeev Alur for helpful discussions and suggestions.

150 Salvatore La Torre and Margherita Napoli

References

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2 – 34, 1993.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183 – 235, 1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116 – 146, 1996.

[AH93] R. Alur and T.A. Henzinger. Real-time logics: complexity and expressive-
ness. Information and Computation, 104(1):35 – 77, 1993.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proceedings of Workshop
on Logic of Programs, LNCS 131, pages 52 – 71. Springer-Verlag, 1981.

[DW99] M. Dickhofer and T. Wilke. Timed alternating tree automata: the automata-
theoretic solution to the TCTL model checking problem. In Proceedings of
the 26th International Colloquium on Automata, Languages and Program-
ming, LNCS 1644, pages 281 – 290. Springer-Verlag, 1999.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995 – 1072.
Elsevier Science Publishers, 1990.

[EMSS90] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative tem-
poral reasoning. In Proceedings of the 2nd International Conference on
Computer Aided Verification, LNCS 531, pages 136 – 145. Springer-Verlag,
1990.

[Hen98] T.A. Henzinger. It’s about time: Real-time logics reviewed. In Proceedings
of the 9th International Conference on Concurrency Theory, CONCUR’98,
LNCS 1466, pages 439 – 454. Springer-Verlag, 1998.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In Log-
ics and Models of Concurrent Systems, volume F-13 of NATO Advanced
Summer Institutes, pages 477 – 498. Springer-Verlag, 1985.

[JM86] F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time
systems. IEEE Transactions on Software Engineering, SE - 12(9):890 – 904,
1986.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic.
Journal of Real-Time Systems, 2:255 – 299, 1990.

[LN97] S. LaTorre and M. Napoli. Timed tree automata with an appli-
cation to temporal logic. Technical report, Dipartimento di Infor-
matica ed Applicazioni, Università degli Studi di Salerno, Italy, 1997.
URL:“http://www.cis.upenn.edu/∼latorre/Papers/stctl.ps.gz”.

[PH88] A. Pnueli and E. Harel. Applications of temporal logic to the specification
of real-time systems. In Formal Techniques in Real-time and Fault-tolerant
Systems, LNCS 331, pages 84 – 98. Springer-Verlag, 1988.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46 – 77, 1977.

[Rab72] M.O. Rabin. Automata on infinite objects and Church’s problem. Trans.
Amer. Math. Soc., 1972.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133 – 191.
Elsevier Science Publishers, 1990.

[URL] URL: “http://www.cis.upenn.edu/∼latorre/Papers/fsttcs.ps.gz”.

Fair Equivalence Relations

Orna Kupferman1, Nir Piterman2, and Moshe Y. Vardi3�

1 Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
orna@cs.huji.ac.il,

http://www.cs.huji.ac.il/∼orna
2 Weizmann Institute of Science, Department of Computer Science, Rehovot 76100, Israel

nirp@wisdom.weizmann.ac.il,
http://www.wisdom.weizmann.ac.il/∼nirp

3 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu,

http://www.cs.rice.edu/∼vardi

Abstract. Equivalence between designs is a fundamental notion in verification.
The linear and branching approaches to verification induce different notions of
equivalence. When the designs are modeled by fair state-transition systems, equiv-
alence in the linear paradigm corresponds to fair trace equivalence, and in the
branching paradigm corresponds to fair bisimulation.
In this work we study the expressive power of various types of fairness condi-
tions. For the linear paradigm, it is known that the Büchi condition is sufficiently
strong (that is, a fair system that uses Rabin or Streett fairness can be translated
to an equivalent Büchi system). We show that in the branching paradigm the
expressiveness hierarchy depends on the types of fair bisimulation one chooses
to use. We consider three types of fair bisimulation studied in the literature: ∃-
bisimulation, game-bisimulation, and ∀-bisimulation. We show that while game-
bisimulation and ∀-bisimulation have the same expressiveness hierarchy as tree
automata, ∃-bisimulation induces a different hierarchy. This hierarchy lies be-
tween the hierarchies of word and tree automata, and it collapses at Rabin condi-
tions of index one, and Streett conditions of index two.

1 Introduction

In formal verification, we check that a system is correct with respect to a desired behav-
ior by checking that a mathematical model of the system satisfies a formal specification
of the behavior. In a concurrent setting, the system under consideration is a composition
of many components, giving rise to state spaces of exceedingly large size. One of the
ways to cope with this state-explosion problem is abstraction [BCG88, CFJ93, BG00].
By abstracting away parts of the system that are irrelevant for the specification being
checked, we hope to end up with manageable state-spaces. Technically, abstraction may
cause different states s and s′ of the system to become equivalent. The abstract system
then has as its state space the equivalence classes of the equivalence relation between
the states. In particular, s and s′ are merged into the same state.

� Supported in part by NSF grants CCR-9700061 and CCR-9988322, and by a grant from the
Intel Corporation.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 151–163, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

152 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

We distinguish between two types of equivalence relations between states. In the
linear approach, we require s and s′ to agree on linear behaviors (i.e., properties satis-
fied by all the computations that start in s and s′). In the branching approach, we require
s and s′ to agree on branching behaviors (i.e., properties satisfied by the computation
trees whose roots are s and s′). When we model systems by state-transition systems,
two states are equivalent in the linear approach iff they are trace equivalent, and they
are equivalent in the branching approach iff they are bisimilar [Mil71]. The branching
approach is stronger, in the sense that bisimulation implies trace equivalence but not
vice versa [Mil71, Pnu85].

Of independent interest are the one-way versions of trace equivalence and bisim-
ulation, namely trace containment and simulation. There, we want to make sure that
s does not have more behaviors than s′. This corresponds to the basic notion of ver-
ification, where an implementation cannot have more behaviors than its specification
[AL91]. In the hierarchical refinement top-down methodology for design development,
we start with a highly abstract specification, and we construct a sequence of “behavior
descriptions”. Each description refers to its predecessor as a specification, and the last
description is sufficiently concrete to constitute the implementation (cf. [LT87, Kur94]).

The theory behind trace equivalence and bisimulation is well known. We know
that two states are trace equivalent iff they agree on all LTL specifications, and the
problem of deciding whether two states are trace equivalent is PSPACE-complete
[MS72, KV98b]. In the branching approach, two states are bisimilar iff they agree on
all CTL� formulas, which turned out to be equivalent to agreement on all CTL and
µ-calculus formulas [BCG88, JW96]. The problem of deciding whether two states are
bisimilar is PTIME-complete [Mil80, BGS92], and a witnessing relation for bisimula-
tion can be computed using a symbolic fixpoint procedure [McM93, HHK95]. Similar
results hold for trace containment and simulation. The computational advantage of sim-
ulation makes it a useful precondition to trace containment [CPS93].

State-transition systems describe only the safe behaviors of systems. In order to
model live behaviors, we have to augment systems with fairness conditions, which
partition the infinite computations of a system into fair and unfair computations
[MP92, Fra86]. It is not hard to extend the linear approach to account for fairness: s
and s′ are equivalent if every sequence of observations that is generated along a fair
computation that starts in s can also be generated along a fair computation that starts in
s′, and vice versa. Robustness with respect to LTL, and PSPACE-completeness extend
to the fair case. It is less obvious how to generalize the branching approach to account
for fairness. Several proposals for fair bisimulation can be found in the literature. We
consider here three: ∃-bisimulation [GL94], game-bisimulation [HKR97, HR00], and
∀-bisimulation [LT87]. In a bisimulation relation between S and S′ with no fairness,
two related states s and s′ agree on their observable variables, every successor of s is
related to some successor of s′, and every successor of s′ is related to some succes-
sor of s. In all the definitions of fair bisimulation, we require related states to agree
on their observable variables. In ∃-bisimulation, we also require every fair computa-
tion starting at s to have a related fair computation starting at s′, and vice versa. In
game-bisimulation, the related fair computations should be generated by strategies that
depend on the states visited so far, and in ∀-bisimulation, the relation is a bisimulation

Fair Equivalence Relations 153

in which related computations agree on their fairness (we review the formal definitions
in Section 2).

The different definitions induce different relations: ∀-bisimulation implies game-
bisimulation, which implies ∃-bisimulation, but the other direction does not hold
[HKR97]. The difference in the distinguishing power of the definitions is also reflected
in their logical characterization: while ∃-bisimulation corresponds to fair-CTL� (that is,
two systems are ∃-bisimilar iff they agree on all fair-CTL� formulas, where path quan-
tifiers range over fair computations only [CES86]), game-bisimulation corresponds to
fair-alternation-free µ-calculus1. Thus, unlike the non-fair case, where almost all modal
logics corresponds to bisimulation, here different relations correspond to different log-
ics [ASB+94] 2. Finally, the different definitions induce different computational costs.
The exact complexity depends on the fairness condition being used. For the case of
the Büchi fairness condition, for example, the problem of checking whether two sys-
tems are bisimilar is PSPACE-complete for ∃-bisimulation [KV98b], NP-complete for
∀-bisimulation [Hoj96], and PTIME-complete for game-bisimulation [HKR97, HR00].

There are various types of fairness conditions with which we can augment labeled
state-transition systems [MP92]. Our work here relates fair transition systems and au-
tomata on infinite objects, and we use the types and names of fairness conditions that
are common in the latter framework [Tho90]. The simplest condition is Büchi (also
known as unconditional or impartial fairness), which specifies a set of states that should
be visited infinitely often along fair computations. In its dual condition, co-Büchi, the
specified set should be visited only finitely often. More involved are Streett (also known
as strong fairness or compassion), Rabin (Streett’s dual), and parity conditions, which
can restrict both the set of states visited infinitely often and the set of states visited
finitely often. Rabin and parity conditions were introduced for automata and are less
frequent in the context of state-transition systems. Rabin conditions were introduced by
Rabin and were used to prove that the logic S2S is decidable [Rab69]. Parity conditions
can be easily translated to both Rabin and Streett conditions. They have gained their
popularity as they are suitable for modeling behaviors that are given by means of fixed-
points [EJ91]. As we formally define in Section 2, Rabin, Streett, and parity conditions
are characterized by their index, which is the number of pairs (in the case of Rabin and
Streett) or sets (in the case of parity) they contain. When we talk about a type of a sys-
tem, we refer to its fairness condition and, in the case of Rabin, Streett, and parity, also
to its index. For example, a Rabin[1] system is a system whose fairness condition is a
Rabin condition with a single pair.

The relations between the various types of fairness conditions are well known in the
linear paradigm. There, we can regard fair transition systems as a notational variant of
automata on infinite words, and adopt known results about translations among the vari-
ous types and about the complexity of the trace-equivalence and the trace-containment
problems [Tho90]. In particular, it is known that the Büchi fairness condition is suffi-
ciently strong, in the sense that every system can be translated to an equivalent Büchi
system, where equivalence here means that the systems are trace equivalent.

1 A semantics of fair-alternation-free µ-calculus is given in [HR00].
2 As shown in [ASB+94], the logic CTL induces yet another definition, strictly weaker than
∃-bisimulation. Also, no logical characterization is known for ∀-bisimulation.

154 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

In the branching paradigm, tight complexity bounds are known for the fair-
bisimulation problem with respect to the three definitions of fair bisimulation and the
various types of fairness conditions [Hoj96, HKR97, KV98b], but nothing is known
about their expressive power, and about the possibilities of translations among them.
For example, it is not known whether every system can be translated to an equivalent
Büchi system, where now equivalence means fair bisimulation. In particular, it is not
clear whether one can directly apply results from the theory of automata on infinite
trees in order to study fair-bisimulation, and whether the different definitions of fair
bisimulation induce different expressiveness hierarchies.

In this paper, we study the expressive power of the various types of fairness condi-
tions in the context of fair bisimulation. For each of the three definitions of fair bisimu-
lation, we consider the following question: given types γ and γ′ of fairness conditions,
is it possible to translate every γ-system to a fair-bisimilar γ′-system? If this is indeed
the case, we say that γ′ is at least as strong as γ. Then, γ is stronger than γ′ if γ is
at least as strong as γ′, but γ′ is not at least as strong as γ. When γ is stronger than
γ′, we also say that γ′ is weaker than γ. We show that the expressiveness hierarchy for
game-bisimulation and ∀-bisimulation is strict, and it coincides with the expressiveness
hierarchy of tree automata. Thus, Büchi and co-Büchi systems are incomparable and are
the weakest, and for all i ≥ 1, Rabin[i+1], Streett[i+1], and parity[i+1], are stronger
than Rabin[i], Streett[i], and parity[i], respectively [Rab70, DJW97, Niw97, NW98].
In contrast, the expressiveness hierarchy for ∃-bisimulation is different, and it is not
strict. We show that Büchi and co-Büchi systems are incomparable, and they are both
weaker than Streett[1] systems. Streett[1] systems are in turn weaker than Streett[2]
and Rabin[1] systems, which are both at least as strong as Rabin[i] and Streett[i], for all
i ≥ 1.

Our results imply that the different definitions of fair bisimulation induce differ-
ent expressiveness relations between the various types of fairness conditions. These
relations are different than those known for the linear paradigm, and, unlike the case
there, they do not necessarily coincide with the relations that exist in the context of
automata on infinite trees. A decision of which fairness condition and which type of
fair-bisimulation relation to use in a modeling and verificatiuon process should take
into an account all the characteristics of these types, and it cannot be assumed that what
is well known for one type is true for another.

Due to space limitations, most of the proofs are omitted. A full version can be found
in the homepages of the authors.

2 Definitions

A fair state-transition system (system, for short) S = 〈Σ,W,R,W0, L, α〉 consists of
an alphabet Σ, a finite set W of states, a total transition relation R ⊆ W × W (i.e.,
for every w ∈ W there exists w′ ∈ W such that R(w,w′)), a set W0 of initial states, a
labeling function L : W → Σ, and a fairness condition α. We will define several types
of fairness conditions shortly. A computation of S is a sequence π = w0, w1, w2, . . .
of states such that for every i ≥ 0, we have R(wi, wi+1). Each computation π =
w0, w1, w2, . . . induces the word L(π) = L(w0) · L(w1) · L(w2) · · · ∈ Σω. In order

Fair Equivalence Relations 155

to determine whether a computation is fair, we refer to the set inf(π) of states that
π visits infinitely often. Formally, inf(π) = {w ∈ W : for infinitely many i ≥
0, we have wi = w}. The way we refer to inf(π) depends on the fairness condition of
S. Several types of fairness conditions are studied in the literature:

– Büchi (unconditional or impartial), where α ⊆W , and π is fair iff inf(π)∩α �= ∅.
– co-Büchi, where α ⊆ W , and π is fair iff inf(π) ∩ α = ∅.
– Parity, where α is a partition of W , and π is fair in α = {F1, F2, . . . , Fk} if the

minimal index i for which inf(r) ∩ Fi �= ∅ exists and is even.
– Rabin, where α ⊆ 2W × 2W , and π is fair in α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} if

there is a 1 ≤ i ≤ k such that inf(π) ∩Gi �= ∅ and inf(π) ∩Bi = ∅.
– Streett (compassion or strong fairness), where α ⊆ 2W × 2W , and π is fair in
α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} if for all 1 ≤ i ≤ k, we have that inf(π)∩Gi �= ∅
implies inf(π) ∩Bi �= ∅.

The number k of sets in a parity fairness condition or of pairs in a Rabin or Streett
fairness condition is the index of α. When we talk about the type of a system, we refer
to its fairness condition and, in the case of Rabin, Streett, and parity, also to its index. For
example, a Rabin[1] system is a system whose fairness condition is a Rabin condition
with a single pair. For a state w, a w-computation is a computation w0, w1, w2, . . . with
w0 = w. We use T (Sw) to denote the set of all traces σ0 · σ1 · · · ∈ Σω for which there
exists a fair w-computation w0, w1, . . . in S with L(wi) = σi for all i ≥ 0. The trace
set T (S) of S is then defined as

⋃
w∈W0

T (Sw).
We now formalize what it means for two systems (or two states of the same

system) to be equivalent. We give the definitions with respect to two systems S =
〈Σ,W,R,W0, L, α〉 and S′ = 〈Σ,W ′, R′,W ′

0, L
′, α′〉, with the same alphabet.3 We

consider two equivalence criteria: trace equivalence and bisimulation. While the first
criterion is clear (T (S) = T (S′)), several proposals are suggested in the literature for
bisimulation in the case of systems with fairness. Before we define them, let us first
recall the definition of bisimulation for the non-fair case.
Bisimulation [Mil71] A relation H ⊆ W ×W ′ is a bisimulation relation between S
and S′ iff the following conditions hold for all 〈w,w′〉 ∈ H .

1. L(w) = L′(w′).
2. For all s ∈ W with R(w, s), there is s′ ∈ W ′ such that R′(w′, s′) and H(s, s′).
3. For all s′ ∈ W with R′(w′, s′), there is s ∈ W such that R(w, s) and H(s, s′).

We now describe three extensions of bisimulation relations to the fair case. In all
definitions, we extend a relation H ⊆ W ×W ′, over the states of S and S′, to a relation
over infinite computations of S and S′: for two computations π = w0, w1, . . . in S, and
π′ = w′

0, w
′
1, . . . in S′, we have H(π, π′) iff H(wi, w′

i), for all i ≥ 0.
∃-bisimulation [GL94] A relationH ⊆W×W ′ is an ∃-bisimulation relation between
S and S′ iff the following conditions hold for all 〈w,w′〉 ∈ H .

3 In practice, S and S′ are given as systems over alphabets 2AP and 2AP ′
, when AP and AP ′

are the sets of atomic propositions used in S and S′, and possibly AP �= AP ′. When we
compare S with S′, we refer only to the common atomic propositions, thus Σ = 2AP∩AP ′

.

156 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

1. L(w) = L′(w′).
2. Each fair w-computations π in S has a fair w′-computation π′ in S′ with H(π, π′).
3. Each fair w′-computations π′ in S′ has a fair w-computation π in S with H(π, π′).

Game bisimulation [HKR97, HR00] Game bisimulation is defined by means of a
game between a protagonist against an adversary. The positions of the game are pairs
in W ×W ′. A strategy τ for the protagonist is a partial function from (W ×W ′)∗ ×
(W ∪W ′) to (W ′ ∪W), such that for all ρ ∈ (W ×W ′)∗, w ∈ W , and w′ ∈ W ′, we
have that τ(ρ · w) ∈ W ′ and τ(ρ · w′) ∈ W . Thus, if the game so far has produced the
sequence ρ of positions, and the adversary moves to w in S, then the strategy τ instructs
the protagonist to move to w′ = τ(π · w), resulting in the new position 〈w,w′〉. If the
adversary chooses to move to w′ in S′, then τ instructs the protagonist to move to
w = τ(π · w′), resulting in the new position 〈w,w′〉. A sequence w = 〈w0, w

′
0〉 ·

〈w1, w
′
1〉 · · · ∈ (W × W ′)ω is an outcome of the strategy τ if for all i ≥ 0, either

w′
i+1 = τ(〈w0, w

′
0〉 · · · 〈wi, w′

i〉 · wi+1), or wi+1 = τ(〈w0, w
′
0〉 · · · 〈wi, w′

i〉 · w′
i+1).

A binary relation H ⊆ W ×W ′ is a game bisimulation relation between S and S′

if there exists a strategy τ such that the following conditions hold for all 〈w,w′〉 in H .

1. L(w) = L(w′).
2. Every outcome w = 〈w0, w

′
0〉 · 〈w1, w

′
1〉 · · · of τ with w0 = w and w′

0 = w′ has
the following two properties: (1) for all i ≥ 0, we have 〈wi, w′

i〉 ∈ H , and (2) the
projection w0 · w1 · · · of w to W is a fair w0-computation of S iff the projection
w′

0 · w′
1 · · · of w to W ′ is a fair w′

0-computation of S′.

∀-bisimulation [LT87, DHW91] A binary relation H ⊆ W ×W ′ is a ∀-bisimulation
relation between S and S′ if the following conditions hold:

1. H is a bisimulation relation between S and S′.
2. If H(w,w′), then for every fair w-computation π of S and for every w′-

computation π′ of S′, if H(π, π′), then π′ is fair.
3. If H(w,w′), then for every fair w′-computation π′ of S′ and for every w-

computation π of S, if H(π, π′), then π is fair.

It is not hard to see that if H is a ∀-bisimulation relation, then H is also a game-
bisimulation relation. Also, if H is a game-bisimulation relation, then H is also an
∃-bisimulation relation. As demonstrated in [HKR97], the other direction is not true.

For all types β of bisimulation relations (that is β ∈ {∃, game, ∀}), a β-bisimulation
relation H is a β-bisimulation between S and S′ if for every w ∈ W0 there exists
w′ ∈ W ′

0 such that H(w,w′), and for every w′ ∈ W ′
0 there exists w ∈ W0 such that

H(w,w′). If there is a β-bisimulation between S and S′, we say that S and S′ are β-
bisimilar. Intuitively, bisimulation implies that S and S′ have the same behaviors. For-
mally, two bisimilar systems with no fairness agree on the satisfaction of all branching
properties that can be specified in a conventional temporal logic (in particular, CTL�

and µ-calculus) [BCG88, JW96]. When we add fairness, the logical characterization
becomes less robust: ∃-simulation corresponds to fair-CTL�, and game-simulation cor-
responds to fair-alternation-free µ-calculus [ASB+94, GL94, HKR97, HR00].

For ∃-bisimulation and ∀-bisimulation, a relation H ⊆ W ×W ′ is a β-simulation
relation from S to S′ if conditions 1 and 2 for H being a β-bisimulation relation hold.

Fair Equivalence Relations 157

For game-bisimulation, a relation H is a game-simulation relation from S to S′ if we
restrict the moves of the adversary to choose only states from S. A β-simulation relation
H is a β-simulation from S to S′ iff for every w ∈ W0 there exists w′ ∈ W ′

0 such that
H(w,w′). If there is a β-simulation from S to S′, we say that S′ β-simulates S, and
we write S ≤β S′. Intuitively, while bisimulation implies that S and S′ have the same
behaviors, simulation implies that S has less behaviors than S′.

It is easy to see that bisimulation implies trace equivalence. The other direction,
however, is not true [Mil71]. Hence, our equivalence criteria induce different equiva-
lence relations. When attention is restricted to trace equivalence, it is known how to
translate all fair systems to an equivalent Büchi system. In this paper we consider the
problem of translations among systems that preserve bisimilarity.

3 Expressiveness with ∃-Bisimulation

In the linear case, it follows from automata theory that co-Büchi systems are weaker
than Büchi systems, which are as strong as parity, Rabin, and Streett systems. In the
branching case, nondeterministic Büchi and co-Büchi tree automata are both weaker
than Rabin tree automata, and, for all i ≥ 1, parity[i], Rabin[i], and Streett[i] are weaker
than parity[i+1], Rabin[i+1], and Streett[i+1], respectively [Rab70, DJW97, Niw97,
NW98]. In this section we show that the expressiveness hierarchy in the context of
∃-bisimulation is located between the hierarchies of word and tree automata.4

We first show that Büchi and co-Büchi systems are weak. The arguments we use are
similar to these used by Rabin in the context of tree automata [Rab70]. Our proofs use
the notion of maximal models [GL94, KV98c]. A system Mψ is a maximal model for
an ∀CTL� formula ψ if Mψ |= ψ and for every module M we have that M ≤∃ Mψ

iff M |= ψ. It can be shown that there is no Büchi system that is ∃-bisimilar to the
maximal model of the formula ∀32p and that there is no co-Büchi system that is ∃-
bisimilar to the maximal model of the formula ∀23p. Hence, we have:

Theorem 1. Büchi is not at least as ∃-strong as co-Büchi and co-Büchi is not at least
as ∃-strong as Büchi.

Note that Theorem 1 implies that the Büchi condition is too weak for defining max-
imal models for ∀CTL� formulas. On the other hand, the Büchi condition is sufficiently
strong for defining maximal models for ∀CTL formulas [GL94, KV98a]. Since par-
ity, Rabin, and Streett are at least as ∃-strong as Büchi and co-Büchi, it follows from
Theorem 1 that parity, Rabin, and Streett are all ∃-stronger than Büchi and co-Büchi.

So far things seem to be very similar to tree automata, where Büchi and co-Büchi
conditions are incomparable [Rab70]. In particular, the ability of the Büchi condition
to define maximal models for ∀CTL and its inability to define maximal models for
∀CTL� seems related to the ability to translate CTL formulas to Büchi tree automata
and the inability to translate CTL� formulas to Büchi tree automata (as follows from
Rabin’s result [Rab70]). In tree automata, the hierarchy of expressive power stays strict

4 Here and in the sequel, we use terms like γ is ∃-stronger than γ′ to indicate that γ is stronger
than γ′ in the context of ∃-bisimulation.

158 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

also when we proceed to parity (or Rabin or Streett) fairness condition with increasing
indices [DJW97, Niw97, NW98]. We now show that, surprisingly, in the context of ∃-
bisimulation, Rabin conditions of index one are at least as strong as parity, Rabin, and
Streett conditions with an unbounded index. In particular, it follows that maximal mod-
els for ∀CTL� can be defined with Rabin[1] fairness. The idea behind the construction
is similar to the conversion of Rabin and Streett automata on infinite words to Büchi
automata on infinite words.

Lemma 1. Every Rabin system with n states and index k has an ∃-bisimilar Rabin
system with O(nk) states and index 1.

Proof: Let S = 〈Σ,W,W0, R, L, α〉 be a Rabin system with α =
{〈G1, B1〉, . . . , 〈Gk, Bk〉}. We define S′ = 〈Σ,W ′,W ′

0, R
′, L′, α′〉 as follows.

– For every 1 ≤ i ≤ k, let Wi = (W \ Bi) × {i}. Then, W ′ = (W × {0}) ∪⋃
1≤i≤kWi, and W ′

0 = W0 × {0}.
– R′ =

⋃
0≤i≤k{〈(w, 0), (w′, i)〉, 〈(w, i), (w′, 0)〉, 〈(w, i), (w′, i)〉 : 〈w,w′〉 ∈ R} ∩

(W ′ ×W ′). Note that R′ is total.
– For all w ∈ W and 0 ≤ i ≤ k, we have L′((w, i)) = L(w).
– α′ = {〈

⋃
1≤i≤k Gi × {i},W × {0}〉}.

Thus, S′ consists of k + 1 copies of S. One copy (“the idle copy”) contains all the
states in W , marked with 0. Then, k copies are partial: every such copy is associated
with a pair 〈Gi, Bi〉, its states are marked with i, and it contains all the states in W \Bi.
A computation of S′ can return to the idle copy from all copies, where it can choose
between staying in the idle copy or moving to one of the other k copies. The acceptance
condition forces a fair computation to visit the idle copy only finitely often, forcing the
computation to eventually get trapped in a copy associated with some pair 〈Gi, Bi〉.
There, the computation cannot visit states from Bi (indeed, Wi does not contain such
states), and it has to visit infinitely many states from Gi. It is not hard to see that the
relation H = {〈w, (w, i)〉 : w ∈ W and 0 ≤ i ≤ k} is an ∃-bisimulation between S
and S′, thus S and S′ are ∃-bisimilar. ��

In the case of transforming Rabin[k] word automata to Rabin[1] (or Büchi) au-
tomata, runs of the automaton on different computations are independent of each other,
so there is no need for the automaton to “change its mind” about the pair in α with
respect to which the computation is fair. Accordingly, there is no need to return to an
idle copy. In the case of tree automata, runs on different computations of the tree de-
pend on each other, and the run of the automaton along a computation may need to
postpone its choice of a suitable pair in α ad infinitum, which cannot be captured with a
Rabin[1] condition. The crucial observation about ∃-bisimulation is that here, if π1 and
π2 are different fair w-computations, then the fair computations π′

1 and π′
2 for which

H(π1, π
′
1) and H(π2, π

′
2) are independent. Thus, each computation eventually reaches

a state where it can stick to its suitable pair in α. Accordingly, a computation needs to
change its mind only finitely often. A visit to the idle copy corresponds to the computa-
tion changing its mind, and the fairness condition guarantees that there are only finitely
many visits to the idle copy.

Fair Equivalence Relations 159

We now describe a similar transformation for Streett systems. While in Rabin sys-
tems each copy of the original system corresponds to a guess of a pair 〈Gi, Bi〉 for
which Gi is visited infinitely often and Bi is visited only finitely often, here each copy
would correspond to a subset I ⊆ {1, . . . , k} of pairs, where the copy associated with
I corresponds to a guess that Bi and Gi are visited infinitely often for all i ∈ I , and Gi
is visited only finitely often for all i �∈ I .

Lemma 2. Every Streett system with n states and index k has an ∃-bisimilar Rabin
system with O(n · 2O(k)) states and index 1.

Note that while the blow up in the construction in Lemma 1 is linear in the index
of the Rabin system, the blow up in the construction in Lemma 2 is exponential in
the index of the Streett system. The above blow ups are tight for the linear paradigm
[SV89]5. Since ∃-bisimulation implies trace equivalence, it follows that these blow ups
are tight also for the ∃-bisimulation case.

Since the parity condition is a special case of Rabin, Lemma 1 also implies a trans-
lation of parity systems to ∃-bisimilar Rabin[1] systems. Also, a Rabin[1] condition
{〈G,B〉} can be viewed as a parity condition {B,G \ B,W \ (G ∪ B)}. Hence, par-
ity[3] is as ∃-strong as Rabin[1] 6. A Rabin[1] condition {〈G,B〉} is equivalent to the
Streett[2] condition {〈W,G〉, 〈B, ∅〉}. So, Streett[2] is also as ∃-strong as Rabin[1]. It
turns out that we can combine the arguments for Büchi and co-Büchi in Theorem 1 to
prove that Streett[1] is ∃-weaker than Streett[2]. To sum up, we have the following.

Theorem 2. For every fairness type γ, the types Rabin[1], Streett[2], and parity[3] are
all at least as ∃-strong as γ.

Note that the types described in Theorem 2 are tight, in the sense that, as discussed
above, Büchi, co-Büchi, Streett[1], and parity[2] may be ∃-weaker than γ.

In the full version, we also show that a system with a generalized Büchi condition
or with a justice condition [MP92] can be translated to an ∃-bisimilar Büchi system,
implying that generalized Büchi and justice conditions are also too weak.

4 Expressiveness with Game-Bisimulation and ∀-Bisimulation

We now study the expressiveness hierarchy for game-bisimulation and ∀-bisimulation.
We show that unlike ∃-simulation, here the hierarchy coincides with the hierarchy of
tree automata. Thus, Rabin[i+1] is stronger than Rabin[i], and similarly for Streett and
parity. In order to do so, we define game-bisimulation between tree automata, and define
transformations preserving game-bisimulation between tree automata and fair systems.
We show that game-bisimilar tree automata agree on their languages (of trees), which
enables us to relate the expressiveness hierarchies in the two frameworks.

5 [SV89] shows that the transition from Streett word automata to Büchi word automata is ex-
ponential in the index of the Streett automaton. Since the transition from Rabin[1] to Büchi is
linear, a lower bound for the transition from Streett to Rabin[1] follows.

6 Recall that a parity fairness condition is a partition of the state set. Hence, a parity[2] condition
can be translated to an equivalent co-Büchi fairness condition and vice versa, implying that
Rabin[1] is ∃-stronger than parity[2].

160 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

Due to lack of space we only give an outline of the proof. We define a special
type of tree automata, called loose tree automata. Unlike conventional tree automata
[Tho90], the transition function of loose tree automata does not distinguish between the
successors of a node, it does not force states to be visited, and it only restricts the set
of states that each of the successors may visit. When A runs on a labeled tree 〈T, V 〉
and it visits a node x with label σ at state q, then δ(q, σ) = S (where S is a subset of
the states of A) means that A should send to all the successors of x copies in states in
S. Loose tree automata can use all types of fairness. A run of a loose tree automaton is
accepting if all the infinite paths of the run tree satisfy the fairness condition.

We can define game-bisimulation for loose tree automata. Given two loose tree au-
tomata, we define a game whose positions are pairs of states. A strategy for the game is
similar to the strategy defined for systems, but this time the adversary gets to choose an
alphabet letter and a successor corresponding to this letter. The protagonist has to follow
with a successor corresponding to the same letter in the other automaton. A relation is
a game-bisimulation relation if all the outcomes of such plays starting at related states
have both projections fair or have both projections unfair. Two loose tree automata are
game-bisimilar if there exists a game-bisimulation between them that relates the starting
states of each one of the automata to starting states of the other.

Recall that game-bisimulation between systems implies trace equivalence. Game-
bisimulation between loose tree automata implies not only agreement on traces that may
label paths of accepted trees, but also agreement on the accepted trees! The idea is that
given an accepting run tree of one automaton, we use the strategy to build an accepting
run tree of its game-bisimilar counterpart. This property of game-bisimulation between
loose tree automata enables us to relate the hierarchy of loose tree automata with that
of game-bisimulation. Formally, we have the following.

Theorem 3. Let γ and γ′ be two types of fairness conditions. If γ is at least as strong
as γ′ in the context of game-bisimulation or ∀-bisimulation, then γ is at least as strong
as γ′ also in the context of loose tree automata.

While loose tree automata are weaker than conventional tree automata [Tho90],the
expressiveness hierarchy of loose tree automata coincides with that of tree automata
(this is beacause the latter coincides with the hierarchy of deterministic word automata
[Wag79, Kam85], and is proven in [KSV96, DJW97, Niw97, NW98] by means of lan-
guages that can be recognized by loose tree automata). It follows that the expressiveness
hierarchy in the context of game-bisimulation and ∀-bisimulation coincides with that of
tree automata.

5 Discussion

We considered two equivalence criteria — bisimulation and trace equivalence — be-
tween fair state-transition systems. We studied the expressive power of various fairness
conditions in the context of fair bisimulation. We showed that while the hierarchy in
the context of trace equivalence coincides with the one of nondeterministic word au-
tomata, the hierarchy in the context of bisimulation depends on the exact definition of

Fair Equivalence Relations 161

fair bisimulation, and it does not necessarily coincide with the hierarchy of tree au-
tomata. In particular, we showed that Rabin[1] systems are sufficiently strong to model
all systems up to ∃-bisimilarity.

There is an intermediate equivalence criterion: two-way simulation (that is S ≤ S′

and S′ ≤ S) is implied by bisimulation, it implies trace equivalence, and it is equal
to neither of the two [Mil71]. Two-way simulation is a useful criterion: S and S′ are
two-way similar iff for every system S′′ we have S′′ ≤ S iff S′′ ≤ S′ and S ≤ S′′

iff S′ ≤ S′′. Hence, in hierarchical refinement, or when defining maximal models for
universal formulas, we can replace S with S′. A careful reading through our proofs
shows that all the results described in the paper for bisimulation hold also for two-way
simulation.

Finally, the study of ∃-bisimulation in Section 3 has led to a simple definition of
parallel compositions for Rabin and parity systems, required for modular verification
of concurrent systems. In the linear paradigm, the composition S = S1‖S2 of S1 and
S2 is defined so that T (S) = T (S1) ∩ T (S2) (cf. [Kur94]). In the branching paradigm
[GL94], Grumberg and Long defined the parallel compositions of two Streett systems.
As studied in [GL94, KV98a], in order to be used in modular verification, a definition
of composition has to satisfy the following two conditions, for all systems S, S′, and
S′′. First, if S′ ≤∃ S′′, then S‖S′ ≤∃ S‖S′′. Second, S ≤∃ S′‖S′′ iff S ≤∃ S′ and
S ≤∃ S′′. In particular, it follows that S‖S′ ≤∃ S′, thus every universal formula that is
satisfied by a component of a parallel composition, is satisfied also by the composition.
When S1 and S2 are Streett systems, the definition of S1‖S2 is straightforward, and
is similar to the product of two Streett word automata. When, however, S1 and S2 are
Rabin systems, the definition of product of word automata cannot be applied, and a
definition that follows the ideas behind a product of tree automata is very complicated
and complex. In the full paper we show that the fact that ∃-bisimulation is located
between word and tree automata enables a simple definition of parallel composition
that obeys the two conditions above.

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. TCS, 82(2):253–
284, 1991.

[ASB+94] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A.L. Sangiovanni-Vincentelli. Equiv-
alences for fair kripke structures. In Proc. 21st ICALP, Jerusalem, Israel, July 1994.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. TCS, 59:115–131, 1988.

[BG00] D. Bustan and O. Grumberg. Simulation based minimization. In Proc. 17th ICAD,
Pittsburgh, PA, June 2000.

[BGS92] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete. Formal
Aspects of Computing, 4(6):638–648, 1992.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, January 1986.

[CFJ93] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In Proc. 5th CAV, LNCS 697, 1993.

162 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-
based tool for the verification of concurrent systems. ACM Trans. on Programming
Languages and Systems, 15:36–72, 1993.

[DHW91] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simu-
lation relations. In Proc. 3rd CAV, LNCS 575, pp. 255–265, 1991.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed
to win infinite games. In Proc. 12th LICS, pp. 99–110, 1997.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc.
32nd FOCS, pp. 368–377, 1991.

[Fra86] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag,
1986.

[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans.
on Programming Languages and Systems, 16(3):843–871, 1994.

[HHK95] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite
and infinite graphs. In Proc. 36th FOCS, pp. 453–462, 1995.

[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. 8th
Conference on Concurrency Theory, LNCS 1243, pp. 273–287, 1997.

[Hoj96] R. Hojati. A BDD-based Environment for Formal Verification of Hardware Systems.
PhD thesis, University of California at Berkeley, 1996.

[HR00] T. Henzinger and S. Rajamani. Fair bisimulation. In Proc. 4th TACAS, LNCS 1785,
pp. 299–314, 2000.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
µ-calculus with respect to the monadic second order logic. In Proc. 7th Conference
on Concurrency Theory, LNCS 1119, pp. 263–277, 1996.

[Kam85] M. Kaminski. A classification of ω-regular languages. TCS, 36:217–229, 1985.
[KSV96] O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. In Proc.

11th LICS, pp. 322–333, 1996.
[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton

Univ. Press, 1994.
[KV98a] O. Kupferman and M.Y. Vardi. Modular model checking. In Proc. Compositionality

Workshop, LNCS 1536, pp. 381–401, 1998.
[KV98b] O. Kupferman and M.Y. Vardi. Verification of fair transition systems. Chicago Jour-

nal of TCS, 1998(2).
[KV98c] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata empti-

ness. In Proc. 30th STOC, pp. 224–233, 1998.
[LT87] N. A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-

rithms. In Proc. 6th PODC, pp. 137–151, 1987.
[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd

International Joint Conference on Artificial Intelligence, pp. 481–489, 1971.
[Mil80] R. Milner. A Calculus of Communicating Systems, LNCS 92, 1980.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, Berlin, January 1992.
[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential time. In Proc. 13th SWAT, pp. 125–129, 1972.
[Niw97] D. Niwiński. Fixed point characterization of infinite behavior of finite-state systems.

TCS, 189(1–2):1–69, December 1997.
[NW98] D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree automata. In

Symposium on Theoretical Aspects in Computer Science, LNCS 1373, 1998.
[Pnu85] A. Pnueli. Linear and branching structures in the semantics and logics of reactive

systems. In Proc. 12th ICALP, LNCS 194 pp. 15–32, 1985.

Fair Equivalence Relations 163

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math.
Logic and Foundations of Set Theory, pp. 1–23. North Holland, 1970.

[SV89] S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st STOC,
pp. 127–137, 1989.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Sci-
ence, pp. 165–191, 1990.

[Wag79] K. Wagner. On ω-regular sets. Information and Control, 43:123–177, 1979.

Arithmetic Circuits and Polynomial

Replacement Systems

Pierre McKenzie1�, Heribert Vollmer2, and Klaus W. Wagner2

1 Informatique et recherche opérationnelle, Université de Montréal, C.P. 6128,
Succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada.

2 Theoretische Informatik, Universität Würzburg, Am Hubland,
97074 Würzburg, Germany.

Abstract. This paper addresses the problems of counting proof trees
(as introduced by Venkateswaran and Tompa) and counting proof cir-
cuits, a related but seemingly more natural question. These problems
lead to a common generalization of straight-line programs which we call
polynomial replacement systems. We contribute a classification of these
systems and we investigate their complexity. Diverse problems falling
in the scope of this study include, for example, counting proof circuits,
and evaluating {∪, +}-circuits over the natural numbers. The former is
shown #P-complete, the latter to be equivalent to a particular problem
for replacement systems.

1 Introduction

1.1 Motivation

g2 g3

∧

x1 x2

g1

∨

∨

∨
g4

When + and × replace ∨ and ∧ in the adjacent
figure, the gate g1 on input x1 = x2 = 1 evaluates
to 9. Equivalently, the tree-like Boolean circuit T
obtained from the circuit drawn has 9 proof trees
[VT89], i.e. 9 different minimal subcircuits witness-
ing that T outputs 1 (gates replicated to form T are
independent). This relationship between proof tree
counting and monotone arithmetic circuits was used
by Venkateswaran [Ven92] to characterize nonde-
terministic time classes, including #P [Val79], and
by Vinay [Vin91] to characterize the counting version of LOGCFL [Sud78].
The same relationship triggered the investigation of #NC1 by Caussinus et al.
[CMTV98], and that of #AC0 by Allender et al. [AAD97]. See [All98] for recent
results and for motivation to study such “small” arithmetic classes.

A recent goal has been to capture small arithmetic classes by counting ob-
jects other than proof trees, notably paths in graphs. Allender et al. [AAB+99]

� Research performed in part while on leave at the Universität Tübingen. Supported
by the (German) DFG, the (Canadian) NSERC and the (Québec) FCAR.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 164–175, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Arithmetic Circuits and Polynomial Replacement Systems 165

succeeded in identifying appropriate graphs for #AC0. Given the growing im-
portance of counting classes, our motivation for the present work was the desire
to avoid unwinding circuits into trees before counting their “proofs”. Define a
proof circuit to be a minimal subcircuit witnessing that a circuit outputs 1.
More precisely, for a Boolean circuit C and an input x, a proof circuit is an
edge-induced connected subcircuit of C which evaluates to 1 on x. This subcir-
cuit must contain the output gate of C, as well as exactly one C-edge into each
∨-gate and all C-edges into each ∧-gate. The reader should convince herself that
the circuit depicted above, which had 9 proof trees on input x1 = x2 = 1, has
only 7 proof circuits on that input.

What counting classes arise from counting proof circuits instead of trees?
This question held in stock two surprises, the first of which is the following
algorithm:

1. replace ∨ by + and ∧ by × in a negation-free Boolean circuit C,
2. view C as a straight-line program prescribing in the usual way a formal

polynomial in the input variables x1, . . . , xn,
3. compute the polynomial top-down, with an important proviso: at each step,

knock any nontrivial exponent down to 1 in the intermediate sum-of-monomi-
als representation.

We get the number of proof circuits of C on an input x by evaluating the final
polynomial at x! For example, the circuit depicted above had 7 proof circuits on
input x1 = x2 = 1 because

g1 → g2g3 (1)
→ (x1 + g4)g3 (2)
→ (x1 + g4)(g4 + x2) → x1g4 + x1x2 + g4 + g4x2 (3)
→ x1(x1 + x2) + x1x2 + (x1 + x2) + (x1 + x2)x2, (4)

where g2
4 became g4 in the middle of step 3.

One’s intuition might be that such a simple strategy could be massaged into
an arithmetic circuit or at least into a sublinear parallel algorithm [VSBR83].
Our second surprise was that counting proof circuits, even for depth-4 semi-
unbounded circuits, is #P-complete. Hence, not only is our strategy hard to
parallelize, it likely genuinely requires exponential time!

Our three-step algorithm above thus counts proof trees in the absence of
the idempotent rules y2 → y, and it counts proof circuits in their presence.
Moreover, whereas an arithmetic circuit computing the number of proof trees of
a circuit is readily available, producing such a circuit to compute proof circuits
seems intractable. What is special about the idempotent rules? What would the
effect of multivariate rules be? Which nontrivial rules would nonetheless permit
expressing the counting in the form of an arithmetic circuit? What is a general
framework in which complexity questions such as these can be investigated?

166 Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

1.2 Results

We view our results as forming three main contributions.
Our first contribution is to define and classify polynomial replacement sys-

tems (prs for short). Prs provide the answer to the framework question. A prs
in its full generality is a start polynomial q ∈ N[x1 , . . . , xm] together with a
set of replacement rules. A replacement rule is a pair of polynomials (p1, p2).
Informally, (p1, p2) is applicable to a polynomial q if q can be written in a form
in which p1 appears. Applying (p1, p2) to q then consists of replacing p1 by p2

(see Sect. 3 for formal definitions).
A prs generally defines a set of polynomials, since the choice and sequencing

of the rules, and the way in which the rules are applied, may generate different
polynomials. Computational problems of interest include computing the polyno-
mials themselves (poly), evaluating the polynomials at specific points (eval),
and testing membership in their ranges (range). We identify four natural fami-
lies of prs: simple if the rules only replace variables, deterministic if no two rules
have the same left-hand side, acyclic if no nontrivial infinite sequence of rules is
applicable, and idempotent if the rules (y2, y) are present.

For general prs, we obtain canonical forms and we outline broad complexity
issues. Our detailed complexity analysis involves simple prs. For instance, we
exhibit simple and deterministic prs for which range is NP-complete. When
the prs is given as part of the input, poly is P-hard and in coRP, while range
is NP-complete and eval is P-complete.

Our second contribution concerns the specific case of proof trees and proof
circuits. We prove that, to any Boolean circuit C and input x, corresponds an
easily computable idempotent, simple, deterministic and acyclic prs S having
the property that the number of proof trees (resp. proof circuits) of C on x is
the maximum (resp. minimum) value of the eval problem for S on x, and vice
versa (see Lemma 20). This offers one viewpoint on the reason why our algorithm
from Subsect. 1.1 counts proof circuits correctly. We also prove that computing
the minimum of the eval problem for idempotent, simple, deterministic and
acyclic prs is #P-complete, or equivalently, that counting proof circuits is #P-
complete under Turing reductions (but not under many-one reductions unless
P = NP). This provides a new characterization of #P which is to be contrasted
with Venkateswaran’s (poly-degree, poly-depth) characterization [Ven92] and
with the retarded polynomials characterization of Babai and Fortnow [BF91].
We also prove that detecting whether a circuit has more proof trees than proof
circuits is NP-complete.

Our third contribution concerns the specific case of simple and acyclic prs.
We prove that the eval problem for such prs is the evaluation problem for
{∪,+,×}-circuits. These circuits have been considered previously (under the
name hierarchical descriptions) in [Wag84, Wag86]. They are obtained by gen-
eralizing, from trees to general circuits, the {∪,+,×}-expressions (a.k.a. integer
expressions), whose evaluation problem was shown NP-complete 25 years ago by
Stockmeyer and Meyer [SM73]. From a PSPACE upper bound given in [Wag84]
we conclude that evaluation of simple acyclic prs has a polynomial space algo-

Arithmetic Circuits and Polynomial Replacement Systems 167

rithm, and from a PSPACE-hardness result given in [Yan00] we then conclude
PSPACE-completeness of our problem.

1.3 Paper Organization

The main result of Sect. 2, in which proof trees and proof circuits are defined
formally, is that counting proof circuits is #P-complete. Section 3 introduces
polynomial replacement systems and their canonical form and defines the rele-
vant computational problems. Section 4 classifies prs and links them to arith-
metic circuit problems. Section 5 contains the bulk of our complexity results,
Section 6 concludes. For lack of space, formal proofs of all claims made in this
abstract have to be omitted, but can be found in ftp://ftp-info4.informatik.uni-
wuerzburg.de/pub/ftp/TRs/mc-vo-wa00.ps.gz.

2 Counting Circuits vs. Counting Trees

By a circuit C, in this paper, we will mean a circuit over the basis {∧,∨} in the
usual sense, with 2n inputs labeled x1, . . . , xn,¬x1, . . . ,¬xn.

Fix an input x to C. Unwind C into a tree C′ by (repeatedly) duplicating
gates with fan-out greater than 1. Define a proof tree as a subgraph H of C′

whose gates evaluate to 1 and which additionally fulfills the following properties:
H must contain the output gate of C. For every ∧ gate v in H , all the input
wires of v must be in H , and for every ∨ gate v in H , exactly one input wire
of v must be in H . Only wires and nodes obtained in this way belong to H . By
#C(x) we denote the number of proof trees of C. Define a proof circuit as a
subcircuit H of C with the same properties as above. (I.e., the only difference
is that now we do not start by unwinding C into a tree.) Given an input x, let
#cC(x) denote the number of proof circuits of C on x. We will consider the
following problems:

Problem: PT
Input: circuit C over {∧,∨}, an input x ∈ {0, 1}∗, a number k in unary
Output: #C(x) mod 2k

Problem: PC
Input: circuit C over {∧,∨}, an input x ∈ {0, 1}∗
Output: #cC(x)

Observe that if we unwind a circuit into a tree there may be an exponential
blowup in size, which has the consequence that the number of proof trees may
be doubly-exponential in the size of the original circuit. This is not possible
for the problem PC; the values of this function can be at most exponential in
the input length. In order to achieve a fair comparison of the complexity of the
problems, we therefore count proof trees only modulo an exponential number.

Theorem 1. 1. PC is complete for #P under ≤log
1-T, but not under ≤p

m unless
P = NP.

168 Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

2. PT is complete for FP under ≤log
m .

3. The following problem is NP-complete under ≤log
m : Given a circuit C, is there

an input x such that #C(x) �= #cC(x)?
4. The following problem is P-complete under ≤log

m : Given a circuit C and an
input x ∈ {0, 1}∗, is #C(x) �= #cC(x)?

3 How to Generate Polynomials

A straight line program P over variables x1, . . . , xm is a set of instructions of
one of the following types: xi ← xj + xk, xi ← xj · xk, xi ← 0, xi ← 1, where
j, k < i. Every variable appears at most once on the left hand side of the ←.
Those variables that never appear on the left hand side of the ← are the input
variables. The variable xm is the output variable. Given values for the input
variables, the values of all other variables are computed in the obvious way.
The value computed by P is the value of the output variable. Let pP be the
number-theoretic function computed in this way by P .

A straight line program hence is just another way of looking at an arithmetic
circuit. The connection between counting proof trees and evaluating arithmetic
circuits yields an obvious algorithm to compute the number of proof trees of a
circuit C on input x: evaluate the straight line program obtained from C in the
order of its variables, and plug in x. To compute the number of proof circuits
instead, a mere variant of this algorithm was sketched in Sect. 1.1: do as for
proof trees, but at each replacement step, express the intermediate polynomial
as a sum of monomials and replace any occurrence of g2 by g, for any variable
g.

Theorem 2. The algorithm sketched in Sect. 1.1 correctly computes the number
of proof circuits of a circuit C on input x.

Both the proof tree and the proof circuit counting algorithms prescribe a
unique intermediate formal polynomial in the circuit input variables. These al-
gorithms originate from special types of polynomial replacement systems, which
we now define. Polynomial replacement systems will produce sets of polynomials
from a given start polynomial, using rules replacing certain polynomials by other
polynomials. This will be very similar to the way formal grammars produce sets
of words from a start symbol, applying production rules.

In this paper we almost exclusively consider polynomials with nonnegative
integer coefficients. This is motivated by the application to proof trees and proof
circuits discussed above. We write p(z1, . . . , zs) to denote that p is such a poly-
nomial in variables z1, . . . , zs.

Below, the variable vector x will always be defined to consist of x = (x1, . . . ,
xm). Let us say that the variable xi is fictive (or, inessential) in the polyno-
mial p(x) if for all a1, . . . , am, a′

i ∈ N we have p(a1, . . . , ai−1, ai, ai+1, . . . , am) =
p(a1, . . . , ai−1, a

′
i, ai+1, . . . , am). This means that xi is fictive in p if and only if

p can be written as a term in which xi does not appear.

Arithmetic Circuits and Polynomial Replacement Systems 169

Definition 3. A polynomial replacement system (for short: prs) is defined as
a quadruple S =

({x1, . . . , xn}, {xn+1, . . . , xm}, q, R
)
where

– {x1, . . . , xn} is the set of terminal variables,
– {xn+1, . . . , xm} is the set of nonterminal variables,
– q is a polynomial in the variables x1, . . . , xm, the start polynomial, and
– R is a finite set of replacement rules, i. e., a finite set of pairs of polynomials

in the variables x1, . . . , xm.

How does such a system generate polynomials?

Definition 4. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a prs, let p1, p2

be polynomials in the variables x.

p1 =⇒
S

p2 ⇐⇒def there exist (p3, p4) ∈ R and a polynomial p5(x, y) such that
p1(x) = p5(x, p3(x)) and p2(x) = p5(x, p4(x)).

Let ∗=⇒
S

be the reflexive and transitive closure of =⇒
S

.

It turns out that the above form for derivations can be simplified:

Definition 5. Let S, p1, p2 be as above.

p1 →
S

p2 ⇐⇒def there exist (p3, p4) ∈ R and polynomials p5(x), p6(x) such that

p1(x) = p5(x) · p3(x) + p6(x) and p2(x) = p5(x) · p4(x) + p6(x).

Let ∗→
S

be the reflexive and transitive closure of →
S
.

Lemma 6 (Normal Form of Replacement). For any prs S =
({x1, . . . , xn},

{xn+1, . . . , xm}, q, R
)
and any polynomials p1(x), p2(x), we have:

p1
∗=⇒
S

p2 iff p1
∗→
S

p2.

A prs thus generates a set of polynomials; hence we define:

Definition 7. For a prs S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
, let

poly(S) =
{
p(x1, . . . , xn)

∣
∣ there exists p′(x) such that q

∗=⇒
S

p′ and

p(x1, . . . , xn) = p′(x1, . . . , xn, an+1, . . . , am)
for all an+1, . . . , am ∈ N

}
.

To determine the complexity of the sets poly(·), we have to fix an encoding of
polynomials. We choose to represent polynomials by straight-line programs (as,
e.g., in [IM83, Kal88]), and state our result below for this particular representa-
tion. Other representations have been considered in the literature (e.g., formula
representation, different sparse representations where a polynomial is given as a
sequence of monomials, etc.). We remark that our results remain valid for most
of these, as we will prove in the full version of this paper.

From the set poly(S) of polynomials we derive several sets of natural num-
bers, whose complexities we will determine in the upcoming sections.

170 Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

Definition 8. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a prs. Define

– range(S) =def

{
p(a)

∣
∣ p ∈ poly(S) ∧ a ∈ Nn

}
;

– eval(S) =def

{
(a, p(a))

∣∣ p ∈ poly(S) and a ∈ Nn
}
.

Observe that if we also allow negative numbers as coefficients for our poly-
nomials, then there are prs S such that range(S) is not decidable. This is
seen as follows. By the Robinson-Matiasjevič result (see [Mat93]), every re-
cursively enumerable set can be represented in the form

{
p(a)

∣
∣ a ∈ Nn

}

where p is a suitable n-ary polynomial with integer coefficients. Now let p
be such an n-ary polynomial such that

{
p(a)

∣
∣ a ∈ Nn

}
is not decidable.

Defining the prs Sp =def ({x1, . . . , xn}, ∅, p, ∅) we obtain poly(Sp) = {p} and
range(Sp) =

{
p(a)

∣
∣ a ∈ Nn

}
.

Besides the membership problems poly(S), range(S), and eval(S), we also
consider the corresponding variable membership problems.

Definition 9. – poly(·) =def

{
(S, p)

∣
∣ S prs and p ∈ poly(S)

}
;

– range(·) =def

{
(S, a)

∣
∣ S prs and a ∈ range(S)

}
;

– eval(·) =def

{
(S, a, p(a))

∣
∣ S prs, p ∈ poly(S), and a ∈ N∗ }

.

4 Different Types of Replacement Systems

Prs are very general. Here, we introduce a number of natural restrictions. Our
approach is similar to the way different restrictions of grammar types were in-
troduced, e.g., in the definition of the classes of the Chomsky hierarchy. We
will later view the problems of counting proof trees and proof circuits as two
instances of a problem about these restricted prs types.

4.1 Simple Polynomial Replacement Systems

Definition 10. A prs S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
is simple (or

context-free), if the polynomials in the left-hand sides of the rules of R are
variables from {xn+1, . . . , xm}.

All definitions made in the preceding section for general prs carry over to the
special cases of simple systems. However, for simple prs we additionally define a
particular type of replacement, where the application of a rule (z, q) results in
the replacement of all occurrences of z with q. This latter form is denoted by
|=⇒

S
, in contrast to the notation =⇒

S
for the derivations defined so far. Formally:

Definition 11. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a simple prs.

p1 |=⇒
S

p2 ⇐⇒def there exist (xi, p3) ∈ R such that
p2(x) = p1(x1, . . . , xi−1, p3(x), xi+1, . . . , xm).

Let ∗|=⇒
S

be the reflexive and transitive closure of |=⇒
S
.

For the sets of polynomials and numbers derived from simple systems using
our new derivation type, we use the same names as before but now use square
brackets [· · ·] instead of parentheses (· · ·); e.g., poly[S], poly[·], etc.

Arithmetic Circuits and Polynomial Replacement Systems 171

4.2 Simple Deterministic or Acyclic Polynomial Replacement
Systems

Definition 12. A prs S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
is said to be

deterministic, if no two different rules in R have the same left-hand side.

Definition 13. Let S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
be a prs. The de-

pendency graph GS of S is the directed graph GS =
({1, . . . , m}, ES

)
, where ES

consists of all edges (j, i) for which there exists a rule (p1, p2) ∈ R such that xi

is essential in p1 and xj is essential in p2. The prs S is said to be acyclic, if its
dependency graph GS is acyclic.

Lemma 14. For every simple and deterministic prs S, there exists a simple,
deterministic, and acyclic prs S′, computable in polynomial time, such that
poly(S) = poly(S′) and poly[S] = poly[S′].

We also obtain the following easy properties:

Lemma 15. 1. If S is a simple and deterministic prs then poly(S) = poly[S],
and this set consists of at most one polynomial.

2. If S is a simple and acyclic prs then poly(S) and poly[S] are finite.

Note that there are simple and acyclic prs S such that poly[S] (poly(S).
For example take S = ({x}, {z}, 2z, {(z, x), (z, 2x)}) where poly[S] = {2x, 4x}
and poly(S) = {2x, 3x, 4x}. Thus, the requirement that S is deterministic is
necessary in Lemma 15.1.

In the remainder of this subsection, we relate simple deterministic and simple
acyclic prs to different forms of circuits operating over the natural numbers.

First, it is intuitively clear that there is some connection between simple, de-
terministic, and acyclic systems and straight-line programs. This is made precise
in the following lemma.

Lemma 16. 1. If S is a simple, deterministic, and acyclic prs and poly(S) �=
∅, then there exists a slp P , computable in logarithmic space, such that
poly(S) = {pP }.

2. If P is a slp then there exists a simple, deterministic, and acyclic prs S,
computable in logarithmic space, such that {pP} = poly(S).

Next we show that acyclic systems are strongly related to a certain type of
arithmetic circuit we now define. These circuits are immediate generalizations
of integer expressions, introduced by Stockmeyer and Meyer [SM73]. Therefore
we call our circuits integer circuits (not to be confused with ordinary arithmetic
circuits), or, referring to the operations allowed, (∪,+,×)-circuits.

An integer circuit with n inputs is a circuit C where the inner nodes compute
one of the operations ∪,+,×. Such a circuit C has a specified output gate gs.
It computes a function fC : Nn → 2N as follows: We first define for every gate
g ∈ C the function fg computed by g.

172 Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

1. If g is an input gate xi, then fg(a1, . . . , an) = {ai} for all a1, . . . , an ∈ N.
2. If g is + gate with predecessors gl, gr, then fg(a1, . . . , an) =

{
k + m

∣∣ k ∈
fgl

(a1, . . . , an), m ∈ fgr (a1, . . . , an)
}
. The function computed by a × gate is

defined analogously.
3. If g is a ∪ gate with predecessors gl, gr, then fg(a1, . . . , an) =

fgl
(a1, . . . , an) ∪ fgr (a1, . . . , an).

Finally, the function computed by C is fC = fgs .
The following relation between simple, acyclic replacement systems and in-

teger circuits is obtained by an easy induction:

Lemma 17. 1. For every simple, acyclic prs S, there is an integer circuit C
with n inputs, computable in logarithmic space, such that fC(a) =

{
b

∣
∣

(a, b) ∈ eval(S)
}
for all a ∈ Nn .

2. For every integer circuit C with n inputs, there is a simple, acyclic prs S,
computable in logarithmic space, such that

{
b

∣
∣ (a, b) ∈ eval(S)

}
= fC(a)

for all a ∈ Nn .

We consider the following problems:

N-MEMBER(∪,+,×) =def

{
(C, a, b)

∣
∣ C is an integer circuit with n inputs,

a ∈ Nn , b ∈ N and b ∈ fC(a)
}

N-RANGE(∪,+,×) =def

{
(C, b)

∣
∣ C is an integer circuit with n inputs,
b ∈ N and (∃a ∈ Nn)b ∈ fC(a)

}

Analogous notations will be used when we restrict the gate types allowed.
The following lemma is immediate from Lemma 17:

Lemma 18. 1. N-MEMBER(∪,+,×) ≡log
m eval(·).

2. N-RANGE(∪,+,×) ≡log
m range(·).

4.3 Idempotent Polynomial Replacement Systems

Definition 19. For a prs S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
, we define

Sidem =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R ∪

{
(x2

i , xi)
∣∣ 1 ≤ i ≤ m

})
to be the

idempotent prs derived from S.

In the case that S is simple (deterministic, acyclic, resp.), we will say that
Sidem is an idempotent simple (deterministic, acyclic, resp.) prs.

For a prs S =
({x1, . . . , xn}, {xn+1, . . . , xm}, q, R

)
and a ∈ Nn , we write

mineval(S, a) as a shorthand for min
{

p(a)
∣
∣ p ∈ poly(S)

}
(analogously, we

use max eval(S, a)).

Lemma 20. 1. For every Boolean circuit C, input x, and k ∈ N, there ex-
ists a simple, deterministic and acyclic polynomial replacement system S,
computable in logarithmic space, such that min eval

(
Sidem, (1, . . . , 1)

)
=

#cC(x), and maxeval
(
Sidem, (1, . . . , 1)

)
= #C(x).

2. For every simple, deterministic, and acyclic prs Sidem there exists a Boolean
circuit C, computable in logarithmic space, such that min eval

(
Sidem, (1, . . . ,

1)
)
= #cC(x), and max eval

(
Sidem, (1, . . . , 1)

)
= #C(x).

Arithmetic Circuits and Polynomial Replacement Systems 173

5 Complexity Results for Simple Replacement Systems

5.1 Deterministic Systems

In this section, we consider the complexity of the above defined sets for sim-
ple replacement systems. Let us start with the complexity of fixed membership
problems.

Theorem 21. Let S be simple and deterministic.

1. poly(S), poly[S] are P-complete.
2. range(S),range[S] ∈ NP, and there are systems S such that the problems

range(S) and range[S] are NP-complete.
3. eval(S), eval[S] ∈ TC0.

Concerning variable membership problems of simple, deterministic systems,
we obtain:

Theorem 22. For simple and deterministic prs,

1. poly(·) and poly[·] are in coRP and P-hard under ≤log
m ,

2. range(·) and range[·] are NP-complete under ≤log
m ,

3. eval(·) and eval[·] are P-complete under ≤log
m .

5.2 Acyclic Systems

For simple and acyclic systems S which are not necessarily deterministic, the
sets poly(S) and poly[S] are finite (by Lemma 15), hence the statement of
Theorem 21 also holds in this case. Again, interesting questions arise when we
examine variable membership problems.

Theorem 23. For simple and acyclic prs,

1. poly[·] is contained in MA and is NP-hard under ≤log
m ,

2. range[·] and eval[·] are NP-complete under ≤log
m .

Next, we turn to different variable membership problems for simple, acyclic
systems under “=⇒”- derivations.

Stockmeyer and Meyer considered integer expressions (in our terminology,
these are integer circuits with fan-out of non-input gates at most 1) where the
only operations allowed are ∪ and +. They proved that the membership problem
in that case is NP-complete. It is easy to see that their result carries over to the
case that we also allow multiplication, i. e., the problems N-MEMBER(∪,+) and
N-MEMBER(∪,+,×) for expressions are NP-complete.

The corresponding problems for circuits were not considered in their paper,
but in later papers by Wagner [Wag84, Wag86] (under the name hierarchical
descriptions). Only PSPACE as upper bound for membership is known from
there, but recently it was shown by Ke Yang that both circuit problems are
PSPACE-hard [Yan00].

Since (by Lemma 18), the member and range problems for these circuits
are equivalent to the eval(·) and range(·) problems for simple acyclic prs, we
conclude:

174 Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner

Theorem 24. For simple and acyclic prs and for all representations,

1. poly(·) ∈ EXPTIME,
2. range(·), eval(·) are PSPACE-complete.

5.3 Idempotent Systems

Again, since also here, poly(S) and poly[S] are finite, we obtain results anal-
ogous to Theorem 21. For the variable membership problems the following can
be said:

Theorem 25. For idempotent, simple, deterministic, and acyclic systems, we
obtain poly(·),range(·), eval(·) ∈ EXPTIME.

Lemma 20 shows the importance of the minimization and maximization op-
erations in the case of idempotent systems. We obtain from Theorem 1:

Theorem 26. For idempotent, simple, deterministic, and acyclic replacement
systems,

1. the functions mineval(·) and mineval[·] are #P-complete under ≤log
1-T-

reductions,
2. the functions maxeval(·) and maxeval[·] are FP-complete under ≤p

m.

Remark 27. For simple, deterministic and for simple, acyclic prs, the functions
mineval(·), mineval[·],maxeval(·),max eval[·] are FP-complete.

6 Conclusion

Our original motivation was the PC problem for circuits of restricted depth.
Our proof (omitted in this proceedings version) shows that the problem is #P-
complete even for circuits of depth 4. For depth-2 circuits, the problem is easily
seen to be in FP. The case of depth 3 remains open.

The complexity of the sets range(S),range[S] for fixed S is equivalent
to determining the complexity of the range of a multivariate polynomial with
nonnegative integer coefficients. While this is always an NP-problem, the proof
of our result (again, unfortunately, omitted here) shows that there is a 4-variable
polynomial of degree 6 whose range is NP complete. Can this be improved?

A lot of interesting questions about prs remain open. To come back to some
of the problems posed in Subsect. 1.1, we did not look at all at multivariate
rules. Also, it seems worthwhile to examine if, besides idempotent systems, other
prs families can be related to various types of arithmetic circuits and counting
problems in Boolean circuits.

Acknowledgment. We are grateful to Sven Kosub (Würzburg) and Thomas
Thierauf (Ulm) for helpful discussions.

Arithmetic Circuits and Polynomial Replacement Systems 175

References

[AAB+99] E. Allender, A. Ambainis, D. Mix Barrington, S. Datta, and H. LêThanh.
Bounded depth arithmetic circuits: Counting and closure. In Proceed-
ings 26th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, Berlin Heidelberg, 1999.
Springer Verlag. To appear.

[AAD97] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic
circuits. In Proceedings 12th Computational Complexity, pages 134–148.
IEEE Computer Society, 1997.

[All98] E. Allender. Making computation count: arithmetic circuits in the
nineties. SIGACT News, 28(4):2–15, 1998.

[BF91] L. Babai and L. Fortnow. Arithmetization: a new method in structural
complexity theory. Computational Complexity, 1:41–66, 1991.

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic
NC1 computation. Journal of Computer and System Sciences, 57:200–212,
1998.

[IM83] O. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence
of straight-line programs. Journal of the ACM, 30:217–228, 1983.

[Kal88] E. Kaltofen. Greatest common divisors of polynomials given by straight-
line programs. Journal of the ACM, 35:231–264, 1988.

[Mat93] Y. V. Matiasjevič. Hilbert’s Tenth Problem. Foundations of Computing
Series. MIT Press, Cambridge, MA, 1993.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time. In Proceedings 5th ACM Symposium on the Theory of Computing,
pages 1–9. ACM Press, 1973.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-free
languages. Journal of the Association for Computing Machinery, 25:405–
414, 1978.

[Val79] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal of Computing, 8(3):411–421, 1979.

[Ven92] H. Venkateswaran. Circuit definitions of non-deterministic complexity
classes. SIAM Journal on Computing, 21:655–670, 1992.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proceedings 6th Structure in Complexity Theory,
pages 270–284. IEEE Computer Society Press, 1991.

[VSBR83] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel compu-
tation of polynomials using few processors. SIAM Journal on Computing,
12:641–644, 1983.

[VT89] H. Venkateswaran and M. Tompa. A new pebble game that characterizes
parallel complexity classes. SIAM J. on Computing, 18:533–549, 1989.

[Wag84] K. W. Wagner. The complexity of problems concerning graphs with reg-
ularities. Technical report, Friedrich-Schiller-Universität Jena, 1984. Ex-
tended abstract in Proceedings 11th Mathematical Foundations of Com-
puter Science, Lecture Notes in Computer Science 176, pages 544–552,
1984.

[Wag86] K. W. Wagner. The complexity of combinatorial problems with succinct
input representation. Acta Informatica, 23:325–356, 1986.

[Yan00] K. Yang. Integer circuit evaluation is PSPACE-complete. In Proceedings
15th Computational Complexity Conference, pages 204–211. IEEE Com-
puter Society Press, 2000.

Depth-3 Arithmetic Circuits for S2
n(X) and

Extensions of the Graham-Pollack Theorem

Jaikumar Radhakrishnan1, Pranab Sen1, and Sundar Vishwanathan2

1 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai 400005, India

{jaikumar, pranab}@tcs.tifr.res.in
2 Department of Computer Science and Engineering, Indian Institute of Technology,

Mumbai 400076, India
sundar@cse.iitb.ernet.in

Abstract. We consider the problem of computing the second elemen-

tary symmetric polynomial S2
n(X)

∆
=

∑
1≤i<j≤n

XiXj using depth-three

arithmetic circuits of the form
∑r

i=1

∏si

j=1
Lij(X), where each Lij is a

linear form. We consider this problem over several fields and determine
exactly the number of multiplication gates required. The lower bounds
are proved for inhomogeneous circuits where the Lij ’s are allowed to have
constants; the upper bounds are proved in the homogeneous model. For
reals and rationals the number of multiplication gates required is exactly
n − 1; in most other cases, it is

⌈
n
2

⌉
.

This problem is related to the Graham-Pollack theorem in algebraic
graph theory. In particular, our results answer the following question
of Babai and Frankl: what is the minimum number of complete bipartite
graphs required to cover each edge of a complete graph an odd number
of times? We show that for infinitely many n, the answer is

⌈
n
2

⌉
.

1 Introduction

1.1 The Graham-Pollack Theorem

Let Kn denote the complete graph on n vertices. By a decomposition of Kn, we
mean a set {G1, G2, . . . , Gr} of subgraphs of Kn such that

1. Each Gi is a complete bipartite graph (on some subset of the vertex set of
Kn); and

2. Each edge of Kn appears in precisely one of the Gi’s.

It is easy to see that there is such a decomposition of the complete graph with
n− 1 bipartite graphs. Graham and Pollack [4] showed that this is tight.

Theorem. If {G1, G2, . . . , Gr} is a decomposition of Kn, then r ≥ n−1.

The original proof of this theorem, and other proofs discovered since then [3, 10,
14], used algebraic reasoning in one form or another; no combinatorial proof of
this fact is known.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 176–187, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Depth-3 Arithmetic Circuits for S2
n(X) 177

One of the goals of this paper is to obtain extensions of this theorem. To
better motivate the problems we study, we first present a proof of this theorem.
This will also help us explain how algebraic reasoning enters the picture. Consider
polynomials in variables X = X1, X2, . . . , Xn with rational coefficients. Let

S2
n(X) ∆=

∑
1≤i<j≤n

XiXj ;

T 2
n(X) ∆=

n∑
i=1

X2
i .

Then, we can reformulate the question as follows. What is the smallest r for
which there exist sets Li, Ri ⊆ [n] (Li ∩Ri = ∅) for i = 1, 2, . . . , r, such that

S2
n(X) =

r∑
i=1

(
∑
j∈Li

Xj)× (
∑
j∈Ri

Xj)? (1)

Notice that the two sums in the product on the right correspond to homogeneous
linear forms. One may generalise this question, and ask: What is the smallest r
for which there exist homogeneous linear forms Li(X), Ri(X) for i = 1, 2 . . . , r,
such that

S2
n(X) =

r∑
i=1

Li(X)Ri(X)? (2)

Graham and Pollack gave the following elegant argument to show that r must be
at least n− 1. Observe that S2

n(X) = 1
2 [(

∑n
i=1 Xi)2 − T 2

n(X)]. Thus, (2) implies

T 2
n(X) = (

n∑
i=1

Xi)2 − 2
r∑

i=1

Li(X)Ri(X). (3)

Now, if r is less than n−1, then there exists a non-zero α = (α1, α2, . . . , αn) ∈ Qn

such that Li(α) = 0, for i = 1, 2 . . . , r, and
∑n

i=1 αi = 0 (because at most n− 1
homogeneous equations in n variables always have a non-zero solution). Under
this assignment to the variables, the right hand side of (3) is zero but the left
hand side is not.

With this introduction to the Graham-Pollack theorem and its proof, we are
now ready to state the questions we consider in this paper. Observe that the
lower bound above depended crucially on the field being Q, and there are two
main difficulties in generalising it to other fields. First, over fields of characteristic
two, the relationship between S2

n(X) and T 2
n(X) does not hold, for we cannot

divide by 2. Second, even if we are not working over fields of characteristic
two, T 2

n(X) can vanish at some non-zero points. Equations similar to the ones
considered above have been studied in the past in at least two different contexts
viz. covering a complete graph by complete bipartite graphs such that each
edge is covered an odd number of times (the odd cover problem) and depth–3
arithmetic circuits for S2

n(X).

178 Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

1.2 The Odd Cover Problem

Suppose in the problem on graphs above, we drop the condition that the bipartite
graphs be edge-disjoint, but instead ask for each edge of the complete graph to be
covered an odd number of times. How many bipartite graphs are required in such
a cover? This question was stated by Babai and Frankl [2], who also observed a
lower bound of

⌊
n
2

⌋
. Note that this problem is equivalent to considering (1) over

the field GF(2).

1.3 ΣΠΣ Arithmetic Circuits

By a ΣΠΣ arithmetic circuit we mean an expression of the form

r∑
i=1

si∏
j=1

Lij(X), (4)

where each Lij is a (possibly inhomogeneous) linear form in variablesX1, . . . , Xn.
Such ‘depth-three’ circuits play an important role in the study of arithmetic
complexity [8, 9, 6, 13]. If each linear form Lij(X) is homogeneous (i.e. has
constant term zero) then the circuit is said to be homogeneous, or else, it is
said to be inhomogeneous. Although, depth-three circuits appear to be rather
restrictive, these are the strongest model of circuits for which superpolynomial
lower bounds are known; no such lower bounds are known at present for depth-
four circuits.

The k-th elementary symmetric polynomial on n variables is defined by

Sk
n(X) ∆=

∑
T∈([n]

k)

∏
i∈T

Xi.

Elementary symmetric polynomials are the most commonly studied candidates
for showing lower bounds in arithmetic circuits. Nisan and Wigderson [9] showed
that any homogeneous ΣΠΣ circuit for computing S2k

n (X) has size Ω((n/4k)k).
In their paper, they explicitly stated the method of partial derivatives (but see
also Alon [1]). Although, a superpolynomial lower-bound was obtained in [9],
the lower bound applied only to homogeneous circuits. Indeed, Ben-Or (see [9])
showed that any elementary symmetric polynomial can be computed by an in-
homogeneous ΣΠΣ formula of size O(n2). Thus inhomogeneous circuits are sig-
nificantly more powerful than homogeneous circuits. Shpilka and Wigderson [13]
(and later, Shpilka [12]) addressed this shortcoming of the Nisan-Wigderson re-
sult and showed an Ω(n2) lower bound on the size of inhomogeneous formulae
computing certain elementary symmetric polynomials, thus showing that Ben-
Or’s construction is optimal. To obtain their results they augmented the method
of partial derivatives by an analysis of (affine) subspaces where elementary sym-
metric polynomials vanish. Many of the lower bounds in this paper are inspired
by the insights from these papers. All the results cited above work over fields
of characteristic zero. At present no super-quadratic lower bounds are known

Depth-3 Arithmetic Circuits for S2
n(X) 179

for computing some explicitly defined polynomial in the inhomogeneous model
over infinite fields. Over finite fields the situation is better. Karpinski and Grig-
oriev [5] showed an exponential lower bound for computing the determinant
polynomial using (inhomogeneous) ΣΠΣ circuits over any finite field. Grigoriev
and Razborov [6] showed an exponential lower bound for any (inhomogeneous)
ΣΠΣ circuit computing a generalised majority function over any finite field.
Thus, the elementary symmetric polynomials have been studied with consider-
able success in the past in this arithmetic model of computation.

Organisation of This Paper

In the next section, we give a summary of our results. In Sect. 3, we present
formal proofs of our upper bound results for GF(2). Section 4 contains formal
proofs for our lower bound results for GF(2). A summary of the proof methods
for our upper and lower bound results, as well as the proofs of the lemmas and
theorems which have been omitted here, can be found in the full version [11] at
http://www.tcs.tifr.res.in/~pranab/papers/s2n.ps.

2 Our Results

We study the computation of the symmetric polynomial S2
n(X) using ΣΠΣ

arithmetic circuits over several fields, with the aim of obtaining tight bounds
on the number of multiplication gates required. Many of the techniques devel-
oped earlier (in particular, the method of partial derivatives), in fact, give lower
bounds on the number of multiplication gates. Unlike the previous results in
arithmetic circuits, we will not be satisfied with obtaining bounds up to con-
stant factors; instead, we shall try to get the exact answer, in the spirit of the
Graham-Pollack theorem.

As described above, computations of elementary symmetric polynomials have
been considered for several kinds of ΣΠΣ circuits. For the polynomial S2

n(X),
we have three different models.

1. The graph model: This is the most restrictive model. Here the linear forms
Li and Ri must correspond to bipartite graphs; that is, all coefficients must
be 1 (or 0), no variable can appear in both Li and Ri (with coefficient 1),
and no constant term is allowed in these linear forms. This is the setting for
the Graham-Pollack theorem and its generalisations.

2. The homogeneous model: Here the linear forms are required to be homoge-
neous, that is, no constant term is allowed in them. However, any element
from the field is allowed as a coefficient in the linear forms. This model was
studied by Nisan and Wigderson [9], using the method of partial derivatives.

3. The inhomogeneous model: This is the most general model; there is no re-
striction on the coefficients or the constant term.

We show our upper bounds in the graph and the homogeneous model; our
lower bounds hold even in the stronger inhomogeneous model. We juxtapose our

180 Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

results against the previously known results, highlighting our contribution. Note
that the previous lower bounds were only for the homogeneous circuit model
which were proved using the method of partial derivatives [9] (see also the rank
arguments of Babai and Frankl [2]). The notation ∃∞n used below stands for
‘for infinitely many n’.

2.1 Computing S2
n
(X) over Finite Fields of Odd Characteristic

Our Bounds Previous Bounds
Field Upper Bnds. Lower Bnds. Upper Bnds. Lower Bnds.

Hom. Inhom. Hom. Hom.

GF(pr) n even n
2 ∀n n

2 ∀n n
2 + 1∀n n

2 ∀n
r even n odd

⌈
n
2

⌉∀n ⌈
n
2

⌉∃∞n
⌈

n
2

⌉∀n ⌈
n
2

⌉ ∃∞n
p > 3

⌊
n
2

⌋∀n ⌊
n
2

⌋∀n

GF(3r) n even n
2 ∀n n

2 ∀n n
2 + 1∀n n

2 ∀n
r even n odd

⌈
n
2

⌉∀n ⌊
n
2

⌋∀n ⌈
n
2

⌉∀n ⌈
n
2

⌉ ∃∞n⌊
n
2

⌋∀n

GF(pr) n even n
2 ∃∞n n

2 ∀n n
2 + 1∀n n

2 ∀n
r odd n odd

⌈
n
2

⌉∀n ⌈
n
2

⌉∃∞n
⌈

n
2

⌉∀n ⌈
n
2

⌉ ∃∞n
p ≡ 1 mod 4

⌊
n
2

⌋∀n ⌊
n
2

⌋∀n

GF(pr) n even n
2 ∃∞n n

2 ∀n n− 1∀n n
2 ∀n

r odd n odd
⌈

n
2

⌉∃∞n
⌊

n
2

⌋∀n n− 1∀n ⌊
n
2

⌋∀n
p ≡ 3 mod 4

2.2 The Odd Cover Problem and Computing S2
n
(X) over GF(2)

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds
Graph Hom. Inhom. Graph Hom.

n ≡ 0 mod 4 n
2 ∃∞n n

2 ∃∞n n
2 ∀n n− 1∀n n

2 ∀n

n ≡ 2 mod 4 n
2 ∃∞n n

2 ∃∞n n
2 ∀n n− 1∀n n

2 ∀n

n ≡ 3 mod 4
⌈

n
2

⌉∃∞n
⌈

n
2

⌉∃∞n
⌈

n
2

⌉∀n n− 1∀n ⌊
n
2

⌋∀n
n ≡ 1 mod 4

⌈
n
2

⌉∃∞n
⌊

n
2

⌋∃∞n
⌊

n
2

⌋∀n n− 1∀n ⌊
n
2

⌋∀n

Depth-3 Arithmetic Circuits for S2
n(X) 181

2.3 Computing S2
n
(X) over C

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Hom. Inhom. Hom. Hom.
∀n ⌈

n
2

⌉ ⌈
n
2

⌉ ⌈
n+1

2

⌉ ⌈
n
2

⌉

2.4 1 mod p Cover Problem, p an Odd Prime

Our Bounds Previous Bounds
Upper Bounds Upper Bounds Lower Bounds

Graph Graph Hom.
n odd

⌈
n
2

⌉∃∞n n− 1∀n ⌊
n
2

⌋∀n
n even n

2 ∃∞n n− 1∀n n
2 ∀n

2.5 Computing S2
n
(X) over IR and Q

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Graph Inhom. Graph Hom.
∀n n− 1 n− 1 n− 1 n− 1

3 Upper Bounds

3.1 The Odd Cover Problem and Computing S2
n
(X) over GF(2)

In this section, we will show that there is an odd cover of K2n by n bipartite
graphs whenever there exists a n × n matrix satisfying certain properties. For
this, we describe a scheme for producing an odd cover of K2n.

We want to cover the edges ofK2n with n bipartite graphs such that each edge
is covered an odd number of times. Each complete bipartite graph is specified
by specifying the two parts A and B. Partition the vertex set [2n] (of K2n)
into ordered pairs (1, 2), (3, 4), . . . , (2n−1, 2n). In our construction, if the vertex
2i − 1 of the pair (2i − 1, 2i) appears in part A of a bipartite graph, then 2i
appears in part B; similarly, if 2i appears in part A, then 2i− 1 appears in part
B. In particular, if one element of the pair does not participate in the bipartite
graph, then the other element does not participate in it either. We shall call such
a construction a pairs construction.

Hence, to describe a bipartite graph, it suffices to specify for each pair (2i−
1, 2i), whether the pair participates in the bipartite graph, and when it does,
whether 2i appears in part A or part B. The n bipartite graphs are specified
using an n× n matrix M with entries in {−1, 0, 1}. The rows of the matrix are
indexed by pairs; the ith row is for the pair (2i−1, 2i). The columns are indexed
by bipartite graphs. If Mij = 0, then the pair (2i− 1, 2i) does not participate in
the jth bipartite graph; if Mij = 1, then 2i appears in part B; if Mij = −1, then
2i appears in part A. We now identify properties of the matrix M that ensure
that the bipartite graphs arising from it form an odd cover of K2n.

182 Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

Definition 1. A matrix with entries from {−1, 0, 1} is good if it satisfies the
following conditions:

1. In every row, the number of non-zero entries is odd.
2. For every pair of distinct rows, the number of columns where they both have

non-zero entries is congruent to 2 mod 4.
3. Any two distinct rows are orthogonal over the integers.

Lemma 1. If a n× n matrix is good, then the n complete bipartite graphs that
arise from it form an odd cover of K2n.

Proof. The proof appears in the full version of the paper [11]. �
Thus, to obtain odd covers, it is enough to construct good matrices. We now

give two methods for constructing such matrices.
Construction 1: Skewsymmetric Conference Matrices

A Hadamard matrix Hn is an n× n matrix with entries in {−1, 1} such that
HnH

T
n = nI. A conference matrix Cn is an n×n matrix, with 0’s on the diagonal

and −1,+1 elsewhere, such that CnC
T
n = (n − 1)I. The following fact can be

verified easily.

Lemma 2. n× n conference matrices, where n ≡ 0 mod 4 are good matrices.

Skewsymmetric conference matrices can be obtained from skew Hadamard ma-
trices. A skew Hadamard matrix is defined as a Hadamard matrix that one gets
by adding the identity matrix to a skewsymmetric conference matrix. Several
constructions of skew Hadamard matrices can be found in [7, p. 247]. In partic-
ular, the following theorem is proved there.

Theorem 1. There is a skew Hadamard matrix of order n if n = 2tk1 · · · ks,
where n ≡ 0 mod 4, each ki ≡ 0 mod 4 and each ki is of the form pr + 1, p an
odd prime.

Corollary 1. There is a good matrix of order n if n satisfies the conditions in
the above theorem. Note that the conditions hold for infinitely many n.

An easy construction of a skew Hadamard matrix for n = 2t, t > 1 is given
in the full version of the paper [11].
Construction 2: Symmetric Designs

The matrices we now construct are based on a well-known construction for
symmetric designs. These matrices are not conference matrices; in fact, they
have more than one zero in every row.

Let q be a prime power congruent to 3 mod 4. Let IF = GF(q) be the finite
field of q elements. Index the rows with the lines and the columns with points
of the projective 2-space over IF. That is, the projective points and lines are the
one dimensional and two dimensional subspaces respectively, of IF3. A projec-
tive point is represented by a vector in IF3 (out of q−1 possible representatives)

Depth-3 Arithmetic Circuits for S2
n(X) 183

in the one dimensional subspace corresponding to it. A projective line is also
represented by a vector in IF3 (out of q− 1 possible representatives). The repre-
sentative for a projective line can be thought of as a ‘normal vector’ to the two
dimensional subspace corresponding to it. We associate with each projective line
L a linear form on the vector space IF3, given by

L(w) = vTw,

where w ∈ IF3 and v is the representative for L. For a projective line L and a
projective point Q, let L(Q) ∆= L(w), where w is the representative for Q.

Now, the matrix M is defined as follows. If L(Q) = 0, then we set ML,Q = 0;
if L(Q) is a (non-zero) square in IF, set ML,Q = 1; otherwise, set ML,Q = −1.

The proof that M is a good matrix appears in the full version of the pa-
per [11]. We thus have proved the following lemma.

Lemma 3. If q ≡ 3 mod 4 is a prime power then there is a good matrix of order
q2 + q + 1. Note that infinitely many such q exist.

We can now easily prove the following theorem and its corollary.

Theorem 2. For infinitely many n ≡ 0, 2 mod 4 we have an odd cover of Kn

using n
2 complete bipartite graphs.

Corollary 2. For infinitely many n ≡ 1, 3 mod 4 we have an odd cover of Kn

using
⌈

n
2

⌉
complete bipartite graphs.

We can also prove the following lemma.

Lemma 4. If S2
n(X), n ≡ 0 mod 4, can be computed over GF(2) by a homoge-

neous ΣΠΣ circuit using n
2 multiplication gates, then S2

n+1(X) can be computed
over GF(2) by a homogeneous ΣΠΣ circuit using n

2 multiplication gates.

Proof. The proof appears in the full version of the paper [11]. �
From the above, we can now prove the following theorem.

Theorem 3. For infinitely many n ≡ 0, 2, 3 mod 4 we have homogeneous ΣΠΣ
circuits computing S2

n(X) over GF(2) using
⌈

n
2

⌉
multiplication gates. For in-

finitely many n ≡ 1 mod 4 we can compute S2
n(X) over GF(2) using homoge-

neous ΣΠΣ circuits having
⌊

n
2

⌋
multiplication gates.

4 Lower Bounds

4.1 Preliminaries

We first develop a framework for showing lower bounds for S2
n(X) based on the

method of substitution [13, 12]. Suppose that over a field IF

S2
n(X) =

r∑
i=1

si∏
j=1

Lij(X), (5)

184 Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

where each Lij is a linear form, not necessarily homogeneous. We wish to show
that r must be large. Following the proof of the Graham-Pollack theorem that
was sketched in the introduction, we could try to force some of the Lij ’s to zero
by setting the variables to appropriate field elements. There are two difficulties
with this plan. First, since the Lij ’s are not necessarily homogeneous, we may not
be able to set all of them to zero; we can do so if the linear forms have linearly
independent homogeneous parts. The second difficulty arises from the nature
of the underlying field: as observed earlier, S2

n(X) might vanish on non-trivial
subspaces of IFn.

In this section, our goal is to first show that if r is small, then S2
n(X) must be

zero over a linear subspace of large dimension. A similar observation was used
by Shpilka and Wigderson [13] and Shpilka [12]. Our second goal is to examine
linear subspaces over which S2

n(X) is forced to be zero. We derive conditions on
such subspaces, and relate them to the existence of a certain family of vectors.
Later on, we will exploit these equations, based on the field in question, and
derive our lower bounds for r.

Goal 1: Obtaining the Subspace.

Lemma 5. If S2
n(X) can be written in the form of (5) over a field IF, then there

exist homogeneous linear forms "1, "2, . . . , "r in variables X1, X2, . . . , Xn−r such
that

S2
n(X1, X2, . . . , Xn−r, "1, "2, . . . , "r) = 0.

Proof. The proof appears in the full version of the paper [11]. �

Goal 2: The Nature of the Subspace. Our goal now is to understand the
algebraic structure of the coefficients that appear in the linear forms "1, "2, . . . , "r

promised by Lemma 5. Let "i =
∑n−r

j=1 "ijXj , "ij ∈ IF, and let L be the r×(n−r)
matrix ("ij). Let Y1, Y2, . . . , Yn−r ∈ IFr be the n−r columns of L. We will obtain
conditions on the columns by computing the coefficients of monomials X2

j for
1 ≤ j ≤ n − r, and XiXj for 1 ≤ i < j ≤ n − r. For X2

j (1 ≤ j ≤ n − r), we
obtain the following equation over IF,

r∑
m=1

"mj +
∑

1≤m<m′≤r

"mj"m′j = 0. (6)

For monomials of the form XiXj (1 ≤ i < j ≤ n − r), we obtain the following
equation over IF,

1 +
r∑

m=1

"mi +
r∑

m=1

"mj +
∑

1≤m<m′≤r

("mi"m′j + "m′i"mj) = 0. (7)

For a positive integer m, let 1lm be the all 1’s column vector and 0m be the
all 0’s column vector of dimension m. Let Um be the m × m matrix with 1’s
above the diagonal and zero elsewhere. Let Jm be the m×m matrix with all 1’s,

Depth-3 Arithmetic Circuits for S2
n(X) 185

and let Im be the m × m identity matrix. Using this notation, we can rewrite
(6) and (7) as follows:

1ltrYj + Y t
j UrYj = 0, for 1 ≤ j ≤ n− r; (8)

1 + 1ltrYi + 1ltrYj + Y t
i (Jr − Ir)Yj = 0, for 1 ≤ i < j ≤ n− r. (9)

If the characteristic of the field is not two, we may rewrite (8) as

21ltrYj + Y t
j (Jr − Ir)Yj = 0, for 1 ≤ j ≤ n− r; (10)

With this, we are now ready to prove lower bounds. We will exploit (8), (9)
and (if the characteristic is not 2) (10) to derive lower bounds for various fields.

4.2 Lower Bounds for GF(2)

Let ZZ stand for the integers. For Y ∈ ZZr, let |Y | be the number of odd
components in Y . For Y, Y ′ ∈ ZZr, let Y ·Y ′ ∆=

∑r
m=1 YmY ′

m be the dot product
of Y and Y ′ over ZZ.

Lemma 6. Suppose "1, . . . , "r are homogeneous linear forms in the variables
X1, . . . , Xn−r such that

S2
n(X1, . . . , Xn−r, "1, . . . , "r) = 0

over GF(2). Then r ≥ ⌊
n
2

⌋
. If n ≡ 3 mod 4, then r ≥ ⌈

n
2

⌉
.

Proof. We use the arguments of Sect. 4.1. If there exist homogeneous linear forms
"1, . . . , "r over variables X1, . . . , Xn−r so that S2

n(X1, . . . , Xn−r, "1, . . . , "r) = 0
over GF(2), we have (8) and (9). We treat the vectors Yj as elements of ZZr and
the equalities as equalities over integers (mod 2). By counting the number of
odd components (i.e. 1’s) on the left and right hand side of (8), we obtain, for
1 ≤ j ≤ n− r,

|Yj |+
(|Yj |

2

)
≡ 0 (mod 2),

from which it follows that

|Yj | ≡ 0 or 3 (mod 4). (11)

Since Y t
i (Jr − Ir)Yj = |Yi| |Yj | − Yi · Yj over ZZ, we conclude from (9) that, for

1 ≤ i < j ≤ n− r,

|Yi|+ |Yj |+ |Yi| |Yj |+ Yi · Yj ≡ 1 (mod 2),

that is,
Yi · Yj ≡ (1 + |Yi|)(1 + |Yj |) (mod 2). (12)

Let W1, . . . ,Ws be the vectors among Y1, . . . , Yn−r with |Yj | odd, and let
E1, . . . , Et be the remaining t = n− r − s vectors, with |Yj | even.
Claim. If Y1, Y2, . . . , Yn−r are not linearly independent over GF(2), then t is
odd and the only dependency over GF(2) among them is

∑t
k=1 Ej = 0r.

Proof. The proof appears in the full version of the paper [11]. �

186 Jaikumar Radhakrishnan, Pranab Sen, and Sundar Vishwanathan

By the claim above, we see that there are at least n−r−1 linearly independent
vectors over GF(2) among the Yj ’s. Since Yj ∈ ZZr, we get r ≥ n − r − 1 i.e.
r ≥ ⌊

n
2

⌋
.

To obtain a better bound for n ≡ 3 mod 4, we make better use of our equa-
tions. So suppose n = 2r + 1 and n ≡ 3 mod 4. We shall derive a contradiction.

If n = 2r + 1, then n − r > r, and since Yj ∈ ZZr, the vectors Yj are not
linearly independent over GF(2). Then by the claim above, t is odd,

∑t
k=1 Ej ≡

0r mod 2, and W1, . . . ,Ws, E1, . . . , Et−1 are linearly independent over GF(2).
Since, s+ t−1 = n− r−1 = r, these vectors span (over GF(2)) the entire vector
space GF(2)r; in particular, 1lr is in their span:

s∑
i=1

αiWi +
t−1∑
k=1

βkEk ≡ 1lr (mod 2)

for some αi, βk ∈ ZZ. Taking dot products with Wi and Ek, we conclude (using
(12)) that αi ≡ 1 mod 2 for 1 ≤ i ≤ s, and (Jt−1 − It−1)β ≡ 0t−1 mod 2, where
β ∈ ZZt−1 and the kth component of β is βk. Since t is odd, Jt−1 − It−1 is full
rank over GF(2) and β ≡ 0t−1 mod 2. Thus,

s∑
i=1

Wi ≡ 1lr (mod 2).

It is easy to verify that for all integer vectors Y ,

|Y | ≡ Y · Y (mod 4) (13)

Thus, (
∑s

i=1 Wi) · (
∑s

i=1 Wi) ≡ |∑s
i=1 Wi| ≡ r mod 4, that is

s∑
i=1

Wi ·Wi + 2
∑

1≤i<j≤s

Wi ·Wj ≡ r (mod 4).

By (11) and (13), Wi ·Wi ≡ 3 mod 4, and by (12), Wi ·Wj ≡ 0 mod 2 for i �= j.
Thus,

3s ≡ r (mod 4). (14)

Similarly, starting with
∑t

k=1 Ej ≡ 0r mod 2, we obtain t(t − 1) ≡ 0 mod 4;
since t is odd, t ≡ 1 mod 4. But then, using (14),

n ≡ r + s+ t ≡ 3s+ s+ 1 ≡ 1 (mod 4)

which is a contradiction.
Since r ≥ ⌊

n
2

⌋
holds for all n, we have shown that if n ≡ 3 mod 4, then

r ≥ ⌈
n
2

⌉
. �

Using lemma 5 and the above lemma, we can now prove the following theo-
rem.

Theorem 4. Any (inhomogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over GF(2) requires at least
⌈

n
2

⌉
multiplication gates if n ≡ 0, 2, 3 mod 4 and

at least
⌊

n
2

⌋
multiplication gates if n ≡ 1 mod 4.

Depth-3 Arithmetic Circuits for S2
n(X) 187

Acknowledgements

We thank Amir Shpilka for sending us the preliminary version of [12] and gen-
erously sharing his insights with us.

References

[1] N. Alon. Decomposition of the complete r-graph into complete r-partite r-graphs.
Graphs and Combinatorics, 2:95–100, 1986.

[2] L. Babai and P. Frankl. Linear algebra methods in combinatorics (with applica-
tions to geometry and computer science). Preliminary Version 2, Department of
Computer Science, The University of Chicago, September 1992.

[3] D. de Caen and D.G. Hoffman. Impossibility of decomposing the complete graph
on n points into n − 1 isomorphic complete bipartite graphs. SIAM Journal of
Discrete Mathematics, 2:48–50, 1989.

[4] R.L. Graham and H.O. Pollack. On embedding graphs in squashed cubes. In
Graph Theory and Applications, pages 99–110. Springer-Verlag, 1972. Lecture
Notes in Mathematics, 303.

[5] D. Grigoriev and M. Karpinski. An exponential lower bound for depth-3 arith-
metic circuits. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 577–582, 1998.

[6] D. Grigoriev and A.A. Razborov. Exponential lower bounds for depth-3 arithmetic
circuits in algebras of functions over finite fields. In Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, pages 269–278, 1998.

[7] M. Hall Jr. Combinatorial Theory. Wiley Interscience series in Discrete Mathe-
matics, 1986.

[8] N. Nisan. Lower bounds for non-commutative computation. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, pages 410–418, 1991.

[9] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6:217–234, 1996.

[10] G.W. Peck. A new proof of a theorem of Graham and Pollack. Discrete Mathe-
matics, 49:327–328, 1984.

[11] J. Radhakrishnan, P. Sen, and S. Vishwanathan. Depth-3 arithmetic circuits for
S2

n(X) and extensions of the Graham-Pollack theorem. Full version. Manuscript
available at http://www.tcs.tifr.res.in/~pranab/papers/s2n.ps, September
2000.

[12] A. Shpilka. Symmetric computation. Manuscript. Personal Communication, Jan-
uary 2000.

[13] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of charac-
teristic zero. In Proceedings of the 14th Annual IEEE Conference on Computa-
tional Complexity, pages 87–96, 1999. Also ECCC report no. 23, 1999, available
at http://www.eccc.uni-trier.de/eccc.

[14] H. Tverberg. On the decomposition of Kn into complete bipartite graphs. Journal
of Graph Theory, 6:493–494, 1982.

The Bounded Weak Monadic Quantifier

Alternation Hierarchy of Equational Graphs Is
Infinite

Olivier Ly

LaBRI, Université Bordeaux I
ly@labri.u-bordeaux.fr

Abstract. Here we deal with the question of definability of infinite
graphs up to isomorphism by weak monadic second-order formulæ. In
this respect, we prove that the quantifier alternation bounded hierarchy
of equational graphs is infinite. Two proofs are given: the first one is based
on the Ehrenfeucht-Fraissé games; the second one uses the arithmetical
hierarchy. Next, we give a new proof of the Thomas’s result according to
which the bounded hierarchy of the weak monadic second-order logic of
the complete binary tree is infinite.

Introduction

Logic is by now a classical mean in theoretical computer science to describe
complexity issues; it has been used in many areas, for instance effective com-
putability (cf. [20]), descriptive complexity (cf. [7,15]), or else formal language
theory (cf. [16]).

This paper deals with the question of definability of infinite graphs up to
isomorphism by logical formulæ. The graphs which are studied here are equa-
tional graphs which have been introduced in [4] as models of program schemes.
Such a graph is the inductive limit of a sequence of finite graphs generated by a
deterministic hyperedge replacement grammar (cf. [5,21]). They extend strictly
context-free graphs which have been introduced in [14] as configuration graphs
of pushdown automata. Note that these kinds of graphs generalize the concept
of regular trees; such a tree is defined as the tree of all the runs of a finite state
automaton (see [3]).

We deal with monadic second-order formulæ on graphs (MS-formulæ for
short) which are the logical formulæ which deal with graphs as relational logical
structures using individual and set variables ranging over vertices and edges.
We consider the weak monadic second-order logic (WMS logic for short) which
consists in interpreting the MS-formulæ by considering set variables as ranging
over finite sets of vertices and edges. WMS logic is a classical extention of the
first-order logic. It is a variation of the well-known monadic second-order logic
(MS-logic for short) (cf. [21,8]). The monadic second-order logic is related to
the concept of equational graphs because of the two following results: first, one
can decide in an effective way whether a given equational graph satisfies a given

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 188–200, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The Bounded Weak Monadic Quantifier Alternation Hierarchy 189

MS-formula according to MS-logic, which is also true for WMS-logic (cf. [4], for
generalizations cf. [21,2]). Second, the equational graphs are exactly the graphs
of bounded tree-width (cf. [17]) which are definable up to isomorphism by MS-
formulæ (cf. [5]) according to MS-logic. Note that these results generalise the
fundamental results of [1] and [18,19] where MS and WMS were studied in the
contexts of infinite words and infinite trees.

The present work is motivated by the conjecture of [5] according to which
any equational graph is definable up to isomorphism by a formula of WMS-logic.
This is true if one considers MS-logic (cf. [5]); let us note that this implies that
the isomorphism problem for equational graphs is decidable. Concerning WMS-
logic, some steps have been ever raised: the conjecture has been firstly proved
to be true for context-free graphs (cf. [22]), and then for the equational graphs
which have covering trees of finite degree (cf. [23]).

Here, we investigate equational WMS-definable graphs through the study of
the quantifier alternation bounded hierarchy. A graph is said to be in the n-
th level of the bounded WMS-hierarchy if there exists a WMS-formula which
defines it up to isomorphism and which has n− 1 alternations of existential and
universal unbounded quantifiers. One says that the hierarchy is infinite if for
each integer n, the n-th level is strictly included in the n+ 1-th one. The main
result of this paper is the following:

Theorem 1. The bounded WMS-hierarchy of equational graphs is infinite.

In order to see how this theorem fits in existing works, let us now mention
some results about hierarchies relating to monadic second-order logical systems.
Firstly, the bounded MS and WMS-hierachies of languages of infinite words, i.e.
the one successor theory, are finite, which follows from [1] and [12]. Next, the
bounded MS-hierarchy of languages of infinite binary trees, i.e. the two succes-
sors theory (MS2S for short) is also finite, which follows from Rabin’s Theorem
(cf. [18], see also e.g. [9] for further results), while the weak one (the bounded
WMS2S-hierarchy) is infinite (cf. [24], see also [13]). Concerning definability of
graphs up to isomorphism, it follows from the results of [5] that the bounded
MS-hierarchy of equational graphs is finite. Theorem 1 shows that the situation
is different when considering WMS-logic, even though it follows from [22] that
the bounded WMS-hierarchy of context-free graphs is finite and stops at most
at the fifth level.

As we mentioned above the best result concerning the conjecture of WMS-
definability of equational graphs has been raised in [23]. The WMS-formulæ which
are constructed in this work have unbounded numbers of quantifier alternations;
Theorem 1 shows that one can not get away from this fact: equational graphs are
hard to define up to isomorphism by using weak monadic second-order formulæ.

We give two proofs of Theorem 1. The first one is based on an extention to
WMS-logic of the classical technique of Ehrenfeucht-Fraissé games [8,10]). The
method is similar to the well-known construction used to show that FO(LFP)
is strictly more expressive than FO(TC) (see e.g. [6]). The second one is based
on infinity of arithmetical hierarchy (see [20]). It allows us to recover the fact
that WMS2S-hierarchy is infinite, which is deserved in [24] where it was proved

190 Olivier Ly

using arithmetical hierarchy as well together with Rabin’s Theorem (cf. [18]).
The first proof is in some sense stronger than the second one because the graphs
which are constructed in it have covering trees of finite degree, which is not true
for the second proof. But in other respects, this last one allows us to recover
the result of [24] without using Rabin’s Theorem, which does not seem to be
possible with the game-based proof.

Acknowledgements. The author is greatly indebted to his supervisor G.
Sénizergues for having spent much time in very helpful discussions. He also wants
to thank the reviewers for their work which led to important improvements of
this paper.

1 Preliminary

For an introduction to monadic second-order logical systems, the reader is refered
to [6,8], cf. also [21, chap. 5].

We deal with labelled directed multi-graphs (graphs for short), i.e. tuple
〈V,E, vert, A, lab〉 where V is an at most countable set whose elements are the
vertices; E is the set of edges; vert : E → V × V is the map defining the target
and the origin of each edge. Vertices and edges are labelled by elements of A
according to the map lab : V ∪ E → A. Such a graph is represented by a logical
relational structure 〈D, (Da)a∈A, inc〉 where D = V ∪ E; for all a ∈ A, Da ⊂ D
is a unary relation on D defining elements labelled by a and inc is a ternary
relation defining incidence in the sense that (x, y, z) ∈ inc if and only if x ∈ E
is an edge of origin y ∈ V and target z ∈ V . In order to simplify notations,
the relational structure associated to a graph G is still denoted by G. We con-
sider monadic second-order formulæ on graphs. These formulæ are constructed
using individual variables (usually denoted by latin letters x, y, z,...) and set
variables (usually denoted by greek letters α, β, ...). Atomic formulæ are of the
forms x ∈ α or α ⊂ β or inc(x, y, z) or else x ∈ Da with a ∈ A. Syntax is not
restricted: we allows existential and universal quantifiers over individual and set
variables, conjunctions and negations. The semantics of such formulæ differs in
the monadic second-order logic and in the weak monadic second-order logic: in
the former one set variables range over all the subsets of the domain, while in
the last one they range over finite subsets only.

Remark 1. What we call here MS-logic of graphs is usually denoted by MS2-
logic in order to distinguish it from MS1-logic in which quantifications are done
over vertex sets only (cf. e.g. [21]). MS1-logic deals with simple graphs; such a
graph is encoded by a relational structure whose domain is its set of vertices
only, instead of the union of its set of vertices and its set of edges as we consider
here. MS2 is more expressive than MS1. This is why we have chosen to prove
Theorem 1 for MS2. As we shall see, it is true for MS1 as well (see Remark 3).

A formula is said to be in prenex form if it is of the form Q1X1...QnXn ψ
where for each i, Qi ∈ {∃, ∀}, the Xi’s are variables and ψ does not contain any
quantifier. Any formula can be put in prenex form in an effective way (cf. e.g. [8]).

The Bounded Weak Monadic Quantifier Alternation Hierarchy 191

Let α and β be some set variables; let ϕ(α, β) be a formula with α and β
as free variables. The quantifier over α in the formula ∃αϕ(α, β) (∀αϕ(α, β)
respectively) is said to be bounded if this last formula is equivalent to ∃α (α ⊂
β ∧ ϕ(α, β)) (∀α (α ⊂ β ⇒ ϕ(α, β)) respectively). In this case it is denoted by
∃α ⊂ β ϕ(α) (∀α ⊂ β ϕ(α) respectively). A formula in which all the quantifiers
are bounded is said to be bounded. As stated by next Lemma, bounded quan-
tifications can always be put after the unbounded ones (cf. [13] for a proof).

Lemma 1. Let ψ(α, β, γ) be a formula, then we have:
• ∃α ⊂ β ∀ γ ψ(α, β, γ) ≡ ∀ γ

′ ∃α ⊂ β ∀ γ ⊂ γ
′
ψ(α, β, γ)

• ∃α ⊂ β ∃ γ ψ(α, β, γ) ≡ ∃ γ ∃α ⊂ β ψ(α, β, γ)
• ∀α ⊂ β ∀ γ ψ(α, β, γ) ≡ ∀ γ ∀α ⊂ β ψ(α, β, γ)
• ∀α ⊂ β ∃ γ ψ(α, β, γ) ≡ ∃ γ

′ ∀α ⊂ β ∃ γ ⊂ γ
′
ψ(α, β, γ)

A formula is called a Σn-formula (a Πn-formula respectively) if it has the
form ∃X1 ∀X2 ... ∃

∀Xn ψ(X1, X2, ..., Xn) (∀X1 ∃X2 ... ∃
∀Xn ψ(X1, X2, ..., Xn)

respectively) where ψ is bounded. The above lemma implies that any formula is
equivalent to a Σn-formula (a Πn-formula respectively) for a suitable n.

This classification of formulæ provides a classification of definable graph prop-
erties, i.e. the properties which can be expressed by logical formulæ. What we
call here a graph property is formally a class of graphs, for instance the class of
all the connected graphs. Let GΣn (GΠn respectively) denote the set of families of
graphs which are WMS-definable by some Σn-formulæ (by Πn-formulæ respec-
tively). Note that for all n ≥ 0 : GΣn ∪GΠn ⊂ GΣn+1 ∩GΠn+1 . This classification
of WMS-definable graph families, i.e. the sequence GΣn , is called the bounded
weak monadic quantifier alternation hierarchy.

2 Ehrenfeucht-Fraissé Games

2.1 Ehrenfeucht-Fraissé Games for Weak Monadic Second-Order
Logic

Let G = 〈VG, EG, vertG, A, labG〉 and G′ = 〈VG′ , EG′ , vertG′ , A, labG′〉 be two
A-labelled graphs. Let ᾱ and ᾱ′ be some finite parts of G and G′ respectively,
i.e. finite subsets of vertices and edges. We call partial isomorphism between
ᾱ and ᾱ′ a one-to-one mapping σ : ᾱ → ᾱ′ which preserves the adjacency, i.e
∀ a, x, y ∈ ᾱ : vertG(a) = (x, y) if and only if vertG′(σ(a)) = (σ(x), σ(y)), and
the labels, i.e. ∀ a ∈ ᾱ : lab(a) = lab(σ(a)). We shall identify such a mapping
with its graph, i.e. the subset of (VG ∪ EG) × (VG′ ∪ EG′) which encodes it. If
σ and σ′ are two partial isomorphisms, we say that σ extends σ′ if σ′ ⊂ σ as
subsets of (VG ∪EG)× (VG′ ∪EG′). The set of partial isomorphisms between two
finite parts ᾱ and ᾱ′ is denoted by PartIsom(ᾱ, ᾱ′).

Let A and B be two players, a session in the Ehrenfeucht-Fraissé game as-
sociated to the pair of graphs (G,G′) goes on as follows : at the first round,
A chooses a finite part ᾱ1 of G, and then B replies with a finite part ᾱ′

1 of G′ to-
gether with a partial isomorphism σ1 ∈ PartIsom(ᾱ1, ᾱ

′
1). At the second round,

192 Olivier Ly

A chooses a finite part ᾱ′
2 of G′ and B replies with a finite part ᾱ2 of G together

with a partial isomorphism σ2 ∈ PartIsom(ᾱ1 ∪ ᾱ2, ᾱ
′
1 ∪ ᾱ′

2) which extends σ1;
and so on, A chooses finite parts alternatively in G and G′ and B extends the
isomorphism as A goes along. The game stops when B can not find a good an-
swer. We say that B has a strategy of order n if he can play the first n rounds
whatever choices A makes.

The following results show the classical link between this game view point
and logic.

Lemma 2. Let G and G′ be two graphs and let ψ(α1, .., αn) be a bounded for-
mula. Let ᾱ1, ..., ᾱn (ᾱ′

1, ..., ᾱ
′
n respectively) be some finite parts of G (G′ re-

spectively) and let σ ∈ PartIsom(
⋃

ᾱi,
⋃

ᾱ′
i) be a partial isomorphism which

exchanges ᾱi and ᾱ′
i for all i, then we have (G, ᾱ1, .., ᾱn) |= ψ(α1, ..., αn) if and

only if (G′, ᾱ′
1, ..., ᾱ

′
n) |= ψ(α1, ..., αn)

Lemma 3. Let G and G′ be two graphs such that B has a strategy of order n in
the Ehrenfeucht-Fraissé game associated to (G,G′); then for all Σn-formula ϕ,
G |= ϕ implies that G′ |= ϕ.

2.2 First Proof of Theorem 1

This section is devoted to the proof of Theorem 1.
We begin by defining two sequences of graphs (Gn)n≥1 and (G′

n)n≥1 such
that for all n ≥ 1, Gn and G′

n are not isomorphic and B has a strategy of order
n in the Ehrenfeucht-Fraissé game associated to (Gn, G

′
n).

Let us set V = (Z)∗, i.e. the set of finite sequences of integers, and E =
(Z)+×{r, t}, where (Z)+ denotes the set of finite non empty sequences of integers,
r and t are two symbols (r like radial and t like transversal); let us consider the
mapping vert : E → V × V defined as following:

– ∀e = ((x1, .., xl), r) ∈ E, vert(z) = ((x1, .., xl−1), (x1, .., xl−1, xl)),
– ∀e = ((x1, .., xl), t) ∈ E, vert(z) = ((x1, .., xl), (x1, .., xl + 1)).

Let A be a set; let Z(A) denote the set of A-labelled graphs whose vertex
set, edge set and edge mapping respectively are V , E and vert. Let G ∈ Z(A)
and z0 ∈ V , we denote by G(z0) the graph of Z(A) defined by : ∀ z ∈ V ∪ E :
labG(z0)(z) = labG(z0.z), where z0.z denotes the concatenation of z0 and z if
z ∈ V , and by abuse of notation (z0.u, r) or (z0.u, t) if z = (u, r) ∈ E or
z = (u, t) ∈ E respectively.

Gn and G′
n are now defined as elements of Z({0, 1}). First, all edges are

labelled by 0: for all n ≥ 1 and for all e ∈ E, let labGn(e) = labG′
n
(e) = 0. The

labels of vertices are defined inductively as following:

– For all z ∈ V , let labG1(z) = 0

– For all z ∈ V , labG′
1
(z) =

{
1 if z = (0),
0 otherwise.

The Bounded Weak Monadic Quantifier Alternation Hierarchy 193

– For n ≥ 2, Gn is defined from G′
n−1 as following: labGn(()) = 0 and ∀z ∈ V

such that |z| = 1 : Gn(z) = G′
n−1.

– For n ≥ 2, G′
n is defined from Gn−1 and G′

n−1 as following: labGn(()) = 0,
∀z ∈ V \ {(0)} such that |z| = 1 : Gn(z) = G′

n−1 and Gn((0)) = Gn−1.

Gn

G′
n−1 G′

n−1 G′
n−1

G′
n

G′
n−1 Gn−1 G′

n−1

Lemma 4. For all n ≥ 1, B has a strategy of order n in the Ehrenfeucht-Fraissé
game associated to (Gn, G

′
n).

Sketch of proof : (induction on n)
• Case n = 1: Let ᾱ1 ⊂ VG1 ∪ EG1 be the choice of A in the first round of the
game. All the elements of ᾱ1 are labelled by 0 and the unique element of VG′

1
∪EG′

1

labelled by 1 is (0) ∈ VG′
1
; so B performs a shifting on the left of m = min{x1 ∈

Z | ∃x2, .., xl such that (x1, .., xl) ∈ ᾱ} first level vertices; more precisely he uses
the one-to-one mapping λm : V → V defined by λm((x1, .., xl)) = (x1 − m +
1, .., xl) which extends in a natural way to V ∪ E to define an automorphism of
(V,E, vert) which shall be still denoted by λm; B then chooses ᾱ′

1 = λ(ᾱ1) and
σ1 = λ−1

m |ᾱ1 .
• Case n > 1: Suppose now that B has a strategy ζ of order n− 1 relatively to
(Gn−1, G

′
n−1); we will then define a strategy of order n relatively to (Gn, G

′
n).

The first round proceeds exactely like in the case n = 1; if ᾱ1 ⊂ VGn ∪ EGn is
the first choice of A , we define m, λm, ᾱ′

1 and σ1 as above.
Let us consider ᾱ′

2 ⊂ VG′
n
∪EG′

n
the second choice of A which we divide into two

parts ᾱ,1
2 = {(x1, .., xl) ∈ ᾱ′

2 |x1 �= 0} and ᾱ,2
2 = {(x1, .., xl) ∈ ᾱ′

2 |x1 = 0}. For
ᾱ,1

2 B uses the above shifting λm : let ᾱ1
2 = λ−1

m (ᾱ,1
2) and σ1

2 = λ−1
m |ᾱ,1

2
∪ σ1. For

ᾱ,2
2 , let us remark that G′

n((0)) = Gn−1 and Gn((m−1)) = G′
n−1, so ᾱ,2

2 induces
a finite part of Gn−1 which can be considered as the first choice of A in the game
associated to (Gn−1, G

′
n−1) then, ζ gives a answer, i.e. a finite part α̃2

2 ⊂ G′
n−1

and a partial isomorphism which induce a finite part ᾱ2
2 of the subgraph of Gn

of root (m − 1) (the subset of Gn of words of which (m − 1) is a prefix) and a
partial isomorphism σ2

2 ∈ PartIsom(ᾱ2
2, ᾱ

,2
2).

Finally ᾱ1
2 ∪ ᾱ2

2 and σ1
2 ∪ σ2

2 is a correct answer of B .
For the succeeding rounds, B uses in the same way the strategy ζ in the

game relative to the pair (G′
n((0)), Gn((m− 1))) and λm in the rest. Since ζ the

strategy of B of order n−1, intervenes in the second and later rounds, the above
method gives a strategy of order n. 2

Since Gn and G′
n are not isomorphic, the preceding lemma together with

Lemma 3 proves the next result:

194 Olivier Ly

Lemma 5. For all n ≥ 1, Gn is not definable up to isomorphism by a Σn-
formula.

We have now to see that Gn is indeed WMS-definable up to isomorphism,
which is stated by next Lemma.

Lemma 6. There exists a MS-formula Φn such that for any graph G, G |= Φn

according to WMS-logic if and only if G is isomorphic to Gn; moreover, there
exists N ≥ 1 such that for all n ≥ N , Φn can be constructed to be Σn+1.

Because of the lack of space, Proof is omited (cf. [11]).
Hence, for all n ≥ N , the isomorphism class of Gn belongs to GΣn+1\GΣn

which proves that the bounded weak monadic quantifier alternation hierarchy is
infinite. To conclude the proof of Theorem 1, it remains to show that the bounded
hierarchy is still infinite when restricted to isomorphism classes of equational
graphs. This is true seeing that the Gn’s actually are equational. Equational
graphs can be seen as canonical solutions of systems of graph equations (cf.
[5]). The lack of space makes impossible to construct in details such systems for
the Gn’s. Nevertheless, we give the main ideas: first, we have to note that the
graph which is made of one vertex of infinite degree which is connected to all the
vertices of an infinite linear graph is equational; let us denote it by G. Then, the
equations defining G1 say that it is obtained by gluing one copy of itself on each
vertex of G except the root, i.e. the vertex of G of infinite degree. On the other
hand, G′

1 is obviously equational as it is obtained from G1 by modifying the label
of only one vertex. Then, the equations defining Gn and G′

n are constructed by
induction from those defining G and those defining Gn−1 and G′

n−1 by following
the definition scheme given above. For instance, Gn is obtained by gluing a copy
of G′

n−1 on each vertex of G except the root (cf. [11] for more details).
Let us note that instead of constructing directly such systems of graph equa-

tions, one can notice that the Gn’s are of bounded tree width (cf. [17]) and
WMS-definable, as we saw in Lemma 6. In view of the results of [5], this implies
that they are equational.

Remark 2. Transversal edges of Gn are useless in the proof of Theorem 1. How-
ever, they give the existence of a covering tree of finite degree, which, to some ex-
tend, is meaningful because of the following: the equational graphs with covering
trees of finite degree have been proved to be WMS-definable up to isomorphism
(cf. [23]); but the numbers of quantifier alternations of the formulæ which are
constructed in this proof are not bounded. We have thus shown that one can
not get away from this fact.

Remark 3. Let us note that MS1-logic (see Remark 1) gives rise to another
bounded quantifier alternation hierarchy. In this respect, it turns out that our
construction also shows that this hierarchy is also infinite. First, one can verify
that a MS1-formula can be translated into an MS2-formula, adding at most one
quantifier alternation. Therefore, in view of Lemma 5, Gn can not be defined up
to isomorphism by a MS1-formula with less than n − 1 quantifier alternation.
Second, one shows that Gn is MS1-definable.

The Bounded Weak Monadic Quantifier Alternation Hierarchy 195

Remark 4. The bounded weak monadic quantifier alternation hierarchy differs
from the weak monadic quantifier alternation hierarchy (weak monadic hierarchy
for short) which is defined in an analogous way by considering first-order formulæ
instead of bounded formulæ. In this respect, one shows that there exists a fixed
integer k such that for all n, the isomorphism class of Gn belongs to the k-th
level of the weak monadic hierarchy. Indeed, the formula Φn given in Lemma 6
actually consists in the conjunction of a fixed weak monadic formula Φ which
defines the family Z({0, 1}), and a first-order formula ϕn which checks the labels
of Gn. So, the level of Φn in the weak monadic hierarchy is the one of Φ, which is
fixed. We hence obtain that the k-th level of the weak monadic hierarchy contains
instances beyond any given level of the bounded weak monadic hierarchy.

3 Arithmetical Hierarchy and Graph Hierarchy

3.1 Arithmetical Hierarchy

For basics about effective computability, the reader is refered to [20].
Let τ∗ : (N)∗ → N be a Gödel numbering of finite integer sequences, i.e. a

bi-recursive one-one mapping (cf. [20, p. 70] for such a construction); as usually,
τ∗((x1, ..., xk)) shall be sometimes denoted by < x1, ..., xk >.

Let (MX
i)i≥0 be a Gödel numbering of the set oracle Turing machines. For

any A ⊂ N and i ≥ 0, let fA
i : WA

i ⊂ N → {0, 1} be the partial function
computed by MX

i with A as oracle, where WA
i = {x ∈ N |MX

i stops on the
instance x using A as oracle } and ∀x ∈ WA

i , fA
i (x) = 0 if and only if MX

i give
0 on the instance x using A as oracle. Classical Turing machines are identified
with oracle machines with ∅ as oracle. For all k, f∅

k and W ∅
k shall be denoted by

fk and Wk respectively; fk is called the k-th recursive partial function. Let Rec
denote the set of all the recursive functions.

Let Σarith
n be the set of subsets of N of the form {k | ∃k1∀k2...

∃
∀kn fi0(<

k1, k2, ..., kn, k >) = 1} for any fixed i0. We also consider Πarith
n which denotes

the set of subsets of N of the form {k | ∀k1∃k2...
∀
∃kn fi0(< k1, k2, ..., kn, k >) = 1}

for any fixed i0.
⋃

n Σarith
n is called the arithmetical hierarchy.

Let us consider the jump operation which associates to any subset A ⊂ N the
set A′ = {x ∈ N |x ∈ WA

x }. For all n ≥ 1, let An = (An−1)′ where A0 = A. We
then consider the sequence (∅n)n≥0, which is called the sequence of jumps.

Let A and B be two subsets of N, let us recall that B is said to be recursive
in A if and only if its characteristic function is equal to fA

k for some k. B is said
to be recursively enumerable in A if and only if there exists k ∈ N such that
B = WA

k .
The proofs of the two following results can be found in [20].

Lemma 7. For all n ≥ 1, B ∈ Σarith
n if and only if B is recursively enumerable

in ∅n.

The next result implies that the arithmetical hierarchy is infinite, i.e. for each
n, Σarith

n (Σarith
n+1 .

Lemma 8. For all n ≥ 0, ∅n+1 is not recursive in ∅n.

196 Olivier Ly

3.2 Second Proof of Theorem 1

The first part of this second proof consists in constructing a sequence (tn)n≥1

of recursive trees such that ∅n is reducible to the problem of being isomorphic
to tn. The second argument is that the problem of determining whether a recur-
sive tree satisfies a Σn-formula according to weak monadic second-order logic is
recursive in ∅n (see Lemma 10 bellow). Seeing that tn is constructed in order to
be equational and WMS-definable up to isomorphism, Theorem 1 follows.

Let us make precise what we shall call a recursive tree. Let T ∞ be the set of
trees of the form T = 〈VT , ET , EdgT , {0, 1}, labT 〉 where

– VT ⊂ (N)∗ is prefix closed, i.e. x ∈ VT and y <pref x implies y ∈ VT ;
– ET is a copy of VT \{()};
– For x = (x1, ..., xn) ∈ ET : EdgT (x) = ((x1, ..., xn−1), (x1, ..., xn));
– labT : VT ∪ET → {0, 1} and labT |ET ≡ 0.

For T ∈ T ∞ and x0 ∈ VT , let T (x0) be the subtree of T of root x0: T (x0) ∈ T ∞,
VT (x0) = {x ∈ (N)∗ |x0.x ∈ VT } and ∀x ∈ VT (x0), labT (x0)(x) = labT (x0.x).
Let us consider for any partial function f : Dom(f) ⊂ N → {0, 1} the element
Tr(f) of T ∞ defined as following: VTr(f) is the greater subset of Dom(f ◦ τ∗) =
τ∗−1(Dom(f)) which is prefix-closed; and for all x ∈ VTr(f) : labTr(f)(x) =
f ◦ τ∗(x).

Definition 1 (Recursive Trees). A recursive tree is an element of T ∞ of
the form Tr(fi) for some i where fi denotes the i-th recursive partial function.
Let Ti = Tr(fi) denote the i-th recursive tree.

For each tree t ∈ T ∞ let us consider the set of integer RecIsom(t) = {i ∈ N |Ti

is isomorphic to t}.
Let us turn to the construction of (tn)n≥1. We need for that an auxilliary

sequence (t′n)n≥1 of trees. First, for all n ∈ N, Vtn = Vt′n = (N)∗ ; then

– ∀x ∈ Vt1 , labt1(x) =
{
1 if z = (i) for any even integer i
0 otherwise

– labt′1 ≡ 0
– For n ≥ 1, tn+1 is defined by: labtn+1(()) = 0 and ∀x ∈ Vtn+1 such that

|x| = 1: tn+1(x) = tn if x = (i) with i even and tn+1(x) = t′n otherwise.
– For n ≥ 1, t′n+1 is defined by: labt′n+1

(()) = 0 and ∀x ∈ Vt′n+1
such that

|x| = 1 : t′n+1(x) = tn.

Lemma 9. For all n ≥ 1, ∅n is recursive in RecIsom(tn).

Proof. Let B(n, i) ⊂ N be the i-th set of the n-th level of the arithmetical
hierarchy, i.e. {k | ∃k1∀k2...

∀
∃kn : fi(< k1, k2, ..., kn, k >) = 1}. Let us consider

the following induction hypothesis :
HRn: there exists a computable recursive function ρ̃n such that ∀i, k ∈ N : ρ̃n(<
i, k >) ∈ RecIsom(tn) ∪ RecIsom(t′n) and ρ̃n(< i, k >) ∈ RecIsom(tn) iff k ∈
B(n, i). In other words, for all n there is an algorithm which associates to any

The Bounded Weak Monadic Quantifier Alternation Hierarchy 197

pair i, k ∈ N an algorithm which computes a tree which is isomorphic to tn or
t′n and is isomorphic to tn if and only if k ∈ B(n, i).

It follows from Lemma 7 that there exists an index in such that ∅n = B(n, in).
Therefore, HRn implies that ∅n is Turing reducible to RecIsom(tn) by the func-
tion ρn : k �→ ρ̃(< in, k >). This implies the lemma.
• Proof of HR1: Here we describe the algorithm which computes Tρ̃1(<i,k>):

Instance : x ∈ (N)∗

if |x| �= 1 then labT (x) = 0
else let x1, x2 ∈ N be such that x = (< x1, x2 >)

if x1 = 0 then labT (x) = 0

else labT (x) =

1 if Mi stops and not give 0
before the x2th calculus steps
on < x1 − 1, k >

0 otherwise

ρ̃1(< i, k >) is then defined to be the index of the tree which is described by this
algorithm. Because of the lack of space, we shall omit the proof that ρ̃1 indeed
satisfies HR1.
• Let us suppose that HRn is true.
We begin the proof of the induction step with some preliminaries: Let i, k ∈ N;
we have B(n + 1, i) = {k | ∃k1∀k2...

∀
∃kn+1 : fi(< k1, k2, ..., kn+1, k >) = 1}.

Let us consider the integer set B̃(n + 1, i) = {< k, k1 >| ∀k2...
∀
∃kn+1 : fi(<

k1, k2, ..., kn+1, k >) = 1}. Note that B(n + 1, i) = {k | ∃k1 :< k, k1 >∈ B̃(n +
1, i). This is the complement of an integer set B(n, δ(i, n)) which belongs to the
n-th level of the hierarchy; note that δ(i, n) is computable. Therefore, it follows
from HRn that < k, k1 >∈ B̃(n+ 1, i) if and only if ρ̃n(< δ(i, n), < k, k1 >>) ∈
RecIsom(t′n).
Let us now describe the algorithm computing Tρ̃n+1(<i,k>) :

Instance : x = (x1, ..., xl) ∈ (N)∗

if x = () then labTρ̃n+1(<i,k>)(x) = 0
Let x11, x12 ∈ N be such that x1 =< x11, x12 >
if x11 = 0 then labTρ̃n+1(<i,k>)(x) = labtn((x2, .., xl)) (i)

else labTρ̃n+1(<i,k>)(x) = labTρ̃n(<δ(i,n),<k,x11−1>>)((x2, .., xl)) (ii)

First, (i) guarantees that there are infinitely many sub-trees of level 1 Tρ̃n+1(<i,k>)

which are isomorphic to tn.
Second, (ii) guarantees by induction that each sub-tree of level 1 is isomorphic
to tn or to t′n. One verifies that if there is at least one sub-tree of level 1 which
is isomorphic to t′n then there are infinitely many one.

Now Tρ̃n+1(<i,k>) is isomorphic to tn+1 if and only if at least one of its sub-
trees of level 1 is isomorphic to t′n. This is true if and only if there exists x11 �= 0
such that ρ̃n(< δ(i, n), < k, x11 − 1 >>) ∈ Isom(t′n), which is equivalent, by
using preliminaries, to k ∈ B(n+ 1, i).

Because of the lack of space, we state the next lemma without proof.

198 Olivier Ly

Lemma 10. The problem of determining whether a recursive tree satisfies a
Σn-formula according to weak monadic second-order logic is recursive in ∅n.

It follows from the previous lemma that whatever n ≥ 1 is, there is no Σn-
formula which defines tn+1 up to isomorphism. Indeed, the existence of such a
formula would be a contradiction with Lemma 8. On the other hand, like in sec-
tion 2.2, tn is equational and it is WMS-definable. We shall omit to prove that it
is WMS-definable. The construction of some systems of graph equations which
define the tn’s can be performed by using the ideas of section 2.2. First, transver-
sal edges are no longer considered here. And even if the definition schemes of
the tn’s and the t′n’s are slightly different from the ones of the Gn’s and the
G′

n’s, they mainly follow the same idea. And one can verify that the idea for
the construction of the systems which define the Gn’s applies here as well to
construct some systems defining the tn’s. Theorem 1 then follows.

3.3 Thomas Theorem

Here we deal with labelled complete binary trees, i.e. mapping t : {l, r}∗ → {0, 1};
their set is denoted by Tinf ({0, 1}). In the context of the weak monadic second-
order logic of the binary tree (WMS2S for short), the usual concept of bounded
quantifier is different: following [24] and [13], bounded quantifiers are indeed
those of the form ∃α ≤pref β... or ∀α ≤pref β... where ≤pref denote the prefix
ordering of {l, r}∗. This defines an other concept of bounded hierarchy. However,
one verifies that levels are the same.

In [24], it is proved that the WMS2S bounded hierarchy is infinite, i.e. The-
orem 2 below; the proof involves infiniteness of arithmetical hierarchy together
with Rabin’s theorem (cf. [18]). By using the tools introduced in the preceding
section, we give an alternative proof of this result which does not use Rabin’s
theorem.

Theorem 2 (Thomas 82). The bounded WMS2S hierarchy is infinite.

Proof. Let Λ : {l, r}∗ → N∗ be the mapping defined as follows: for any x1, .., xl+1,
Λ(lx1rlx2r..lxlrlxl+1) = (x1, .., xl). Λ allows us to consider a mapping from
Tinf ({0, 1}) to T ∞, which shall be still denoted by Λ, defined as following:
for t ∈ Tinf ({0, 1}), VΛ(t) = (N)∗ and for any x1, .., xl, labΛ(t)(x1, .., xl) =
t(lx1rlx2r..lxlr). Λ contracts all the left edges of t. We also consider the par-
tial converse Λ−1 defined on the set of trees of T ∞ whose domains are equal to
(N)∗ .

Let us set Tn = {t ∈ Tinf ({0, 1}) | Λ(t) is isomorphic to tn}. We will see
that the tree family Tn is definable, but not at a lower level than the n-th of
the hierarchy. Let ρn be the Turing reduction of ∅n to RecIsom(tn) which has
been constructed in the proof of Lemma 9; let us note that for each integer k,
VTρn(k) = (N)∗ and thus Λ−1(Tρn(k)) is defined. Now, for each integer k, we have:

k ∈ ∅n if and only if Λ−1(Tρn(k)) ∈ Tn.

The Bounded Weak Monadic Quantifier Alternation Hierarchy 199

On the other hand, one can verify that the family Tn can be WMS2S-defined by
a Σ�-formula ϕn for a suitable :. Then k ∈ ∅n if and only if Λ−1(Tρn(k)) |= ϕn.
By a result similar to Lemma 10, one verifies that this last predicate is recursive
in ∅�, which implies that : ≥ n. Theorem 2 is proved.

References

1. J.R. Büchi, On a decision method in restricted second order arithmetic. Proc.
Internat. Congr. on Logic, Methodology and Philosophy of Science, E. Nagel and
al. eds. p1-11 (1960).

2. D. Caucal, On Infinite Transition Graphs having Decidable Monadic Theory,
ICALP’96 - LNCS 1099:194-205 (1996).

3. B. Courcelle, Fundamental Properties of Infinite Trees, TCS 25:95-169 (1983).
4. B. Courcelle, The monadic second-order logic of graphs II : Infinite Graphs of

Bounded Width, Math. System Theory 21:187-221 (1989).

5. B. Courcelle, The monadic second-order logic of graphs IV : Definability properties
of Equational Graphs, Annals of Pure and Applied Logic 49:193-255 (1990).

6. Ebbinghaus H.-D and Flum J., Finite Model Theory, second edition, Springer
Verlag (1999).

7. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets. In
“Complexity of Computation”, SIAM-AMS Proceedings 43-73 (1974).

8. Y. Gurevich, Monadic Second-Order Theories, in Model Theoretic Logic, Barwise
and Ferferman eds. Springer (1985).

9. D. Janin and G. Lenzi, On the structure of the monadic logic of the binary tree.
MFCS’99, LNCS 1672:310-320 (1999).

10. R. Lassaigne and M. de Rougemond, Logique et Complexité, Hermes - collection
informatique (1996).

11. O. Ly, On Hierarchy of Graphs, internal report no 1178-97 LaBRI - 1997.
12. R. McNaughton, Testing and Generating Infinite Sequences by a Finite Automa-

ton, Inf. Contr. 9:521-530 (1966)
13. A.W. Mostowski Hierarchies of Weak Monadic Formulas for Two Successors Arith-

metic, J. Inf. Process. Cybern. EIK 23 10/11, 509-515 (1987).
14. D.E. Muller and P.E. Schupp, The Theory of Ends, Pushdown Automata, and

Second-Order Logic, TCS 37: 51-75 (1985).

15. C.H. Papadimitriou, Computational Complexity, Addison-Wexley Pub. Comp.
(1994).

16. D. Perrin and J. E. Pin, First-Order Logic and Star-Free Sets, J. Comp. Syst. Sci.
32:393-406 (1986).

17. N. Robertson and P. Seymour, Some new results onWell-Quasi Ordering of Graphs.
Annals of Discrete Math., 23:343-354 (1984).

18. M.O. Rabin, Decidability of second order theories and automata on infinite trees,
Trans. Amer. Math. Soc. 141 (1969).

19. M.O. Rabin, Weakly Definable Relations and Special Automata

20. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-
Hill, Series in Higher Mathematics (1967).

21. G. Rozenberg ed., Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 1, World Scientific (1997).

22. G. Sénizergues, Définissabilité des graphes context-free, unpublished work.

200 Olivier Ly

23. G. Sénizergues, Definability in weak monadic second order logic of some infinite
Graphs, Dagstuhl seminar on Automata theory : Infinite Computations 28:16-16
(1992).

24. W. Thomas, A Hierarchie of Sets of Infinite Trees, LNCS 145:335-342 (1982).

Combining Semantics with

Non-standard Interpreter Hierarchies

Sergei Abramov1 and Robert Glück2�

1 Program Systems Institute, Russian Academy of Sciences
RU-152140 Pereslavl-Zalessky, Russia,

abram@botik.ru
2 PRESTO, JST, Institute for Software Production Technology

Waseda University, Tokyo 169-8555, Japan,
glueck@acm.org

Abstract. This paper reports on results concerning the combination
of non-standard semantics via interpreters. We define what a semantics
combination means and identify under which conditions a combination
can be realized by computer programs (robustness, safely combinable).
We develop the underlying mathematical theory and examine the mean-
ing of several non-standard interpreter towers. Our results suggest a tech-
nique for the implementation of a certain class of programming language
dialects by composing a hierarchy of non-standard interpreters.

1 Introduction

The definition of programming language semantics from simpler, more elemen-
tary parts is an intriguing question [6,11,17,18]. This paper reports on new results
concerning the combination of semantics via non-standard interpreters. Instead
of using the familiar tower of interpreters [13] for implementing the standard
semantics of a programming language, we generalize this idea to implement the
non-standard semantics of a programming language by combining one or more
non-standard interpreters.

kd
?

kp
?

intN

intL

Standard Hierarchy

-
new

kd
?

kp
?

nintN

nintL

Non-Standard Hierarchy

The essence of the interpreter tower is to evaluate an N -interpreter intN
written in L by an L-interpreter intL written in some ground language. This
means, we give standard semantics to N -programs via L’s standard semantics.
But what does it mean to build a tower involving one or more non-standard in-
terpreters? For example, what does it mean for the semantics of an N -program p
if we replace interpreter intL by an inverse-interpreter nintL?
� On leave from DIKU, Department of Computer Science, University of Copenhagen.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 201–213, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

202 Sergei Abramov and Robert Glück

A formal answer to this question and related non-standard towers will be
given in this paper. Using the mathematical foundations developed here some
well-known results about the combination of standard interpreters are shown, as
well as new results about the combination of non-standard semantics. This ex-
tends our previous work on semantics modifiers [1] and inverse computation [2]
where we have observed that some non-standard semantics can be ported via
standard interpreters. We can now formalize a class of non-standard seman-
tics that can serve as semantics modifiers, and reason about new non-standard
combinations, some of which look potentially useful. We focus on deterministic
programming languages as an important case for practice. Since this includes
universal programming languages, there is no loss of generality. Extending our
results to other computation models can be considered for future work.

In practice, the implementation of a non-standard tower will be inefficient be-
cause each level of interpretation adds extra computational overhead. To improve
efficiency we assume program specialization techniques. Program specialization,
or partial evaluation [9,5], was shown to be powerful enough to collapse towers
of standard interpreters and to drastically reduce their interpretive overhead.
We believe powerful program transformation tools will enable us in the future
to combine non-standard interpreters with less concern about efficiency, which
may make this approach more practical for the construction of software.

Finally, note that we use the term ‘programming language’ in a broad sense,
that is, not only for universal programming languages, such as Fortran, C or
ML, but also for domain-specific languages (e.g., networks, graphics), and for
languages which are computationally incomplete (e.g., regular grammars). This
means, potentially our results apply to a broad spectrum of application areas.

The main contributions of this paper are: (i) a mathematical foundation for
a theory about semantics combination: we define what semantics combinations
mean and we identify several theoretical combinations; (ii) an approach to im-
plementing programming language dialects by building towers of non-standard
interpreters and their correctness; (iii) explaining the essence of known results
such as interpreter towers and the Futamura projections [7], and giving novel
insights regarding the semantics modification of programming languages. Proofs
are omitted due to space limitations.

2 Foundations for Languages and Semantics

Before introducing languages and semantics we give two preliminary definitions.
We define a projection (A.b) to form new sets given a set of tuples A and an ele-
ment b, and a preserving set definedness relation (A ⊆+ B) which requires A ⊆ B
and A to be non-empty when B is non-empty.

Definition 1 (projection). Let A, B, C be sets, let A ⊆ B×C, and let b ∈ B,
then we define projection A.b

def= { c′ | (b′, c′) ∈ A, b′ = b } .

Example 1. Let A = {(2, 3, 1), (5, 6, 7), (2, 4, 1)} then A.2 = {(3, 1), (4, 1)} .

Combining Semantics with Non-standard Interpreter Hierarchies 203

Definition 2 (preserving set definedness). Let A, B be sets, then we define
relation preserving set definedness (A ⊆+ B) def⇐⇒ ((A ⊆ B)∧ (B
= ∅ ⇒ A
= ∅)) .

We define languages, semantics and functional equivalence using a relational ap-
proach. When we speak of languages we mean formal languages. As is customary,
we use the same universal data domain (D) for all languages and for representing
all programs. Mappings between different data domains and different program
representations are straightforward to define and not essential for our discussion.

The reader should be aware of the difference between the abstract language
definitions given in this section, which may be non-constructive, and the defini-
tions for programming languages in Sect. 3 which are constructive. The formal-
ization is geared towards the definition of deterministic programming languages.

Definition 3 (language). A language L is a triple L = (PL,DL, [[]]L), where
PL ⊆ D is the set of L-programs, DL = D is the data domain for L, and [[]]L is
the semantics of L: [[]]L ⊆ PL×D ×D. We denote by L the set of all languages.

Definition 4 (program semantics, application). Let L = (PL,D , [[]]L) be
a language, let p ∈ PL be an L-program, let d ∈ D be data, then the semantics
of p is defined by [[]]L.p ⊆ D×D, and the application of p to d by [[]]L.p.d ⊆ D.

Definition 5 (functional equivalence). Let L1 = (PL1 ,D , [[]]L1
) and L2 =

(PL2 ,D , [[]]L2
) be languages, let p1 ∈ PL1 and p2 ∈ PL2 be programs, then p1 and

p2 are functionally equivalent iff [[]]L1
.p1 = [[]]L2

.p2 .

Note that we defined the semantics [[]]L of a language as a relation (PL×D×D).
For convenience, we will sometimes use notation [[p]]L d for application [[]]L.p.d ,
and notation [[p]]L for program semantics [[]]L.p . As Def. 4 shows, the result of
an application is always a set of data, and we can distinguish three cases:

[[p]]L d = ∅ — application undefined,
[[p]]L d = {a} — application defined (deterministic case),
[[p]]L d = {a1, a2, . . .} — application defined (non-deterministic case).

Definition 6 (deterministic language). A language L = (PL,D , [[]]L) is de-
terministic iff ∀(p1, d1, a1), (p2, d2, a2) ∈ [[]]L : (p1 = p2 ∧ d1 = d2) ⇒ (a1 = a2).
We denote by D the set of all deterministic languages (D ⊆ L).

Relations ⊆ and ⊆+ have a clear meaning for application: [[p]]L1
d ⊆ [[p]]L2

d tells
us that the left application may be undefined even when the right application
is defined (definedness is not preserved); [[p]]L1

d ⊆+ [[p]]L2
d tells us that both

applications are either defined or undefined (definedness is preserved). In Def. 7
we use ⊆+ to define a definedness preserving relation between semantics (⊆•).

Definition 7 (preserving semantics definedness). Let L1 = (PL1 ,D , [[]]L1
)

and L2 = (PL2 ,D , [[]]L2
) be languages such that PL1 = PL2 , then we define rela-

tion preserving semantics definedness (⊆•) as follows:

([[]]L1
⊆• [[]]L2

) def⇐⇒ (∀p ∈ PL1 ∀d ∈ D : [[]]L1
.p.d ⊆+ [[]]L2

.p.d) .

204 Sergei Abramov and Robert Glück

2.1 Semantics Properties and Language Dialects

A property S is a central concept for the foundations of non-standard semantics.
It specifies a modification of the standard semantics of a language. When we
speak of an S-dialect L′ of a language L, then the relation of input/output of all
L-programs applied under L′ must satisfy property S . For example, we require
that the output of applying an L-program under an inverse-dialect L′ of L [2] is
a possible input of that program applied under L’s standard semantics. Given a
request r for S -computation, there may be infinitely many answers a that satisfy
property S .1 We consider each of them as a correct wrt S .

A property describes a semantics modification for a set of languages. The
specification can be non-constructive and non-deterministic. We specify a prop-
erty S for a set of languages as a set of tuples (L, p, r , a). We say a language L′ is
an S -dialect of L if both languages have the same syntax, and the semantics of L′

is a subset of S .L . We define three types of dialects that can be derived from S .
Later in Sect. 3 we consider only those dialects that are constructive.

Definition 8 (property). Let N ⊆ L, then set S is a property for N iff

S ⊆
⋃

L∈N
{L} × PL ×D ×D .

Example 2 (properties). Let N = L and R ∈ L, then Id , Inv , TransR and
Copy are properties for L, namely identity, inversion, translation, and copying
of programs. Other, more sophisticated properties may be defined that way.

Id def= { (L, p, r , a) | L ∈ L, p ∈ PL, r ∈ D , a ∈ [[p]]L r }
Inv def= { (L, p, r , a) | L ∈ L, p ∈ PL, a ∈ D , r ∈ [[p]]L a }

TransR
def= { (L, p, r , p′) | L ∈ L, p ∈ PL, r ∈ D , p′ ∈ PR : [[p]]L = [[p′]]R }

Copy def= { (L, p, r , p) | L ∈ L, p ∈ PL, r ∈ D }

Definition 9 (dialects). Let S be a property for N , let L ∈ N , then S .L ⊆
PL × D × D is the most general S -semantics for L. Let L = (PL,D , [[]]L), then
a language L′ = (PL,D , [[]]L′) ∈ L is (i) the most general S -dialect of L iff
[[]]L′ = S .L , (ii) an S -dialect of L iff [[]]L′⊆• S .L , and (iii) an S -semi-dialect
of L iff [[]]L′ ⊆ S .L . We denote by S |L the most general S -dialect of L and by
DS |L the set of all deterministic S -dialects of L.

The most general S -semantics S .L specifies all correct answers for an application
S .L.p.r given S , L, p, r . In general, the most general dialect S |L of a language L
will be non-deterministic. This allows the definition of different S -dialects for L.

1 When we talk about non-standard semantics, we use the terms request and answer
to distinguish them from input and output of standard computation.

Combining Semantics with Non-standard Interpreter Hierarchies 205

Example 3 (dialects). There are usually infinitely many deterministic and non-
deterministic Inv -dialects of L (they differ in which and how many inverse an-
swers they return). For property Copy , the most general dialect Copy |L is always
deterministic and there exists only one Copy -dialect for each L. Another example
is property Id . If L is non-deterministic, then there are usually infinitely many
deterministic and non-deterministic Id -dialects. But if L is deterministic, then
there exists only one deterministic Id -dialect L′ and L′ = Id |L = L.

Definition 10 (robust property). Let N be a set of languages, let S be a
property for N , then S is robust iff all functionally equivalent programs are also
functionally equivalent under the most general S -dialect:

∀L1,L2 ∈ N ∀p1 ∈ PL1 ∀p2 ∈ PL2 : ([[p1]]L1
= [[p2]]L2

) ⇒ ([[p1]]S |L1
= [[p2]]S |L2

) .

Example 4 (robustness). All properties in Ex. 2 are robust (Id , Inv ,TransR),
except Copy , which returns different results for fct. equivalent programs p
= p′.

The motivation for defining robustness is that we are mainly interested in a
class of properties that can be combined by interpreters. When we use a robust
property S we cannot distinguish by the semantics of the most general dialect S |L
two programs which are functionally equivalent under L’s standard semantics.
A robust property specifies an extensional modification of a language semantics
which is independent of the particular operational features of a program.

2.2 Combining Properties

Two properties S ′ and S ′′ can be combined into a new property S ′◦S ′′. In-
tuitively speaking, one gets an (S ′◦S ′′)-dialect of a language L by taking an
S ′-dialect of an S ′′-dialect of L. This combination is captured by projection
S ′.L′′.p.r in the following definition. The reason for choosing language L′′ from
the set of deterministic S ′′-dialects DS ′′|L of L is that later we will use deter-
ministic programming languages for implementing property combinations.

Definition 11 (combination). Let S ′, S ′′ be properties for D, then we define

S ′◦S ′′ def= {(L, p, r , a) | L ∈ D, p ∈ PL, r ∈ D , a ∈ D ,L′′ ∈ DS ′′|L, a ∈ S ′.L′′.p.r} .

Example 5 (combination). Let S be a property for D, then some of the combi-
nations of the properties in Example 2 are as follows:

S ◦ Id = S : Right combination with identity does not change property S .
Id ◦ S = S : Left combination with identity does not change property S .
TransR ◦ S = S TransR : S-translation to R (will be explained in Sec. 4.3).

Inv ◦ S = S−1 : Inversion of property S (will be explained in Sec. 4.4).
Copy ◦ S = Copy : “Left zero” for property S .

206 Sergei Abramov and Robert Glück

In addition, we are interested in combinations (S ′◦S ′′) that guarantee that all
applications S ′.L′′.p.r are defined for the same set of program-request pairs (p, r)
regardless which deterministic S ′′-dialect L′′ we select for L. This requires that
S ′ and S ′′ satisfy the condition given in the following definition. In this case we
say, S ′ and S ′′ are safely combinable (S ′ �	S ′′).

Definition 12 (safely combinable). Let S ′, S ′′ be properties for D, then S ′

is safely combinable with S ′′ (S ′ �	S ′′) iff

∀L ∈ D, ∀L′′
1 ,L′′

2 ∈ DS ′′|L, ∀p ∈ PL, ∀d ∈ D :
(S ′.L′′

1 .p.d
= ∅) ⇔ (S ′.L′′
2 .p.d
= ∅) .

Example 6 (safely combinable). Let S ′,S ′′ be properties, and let S ′ be robust,
then the following combinations are always safely combinable:
Id �	S ′′ , S ′ �	Id , S ′ �	Copy .

3 Programming Languages

We now turn to programming languages, and focus on deterministic program-
ming languages as an important case for practice. Since this includes universal
programming languages, there is no loss of generality. All computable functions
can be expressed. First, we give definitions for programming languages and inter-
preters, then we introduce non-standard interpreters which we define as programs
that implement non-standard dialects.

As before we assume a universal data domain D for programming languages,
but require D to be constructive (recursively enumerable) and to be closed under
tupling: d1, . . . , dk ∈ D ⇒ [d1, . . . , dk] ∈ D . For instance, a suitable choice for
D is the set of S-expressions familiar from Lisp [13]. Since we consider only
deterministic programming languages, the result of an application is either a
singleton set or the empty set.

Definition 13 (programming language). A programming language L is a
deterministic language L = (PL,DL, [[]]L) where PL ⊆ D is the recursively enu-
merable set of L-programs, DL = D is the recursively enumerable data domain
for L, and [[]]L is the recursively enumerable semantics of L: [[]]L ⊆ PL×D×D.
We denote by P the set of all programming languages.

Definition 14 (interpreter). Let L = (PL,D , [[]]L), M = (PM ,D , [[]]M) be
programming languages, then an M -program intL is an interpreter for L in M iff

∀p ∈ PL, ∀d ∈ D : [[intL]]M [p, d] = [[p]]L d .

Definition 15 (partially fixed argument). Let L = (PL,D , [[]]L) be a pro-
gramming language, let p, p′ ∈ PL, and let d1 ∈ D such that

∀d2 ∈ D : [[p′]]L d2 = [[p]]L [d1, d2] .

Combining Semantics with Non-standard Interpreter Hierarchies 207

If program p′ exists we denote it by “ [p, [d1, •]]”, and we have

∀d2 ∈ D : [[[p, [d1, •]]]]L d2 = [[p]]L [d1, d2] .

In a universal programming language we can always write program [p, [d1, •]]
given p ∈ PL and d1 ∈ D (this is similar to Kleene’s S-m-n theorem). In a pro-
gramming language that supports abstraction and application as in the lambda-
calculus we can define: [p, [d1, •]] def= λd2.p [d1, d2] .

Definition 16 (prog. lang. dialects). Let P ′ ⊆ P, let S be a property for P ′,
and let L = (PL,D , [[]]L) ∈ P ′, then a prog. language L′ = (PL,D , [[]]L′) ∈ P is
an S -dialect of L iff [[]]L′⊆• [[]]S |L , and an S -semi-dialect of L iff [[]]L′ ⊆ [[]]S |L .

Definition 17 (S |L/M -interpreter). Let L, M be programming languages, let
P ′ ⊆ P, let S be a property for P ′, and let L ∈ P ′, then an M -program nintL is
an S -interpreter for L in M (S |L/M -interpreter) if there exists an S-dialect L′

of L such that nintL is an interpreter for L′ in M .

An interpreter for a language L is an implementation of the standard semantics of
L, while an S -interpreter is an implementation, if it exists, of an S -dialect L′ of L.
Since a property S may specify infinitely many S -dialects for L (see Sect. 2.1), we
say that any program that implements one of these dialects is an S -interpreter.2

In general, not every non-standard S -dialect is computable. Some dialects
may be undecidable, others (semi-)decidable. A non-standard interpreter nintL
realizes an S -dialect for a given language L, and having nintL we can say that S
can be realized constructively for L. If this is the case for two properties S ′ and
S ′′, then (S ′◦S ′′) can be implemented by a tower of non-standard interpreters.

4 Towers of Non-standard Interpreters

Definition 18 (non-standard tower). Let P ′ ⊆ P, let M ∈ P, let N ,L ∈ P ′,
let S ′, S ′′ be properties for P ′, let S ′ be robust, let M -program nintL′ be an S ′-
interpreter for L in M , let L-program nintN ′′ be an S ′′-interpreter for N in L,
and let p ∈ PN , d ∈ D, then a non-standard tower is defined by application

[[nintL′]]M [[nintN ′′, [p, •]], d] .

Theorem 1 (correctness of non-standard tower). Let P ′ ⊆ P, let M ∈ P,
let N ,L ∈ P ′, let S ′, S ′′ be properties for P ′, let M -program nintL′ be an S ′-
interpreter for L in M , let L-program nintN ′′ be an S ′′-interpreter for N in L:

– If S ′ is robust then the following non-standard tower implements an (S ′◦S ′′)-
semi-dialect of N in M (cf. Fig. 1):
∀p ∈ PN , ∀d ∈ D : [[nintL′]]M [[nintN ′′, [p, •]], d] ⊆ (S ′◦S ′′).N .p.d .

2 In general, deterministic programs cannot implement all S -dialects since some di-
alects may be non-deterministic (e.g., Inv -dialects).

208 Sergei Abramov and Robert Glück

kd
?

kp
?

nintN ′′

nintL′

N

L

M

··

··
Tower implements:

S ′′any

S ′robust

··
S-semi-dialect

◦

◦

� �

�

safely
combinable

S ′ ��S ′′

··
S-dialect

Fig. 1. Two-level non-standard tower

– If S ′ is robust and safely combinable with S ′′ (S ′ �	 S ′′) then the following
non-standard tower implements an (S ′◦S ′′)-dialect of N in M (cf. Fig. 1):
∀p ∈ PN , ∀d ∈ D : [[nintL′]]M [[nintN ′′, [p, •]], d] ⊆+ (S ′◦S ′′).N .p.d .

The theorem guarantees that a non-standard tower consisting of an S ′-interpreter
nintL′ and an S ′′-interpreter nintN ′′ returns a result (if defined) that is correct
wrt S ′◦S ′′, provided property S ′ is robust. Regardless of how the two interpreters
are implemented, we obtain an implementation of (at least) an (S ′◦S ′′)-semi-
dialect. If in addition S ′ and S ′′ are safely combinable (S ′ �	S ′′), we obtain an
implementation of an (S ′◦S ′′)-dialect. In contrast to the mathematical combina-
tion of two properties (Sect. 2.2), a combination of two non-standard interpreters
requires that the source language of nintL′ and the implementation language of
nintN ′′ match (i.e. language L). This is illustrated in Fig. 1. We showed which
properties are robust (Sect. 2.1) and which are safely combinable (Sect. 2.2).

Figure 2 summarizes relation safely combinable for combinations of proper-
ties defined in Ex. 2. For TransR we assume R is a universal language. Property
Inv is not always safely combinable. While some properties S ′ and S ′′ are not
safely combinable for all languages, they may be safely combinable for some
languages. Two cases when properties are safely combinable for a subset of D:

1. Only one S ′′-dialect exists for N . For instance, for property Inv this condi-
tion is satisfied for programming languages in which all programs are injec-
tive (this is not true for all programming languages).

2. Property S ′ is total for N ′′. For example, if R is a universal programming
language in property TransR, then every source program can be translated
to R. Thus, TransR is totally defined. More formally, S ′ is a total property
for N ′′ if we have: ∀p ∈ PN , ∀d ∈ D : S ′.N ′′.p.d
= ∅.

We now examine several semantics combinations and their non-standard towers.
The results are summarized in Fig. 3. (Multi-level towers can be constructed by
repeating the construction of a two-level tower.)

4.1 Classical Interpreter Tower

Two classical results about standard interpreters can be obtained in our frame-
work using two facts: (i) property Id is robust (Sect. 2.1), and (ii) Id is safely

Combining Semantics with Non-standard Interpreter Hierarchies 209

S ′ ��S ′′ Id Inv TransQ Copy

Id Yes Yes Yes Yes

Inv Yes No No Yes

TransR
∗ Yes Yes Yes Yes

(∗)R is a universal programming language

Fig. 2. S ′ and S ′′ are safely combinable

combinable with any property S for D: Id �	S (Sect. 2.2). We also observe that
an interpreter intL is an Id -interpreter because Id |L = L is an Id -dialect of L,
and accord. to Def. 17 intL is an interpreter for this Id -dialect. Thus we have:

Corollary 1 (Id-interpreter). Let L,M ∈ P, and let M -program intL be an
interpreter for L in M , then intL is an Id-interpreter for L in M .

Id ◦ Id = Id Since we consider only deterministic programming languages,
there exists only one deterministic Id -dialect, and since Id �	 Id is safely com-
binable, we can build the following non-standard tower consisting of an L/M -
interpreter intL and an N /L-interpreters intN :

∀p ∈ PN , ∀d ∈ D : [[intL]]M [[intN , [p, •]], d] = [[p]]N d .

It is easy to see that this combination is the classical interpreter tower. The key
point is that the semantics of N is preserved by combination Id ◦ Id . Property
Id can be regarded as identity operation in the algebra of semantics combination.
Id ◦ S = S More generally, any S -interpreter nintN for N in L can be evalu-

ated in M given an Id -interpreter intL for L in M . The non-standard tower is a
faithful implementation of an S -dialect in M . Not surprisingly, an S -interpreter
can be ported from L to M using an Id -interpreter intL.

∀p ∈ PN , ∀d ∈ D : [[intL]]M [[nintN , [p, •]], d] ⊆+ S .N .p.d = [[p]]S |N d .

4.2 Semantics Modifiers

A novel application of Id -interpreters can be obtained from combination S ◦ Id .
S ◦ Id = S If property S for D is robust then S �	Id is safely combinable, and

we can write the following non-standard tower consisting of an Id -interpreter
intN for N in L and an S -interpreter nintL for L in M :

∀p ∈ PN , ∀d ∈ D : [[nintL]]M [[intN , [p, •]], d] ⊆+ S .N .p.d = [[p]]S |N d .

The equation asserts that an S -interpretation of N -programs can be performed
by combining an Id -interpreter for N in L and an S -interpreter for L. The non-
standard tower implements an S -interpreter for N . Every S -interpreter captures

210 Sergei Abramov and Robert Glück

S ′ ◦ S ′′ Id Inv TransQ Copy

Id Id Inv TransQ Copy

int-tower porting porting porting

Inv Inv Id CertQ Recog
semmod identity certifier recognizer

TransR TransR InvTransR GQ/R ArchR

semmod inverter archiver

Fig. 3. Examples of property combinations

the essence of S -computation regardless of its source language. This is radically
different from other forms of program reuse because all interpreters implementing
robust properties can be ported to new programming languages by means of Id -
interpreters. In other words, the entire class of robust properties is suited as
semantics modifiers [1]. This idea was demonstrated for the following examples.
Inv ◦ Id = Inv Since Inv is a robust property (Sect. 2.1), we can reduce the

problem of writing an Inv -interpreter for N to the simpler problem of writing
an Id -interpreter for N in L, provided an inverse interpreter for L exists. For
experimental results see [16,1,2].
TransR ◦ Id = TransR A translator is a classical example of an equivalence

transformer. Since property TransR is robust for all universal programming lan-
guages R, this equations asserts that translation from N to R can be performed
by combining a standard interpreter for N in L and a translator from L to R.
A realization of this idea are the Futamura projections [7]: it was shown [9] that
partial evaluation can implement this equation efficiently (for details see also [1]).

4.3 Non-standard Translation

TransR ◦ S = S TransR where S is a property for D and

S TransR
def=

{ (L, p, r , p′) | L ∈ D, p ∈ PL, r ∈ D ,L′ ∈ DS |L, p′ ∈ PR, [[p′]]R = [[p]]L′ }

This combination describes the semantics of translating an L-program p into a
standard R-program p′ which is functionally equivalent to p evaluated under
a deterministic S -dialect of N . In other words, non-standard computation of
p is performed by standard computation of p′ in R. We say S TransR is the
semantics of S-compilation into R. This holds regardless of S . We have already
met the case of Id -translation (Sect. 4.2). Let us examine two examples:
TransR ◦ Inv = InvTransR : semantics of an program inverter which produces

an inverse R-program p−1 given an L-program p.
TransR ◦ Copy = ArchR : semantics of an archival program which converts an
L-program p into a “self-extracting archive” written in R.

Combining Semantics with Non-standard Interpreter Hierarchies 211

4.4 Semantics Inversion

Inv ◦ S = S−1 where S is a property for D and

S = { (L, p, a, r) | L ∈ D, p ∈ PL, a ∈ D , r ∈ S .L.p.a }
S−1 = { (L, p, r , a) | L ∈ D, p ∈ PL, a ∈ D , r ∈ S .L.p.a }

The combination describes the inversion of a property S . Three examples:
Inv ◦ TransQ = CertQ : semantics of a program certifier which, given Q -prog-

ram p′ and L-programs p, verifies whether p′ is a translated version of p.
Inv ◦ Copy = Recog : semantics of a recognizer, a program checking whether

two L-programs are textually identical – a rather simple-minded semantics.
Inv ◦ Inv = Id : the inverse semantics of an inverse semantics is the Id -seman-

tics (in general they are not safely combinable and a tower of two Inv -interpreters
ensures only a semi-dialect).

5 Related Work

Interpreters are a convenient way for designing and implementing programming
languages [13,6,14,19,10]. Early operational semantics [12] and definitional inter-
preters [15] concerned the definition of one programming language using another
which, in our terms, relies on the robustness of Id -semantics.

Monadic interpreters have been studied recently to support features of a pro-
gramming language, such as profiling, tracing, and error messages (e.g., [11,18]).
These works are mostly concerned with modifying operational aspects of a par-
ticular language, rather than modifying extensional semantics properties of a
class of languages. We studied language-independent conditions for analyzing
semantics changes and provided a solid mathematical basis for their correctness.

Meta-interpreters have been used in logic programming for instrumenting
programs and for changing ways of formal reasoning [20,3]. These modifications
usually change the inference rules of the underlying logic system, and in general
do not attempt the deep semantics changes covered by our framework.

Reflective languages have been advocated to enable programs to semantically
extend the source language itself, by permitting them to run at the level of the
language implementation with access to their own context [4,8]. The reflective
tower [17] is the principle architecture of such languages. More should be known
to what extent reflective changes can be captured by robust semantics properties.

Experimental evidence for porting S -semantics via Id -interpreters (S ◦ Id)
has been given for inverse semantics (Inv) [16,1,2], and for translation semantics
(TransR) in the area of partial evaluation [9,5]. We are not aware of other work
developing mathematical foundations for a theory about semantics combinations,
but should mention related work [1] studying the subclass of semantics modifiers.

212 Sergei Abramov and Robert Glück

6 Conclusion and Future Work

The semantics conditions we identified, allow us to reason about the combination
of semantics on an abstract level without referring to a particular implementa-
tion, and to examine a large class of non-standard semantics instead of particular
instances (e.g., a specializer and a translator both implement a translation se-
mantics TransR). Our results suggest a technique for the implementation of
a certain class of programming language dialects by composing a hierarchy of
non-standard interpreters (e.g., inverse compilation by TransR ◦ Inv).

Among others, we can now answer the question raised in the introduction,
namely what it means for the semantics of a language N if the implementation
language L of its standard interpreter intN is interpreted in a non-standard
way (S ◦ Id = ?). As an example we showed that an inverse interpretation of
L implements an inverse interpreter for N (even though we have never written
an inverse interpreter for N , only a standard interpreter intN). This is possible
because Inv is a robust property that can be safely combined with Id .

For some of the properties presented in this paper, practical demonstrations
of their combination exist (e.g., Id ◦Id , TransR◦Id , Inv ◦Id). In fact, for the first
two combinations it was shown that partial evaluation is strong enough to achieve
efficient implementations. It is clear that more experimental work will be needed
to examine to what extent these and other transformation techniques can opti-
mize non-standard towers, and to what extent stronger techniques are required.
We presented a dozen property combinations. Which of these combinations will
be useful for which application is another practical question for future work.

Acknowledgements Special thanks to Neil D. Jones for suggesting a relational
semantics in an earlier version of this paper. The second author was partly
supported by an Invitation Fellowship of the Japan Society for the Promotion
of Science (JSPS). Thanks to David Sands and the four anonymous reviewers
for constructive feedback.

References

1. S. M. Abramov, R. Glück. From standard to non-standard semantics by semantics
modifiers. International Journal of Foundations of Computer Science. to appear.

2. S. M. Abramov, R. Glück. The universal resolving algorithm: inverse computation
in a functional language. In R. Backhouse, J. N. Oliveira (eds.), Mathematics of
Program Construction. Proceedings, LNCS 1837, 187–212. Springer-Verlag, 2000.

3. K. Apt, F. Turini. Meta-Logics and Logic Programming. MIT Press, 1995.
4. O. Danvy. Across the bridge between reflection and partial evaluation. In D.

Bjørner, A. P. Ershov, N. D. Jones (eds.), PEMC, 83–116. North-Holland, 1988.
5. O. Danvy, R. Glück, P. Thiemann (eds.). Partial Evaluation. Proceedings, LNCS

1110. Springer-Verlag, 1996.
6. J. Earley, H. Sturgis. A formalism for translator interactions. CACM, 13(10):607–

617, 1970.
7. Y. Futamura. Partial evaluation of computing process – an approach to a compiler-

compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

Combining Semantics with Non-standard Interpreter Hierarchies 213

8. S. Jefferson, D. P. Friedman. A simple reflective interpreter. Lisp and Symbolic
Computation, 9(2/3):181–202, 1996.

9. N. D. Jones, C. K. Gomard, P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

10. S. N. Kamin. Programming Languages: An Interpreter-Based Approach. Addison-
Wesley, 1990.

11. A. Kishon, P. Hudak. Semantics directed program execution monitoring. Journal
of Functional Programming, 5(4):501–547, 1995.

12. P. Lucas, P. Lauer, H. Stigleitner. Method and notation for the formal definition
of programming languages. Technical report, IBM Lab Vienna, 1968.

13. J. McCarthy. Recursive functions of symb. expressions. CACM, 3(4):184–195, 1960.
14. F. G. Pagan. On interpreter-oriented definitions of programming languages. Com-

puter Journal, 19(2):151–155, 1976.
15. J. C. Reynolds. Definitional interpreters for higher-order programming languages.

In ACM Annual Conference, 717–740. ACM, 1972.
16. B. J. Ross. Running programs backwards: the logical inversion of imperative com-

putation. Formal Aspects of Computing, 9:331–348, 1997.
17. B. C. Smith. Reflection and semantics in Lisp. In POPL, 23–35. ACM Press, 1984.
18. G. L. Steele. Building interpreters by composing monads. In POPL, 472–492.

ACM Press, 1994.
19. G. L. Steele, G. J. Sussman. The art of the interpreter or, the modularity complex

(parts zero, one, two). MIT AI Memo 453, MIT AI Laboratory, 1978.
20. L. Sterling, E. Shapiro. The Art of Prolog. MIT Press, 1986.

Using Modes to Ensure Subject Reduction for

Typed Logic Programs with Subtyping�

Jan–Georg Smaus1, François Fages2, and Pierre Deransart2

1 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands,
jan.smaus@cwi.nl

2 INRIA-Rocquencourt, BP105, 78153 Le Chesnay Cedex, France,
{francois.fages, pierre.deransart}@inria.fr

Abstract. We consider a general prescriptive type system with para-
metric polymorphism and subtyping for logic programs. The property of
subject reduction expresses the consistency of the type system w.r.t. the
execution model: if a program is “well-typed”, then all derivations start-
ing in a “well-typed” goal are again “well-typed”. It is well-established
that without subtyping, this property is readily obtained for logic pro-
grams w.r.t. their standard (untyped) execution model. Here we give
syntactic conditions that ensure subject reduction also in the presence
of general subtyping relations between type constructors. The idea is to
consider logic programs with a fixed dataflow, given by modes.

1 Introduction

Prescriptive types are used in logic and functional programming to restrict the
underlying syntax so that only “meaningful” expressions are allowed. This allows
for many programming errors to be detected by the compiler. Gödel [7] and
Mercury [15] are two implemented typed logic programming languages.

A natural stability property one desires for a type system is that it is con-
sistent with the execution model: once a program has passed the compiler, it
is guaranteed that “well-typed” configurations will only generate “well-typed”
configurations at runtime. Adopting the terminology from the theory of the λ-
calculus [17], this property of a typed program is called subject reduction. For
the simply typed λ-calculus, subject reduction states that the type of a λ-term
is invariant under reduction. This translates in a well-defined sense to functional
and logic programming.

Semantically, a type represents a set of terms/expressions [8, 9]. Now subtyp-
ing makes type systems more expressive and flexible in that it allows to express
inclusions among these sets. For example, if we have types int and real , we might
want to declare int ≤ real , i.e., the set of integers is a subset of the set of reals.
More generally, subtype relations such as list(u) < term make it possible to type
Prolog meta-programming predicates [5], as shown in Ex. 1.4 below and Sec. 6.

� A long version of this paper, containing all proofs, is available in [14].

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 214–226, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Using Modes to Ensure Subject Reduction for Typed Logic Programs 215

In functional programming, a type system that includes subtyping would
then state that wherever an expression of type σ is expected as an argument,
any expression having a type σ′ ≤ σ may occur. The following example explains
this informally, using an ad hoc syntax.

Example 1.1. Assume two functions sqrt : real → real and fact : int → int
which compute the square root and factorial, respectively. Then sqrt (fact 3) is
a legal expression, since fact 3 is of type int and may therefore be used as an
argument to sqrt, because sqrt expects an argument of type real , and int < real .

Subject reduction in functional programming crucially relies on the fact that
there is a clear notion of dataflow. It is always the arguments (the “input”) of a
function that may be smaller than expected, whereas the result (the “output”)
may be greater than expected. This is best illustrated by a counterexample,
which is obtained by introducing reference types.

Example 1.2. Suppose we have a function f : real ref → real defined by
let f(x) = x := 3.14; return x. So f takes a reference (pointer) to a real as
argument, assigns the value 3.14 to this real, and also return 3.14. Even though
int < real , this function cannot be applied to an int ref , since the value 3.14
cannot be assigned to an integer.

In the example, the variable x is used both for input and output, and hence
there is no clear direction of dataflow. While this problem is marginal in func-
tional programming, it is the main problem for subject reduction in logic pro-
gramming with subtypes.

Subject reduction for logic programming means that resolving a “well-typed”
goal with a “well-typed” clause will always result in a “well-typed” goal. It holds
for parametric polymorphic type systems without subtyping [9, 10].1

Example 1.3. In analogy to Ex. 1.1, suppose Sqrt/2 and Fact/2 are predicates
of declared type (Real, Real) and (Int, Int), respectively. Consider the program

Fact(3,6).
Sqrt(6,2.45).

and the derivations
Fact(3,x), Sqrt(x,y) ; Sqrt(6,y) ; 2
Sqrt(6,x), Fact(x,y) ; Fact(2.45,y)

In the first derivation, all arguments have a type that is less than or equal to the
declared type, and so we have subject reduction. In the second derivation, the
argument 2.45 to Fact has type Real, which is greater than the declared type.
The atom Fact(2.45, y) is illegal, and so we do not have subject reduction.

Here we address this problem by giving a fixed direction of dataflow to logic
programs, i.e., by introducing modes [1] and replacing unification with double
matching [2], so that the dataflow is always from the input to the output positions
in an atom. We impose a condition on the terms in the output positions, or more
1 Note however that the first formulation of subject reduction [10] was incorrect [8].

216 Jan–Georg Smaus, François Fages, and Pierre Deransart

precisely, on the types of the variables occurring in these terms: each variable
must have exactly the declared (expected) type of the position where it occurs.

In Ex. 1.3, let the first argument of each predicate be input and the second
be output. In both derivations, x has type Int. For Fact(3, x), this is exactly
the declared type, and so the condition is fulfilled for the first derivation. For
Sqrt(6, x), the declared type is Real, and so the condition is violated.

The contribution of this paper is a statement that programs that are typed
according to a type system with subtyping, and respect certain conditions con-
cerning the modes, enjoy the subject reduction property, i.e., the type system
is consistent w.r.t. the (untyped) execution model. This means that effectively
the types can be ignored at runtime, which has traditionally been considered as
desirable, although there are also reasons for keeping the types during execu-
tion [11]. In Sec. 6, we discuss the conditions on programs.

There are few works on prescriptive type systems for logic programs with
subtyping [3, 4, 5, 6, 8]. Hill and Topor [8] give a result on subject reduction
for systems without subtyping, and study general type systems with subtyp-
ing. However their results on the existence of principal typings turned out to
be wrong [3]. Beierle [3] shows the existence of principal typings for systems
with subtype relations between constant types, and provides type inference al-
gorithms. Beierle and also Hanus [6] do not claim subject reduction for their
systems. Fages and Paltrinieri [5] have shown a weak form of subject reduction
for constraint logic programs with subtyping, where equality constraints replace
substitutions in the execution model.

The idea of introducing modes to ensure subject reduction for logic programs
was proposed previously by Dietrich and Hagl [4]. However they do not study the
decidability of the conditions they impose on the subtyping relation. Furthermore
since each result type must be transparent (a condition we will define later),
subtype relations between type constructors of different arities are forbidden.

Example 1.4. Assume types Int, String and List(u) defined as usual, and a
type Term that contains all terms (so all types are subtypes of Term). Moreover,
assume Append as usual with declared type (List(u), List(u), List(u)), and a
predicate Functor with declared type (Term, String), which gives the top func-
tor of a term. In our formalism, we could show subject reduction for the query
Append([1], [], x), Functor(x, y), whereas this is not possible in [4] because the
subtype relation between List(Int) and Term cannot be expressed.

The plan of the paper is as follows. Section 2 mainly introduces the type sys-
tem. In Sec. 3, we show how expressions can be typed assigning different types
to the variables, and we introduce ordered substitutions, which are substitutions
preserving types. In Sec. 4, we show under which conditions substitutions ob-
tained by unification are indeed ordered. In Sec. 5, we show how these conditions
on unified terms can be translated into conditions on programs and derivations.

Using Modes to Ensure Subject Reduction for Typed Logic Programs 217

Table 1. The subtyping order on types

(Par) u ≤ u u is a parameter

(Constr)
τι(1)≤τ ′1 ... τι(m′)≤τ ′m′

K(τ1,...,τm)≤K ′(τ ′1,...,τ
′
m′)

K ≤ K′, ι = ιK,K′ .

2 The Type System

We use the type system of [5]. First we recall some basic concepts [1]. When we
refer to a clause in a program, we mean a copy of this clause whose variables are
renamed apart from any other variables in the context. A query is a sequence
of atoms. A query Q′ is a resolvent of a query Q and a clause h ← B if Q =
a1, . . . , am, Q′ = (a1, . . . , ak−1, B, ak+1, . . . , am)θ, and h and ak are unifiable
with MGU θ. Resolution steps and derivations are defined in the usual way.

2.1 Type Expressions

The set of types T is given by the term structure based on a finite set of con-
structors K, where with each K ∈ K an arity m ≥ 0 is associated (by writing
K/m), and a denumerable set U of parameters. A flat type is a type of the
form K(u1, . . . , um), where K ∈ K and the ui are distinct parameters. We write
τ [σ] to denote that the type τ strictly contains the type σ as a subexpression.

A type substitutionΘ is a mapping from parameters to types. The domain
of Θ is denoted by dom(Θ), the parameters in its range by ran(Θ). The set of
parameters in a syntactic object o is denoted by pars(o).

We assume an order ≤ on type constructors such that:K/m ≤ K ′/m′ implies
m ≥ m′; and, for eachK ∈ K, the set {K ′ | K ≤ K ′} has a maximum. Moreover,
we associate with each pair K/m ≤ K ′/m′ an injection ιK,K′ : {1, . . . ,m′} →
{1, . . . ,m} such that ιK,K′′ = ιK,K′ ◦ ιK′,K′′ whenever K ≤ K ′ ≤ K ′′. This
order is extended to the subtyping order on types, denoted by ≤, as the least
relation satisfying the rules in Table 1.

Proposition 2.1. If σ ≤ τ then σΘ ≤ τΘ for any type substitution Θ.

Proposition 2.2. For each type σ, the set {τ | σ ≤ τ} has a maximum, which
is denoted by Max(σ).

For Prop. 2.2, it is crucial that K/m ≤ K ′/m′ implies m ≥ m′. For example,
if we allowed for Emptylist/0 ≤ List/1, then we would have Emptylist ≤
List(τ) for all τ , and so Prop. 2.2 would not hold. Note that the possibility of
“forgetting” type parameters, as in List/1 ≤ Anylist/0, may provide solutions
to inequalities of the form List(u) ≤ u, e.g. u = Anylist. However, we have:

Proposition 2.3. An inequality of the form u ≤ τ [u] has no solution. An in-
equality of the form τ [u] ≤ u has no solution if u ∈ vars(Max(τ)).

218 Jan–Georg Smaus, François Fages, and Pierre Deransart

Table 2. The type system.

(Var) {x : τ, . . .} � x : τ

(Func)
Uti:σi σi≤τiΘ (i∈{1,...,n})
Ufτ1...τn→τ (t1,...,tn):τΘ

Θ is a type substitution

(Atom)
Uti:σi σi≤τiΘ (i∈{1,...,n})
Upτ1...τn(t1,...,tn)Atom Θ is a type substitution

(Headatom)
Uti:σi σi≤τi (i∈{1,...,n})
Upτ1...τn(t1,...,tn)Headatom

(Query)
UA1 Atom ... UAn Atom

UA1,...,An Query

(Clause)
UQ Query UA Headatom

UA←Q Clause

2.2 Typed Programs

We assume a denumerable set V of variables. The set of variables in a syntactic
object o is denoted by vars(o). We assume a finite set F (resp. P) of function
(resp. predicate) symbols, each with an arity and a declared type associated
with it, such that: for each f ∈ F , the declared type has the form (τ1, . . . , τn, τ),
where n is the arity of f , (τ1, . . . , τn) ∈ T n, τ is a flat type and satisfies the trans-
parency condition [8]: pars(τ1, . . . , τn) ⊆ pars(τ); for each p ∈ P , the declared
type has the form (τ1, . . . , τn), where n is the arity of p and (τ1, . . . , τn) ∈ T n.
The declared types are indicated by writing fτ1...τn→τ and pτ1...τn . We assume
that there is a special predicate symbol =u,u where u ∈ U .

We assume that K, F , and P are fixed by declarations in a typed program,
where the syntactical details are insignificant for our results. In examples we
loosely follow Gödel syntax [7].

A variable typing is a mapping from a finite subset of V to T , written as
{x1 : τ1, . . . , xn : τn}. The restriction of a variable typing U to the variables in
o is denoted as U�o. The type system, which defines terms, atoms etc. relative
to a variable typing U , consists of the rules shown in Table 2.

3 The Subtype and Instantiation Hierarchies

3.1 Modifying Variable Typings

We now show that if we can derive that some object is in the typed language
using a variable typing U , then we can always modify U in three ways: extending
its domain, instantiating the types, and making the types smaller.

Definition 3.1. Let U , U ′ be variable typings. We say that U is smaller or
equal U ′, denoted U ≤ U ′, if U = {x1 : τ1, . . . , xn : τn}, U ′ = {x1 : τ ′1, . . . , xn :

Using Modes to Ensure Subject Reduction for Typed Logic Programs 219

τ ′n}, and for all i ∈ {1, . . . , n}, we have τi ≤ τ ′i . We write U ′ ⊇≤ U if there exists
a variable typing U ′′ such that U ′ ⊇ U ′′ and U ′′ ≤ U .

Lemma 3.1. Let U , U ′ be variable typings and Θ a type substitution such
that U ′ ⊇≤ UΘ. If U t : σ, then U ′ t : σ′ where σ′ ≤ σΘ. Moreover, if
U A Atom then U ′ A Atom, and if U Q Query then U ′ Q Query.

3.2 Typed Substitutions

Typed substitutions are a fundamental concept for typed logic programs.

Definition 3.2. If U x1 = t1, . . . , xn = tn Query where x1, . . . , xn are dis-
tinct variables and for each i ∈ {1, . . . , n}, ti is a term distinct from xi, then
({x1/t1, . . . , xn/tn}, U) is a typed (term) substitution.

To show that applying a typed substitution preserves “well-typedness” for
systems with subtyping, we need a further condition. Given a typed substitution
(θ, U), the type assigned to a variable x by U must be sufficiently big, so that it
is compatible with the type of the term replaced for x by θ.

Example 3.1. Consider again Ex. 1.3. Taking U = {x : Int, y : Int}, we have
U x : Int, U 2.45 : Real, and hence U x = 2.45 Atom. So ({x/2.45}, U) is
a typed substitution. Now U Fact(x, y) Atom, but U � Fact(2.45, y) Atom.
The type of x is too small to accommodate for instantiation to 2.45.

Definition 3.3. A typed (term) substitution ({x1/r1, . . . , xn/rn}, U) is an or-
dered substitution if, for each i ∈ {1, . . . , n}, where xi : τi ∈ U , there exists
σi such that U ri : σi and σi ≤ τi.

We now show that expressions stay “well-typed” when ordered substitutions
are applied [8, Lemma 1.4.2].

Lemma 3.2. Let (θ, U) be an ordered substitution. If U t : σ then U tθ : σ′
for some σ′ ≤ σ. Moreover, if U A Atom then U Aθ Atom, and likewise for
queries and clauses.

4 Conditions for Ensuring Ordered Substitutions

In this section, we show under which conditions it can be guaranteed that the
substitutions applied in resolution steps are ordered substitutions.

220 Jan–Georg Smaus, François Fages, and Pierre Deransart

4.1 Type Inequality Systems

The substitution of a resolution step is obtained by unifying two terms, say t1
and t2. In order for the substitution to be typed, it is necessary that we can
derive U t1 = t2 Atom for some U . We will show that if U is, in a certain
sense, maximal, then it is guaranteed that the typed substitution is ordered.

We first formalise paths leading to subterms of a term.

Definition 4.1. A term t has the subterm t in position ε. If t = f(t1, . . . , tn)
and ti has subterm s in position ζ, then t has subterm s in position i.ζ.

Example 4.1. The term F(G(C), H(C)) has subterm C in position 1.1, but also in
position 2.1. The position 2.1.1 is undefined for this term.

Let us write t :≤ σ if there exist U and σ′ such that U t : σ′ and σ′ ≤ σ.
To derive U t1 = t2 Atom, clearly the last step has the form

U t1 : τ1 U t2 : τ2 τ1 ≤ uΘ τ2 ≤ uΘ

U t1 =u,u t2 Atom

So we use an instance (u, u)Θ of the declared type of the equality predicate,
and the types of t1 and t2 are both less then or equal to uΘ. This motivates the
following question: Given a term t such that t :≤ σ, what are the maximal
types of subterm positions of t with respect to σ?

Example 4.2. Let List/1, Anylist/0 ∈ K where List(τ) ≤ Anylist for all τ ,
and Nil→List(u), Consu,List(u)→List(u) ∈ F . Consider the term [x, [y]] (in usual
list notation) depicted in Fig. 1, and let σ = Anylist. Each functor in [x, [y]] is
introduced using Rule (Func). E.g., any type of Nil in position 2.1.2 is necessarily
an instance of List(u2.1.2), its declared type.2 To derive that Cons(y, Nil) is a
typed term, this instance must be smaller than some instance of the second
declared argument type of Cons in position 2.1, i.e., List(u2.1).

So in order to derive that [x, [y]] is a term of a type smaller than Anylist,
we need an instantiation of the parameters such that for each box (position),
the type in the lower subbox is smaller than the type of the upper subbox.

We see that in order for t :≤ σ to hold, a solution to a certain type
inequality system (set of inequalities between types) must exist.

Definition 4.2. Let t be a term and σ a type such that t :≤ σ. For each
position ζ where t has a non-variable subterm, we denote the function in this
position by f ζ

τζ
1 ,...,τζ

nζ→τζ
(assuming that the parameters in τζ

1 , . . . , τ
ζ
nζ , τ

ζ are

fresh, say by indexing them with ζ). For each variable x ∈ vars(t), we introduce
a parameter ux (so ux �∈ pars(σ)). The type inequality system of t and σ is

I(t, σ) = {τ ε ≤ σ} ∪ {τζ.i ≤ τζ
i | Position ζ.i in t is non-variable} ∪

{ux ≤ τζ
i | Position ζ.i in t is variable x}.

2 We use the positions as superscripts to parameters in order to obtain fresh copies.

Using Modes to Ensure Subject Reduction for Typed Logic Programs 221

y
uy
u2.1

Nil
List(u2.1.2)

List(u2.1)
�
�
��

P
P
PP

Cons
List(u2.1)

u2

Nil
List(u2.2)

List(u2)
�
�
��

P
P

PP

x
ux
uε

Cons
List(u2)

List(uε)
�
�
��

P
P
PP

Cons
List(uε)

Anylist

Fig. 1. The term [x, [y]] and associated inequalities

A solution of I(t, σ) is a type substitution Θ such that dom(Θ) ∩ pars(σ) = ∅
and for each τ ≤ τ ′ ∈ I(t, σ), the inequality τΘ ≤ τ ′Θ holds. A solution Θ to
I(t, σ) is principal if for every solution Θ̃ for I(t, σ), there exists a Θ′ such that
for each τ ≤ τ ′ ∈ I(t, σ), we have τΘ̃ ≤ τΘΘ′ and τ ′Θ̃ ≤ τ ′ΘΘ′.

Proposition 4.1. Let t be a term and σ a type. If U t :≤ σ for some variable
typing U , then there exists a solution Θ for I(t, σ) (called the solution for
I(t, σ) corresponding to U) such that for each subterm t′ in position ζ in t,
we have U t′ : τζΘ if t′ �∈ V , and U t′ : ut′Θ if t′ ∈ V .

In the next subsection, we present an algorithm, based on [5], which com-
putes a principal solution to a type inequality system, provided t is linear. In
Subsec. 4.3, our interest in principal solutions will become clear.

4.2 Computing a Principal Solution

The algorithm transforms the inequality system, thereby computing bindings to
parameters which constitute the solution. It is convenient to consider system of
both inequalities, and equations of the form u = τ . The inequalities represent
the current type inequality system, and the equalities represent the substitution
accumulated so far. We use 5 for ≤ or =.

Definition 4.3. A system is left-linear if each parameter occurs at most once
on the left hand side of an equation/inequality. A system is acyclic if it does
not have a subset {τ1 5 σ1, ..., τn 5 σn} with pars(σi) ∩ pars(τi+1) �= ∅ for all
1 ≤ i ≤ n− 1, and pars(σn) ∩ pars(τ1) �= ∅.

Proposition 4.2. If t is a linear term, then any inequality system I(t, σ) is
acyclic and left-linear.

222 Jan–Georg Smaus, François Fages, and Pierre Deransart

By looking at Ex. 4.2, it should be intuitively clear that assuming linearity
of t is crucial for the above proposition.

We now give the algorithm. A solved form is a system I containing only
equations of the form I = {u1 = τ1, ..., un = τn} where the parameters ui are all
different and have no other occurrence in I.

Definition 4.4. Given a type inequality system I(t, σ), where t is linear, the
type inequality algorithm applies the following simplification rules:

(1) {K(τ1, ..., τm) ≤ K ′(τ ′1, ..., τ ′m′)} ∪ I −→ {τι(i) ≤ τ ′i}i=1,..,m′ ∪ I
if K ≤ K ′ and ι = ιK,K′

(2) {u ≤ u} ∪ I −→ I
(3) {u ≤ τ} ∪ I −→ {u = τ} ∪ I[u/τ]

if τ �= u, u �∈ vars(τ).
(4) {τ ≤ u} ∪ I −→ {u =Max(τ)} ∪ I[u/Max(τ)]

if τ �∈ V , u �∈ vars(Max(τ)) and u �∈ vars(l) for any l ≤ r ∈ Σ.

Intuitively, left-linearity of I(t, σ) is crucial because it renders the binding of
a parameter (point (3)) unique.

Proposition 4.3. Given a type inequality system I(t, σ), where t is linear, the
type inequality algorithm terminates with either a solved form, in which case
the associated substitution is a principal solution, or a non-solved form, in which
case the system has no solution.

4.3 Principal Variable Typings

The existence of a principal solution Θ of a type inequality system I(t, σ) and
Prop. 4.1 motivate defining the variable typing U such that Θ is exactly the
solution of I(t, σ) corresponding to U .

Definition 4.5. Let t :≤ σ, and Θ be a principal solution of I(t, σ). A
variable typing U is principal for t and σ if U ⊇ {x : uxΘ | x ∈ vars(t)}.

By the definition of a principal solution of I(t, σ) and Prop. 4.1, if U is a
principal variable typing for t and σ, then for any U ′ such that U ′(x) > U(x)
for some x ∈ vars(t), we have U ′ � t :≤ σ.

The following key lemma states conditions under which a substitution ob-
tained by unifying two terms is indeed ordered.

Lemma 4.4. Let s and t be terms, s linear, such that U s :≤ ρ, U t :≤ ρ,
and there exists a substitution θ such that sθ = t. Suppose U is principal for s
and ρ. Then there exists a type substitution Θ such that for U ′ = UΘ�vars(s)

∪U�V\vars(s), we have that (θ, U ′) is an ordered substitution.

Using Modes to Ensure Subject Reduction for Typed Logic Programs 223

Example 4.3. Consider the term vectors (since Lemma 4.4 generalises in the
obvious way to term vectors) s = (3, x) and t = (3, 6), let ρ = (Int, Int) and
Us = {x : Int}, Ut = ∅ (see Ex. 1.3). Note that Us is principal for s and ρ, and
so ({x/6}, Us ∪ Ut) is an ordered substitution (Θ is empty).

In contrast, let s = (6, x) and t = (6, 2.45), let ρ = (Real, Real) and Us = {x :
Int}, Ut = ∅. Then Us is not principal for s and ρ (the principal variable typing
would be {x/Real}), and indeed, there exists no Θ such that ({x/2.45}, UsΘ∪Ut)
is an ordered substitution.

5 Nicely Typed Programs

So far we have seen that matching, linearity, and principal variable typings are
crucial to ensure that unification yields ordered substitutions. Note that those
results generalise in the obvious way from terms to term vectors. We now define
three corresponding conditions on programs and the execution model.

First, we define modes [1]. For p/n ∈ P , a mode is an atom p(m1, . . . ,mn),
wheremi ∈ {I ,O} for i ∈ {1, . . . , n}. Positions with I (resp. O) are called input
(resp. output) positions of p. We assume that a mode is associated with each
p ∈ P . The notation p(s̄, t̄) means that s̄ (resp. t̄) is the vector of terms filling
the input (resp. output) positions of p(s̄, t̄). Moded unification is a special case
of double matching [2].

Definition 5.1. Consider a resolution step where p(s̄, t̄) is the selected atom
and p(w̄, v̄) is the renamed apart clause head.The equation p(s̄, t̄) = p(w̄, v̄) is
solvable by moded unification if there exist substitutions θ1, θ2 such that
w̄θ1 = s̄ and vars(t̄θ1) ∩ vars(v̄θ1) = ∅ and t̄θ1θ2 = v̄θ1. A derivation where all
unifications are solvable by moded unification is a moded derivation.

Definition 5.2. A query Q = p1(s̄1, t̄1), . . . , pn(s̄n, t̄n) is nicely moded if
t̄1, . . . , t̄n is a linear vector of terms and for all i ∈ {1, . . . , n}

vars(s̄i) ∩
n⋃

j=i

vars(t̄j) = ∅. (1)

The clause C = p(t̄0, s̄n+1)← Q is nicely moded if Q is nicely moded and

vars(t̄0) ∩
n⋃

j=1

vars(t̄j) = ∅. (2)

An atom p(s̄, t̄) is input-linear if s̄ is linear, output-linear if t̄ is linear.

Definition 5.3. Let C = pτ̄0,σ̄n+1(t̄0, s̄n+1) ← p1σ̄1,τ̄1
(s̄1, t̄1), . . . , pn

σ̄n,τ̄n
(s̄n, t̄n)

be a clause. If C is nicely moded, t̄0 is input-linear, and there exists a variable
typing U such that U C Clause, and for each i ∈ {0, . . . , n}, U is principal for
t̄i and τ̄ ′i , where τ̄

′
i is the instance of τ̄i used for deriving U C Clause, then

we say that C is nicely typed. A query UQ : Q is nicely typed if the clause
Go← Q is nicely typed.

224 Jan–Georg Smaus, François Fages, and Pierre Deransart

We can now state the main result.

Theorem 5.1. Let C and Q be a nicely typed clause and query. If Q′ is a
resolvent of C and Q where the unification of the selected atom and the clause
head is solvable by moded unification, then Q′ is nicely typed.

Example 5.1. Consider again Ex. 1.3. The program is nicely typed, where the
declared types are given in that example, and the first position of each predicate
is input, and the second output. Both queries are nicely moded. The first query is
also nicely typed, whereas the second is not (see also Ex. 4.3). For the first query,
we have subject reduction, for the second we do not have subject reduction.

6 Discussion

In this paper, we have proposed criteria for ensuring subject reduction for typed
logic programs with subtyping under the untyped execution model. Our starting
point was a comparison between functional and logic programming: In functional
programs, there is a clear notion of dataflow, whereas in logic programming,
there is no such notion a priori, and arguments can serve as input arguments
and output arguments. This difference is the source of the difficulty of ensuring
subject reduction for logic programs.

It is instructive to divide the numerous conditions we impose into four classes:
(1) “basic” type conditions on the program (Sec. 2), (2) conditions on the ex-
ecution model (Def. 5.1), (3) mode conditions on the program (Def. 5.2), (4)
“additional” type conditions on the program (Def. 5.3).

Concerning (1), our notion of subtyping deserves discussion. Approaches dif-
fer with respect to conditions on the arities of type constructors for which there is
a subtype relation. Beierle [3] assumes that the (constructor) order is only defined
for type constants, i.e. constructors of arity 0. Thus we could have Int ≤ Real,
and so by extension List(Int) ≤ List(Real), but not List(Int) ≤ Tree(Real).
Many authors assume that only constructors of the same arity are comparable.
Thus we could have List(Int) ≤ Tree(Real), but not List(Int) ≤ Anylist.
We assume, as [5], that if K/m ≤ K ′/m′, then m ≥ m′. We think that this
choice is crucial for the existence of principal types.

Stroetmann and Glaß [16] argue that comparisons between constructors of
arbitrary arity should be allowed in principle. Their formalism is such that the
subtype relation does not automatically correspond to a subset relation. Never-
theless, the formalism heavily relies on such a correspondence, although it is not
said how it can be decided. We refer to [14] for more details.

Technically, what is crucial for subject reduction is that substitutions are
ordered: each variable is replaced with a term of a smaller type. In Section 4, we
gave conditions under which unification of two terms yields an ordered substitu-
tion: the unification is a matching, the term that is being instantiated is linear
and is typed using a principal variable typing. The linearity requirement ensures
that a principle variable typing exists and can be computed (Subsec. 4.2).

Using Modes to Ensure Subject Reduction for Typed Logic Programs 225

In Sec. 5, we showed how those conditions translate to conditions on the pro-
gram and the execution model. We introduce modes and assume that programs
are executed using moded unification (2). This might be explicitly enforced by
the compiler, or it might be verified statically [2]. Moded unification can actually
be very beneficial for efficiency, as witnessed by the language Mercury [15]. Apart
from that, (3) nicely-modedness states the linearity of the terms being instan-
tiated in a unification. Finally, (4) nicely-typedness states that the instantiated
terms must be typed using a principal variable typing.

Nicely-modedness has been widely used for verification purposes (e.g. [2]). In
particular, the linearity condition on the output arguments is natural: it states
that every piece of data has at most one producer. Input-linearity of clause heads
however can sometimes be a demanding condition [13, Section 10.2].

Note that introducing modes into logic programming does not mean that
logic programs become functional. The aspect of non-determinacy (possibility of
computing several solutions for a query) remains.

Even though our result on subject reduction means that it is possible to
execute programs without maintaining the types at runtime, there are circum-
stances where keeping the types at runtime is desirable, for example for memory
management, printing, or in higher-order logic programming where the existence
and shape of unifiers depends on the types [11].

There is a relationship between our notion of subtyping and transparency (see
Subsec. 2.2). Transparency ensures that two terms of the same type have identical
types in all corresponding subterms, e.g. if [1] and [x] are both of type List(Int),
we are sure that x is of type Int. Now in a certain way, allowing for a subtyp-
ing relation that “forgets” parameters undermines transparency. For example,
we can derive {x : String} [x] = [1] Atom, since List(String) ≤ Anylist
and List(Int) ≤ Anylist, even though Int and String are incomparable. We
compensate for this by requiring principal variable typings. A principal variable
typing for [x] and Anylist contains {x : ux}, and so ux can be instantiated to
Int. Our intuition is that whenever this phenomenon (“forgetting” parameters)
occurs, requiring principal variable typings is very demanding; but otherwise,
subject reduction is likely to be violated. As a topic for future work, we want to
substantiate this intuition by studying examples.

Acknowledgements. We thank Erik Poll and François Pottier for interesting dis-
cussions. Jan-Georg Smaus was supported by an ERCIM fellowship.

References

[1] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of MFCS, LNCS, pages
1–19. Springer-Verlag, 1993.

[3] C. Beierle. Type inferencing for polymorphic order-sorted logic programs. In
L. Sterling, editor, Proceedings of ICLP, pages 765–779. MIT Press, 1995.

226 Jan–Georg Smaus, François Fages, and Pierre Deransart

[4] R. Dietrich and F. Hagl. A polymorphic type system with subtypes for Prolog. In
H. Ganzinger, editor, Proceedings of ESOP, LNCS, pages 79–93. Springer-Verlag,
1988.

[5] F. Fages and M. Paltrinieri. A generic type system for CLP(X). Technical report,
Ecole Normale Supérieure LIENS 97-16, December 1997.

[6] M. Hanus. Logic Programming with Type Specifications, chapter 3, pages 91–140.
MIT Press, 1992. In [12].

[7] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, 1994.
[8] P. M. Hill and R. W. Topor. A Semantics for Typed Logic Programs, chapter 1,

pages 1–61. MIT Press, 1992. In [12].
[9] T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the

Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda, editors, Proceedings
of ILPS, pages 202–217. MIT Press, 1991.

[10] A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295–307, 1984.

[11] G. Nadathur and F. Pfenning. Types in Higher-Order Logic Programming, chap-
ter 9, pages 245–283. MIT Press, 1992. In [12].

[12] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.
[13] J.-G. Smaus. Modes and Types in Logic Programming. PhD thesis, University of

Kent at Canterbury, 1999.
[14] J.-G. Smaus, F. Fages, and P. Deransart. Using modes to ensure subject reduction

for typed logic programs with subtyping. Technical report, INRIA, 2000. Available
via CoRR: http://arXiv.org/archive/cs/intro.html.

[15] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury, an efficient purely declarative logic programming language. Journal of Logic
Programming, 29(1–3):17–64, 1996.

[16] K. Stroetmann and T. Glaß. A semantics for types in Prolog: The type system
of pan version 2.0. Technical report, Siemens AG, ZFE T SE 1, 81730 München,
Germany, 1995.

[17] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.

Dynamically Ordered Probabilistic Choice Logic
Programming

Marina De Vos� and Dirk Vermeir

Dept. of Computer Science
Free University of Brussels, VUB

Pleinlaan 2, Brussels 1050, Belgium
{marinadv,dvermeir}@.vub.ac.be

http://tinf2.vub.ac.be

Abstract. We present a framework for decision making under uncertainty where
the priorities of the alternatives can depend on the situation at hand. We design a
logic-programming language, DOP-CLP, that allows the user to specify the static
priority of each rule and to declare, dynamically, all the alternatives for the de-
cisions that have to be made. In this paper we focus on a semantics that reflects
all possible situations in which the decision maker takes the most rational, possi-
bly probabilistic, decisions given the circumstances. Our model theory, which is a
generalization of classical logic-programming model theory, captures uncertainty
at the level of total Herbrand interpretations. We also demonstrate that DOP-CLPs
can be used to formulate game theoretic concepts.

1 Introduction

Reasoning with priorities and reasoning under uncertainty play an important role in
human behavior and knowledge representation. Recent research has been focused on
either priorities, [14, 8, 6]1, or uncertainty, [10, 9, 12, 1] and many others.

We present a framework for decision making under uncertainty where the priorities
of the alternatives depend on the different (probabilistic) situations. This way we obtain
a semantics that reflects all possible situations in which the most rational (probabilis-
tic) decisions are made, given the circumstances. The basic idea for the framework, a
logic programming language called “Dynamically Ordered Probabilistic Choice Logic
Programming” or DOP-CLP for short, incorporates the intuition behind both ordered
logic programs ([8]) and choice logic programs ([4, 5]). The former models the abil-
ity of humans to reason with defaults2 in a logic programming context, using a static
ordering of the rules in the program. This works well, as long as probabilities stay out
of the picture, but once they are present something extra is needed to express order.
Take the famous “Tweety example” for instance: if you are sure that Tweety is indeed
a penguin, you should derive that she cannot fly. But suppose you believe for only 30%

� Wishes to thank the FWO for its support.
1 [8] uses the word order instead of priority.
2 Intuitively, something is true by default unless there is evidence to the contrary.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 227–239, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

228 Marina De Vos and Dirk Vermeir

that the bird you are holding is indeed a penguin. Is it then sensible to derive that she is
a non-flying bird?
By also taking into account the probabilities of the antecedents of the rules, in addition
to their static order, we can overcome this problem. This leads to a dynamic ordering
of rules, where the priority of a rule depends on the actual situation.

We aim for a decision making framework that allows decisions to have possibly
more than two alternatives, as in the case of ordered logic3. To accomplish this, we turn
to a variant of Choice Logic Programs[4, 5], in which the possible alternatives for the
decisions are described by choice rules. This approach has two nice side effects. First
of all, there is not necessarily a partition of the Herbrand base: atoms can belong to
more than one decision or to no decision at all. In the former case, there is a probability
distribution over the various alternatives. In the latter case, an atom is either true or
false, as in classical logic programming. The second advantage of our approach is that
we allow a “lazy” evaluation of the alternatives which become active only when they
are present in the head of an applicable choice rule.

An interesting application of DOP-CLP is Game Theory. We provide a transforma-
tion from strategic games to DOP-CLPs such that a one-to-one mapping is established
between the mixed strategy Nash Equilibria of the game and the stable models of its
corresponding DOP-CLP.

2 Dynamically Ordered Probabilistic Choice Logic Programs

In this paper, we identify a program with its grounded version, i.e. the set of all ground
instances of its clauses. In addition we do not allow function symbols (i.e. we stick to
datalog) so the number of literals is finite.

Definition 1. A Dynamically Ordered Probabilistic Choice Logic Program, or DOP-
CLP for short, is a finite set of rules of the form A ←p B , where A and B are
(possibly empty) sets of atoms and p ∈ R+ . For a rule r ∈ P , the set A is called the
head, denoted Hr, while the set B is called the body of the rule r, denoted Br. The
p ∈ R+ denotes the priority this rule. A rule without a priority number has an infinite
priority . We will denote the priority of rule r as ρ(r). The Herbrand base of P , denoted
BP , is the set of all atoms appearing in P .

A rule H ←p B can be read as:

”The occurrence of the events in B forces a probabilistic decision be-
tween the elements h ∈ H and supports each h with a priority p.”

This means that rules with more than one head atom express no preference among the
different alternatives they create.

The priority of a rule r, ρ(r), indicates the maximal impact of the situation, de-
scribed by the events of the body, on the preference of the head atom over the other
alternatives. The dynamic priority of a rule, which we will define later, adjusts this im-
pact according to the probability of the situation described in the body. By combining

3 In ordered logic the two alternatives are represented using negation.

Dynamically Ordered Probabilistic Choice Logic Programming 229

all the dynamic priorities of rules sharing a common head atom, we obtain an evalua-
tion of the total impact on that atom which can then be used for comparison with other
alternatives.

Example 1 (Jakuza). A young member of the Jakuza, the Japanese Mafia, is faced with
his first serious job. It will be his duty to control a new victim. Since it is his first job, he
goes to his oyabun, head of his clan and mentor, for advice. He tells him that the Jakuza
has three methods for controlling its victims: blackmail, intimidation and bribing. The
victim can either give in immediately or can put up a stand. In the latter case, she does
this by just ignoring the threats of the organization or she can threaten to go to the
police. The oyabun is only able to give some information about previous encounters,
which still needs to be interpreted in the current situation. So he starts telling about
his previous successes. “Every time when I knew that the victim was willing to give
in, I resorted to intimidation as this is the easiest technique and each time it worked
perfectly. In case we would know that the victim was planning to stand up to us, we
looked in to the possibility of bribing. Nine out of ten times, we were successful when
we just offered enough money. If you are sure that the victim will run to the police from
the moment that you approach him, you have to try to bribe her. Unfortunately this
technique worked only 4 times out of 10. When your victim tries to ignore you, you
should find something to blackmail her with. However, finding something interesting is
not that easy as reflected by a success rate of 3 out of 10 times.
So now it is up to you to make a good estimation of the victim’s reaction in order to
succeed with your assignment.”

All this information can easily be represented as the next DOP-CLP:

jakuza ←
blackmail ⊕ intimidate ⊕ bribe ←0 jakuza

stand − up ⊕ give − in ←0

ignore ⊕ police ←0 stand − up
intimidate ←10 give − in

bribe ←4 police
blackmail ←3 ignore

enough ⊕more ←0 stand − up
bribe ←9 enough

An interpretation assigns a probability distribution over every state of affairs4.

Definition 2. Let P be a DOP-CLP. A (probabilistic) interpretation is a probability
distribution I : 2BP → [0..1] .

In our examples, we will mention only the probabilities of those states that have a
positive probability in the interpretation.

4 Each state corresponds to a total interpretation of the choice logic program obtained from P
by omitting the priorities. Because we are working with total interpretations we only have to
mention the positive part of the interpretation.

230 Marina De Vos and Dirk Vermeir

Example 2. Recall the Jakuza program of Example 1. The following functions I, J and
K are interpretations for this program5:

I({j, br, s, ig, e}) = 1
4 J({j, in, p, e, s}) = 3

20 K({j, bl, s, ig, e}) = 30
441

I({j, br, s, ig,m}) = 5
12 J({j, in, p,m, g}) = 7

10 K({j, bl, s, ig,m}) = 240
441

I({j, br, s, ig}) = 1
6 J({j, in, p,m, s}) = 2

20 K({j, bl, s, p, e}) = 12
441

I({j, br, s, p}) = 1
24 J({j, br, p,m, s}) = 1

20 K({j, bl, s, p,m}) = 96
441

I({j, br, s,m}) = 1
8 K({j, bl, g, ig, e}) = 5

441

K({j, bl, g, ig,m}) = 40
441

K({j, bl, g, p, e}) = 2
441

K({j, bl, g, p,m}) = 16
441

Given an interpretation, we can compute the probability of a set of atoms, as the
sum of the probabilities assigned to those situations which contain this set of atoms.

Definition 3. Let I be a interpretation for a DOP-CLP P . The probability of set A ⊆
BP , denoted ϑI(A)6, is ϑI(A) =

∑
A⊆Y ⊆BP

I(Y) .

In choice logic programs, the basis of DOP-CLP, a rule is applicable when the body
is true, and is applied when both the body and a single head atom are true. This situation
becomes more tricky when probabilities come into play. Applicability is achieved when
the body has a non-zero probability. In order for a rule to be applied it must be applica-
ble. In addition, we demand that at least one head element has a chance of happening
and that no two of them can happen simultaneously.

Definition 4. Let I be a interpretation for a DOP-CLP P .

1. A rule r ∈ P is called applicable iff ϑI(Br) > 0.
2. An applicable rule r ∈ P is applied iff ∃a ∈ Hr · ϑI(a) > 0 and ∀S ∈ 2Hr with
|S| > 1 : ϑI(S) = 0 .

We have been referring to alternatives of decisions without actually defining them.
Two atoms are alternatives if they appear together in the head of an applicable choice
rule. Alternatives are thus dynamic, since the applicability of the rules depends on the
interpretation.

Definition 5. Let I be a interpretation for a DOP-CLP P .

– Two atoms a, b ∈ BP are alternatives wrt I iff ∃ applicable r ∈ P · {a, b} ⊆ Hr.
– The set of all alternatives of an atom a ∈ BP wrt I is denoted ΩI(a)7.
– A set D ⊆ BP is a maximal alternative set wrt I iff ∀a, b ∈ D · a and b are alter-

natives and ∀c /∈ D · ∃a ∈ D · a and c are no alternatives.
– ∆I is the set of all maximal alternative sets wrt I .
– An atom a ∈ BP is called single iff ΩI(a) = a .

5 For brevity, the names of the atoms are abbreviated.
6 When the set A contains just one element a we omit the brackets and write ϑI(a).
7 Notice that a ∈ ΩI(a). The set ΩI(a) \ {a}, denoted Ω−

I (a), is the set of all alternatives of a
excluding itself.

Dynamically Ordered Probabilistic Choice Logic Programming 231

A naive approach to defining a probability distribution is to insist that the sum of
probabilities of the multiple elements in the head of a choice rule must be one. This
approach fails in situations of the following kind:

a⊕ b⊕ c←0 . . .
a⊕ b←4 . . .

. . .

In this situation, the atom c would not stand a chance of obtaining a positive probability,
although this might be the most favorable alternative.
To overcome this problem, we introduced maximum alternative sets. They group all the
atoms that have an alternative relation with each other. It is those sets that will be used
for the probability distribution. In the next definition we call an interpretation total if
it defines a probability distribution in which the probabilities of the elements of any
maximal alternative set add up to one. Furthermore, for all decisions that need to be
made, an alternative is selected for every possible outcome.

Definition 6. A interpretation I for a DOP-CLP P is called total iff ∀D ∈ ∆I,

–
∑

a∈D ϑI(a) = 1, and

– ∀A ⊆ BP such that ϑI(A) > 0 · |A ∩D| = 1 .

Example 3. Reconsider the Jakuza program of Example 1 and the interpretations of
Example 2. The interpretation I is not total. Indeed, consider the maximal alternative
set {ig, p}. We have {ig, p}∩{br, j, s,m} = ∅, while I({br, j, s,m}) > 0, and ϑI(ig)+
ϑI(p) = 5/6 + 1/12 �= 1. The interpretations J and K are total.

As we mentioned earlier, the dynamic priority of a rule adjusts the (static) prefer-
ence of the rule to the probability that this situation might actually occur. It does this
by giving the maximal contribution of the body atoms to the general preference of the
head atoms. The dynamic priority of an atom is obtained by taking into account every
real contribution of any situation that provides a choice for this atom.

Definition 7. Let I be an interpretation for a DOP-CLP P . The dynamic priority of a
rule r ∈ P , denoted �I(r), equals �I(r) = ρ(r) ∗ ϑI(Br) .
The dynamic priority of an atom a ∈ BP , denoted �I(a), is �I(a) =

∑
r∈P :a∈Hr

�I(r).

The dynamic priority will be used to determine which alternatives of a decision are
eligible candidates and which ones are not. An atom is said to be blocked if there exists
an alternative which has higher dynamic priority. Preferred atoms are those that block
every other alternative. The competitors of an atom are those alternatives which are not
blocked by this atom. Their dynamic priority is thus at least as high as that of the atom.

Definition 8. Let I be an interpretation for a DOP-CLP P . An atom a ∈ BP is blocks
by b ∈ Ω−

I (a) w.r.t. I iff �I(b) > �I(a) .
An atom a ∈ BP is called preferred in I iff ∀b ∈ Ω−

I (a) · �I(a) > �I(b) .
The atom a is a competitor of the atom b ∈ Ω−

I (a) w.r.t. I if b does not block a w.r.t I.

232 Marina De Vos and Dirk Vermeir

In standard logic programming an interpretation is a model if every rule is either
not applicable or applied. When priorities are involved, in order for an interpretation to
become a model, it must be possible to assign a zero-probability to atoms which have a
more favorable alternative with non-zero probability.

Definition 9. Let I be an interpretation for the DOP-CLP P . I is a model for P iff
∀r ∈ P :

– ϑI(Br) = 0, i.e. r is not applicable, or
– r is applied, or
– ∀a ∈ Hr · ∃b competitor of aw.r.t.I · ϑI(b) > 0 .

Example 4. Consider again the Jakuza program of Example 1 and its interpretations of
Example 2. The interpretation I is not a model, since the rule blackmail ←10 ignore
does not satisfy any of the above conditions. This rule is applicable, since ϑI(ignore) =
5/6; it is not applied, since ϑI(blackmail) = 0; it does not have any competitors since
�I(blackmail) = 5/2 while �I(intimidate) = 0 and �I(bribe) = 29/12. The interpre-
tations J and K are both models.

Proposition 1. Let P be a DOP-CLP and let I be a model for it. If a ∈ BP is a
preferred atom then ∃r ∈ P : a ∈ Hr · r is applied .

In some cases, atoms receive a probability which they actually do not deserve. This
happens when there is some better qualified alternative (i.e., an alternative that has
a higher dynamic priority) that should obtain this probability. Such atoms are called
assumptions, since they were just ”assumed” to have a chance of happening.

Definition 10. Let I be an interpretation for a DOP-CLP P . An atom a ∈ BP is
called an assumption w.r.t. I iff ϑI(a) > 0 when either a is blocked or a is single and
�I(a) = 0. I is assumption-free iff it contains no assumptions.

Example 5. Consider once more the Jakuza program of Example 1 and its interpreta-
tions in Example 2. The interpretation J is not assumption-free, as ϑJ(intimidate) > 0
and the alternative bribe blocks intimidate , since �J(bribe) = 4 + 27/20 > 3.5 =
�J(intimidate). Intuitively, because bribing is more successful than intimidation, in-
timidation should not be considered at all. The interpretation K is assumption-free.

Proposition 2. Let P be a DOP-CLP and let I be a total assumption-free interpretation
for P . If a ∈ BP is a preferred atom then ∃r ∈ P : a ∈ Hr · r is applied and ϑI(a) =
1 .

Interpretations evaluate the likelihood of every possible outcome, by assigning a
probability distribution to every situation. These probabilities are influenced by the
atoms which are present in each situation. In order to quantify this influence one must
know whether the events which occur in any such interpretation are independent of
each other. An interpretation which assumes that there is no inter-dependence between
atoms, is said to be “independent”, as follows:

Dynamically Ordered Probabilistic Choice Logic Programming 233

Definition 11. Let I be an interpretation for a DOP-CLP P . We say that I is indepen-
dent iff ∀A ⊆ BP :

– ϑI(A) = 0, or
– ∀D ∈ ∆I s.t |D ∩A| ≤ 1 · ϑI(A) =

∏
a∈A ϑI(a) .

Example 6. Consider the interpretations J and K of Example 2. The interpretation J
is not independent as ϑJ({y, in, p, e, s}) = 3/20 �= ϑJ(y) ∗ ϑJ(in) ∗ ϑJ(p) ∗ ϑJ(e) ∗
ϑJ(s) = 1 ∗ 19/20 ∗ 1 ∗ 3/20 ∗ 8/20. The interpretation K is independent.

Definition 12. Let P be a DOP-CLP. A total independent assumption-free model is
said to be stable. A stable model is crisp if it assigns probability one to a single subset
of the Herbrand base.

Example 7. For the last time we return to the Jakuza example and its three interpreta-
tions I,J and K from Example 2. Combining the results from Examples 3, 4, 5 and 6,
we can conclude that K is the only stable model of the three.

A stable model for the Jakuza example represents a rational choice where the proba-
bility of the action is consistent with the estimates on the victim’s reactions. In general,
stable models reveal all possible situations in which the decisions are made rationally,
considering the likelihood of the events that would force such decisions.

3 An Application of DOP-CLPs: Equilibria of Strategic Games

3.1 Strategic Games

A strategic game models a situation where several agents (called players) independently
choose which action they should take, out of a limited set of possibilities. The result of
the actions is determined by the combined effect of the choices made by each of the
players. Players have a preference for certain outcomes over others. Often, preferences
are modeled indirectly using the concept of payoff where players are assumed to prefer
outcomes where they receive a higher payoff.

Example 8 (Bach or Stravinsky). Two people wish to go out together to a music concert.
They have a choice between a Bach or Stravinsky concert. Their main concern is to be
together, but one person prefers Bach and the other prefers Stravinsky. If they both
choose Bach then the person who preferred Bach gets a payoff of 2 and the other a
payoff of 1. If both go for Stravinsky, it is the other way around. If they pick different
concerts, they both get a payoff of zero.
The game is represented in Fig. 1. One player’s actions are identified with the rows and
the other player’s with the columns. The two numbers in the box formed by row r and
column c are the players’ payoffs when the row player chooses r and the column player
chooses c. The first of the two numbers is the payoff of the row player.

234 Marina De Vos and Dirk Vermeir

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Fig. 1. Bach or Stravinsky (BoS)

Definition 13 ([11]). A strategic game is a tuple 〈N, (Ai), (ui)〉 where

– N is a finite set of players;
– for each player i ∈ N , Ai is a nonempty set of actions that are available to her 8

and,
– for each player i ∈ N , ui : A = ×j∈NAj → R is a utility function which

describes the players’ preferences.

An element a ∈ A is called a profile. For a profile a we use ai to denote the component
of a in Ai. For any player i ∈ N , we define A−i = ×j∈N\{i}Aj . Similarly, an element
of A−i will often be denoted as a−i. For any a−i ∈ A−i and ai ∈ Ai, (a−i, ai) is the
profile a′ ∈ A in which a′

i = ai and a′
j = aj for all j �= i.

A game 〈N, (Ai), (ui)〉 is played when each player i ∈ N selects a single action
from the set Ai of actions available to her. Since players are thought to be rational, it is
assumed that a player will select an action that, to the best of her knowledge, leads to
a “preferred” profile. Of course, this is limited by the fact that she must decide without
knowing what the other players will choose.

The notion of Nash equilibrium shows that, in many cases, it is possible to limit the
possible outcomes (profiles) of the game.

Definition 14 ([11]). A Nash equilibrium of a strategic game 〈N, (Ai), (ui)〉 is a pro-
file a∗ satisfying ∀ai ∈ Ai · (a∗

−i, a
∗
i) ≥i (a∗

−i, ai) .

Intuitively, a profile a∗ is a Nash equilibrium if no player can unilaterally improve
upon his choice. This means that, given the other players’ actions a∗

−i, a∗
i is the best

player i can do9.
Although the notion of Nash equilibrium is intuitive, it does not provide a solution

to every game. Take for example the Matching Pennies game.

Example 9 (Matching Pennies). Two people toss a coin. Each of them has to choose
head or tail. If the choices differ, person 1 pays person 2 a Euro; if they are the same,
person 2 pays person 1 a Euro. Each person cares only about the amount of money that
she receives. The game modeling this situation is depicted in Fig. 2. This game does not
have a Nash equilibrium.

The intuitive strategy to choose head or tail with 50% frequency each (yielding a
profit in 25% of the cases) corresponds with a mixed strategy Nash equilibrium where
agents assign a probability distribution over their actions.

8 We assume that Ai ∩ Aj = ∅ whenever i �= j.
9 Note that the actions of the other players are not known to i.

Dynamically Ordered Probabilistic Choice Logic Programming 235

Head Tail
Head 1, 0 0, 1
Tail 0, 1 1, 0

Fig. 2. Matching Pennies (Example 9).

Definition 15 ([11]). The mixed extension of the strategic game 〈N, (Ai), (ui)〉 is the
strategic game 〈N, (∆(Ai)), (Ui)〉 in which ∆(Ai) is the set of probability distribu-
tions over Ai, and Ui : ×j∈N∆(A)j → R assigns to each α ∈ ×j∈N∆(A)j the
expected value under ui of the lottery over A that is induced by α (so that Ui(α) =∑

a∈A(
∏

j∈N αj(a))ui(a) if A is finite).

Note that Ui(α) =
∑

ai∈αi
αi(ai)Ui(α−i, e(ai)) , for any mixed strategy profile

α, where e(ai) is the degenerate mixed strategy of player i that attaches probability one
to ai ∈ Ai. This because we are working with finite sets of actions (e.g. Ai).

Definition 16 (Mixed Strategy Nash Equilibrium). A mixed strategy Nash equili-
brium of a strategic game is a Nash equilibrium of its mixed extension.

Example 10. Although the matching pennies game (Example 9) does not have a Nash
equilibrium, it has the single mixed strategy Nash equilibrium {{Head : 1/2, T ail :
1/2}, {Head : 1/2, T ail : 1/2}}, which corresponds to how humans would rea-
son. Apart from its two Nash equilibria, the Bach and Stravinsky game (Example 8)
also has the extra mixed strategy Nash equilibrium {{Bach : 2/3, Stravinsky :
1/3}, {Bach : 1/3, Stravinsky : 2/3}} .

Each strategic game has at least one mixed strategy Nash equilibrium. Furthermore,
each Nash equilibrium is also a mixed strategy Nash equilibrium and every crisp mixed
strategy Nash equilibrium (where all the probabilities are either 0 or 1) responds to a
Nash equilibrium.

3.2 Transforming Strategic Games to DOP-CLPs

In this subsection, we combine propose an intuitive transformation from strategic games
to DOP-CLPs such that the stable models of the former correspond with the mixed
strategy Nash equilibria of the latter.

Definition 17. Let 〈N, (Ai), (ui)〉 be a strategic game. The corresponding DOP-CLP
P equals P = {Ai ←0| ∀i ∈ N} ∪ {ai ←ui(a) a−i | a ∈ A, ∀i ∈ N} .

The corresponding DOP-CLP contains two types of rules. First, there are the real
choice rules which represent, for each player, the actions she can choose from. The
zero priority assures that the choice itself does not contribute to the decision making
process. Rules of the second type represent all the decisions a player can make (the
heads) according to the situations that the other players can create (the bodies). A rule’s
priority corresponds with the payoff that the deciding player would receive for the pure
strategy profile corresponding to the head and body of the rule.

236 Marina De Vos and Dirk Vermeir

Example 11. The Bach and Stravinsky game (Example 8) can be mapped to the DOP-
CLP P :

b1 ⊕ s1 ←0

b1 ←2 b2
b1 ←0 s2
s1 ←0 b2
s1 ←1 s2

b2 ⊕ s2 ←0

b2 ←1 b1
b2 ←0 s1
s2 ←0 b1
s2 ←2 s1

This program has three stable models:

I1(b1, b2) = 2/9
I1(b1, s2) = 4/9
I1(s1, b2) = 1/9
I1(s1, s2) = 2/9

I2(b1, b2) = 1
I2(b1, s2) = 0
I2(s1, b2) = 0
I2(s1, s2) = 0

I3(b1, b2) = 0
I3(b1, s2) = 0
I3(s1, b2) = 0
I3(s1, s2) = 1

In this example, the probabilities of the actions correspond with the one given for mixed
strategy Nash equilibria. The following theorem demonstrates that this is generally true.

Theorem 1. Let 〈N, (Ai), (ui)〉 be a strategic game and let P be its corresponding
DOP-CLP and let I and α∗ be respectively an interpretation for P and a mixed strategy
profile for 〈N, (Ai), (ui)〉 such that ∀a ∈ A, ∀i ∈ N , αi(a) = ϑI(ai) . Then, I is a
stable model iff α∗ is a mixed strategy Nash equilibrium.

4 Relationships to Other Approaches

4.1 Logic Programming

It is easy to see that positive logic programs are a subclass of the dynamically ordered
choice logic programs, and that the stable models for both systems coincide. All nec-
essary properties follow immediately from the way we handle single atoms. With the
current semantics it is impossible to have a mapping between the stable models of a
choice logic program ([4]) and the crisp stable models of the corresponding DOP-CLP.
Indeed, our system is more credulous, since it allows a pure choice (probability 1) when
two alternatives are equally preferred. However, we have that every stable model of a
CLP is also a crisp stable model of the corresponding DOP-CLP.

4.2 Priorities

The logic programming language using priorities that corresponds best to our approach
is dynamically ordered choice logic programming (OCLP) introduced in [6]. Although
OCLP does not work with probabilities, these two systems have a common approach
to and a similar notion of alternatives, in the sense that alternatives appear in the head
of an applicable choice rule. OCLP also requires that this choice rule has a higher pri-
ority than the rule for which one computes the head atoms’ alternatives. So, the main
difference with our approach is the way that OCLP uses priority to create alternatives.
Ordered logic programs ([8]) can easily be transformed to DOP-CLPs in such a way
that the credulous stable models of the former correspond with the crisp stable models
of the latter. For the same reason that we mentioned for CLPs, it is not yet possible

Dynamically Ordered Probabilistic Choice Logic Programming 237

to represent the skeptical stable model semantics for ordered logic programs. In [3],
preference in extensive disjunctive logic programming is considered. As far as overri-
ding is concerned the technique corresponds rather well with skeptical defeating of [6],
but alternatives are fixed as an atom and its (classical) negation. Dynamic preference
in extended logic programs is introduced in [2] in order to obtain a better suited well-
founded semantics. Preferences/priorities are incorporated here as rules in the program.
While alternatives make our system dynamic, [2] introduces the dynamics via a stabil-
ity criterion that overrules preference information but the alternatives remain static. A
totally different approach is proposed in [14]. Here the preferences are defined between
atoms without references to the program. After defining models in the usual way, one
then uses preferences to filter out the less preferred models.

4.3 Uncertainty

A lot of researchers [1, 10, 9, 12, 13] have tackled the problem of bringing probabili-
ties into logic programming. The probabilities used can be divided into two categories
depending on the type of knowledge symbolized: statistical or belief. [1] concentrates
on the first type while [10, 12, 13] are more interested in the latter. [9] is one of the few
that is able to handle both types. Our formalism focuses mainly on knowledge of belief
although it is possible to use statistical knowledge for defining the static priorities. An
other difference between the various systems is the way they introduce probabilities
and handle conjunctions. For example, [9] works with probability intervals and then
uses the rules of probability to compute the probability of formulae. In this respect, we
adopt the possible world/model theory of [10, 12]. However, we introduce probabilities
at the level of interpretations, while they hard-code the alternatives by means of disjoint
declarations together with probabilities, and the other atoms are computed by means of
the minimal models of the logic program.

4.4 Games and Logic Programming

The logical foundations of game theory have been studied for a long time in epistemic
logic. Only recently, researchers have become interested in the relationships between
game theory and logic programming. The first to do so was [7]. It was shown that n-
person games or coalition games can be transformed into an argumentation framework
such that the NM-solutions of the game correspond with the stable extensions of the
corresponding argumentation framework. [7] illustrated also that every argumentation
framework can be transformed into a logic program such that the stable extensions of
the former coincide with the stable models of the latter. In [4] it was demonstrated that
each strategic game could be transformed into a CLP such that the Nash equilibria of
the former correspond with the stable models of the latter. [6] shows that OCLPs can
be used for an elegant representation of extensive games with perfect information such
that, depending on the transformation, either the Nash or the subgame perfect equili-
bria of the game correspond with the stable models of the program. Concerning mixed
strategy Nash equilibria of strategic games, the approach which is the most related to
ours is the Independent Choice Logic of [13]. [13] uses (acyclic) logic programs to de-
terministically model the consequences of choices made by agents. Since choices are

238 Marina De Vos and Dirk Vermeir

external to the logic program, [13] restricts the programs further, not only to be deter-
ministic (i.e. each choice leads to a unique stable model) but also to be independent, in
the sense that literals representing alternatives may not influence each other, e.g. they
may not appear in the head of rules. ICL is further extended to reconstruct much of
classical game theory and other related fields. The main difference with our approach
is that we do not go outside of the realm of logic programming to recover the notion of
equilibrium. The basis of his formalism does not contain probabilities but works with
selector functions over the hypotheses and then works with the (unique) stable model
that comes from the program itself. This way one creates a possible world semantics.
Our transformation makes sure that every atom is an alternative of a choice/decision for
which a probability can be computed.

References

[1] Fahiem Bacchus. LP, a Logic for Representing and Reasoning with Statistical Knowledge.
Computational Intelligence, 6:209–231, 1990.

[2] Gerhard Brewka. Well-Founded Semantics for Extended Logic Programs with Dynamic
Preferences. Journal of Articficial Intelligence Research, 4:19–36, 1996.

[3] Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive Logic Programs
with Inheritance. In Danny De Schreye, editor, International Conference on Logic Pro-
gramming (ICLP), pages 79–93, Las Cruces, New Mexico, USA, 1999. The MIT Press.

[4] Marina De Vos and Dirk Vermeir. Choice Logic Programs and Nash Equilibria in Strategic
Games. In Jörg Flum and Mario Rodrı́guez-Artalejo, editors, Computer Science Logic
(CSL’99), volume 1683 of Lecture Notes in Computer Science, pages 266–276, Madrid,
Spain, 1999. Springer Verslag.

[5] Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic Programs. In
Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic Programming and Non-
Monotonic Reasoning Conference (LPNMR’99), volume 1730 of Lecture Notes in Artificial
Intelligence, pages 236–246, El Paso, Texas, USA, 1999. Springer Verslag.

[6] Marina De Vos and Dirk Vermeir. A Logic for Modelling Decision Making with Dynamic
Preferences. Accepted at Jelia 2000. Lecture Notes in Artificial Intelligence. Springer Ver-
slag.

[7] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–
358, 1995.

[8] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for Ordered
Logic Programs. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd In-
ternational Conference on Principles of Knowledge Representation and Reasoning, pages
208–217, Cambridge, Mass, 1991. Morgan Kaufmann.

[9] Raymond Ng and V.S. Subrahmanian. A semantical framework for supporting subjective
and conditional probabilities in deductive databases. In Koichi Furukawa, editor, Proceed-
ings of the 8th International Conference on Logic Programming, pages 565–580. MIT, June
1991.

[10] Liem Ngo. Probabilistic Disjunctive Logic Programming. In Eric Horvitz and Finn Jensen,
editors, Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (AI-
96), pages 387–404, San Francisco, aug 1996. Morgan Kaufmann Publishers.

[11] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press,
Cambridge, Massachusets, London, Engeland, third edition, 1996.

Dynamically Ordered Probabilistic Choice Logic Programming 239

[12] David Poole. Logic programming, abduction and probability. In Institute for New Gener-
ation Computer Technology (ICOT), editor, Proceedings for the International Conference
on Fifth Generation Computer Systems, pages 530–538. IOS Press, 1992.

[13] David Poole. The independent choice logic for modeling multiple agents under uncertainty.
Artificial Intelligence, 94(1–2):7–56, 1997.

[14] Chiaki Sakama and Katsumi Inoue. Representing Priorities in Logic Programs. In Michael
Maher, editor, Proceedings of the 1996 Joint International Conference and Symposium on
Logic Programming, pages 82–96, Cambridge, September2–6 1996. MIT Press.

Coordinatized Kernels and Catalytic Reductions:

An Improved FPT Algorithm for Max Leaf
Spanning Tree and Other Problems

Michael R. Fellows1, Catherine McCartin1, Frances A. Rosamond1, and
Ulrike Stege2�

1 School of Mathematical and Computing Sciences, Victoria University
Wellington, New Zealand

{Mike.Fellows,Catherine.Mccartin,Fran.Rosamond}@mcs.vuw.ac.nz
2 Department of Computer Science, University of Victoria

Victoria, B.C., Canada
stege@csr.uvic.ca

Abstract. We describe some new, simple and apparently general meth-
ods for designing FPT algorithms, and illustrate how these can be used to
obtain a significantly improved FPT algorithm for the Maximum Leaf

Spanning Tree problem. Furthermore, we sketch how the methods can
be applied to a number of other well-known problems, including the para-
metric dual of Dominating Set (also known as Nonblocker), Ma-

trix Domination, Edge Dominating Set, and Feedback Vertex

Set for Undirected Graphs. The main payoffs of these new methods
are in improved functions f(k) in the FPT running times, and in general
systematic approaches that seem to apply to a wide variety of problems.

1 Introduction

The investigations on which we report here are carried out in the framework
of parameterized complexity, so we will begin by making a few general remarks
about this context of our research. The subject is concretely motivated by an
abundance of natural examples of two different kinds of complexity behaviour.
These include the well-known problems Min Cut Linear Arrangement,
Bandwidth, Vertex Cover, and Minimum Dominating Set (for defini-
tions the reader may refer to [GJ79]).

All four of these problems are NP-complete, an outcome that is now so rou-
tine that we are almost never surprised. In the classical complexity framework
that pits polynomial-time solvability against the ubiquitous phenomena of NP-
hardness, they are therefore indistinguishable. All four of these decision problems
take as input a pair consisting of a graph G and a positive integer k. The positive
integer k is the natural parameter for all four problems, although one might also
wish to consider eventually other problem parameterizations, such as treewidth.
We have the following contrasting facts:
� Ulrike Stege is supported by the Pacific Institute for the Mathematical Sciences

(PIMS), where she is a postdoctoral fellow.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 240–251, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Coordinatized Kernels and Catalytic Reductions 241

1. Min Cut Linear Arrangement and Vertex Cover are solvable in lin-
ear time for any fixed k.

2. The best known algorithms for Bandwidth and Minimum Dominating

Set are respectively O(nk) and O(nk+1).

In fact, we now have very strong evidence, in the framework of parameterized
complexity, that probably Bandwidth and Minimum Dominating Set do not
admit algorithms of the qualitative type that Min Cut Linear Arrangement

and Vertex Cover have.

1.1 What Is the Nature of This Evidence?

We offer a new view of the study of computability and of its sequel concerns
with efficient computability. We motivate how this naturally divides into three
main zones of discussion, anchored by variations on the Halting Problem.

In the first zone, we have the unsolvability of theHalting Problem, the unsolv-
ability of other problems following by recursive reductions, and Gödel’s Theorem
as a corollary.

In the second zone, we have “classical complexity” where the reference prob-
lem is the Halting Problem for Nondeterministic P-time Turing Ma-

chines. This problem is trivially NP-complete and essentially defines the class
NP. Another way to look at this problem is as a generic embodiment of com-
putation that is potentially exponential. If at each nondeterministic step there
were two possible choices of transition, then it is a reasonable conjecture that,
in general, we will not be able to analyze Turing machines of size n for the
possibility of halting in n steps in much less than the O(2n) time.1

The third zone of negotiation with intractability is anchored by the k-step

Halting Problem for Nondeterministic Turing Machines (k-NDTM),
where in this case we mean Turing machines with an unrestricted alphabet size,
and with unrestricted nondeterminism at each step. This is a generic embod-
iment of nk computational complexity. For the same reasons as in the second
zone of negotiation, we would not expect any method of solving this problem
that greatly improves on exhaustively exploring the n-branching depth-k tree of
possible computation paths (for a Turing machine of size n).

This leads to the following three basic definitions of the parameterized complex-
ity framework.

Definition 1. A parameterized language is a subset L ⊆ Σ∗ × Σ∗. For nota-
tional convenience, and without any loss of generality, we can also consider that
L ⊆ Σ∗ × IN .
1 It would take O(2n) time to exhaustively explore the possible computation paths

— because nondeterministic Turing machines are so unstructured and opaque, i.e.,
such a generic embodiment of exponential possibility.

242 Michael R. Fellows et al.

Definition 2. A parameterized language L is fixed-parameter tractable (FPT) if
there is an algorithm to determine if (x, k) ∈ L in time f(k)+nc where |x| = n,
c is a constant, and f is a function (unrestricted).

Definition 3. A parameterized language L is many:1 parametrically reducible
to a parameterized language L′ if there is an FPT algorithm that transforms
(x, k) into (x′, k′) so that:

1. (x, k) ∈ L if and only if (x′, k′) ∈ L′, and
2. k′ ≤ g(k) (where g is an unrestricted function; k′ is purely a function of k)

The analog of NP in the third zone of dicussion is the parameterized complexity
classW [1] [DF95b]. That the k-NDTM problem is complete forW [1] was proven
by Cai, Chen, Downey and Fellows in [CCDF97]. Since Bandwidth and Dom-

inating Set are hard for W [1], we thus have strong natural evidence that they
are not fixed-parameter tractable, as Vertex Cover and Min Cut Linear

Arrangement are.2

1.2 What Is the Current Status of This “Third Zone” of Discussion?

As an example of how useful FPT algorithms can be, we know that Vertex

Cover can be solved (after several rounds of improvement) in time O((1.27)k +
n) for graphs of size n [CKJ99]. The problem is thus well-solved for k ≤ 100 ana-
lytically. In practice, this worst-case analytical bound appears to be pessimistic.
The current best FPT algorithms for this problem (which deliver an optimal
solution if they terminate) appear to have completely solved the problem for
input graphs in toto, so long as the parameter value is k ≤ 200. These new effec-
tive algorithms for small ranges of k have applications in computational biology
[Ste99].

Another promissing result is the fixed-parameter-tractable algorithm for 3-

Hitting-Set presented in [NR00b]. The running time is O(2.270k + n) where
k is the size of the hitting set to determine and n denotes the length of the
encoding of the input. As Vertex Cover 3-Hitting Set has applications in
computational biology.

The Biologist, knowing a bit about algorithms, asks for an algorithm that is
“like sorting”, i.e., a polynomial-time algorithm for her problem. Working with
an NP-hard problem, if the fixed-parameter for the problem to solve is rather
small (e.g., Protein Folding involves as the (natural) parameter the number
2 Further background on parameterized complexity can be found in [DF98]. We re-

mark in passing that if the fundamental mission of theoretical computer science is
conceived of as empirical and explanatory, like theoretical physics, then a two- (or
more-) dimensional theoretical framework might well be more suitable than the one-
dimensional framework inherited from recursion theory, to the task of explaining
the crucial differences in intrinsic problem complexity encountered in natural com-
putational practice, even if the explanatory framework involves phenomenologically
“unequal” dimensions — a situation frequently encountered in physics.

Coordinatized Kernels and Catalytic Reductions 243

of adjacencies between hydrophobic constituents of the protein sequence, that
is the parameter is less than 100 for interesting applications) the knowledgeable
biologist will henceforth ask, “Can I get an algorithm like Vertex Cover?”
There is no way to answer this question without taking the discussion into the
third natural zone.

We remark, that the parameterize complexity of Protein Folding as well as
Toplogical Containment for Graphs and Directed Feedback Vertex Set is
still open. All three problems are conjectured to be in FPT. For NP-completeness
of Protein Folding and Toplogical Containment for Graphs we refer
to [CGPPY98, BL98] and [DF98], respectively. NP-completeness of Directed
Feedback Vertex Set is shown in [GJ79].

1.3 The Substantial Open Question About Parameterized
Complexity

Despite the fact that logically, in some sense, NP-completeness can now rea-
sonably be considered a rather unimportant issue for problems that are, when
naturally parameterized, fixed-parameter tractable, and for which the main ap-
plications are covered by small or moderate parameter ranges. From a practical
point of view there is still an important unresolved question that motivates our
work in this paper:

What are typical functions f(k) for problems in FPT?

We make two contributions.

– We substantially improve the best known FPT algorithm for the Max Leaf

Spanning Tree problem. The best previous algorithm due to Downey and
Fellows in [DF95a, DF98] has a running time of O(n+(2k)4k). Our algorithm
runs in time O(n+(k+1)(14.23)k). In the concluding section we discuss the
fine-grained significance of this improvement.

– We introduce new methods that appear to be widely useful in designing
improved FPT algorithms. The first new method is that of coordinatized
kernelization arguments for establishing problem kernelizations. The second
new method, catalytic reduction, employs a small amount of partial informa-
tion about potential solutions to guide the efficient development of a search
tree.

2 Prototype: An Improved FPT Algorithm for the Max
Leaf Spanning Tree Problem

The history of the problem and some recent complexity developments can be
found in [D74, GJ79, GMM94, GMM97, LR98]. An interesting application of
the problem is described in [KKRUW95]. The flagship problem for the new
techniques we introduce here is defined as follows.

244 Michael R. Fellows et al.

Max Leaf Spanning Tree

Input: A graph G and a positive integer k.
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

One of the remarkably nice properties of FPT is that the following is an equiv-
alent definition of the tractable class of parameterized problems [DFS99].

Definition 4. A parameterized language L is in FPT if and only if there is:

1. A function g(k).
2. A 2-variable polynomial q(n, k).
3. A many:1 parametric reduction Φ of L to itself, requiring time at most
q(n, k), that transforms an instance (x, k), where |x| = n, to an instance
(x′, k′) with |x′| ≤ g(k) and k′ ≤ k, so that (x, k) ∈ L if and only if
(x′, k′) ∈ L.

In other words, a problem with parameter k is in FPT if and only if an input to
the problem can be reduced in ordinary polynomial time to an equivalent input
whose size is bounded by a function (only) of the parameter. For most problems
in FPT, moreover, a natural set of reduction rules are known that accomplish
the transformation Φ by a series of “local simplifications”. This process is termed
kernelization in the terminology of [DF95a]3 and, currently, the main practical
methods of FPT-algorithm design are based on kernelization and the method of
bounded search trees.

The idea of kernelization is relatively simple and can be quickly illustrated
for the Vertex Cover problem. If the instance is (G, k) and G has a pendant
vertex v of degree 1 connected to the vertex u, then it would be silly to include
v in any solution (it would be better, and equally necessary, to include u), so
(G, k) can be reduced to (G′, k − 1), where G′ is obtained from G by deleting
u and v. Some more complicated and much less obvious reduction rules for the
Vertex Cover problem can be found in the current state-of-the-art FPT algo-
rithms (see [BFR98, DFS99, CKJ99, NR99b, Ste99]). The basic schema of this
method of FPT algorithm design is that reduction rules are applied until an
irreducible instance (G′, k′) is obtained. At this point in the FPT algorithm, a
Kernelization Lemma is invoked to decide all those instances where the reduced
instance G′ is larger than g(k′) for some function g. For example, in the cases
of Vertex Cover and Planar Dominating Set, if a reduced graph is large
then (G′, k′) is a no-instance for a suitable linear function g. In the case of Max

Leaf Spanning Tree and Nonblocker, large reduced instances are automat-
ically yes-instances.

3 These natural kernelization algorithms have significant applications in the design of
heuristics for hard problems, since they are a reasonable preprocessing step for any
algorithmic attack on an intractable problem [DFS99].

Coordinatized Kernels and Catalytic Reductions 245

In first phase of our algorithm a set of reduction rules transforms an instance
(G, k) of Max Leaf Spanning Tree to another instance (G′, k′) where k′ ≤ k
and |G′| ≤ 5.75k. By exploring all k-subsets of the problem kernel G′, this
immediately implies an FPT algorithm with running time O(n + k25.75k) =
O(n+k(33.1)k). But we will do substantially better than that, namely we present
an algorithm running in time O(n+ (k + 1)(14.23)k).

Our algorithm has three phases:

Phase 1: Reduction to a problem kernel of size 5.75k.
Phase 2: The introduction of catalytic vertices.
Phase 3: A search tree based on catalytic branching (section 2.2) and coordi-

natized reduction (section 2.1).

Our algorithm is actually based on a slight variation on Max Leaf Spanning

Tree defined as follows.

Catalytic Max Leaf Spanning Tree

Input: A graph G = (V,E) with a distinguished catalytic vertex t ∈ V , k ∈ Z+.
Parameter: k
Question: Does G have a spanning tree T having at least k leaves, such that t

is an internal vertex of T ?

In the following subsection we prove that this variant of the originl problem has
a kernel of size 5.75k. Because the reduction rules used are almost identical to
the reduction rules used in the proof that Max Leaf Spanning Tree has a
kernel of size 5.75k, we will concentrate on the kernelization of Catalytic Max

Leaf Spanning Tree only.

2.1 The Kernelization Lemma and the Method of Coordinatized
Kernels

How does one proceed to discover an adequate set of reduction rules, or elucidate
(and prove) a bounding function g(k) that insures for instances larger than this
bound, that the question can be answered simply?

The technique of coordinatized kernels is aimed at these difficulties, and we
will illustrate it by example with the Max Leaf Spanning Tree problem. We
seek a Lemma of the following form:

Lemma 1. If (G = (V,E), k) is a reduced instance of Catalytic Max Leaf

Spanning Tree with catalytic vertex t ∈ V , and G has more than g(k) vertices,
then (G, k) with catalytic vertex t is a yes-instance.

Proof. Suppose that:

(1) G has more than g(k) vertices. (We will eventually determine g(k), cf. page
247.)

246 Michael R. Fellows et al.

(2) G is connected and reduced. (As we make the argument, we will see how to
define the reduction rules.)

(3) G is a yes-instance for k, witnessed by a subtree T (with t internal; not
necessarily spanning) having k leaves.

(4) G is a no-instance for k + 1.
(5) Among all such G satisfying (1-4), the witnessing tree T has a minimum

possible number of vertices.
(6) Among all such G and T satisfying (1-5), the quantity

∑
l∈L d(t, l) is min-

imized, where L is the set of leaves of T and d(t, l) is the distance in T to
the root vertex t.

Then we argue for a contradiction.
Comment. The point of all this is to set up a framework for argument that will
allow us to see what reduction rules are needed, and what g(k) can be achieved.
In essence we are setting up a (possibly elaborate, in the spirit of extremal
graph theory) argument by minimum counterexample — and using this as a
discovery process for the FPT algorithm design. Condition (3) gives us a way of
“coordinatizing” the situation by giving us the structure of a solution to refer
to (how this is used will become clear as we proceed).
Since G is connected, any tree subgraph T of G with k leaves extends to a
spanning tree with k leaves. This witnessing subgraph given by condition (3)
is minimized by condition (5). Refer to the vertices of V − T as outsiders. The
following claims are easily established. The first five claims are enforced by con-
dition (4).

Claim 1: No outsider is adjacent to an internal vertex of T .
Claim 2: No leaf of T can be adjacent to two outsiders.
Claim 3: No outsider has three or more outsider neighbors.
Claim 4: No outsider with 2 outsider neighbors is connected to a leaf of T .
Claim 5: The graph induced by the outsider vertices has no cycles.

It follows from Claims (1-5) that the subgraph induced by the outsiders consists
of a collection of paths, where the internal vertices of the paths have degree 2 in
G. Since we are ultimately attempting to bound the size of G, this suggests (as
a discovery process) the following reduction rule for kernelization.

Kernelization Rule 1: If (G, k) has two adjacent vertices u and v of degree 2,
neither of which is the catalyst t, then:
(Rule 1.1) If uv is a bridge, then contract uv to obtain G′ and let k′ = k.
(Rule 1.2) If uv is not a bridge, then delete the edge uv to obtain G′ and

let k′ = k.

The soundness of this reduction rule is not completely obvious, although not
difficult. Having now partly clarified condition (2), we can continue the argument.
The components of the subgraph induced by the outsiders must consist of paths
having either 1,2 or 3 vertices.

The first possibility leads to another reduction rule which eliminates pendant
vertices. This leads to a situation where the only possibilities for a component
C of the outsider graph are:

Coordinatized Kernels and Catalytic Reductions 247

1. The component C consists of a single vertex and C has at least 2 leaf neigh-
bors in T .

2. The component C consists of two vertices, and C has at least 3 leaf neighbors
in T .

3. The component C has three vertices, and has at least four leaf neighbors in
T .

The weakest of the population ratios for our purposes in bounding the kernel
size is given by case (3). We can conclude, using Claim 2, that the number of
outsiders is bounded by 3k/4.

The next step is to study the tree T . Since it has k leaves it has at most k−2
branch vertices. Using conditions (5) and (6), it is not hard to see that:

1. Any path in T between a leaf and its parental branch vertex has no subdi-
visions.

2. Any other path in T between branch vertices has at most 3 subdivisions
(with respect to T).

Consequently T has at most 5k vertices, unless there is a contradiction. This
yields our g(k) of 5.75k. We believe that this bound can be improved by a more
detailed structural analysis in this same framework.

2.2 Catalytic Reduction in Search Tree Branching

The catalytic branching technique is described as follows. Let c = 5.75 for con-
venience. Assume that any instance G for parameter k can be reduced in linear
time to an instance G′ of size at most ck. Suppose we are considering an instance
(G, k) with catalytic vertex t. We can assume that G is connected. Consider a
neighbor u of t in G.
Catalytic Branching. We have the following basic branching procedure: (G, k)
with catalytic vertex t is a yes-instance if and only if one of the following two
branch instances is a yes-instance. The first branch is developed on the assump-
tion that u is also an internal vertex of a k-leaf spanning tree T (for which t is
internal). The second branch is developed on the assumption that u is a leaf for
such a tree T .
First Branch: Here we have (G′, k), where G′ is obtained from G by contracting
the edge between t and u. The resulting combined vertex is the catalytic vertex
for G′.
Second Branch: Here we begin with (G′, k−1), where G′ is obtained by deleting
u. But now, since the parameter has been decreased, we may re-kernelize so that
the resulting graph has size at most c(k − 1). Depending on the size of G′, the
size of the instance that we reduce to on this branch is somewhere between n−1
and n− c− 1, when G has size n, in the worst case.

The key to the efficiency of this technique is in the re-kernelization on the
second branch. Because the amount of re-kernelization varies, this leads to a
somewhat complicated recurrence. Our bound on the running time is based on

248 Michael R. Fellows et al.

a simpler recurrence that provides an upper bound that is probably not partic-
ularly tight.

We have thus described Phase 3 of our algorithm. We must still describe Phase 2.

Introducing Catalytic Vertices. A simple way to accomplish this task is to
simply choose a set of k+1 vertices in G. If (G, k) is a yes-instance for Max Leaf

Spanning Tree then one of these vertices can be assumed to be an internal
vertex of a solution k-leaf spanning tree. The k+1 branches must all be explored.

2.3 Analysis of the Running Time

We define an abstract value v(n, k) for a node (G, k) in the search tree, where
G is a graph on n vertices. Choosing an appropriate abstract weighting w (by
computational experiment) for the parameter k, in order to capture some of the
information about the efficiency of catalytic branching, we define v(n, k) = 8k+n
(that is, w = 8 seems to work best for our current kernelization bound). Our
kernelization bound of n ≤ 5.75k means that we require an upper bound on
the size of a search tree with root value v(n, k) of at most 13.75k. The catalytic
branching gives the recurrence

f(v) ≤ f(v − 1) + f(v − 9)

which yields a positive real root of α = 1.2132. Evaluating αv at v = 13.75k,
and noting that the nodes of the search tree require O(k) time to process, we
immediately obtain a parameter function of k(14.23)k (for each of the k + 1
search trees initiated in Phase 2 by the introduction of a catalytic vertex). By
the speedup technique of Niedermeier and Rossmanith [NR00a], we get a running
time of O(n+ (k + 1)(14.23)k) for our algorithm.

3 Catalytic Branching as General FPT Technique

The catalytic branching strategy can easily be adapted to a number of other
FPT problems. The following are some sketches of further applications. (Note,
however, that to make use of catalytic branching, it is first necessary to prove a
kernelization procedure that respects the presence of a catalytic vertex.)

Example 1 (Feedback Vertex Set for Undirected Graphs). The cat-
alytic vertex t is required not to be in the feedback vertex set. If the neighbor
u is also not in the feedback vertex set, then the edge tu can be contracted. If
u is in the fvs, then (G′, k′) is obtained by deleting u, setting k′ = k − 1 and
re-kernelizing.

Example 2 (Planar Dominating Set). The catalytic vertex t is required to
belong to the dominating set. If the neighbor u is not in the dominating set
then it can be deleted (first branch). On the second branch, the edge tu can be
contracted, and the resulting graph can be re-kernelized for k − 1.

Coordinatized Kernels and Catalytic Reductions 249

Example 3 (Edge Dominating Set). (The FPT algorithms for Matrix Dom-

ination are currently based on a reduction to this problem.) Very similar to
Example 2.

Example 4 (Nonblocker (Also called enclaveless sets [HHS98]). The paramet-
ric dual of Minimum Dominating Set.)

Input: A graph G = (V,E) where |V | = n and a positive integer k.
Parameter: k
Question: Does G admit a dominating set of size at most n−k? Equivalently, is

there a set N ⊆ V of size k with the property that for every element x ∈ N ,
there is a neighbor y of x in V −N?

For this problem, a kernelization respecting a catalytic vertex is known. We
require that the catalytic vertex t be a member of V − N . On the first branch
of the search tree, we can contract tu if the neighbor u of t is also in V −N . On
the second branch, we delete u and re-kernelize for k−1. The detailed algorithm
is going to be published elsewehere [FMRS00].

Catalytic branching is a general idea that might be applied in other settings
besides graph problems — what it really amounts to is a search tree branching
method based on retaining a small amount of partial information about potential
solutions.

4 Concluding Remarks

How does one evaluate the goodness of an FPT algorithm? Since every prob-
lem in FPT can be solved in time f(k) + nc where c is a fixed constant (usually
c ≤ 3), and there are no hidden constants, we can measure the success of an FPT
algorithm by its klam value, defined to be the maximum k such that the param-
eter function f(k) for the algorithm (where c ≤ 3) is bounded by some universal
limit U on the number of basic operations any computation in our practical
universe can perform. We will (perhaps too optimistically) take U = 1020. This
might appear a bit strange at first, but parameterized complexity in many ways
represents a welding of engineering sensibilities (with the attendant sensitivity
to particular finite ranges of magnitudes), and mathematical complexity anal-
ysis. Engineers have never been too keen on asymptotic analysis for practical
situations.

Max Leaf Spanning Tree was first observed to be in FPT nonconstruc-
tively via the Robertson-Seymour graph minors machinery by Fellows and Lang-
ston [FL88]. This approach had a klam value of zero! Bodlaender subsequently
gave a constructive FPT algorithm based on depth-first search methods with a
parameter function of around 17k4! which has a klam value of 1 [Bod89]. This
was improved by Downey and Fellows [DF95a, DF98] to f(k) = (2k)4k which

250 Michael R. Fellows et al.

has a klam value of 5. Our algorithm here has a klam value of 16, according to
our current analysis, which is probably not very tight.4

At this point in time, there are many examples of trajectories of this sort
in the design of FPT algorithms. Vertex Cover is another classic example of
such a trajectory of (eventually) striking improvements (see [DF98]). What these
algorithm design trajectories really show is that we are still discovering the basic
elements, tricks and habits of mind required to devise efficient FPT algorithms.
It is a new game and it is a rich game. After many rounds of improvements the
best known algorithm for Vertex Cover runs in time O((1.27)k + n) [CKJ99]
and has a klam value of 192. Will Max Leaf Spanning Tree admit klam
values of more than 50? How much more improvement is possible? Can any
plausible mathematical limits to such improvements be established?

References

[Bod89] H. L. Bodlaender. “On linear time minor tests and depth-first search.” In
F. Dehne et al. (eds.), Proc. First Workshop on Algorithms and Data Structures,
LNCS 382, pp. 577–590, 1989.

[BFR98] R. Balasubramanian, M. R. Fellows, and V. Raman. “An Improved Fixed-
Parameter Algorithm for Vertex Cover.” Information Processing Letters 65:3,
pp. 163–168, 1998.

[BL98] B. Berger, T. Leighton. ”Protein Folding in the Hydrophobic-Hydrophilic (HP)
Model is NP-Complete.” In S. Istrail, P. Pevzner, and M. Waterman (eds.), Pro-
ceedings of the Second Annual International Conference on Computational Molec-
ular Biology (RECOMB98), pp. 30–39, 1998.

[CCDF97] L. Cai, J. Chen, R. Downey, and M. Fellows. “The parameterized complex-
ity of short computation and factorization.” Archive for Mathematical Logic 36,
pp. 321–338, 1997.

[CGPPY98] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni and M. Yan-
nakakis. “On the complexity of protein folding.” In S. Istrail, P. Pevzner, and
M. Waterman (eds.), Proceedings of the Second Annual International Conference
on Computational Molecular Biology (RECOMB98), 1998.

[CKJ99] J. Chen, I. Kanj, and W. Jia. “Vertex cover: Further Observations and Further
Improvements.” 25th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’99) Ascona, Switzerland, June 1999.

[DF95a] R. Downey and M. Fellows. “Parameterized Computational Feasibility.” P.
Clote, J. Remmel (eds.): Feasible Mathematics II Boston: Birkhauser, pp. 219–
244, 1995.

[DF95b] R. Downey and M. Fellows. “Fixed-parameter tractability and completeness
II: completeness for W [1].” Theoretical Computer Science A 141, pp. 109–131,
1995.

[DF98] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1998.
[DFS99] R. Downey, M. Fellows, and U. Stege. “Parameterized complexity: a frame-

work for systematically confronting computational intractability.” In: Contempo-
rary Trends in Discrete Mathematics (R. Graham, J. Kratochvil, J. Nesetril and

4 Keep in mind that this is still worst-case analysis, via theoretical estimates on the
sizes of search trees. In practice, some FPT algorithms seem to have much larger
empirical klam values [Ste99].

Coordinatized Kernels and Catalytic Reductions 251

F. Roberts, eds.), AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 49, pp. 49–99, 1999.

[D74] E. Dijkstra. “Self-Stabilizing Systems in Spite of Distributed Control.” Commu-
nications of the ACM 17, pp. 643–644, 1974.

[FL88] M. Fellows and M. Langston. “On Well-Partial-Order Theory and Its Applica-
tions to Combinatorial Problems of VLSI Design.” Technical Report CS-88-188,
Department of Computer Science, Washington State University, 1988.

[FMRS00] M. Fellows, C. McCartin, F. Rosamond, and U. Stege. ”The parametric
dual of Dominating Set is fixed-parameter tractable,” 2000.

[GMM94] G. Galbiati, F. Maffioli, and A. Morzenti. “A Short Note on the Approxima-
bility of the Maximum Leaves Spanning Tree Problem.” Information Processing
Letters 52, pp. 45–49, 1994.

[GMM97] G. Galbiati, A. Morzenti and F. Maffioli. “On the Approximability of some
Maximum Spanning Tree Problems.” Theoretical Computer Science 181, pp. 107–
118, 1997.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco, 1979.

[HHS98] T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in
Graphs. Marcel Dekker, Inc, 1998.

[KKRUW95] E. Kranakis, D. Krizanc, B. Ruf, J. Urrutia, G. Woeginger. “VC-
dimensions for graphs.” In M. Nagl, editor, Graph-theoretic concepts in computer
science, LNCS 1017, pp. 1–13, 1995.

[LR98] H.-I. Lu and R. Ravi. “Approximating Maximum Leaf Spanning Trees in Al-
most Linear Time.” Journal of Algorithms 29, pp. 132–141, 1998.

[NR99b] R. Niedermeier and P. Rossmanith. “Upper Bounds for Vertex Cover Further
Improved.” In C. Meinel and S. Tison, editors, Proceedings of the 16th Symposium
on Theoretical Aspects of Computer Science, LNCS 1563, pp. 561–570, 1999.

[NR00a] R. Niedermeier and P. Rossmanith. “A General Method to Speed Up Fixed-
Parameter-Tractable Algorithms.” Information Processing Letters, 73, pp. 125–
129, 2000.

[NR00b] R. Niedermeier and P. Rossmanith. “An efficient fixed parameter algorithm
for 3-Hitting Set.” accepted for publication in Journal of Discrete Algorithms,
August 2000.

[Ste99] U. Stege. Resolving Conflicts from Computational Biology. Ph.D. thesis, De-
partment of Computer Science, ETH Zürich, Switzerland, 1999.

Planar Graph Blocking for External Searching

Surender Baswana� and Sandeep Sen��

Department of Computer Science and Engineering,
I.I.T. Delhi, Hauz Khas, New Delhi-110016, India.

{sbaswana, ssen}@cse.iitd.ernet.in

Abstract. We present a new scheme for storing a planar graph in exter-
nal memory so that any online path can be traversed in an I-O efficient
way. Our storage scheme significantly improves the previous results for
planar graphs with bounded face size. We also prove an upper bound on
I-O efficiency of any storage scheme for well-shaped triangulated meshes.
For these meshes, our storage scheme achieves optimal performance.

1 Introduction

There are many search problems in computer science which require efficient ways
of online traversal in an undirected graph e.g. robot motion planning, searching
in constraint networks. There are some important problems in computational
geometry which are also reducible to the efficient online traversal in a graph. For
example, ray shooting problem in a simple polygon [4] and reporting intersec-
tion of a line segment with a triangulated mesh. Since most of the applications
of these problems are of very large scales, it is important to ensure I-O effi-
cient traversal in undirected graphs. Graph blocking corresponds to storing of
a graph in external memory so that the number of I-O operations i.e. block-
transfers required to perform any arbitrary online walk, is minimized. Efficiency
of a blocking scheme is measured by speed-up σ which is the worst case average
number of steps traversed between two I-O operations. The efficiency of a block-
ing scheme is proportional to the value of σ. We address the problem of blocking
of planar undirected graphs.

We assume that the graph is of bounded degree and a vertex is allowed to
be present in more than one block. These assumptions are valid for most of the
applications of the graph-blocking problem. Let us assume that a block can hold
B vertices and the internal memory can hold M vertices. The parameters B
and M are related to the block size and the internal-memory size(by a constant
factor). At any stage of the online walk, the next node to be visited can be any
neighbor of the most recently visited node. Therefore, it is natural that with
every node we store its associated adjacency list. In case a neighbor w of a node
v is not present in the same block as that of v, we must also store the block
address of w in adjacency list of v. A simple observation is as follows. At any
� Work was supported in part by an Infosys PhD fellowship.

�� Work was supported in part by an AICTE career award.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 252–263, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Planar Graph Blocking for External Searching 253

time while traversing a graph, let v be the most recently visited node. If the
nearest node which is not present in internal memory lies at distance k from v,
then a block transfer can be forced in next k steps. Based on this observation,
here is a naive blocking scheme: Let Bv be the set of nodes lying in a breadth-
first-search tree (BFS tree) of size B rooted at node v. For every node v of the
graph, store Bv in a block on disk, and whenever walk extends to v and v is not
present in internal memory, bring in the block storing Bv. This blocking scheme
ensures speed-up of r−(B), which denotes the minimum depth of a BFS tree of
size B in the given graph. However, this speed-up is achieved at the expense of
B-fold blow up in storage requirement. For a blocking scheme to be practical,
such a large increase in storage requirement is not acceptable. A blocking scheme
is said to be space optimal if the number of blocks it requires to store a graph is
at most a constant multiple of the minimum number of blocks required to store
the graph. Like other previous approaches[1,3] to graph blocking, we do not take
into account the cost of preprocessing.

Goodrich et al. [3] gave space optimal blocking scheme for grid graphs and
complete d−trees. They also gave a nontrivial upper bound of r+(B) on the
speed-up that can be achieved in a graph where r+(B) denotes the maximum
depth of B size BFS tree in the given graph. They also gave a space optimal
blocking scheme for the family of graphs with bounded r+(B)

r−(B) . They did not give
blocking scheme for general graphs although they conjectured a scheme which
ensures a speed-up of r−(B) with optimal storage. Agarwal et al. [1] gave a space
optimal blocking scheme for planar graphs that achieves a speed-up of r−(

√
B).

For the family of planar graphs B ≥ r−(B) ≥ logd B, where d is the maximum
degree of a node in the graph. For the smaller extreme(i.e. r−(B) ≈ logd B) the
speed-up achieved by blocking scheme of Agarwal et al.[1] is close to r−(B) -
more precisely σ = r−(B)

2 in this case. But the speed-up deteriorates steadily
from r−(B) as we move away from the smaller extreme of r−(B). As a case in
point, note that for a planar graph with r−(k) = kα (where α is some positive
fraction), the speed-up achieved is just B

α
2 th fraction of r−(B). Therefore, in

the case of planar graphs with r−(B) =
√
B, the speed-up achieved is B

1
4 and

the gap between r−(B) and the speed-up achieved widens even further for the
planar graphs with larger values of r−(B).

We present an efficient blocking scheme for general planar graphs with im-
proved speed-up over that of Agarwal et al.[1]. Our blocking scheme guarantees
a speed-up of r−(s) where s = min(r−(s

c)
√
B,B) and c is the maximum face

size in the graph. It can be seen that for the family of planar graphs having
small face size and r−(B) ≥ √

B, the speed-up achieved by our blocking scheme
is Ω(r−(B)). Whereas the speed-up achieved by blocking scheme of Agarwal et
al. [1] deviates further from r−(B) as r−(B) increases, the speed-up achieved
by our blocking scheme approaches r−(B) as r−(B) increases and the speed-up
matches r−(B) from the point r−(B) =

√
B onwards. There are a large number

of applications that employ planar graphs with small face size like trees and
geometric graphs(grids and meshes). Thus for such planar graphs our blocking
scheme outperforms earlier blocking scheme. We also make an observation that

254 Surender Baswana and Sandeep Sen

the blocking scheme for undirected planar graphs can be used to achieve good
speed-up even in case of directed graphs.

We also prove a bound on the best speed-up achievable in planar mesh in
terms of degree of local uniformity of mesh and block size. Most of the meshes in
practical applications possess good degree of local uniformity. Intuitively speak-
ing, these meshes are well-shaped. We prove that the best worst-case speed-up
achievable in a planar mesh is O(

√
B), where the constant of proportionality

depends upon the degree of well-shapedness of the mesh. We use our blocking
scheme of planar graphs to achieve speed-up in planar mesh that matches this
bound.

2 Efficient Blocking of Planar Graphs

In this section, we shall devise efficient blocking scheme for planar graphs that
achieves improved speed-up over earlier blocking scheme given by Agarwal et
al. [1]. First we present a terminology given by them: Set of nodes lying in a
BFS tree of size k rooted at a node v is called k-neighborhood for the node v. We
extend the following idea of partitioning planar graph employed in their blocking
scheme. Consider a planar graph of size N partitioned into O(N/B) regions with
each region containing at most B nodes and surrounded by boundary nodes such
that every path going from a node in one region to a node in another region will
pass through one or more of these boundary nodes. By storing B-neighborhood
around every boundary node in a block and storing nodes of a region together
in a block, the following block-transfer strategy(referred as τ henceforth) will
ensure speed-up of σ = Ω(r−(B)) for any online traversal.
Strategy τ : Whenever walk extends to a node, say v not present in internal
memory, if v is a boundary node read the block storing B-neighborhood of v from
the disk otherwise read the block corresponding to the region in which v lies.

It is apparently clear that for every two blocks that we load from disk, we tra-
verse at least r−(B) nodes of the path and thus speed-up achieved is Ω(r−(B)).
For meeting the space optimality constraint, we have to make sure that the space
used for storing B-neighborhoods around the boundary nodes is O(N

B) blocks.
Agarwal et al.[1] gave an efficient blocking scheme along above lines. They

used a technique developed by Fredrickson [2] for partitioning planar graphs.
Based on the separator theorem of Lipton and Tarjan [5], Fredrickson gave an
algorithm for partitioning a planar graph into O(N

B) regions, with each region
having at most B nodes and the total number of boundary nodes being O(N√

B
).

Storing each of O(N
B) regions in blocks, and storing

√
B-neighborhood around

every boundary node, it can be seen that using block-transfer strategy τ , the
speed-up achieved is Ω(r−(

√
B)) and storage space required is optimal.

For the class of planar graphs with bounded degree, r−(B) can be as small
as logd B on one extreme(where d is the maximum degree of a node in a graph)
and as large as B on the other extreme. For planar graphs with r−(B) ≈ logd B,
speed-up achieved using above blocking scheme is 1

2 logd B, which is indeed close
to r−(B). Though the speed-up achieved is close to r−(B) for small values of

Planar Graph Blocking for External Searching 255

r−(B), it degrades drastically as r−(B) increases. To appreciate this point, note
that for planar graphs having r−(k) = kα (where α is some constant ≤ 1), the
speed-up is just Bα/2 th fraction of r−(B).

We devise a refinement of the above mentioned blocking scheme for achieving
better speed-up. Note that using the above blocking scheme speed-up achieved is
r−(

√
B), because we stored

√
B-neighborhood around every boundary node in the

partition. To improve the speed-up, we should store neighborhood of size greater
than

√
B around every boundary node. But the number of boundary nodes being

Ω(N√
B

), any attempt to increase the size of neighborhood around a boundary

node beyond
√
B will lead to nonlinear space(an undesirable situation). Here

we make a useful observation: We need not store separate
√
B-neighborhoods for

boundary nodes which are closely placed. For example, let v be a boundary node,
and v1, v2, · · · , vj be other boundary nodes which lie within distance of r−(

√
B)

2
from v. Starting from any of these boundary nodes, we must traverse at least
r−(

√
B)

2 steps to cross
√
B-neighborhood of v (it follows from triangle inequality).

Therefore, instead of storing
√
B-neighborhood around every node vi ∈ v1, · · · , vj ,

we can just store
√
B-neighborhood around v only (as a common neighborhood

for v1, · · · , vj). In doing so, the speed-up is reduced at most by half; but we
will be storing less than N√

B
neighborhoods. This reduction in total number of

neighborhoods allows us to increase corresponding size of neighborhood(while
still maintaining the linear space constraint). For this idea to be useful, the
partitioning scheme must ensure that the separator nodes be contiguous. The
separator computed using Lipton Tarjan separator theorem does not guarantee
a separator with sufficiently clustered nodes. The planar-separator theorem given
by Miller [6] shows existence of a node or a cycle as a balanced separator for a
planar graph. For the case when the separator is a cycle we can form clusters
of the separator-nodes by breaking the cycle into appropriate number of equally
long chains. The set of nodes belonging to a chain define a cluster. We finally
store just one neighborhood per cluster. Having given this basic idea we shall
now describe the new blocking scheme and calculate the speed-up that can be
achieved in various planar graphs based on it. First we state the planar-separator
theorem given by Miller [6]

Theorem 1 (Miller). If G is embedded planar graph consisting of N nodes,
then there exists a balanced separator which is a vertex or a simple cycle of
size at most 2

√
2.� c

2	N , where c is maximum face size. Such a separator is
constructible in linear sequential time.

Based on the above separator theorem, we present a new blocking scheme
which gives improved speed-up for planar graphs with bounded face size.

Let G(V,E) be the given planar graph with maximum face size equal to c
and N be the number of nodes of the graph. If N < B we store G in a block on
disk; otherwise we proceed as follows: we compute separator using Miller’s theo-
rem given above. If the separator is a vertex v, we store B-neighborhood around
v; otherwise (separator is a cycle C of size ≤ 2

√
cN) let s be a number in the

range (
√
B,B) (depending on the underlying graph) that will be specified later.

256 Surender Baswana and Sandeep Sen

Pick every r−(s)
2 th node of C to form a set S. For every node v ∈ S, store the

s-neighborhood of v in a block. Associate every node w of separator C with the
block which contains the s-neighborhood of v ∈ S nearest to w (let us denote the
block associated with a boundary node w by Bw). Whenever path extends to a
boundary node w, and w is not present in internal memory we shall bring the
block containing Bw into internal memory. Now let the separator C partition V
into two subsets P1 and P2, each of size at most 2

3N . We recursively carry out
blocking of subgraphs induced by P1 and P2.

It can be verified that using block-transfer strategy τ , the speed-up achieved
using above blocking scheme is Ω(r−(s)). So larger value of s will result in
larger speed-up. For a given s, total space used for blocking according to above
described scheme can be expressed by the following recurrence:

S(N) = S(N1) + S(N2) +
4
√
cN

r−(s)
s where N1, N2 <

2N
3

the solution of which is

S(N) = c1N + c2

√
cN√

Br−(s)
s

where c1, c2 are constants independent of s.
To maximize s and keeping linear space constraint(S(N) = O(N)), we choose

s = min
(
r−(s)

√
B
c , B

)
; i.e. s is the largest number k ≤ B such that k ≤

r−(k)
√

B
c .

Theorem 2. A planar graph of size N and maximum face size c can be stored in
O(N

B) blocks so that any online path of length t can be traversed using O
(

t
r−(s)

)

I-O operations where s = min
(
r−(s)

√
B
c , B

)
.

The new blocking scheme gives improvement in speed-up for planar graphs with
bounded face size. The important point is that the improvement achieved is most
significant in case of graphs with r−(k) = kα(the graphs for which the previous
blocking scheme fails).

Remark 1. For planar graphs with r−(B) = Ω(
√
B) and maximum face size

= c, value of s is equal to B
c ; and we get speed-up equal to r−

(
B
c

)
, which is a

significant improvement for planar graphs with small c, over previous speed-up
of r−(

√
B), achieved by blocking scheme of Agarwal et al. [1].

Remark 2. For a tree we get speed-up which is equal to r−(B).
Remark 3. For planar graphs with r−(k) = kα, for some constant α ≤ 1

2 , value of

s is
(

B
c

) 1
2(1−α) . Thus speed up achieved by the new blocking scheme is

(
B
c

) α
2(1−α)

which is a significant improvement for planar graphs with small c (maximum face
size) over the previous speed-up of B

α
2 achieved by blocking scheme of Agarwal

et al. [1].

Planar Graph Blocking for External Searching 257

A Blocking scheme for undirected graphs can be employed for directed graphs
in the following way. Let Gd be given directed planar graph and Gu be the undi-
rected graph constructed by ignoring the direction of edges in Gd. Let Adjd(x)
and Adju(x) be adjacency lists of a node x in the graphs Gd and Gu respec-
tively. Based on the given blocking scheme for undirected graphs, let ρ be the
storage description of Gu in blocks of external memory where each block stores
adjacency lists of some B nodes of graph Gu. For every node x lying in a block
b, replace Adju(x) by Adjd(x), and carry out this step for all the blocks storing
Gu. This gives a storage description ρ′ for Gd. Since Adjd(x) ⊂ Adju(x), we shall
be able to keep all the nodes earlier belonging to a block, still in a block(thus
preserving the locality defined by ρ). Also note that a path in Gd exists in Gu

as well. Therefore, if ρ ensures that k is the worst-case average-number of steps
of walk performed on Gu between two block transfers, ρ′ will ensure that the
worst-case average-number of steps of walk in Gd between two block transfers
is at least k. Thus the speed-up achieved in Gd by the new(adapted) blocking
scheme is at least as much as the speed-up achieved in Gu by the given block-
ing scheme for undirected graphs. We can combine this observation with our
blocking scheme for planar undirected graph to state the following theorem.

Theorem 3. A planar directed graph G of size N and maximum face size c can
be stored in O(N

B) blocks so that any online path of length t can be traversed

using O(t
r−(s)) I-O operations where s = min

(
r−(s)

√
B
c , B

)
and r−(s) is the

minimum depth of a BFS-tree of size s in the undirected graph formed by ignoring
the direction of edges in G.

The above blocking scheme is useful for I-O efficient traversal in a planar
directed graph especially when the underlying undirected graph has significantly
large value of r−(B).

3 Blocking of Planar Mesh

In various problems of scientific computing, graphs are often defined geometri-
cally; for example, grid graphs and graphs in VLSI technology. In addition to
combinatorial structure, these graphs also have geometric structure associated
with them. One such family of graphs is mesh. A mesh in d-dimensional space
is a subdivision of a d-dimensional domain into simplices which meet only at
shared faces e.g. a mesh in 2-dimension is a triangulation of a planar region
where triangles intersect only at shared edges and vertices.

Unlike a grid graph, where edges are of same length throughout and posi-
tioning of vertices has high degree of symmetry, a mesh need not be uniform and
symmetric. We define two parameters α, γ to be associated with a planar mesh
which (intuitively speaking) measure its well-shapedness. We address blocking of
planar mesh. We prove two results: First, we show that the maximum worst-case
speed-up achievable in a planar mesh is O(

√
B), where the constant of propor-

tionality depends upon parameters α, γ. Next, we use the blocking scheme of

258 Surender Baswana and Sandeep Sen

planar graphs described in previous section to achieve a speed-up of Ω(
√
B),

where the constant of proportionality that depends upon α, γ becomes smaller
as well-shapedness of mesh reduces. Thus for meshes having good degree of well-
shapedness, the speed-up achieved by the blocking scheme matches the best
possible.

3.1 Well-Shaped Planar Meshes

A planar mesh is a triangulation of a region in 2-dimensions where the triangles
meet only at shared edges and vertices. For simplicity, we assume that a planar
mesh extends infinitely in all directions (e.g. a mesh embedded on a torus or a
sphere). A planar mesh need not possess perfect uniformity and symmetry like a
grid graph. There may be variation in edge-lengths and density of vertices as we
move from one region to another region in the mesh. But as observed in most of
practical applications, there is certain degree of local uniformity present in mesh
i.e. in a neighborhood around a vertex there is not too much variation in edge-
lengths and vertex-density though the variation may be unbounded for the whole
mesh. Visualizing mesh as a triangulation, this local uniformity can be viewed in
the following way: the triangles constituting the mesh are fat and the variation
of size(area) of these triangles is bounded in a finite neighborhood. This local
uniformity captures formally the notion of well-shapedness of a planar mesh.
We now define parameters to measure the local uniformity of a planar mesh.
We parameterize fatness of triangles by the smallest angle α of a triangle in
planar mesh. We parameterize the variation in sizes of triangles within a B-
neighborhood in the following way : Let u be a node and Bu be the set of nodes
of a BFS tree of size B rooted at u. Let u

B be the set of triangles with at
least one vertex belonging to Bu. γ is defined as the ratio of area of the largest-
area triangle to area of the smallest-area triangle belonging to the set u

B. The
parameters (α, γ) thus defined measure local uniformity of a planar mesh.

The area of any triangle in the set u
B will lie in the range [A, γA] for some

A. Using elementary geometry it can be shown that length, l of any edge in the
subgraph induced by Bu has the following bounds:

emin = 2
√
A tan

α

2
≤ l ≤ 2

√
γA cotα = emax

Lemma 4. r−(B) of a planar mesh with parameters α, γ is Ω(
√

tan α√
γ

√
B).

Proof. Consider an arbitrary node u of planar mesh and let l be the depth of
BFS tree of size B rooted at u. Let w be a node of Bu at maximum Euclidean
distance dmax from u. Consider a circle C centered at u with radius dmax. The
number of nodes lying in the circle is at least B since Bu lies inside it. Thus the
number of triangles lying inside the circle is at least B

3 . Note that the maximum

number of triangles lying inside a circle of radius dmax is ≤ πd2
max

A . Hence the

following inequality must hold: πd2
max

A ≥ B
3 , i.e., dmax ≥

√
A
π

√
B
3 . Also note that

Planar Graph Blocking for External Searching 259

dmax is bounded by lemax. Thus l ≥
√

A√
πemax

√
B
3 . Using the bound on emax, and

the definition of r−(B), it follows that r−(B) = Ω(
√

tan α√
γ

√
B).

For a planar mesh, the following theorem gives a lower bound on Euclidean
distance between two nodes in terms of the length of the shortest path separating
them.

Theorem 5. Let v be a node belonging to Bu in a planar mesh. If puv is the
shortest path-length from u to v, the Euclidean distance, duv between u and
v is Ω(puv

√
A), where the constant of proportionality depends upon the well-

shapedness parameters (α, γ) of the mesh.

Proof. Let w be a boundary node of the neighborhood Bu which is at the closest
Euclidean distance from u and N be the set of nodes lying within distance duw

from u. It can be seen that N ⊂ Bu. To prove the theorem it would suffice if we
can show that for a node v ∈ N separated by shortest path of length l from u,
the Euclidean distance duv is Ω(l

√
A). We proceed as follows: Let v be a node

belonging to N and S be the line segment joining u and v. We build a path zuv

u

v

uvz

Fig. 1. Zig-zag path zuv between nodes u and v of neighborhood Bu in a planar
mesh

as we move along S from u. Let p denotes the vertex most recently added to the
path we are building (initially p = u). We add edges to our path maintaining
the following invariant :
I : p lies on the edge most recently intersected by S; and every edge forming the
path has some point in common with S.

260 Surender Baswana and Sandeep Sen

While moving along S building the path, let e be an edge intersected by S.
If e contains p, we keep p unchanged. Otherwise (e does not contain p), there
is one end point say q of edge e adjacent to p such that pq is the valid edge
to be added to our path maintaining the invariant I. So we extend our path
by adding the edge pq to it and p gets updated to q now. We continue this
process until we reach v. In the special case when S passes through a node,
say x, we update p to x. We shall now bound length of this zig-zag shaped
path zuv. The segment S intersects triangles of u

B only and so the ratio of
areas of intersected triangles is bounded by γ. Path zuv divides the segment
S into subsegments whose total number is equal to number of nodes lying on
path zuv excluding u and v. Consider any three consecutive edges of zuv. There
will be one (or two adjacent) subsegment(s) of S intercepted between these three
edges. Because of the constraints imposed by bounded α and γ, the length of the
intercepted subsegment(or sum of the lengths of two intercepted subsegments)
is at least emin sinα. Hence the number of subsegments into which the segment
S is divided by the path zuv (and so length of the path zuv) is at most duv

emin sin α .
Using the bound on emin (given before), it follows that length of the path zuv is
at most duv

cα

√
A

, where cα = 2
√

tan α
2 sinα.

Since puv, length of the shortest path between u, v is less than or equal to the
length of path zuv. Thus

puv ≤
(

duv

cα
√
A

)
(1)

In other words, if v is a node belonging to Bu separated from u by Euclidean
distance duv and puv be the length of the shortest path between u and v, then

duv ≥ cαpuv

√
A (2)

We showed in Lemma 4 that shortest path-length from u to a boundary node
of Bu is r−(B) = Ω(

√
tan α√

γ

√
B). By substituting the value of r−(B) for puv in

equation 2, we get the following Corollary:

Corollary 6. The minimum Euclidean distance between u and boundary node
of Bu in a planar mesh is ρ ≥ cα

√
tan α

γ

√
B
√
A.

We now state the following Lemma which gives an upper bound on r+(B):

Lemma 7. r+(B) for a planar mesh with parameters α, γ is O
(√

γ

cα

√
B

)

Above Lemma is based on equation 2. The arguments used to prove the Lemma
are similar to those used in Lemma 4 and thus the details are omitted.

3.2 Upper Bound on Speed-Up in a Planar Mesh

Goodrich et al. [3] proved an upper bound of r+(B) on the best worst-case speed-
up achievable in a graph. We showed in previous subsection(Lemma 7)that r+(B)
for a planar mesh is O(

√
γ

cα

√
B). We can now state the following theorem:

Planar Graph Blocking for External Searching 261

Theorem 8. For a planar mesh, the best worst-case speed-up that can be a-
chieved is σ = O(Cαγ

√
B), where Cαγ is a constant depending upon the parame-

ters (α, γ) which capture the well-shapedness of the mesh.

For sake of completeness, we give an alternate proof for upper bound on the
speed-up in a planar mesh. Consider a planar mesh in x-y plane. We present a
traversal strategy which will ensure one block transfer on an average for every
O(

√
B) steps traversed, irrespective of the underlying blocking scheme. We in-

troduce a terminology here : a node is said to be covered if it happens to be
in internal memory at least once. Initially, before starting traversal, no node is
present in internal memory, and so all the nodes are uncovered. Let u be the
most recently visited node(path-front). It is obvious that if there is an uncovered
node separated by a path of length ≤ √

B from u, we can extend our path to
that uncovered node(and thus force a block transfer in

√
B steps). But what if

all the nodes separated by paths of length ≤ √
B from u are covered? Note that

at least one block-transfer is required to cover a set of B uncovered nodes. So
in case there is no uncovered node separated by path of length

√
B from the

path-front, we move the next
√
B steps in such a way that we can associate

distinct Ω(B) covered nodes to these steps. This would still imply that there
is a block transfer after every O(

√
B) steps on average. This is the basic idea

underlying the traversal strategy.
For a node u of mesh, Cellu denotes a square with base parallel to x-axis and

with u lying on its left vertical side. Length of each of its four sides is chosen to
be ρ/2, where ρ is the minimum Euclidean distance between u and a boundary
node of Bu. It follows from Corollary 6 that the number of nodes lying in Cellu
is more than coB and every node of Cellu is reachable from u by path of length
less than c

√
B for some constants c, co depending upon well-shapedness of the

mesh. Here is the traversal strategy :
We start from any vertex and always move rightward within the mesh. The

path can be visualized as a sequence of sub-paths of type p′ and px. At a point,
let v be the most recently visited vertex. If there is any uncovered node inside
Cellv, we extend our path to that uncovered node(we call it sub-path of type
p′) and thus force a block-read from disk; otherwise we extend our path to a
covered node lying closest to the right edge of Cellv (we call it sub-path of type
px).

Let b be the number of block transfers encountered in traversing t steps
in the mesh according to above strategy. Every sub-path of type p′ causes a
block transfer. So the number of sub-paths of type p′ is at most b. Also note
that for every sub-path of type px, the number of covered nodes lying to the
left of path-front in the mesh increases by coB. Thus we can associate a set of
unique coB covered nodes to a sub-path of type px (uniqueness follows from the
unidirectionality of motion). Since a block transfer can cover at most B nodes,
it follows that the number of sub-paths of type px is at most b

co
. So the total

number of sub-paths(of type p′ and px) is bounded by 2b
co

. Also note that the
length of each sub-path is no more than c

√
B(from definition of Cell above).

Hence t ≤ 2c
√

Bb
co

or in other words, the number of block-transfers, b required

262 Surender Baswana and Sandeep Sen

v v

(i) (ii)

(ii) Subpath of type px

(i) Subpath of type p’

if all the nodes of Cellv

 if there is any uncovered node Cellvin

are covered

vCell Cellv

Fig. 2. Two types of sub-paths from a node v in the mesh(the nodes lying in
the shaded region are covered nodes)

to traverse t steps is Ω(t√
B

). Hence we can conclude that the traversal strategy

described above will ensure a block transfer after every O(
√
B) steps on an

average, irrespective of the underlying blocking scheme of the mesh.

3.3 Efficient Blocking of Planar Meshes

We can block planar meshes efficiently using our blocking scheme for planar
graphs described in Section 2. From Lemma 4 it follows that r−(k) =
Ω(

√
tan α

γ

√
k) for k ≤ B. Also note that face size in a planar mesh is 3. So

It follows easily from Theorem 2 that our blocking scheme guarantees speed-up
of Ω(tan α

γ

√
B) in a planar mesh with parameters α, γ. In previous subsection we

established an upper bound of O(
√
B) on the speed-up in a planar mesh. Thus

our blocking scheme achieves optimal speed-up in a planar mesh having good
degree of well-shapedness.

Theorem 9. There is a space optimal blocking scheme which ensures a speed-
up of Ω(tan α

γ

√
B) in a planar mesh, where the parameters (α, γ) measure the

well-shapedness of the mesh.

4 Conclusions

We addressed the problem of planar graph blocking in this paper. We described
a blocking scheme which guarantees improved speed-up in planar graphs of

Planar Graph Blocking for External Searching 263

bounded face size over previous blocking schemes. We also established a bound
on the best worst-case speed-up that can be achieved in a planar mesh. For pla-
nar meshes with good degree of well-shapedness(local uniformity) our blocking
scheme achieves optimal speed-up.

There is still no space optimal blocking scheme which can ensure I-O efficient
traversal in general graphs(not necessarily planar). Such a scheme will help solve
a large number of problems which require I-O efficient traversal in general graphs.

References

1. Pankaj K. Agarwal, Lars Arge, T.M. Murli, Kasturi R. Varadarajan, J.S. Vitter.
I/O-efficient algorithms for contour-line extraction and planar graph blocking. 9th

ACM-SIAM Symposium on Discrete Algorithms, 1998.
2. G.N. Fredrickson. Fast algorithms for shortest paths in planar graphs, with ap-

plications. SIAM Journal of Computing, 16, pp. 1004–1022, 1987.
3. M.T. Goodrich, M.H. Nodine and J.S. Vitter. Blocking for external graph search-

ing. Algorithmica , 16, pp. 181–214, August 1996.
4. John Hershberger and Subhash Suri. A pedestrian approach to ray shooting :

shoot a ray, take a walk. Journal of Algorithms, 18, pp. 403–432, 1995.
5. R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM jour-

nal of Applied Math., 36, pp. 177–189, 1979.
6. G. Miller. Balanced cyclic separator for 2-connected planar graphs. Journal of

Computer and System Sciences, 32(3), pp. 265–279, 1986.

A Complete Fragment of Higher-Order Duration

µ-Calculus

Dimitar P. Guelev

International Institute for Software Technology
of the United Nations University

(UNU/IIST), Macau, P.O.Box 3058.
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences Bl. 8, Akad G. Bonchev blvd., Sofia.
gelevdp@bgnet.bg, dg@iist.unu.edu

Abstract. The paper presents an extension µHDC of Higher-order Du-
ration Calculus (HDC,[ZGZ99]) by a polyadic least fixed point (µ) oper-
ator and a class of non-logical symbols with a finite variability restriction
on their interpretations, which classifies these symbols as intermediate
between rigid symbols and flexible symbols as known in DC. The µ op-
erator and the new kind of symbols enable straightforward specification
of recursion and data manipulation by HDC. The paper contains a com-
pleteness theorem about an extension of the proof system for HDC by
axioms about µ and symbols of finite variability for a class of simple
µHDC formulas. The completeness theorem is proved by the method of
local elimination of the extending operator µ, which was earlier used for
a similar purpose in [Gue98].

Introduction

Duration calculus(DC, [ZHR91]) has been proved to be a suitable formal sys-
tem for the specification of the semantics of concurrent real-time programming
languages[SX98, ZH00]. The introduction of a least fixed point operator to DC
was motivated by the need to specify recursive programming constructs simply
and straightforwardly. Recursive control structures as available in procedural
programming languages are typically approximated through translation into it-
erative ones with explicit special storage (stacks). This blurs intuition and can
add a significant overhead to the complexity of deductive verification. It is also
an abandonment of the principle of abbreviating away routine elements of proof
in specialised notations. That is why it is worth having an immediate way not
only to specify but also to be able to reason about this style of recursion as it
appears in high level programming languages.

Recently, an extension of DC by quantifiers which bind state variables
(boolean valued functions of time) was introduced[ZGZ99]. Systematic studies
regarding the application of this sort of quantification in DC had gained speed
earlier, cf. [Pan95]; HDC allowed the integration of some advanced features of
DC, such as super-dense chop [ZH96, HX99], into a single general system, called

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 264–276, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Complete Fragment of Higher-Order Duration µ-Calculus 265

Higher-order Duration Calculus (HDC), and enabled the specification of the
semantics of temporal specification and programming languages such as Ver-
ilog and Timed RAISE[ZH00, LH99] by DC. The kind of completeness of the
proof system of HDC addressed in [ZGZ99], which is ω-completeness, allowed
to conclude the study of the expressive power of some axioms about the state
quantifier.

In this paper we present some axioms about the least fixed point operator in
HDC and show that adding them to a proof system for HDC yields a complete
proof system for a fragment of the extension of HDC with this operator, µHDC.

The axioms we study are obtained by paraphrasing of the inference rules
known about the propositional modal µ-calculus(cf. [Koz83, Wal93]), which were
first introduced to DC in [PR95]. The novelty in our approach is the way we use
the expressive power of the axioms about the µ-operator in our completeness
argument, because, unlike the propositional µ-calculus, µHDC is a first-order
logic with a binary modal operator.

Our method was first developed and applied in [Gue98] to so-called simple
DC∗ formulas which were introduced in [DW94] as a DC counterpart of a class
of finite timed automata. That class was later significantly extended in [DG99,
Gue00]. In this paper we show the completeness of an extension of a proof system
for HDC for a corresponding class of simple µHDC formulas.

Our method of proof significantly relies on the exact form of the complete-
ness of the proof system for HDC, which underlies the extension in focus. The
completeness theorem about the original proof system for DC[HZ92] applies to
the derivability of individual formulas only, and we need to have equivalence
between the satisfiability of the infinite sets of instances of our new axioms and
the consistency of these sets together with some other formulas, i.e. we need an
ω-complete proof system for HDC. That is why we use a modification of the
system from [ZGZ99], which is ω-complete with respect to a semantics for HDC,
shaped after the abstract semantics of ITL, as presented in [Dut95]. Material to
suggest an ω-completeness proof for this modification can be found starting from
completion of Peano arithmetics by an ω-rule (cf. e.g. [Men64]) to [ZNJ99]. The
completeness result presumed in this paper applies to the class of abstract HDC
frames with their duration domains satisfying the principle of Archimedes. In-
formally, this principle states that there are no infinitely small positive durations
and it holds for the real-time based frame.

The purpose of the modification of HDC here is to make a form of finite
variability which is preserved under logical operations explicitly appear in this
system. The choice to work with Archimedean duration domains is just to pro-
vide the convenience to axiomatise this kind of finite variability (axiom HDC5
below).

The fragment of µHDC language that our completeness result applies to is
sufficient to provide convenience of the targetted kind for the design and use of
HDC semantics of practically significant timed languages which admit recursive
procedure invocations.

266 Dimitar P. Guelev

1 Preliminaries on HDC with Abstract Semantics

In this section we briefly introduce a version of HDC with abstract
semantics[ZGZ99], which closely follows the abstract semantics for ITL given
in [Dut95]. It slightly differs from the one presented in [ZGZ99]. Along with
quantification over state, we allow quantifiers to bind so-called temporal vari-
ables and temporal propositional letters with the finite variability property.

1.1 Languages

A language for HDC is built starting from some given sets of constant symbols
a, b, c, . . . , function symbols f , g, . . . , relation symbols R, S, . . . , individual
variables x, y, . . . and state variables P , Q, Function symbols and relation
symbols have arity to indicate the number of arguments they take in terms and
formulas. Relation symbols and function symbols of arity 0 are also called tem-
poral propositional letters and temporal variables respectively. Constant symbols,
function symbols and relation symbols can be either rigid or flexible. Flexible
symbols can be either symbols of finite variability (fv symbols) or not. Rigid
symbols, fv symbols and (general) flexible and symbols are subjected to different
restrictions on their interpretations. Every HDC language contains countable
sets of individual variables, fv temporal propositional letters and fv temporal
variables, the rigid constant symbol 0, the flexible constant symbol �, the rigid
binary function symbol + and the rigid binary relation symbol =. Given the sets
of symbols, state expressions S, terms t and formulas ϕ in a HDC language are
defined by the BNFs:

S ::= 0|P |S ⇒ S

t ::= c| ∫ S|f(t, . . . , t)|←−t |−→t
ϕ ::= ⊥|R(t, . . . , t)|ϕ⇒ ϕ|(ϕ;ϕ)|∃xϕ|∃vϕ|∃Pϕ

In BNFs for formulas here and below v stands for a fv temporal variable or a fv
temporal propositional letter.

Terms and formulas which contain no flexible symbols are called rigid. Terms
and formulas which contain only fv flexible symbols, rigid symbols and subfor-
mulas of the kind

∫
S = � are called fv terms and fv formulas respectively. Terms

of the kinds ←−t and −→t are well-formed only if t is a fv term. We call individual
variables, temporal variables, temporal propositional letters and state variables
just variables, in case the exact kind of the symbol is not significant.

1.2 Frames, Models, and Satisfaction

Definition 1. A time domain is a linearly ordered set with no end points. Given
a time domain 〈T,≤〉, we denote the set {[τ1, τ2] : τ1, τ2 ∈ T, τ1 ≤ τ2} of intervals
in T by I(T). Given σ1, σ2 ∈ I(T), where 〈T,≤〉 is a time domain, we denote
σ1 ∪ σ2 by σ1;σ2, in case maxσ1 = min σ2. A duration domain is a system of
the type 〈D, 0(0),+(2),≤(2)〉 which satisfies the following axioms

A Complete Fragment of Higher-Order Duration µ-Calculus 267

(D1) x+ (y + z) = (x+ y) + z
(D2) x+ 0 = x
(D3) x+ y = x+ z ⇒ y = z
(D4) ∃z(x+ z = y)
(D5) x+ y = y + x

(D6) x ≤ x
(D7) x ≤ y ∧ y ≤ x⇒ x = y
(D8) x ≤ y ∧ y ≤ z ⇒ x ≤ z
(D9) x ≤ y ⇔ ∃z(x+ z = y ∧ 0 ≤ z)
(D10) x ≤ y ∨ y ≤ x

Given a time domain 〈T,≤〉, and a duration domain 〈D, 0,+,≤〉, m : I(T)→ D
is a measure if

(M0) x ≥ 0⇔ ∃σ(m(σ) = x)
(M1) minσ = min σ′ ∧m(σ) = m(σ′)⇒ maxσ = maxσ′

(M2) maxσ = minσ′ ⇒ m(σ) +m(σ′) = m(σ ∪ σ′)
(M3) 0 ≤ x ∧ 0 ≤ y ∧m(σ) = x+ y ⇒ ∃τ ∈ σ m([minσ, τ]) = x.

Definition 2. A HDC frame is a tuple of the kind 〈〈T,≤〉, 〈D, 0,+,≤〉,m〉,
where 〈T,≤〉 is a time domain, 〈D, 0,+,≤〉 is a duration domain, and m :
I(T)→ D is a measure.

Definition 3. Given a HDC frame F = 〈〈T,≤〉, 〈D, 0,+,≤〉,m〉 and a HDC
language L, a function I which is defined on the set of the non-logical symbols
of L is called interpretation of L into F , if
◦ I(c), I(x) ∈ D for constant symbols c and individual variables x
◦ I(f) : Dn → D for rigid n-place function symbols f
◦ I(f) : I(T)×Dn → D for flexible n-place function symbols f
◦ I(R) : Dn → {0, 1} for rigid n-place relation symbols R
◦ I(R) : I(T)×Dn → {0, 1} for flexible n-place relation symbols R
◦ I(P) : T → {0, 1} for state variables P
◦ I(0) = 0, I(�) = m, I(+) = + and I(=) is =.

The following finite variability condition is imposed on interpretations of state
variables P :

Every σ ∈ I(T) can be represented in the form σ1; . . . ;σm so that I(P)
is constant on [minσi,maxσi), i = 1, . . . ,m.

A similar condition is imposed on the interpretations of fv symbols s. Given a
frame F and an interpretation I as above, and σ ∈ I(T), a function (predicate)
A on I(T) × Dn is called fv in F, I with respect to σ1, . . . , σm ∈ I(T) iff σ =
σ1; . . . ;σm for some interval σ and for all d1, . . . , dn ∈ D, i, j ≤ m, i ≤ j,
σ′ ∈ I(T):
◦ if min σ′ ∈ (minσi,maxσi) and maxσ′ ∈ (min σj ,maxσj),
A(σ′, d1, . . . , dn) is determined by d1, . . . , dn i and j only;
◦ if minσ′ = minσi and maxσ′ ∈ (min σj ,maxσj), A(σ′, d1, . . . , dn) is

determined by d1, . . . , dn i and j only, possibly in a different way;
◦ if minσ′ ∈ (min σi,maxσi) and maxσ′ = min σj, A(σ′, d1, . . . , dn) is

determined by d1, . . . , dn i and j only, possibly in a different way;
◦ if minσ′ = minσi and maxσ′ = min σj, A(σ′, d1, . . . , dn) is deter-

mined by d1, . . . , dn i and j only, possibly in a different way.

268 Dimitar P. Guelev

A symbol s is fv with respect to σ1, . . . , σm in some F, I as above, if I(s) has
the corresponding property. Given a fv symbol s, for every σ ∈ I(T) there should
be σ1, . . . , σm ∈ I(T) such that s is fv with respect to σ1, . . . , σm in F, I.
Given a language L, a pair 〈F, I〉 is a model for L if F is a frame and I is an
interpretation of L into F .

Interpretations I and J of language L into frame F are said to s-agree, if
they assign the same values to all non-logical symbols from L, but possibly s.

Given a frame F (model M) we denote its components by 〈TF ,≤F 〉,
〈DF , 0F ,+F ,≤F 〉 and mF (〈TM ,≤M 〉, 〈DM , 0M ,+M ,≤M 〉 and mM) respec-
tively. We denote the frame and the interpretation of a given model M by IM
and FM respectively.

Definition 4. Given a model M = 〈F, I〉 for the language L, τ ∈ TM and
σ ∈ I(TM) the values Iτ (S) and Iσ(t) of state expressions S and terms t and
the satisfaction of formulas ϕ are defined by induction on their construction as
follows:
Iτ (0) = 0
Iτ (P) = I(P)(τ)
Iτ (S1 ⇒ S2) = max{1− Iτ (S1), Iτ (S2)}.
Iσ(c) = I(c) for rigid c
Iσ(c) = I(c)(σ) for flexible c
Iσ(

∫
S) =

∫ maxσ

minσ Iτ (S)dτ
Iσ(f(t1, . . . , tn)) = I(f)(Iσ(t1), . . . , Iσ(tn)) for rigid f
Iσ(f(t1, . . . , tn)) = I(f)(σ, Iσ(t1), . . . , Iσ(tn)) for flexible f
Iσ(←−t) = d if Iσ′ (t) = d for some τ < minσ and all σ′ ⊂ (τ,minσ)
Iσ(−→t) = d if Iσ′ (t) = d for some τ > maxσ and all σ′ ⊂ (maxσ, τ)
M,σ �|= ⊥
M,σ |= R(t1, . . . , tn) iff I(R)(Iσ(t1), . . . , Iσ(tn)) = 1 for rigid R
M,σ |= R(t1, . . . , tn) iff I(R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1 for flexible R
M,σ |= ϕ⇒ ψ iff either M,σ |= ψ or M,σ �|= ϕ
M, σ |= (ϕ;ψ) iff there exist σ1, σ2 ∈ I(TF) such that σ = σ1;σ2,

M,σ1 |= ϕ and M,σ2 |= ψ
M, σ |= ∃xϕ iff 〈F, J〉, σ |= ϕ for some J which x-agrees with I

Note that discrete time domains, which make the above definitions of←−t and −→t
incorrect, also render any ”corrected” definition for these operators grossly non-
introspective, and therefore these operators should be disregarded in the case
of discrete domains. In the clause about ∃x above x stands for variable of an
arbitrary kind, temporal variables and propositional temporal letters included.
The integral used to define values of terms of the kind

∫
S above is defined as

follows. Given σ and S, there exist σ1, . . . , σn ∈ I(TF) such that σ = σ1; . . . ;σn
and Iτ (S) is constant in [min σi; maxσi), i = 1, . . . , n. Given such a partitition
σ1, . . . , σn of σ, we put:

A Complete Fragment of Higher-Order Duration µ-Calculus 269

maxσ∫
minσ

Iτ (S)dτ =
∑

i=1,...,n, Imin σi
(S)=1

mF (σi)

Clearly, the value thus defined does not depend on the choice of σ1, . . . , σn.

1.3 Abbreviations

Infix notation and propositional constant �, connectives ¬, ∧, ∨ and ⇔ and
quantifier ∀ are introduced as abbreviations in the usual way. 1 stands for 0⇒ 0
in state expressions. The relation symbol ≤ is defined by the axiom x ≤ y ⇔
∃z(x+z = y). The related symbols ≥, < and > are introduced in the usual way.
We use the following DC-specific abbreviations:
�S�⇀↽ ∫

S = � ∧ � �= 0, 3ϕ ⇀↽ ((�;ϕ);�), 2ϕ ⇀↽ ¬3¬ϕ, n.t ⇀↽ t+ . . . + t︸ ︷︷ ︸
n times

.

3iϕ ⇀↽ ((� �= 0;ϕ); � �= 0), 2iϕ ⇀↽ ¬3i¬ϕ ξt1,t2(ϕ) ⇀↽ ((� = t1;ϕ) ∧ � = t2;�).

1.4 Proof System

Results in the rest of this paper hold for the class of DC models which satisfy
the principle of Archimedes. It states that given positive durations d1 and d2,
there exists a natural number n such that n.d1 ≥ d2.

Here follows a proof system for HDC which is ω-complete with respect to
the class of HDC models which satisfy the principle of Archimedes:
(A1l) (ϕ;ψ) ∧ ¬(χ; ψ)⇒ (ϕ ∧ ¬χ;ψ)
(A1r) (ϕ;ψ) ∧ ¬(ϕ; χ)⇒ (ϕ;ψ ∧ ¬χ)
(A2) ((ϕ;ψ);χ)⇔ (ϕ; (ψ;χ))
(Rl) (ϕ;ψ)⇒ ϕ if ϕ is rigid
(Rr) (ϕ;ψ)⇒ ψ if ψ is rigid
(Bl) (∃xϕ;ψ)⇒ ∃x(ϕ;ψ) if x �∈ FV (ϕ)
(Br) (ϕ;∃xψ)⇒ ∃x(ϕ;ψ) if x �∈ FV (ψ)
(L1l) (� = x;ϕ)⇒ ¬(� = x;¬ϕ)
(L1r) (ϕ; � = x)⇒ ¬(¬ϕ; � = x)
(L2) � = x + y ⇔ (� = x; � = y)
(L3l) ϕ⇒ (� = 0;ϕ)
(L3r) ϕ⇒ (ϕ; � = 0)

(MP)

ϕ ϕ⇒ ψ

ψ (G)

ϕ

∀xϕ

(Nl)

ϕ

¬(¬ϕ; ψ) (Nr)

ϕ

¬(ψ;¬ϕ)

(Monol)

ϕ⇒ ψ

(ϕ;χ)⇒ (ψ;χ)

(Monor)

ϕ⇒ ψ

(χ;ϕ)⇒ (χ;ψ)

(ω)

∀k<ω [(� = 0 ∨
S�∨
¬S�)k/R]ϕ

[�/R]ϕ

(Arch)

∀n < ω ϕ⇒ n.x ≤ y

ϕ⇒ x ≤ 0

(DC0) � = 0⇒
∫

S = 0
(DC1)

∫
0 = 0

(DC2)
1� ∨ � = 0
(DC3) (

∫
S = x;
S� ∧ � = y)⇒

∫
S = x + y

(DC4) (
∫

S = x;
¬S�)⇒
∫

S = x
(DC5)
S1� ∧
S2� ⇔
S1 ∧ S2�
(DC6)
S1� ⇔
S2�, if �PC S1 ⇔ S2.
(DC7)
S� ⇒ 2(
S� ∨ � = 0)

(PV 1) (� �= 0;
←−
t = x ∧ � = y)⇔ (�; (2i(t = x) ∧ � �= 0; � = y))

(PV 2) (
−→
t = x ∧ � = y; � �= 0)⇔ ((� = y;2i(t = x) ∧ � �= 0);�)

(NL)

((� = a;ϕ); � = b)⇒ ((� = a;ψ); � = b)

ϕ⇒ ψ

(∃v) [t/v]ϕ⇒ ∃vϕ for fv-terms t and temporal variables v;
(∃p) [ψ/p]ϕ⇒ ∃pϕ for fv-formulas ψ and temporal propositional letters p;
(HDC1) ∃v(←−v = x)
(HDC2) ∃v(−→v = x)
(HDC3) (∃Sϕ;∃Sψ)⇔ ∃S(ϕ;ψ)

270 Dimitar P. Guelev

(HDC3v,l) x ≤ �⇒ ∃v∀y1∀y2(←−v =
←−
t1 ∧ −→v =

−→
t2∧

∧(y1 ≤ x ∧ y2 ≤ x ∧ y1 ≤ y2 ⇒ ξy1,y2(v = t1))∧
∧(y1 > x ∧ y2 > x ∧ y1 ≤ y2 ∧ y2 ≤ �⇒ ξy1,y2(v = t2))∧
∧(y1 ≤ x ∧ y2 > x ∧ y2 ≤ �⇒ ξy1,y2(v = t3)))

(HDC3v,r) x ≤ �⇒ ∃v∀y1∀y2(←−v =
←−
t1 ∧ −→v =

−→
t2∧

∧(y1 < x ∧ y2 < x ∧ y1 ≤ y2 ⇒ ξy1,y2(v = t1))∧
∧(y1 ≥ x ∧ y2 ≥ x ∧ y1 ≤ y2 ∧ y2 ≤ �⇒ ξy1,y2(v = t2))∧
∧(y1 < x ∧ y2 ≥ x ∧ y2 ≤ �⇒ ξy1,y2(v = t3)))

(HDC3p,l) x ≤ �⇒ ∃p∀y1∀y2(
(y1 ≤ x ∧ y2 ≤ x ∧ y1 ≤ y2 ⇒ ξy1,y2(p⇔ ψ1)∧
∧(y1 > x ∧ y2 > x ∧ y1 ≤ y2 ∧ y2 ≤ �⇒ ξy1,y2(p⇔ ψ2))∧
∧(y1 ≤ x ∧ y2 > x ∧ y2 ≤ �⇒ ξy1,y2(p⇔ ψ3)))

(HDC3p,r) x ≤ �⇒ ∃p∀y1∀y2(
(y1 < x ∧ y2 < x ∧ y1 ≤ y2 ⇒ ξy1,y2(p⇔ ψ1))∧
∧(y1 ≥ x ∧ y2 ≥ x ∧ y1 ≤ y2 ∧ y2 ≤ �⇒ ξy1,y2(p⇔ ψ2))∧
∧(y1 < x ∧ y2 ≥ x ∧ y2 ≤ �⇒ ξy1,y2(p⇔ ψ3)))

(HDC4) ∀x∀y((ϕ∧ � = x;ψ) ∧ ¬(ϕ ∧ � = y;ψ)⇒ x < y)⇒
⇒ ∃x(∀y((ϕ∧ � = y;ψ)⇔ y < x) ∨ ∃x(∀y((ϕ∧ � = y;ψ)⇔ y ≤ x)

(HDC5) � �= 0⇒ ∃x(x �= 0∧
∀y2(ϕ ∧3(¬ϕ ∧3(ϕ ∧ 3(¬ϕ ∧3(ϕ ∧ � = y))))⇒ � ≤ x + y))

The symbol x denotes a variable of an arbitrary kind in the rule G and the
axioms Bl and Br. Instances of HDC3∗, HDC4 and HDC5 are valid only
if v, p, x, y, y1, y2 �∈ FV (t1), FV (t2), FV (t3), FV (ψ1), FV (ψ2), FV (ψ3), FV (ϕ),
FV (ψ) and t1, t2, t3, ψ1, ψ2, ψ3, ϕ and ψ are fv terms and formulas respectively.

The proof system also includes the axiomsD1-D10 for duration domains, first
order axioms and equality axioms. Substitution [t/x]ϕ of variable x by term t in
formula ϕ is allowed in proofs only if either t is rigid, or x is not in the scope of
a modal operator.

Note that this proof system is slightly different from the original HDC one,
as fv symbols are not considered in HDC as in [ZGZ99]. Nevertheless, its ω-
completeness can be shown in way that is similar to the one taken in [ZNJ99].

The meaning of the new axioms HDC1, HDC2 and HDC3∗ is to enable the
construction of fv functions and predicates on the set of intervals of the given
model (from simpler ones). Given that a language L has rigid constants to name
all the durations in a model M for it, as in the case of canonical models which
are used in the completeness argument for this system, the existence of every fv
function and predicate on I(TM) can be shown using these axioms. The axioms
HDC4 and HDC5 express the restrictions on the interpretations of fv formulas,
and hence - the fv symbols occurring in them. The following ω-completeness
theorem holds about this proof system:

Theorem 1. Let Γ be a consistent set of formulas from the language L of HDC.
Then there exists a model M for L and an interval σ ∈ I(TM) such that M,σ |= ϕ
for all ϕ ∈ Γ .

A Complete Fragment of Higher-Order Duration µ-Calculus 271

2 µHDC

In this section we briefly introduce the extension of HDC by a least fixed point
operator.

2.1 Languages of µHDC

A language of µHDC is built using the same sets of symbols as for HDC lan-
guages and a distinguished countable set of propositional variables X , Y ,
Terms are defined as in HDC. The BNF for formulas is extended to allow fixed
point operator formulas as follows:

ϕ ::= ⊥|X |R(t, . . . , t)|ϕ⇒ ϕ|(ϕ;ϕ)|µiX . . .X.ϕ, . . . , ϕ|∃xϕ|∃vϕ|∃Pϕ
Formulas of the kind µiX1 . . .Xm.ϕ1, . . . , ϕn are well-formed only if m = n,

all the occurrences of the variables X1, . . . , Xn in ϕ1, . . . , ϕn are positive, i.e. each
of these occurrences is in the scope of an even number of negations, X1, . . . , Xn

are distinct variables and i ∈ {1, . . . , n}. Formulas which contain µ are not
regarded as fv. Note that we work with a vector form of the least fixed point
operator. This has some technical advantages, because it enables elimination of
nested occurrences of µ under some additional conditions.

2.2 Frames, Models, and Satisfaction

Frames and models for µHDC languages are as for HDC languages. The only
relative novelty is the extension of the satisfaction relation |=, which captures
µ-formulas too.

Let M = 〈F, I〉 be a model for the (µHDC) language L. Let Ĩ(ϕ) denote
the set {σ ∈ I(TF) : M,σ |= ϕ} for an arbitrary formula ϕ from L. Let s be a
non-logical symbol in L and a be a constant, function or predicate of the type of
s. We denote the interpretation of L into F which s-agrees with I and assigns a
to s by Ias . Given a set A ⊆ I(TM), we define the function χA : I(TM)→ {0, 1}
by putting χA(σ) = 1 iff σ ∈ A.

Now assume that the propositional variables X1, . . . , Xn occur in ϕ. We de-
fine the function fϕ :

(
2I(TF)

)n → 2I(TF) by the equality fϕ(A1, . . . , An) =˜(IχA1 ,...,χAn

X1, ... ,Xn
)(ϕ). Assume that the variables X1, . . . , Xn have only positive oc-

currences in ϕ. Then fϕ is monotone on each of its arguments, i.e. Ai ⊆ A′
i

implies fϕ(A1, . . . , Ai, . . . , An) ⊆ fϕ(A1, . . . , A
′
i, . . . , An).

Now consider a sequence of n formulas, ϕ1, . . . , ϕn, which have only positive
occurrences of the variables X1, . . . , Xn in them. Then the system of inclusions

fϕi(A1, . . . , An) ⊆ Ai, i = 1, . . . , n

has a least solution, which is also a least fixed point of the operator

λA1 . . . An.〈fϕ1(A1, . . . , An), . . . , fϕn(A1, . . . , An)〉.
Let this solution be 〈B1, . . . , Bn〉, Bi ⊆ I(TF). We define the satisfaction

relation for
µiX1 . . .Xn.ϕ1, . . . , ϕn by putting:

M,σ |= µiX1 . . . Xn.ϕ1, . . . , ϕn iff σ ∈ Bi.

272 Dimitar P. Guelev

3 Simple µHDC Formulas

The class of formulas which we call simple in this paper is a straightforward
extension to the class of simple DC∗ formulas considered in [Gue98]. We extend
that class by allowing µ instead of iteration, positive formulas built up of fv
symbols and existential quantification over the variables which occur in these
formulas.

3.1 Super-Dense Chop

The super-dense chop operator (. ◦ .) was introduced in [ZH96] to enable the
expression of sequential computation steps which consume negligible time, yet
occur in some specified causal order, by DC. Given that v1, . . . , vn are all the
free temporal variables of formulas ϕ and ψ, (ϕ ◦ ψ) is equivalent to

∃v′1 . . . ∃v′n∃v′′1 . . . ∃v′′n∃x1 . . . ∃xn

[v′1/v1, . . . , v
′
n/vn]ϕ ∧

n∧
i=1

←−
v′i =←−vi∧−→
v′i = xi∧
2v′i = vi

 ;

; ([v′′1 /v1, . . . , v′′n/vn]ψ ∧
n∧
i=1

−→
v′′i = −→vi∧←−
v′′i = xi∧
2v′′i = vi

3.2 Simple Formulas

Definition 1. Let L be a language for µHDC as above. We call µHDC for-
mulas γ which can be defined by the BNF

γ ::= ⊥|R(t, . . . , t)|X |(γ ∧ γ)|γ ∨ γ|¬γ|(γ; γ)|(γ ◦ γ)|µiX . . .X.γ, . . . , γ
where R and t stand for either rigid or fv relation symbols and terms respec-
tively, open fv formulas. We call an open fv formula strictly positive if it has
no occurrences of propositional variables in the scope of ¬. An open fv formula
is propositionally closed if it has no free occurrences of propositional variables.
Simple µHDC formulas are defined by the BNF

ϕ ::= � = 0|X |�S�|�S� ∧ � ≺ a|�S� ∧ � � a|�S� ∧ � ≺ a ∧ � � b|
ϕ ∨ ϕ|(ϕ;ϕ)|(ϕ ◦ ϕ)|ϕ ∧ γ|µiX . . .X.ϕ, . . . , ϕ|∃xϕ|∃vϕ

where a and b denote rigid constants, γ denotes a a propositionally closed strictly
positive open fv formula, x denotes a variable of arbitrary kind, ≺∈ {≤, <} and
�∈ {≥, >}. Additionally, a simple formula should not have subformulas of the
kind ∃xϕ where x has a free occurrence in the scope of a µ-operator in ϕ.

4 A Complete Proof System for the Simple Fragment of
µHDC

In this section we show the completeness of a proof system for the fragment
of µHDC where the application of µ is limited to simple formulas. We add the
following axioms and rule to the proof system for HDC with abstract semantics:

A Complete Fragment of Higher-Order Duration µ-Calculus 273

(µ1) 2(µiX1 . . .Xn.ϕ1, . . . , ϕn ⇔
[µ1X1 . . . Xnϕ1, . . . , ϕn/X1, . . . , µnX1 . . . Xnϕ1, . . . , ϕn/Xn]ϕi)

(µ2)
n∧
i=1

2([ψ1/X1, . . . ψn/Xn]ϕi ⇒ ψi)⇒ 2(µiX1 . . . Xn.ϕ1, . . . , ϕn ⇒ ψi)

(µ3) µiX1 . . . Xm.ϕ1, . . . , [µZ1 . . . Zn.ψ1, . . . , ψn/Y]ϕk, . . . , ϕm ⇔
⇔ µiX1 . . . XnY Z1 . . . Znϕ1, . . . , ϕm, ψ1, . . . , ψn

The

variable Y should not have negative free occurrences in ϕk in the instances of
µ3.

4.1 The Completeness Theorem

Lemma 1. Let ϕ, α and β be HDC formulas and X be a propositional temporal
letter. Let Y not occur in ϕ in the scope of quantifiers which bind any of the
variables from FV (α)∪FV (β). Then �µHDC 2(α⇔ β)⇒ ([α/Y]ϕ⇔ [β/Y]ϕ).

The following two propositions have a key role in our completeness argument.
Detailed proofs are given in [Gue00b].

Proposition 1. Let γ be a propositionally closed strictly positive open fv for-
mula. Let M be a model for the language L of γ and σ ∈ I(TM). Then there
exists a µ-free propositionally closed strictly positive open fv formula γ′ such that
M,σ |= 2(γ ⇔ γ′).

This proposition justifies regarding µ formulas with fv subformulas as fv
formulas.

Proposition 2 (local elimination of µ from simple formulas). Let ϕ be a
propositionally closed simple µHDC formula. Let M be a model for the language
of ϕ and σ ∈ I(TM). Then there exists a µ-free formula ψ such that M,σ |=
2(ϕ⇔ ψ).

Theorem 1 (completeness). Let Γ be a set of formulas in a µHDC language
L. Let every µ-subformula of a formula ϕ ∈ Γ be simple, and moreover occur
in ϕ as a subformula of some propositionally closed µ-subformula of ϕ. Let Γ
be consistent with respect to �µHDC . Then there exists a model M for L and an
interval σ ∈ I(M) such that M,σ |= Γ .

Proof. Proposition 1 entails that every fv µ-subformula of a formula from Γ is
locally equivalent to a µ free fv formula. Hence occurrences of µ in fv subformulas
can be eliminated using Lemma 1 and we may assume that there are no such
subformulas. Since nested occurrences of µ in µ-subformulas from Γ can be
eliminated by appropriate use of µ3, we may assume that there are no such
occurrences.

Let S = {sµiX1...Xn.ϕ1,...,ϕn : 1 ≤ i ≤ n < ω, µiX1 . . . Xn.ϕ1, . . . , ϕn is a
formula from L} be a set of fresh 0-place flexible relation symbols. Let L(S) be
the HDC language built using the non-logical symbols of L and the symbols from
S. Every formula ϕ from L can be represented in the form [ψ1/X1, . . . , ψn/Xn]ψ

274 Dimitar P. Guelev

where ψ does not contain µ and contains X1, . . . , Xn, and ψi, i = 1, . . . , n are
distinct µ-formulas. This representation is unique. Given this representation of
ϕ, we denote the formula [sψ1/X1, . . . , sψn/Xn]ψ from L(S) by t(ϕ). Note that
the translation t is invertible and its converse of is defined on the whole L(S).

Let ∆ = {2(α) : α is an instance of µ1, µ2 in L}. Then the set Γ ′ = {t(ϕ) :
ϕ ∈ Γ ∪∆} is consistent with respect to �HDC . Assume the contrary. Then there
exists a proof of ⊥ with its premisses in Γ ′ in �HDC . Replacing each formula ψ
in this proof by t−1(ψ) gives a proof of ⊥ from Γ in �µHDC .

Hence there exists a model M for L(S) and an interval σ ∈ I(TM) such that
M,σ |= Γ ′.

Now let us prove that M,σ |= 2(ϕ ⇔ sϕ) for every closed simple formula
ϕ from L. Let ϕ be µiX1 . . .Xn.ψ1, . . . , ψn. Let ϕk ⇀↽ µkX1 . . . Xn.ψ1, . . . , ψn,
k = 1, . . . , n, for short. Then M satisfies the t-translations
2(sϕk

⇔ [sϕ1/X1, . . . , sϕn/Xn]ψk)
n∧
j=1

2(t(θj)⇔ [t(θ1)/X1, . . . t(θn)/Xn]ψj)⇒ 2(sϕk
⇒ t(θk))

of the instances of µ1 and µ2 for all n-tuples of formulas θ1, . . . , θn from L. The
first of these instances implies that 〈sϕ1 , . . . , sϕn〉 evaluates to a fixed point of
the operator represented by 〈ψ1, . . . , ψn〉. Consider the instance of µ2. Let θk be
a µ-free formula from L such that M,σ |= 2(θk ⇔ ϕk) for k = 1, . . . , n. Such
formulas exist by Proposition 2. Then t(θk) is θk and the above instance of µ2

is actually
n∧
j=1

2(θj ⇔ [θ1/X1, . . . , θn/Xn]ψj)⇒ 2(sϕk
⇒ θk)

Besides M,σ |= 2(θj ⇔ [θ1/X1, . . . , θn/Xn]ψj), j = 1, . . . , n, by the choice of
θk. Hence M,σ |= 2(sϕk

⇒ θk). This means that 〈sϕ1 , . . . , sϕn〉 evaluates to
the least fixed point of the operator represented by 〈ψ1, . . . , ψn〉. Hence M,σ |=
2(sϕ ⇔ ϕ) for every µ-formula ϕ with no nested occurrences of µ. This entails
that M,σ |= 2(ϕ⇔ t(ϕ)) for every ϕ ∈ Γ . Hence, M,σ |= Γ .

Acknowledgements

Guidance towards the topic addressed here, and a sequel of invigorating and
pitfall marking discussions are thanks to He Jifeng. Some mistakes were detected
in an early version of the paper thanks to Dang Van Hung and indirectly by
Dimiter Skordev. Among other flaws, an undeliberate overclaim, which was also
inconsistent with the announced purpose of the article, was avoided due to the
efforts of anonymous referees.

References

[DG99] Dang Van Hung and D. P. Guelev. Completeness and Decidability
of a Fragment of Duration Calculus with Iteration. In: P.S. Thiagarajan

and R. Yap (eds), Advances in Computing Science, LNCS 1742, Springer-
Verlag, 1999, pp. 139-150.

A Complete Fragment of Higher-Order Duration µ-Calculus 275

[DW94] Dang Van Hung and Wang Ji. On The Design of Hybrid Control Sys-
tems Using Automata Models. In: Chandru, V. and V. Vinay (eds.)

LCNS 1180, Foundations of Software Technology and Theoretical Computer
Science, 16th Conference, Hyderabad, India, December 1996, Springer,
1996.

[Dut95] Dutertre, B. On First Order Interval Temporal Logic. Report no. CSD-
TR-94-3 Department of Computer Science, Royal Holloway, University of
London, Egham, Surrey TW20 0EX, England, 1995.

[Gue98] Guelev, D. P. Iteration of Simple Formulas in Duration Calculus. Tech.
report 141, UNU/IIST, June 1998.

[Gue00] Guelev, D. P. Probabilistic and Temporal Modal Logics, Ph.D. thesis,
submitted, January 2000.

[Gue00b] Guelev, D. P. A Complete Fragment of Higher-Order Duration µ-
Calculus. Tech. Report 195, UNU/IIST, April 2000.

[HX99] He Jifeng and Xu Qiwen. Advanced Features of DC and Their Applica-
tions. Proceedings of the Symposium in Celebration of the Work of C.A.R.
Hoare, Oxford, 13-15 September, 1999.

[HZ92] M. R. Hansen and Zhou Chaochen. Semantics and Completeness of
Duration Calculus. Real-Time: Theory and Practice, LNCS 600, Springer-
Verlag, 1992, pp. 209-225.

[Koz83] Kozen, D. Results on the propositional µ-calculus. TCS 27:333-354, 1983.

[LH99] Li Li and He Jifeng. A Denotational Semantics of Timed RSL using
Duration Calculus. Proceedings of RTCSA’99, pp. 492-503, IEEE Computer
Society Press, 1999.

[Men64] Mendelson, E. Introduction to Mathematical Logic. Van Nostrand,
Princeton, 1964.

[Pan95] Pandya, P. K. Some Extensions to Propositional Mean-Value Calculus.
Expressiveness and Decidability. Proceedings of CSL’95, Springer-Verlag,
1995.

[PR95] Pandya, P. K. and Y Ramakrishna. A Recursive Duration Calculus.
Technical Report TCS-95/3, TIFR, Bombay, 1995.

[PWX98] Pandya, P. K, Wang Hanping and Xu Qiwen. Towards a Theory
of Sequential Hybrid Programs. Proc. IFIP Working Conference PRO-
COMET’98 D. Gries and W.-P. de Roever (eds.), Chapman & Hall,
1998.

[SX98] Schneider, G. and Xu Qiwen. Towards a Formal Semantics of Verilog
Using Duration Calculus. Proceedings of FTRTFT’98, Anders P. Ravn

and Hans Rischel (eds.), LNCS 1486, pp. 282-293, Springer-Verlag,
1998.

[Wal93] Walurkiewicz, I. A Complete Deductive System for the µ-Calculus.,
Ph.D. Thesis, Warsaw University, 1993.

[ZGZ99] Zhou Chaochen, D. P. Guelev and Zhan Naijun. A Higher-Order
Duration Calculus. Proceedings of the Symposium in Celebration of the
Work of C.A.R. Hoare, Oxford, 1999.

[ZH96] Zhou Chaochen and M. Hansen Chopping a Point. Proceedings of BCS
FACS 7th Refinement Workshop, Electronic Workshop in Computer Sci-
ences, Springer-Verlag, 1996.

[ZH00] Zhu Huibiao and He Jifeng. A DC-based Semantics for Verilog Tech.
Report 183, UNU/IIST, January 2000.

276 Dimitar P. Guelev

[ZHR91] Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A Calculus of
Durations. Information Processing Letters, 40(5), pp. 269-276, 1991.

[ZNJ99] Zhan Naijun. Completeness of Higher-Order Duration Calculus. Research
Report 175, UNU/IIST, August 1999.

Cited UNU/IIST reports can be found at http://www.iist.unu.edu .

A Complete Axiomatisation for

Timed Automata

Huimin Lin1� and Wang Yi2

1 Laboratory for Computer Science
Institute of Software, Chinese Academy of Sciences

lhm@ios.ac.cn
2 Department of Computer Systems

Uppsala University
yi@docs.uu.se

Abstract. In this paper we present a complete proof system for timed
automata. It extends our previous axiomatisation of timed bisimulation
for the class of loop-free timed automata with unique fixpoint induction.
To our knowledge, this is the first algebraic theory for the whole class
of timed automata with a completeness result, thus fills a gap in the
theory of timed automata. The proof of the completeness result relies
on the notion of symbolic timed bisimulation, adapted from the work on
value–passing processes.

1 Introduction

The last decade has seen a growing interest in extending various concurrency
theories with timing constructs so that real-time aspects of concurrent systems
can be modeled and analysed. Among them timed automata [AD94] has stood
out as a fundamental model for real-timed systems.
A timed automaton is a finite automaton extended with a finite set of real-

valued clock variables. A node of a timed automata is associated with an invari-
ant constraint on the clock variables, while an edge is decorated with a clock
constraint, an action label, and a subset of clocks to be reset after the transition.
At each node a timed automaton may perform two kinds of transitions: it may
let time pass for any amount (a delay transition), as long as the invariant is
satisfied, or choose an edge whose constraint is met, make the move, reset the
relevant clocks to zero, and arrive at the target node (an action transition). Two
timed automata are timed bisimilar if they can match each other’s action tran-
sitions as well as delay transitions, and their residuals remain timed bisimilar.
By now most theoretical aspects of timed automata have been well studied, but
they still lack a satisfactory algebraic theory.
In this paper we shall develop a complete axiomatisation for timed automata,

in the form of an inference system, in which the equalities between pairs of timed
automata that are timed bisimilar can be derived. To this end we first propose
� Supported by a grant from National Science Foundation of China.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 277–289, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

278 Huimin Lin and Wang Yi

a language, in CCS style, equipping it with a symbolic transitional semantics
in such a way that each term in the language denotes a timed automaton. The
language has a conditional construct φ→t, read “if φ then t”, and an action
prefixing a(x).t, meaning “perform the action a, reset the clocks in x to zero,
then behave like t”. The proof system consists of a set of inference rules and
the standard monoid laws for bisimulation. Roughly speaking the monoid laws
characterise bisimulation, while the inference rules deal with specific constructs
in the language. The judgments of the inference system are of the form

φ� t = u

where φ is a time constraint and t, u are terms. Intuitively it means: t and u
are timed bisimilar over clock evaluations satisfying φ. A proof system of this
nature already appeared in our previous work on axiomatising timed automata,
[LW00.1], with a serious limitation: it is complete only over the recursion-free
subset of the language, i.e. the subset of timed automata without loops. A stan-
dard way of extending such an axiomatisation to deal with recursion, is to add
the following unique fixpoint induction rule [Mil84]:

UFI

t = u[t/X]
t = fixXu

X guarded in u

However, this rule is incompatible with the inference system presented in
[LW00.1]: the key inference rule handling action prefixing and clock resetting
takes the form

ACTION-DJ

φ↓xy⇑� t = u
φ� a(x).t = a(y).u x ∩ C(u) = y ∩ C(t) = ∅

where φ↓xy⇑ is a clock constraint obtained from φ by first setting the clocks in xy
to zero (operator ↓xy), then removing upper bounds on all clocks of φ (operator
⇑); C(t) and C(u) are the sets of clocks appearing in t and u, respectively. The
side condition is needed to ensure that the clocks of one process do not get reset
by the other. Because of this the inference system of [LW00.1] is mainly used
for reasoning between terms with disjoint sets of clocks. It is difficult to fit the
UFI rule into such contexts: it does not make sense to perform the substitution
t[u/X] when the clock set of u is different from that of t. To overcome this
difficulty, we replace ACTION-DJ with two rules:

ACTION

φ↓x⇑� t = u
φ� a(x).t = a(x).u

and

THINNING

a(xy).t = a(x).t y ∩ C(t) = ∅

The first rule does not require a side condition. However, the subset of clocks
reset by the action prefix on both sides of the equation must be the same. This

A Complete Axiomatisation for Timed Automata 279

guarantees soundness. On the other hand, “redundant” clocks can be removed
by THINNING. It is not difficult to see that ACTION-DJ is derivable from the
above two rules.
The completeness proof relies on the introduction of the notion of symbolic

timed bisimulation, t ∼φ u, which captures timed bisimulation in the following
sense: t ∼φ u if and only if tρ and uρ are timed bisimilar for any clock evaluation
ρ satisfying φ. Following [Mil84], to show that the inference system is complete,
that is t ∼φ u implies � φ � t = u, we first transform t and u into standard
equation sets which are the syntactical representations of timed automata. We
then construct a new equation set out of the two and prove that t and u both
satisfy the product equation set, by exploiting the assumption that t and u are
symbolically timed bisimilar. Finally we show that, with the help of UFI, if two
terms satisfy the same set of standard equations then they are provably equal.
The result of this paper fills a gap in the theory of timed automata. It demon-

strates that bisimulation equivalences of timed automata are as mathematically
tractable as those of standard process algebras.
The rest of the paper is organised as follows: In the next section we first

recall the definition of timed automata, then present a language to describe
them. Section 3 introduces symbolic timed bisimulation. The inference system
is put forward in Section 4. Section 5 is devoted to proving the completeness of
the proof system. The paper concludes with Section 6 where related work is also
briefly discussed.
Due to space limitation, many details and proofs have been omitted. They

can be found in the full version of the paper [LW00.2].

2 A Language for Timed Automata

We assume a finite set A for synchronization actions and a finite set C for real-
valued clock variables. We use a, b etc. to range over A and x, y etc. to range
over C. We use B(C), ranged over by φ, ψ etc., to denote the set of conjunctive
formulas of atomic constraints in the form: xi 1 m or xi − xj 1 n, where
xi, xj ∈ C, 1∈ {≤, <,≥, >} and m,n are natural numbers. The elements of
B(C) are called clock constraints.

Definition 2.1. A timed automaton over actions A and clocks C is a tuple
〈N, l0, E〉 where

– N is a finite set of nodes,

– l0 ∈ N is the initial node,
– E ⊆ N × B(C)×A× 2C ×N is the set of edges.

When 〈l, g, a, r, l′〉 ∈ E, we write l
g,a,r−→ l′.

We shall present the operational semantics for timed automata in terms of a
process algebraic language in which each term denotes an automaton.

280 Huimin Lin and Wang Yi

delay

tρ
d−→ t(ρ+ d)

ρ+ d |= Inv(t) choice
tρ

a−→ t′ρ′

(t+ u)ρ
a−→ t′ρ′

action

(a(x).t)ρ
a−→ tρ{x := 0} guard

tρ
a−→ t′ρ′

(φ→t)ρ
a−→ t′ρ′

ρ |= φ

rec
(t[fixXt/X])ρ

a−→ t′ρ′

(fixXt)ρ
a−→ t′ρ′

inv
tρ

a−→ t′ρ′

({φ}t)ρ a−→ t′ρ′
ρ |= φ

Fig. 1. Standard Transitional Semantics

We preassume a set of process variables, ranged over by X, Y, Z, The
language for timed automata over C can be given by the following BNF grammar:

s ::= {φ}t
t ::= 0 | φ→t | a(x).s | t+ t | X | fixXt

0 is the inactive process which can do nothing, except for allowing time to pass.
φ→t, read “if φ then t”, is the usual (one-armed) conditional construct. a(x).s
is action prefixing. + is nondeterministic choice. The {φ}t construct introduces
an invariant.
A recursion fixXt binds X in t. This is the only binding operator in this

language. It induces the notions of bound and free process variables as usual.
Terms not containing free process variables are closed. A recursion fixXt is
guarded if every occurrence of X in t is within the scope of an action prefixing.
The set of clock variables used in a term t is denoted C(t).
A clock valuation is a function from C to R≥0 (non-negative real numbers),

and we use ρ to range over clock valuations. The notations ρ{x := 0} and ρ+ d
are defined thus

ρ{x := 0}(y) =
{
0 if y ∈ x
ρ(y) otherwise

(ρ+ d)(x) = ρ(x) + d for all x

To give a transitional semantics to our language, we first assign each term t
an invariant constraint Inv(t) by letting

Inv(t) =
{
φ if t has the form {φ}s
tt otherwise

We shall require all invariants to be downward-closed:

For all d ∈ R≥0, ρ+ d |= φ implies ρ |= φ
Given a clock valuation ρ : C → R≥0, a term can be interpreted according

to the rules in Figure 1, where the symmetric rule for + has been omitted. The
transitional semantics uses two types of transition relations: action transition
a−→ and delay transition d−→. We call tρ a process, where t is a term and ρ a
valuation; we use p, q, . . . to range over the set of processes. We also write µ for
either an action or a delay (a real number).

A Complete Axiomatisation for Timed Automata 281

Action

a(x).t
tt,a,x−→ t

Choice
t
b,a,x−→ t′

t+ u
b,a,x−→ t′

Inv
t
ψ,a,x−→ t′

{φ}t ψ,a,x−→ t′

Guard
t
ψ,a,x−→ t′

φ→t
φ∧ψ,a,x−→ t′

Rec
t[fixXt/X]

b,a,x−→ t′

fixXt
b,a,x−→ t′

Fig. 2. Symbolic Transitional Semantics

Definition 2.2. A symmetric relation R over processes is a timed bisimulation
if (p, q) ∈ R implies

whenever p
µ−→ p′ then q

µ−→ q′ for some q′ with (p′, q′) ∈ R.
We write p ∼ q if (p, q) ∈ R for some timed bisimulation R.

The symbolic transitional semantics of this language is listed in Figure 2.
Again the symmetric rule for + has been omitted. Note that invariants are simply
forgotten in the symbolic transitional semantics. This reflects our intention that
symbolic transitions correspond to edges in timed automata, while invariants
reside in nodes.
According to the symbolic semantics, each guarded closed term of the lan-

guage gives rise to a timed automaton; on the other hand, it is not difficult to
see that every timed automaton can be generated from a guarded closed term
in the language. In the sequel we will use the phrases “timed automata” and
“terms” interchangeably.

3 Symbolic Timed Bisimulation

In this section we shall define a symbolic version of timed bisimulation. To sim-
plify the presentation we fix two timed automata. To avoid clock variables of one
automaton being reset by the other, we assume the sets of clocks of the two timed
automata under consideration are disjoint, and write C for the union of the two
clock sets. 1 Let N be the largest natural number occurring in the constraints
of the two automata. An atomic constraint over C with ceiling N has one of the
three forms: x > N , x 1 m or x − y 1 n where x, y ∈ C,1∈ {≤, <,≥, >} and
m,n ≤ N are natural numbers.
In the following, “atomic constraint” always means “atomic constraint over C

with ceilingN”. Note that given two timed automata there are only finite number
of such atomic constraints. We shall use c to range over atomic constraints.
A constraint, or zone, is a boolean combination of atomic constraints. A

constraint φ is consistent if there is some ρ such that ρ |= φ. Let φ and ψ be two
constraints. We write φ |= ψ to mean ρ |= φ implies ρ |= ψ for any ρ. Note that
the relation |= is decidable.
1 This does not put any restriction on our results, because we can always rename clock
variables of an automaton without affecting its behaviour.

282 Huimin Lin and Wang Yi

A region constraint, or region for short, over n clock variables x1, . . . , xn is
a consistent constraint containing the following atomic conjuncts:

– For each i ∈ {1, . . . , n} either xi = mi or mi < xi < mi + 1 or xi > N ;
– For each pair of i, j ∈ {1, . . . , n}, i �= j, such that both xi and xj are
not greater than N , either xi − mi = xj − mj or xi − mi < xj − mj or
xj −mj < xi −mi.

where the mi in xi −mi of the second clause refers to the mi related to xi in
the first clause. In words, mi is the integral part of xi and xi −mi its fractional
part.
Given a finite set of clock variables C and a ceiling N , the set of region

constraints over C is finite and is denoted RCCN . In the sequel we will omit the
sub- and super-scripts when they can be supplied by the context.

Fact 1 Suppose that φ is a region constraint and ψ a zone. Then either φ⇒ ψ
or φ⇒ ¬ψ.
So a region is either entirely contained in a zone, or is completely outside a zone.
A canonical constraint is a disjunction of regions. Given a constraint we can

first transform it into disjunctive normal form, then decompose each disjunct
into a disjoint set of regions. Both steps can be effectively implemented. As a
corollary to Fact 1, if we write RC(φ) for the set of regions contained in the zone
φ, then

∨RC(φ) = φ, i.e. ∨RC(φ) is the canonical form of φ.
We will need two (postfixing) operators ↓x and ⇑ to deal with resetting

and time passage. Here we only define them semantically. The syntactical and
effective definitions can be found in the full version of the paper.
For any φ, let φ↓x = { ρ{x := 0} | ρ |= φ } and φ⇑ = { ρ + d | ρ |= φ, d ∈

R≥0 }. Call a constraint φ ⇑-closed if φ⇑ = φ. It is easy to see that φ⇑ is ⇑-closed,
and if φ is a region constraint then so is φ↓x.
Symbolic bisimulation will be defined as a family of binary relations indexed

by clock constraints. Following [Cer92] we use constraints over the union of the
(disjoint) clock sets of two timed automata as indices. Given a constraint φ,
a finite set of constraints Φ is called a φ-partition if

∨
Φ = φ. A φ-partition

Φ is called finer than another such partition Ψ if Φ can be obtained from Ψ
by decomposing some of its elements. By the corollary to Fact 1, RC(φ) is a φ-
partition, and is the finest such partition. In particular, if φ is a region constraint
then {φ} is the only partition of φ.
Definition 3.1. A constraint indexed family of symmetric relations over terms
S = {Sφ | φ ⇑−closed } is a symbolic timed bisimulation if (t, u) ∈ Sφ implies

1. φ |= Inv(t)⇔ Inv(u) and

2. whenever t
ψ,a,x−→ t′ then there is an (Inv(t)∧φ∧ψ)-partition Φ such that for

each φ′ ∈ Φ there is u
ψ′,a,y−→ u′ for some ψ′, y and u′ such that φ′ ⇒ ψ′ and

(t′, u′) ∈ Sφ′↓xy⇑.

We write t ∼φ u if (t, u) ∈ Sφ and Sφ ∈ S for some symbolic bisimulation S.

A Complete Axiomatisation for Timed Automata 283

S1 X + 0 = X S2 X +X = X
S3 X + Y = Y +X S4 (X + Y) + Z = X + (Y + Z)

Fig. 3. The Equational Axioms

Symbolic timed bisimulation captures ∼ in the following sense:

Theorem 3.2. For ⇑−closed φ, t ∼φ u iff tρ ∼ uρ for any ρ |= φ ∧ Inv(t) ∧
Inv(u).

4 The Proof System

The proposed proof system consists of a set of equational axioms in Figure 3 and
a set of inference rules in Figure 4 where the standard rules for equational rea-
soning have been omitted. The judgments of the inference system are conditional
equations of the form

φ� t = u

where φ is a constraint and t, u terms. Its intended meaning is “t ∼φ u”, or
“tρ ∼ uρ for any ρ |= φ ∧ Inv(t) ∧ Inv(u)”. tt � t = u will be abbreviated as
t = u.
The axioms are the standard monoid laws for bisimulation in process alge-

bras. More interesting are the inference rules. For each construct in the language
there is a corresponding introduction rule. CHOICE expresses the fact that timed
bisimulation is preserved by +. The rule GUARD permits a case analysis on
conditional. The rule INV deals with invariants. It also does a case analysis and
appears very similar to GUARD. However, there is a crucial difference: When
the guard ψ is false ψ→t behaves like 0, the process which is inactive but can
allow time to pass; On the other hand, when the invariant ψ is false {ψ}t behaves
like {ff}0, the process usually referred to as time-stop, which is not only inac-
tive but also “still”, can not even let time elapse. ACTION is the introduction
rule for action prefixing (with clock resetting). The THINNING rule allows to
introduce/remove redundant clocks. REC is the usual rule for folding/unfolding
recursions, while UFI says if X is guarded in u then fixXu is the unique solution
of the equationX = u. UNG can be used to remove unguarded recursion. Finally
the two rules PARTITION and ABSURD do not handle any specific constructs
in the language. They are so-called “structural rules” used to “glue” pieces of
derivation together.
Let us write � φ � t = u to mean φ � t = u can be derived from this proof

system.
Some useful properties of the proof system are summarised in the following

proposition:

Proposition 4.1. 1. � φ→(ψ→t) = φ ∧ ψ→t
2. � t = t+ φ→t
3. If φ |= ψ then � φ� t = ψ→t

284 Huimin Lin and Wang Yi

GUARD
φ ∧ ψ � t = u φ ∧ ¬ψ � 0 = u

φ� ψ→t = u
CHOICE

φ� t = t′

φ� t+ u = t′ + u

INV
φ ∧ ψ � t = u φ ∧ ¬ψ � {ff}0 = u

φ� {ψ}t = u
ACTION

φ↓x⇑� t = u

φ� a(x).t = a(x).u

THINNING
a(xy).t = a(x).t

y ∩ C(t) = ∅ REC
fixXt = t[fixXt/X]

UFI
t = u[t/X]

t = fixXu
X guarded in u UNG

fixX(X + t) = fixXt

PARTITION
φ1 � t = u φ2 � t = u

φ� t = u
φ|=φ1∨φ2 ABSURD

ff � t = u

Fig. 4. The Inference Rules

4. � φ ∧ ψ � t = u implies � φ� ψ→t = ψ→u
5. � φ→(t+ u) = φ→t+ φ→u
6. � φ→t+ ψ→t = φ ∨ ψ→t
The following lemma shows how to “push” a condition through an action

prefix. It can be proved using ACTION, INV and Proposition 4.1.3.

Lemma 4.2. � φ� a(x).{ψ}t = a(x).{ψ}φ↓x⇑→t.
The UFI rule, as presented in Figure 4, is unconditional. However, a con-

ditional version can be easily derived from Proposition 4.1.4, REC and UFI:

Proposition 4.3. Suppose X is guarded in u. Then � φ�t = u[φ→t/X] implies
� φ� t = fixX(φ→u).
The rule PARTITION has a more general form:

Proposition 4.4. Suppose Ψ is a φ-partition and � ψ � t = u for each ψ ∈ Ψ ,
then � φ� t = u.
Soundness of the proof system is stated below:

Theorem 4.5. If � φ � t = u and φ is ⇑-closed then tρ ∼ uρ for any ρ |=
φ ∧ Inv(t) ∧ Inv(u).

The standard approach to the soundness proof is by induction on the length
of derivations, and perform a case analysis on the last rule/axiom used. How-
ever, this does not quite work here. The reason is that the definition of timed
bisimulation requires two processes to simulate each other after any time delays.
To reflect this in the proof system, we apply the ⇑ operator, after ↓ for clock
resetting, in the premise of the ACTION rule. But not all the inference rules
preserve the ⇑-closeness property. An example is GUARD. In order to derive
φ�ψ→t = u, we need to establish φ∧ ψ� t = u and φ∧ ¬ψ� 0 = u. Even if φ
is ⇑-closed, φ ∧ ψ may not be so.
To overcome this difficulty, we need a notion of “timed bisimulation up to a

time bound”, formulated as follows:

A Complete Axiomatisation for Timed Automata 285

Definition 4.6. Two processes p and q are timed bisimular up to d0 ∈ R≥0,
written p ∼d0 q, if for any d such that 0 ≤ d ≤ d0
– whenever p d−→ p′ then q d−→ q′ for some q′ and p′ ·∼ q′

(and symmetrically for q), where p ·∼ q is defined thus

– whenever p a−→ p′ then q a−→ q′ for some q′ and p′ ∼ q′

(and symmetrically for q).

Note that ·∼ is the same as ∼0, and ∼d0⊆ ·∼ in general.
Now the following proposition, of which Theorem 4.5 is a special case when

φ is ⇑-closed, can be proved by standard induction on the length of derivations :
Proposition 4.7. If � φ � t = u then tρ ∼d0 uρ for any ρ and d0 such that
ρ+ d |= φ ∧ Inv(t) ∧ Inv(u) for all 0 ≤ d ≤ d0.

5 Completeness

This section is devoted to proving the completeness of the proof system which is
stated thus: if t ∼φ u then � φ � t = u. The structure of the proof follows from
that of [Mil84]. The intuition behind the proof is as follows: A timed automaton
is presented as a set of standard equations in which the left hand-side of each
equation is a formal process variable corresponding to a node of the automa-
ton, while the right hand-side encodes the outgoing edges from the node. We
first transform, within the proof system, both t and u into such equation sets
(Proposition 5.1). We then construct a “product” of the two equation sets, rep-
resenting the product of the two underlying timed automata. Because t and u
are timed bisimilar over φ, each should also bisimilar to the product over φ. Us-
ing this as a guide we show that such bisimilarity is derivable within the proof
system, i.e. both t and u provably satisfy the product equation set (Proposi-
tion 5.2). Finally we demonstrate that a standard set of equations has only one
solution, therefore the required equality between t and u can be derived. The
unique fixpoint induction is only employed in the last step of the proof, namely
Proposition 5.3.
Let X = {Xi | i ∈ I } and W be two disjoint sets of process variables and x

a set of clock variables. Let also ui, i ∈ I, be terms with free process variables
in X ∪W and clock variables in x. Then

E : {Xi = ui | i ∈ I }

is an equation set with formal process variables X and free process variables in
W. E is closed if W = ∅. E is a standard equation set if each ui has the form

{ψi}(
∑
k∈Ki

φik→aik(xik).Xf(i,k) +
∑
k′∈K′

i

ψik′→Wf ′(i,k′))

286 Huimin Lin and Wang Yi

A term t provably φ-satisfies an equation set E if there exist a vector of terms
{ ti | i ∈ I }, each ti being of the form {ψ′

i}t′i, and a vector of conditions {φi |
i ∈ I } such that φ1 = φ, � φ� t1 = t, φi |= ψi ⇔ ψ′

i, and

� φi � ti = ui[{ψi}(φi→t′i)/Xi|i ∈ I]
for each i ∈ I. We will simply say “t provably satisfies E” when φi = tt for all
i ∈ I.
Proposition 5.1. For any term t with free process variables W there exists a
standard equation set E, with free process variables in W, which is provably
satisfied by t. In particular, if t is closed then E is also closed.

Proof. We first show that, by using UNG, for any term t there is a guarded term
t′ such that FV (t) = FV (t′) and � t = t′. The proposition can then be proved
by structural induction on guarded terms.

Proposition 5.2. For guarded, closed terms t and u, if t ∼φ u then there exists
a standard, closed equation set E which is provably φ-satisfied by both t and u.

Proof. Let the sets of clock variables of t, u be x, y, respectively, with x∩y = ∅.
Let also E1 and E2 be the standard equation sets for t and u, respectively:

E1 : {Xi = {φi}
∑
k∈Ki

φik→aik(xik).Xf(i,k) | i ∈ I }

E2 : { Yj = {ψj}
∑
l∈Lj

ψjl→bjl(yjl).Yg(j,l) | j ∈ J }

So there are ti ≡ {φ′i}t′i, uj ≡ {ψ′
j}u′j with � t1 = t, � u1 = u such that

|= φi ⇔ φ′i, |= ψi ⇔ ψ′
i, and

� ti = {φi}
∑
k∈Ki

φik→aik(xik).tf(i,k) � uj = {ψj}
∑
l∈Lj

ψjl→bjl(yjl).ug(j,l)

Without loss of generality, we may assume aik = bjl = a for all i, k, j, l.
For each pair of i, j, let

Φij = {∆ ∈ RC(xy) | ti ∼∆⇑ uj }
Set φij =

∨
Φij . By the definition of Φij , φij is the weakest condition over

which ti and uj are symbolically bisimilar, that is, ψ ⇒ φij for any ψ such that
ti ∼ψ uj. Also for each ∆ ∈ Φij , ∆ |= Inv(ti) ⇔ Inv(uj), i.e., ∆ |= φ′i ⇔ ψ′

j ,
hence ∆ |= φi ⇔ ψj .
For each ∆ ∈ Φij let I∆ij = { (k, l) | tf(i,k) ∼∆↓xikyjl

⇑ ug(j,l) }. Define

E : Zij = {φi}(
∑
∆∈Φij

∆→
∑

(k,l)∈I∆
ij

a(xikyjl).Zf(i,k)g(j,l))

A Complete Axiomatisation for Timed Automata 287

We claim that E is provably φ-satisfied by t when each Zij is instantiated
with ti over φij . We need to show

� φij� ti={φi}
∑
∆∈Φij

∆→
∑

(k,l)∈I∆
ij

a(xikyjl).{φf(i,k)}(φf(i,k)g(j,l)↓xikyjl
⇑→t′f(i,k))

Since the elements of Φij are mutually disjoint, by Propositions 4.4 and 4.1, it
is sufficient to show that, for each ∆ ∈ Φij ,

� ∆� ti = {φi}
∑

(k,l)∈I∆
ij

a(xikyjl).{φf(i,k)}(φf(i,k)g(j,l)↓xikyjl
⇑→t′f(i,k))

By the definition of I∆ij , we have tf(i,k) ∼∆↓xikyjl
⇑ ug(j,l). Hence, from the

definition of Φij , ∆↓xikyjl
⇑ ⇒ φf(i,k)g(j,l)↓xikyjl

⇑. Therefore

� ∆ � {φi}
∑

(k,l)∈I∆
ij

a(xikyjl).{φf(i,k)}(φf(i,k)g(j,l)↓xikyjl⇑→t′f(i,k))

Lemma 4.2
= {φi}

∑
(k,l)∈I∆

ij

a(xikyjl).{φf(i,k)}(∆↓xikyjl⇑→φf(i,k)g(j,l)↓xikyjl⇑→t′f(i,k))

Prop. 4.1
= {φi}

∑
(k,l)∈I∆

ij

a(xikyjl).{φf(i,k)}(∆↓xikyjl⇑→t′f(i,k))

Lemma 4.2
= {φi}

∑
(k,l)∈I∆

ij

a(xikyjl).{φf(i,k)}t′f(i,k)

THINNING
= {φi}

∑
(k,l)∈I∆

ij

a(xik).tf(i,k)
S1-S4
= {φi}

∑
k∈Ki

a(xik).tf(i,k) = ti

Symmetrically we can show E is provably φ-satisfied by u when Zij is in-
stantiated with uj over φij .

Proposition 5.3. If both t and u provably φ-satisfy standard equation set E
then � φ� t = u.
Proof. By induction on the size of E.

Combining Propositions 5.1, 5.2 and 5.3 we obtain the main theorem:

Theorem 5.4. If t ∼φ u then � φ� t = u.

6 Conclusion and Related Work

We have presented an axiomatisation, in the form of an inference system, of
timed bisimulation for timed automata, and proved its completeness. To the

288 Huimin Lin and Wang Yi

best of our knowledge, this is the first complete axiomatisation for the full set
of timed automata. As already mentioned in the introduction, the precursor to
this work is [LW00.1], in which an inference system complete over the loop-free
subset of timed automata is formulated. The key ingredient of the current exten-
sion is unique fixpoint induction. Although the form of this rule is syntactically
the same as that used for parameterless processes [Mil84], here it is implicitly
parameterised on clock variables, in the sense that the rule deals with terms
involving clock variables which do not appear explicitely.
The most interesting development so far in algebraic characterizations for

timed automata are presented in [ACM97, BP99]. As the main result, they es-
tablished that each timed automaton is equivalent to an algebraic expression
built out of the standard operators in formal languages, such as union, intersec-
tion, concatenation and variants of Kleene’s star operator, in the sense that the
automaton recognizes the same timed language as denoted by the expression.
However, the issue of axiomatisation was not considered there. In [DAB96] a
set of equational axioms was proposed for timed automata, but no complete-
ness result was reported. [HS98] presents an algebraic framework for real-time
systems which is similar to timed automata where “invariants” are replaced by
“deadlines” (to express “urgency”), together with some equational laws. Apart
from these, we are not aware of any other published work on axiomatising timed
automata. On the other hand, most timed extensions of process algebras came
with equational axiomatisations. Of particular relevance are [Bor96] and [AJ94].
The former developed a symbolic theory for a timed process algebra, while the
later used the unique fixpoint induction to achieve a complete axiomatisation
for the regular subset of the timed-CCS proposed in [Wan91].

References

[ACM97] E. Asarin, P. Caspi and O. Maler. A Kleene theorem for timed automata.
In proceedings of LICS’97, 1997.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235. 1994.

[AJ94] L. Aceto and A. Jeffrey. A complete axiomatization of timed bisimula-
tion for a class of timed regular behaviours. Theoretical Computer Science,
152(2):251–268. 1995.

[Bor96] M. Boreale. Symbolic Bisimulation for Timed Processes. In AMAST’96,
LNCS 1101 pp.321-335. Springer–Verlag. 1996.

[BP99] P. Bouyer and A. Petit. Decomposition and Composition of Timed Au-
tomata. In ICALP’99, LNCS 1644, pp. 210-219. Springer–Verlag. 1999.

[HS98] S. Bornot and J. Sifakis. An Algebraic Framework for Urgency. In Calcula-
tional System Design, NATO Science Series, Computer and Systems Science
173, Marktoberdorf, July 1998.

[Cer92] K. Čeräns. Decidability of Bisimulation Equivalences for Parallel Timer Pro-
cesses. In CAV’92, LNCS 663, pp.302-315. Springer–Verlag. 1992.

[DAB96] P.R. D’Argenio and Ed Brinksma. A Calculus for Timed Automata (Ex-
tended Abstract). In FTRTFTS’96, LNCS 1135, pp.110-129. 1996.

A Complete Axiomatisation for Timed Automata 289

[HL95] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer
Science, 138:353–389, 1995.

[HL96] M. Hennessy and H. Lin. Proof systems for message-passing process algebras.
Formal Aspects of Computing, 8:408–427, 1996.

[LW00.1] H. Lin and Y. Wang. A proof system for timed automata. Fossacs’2000,
LNCS 1784. March 2000.

[LW00.2] H. Lin and Y. Wang. A complete proof system for timed automata (Full
version). Available at: http://www.it.uu.se/research/reports/.

[Mil84] R. Milner. A complete inference system for a class of regular behaviours. J.
Computer and System Science, 28:439–466, 1984.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Wan91] Wang Yi. A Calculus of Real Time Systems. Ph.D. thesis, Chalmers Univer-

sity, 1991.
[WPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of

Real-Time Communicating Systems By Constraint-Solving. In Proc. of the
7th International Conference on Formal Description Techniques, 1994.

Text Sparsification via Local Maxima�

Extended Abstract

Pilu Crescenzi1, Alberto Del Lungo2, Roberto Grossi3, Elena Lodi2,
Linda Pagli3, and Gianluca Rossi1

1 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
Via C. Lombroso 6/17, 50134 Firenze, Italy
piluc@dsi.unifi.it, rossig@dsi.unifi.it

2 Dipartimento di Matematica, Università degli Studi di Siena
Via del Capitano 15, 53100 Siena, Italy
dellungo@unisi.it, lodi@unisi.it

3 Dipartimento di Informatica, Università degli Studi di Pisa
Corso Italia 40, 56125 Pisa, Italy

grossi@di.unipi.it, pagli@di.unipi.it

Abstract. In this paper, we investigate a text sparsification technique
based on the identification of local maxima. In particular, we first show
that looking for an order of the alphabet symbols that minimizes the
number of local maxima in a given string is an Np-hard problem. Suc-
cessively, we describe how the local maxima sparsification technique can
be used to filter the access to unstructured texts. Finally, we experimen-
tally show that this approach can be successfully used in order to create
a space efficient index for searching a DNA sequence as quickly as a full
index.

1 Introduction

The Run Length Encoding (in short, RLE) is a well-known lossless compression
technique [7] based on the following simple idea: a sequence of k equal characters
(also called run) can be encoded by a pair whose first component is the character
and whose second component is k. RLE turns out to be extremely efficient in
some special cases: for example, it can reach a 8-to-1 compression factor in the
case of scanned text. Moreover, it is also used in the JPEG image compression
standard [10]. We can view RLE as a (lossless) text sparsification technique.
Indeed, let us imagine that the position of each character of a text is an access
point to the text itself from which it is then possible to navigate either on the
left or on the right. The RLE technique basically sparsifies these access points
by selecting only the first position of each run.
Another well known form of text sparsification applies to structured texts,

that is, texts in which the notion of word is precisely identifiable (for example,

� Research partially supported by ITALIAN MURST project “Algoritmi per Grandi
Insiemi di Dati: Scienza ed Ingegneria”.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 290–301, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Text Sparsification via Local Maxima 291

by means of delimiter symbols). In this case, a natural way of defining the access
points consists of selecting the position of the first character of each word (for
example, each character following a delimiter symbol). Differently from RLE, this
technique does not allow us to obtain a lossless compression of the original text
but it can be very useful in order to create a space efficient index for searching
the text itself. For example, if we are looking for a given word X , this technique
allows us (by means of additional data structures such as suffix arrays) to analyze
only the words starting with the first character of X . The main drawback of this
approach is that it does not generalize to unstructured texts, that is, texts for
which there is no clear notion of word available (for example, DNA sequences).
The main goal of this paper is to study an alternative text sparsification

technique, which might be used to create space efficient indices for searching
unstructured texts. In particular, we will consider the following technique. Given
a string X over a finite alphabet Σ, let us assume that a total order of the
symbols in Σ is specified. We then say that an occurrence of a symbol x in X is
an access point to X if x is a local maximum; that is, both symbols adjacent to
x are smaller than x. As in the case of the previous technique based on words,
this sparsification technique is lossy. Indeed, assume that x and y are two local
maxima: from this information, we can deduce that the symbol immediately
after x is smaller than x and the symbol immediately before y is smaller than
y. Of course, in general this information is not sufficient to uniquely identify the
sequence of symbols between x and y.
Nevertheless, the notion of local maxima has been proven very useful in string

matching [1, 4, 8, 9] and dynamic data structures [6, 9] as an extension of the
deterministic coin tossing technique [3]. It is well understood in terms of local
similarities, by which independent strings that share equal portions have equal
local maxima in those portions. In this paper we will consider the following two
questions.

– How much can a given text be sparsified by applying the local maxima tech-
nique? Note that this question is different from the ones previously studied
in the literature on local maxima, as we would like to minimize the num-
ber of local maxima while previous results aimed at minimizing the distance
between consecutive maxima.

In order to answer this question, we will introduce the following combinatorial
problem: given a text of length n over an alphabet Σ, find an order of Σ which
minimizes the number of local maxima (that is, the number of access points).
We will then prove that this problem is Np-hard (see Sect. 2) for non-constant
sized alphabets (clearly, the problem can be solved in time O(|Σ|!n) that, for
constant sized alphabets, is O(n)).

– Can the local maxima sparsification technique be used to filter the access to
unstructured texts in practice?

In order to answer this question we first describe how the technique can be
used to create an index for searching a given text (see Sect. 3). We will then give

292 Pilu Crescenzi et al.

a positive answer to the above question by experiments, in the case of texts that
are DNA sequences (see Sect. 4). In particular, we show that each run of the
sparsification algorithm reduces the number of maxima by a factor of three. We
exploit this to create a space efficient index for searching the sequence as quickly
as a full index by means of additional data structures such as suffix arrays.

2 The NP-Hardness Result

In this section, we first describe the combinatorial problem associated with the
local maxima sparsification technique and we then show that this problem is
Np-hard.

2.1 The Combinatorial Problem

Let X = x1 · · ·xn be a string over a finite alphabet Σ and assume that an order
π of the symbols in Σ (that is, a one-to-one function π from Σ to {1, . . . , |Σ|})
has been fixed. The local maxima measure M(X,π) of X with respect to π is
then defined as the number of local maxima that appear in X , that is,

M(X,π) = |{i : (1 < i < n) ∧ (π(xi−1) ≤ π(xi)) ∧ (π(xi) > π(xi+1))}|.

The Minimum Local Maxima Number decision problem is then defined as
follows:

Instance A string X over a finite alphabet Σ and an integer value K.
Question Does there exist an order π of Σ such thatM(X,π) < K?

Clearly,Minimum Local Maxima Number belongs to Np (since we just have
to non-deterministically try all possible orders of the alphabet symbols).

2.2 The Reduction

We now define a polynomial-time reduction from theMaximum Exactly-Two
Satisfiability decision problem to Minimum Local Maxima Number. Re-
call that Maximum Exactly-Two Satisfiability is defined as follows: given
a set of clauses with exactly two literals per clause and given an integer H , does
there exist a truth-assignment that satisfies at least H clauses? It is well-known
that Maximum Exactly-Two Satisfiability is Np-complete [5].
The basic idea of the reduction is to associate two symbols with each variable

and one symbol with each clause and to force each pair of variable-symbols
to be either smaller or greater than all clause-symbols. The variables whose
both corresponding symbols are greater (respectively, smaller) than the clause-
symbols will be assigned the true (respectively, false) value. The implementation
of this basic idea will require several additional technicalities which are described
in the next two sections.

Text Sparsification via Local Maxima 293

The instance mapping. Let C = {c1, . . . , cm} be a set of clauses over the set of
variables U = {u1, . . . , un} such that each clause contains exactly two literals,
and letH be a positive integer. The alphabetΣ(C) of the corresponding instance
of Minimum Local Maxima Number contains the following symbols:

– Two special symbols σm and σM (which, intuitively, will be the extremal
symbols in any “reasonable” order of the alphabet).

– For each variable ui with 1 ≤ i ≤ n, two symbols σu
i and σū

i .
– For each clause cj with 1 ≤ j ≤ m, a symbol σc

j .

The string X(C) of the instance of Minimum Local Maxima Number is
formed by several substrings with different goals. In order to define it, we first
introduce the following gadget: given three symbols a, b, and c, let g(a, b, c) =
abcbcba. The next result states the basic property of the previously defined gad-
get.

Lemma 1. Let Σ be an alphabet and let a, b, and c three symbols in Σ. For
any order π of Σ and for any integer r > 0, the following hold:

1. If π(c) < π(b) < π(a), then M(g(a, b, c)r, π) = 2r − 1.
2. If π(a) < π(b) < π(c), then M(g(a, b, c)r, π) = 2r.
3. If none of the previous two cases applies, then M(g(a, b, c)r, π) ≥ 3r − 1.
Proof. The proof of the lemma is done by examining all possible cases. Indeed,
in Table 1 the occurrences of maxima produced by one gadget in correspondence
of the six possible orders of the three symbols a, b, and c are shown.

Minimum Medium Maximum a b c b c b a

a b c + + + - + - -

a c b + + - + - + -

b a c + - + - + - +

b c a + - + - + - +

c a b + + - + - + -

c b a + - - + - + +

Table 1. The possible orders of the gadget symbols

By looking at the table, it is easy to verify the correctness of the three
statements of the lemma.
�
The first m+ 2n substrings of the instance X will force σm and σM to be the

extremal symbols of any efficient order of Σ. They are then defined as follows:

– For j = 1, . . . ,m, Xj
1 = g(σm, σc

j , σM)
m3
.

– For i = 1, . . . , n, X i
2 = g(σm, σu

i , σM)
m3
.

– For i = 1, . . . , n, X i
3 = g(σm, σū

i , σM)
m3
.

294 Pilu Crescenzi et al.

The next nm substrings will force each pair of variable symbols to be either
both on the left or both on the right of all clause symbols. In particular, for
i = 1, . . . , n and for j = 1, . . . ,m, we define

Y j
i = (σmg(σ

u
i , σ

ū
i , σ

c
j)σM)

m2
.

Finally, for each clause cj with 1 ≤ j ≤ m, we have one substring Zc
j whose

definition depends on the type of the clause and whose goal is to decide the
truth-value of each variable depending on its symbol’s position relatively to the
clause symbols. In particular:

– If cj = ui ∨ uk, then Zc
j = σmσ

c
jσ

u
i σ

c
jσ

u
kσ

c
jσm.

– If cj = ¬ui ∨ uk, then Zc
j = σmσ

u
i σ

c
jσ

u
i σ

u
kσ

c
jσm.

– If cj = ui ∨ ¬uk, then Zc
j = σmσ

c
jσ

u
i σ

u
kσ

c
jσ

u
kσm.

– If cj = ¬ui ∨ ¬uk, then Zc
j = σmσ

u
i σ

c
jσ

u
kσ

c
jσMσm.

In conclusion, the instance X is defined as:

X = X1
1 · · ·Xm

1 X1
2 · · ·Xn

2 X
1
3 · · ·Xn

3 Y
1
1 · · ·Y m

1 · · ·Y 1
n · · ·Y m

n σmZ1 · · ·Zm.

The proof of correctness We now prove the following result.

Lemma 2. For any set C of m clauses with exactly two literals per clause and
for any integer H, there exists a truth-assignment that satisfies H clauses in C
if and only if there exists an order π of Σ(C) such that

M(X(C), π) = (2m+ 7n)m3 + 3m−H.

Proof. Assume that there exists a truth-assignment τ to the variables u1, . . . , un

that satisfies H clauses in C. We then define the corresponding order π of the
symbols in Σ(C) as follows.

1. For any symbol a different from σm and σM, π(σm) < π(a) < π(σM).
2. For any i with 1 ≤ i ≤ n and for any j with 1 ≤ j ≤ m, if τ(ui) = false,
then π(σu

i) < π(σū
i) < σc

j , otherwise σ
c
j < π(σū

i) < π(σu
i).

From Lemma 1 it follows that

M(X1
1 · · ·Xm

1 X1
2 · · ·Xn

2 X
1
3 · · ·Xn

3 , π) = (2m+ 4n)m
3.

Moreover, because of the same lemma and since Y m
n ends with the maximal

symbol, we have that

M(X1
1 · · ·Xm

1 X1
2 · · ·Xn

2 X
1
3 · · ·Xn

3 Y
1
1 · · ·Y m

n , π) = (2m+ 4n)m3 + 3nm3 − 1
= (2m+ 7n)m3 − 1.

The concatenation of Y m
n with σm produces one more maximum. Successively,

the number of maxima will depend on whether one clause is satisfied: indeed,
it is possible to prove that if the jth clause is satisfied, then Zj produces two

Text Sparsification via Local Maxima 295

ui uk σm σc
j σu

i σc
j σu

k σc
j σm

false false + + - + - + -

false true + + - + + - -

true false + + + - - + -

true true + + + - + - -

Table 2. The occurrences of maxima corresponding to ui ∨ uk

maxima, otherwise it produces three maxima. For example, assume that cj is the
disjunction of two positive literals ui ∨ uk. The occurrence of maxima according
to the truth-values of the two variables is then shown in Table 2 (recall that by
definition of π, for any h = 1, . . . , n and for any l = 1, . . . ,m, π(σu

h) < π(σc
l) if

and only if τ(σu
h) = false, and that, in this case, Zj = σmσ

c
jσ

u
i σ

c
jσ

u
kσ

c
jσm). As it

can be seen from the table, we have two maxima in correspondence of the three
truth-assignments that satisfy the clause and three maxima in the case of the
non-satisfying assignment. The other types of clauses can be dealt in a similar
way.
In summary, we have that the number of maxima generated by π on the string

X(C) is equal to (2m+ 7n)m3 + 2H + 3(m−H) = (2m+ 7n)m3 + 3m−H .
Conversely, assume that an order π of the symbols in Σ(C) is given such that

the number of maxima generated on X(C) is equal to (2m+ 7n)m3 + 3m−H .
Because of Lemma 1, the substring X1

1 · · ·Xm
1 X1

2 · · ·Xn
2 X

1
3 · · ·Xn

3 produces at
least (2m+4n)m3−1 maxima and it ensures that either σm is the minimal symbol
and σM is the maximal one or σM is the minimal symbol and σm is the maximal one.
Assume that the former case holds so that (2m+4n)m3 are generated (the latter
case can be dealt in a similar way). The next substring Y 1

1 · · ·Y m
1 · · ·Y 1

n · · ·Y m
n σm

instead produces at least 3nm3 maxima and it ensures that, for any i with
1 ≤ i ≤ n and for any j with 1 ≤ j ≤ m, either π(σu

i) < π(σū
i) < π(σc

j) or
π(σc

j) < π(σū
i) < π(σu

i). We then assign the value true to variable ui if the
former case holds, otherwise we assign to it the value false. It is then easy
to verify that the remaining 3m − H maxima are produced by H clauses that
are satisfied and m − H clauses that are not satisfied. For example, assume
that cj = ¬ui ∨ ¬uj so that Zj = σmσ

u
i σ

c
jσ

u
kσ

c
jσMσm. The truth-values of ui and

uj corresponding to the six possible order of σu
i , σ

u
k , and σc

j and the resulting
truth-value of cj along with the number of generated maxima are shown in
Table 3. We have thus shown that H clauses of C can be satisfied if and only if
M(X(C), π) = (2m+ 7n)m3 + 3m−H and the lemma is proved.
�

From the above lemma and from the fact that Minimum Local Maxima
Number belongs to Np it follows the following theorem.

Theorem 1. Minimum Local Maxima Number is Np-complete.

296 Pilu Crescenzi et al.

Minimum Medium Maximum τ (ui) τ (uk) τ (cj) Maxima

σu
i σu

k σc
j false false true 2

σu
i σc

j σu
k false true true 2

σu
k σu

i σc
j false false true 2

σu
k σc

j σu
i true false true 2

σc
j σu

i σu
k true true false 3

σc
j σu

k σu
i true true false 3

Table 3. The possible orders corresponding to cj = ¬ui ∨ ¬uk

3 The Sparsification Algorithm

We have seen in the previous section that the problem of assigning an ordering
to the characters of a sequence which minimizes the number of local maxima is a
hard problem. Clearly, for any fixed string, the number of local maxima produced
by any ordering is at most half of the length of the string. The following lemma,
instead, guarantees that, for any fixed ordering π, the number of local maxima
produced by π, on a randomly chosen string, is at most one third of the length
of the string.

Lemma 3. Let π be an order over an alphabet Σ. If X is a randomly chosen
string over Σ of length n, then the expected value of M(X,π) is at most n/3.

Proof. Let X = x1 · · ·xn be the randomly chosen string over Σ and let T (xk)
be the random variable that equals to 1 if xk is a maximum and 0 otherwise, for
any k with 1 ≤ k ≤ n. Clearly, for any k with 2 ≤ k ≤ n− 1,

Pr [T (xk) = 1] = Pr [π(xk−1) ≤ π(xk)] Pr [π(xk+1) < π(xk)] .

Hence, the probability that xk is a maximum, assuming that π(xk) = i, is

Pr [T (xk) = 1|π(xk) = i] =
i∑

j=1

Pr[π(xk−1) = j]
i−1∑
j=1

Pr[π(xk+1) = j]

=
i(i− 1)
|Σ|2 .

Finally, the probability that xk is a maximum is

Pr [T (xk) = 1] =
|Σ|∑
i=1

Pr [T (xk) = 1|π(xk) = i] Pr [π(xk) = i]

=
1

|Σ|3
|Σ|∑
i=1

i(i− 1) = 1
3
− 1
3|Σ|2 .

Text Sparsification via Local Maxima 297

By linearity of expectation, the expected number of local maxima is

n− 2
3

(
1− 1

|Σ|2
)

and the lemma follows.
�
The above lemma suggests that random strings (that is, strings which are not
compressible) can be sparsified by means of the local maxima technique so that
the number of resulting access points is at most one third of the length of the
original string. We wish to exploit this property in order to design a sparsification
procedure that replaces a given string with a shorter one made up of only the local
maxima (the new string will not clearly contain the whole original information).
We repeat this simple procedure by computing the local maxima of the new
string to obtain an even shorter string. We iterate this shortening several times
until the required sparsification is obtained. That is, the compressed string is
short enough to be efficiently processed, but it still contains enough information
to solve a given problem, as we will see shortly. For example, let us consider
the very basic problem of searching a pattern string in a text string. We can
compress the two strings by means of our sparsification procedure. Then, we
search for the pattern by matching the local maxima only. Whenever a match is
detected, we check that it is not a false occurrence by a full comparison of the
pattern and the text substring at hand. It is worth pointing that the number of
times we apply the sparsification on the text must be related to the length of the
patterns we are going to search for. Indeed, performing too many iterations of
the sparsification could drop too many characters between two consecutive local
maxima selected in the last iteration. As a result, we could not find the pattern
because it is too short (see Lemma 4).
Another care must be taken with alphabets of small size, such as binary

strings or DNA sequences. At each iteration of the algorithm, at least one char-
acter of the alphabet disappears from the new string, since the smallest character
in the alphabet is not selected as local maximum. This fact can be a limitation,
for instance in DNA sequences, where |Σ| is only 4. Indeed, we can apparently
apply the sparsification less than |Σ| times. We can circumvent this problem by
storing each local maximum along with its offset to (i.e., the number of charac-
ters before) the next maximum. Each local maximum in Σ is replaced by a new
character given by the pair (local maximum, offset) in the new alphabet Σ ×N
undergoing the lexicographic order.
In order to explain the sparsification algorithm, let us consider the following

string over the alphabet Σ of four characters A, C, G, and T:

T0=TGACACGTGACGAGCACACACGTCGCAGATGCATA.

Assuming that the characters are ordered according to the lexicographical or-
der, the number of local maxima contained in the above string is 11 (which
is approximately one third of the total length of the string, i.e., 35). The new
string obtained after the first iteration of the sparsification algorithm is then the
following one:

298 Pilu Crescenzi et al.

T1=(C,4)(T,4)(G,2)(G,3)(C,2)(C,4)(T,2)(G,3)(G,2)(T,4)(T,2).

Observe that the new alphabet consists of six characters, each one composed
by a character of Σ − {A} and a natural number in {2,. . . ,4}. Assuming that
these characters are ordered according to the lexicographical order, we have
that the number of local maxima contained in the above string is 4 (which is
approximately one third of the total length of the string, i.e., 11). The new
string obtained after the second iteration of the sparsification algorithm is then
the following one:

T2=(T,6)(G,9)(T,7)(T,6).

Assume we are looking for the pattern ACACGTGACGAGCAwhich occurs in T0 start-
ing at position 3. By applying the first iteration of the sparsification algorithm
to the pattern, we obtain the string (C,4)(T,4)(G,2)(G,3) which occurs in T1

starting at position 1. However, if we apply the second iteration of the sparsi-
fication algorithm to the pattern, we obtain the new pattern (T,9) which does
not occur in T2. Indeed, as we have already observed, the size of the pattern to
be searched bounds the number of the iterations of the algorithm that can be
performed. Formally, let Ti, for i ≥ 1, be the text after the ith iteration and let
mi be the maximum value of the offset of a local maxima in Ti. It can be easily
verified the following:

Lemma 4. A pattern P of size m is successfully found in a text Ti, as long as
m ≥ 2mi.

In the previous example, we have thatm = 14,m1 = 4, andm2 = 9. According to
the above lemma, the pattern is successfully found in T1 but it is not successfully
found in T2.

4 Experimental Results

In our experiments, we consider DNA sequences, where Σ = {A, T, C, G}. In
Table 4, we report the number of local maxima obtained for the three DNA
sequences: Saccharomyces Cervisiae (file IV.fna), Archeoglobus Fulgidus (file
aful.fna) and Escherichia Coli (file ecoli.fna), for three consecutive iterations
of the algorithm.
In the ith iteration, i = 1, . . . , 3, we have ni local maxima with maximum

distance mi among two consecutive of them. The values of mi is not exactly
the maximum among all possible values. There are very few values that are
very much larger than the majority. The additive term in the figures for ni

accounts for those local maxima that are at distance greater than mi. For ex-
ample, after the first iteration on Saccharomyces Cervisiae (file IV.fna), there
are ni = 459027 local maxima having offset at most m1 = 18, and only 616
local maxima with offset larger than 18 (actually, much larger). It goes without
saying that it is better to treat these 616 maxima independently from the rest

Text Sparsification via Local Maxima 299

n0 n1 m1 n2 m2 n3 m3

IV.fna 1532027 459027+616 18 146408+1814 37 47466+6618 92
aful.fna 2178460 658396+101 13 213812+952 35 69266+3781 94
ecoli.fna 4639283 1418905+61 14 458498+851 37 148134+4572 98

Table 4. Sample values for three DNA sequences

of the maxima. Finally, we observe a reduction of about 1/3 at each iteration on
the values of ni.
In Fig. 1, we report the distribution of the distances between consecutive

maxima in the sequence after each of three iterations of the sparsification algo-
rithm. After the first iteration almost all the values are concentrated in a small
range of values (see Fig. 1a); the distribution curve is maintained and flattened
after the next two iterations (see Fig. 1b-c).

Fig. 1. Distribution of distances among the local maxima for file ecoli.fna.
Data for iteration i = 1 is reported in (a) where distances range from 1 to 16,
for i = 2 in (b) where distances range from 3 to 46, and for i = 3 in (c) where
distances range from 8 to 144.

As a result of the application of our sparsification technique to construct a
text index on the suffixes starting at the local maxima (for this purpose, we use
a suffix array in our experiments), the occupied space is small compared to the
text size itself, and this seems to be a rather interesting feature. Here, we are

300 Pilu Crescenzi et al.

considering the exact string matching problem. The application of our method
to other important string problems, such as multiple sequence alignment and
matching with errors, seems promising but it is still object of study. As the
search of patterns in DNA applications has to be performed considering the
possibility of errors, one should use the approximate, rather than the exact
string matching. However, in several algorithms used in practice, findings the
exact occurrences of the pattern in the text [2] is a basic filtering step towards
solving the approximate problem due to the large size of the text involved.
Three final considerations are in order. First, the threshold of 2mi on the

minimum pattern length in Lemma 4 is overly pessimistic. In our experiments,
we successfully found all patterns of length at least mi/2. For example, in file
ecoli.fna, we had m3 = 98. We searched for patterns of length ranging from
50 to 198, and all searches were successful.
Second, it may seem that a number of false matches are caused by discarding

the first characters in the pattern in each iteration of the sparsification algo-
rithm. Instead, the great majority of these searches did not give raise to false
matches due to the local maxima, except for a minority. Specifically, on about
150,000 searches, we counted only about 300 searches giving false matches, and
the average ratio between good matches and total matches (including false ones)
was 0.28.
Finally, the most important feature of the index is that it saves a lot of space.

For example, a plain suffix array for indexing file ecoli.fna requires about 17.7
megabytes. Applying one iteration of the sparsification algorithm reduces the
space to 5.4 megabytes, provided that the pattern length m is at least 14; the
next two iterations give 1.8 megabytes (for m ≥ 37) and 0.6 megabytes (for
m ≥ 98), respectively. These figures compare favorably with the text size of 1.1
megabytes by encoding each symbol with two bits. The tradeoff between pattern
length and index space is inevitable as the DNA strings are incompressible.

5 Conclusion and Open Questions

In this paper, we have investigated some properties of a text sparsification tech-
nique based on the identification of local maxima. In particular, we have shown
that looking for the best order of the alphabet symbols is an Np-hard problem.
Successively, we have described how the local maxima sparsification technique
can be used to filter the access to unstructured texts. Finally, we have experi-
mentally shown that this approach can be successfully used in order to create a
space efficient index for searching a DNA sequence as quickly as a full index.
Regarding the combinatorial optimization problem, the main question left

open by this paper is whether the optimization version of Minimum Local
Maxima Number admits a polynomial-time approximation algorithm. It would
also be interesting to accompany the experimental results obtained with DNA
sequences by some theoretical results, such as the evaluation of the expected
maximal distance between two local maxima or the expected number of false
matches.

Text Sparsification via Local Maxima 301

References

[1] A. Alstrup, G. S. Brodal, and T. Rauhe. Pattern matching in dynamic texts. In
Proceedings of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms,
pages 819–828, San Francisco, CA, 2000.

[2] S. Burkhardt, A. Crauser, H.P. Lenhof, P. Ferragina, E. Rivals, and M. Vingron.
Q-gram based database searching using a suffix array (QUASAR). In Proceedings
of the Annual International Conference on Computational Biology (RECOMB),
1999.

[3] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32–53, July 1986.

[4] G. Cormode, M. Paterson, S.C. Sahinalp, and U. Vishkin. Communication com-
plexity of document exchange. In Proceedings of the 11th ACM-SIAM Annual
Symposium on Discrete Algorithms, 2000.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, 1979.

[6] K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, February
1997.

[7] M. Nelson and J.-L. Gailly. The Data Compression Book. M&T Books, 1996.
[8] S.C. S. ahinalp and U. Vishkin. Symmetry breaking for suffix tree construction

(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium
on the Theory of Computing, pages 300–309, Montréal, Québec, Canada, 23–25
May 1994.

[9] S.C. S. ahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm (extended abstract). In 37th Annual Sympo-
sium on Foundations of Computer Science, pages 320–328. IEEE, 14–16 October
1996.

[10] G.K. Wallace. The JPEG still picture compression standard. Communications of
the ACM, 34(1):30–44, April 1991.

Approximate Swapped Matching

Amihood Amir1, Moshe Lewenstein2, and Ely Porat3

1 Department of Mathematics and Computer Science,
Bar-Ilan University, 52900 Ramat-Gan, Israel

and Georgia Tech
Tel. (972-3)531-8770;
amir@cs.biu.ac.il

2 Department of Mathematics and Computer Science,
Bar-Ilan University, 52900 Ramat-Gan, Israel

Tel. (972-3)531-8407;
moshe@cs.biu.ac.il

3 Department of Mathematics and Computer Science,
Bar-Ilan University, 52900 Ramat-Gan, Israel

and Weizmann Institute.
Tel. (972-3)531-8407;

porately@cs.biu.ac.il

Abstract. Let a text string T of n symbols and a pattern string P of
m symbols from alphabet Σ be given. A swapped version P ′ of P is a
length m string derived from P by a series of local swaps, (i.e. p′

� ← p�+1

and p′
�+1 ← p�) where each element can participate in no more than one

swap. The Pattern Matching with Swaps problem is that of finding all
locations i of T for which there exists a swapped version P ′ of P with
an exact matching of P ′ in location i of T .
Recently, some efficient algorithms were developed for this problem.
Their time complexity is better than the best known algorithms for
pattern matching with mismatches. However, the Approximate Pattern
Matching with Swaps problem was not known to be solved faster than
the pattern matching with mismatches problem.
In the Approximate Pattern Matching with Swaps problem the output is,
for every text location i where there is a swapped match of P , the number
of swaps necessary to create the swapped version that matches location
i. The fastest known method to-date is that of counting mismatches and
dividing by two. The time complexity of this method is O(n

√
m logm)

for a general alphabet Σ.
In this paper we show an algorithm that counts the number of swaps
at every location where there is a swapped matching in time
O(n logm log σ), where σ = min(m, |Σ|). Consequently, the total time
for solving the approximate pattern matching with swaps problem is
O(f(n, m) + n logm log σ), where f(n, m) is the time necessary for solv-
ing the pattern matching with swaps problem.

Key Words: Design and analysis of algorithms, combinatorial algo-
rithms on words, pattern matching, pattern matching with swaps, non-
standard pattern matching, approximate pattern matching.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 302–311, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Approximate Swapped Matching 303

1 Introduction

The Pattern Matching with Swaps problem (the Swap Matching problem, for
short) requires finding all occurrences of a pattern of length m in a text of length
n. The pattern is said to match the text at a given location i if adjacent pattern
characters can be swapped, if necessary, so as to make the pattern identical to
the substring of the text starting at location i. All the swaps are constrained to
be disjoint, i.e., each character is involved in at most one swap.

The importance of the swap matching problem lies in recent efforts to understand
the complexity of various generalized pattern matching problems. The textbook
problem of exact string matching that was first shown to be solvable in linear
time by Knuth, Morris and Pratt [10] does not answer the growing requirements
stemming from advances in Multimedia, Digital libraries and Computational Bi-
ology. To this end, pattern matching has to adapt itself to increasingly broader
definitions of “matching” [18, 17]. In computational biology one may be inter-
ested in finding a “close” mutation, in communications one may want to adjust
for transmission noise, in texts it may be desirable to allow common typing er-
rors. In multimedia one may want to adjust for lossy compressions, occlusions,
scaling, affine transformations or dimension loss.

The above applications motivated research of two new types – Generalized Pat-
tern Matching, and Approximate Pattern Matching. In generalized matching the
input is still a text and pattern but the “matching” relation is defined differently.
The output is all locations in the text where the pattern “matches” under the
new definition of match. The different applications define the matching relation.
An early generalized matching was the string matching with don’t cares problem
defined by Fischer and Paterson [8]. Another example of a generalized matching
problem is the less-than matching [4] problem defined by Amir and Farach. In
this problem both text and pattern are numbers. One seeks all text locations
where every pattern number is less than its corresponding text number. Amir
and Farach showed that the less-than-matching problem can be solved in time
O(n
√

m logm).

Muthukrishnan and Ramesh [15] prove that practically all general matching
relations, where the generalization is in the definition of single symbol matches,
are equivalent to the boolean convolutions, i.e. it is unlikely that they could be
solved in time faster than O(n logm), where n is the text length and m is the
pattern length. As we have seen, some examples have significantly worse upper
bound than this.

The swap matching problem is also a generalized matching problem. It arises
from one of the edit operations considered by Lowrance and Wagner [14, 19] to
define a distance metric between strings.

Amir et al [3] obtained the first non-trivial results for this problem. They showed
how to solve the problem in time O(nm1/3 logm log σ), where σ = min(|Σ|, m).
Amir et al. [5] also give certain special cases for which O(mpolylog(m)) time can

304 Amihood Amir, Moshe Lewenstein, and Ely Porat

be obtained. However, these cases are rather restrictive. Cole and Hariharan [6]
give a randomized algorithm that solves the swap matching problem over a
binary alphabet in time O(n log n).

The second important pattern matching paradigm is that of approximate match-
ing. Even under the appropriate matching relation there is still a distinction be-
tween exact matching and approximate matching. In the latter case, a distance
function is defined on the text. A text location is considered a match if the dis-
tance between it and the pattern, under the given distance function, is within
the tolerated bounds.

The fundamental question is what type of approximations are inherently hard
computationally, and what types are faster to compute. This question motivated
much of the pattern matching research in the last couple of decades.

The earliest and best known distance function is Levenshtein’s edit distance [13].
The edit distance between two strings is the smallest number of edit operations,
in this case insertions, deletions, and mismatches, whereby one string can be
converted to the other. Let n be the text length and m the pattern length. A
straightforward O(nm) dynamic programming algorithm computes the edit dis-
tance between the text and pattern. Lowrance and Wagner [14, 19] proposed an
O(nm) dynamic programming algorithm for the extended edit distance prob-
lem, where the swap edit operation is added. In [9, 11, 12] O(kn) algorithms are
given for the edit distance with only k allowed edit operations. Recently, Cole
and Hariharan [7] presented an O(nk4/m + n+m) algorithm for this problem.

Since the upper bound for the edit distance seems very tough to break, at-
tempts were made to consider the edit operations separately. If only mismatches
are counted for the distance metric, we get the Hamming distance, which defines
the string matching with mismatches problem. A great amount of work was done
on finding efficient algorithms for string matching with mismatches. By methods
similar to those of Fischer and Paterson [8] it can be shown that the string match-
ing with mismatches problem can be solved in time O(min(|Σ|, m)n logm). For
given finite alphabets, this is O(n logm). Abrahamson [1] developed an algorithm
that solves this problem for general alphabets in time O(n

√
m logm).

The approximate pattern matching with swaps problem considers the swaps as
the only edit operation and seeks to compute, for each text location i, the number
of swaps necessary to convert the pattern to the substring of length m starting
at text location i (provided there is a swap match at i). In [2] it was shown
that the approximate pattern matching with swaps problem can be reduced to
the string matching with mismatches problem. For every location where there
is a swap match, the number of swaps is precisely equal to half the number
of mismatches (since a swap is two mismatches). Although swap matching as
a generalized matching proved to be more efficient than counting mismatches,
it remained open whether swap matching as an approximation problem can be
done faster than mismatches.

Approximate Swapped Matching 305

In this paper we answer this question in the affirmative. We show that if all lo-
cations where there is a swap match are known, the approximate swap matching
problem can be solved in time O(n logm log σ), where σ = min(|Σ|, m). There-
fore, assuming swap matching can be done in time f(n, m), approximate swap
matching can be done in time O(f(n, m) + n logm logσ).

Paper organization. This paper is organized in the following way. In section 2
we give basic definitions. In sections 3, we outline the key idea and intuition
behind our algorithm. In section 4 we give a randomized algorithm, which easily
highlights the idea of our solution. It turns out that rather than using a generic
derandomization strategy, a simple, problem specific, method can be used to
obtain the deterministic counterpart. Section 5 presents an easy and efficient
code that solves our problem deterministically.

2 Problem Definition

Definition: Let S = s1 . . . sn be a string over alphabet Σ. A swap permutation
for S is a permutation π : {1, . . . , n} → {1, . . . , n} such that

1. if π(i) = j then π(j) = i (characters are swapped).
2. for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters are swapped).
3. if π(i) �= i then sπ(i) �= si (identical characters are not swapped).

For a given string S = s1 . . . sn and swap permutation π for S we denote π(S) =
sπ(1)sπ(2) . . . sπ(n). We call π(S) a swapped version of S.

The number of swaps in swapped version π(S) of S is the number of pairs (i, i+1)
where π(i) = i + 1 and π(i + 1) = i.

For pattern P = p1 . . . pm and text T = t1 . . . tn, we say that P swap matches
at location i if there exists a swapped version P ′ of P that matches T starting
at location i, i.e. p′j = ti+j−1 for j = 1, . . . , m. It is not difficult to see that if P
swap matches at location i there is a unique swap permutation for that location.

The Swap Matching Problem is the following:
INPUT: Pattern P = p1 . . . pm and text T = t1 . . . tn over alphabet Σ.
OUTPUT: All locations i where P swap matches T .

We note that the definition in [3] and the papers that followed is slightly different,
allowing the swaps in the text rather than the pattern. However, it follows from
Lemma 1 in [3] that both versions are of the same time complexity.

The Approximate Swap Matching Problem is the following:
INPUT: Pattern P = p1 . . . pm and text T = t1 . . . tn over alphabet Σ.
OUTPUT: For every location i where P swap matches T , write the number of
swaps in the swapped version of P that matches the text substring of length m

306 Amihood Amir, Moshe Lewenstein, and Ely Porat

starting at location i. If there is no swap matching of P at i, write m + 1 at
location i.

Observation 1 Assume there is a swap match at location i. Then the number
of swaps is equal to half the number of mismatches at location i.

3 Intuition and Key Idea

It would seem from Observation 1 that finding the number of swaps is of the
same difficulty as finding the number of mismatches. However, this is not the
case. Note that if it is known that there is a swap match at location i, this
puts tremendous constraints on the mismatches. It means that if there is a
mismatch between pattern location j and text location i + j − 1 we also know
that either ti+j−1 = pj−1 or ti+j−1 = pj+1. There is no such constraint in a
general mismatch situation!

Since we can “anticipate” for every pattern symbol what would be the mismatch,
it gives us some flexibility to change the alphabet to reflect the expected mis-
matches. Thus we are able to reduce the alphabet to one with a small constant
size. For such alphabets, the Fischer and Paterson algorithm [8] allows counting
mismatches in time O(n logm).

In order to be able to anticipate the mismatching symbol, we need to isolate every
pattern symbol from its right and left neighbors. This can be done by splitting
a pattern P to three patterns, P1, P2 and P3, where each subpattern counts
mismatches only in the central element of each triple. P1, P2 and P3 represent
the three different offsets of triples in the pattern. For a schema of these three
patterns, see Fig. 1.

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���P1 ...

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��P2 ...

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���P3 ...

Fig. 1. The three patterns resulting from different triple offsets.

For each one of P1, P2 and P3, the central symbol in every triple (the one shaded
in Fig. 1) has the same value as the respective element of P . All other symbols are
“don’t care”s (φ). The sum of the mismatches of Pi in T , i = 1, 2, 3 is precisely

Approximate Swapped Matching 307

the mismatches of P in T . Therefore, half of this sum is the desired number of
swaps.

Throughout the remainder of this paper we will concentrate on counting the
mismatches of P2. The cases of P1 and P3 are similar. In the next section we
will show a randomized algorithm that allows efficient counting of mismatches
of P2 by reducing the alphabet. Section 5 will show a deterministic alphabet
reduction.

4 Randomized Alphabet Reduction

Let h : Σ → {1, 2, ..., 4} be chosen randomly. For string S = s1, ..., sm define
h(S) = h(s1), ..., h(sm). Consider h(P2). Let (x, y, z) be a triple such that x �= y
or y �= z (i.e. a swap could happen). Call such a triple a potential swap triple.
We say that h separates the triple (x, y, z) if h(x) �= h(y) when x �= y and
h(y) �= h(z) when y �= z.

If h happens to separate every potential swap triple in the pattern, then the
number of mismatches of P2 in T equals the number of mismatches of h(P2) in
h(T). However, the alphabet of h(P2) and h(T) is of size 4, hence the mismatches
can be counted in time O(n logm).

We need to be quite lucky to achieve the situation where all potential swap triples
get separated by h. However, we really do not need such a drastic event. Every
potential swap triple that gets separated, counts all its mismatches. From now
on it can be replaced by “don’t care”s and never add mismatches. Conversely,
every potential swap triple that does not get separated can be masked by “don’t
care”s and not contribute anything.

Our algorithm, then, is the following.

Algorithm

Let Pt ← P2

Replace all non potential swap triples of Pt with “don’t care”s
while not all triples have been masked do:

choose a random h : Σ → {1, 2, ..., 4}
Let Pq ← h(Pt)
Replace all non-separated triples of Pq with “don’t care”s
Count all mismatches of Pq in h(T)
Replace all triples of Pt that were separated by h with “don’t care”s

end Algorithm

Since counting all mismatches of Pq in h(T) can be done in time O(n logm), it
is sufficient to know the expected number of times we run through the while loop
to calculate the expected running time of the algorithm.

308 Amihood Amir, Moshe Lewenstein, and Ely Porat

Claim. The expected number of times the while loop executed in the above
algorithm is O(log σ), where σ = min(|Σ|, m).

Proof: The probability that a given potential swap triple gets separated is(
3
4

)2

=
9
16

>
1
2
.

Therefore, the expectation is that at least half of the triples will be separated
in the first execution of the while loop, with every subsequent execution of the
while loop separating half of the remaining triples. Since there are no more
than min(m

3 , |Σ|3) triples, then the expectation is that in O(log(min(m
3 , |Σ|3)) =

O(log σ) executions of the while loop all triples will be separated.
�
Conclude: The expected running time of the algorithm is O(n logm log σ).

5 Deterministic Alphabet Reduction

Recall that our task is really to separate all triples. There exists in the literature
a powerful code that does this separation. Subsequently we show a simple code
that solves our problem.

Definition: A (Σ, 3)-universal set is a set S = {χ1, . . . , χk} of characteristic
functions, χj : Σ → {0, 1} such that for every a, b, c ∈ Σ, and for each of the
eight possible combinations of 0−1s, there exists χj such that χj(a), χj(b), χj(c)
equals this combination.

We extend the definition of the functions χj to strings in the usual manner, i.e.
for S = s1 . . . sn, χj(S) = χj(s1)χj(s2) . . . χj(sn).

Let S = {χ1, . . . , χk} be a be a (Σ, 3)-universal set such that for every potential
swap triple (a, b, c) there exist a j for which χj(a) = 0, χj(b) = 1, χj(c) = 0. We
run the following algorithm, which is very similar to the randomized algorithm
in Section 4.

Algorithm

Let Pt ← P2

Replace all non potential swap triples of Pt with “don’t care”s
for j = 1 to k do:

Let Pq ← χj(Pt)
Replace all non-separated triples of Pq with “don’t care”s
Count all mismatches of Pq in χj(T)
Replace all triples of Pt that were separated by χj with “don’t care”s

end Algorithm

In [16] it was shown how to construct (Σ, 3)-universal set of cardinality k =
O(log σ) yielding the following.

Approximate Swapped Matching 309

Corollary 1. The deterministic algorithm’s running time is O(n logm log σ).

The Naor and Naor construction of [16] is quite heavy. We conclude with an
extremely simple coding of the alphabet that separates triples sufficiently well
for our purposes.

First note the following.

Claim. It is sufficient to provide a set S = {χ1, . . . , χk} of characteristic func-
tions, χj : Σ → {0, 1} such that for every potential swap triple (a, b, c) there
either exists a χj such that χj(a) = x, χj(b) = 1 − x and χj(c) = x, where
x ∈ {0, 1}, or there exist χj1 , χj2 such that χj1(a) = x, χj1 (b) = 1 − x and
χj1(c) = 1−x, and χj2(a) = y, χj2(b) = y and χj2(c) = 1−y, where x, y ∈ {0, 1}.
Call such a set a swap separating set.

Proof: Let S = {χ1, . . . , χk} be a swap separating set. Every potential swap
triple for which there exists a χj such that χj(a) = x, χj(b) = 1−x and χj(c) = x,
where x ∈ {0, 1}, will be separated by χj and masked with “don’t care”s for
all other characteristic functions. In other words, we initially decide, for each
function, what are the triples it separates, and mark those triples. If several
functions separate the same triple we will, of course, only use one of them.

For every other potential swap triple, there are χj1 , χj2 such that χj1(a) =
x, χj1(b) = 1−x and χj1(c) = 1−x, and χj2(a) = y, χj2(b) = y and χj2(c) = 1−y,
where x, y ∈ {0, 1}. Every such triple will participate in the separation of χj1

and χj2 . For all other characteristic functions it will be masked with “don’t
care”s.

Note that if there is a match of such a triple with a text location without
a swap, then neither χj1 nor χj2 will contribute a mismatch. However, if the
triple’s match requires a swap, then exactly one of χj1 or χj2 will contribute a
mismatch.
�
Our remaining task is to provide a simple construction for swap separating set
of size O(log σ).

Swap Separating Set Construction

Consider a σ× log σ bit matrix B where the rows are a binary representation of
the alphabet elements (P ∩Σ). Take χj(a) = B[a, j]. In words, the characteristic
functions are the columns of B.

For every potential swap triple (a, b, c), if there is a column where the bits of
a, b, c are x, 1 − x, x then this column provides the function in which the triple
participates. If no such column exists, then there clearly are two columns j1, j2
such that B[a, j1] �= B[b, j1] and B[c, j2] �= B[b, j2]. It is clear that B[c, j1] =
B[b, j1] and B[a, j2] = B[b, j2] (otherwise the first condition holds). The columns
j1 and j2 provide the functions where triple (a, b, c) participates.

310 Amihood Amir, Moshe Lewenstein, and Ely Porat

6 Conclusion and Open Problems

We have shown a faster algorithm for the approximate swap matching problem
than that of the pattern matching with mismatches problem. This is quite a sur-
prising result considering that it was thought that swap matching may be even
harder than pattern matching with mismatches. However, this leads us to conjec-
ture that the current upper bound on the mismatches problem (O(n

√
m logm))

is not the final word.

The swap operation and the mismatch operation have proven to be relatively
“easy” to solve. However, insertion and deletion are still not known to be solvable
in time faster than the dynamic programming O(nm) in the worst case. A lower
bound or a better upper bound on the complexity of edit distance would be of
great interest.

7 Acknowledgments

The first author was partially supported by NSF grant CCR-96-10170, BSF grant
96-00509, and a BIU internal research grant. The second author was partially
supported by the Israel Ministry of Science Eshkol Fellowship 061-1-97, and was
visiting the Courant Institute at NYU while working on some of the work in this
paper.

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039–1051,
1987.

[2] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. Submitted for publication.

[3] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. Proc. 38th IEEE FOCS, 144–153, 1997.

[4] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation, 118(1):1–11, April 1995.

[5] A. Amir, G.M. Landau, M. Lewenstein, and N. Lewenstein. Efficient special cases
of pattern matching with swaps. Information Processing Letters, 68(3):125–132,
1998.

[6] R. Cole and R. Harihan. Randomized swap matching in o(m logm log |σ|) time.
Technical Report TR1999-789, New York University, Courant Institute, Septem-
ber 1999.

[7] R. Cole and R. Hariharan. Approximate string matching: A faster simpler al-
gorithm. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
463–472, 1998.

[8] M.J. Fischer and M.S. Paterson. String matching and other products. Complexity
of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.

[9] Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. Comp., 19(6):989–999, 1990.

Approximate Swapped Matching 311

[10] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
J. Comp., 6:323–350, 1977.

[11] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string match-
ing. Journal of Algorithms, 10(2):157–169, 1989.

[12] G.M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison.
SIAM J. Comp., 27(2):557–582, 1998.

[13] V. I. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707–710, 1966.

[14] R. Lowrance and R. A. Wagner. An extension of the string-to-string correction
problem. J. of the ACM, 177–183, 1975.

[15] S. Muthukrishnan and H. Ramesh. String matching under a general matching
relation. Information and Computation, 122(1):140–148, 1995.

[16] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comp., 838–856, 1993.

[17] M. V. Olson. A time to sequence. Science, 270:394–396, 1995.
[18] A. Pentland. Invited talk. NSF Institutional Infrastructure Workshop, 1992.
[19] R. A. Wagner. On the complexity of the extended string-to-string correction

problem. In Proc. 7th ACM STOC, 218–223, 1975.

A Semantic Theory for

Heterogeneous System Design�

Rance Cleaveland1 and Gerald Lüttgen2

1 Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, New York 11794–4400, USA,

rance@cs.sunysb.edu
2 Department of Computer Science, Sheffield University, 211 Portobello Street,

Sheffield S1 4DP, England,
g.luettgen@dcs.shef.ac.uk

Abstract. This paper extends DeNicola and Hennessy’s testing theory
from labeled transition system to Büchi processes and establishes a tight
connection between the resulting Büchi must–preorder and satisfaction of
linear–time temporal logic (LTL) formulas. An example dealing with the
design of a communications protocol testifies to the utility of the theory
for heterogeneous system design, in which some components are specified
as labeled transition systems and others are given as LTL formulas.

1 Introduction

Approaches to formally verifying reactive systems typically follow one of two
paradigms. The first paradigm is founded on notions of refinement and is em-
ployed in process algebra [2]. In such approaches one formulates specifications
and implementations in the same notation and then proves that the latter refine
the former. The underling semantics is usually given operationally, and refine-
ment relations are formalized as preorders. Testing/failure preorders [4, 8] have
attracted particular attention because of their intuitive formulations in terms of
responses a system exhibits to tests. Their strength is their support for compo-
sitional reasoning, i.e., one may refine part of a system design independently of
others, and their full abstractness with respect to trace inclusion [18].

The other paradigm relies on the use of temporal logics [22] to formulate
specifications, with implementations being given in an operational notation. One
then verifies a system by establishing that it is a model of its specification; model
checkers [5] automate this task for finite–state systems. Temporal logics support
the definition of properties that constrain single aspects of expected system
behavior and, thus, allow a “property–at–a–time” approach. Such logics also
have connections with automata over infinite words. For example, linear–time
� Research support was provided under NASA Contract No. NAS1–97046 and by
NSF grant CCR–9988489. The first author was also supported by AFOSR Grant
F49620–95–1–0508, ARO Grant P–38682–MA, and NSF Grants CCR–9505562,
CCR–9996086, and INT–9996095.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 312–324, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Semantic Theory for Heterogeneous System Design 313

temporal logic (LTL) specifications may be translated into Büchi automata [27]
which allow semantic constraints on infinite behavior to be expressed.

The objective of this paper is to develop a semantic framework that seam-
lessly unifies testing–based refinement and LTL, thereby enabling the devel-
opment of design formalisms that provide support for both styles of verifica-
tion. Using Büchi automata and the testing framework of DeNicola and Hen-
nessy [8] as starting points, we approach this task by developing Büchi may–
and must–preorders that relate Büchi processes on the basis of their responses to
Büchi tests. Alternative characterizations are provided and employed for proving
conservative–extension results regarding DeNicola and Hennessy’s testing the-
ory. We then apply this framework to defining a semantics for heterogeneous
design notations, where systems are specified using a mixture of labeled transi-
tion systems and LTL formulas. This is done in two steps: first, we show that
our Büchi must–preorder is compositional for parallel composition and scoping
operators that are inspired by CCS [19]. Second, we establish that the Büchi
must–preorder reduces to a variant of reverse trace inclusion when its first argu-
ment is purely nondeterministic. Consequently, the Büchi must–preorder permits
a uniform treatment of traditional notions of process refinement and LTL satis-
faction. The utility of our new theory is illustrated by means of a small example
featuring the heterogeneous design of a generic communications protocol.

2 Büchi Testing

We extend the testing theory of DeNicola and Hennessy [8], which was developed
for labeled transition systems in a process–algebraic setting, to Büchi automata.
Traditional testing relates labeled transition systems via two preorders, the may–
and must–preorders, which distinguish systems on the basis of the tests they
might be able to, or are necessarily able to, pass. Büchi automata generalize
labeled transition systems by means of an acceptance condition for infinite traces.
However, the classical Büchi semantics, which identifies automata having the
same infinite languages, is in general not compositional with respect to parallel
composition operators, since it is insensitive to the potential for deadlock. Our
testing semantics is intended to overcome this problem. In the sequel, we refer
to Büchi automata as Büchi processes to emphasize that we are equipping Büchi
automata with a different semantics than the traditional one.

Basic Definitions. Our semantic framework is defined relative to some alpha-
bet A, i.e., a countable set of actions which does not include the distinguished
unobservable, internal action τ . In the remainder, we let a, b, . . . range over A
and α, β, . . . over A∪ {τ}. Büchi processes are distinguished from labeled tran-
sition systems in their treatment of infinite traces. Whereas in labeled transition
systems all infinite traces are typically deemed possible, in Büchi processes only
those infinite traces that go through designated Büchi states infinitely often are
considered actual executions.

Definition 1 (Büchi process). A Büchi process is a tuple 〈P,−→,
√

, p〉, where
P is a countable set of states, −→⊆ P ×(A∪{τ})×P is the transition relation,

314 Rance Cleaveland and Gerald Lüttgen

√ ⊆ S is the Büchi set, and p ∈ P is the start state. If
√

= P we refer to the
Büchi process as a labeled transition system.

For convenience, we often write (i) p′ α−→ p′′ instead of 〈p′, α, p′′〉 ∈−→, (ii) p′ α−→
for ∃p′′ ∈ P. p′ α−→ p′′, (iii) p′ −→ for ∃α ∈ A ∪ {τ}, p′′ ∈ P. p′ α−→ p′′, and
(iv) p′

√
for p′ ∈ √

. If no confusion arises, we abbreviate the Büchi process
〈P,−→,

√
, p〉 by its start state p and refer to its transition relation and Büchi set

as −→p and
√

p, respectively. Moreover, we denote the set of all Büchi processes
by P . Note that we do not require Büchi processes to be finite–state.

Definition 2 (Path & trace). Let 〈P,−→,
√

, p〉 be a Büchi process. A path π
starting from state p′ ∈ P is a potentially infinite sequence (〈pi−1, αi, pi〉)0<i≤k,
where k ∈ N∪{∞}, such that k = 0, or p0 = p′ and pi−1

αi−→ pi, for all 0 < i ≤ k.
We use |π| to refer to k, the length of π. If |π| = ∞, we say that π is infinite;
otherwise, π is finite. If |π| ∈ N and p|π| �−→, i.e., p|π| is a deadlock state,
path π is called maximal. Path π is referred to as a Büchi path if |π| = ∞ and
|{i ∈ N | pi

√}| = ∞. The (visible) trace trace(π) of π is defined as the sequence
(αi)i∈Iπ ∈ A∗ ∪A∞, where Iπ =df {0 < i ≤ |π| |αi �= τ}.

We denote the sets of all finite paths, all maximal paths, and all Büchi paths
starting from state p′ ∈ P by Πfin(p′), Πmax(p′), and ΠB(p′), respectively. The
empty path π with |π| = 0 is symbolized by () and its trace by ε. We sometimes
write α for the empty or single-element sequence trace (α) and use the notation
p′ w=⇒p p′′ to indicate that state p′ of Büchi process p may evolve to state p′′

when observing trace w for some path π ∈ Πfin(p′). Formally, p′ w=⇒p p′′ if ∃π =
(〈pi−1, αi, pi〉)0<i≤k ∈ Πfin(p). p0 = p′, pk = p′′, and trace(π) = w. Moreover,
Ip(p′) =df {a ∈ A | ∃p′′. p′ a=⇒p p′′} is the set of initial actions of p in state
p′ ∈ P . We may also introduce different languages for Büchi process p.

Lfin(p) =df {trace(π) |π ∈ Πfin(p)} ⊆ A∗ finite–trace language of p
Lmax(p) =df {trace(π) |π ∈ Πmax(p)} ⊆ A∗ maximal–trace language of p
LB(p) =df {trace(π) |π ∈ ΠB(p)} ⊆ A∗ ∪ A∞ Büchi–trace language of p

A key notion in testing–based semantics is divergence, i.e., a system’s ability
to engage in an infinite internal computation. In this paper, we use adapta-
tions of the traditional notions of DeNicola and Hennessy [8]; more sophisti-
cated definitions may be found elsewhere in the literature [3, 21, 23] but are
not considered here. We say that state p′ of Büchi process p is (Büchi) di-
vergent, in symbols p′ ⇑p, if ∃π ∈ ΠB(p′). trace(π) = ε. State p′ is called
w–divergent for some w = (ai)0<i≤k ∈ A∗ ∪ A∞, in symbols p′ ⇑p w, if one
can reach a divergent state starting from p′ when executing a finite prefix

of w, i.e., if ∃l ≤ k, p′′ ∈ P, w′ ∈ A∗. w′ = (ai)0<i≤l, p
′ w′

=⇒ p′′, and p′′ ⇑p.
For convenience, we write Ldiv(p′) for the divergent–trace language of p′, i.e.,
Ldiv(p′) =df {w ∈ A∗ ∪ A∞ | p′ ⇑p w}. State p′ is convergent or w–convergent, in
symbols p′ ⇓p and p′ ⇓p w, if not p′ ⇑p and not p′ ⇑p w, respectively. Note that a
finite trace w ∈ LB(p) indicates that p is divergent exactly after executing w. In

A Semantic Theory for Heterogeneous System Design 315

the following, we often omit the indices of the divergence and convergence pred-
icates, as well as of the transition relations, whenever these are obvious from the
context. Finally, we write w ·w′ for the concatenation of finite trace w ∈ A∗ with
the finite or infinite trace w′ ∈ A∗ ∪ A∞.

Testing Theory. The testing framework of DeNicola and Hennessy defines
behavioral preorders that relate labeled transition systems with respect to their
responses to tests [8]. Tests are employed to witness the interactions a system
may have with its environment. In our setting, a test is a Büchi process in
which certain states are designated as successful. In order to determine whether
a system passes a test, one has to examine the finite and infinite computations
that result when the test runs in lock–step with the system under consideration.

Definition 3 (Test, computation, success). A Büchi test 〈T,−→,
√

, t, Suc〉
is a Büchi process 〈T,−→,

√
, t〉 together with a set Suc ⊆ T of success states.

If
√

= ∅, we call the test classical. The set of all Büchi tests is denoted by T .
A potential computation c with respect to a Büchi process p and a Büchi

test t is a potentially infinite sequence (〈pi−1, ti−1〉
αi�−→ri 〈pi, ti〉)0<i≤k, where

k ∈ N ∪ {∞}, such that (1) pi ∈ P and ti ∈ T , for all 0 ≤ i ≤ k, and (2) αi ∈
A ∪ {τ} and ri ∈ {J, I, �}, for all 0 < i ≤ k. The relation �−→ is defined by:

• 〈pi−1, ti−1〉
αi�−→J 〈pi, ti〉 if αi = τ, ti−1 = ti, pi−1

τ−→p pi, & ti−1 /∈ Suc .

• 〈pi−1, ti−1〉
αi�−→I 〈pi, ti〉 if αi = τ, pi−1 = pi, ti−1

τ−→t ti, & ti−1 /∈ Suc .

• 〈pi−1, ti−1〉
αi�−→� 〈pi, ti〉 if αi ∈ A, pi−1

αi−→p pi, ti−1
αi−→t ti, & ti−1 /∈ Suc .

The potential computation c is finite if |c| < ∞ and infinite if |c| = ∞. The
projection projp(c) of c on p is defined as (〈pi−1, αi, pi〉)i∈Ic

p
∈ Π(p), where

Ic
p =df {0 < i ≤ k | ri ∈ {J, �}}, and the projection projt(c) of c on t as

(〈ti−1, αi, ti〉)i∈Ic
t

∈ Π(p), where Ic
t =df {0 < i ≤ k | ri ∈ {I, �}}. A potential

computation c is called a computation if it satisfies the following properties:
(1) c is maximal, i.e. if |c| < ∞ then 〈p|c|, t|c|〉 �

α�−→r for any α and r; and (2) if
|c| = ∞ then projp(c) ∈ ΠB(p). The set of all computations of p and t is denoted
by C(p, t).

Computation c is called successful if t|c| ∈ Suc, in case |c| < ∞, or if
projt(c) ∈ ΠB(t), in case |c| = ∞. We say that p may pass t, in symbols p mayCL t,
if there exists a successful computation c ∈ C(p, t). Analogously, p must pass t,
in symbols p mustCL t, if every computation c ∈ C(p, t) is successful.

Intuitively, an infinite computation of process p and test t differs from an infinite
potential computation in that in the former the process is required to enter a
Büchi state infinitely often. An infinite computation is then successful if the test
also passes through a Büchi state infinitely often. Hence, in contrast with the
original theory of DeNicola and Hennessy, some infinite computations can be
successful in our setting. Also, since Büchi processes and Büchi tests potentially
exhibit nondeterministic behavior, one may distinguish between the possibility
and inevitability of success. This is captured in the following definitions of the
Büchi may– and must–preorders.

316 Rance Cleaveland and Gerald Lüttgen

Definition 4 (Büchi Preorders). For Büchi processes p and q we define:

• p �may
CL q if ∀t ∈ T . p mayCL t implies q mayCL t.

• p �must
CL q if ∀t ∈ T . p mustCL t implies q mustCL t.

It is easy to check that �may
CL and �must

CL are preorders. The classical may– and
must–preorders of DeNicola and Hennessy are defined analogously, but with
respect to transition systems and classical tests [8]. Note that in this paper
we consider the Büchi may–preorder only for the sake of completing the Büchi
testing theory; it is not used in our semantic framework for heterogeneous system
specification.

3 Alternative Characterizations and Conservativity

We now present characterizations of our Büchi preorders and use these charac-
terizations as a basis for comparing DeNicola-Hennessy testing theory [8] ours.

Theorem 1. Let p and q be Büchi processes. Then

1. p �may
CL q if and only if Lfin(p) ⊆ Lfin(q) and LB(p) ⊆ LB(q).

2. p �must
CL q if and only if for all w ∈ A∗ ∪ A∞ such that p ⇓ w :

(a) q ⇓ w

(b) |w| < ∞: ∀q′. q
w=⇒ q′ implies ∃p′. p w=⇒ p′ and Ip(p′) ⊆ Iq(q′).

|w| = ∞: w ∈ LB(q) implies w ∈ LB(p).

With respect to finite traces, the characterizations are virtually the same as
the ones of DeNicola and Hennessy’s preorders [8]. However, we need to refine
the classical characterizations in order to capture the sensitivity of Büchi may–
and must–testing to infinite behavior. The proof of this theorem relies on the
properties of several specific Büchi tests. Some of them are standard [8]; the other
ones are depicted in Fig. 1, where (i) w = (ai)0<i≤k ∈ A∗ for tests tmay,div

w and
tmust,max
w and (ii) w = (ai)i∈N ∈ A∞ for tests tmay,∞

w , t⇓w, and tmust,∞
w . In Fig. 1,

Büchi states are marked by the symbol
√

, and success states are distinguished
by thick borders.

Intuitively, while Büchi test tmay,∞
w tests for the presence of Büchi trace w,

Büchi tests tmay,div
w and t⇓w are capable of detecting divergent behavior when

executing trace w. Moreover, Büchi tests tmust,max
w and tmust,∞

w are concerned with
the absence of maximal trace and Büchi trace w, respectively. These intuitions
are made precise by the following properties, which hold for any Büchi process p.

1. Let w ∈ A∞. Then w ∈ LB(p) if and only if p mayCL tmay,∞
w .

2. Let w ∈ A∗. Then w ∈ LB(p) if and only if p mayCL tmay,div
w .

3. Let w ∈ A∞. Then p ⇓ w if and only if p mustCL t⇓w.
4. Let w ∈ A∗ s.t. p ⇓ w. Then w /∈ Lmax(p) if and only if p mustCL tmust,max

w .
5. Let w ∈ A∞ s.t. p ⇓ w. Then w /∈ LB(p) if and only if p mustCL tmust,∞

w .

A Semantic Theory for Heterogeneous System Design 317

0

1

2

ak

a1

a2

a3

k

...

τ

0

1

2

a1

a3

a2

...
...

...
...

0

1

2

a1

a3

a2

τ
τ

τ

τ

τ

...

...
...

...
s

0

1

2

ak

a1

a2

a3

k

...

τ
τ

τ

...

τ

afor all

s1

s2

0

1

2

a1

a3

a2

s

τ
τ

τ

τ

τ

...

...
...

...
...

tmay,div
wtmay,∞

w tmust,∞
wtmust,max

wt⇓w

Fig. 1. Büchi tests used for characterizing the Büchi may– and must–preorders.

The proof of Thm. 1, which can be found in [7], relies on these properties of
Büchi tests. Specifically, it uses the infinite–state tests tmay,∞

w , t⇓w, and tmust,∞
w .

The employment of infinite–state tests — even when relating finite–state Büchi
processes — is justified by our view that Büchi tests represent the arbitrary,
potentially irregular behavior of the unknown system environment.

Using the above characterizations, we investigate the relation of our Büchi
preorders to the corresponding classical preorders, �may

DH and �must
DH , respectively,

as defined by DeNicola and Hennessy [8]. It should be noted that their framework
is restricted to image–finite labeled transition systems and classical, image–finite
tests; a labeled transition system or Büchi process is called image–finite if every
state has only a finite number of outgoing transitions for any action.

Theorem 2. Let p and q be image–finite labeled transition systems.

1. If p and q are convergent, then p �may
CL q if and only if p �may

DH q.
2. p �must

CL q if and only if p �must
DH q.

We refer the reader to [7] for the proof of this theorem. In a nutshell, the
second part follows by inspection of the alternative characterizations of �must

CL

and �must
DH . Thm. 2(1) is invalid if one allows divergent labeled transition systems.

As a counterexample consider the transition systems 〈{p}, {〈p, τ, p〉}, {p}, p〉 and
〈{q}, ∅, {q}, q〉, as well as the Büchi test 〈{t}, {〈t, τ, t〉}, {t}, t, ∅〉. Then, p �may

DH q
since Lfin(p) = Lfin(q) = {ε}, but p ��may

CL q since p mayCL t and q �mayCL t.

4 Büchi Testing and Heterogeneous System Design

In this section we investigate the utility of our theory as a semantic framework for
heterogeneous design notations that mix labeled transition systems and formulas
in LTL. The design methodology which we wish to support is component–based,
where a system designer starts off with a system architecture, with components

318 Rance Cleaveland and Gerald Lüttgen

given either as automata or, more abstractly, as LTL formulas. Then the system
is refined by successively implementing each component as a labeled transition
system satisfying its specification. To support such a methodology mathemat-
ically, one needs a refinement preorder which satisfies at least two properties.
First, it must be compositional for key operators of such design languages. Sec-
ond, it must be “compatible” with the LTL satisfaction relation. We show that
our Büchi must–preorder obeys both properties.

Büchi Testing and Compositionality. In the component–based design frame-
work we wish to study, two operators are central: (i) parallel composition, for
connecting concurrent components and allowing them to interact via system
channels, and (ii) restriction, for restricting access to channels to certain system
components. In the following, we introduce two such operators that allow us to
give the reader hints about the application of the semantic theory developed so
far. While other operators are of course possible, the ones considered here suffice
for the purposes of the example in the next section.

Our parallel composition operator “|” and the restriction operator \A, where
A ⊆ A, are inspired by the ones in the process algebra CCS [19]. We assume that
alphabet A is composed of two sets A! and A?, representing sending and receiving
actions, such that for every a! ∈ A! there exists a corresponding a? ∈ A?,
and vice versa. Here, a should be interpreted as a channel name. The intuition
for parallel composition in CCS is that a process willing to send a message on
channel a and another one able to receive a message on a can do so by performing
the actions a! and a? in synchrony with each other. This handshake is invisible to
an external observer, i.e., it results in the distinguished, unobservable action τ .
When adapting the CCS parallel operator to our framework of Büchi processes,
the question that naturally arises concerns the interpretation of Büchi traces.
We adopt the following point of view: intuitively, “fair merges” of Büchi traces
of p and q should also be Büchi traces of p|q. Moreover, a Büchi trace of one
process, when merged with a finite trace of the other process, should also result
in a Büchi trace of p|q.

Formally, our parallel composition of Büchi processes 〈P,−→p,
√

p, p〉 and
〈Q,−→q,

√
q, q〉 is defined as the Büchi process 〈P |Q,−→p|q,

√
p|q, p|q〉, where

P |Q =df {p′|q′ | p′ ∈ P, q′ ∈ Q} ∪ {q′|p′ | p′ ∈ P, q′ ∈ Q} and where −→p|q is the
least relation such that:

(1) p′ α−→p p′′ implies p′|q′ α−→p|q q′|p′′ if p′√
p

(2) p′ α−→p p′′ implies p′|q′ α−→p|q p′′|q′ if not p′√
p

(3) q′ α−→q q′′ implies p′|q′ α−→p|q q′′|p′

(4) p′ a!−→p p′′ and q′ a?−→q q′′ implies p′|q′ τ−→p|q q′′|p′′ if p′√
p

(5) p′ a!−→p p′′ and q′ a?−→q q′′ implies p′|q′ τ−→p|q p′′|q′′ if not p′√
p

(6) p′ a?−→p p′′ and q′ a!−→q q′′ implies p′|q′ τ−→p|q q′′|p′′ if p′√
p

(7) p′ a?−→p p′′ and q′ a!−→q q′′ implies p′|q′ τ−→p|q p′′|q′′ if not p′√
p

These rules are in accordance with our above–mentioned intuition of system
behavior. The “switching” of the states of p and q in Rules (1), (3), (4), and (6)

A Semantic Theory for Heterogeneous System Design 319

allows us to fairly merge “Büchi traces with Büchi traces” and “Büchi traces with
finite traces” of the argument Büchi processes. Finally, the Büchi predicate

√
p|q

is defined by p′|q′√p|q if p′
√

p, for any p′ ∈ P and q′ ∈ Q. The unary restriction
operator \A, for A ⊆ A, essentially is a scoping mechanism on channel names.
Intuitively, p \ A is defined as the Büchi process p, except that all transitions
labeled by actions a! and a?, where a ∈ A, are eliminated.

By referring to the characterizations of the Büchi may– and must–preorders
one can establish the desired compositionality results: the Büchi may– and must–
preorders are substitutive under parallel composition and restriction.

Büchi Must–testing and LTL Satisfaction. We now show that the Büchi
must–preorder is compatible with the LTL satisfaction relation |=, which relates
labeled transition systems and LTL formulas [22]. By “compatible” we mean
that, for every LTL formula φ, there exists a Büchi process Bφ such that the
following holds for any labeled transition system p: p |= φ if and only if Bφ �must

CL

p, i.e., the ‘implementation’ p refines the ‘specification’ φ.
To achieve this goal, we characterize the Büchi must–preorder for a certain

class of Büchi processes by means of trace inclusion. We call a Büchi process p
purely nondeterministic, if for all p′ ∈ P : (i) p′ τ−→p implies p′ � a−→p, for all a ∈ A,
and (ii) |{〈a, p′′〉 ∈ A× P | p′ a−→p p′′}| = 1. Note that a Büchi process p can be
transformed to a purely nondeterministic Büchi process p′, such that Ldiv(p) =
Ldiv(p′), Lfin(p) = Lfin(p′), Lmax(p) = Lmax(p′), and LB(p) = LB(p′), by splitting
every transition p′ a−→p p′′ into two transitions p′ τ−→p p〈p′,a,p′′〉

a−→p p′′, where
p〈p′,a,p′′〉 /∈ P is a new, distinguished state.

Theorem 3. Let p and q be Büchi processes and p be purely nondeterministic.
Then, p �must

CL q if and only if (i) Ldiv(q) ⊆ Ldiv(p), (ii) Lfin(q)\Ldiv(p) ⊆ Lfin(p),
(iii) Lmax(q) \ Ldiv(p) ⊆ Lmax(p), and (iv) LB(q) \ Ldiv(p) ⊆ LB(p).

The necessity of the premise of this theorem, whose proof is in [7], may be
demonstrated by Büchi processes p =df 〈{p1, p2}, {〈p1, a, p1〉, 〈p1, b, p2〉}, ∅, p1〉
and q =df 〈{q1, q2}, {〈q1, b, q2〉}, ∅, q1〉. Then p is not purely nondeterministic and
Inclusions (i)–(iv) obviously hold, but p ��must

CL q since p mustCL t and q �mustCL t,
for the Büchi test t =df 〈{t1, t2}, {〈t1, a, t2〉}, ∅, t1, {t2}〉.

The above theorem is the key for establishing the desired connection between
the Büchi must–preorder �must

CL and the satisfaction relation |= for LTL. In partic-
ular, well–known constructions — starting with the seminal work of Vardi and
Wolper [27] — exist for converting LTL formulas into Büchi automata whose
languages consist precisely of the models of the corresponding formulas. These
constructions may be adapted to yield purely nondeterministic Büchi processes.
However, there are a few subtleties of our setting compared to the traditional
one on which we need to comment. First of all, our framework is concerned with
labeled transition systems, so we must be able to interpret LTL formulas with
respect to sequences of actions rather than states. Also, our framework is not
only concerned with Büchi traces but also with finite traces (i.e., deadlocks) and
divergent traces. The syntax and semantics of LTL may be modified to cope with

320 Rance Cleaveland and Gerald Lüttgen

these new phenomena; the details are not difficult and are omitted. The classical
constructions of Büchi automata from LTL formulas may then be adapted to
cope with the modifications to the logic. Whereas the adaptation for deadlock is
well–known [17], the handling of divergence requires some attention. Intuitively,
in a Büchi process a divergent state may engage in arbitrary behavior; this is
reflected in its divergence language, which is A∗∪A∞ (cf. Sec. 2). The only LTL
formulas satisfied by arbitrary behavior are tautologies. Hence, in the Büchi pro-
cess construction for LTL formulas, every state which corresponds to a tautology
needs to be made divergent. Having these twists in mind, one may obtain the
following variant of the key theorem for automata–based LTL model checking
(cf. [27]), where B̂φ denotes the Büchi process constructed for LTL formula φ.

Theorem 4. Let p be a labeled transition system and φ be an LTL formula.
Then, p |= φ if and only if Inclusions (i)–(iv) in Thm. 3 hold for B̂φ and p

(i.e., replace p in Inclusions (i)–(iv) by B̂φ and q by p).

Note that the “=⇒”–direction of Thm. 4 is invalid if p is allowed to be an arbi-
trary Büchi process rather than a labeled transition system. As a counterexample
consider p =df 〈{p1, p2, p3}, {〈p1, a, p2〉, 〈p1, b, p3〉, 〈p3, b, p3〉}, ∅, p1〉 and φ =df a.
Then p |= a as b∞ /∈ LB(p) and b ∈ Lfin(p)\Ldiv(B̂φ). But obviously b /∈ Lfin(B̂φ).
When transforming B̂φ to a purely nondeterministic Büchi process Bφ as out-
lined above, we may combine Thms. 3 and 4 to obtain our desired result.

Corollary 1 (Büchi must–testing and LTL). Let p be a labeled transition
system and φ be an LTL formula. Then, p |= φ if and only if Bφ �must

CL p.

Hence, our notion of Büchi must–testing not only extends DeNicola and Hen-
nessy’s [8] and Narayan Kumar et al.’s [20] must–preorders to (arbitrary) Büchi
processes, but is also compatible with the LTL satisfaction relation.

5 Example

As an example for the utility of our theory for heterogeneous system design,
consider the design of a very simple communications protocol given in Fig. 2.

recv!get?
gack

pack!G

put

send

pack

get!

get

X(put! (put! U gack?))

pack?

(send?

)

recv

pack? put?

put?

gack!

Sender Medium Receiver

Fig. 2. A simple communications protocol.

A Semantic Theory for Heterogeneous System Design 321

The architecture of the protocol has already been fixed by the system designer
and consists of a sender Sender, a medium Medium, and a receiver Receiver.
The components communicate with the protocol’s environment and among them-
selves via channels. In case of component Sender, these are the channels send,
put, and gack (get acknowledgment). Each component in turn has its own speci-
fication. Receiver and Medium are given as labeled transition systems, reflecting
the fact that their designs are relatively advanced. Sender, in contrast, is speci-
fied as an LTL formula stating that whenever a send? action occurs during an
execution sequence of the sender, the remainder of the execution must begin
with a sequence of put! actions followed by a gack? action. Finally, the overall
specification of the protocol’s required behavior may be given by the LTL for-
mula Spec =df G (send? → (F recv!)) . This formula dictates that in any
sequence of actions which the system performs, whenever a send? action occurs,
a recv! action eventually follows. An obvious question that a designer would
be interested in is whether the specification of the sender is “strong enough”
to ensure that the protocol satisfies Spec. The theory developed in this paper
provides the semantic framework for answering this question. To do so, we first
construct the purely nondeterministic Büchi process BSpec for LTL formula Spec,
as well as Büchi process BSender for LTL formula φsender. Next we assemble the
overall system by employing our parallel composition and restriction operators.

System =df (BSender | Medium | Receiver) \ {put, get, pack, gack}

Finally, we determine whether or not BSpec �must
CL System; this indeed holds.

The development of an efficient algorithm for automatically determining
whether two Büchi processes are related by �must

CL is future work. However, the
alternative characterization of �must

CL (cf. Thm. 1) already provides some hints
about how this can be done. Due to the compositionality of the Büchi must–
preorder, our positive answer is preserved when replacing BSender

gack?

send? put!

gack

put

sendwith any Büchi process p such that BSender �must
CL p.

If p is a labeled transition system and BSender is
made purely nondeterministic, then BSender �must

CL p
holds exactly when p |= φSender, according to Cor. 1.
One such p is depicted to the right.

6 Related Work

Starting with the same motivation we did, Abadi and Lamport have developed
ideas for heterogeneous specification for shared–memory systems [1]. Their tech-
nical setting is the logical framework of TLA [15], in which processes and tem-
poral formulas are indistinguishable and logical implication serves as the refine-
ment relation. TLA refinement coincides in some sense with trace inclusion in
our testing scenario and is therefore insensitive to deadlock and divergence. Such
issues are not of concern in the shared–memory world but must be dealt with
in our setting, which is targeted towards specifying distributed systems in which
components can interact directly, rather than indirectly via the shared memory.

322 Rance Cleaveland and Gerald Lüttgen

Of direct relevance to this paper is the work of Kurshan [14], who devel-
oped a theory of ω–word automata that includes notions of synchronous and
asynchronous composition. However, his underlying semantic model maps pro-
cesses to their maximal (infinite) traces, and the associated notion of refinement
is (reverse) trace inclusion. In theories of concurrency such as CCS [19] and
CSP [4], in which deadlock is possible, maximal trace inclusion is not compo-
sitional [18]. In contrast, our must–preorder is compositional, at least for the
operators presented here. Other work [6, 10, 13] investigated modular and com-
positional model–checking in similar non–deadlock environments.

Relatively more work has been devoted to analyzing relationships between re-
finement and logical approaches. One line of study relates temporal–logic specifi-
cations to refinement–based ones by establishing that one system refines another
if and only if both satisfy the same properties. Results along these lines were
pioneered by Hennessy and Milner [11] for bisimulation equivalence and a modal
logic of their devising [19]. Similar ideas were also adapted regarding other be-
havioral equivalences and preorders and other temporal logics [9, 19, 25]. Con-
gruences preserving “next-time–less” LTL have been studied by Kaivola and
Valmari in [12]; the results have subsequently been extended to handle dead-
lock [26] and livelock [23]. Our work differs from theirs in that we want to have
LTL formulas embedded in specifications.

Another line of research involves the encoding of labeled transition systems
as logical formulas, and vice versa. Steffen and Ingólfsdóttir [24] defined an algo-
rithm for converting finite–state labeled transition systems into formulas in the
mu–calculus, while Larsen [16] demonstrated that certain mu–calculus formulas
can be encoded as bisimulation–based implicit specifications. Finally, traditional
testing has also been enriched with notions of fairness [3, 21] in order to con-
strain infinite computations in labeled transition systems.

7 Conclusions and Future Work

We conservatively extended the testing theories of DeNicola and Hennessy [8]
and Narayan Kumar et al. [20] to Büchi processes. We then studied the de-
rived Büchi may– and must–preorders, developed alternative characterizations
for them, argued that the preorders are substitutive for several operators nec-
essary for component–based system design, and showed that the Büchi must–
preorder degrades to a variant of reverse trace inclusion when its first argument
is purely nondeterministic. Using the latter result, we illustrated that Büchi
must–testing provides a uniform basis for analyzing heterogeneous system de-
signs given as a mixture of labeled transition systems and LTL formulas.

Regarding future work, we plan to develop specification languages mixing
process algebras and LTL, which are given a semantics in terms of Büchi testing.
We also intend to explore algorithms for computing our Büchi must–preorder.

A Semantic Theory for Heterogeneous System Design 323

References

[1] M. Abadi and L. Lamport. Composing specifications. TOPLAS, 15(1):73–132,
1993. See also: Conjoining Specifications, TOPLAS, 17(3):507–534, 1995.

[2] J.A. Bergstra, A. Ponse, and S.A. Smolka. Handbook of Process Algebra. Elsevier
Science, 2000.

[3] E. Brinksma, A. Rensink, and W. Vogler. Fair testing. In CONCUR ’95, volume
962 of LNCS, pages 313–328. Springer-Verlag, 1995.

[4] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. J. of the ACM, 31(3):560–599, 1984.

[5] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[6] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In
LICS ’89, pages 353–362. IEEE Computer Society Press, 1989.

[7] R. Cleaveland and G. Lüttgen. Model checking is refinement: Relating Büchi
testing and linear-time temporal logic. Technical Report 2000-14, Institute for
Computer Applications in Science and Engineering, March 2000.

[8] R. DeNicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,
34:83–133, 1983.

[9] R. DeNicola and F. Vaandrager. Three logics for branching bisimulation. J. of
the ACM, 42(2):458–487, 1995.

[10] O. Grumberg and D.E. Long. Model checking and modular verification. TOPLAS,
16(3):843–871, 1994.

[11] M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. J. of the ACM, 32(1):137–161, 1985.

[12] R. Kaivola and A. Valmari. The weakest compositional semantic equivalence
preserving nexttime-less linear temporal logic. In CONCUR ’92, volume 630 of
LNCS, pages 207–221. Springer-Verlag, 1992.

[13] O. Kupferman and M.Y. Vardi. Modular model checking. In Compositionality:
The Significant Difference, volume 1536 of LNCS. Springer-Verlag, 1997.

[14] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994.

[15] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.

[16] K.G. Larsen. The expressive power of implicit specifications. TCS, 114(1):119–
147, 1993.

[17] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Workshop on
Logics of Programs, volume 193 of LNCS, pages 196–218. Springer-Verlag, 1985.

[18] M.G. Main. Trace, failure and testing equivalences for communicating processes.
J. of Par. Comp., 16(5):383–400, 1987.

[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[20] K. Narayan Kumar, R. Cleaveland, and S.A. Smolka. Infinite probabilistic and
nonprobabilistic testing. In FSTTCS ’98, volume 1530 of LNCS, pages 209–220.
Springer-Verlag, 1998.

[21] V. Natarajan and R. Cleaveland. Divergence and fair testing. In ICALP ’95,
volume 944 of LNCS, pages 684–695. Springer-Verlag, 1995.

[22] A. Pnueli. The temporal logic of programs. In FOCS ’77, pages 46–57. IEEE
Computer Society Press, 1977.

[23] A. Puhakka and A. Valmari. Weakest-congruence results for livelock-preserving
equivalences. In CONCUR ’99, volume 1664 of LNCS, pages 510–524. Springer-
Verlag, 1999.

324 Rance Cleaveland and Gerald Lüttgen

[24] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for CCS with divergence.
Inform. & Comp., 110(1):149–163, 1994.

[25] C. Stirling. Modal logics for communicating systems. TCS, 49:311–347, 1987.
[26] A. Valmari and M. Tiernari. Compositional failure-based semantics models for

basic LOTOS. FAC, 7(4):440–468, 1995.
[27] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In LICS ’86, pages 332–344. IEEE Computer Society Press, 1986.

Formal Verification of the Ricart-Agrawala

Algorithm�

Ekaterina Sedletsky1, Amir Pnueli1, and Mordechai Ben-Ari2

1 Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel.

{kate|amir}@wisdom.weizmann.ac.il
2 Department of Science Teaching,

The Weizmann Institute of Science, Rehovot 76100, Israel.
moti.ben-ari@weizmann.ac.il

Abstract. This paper presents the first formal verification of the Ricart-
Agrawala algorithm [RA81] for distributed mutual exclusion of an arbi-
trary number of nodes. It uses the Temporal Methodology of [MP95a].
We establish both the safety property of mutual exclusion and the live-
ness property of accessibility . To establish these properties for an arbi-
trary number of nodes, parameterized proof rules are used as presented
in [MP95a] (for safety) and [MP94] (for liveness). A new and efficient
notation is introduced to facilitate the presentation of liveness proofs by
verification diagrams.
The proofs were carried out using the Stanford Temporal Prover (STeP)
[BBC+95], a software package that supports formal verification of tem-
poral specifications of concurrent and reactive systems.

1 Introduction

The Ricart-Agrawala algorithm (RA) [RA81] for achieving mutual exclusion
in a network is one of the venerable and well-known algorithms in distributed
computing. Nevertheless, the correctness of the algorithm has not been formally
verified.

The only previous attempt to formally prove the RA algorithm is the un-
published work [Kam95], but it is restricted to the safety property of mutual
exclusion and uses a simplified model. On the other hand, already [Lamp82]
presented a non-mechanized proof of a similar algorithm.

The main motivation for this work was to attempt a fully mechanized formal
deductive proof of the RA algorithm, establishing both its safety and liveness
properties, and using the deductive methods of [MP91].

These methods have been mechanized in a software package called the Stan-
ford Temporal Prover (STeP) [BBC+95]. A further motivation of this work
was to push STeP to its limits, and see whether it could be used to prove an
algorithm whose correctness proofs are quite complex.
� This research was supported in part by the Minerva Center for Verification of Reac-
tive Systems, and a grant from the U.S.-Israel bi-national science foundation.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 325–335, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

326 Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

We successfully generated formal proofs of both mutual exclusion and acces-
sibility using STeP. This research points the way for further improvements both
in proof techniques and in software support for deductive verification methods.

2 Implementation of the Ricart-Agrawala Algorithm

To verify the RA algorithm, we have written it in a formal programming nota-
tion, the language SPL which is used in [MP91] as the programming language
(Figure 1).

in N : integer where N ≥ 2
local chq , chp : array [1..N, 1..N] of channel [1..] of integer

where chq = Λ, chp = Λ
y, z : [1..N] where y=1

type Nar = array [1..N] of integer
Bar = array [1..N] of boolean

value mini : Nar × Bar → [1..N]

N

||
s=1

Node[s] ::

local osn, hsn, p, c : integer where osn = 0, hsn = 0, c = 0, p = 1
rcs : boolean where rcs = F
rd : array [1..N] of boolean where rd = F

M ::

loop forever do

m1 : noncritical
m2 : 〈rcs := T ;osn := hsn + 1; c := N-1; p := 1;

y := mini(osn , rcs)〉
m31 : while p ≤ N do
m32 : 〈if p �= s then chq [s, p] ⇐ osn; p := p + 1〉
m4 : await c=0
m5 : critical
m6 : 〈rcs := F ; p := 1; y := mini(osn , rcs)〉

m71 : while p ≤ N do
m72 : 〈if rd [p] then [rd [p] := F ; chp[s, p] ⇐ 1]; p := p + 1〉

||

Q ::
N

||
t=1

local rq : integer

loop forever do

q1 :

〈 chq [t, s] ⇒ rq
if hsn < rq then hsn := rq
if (rq , t) ≺ (osn, s) ∨ ¬rcs

then chp[s, t] ⇐ 1 else rd [t] := T

〉

||

P ::
N

||
u=1

[
local rp : integer

loop forever do
r1 : 〈chp[u, s] ⇒ rp; c := c − 1〉

]

Fig. 1. Implementation of the RA algorithm.

Formal Verification of the Ricart-Agrawala Algorithm 327

The structure of the program is as follows: we assume that there are N nodes,
where N is a parameter of the program which stays fixed during execution. Each
node is a concurrent process: in the notation Node[s] :: [. . .], the ellipsis indicates
the program text for the s’th node and s is the index of the node which may be

referenced within the program text. The entire program is
N

||
s=1

Node[s], implying

a concurrent execution of all the nodes.
The nodes are connected to each other in a complete graph: there is a pair

of uni-directional asynchronous channels connecting each node to every other
node, where chq is the outgoing channel for the REQUEST messages and chp
is the incoming channel for the REPLY messages. The notation for output is
chq [a, b] ⇐ e, meaning that node a sends the value of expression e to node b
along channel chq , and similarly, chq [a, b] ⇒ x, means that node b removes the
value coming from a and assigns it to x.

The additional global declarations are discussed below.
The program for process Node is composed of three concurrent processes:

– M is the main process containing the critical section and the protocols to
be executed upon entry and exit.

– P is the process which receives and counts replies.
– Q is the process which receives requests and decides if to reply or to defer

the reply.

Note that P andQ are themselves composed of concurrent processes, one for each
channel. Within Node[s], process Q[t] (which can also be identified as Q[t, s]) is
responsible for reading messages from channel chq [t, s]. Similarly, process P [u]
(P [u, s]) is responsible for reading messages from channel chp[u, s]. The synchro-
nization among the processes within the same node is based on shared variables,
and we use the notation < . . . >, to imply that the statements are to be executed
atomically. This can be easily implemented using semaphores. We include the
assignments c := N-1 and p := 1 within the atomic statement of line m2, and
p := 1 within line m6, to reduce the number of verification conditions in the
proof of accessibility.

Within each node there are global variables which are shared among the
processes of that node:

– osn - the sequence number chosen by the node.
– hsn - the highest sequence number seen in any request message received by

the node.
– rcs - a flag that is true if the node is requesting to enter the critical section.
– c - a counter of the number of outstanding reply messages.
– rd - an array that lists deferred requests. rd [j] is true when the node is

deferring a reply to the request from node j.
– p, rp, rq are auxiliary variables and could have been declared as local to the

processes of the node.

328 Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

The following variables are not needed by the algorithm; they were added to
facilitate the proof.

– z is the index of a generic node, which is used to specify and verify accessi-
bility.

– y is the index of the node with the minimal value of the rank (osn[i], i),
where the minimum is taken over all nodes i such that rcs[i] is true. If rcs [i]
are all false, y = 1.

– mini(osn, rcs) is a function that computes y, the index of the node with the
minimal rank.

3 Proof of the Mutual Exclusion Property

Invariance properties of the form 0 p, where p is an assertion (a state formula)
can be verified by the invariance rule b-inv, given by

Rule b-inv I1. Θ → ϕ
I2. ϕ ∧ ρτ → ϕ′ For every transition τ ∈ T

0 p

where Θ is the initial condition and T is the set of transitions of the verified sys-
tem. An assertion satisfying premises I1 and I2 of rule b-inv is called inductive.

In our case, the main invariance property is that of Mutual exclusion , which
can be specified as

PROPERTY excl: 0 ∀i, j : [1..N] : m5[i] ∧m5[j] → i = j

Here and below, we use m5[i] to denote that processM [i] is currently executing
at location m5.

3.1 Bottom Up Assertions

At first we use a bottom-up approach to deduce some simple properties of the
program.

Locations at which rcs = 1 A first observed property is

PROPERTY rcs range: 0 (m31,32,4,5,6[i] ↔ rcs [i]).

Note, that whenever there is a free index, such as i in the above property, there
is an implicit universal quantification, implying that the property holds for every
i ∈ [1..N].

Range of p[i] The variable p serves as a loop counter for the loops at
statements m31 and m71. The upper limit of these two loops is N .

PROPERTY p range: 0 (1 ≤ p[i] ≤ N + 1−m32,72[i])

Formal Verification of the Ricart-Agrawala Algorithm 329

This inductive assertion claims that p[i] ≤ N + 1 at all locations, except for
locations m32 and m72, where the stronger inequality p[i] ≤ N holds.

The Message Chain Linkage

PROPERTY message chain:
0 ((m31,32[i] ∧ p[i] > j) +m4[i] ≥ |chq [i, j]|+ rd [j, i] + |chp[j, i]|)

Here, |chq [i, j]| and |chp[j, i]| denote the sizes of the buffers of these asynchronous
channels. This property states that the sum |chq [i, j]|+ rd [j, i] + |chp[j, i]| never
exceeds 1, and can be positive only if processM [i] is at locationm4 or at locations
m31,32 with p[i] > j.

The Reply Counter The role of the counter c[i] is to count the number of
positive replies Node[i] received since it last sent out requests for entering the
critical section. We would expect that, at any point, the value of c[i] will equal
the number of pending replies. This is stated by

PROPERTY c range: 0 (c[i] =
N∑

k=1

|chq [i, k]|+ rd [k, i] + |chp[k, i]|) +m31,32[i] · (N − p[i] + (p[i] > i))

Neither of properties message chain or c range is inductive by itself. How-
ever, their conjunction, to which we refer as msg range coun- ter, together
with the previously established property p range form an inductive assertion.

The Value of a Request Message As the last bottom-up invariant, we
formulate the following property:

PROPERTY request in channel:
0 (|chq [i, j]| > 0 → head(chq [i, j]) = osn[i])

This property states that if channel chq [i, j] is not empty, then the value it
contains is the current value of osn[i].

3.2 Top Down Assertions

We now move to a set of assertions which are derived based on the goal we wish
to prove, namely the property of mutual exclusion.

We start by introducing some definitions:

requested(i, j) : i �= j ∧ (m4,5[i] ∨ (m31,32[i] ∧ p[i] > j))
request received(i, j) : requested(i, j) ∧ |chq [i, j]| = 0
granted(i, j) : request received(i, j) ∧ ¬rd [j, i]

330 Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

Variable hsn Retains the Highest Message Number Seen So Far
The following property states that, after having read the recent message from
Node[i], the variable hsn [j] (“highest seen”) has a value which is not lower than
osn[i].

PROPERTY hsn highest:
0 (request received(i, j) → osn[i] ≤ hsn [j])

The Implication of Node[j] Granting Permission to Node[i] The
following property describes the implications of a situation in which Node[j] has
granted an entry permission to Node[i] before Node[i] exited its critical section:

PROPERTY permitted:
0 (granted(i, j) → ¬rcs [j] ∨ (osn [i], i) ≺ (osn [j], j))

Finally, Mutual Exclusion Finally, we establish the property of mutual ex-
clusion, specified by

PROPERTY excl: 0 (m5[i] ∧ m5[j] → i = j)

Fig. 2. Set of inductive properties leading to the proof of Mutual Exclusion. The
labels on the dependence edges identify the transitions for which the verification
of the higher placed property depends on the lower property.

Formal Verification of the Ricart-Agrawala Algorithm 331

4 A Proof Rule for Accessibility

Rule p-well For assertions p and q = ϕ0, ϕ1[k], . . . , ϕm[k],
transitions τ1[k], ..., τm[k] ∈ J
a well-founded domain (A,�), and
ranking functions δ0, δ1[k], . . . , δm[k] : Σ �→ A

W1. p →
m∨

j=0

∃k : ϕj[k]

For i = 1..m

W2. ρτ [k] ∧ ϕi[k] →
m∨

j=0

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u]) ∨ (ϕ′

i[k] ∧ δi[k] = δ′i[k])

for every τ ∈ T

W3. ρτ i
[k] ∧ ϕi[k] →

m∨
j=0

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u])

W4. ϕi[k] → En(τ i[k])
p =⇒ 1 q

To verify liveness properties of parameterized programs, we can use a fixed
number of intermediate formulas and helpful transitions but they may refer to
an additional parameter k which is a process index. A parameterized rule for
proving accessibility properties of parameterized systems has been presented in
[MP95b]. However, to verify a complicated system such as the RA algorithm, it
was necessary to introduce a new version of this rule, which we present here.

To improve readability of formulas, we write ρτ i[k] as ρτi
[k]. Rule p-well uses

parameterized intermediate assertion, parameterized helpful transitions, and pa-
rameterized ranking functions. For each i = 1, ...m, the parameter k in ϕi[k],
τ i[k], and δi[k] ranges over some nonempty set, such as [1..N].

The rule traces the progress of computations from an arbitrary p-state to
an unavoidable q-state. With each non-terminal assertion ϕi, i > 0, the rule
associates a helpful transition τ i, such that the system is just (weakly fair) with
respect to τ i. Premise W2 requires that the application of any transition τ to
a state satisfying a non-terminal assertion ϕi will never cause the rank of the
state to increase. Premise W3 requires that if the applied transition is helpful
for ϕi then the rank must decrease. Due to the well-foundedness of the ranking
functions, we cannot have an infinite chain of helpful transitions, since this will
cause the rank to decrease infinitely often. PremiseW4 stipulates that the helpful
transition τ i is always enabled on every ϕi-state. Thus, we cannot have an infinite
computation (which must be fair) which avoids reaching a q = ϕ0 state.

4.1 Representation by Diagrams

The paper [MP94], introduced the graphical notation of verification diagrams .
For our application here, verification diagrams can be viewed as a concise and
optimized presentation of the components appearing in rule p-well. We refer the

332 Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

reader to Figure 3 for explanation of some of the main elements which typically
appear in such diagrams.

The diagram contains a node for each assertion ϕi that appears in the rule.
The helpful transition taui associated with ϕi is identified by the label of one
or more directed edges departing from the node (labeled by) ϕi. Thus, in the
diagram of Figure 3, m2[z] is identified as the transition helpful for assertion
ϕ13, and the helpful transition for ϕ10 is q1[z, i] even though it labels two edges
departing from ϕ13.

The interconnection topology in the diagram provides a more specialized
(and efficient) version of the p-well rule. For a node ϕi, let succ(i) be the set
of indices of the nodes which are the targets of edges departing for ϕi. Then the
diagram suggests that, instead of proving premises W2 and W3 as they appear
in the rule, it is sufficient to prove their following stronger versions:

U2. ρτ [k] ∧ ϕi[k] → ϕ′
i[k] ∧ δi[k] = δ′i[k] for every τ ∈ T

U3. ρτ i
[k] ∧ ϕi[k] →

∨
j∈succ(i)

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u])

It is not difficult to see that U2 and U3 imply W2 and W3. For example,
premise U3 for assertion ϕ6 as implied by the diagram is

ϕ6[i] ∧ ρm72
[i] → (ϕ′

7[i] ∧ δ6[i] � δ′7[i]) ∨ (ϕ′
4[i] ∧ δ6[i] � δ′4[i])

The more general notion of verification diagrams as presented in [MP94] admits
two types of edges, one corresponding to the helpful transitions, which are the
edges present in our diagram. The other type corresponds to unhelpful transi-
tions. It is suggested there to use a double line for helpful edges. In our case, we
only need to represent helpful transitions, so we draw them as single lines.

The rule also requires to associate with each non-terminal assertion ϕi a
ranking function δi. By convention, whenever a ranking function is not explicitly
defined within a node ϕi, the default value is the index of the node, i.e. δi = i.
For example, in the diagram, δ13 = 13. However, as we will see below, this is not
the end of the story.

4.2 Encapsulation Conventions

The diagram of Figure 3 contains, in addition to basic nodes such as those la-
beled by assertions, also compound nodes which are also called blocks . We may
refer to compound nodes by the set of basic nodes they contain. For exam-
ple, the successor of node ϕ13 is the compound node ϕ31,32. Compound nodes
may be annotated by λ-declarations, such as the compound node ϕ4..7, by addi-
tional assertions, such as m4[y] for block ϕ3..7, or ranking components, such as
(6,−p[i]) for block ϕ6,7. There are several encapsulation conventions associated
with compound nodes.

– An edge stopping at the boundary of a block, is equivalent to individual
edges which reach the basic nodes contained in the block. Thus, both ϕ11

and ϕ12 are immediate successors of node ϕ13.

Formal Verification of the Ricart-Agrawala Algorithm 333

– For each basic node ϕi, the full assertion associated with this node is the
conjunction of all the assertions labeling the blocks in which the basic node
is contained. We denote this full assertion by ϕ̂i. For example,

ϕ̂7 = m4[z] ∧ (∀j : |chq[z, j]| = 0) ∧ m4[y] ∧ rd [i, y] ∧ m71[i]

– For each basic node ϕi, the full ranking function associated with this node
is the left-to-right concatenation of all the ranking components labeling the
blocks in which the basic node is contained. As the rightmost component,
we add i. For example,

δ7 = (1,−osn[y],−y, 4, c[y], 6,−p[i], 7)

In Figure 3 we present the full ranking functions for each of the nodes along-
side the diagram.

Note that whenever we have to compare ranking functions which are lexico-
graphic tuples of different lengths, we add zeroes to the right of the shorter one.
For example, to see that δ13 � δ12, we confirm that (13, 0, 0) � (11,−p[z], 12).

Note also that several components of the ranking functions are negative.
When STeP is presented with any ranking function, one of the proof obliga-
tions which are generated require proving that all components are bounded from
below. This has been done for all the components present in the diagram.

5 Proof of Accessibility Property

The property of accessibility may be written in the form

PROPERTY m2m5: m2[z] ⇒ 1 m5[z]

where z ∈ [1..N].

5.1 Auxiliary Assertions Needed for the Proof

A crucial part in the proof is the computation of the index of the process y with
minimal signature. We define

ismin(osn , rcs, y) :
 y = 1 ∧ ∀j : ¬rcs [j]

∨ rcs [y] ∧ ∀j : (rcs [j] → (osn [y], y) ≺ (osn [j], j))

Thus, y has a minimal signature, if either there is no process j with rcs [j]

and then y = 1, or there exists some j with rcs[j] = 1 and y is such a j with the
minimal signature. In fact, rather then defining the function mini explicitly, we
inform STeP of the following axiom:

AXIOM mini: ismin(osn, rcs ,mini(osn , rcs)).

334 Ekaterina Sedletsky, Amir Pnueli, and Mordechai Ben-Ari

There were several auxiliary assertions whose invariance was necessary in order
to establish the proof obligations generated by STeP, when being presented by
the verification diagram of Figure 3. We list them below:

rd osn : rd [i, j] → (osn [i], i) ≺ (osn [j], j)
not rd range : m1,2[i] ∨ (m71,72[i] ∧ p[i] > j) → ¬rd [i, j]
y eq mini : y = mini(osn, rcs)
y is min : ismin(osn , rcs , y)
rd to y : rd [i, y] → m71,72[i] ∧ p[i] ≤ y
y not change : (∀j : |chq [z, j]| = 0) ∧m4[z] ∧m2[s] →

(osn [y], y) ≺ (hsn [s] + 1, s)

The last property y not change is very crucial in order to establish that y
can stop being minimal only by retiring on exit from m6[y]. In particular, no
newcomer s can execute transition m2[s] and become minimal.

Fig. 3. Verification Diagram for the property m2[z] ⇒ 1 m5[z].

Formal Verification of the Ricart-Agrawala Algorithm 335

5.2 Usage of STeP in the Proof

We used STeP version 1.4 from 2/XI/1999 in our proof. Some modifications
of the source program were necessary in order for STeP to accept our SPL
program. This version of STeP also fails to support lambda-blocks in the way
there were used in Figure 3. To overcome this difficulty, we had to feed STeP
with some processed fragments of this diagram and then modify manually some
of the resulting verification conditions. We hope that future versions of STeP
will provide direct support of lambda-blocks.

In spite of these minor inconveniences, we found STeP to be a very powerful
and useful verification system, specially geared to the temporal verification of
complex algorithms such as the Ricart Agrawala algorithm we considered here.

Acknowledgment

We gratefully acknowledge the help of Nikolaj Bjørner of the STeP research team
for his advice and for his fast response to our requests for modifications in STeP.

References

[BA90] M. Ben-Ari. Principles of Concurrent and Distributed Programming.
Prentice-Hall International, Hemel Hempstead, 1990.

[BBC+95] N. Bjørner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B.
Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s
Manual. Technical Report STAN-CS-TR-95-1562, Computer Science De-
partment, Stanford University, November 1995.

[Kam95] J. Kamerer. Ricart and Agrawala’s algorithm.
Unpublished, http://rodin.stanford.edu/case-studies, 9 August 1995.

[Lamp82] L. Lamport An Assertional Correctness Proof of Distributed Program.
Science of Computer Programming, 2, 3, December 1982, pages 175–206.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

[MP94] Z. Manna and A. Pnueli. Temporal verification diagrams. In T. Ito and
A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume
789 of Lect. Notes in Comp. Sci., pages 726–765. Springer-Verlag, 1994.

[MP95a] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[MP95b] Z. Manna and A. Pnueli. Verification of parameterized programs. In
E. Börger, editor, Specification and Validation Methods, pages 167–230.
Oxford University Press, Oxford, 1995.

[RA81] G. Ricart and A.K. Agrawala. An optimal algorithm for mutual exclusion
in computer networks. Comm. ACM, 24(1):9–17, 1981. Corr. ibid. 1981,
p.581.

On Distribution-Specific Learning with

Membership Queries versus Pseudorandom
Generation

Johannes Köbler and Wolfgang Lindner�

Humboldt-Universität zu Berlin
Institut für Informatik

D-10099 Berlin, Germany

Abstract. We consider a weak version of pseudorandom function gener-
ators and show that their existence is equivalent to the non-learnability of
Boolean circuits in Valiant’s pac-learning model with membership queries
on the uniform distribution. Furthermore, we show that this equivalence
holds still for the case of non-adaptive membership queries and for any
(non-trivial) p-samplable distribution.

1 Introduction

In computational learning theory, many non-learnability results for (the rep-
resentation independent version of) Valiant’s pac-learning model are based on
cryptographic tools and assumptions. Already in [19], Valiant pointed out how
the results of [8] can be used to show that (arbitrary) Boolean circuits are not
efficiently pac-learnable if cryptographically secure one-way functions exist. Re-
lated results can be found in, e.g., [11, 3, 1, 12, 13].

On the other hand, it is known [4] that the non-learnability (in polynomial-
time) of Boolean circuits provides a sufficient condition under which RP and,
hence, P is different from NP . Recently, Impagliazzo and Wigderson [9] showed
that every problem in BPP can be solved deterministically in sub-exponential
time on almost every input (for infinitely many input lengths), provided that
EXP �= BPP. Since EXP = BPP implies NP = RP , this means that the
non-learnability of Boolean circuits can further serve as a hypothesis to achieve
derandomization results for probabilistic polynomial-time computations.

Interestingly, both implications, namely that Boolean circuits are not learn-
able (if one-way functions exist) as well as the derandomization of BPP (if
Boolean circuits are not learnable) are based on the concept of pseudorandom
generation, i.e., the possibility to expand a small number of random bits (also
known as the seed) into a large amount of pseudorandom bits which cannot
be significantly distinguished from truely random bits by any polynomial-time
computation. An important difference between these two implications is, how-
ever, that in the first case the pseudorandom generator has to run in polynomial
� Supported by DFG grant Ko1053/1-1.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 336–347, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On Distribution-Specific Learning with Membership Queries 337

time, while for the derandomization of BPP it suffices that the pseudorandom
generator runs in exponential time.

A close connection between pseudorandom generation and non-learnability
has been demonstrated already in [8], where the existence of a pseudorandom
function generator (see Section 3) is shown to be in fact equivalent to the non-
learnability of Boolean circuits. This, however, only holds if we consider learning
agents that are successful with high probability for a randomly chosen target (in-
stead of being successful for all targets as in the standard model of pac-learning).
Furthermore, in the model of [8], the learning task has to be accomplished with
the help of membership queries and with respect to the uniform distribution.
Recall that the original model of [19] is distribution-free and passive, i.e., the
learning algorithm has to be successful for any (unknown) distribution D, and
access to the target is given via random examples chosen according to D together
with their classification by the target. Further connections between the average-
case model of pac-learning and cryptographic primitives have been found in [2].

Recently [14], also the worst-case model of (passive) pac-learning under the
uniform distribution has been closely related to pseudorandom function gener-
ation. In contrast to [8] the pseudorandomness condition in [14] is expressed
in terms of the worst-case advantage of the distinguishing algorithms (see sec-
tion 3). Moreover, the distinguishing algorithms for the function generator in [14]
are required to be passive, i.e., the distinguishing algorithm may access its oracle
only via random classified examples. This leads to an apparently weaker notion
of pseudorandom function generation as compared to the standard definition [8].

Here we take a similar approach as in [14] for pac-learning with membership
queries under the uniform distribution [1, 12, 10]. As our main result we show
that the non-learnability of Boolean circuits is equivalent to the existence of
a weak pseudorandom function generator, where as in [14] the pseudorandom-
ness condition is expressed in terms of worst-case advantage of distinguishing
algorithms. Further we show that this kind of weak pseudorandom generation is
still strong enough to yield a derandomization result for RP . In contrast to the
above mentioned derandomization for BPP, the function generator that we use
is polynomial-time computable (instead of exponential time). Hence, we even get
that every problem inRP can be solved nondeterministically in polynomial-time
on almost every input (for infinitely many input lengths), where for every given
ε > 0, only nε many nondeterministic bits are used. Of course, this implies that
every problem in RP can also be solved deterministically in sub-exponential
time on almost every input.

As an application, we get that every learning algorithm for Boolean circuits
which uses membership queries and which is successful for some arbitrary p-
samplable distribution can be transformed into a learning algorithm which uses
only non-adaptive membership queries and is successful for the uniform distribu-
tion. Thus, if Boolean circuits are not learnable with non-adaptive membership
queries under the uniform distribution, then Boolean circuits are not learnable
with adaptive membership queries under any non-trivial [12] p-samplable distri-
bution.

338 Johannes Köbler and Wolfgang Lindner

2 Preliminaries

We use Bn to denote the set of all Boolean functions f : {0, 1}n → {0, 1}.
A probability ensemble D = {Dn : n ≥ 0} is a sequence of probability distri-

butions Dn on {0, 1}n. The ensemble D is p-samplable if there is a polynomial
time computable function f and a polynomial p such that for all n, f(X) is
distributed according to Dn when X is uniformly distributed over {0, 1}p(n).

For a polynomially bounded function f : IN → IR, let NP[f] [7] denote the
class of all sets A ∈ NP for which there exists a set B ∈ P such that for all
strings x, x ∈ A ⇔ ∃y ∈ {0, 1}�f(|x|)� : (x, y) ∈ B. For a function ε : IN → [0, 1]
and any class C of sets, Heurε(n)C denotes the class of all sets A such that for
any p-samplable distribution ensemble D there is a set A′ ∈ C such that for all n
and for X ∈Dn {0, 1}n, Pr (A(X) �= A′(X)) < ε(n). Here, A(x) is used to denote
the characteristic function of a set A.

Let X and Y be independent and identically distributed random variables on
{0, 1}n. The Renyi entropy of X is entRen(X) = − log(Pr (X = Y)), and the min-
imum entropy of X is entmin(X) = min{− log(Pr (X = x) : x ∈ {0, 1}n}. Note
that for any random variable X defined on {0, 1}n, entRen(X)/2 ≤ entmin(X) ≤
entRen(X). The Renyi entropy of a distribution D is the Renyi entropy of a
random variable X chosen according to D.

2.1 Predictability

We recall the learning model of efficient prediction with membership queries
(cf. [1, 12]). A representation of concepts C is any subset of {0, 1}∗× {0, 1}∗. A
pair (u, x) of {0, 1}∗ × {0, 1}∗ is interpreted as consisting of a concept name u
and an example x. The concept represented by u is κC(u) = {x : (u, x) ∈ C}.

A prediction with membership queries algorithm, or pwm-algorithm, is a pos-
sibly randomized algorithm A that takes as input two positive integers s and n,
where s is the length of the target concept name and n is the length of exam-
ples n as well as a rational accuracy bound ε. It may make three different kinds
of oracle calls, the responses to which are determined by the unknown target
concept c = κC(u) with |u| = s, and an unknown distribution Dn on {0, 1}n as
follows.

1. A membership query takes a string x ∈ {0, 1}∗ as input and returns 1 if x ∈ c
and 0 otherwise.

2. A request for a random classified example takes no input and returns a pair
(x, b), where x is a string chosen according to Dn, and b = 1 if x ∈ c and
b = 0 otherwise.

3. A request for an element to predict takes no input and returns a string x
chosen according to Dn.

The algorithm A may make any number of membership queries or requests for
random classified examples. However, A must eventually make one and only one
request for an element to predict and then eventually halt with an output of 1
or 0 without making any further oracle calls.

On Distribution-Specific Learning with Membership Queries 339

A pwm-algorithm A is said to ε-predict κC(u) on Dn if on input s = |u|, n
and ε, when A is run with respect to the target concept κC(u) and distribution
Dn, the probability is at most ε that the output of A is not equal to the correct
classification of X by κC(u), where X ∈Dn {0, 1}n is the request for an element
to predict. Furthermore, a pwm-algorithm A is said to run in polynomial time if
its running time is bounded by a polynomial in s, n, and 1/ε.

Definition 1. Let C be a representation of concepts, and let D = {Dn : n ≥ 0}
be a probability ensemble. Then C is predictable on D with membership queries
in polynomial time if there exists a polynomial-time pwm-algorithm A such that
for all positive integers s and n, for all concept names u of length s, and for all
positive rationals ε, A ε-predicts κC(u) on Dn.

Recall that in the weak model of learning [11] the learning algorithm has to
predict the target only slightly better than a completely random guess.

Definition 2. Let C be a representation of concepts, and let D be a probability
ensemble. Then C is weakly predictable on D with membership queries in polyno-
mial time if there exists a constant c > 0 and a polynomial-time pwm-algorithm
A such that for all positive integers s and n, and for all concept names u of
length s, A (1

2 − 1
(sn)c)-predicts κC(u) on Dn.

In the distribution-free model of learning, weak and strong learning are shown
to be equivalent in [18]. Based on Yao’s XOR lemma [20], a similar result is shown
in [5] also for learning on the uniform distribution.

Theorem 1. [5] For every representation of concepts C ∈ P there exists a
representation of concepts C′ ≤p

tt C such that if C′ is weakly predictable on
the uniform distribution (with membership queries) in polynomial time, then
also C is predictable on the uniform distribution (with membership queries) in
polynomial time.

We also consider predictability with non-adaptive membership queries, where
by a non-adaptive membership query we mean a query that does not depend on
the responses to previous queries. It may, however, still depend on the random
coin tosses used by the prediction algorithm. Note that Theorem 1 holds also
for non-adaptive membership queries.

Recall that in the pac-learning model the learning algorithm is required
to output a concept name which approximates the target well rather than to
guess the correct classification of the target by itself. For boolean circuits, how-
ever, polynomial-time pac-learnability and predictability coincide. Furthermore,
if there exists some representation of concepts C ∈ P that is not predictable in
polynomial time then boolean circuits are not predictable in polynomial time.

3 Weak Pseudorandom Generators

In this section we introduce our weak version of a pseudorandom function gener-
ator. But first let us recall the standard definition. Let f : {0, 1}l(n)×{0, 1}n →

340 Johannes Köbler and Wolfgang Lindner

{0, 1} be a polynomial-time computable function ensemble. Note that the poly-
nomial-time computability of f implies that l is polynomially bounded. For a
fixed string x of length l(n) we can view f(x, ·) as a function fx ∈ Bn that is gen-
erated by f on the seed x, and therefore we refer to f also as a function generator.
Now f is a pseudorandom function generator if the function fX produced by f
for a random seed X ∈U {0, 1}l(n) cannot be significantly distinguished from a
truely random function F ∈U Bn by any polynomial-time computation, i.e., for
all probabilistic polynomial-time oracle algorithms T , for all positive integers c,
and for infinitely many integers n, the success

δ(n) = |Pr
(
T fX (0n) = 1

)− Pr
(
TF (0n) = 1

) |
of T for f is less than 1

nc . The algorithm T is also called a distinguishing algorithm
or test for f . Our definition of a weak pseudorandom function generator is based
on the advantage of a test T for f (cf. [14]) which is defined with respect to a
fixed seed x ∈ {0, 1}l(n) as

ε(x) = Pr
(
T fx(0n) = 1

)− Pr
(
TF (0n) = 1

)
.

Note that the success of T for f can be expressed by the average advantage of
T for f as δ(n) = |E (ε(X)) | for a random seed X ∈U {0, 1}l(n). So we refer to
ε(n) = min{ε(x) : x ∈ {0, 1}l(n)} as the worst-case advantage of T for f .

Definition 3. A weak pseudorandom function generator is a polynomial-time
computable function ensemble f : {0, 1}l(n) × {0, 1}n → {0, 1}, such that for all
probabilistic polynomial-time oracle algorithms T , for all positive integers c, and
for infinitely many integers n, the worst-case advantage of T for f is less than
1

nc .

As a first property let us mention that a weak pseudorandom function genera-
tor is still useful for derandomizing probabilistic polynomial-time computations.
We omit the proof.

Proposition 1. If there exists a weak pseudorandom function generator, then
for any constant c ≥ 1, RP ⊆ io-Heurn−cNP [n1/c].

As opposed to a pseudorandom generator, which has to expand its seed only
by at least one bit, we can consider a pseudorandom function generator as a
function which expands a seed of polynomial length into a pseudorandom bit-
sequence of length 2n. In the standard setting it is well known that a pseudo-
random generator can be used to construct a pseudorandom function generator
[8]. It is thus an immediate question whether a similar fact can also be shown
with respect to worst-case advantage. Unfortunately, we are not able to answer
this question completely. We can show, however, that there exists a weak pseu-
dorandom function generator if there exist weak pseudorandom generators with
an arbitrary polynomial expansion.

The proof is based on universal hashing, an ubiquitous tool in cryptography.
A linear hash function h from {0, 1}n to {0, 1}m is given by a Boolean n ×m

On Distribution-Specific Learning with Membership Queries 341

matrix (aij), (or, equivalently, by a mn-bit string a1,1 . . . a1,m . . . an,1 . . . an,m)
and maps any string x = x1 . . . xn to a string y = y1 . . . ym, where yi is the inner
product ai · x =

∑n
j=1 aijxj (mod 2) of the i-th row ai and x. In [6] it is shown

that the set of all linear hash functions from {0, 1}n to {0, 1}m is universal, i.e.,
for all n-bit strings x and y with x �= y, Pr (H(x) = H(y)) = 1

2m , when H is
uniformly at random chosen from the set of all linear hash functions from {0, 1}n

to {0, 1}m. Now let us say that a hash function h from {0, 1}n to {0, 1}m causes
a collision on a set Q ⊆ {0, 1}n if there exist two different strings x and y in
{0, 1}m such that h(x) = h(y). Otherwise, h is said to be collision-free on Q.
Then a random linear hash function causes a collision on Q with probability at
most |Q|(|Q|−1)

m .

Lemma 1. Suppose that there exists a family {gk : k ≥ 1} of function ensembles
gk : {0, 1}n → {0, 1}nk

with the following properties:

1. The i-th bit of gk(x) is computable in time polynomial in |x| and k.
2. For all positive integers k and c, for all probabilistic polynomial-time algo-

rithms T , and for infinitely many integers n, there exists some x ∈ {0, 1}n

such that for Y ∈U {0, 1}nk

,

Pr (T (g(x)) = 1)− Pr (T (Y) = 1) <
1
nc

.

Then there exists a weak pseudorandom function generator.

Proof. Based on the family {gk : k ≥ 1} we define a function generator f as
follows. Given binary strings x and z of length n, and further two binary strings
k and h of length logn and n2 logn, respectively, we think of k as encoding an
integer k ∈ {1, . . . , n}, and of h as a linear hash function mapping strings of
length n to strings of length m = �lognk� (by using only the first nm bits of
the string h). Then we can interpret the m-bit string h(z) as a positive integer
h(z) ∈ {1, . . . , nk}, and define

f(k ◦ h ◦ x, z) = gk(x){h(z)},

where gk(x){h(z)} denotes the h(z)-th bit of the nk-bit string gk(x).
By the computability condition on the family {gk : k ≥ 1} it follows that f

is polynomial-time computable. To see that f is a weak pseudorandom function
generator, assume to the contrary that there exist some c ≥ 1 and a probabilistic
oracle test T whose running-time on input 0n and with any oracle in Bn is
bounded by nc, and such that for all (sufficiently large) integers n, the worst-
case advantage of T for f is at least 1

nc . Note that this implies that for all
k ∈ {0, 1}log n and x ∈ {0, 1}n, and for random H ∈U {0, 1}n2 log n and F ∈U Bn,

Pr
(
T fk◦H◦x(0n) = 1

)− Pr
(
TF (0n) = 1

) ≥ 1
nc

.

Now fix k = 4c and consider the test T ′ for gk which on input y ∈ {0, 1}nk

works as follows. First choose h ∈U {0, 1}n2 log n. Then simulate T on input 0n,

342 Johannes Köbler and Wolfgang Lindner

where each query z ∈ {0, 1}n is answered by the h(z)-th bit of y. Finally accept
if and only if T accepts.

Under the condition that the hash function h chosen by T ′ is collision-free on
the set of queries Q asked by T , the test T ′ accepts a random Y ∈U {0, 1}nk

with
the same probability as T accepts with a random oracle F ∈U Bn. Even though
the queries in Q might depend on h for some specific y ∈ {0, 1}nk

, it is not hard
to see that for the random Y and H , the probability that H is collision-free on
Q coincides with the probability that H is collision-free on the set of queries
asked by T when T is run with the random oracle F . It follows that H causes a
collision on Q with probability at most

|Q|2
2m

≤ n2c

2m
<

1
2nc

,

where the last inequality follows by the choice of k = 4c which implies that
2m ≥ nk/2 = n4c/2 > 2n3c, and hence we have

|Pr (T ′(Y) = 1)− Pr
(
TF (0n) = 1

) | ≤ 1
2nc

.

On the other hand, for all x ∈ {0, 1}n, the probability that T ′ accepts gk(x)
is just the probability that T accepts with oracle fk◦H◦x for a random hash
function H ∈ {0, 1}n2 log n. It follows that for all x ∈ {0, 1}n,

Pr (T ′(gk(x)) = 1)− Pr (T ′(Y) = 1) ≥ 1
2nc

.

But this contradicts the pseudorandomness condition of the lemma. ��

4 Weak Pseudorandomness versus Predictability

In this section we show that there exists some non-predictable representation of
concepts C ∈ P if and only if there exists a weak pseudorandom function gen-
erator. The implication from non-predictability to the weak function generator
is based on the (well-known) construction of a pseudorandom generator due to
Nisan and Wigderson [17].

Definition 4. A (r, l, n, k)-design is a collection S = (S1, . . . , Sr) of sets Si ⊆
{1, . . . , l}, each of which has cardinality n, such that for all i �= j, |Si ∩ Sj | ≤ k.
Given a function f : {0, 1}n → {0, 1}, the Nisan-Wigderson generator (based
on f and S), fS : {0, 1}l → {0, 1}r, is for every seed x = x1 . . . xl of length l
defined as

fS(x) = f(xS1) . . . f(xSr),

where xSi , for 1 ≤ i ≤ r, denotes the restriction of x to Si = {i1 < . . . < in}
defined as xSi = xi1 . . . xin .

On Distribution-Specific Learning with Membership Queries 343

It is shown in [17] that for all positive integers r and n we can use polynomials
of degree at most log r over a suitably chosen field to construct a (r, 4n2, n, log r)-
design S = (S1, . . . , Sr) such that each Si can be computed in time polynomial
in n and log r [17]. In the following, we refer to this design as the low-degree
polynomial design.

Furthermore, as shown in [17], fS is a pseudorandom generator with respect
to non-uniformly computable distinguishing algorithms, provided that the func-
tion f is hard to approximate by polynomial-size circuits. This means that if
there is a polynomial-size circuit T with sufficiently large distinguishing suc-
cess for fS , then there is a polynomial-size circuit T ′ that approximates f . It is
known that in fact T ′ can be uniformly obtained from T , though at the expense
of polynomially many membership queries to f (cf. [2, 9]). By inspecting the
proof in, e.g., [9] it is not hard to see that the required membership queries do
not depend on the answers to previously asked queries, i.e., T ′ can be obtained
from T by using only non-adaptive queries to f .

Lemma 2. [17, 2, 9] There exists a probabilistic oracle algorithm A which given
as input an integer n, a circuit T with input length r, a rational ε > 0, and further
access to a function f : {0, 1}n → {0, 1} computes with probability at least 1− ε
a circuit T ′ such that for Z ∈U {0, 1}n,

Pr (T ′(Z) = f(Z)) ≥ 1
2

+
δ

r
− ε,

provided that for X ∈U {0, 1}4n2
, Y ∈U {0, 1}r, and the low-degree polynomial

(r, 4n2, n, log r)-design S,

|Pr
(
T (fS(X)) = 1

)− Pr (T (Y) = 1) | ≥ δ.

Moreover, A runs in time polynomial in n, |T | and 1/ε, and A asks only non-
adaptive oracle queries to f .

Now, based on Lemmas 1 and 2 we can construct a weak pseudorandom
function generator under non-predictability assumption.

Theorem 2. If there exists a representation of concepts C ∈ P that is not
weakly predictable with non-adaptive membership queries on the uniform distri-
bution in polynomial time, then there exists a polynomial-time computable weak
pseudorandom function generator.

Proof. Let l(n) = 4n2. W.l.o.g. we assume that also the l(n)-size bounded re-
striction of C defined as Cl(n) = {(u, x) ∈ C : |u| = l(|x|)} is not weakly
predictable with non-adaptive membership queries on the uniform distribution
in polynomial time. (Otherwise this can be achieved by a simple padding argu-
ment.) Based on Cl(n) we define a family {gk : k ≥ 1} of function ensembles
gk : {0, 1}2l(n) → {0, 1}nk

satisfying the conditions of Lemma 1. The theorem
will follow.

344 Johannes Köbler and Wolfgang Lindner

For all positive integers n and k with k ≤ n, and for all binary strings u and
x of length l(n) define

gk(u ◦ x) = uS
n(x),

where un denotes the characteristic function of the set κC(u) ∩ {0, 1}n, and
S = (S1, . . . , Snk) is the low-degree polynomial (nk, 4n2, n, lognk)-design. For
k > n, put gk(u ◦ x) = 0nk

.
Since C ∈ P , and since each Si for i = 1, . . . , nk can be computed in time

polynomial in n and lognk, it follows that the family {gk : k ≥ 1} satisfies the
computability condition of Lemma 1.

To see that the family {gk : k ≥ 1} also satisfies the pseudorandomness
condition of Lemma 1, assume to the contrary that there exist positive integers
k and c and a polynomial-time computable test T , such that for all sufficiently
large n, for all binary strings u and x of length l(n), and for Y ∈U {0, 1}nk

it
holds that

Pr (T (gk(u ◦ x)) = 1)− Pr (T (Y) = 1) ≥ 1
nc

.

Note that this implies that the test T distinguishes the random variable gk(U◦X)
with U ∈U {0, 1}l(n) and X ∈U {0, 1}l(n) from a uniformly distributed Y ∈U
{0, 1}nk

by at least 1
nc .

Now consider the pwm-algorithm A for Cl(n), which on input s = l(n) and n
and with respect to some concept κC(u) with |u| = l(n) works as follows. First
obtain a probabilistic circuit Tnk that computes T on input length nk by using a
(finite) description of the Turing machine computing T . Then run the algorithm
of Lemma 2 with the circuit Tnk , oracle un and parameter ε = 1

4nk+c to obtain
a circuit T ′. Finally request an element z to predict, and answer with T ′(z).

By the assumption on the test T , the algorithm of Lemma 2 produces, for
all n and concept names u of length l(n), and with probability at least 1− ε, a
circuit T ′ satisfying

Pr (T ′(Z) = un(Z)) ≥ 1
2

+
1

nc+k
− ε

for Z ∈U {0, 1}n. This implies that A’s guess for the classification of Z by κC(u)
is correct with probability at least

1
2

+
1

nc+k
− 2ε =

1
2

+
1

2nc+k
.

Further note that A makes no additional membership queries except the non-
adaptive queries to κC(u) required to produce the circuit T ′. Thus, Cl(n) is
weakly predictable with non-adaptive membership queries on the uniform dis-
tribution in polynomial time. This, however, contradicts our assumption on C,
and hence, gk is a weak pseudorandom generator for all k ≥ 1. The theorem now
follows from Lemma 1. ��

We now proceed to show the converse of Theorem 2 for any p-samplable dis-
tribution, provided that the distribution in question does not immediately imply

On Distribution-Specific Learning with Membership Queries 345

a trivial prediction algorithm. Kharitonov [12] showed that any representation
of concepts C is polynomially weakly predictable on any distribution (ensemble)
D = {Dn} with Renyi entropy O(log n). This motivates the following definition.

Definition 5. [12] A distribution ensemble D = {Dn} is trivial if for all n ≥ 1,
Dn has Renyi entropy O(log n).

A function generator f : {0, 1}l(n)×{0, 1}n → {0, 1} is associated in a natural
way with the representation of concepts Cf = {(x, z) : |x| = l(|z|), f(x, z) = 1}.
Note that for a string x of length l(n), fx is just the characteristic function of
the set κC(x) ∩ {0, 1}n.

Theorem 3. If f : {0, 1}l(n)×{0, 1}n → {0, 1} is a weak pseudorandom function
generator, then Cf is not weakly predictable with membership queries on any
non-trivial p-samplable distribution in polynomial time.

Proof. Assume to the contrary that there exists a non-trivial p-samplable distri-
bution D such that Cf is weakly predictable with membership queries on D in
polynomial time, and let A be a pwm-algorithm and c be a positive integer such
that for all n ≥ 1, the running-time of A on inputs s = l(n) and n is bounded
by nc, and such that for all strings x of length l(n), A ε-predicts κCf (x) on Dn

with ε = 1
2 − 1

nc .
We now use A to construct a test T for f . Given input 0n and an oracle

h : {0, 1}n → {0, 1}, the test T simulates A with inputs n and s = l(n). When
A makes a membership query z, then T answers this query with h(z). When A
requests a random classified example or an element to predict, then T chooses a
string z ∈Dn {0, 1}n and returns either the example (z, h(z)) or the prediction
challenge z to A. Finally, T accepts if and only if the guess of A on the prediction
challenge z coincides with h(z).

Obviously, for all positive integers n and for all strings x of length l(n),
the test T accepts the oracle fx with probability at least 1

2 + 1
nc . If on the

other hand, the oracle for T is a random function F ∈U Bn, then there are two
possibilities. If the prediction challenge z coincides with some previously seen
labeled sample, then we have to assume that A’s guess for z is correct. Since
the running time of A, and hence the number of labeled samples it obtains (via
example or membership queries) is bounded by nc, and since D is a non-trivial
distribution, this can happen for a random prediction challenge Z ∈Dn {0, 1}n

only with probability at most nc · 2− entmin(Dn) ≤ nc · 2− entRen(Dn)/2 < 1
2nc .

Otherwise, i.e. in the case where all previously seen examples are different from
the prediction challenge z, the probability that A classifies z correctly is exactly
1
2 . It follows that T accepts the random oracle F with probability at most 1

2 + 1
2nc .

Thus, for all strings x of length l(n),

Pr
(
T fx(0n) = 1

)− Pr
(
TF (0n) = 1

) ≥ 1
2nc

,

contradicting the assumption that f is a weak pseudorandom function generator.
��

346 Johannes Köbler and Wolfgang Lindner

Since Boolean circuits are not pac-learnable if and only if there exists a non-
predictable representation of concepts C ∈ P , we can combine Theorems 1, 2
and 3 to get the following corollary.

Corollary 1. The following are equivalent.

1. There exists a weak pseudorandom function generator.
2. Boolean circuits are not pac-learnable with non-adaptive membership queries

on the uniform distribution in polynomial time.
3. Boolean circuits are not pac-learnable with membership queries on any non-

trivial p-samplable distribution in polynomial time.

As an application of Corollary 1 to the theory of resource-bounded measure
[16], let us mention that it is shown in [15] that if P/poly does not have p2-
measure zero , and furthermore EXP �= MA, then Boolean circuits are not pac-
learnable with non-adaptive queries on the uniform distribution in polynomial-
time. By Corollary 1, this can be extended to pac-learnability with (adaptive)
membership queries on arbitrary non-trivial p-samplable distributions.

Furthermore, by Proposition 1, the non-learnability of Boolean circuits with
membership queries on any non-trivial p-samplable distribution implies that for
any constant c ≥ 1, RP ⊆ io-Heurn−cNP [n1/c].

Finally let us remark that the existence of a weak pseudorandom function
generator can be expressed also in terms of (standard) success instead of worst-
case advantage. But then we need to consider non-uniformly computable function
generators and, moreover, the function generator might depend on the (still) uni-
formly computable distinguishing algorithm. More formally, we say that a test T
breaks a function generator f if for some positive integer c and for all sufficiently
large n, the success of T for f is at least 1/nc. Now a slight modification of the
proof of Theorem 2 together with Theorem 3 yields the following equivalence.

Corollary 2. The following are equivalent.

1. There exists a weak pseudorandom function generator.
2. There is some polynomial size-bound s(n) such that no probabilistic poly-

nomial-time computable test can break every function generator computable
by circuits of size s(n).

References

[1] D. Angluin and M. Kharitonov. When won’t membership queries help? In Proc.
23rd ACM Symposium on Theory of Computing, pages 444–454. ACM Press, 1991.

[2] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based
on hard learning problems. In Proc. CRYPTO 93, volume 773 of Lecture Notes
in Computer Science, pages 278–291. Springer-Verlag, 1994.

[3] A. L. Blum. Separating distribution-free and mistake-bound learning models
over the boolean domain. In Proc. 31st IEEE Symposium on the Foundations
of Computer Science, pages 211–218. IEEE Computer Society Press, 1990.

On Distribution-Specific Learning with Membership Queries 347

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor.
Information Processing Letters, 24(6):377–380, 1987.

[5] D. Boneh and R. J. Lipton. Amplification of weak learning under the uniform
distribution. In Proc. 6th ACM Conference on Computational Learning Theory,
pages 347–351. ACM Press, 1993.

[6] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979.

[7] J. Dı́az and J. Torán. Classes of bounded nondeterminism. Mathematical Systems
Theory, 23(1):21–32, 1990.

[8] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986.

[9] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under
a uniform assumption. In Proc. 39th IEEE Symposium on the Foundations of
Computer Science, pages 734–743. IEEE Computer Society Press, 1998.

[10] J. C. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. Journal of Computer and System Sciences,
55(3):414–440, 1997.

[11] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. Journal of the ACM, 41:67–95, 1994.

[12] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proc.
25th ACM Symposium on Theory of Computing, pages 372–381, 1993.

[13] M. Kharitonov. Cryptographic lower bounds for learnability of boolean functions
on the uniform distribution. Journal of Computer and System Sciences, 50:600–
610, 1995.

[14] M. Krause and S. Lucks. On learning versus distinguishing and the minimal
hardware complexity of pseudorandom function generators. Technical Report
TR00-014, Electronic Colloquium on Computational Complexity, 2000.

[15] W. Lindner, R. Schuler, and O. Watanabe. Resource-bounded measure and learn-
ability. In Proc. 13th Annual IEEE Conference on Computational Complexity,
pages 261–270, 1998.

[16] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences, 44:220–258, 1992.

[17] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[18] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
226, 1990.

[19] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[20] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE
Symposium on the Foundations of Computer Science, pages 80–91. IEEE Com-
puter Society Press, 1982.

Θp
2-Completeness: A Classical Approach for

New Results�

Holger Spakowski1 and Jörg Vogel2

1 Ernst Moritz Arndt University, Dept. of Math. and Computer Science
D-17487 GREIFSWALD, Germany
spakow@mail.uni-greifswald.de

2 Friedrich Schiller University, Computer Science Institute
D-07740 JENA, Germany
vogel@minet.uni-jena.de

Abstract. In this paper we present an approach for proving Θp
2 -

completeness. There are several papers in which different problems of
logic, of combinatorics, and of approximation are stated to be complete
for parallel access to NP, i.e. Θp

2 -complete.
There is a special acceptance concept for nondeterministic Turing ma-
chines which allows a characterization of Θp

2 as a polynomial-time
bounded class.
This characterization is the starting point of this paper. It makes a mas-
ter reduction from that type of Turing machines to suitable boolean
formula problems possible. From the reductions we deduce a couple of
conditions that are sufficient for proving Θp

2 -hardness. These new condi-
tions are applicable in a canonical way. Thus we are able to do the fol-
lowing: (i) we can prove the Θp

2-completeness for different combinatorial
problems (e.g. max-card-clique compare) as well as for optimization
problems (e.g. the Kemeny voting scheme), (ii) we can simplify known
proofs for Θp

2-completeness (e.g. for the Dodgson voting scheme), and
(iii) we can transfer this technique for proving ∆p

2-completeness (e.g.
TSPcompare).

1 Introduction

The complexity class Θp
2 = PNP[log] was established as a constitutional level

of the polynomial time hierarchy, e.g. Wagner in [Wag90] proved that Θp
2 = LNP.

Further characterizations of this complexity class are given by several authors:
Θp

2 = PNP[log] = LNP = Rp
tt(NP) = PNP

|| .
Krentel [Kre88] has stated a characterization of the complexity class ∆p

2 = PNP

as a polynomial-time bounded class by the so called MAX-acceptance concept:
Given a nondeterministic polynomial-time bounded Turing machine with out-
put device M and an input x, then M accepts x in the sense of MAX iff any
computation path with (quasilexicographically) maximum output accepts x.

� Supported in part by grant NSF-INT-9815095/DAAD-315-PPP-gü-ab.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 348–360, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Θp
2-Completeness: A Classical Approach for New Results 349

This paper starts with a characterization of Θp
2 by the following acceptance

concept, introduced in Spakowski/Vogel [SV99] :
Let M be a nondeterministic polynomially bounded Turing machine with output
device and let x be an input. M accepts x in the sense of MAX-CH iff x is
accepted on any computation path β of M on x with maximal number of mind-
changes in the output. For w ∈ {0, 1}∗, ch(w) denotes the number of mind-
changes in w. It holds ch(0) = ch(1) = ch(00) = ch(11) = 0, ch(10) = ch(01) = 1
and e.g. ch(10010) = 3, ch(10101) = 4.
This concept means that the internal structure of the output is essential. It
allows a characterization of Θp

2 as a polynomial-time bounded complexity class:
Θp

2 = MAX-CH-P — which is in some sense analogous to ∆p
2 = MAX-P.

The theory of NP-completeness was initiated by Cook’s master reduction
[Cook71], continued by Karp’s basic NP-complete problems [Karp72] and estab-
lished by Garey/Johnson’s guide to the the theory of NP-completeness [GJ79].
The aim of this paper is to give evidence that the theory of the class NP can
be transcribed to the class Θp

2 , and thus the theory of Θp
2-completeness becomes

very canonical. We start our approach to that theory with the description of Θp
2

as a polynomial-time bounded class. That allows the construction of “master re-
ductions” even to two different basic satisfiability problems of boolean formulas:
MAX-TRUE-3SAT-COMPARE:
Given two 3-CNF formulas F1 and F2; is the maximum number of 1’s in satisfying
truth assignments for F1 less than or equal to that for F2 ?
and
ODD-MAX-TRUE-3SAT:
Given a 3-CNF formula F ; is the maximum number of 1’s in satisfying truth
assignments for F odd ?

Of course, Wagner [Wag87] has provided a useful tool for proving Θp
2-hardness,

and we state his result below as lemma 7. However, the “master reductions”
stated in sect. 2.1 provide two conditions for proving Θp

2-hardness (lemma 3 and
lemma 5) such that (first) Wagner’s condition is a consequence of our condition
and (second and more important) our condition is relatively simple to apply
because we can make use of the classical constructions (see section 3).
Section 3.1 summarizes the results for some basic combinatorial problems like
min-card-vertex cover compare and max-card-clique compare (given two
graphs we compare the sizes of the smallest vertex covers and largest cliques,
respectively). The completeness of these problems in Θp

2 is a further argument
for establishing this class.
In section 3.2 we re-translate our method for the class ∆p

2, and we are able to
prove that TSPcompare (given two instances of traveling-salesperson we ask if
the optimal tour-length for the first TSP instance is shorter than that for the
second instance) is complete for ∆p

2— supplementing the list of ∆p
2-complete

problems given by Krentel.
Of special interest are the applications mentioned in section 3.3. Voting schemes
are very well studied in the social choice literature. Bartholdi/Tovey/Trick
[BTT89] investigated the computational complexity of such problems. They

350 Holger Spakowski and Jörg Vogel

proved that the Dodgson voting scheme as well as the Kemeny voting scheme
both are NP-hard. Hemaspaandra/Hemaspaandra/Rothe [HHR97] proved that
Dodgson voting is Θp

2-complete using Wagner’s lemma. The exact analysis of the
Kemeny voting system was still an open problem.
We are able, following our method, to give a simplification of the involved proof
of [HHR97] as well as to prove that Kemeny voting is Θp

2-complete. The result for
Kemeny voting is also stated in a survey paper of Hemaspaandra/Hemaspaandra
presented at MFCS 2000 very recently [HH00].
For the definitions and basic concepts we refer to the textbook [Pap94].

2 The Machine Based Technique

2.1 Basic Problems Being Complete for Θp

2

We gave in [SV99] a characterization of the complexity class Θp
2 by the so called

MAX-CH acceptance concept:
Given a nondeterministic polynomial-time bounded Turing machine M with
output device and an input x, then M accepts x in the sense of MAX-CH iff on
any computation path β of M on x with maximum number of mind-changes of
the output x is accepted. It turns out that Θp

2 = MAX-CH-P, where MAX-CH-
P is the class of all sets decidable in the sense of MAX-CH by polynomial-time
bounded machines.
A slight modification of these machines yields the following lemma:

Lemma 1. For every A ∈ Θp
2 there are a NPTM M with output device and

polynomials p and q such that the following is true:

1. For any input x the output on every path β is of equal length q(|x|).
2. For any input x every computation path β is of equal length p(|x|).
3. For any input x, two paths β1 and β2 have the same acception behaviour

whenever they have the same number of 1’s in the output.
4. x ∈ A if and only if M accepts x on βmax, where βmax is a computation

path having the maximum number of 1’s in the output.

We call this acceptance concept MAX-1-acceptance in difference to Krentel
[Kre88], who defined the so called MAX-acceptance.

We define the following three satisfiability problems for boolean formulas:

Decision Problem: MAX-TRUE-3SAT-COMPARE
Instance: Two 3-CNF formulas F1 and F2 having the same number of clauses
and variables
Question: Is the maximum number of 1’s in satisfying truth assignments for
F1 less than or equal to that for F2 ?

Decision Problem: MAX-TRUE-3SAT-EQUALITY
Instance: Two 3-CNF formulas F1 and F2 having the same number of clauses
and variables

Θp
2-Completeness: A Classical Approach for New Results 351

Question: Is the maximum number of 1’s in satisfying truth assignments for
F1 equal to that for F2 ?

Decision Problem: ODD-MAX-TRUE-3SAT
Instance: A 3-CNF formula F
Question: Is the max number of 1’s in satisf. truth assignments for F odd ?

In all cases it is straightforward to prove that the problem is in Θp
2 using binary

search. We concentrate on proving the hardness.

Theorem 2. MAX-TRUE-3SAT-COMPARE and MAX-TRUE-3SAT-EQUALITY are
complete in Θp

2 under polynomial time many-one reduction.

To show the hardness we need the following lemma.

Lemma 3. For every A ∈ Θp
2 there are B1, B2 ∈ P having the following prop-

erties:

1. (x ∈ A −→ m1(x) = m2(x)) and (x /∈ A −→ m1(x) > m2(x)), where
m1(x) =df max {[w]1 : 〈x,w〉 ∈ B1}1 and
m2(x) =df max {[w]1 : 〈x,w〉 ∈ B2}.

2. x ∈ A −→M1(x) = M2(x) where
M1(x) =df {w : 〈x,w〉 ∈ B1 ∧ [w]1 = m1(x)} and
M2(x) =df {w : 〈x,w〉 ∈ B2 ∧ [w]1 = m2(x)}

3. There is a pol. p̃ such that
∧

x,w∈Σ∗ (〈x,w〉 ∈ Bi −→ |w| = p̃(|x|)) (i ∈ {1, 2})

Proof. We start from the characterization of Θp
2-sets given in lemma 1. Let

A ∈ Θp
2 , M a NPTM deciding A in the sense of MAX-1, q and p′ the polynomials

determining the length of the output and the length of the computation paths
of M , respectively. For each n let p(n) =df p

′(n) + 1.
We define B1 and B2:

B1 =df {〈x,w〉 : x,w ∈ Σ∗ and
1. w has the form outM (x, β)p(|x|)β and
2. The NPTM M has on input x on path β the output outM (x, β) }
B2 =df {〈x,w〉 : x,w ∈ Σ∗ and
1. w has the form outM (x, β)p(|x|)β and
2. The NPTM M has on input x on path β the output outM (x, β) and
3. M accepts x on β }

For any x let the set Bmax(x) contain all computation paths β of M on input
x with the maximum number of 1’s in the output, and let B̂max(x) contain all
paths from Bmax having itself the maximum number of 1’s.
Bmax−acc(x) and B̂max−acc differ from Bmax(x) and B̂max in that only accepting
computation paths are considered.

1 [w]1 denotes the number of 1’s in w.

352 Holger Spakowski and Jörg Vogel

It’s not hard to see that

M1(x) =
{

outM (x, β′)p(|x|)β′ : β′ ∈ B̂max(x)
}
, and (1)

M2(x) =
{

outM (x, β′)p(|x|)β′ : β′ ∈ B̂max−acc(x)
}

. (2)

Now we can sketch the proofs of statements 1 and 2 of the lemma.
Let x ∈ A. ThenM accepts x on all paths β fromBmax(x). HenceBmax−acc(x) =
Bmax(x) and B̂max−acc(x) = B̂max(x). Due to (1) and (2) follow M1(x) = M2(x)
and m1(x) = m2(x).
Let x /∈ A. Then M rejects x on all paths β from Bmax(x). Let β̂max(x) ∈
B̂max(x) and β̂max−acc(x) ∈ B̂max−acc(x).
Then [

outM (x, β̂max(x))
]
1
>

[
outM (x, β̂max−acc(x))

]
1
.

Therefore

m1(x)
eq.(1)

=
[
outM

(
x, β̂max(x)

)p(|x|)
β̂max(x)

]
1

>

[
outM

(
x, β̂max−acc(x)

)p(|x|)
β̂max−acc(x)

]
1

eq.(2)
= m2(x) .

Proof of theorem 2. Let A ∈ Θp
2 and B1, B2 the P-sets and p̃ a polynomial

belonging to A having the properties of lemma 3. For a given x ∈ Σ∗ we devise
two 3CNF-formulas F̂1 and F̂2 such that

M1(x) = M2(x) −→ max
{

[y]1 : F̂1(y)
}

= max
{

[y]1 : F̂2(y)
}

2, and

m1(x) > m2(x) −→ max
{

[y]1 : F̂1(y)
}
> max

{
[y]1 : F̂2(y)

}
.

Our first step is to construct a boolean circuit C with two output gates C1 and
C2 of polynomial size having the property

Ci(w) = 1←→ 〈x,w〉 ∈ Bi (i ∈ {1, 2}) :

y2 y~p(jxj)y1

C

C1 C2

C2

yields 1 i�
hx; y1; : : : ; y~p(jxj)i 2 B2

C1

yields 1 i�

hx; y1; : : : ; y~p(jxj)i 2 B1

2 y denotes a sequence (y1, y2, . . .).

Θp
2-Completeness: A Classical Approach for New Results 353

Using standard techniques (see e.g. [Pap94]) we build 3CNF-formulas F1(y1,
. . . , yp̃(|x|), h1, . . . , hm) and F2(y1, . . . , yp̃(|x|), h1, . . . , hm) such that

Ci(y1, . . . , yp̃(|x|)) = 1←→
∨

h1,... ,hm

Fi(y1, . . . , yp̃(|x|), h1, . . . , hm)

←→
∨

h1!,... ,hm!

Fi(y1, . . . , yp̃(|x|), h1, . . . , hm) (i ∈ {1, 2})

and
C1(y1, . . . , yp̃(|x|)) = 1 ∧ C2(y1, . . . , yp̃(|x|)) = 1

←→ (3)∨
h1!,... ,hm!

(
F1(y1, . . . , yp̃(|x|), h1, . . . , hm) ∧ F2(y1, . . . , yp̃(|x|), h1, . . . , hm)

)

We define F̂ to be equivalent to F , but with each variable yi replicated 3m times
(by adding clauses of the form yi,1 ↔ yi,j for each j = 2 to 3m). This expansion
is needed to pad out the number of 1’s to maintain the required inequality.
Note that

max
{

[y]1 : F̂i(y)
}

= 3mmax {[y]1 : Ci(y) = 1}+ δi (i ∈ {1, 2}) (4)
for a δi ∈ {0, . . . ,m}. Hence

m1(x) > m2(x) −→ max
{

[y]1 : F̂1(y) = 1
}
> max

{
[y]1 : F̂2(y)

}
,

and due to (3)
M1(x) = M2(x) −→ max

{
[y]1 : F̂1(y)

}
= max

{
[y]1 : F̂2(y)

}
. (5)

�
Theorem 4. ODD-MAX-TRUE-3SAT is complete in Θp

2 under polynomial time
many-one reduction.

For proving the hardness we need the following lemma.
Lemma 5. For every A ∈ Θp

2 there is B ∈ P having the following properties:
1. x ∈ A←→ max {[w]1 : 〈x,w〉 ∈ B} ≡ 1(2)
2. There is a polynomial p̃ such that

∧
x,w∈Σ∗ (〈x,w〉 ∈ B −→ |w| = p̃(|x|)) .

Proof. In place of B1 and B2 defined in the proof of lemma 3 we define a single
set B here:
B =df {〈x,w〉 : x,w ∈ Σ∗ and
1. w has the form outM (x, β)2p(|x|)β2accM (x, β) and
2. The NPTM M has on input x on path β the output outM (x, β) }
3. accM (x, β) =

{
0 if M rejects x on β
1 if M accepts x on β

It’s easy to see that
max {[y]1 : 〈x, y〉 ∈ B}=

[
outM

(
x, β̂max(x)

)2p(|x|)
β̂2

max(x)accM (x, β̂max(x))
]

1

.

(6)We conclude:

x ∈ A⇐⇒ accM

(
x, β̂max(x)

)
= 1

eq.(6)⇐⇒ max {[y]1 : 〈x, y〉 ∈ B} ≡ 1(2) . �
The proof of theorem 4 follows the same ideas as the proof of theorem 2, but it
makes use of lemma 5 instead of lemma 3.

354 Holger Spakowski and Jörg Vogel

2.2 Sufficient Conditions for Θp

2-Hardness

Wagner [Wag87] stated a sufficient condition for a set to be hard for Θp
2 . It was

applied subsequently in a number of papers to prove the Θp
2-hardness of various

problems. Lemma 5 from section 2.1 implies immediately another sufficient con-
dition for Θp

2-hardness which is given below in lemma 6. We show that Wagner’s
statement follows easily from our’s. Thus we have evidence that lemma 6 is at
least as strong as Wagner’s condition.

Lemma 6. A set A ⊆ Σ∗ is Θp
2-hard if the following property holds:

(∗∗)
^

B∈P

^

p∈Pol

_

g∈FP

^

x∈Σ∗
(max {[y]1 : |y| = p(|x|) ∧ 〈x, y〉 ∈ B} ≡ 1(2)←→ g(x) ∈ A)

�

Lemma 7. [Wagner 1987]3 A set A ⊆ Σ∗ is Θp
2-hard if the following property

holds:

(*) There exists a polynomial-time computable function f and an NP-complete
set D such that

‖{i : xi ∈ D}‖ ≡ 1(2)←→ f(x1, . . . , x2k) ∈ A

for all k ≥ 1 and all strings x1, . . . , x2k ∈ Σ∗ satisfying
χD(x1) ≥ χD(x2) ≥ . . . ≥ χD(x2k).4 �

Let A be an arbitrary set satisfying condition (*). We show that A satisfies (**)
as well.
Let B ∈ P and p ∈ Pol.
We define

E =df

〈x, y〉 :

∨
y′,|y′|=p(|x|)

([y′]1 ≥ y ∧ 〈x, y′〉 ∈ B)

 .

For a given x ∈ Σ∗ we have to distinguish two cases.
We prove here case 1: p(|x|) is odd.
We set

x1 = 〈x, 0〉, x2 = 〈x, 1〉, x3 = 〈x, 2〉, . . . , xp(|x|)+1 = 〈x, p(|x|)〉 .
Thus

χE(x1) ≥ χE(x2) ≥ . . . ≥ χE(xp(|x|)+1)
and E ∈ NP.
Let h be a polynomial-time reduction from E to the NP-complete set D. Then

‖{i : xi ∈ E}‖ ≡ 1(2)←→ ‖{i : h(xi) ∈ D}‖ ≡ 1(2)
←→ f(h(x1), . . . , h(xp(|x|)+1) ∈ A
←→ g′(x1, . . . , xp(|x|)+1) ∈ A

3 Wagner states hardness for PNP
bf , a class which is now known to be equal to Θp

2 .
4 χD denotes the characteristic function of D.

Θp
2-Completeness: A Classical Approach for New Results 355

for g′ being the composition of h and f . Hence there is a g ∈ FP such that

‖{i : xi ∈ E}‖ ≡ 1(2)←→ g(x) ∈ A .

To complete the proof note that

‖{i : xi ∈ E}‖ = max {[y]1 : |y| = p(|x|) ∧ 〈x, y〉 ∈ B} . �
If we apply the same reasoning steps to lemma 3 instead of lemma 5, we will get
the following two lemmas.

Lemma 8. A set A ⊆ Σ∗ is Θp
2-hard if the following property holds:

∧
B1,B2∈P

∧
p∈Pol

∨
g∈FP

∧
x∈Σ∗

(max {[y]1 : |y| = p(|x|) ∧ 〈x, y〉 ∈ B1}

≤ max {[y]1 : |y| = p(|x|) ∧ 〈x, y〉 ∈ B2} ←→ g(x) ∈ A) �

Lemma 9. A set A ⊆ Σ∗ is Θp
2-hard if the following property holds: There exist

a polynomial-time computable function f and two NP-complete sets D1 and D2

such that

‖{i : xi ∈ D1}‖ ≤ ‖{i : xi ∈ D2}‖ ←→ f(x1, . . . , x2k) ∈ A
for all k ≥ 1 and all strings x1, . . . , x2k ∈ Σ∗ satisfying
χD1(x1) ≥ χD1(x2) ≥ . . . ≥ χD1(x2k) and
χD2(x1) ≥ χD2(x2) ≥ . . . ≥ χD2(x2k) �
This lemma is in style similar to Wagner’s tool. We have a comparison in place
of oddness.

2.3 Remark: We Can Use 2SAT Instead of 3SAT

What about the computational complexity of the “2SAT versions” for our com-
parison and oddness problems ?
It is well known that the satisfiability problem for 2CNF formulas is solvable
in polynomial time. Using binary search it is possible to find the lexicographi-
cally largest satisfying assignment of a 2CNF formula in polynomial time. Hence
MAX-LEX-2SAT-COMPARE and MAX-LEX-2SAT-EQUALITY5 are in P.
In contrast to this we state here without proof:

Theorem 10. MAX-TRUE-2SAT-COMPARE, MAX-TRUE-2SAT-EQUALITY, and
ODD-MAX-TRUE-2SAT are complete in Θp

2 under polynomial time many-one
reduction.

Nevertheless, the reductions presented in the remaining part of the paper are
from the 3SAT versions since the 2SAT versions don’t make the proofs easier.
5 The definitions of the 3SAT versions are given in section 3.2.

356 Holger Spakowski and Jörg Vogel

3 Applications of the Method

3.1 Θp

2-Complete Combinatorial Problems

We define the following problem:
Decision Problem: min-PolynomiallyWeighted-vertex cover compare
Instance: Two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2). Each v ∈ Vi

is assigned a weight wi(v) ∈ [0, ‖Vi‖] (i ∈ {0, 1}).
Question: We define for each subset V ′ ⊆ Vi the weight wi(V ′) = Σv∈V ′wi(v).
Let mwvc(Gi) be the weight of the vertex cover of Gi having minimum weight.
Holds mwvc(G1) ≤ mwvc(G2) ?

Theorem 11. There is a polynomial-time many-one reduction from
MAX-TRUE-3SAT-COMPARE to min-PolynomiallyWeighted-vertex cover
compare. Hence min-PolynomiallyWeighted-vertex cover compare is Θp

2-
complete. �

Proof. Our proof is based on the reduction from 3SAT to vertex cover given in
[GJ79]. We will say how the construction there is modified to obtain our result.
Assume that we are given C1 and C2 both having n variables and m clauses.
Our construction is accomplished in two steps:

1. Construct G1 = (V1, E1, w1) from C1 and G2 = (V2, E2, w2) from C2 as in
the reduction from 3SAT to vertex cover. Note that ‖V1‖ = ‖V2‖.

2. Assign weights to the vertices of Gk (k ∈ {1, 2}):

wk(a1[j]) = wk(a2[j]) = wk(a3[j]) = 2m+ n+ 1 (0 ≤ j ≤ m)
wk(ui) = 2m+ n+ 1
wk(ui) = 2m+ n+ 2 (0 ≤ i ≤ n)

The weights of the vertices are chosen such that for each vertex cover V ′
i ⊆ Vi

of Gi holds:

– If ‖V ′
i ‖ = 2m+n then V ′

i has weight of no more than (2m+n)(2m+n+ 2).
– If ‖V ′

i ‖ > 2m+n then V ′
i has weight of at least (2m+n+ 1)(2m+n+ 1) =

(2m+ n)(2m + n+ 2) + 1.

Hence the vertex covers of Gi with minimum weight are among the vertex covers
of Gi with cardinality 2m+n. As discussed in the classical proof of [GJ79], each
vertex cover of cardinality 2m+n defines a satisfying truth assignment. It remains
to verify the following two assertions:

1. To each satisfying truth assignment t for U with ‖{i : t(ui) = 0}‖ = s belongs
a vertex cover with weight (2m+n+1)2m+(2m+n+1)(n−s)+(2m+n+2)s.

2. To each vertex cover with weight (2m + n + 1)2m+ (2m+ n + 1)(n− s) +
(2m + n + 2)s and 0 ≤ s ≤ n belongs a satisfying truth assignment for U
with ‖{i : t(ui) = 0}‖ = s. �

Θp
2-Completeness: A Classical Approach for New Results 357

Decision Problem: min-card-vertex cover compare
Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
Question: Let κi =df min{‖V ′‖ : V ′ ⊆ Vi and V ′ is a vertex cover of Gi}
(i ∈ {1, 2}). Holds κ1 ≤ κ2 ?

Theorem 12. There is a polynomial-time many-one reduction from
min-PolynomiallyWeighted-vertex cover compare to min-card-vertex
cover compare. Hence min-card-vertex cover compare is Θp

2-complete.

Proof. Let G = (V,E,w) be an arbitrary polynomially vertex-weighted graph as
occurring in instances of min-PolynomiallyWeighted-vertex cover compare.
We obtain a graph G′ = (V ′, E′) such that

mwvc(G) = min {‖V ′′‖ : V ′′ ⊆ V ′ and V ′′ is a cover of G′}
by defining

V ′ =df {(u, 1), . . . , (u,w(u)) : u ∈ V }
and

E′ =df {{(u, i), (v, j)} : {u, v} ∈ E ∧ 1 ≤ i ≤ w(u) ∧ 1 ≤ j ≤ w(v)} .

The transformation from an instance 〈G1 = (V1, E1, w1), G2 = (V2, E2, w2)〉
of min-PolynomiallyWeighted-vertex cover compare to min-card-vertex
cover compare is accomplished by applying this construction to G1 and G2. �
Note that min-card-vertex cover compare remains Θp

2-complete for instances
satisfying ‖V1‖ = ‖V2‖.
Of course, theorem 12 can be stated in terms of INDEPENDENT SET and CLIQUE
as well.

Theorem 13. max-card-independent set compare and max-card-clique
compare are Θp

2-complete.

3.2 Transcription to ∆p

2: TSPcompare and TSPequality

We transcribe the technique used in subsection 2.1 to ∆p
2 = PNP.

Decision Problem: MAX-LEX-3SAT-COMPARE
Instance: Two 3-CNF formulas F1 and F2 having the same number of clauses
and variables
Question: Is the lexicographic maximum satisfying truth assignment for F1 less
than or equal to that for F2 ?

In appropriate manner we define MAX-LEX-3SAT-EQUALITY.

Theorem 14. MAX-LEX-3SAT-COMPARE and MAX-LEX-3SAT-EQUALITY are com-
plete in ∆p

2 under polynomial time many-one reduction.

For proving the hardness we need the following lemma.

Lemma 15. For every A ∈ ∆p
2 there are B1, B2 ∈ P having the following prop-

erties:

358 Holger Spakowski and Jörg Vogel

1. x ∈ A −→ max {w : 〈x,w〉 ∈ B1} = max {w : 〈x,w〉 ∈ B2}
x /∈ A −→ max {w : 〈x,w〉 ∈ B1} > max {w : 〈x,w〉 ∈ B2}

2. There is a pol. p̃ such that
∧

x,w∈Σ∗ (〈x,w〉 ∈ Bi −→ |w| = p̃(|x|)) (i ∈ {1, 2})
Proof. We start from the characterization of ∆p

2-sets given by Krentel [Kre88]
and define B1 and B2 as in the proof of lemma 3 where the strings
“outM (x, β)p(|x|)β” are substituted by “outM (x, β)β”. �
In order to complete the proof of theorem 14 the desired 3CNF formulas F1 and
F2 can be constr. from B1 and B2 following the ideas of the proof of theorem 2.
We are now able to prove that given two instances of traveling-salesperson, it is
∆p

2-complete to decide if the optimal tour length for the first TSP instance is
not longer than that for the second.
We assume the reader to be familiar with the NP-completeness proof for the
Hamilton path problem given by Machtey/Young [MJ78], p. 244ff.
We define the following problems TSPcompare and TSPequality.
Decision Problem: TSPcompare
Instance: Two matrices

(
M1

ij

)
and

(
M2

ij

)
each consisting of nonnegative

integer “distances” between s cities
Question: Let tk be the length of the optimal tour for Mk

ij (k ∈ {1, 2}).
Holds t1 ≤ t2 ?

Analogously TSPequality is defined.

Theorem 16. TSPcompare and TSPequality are ∆p
2-complete.

Proof. For intermediate steps we need the problems weighted directed
Hamilton circuit compare/equality and weighted undirected Hamilton
circuit compare/equality, which are defined in an obvious way.
Our reduction chain looks as follows:
MAX-LEX-3SAT-COMPARE/EQUALITY ≤p

m weighted directed Hamilton cir-
cuit compare/equality ≤p

m weighted undirected Hamilton circuit com-
pare/equality ≤p

m TSPcompare/equality.
For the reduction from MAX-LEX-3SAT-COMPARE/EQUALITY to weighted
directed Hamilton circuit compare/equality consider the reduction from
3SAT to the Hamilton path problem given in [MJ78]. Identifying the vertices
vn+1 and v1 we get a reduction from 3SAT to directed Hamilton circuit.
Given two 3CNF formulas F1 and F2 let G1/G2 be the directed graphs belonging
to F2/F1 according to the construction in the proof there. For each variable xi

there is a corresponding vertex vi (in both graphs). Each such vertex vi has two
outgoing arcs: the “upper” arc corresponding to occurrences of xi, the “lower”
arc corresponding to occurences of ¬xi. We set the weight of the lower arc of
each vertex vi to 2n−i. All other arcs get weight 0.
The reduction from weighted directed Hamilton circuit compare/equal-
ity to weighted undirected Hamilton circuit compare/equality is ac-
complished by expanding each node into a trio of nodes: for incoming edges,
outgoing edges, and a middle node to force us to go from in to out [MJ78].

Θp
2-Completeness: A Classical Approach for New Results 359

For the reduction from weighted undirected Hamilton circuit compare/e-
quality to TSPcompare/equality
we set

Mk
ij =df

{
wk({i, j}) if {i, j} ∈ Ek

2n otherwise

for undirected weighted graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2). �
3.3 Voting Schemes

A lot of different voting systems are extensively treated in the social choice
literature. For an overview of that field consult e.g. [Fish77].
Bartholdi, Tovey, and Trick [BTT89] initiated the investigation of the computa-
tional complexity of voting systems:
For the Dodgson as well as the Kemeny voting systems they proved that it is
NP-hard to determine if a given candidate is a winner of an election under that
voting scheme.
Hemaspaandra/Hemaspaandra/Rothe [HHR97] improve this lower bound for the
Dodgson voting scheme by proving its Θp

2-hardness. Together with the almost
trivial Θp

2 upper bound (holding for both problems) this allows an exact classi-
fication of the complexity of Dodgson voting.
A similar result for the Kemeny voting scheme has been unknown for a long
time. Applying theorem 2 we are not only able to settle this question showing
the completeness of the Kemeny voting scheme in Θp

2 , but also to simplify the
proof given in [HHR97] considerably.
Hemaspaandra/Hemaspaandra [HH00] stated in an invited talk of the MFCS
2000 conference the result for Kemeny’s voting scheme presented in a paper by
E. Hemaspaandra [Hem00].
An analysis of Dodgson’s and Kemeny’s voting systems reveals that the winner-
problems entail in fact a comparison between to instances of optimization prob-
lems:
Dodgson’s voting scheme: Compare the Dodgson score of a candidate c1

with the one of a second candidate c2.
The Dodgson score of a candidate is the minimum number of switches in
the voters’ preference orders such that this candidate becomes a Condorcet
winner. See [Con85].

Kemeny’s voting scheme: Compare the Kemeny score of a candidate c1 with
the one of a second candidate c2.
The Kemeny score of a candidate c is the sum of the distances of a preference
order P to the preferences of the voters, where P is a preference order with c
in first place minimizing this sum. For the definition of the distance measure
see [BTT89].

Thus both problems are similar in nature to MAX-TRUE-3SAT-COMPARE and
min-card-vertex cover compare.
A complete version of this topic is given in [SV00].

Acknowledgement We want to thank the anonymous referees and J. Rothe
for their valuable hints and suggestions.

360 Holger Spakowski and Jörg Vogel

References

[BTT89] J. Bartholdi III, C.A. Tovey, M.A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare 6 (1989), 157-165

[Con85] M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Paris, 1785

[Cook71] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of
the 3rd IEEE Symp. on the Foundations of Computer Science 1971, 524-535

[Fish77] P.C. Fishburn. Condorcet social choice functions. SIAM J Appl Math, 33
(1977), 469-489

[GJ79] M.R. Garey, D.S.Johnson. Computers and Intractability : A Guide to the The-
ory of NP-Completeness. W.H. Freeman & Company,1979

[HHR97] E. Hemaspaandra, L. Hemaspaandra, J. Rothe. Exact Analysis of Dodgson
Elections: Lewis Carroll’s 1876 Voting System is Complete for Parallel Access to
NP. JACM, 44(6) (1997), 806-825

[Hem00] E. Hemaspaandra. The complexity of Kemeny elections. In preparation.
[HH00] E. Hemaspaandra, L. Hemaspaandra. Computational Politics: Electoral Sys-

tems. Proceedings of MFCS 2000, LNCS 1893, 64-83
[Karp72] R.M. Karp. Reducibility among combinatorial problems, in R.E. Miller and

J.W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,
New York, 85-103

[Kre88] M. Krentel. The complexity of optimization problems. Journal of Computer
and System Sciences, 36 (1988), 490-509

[MJ78] M. Machtey, P. Young. An Introduction to General Theory of Algorithms.
North-Holland, New York, 1978

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994
[SV99] H. Spakowski, J.Vogel. The Operators minCh and maxCh on the Polynomial

Hierarchy. Proceedings of FCT 99, LNCS 1684, 524-535
[SV00] H. Spakowski, J.Vogel. The complexity of voting schemes — a method for

proving completeness for parallel access to NP. Friedrich-Schiller-Universität Jena,
Jena, Germany, TR Math/Inf/00/16.

[Wag87] K.W. Wagner. More complicated questions about maxima an minima, and
some closures of NP. Theoretical Computer Science, 51(1987), 53-80

[Wag90] K.W. Wagner. Bounded query classes. SIAM Journal on Computing,
19(1990), 833-846

Is the Standard Proof System for SAT

P-Optimal?

(Extended Abstract)

Johannes Köbler1 and Jochen Messner2

1 Institut für Informatik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
koebler@informatik.hu-berlin.de

2 Abteilung Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany.
messner@informatik.uni-ulm.de

Abstract. We investigate the question whether there is a (p-)optimal
proof system for SAT or for TAUT and its relation to completeness
and collapse results for nondeterministic function classes. A p-optimal
proof system for SAT is shown to imply (1) that there exists a complete
function for the class of all total nondeterministic multi-valued func-
tions and (2) that any set with an optimal proof system has a p-optimal
proof system. By replacing the assumption of the mere existence of a (p-
)optimal proof system by the assumption that certain proof systems are
(p-)optimal we obtain stronger consequences, namely collapse results for
various function classes. Especially we investigate the question whether
the standard proof system for SAT is p-optimal. We show that this as-
sumption is equivalent to a variety of complexity theoretical assertions
studied before, and to the assumption that every optimal proof system
is p-optimal. Finally, we investigate whether there is an optimal proof
system for TAUT that admits an effective interpolation, and show some
relations between various completeness assumptions.

1 Introduction and Overview

Following Cook and Reckhow [3] we define the notion of an abstract proof system
for a set L ⊆ {0, 1}∗ as follows. A (possibly partial) polynomial-time computable
function h : {0, 1}∗ → {0, 1}∗ with range L = {h(x) | x ∈ {0, 1}∗} is called a
proof system for L. In this setting, an h-proof for the membership of ϕ to L is
given by a string w with h(w) = ϕ. In order to compare the relative strength
of different proof systems for the set TAUT of all propositional tautologies,
Cook and Reckhow introduced the notion of p-simulation. A proof system h
p-simulates a proof system g if g-proofs can be translated into h-proofs in poly-
nomial time, i.e., there is a polynomial-time computable function f such that for
each v in the domain of g, h(f(v)) = g(v). Similarly, h is said to simulate g if for
each g-proof v there is an h-proof w of length polynomial in the length of v with
h(w) = g(v). A proof system for a set L is called (p-)optimal if it (p-)simulates
every proof system for L (cf. [12]). It’s a natural question whether a set L has
a p-optimal (or at least an optimal) proof system. Note that a p-optimal proof

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 361–372, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

362 Johannes Köbler and Jochen Messner

system has the advantage that from any proof in an other proof system one can
efficiently obtain a proof for the same instance in the p-optimal proof system.
Hence, any method that is used to compute proofs in some proof system can be
reformulated to yield proofs in the p-optimal proof system with little overhead.

It is observed in [19,16,11] that (p-)optimal proof systems for certain lan-
guages can be used to define complete sets for certain promise classes. For ex-
ample, if TAUT has an optimal proof system then NP ∩Sparse has a many-one
complete set, and if TAUT as well as SAT have a p-optimal proof system then
NP ∩co-NP has a complete set. We complete this picture here by showing that
already a p-optimal proof system for SAT can be used to derive completeness
consequences.

These results are however unsatisfactory in so far as they provide only neces-
sary conditions for the existence of (p-)optimal proof systems. It appears that a
much stronger assumption likeNP = P is needed to derive a p-optimal proof sys-
tem for TAUT (actually, a somewhat weaker collapse condition suffices, namely
that all tally sets in nondeterministic double exponential time are contained in
deterministic double exponential time; see [11]). If, however, we consider proof
systems with certain additional properties then we can indeed derive collapse
consequences from the assumption that these proof systems are (p-)optimal. We
consider two examples:

The best known proof system is probably the standard proof system for SAT
where proofs are given by a satisfying assignment for the formula in question.
Adapting this proof method to the current setting one obtains the following
natural proof system for SAT:

sat(x) =
{
ϕ if x = 〈α, ϕ〉 and α is a satisfying assignment for ϕ
undef. otherwise.

We consider the question whether sat is p-optimal1 in Sect. 3. It turns out that
the assumption of sat being p-optimal is equivalent to a variety of well studied
complexity theoretic assumptions (which have unlikely collapse consequences
as, e.g., that NP ∩ co-NP = P). Most of these assumptions were listed in [5]
under “Proposition Q” (see also [6]). Proposition Q states for example that any
function in the class NPMVt of total multi-valued functions computable in
nondeterministic polynomial time has a refinement in FP . We further add to
this list the statement that every optimal proof system is p-optimal.

As a second example, we consider in Sect. 4 proof systems that admit an
effective interpolation. Due to Craig’s Interpolation Theorem for Propositional
Logic, for any tautology ϕ → ψ there is a formula φ that uses only common
variables of ϕ and ψ such that ϕ → φ and φ → ψ. A circuit C that computes
the same function as φ is called an interpolant of ϕ → ψ. Following [13] we
say that a proof system h for TAUT admits an effective interpolation if there
is a polynomial p such that for any h-proof w of a formula h(w) = ϕ → ψ, the
formula ϕ → ψ has an interpolant of size at most p(|w|). We show that if TAUT
1 Pavel Pudlák posed this question during the discussion after Zenon Sadowski’s talk
at CSL’98 [20].

Is the Standard Proof System for SAT P-Optimal? 363

has an optimal proof system with this property then any function in NPSV (the
class of single valued functions computable in nondeterministic polynomial time)
has a total extension in FP/poly . The latter is equivalent to the statement that
every disjoint pair of NP-sets is P/poly-separable which in turn implies that
NP ∩ co-NP ⊆ P/poly and that UP ⊆ P/poly .

The (likely) assumption that there are no p-optimal proof systems for SAT (as
well as for TAUT) also has some practical implications due to its connection to
the existence of optimal algorithms (see [12,20,15]). Note that usually a decision
algorithm for SAT also provides a satisfying assignment for any positive instance.
However, if sat is not p-optimal then there is a set S ⊆ SAT of easy instances
(i.e. S ∈ P) for some of which it is hard to produce a satisfying assignment (i.e.,
there is no polynomial time algorithm that produces a satisfying assignment on
all inputs from S, cf. Theorem 1). In fact, a stronger consequence can be derived:
if sat is not p-optimal then there is a non-sparse set of easy instances from SAT
for which it is hard to produce a satisfying assignment (see Theorem 5).

The observations from [19,16,11] that a p-optimal proof system for a set L
implies the existence of a complete set for a certain promise class in fact shows
a relationship between different completeness assumptions. Since the definition
of p-simulation is equivalent to the definition of many-one reducibility between
functions (in the sense of [11]), a proof system for L is p-optimal if and only if
it is many-one complete for the (promise) function class PSL that consists of
all proof systems for L. Depending on the complexity of L, this completeness
assumption can be used to derive the existence of complete sets for various other
promise classes. This observation motivates us to further investigate whether
there are relations between various completeness assumptions. Along this line of
investigation we show in Sect. 5 that

– NPSV has a many-one complete function if and only if there is a strongly
many-one complete disjoint NP-pair,

– a complete function for NPMVt implies a many-one complete pair for the
class of disjoint co-NP pairs, and

– NPSVt = NPMVt ∩NPSV has a many-one complete function if and only
if NP ∩ co-NP has a complete set.

The collapse consequences for the nondeterministic function classes NPMVt

and NPSV that are obtained in Sects 3, 4 from the assumption that sat is p-
optimal, respectively that there is an optimal proof system for TAUT that ad-
mits an effective interpolation, are complemented by the following completeness
consequences (presented in Sect. 6):

– If SAT has a p-optimal proof system then NPMVt has a complete function.
– If TAUT has an optimal proof system then NPSV has a complete function.

Further we show that

– SAT has a p-optimal proof system if and only if any language with an optimal
proof system also has a p-optimal proof system.

364 Johannes Köbler and Jochen Messner

This result again complements the observation from Sect. 3 that sat is p-optimal
if and only if every optimal proof system is p-optimal. As an application we can
weaken the assumption used in [11] to show that NP ∩ co-NP has a complete
set: it suffices to assume that SAT has a p-optimal proof system and TAUT has
an optimal proof system.

Due to the limited space, several results are presented here without proof.

2 Preliminaries

Let Σ = {0, 1}. We denote the cardinality of a set A by ‖A‖ and the length of
a string x ∈ Σ∗ by |x|. A set S is called sparse if the cardinality of S ∩ Σn is
bounded above by a polynomial in n. FP denotes the class of (partial) functions
that can be computed in polynomial time. We use 〈·, · · · , ·〉 to denote a standard
polynomial-time computable tupling function. The definitions of standard com-
plexity classes like P , NP , etc. can be found in books like [1,17]. For a class C
of sets we call a pair (A,B) of disjoint sets A,B ∈ C a disjoint C-pair. If for a
class D, and some D ∈ D it holds A ⊆ D, and B ∩D = ∅ we call the pair (A,B)
D-separable.

A nondeterministic polynomial time Turing machine (NPTM, for short) is a
Turing machine N such that for some polynomial p, every accepting path of N
on any input of length n is at most of length p(n). A nondeterministic transducer
is a nondeterministic Turing machine T with a write-only output tape. On input
x, T outputs y ∈ Σ∗ (in symbols: T (x) �→ y) if there is an accepting path on
input x along which y is written on the output tape. Hence, the function f
computed by T on Σ∗ could be multi-valued and partial. Using the notation
of [2,23] we denote the set {y | f(x) �→ y} of all output values of T on input
x by set-f(x). NPMV denotes the class of all multi-valued, partial functions
computable by some nondeterministic polynomial-time transducer.NPSV is the
class of functions f in NPMV that are single-valued, i.e. ‖set-f(x)‖ ≤ 1. (thus,
a single-valued multi-valued function is a function in the usual sense, and we
use f(x) to denote the unique string in set-f(x)). The domain of a multi-valued
function is the set of those inputs x where set-f(x) �= ∅. A function is called total
if its domain is Σ∗. For a function class F we denote by Ft the class of total
functions in F . We use NPMVt ⊆c FP to indicate that for any g ∈ NPMVt

there is a total function f ∈ FP that is a refinement of g, i.e. f(x) ∈ set-g(x)
for all x ∈ Σ∗. We say that a multi-valued function h many-one reduces to a
multi-valued function g if there is a function f ∈ FP such that for every x ∈ Σ∗

set-g(f(x)) = set-h(x).
For a function class F a function h is called F-invertible if there is a function

f ∈ F that inverts h, i.e. h(f(y)) = y for each y in the range of h. A function h
is honest if for some polynomial p, p(|h(x)|) ≥ |x| holds for all x in the domain
of h. We call a function g an extension of a function f if f(x) = g(x) for any x
in the domain of f . A function r : IN → IN is called super-polynomial if for each
polynomial p, r(n) > p(n) for almost every n ≥ 0. A set B ∈ P with B ⊆ L is
called a P-subset of L.

Is the Standard Proof System for SAT P-Optimal? 365

3 Q and the P-Optimality of sat

In [5] the following statements were all shown to be equivalent. There, Q is de-
fined to be the proposition that one (and consequently each) of these statements
is true. In this section we show that Q is also equivalent to the p-optimality of
sat .

Theorem 1 ([5], cf. [6]). The following statements are equivalent

1. For each NPTM N that accepts SAT there is a function f ∈ FP such that
for each α encoding an accepting path of N on input ϕ, f(α) is a satisfying
assignment of ϕ.

2. Each honest function f ∈ FP with range Σ∗ is FP-invertible.
3. NPMVt ⊆c FP.
4. For all P-subsets S of SAT there exists a function g ∈ FP such that for all

ϕ ∈ S, g(ϕ) is a satisfying assignment of ϕ.

Clearly, each nondeterministic Turing machine N corresponds to a proof
system h with h(α) = ϕ if α encodes an accepting path of N on input ϕ. Now
h is honest if, and only if, N is a NPTM. This leads to the observation that
Statement 1 in Theorem 1 is equivalent to the condition that sat p-simulates
every honest proof system for SAT. Hence, we just need to delete the term
‘polynomial-time’ in the Statement 1 of Theorem 1 to obtain the desired result
that Q is equivalent to the p-optimality of sat . That this is possible without
changing the truth of the theorem can be shown by a padding argument.

Theorem 2. The following statements are equivalent.

1. For each NPTM N that accepts SAT there is a function f ∈ FP such that
for each α encoding an accepting path of N on input ϕ, f(α) is a satisfying
assignment of ϕ.

2. For each nondeterministic Turing machine N that accepts SAT there is a
function f ∈ FP such that for each α encoding an accepting path of N on
input ϕ, f(α) is a satisfying assignment of ϕ.

3. sat is a p-optimal proof system for SAT.

It is known that the assumption NP = P implies NPMVt ⊆c FP which
in turn implies NP ∩ co-NP = P (cf. [24]). Also, in [9] it has been shown that
the converse of these implications is not true in suitable relativized worlds. The
consequence NP ∩ co-NP = P also shows that the assumption that sat is p-
optimal is presumably stronger than the assumption that SAT has a p-optimal
proof system. Namely the p-optimality of sat implies that NP ∩ co-NP = P ,
whereas the existence of a p-optimal proof system follows already (see [11]) if
any super-tally set in ΣP

2 belongs to P (here, any set L ⊆ {022n | n ≥ 0} is
called super-tally).

The assumption that sat is a p-optimal proof system also has an effect on
various reducibility degrees, as has been mentioned in [5] for Karp and Levin

366 Johannes Köbler and Jochen Messner

reducibility. Also in [14] it is shown that NPMVt ⊆c FP if and only if γ-
reducibility equals polynomial time many-one reducibility. Furthermore it is
shown in [4] that Statement 4 of Theorem 1 is equivalent to the assumption
that the approximation class APX is closed under L-reducibility (see [4] for
definitions).

The equivalence between the p-optimality of sat and NPMVt ⊆c FP di-
rectly leads to a proof of the following theorem.

Theorem 3. The following statements are equivalent.

1. sat is p-optimal.
2. For any language L and all proof systems h and g for L

h p-simulates g if and only if h simulates g

(i.e., the corresponding quasi-orders coincide).
3. Every optimal proof system is p-optimal.

In [15] it is observed that given a p-optimal proof system h for a language
L the problem to find an h-proof for y ∈ L is not much harder than deciding
L, i.e. we can transform each deterministic Turing machine M with L(M) = L
to a deterministic Turing machine M ′ that on input y ∈ L yields an h-proof of
y in timeM ′(y) ≤ p(|y| + timeM (y)), for some polynomial p determined by M .
Using this observation and the equivalences in Theorem 1 and 2 we obtain the
following result: sat is p-optimal if and only if any deterministic Turing machine
M that accepts SAT can be converted to a deterministic Turing machine that
computes a satisfying assignment for any formula ϕ ∈ SAT and runs not much
longer than M on input ϕ.

Theorem 4. The following statements are equivalent.

1. sat is p-optimal.
2. For any deterministic Turing machine M that accepts SAT, there is a deter-

ministic Turing machine M ′ and a polynomial p such that for every ϕ ∈ SAT,
M ′ produces a satisfying assignment of ϕ in timeM ′(ϕ) ≤ p(|ϕ|+ timeM (ϕ))
steps.

Under the assumption that sat is not p-optimal it follows from Theorem 4
that there is a Turing machine M that decides SAT such that any machine M ′

that on input ϕ ∈ SAT has to produce a satisfying assignment for ϕ is much
slower on some SAT instances. In some sense this appears counterintuitive as
probably all SAT algorithms used in praxis produce a satisfying assignment in
case the input belongs to SAT. Of course it follows from Theorem 4 that M is
superior to any such M ′ on an infinite set of instances. As shown in the following
theorem there is a deterministic Turing machine M accepting SAT that is more
than polynomially faster than any deterministic transducer M ′ that produces
satisfying assignments on a fixed non-sparse set of SAT instances. The result is
due to the paddability of SAT, its proof uses ideas from the theory of complexity
cores (see [21]).

Is the Standard Proof System for SAT P-Optimal? 367

Theorem 5. The following statements are equivalent.

1. sat is not p-optimal.
2. There is a P-subset S of SAT (i.e. there is a Turing machine M accepting

SAT that has a polynomial time-bound on instances from S), a non-sparse
subset L of S, and a super-polynomial function f such that for any determin-
istic Turing machine M ′ that on input of any ϕ ∈ L produces a satisfying
assignment of ϕ it holds timeM ′(ϕ) > f(|ϕ|) for almost every ϕ ∈ L.

4 Collapse of NPSV and Effective Interpolation

In [22] the following hypothesis (called H2) has been examined.

For every polynomial time uniform family of formulas {ϕn, ψn} such
that for every n, ϕn and ψn have n common variables and ϕn → ψn is
a tautology, there is a polynomial p and a circuit family {Cn} where for
each n, Cn is of size at most p(n) has n inputs and is an interpolant of
ϕn → ψn.

Theorem 6 ([22]). The following statements are equivalent.

1. H2.
2. Every disjoint pair of NP-sets is P/poly-separable.
3. Every function in NPSV has a total extension in FP/poly.

As mentioned in [22] this in turn implies that H2 implies NP∩co-NP ⊆ P/poly
and UP ⊆ P/poly .

In [5] and [6] also a statement called Q′ that is implied by Q is examined.
Q′ is equivalent to the statement that all disjoint co-NP-pairs are P-separable.
Thus as proposed in [22] H2 is a nonuniform version of the dual condition to Q′,
namely that every disjoint pair of NP-sets is P-separable.

It is observed in [13] that extended Frege proof systems do not admit an ef-
fective interpolation if the RSA cryptosystem is secure. Partly generalizing this
observation, one can state that the existence of an honest injective function in
FP that is not FP/poly-invertible (i.e., a one-way function that is secure against
FP/poly) implies the existence of a proof system for TAUT that does not admit
an effective interpolation. Notice that each injective function in FP is invert-
ible by a NPSV-function. Thus the assumption that each NPSV function has
a total extension in FP/poly implies that every injective function is FP/poly-
invertible. As the former assumption (that is equivalent to H2 by Theorem 6)
implies NP ∩ co-NP ⊆ P/poly and the latter is equivalent to UP ⊆ P/poly
(cf. [10,7]) it is presumably stronger. In the following Theorem we observe that
H2, respectively the statement that every function in NPSV has a total exten-
sion in FP/poly is true if, and only if, every proof system for TAUT admits an
effective interpolation.

368 Johannes Köbler and Jochen Messner

Theorem 7. The following statements are equivalent.

1. Every function in NPSV has a total extension in FP/poly.
2. Every proof system for TAUT admits an effective interpolation.
3. For any set S ⊆ TAUT, S ∈ NP, there is a polynomial p, such that any

formula ϕ → ψ ∈ S has an interpolant of size at most p(|ϕ → ψ|).

Proof. The implication 2 =⇒ H2 is easy to see, as for every polynomial time
uniform family of tautologies ϕn → ψn one may define a proof system h for
TAUT that has a short proof for any tautology of this family. Thus 2 =⇒ 1
using Theorem 6.

The proof of the implication 1 =⇒ 3 is obtained by extending an idea from
[22] that was used to prove the implication 3 =⇒ 1 of Theorem 6. Let S ⊆
TAUT, S ∈ NP . Let f be a function such that for any formula ϕ ∈ S, ϕ =
ϕ0(x, y) → ϕ1(x, z) (where x, y, z denote vectors of variables), it holds

f(〈α, ϕ〉) =
{
1 if for some β, ϕ0(α, β) holds
0 if for some γ, ¬ϕ1(α, γ) holds.

Otherwise, and for any other input let f be undefined. First observe that f is well
defined, i.e. that f is single valued. This is due to the fact that ϕ = ϕ0(x, y) →
ϕ1(x, z) ∈ TAUT. Further, f can be computed by a nondeterministic machine
N that first (in deterministic polynomial time) validates that the input is of the
appropriate form 〈α, ϕ〉, ϕ = ϕ0(x, y) → ϕ1(x, z). Then N guesses a certificate
for ϕ ∈ S and, if successful, guesses some string w. Now if w is of an appropriate
length and if ϕ0(α,w) holds then N outputs 1, if ϕ1(α,w) holds, N outputs
0. Hence f ∈ NPSV . Assuming 1, f has a total extension in FP/poly . Thus
there is a polynomial p and for any n ≥ 0 a circuit Cn of size at most p(n) such
that for any tuple v = 〈α, ϕ〉 of length n in the domain of f , Cn(v) = f(v).
Fixing the input bits of Cn that belong to the formula ϕ we obtain a circuit Cϕ

with Cϕ(α) = Cn(〈α, ϕ〉) = f(〈α, ϕ〉) and thus Cϕ is of size polynomial in |ϕ|.
Now observe that Cϕ is an interpolant for the formulas ϕ0(x, y) and ϕ1(x, z). If
ϕ0(α, y) is satisfiable then Cϕ(α) = 1, and if Cϕ(α) = 1 then for no γ it holds
¬ϕ1(α, γ) and therefore ϕ1(α, z) is a tautology.

Finally the proof of the implication 3 =⇒ 2 is obtained using padding tech-
niques. We omit the details due to the limited space. ��

It is easy to see that a proof system g admits an effective interpolation if there
is a proof system h that simulates g, and h admits an effective interpolation.
Hence, any proof system for TAUT admits an effective interpolation if there is
an optimal proof system for TAUT that admits an effective interpolation. As a
corollary we obtain

Corollary 8. If there is an optimal proof system for TAUT that admits an
effective interpolation then H2 holds.

Is the Standard Proof System for SAT P-Optimal? 369

5 Relations between Completeness Assumptions

Using the characterization NPSV t = FPNP∩co-NP
t [23,8] we obtain the follow-

ing result

Theorem 9. NP∩co-NP has a many-one complete set iff NPSVt has a many-
one complete function.

Now let us consider the function class NPSV . In the same way as NPSVt

corresponds to the language class NP∩co-NP, the function class NPSV corre-
sponds to the class of all disjoint NP-pairs. In fact, if we denote the class of all
0,1-valued functions in NPSV by NPSV{0,1} then any function h ∈ NPSV{0,1}
can be identified with the NP-pair (A0, A1) where Ab = {x ∈ Σ∗ | h(x) �→ b}.

Razborov [18] introduced a notion of many-one reducibility between disjoint
NP-pairs a stronger version of which was studied in [11]. Let A0, A1, B0, B1

be NP-sets with A0 ∩ A1 = B0 ∩ B1 = ∅. The pair (A0, A1) (strongly) many-
one reduces to (B0, B1) if there is a function f ∈ FP such that f(Ab) ⊆ Bb

(f−1(Bb) = Ab, respectively) for b ∈ {0, 1}. Actually, it is easy to see that f is
a many-one reduction between two functions in NPSV{0,1} if and only if f is a
strong many-one reduction between the corresponding disjoint NP-pairs. Thus,
the class of disjoint NP-pairs has a strongly many-one complete pair if and only
if NPSV{0,1} has a many-one complete function. As shown in the next theorem,
this is even equivalent to the assumption that NPSV has a many-one complete
function.

Theorem 10. The following statements are equivalent.

1. NPSV has a many-one complete function.
2. NPSV{0,1} has a many-one complete function.
3. There is a strongly many-one complete disjoint NP-pair.

Proof. (Sketch). Implication 1 =⇒ 2 is easy to prove, and the equivalence of 2
and 3 is clear by the preceding discussion. To see that 2 implies 1 we observe that
NPSV can be characterized as FPNPSV{0,1} where the value Mf (x) computed
by the deterministic oracle transducer M on input x is only defined if all oracle
queries belong to the domain of the functional oracle f . ��

We conclude this section by observing that the class of disjoint co-NP pairs
corresponds to the class NPbVt of all 0,1-valued functions in NPMVt studied
in [5] (with the disjoint co-NP-pair (A0, A1) associate the function h ∈ NPbVt

defined by set-h(x) = {b | x /∈ Ab}). Similar to the implication 1 =⇒ 3 in
Theorem 10 the following theorem can be proved.

Theorem 11. If NPMVt has a many-one complete function then there exists
a strongly many-one complete disjoint co-NP-pair.

We leave it open whether the reverse implication also holds.

370 Johannes Köbler and Jochen Messner

6 Existence of (P-)Optimal Proof Systems

In Theorem 3 it is observed that sat is p-optimal iff every optimal proof system
is p-optimal. Although the assumption of the mere existence of a p-optimal proof
system for SAT is presumably weaker than the assumption that sat is p-optimal,
it is still equivalent to a quite similar statement, namely that any set with an
optimal proof system has a p-optimal proof system. For the proof of this result
we use the following observation from [11].

Lemma 12 ([11]). If L has a (p-)optimal proof system, and T ≤p
m L then T

has a (p-)optimal proof system (respectively).

Theorem 13. The following statements are equivalent.

1. SAT has a p-optimal proof system.
2. Any language L that has an optimal proof system also has a p-optimal proof

system.

Proof. Clearly 2 =⇒ 1, as SAT has an optimal proof system. To see the inverse
implication assume that SAT has a p-optimal proof system. Let TL (cf. [11,15]) be
the following language consisting of tuples 〈M,x, 0s〉 where M is a deterministic
Turing transducer, s ≥ 0 and x ∈ Σ∗.

TL = {〈M,x, 0s〉 | if timeM (x) ≤ s then M(x) ∈ L}.
Notice that TL is many-one reducible to L (without restriction assume L �= ∅).
Hence, the assumption that there is an optimal proof system for L implies that
TL has an optimal proof system, say h. Let

S = {〈〈M,x, 0s〉, 0l〉 | ∃w, |w| ≤ l, h(w) = 〈M,x, 0s〉}.
Clearly S ∈ NP . Therefore by assumption there is a p-optimal proof system
system g for S. Let now f be the following proof system.

f(w) =
{
y if g(w) = 〈〈M,x, 0s〉, 0l〉, timeM (x) ≤ s, and M(x) = y ,
undef. otherwise.

First notice that y ∈ L if f(w) = y. This is due to the fact that g(w) =
〈〈M,x, 0s〉, 0l〉 implies 〈〈M,x, 0s〉, 0l〉 ∈ S which in turn implies 〈M,x, 0s〉 ∈ TL.
We now show that f p-simulates every proof system f ′ for L. Assume that
f ′ is computed by the transducer Mf ′ in polynomial time p(n). Observe that
〈Mf ′ , x, 0p(|x|)〉 ∈ TL for any x ∈ Σ∗. Hence, one may define a proof system
for TL such that for any x the tuple 〈Mf ′ , x, 0p(|x|)〉 has the short proof 1x.
Consequently, due to the optimality of h, there is a polynomial q such that
〈Mf ′ , x, 0p(|x|)〉 has an h-proof of size ≤ q(|x|). Hence 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 ∈
S for any x, and one may define a proof system g′ for S with g′(1x) =
〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 for any x. As g is p-optimal, g p-simulates g′, i.e. there
is a function t ∈ FP such that g(t(1x)) = g′(1x) = 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉.
Observe now that f(t(1x)) = f ′(x) for any x. Hence f p-simulates f ′. ��

Is the Standard Proof System for SAT P-Optimal? 371

As shown in [11], the assumption that SAT and TAUT both have p-optimal
proof systems implies that NP ∩ co-NP has a many-one complete set. In fact,
due to Theorem 13 it suffices to assume that SAT has a p-optimal proof system
and TAUT only has an optimal proof system. Together with Theorem 9 we
obtain

Corollary 14. If SAT has a p-optimal and TAUT has an optimal proof system
then NP ∩ co-NP has a many-one complete set, and NPSV t has a many-one
complete function.

It is observed in [18] that the existence of an optimal proof system for TAUT
implies the existence of a many-one complete pair for the class of disjoint NP-
pairs. In [11] it is shown that the same assumption allows one to infer the exis-
tence of a strongly many-one complete disjoint NP-pair which by Theorem 10
implies that NPSV has a many-one complete function.

Corollary 15. If TAUT has an optimal proof system then NPSV has a many-
one complete function.

Next we observe that a p-optimal proof system for SAT implies a complete
function for the class NPMVt. The proof uses ideas from [11] (in fact, the only
extension is that we are dealing with multi-valued functions here).

Theorem 16. If SAT has a p-optimal proof system then NPMVt has a many-
one complete function.

By Theorem 11 we obtain

Corollary 17. If SAT has a p-optimal proof system then there exists a strongly
many-one complete disjoint co-NP-pair.

7 Conclusion

We showed that the assumption that certain proof systems are (p-)optimal can
be used to derive collapse results. Also we presented some relations between
completeness assumptions for different classes. It would be interesting to know
whether these observations could be extended to further proof systems and
promise classes.

References

1. José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity I.
Springer-Verlag, 2nd edition, 1995.

2. Ronald V. Book, Timothy J. Long, and Alan L. Selman. Quantitative relativiza-
tions of complexity classes. SIAM Journal on Computing, 13(3):461–487, 1984.

3. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

4. Pierluigi Crescenzi, Viggo Kann, Riccardo Silvestri, and Luca Trevisan. Structure
in approximation classes. SIAM Journal on Computing, 28(5):1759–1782, 1999.

372 Johannes Köbler and Jochen Messner

5. Stephen A. Fenner, Lance Fortnow, Ashish V. Naik, and John D. Rogers. In-
verting onto functions. In Proceedings of the 11th Conference on Computational
Complexity, pages 213–222. IEEE, 1996.

6. Lance Fortnow and John D. Rogers. Separability and one-way functions. In
Proceedings of the 5th International Symposium on Algorithms and Computation,
LNCS #834, pages 396–404. Springer-Verlag, 1994.

7. Joachim Grollmann and Alan L. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

8. Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman.
Computing solutions uniquely collapses the polynomial hierarchy. In Proceedings
of the 5th International Symposium on Algorithms and Computation, LNCS #834,
pages 56–64. Springer-Verlag, 1994.

9. Russel Impagliazzo and Moni Naor. Decision trees and downward closures (ex-
tended abstract). In Proceedings of the Third Conference on Structure in Com-
plexity Theory, pages 29–38. IEEE, 1988.

10. Ker-I Ko. On some natural complete operators. Theoretical Computer Science,
37:1–30, 1985.

11. Johannes Köbler and Jochen Messner. Complete problems for promise classes
by optimal proof systems for test sets. In Proceedings of the 13th Conference on
Computational Complexity, pages 132–140. IEEE, 1998.

12. Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of
first order theories and the complexity of computations. The Journal of Symbolic
Logic, 54(3):1063–1079, 1989.

13. Jan Kraj́ıček and Pavel Pudlák. Some consequences of cryptographical conjectures
for S1

2 and EF . In D. Leivant, editor, Logic and Computational Complexity, LNCS
#960, pages 210–220. Springer-Verlag, 1995.

14. Timothy J. Long. On γ-reducibility versus polynomial time many-one reducibility.
Theoretical Computer Science, 14:91–101, 1981.

15. Jochen Messner. On optimal algorithms and optimal proof system. In Proceedings
of the 16th Symposium on Theoretical Aspects of Computer Science, LNCS #1563.
Springer-Verlag, 1999.

16. Jochen Messner and Jacobo Torán. Optimal proof systems for propositional logic
and complete sets. In Proceedings of the 15th Symposium on Theoretical Aspects
of Computer Science, LNCS #1373, pages 477–487. Springer-Verlag, 1998.

17. Christos H. Papadimitriou. Computatational Complexity. Addison-Wesley, 1994.
18. Alexander A. Razborov. On provably disjoint NP-pairs. Technical Report RS-94-

36, Basic Research in Computer Science Center, Aarhus, 1994.
19. Zenon Sadowski. On an optimal quantified propositional proof system and a com-

plete language for NP ∩ co-NP . In Proceedings of the 11th International Sym-
posium on Fundamentals of Computing Theory, LNCS #1279, pages 423–428.
Springer-Verlag, 1997.

20. Zenon Sadowski. On an optimal deterministic algorithm for SAT. In Proceedings
of the 12th Annual Conference of the European Association for Computer Science
Logic, CSL ’98, LNCS #1584, pages 179–187. Springer-Verlag, 1999.

21. Uwe Schöning. Complexity and Structure, LNCS #211. Springer-Verlag, 1985.
22. Uwe Schöning and Jacobo Torán. A note on the size of craig interpolants, 1996.

Unpublished manuscript.
23. Alan L. Selman. A taxonomy of complexity classes of functions. Journal of Com-

puter and System Sciences, 48(2):357–381, 1994.
24. Leslie G. Valiant. Relative complexity of checking and evaluating. Information

Processing Letters, 5(1):20–23, 1976.

A General Framework for Types in Graph

Rewriting�

Barbara König

Fakultät für Informatik, Technische Universität München
(koenigb@in.tum.de)

Abstract. A general framework for typing graph rewriting systems is
presented: the idea is to statically derive a type graph from a given
graph. In contrast to the original graph, the type graph is invariant
under reduction, but still contains meaningful behaviour information.
We present conditions, a type system for graph rewriting should satisfy,
and a methodology for proving these conditions. In two case studies it
is shown how to incorporate existing type systems (for the polyadic π-
calculus and for a concurrent object-oriented calculus) into the general
framework.

1 Introduction

In the past, many formalisms for the specification of concurrent and distributed
systems have emerged. Some of them are aimed at providing an encompassing
theory: a very general framework in which to describe and reason about intercon-
nected processes. Examples are action calculi [18], rewriting logic [16] and graph
rewriting [3] (for a comparison see [4]). They all contain a method of building
terms (or graphs) from basic elements and a method of deriving reduction rules
describing the dynamic behaviour of these terms in an operational way.

A general theory is useful, if concepts appearing in instances of a theory can
be generalised, yielding guidelines and relieving us of the burden to prove univer-
sal concepts for every single special case. An example for such a generalisation
is the work presented for action calculi in [15] where a method for deriving a
labelled transition semantics from a set of reaction rules is presented. We concen-
trate on graph rewriting (more specifically hypergraph rewriting) and attempt
to generalise the concept of type systems, where, in this context, a type may be
a rather complex structure.

Compared to action calculi1 and rewriting logic, graph rewriting differs in a
significant way in that connections between components are described explicitly
(by connecting them by edges) rather than implicitly (by referring to the same
channel name). We claim that this feature—together with the fact that it is easy

� Research supported by SFB 342 (subproject A3) of the DFG.
1 Here we mean action calculi in their standard string notation. There is also a graph

notation for action calculi, see e.g. [7].

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 373–384, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

374 Barbara König

to add an additional layer containing annotations and constraints to a graph—
can simplify the design of a type system and therefore the static analysis of a
graph rewriting system.

After introducing our model of graph rewriting and a method for annotating
graphs, we will present a general framework for type systems where both—
the expression to be typed and the type itself—are hypergraphs and will show
how to reduce the proof obligations for instantiations of the framework. We
are interested in the following properties: correctness of a type system (if an
expression has a certain type, then we can conclude that this expression has
certain properties), the subject reduction property (types are invariant under
reduction) and compositionality (the type of an expression can always be derived
from the types of its subexpressions). Parts of the proofs of these properties can
already be conducted for the general case.

We will then show that our framework is realistic by instantiating it to two
well-known type systems: a type system avoiding run-time errors in the polyadic
π-calculus [17] and a type system avoiding “message not understood”-errors in
a concurrent object-oriented setting. A third example enforcing a security policy
for untrustworthy applets is included in the full version [11].

2 Hypergraph Rewriting and Hypergraph Annotation

We first define some basic notions concerning hypergraphs (see also [6]) and a
method for inductively constructing hypergraphs.

Definition 1. (Hypergraph) Let L be a fixed set of labels. A hypergraph H =
(VH , EH , sH , lH , χH) consists of a set of nodes VH , a set of edges EH , a con-
nection mapping sH : EH → V ∗

H , an edge labelling lH : EH → L and a string
χH ∈ V ∗

H of external nodes. A hypergraph morphism φ : H → H ′ (consisting
of φV : VH → VH′ and φE : EH → EH′) satisfies2 φV (sH(e)) = sH′ (φE(e))
and lH(e) = lH′(φE(e)). A strong morphism (denoted by the arrow �) addition-
ally preserves the external nodes, i.e. φV (χH) = χH′ . We write H ∼= H ′ (H is
isomorphic to H ′) if there is a bijective strong morphism from H to H ′.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an
edge e of H is ar(e) = |sH(e)|. External nodes are the interface of a hypergraph
towards its environment and are used to attach hypergraphs.

Notation: We call a hypergraph discrete, if its edge set is
empty. By m we denote a discrete graph of arity m ∈ lN
with m nodes where every node is external (see Figure (a)
to the right, external nodes are labelled (1), (2), . . . in
their respective order).
The hypergraphH = [l]n contains exactly one edge e with
label l where sH(e) = χH , ar(e) = n and3VH = Set(χH)
(see (b), nodes are ordered from left to right).

(a) ... (m)(1)

(b) ...

l

(1) (n)

2 The application of φV to a string of nodes is defined pointwise.
3 Set(s̃) is the set of all elements of a string s̃

A General Framework for Types in Graph Rewriting 375

The next step is to define a method (first introduced in [10]) for the annota-
tion of hypergraphs with lattice elements and to describe how these annotations
change under morphisms. We use annotated hypergraphs as types where the
annotations can be considered as extra typing information, therefore we use the
terms annotated hypergraph and type graph as synonyms.

Definition 2. (Annotated Hypergraphs) Let A be a mapping assigning a
lattice A(H) = (I,≤) to every hypergraph and a function Aφ : A(H) → A(H ′)
to every morphism φ : H → H ′. We assume that A satisfies:

Aφ ◦ Aψ = Aφ◦ψ AidH
= idA(H) Aφ(a ∨ b) = Aφ(a) ∨Aφ(b) Aφ(⊥) = ⊥

where ∨ is the join-operation, a and b are two elements of the lattice A(H) and
⊥ is its bottom element.

If a ∈ A(H), then H [a] is called an annotated hypergraph. And φ : H [a] →A
H ′[a′] is called an A-morphism if φ : H → H ′ is a hypergraph morphism and
Aφ(a) ≤ a′. Furthermore H [a] and H ′[a′] are called isomorphic if there is a
strong bijective A-morphism φ with Aφ(a) = a′ between them.

Example: We consider the following annotation mapping A: let
({false, true},≤) be the boolean lattice where false < true. We define A(H)
to be the set of all mappings from VH into {false, true} (which yields a lattice
with pointwise order). By choosing an element of A(H) we fix a subset of the
nodes. So let a : VH → {false, true} be an element of A(H) and let φ : H → H ′,
v′ ∈ VH . We define: Aφ(a) = a′ where a′(v′) =

∨
φ(v)=v′ a(v). That is, if a node

v with annotation true is mapped to a node v′ by φ, the annotation of v′ will
also be true.

From the point of view of category theory, A is a functor from the category
of hypergraphs and hypergraph morphisms into the category of lattices and
join-morphisms (i.e. functions preserving the join operation of the lattice).

We now introduce a method for attaching (annotated) hypergraphs with a
construction plan consisting of discrete graph morphisms.

Definition 3. (Hypergraph Construction) Let H1[a1], . . . , Hn[an] be anno-
tated hypergraphs and let ζi : mi → D, 1 ≤ i ≤ n be hypergraph morphisms
where ar(Hi) = mi and D is discrete. Furthermore let φi : mi � Hi be the
unique strong morphisms.

For this construction we assume that the node and edge sets of H1, . . . , Hn
and D are pairwise disjoint. Furthermore let ≈ be the smallest equivalence on
their nodes satisfying ζi(v) ≈ φi(v) if 1 ≤ i ≤ n, v ∈ Vmi

. The nodes of the
constructed graph are the equivalence classes of ≈. We define

D
n

i=1
(Hi, ζi) = ((VD ∪

⋃n

i=1
VHi)/≈,

⋃n

i=1
EHi , sH , lH , χH)

where sH(e) = [v1]≈ . . . [vk]≈ if e ∈ EHi and sHi(e) = v1 . . . vk. Furthermore
lH(e) = lHi(e) if e ∈ EHi . And we define χH = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk.

If n = 0, the result of the construction is D itself.

376 Barbara König

We construct embeddings φ : D � H and ηi : Hi → H by mapping every
node to its equivalence class and every edge to itself. Then the construction of
annotated graphs can be defined as follows:

D
n

i=1
(Hi[ai], ζi) =

(
D
n

i=1
(Hi, ζi)

) [∨n

i=1
Aηi(ai)

]

In other words: we join all graphs D,H1, . . . , Hn and fuse exactly the nodes
which are the image of one and the same node in the mi, χD becomes the new
sequence of external nodes. Lattice annotations are joined if the annotated nodes
are merged. In terms of category theory, D

n

i=1
(Hi[ai], ζi) is the colimit of the

ζi and the φi regarded as A-morphisms (D and the mi are annotated with the
bottom element ⊥). We do not mention this fact in the rest of the paper, but
it is used extensively in the proofs (for the proofs and several examples see the
full version [11]).

We also use another, more intuitive notation for graph
construction. Let ζi : mi → D, 1 ≤ i ≤ n.
Then we depict D

n

i=1
(Hi, ζi) by drawing the hypergraph

(VD, {e1, . . . , en}, sH , lH , χD) where sH(ei) = ζi(χmi
) and

lH(ei) = Hi.

...

H1 H2

(n)(1)

Example: we can draw n
2

i=1
(Hi, ζi) where ζ1, ζ2 : n � n as in the picture

above (note that the edges have dashed lines). Here we fuse the external nodes of
H1 and H2 in their respective order and denote the resulting graph by H12H2.
If there is an edge with a dashed line labelled with an edge [l]n we rather draw
it with a solid line and label it with l (see e.g. the second figure in section 4.1).

Definition 4. (Hypergraph Rewriting) Let R be a set of pairs (L,R) (called
rewriting rules), where the left-hand side L and the right-hand side R are both
hypergraphs of the same arity. Then →R is the smallest relation generated by
the pairs of R and closed under hypergraph construction.

In our approach we generate the same transition system as in the double-
pushout approach to graph rewriting described in [2] (for details see [13]).

We need one more concept: a linear mapping which is an inductively defined
transformation, mapping hypergraphs to hypergraphs and adding annotation.

Definition 5. (Linear Mapping) A function from hypergraphs to hypergraphs
is called arity-preserving if it preserves arity and isomorphism classes of hyper-
graphs.

Let t be an arity-preserving function that maps hypergraphs of the form [l]n to
annotated hypergraphs. Then t can be extended to arbitrary hypergraphs by defin-
ing t(D

n

i=1
([li]ni , ζi)) = D

n

i=1
(t([li]ni), ζi) and is then called a linear mapping.

3 Static Analysis and Type Systems for Graph Rewriting

Having introduced all underlying notions we now specify the requirements for
type systems. We assume that there is a fixed set R of rewrite rules, an anno-
tation mapping A, a predicate X on hypergraphs (representing the property we

A General Framework for Types in Graph Rewriting 377

want to check) and a relation � with the following meaning: if H �T where H is
a hypergraph and T a type graph (annotated wrt. to A), then H has type T . It
is required that H and T have the same arity.

We demand that � satisfies the following conditions: first, a type should con-
tain information concerning the properties of a hypergraph, i.e. if a hypergraph
has a type, then we can be sure that the property X holds.

H � T ⇒ X(H) (correctness) (1)

During reduction, the type stays invariant.

H � T ∧ H →R H ′ ⇒ H ′ � T (subject reduction property) (2)

From (1) and (2) we can conclude that H �T and H →∗
R H ′ imply X(H ′), that

is X holds during the entire reduction.
The strong A-morphisms introduced in Definition 2 impose a preorder on

type graphs. It should always be possible to weaken the type with respect to
that preorder.

H � T ∧ T �A T ′ ⇒ H � T ′ (weakening) (3)

We also demand that the type system is compositional, i.e a graph has a type if
and only if this type can be obtained by typing its subgraphs and combining these
types. We can not sensibly demand that the type of an expression is obtained
by combining the types of the subgraphs in exactly the same way the expression
is constructed, so we introduce a partial arity-preserving mapping f doing some
post-processing.

∀ i:Hi � Ti ⇒ D
n

i=1
(Hi, ζi) � f(D

n

i=1
(Ti, ζi))

D
n

i=1
(Hi, ζi) � T ⇒ ∃Ti: (Hi � Ti and f(D

n

i=1
(Ti, ζi))�A T)

(compositionality) (4)

A last condition—the existence of minimal types—may not be strictly needed
for type systems, but type systems satisfying this condition are much easier to
handle.

H typable ⇒ ∃T : (H � T ∧ (H � T ′ ⇐⇒ T �A T ′)) (minimal types) (5)

Let us now assume that types are computed from graphs in the following
way: there is a linear mapping t, such that H � f(t(H)), if f(t(H)) is defined,
and all other types of H are derived by the weakening rule, i.e. f(t(H)) is the
minimal type of H .

The meaning of the mappings t and f can be explained as follows: t is a
transformation local to edges, abstracting from irrelevant details and adding
annotation information to a graph. The mapping f on the other hand, is a global
operation, merging or removing parts of a graph in order to anticipate future
reductions and thus ensure the subject reduction property. In the example in
section 4.1 f “folds” a graph into itself, hence the letter f . In order to obtain

378 Barbara König

compositionality, it is required that f can be applied arbitrarily often at any stage
of type inference, without losing information (see condition (6) of Theorem 1).

In this setting it is sufficient to prove some simpler conditions, especially the
proof of (2) can be conducted locally.

Theorem 1. Let A be a fixed annotation mapping, let f be an arity-preserving
mapping as above, let t be a linear mapping, let X be a predicate on hypergraphs
and let H�T if and only if f(t(H))�A T . Let us further assume that f satisfies4

f(D
n

i=1
(Ti, ζi)) ∼= f(D

n

i=1
(f(Ti), ζi)) (6) T �A T ′ ⇒ f(T)�A f(T ′) (7)

Then the relation � satisfies conditions (1)–(5) if and only if it satisfies

f(t(H)) defined ⇒ X(H) (8) (L,R) ∈ R ⇒ f(t(R))�A f(t(L)) (9)

The operation f can often be characterised by a universal property with the
intuitive notion that f(T) is the “smallest” type graph (wrt. the preorder �A)
for which T �A f(T) and a property C hold.

Proposition 1. Let C be a property on type graphs such that f(T) can be char-
acterised in the following way: f(T) satisfies C, there is a morphism φ : T �A
f(T) and for every other morphism φ′ : T →A T ′ where C(T ′) holds, there is a
unique morphism ψ : f(T) →A T ′ such that ψ ◦φ = φ′. Furthermore we demand
that if there exists a morphism φ : T →A T ′ such that C(T ′) holds, then f(T) is
defined.

Then if f(T) is defined, it is unique up to isomorphism. Furthermore f sat-
isfies conditions (6) and (7).

4 Case Studies

4.1 A Type System for the Polyadic π-Calculus

We present a graph rewriting semantics for the asynchronous polyadic π-calculus
[17] without choice and matching, already introduced in [12]. Different ways of
encoding the π-calculus into graph rewriting can be found in [21,5,4].

We apply the theory presented in section 3, introduce a type system avoiding
runtime errors produced by mismatching arities and show that it satisfies the
conditions of Theorem 1. Afterwards we show that a graph has a type if and
only if the corresponding π-calculus process has a type in a standard type system
with infinite regular trees.

Definition 6. (Process Graphs) A process graph P is inductively defined as
follows: P is a hypergraph with a duplicate-free string of external nodes. Fur-
thermore each edge e is either labelled with (k, n)Q where Q is again a process
4 In an equation T ∼= T ′ we assume that T is defined if and only if T ′ is defined. And

in a condition of the form T �A T ′ we assume that T is defined if T ′ is defined.

A General Framework for Types in Graph Rewriting 379

graph, 1 ≤ n ≤ ar(Q) and 1 ≤ k ≤ ar(e) = ar(Q)− n (e is a process waiting for
a message with n ports arriving at its k-th node), with !Q where ar(Q) = ar(e)
(e is a process which can replicate itself) or with the constant M (e is a message
sent to its last node).

The reduction relation is generated by the rules in (A) (replication) and by
rule (B) (reception of a message by a process) and is closed under isomorphism
and graph construction.

(A)
(m)(m) (1)(1)

Q!Q !Q

(B) if n = r
(m + 1)(m) (m + r)(k)(1)

QM(k, n)Q

A process graph may contain a bad redex, if it contains a subgraph corre-
sponding to the left-hand side of rule (B) with n �= r, so we define the predicate
X as follows: X(P) if and only if P does not contain a bad redex.

We now propose a type system for process graphs by defining the mappings
t and f . (Note that in this case, the type graphs are trivially annotated by ⊥,
and so we omit the annotation mapping.)
The linear t mapping is defined on the hyper-
edges as follows: t([M]n) = [3]n (3 is a new
edge label), t([!Q]m) = t(Q) and t([(k, n)Q]m)
is defined as in the image to the right (in the
notation explained after Definition 3). It is only
defined if n+m = ar(Q).

...... ...

t(Q)

(1) (k) (m)

t([(k, n)Q]m) =

3

n

The mapping f is defined as in Proposition 1 where C is defined as follows5

C(T) ⇐⇒ ∀ e1, e2 ∈ ET : (�sT (e1)�ar(e1) = �sT (e2)�ar(e2) ⇒ e1 = e2)

The linear mapping t extracts the communication structure from a process
graph, i.e. an edge of the form [3]n indicates that its nodes (except the last)
might be sent or received via its last node. Then f makes sure that the arity of
the arriving message matches the expected arity and that nodes that might get
fused during reduction are already fused in f(t(H)).

Proposition 2. The trivial annotation mapping A (where every lattice consists
of a single element ⊥), the mappings f and t and the predicate X defined above
satisfy conditions (6)–(9) of Theorem 1. Thus if P �T , then P will never produce
a bad redex during reduction.

We now compare our type system to a standard type system of the π-calculus.
An encoding of process graphs into the asynchronous π-calculus can be defined
as follows.

Definition 7. (Encoding) Let P be a process graph, let N be the name set of
the π-calculus and let t̃ ∈ N ∗ such that |t̃| = ar(P). We define Θt̃(P) inductively
as follows:
5 �s�i extracts the i-th element of a string s.

380 Barbara König

Θa1...an+1([M]n+1) = an+1〈a1, . . . , an〉 Θt̃([!Q]m) =!Θt̃(Q)
Θa1...am([(k, n)Q]m) = ak(x1, . . . , xn).Θa1...amx1...xn(Q)

Θt̃(D
n

i=1
(Pi, ζi)) = (ν µ(VD\Set(χD)))(Θµ(ζ1(χm1))(P1) | . . . | Θµ(ζn(χmn))(Pn))

where ζi : mi → D, 1 ≤ i ≤ n and µ : VD → N is a mapping such that
µ restricted to VD\Set(χD) is injective, µ(VD\Set(χD)) ∩ µ(Set(χD)) = ∅ and
µ(χD) = t̃. Furthermore the x1, . . . , xn ∈ N are fresh names.

The encoding of a discrete graph is included in the last case, if we set n = 0
and assume that the empty parallel composition yields the nil process 0.

An operational correspondence can be stated as follows:

Proposition 3. Let p be an arbitrary expression in the asynchronous polyadic
π-calculus without summation. Then there exists a process graph P and a du-
plicate-free string t̃ ∈ N ∗ such that Θt̃(P) ≡ p. Furthermore for process graphs
P, P ′ and for every duplicate-free string t̃ ∈ N ∗ with |t̃| = ar(P) = ar(P ′) it is
true that:

− P ∼= P ′ implies Θt̃(P) ≡ Θt̃(P
′) − P →∗ P ′ implies Θt̃(P) →∗ Θt̃(P)

− Θt̃(P) →∗ p �= wrong implies that P →∗ Q and Θt̃(Q) ≡ p for some process
graph Q.

− Θt̃(P) →∗ wrong if and only if P →∗ P ′ for some process graph P ′ containing
a bad redex

We now compare our type system with a standard type system of the π-
calculus: a type tree is a potentially infinite ordered tree with only finitely many
non-isomorphic subtrees. A type tree is represented by the tuple [t1, . . . , tn] where
t1, . . . , tn are again type trees, the children of the root. A type assignment Γ =
x1 : t1, . . . , xn : tn assigns names to type trees where Γ (xi) = ti. The rules of the
type system are simplified versions of the ones from [19], obtained by removing
the subtyping annotations.

Γ � 0
Γ � p Γ � q
Γ � p | q

Γ � p
Γ � ! p

Γ, a : t � p
Γ � (νa)p

Γ (a) = [t1, . . . , tm] Γ, x1 : t1, . . . , xm : tm � p
Γ � a(x1, . . . , xm).p

Γ (a) = [Γ (a1) . . . , Γ (am)]
Γ � a〈a1, . . . , am〉

We will now show that if a process graph has a type, then its encoding has
a type in the π-calculus type system and vice versa. In order to express this we
first describe the unfolding of a type graph into type trees.

Proposition 4. Let T be a type graph and let σ be a mapping from VT into the
set of type trees. The mapping σ is called consistent, if it satisfies for every edge
e ∈ ET : sT (e) = v1 . . . vnv ⇒ σ(v) = [σ(v1), . . . , σ(vn)]. Every type graph of
the form f(t(P)) has such a consistent mapping.

Let P � T with n = ar(T) and let σ be a consistent mapping for T . Then it
holds for every duplicate-free string t̃ of length n that �t̃�1 : σ(�χT �1), . . . , �t̃�n :
σ(�χT �n) � Θt̃(P).

A General Framework for Types in Graph Rewriting 381

Now let Γ � Θt̃(P). Then there exists a type graph T such that P � T and
a consistent mapping σ such that for every 1 ≤ i ≤ |t̃| it holds that σ(�χT �i) =
Γ (�t̃�i).

4.2 Concurrent Object-Oriented Programming

We now show how to model a concurrent object-oriented system by graph rewrit-
ing and then present a type system. In our model, several objects may compete
in order to receive a message, and several messages might be waiting at the
same object. Typically, type systems in object-oriented programming are there
to ensure that an object that receives a message is able to process it.

Definition 8. (Concurrent object-oriented rewrite system) Let (C, <:)
be a lattice of classes with a top class6 ! and a bottom class ⊥. We denote
classes by the letters A,B,C, Furthermore let M be a set of method names.
The function ar : C ∪ M → lN\{0} assigns an arity to every class or method
name.

An object graph G is a hypergraph with a duplicate-free string of external
nodes, labelled with elements of C\{⊥} ∪M where for every edge e it holds that
ar(e) = ar(lG(e)). A concurrent object-oriented rewrite system (specifying the
semantics) consists of a set of rules R satisfying the following conditions:

– the left-hand side of a rule always has the form shown in Figure (C) below
(where A ∈ C\{⊥}, ar(A) = n, m ∈ M, ar(m) = k + 1).

The right-hand side is again an object
graph of arity n + k. If a left-hand side
RA,m exists, we say that A understands
m.

...... (C)

A m = RA,m

(1) (n) (n + k)(n + 1)

– If A <: B, A �= ⊥ and B understands m, then A also understands m.
– For all m ∈ M, either {A | A understands m} is empty or it contains a

greatest element.

An object graph G contains a “message not understood”-error if G contains a
subgraph RA,m, but A does not understand m.

Thus the predicate X for this section is defined as follows: X(G) if and only
if G does not contain a “message not understood”-error.

In contrast to the previous section, we now use annotated type graphs: the
annotation mapping A assigns a lattice ({a : VH → C × C},≤)) to every hyper-
graph H . The partial order is defined as follows: a1 ≤ a2 ⇐⇒ ∀v: (a1(v) =
(A1, B2) ∧ a2(v) = (A2, B2) ⇒ A1 <: A2 ∧ B1 :> B2), i.e. we have covariance
in the first and contravariance in the second position. If a node v is labelled
(A,B), this has the following intuitive meaning: we can accept at least as many
messages as an object of class A on this node and we can send at most as many
messages as an object of class B can accept.
6 This corresponds to the class Object in Java

382 Barbara König

Furthermore we define Aφ(a)(v′) =
∨
φ(v)=v′ a(v) where φ : H → H ′, a is an

element of A(H) and v′ ∈ VH′ .
We now define the operator f : let T [a] be a type graph of arity n where

it holds for all nodes v that a(v) = (A,B) implies A <: B (otherwise f is
undefined). Then f reduces the graph to its string of external nodes, i.e f(T [a]) =
n[b] where b(�χn�i) = a(�χT �i).

The linear mapping t determines the type of a class or method. It is necessary
to choose a linear mapping that preserves the interface of left-hand and right-
hand sides, i.e. we can use any t that satisfies condition (9) and the following
two conditions below for A ∈ C\{⊥} and m ∈ M:

t([A]n) = [A]n[a] where a(�χ[A]n�1) ≥ (A,!)
t([m]n) = [m]n[a] where a(�χ[m]n�n) ≥ (⊥,max{B | B understands m})

Proposition 5. The annotation mapping A, the mappings f and t and the
predicate X defined above satisfy conditions (6)–(9) of Theorem 1. Thus if G�T ,
then G will never produce a “message not understood”-error during reduction.

In this case we do not prove that this type systems corresponds to an object-
oriented type system, but rather present a semi-formal argument: we give the
syntax and a type system for a small object calculus, and furthermore an en-
coding into hypergraphs, without really defining the semantics. For the formal
semantics of object calculi see [20,9], among others.

An expression e in the object calculus either has the form new A(e1, . . . , en)
where A ∈ C\{⊥} and ar(A) = n + 1 or e.m(e1, . . . , en) where m ∈ M and
ar(m) = n + 2. The ei are again expressions. Every class A is assigned an
(ar(A)−1)-tuple of classes defining the type of the fields of A (A : (A1, . . . , An))
and every method m with ar(m) = n + 2 defined in class B is assigned a type
B.m : C1, . . . , Cn → C. If a method is overwritten in a subclass it is required to
have the same type. A simple type systems looks as follows:

e : A, A <: B
e : B

A : (A1, . . . , An), ei : Ai
new A(e1, . . . , en) : A

e : B, B.m : C1, . . . , Cn → C, ei : Ci
e.m(e1, . . . , en) : C

Now an encoding [[·]] can be
defined as shown in the figure
to the right. We introduce the
convention that the penulti-
mate node of a message can
be used to access the result
after the rewriting step.

...

...

...

...

[[e]] mA

[[newA(e1, . . . , en)]] = [[e.m(e1, . . . , em)]] =

[[e1]] [[en]] [[e1]] [[en]]
(1)

(1)

If A : (A1, . . . , An) we define t in such a way that the n + 1 external
nodes of t([A]n+1) are annotated by (A,!), (⊥, A1), . . ., (⊥, An). And if B.m :
C1, . . . , Cn → C (where B is the maximal class which understands method m),
we annotate the external nodes of t([m]n+2) by (⊥, C1), . . ., (⊥, Cn), (C,!),
(⊥, B). Now we can show by induction on the typing rules that if e : A, then
there exists a type graph T [a] such that [[e]] � T [a] and a(�χT �1) = (A,!).

A General Framework for Types in Graph Rewriting 383

5 Conclusion and Comparison to Related Work

This is a first tentative approach aimed at developing a general framework for
the static analysis of graph rewriting in the context of type systems. It is obvious
that there are many type systems which do not fit well into our proposal. But
since we are able to capture the essence of two important type systems, we
assume to be on the right track.

Types are often used to make the connection of components and the flow
of information through a system explicit (see e.g. the type system for the π-
calculus, where the type trees indicate which tuple of channels is sent via which
channel). Since connections are already explicit in graphs, we can use them both
as type and as the expression to be typed. Via morphisms we can establish a
clear connection between an expression and its type. Graphs are furthermore
useful since we can easily add an extra layer of annotation.

Work that is very close in spirit to ours is [8] by Honda which also presents a
general framework for type systems. The underlying model is closer to standard
process algebras and the main focus is on the characterisation and classification
of type systems.

The idea of composing graphs in such a way that they satisfy a certain
property was already presented by Lafont in [14] where it is used to obtain
deadlock-free nets.

In graph rewriting there already exists a concept of typed graphs [1], related
to ours, but nevertheless different. In that work, a type graph is fixed a priori and
there is only one type graph for every set of productions. Graphs are considered
valid only if they can be mapped into the type graph by a graph morphism (this
is similar to our proposal). In our case, we compute the type graphs a posteriori
and it is a crucial point in the design of every type system to distinguish as many
graphs as possible by assigning different type graphs to them.

This paper is a continuation of the work presented in [10] where the idea of
generic type systems for process graphs (as defined in section 4.1) was introduced,
but no proof of the equivalence of our type system to the standard type system
for the π-calculus was given. The ideas presented there are now extended to
general graph rewriting systems.

Further work will consist in better understanding the underlying mechanism
of the type system. An interesting question in this context is the following: given
a set of rewrite rules, is it possible to automatically derive mappings f and t
satisfying the conditions of Theorem 1?

Acknowledgements: I would like to thank Reiko Heckel and Andrea Corra-
dini for their comments on drafts of this paper, and Tobias Nipkow for his advice.
I am also grateful to the anonymous referees for their valuable comments.

References

1. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3/4):241–265, 1996.

384 Barbara König

2. H. Ehrig. Introduction to the algebraic theory of graphs. In Proc. 1st International
Workshop on Graph Grammars, pages 1–69. Springer-Verlag, 1979. LNCS 73.

3. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

4. F. Gadducci and U. Montanari. Comparing logics for rewriting: Rewriting logic,
action calculi and tile logic. Theoretical Computer Science, 2000. to appear.

5. Philippa Gardner. Closed action calculi. Theoretical Computer Science (in associa-
tion with the conference on Mathematical Foundations in Programming Semantics),
1998.

6. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Springer-
Verlag, 1992. LNCS 643.

7. Masahito Hasegawa. Models of Sharing Graphs (A Categorical Semantics of Let
and Letrec). PhD thesis, University of Edingburgh, 1997. available in Springer
Distinguished Dissertation Series.

8. Kohei Honda. Composing processes. In Proc. of POPL’96, pages 344–357. ACM,
1996.

9. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A core
calculus for Java and GJ. In Proc. of OOPSLA 1999, 1999.

10. Barbara König. Generating type systems for process graphs. In Proc. of CONCUR
’99, pages 352–367. Springer-Verlag, 1999. LNCS 1664.

11. Barbara König. A general framework for types in graph rewriting. Technical
Report TUM-I0014, Technische Universität München, 2000.

12. Barbara König. A graph rewriting semantics for the polyadic pi-calculus. In
Workshop on Graph Transformation and Visual Modeling Techniques (Geneva,
Switzerland), ICALP Workshops 2000, pages 451–458. Carleton Scientific, 2000.

13. Barbara König. Hypergraph construction and its application to the compositional
modelling of concurrency. In GRATRA 2000: Joint APPLIGRAPH/GETGRATS
Workshop on Graph Transformation Systems, 2000.

14. Yves Lafont. Interaction nets. In Proc. of POPL ’90, pages 95–108. ACM Press,
1990.

15. James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive
systems. In Proc. of CONCUR 2000, 2000. LNCS 1877.

16. José Meseguer. Rewriting logic as a semantic framework for concurrency: A
progress report. In Concurrency Theory, pages 331–372. Springer-Verlag, 1996.
LNCS 1119.

17. Robin Milner. The polyadic π-calculus: a tutorial. In F. L. Hamer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag,
Heidelberg, 1993.

18. Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.
19. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.

In Proc. of LICS ‘93, pages 376–385, 1993.
20. David Walker. Objects in the π-calculus. Information and Computation, 116:253–

271, 1995.
21. Nobuko Yoshida. Graph notation for concurrent combinators. In Proc. of TPPP

’94. Springer-Verlag, 1994. LNCS 907.

The Ground Congruence for Chi Calculus

Yuxi Fu� and Zhenrong Yang

Department of Computer Science
Shanghai Jiaotong University, Shanghai 200030, China

Abstract. The definition of open bisimilarity on the χ-processes does
not give rise to a sensible relation on the χ-processes with the mismatch
operator. The paper proposes ground open congruence as a principal
open congruence on the χ-processes with the mismatch operator. The
algebraic properties of the ground congruence is studied. The paper also
takes a close look at barbed congruence. This relation is similar to the
ground congruence. The precise relationship between the two is worked
out. It is pointed out that the sound and complete system for the ground
congruence can be obtained by removing one tau law from the complete
system for the barbed congruence.

1 Introduction and χ-Calculus with Mismatch

The π-calculus ([6]) is a powerful process calculus. The expressiveness is partly
supported by input processes of the form a(x).P and output processes of the
form ax.P . The former may receive a name at channel name a before evolving
as P with x replaced by the received name. The latter can emit x at a and then
continues as P . The expressiveness is also supported by processes of the form
(x)P . The localization operator (x) encapsulates the name x in P . In χ-calculus
([1,2,3,4]) the input and output processes are unified as α[x].P , in which α stands
for either a name or a coname.

Formally χ-processes are defined by the following abstract syntax:

P := 0 | α[x].P | P |P | (x)P | [x=y]P | P+P

where α ∈ N ∪N . Here N is the set of names ranged over by small case letters.
The set {x | x ∈ N} of conames is denoted by N . The name x in (x)P is
local. A name is global in P if it is not local in P . The global names, the local
names and the names of a syntactical object, as well as the notations gn(), ln()
and n(), are defined with their standard meanings. We adopt the α-convention
widely used in the literature on process algebra. We do not consider replication
or recursion operator since it does not affect the results of this paper.

� The author is funded by NNSFC (69873032) and 863 Hi-Tech Project (863-306-
ZT06-02-2). He is also supported by BASICS, Center of Basic Studies in Computing
Science, sponsored by Shanghai Education Committee. BASICS is affiliated to the
Department of Computer Science at Shanghai Jiaotong University.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 385–396, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

386 Yuxi Fu and Zhenrong Yang

The following labeled transition system defines the operational semantics of
χ-calculus, in which symmetric rules are systematically omitted. In the following
rules the letter γ ranges over the set {α(x), α[x] | α ∈ N ∪ N , x ∈ N} ∪ {τ}
and the letter λ over the set {α(x), α[x], [y/x] | α ∈ N ∪ N , x, y ∈ N} ∪ {τ}.
The symbols α(x), α[x], [y/x] represent restricted action, free action and update
action respectively. The x in the label α(x) is local.

Sequentialization

α[x].P
α[x]−→ P

Sqn

Composition

P
γ−→ P ′ ln(γ) ∩ gn(Q)=∅

P |Q γ−→ P ′|Q Cmp0

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]
Cmp1

Communication

P
α(x)−→ P ′ Q

α[y]−→ Q′

P |Q τ−→ P ′[y/x]|Q′ Cmm0

P
α(x)−→ P ′ Q

α(x)−→ Q′

P |Q τ−→ (x)(P ′|Q′) Cmm1

P
α[x]−→ P ′ Q

α[y]−→ Q′ x �= y

P |Q [y/x]−→ P ′[y/x]|Q′[y/x] Cmm2

P
α[x]−→ P ′ Q

α[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm3

Localization

P
λ−→ P ′ x �∈ n(λ)

(x)P λ−→ (x)P ′ Loc0

P
α[x]−→ P ′ x �∈ {α, α}
(x)P

α(x)−→ P ′ Loc1

P
[y/x]−→ P ′

(x)P τ−→ P ′ Loc2

Condition
P

λ−→ P ′

[x=x]P λ−→ P ′ Mtch

Summation
P

λ−→ P ′

P+Q
λ−→ P ′ Sum

A substitution is a function from N to N that is identical on all but a finite
number of names. Substitutions are usually denoted by σ, σ′, The notations

=⇒ and λ̂=⇒ are used in their standard meanings.
We will use two induced prefix operators, tau and update prefixes, defined

as follows: [y|x].P def= (a)(a[y]|a[x].P) and τ.P
def= (b)[b|b].P where a, b are fresh.

The subject language of this paper is χ �=-calculus, the χ-calculus with the
mismatch operator. The operational semantics of the mismatch combinator is
defined as follows:

P
λ−→ P ′ x �= y

[x�=y]P λ−→ P ′ Mismtch

The Ground Congruence for Chi Calculus 387

The set of χ �=-processes is denoted by C. Suppose Y is a finite set {y1, . . . , yn} of
names. The notation [y �∈Y]P will stand for [y �=y1] . . . [y �=yn]P , where the order
of mismatch operators is immaterial. We will write φ and ψ, called conditions, to
stand for sequences of match and mismatch combinators concatenated one after
another, µ for a sequence of match operators, and δ for a sequence of mismatch
operators. Consequently we write ψP , µP and δP . When the length of ψ (µ, δ)
is zero, ψP (µP , δP) is just P . The notation φ ⇒ ψ says that φ logically implies
ψ and φ ⇔ ψ that φ and ψ are logically equivalent. A substitution σ agrees with
ψ, and ψ agrees with σ, when ψ ⇒ x=y if and only if σ(x)=σ(y).

Bisimulation equivalence relations on mobile processes are a lot more complex
than those on CCS processes. The complication is mainly due to the dynamic
aspect of mobile processes. The names in a process are subject to updates during
the evolution of the process. These updates could be caused either by actions
in which the process participates or by changes incurred by environments. A
sensible observational equivalence for mobile processes must take that into ac-
count. To illustrate what kind of relations one would obtain if s/he ignored the
mobility, we introduce the following definition for χ-calculus:

Definition 1. Let R be a symmetric binary relation on the set of χ-processes.
It is called a naked bisimulation if whenever PRQ and P

λ−→ P ′ then some Q′

exists such that Q
λ̂=⇒ Q′RP ′. The naked bisimilarity ≈ is the largest naked

bisimulation.

It is obvious that the definition of ≈ is simply a reiteration of the weak bisim-
ilarity of CCS in terms of the operational semantic of χ-calculus. However the
naked bisimilarity is not a good equivalence relation since it is not closed under
the parallel composition. For instance one has a[x]|b[y] ≈ a[x].b[y]+b[y].a[x] but
not (a[x]|b[y])|(c[a]|c[b]) ≈ (a[x].b[y]+b[y].a[x])|(c[a]|c[b]). Process equivalence is
observational equivalence. One of the defining properties for an observational
equivalence is that the equivalence should be closed under parallel composition.
In [1,2,3,4], it has been argued that bisimulation equivalences for χ-calculus are
closed under substitution. This suggests to introduce the following definition:

Let R be a symmetric binary relation on the set of χ-processes that is
closed under substitution. It is called an open bisimulation if whenever

PRQ and P
λ−→ P ′ then some Q′ exists such that Q

λ̂=⇒ Q′RP ′. The
open bisimilarity ≈o is the largest open bisimulation.

The open bisimilarity ≈o has been studied in [1,2,3,4] in both the symmetric
and the asymmetric frameworks. It must be pointed out that the investigations
carried out in [1,2,3,4] are for the χ-calculus without the mismatch combina-
tor. For the χ-calculus with the mismatch operator, one should ask the question
whether the open bisimilarity ≈o is a sensible equivalence. In [5] the present
authors have given a negative answer to the question. As it turned out the
open bisimilarity defined above is not closed under parallel composition in χ �=-
calculus! One has [x�=y]a[x].P + a[x].[x�=y]τ.P ≈o a[x].[x�=y]τ.P but it is clear

388 Yuxi Fu and Zhenrong Yang

that a[y]|([x�=y]a[x].P +a[x].[x�=y]τ.P) �≈o a[y]|(a[x].[x�=y]τ.P). This is a serious
problem because closure under parallel composition is an intrinsic property of
observational equivalence. In [5] we have studied the problem and introduced two
modified open congruences. These are early open congruence and late open con-
gruence. Their relationship strongly recalls that between the weak early equiv-
alence and the weak late equivalence ([6]). It should be said however that both
the early open congruence and the late open congruence are the obvious mod-
ifications with motivation from π-calculus. They are not the open congruence
for the χ-calculus with the mismatch operator. What is then the principal open
congruence for χ-calculus with the mismatch combinator? We will give our an-
swer to the question in this paper. The way to arrive to the definition of the
open congruence is via a particular naked bisimulation. In order to define this
relation we need the notion of contexts defined as follows: (i) [] is a context; (ii)
If C[] is a context then α[x].C[], C[]|P , P |C[], (x)C[] and [x=y]C[] are contexts.

Definition 2. The ground bisimilarity ≈g is the largest naked bisimulation that
is closed under context.

In the above definition the requirement of closure under the prefix operator is
reasonable since it is equivalent to that of closure under substitution. We will
give an equivalent characterization of ≈g in the style of open semantics, which
we argue is the principal open bisimilarity.

As it turns out the equivalence ≈g is very similar to the barbed bisimilarity
of the χ-calculus with the mismatch operator. The difference is very subtle. The
barbed bisimilarity also has an equivalent open characterization. The similarity
and the difference between the ground bisimilarity and the barbed bisimilarity
are revealed through their open characterizations.

This paper continues the work of [5] by studying the ground congruence and
the barbed congruence for the χ �=-calculus. The main contributions of this paper
are as follows:

– We give an alternative characterization of the weak barbed bisimilarity. This
characterization points out the complex nature of the weak barbed bisimi-
larity. Many unknown equalities are discovered. A complete system for the
weak barbed congruence is provided. The new tau laws used to establish the
completeness result are surprisingly complex.

– We study what we call ground open bisimilarity. A complete system for the
ground open congruence is given. The relationship between the ground open
congruence and the weak barbed congruence is revealed.

Due to space limitation, all proofs have been omitted.

2 Barbed Congruence

The barbed equivalence is often quoted as a universal equivalence relation for
process algebras. For a specific process calculus barbed equivalence immediately

The Ground Congruence for Chi Calculus 389

gives rise to an observational equivalence. For two process calculi barbed equiv-
alence can be used to compare the semantics of the two models. Despite the
universal nature, barbed equivalence can have quite different displays in differ-
ent process calculi. The barbed equivalence for the χ-calculus has brought some
new insight into the calculi of mobile processes. In this section we demonstrate
that the barbed equivalence for the χ �=-calculus is even more different. A char-
acterization theorem for the barbed bisimilarity on χ �=-calculus is given. Some
illustrating pairs of barbed equivalent processes are given. First we introduce
the notion of barbedness.

Definition 3. A process P is strongly barbed at a, notation P↓a, if P
α(x)−→ P ′

or P
α[x]−→ P ′ for some P’ such that a ∈ {α, α}. P is barbed at a, written P⇓a,

if some P ′ exists such that P =⇒ P ′↓a. A binary relation R is barbed if ∀a ∈
N .P⇓a ⇔ Q⇓a whenever PRQ.

From the point of view of barbed equivalence an observer can not see the content
of a communication. What an observer can detect is the ability of a process to
communicate at particular channels. Two processes are identified if they can
simulate each other in terms of this ability.

Definition 4. Let R be a barbed symmetric relation on C closed under context.
The relation R is a barbed bisimulation if whenever PRQ and P

τ−→ P ′ then
Q =⇒ Q′RP ′ for some Q′. The barbed bisimilarity ≈b is the largest barbed
bisimulation.

The trade-off of the simplicity of the above definition is that it provides
little intuition about equivalent processes. We know that it is weaker than most
bisimulation equivalences. But we want to know how much weaker it is. We first
give some examples of barbed equivalent processes. To make the examples more
readable, we will write A

def= PR(A+Q) for PR(P+Q), where R is a binary
relation on processes. The first example of an equivalent pair is this:

A1
def= α[x].(P1+[x=y1]τ.Q)+α[x].(P2+[x�=y1]τ.Q) ≈b A1 + α[x].Q

If α[x].Q on the right hand side is involved in a communication in which x is
replaced by y1 then α[x].(P1+[x=y1]τ.Q) can simulate the action. Otherwise
α[x].(P2+[x�=y1]τ.Q) would do the job. The second example is more interesting:

A2
def= (z)α[z].(P1+[z=y2][z|x].Q)+α[x].(P2+[x�=y2]τ.Q[x/z])
≈b A2 + α[x].Q[x/z]

The communication α[y2]|(x)(A2+α[x].Q[x/z]) τ−→ 0|Q[x/z][y2/x] for instance
can be matched up by α[y2]|(x)A2

τ−→0|(x)(P1[y2/z]+[y2=y2][y2|x].Q[y2/z])
τ−→

0|Q[y2/z][y2/x]. The third example is unusual:

A3
def= α[y3].(P1+[y3|x].Q)+α[x].(P2+[x�=y3]τ.Q) ≈b A3 + α[x].Q

390 Yuxi Fu and Zhenrong Yang

If α[x].Q participates in a communication in which x exchanges for y3 then its
role can be simulated by α[y3].(P1+[y3|x].Q). The fourth is similar:

A4
def= [y4|x].(P1+α[y4].Q)+α[x].(P2+[x�=y4]τ.Q) ≈b A4 + α[x].Q

If (y4)((A4+α[x].Q)|α[y4].O) τ−→ Q[x/y4]|O[x/y4] then the simulation is:

(y4)(A4|α[y4].O) τ−→(P1[x/y4]+α[x].Q[x/y4])|α[x].O[x/y4]
τ−→Q[x/y4]|O[x/y4]

The fifth example is the combination of the fourth and the second:

A5
def= [y5|x].(P1+(z)α[z].(P ′

1+[z=y5]τ.Q))+α[x].(P2+[x�=y5]τ.Q[x/z])
≈b A5 + α[x].Q[x/z]

Notice that the component [y5|x].(P1+(z)α[z].(P ′
1+[z=y5]τ.Q)) is operationally

the same as the process [y5|x].(P1+(z)α[z].(P ′
1+[z=y5][z|x].Q)).

In the above examples, all the explicit mismatch operators contain the name
x. In general there could be other conditions. The treatment of match operator
is easy. The mismatch operator is however nontrivial. Suppose δ is a sequence
of mismacth operators such that all names in δ are different from both x and z.
An example more gerneral than A1 is this:

A′
1

def= α[x].(P1+δ[x=y1]τ.Q)+α[x].(P2+δ[x�=y1]τ.Q) ≈b A′
1 + [x�∈n(δ)]δα[x].Q

We need to explain the mismatch sequence in [x�∈n(δ)]δα[x].Q. The δ before
α[x].Q is necessary for otherwise an action of ([x�∈n(δ)]α[x].Q)σ may not be
simulated by any action from A′

1σ when σ invalidates δ. The [x�∈n(δ)] is nec-
essary because otherwise it would not be closed under substitution. A counter
example is the pair α[x].[y �=z][x=y1]τ.Q+α[x].[y �=z][x�=y1]τ.Q+[y �=z]α[x].Q and
α[x].[y �=z][x=y1]τ.Q+α[x].[y �=z][x�=y1]τ.Q. If we substitute x for z in the two
processes we get two processes that are not barbed bisimilar. Similarly the ex-
ample A2 can be generalized to the following:

A′
2

def= (z)α[z].(P1+[x�∈n(δ)]δ[z=y2][z|x].Q)+α[x].(P2+δ[x�=y2]τ.Q[x/z])
≈b A′

2 + [x�∈n(δ)]δα[x].Q[x/z]

The general form of A3 is more delicate:

A′
3

def= [x�=y3]α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q)+α[x].(P2+δ[x�=y3]τ.Q)
≈b A′

3 + [x�=y3][x�∈n(δ)]δα[x].Q

In both [x�=y3]α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q) and [x�=y3][x�∈n(δ)]δα[x].Q there is
the mismatch [x�=y3]. If this operator is removed from A′

3 one has

B′
3

def= α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q)+α[x].(P2+δ[x�=y3]τ.Q)
�≈b B′

3 + [x�∈n(δ)]δα[x].Q

The Ground Congruence for Chi Calculus 391

The inequality is clearer if one substitutes x for y3 in the above:

C′
3

def= α[x].(P1+[x�∈n(δ)]δ[x|x].Q)+α[x].(P2+δ[x�=x]τ.Q)
�≈b C′

3 + [x�∈n(δ)]δα[x].Q

The component [x�∈n(δ)]δα[x].Q may be involved in a communication in which x
is replaced by a name in δ. This action can not be simulated by C′

3. The general
forms of A4 and A5 are as follows:

A′
4

def= [y4|x].(P1+δα[y4].Q)+α[x].(P2+δ[x�=y4]τ.Q) ≈b A′
4 + [x�∈n(δ)]δα[x].Q

A′
5

def= [y5|x].(P1+(z)α[z].(P ′
1+δ[z=y5]τ.Q))+α[x].(P2+δ[x�=y5]τ.Q[x/z])

≈b A′
5 + [x�∈n(δ)]δα[x].Q[x/z]

If we replace the second summand α[x].(P2+δ[x�=y1]τ.Q) of A′
1 by (z)α[z].(P2+

[x�∈n(δ)]δ[z �=y1][z|x].Q) and Q by Q[x/z], we get an interesting variant of A′
1 as

follows:

A′′
1

def= α[x].(P1+δ[x=y1]τ.Q[x/z])+(z)α[z].(P2+[x�∈n(δ)]δ[z �=y1][z|x].Q)
≈b A′′

1 + [x�∈n(δ)]δα[x].Q[x/z]

The bisimilar pairs A′
2 through A′

5 have similar variants:

A′′
2

def= (z)α[z].(P1+[x�∈n(δ)]δ[z=y2][z|x].Q)+O2

≈b A′′
2 + [x�∈n(δ)]δα[x].Q[x/z]

A′′
3

def= [x�=y3]α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q[x/z])+O3

≈b A′′
3 + [x�=y3][x�∈n(δ)]δα[x].Q[x/z]

A′′
4

def= [y4|x].(P1+δα[y4].Q[x/z])+O4

≈b A′′
4 + [x�∈n(δ)]δα[x].Q[x/z]

A′′
5

def= [y5|x].(P1+(z)α[z].(P ′
1+δ[z=y5]τ.Q[z/x]))+O5

≈b A′′
5 + [x�∈n(δ)]δα[x].Q[x/z]

where Oi is (z)α[z].(P2+[x�∈n(δ)]δ[z �=yi][z|x].Q) for i ∈ {2, 3, 4, 5}. The most
complicated situation arises when all the five possibilities as described by A′′

1

through A′′
5 happen at one go:

A
def= (z)α[z].(P2+[x�∈n(δ)]δ[z �∈{y1, y2, y3, y4, y5}][z|x].Q)

+α[x].(P1+δ[x=y1]τ.Q[x/z])
+(z)α[z].(P1+[x�∈n(δ)]δ[z=y2][z|x].Q)
+[x�=y3]α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q[x/z])
+[y4|x].(P1+δα[y4].Q[x/z])
+[y5|x].(P1+(z)α[z].(P ′

1+δ[z=y5]τ.Q[z/x]))
≈b A + [x�=y3][x�∈n(δ)]δα[x].Q[x/z]

392 Yuxi Fu and Zhenrong Yang

Similarly the examples A′
1 through A′

5 can be combined into one as follows:

A′ def= α[x].(P2+δ[x�∈{y1, y2, y3, y4, y5}]τ.Q[x/z])
+α[x].(P1+δ[x=y1]τ.Q[x/z])
+(z)α[z].(P1+[x�∈n(δ)]δ[z=y2][z|x].Q)
+[x�=y3]α[y3].(P1+[x�∈n(δ)]δ[y3|x].Q[x/z])
+[y4|x].(P1+δα[y4].Q[x/z])
+[y5|x].(P1+(z)α[z].(P ′

1+δ[z=y5]τ.Q[z/x]))
≈b A′ + [x�=y3][x�∈n(δ)]δα[x].Q[x/z]

Having seen so many bisimilar pairs of processes, the reader might wonder how
we have discovered them. As a matter of fact these examples are all motivated by
an alternative characterization of the barbed bisimilarity. This characterization
is given by an open bisimilarity as defined below.

Definition 5. Let R be a binary symmetric relation on C closed under substi-
tution. The relation R is a barbed open bisimulation if the following properties
hold for P and Q whenever PRQ:

(i) If λ is an update or a tau and P
λ−→ P ′ then Q′ exists such that Q

λ̂=⇒ Q′RP ′.

(ii) If P
α[x]−→ P ′ then one of the following properties holds:

– Q′ exists such that Q
α[x]
=⇒ Q′RP ′;

– Q′ and Q′′ exist such that Q =⇒α(z)−→ Q′′ and Q′′[x/z] =⇒ Q′RP ′;

and, for each y different from x, one of the following properties holds:

– Q′ and Q′′ exist such that Q =⇒α[x]−→ Q′′ and Q′′[y/x] =⇒ Q′RP ′[y/x];

– Q′ and Q′′ exist such that Q =⇒α(z)−→ Q′′ and Q′′[y/z]
[y/x]
=⇒ Q′RP ′[y/x];

– Q′ exists such that Q
α[y]
=⇒[y/x]

=⇒ Q′RP ′[y/x];

– Q′ exists such that Q
[y/x]
=⇒ α[y]

=⇒ Q′RP ′[y/x];

– Q′ and Q′′ exist such that Q
[y/x]
=⇒α(z)−→ Q′′ and Q′′[y/z]=⇒Q′RP ′[y/x].

(iii) If P
α(x)−→ P ′ then, for each y, one of the following properties holds:

– Q′ and Q′′ exist such that Q =⇒α(x)−→ Q′′ and Q′′[y/x]=⇒Q′RP ′[y/x];

– Q′ exists such that Q
α[y]
=⇒ Q′RP ′[y/x].

The barbed open bisimilarity ≈b
open is the largest barbed open bisimulation.

With a definition as complex as Definition 5, it is not very clear if the relation
it introduces is well behaved. The next lemma gives one some confidence on the
barbed open bisimilarity.

Lemma 6. ≈b
open is closed under localization and composition.

The Ground Congruence for Chi Calculus 393

Since ≈b
open is closed under substitution, it must also be closed under prefix

operation. It is also clear that ≈b
open is closed under match operation. However

the relation is closed neither under the mismatch operation nor under the sum-
mation operation. For instance [x�=y]P ≈b

open [x�=y]τ.P does not hold. To obtain
the largest congruence contained in ≈b

open we use the standard approach.

Definition 7. Two processes P and Q are barbed congruent, notation P �b Q,
if P ≈b

open Q and for each substitution σ whenever Pσ
τ−→ P ′ then Q′ exists

such that Qσ
τ=⇒ Q′ ≈b

open P ′ and vice versa.

The notation �b is not confusing because it is also the largest congruence con-
tained in ≈b. This is guaranteed by the next theorem.

Theorem 8. ≈b
open and ≈b coincide.

3 Axiomatic System

In this section we give a complete system for the barbed congruence on the
finite χ �=-processes. In order to prove the completeness theorem, we need some
auxiliary definitions.

Definition 9. Let V be a finite set of names. We say that ψ is complete on V
if n(ψ) ⊆ V and for each pair x, y of names in V it holds that either ψ ⇒ x=y
or ψ ⇒ x�=y. A substitution σ is induced by ψ, and ψ induces σ, if σ agrees with
ψ and σσ = σ.

We now begin to describe a system complete for the barbed congruence.
Let AS denote the system consisting of the rules and laws in Figure 2 plus the
following expansion law:

P |Q =
∑

i

φi(x̃)πi.(Pi|Q) +
πi=ai[xi]∑
γj=bj [yj]

φiψj(x̃)(ỹ)[ai=bj][xi|yj].(Pi|Qj) +

∑
j

ψj(ỹ)γj .(P |Qj) +
πi=ai[xi]∑
γj=bj [yj]

φiψj(x̃)(ỹ)[ai=bj][xi|yj].(Pi|Qj)

where P is
∑

i φi(x̃)πi.Pi and Q is
∑

j ψj(ỹ)γj .Qj , πi and γj range over {α[x] |
α ∈ N ∪N , x ∈ N}.

Using axioms in AS, a process can be converted to a process that contains
no occurrence of composition operator, the latter process is of special form as
defined below.

Definition 10. A process P is in normal form on V ⊇ fn(P) if P is of the
form

∑
i∈I1

φiαi[xi].Pi+
∑

i∈I2
φi(x)αi[x].Pi+

∑
i∈I3

φi[zi|yi].Pi such that x does
not appear in P , φi is complete on V for each i ∈ I1 ∪ I2 ∪ I3, Pi is in normal
form on V for i ∈ I1 ∪ I3 and is in normal form on V ∪ {x} for i ∈ I2. Here I1,
I2 and I3 are pairwise disjoint finite indexing sets.

394 Yuxi Fu and Zhenrong Yang

T1 λ.τ.P = λ.P
T2 P+τ.P = τ.P
T3 λ.(P+τ.Q) = λ.(P+τ.Q)+λ.Q
T4 τ.P = τ.(P+ψτ.P)
T5 [y|x].(P+δτ.Q) = [y|x].(P+δτ.Q)+ψδ[y|x].Q C(ψ, δ)
T6 FF = FF+[x �∈Y3][x �∈n(δ)]δα[x].Q[x/z] z �∈n(δ)
T7 FR = FR+[x �∈Y3][x �∈n(δ)]δα[x].Q[x/z] z �∈n(δ)

TD1 RO = RO+δ(x)α[x].Q x �∈n(δ)

Fig. 1. Tau Laws

The depth of a process measures the maximal length of nested prefixes in the
process. The structural definition goes as follows: (i) d(0) = 0; (ii) d(α[x].P) =
1+d(P); (iii) d(P |Q) = d(P)+d(Q); (iv) d((x)P) = d(P); (v) d([x=y]P) = d(P),
d([x�=y]P) = d(P); (vi) d(P+Q) = max{d(P), d(Q)}.
Lemma 11. For a process P and a finite set V of names such that fn(P) ⊆ V
there is a normal form Q on V such that d(Q) ≤ d(P) and AS � Q = P .

In order to obtain a complete system for the barbed congruence, we need some
tau laws, some of which are new and complex. Figure 1 contains seven tau laws
used in this paper. T4, introduced by the first author in previous publication, is
a necessary law for open congruences. T5 holds under the condition C(ψ, δ):

If δ ⇒ [u �=v] then either ψ ⇒ [x=u][y �=v] or ψ ⇒ [x=v][y �=u] or ψ ⇒
[y=u][x�=v] or ψ ⇒ [y=v][x�=u] or ψ ⇒ [x�=u][x�=v][y �=u][y �=v].

This law was used for the first time in [5]. The laws T6 and T7 are equational
formalization of the examples given in Section 2 in a more general form. In these
axioms, FF (respectively FR) stands for

α[x].(P+δ[x�∈Y1 ∪ . . . ∪ Y5]τ.Q[x/z])
(respectively (z)α[z].(P+[x�∈n(δ)]δ[z �∈Y1 ∪ . . . ∪ Y5][z|x].Q))
+Σy∈Y1α[x].(Py+δ[x=y]τ.Q[x/z])+Σy∈Y2(z)α[z].(Py+[x�∈n(δ)]δ[z=y][z|x].Q)
+Σy∈Y3 [x�=y]α[y].(Py+[x�∈n(δ)]δ[y|x].Q[x/z])
+Σy∈Y4 [y|x].(Py+δα[y].(P ′

y+δτ.Q[x/z]))
+Σy∈Y5 [y|x].(Py+δ(z)α[z].(P ′

y+δ[z=y]τ.Q))

These two laws are new. In TD1, which is derivable from T6, RO is

Σy∈Y1α[y].(Py+δτ.Q[y/x]) + Σy∈Y2(x)α[x].(Py+δ[x=y]τ.Q)
+ (x)α[x].(P+δ[x�∈Y1 ∪ Y2]τ.Q)

Let AS ∪ {T 1, T 2, T 3, T 4, T5, T6, T7} denote ASb
o. Without further ado, we

state the main result of this section.

Theorem 12. ASb
o is sound and complete for �b.

The Ground Congruence for Chi Calculus 395

E1 P = P
E2 P = Q if Q = P
E3 P = R if P = Q and Q = R
C1 α[x].P = α[x].Q if P = Q
C2 (x)P = (x)Q if P = Q
C3a [x=y]P = [x=y]Q if P = Q
C3b [x �=y]P = [x �=y]Q if P = Q
C4 P+R = Q+R if P = Q
C5 P0|P1 = Q0|Q1 if P0 = Q0 and P1 = Q1

L1 (x)0 = 0
L2 (x)α[y].P = 0 x ∈ {α, α}
L3 (x)α[y].P = α[y].(x)P x �∈ {y, α, α}
L4 (x)(y)P = (y)(x)P
L5 (x)[y=z]P = [y=z](x)P x �∈ {y, z}
L6 (x)[x=y]P = 0 x �=y
L7 (x)(P+Q) = (x)P+(x)Q
L8 (x)[y|z].P = [y|z].(x)P x �∈ {y, z}
L9 (x)[y|x].P = τ.P [y/x] y �= x
L10 (x)[x|x].P = τ.(x)P
M1 φP = ψP if φ⇔ ψ
M2 [x=y]P = [x=y]P [y/x]
M3a [x=y](P+Q) = [x=y]P+[x=y]Q
M3b [x �=y](P+Q) = [x �=y]P+[x �=y]Q
M4 P = [x=y]P+[x �=y]P
M5 [x �=x]P = 0
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 P+P = P
U1 [y|x].P = [x|y].P
U2 [y|x].P = [y|x].[x=y]P
U3 [x|x].P = τ.P

Fig. 2. Axiomatic System AS

LD1 (x)[x|x].P = [y|y].(x)P U3 and L8
LD2 (x)[y �=z]P = [y �=z](x)P L5, L7 and M4
LD3 (x)[x �=y]P = (x)P L6, L7 and M4
MD1 [x=y].0 = 0 S1, S4 and M4
MD2 [x=x].P = P M1
MD3 φP = φ(Pσ) where σ is induced by φ M2
SD1 φP+P = P S-rules and M4
UD1 [y|x].P = [y|x].P [y/x] U2 and M2

Fig. 3. Some Laws Derivable from AS

396 Yuxi Fu and Zhenrong Yang

4 Ground Congruence

In this section we sketch some main properties about ≈g. First of all the ground
bisimilarity can be characterized by an open bisimilarity called ground open
bisimilarity, notation ≈g

open. The definition of the ground open bisimilarity is
obtained from Defintion 5 by replacing clause (ii) by

(ii’) If P
α[x]−→ P ′ then Q′ exists such that Q

α[x]
=⇒ Q′RP ′.

It is easy to prove that ≈g
open is closed under localization and composition and

that ≈g
open coincides with ≈g. By definition the ground open bisimilarity is con-

tained in the barbed one. The inclusion is strict because T7 is not valid for
≈g

open.
Let �g be the largest congruence contained in ≈g

open. Its formal definition is
completely similar to that of�b. Let ASg

o stand forAS∪{T 1, T 2, T 3, T 4, T5, T6}.
It can be similarly proved that ASg

o is sound and complete for �g.

5 Remark

Parrow and Victor have studied fusion calculus ([7]). It is a polyadic version
of χ �=-calculus. The main observational equivalence they have studied is what
they call weak hyperequivalence. The weak hyperequivalence is essentially a
polyadic version of the open bisimilarity ≈o we have defined in the introduction.
Since χ �=-calculus is a monadic version of the fusion calculus and therefore is a
subcalculus of the latter, the counter example given in the introduction is valid
in fusion calculus as well. One of the motivations of the ground bisimilarity is
to rectify the weak hyperequivalence. Apart from its theoretical interest, the
barbed bisimilarity is introduced partly to study the ground bisimilarity.

References

1. Y. Fu. A Proof Theoretical Approach to Communications. ICALP’97 , Lecture
Notes in Computer Science 1256, Springer, 325–335, 1997.

2. Y. Fu. Bisimulation Lattice of Chi Processes. ASIAN’98 , Lecture Notes in Com-
puter Science 1538, Springer, 245–262, 1998.

3. Y. Fu. Variations on Mobile Processes. Theoretical Computer Science, 221: 327-
368, 1999.

4. Y. Fu. Open Bisimulations of Chi Processes. CONCUR’99 , Eindhoven, The
Netherlands, August 24-27, Lecture Notes in Computer Science 1664, Springer,
304-319, 1999.

5. Y. Fu, Z. Yang. Chi Calculus with Mismatch. CONCUR 2000 , Pennsylvania, USA,
August 22-25, Lecture Notes in Computer Science 1877, Springer, 2000.

6. R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes. Information and
Computation, 100: 1-40 (Part I), 41-77 (Part II), Academic Press.

7. J. Parrow, B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes.

8. J. Parrow, D. Sangiorgi. Algebraic Theories for Name-Passing Calculi. Journal of
Information and Computation, 120: 174-197, 1995.

Inheritance in the Join Calculus

(Extended Abstract)

Cédric Fournet1, Cosimo Laneve2, Luc Maranget3, and Didier Rémy3

1 Microsoft Research, 1 Guildhall Street, Cambridge, U.K.
2 Dipartimento di Scienze dell’Informazione, Università di Bologna,

Mura Anteo Zamboni 7, 40127 Bologna, Italy
3 INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex France

Abstract. We propose an object-oriented calculus with internal con-
currency and class-based inheritance that is built upon the join calculus.
Method calls, locks, and states are handled in a uniform manner, us-
ing labeled messages. Classes are partial message definitions that can
be combined and transformed. We design operators for behavioral and
synchronization inheritance. Our model is compatible with the JoCaml
implementation of the join calculus.

1 Introduction

Object-oriented programming has long been praised as favoring abstraction, in-
cremental development, and code reuse. Objects can be created by instantiating
definition patterns called classes, and in turn complex classes can be built from
simpler ones. To make this approach effective, the assembly of classes should rely
on a small set of operators with a clear semantics and should support modular
proof techniques. In a concurrency setting, such promises can be rather hard to
achieve.

The design and the implementation of concurrent object-oriented languages,
e.g. [2, 20, 1, 4], has recently prompted the investigation of the theoretical foun-
dations of concurrent objects. Several works provide encodings of objects in pro-
cess calculi [19, 18, 12, 5] or, alternatively, supplement objects with concurrent
primitives [16, 3, 11]. Those works promote a unified framework for reasoning
about objects and processes, but they do not address the composition of object
definitions or its typechecking.

In this work, we model concurrent objects in a simple process calculus—
a variant of the join calculus [7, 6], we design operators for behavioral and
synchronization inheritance, and we give a type system that statically enforces
basic safety properties.

The join calculus is a simple name-passing calculus, related to the pi cal-
culus but with a functional flavor. It is the core of a distributed programming
language, currently implemented as an extension of ML [8, 13]. In the join cal-
culus, communication channels are statically scoped: when channels are created,
their definition provides a set of reaction rules that specify, once for all, how

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 397–408, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

398 Cédric Fournet et al.

messages sent on these names will be synchronized and processed. Although the
join calculus does not have a primitive notion of object, definitions encapsulate
the details of synchronization, much as concurrent objects.

Applying the well-known objects-as-records paradigm to the join calculus, we
obtain a simple language of objects with asynchronous message passing. Method
calls, locks, and states are handled in a uniform manner, using labeled messages.
There is no primitive notion of functions, calling sequences, or threads (they can
all be encoded using continuation messages). Our language—the objective join
calculus—allows fine-grain internal concurrency, as each object may send and
receive several messages in parallel.

For every object of our language, message synchronization is defined and com-
piled as a whole. This allows an efficient compilation of message delivery into
automata [14] and simplifies reasoning on objects. However, the static definition
of behavior can be overly restrictive for the programmer. This suggests some
compile-time mechanism for assembling partial definitions. To this end, we pro-
mote partial definitions into classes. Classes can be combined and transformed
to form new classes. They can also be closed to create objects.

The class language is layered on top of the core objective calculus, with a se-
mantics that reduces classes into plain object definitions. We thus retain strong
static properties for all objects at run-time. Some operators are imported from
sequential languages and adapted to a concurrent setting. For instance, multiple
inheritance is expressed as a disjunction of join definitions, but some disjunc-
tions have no counterpart in a sequential language. In addition, we propose a
new operator, called selective refinement. Selective refinement applies to a parent
class, and rewrites the parent reaction rules according to their synchronization
patterns. Selective refinement treats synchronization concretely, but it handles
the parent processes abstractly. Our approach is compatible with the JoCaml
implementation of the join calculus [13], which already singles out synchroniza-
tion patterns using concrete compile-time representation, and, on the contrary,
compiles behaviors into functional closures.

Our design of the class language follows from common programming patterns
in the join calculus. We motivate it further by coding some standard problematic
examples that mix synchronization and inheritance.

The language is equipped with a polymorphic type system, in the style of [9];
in addition to basic safety properties, the type system also enforces privacy. The
formal presentation of both dynamic and static semantics, the soundness results,
and their proofs are omitted from this extended abstract. They can be found in
the full paper [10].

The paper is organized as follows. In section 2, we present the objective join
calculus and develop a few examples. In section 3, we supplement the language
with classes. In section 4, we provide more involved examples of inheritance and
concurrency. In section 5, we discuss related works and possible extensions.

Inheritance in the Join Calculus 399

2 The Objective Join Calculus

Getting Started. The basic operation of our calculus is asynchronous message
passing in object style. For instance, the process out.print int(n) sends a mes-
sage with label print int and with content n to an object named out, meant to
print integers on the terminal.

Accordingly, the definition of an object describes how messages received on
some labels can trigger processes. For instance,

obj continuation = reply(x) � out .print int(x)

defines an object that reacts to messages on reply by printing their content on
the terminal. Another example is the rendez-vous, or synchronous buffer:

obj sbuffer = get(r) & put(a,s) � r .reply(a) & s.reply()

The object sbuffer has two labels get and put ; it reacts to the simultaneous
presence of one message on each of these labels by passing a message to the
continuation r, with label reply and contents a, and passing an empty message
to s. (Object r may be the previously-defined continuation; object s is another
continuation taking no argument on reply.) As regards the syntax, concurrent
execution and message synchronization are expressed in a symmetric manner
using the same infix operator &. Also, the calculus is polyadic, i.e., messages
carry tuples of values.

Some labels may convey messages representing the internal state of an ob-
ject, rather than an external method call. This is the case of label Some in the
following unbounded, unordered, asynchronous buffer:

obj abuffer = self(z)
put(a,r) � r .reply() & z .Some(a)

or get(r) & Some(a) � r .reply (a)

The object abuffer can react in two different ways: a message (a, r) on put
may be consumed by storing the value a in a self-inflicted message on Some;
alternatively, a message on get and a message on Some may be jointly consumed,
and then the value stored on Some is sent to the continuation received on get .
The indirection through Some makes abuffer behave asynchronously: messages
on put are never blocked, even if no message is ever sent on get . As regards the
syntax, the prefix self(z) explicitly binds the name z to the defined object.

In the example above, the messages on label Some encode the state of abuffer.
The following definition illustrates a tighter management of state that imple-
ments a one-place buffer:

obj buffer = self(z)
put(a,r) & Empty() � r .reply() & z .Some(a)

or get(r) & Some(a) � r .reply(a) & z .Empty()
init buffer .Empty()

Such a buffer can either be empty or contain one element. The state is encoded
as a message pending on Empty or Some, respectively. Object buffer is created
empty, by sending a first message on Empty in the (optional) init part of the

400 Cédric Fournet et al.

Fig. 1. Syntax for the core object calculus

P ::= Processes
0 null process
x.M message sending
P1 & P2 parallel composition
obj x = self(z) D init P1 in P2 object definition

D ::= Definitions
M � P reaction rule
D1 or D2 disjunction

M ::= Patterns
�(eu) message
M1 & M2 synchronization

obj construct. As opposed to abuffer above, a put message is blocked when the
buffer is not empty.

To keep the buffer object consistent, there should be a single message pending
on either Empty or Some. This invariant holds as long as external users cannot
send messages on these labels directly. In the full paper [10], we describe a refined
semantics and a type system that distinguishes private labels such as Empty and
Some from public labels, and restrict access to private labels. In the examples,
private labels conventionally bear an initial capital letter.

Once private labels are hidden, each variant of our buffer provides the same
interface to the outside world (two methods labeled get and put) but their con-
current behaviors are very different.

Syntax. We use two disjoint countable sets of identifiers for object names x, z, u ∈
O and for labels � ∈ L. Tuples of names are written xi

i∈I or simply x̃. The
grammar of the objective join calculus (without classes) is given in Figure 1;
it has syntactic categories for processes P , definitions D, and patterns M . We
abbreviate obj x = self(z) D init P in Q by omitting self(z) when z does not
occur free in D and omitting init P when P is 0.

A reaction rule M � P associates a pattern M with a guarded process P .
Every message pattern �(ũ) in M binds the object names ũ with scope P . We
require that every pattern M guarding a reaction rule be linear; that is, each
label and each name appears at most once in M . This will be enforced by typing.
In addition, an object definition obj x = self(z) D init P1 in P2 binds two names
x and z to D. The scope of x is the processes P1 and P2; the scope of z is every
guarded process in D. Free names in processes and definitions, noted fn(·), are
defined according to these binders. Terms are taken modulo renaming of bound
names (or α-conversion).

Inheritance in the Join Calculus 401

The reduction relation on processes is defined using a reflexive chemical ab-
stract machine; it appears in the full paper.

3 Inheritance and Concurrency

We now extend the calculus of concurrent objects with classes and inheritance.
The behavior of objects in the join calculus is statically defined: once an object
is created, it cannot be extended with new labels or with new reaction rules
synchronizing existing labels. Instead, we provide this flexibility at the level of
classes. Our operators on classes can express various object paradigms, such as
method overriding (with late binding) or method extension. As regards concur-
rency, these operators are also suitable to define synchronization policies in a
modular manner.

Deriving a Concurrent Class. We introduce the syntax for classes in a series of
simple examples. We begin with a class buffer behaving as the one-place buffer
of Section 2:

class buffer = self(z)
get(r) & Some(a) � r .reply(a) & z .Empty()

or put(a,r) & Empty() � r .reply() & z .Some(a)

The class buffer can be used to create objects:
obj b = buffer init b .Empty()

Assume that, for debugging purposes, we want to log the buffer content on
the terminal. Our first solution uses an explicit log label.

class logged buffer = self(z)
buffer

or log() & Some(a) � out .print int(a) & z .Some(a)
or log() & Empty() � out .print string(”Empty”) & z .Empty()

The class body above is a disjunction of an inherited class and of additional
reaction rules. The intended meaning of disjunction is that reaction rules are
cumulated, yielding competing behaviors for messages on labels that appear in
several disjuncts. The order of the disjuncts does not matter. The programmer
that writes logged buffer must have some knowledge of the parent class buffer,
namely the use of private labels Some and Empty for representing the state.

Other possible debugging information is the synchronous log of all messages
that are consumed on put. This is done by selecting the patterns in which put
occurs and adding a printing message to the corresponding guarded processes:

class logged buffer bis =
match buffer with
put(a,r) ⇒ put(a,r) � out .print int(a)

end

The match construct can be understood by analogy with pattern matching à
la ML, applied to the reaction rules of the parent class. Here, any reaction rule

402 Cédric Fournet et al.

from the parent buffer whose pattern contains the label put is replaced in the
derived logged buffer bis by a rule with the same pattern (put appears on both
sides of ⇒) and with the original guarded process in parallel with a printing
message (the parent action and the & are left implicit in the match syntax). Any
other parent rule remains unchanged. Hence, the above definition behaves as the
following definition:

class logged buffer bis =
get(r) & Some(a) � r .reply(a) & z .Empty()

or put(a,r) & Empty() � r .reply() & z .Some(a) & out .print int(a)

Yet another kind of debugging information is a log of put attempts:

class logged buffer ter = self(z)
match buffer with
put(a,r) ⇒ Parent put(a,r) � 0

end
or put(a,r) � out .print int(a) & z .Parent put(a,r)

In this case, the match construct performs a renaming of put into Parent put
in the patterns of selected rules, without affecting their guarded processes. The
net effect is similar to parent method overriding, with the new put calling the
parent one and a late-binding semantics for guarded processes.

The examples above illustrate that the very idea of class refinement is less
abstract in a concurrent setting than in a sequential one. In the first logged buffer
example, logging the buffer state requires knowledge of how this state is encoded;
otherwise, some states might be forgotten or logging might lead the buffer into
deadlock. The other two examples expose another subtlety: in a sequential lan-
guage, the distinction between logging put attempts and put successes is irrele-
vant. Thinking in terms of sequential object invocations, one may be unaware of
the concurrent behavior of the object, and thus write logged buffer ter instead
of logged buffer bis.

Syntax. The language with classes extends the core calculus of section 2; its
grammar is given in Figure 2. Classes are taken up to the associative-commutative
laws for disjunction or. We use two additional sets of identifiers for class names
c ∈ C and for sets of labels L ∈ 2L. Such sets L are used to represent abstract
classes that declare the labels in L but do not define them.

Join patterns J generalize the syntactic category of patterns M given in
Figure 1 with an or operator that represents alternative synchronization patterns.
Join patterns are taken up to simple equivalence laws: & and or are associative-
commutative, and & distributes over or. Hence, every join pattern J can be
written as a non-empty alternative of patterns ori∈I Mi, and the reaction rule
(ori∈I Mi) � P behaves as ori∈I(Mi � P).

Selection patterns K are either join patterns or the empty pattern 0. Their
normal forms are of the form above, except that I can be empty. We always
assume that patterns J and K meet the following well-formed conditions. Free
names fn(K) are defined in the obvious way. As usual, � means disjoint union.

Inheritance in the Join Calculus 403

Fig. 2. Syntax for classes

P ::= Processes
. . . (as in figure 1)
obj x = self(z) C init P1 in P2 object definition
class c = self(z)C in P class definition

C ::= Classes
c class variable
L abstract class
J � P reaction rule
C1 or C2 disjunction
self(x)C self binding
match C with S end selective refinement

S ::= Refinement clauses
(K1 ⇒ K2 � P) | S refinement sequence
∅ empty refinement

J ::= Join patterns
�(eu) message
J1 & J2 synchronization
J1 or J2 alternative

K ::= Selection patterns
0 empty pattern
J join pattern

1. All conjuncts Mi in the normal form of K are linear (as defined in sec-
tion 2) and bind the same names. By extension, we say that K binds the
names fn(Mi) bound in every Mi, and write fn(K) for these names.

2. In a refinement clause K1 ⇒ K2 � P , the pattern K1 is either M or 0, and
the pattern K2 binds at least the names of K1 (fn(K1) ⊆ fn(K2)).

As described in section 2, binders for object names include object definitions
(binding the defined object to name x and self name z) and patterns (binding
the received names). In a reaction rule J � P , the join pattern J binds fn(J) with
scope P . In a refinement clause K1 ⇒ K2 � P , the selection pattern K1 binds
fn(K1) with scope K2 and P ; the modification pattern K2 binds fn(K2)\ fn(K1)
with scope P . Finally, the self renaming self(x) C binds the object name x with
scope C. Class definitions class c = C in P are the only binders for class names c,
with scope P . Processes, classes, and reaction rules are taken up to α-conversion.

Labels don’t have scopes. Join patterns J declare the labels appearing in
their message. Classes C declare the labels of their reaction rules. Abstract
classes trivially declare their labels. Finally, selective refinements declare labels
appearing either in the parent class or in a refinement clause.

404 Cédric Fournet et al.

Class expressions are simplified by means of a reduction semantics, that al-
lows to obtain processes in the core calculus without classes. These reduction
sementics (see the full paper [10]) has been designed to support separate com-
pilation of classes.

4 Inheritance Anomaly

As remarked by many authors, the classical point of view on class abstraction—
method names and signatures are known, method bodies are abstract—does
not mix well with concurrency. More specifically, concurrency and class-based
inheritance are not orthogonal. This well-known problem is often referred to
as the inheritance anomaly. Unfortunately, inheritance anomaly is not defined
formally, but by means of examples as in [15], where three patterns of inheritance
anomaly are given.

The examples in [15] demonstrate that extending a base class by new ca-
pacities has an impact on the (desirable) concurrent behavior of the capacities
that are inherited from the base class. Straightforward extensions to concur-
rency of sequential languages, such as implementing synchronization in method
bodies or providing simple locking policies (cf. synchronized from Java) prove
unsufficient here. The former because synchronization code is not accessible, the
latter because the provided synchronization policies are not expressive enough.
[15] (partially) solve inheritance anomalies by making concrete some parts of the
parent class (such as “concurrency-control”). It is to be noticed that they do so
by considering a new extension for each anomaly.

Our approach is different: starting from a concurrent language we are more
concerned with the expressive power of our inheritance operators. Solving the
three categories of inheritance anomaly, as we do, appears to be a valuable test.

To this aim, we consider the same running example as Matsuoka and
Yonezawa: a FIFO buffer with two methods put and get to store and retrieve
items. We also adopt their taxonomy of inheritance anomaly: inheritance in-
duces desirable modifications of “acceptable states” [of objects], and a solution
is a way to express these modifications.

We extend our programming language with booleans and integers, with usual
primitive operations. Arrays are created by create(n), that gives an uninitialized
array of size n. The size of array A is retrieved by A.size. Finally A[i]←v is array
A where the i-th item has been replaced with v.

class buff = self (z)
put(v ,r) & (Empty(A, i , n) or Some(A, i , n)) �
r .reply() & z .Check (A[(i+n) mod A.size] ← v , i , n+1)

or get(r) & (Full(A, i , n) or Some(A, i , n)) �
r .reply(A[i]) & z .Check (A, (i+1) mod A.size, n−1)

or Check (A,i ,n) �
if n = A.size then z .Full(A, i , A.size)
else if n = 0 then z .Empty(A, 0, 0)

Inheritance in the Join Calculus 405

else z .Some(A, i , n)
or Init(size) � z .Empty(create(size),0,0)

The state of the buffer is encoded as a message with label Empty, Some, or
Full. The buffer may react to messages on put when non-full, and to messages on
get when non-empty; this is expressed in a concise manner using the or operator
in patterns. Once a request is accepted, the state of the buffer is recomputed by
sending an internal message on Check. As Check appears alone in a join pattern,
message sending on Check acts like a function call, which can be in-lined by an
optimizing compiler.

Partitioning of acceptable states. The class buff2 supplements buff with a new
method get2 that atomically retrieves two items from the buffer. For simplicity,
we assume here size > 2.

Since get2 succeeds when the buffer contains two elements or more, the buffer
state needs to be refined. Furthermore, since for instance, a successful get2 may
disable get or enable put, the addition of get2 has an impact on the “acceptable
states” of get and put, which are inherited from the parent buff. Therefore, label
Some is no longer pertinent and is replaced with two labels One and Many. One
models the state when the buffer holds exactly one item; Many defines a state
with two items or more in the buffer.

class buff2 = self(z)
get2 (r) & (Full(A,i ,n) or Many(A, i , n)) �

r .reply(A[i], A[(i+1) mod A.size])
& z .Check (A, (i+2) mod A.size, n−2)

or match buff with
Some(A, i , n) ⇒ (One(A, i , n) or Many(A, i , n)) � 0 end

or Some(A, i , n) �
if n > 1 then z .Many(A, i , n) else z .One(A, i , n)

In the program above, a new method get2 is defined, with its own synchro-
nization condition. The new reaction rule is cumulated with those of buff, using
a selective refinement that substitutes “One(. . .) or Many(. . .)” for every occur-
rence of “Some(. . .)” in a join pattern. The refinement eliminates Some from
any inherited pattern, but it does not affect occurrences of Some in inherited
guarded processes: the parent code is handled abstractly, so it cannot be modi-
fied. Instead, the new class provides an adapter rule that consumes any message
on Some and issues a message on either One or Many, depending on the value
of n.

History-dependent acceptable states. The class gget buff alters buff as follows:
the new method gget returns one item from the buffer (like get), except that
a request on gget can be served only immediately after serving a request on
put. More precisely, a put transition enables gget, while get and gget transitions
disable it. This condition is reflected in the code by introducing two labels After-
Put and NotAfterPut. Then, messages on gget are synchronized with messages
on AfterPut.

406 Cédric Fournet et al.

class gget buff = self (z)
gget(r) & AfterPut()

& (Full(A, i , n) or Some(A, i , n)) �
r .reply(A[i]) & z .NotAfterPut()

& z .Check (A, (i+1) mod A.size, n−1)
or match buff with

Init(size) ⇒ Init(size) � z .NotAfterPut()
| put(v , r) ⇒

put(v , r) & (AfterPut() or NotAfterPut()) �
z .AfterPut()

| get(r) ⇒
get(r) & (AfterPut() or NotAfterPut()) �

z .NotAfterPut()
end

The first clause in the match construct refines initialization, which now also
issues a message on NotAfterPut. The two other clauses refine the existing meth-
ods put and get, which now consume any message on AfterPut or NotAfterPut
and produce a message on AfterPut or NotAfterPut, respectively.

Modification of acceptable states. A general-purpose lock may be defined as:

class locker = self (z)
suspend(r) & Free() � r .reply() & z .Locked()

or resume(r) & Locked() � r .reply() & z .Free()

The class locker can be used to create locks, but it can also be combined
with some other class c to control message processing on the labels of c. To this
end, a simple disjunction of c and locker is not enough and some refinement of
the parent c is required.

class locked buff = self (z)
locker

or match buff with
Init(size) ⇒ Init(size) � z .Free()
| 0 ⇒ Free () � z .Free()
end

The first clause in the match construct supplements the initialization of buff
with an initial Free message for the lock. The second clause matches every other
rule of buff, and requires that the refined clause consume and produce a message
on Free. (The semantics of clause selection follows the textual priority scheme of
ML pattern-matching, where a clause applies to all reaction rules that are not
selected by previous clauses, and where the empty selection pattern acts as a
default case.)

As a consequence of these changes, parent rules are blocked between a call to
suspend and the next call to resume, and parent rules leave the state of the lock
unchanged. In contrast with previous examples, the code above is quite general;
it applies to any class following the same convention as buff for initialization.

Inheritance in the Join Calculus 407

5 Related and Future Works

There are many works on supplementing object calculi with concurrent primi-
tives [16, 3, 11], or on supplementing process calculi with objects (usually by the
mean of an encoding in the original calculus) [19, 18, 12, 5]. Our work follows
the latter tradition. However, to our knowledge, it is the only one to address safe
object composition in a process calculus.

In [17], Odersky proposes an object-oriented extension of a language based
on the join calculus. His proposal amounts to adding some record structure
to join definitions, as we do in section 2. However, Odersky does not consider
the problem of inheritance and refinement of synchronization. A small technical
difference is that Odersky’s calculus is designed with pattern matching on values:
values in Odersky’s calculus are not only object names but also constructed
values (such as strings, integers, lists, etc.); then, the shape of values can be taken
into account during synchronization. For instance, a rule of the form �(h :: t) � P
is allowed, and will only fire when a message on � carries a list that contains at
least one cell. The extension of our calculus to structured values is easy (see [9]).
However, we believe that synchronization should only concern names, and not
depend on the shape of values itself. In particular, this allows a simpler semantics
and an efficient compilation of synchronization into automata [14].

Since our type system abstracts from the shape of synchronization patterns in
classes, it is blind to a number of relevant properties of concurrency, such as the
presence of race conditions or deadlock freedom. The design of a sophisticated
analyzer that is sensitive to synchronizations is a promising research direction.

6 Conclusions

We have proposed a simple, object-based variant of the join calculus. Every
object is defined as a fixed set of reaction rules that describe its synchroniza-
tion behavior. The expressiveness of the language is significantly increased by
adding classes—a form of open definitions that can be incrementally assembled
before object instantiation. Thereby, we partially recover the ability of the pi
calculus to dynamically define the receptive behavior for messages. Our layered
design confines this capability to classes. From a programming-language view-
point, this seems a good compromise between flexibility and simplicity of the
model. Indeed, our proposal still enables efficient compilation of synchronization
and type inference.

References

[1] G. Agha, P. Wegner, and A. Yonezawa. Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

[2] P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366–411, 1989.

408 Cédric Fournet et al.

[3] P. D. Blasio and K. Fisher. A calculus for concurrent objects. In U. Monta-
nari and V. Sassone, editors, Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR ’96), LNCS 1119, pages 406–421, 1996.

[4] L. Cardelli. Obliq A language with distributed scope. SRC Research Report 122,
Digital Equipment, June 1994.

[5] S. Dal-Zilio. Quiet and bouncing objects: Two migration abstractions in a simple
distributed blue calculus. In H. Hüttel and U. Nestmann, editors, Proceedings of
the Worshop on Semantics of Objects as Proceedings (SOAP ’98), pages 35–42,
June 1998.

[6] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998.

[7] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL ’96, pages 372–385, Jan. 1996.

[8] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, Proceedings of the 7th
International Conference on Concurrency Theory (CONCUR ’96), LNCS 1119,
pages 406–421, 1996.

[9] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la ML for the
join-calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the
8th International Conference on Concurrency Theory, LNCS 1243, pages 196–212,
1997.

[10] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join-
calculus. Full version. Available electronically at
http://cristal.inria.fr/~remy/work/ojoin.ps.gz, June 2000.

[11] A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and typ-
ing. In U. Nestmann and B. C. Pierce, editors, HLCL ’98: High-Level Concurrent
Languages, volume 16(3) of entcs, Nice, France, Sept. 1998.

[12] J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. June 1998.
[13] F. Le Fessant. The JoCAML system prototype. Software and documentation

available from http://pauillac.inria.fr/jocaml, 1998.
[14] F. Le Fessant and L. Maranget. Compiling join-patterns. Electronic Notes in

Computer Science, 16(2), 1998.
[15] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented

concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, chap-
ter 4, pages 107–150. The MIT Press, 1993.

[16] O. Nierstrasz. Towards an object calculus. In O. N. M. Tokoro and P. Weg-
ner, editors, Proceedings of the ECOOP’91 Workshop on Object-Based Concurrent
Computing, LNCS 612, pages 1–20, 1992.

[17] M. Odersky. Functional nets. In European Symposium on Programming 2000,
LNCS. Springer Verlag, 2000.

[18] D. Sangiorgi. An interpretation of typed objects into typed π-calculus. Informa-
tion and Computation, 143(1):34–73, 1998.

[19] D. J. Walker. Objects in the pi-calculus. Information and Computation,
116(2):253–271, 1995.

[20] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent program-
ming in ABCL/1. ACM SIGPLAN Notices, 21(11):258–268, Nov. 1986. Proceed-
ings of OOPSLA ’86.

http://cristal.inria.fr/~remy/work/ojoin.ps.gz
http://pauillac.inria.fr/jocaml

Approximation Algorithms for Bandwidth and

Storage Allocation Problems under Real Time
Constraints�

Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti��

Dipartimento di Informatica Sistemistica, Università di Roma “La Sapienza”,
via Salaria 113, 00198-Roma, Italia.

{leon,marchetti,vitale}@dis.uniroma1.it

Abstract. The problem we consider is motivated by allocating band-
width slots to communication requests on a satellite channel under real
time constraints. Accepted requests must be scheduled on non-inter-
secting rectangles in the time/bandwidth Cartesian space with the goal
of maximizing the benefit obtained from accepted requests. This prob-
lem turns out to be equal to the maximization version of the well known
Dynamic Storage Allocation problem when storage size is limited and
requests must be accommodated within a prescribed time interval.
We present constant approximation algorithms for the problem intro-
duced in this paper using as a basic step the solution of a fractional
Linear Programming formulation.
This problem has been independently studied by Bar-Noy et al
[BNBYF+00] with different techniques. Our approach gives an improved
approximation ratio for the problem.

1 Introduction

The problem we study in this paper has been encountered in the context of
the EU research project Euromednet on scheduling requests for remote medical
consulting on a shared satellite channel [Eme]. Every request asks for a number of
contiguous bandwidth slots to provide every end user involved in the consulting
with a TCP/IP satellite channel. Bandwidth is assigned in slots of 64 kb/sec. The
number of slots per end user depends on the type of service desired (typical values
are 64 kb/sec for common internet services – 384 Kb/sec for audio/video.) At
most 48 slots of 64 Kb/sec are available on the channel in this specific application.
Requests also specify a duration of the consulting (typical values are from 1/2
hour to 2 hours) to be allocated within a time interval specified in the request.
Requests are typically issued a few days in advance. The service manager will
� Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT), IST-1999-10440 (BRAHMS) and IST-2000-14084 (AP-
POL), and by the Italian Research Project MURST 40% “Resource Allocation in
Computer Networks”.

�� Partially supported by Etnoteam (Italy).

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 409–420, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

410 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

reply soon with a positive or a negative answer on the basis of the pending
requests and of the requests already accepted. Every accepted request is allocated
starting from a base bandwidth for a contiguous number of slots along a time
duration within the indicated time interval. The total bandwidth assigned to a
single request must be contiguous due to the constraints imposed from FDMA
(Frequency Division Multiple Access) technology. Other details regarding this
specific application are available to [Eme].

The problem encountered in this application is a natural interesting combi-
natorial problem: if we consider a Cartesian space with the bandwidth on the
ordinate and the time on the abscissa then every accepted request is a rectan-
gle of basis equal to the duration and height equal to the bandwidth requested.
Accepted requests must observe the packing constraint, that is any two rectan-
gles are non-overlapping. A benefit is also assigned to every request, modeling
its relevance or the economic revenue from its acceptance. The objective is to
maximize the overall benefit of accepted requests. In the sequel of the paper we
denote this problem as the Rectangle Packing (RP) problem.

This problem is related to a number of well studied combinatorial problems.
Consider the machine scheduling problem with real time constraints in which
every job asks to be scheduled for a given duration between a release time and
a deadline. Only one job can be scheduled at any time on every single machine.
A benefit is associated with every job with the goal of maximizing the benefit
obtained from scheduled jobs. This is an old NP-hard scheduling problem [GJ79].
Very recently the first constant approximation algorithms has been proposed for
this problem [BNGNS99] both on single and parallel machines.

A second related problem is the Dynamic Storage Allocation problem (DSA).
DSA concerns the dynamic allocation of contiguous areas in a storage device.
In DSA a set of requests for a contiguous area of memory along a specified time
duration has to be accommodated while minimizing the storage space required.
DSA is a classical problem in computer science [Knu73] whose study backs to the
sixties. The rectangle packing problem is a maximization version of DSA where
we have to allocate bandwidth rather than storage space. In RP storage space is
limited. On the other end we insert real time constraints on the temporal alloca-
tion of the process. We believe that this version of DSA is of relevance in many
practical settings. DSA has been shown to be tightly related to interval graph
coloring. Kierstead and Slusarek [Kie91, Slu89] proposed 3-approximation algo-
rithms for aligned DSA, where the storage space required is a power of 2. More
recently Gergov [Ger96] proposed a 5/2 approximation algorithm for aligned
DSA that implies a 5 approximation for DSA and claimed a 3 approximation
algorithm [Ger99].

A third closely related problem is the call control problem on linear networks
[GGK97, BNCK+95]. This problem has been typically considered in its on-line
version. At any step a request for establishing a connection between two vertices
on the line network with a given bandwidth is presented. The algorithm has to
accept or reject the request without knowledge of the requests presented in the
future. If the request is accepted, a given benefit is obtained. The objective is

Approximation Algorithms for Bandwidth and Storage Allocation Problems 411

to maximize the obtained benefit without violating the bandwidth constraint
on any link of the network. In the call control problem every request must be
assigned on a fixed path in the line network, while in the RP problem some
slackness in the time allocation may be allowed. However, the major difference
from RP is that in call control we only require the bandwidth constraint, impos-
ing that the overall bandwidth allocated on a link does not exceed the capacity
of the link, rather than the stronger packing constraint of the RP problem.

Results of the paper. We present a 12 approximation algorithm for the RP
problem. As a basic step of the algorithm we solve a fractional LP problem in
which we only enforce the bandwidth constraint and requests can be fraction-
ally accepted. We then show with a novel rounding technique that the optimal
fractional solution is a convex combination of a set of integral solutions with
a specific property that we call stability, of which we select that with highest
benefit. The selected solution may still contain intersecting rectangles. However
it can be partitioned into three feasible solutions of which we select the best
one as final solution of the algorithm. The approximation ratio we obtain is 6 if
the bandwidth requested is a power of 2, 12 in the general case. The proposed
solution runs in pseudopolynomial time. It can be transformed into a fully poly-
nomial time algorithm at the expenses of a small increase in the approximation
ratio. We also show a combinatorial algorithm with approximation ratio arbi-
trarily close to 26 + ε. This algorithm uses as a basic step the combinatorial
algorithm devised in Bar-Noy et al. [BNBYF+00].

Independently from our paper, Bar-Noy et al. [BNBYF+00] proposed a 35
approximation for our problem that they call Benefit DSA. Their approach is to
solve a version of the problem where requests are either accepted or rejected in
an integral sense, while the packing constraint is relaxed to the milder bandwidth
constraint. A solution of this problem is then combined with an algorithm for
the DSA problem. In a later version of their paper they improve the result to a
6γ − 1 combinatorial approximation and to a 6γ − 3 LP-based approximation,
where γ is the approximation ratio for DSA. If we consider the 5-approximation
for DSA of [Ger96] this yields respectively a 29 combinatorial and a 27 LP-based
approximation for the problem. If we consider the 3-approximation claimed in
[Ger99], this yields a 17 combinatorial and a 15 LP-based approximation for the
problem.

We finally show how to extend our algorithm to the multiple channel case
for bandwidth allocation or, equivalently, to the multiple storage devices case in
the DSA problem.

Structure of the paper. In Section 2 we formally describe the RP problem. In
Section 3 we describe the LP based approximation algorithm for theRP problem.
In section 4 we show how the algorithm is turned into a fully polynomial time
algorithm. In Section 5 we present a combinatorial version of the algorithm.
Finally, in Section 6 we describe the extension to multiple channels.

412 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

2 The RP Problem

Given an input set of n requests {< ri, di, bi, li, ωi >}n
1 , where ri, di, bi, li, ωi are

integers, the generic request asks for a bandwidth interval of size bi in [0, B]
along a continuous time interval of length li contained in [ri, di]. A request
can be either accepted or rejected. A request that is accepted is scheduled on
a bandwidth interval [f(i), f(i) + bi] and a time interval [t(i), t(i) + li] and a
benefit ωi is accrued. An accepted request is represented with a rectangle of
basis li and height bi on a Cartesian space having the time on the abscissa and
the bandwidth on the ordinate. The schedule must observe the constraint that
any two rectangles are non-overlapping. In the following we denote by packing
constraint the constraint that two rectangles are non-overlapping. The packing
constraint is stronger than the bandwidth constraint imposing that the overall
bandwidth allocated at time t cannot exceed B. In the following we assume
bi ≤ 1 and B = 1. In the aligned version of the RP every bandwidth request is
a power of 1/2. The objective of the algorithm is to maximise the overall profit
obtained from accepted requests.

3 A LP Based Approximation Algorithm

We present an LP based approximation algorithm for RP . We first round all
the bandwidth requests to the nearest higher power of 2. As a basic step of the
algorithm we solve a fractional LP problem in which we only enforce the band-
width constraint. We then show that the optimal solution to the fractional RP
problem is a convex combination of a set of integral solutions holding a property
that we will call stability. We select the best among these stable solutions that
has benefit at least 1/2 the optimum to the LP problem. The selected solution
can contain intersecting intervals since the packing constraint has not been im-
posed. In the final step of the algorithm we show that the selected solution can
be decomposed into three feasible solution of which we select that with highest
benefit that will form the final solution to the problem. The obtained solution is
a 6 approximation for the aligned version and a 12 approximation for the original
problem.

Thus the algorithm consists of three main steps:

1. Solve the LP formulation;
2. Find a stable solution;
3. Obtain a feasible solution.

3.1 The LP Formulation

In this section we present the LP formulation we use as a basic step for the
solution of the RP problem.

We first round every bandwidth request to the lowest higher power of 1/2,
namely bi = min

k

{
1
2k : 1

2k ≥ bi

}
.

Approximation Algorithms for Bandwidth and Storage Allocation Problems 413

Variables xit, t = ri, .., di − li, are associated with request i. Variable xit is rang-
ing in [0, 1], and denotes the schedule of request i with t(i) = t. Every request
can be fractionally scheduled along a set of intervals for an overall value not

exceeding one, thus we impose
di−li∑
t=ri

xit ≤ 1. Denote by T the latest deadline of

a request. In the LP formulation we also impose the bandwidth constraint at
any time t ∈ 1, .., T , namely that the overall bandwidth assigned to the requests
fractionally scheduled at time t is at most 1.

max
n∑

i=1

di−li∑

t=ri

ωixit

∑

i,t′:t∈[t′,t′+li)

bixit′ ≤ 1, ∀ t

di−li∑

t=ri

xit ≤ 1, ∀ i

xit ∈ [0, 1] , ∀ t, i

xit = 0, ∀ i, t /∈ [ri, di − li]

We will denote with xit both a variable and its value. The optimum of the LP
problem is related to the optimum of the RP problem by the following Lemma:

Lemma 1. For the RP problem it holds OPT (LP) ≥ OPT (RP)/2. For the
aligned version of RP it holds OPT (LP) ≥ OPT (RP).

Proof: Consider a new formulation LP1 obtained from LP by replacing in
the bandwidth constraint the bi’s with the original bi’s.

∑

i,t′:t∈[t′,t′+li)

bixit′ ≤ 1, ∀t, (1)

and by imposing the integrality constraints xit ∈ {0, 1}. Observe that any
solution to RP is also a solution to LP1 for which OPT (LP1) ≥ OPT (RP).
Since bi ≤ 2bi, any solution to LP1 with values xit

2 is also a solution to LP, with
a benefit at least 1

2 of the benefit of LP1. Therefore, from a solution to LP1 we
obtain a solution to LP of value at least 1

2 of the value of the solution to LP1.
Then OPT (LP) ≥ OPT (LP1)/2 ≥ OPT (RP)/2.

For the aligned case, we simply obtain OPT (LP) ≥ OPT (RP).

3.2 The Algorithm for Obtaining a Stable Solution

In this section we present the LP based algorithm for the RP problem. We
denote by it the request i scheduled at time t.

414 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

Definition 1. Given a schedule of requests, the support at time t′, denoted
by support(t′), is the maximum value such that there exists a set of j non-
overlapping requests i1, i2, .., ij scheduled at time t′ for which f(i1) = 0, f(ik) =
f(ik−1) + bik−1 , k = 2, .., j, f(ij) = support(t′).

Request it is (h, t′) stable if h = support(t′) = maxt′′∈[t,t+li)support(t
′′).

A schedule of requests is stable if every request i in the schedule is (hi, ti)
stable for some hi and ti.

The geometrical interpretation of a request i (h, t) stable is a rectangle placed
on the top of a pile of non-overlapping rectangles of total bandwidth h (see Figure
1). We will say that the rectangles in the pile form the support of i.

������������
������������
������������
������������

t

h

Figure 1. Request i is the filled rectangle in the figure. Request i is (h, t) stable.
Observe that 2 requests in a stable schedule can overlap.

Let xit be the value of a variable in the optimal LP solution. Given an
optimal LP solution we denote by α the largest rational such that xit is an
integer multiple of α.

The algorithm for obtaining a good stable solution first finds at most 2
α

integral stable solutions and then chooses that one with highest benefit. Denote
by s the number of solutions constructed at a generic step of the algorithm. The
algorithm is composed of the following steps:

1. Order the non-zero xit by non increasing bi.
2. Replicate xit

α times request it.
3. Assign every replication of it to a solution with the following algorithm:

(a) Select those solutions S1, ..., Sm not containing a copy of i, out of the s
constructed solutions.

(b) Merge the m solution S1, ..., Sm of bandwidth 1 into a single
solution S of bandwidth m.(The relative order of the solution is not
relevant for the algorithm.)

(c) Let the replication of it be (h, t′) stable in S.
(d) If h ≤ m, then assign the copy of it to solution S�h�+1 with f(it) =

h mod 1; If h = m, then construct a new solution having it assigned
with f(it) = 0.

4. Select the solution with highest benefit that we call Sbest.

The simpler alternative would just place every it in the first solution where it
fits, i.e. where it is (h, t) stable with h ≤ 1− bi, if any. However this alternative
fails to place all the replications into at most 2/α solutions as we are able to
show for our algorithm.

Approximation Algorithms for Bandwidth and Storage Allocation Problems 415

������������

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
����������������� ����������

...
..

...
..

...
..

...
..

The schedule before the placement of i.
Observe that a copy of i is already placed
in S3.

S2

S1

S2

S3

S4

S5

S1

S2

S1 S1

S4

S5

S

S2

S3

S4

S5

S4

S5

S

a copy of request i

Step 3, points (a) and (b).

Step 3, points (c) and (d). The schedule after the placement of i

Figure 2. The algorithm for obtaining a stable solution.

Lemma 2. Every copy of it is placed in a solution Sj ∈ S, j ≤ m, if s = 2
α

solutions have been constructed.
Proof: We prove that it is (h, t′) stable for a value h < m. Assume by contradic-
tion h ≥ m. At most 1/α distinct copies of it need to be placed for every request
i. Since 2/α solutions are available, at least m ≥ 1/α+1 solutions S1, .., Sm not
containing a copy of i are available for a single it. It follows that at time t′ the
whole bandwidth has been assigned on all the m solutions, namely for any Sj ,∑
it∈Sj :t′∈[t,t+li)

bi = 1.

From the packing constraint in LP, at time t′ we have : α
∑

i,t:t′∈[t,t+li)

bixit

α ≤ 1.

It follows that at time t′:

1 ≥ α
∑

i,t:t′∈[t,t+li)

xitbi

α
= α

∑

Sj

∑

it∈Sj :t′∈[t,t+li)

bi ≥ mα ≥ 1 + α,

thus a contradiction.

416 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

We finally show that each integral solution satisfies the bandwidth constraint,
namely for every copy of it, f(it) + bi ≤ 1. We first give a preliminary Lemma:

Lemma 3. For every request i and every solution S, f(i) = kbi for some integer
k.

Proof: The rectangles in the support of i are ordered by non increasing band-
width. Since the bandwidths are powers of 1/2, we have that hi is a multiple
integer of bi.

Lemma 4. For any replication of any request it, f(it) + bi ≤ 1.

Proof: By definition of the algorithm each replication is scheduled at f(it) if it
is (f(it), t′) stable with f(it) < 1. By the previous Lemma we have that 1−f(it)
is a multiple integer of bi for which the thesis follows.

3.3 Obtaining a Feasible Solution

In this section we show how a stable solution, and in particular Sbest selected
at the previous step of the algorithm, can be decomposed into three feasible
solution of the RP problem.

We first construct the intersection graph of Sbest by assigning a vertex to
every rectangle and connecting with an edge every pair of vertices representing
intersecting rectangles. We then show that the obtained intersection graph is
3-colourable and that this can be done in polynomial time. By choosing the set
of rectangles of same color having maximum benefit we obtain a collection of
non-overlapping intervals in which every request is scheduled at most once.

The algorithm is as follows:

1. Construct the intersection graph of solution Sbest;
2. Colour the intersection graph with three colours with the following algo-

rithm:
(i.) Consider the requests in order of non increasing bandwidth bi;
(ii.) Colour the requests with same bi and f(i), in order of starting point,

assigning greedily the 3 available colours.
3. Accept those requests coloured with same colour having total highest benefit;
4. Bring every rectangle’s height bi to the original original bi.

In order to prove that the algorithm gives a legal 3-coloring of the graph we
state a set of properties of a stable schedule. We first give a direct corollary of
Lemma 3.

Corollary 1. Consider two requests i and j with bi ≥ bj, respectively (hi, ti)
and (hj , tj) stable. Request i intersects with request j only if hi ≤ hj < hi + bi.

The following Lemma is used to prove the two following Lemmas.

Approximation Algorithms for Bandwidth and Storage Allocation Problems 417

Lemma 5. Consider a schedule with two intersecting requests i and j that
are respectively (hi, ti) and (hj , tj) stable. Therefore ti, tj /∈ [t(i), t(i) + li) ∩
[t(j), t(j) + lj)

Proof: The proof is by contradiction. Assume request i placed before j. If ti ∈
[t(i), t(i) + li) ∩ [t(j), t(j) + lj) then i is part of the support of j, hj ≥ hi + bi, a
contradiction since the two requests are intersecting.

Assume tj ∈ [t(i), t(i)+ li)∩ [t(j), t(j)+ lj). It must be hj ≥ hi, otherwise by
Lemma 3, hj + bj ≤ hi, a contradiction to the intersection of the two rectangles.
Since we are considering the aligned case, at least one rectangle of the support
of j in tj , say h, will be scheduled between hi − bh and hi. Therefore, i is part
of the support of j, a contradiction.

The next Lemma states that if i and j are intersecting the two associated
time intervals are not nested.

Lemma 6. For any two intersecting requests i, j, it never holds [t(i), t(i)+li) ⊆
[t(j), t(j) + lj).

Proof: The proof is by contradiction. If i and j are overlapping and [t(i), t(i) +
li) ⊆ [t(j), t(j) + lj) then for the support of i it holds ti ∈ [t(i), t(i) + li) ∩
[t(j), t(j) + lj), a contradiction to Lemma 5.

Lemma 7. The maximum clique size of the intersection graph is 2.

Proof: Assume by contradiction that requests i, j and k form a clique of size
3 and that k is assigned to a solution after i and j. Assume i (hi, ti) stable,
j (hj , tj) stable and ti < tj . Request k must be completely contained in the
interval (ti, tj), otherwise k is either (hi + bi, ti) stable or (hj + bj, tj) stable,
thus it does not intersect with i or j.

Therefore [t(k), t(k) + lk) is completely contained in (ti, tj) that leads to the
fact that either tk ∈ (t(i), t(i) + li) or tk ∈ (t(i), t(i) + li). By Lemma 5 this is a
contradiction to the assumption that k intersects both i and j.

We finally prove that the algorithm produces a legal 3 colouring of the inter-
section graph.

Theorem 1. The algorithm colours the intersection graph with 3 colours.

Proof: By Corollary 1, requests with same bi and different f(i) are non inter-
secting. Therefore they can be coloured independently. Concentrate on a set of
requests with same bi and f(i). They are coloured greedily in order of starting
point, i.e. from left to right.

Consider one such request i. By Lemma 6, every request intersecting i can
intersect either t(i) or t(i) + li − 1, but not both endpoints. If more than 1
request intersect an endpoint i, by Corollary 1, these all intersect in that point
thus creating a clique of size at least 3, by Lemma 7 a contradiction. Therefore
at most 1 request intersects each endpoint of i, at most 2 requests intersecting
i are already coloured, leaving one colour available for i.

We finally show the approximation ratio we obtain.

418 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

Theorem 2. The algorithm for the R P problem is 12-approximated i n the gen-
eral case and 6-approximated i n the aligned case.

Proof: The algorithm selects a solution Shest whose benefit is at least
2 O P T (L P) / 2 as it follows from: O P T (L P) = Cs, Cites, "mi < aCiitSBeri

"mi < 2 CiitSBSSi mi.
By Lemma 1 O P T (R P) > O P T (L P) / 2 in the general case for which the

benefit of Shest is at least 114 of O P T (R P) , while in the aligned case we have
O P T (R P) > OPT(LP) /2 . Moreover we colour the requests of Shest with 3
colours and select the set of intervals with same colour of highest benefit, for
which the final solution has a benefit of at least 113 of the benefit of Shest.
Altogether we obtain an approximation ratio of 12 for the general case and of 6
for the aligned case. W

Figure 3. Requests are coloured by non-increasing bandwidth size.

4 A Fully Polynomial Algorithm

The number of constraints in the LP formulation is O(nT) , thus leading to a
pseudopolynomial algorithm. Bar-Noy et al.[BNGNS99] showed how to reduce
the number of time slots to a polynomial in n in a L P formulation for the
maximum throughput scheduling problem under real-time constraints. The ap-
plication of their technique to our case allows to express the LP solution as a
convex combination of 310 rather than 210 integral solutions, therefore leading
to an integral solution with a benefit at least 113 of the optimum LP. This re-
sults in a higher approximation ratio of 18 for the general version and of 9 for
the aligned version.

5 A Combinatorial Algorithm

In this section we sketch how to replace the basic step of the approximation algo-
rithm based on the solution of a fractional LP formulation with a combinatorial
algorithm that delivers a constant approximation solution to the L P problem.

Approximation Algorithms for Bandwidth and Storage Allocation Problems 419

We partition the requests into wide requests, that ask at least 1/2 of the avail-
able bandwidth, and narrow requests whose bandwidth requirement is less than
1/2. We solve the RP problem separately for wide requests and narrow requests
and we choose the best solution. If all requests are wide then RP is equivalent
to interval scheduling for which a 2 approximation algorithm is known [Spi99].

For narrow requests we replace the basic step of the algorithm based on
solving the LP formulation with a combinatorial algorithm. We divide every
request in k identical requests each one with a fraction 1/k of the bandwidth and
of the profit of the original request. We then apply the combinatorial algorithm
by [BNBYF+00] for finding an approximate integral solution to the problem in
which the only bandwidth constraint is imposed. Lemma 3.2 of [BNBYF+00]
states the following:

Lemma 8. For each integer k there exists a combinatorial algorithm that finds
a 2 + 1/k approximate solution to the LP formulation.

Therefore the combinatorial algorithm gives a solution that is away form
the optimal LP solution for at most a 2 + 1

k factor thus leading to a 12(2 + 1
k)

approximate solution for narrow requests. Combined with the 2 approximation
for wide requests we obtain:

Theorem 3. For every k there exists a 26 + 1/k combinatorial approximation
algorithm for the RP problem.

6 The Multiple Channel Case

In this section we assume that m channels, each one with a bandwidth Bj ≤ 1,
are available. For the sake of simplicity we assume the Bj ’s to be powers of 1/2.
We briefly sketch the extension of known techniques [BNGNS99], to obtain a
c+1 throughput maximization approximation algorithm form parallel unrelated
machines provided a c algorithm for a single machine. We consider a Linear
Programming formulation with variables xijt indicating the allocation of request
i at time t on machine j. We set xijt = 0 for those machines j where bi > Bj .
We then solve the LP problem and apply our rounding algorithm in order from
channel 1 to channelm while we disregard on channel j requests already accepted
on a previous channel. We then conclude with the following theorem:

Theorem 4. Provided a c approximation algorithm for the RP problem on a
single channel, there exists a c+1 approximation algorithm for the RP problem
on multiple channels.

7 Conclusions

In this paper we present constant approximation algorithms for the RP problem,
a throughput version of bandwidth and storage allocation problems when real
time constraints are imposed. Our algorithm uses as a basis a solution of a Linear

420 Stefano Leonardi, Alberto Marchetti-Spaccamela, and Andrea Vitaletti

Programming formulation and partitions it into a convex combination of integral
solutions with a novel rounding technique. We improve the approximation results
found independently from our work in [BNBYF+00].

An interesting open problem is to study the problem in the on-line model in
which requests for bandwidth allocation are presented over time. An interesting
model is also to not allow rejection of the requests if enough bandwidth is avail-
able. We finally mention the improvement of the approximability of the problem,
in particular by exploiting some of the ideas behind the recent approximation
for DSA of [Ger96, Ger99]

References

[BNBYF+00] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor,
and Baruch Schieber. A unified approach to approximating resource
allocation and scheduling. In Proceedings of the Thirty-Second Annual
ACM Symposium on the Theory of Computing, Las Vegas, Nevada,
2000.

[BNCK+95] Amotz Bar-Noy, Ran Canetti, Shay Kutten, Yishay Mansour, and
Baruch Schieber. Bandwidth allocation with preemption. In Proceed-
ings of the Twenty-Seventh Annual ACM Symposium on the Theory of
Computing, pages 616–625, Las Vegas, Nevada, 29 May–1 June 1995.

[BNGNS99] Amotz Bar-Noy, Sudipto Guha, Joseph (Seffi) Naor, and Baruch
Schieber. Approximating the throughput of multiple machines under
real-time scheduling. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 622–631, Atlanta, GA USA,
1–4 May 1999.

[Eme] http://www.estec.esa.nl/artes3/projects/12telbios/telbios.htm.
[Ger96] Jordan Gergov. Approximation algorithms for dynamic storage alloca-

tion. In European Symposium on Algorithms (ESA’96), volume 1136
of Lecture Notes in Computer Science, pages 52–61. Springer, 1996.

[Ger99] Jordan Gergov. Algorithms for compile-time memory optimization.
In Proc. of the 10th ACM-SIAM Symposium on Discrete Algorithms,
pages 907–908, 1999.

[GGK97] Juan A. Garay, Inder S. Gopal, and Shay Kutten. Efficient on-line call
control algorithms. Journal of Algorithms, 23(1):180–194, April 1997.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability – A
Guide to the Theory of NP-Completeness. Freeman, San Francisco,
1979.

[Kie91] H. A. Kierstead. A polynomial time approximation algorithm for dy-
namic storage allocation. Disccrete Mathematics, 88:231–237, 1991.

[Knu73] D.E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, 2nd Edition. Addison-Wesley, 1973.

[Slu89] M. Slusarek. A coloring algorithm for interval graphs. In Proc. of the
14th Mathematical Foundations of Computer Science, pages 471–480,
1989.

[Spi99] F.C.R. Spieksma. On the approximability of an interval scheduling
problem. Journal of Scheduling, 2:215–2227, 1999.

Dynamic Spectrum Allocation:

The Impotency of Duration Notification�

Bala Kalyanasundaram1 and Kirk Pruhs2

1 Dept. of Computer Science
Georgetown University

Washington D.C. 20057 USA
kalyan@cs.georgetown.edu
2 Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA. 15260 USA
kirk@cs.pitt.edu

http://www.cs.pitt.edu/∼kirk

Abstract. For the classic dynamic storage/spectrum allocation prob-
lem, we show that knowledge of the durations of the requests is of no
great use to an online algorithm in the worst case. This answers an open
question posed by Naor, Orda, and Petruschka [9]. More precisely, we
show that the competitive ratio of every randomized algorithm against
an oblivious adversary is Ω(log x

log log x
), where x may be any of several dif-

ferent parameters used in the literature. It is known that First Fit, which
does not require knowledge of the durations of the task, is logarithmically
competitive in these parameters.

1 Introduction

The dynamic storage/spectrum allocation (DSA) problem is a classic combina-
torial optimization problem in the computer science literature (for surveys see
[2] or [13]).

Dynamic Storage/Spectrum Allocation Problem Statement: An online
algorithm is equipped with a linear resource, for example memory or radio spec-
trum, that it must use efficiently to satisfy a sequence of n requests for this
resource. The ith request Ri is a pair (si, di) that is revealed to the online al-
gorithm at some release time ri. The parameter si denotes the bandwidth of
the request Ri, and di denotes the duration of Ri. We number the requests by
increasing order of release times, that is, ri ≤ rj for i < j. In response to request
Ri , the online algorithm must allocate si units of contiguous resource to Ri

during the time interval [ri, ri + di]. We say that Ri is active during [ri, ri + di].
Importantly, at no time may any two active requests share a common unit of
resource. The objective function is to minimize the total resource size required
to satisfy all of the given requests.
� Supported in part by NSF grant CCR-9734927 and by ASOSR grant F49620010011.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 421–428, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

422 Bala Kalyanasundaram and Kirk Pruhs

In essentially all programming systems, dynamic memory managers do not,
and more generally can not, know the exact duration of dynamically allocated
objects. Hence, if the linear resource is memory, the standard assumption is that
the online scheduler does not learn di at time ri [13]. However, in many wireless
data transmission applications, where the linear resource is frequency spectrum,
the online scheduler does learn di at time ri. For example in the testing of
aircraft, di is known because the test is predetermined [6]. More generally, the
value of di will be known if the information to be transmitted is known a priori.
In this paper, we consider the online version of DSA with known durations.

The standard measure used to compare online algorithms is competitive-
ness [1]. In the context of DSA, an online randomized algorithmA is c-competitive
if for all input sequences I, the expected value of the bandwidth A(I) used by
A on input I is at most c times Opt(I), the optimal bandwidth to satisfy I [1].

Most of the literature on online dynamic storage allocation deals with the
unknown duration case, that is when the online algorithm does not learn the
duration of a request Ri until Ri leaves the system at time ri + di. There is
no constant competitive algorithm in the unknown duration case [10,11]. Ev-
ery deterministic algorithm is Ω(log β) competitive, where β is the ratio of the
largest bandwidth of a request to the shortest bandwidth of a request [10]. Every
randomized algorithm is Ω(min(log β

log log β ,
log α

log log α)) competitive against an obliv-
ious adversary [8], here α is the maximum number of active requests at any one
time. An oblivious adversary must specify all of the requests before the online
algorithm begins execution [1]. The competitive ratio of First Fit, which places
each request in the lowest feasible location in the linear resource, was observed
to have a competitive ratio of Θ(log(2+αβ/M) in [4], where M is the maximum
amount of occupied linear resource.

In [9], the dynamic storage allocation problem with known durations is con-
sidered. They show that in the case of known durations that an online algorithm
may be logarithmically competitive in other parameters besides α and β. More
precisely, an online algorithm may be O(log∆) competitive, here ∆ is the ratio
of the largest duration of a request to the smallest duration of a request, and
may be O(log τ) competitive, here τ is the number of distinct durations. In [9]
the fundamental problem of determining whether knowledge of the durations of
the requests is of significant benefit to the online algorithm, i.e. whether it is
possible for an online algorithm to be constant competitive, is left open. Here
we prove the following theorem.

Theorem 1. Assuming an oblivious adversary, the competitive ratio of every
randomized online algorithm for the dynamic storage allocation with known du-
rations is Ω(log x

log log x), where x may be any one of n, α, β, τ or log∆.

We feel that the proper interpretation of these results is that knowledge of
the durations does not greatly benefit the online allocator in the worst case.
Although these results do leave open the possibility that knowing the durations
may logarithmically improve the competitive ratio achievable by an online algo-
rithm when the competitive ratio is measured in terms of ∆.

Dynamic Spectrum Allocation: The Impotency of Duration Notification 423

The offline version of DSA, where the algorithm has complete knowledge
of future requests, is NP-hard (see [3], which credits this result to a personal
communication from Stockmeyer), and a 3-approximation polynomial time al-
gorithm is known [5]. Several average case analyses of various algorithms are
known, for more information see [13]. Some early papers on DSA are [7,12,14].

For convenience, we will refer to the linear resource as spectrum for the rest
of the paper.

2 The Lower Bound Construction

In this section we prove Theorem 1 using the following statement of Yao’s prin-
ciple for online cost minimization problems [1].

Theorem 2. Suppose that there exists a input distribution on the inputs I such
that for all deterministic algorithms A it is the case that

lim inf
n→∞

E [A(I)]
E [Opt(I)]

≥ c

and
lim sup

n→∞
E [Opt(I)] = ∞

where the expectation is over the marginal distribution on inputs of size n, Then
the competitive ratio of every randomized algorithm is at least c.

In order to apply Theorem 2, fix a deterministic online algorithm A, and fix
some c > 2. Let W = 12(12c)47c. Note that c = Θ(log W

log log W). We will give a
request distribution that forces E[A(I)] = Θ(cW) while E[Opt(I)] = Θ(W).

Request Distribution: We partition the requests into 24c rounds. The band-
width of each request in round i, 1 ≤ i ≤ 24c, will be w(i) = (12c)2i−2. Further,
we partition round i, 1 ≤ i ≤ 24c, into W

b(i) stages, where b(i) = (12c)2i−1. The
number �i,j of requests in stage j, 1 ≤ j ≤ W

b(i) , of round i, will be selected

uniformly at random over the range [1, 2j b(i)
w(i)]. Note that we have set the value

of W so that W
b(i) ≥ 12 for any 1 ≤ i ≤ 24c.

We associate an interval Ii,j = [ai,j , bi,j] with the stage j of round i. Initially,
I1,1 = [a1,1, b1,1] = [0, 1]. Each request in stage j of round i is released at time
ai,j .

The duration of the kth request, 1 ≤ k ≤ �i,j, in stage j of round i is then
(bi,j − ai,j)(1 − 1/2k). Notice that the durations increase throughout a stage.
We call the last request in each stage a fang.

Finally, the interval associated with the next stage (whether it is in the same
round or a different round is irrelevant) is [ai,j +(bi,j −ai,j)(1−1/2i,j−1), ai,j +
(bi,j − ai,j)(1 − 1/2i,j)]. That is, the interval for the next stage is between the
end of the penultimate request in the previous stage and the end of the fang
in the previous stage. Thus all fangs released during a stage will stay present

424 Bala Kalyanasundaram and Kirk Pruhs

till the arrival of the last request of the last round, while requests that are not
fangs leave the system before requests in the next stage appear. For a graphical
depiction of the construction see Figure 1.

Fang

Fang

Stage j+1 interval

Spectrum

Time

Stage j interval

a b
i,ji,j

Fig. 1. Lower Bound Construction

Intuitively, the adversary may allocate fangs consecutively in the spectrum.
However, since the online algorithm can not identify a fang when it arrives, it
will not be able to allocate fangs to one part of the spectrum, and thus will have
a more fragmented resource when it proceeds to the next stage. We will first
prove that Opt = Θ(W), and then show that the expected bandwidth used by
A is Ω(cW).

Lemma 1. With probability one, Opt(I) ≤ 4W

Proof. One possible strategy to achieve 4W is to divide the spectrum into two
pieces N and F , each of size 2W . All non-fangs are allocated using to N using
First Fit, and and all fangs are allocated to F using First Fit.

Dynamic Spectrum Allocation: The Impotency of Duration Notification 425

The total bandwidth of the non-fang requests in a stage j in round i is at
most the product of the bandwidth w(i) of the requests in round i, and the
number of requests 2j b(i)

w(i) . Since j is at most W/b(i), the total bandwidth of the
non-fang request in stage j of round i is at most

w(i) · 2 · W
b(i)

· b(i)
w(i)

= 2W

Hence, all the non-fangs within any stage can be fit into N . Observe that any
two non-fang requests not from the same stage do not overlap in time. Therefore,
the same spectrum N can be reused for all of the stages.

We now calculate required bandwidth to satisfy fang requests. For round i,
there are W

b(i) fang requests of width w(i) each. Therefore, the total bandwidth
of the fangs is at most

24c∑
i=1

W

b(i)
w(i) =

24c∑
i=1

W

12c
= 2W

Hence, all the fangs can fit into F .

It order to analyze the performance of A it is convenient to grant A additional
powers. At the end of each round, say round i, we allow A to reorganize its
spectrum in the following manner. Assume that there are two fangs Rj and Rk

such that the space between Rj and Rk is less than w(i + 1), the bandwidths
of the requests in the next round. Notice that the space used by Rj and Rk,
and the space between Rj and Rk, is of no use to A in future rounds. The
online algorithm A may then delete the space used by Rj , the space used by
Rk, and the space between these two requests from its spectrum, and meld the
remaining two pieces of spectrum. We say that the remaining contiguous portion
of the melded spectrum is available spectrum for the next round. Note that this
is strictly to A’s benefit since any feasible assignment on the original spectrum
is also a feasible assignment in the modified spectrum.

We now wish to define what we call a fragmented round. Intuitively, a frag-
mented round is one in which A assigns many fangs to different parts of the
available spectrum. Let i be some round. We partition A’s available spectrum
into contiguous i-blocks Bi,k of size b(i). We say that a fang from round i is
assigned to an i-block Bi,k if either the fang is contained entirely within Bi,k or
the fang crosses the boundary between Bi,k and Bi,k+1. Let f(i) be the number
distinct i-blocks that have at least one fang assigned to them. We say that a
round i is fragmented if f(i) ≥ W

2b(i) .
We will now argue that:

– the expected number of fragmented rounds is at least one half of the total
number of rounds, and

– the available spectrum decreases by Θ(W) after each fragmented round pro-
vided that A does not use too much spectrum.

426 Bala Kalyanasundaram and Kirk Pruhs

Lemma 2. The expected number of fragmented rounds is at least 12c.

Proof. Consider stage j of round i. Let fj(i) be the number of distinct i-blocks
assigned at least one fang from stages 1 through j in round i. By our construction
and the definition of fang requests, we have fj−1(i) ≤ j − 1. Therefore, at most
(j − 1) b(i)

w(i) of the requests in stage j of round i can occupy i-blocks that have
already been assigned a fang in round i. Since the number of requests in stage
j of round i is uniformly at random selected from the range [1, 2j b(i)

w(i)], the
probability that the fang of stage j of round i is assigned to an i-block that does
not already contain a fang is at least 1/2. Hence, the probability that half of the
fangs in round i are assigned to an i-block that did not previously contain a fang
from round i is at least 1

2 . The result then follows since there are 24c rounds.

Lemma 3. During every fragmented round, either A deleted at least W
12 units

of spectrum at the end of this round, or A used at least cW units of spectrum
during this round.

Proof. Fix a fragmented round i, and consider the assignment of the fangs from
round i. Within each i-block Bi,k that contains a fang from round i, arbitrary
pick a canonical fang from among those fangs assigned to Bi,k during round i.
Recall that there are at least W

2b(i) canonical fangs since i is a fragmented round.
We sort these canonical fangs according to their position in A’s spectrum, and
group them into W

6b(i) groups, each containing 3 consecutive canonical fangs.
We say that a group is sparse if the gap between any two consecutive canon-

ical fangs in the group is at least w(i + 1). Recall that we set W such that
W

12b(i) ≥ 1 for all 1 ≤ i ≤ 24c. First, suppose that W
12b(i) of the groups are sparse.

Then the total spectrum used by A must be at least W
12b(i)w(i + 1), which by

substitution is cW
On the other hand, suppose that W

12b(i) of the groups are not sparse. Hence,
the spectrum used by the canonical fangs in this group, as well as the spectrum
in the gaps between these fangs, will be deleted by A at the end of the round.
Since the gap between first and third requests of each group is at least b(i), the
total spectrum deleted by A during this round is at least W

12 .

We are now ready to prove Theorem 1.

Proof. First, the fact that Opt = Θ(W) follows from lemma 1. By lemma 2
and lemma 3, the expected spectrum used by A is at least cW . Note that the
expected spectrum used by Opt goes to ∞ as n goes to ∞. Hence, we get a
lower bound of Ω(log W

log log W) on the competitive ratio.
Observe that we get a lower bound of Ω(log β

log log β) on the competitive ratio
since β ≤W .

Observe that n is no smaller than α and τ . So in order to show a lower bound
of Ω(log x

log log x) on the competitive ratio, for x equal to n, α, and τ , it is sufficient
to show that n = O(W 2). Since the number of stages in round i is W

b(i) , and the

Dynamic Spectrum Allocation: The Impotency of Duration Notification 427

number of requests in stage j of round i is at most 2j b(i)
w(i) , it follows that the

number requests in round i is at most

2
b(i)
w(i)

W
b(i)∑
j=1

j

=
b(i)
w(i)

W

b(i)

(
W

b(i)
+ 1

)

≤ b(i)
w(i)

W

b(i)

(
2
W

b(i)

)

=
2W 2

w(i) · b(i)

Since b(i)w(i) = (12c)4i−3 ≥ 12c ≥ 4, the number of requests per round is going
down by more than a factor of two each round. Hence, the total number of
requests is at most

2
2W 2

w(1) · b(1)
≤ 2W 2

Finally, that the competitive ratio is Ω(log log ∆
log log log ∆) follows from the fact that

∆ = 2n by construction.

References

1. A. Borodin, and R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998.

2. E. Coffman, “An introduction to combinatorial models of dynamic storage alloca-
tion”, SIAM Review, 25, 311 – 325, 1999.

3. M. Garey and D. Johnson, Computers and Intractability: A Guide to NP-
completeness, W.H. Freeman and Company, 1979.

4. J. Gergov, “Approximation algorithms for dynamic storage allocation”, European
Symposium on Algorithms, 52 – 61, 1996.

5. J. Gergov, “Algorithms for compile-time memory allocation”, ACM/SIAM Sym-
posium on Discrete Algorithms, S907 – S908, 1999.

6. Proceedings of the 2000 Symposium of the International Test and Evaluation As-
sociation, http://www.edwards.af.mil/itea/.

7. S. Krogdahl, “A dynamic storage allocation problem”, Information Processing Let-
ters, 2(4), 96 – 99, 1973.

8. M. Luby, J. Naor, A. Orda, “Tight Bounds for Dynamic Storage Allocation” SIAM
Journal of Discrete Mathematics, 9, 156 – 166, 1996.

9. J. Naor, A. Orda, and Y. Petruschka, “Dynamic storage allocation with known
durations”, European Symposium on Algorithms, 378 – 387, 1997.

10. J. Robson, “An estimate of the store size necessary for dynamic storage allocation”,
Journal of the ACM, 18, 416 – 423, 1971.

11. J. Robson, “Bounds on some functions concerning dynamic storage allocation”,
Journal of the ACM, 21, 491 – 499, 1974.

428 Bala Kalyanasundaram and Kirk Pruhs

12. J. Robson, “Worst case fragmentation of first fit and best fit storage allocation
strategies”, Computer Journal, 20, 242 – 244, 1977.

13. P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage allocation:
a survey and critical review”, International Workshop on Memory Management,
Lecture Notes in Computer Science, 986, 1 – 116, 1995.

14. D. Woodall, “The bay restaurant — a linear storage problem”, American Mathe-
matical Monthly, 81, 240 – 246, 1974.

The Fine Structure of Game Lambda Models

Pietro Di Gianantonio and Gianluca Franco

Dipartimento di Matematica e Informatica
Università di Udine

Via delle Scienze, 206 - 33100 Udine - Italy
Tel. +39 0432 558469
Fax +39 0432 558499

pietro,gfranco@dimi.uniud.it

Abstract. We study models of the untyped lambda calculus in the set-
ting of game semantics. In particular, we show that, in the category of
games G, introduced by Abramsky, Jagadeesan and Malacaria, all cat-
egorical λ-models can be partitioned in three disjoint classes, and each
model in a class induces the same theory (i.e. the set of equations be-
tween terms), that are the theory H∗, the theory which identifies two
terms iff they have the same Böhm tree and the theory which identifies
all the terms which have the same Lévy-Longo tree.

Introduction

In this work we explore the methodology for giving denotational semantics based
on games, introduced by Abramsky – Jagadeesan – Malacaria, Hyland – Ong and
Nickau (see [AJM96, HO00, Nic94]). We use game semantics to build models of
the untyped λ-calculus, focusing on which λ-theories can be modeled. λ-theories
are congruences over λ-terms, which extend pure β-conversion. Their interest
lies in the fact that they correspond to the possible operational (observational)
semantics of the λ-calculus. Brute force, purely syntactical techniques are usu-
ally extremely difficult to use in the study of λ-theories. Therefore, since the
seminal work of Dana Scott on D∞ in 1969 [Sco72], semantical tools have been
extensively investigated [HR92, HL95, Ber].

This paper is the completion of the work initiated in [DGFH99] and gives a
complete characterization of the theories induced by general game models of the
λ-calculus. In [DGFH99] we considered just models which validate the η-rule. In
order to obtain our new results, new proof techniques have been introduced.

We show that the theory induced by each categorical model of the λ-calculus
in the Cartesian closed category K!(G) of games and history-free strategies is
either: the theoryH∗ (the maximal sensible theory), the theoryB which equates
two terms if and only if they have the same Böhm tree or the theory L which
equates two terms if and only if they have the same Lévy-Longo tree.

This result suggests that there exists a strong connection between a strategy
which interprets a term in the game semantics setting and the tree form of the
term. The existence of relations between strategies and some syntactical normal

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 429–441, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

430 Pietro Di Gianantonio and Gianluca Franco

form of terms (like trees) is described in many works on game semantics. In all
these works, a relation is established to study the fine structure of a particular
game model and prove that is fully abstract. In our work we give a somewhat
stronger result and prove that such a relation exists for all the game models of
the λ-calculus.

Works related to ours, in the slight different game semantics paradigm of
Hyland and Ong, are [KNO99, KNO00]. There, two particular game models for
the λ-calculus are built and it is proved, using techniques quite different from
ours, that the two models induce respectively the theories H∗ and B.

The present paper is organized as follows. In section 1 we remind the basic
definitions of game semantics and introduce the extensions Gs and K!(Gs) of the
classical categories of games G and K!(G). In Section 2 we introduce the main
tool for the study of the fine structure of the models built in the categories of
Section 1, that is the approximating strategies whose intended meaning is to give
a finite approximation of the interpretation of a λ-term. Section 3 is devoted
to the study of the models previously introduced and to the proof of the main
theorem of this work, i.e. the characterization of all the λ-theories induced by
the models of the untyped λ-calculus in the category K!(G).

We assume the reader familiar with the basic notions and definitions of
λ-calculus, see e.g. [Bar84]. For lack of space, all the proofs have been omit-
ted. A complete version of this paper is [DGF].

Acknowledgements. We wish to thank Fabio Alessi, Corrado Böhm, Furio
Honsell and Luke Ong for useful discussions during the period of which this
work generated. We also thank the anonymous referees whose comments have
contributed to improve this work.

1 Categories of Games

Throughout this paper, we shall make use of the well-known category G of games
and history-free strategies and its Cartesian closed companion K!(G), and of
the categories Gs of games and history-sensitive strategies and K!(Gs) that are
new. Gs is a straightforward extension (super-category) of G and it has been
introduced for technical reasons. We briefly remind the basic definitions of game
semantics [AJM96] and introduce the new categories we shall utilize.

Definition 1 (Games). A game has two participants: the Player and the Op-
ponent. A game A is a quadruple (MA, λA, PA,≈A) where

– MA is the set of moves of the game.
– λA : MA → {O,P} × {Q,A} is the labeling function: it tells us if a move is
made by the Opponent or by the Player, and if it is a Question or an Answer.
We can decompose λA into λOP

A : MA → {O,P} and λQA
A : MA → {Q,A}

and put λA = 〈λOP
A , λQA

A 〉. We denote by − the function which exchanges
Player and Opponent, i.e. O = P and P = O. We also denote with λOP

A

the function defined by λOP
A (a) = λOP

A (a). Finally, we denote with λA the
function 〈λOP

A , λQA
A 〉.

The Fine Structure of Game Lambda Models 431

– PA is a non-empty and prefix-closed subset of the set M~

A (which will be
written as PA ⊆nepref M~

A), where M~

A is the set of all sequences of moves
which satisfy the following conditions:
• s = at ⇒ λA(a) = OQ

• ∀i : 1 ≤ i < |s| . λOP
A (si+1) = λOP

A (si)
• ∀ t � s . |t�MA

A | ≤ |t�MQ
A |

where MA
A and MQ

A denote the subsets of game moves labeled respectively as
Answers and as Questions, s�M denotes the set of moves of M which appear
in s and � is the substring relation. PA is called the set of positions of the
game A. Questions and answers behave in a parenthesis-like fashion, that is
each question waits for a corresponding answer to appear and each answer
in a sequence corresponds to the last pending question in that sequence.

– ≈A is an equivalence relation on PA which satisfies the following properties:
• s ≈A s′ ⇒ |s| = |s′|
• sa ≈A s′a′ ⇒ s ≈A s′

• s ≈A s′ ∧ sa ∈ PA ⇒ ∃a′ . sa ≈A s′a′

In the above s, s′, t and t′ range over sequences of moves, while a, a′, b and b′

range over moves. The empty sequence is written ε.

Definition 2 (Tensor product). Given games A and B, the tensor product
A⊗B is the game defined as follows:

– MA⊗B = MA +MB

– λA⊗B = [λA, λB]
– PA⊗B ⊆ M~

A⊗B is the set of positions, s, which satisfy the following:
• the projections on each component (written as s�A or s�B) are positions

for the games A and B respectively;
• every answer in s must be in the same component game as the corre-

sponding question.
– s ≈A⊗B s′ ⇔ s�A ≈A s′ �A, s�B ≈B s′ �B, ∀i . si ∈MA ⇔ s′i ∈ MA

Here + denotes disjoint union of sets, that is A+B = {inl(a) | a ∈ A}∪{inr(b) |
b ∈ B}, and [−,−] is the usual (unique) decomposition of a function defined on
disjoint unions.

It is easy to see that in such a game only the Opponent can switch component.

Definition 3 (Unit). The unit element for the tensor product is given by the
empty game I = (?,?, {ε}, {(ε, ε)}).

Definition 4 (Linear implication). Given games A and B, the compound
game A (B is defined as the tensor product but for the condition λA(B =
[λA, λB].

It is easy to see that in such a game only the Player can switch component.

432 Pietro Di Gianantonio and Gianluca Franco

Definition 5 (Exponential). Given a game A, the game !A is defined by:

– M!A = ω ×MA =
∑

i∈ω MA

– λ!A(〈i, a〉) = λA(a)
– P!A ⊆ M~

!A is the set of positions, s, which satisfy the following:
• ∀i ∈ ω . s�〈i, A〉 ∈ P〈i,A〉;
• every answer in s is in the same index as the corresponding question.

– s ≈!A s′ ⇔ ∃ a permutation of indexes α ∈ S(ω) such that:
• π∗

1(s) = α∗(π∗
1(s

′))
• ∀i ∈ ω . π∗

2(s�α(i)) ≈ π∗
2(s� i)

where π1 and π2 are the projections of ω ×MA, π∗
1 and π∗

2 are the (unique)
extensions of π1 and π2 to sequences of moves and s� i is an abbreviation of
s�〈i, A〉.

Definition 6 (Strategies). A strategy for the Player in a game A is a non-
empty set σ ⊆ P even

A of positions of even length such that σ = σ ∪ dom(σ) is
prefix-closed, where dom(σ) = {t ∈ P odd

A | ∃!a . ta ∈ σ}, and P odd
A and P even

A

denote the sets of positions of odd and even length respectively. A strategy can
be seen as a set of rules which tells (in some position) the Player which move to
make after the last move by the Opponent.

The equivalence relation on positions ≈A can be extended to strategies in the
following way.

Definition 7 (Equivalence of strategies). Let σ, τ be strategies, σ ≈ τ if
and only if
– sab ∈ σ, s′a′b′ ∈ τ, sa ≈A s′a′ ⇒ sab ≈A s′a′b′
– s ∈ σ, s′ ∈ τ, sa ≈A s′a′ ⇒ ((∃b . sab ∈ σ)⇔ (∃b′ . s′a′b′ ∈ τ))

Such an extension is not in general an equivalence relation since it might lack
reflexivity. If σ is a strategy for a game A such that σ ≈ σ, we write σ : A and
denote with [σ] the equivalence class containing σ.

Definition 8 (History-free strategies). A strategy σ for a game A is history-
free if it satisfies the following properties:

– sab, tac ∈ σ ⇒ b = c
– sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ

Definition 9 (The category of games G). The category G has as objects
games and as morphisms, between games A and B, the equivalence class, w.r.t.
the relation ≈A(B, of the history-free strategies for the game A (B. The
identity, for each game A, is given by the (equivalence class) of the copy-cat
strategy idA = {s ∈ PA′(A′′ | ∀t � s . even(|t|) ⇒ t � A′ = t � A′′} where
even(−) is the obvious predicate and the superscripts are introduced to distinguish
between the two different occurrences of the game A. Composition is given by the
extension on equivalence classes of the following composition of strategies. Given
strategies σ : A(B and τ : B (C, τ ◦ σ : A(C is defined by
τ ◦ σ = {s�(A,C) | s ∈ (MA +MB +MC)∗ ∧ s�(A,B) ∈ σ, s�(B,C) ∈ τ}even

The Fine Structure of Game Lambda Models 433

It is not difficult to check that the above definitions are well posed and that
the constructions introduced in Definitions 2, 4 and 5 can be made functorial.
Notice that there is a natural isomorphism in the category of sets between (MA+
MB) + MC and MA + (MB + MC) which induces a natural transformation
Λl

A,B,C : hom(A ⊗ B,C) → hom(A,B (C) in G, that is the category G is
monoidal closed. If we define, for each pair of games B and C of G, the strategy
evl

B,C as the set {s ∈ P((A′(B′)⊗A′′)(B′′ | ∀t � s . even(|t|) ⇒ t �A′ = t�A′′

& t � B′ = t � B′′} we have, for each strategy σ : A ⊗ B (C, the identity
[σ] = [evl

B,C] ◦ (Λl
A,B,C([σ]) ⊗ [idB]). However G is not Cartesian.

Definition 10 (The Cartesian closed category of games K!(G)). The cat-
egory K!(G) is the category obtained by taking the co-Kleisli category over G
over the co-monad (!,der, δ) [AJM96], where, for each game A, the (history-
free) strategies derA : !A (A and δA : !A (!!A are defined as follows:
derA = {s ∈ P!A(A | ∀t � s . even(|t|)⇒ t�〈0, A〉 = t�A}

δA = {s ∈ P!A(!!A | ∀t � s . even(|t|)⇒ t�〈p(i, j), A〉 = t�〈j, 〈i, A〉〉}
where p : N × N → N is a pairing function. By the above definition the category
K!(G) has as objects games and as morphisms between games A and B the
equivalence classes of the history-free strategies for the game !A(B. Moreover,
K!(G) is Cartesian.
Definition 11 (Cartesian product). The Cartesian product A × B of two
games A and B is defined by:

MA×B = MA +MB λA×B = [λA, λB]
PA×B = PA + PB ≈A×B = ≈A + ≈B

The projection morphism πA,B
A : A×B → A is defined as

[{s ∈ PA′×B(A′′ | ∀t � s . even(|t|)⇒ t�A′ = t�A′′)} ◦ derA×B]

From the isomorphisms !(A × B) ∼= !A ⊗ !B and !I ∼= I it follows easily that
K!(G) is Cartesian closed [AJM96].

Definition 12 (Exponent). The exponent game A⇒ B is the game !A(B.
The natural transformation ΛA,B,C : hom(A × B,C) → hom(A,B ⇒ C) is
Λl

!A,!B,C, and evB,C = evl
!B,C ◦ (der!B(C × id!B).

In order to carry out the proofs of our main theorem, we need to introduce
the category Gs having as morphisms all the strategies (not only the history-
free ones). This because we shall use approximations of history-free strategies
that are not, in general, history-free. We call these morphisms history-sensitive
strategies. It is worth noting that almost all the definitions in the categories G
and Gs coincide.

Definition 13 (The category of games Gs). The category Gs has as objects
games and as morphisms, between games A and B, the equivalence classes, w.r.t.
the relation ≈A(B, of the strategies σ : A(B. The identity, for each game A,
is given by the (equivalence class) of the copy-cat strategy idA. Composition is
given as in G.

434 Pietro Di Gianantonio and Gianluca Franco

K!(Gs) is obtained like K!(G), since (!,[der], [δ]) is a co-monad also over Gs.
Together with the category Gs, we need to introduce a new relation on strategies
of Gs which induces a partial order on equivalence classes of strategies. This
notion can be easily proved equivalent to the standard one.

Definition 14 (Partial order relation on strategies). Given a game A and
strategies σ : A and τ : A (hence such that σ ≈ σ and τ ≈ τ) we define
σ � τ ⇔ ∀s ∈ σ . ∃t ∈ τ . s ≈ t and then [σ] � [τ]⇔ σ � τ .

2 Approximating Strategies

The argument of this section is the general concept of approximating strategy,
which can be seen as a finite approximation of a strategy. It will be used to prove
that the interpretation of a term is the least upper bound of the interpretations
of its “approximate normal forms”.

Definition 15. 1. Let D be a game. A sub-game D′ of D (written D′ � D)
is a game such that MD′ ⊆ MD, λD′ = λD �MD′ , PD′ ⊆ PD and ≈D′=
≈D�PD′ × PD′ .

2. Let D be a game. We indicate with Dn the sub-game of D in which PDn =
{s ∈ PD | |s| ≤ n}.

3. Let A′ be a sub-game of A and let σ be a strategy for the game A. We write
σ|A′ for the strategy {s ∈ σ | s ∈ PA′}.

4. Let σ : A (B be a strategy. We indicate with σn the history-sensitive
strategy σ|A(Bn and with [σ]n the equivalence class [σn].

Observe that if σ ≈ τ then σn ≈ τn, since equivalent positions have the same
length. Thus we can write [σ]n with no ambiguity. In general the strategy σn can
be history-sensitive also if the strategy σ is history-free. This is because σn can
reply to a move a of the Opponent in some position and does not reply in some
others. In order to accommodate and freely use the strategies σn we introduce
the category Gs of games and history-sensitive strategies. The strategies σn can
be seen as a finite approximation of the strategy σ, and they will be use to prove
an approximation theorem along the same line of the works [Hyl76, Wad78]. In
these works the approximation of a semantical point is obtained through a series
of projection functions. Here we use a different approach that, in the context of
games, is simpler and more direct. We need to state a series of properties enjoyed
by the approximating strategies. The basic ones are the following.

Proposition 1. For each pair of games A and B and strategy σ : A (B, the
following properties hold:

1. σ0 = {ε} 2. σn ⊆ σn+1

3.
⋃

n∈ω{σn} = σ 4. (σn)m = σmin{m,n}

Lemma 1. For each pair of games A and B we have:

1. (A(B)n+1 �An (Bn+1

2. evl
A,B|(An (Bm)⊗A(B = evl

A,B|(A(B)⊗An (Bm

The Fine Structure of Game Lambda Models 435

3 The Fine Structure of the Game Models

In this section the study of the λ-theory (i.e. the set of equations between
λ-terms) supported by the models built in K!(G) is carried out. The theory in-
duced by a model is also known as its fine structure. The equations on terms are
described by means of the equality of some tree of the terms. The trees we con-
sider are the Lévy-Longo trees [Lév75, Lon83] and the Böhm trees [Bar84, Hyl76].
We remind briefly the definitions.

Definition 16 (Trees). Let Σ1 = {λx1 . . . xn.⊥ | n ∈ ω}∪{T }∪{λx1 . . . xn.y |
n ∈ ω}, let Σ2 = {⊥}∪{λx1 . . . xn.y | n ∈ ω}, let x1, . . . xn, y be variables and let
M ∈ Λ be a term. If M is solvable it is intended to have principal head normal
form λx1 . . . xn.yM1 . . .Mm.

1. The Lévy-Longo tree of M , LLT (M) is a Σ1-labelled infinitary tree defined
informally as follows:

LLT (M) = T if M is unsolvable
of order ∞

LLT (M) = λx1 . . . xn.⊥ if M is unsolvable
of order n

LLT (M) = λx1 . . . xn.y

ww
ww
ww
ww

HH
HH

HH
HH

H

LLT (M1) . . . LLT (Mm)

if M is solvable

2. The Böhm tree of M , BT(M) is a Σ2-labelled tree defined informally as
follows:

BT (M) = ⊥ if M is unsolvable
BT (M) = λx1 . . . xn.y

xx
xx
xx
xx

FF
FF

FF
FF

BT (M1) . . . BT (Mm)

if M is solvable

On Lévy-Longo trees (Böhm trees) there is a natural order relation defined by
LLT (M) ⊆ LLT (N) iff LLT (N) is obtained by LLT (M) by replacing ⊥ in
some leaves of LLT (M) by Lévy-Longo trees of λ-terms or by replacing some
λx1 . . . xn.⊥ by T (BT (M) ⊆ BT (N) iff BT (N) is obtained by BT (M) by
replacing ⊥ in some leaves of BT (M) by Böhm trees of λ-terms).

In this work we are interested in categorical models of the untyped λ-calculus,
that is, reflexive objects in a Cartesian closed category.

Definition 17 (Categorical λ-model).

1. Let C be a category and A,B ∈ Obj(C). B is a retract of A if there exists a
pair of morphisms f : A → B and g : B → A, such that f ◦ g = idB. We
write (B �A, f, g) to indicate that B is a retract of A via f and g.

436 Pietro Di Gianantonio and Gianluca Franco

2. A reflexive object is a retract (D ⇒ D � D, f, g), between an object D and
its exponent D ⇒ D. We write 〈D, (f, g)〉 to indicate that D is a reflexive
object via morphisms f and g, and call it categorical λ-model.

Definition 18 (Classes of models). Let D be the class of all the categorical
λ-models 〈D, ([ϕ], [ψ])〉, with D �= I, in the category K!(G). We partition D in
the following subclasses:

1. DE = {〈D, ([ϕ], [ψ])〉 ∈ D | ψ ◦ ϕ ≈ idD}
2. DB = {〈D, ([ϕ], [ψ])〉 ∈ D | ψ ◦ εI⇒(D⇒D) = εI⇒D and ψ ◦ ϕ �≈ idD}
3. DL = {〈D, ([ϕ], [ψ])〉 ∈ D | ψ ◦ εI⇒(D⇒D) �= εI⇒D}

The main result of this paper states that, given a categorical λ-model D ∈ D,
the theory it induces is either

1. H∗, the theory induced by the canonical D∞ model of Scott [Sco72, Bar84]
and [Wad78], if D ∈ DE ;

2. B, the theory which identifies two terms iff they have the same Böhm tree,
if D ∈ DB;

3. L the theory which identifies two terms iff they have the same Lévy-Longo
tree if D ∈ DL.

The proof proceeds along the same lines of [Bar84, Wad78, Hyl76]. First we
show that if two terms are equated in one of the above theories then they are
equal in the corresponding model. In order to prove this, we state an important
property satisfied by all the models. The approximation theorem says that the
interpretation of a term is the least upper bound of the interpretations of its
approximants. The following definitions and lemmata are necessary to state this
result.

Definition 19 (Indexed terms).

1. The set of λΩ-terms, Λ(Ω)(M) is defined from a set of variables V ar(x)
as M ::= x | MM | λx.M | Ω.

2. The set of (possibly) indexed terms Λ(Ω)N(M) is the superset of Λ(Ω)
defined as M ::= x | MM | λx.M | Ω | Mn.

3. A term is truly indexed if it is of the shape Mn. A term is completely
indexed if all its subterms of the shape variable, abstraction, and application
are immediate subterms of truly indexed terms.

Notice that in a truly indexed term the constant Ω does not need to be indexed.
The reduction rules are extended to indexed terms as follows.

Definition 20 (Approximate reduction).

1. The following reduction rules are definable on Λ(Ω):
(Ω1) λx.Ω → Ω (Ω2) ΩM → Ω

The Fine Structure of Game Lambda Models 437

2. The following reduction rules are definable on indexed terms of Λ(Ω)N:
(Ωn) Ωn → Ω (Ω0) M0 → Ω
(βI) ((λx.Pn)m+1Qp)h → (P [Qa/x])b (βi,j) (M i)j → Mmin{i,j}

where b = min{n,m+ 1, h}, a = min{m, p}

Lemma 2. A completely indexed term Q is ΩnΩ0βIβi,j-normalizing.

Denotational semantics is readily defined. The denotation of a pure λ-term
M ∈ Λ is defined along the usual categorical definition. To accommodate indexed
terms we need to introduce two new rules and use the larger categories of games
and history-sensitive strategies.

Definition 21. Let D ∈ D be a categorical λ-model. The interpretation of a
term M ∈ Λ(Ω)N (whose free variables are among the list Γ = {x1, . . . , xk}) in
D, [[M]]DΓ : D|Γ | ⇒ D is the strategy inductively defined as follows:

[[x]]DΓ = πΓ
x ;

[[MN]]DΓ = [[M]]DΓ · [[N]]DΓ = ev ◦ 〈ϕ ◦ [[M]]DΓ , [[N]]DΓ 〉;
[[λx.M]]DΓ = ψ ◦ Λ([[M]]DΓ,x);
[[Mn]]DΓ = ([[M]]DΓ)

n

[[Ω]]DΓ = εD|Γ |⇒D.

It is immediate to observe that for each term with no indexes M ∈ Λ, the
strategy [[M]]DΓ is history-free.

Proposition 2. Let A be a game, 〈D, ([ϕ], [ψ])〉 be a reflexive object in the
Cartesian closed category of games K!(G) and σ, τ : A ⇒ D be two strategies.
Let εA⇒D : A⇒ D = {ε} be the empty strategy. Then we have

1. σ0 · τ = εA⇒D

2. σn+1 · τ � (σ · τn)n+1

Theorem 1 (Validity of indexed reduction). Rules (Ω2), (Ωn), (Ω0), (βI)
and (βi,j) are valid in each categorical λ-model D ∈ D; the rule Ω1 is valid in
each categorical λ-model D ∈ DE ∪ DB. The validity of a rule γ is intended in
the following sense: for each P,Q ∈ Λ(Ω)N if (P →γ Q) then [[P]]DΓ � [[Q]]DΓ .

Each λ-term M can be approximated by a “partially evaluated” term A ∈ Λ(Ω)
which is called an approximant. Different notions of approximants arise for the
different classes of models.

Definition 22. For each term M ∈ Λ the sets of approximants are defined by:

1. AE(M) = {A ∈ Λ(Ω) | BT (A[∆∆/Ω]) ⊆ BT (M) and A is in βηΩ1Ω2-nf }
2. AB(M) = {A ∈ Λ(Ω) | BT (A[∆∆/Ω]) ⊆ BT (M) and A is in βΩ1Ω2-nf }
3. AL(M) = {A ∈ Λ(Ω) | LLT (A[∆∆/Ω]) ⊆ LLT (M) and A is in βΩ2-nf }

438 Pietro Di Gianantonio and Gianluca Franco

Lemma 3. For each categorical λ-model D ∈ D, λ-term M and approximant
A ∈ A�(M) with � ∈ {E ,B,L}, [[A]]DΓ � [[M]]DΓ .

Definition 23 (Erasing function). The erasing function R : Λ(Ω)N → Λ(Ω)
is inductively defined as follows:

1. R(x) = x; R(Ω) = Ω 2. R(PQ) = R(P)R(Q)
3. R(λx.P) = λx.R(P) 4. R(Mn) = R(M)

Lemma 4. For each categorical λ-model D ∈ D�, and for each completely in-
dexed term M ∈ Λ(Ω)N there exists a term N ∈ Λ(Ω)N such that [[M]]DΓ � [[N]]DΓ
and R(N) ∈ A�(R(M)) with � ∈ {E ,B,L}.

Lemma 5. For each categorical λ-model D ∈ D, λ-term M and n ∈ ω there
exists a completely indexed term M∗ such that: [[Mn]]DΓ = [[M∗]]DΓ .

At last we are ready to state the following.

Theorem 2 (Approximation theorem). For each categorical λ-model D ∈
D� and each λ-term M , [[M]]DΓ =

⊔{[[A]]DΓ | A ∈ A�(M)} with � ∈ {E ,B,L}.
From Theorem 2 we can readily conclude that if two terms have the same tree
they also have the same interpretation in the different game models, that is:

Proposition 3. For each categorical λ-model D ∈ D, λ-terms M,N we have:

1. if D ∈ DL and LLT (M) = LLT (N) then [[M]]DΓ = [[N]]DΓ ;
2. if D ∈ DB and BT (M) = BT (N) then [[M]]DΓ = [[N]]DΓ ;
3. if D ∈ DE then M =H∗ N ⇔ [[M]]DΓ = [[N]]DΓ .

In the following part of the section we shall prove that if two terms have
different Lévy-Longo trees or different Böhm trees they also have different inter-
pretation in corresponding game models of the λ-calculus. This will characterize
completely the theories induced by game models and will substantiate the intu-
itive impression that the strategy which interprets a term is strongly connected
with the tree of the term. The following definition and Lemma 6 are standard
(see for instance [Bar84]).

Definition 24 (Similar terms). Given two terms M , N ∈ Λ, we say that M
and N are similar and we write M ∼ N if both M and N are unsolvable or they
are solvable with principal head normal forms respectively λx1 . . . xn.yM1 . . .Mm

and λx1 . . . xn′ .y′N1 . . . Nm′ in which y ≡ y′ and m− n = m′ − n′.

Lemma 6. For each compositional non-trivial model of the λ-calculus D, for
each pair of λ-terms M,N if M �∼ N then [[M]]DΓ �= [[N]]DΓ .

The following properties do not necessarily hold for any compositional λ-model.

The Fine Structure of Game Lambda Models 439

Lemma 7. For each categorical λ-model D ∈ D, for each sequence of terms
M,N,M1, . . . ,Mm, N1, . . . , Nm, for each sequence of variables x, y, x1, . . . , xn,
the following properties hold:

1. if [[xM1 . . .Mm]]DΓ ≈ [[xN1 . . . Nm]]DΓ then ∀1 ≤ i ≤ m . [[Mi]]DΓ ≈ [[Ni]]DΓ ;
2. if D ∈ DB ∪ DL then [[x]]DΓ �≈ [[λy.M]]DΓ ;
3. if D ∈ DB ∪ DL and n′ < n then

[[λx1 . . . xn.yM1 . . .Mm]]DΓ �≈ [[λx1 . . . xn′ .yN1 . . . Nm′]]DΓ ;
4. if D ∈ DL and M and N are both unsolvable but of different order then

[[M]]DΓ �≈ [[N]]DΓ .

Theorem 3. Let D ∈ D be a categorical λ-model and let M and N be two
untyped λ-terms. If [[M]]DΓ = [[N]]DΓ then we have:

1. LLT (M) = LLT (N) if D ∈ DL;
2. BT (M) = BT (N) if D ∈ DB.

4 Conclusions

In the present paper we have studied the λ-theories induced by the game models
without performing the extensional collapse. Through the extensional collapse
it is possible to identify strategies that have the same observational behavior.
In general, the extensional collapse is fundamental in order to obtain fully ab-
stract game models of programming languages. Therefore it is still possible to
use game models to capture λ-theories that are strictly coarser than the three
considered in this paper. An example of such a theory can be found in [AM95]
where, through the extensional collapse of a model D in DL, a fully abstract
model of the lazy λ-calculus is obtained. However, in general, models obtained
through the extensional collapse are more difficult to study, e.g. the equivalence
between strategies is not decidable also in the finite case. Our main theorem de-
fines precisely those theories that can be obtained using simple (not collapsed)
game models, and hence it implies also that the theories obtained through the
extensional collapse lie only in between the theories L and H∗.

A second consideration concerns the class of the game models we consider
in this work. We have focused on games and history-free strategies mainly for
historical reasons. We claim that the paper can be easily reformulated in order to
prove the same results for the category of games and innocent strategies [HO00].
We can substantiate our claim by observing that the main tools used in the
proofs — history-sensitive strategies, approximating strategies, Lemma 7 — are
not peculiar to the history-free strategies and can be reformulated and applied
in the context of innocent strategies.

A final point concerns the construction of game models. In this paper we do
not build any example of game model for the λ-calculus; however in [DGFH99] a
general method to obtain non-initial solutions of recursive equations is presented.

440 Pietro Di Gianantonio and Gianluca Franco

It is then quite simple to find extensional game models: several examples are pre-
sented there. Non-extensional game models can be obtained through the stan-
dard tricks used in the setting of the cpo models. For example a non-extensional
model whose theory is B can be obtained by taking the initial solution of the
recursive equation D = (D ⇒ D) × A while a model whose theory is L can be
obtained by taking the initial solution of the equation D = (D ⇒ D)⊥ × A,
where, in both equations, A is an arbitrary game.

References

[AJM96] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF.
Accepted for pubblication, Information and Computation, 1996.

[AM95] S. Abramsky and G. McCusker. Games and Full Abstraction for the Lazy
Lambda-Calculus. In D. Kozen, editor, Proceedings of the Tenth Annual
Symposium on Logic in Computer Science, pages 234–243. IEEE Computer
Society Press, June 1995.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984. Revised edition.

[Ber] C. Berline. From Computation to Foundations via Functions and Appli-
cation: the λ-calculus and its Webbed Models. To appear in Theoretical
Computer Science.

[DGF] P. Di Gianantonio and G. Franco. The Fine Structure of Game Lambda
Models. Technical report, Department of Mathematics and Computer
Science, University of Udine, 2000
Electronically available: http://www.dimi.uniud.it/~pietro/Papers.

[DGFH99] P. Di Gianantonio, G. Franco, and F. Honsell. Game semantics for the
untyped λβη-calculus. In Proceedings of the International Conference on
Typed Lambda Calculi and Applications 1999, volume 1591 of Lecture Notes
in Computer Science, pages 114–128. Springer-Verlag, 1999.

[HL95] F. Honsell and M. Lenisa. Final semantics for untyped λ-calculus. In
M. Dezani, editor, Proceedings of the International Conference on Typed
Lambda Calculi and Applications 1995, volume 902 of Lecture Notes in
Computer Science, pages 249–265. Springer-Verlag, 1995.

[HO00] J. M. E. Hyland and C. H. L. Ong. On full abstraction for PCF:I. Mod-
els, observables and the full abstraction problem, II. Dialogue games and
innocent strategies, III. A fully abstract and universal game model. To
appear in Information and Computation, 2000.

[HR92] F. Honsell and S. Ronchi Della Rocca. An Approximation Theorem
for Topological Lambda Models and the Topological Incompleteness of
Lambda Calculus. Journal of Computer and System Sciences, 45:49–75,
1992.

[Hyl76] J. M. E. Hyland. A syntatic characterization of the equality in some models
of the λ-calculus. Journal of London Mathematical Society, 12(2):361–370,
1976.

[KNO99] A. D. Ker, H. Nickau, and C. H. L. Ong. A universal innocent game model
for the Böhm tree lambda theory. In Computer Science Logic: Proceedings
of the 8th Annual Conference of the EACSL Madrid, Spain, volume 1683

The Fine Structure of Game Lambda Models 441

of Lecture Notes in Computer Science, pages 405–419. Springer-Verlag,
September 1999.

[KNO00] A. D. Ker, H. Nickau, and C. H. L. Ong. Innocent game models of untyped
lambda calculus. To appear in Theoretical Computer Science, 2000.

[Lév75] J.J. Lévy. An algebraic interpretation of λ-calculus and a labelled λ-
calculus. In C. Böhm, editor, Lambda Calculus and Computer Science,
volume 37 of Lecture Notes in Computer Science, pages 147–165. Springer-
Verlag, 1975.

[Lon83] G. Longo. Set-theoretical models of λ-calculus: theories, expansions and
isomorphisms. Annals of Pure and Applied Logic, 24:153–188, 1983.

[Nic94] H. Nickau. Hereditarily sequential functionals. In Proceedings of the Sym-
posium on Logical Foundations of Computer Science: Logic at St. Peters-
burg, Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Sco72] D. Scott. Continuous lattices. In Toposes, Algebraic Geometry and Logic,
volume 274 of Lecture Notes in Mathematics. Springer-Verlag, 1972.

[Wad78] C. P. Wadsworth. Approximate Reduction and Lambda Calculus Models.
SIAM Journal of Computing, 7(3):337–356, August 1978.

Strong Normalization of Second Order

Symmetric λ-Calculus

Michel Parigot

Equipe de Logique Mathématique
case 7012, Université Paris 7

2 place Jussieu, 75251 Paris cedex 05, France

Abstract. Typed symmetric λ-calculus is a simple computational in-
terpretation of classical logic with an involutive negation. Its main dis-
tinguishing feature is to be a true non-confluent computational inter-
pretation of classical logic. Its non-confluence reflects the computational
freedom of classical logic (as compared to intuitionistic logic).

Barbanera and Berardi proved in [1,2] that first order typed symmetric
λ-calculus enjoys the strong normalization property and showed in [3]
that it can be used to derive symmetric programs.
In this paper we prove strong normalization for second order typed sym-
metric λ-calculus.

1 Introduction

The quest for computational interpretations of classical logic, started 10 years
ago from the work of Felleisen [4,5] and Griffin [8]. It has been shown that
classical natural deduction allows to model imperative features added to func-
tional languages like Scheme, Common Lisp or ML. Two particular systems,
λC -calculus [4,5] and λµ-calculus [12], have been intensively studied and the re-
lation between features of languages, rules of natural deduction, machines and
semantics seems to be well understood [9,10,15,16].

In the context of sequent calculus, several other computational interpreta-
tions of classical logic have been constructed following the spirit of Girard’s linear
logic [6]. It is often claimed in this context that computational interpretations
of negation in classical logic should be involutive, that is, ¬¬A = A should be
realized at the computational level. It is even sometimes claimed that this is the
distinguishing feature of classical logic. But the real computational effect of the
involutive character is not clear.

Systems coming from a natural deduction setting, like λC -calculus or λµ-
calculus, don’t have an involutive negation.

The symmetric λ-calculus of Barbanera and Berardi [1,2] is a simple compu-
tational interpretation of classical logic which is explicitly based on an involutive
negation. Contrary to λµ-calculus, symmetric λ-calculus is non-confluent. But
this non-confluence is an essential non-confluence which is supposed to reflect
the computational freedom given by classical logical (compared to intuitionistic

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 442–453, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Strong Normalization of Second Order Symmetric λ-Calculus 443

logic). In [3] it is shown that it can be used to derive symmetric programs, which
cannot be derived in the usual confluent systems.

In [1,2] Barbanera and Berardi proved that first order typed symmetric λ-
calculus satisfies the strong normalization property. The proof is based on an
original construction of reducibility candidates using fixed points.

In this paper we push one step further the understanding of symmetric λ-
calculus: we prove that second order typed symmetric λ-calculus satisfies also
the strong normalization property. Note that the second order setting gives a
complete kernel of a typed programming language where data types can be
defined internally. Moreover, from our strong normalization result, it can be
easily deduced that one can also extract correct programs from proofs in this
setting.

The proof mixes ingredients from the proof of Barbanera and Berardi and
from our proof of strong normalization of second order typed λµ-calculus [13].

The section 2 is devoted to the definition of symmetric λ-calculus and typed
symmetric λ-calculus of Barbanera and Berardi [1,2]. We show in section 2.3
how to extend this calculus with second order types.

The section 3 is devoted to the proof of strong normalization. Because we have
a second order type system we need a notion of reducibility candidate defined
independently of the notion of type. Because we have an involutive negation
we also need to define reducibility candidates using fixed points. Our notion of
reducibility candidates is defined in section 3.1 and its fundamental properties
are proved in section 3.2: it is proved in particular that reducibility candidates
are sets of strongly normalizable terms. In section 3.3, we define an interpretation
of types by reducibility candidates. We finish the proof by showing in section 3.4
that, if a term has a certain type, then it belongs to the interpretation of that
type and thus is strongly normalizable.

In the sequel types are designated by letters A,B,C etc., while atomic types
are designated by P,Q,R, etc.

2 The Symmetric λ-Calculus of Barbanera and Berardi

The symmetric λ-calculus, introduced by Barbanera and Berardi [1,2], originated
from a computational interpretation of classical logic with an involutive negation.
It is basically a λ-calculus with a symmetric application.
In the following, the symmetric application is denoted by ∗, as in [1,2], and the
abstraction by µ instead of λ, because it corresponds to negation and not to
implication (see [14] for a discussion of this point).

2.1 Pure Symmetric λ-Calculus

Terms Symmetric λ-Calculus

Let Var be an infinite set of variables (denoted x, x1, x2, ...). Terms of symmetric
λ-calculus are defined by:

444 Michel Parigot

t := x | µx.t | t ∗ t | 〈t, t〉 | σ1(t) | σ2(t)

where x ranges over variables.
Terms are denoted by letters t, u, v, w. The set of terms is denoted by T .

Reduction Rules of Symmetric λ-Calculus

(β) µx.u ∗ v �c u[v/x]

(β⊥) u ∗ µx.v �c v[u/x]

(π) 〈u1, u2〉 ∗ σi(vi) �c ui ∗ vi for i ∈ {1, 2}
(π⊥) σi(vi) ∗ 〈u1, u2〉 �c vi ∗ ui for i ∈ {1, 2}

The one-step reduction relation between terms u and v is defined from teh pre-
vious rules as follows: u �1 v iff v is obtained from u by replacing a subterm u1

by v1 with u1 �
c v1.

The reduction relation � is defined as the reflexive and transitive closure of the
one-step reduction relation �1 .
A term u is strongly normalizable if there is no infinite reduction sequence, i.e.
no infinite sequence (ui)i<ω such that u0 = u and ui �1 ui+1, for all i < ω. The
set of strongly normalizable terms is denoted by N .

Comment. Due to the symmetric character of the rules, symmetric λ-calculus is
obviously not confluent.

2.2 Typed Symmetric λ-Calculus

Types

The m-types of the system are defined by:

A := P | ¬P | A ∧A |A ∨A

where P ranges over atomic types.

The types of the system are either m-types or the special type ⊥ .
An involutive negation on m-types is defined as follows:

¬(P) = ¬P
¬(¬P) = P
¬(A ∧B) = ¬(A) ∨ ¬(B)
¬(A ∨B) = ¬(A) ∧ ¬(B)

In the following we freely use ¬A instead of ¬(A).

Comment. The fact that the type ⊥ is not among the set of atomic types is
necessary to have a strong normalization result. It is shown in [14] that if ¬ is
involutive and ⊥ is among the set of atomic types, then normalization fails.

Strong Normalization of Second Order Symmetric λ-Calculus 445

Typing Rules of Symmetric λ-Calculus

Γ, x : A � x : A axiom

Γ � u : A Γ � v : B
Γ � 〈u, v〉 : A ∧B ∧−intro

Γ � ui : Ai

Γ � σi(ui) : A1 ∨A2
∨−intro (i=1,2)

Γ, x : A � u : ⊥
Γ � µx.u : ¬A ¬−intro

Γ � u : ¬A Γ � v : A
Γ � u ∗ v : ⊥ ¬−elim

In the previous rules, Γ denotes an arbitrary context of the form x1 : A1, ..., xn :
An. As usual in typed λ-calculi, we adopt in these rules an implicit manage-
ment of contraction and weakening: weakening is obtained by allowing an arbi-
trary context in axioms and contraction by merging contexts in rules with two
premises.

Barbanera and Berardi proved in [1,2] that this system satisfies the strong nor-
malization property i.e.:

if Γ � u : A is derivable, then u is strongly normalizable.

2.3 Second Order Typed Symmetric λ-Calculus

We extend the previous typed symmetric λ-calculus to second order.

Terms

We first extend the definition of terms with two constructions which reflect the
presence of the two quantifiers ∀ and ∃.
Terms are defined by:

t := x | µx.t | t ∗ t | 〈t, t〉 | σ1(t) | σ2(t) | a.t | e.t

where x ranges over variables.

Types

We start from an infinite set of type variables (denoted X,Y, ...).
The m-types of the system are defined by:

A := X | ¬X | A ∧A |A ∨A | ∀XA | ∃XA

where X ranges over type variables.

The types of the system are either m-types or the special type ⊥ .

An involutive negation on m-types is defined as follows:

¬(X) = ¬X
¬(¬X) = X ¬(A ∧B) = ¬(A) ∨ ¬(B)

446 Michel Parigot

¬(A ∨B) = ¬(A) ∧ ¬(B)
¬(∀XA) = ∃X¬(A)
¬(∃XA) = ∀X¬(A)

Reduction Rules

We add two symmetric reduction rules for eliminating a and e.

(q) a.u ∗ e.v �c u ∗ v
(q⊥) e.v ∗ a.u �c v ∗ u

The notions of reduction and strongly normalizable term are extended in the
obvious way to this rules.

Typing Rules

We add two introduction rules for the quantifiers ∀ and ∃.

Γ � u : A[Y/X]
Γ � a.u : ∀XA ∀−intro (∗)

Γ � u : A[B/X]
Γ � e.u : ∃XA ∃−intro

(∗) Y is not free in Γ, ∀XA

Comment. The constructions a and e are trivial witnesses of the quantifiers at
the level of terms. They have no real computational effect. Contrary to the case
of second order typed λ-calculus or λµ-calculus, such witnesses are needed for
second order typed symmetric λ-calculus.
If one takes instead the rules:

Γ � u : A[Y/X]
Γ � u : ∀XA ∀−intro (∗)

Γ � u : A[B/X]
Γ � u : ∃XA ∃−intro

then reduction doesn’t preserve typing of the system. The crucial situation is
the following:

. .

Γ, x : ¬A[Y/X] � t : ⊥
Γ � µx.t : A[Y/X]

Γ � µx.t : ∀XA

.

Γ, y : ∀XA � s : ⊥
Γ � µy.s : ∃X¬A

Γ � µx.t ∗ µy.s : ⊥

2.4 Extensions

In § 3 we prove strong normalization of second order typed symmetric λ-calculus
presented in § 2.3. The result easily extends in two directions: one can add
simplification rules and other basic connectives.

Strong Normalization of Second Order Symmetric λ-Calculus 447

Simplification Rules

Symmetric λ-calculus of Barbanera and Berardi has in addition to the reduction
rules presented in § 2.1, other reduction rules, that we call simplification rules:

µx.(u ∗ x) �c u

µx.(x ∗ u) �c u

E[u ∗ v] ∗ w �c u ∗ v
w ∗ E[u ∗ v] �c u ∗ v

These rules are subject to the following restrictions: in the first two rules x has
no free occurrence in u; in the last two rules, E[] is a context which doesn’t
bind any free variable of u ∗ v.
Strong normalization for the reduction with simplification rules deduces from
strong normalization for the reduction without simplification rules. It is suffi-
cient to remark that:
1) there is no infinite sequence of reduction using only simplification rules, be-
cause each application of a simplication rule strictly decreases the length of the
term;
2) in reduction sequences, one can always push applications of the original rules
before applications of simplification rules.

Additional Connectives

In § 3 we prove strong normalization of typed symmetric λ-calculus based on the
connectives ∧ and ∨. The proof extends in a straightforward manner to other
pairs of dual connectives. One interesting case is the calculus based on → and
its dual −, which is easier ot relate to typed λ-calculus and λµ-calculus than the
original one.

The typing rules for → and − are the following:
Γ, x : A � u : B
Γ � λx.u : A→ B

Γ � u : A Γ � v : ¬B
Γ � (u, v) : A−B

The corresponding reduction rules are:

(u, v) ∗ λx.t �c t[u/x] ∗ v
λx.t ∗ (u, v) �c t[u/x] ∗ v

3 Proof of Strong Normalization

We prove the strong normalization using the reducibility method: each type
is interpreted by a set of terms. In section 3.1 we define the set of possible
interpretations of types, called reducibility candidates. In section 3.2 we prove
that each reducibility candidate is a set of strongly normalisable terms. In section
3.3 we define the notion interpretation such that each type is interpreted by a
reducibility candidate. In section 3.4 we prove that each term of type A belongs
to the interpretation of A and therefore is strongly normalisable.

448 Michel Parigot

3.1 Reducibility Candidates

For C,D ∈ P(T) and S ⊆ P(T), one defines the following constructions:
C ×D = {〈u, v〉;u ∈ C, v ∈ D}
C +D = {σ1(u);u ∈ C} ∪ {σ2(u);u ∈ D}
¬(C) = {µx.u; for all v ∈ C, u[v/x] ∈ N}
⋂
S = {a.t; for all C ∈ S, t ∈ C}

⋃
S = {e.t; there exists C ∈ S, t ∈ C}

If F : P(T) → P(T) is an increasing function with respect to set-theoretic
inclusion, then F has a smallest fixed point denoted by µX.F (X).
For C, D ∈ P(T), one defines

NegD(C) = Var ∪D ∪ ¬(C)
For each D ∈ P(T), NegD is a decreasing function from P(T) to P(T). Thus,
for each D, D′ ∈ P(T), NegD ◦NegD′ is an increasing function which has a fixed
point, µX.NegD(NegD′(X)).
For F ⊆ P(T) × P(T), we define p1F = {C; there exists C′, (C,C′) ∈ F} and
p2F = {C′; there exists C, (C,C′) ∈ F}.

Definition 1. The set R of reducibility pairs is the smallest subset of P(T) ×
P(T) such that:
1) (µX.Neg∅(Neg∅(X)), Neg∅(µX.Neg∅(Neg∅(X)))) ∈ R;
2) If (C,C′) ∈ R and (D,D′) ∈ R, then

(µX.NegC×D(NegC′+D′(X)), NegC′+D′(µX.NegC×D(NegC′+D′(X)))) ∈ R;

3) If ∅ �= F ⊆ R, S = p1F and S′ = p2F , then
(µX.Neg∩S(Neg∪S′(X)), Neg∪S′(µX.Neg∩S(Neg∪S′(X)))) ∈ R

4) If (C,C′) ∈ R, then (C′, C) ∈ R.
The set R0 of reducibility candidates is R0 = p1R = p2R.

Comment. Because we have an involutive negation, ¬¬A and A need to have
the same interpetation. This is achieved by constructing reducibility candidates
which are fixed points with respect to double negation. Reducibility pairs corre-
spond intuitively to interpretations of pairs of formulas (A,¬A).

3.2 Properties of Reducibility Candidates

Lemma 1. If (C,C′) ∈ R, then one of the following cases holds:
1) C = Neg∅(C′) and C′ = Neg∅(C);
2) C = NegD1×D2

(C′) and C′ = NegD′
1+D′

2
(C) with (Di, D

′
i) ∈ R for i = 1, 2;

3) C = NegD1+D2
(C′) and C′ = NegD′

1×D′
2
(C) with (Di, D

′
i) ∈ R for i = 1, 2;

4) C = Neg∩S(C′) and C′ = Neg∪S′(C) with S = p1F , S′ = p2F and F ⊆ R;
5) C = Neg∪S(C′) and C′ = Neg∩S′(C) with S = p1F , S′ = p2F and F ⊆ R.

Strong Normalization of Second Order Symmetric λ-Calculus 449

Proof. We prove the result by induction on the construction of (C,C′).
1) C = µX.Neg∅(Neg∅(X)) and C′ = Neg∅(µX.Neg∅(Neg∅(X))).
We have C′ = Neg∅(C) and C = µX.Neg∅(Neg∅(X)); by definition of the fixed
point, we have C = Neg∅(Neg∅(C)) and therefore C = Neg∅(C′).
2) C = µX.NegD1×D2

(NegD′
1+D′

2
(X))

and C′ = NegD′
1+D′

2
(µX.NegD1×D2

(NegD′
1+D′

2
(X))).

We have C′ = NegD′
1+D′

2
(C) and C = µX.NegD1×D2

(NegD′
1+D′

2
(X)); by defi-

nition of the fixed point, we have C = NegD1×D2
(NegD′

1+D′
2
(C)) and therefore

C = NegD1×D2
(C′).

3) C = µX.Neg∩S(Neg∪S′(X)) and C′ = Neg∪S′(µX.Neg∩S(Neg∪S′(X))).
We have C′ = Neg∪S′(C) and C = µX.Neg∩S(Neg∪S′(X)); by definition of the
fixed point, we have C = Neg∩S(Neg∪S′(C)) and therefore C = Neg∩S(C′).
4) If (C,C′) is not obtained by clauses 1), 2) or 3) of definition 1, then (C′, C)
is obtained by one of these clauses and we are in case 1), 3) or 5) of lemma 1.

Lemma 2. Let (C,C′) ∈ R and u ∈ T .
Then µx.u ∈ C iff µx.u ∈ ¬(C′)

iff for all v ∈ C′, u[v/x] ∈ N .

Proof. Let (C,C′) ∈ R and u ∈ T . By lemma 1, we have C = NegD(C′) =
Var ∪D ∪ ¬(C′), with D being ∅, E × F , E + F ,

⋂
S or

⋃
S, with E,F ∈ R0

and S ⊆ R0. Because Var ∪D doesn’t contain terms starting with a µ, we have
µx.u ∈ C iff µx.u ∈ ¬(C′).

Lemma 3. If C ∈ R0, then Var ⊆ C ⊆ N .

Proof. First remark that, for eachC ∈ R0, we have by lemma 1, C = NegD(C′) =
Var ∪D ∪ ¬(C′) and therefore Var ⊆ C.
Let C ∈ R0 and t ∈ C. We prove t ∈ N . By lemma 1, we have C = NegD(C′) =
Var∪D ∪¬(C′), with C′ ∈ R0 and D being ∅, E ×F , E +F ,

⋂
S or

⋃
S, with

E,F ∈ R0 and S ⊆ R0. Therefore one of the following cases holds:
1) t ∈ Var. In this case, t ∈ N .
2) t ∈ ¬(C′). In this case, t = µx.u and for all v ∈ C′, u[v/x] ∈ N ; because
Var ⊆ C′, we have x ∈ C′ and u ∈ N ; therefore µx.u ∈ N .
3) t ∈ D. One considers the possibilities for D given by lemma 1.
a) D = E × F , with E,F ∈ R0.
In this case t = 〈u, v〉 with u ∈ C and v ∈ D; by induction hypothesis, u, v ∈ N
and therefore t ∈ N .
b) D = E + F with E,F ∈ R0.
In this case t = σ1(u) with u ∈ E or t = σ2(v) with v ∈ F ; by induction hypoth-
esis, u, v ∈ N and therefore t ∈ N .
c) D =

⋂
S with S ⊆ R0.

In this case t = a.u with u ∈ C for all C ∈ S; by induction hypothesis, u ∈ N
and therefore t ∈ N .

450 Michel Parigot

d) D =
⋃
S with S ⊆ R0.

In this case t = e.u with u ∈ C and C ∈ S; by induction hypothesis, u ∈ N and
therefore t ∈ N .

Lemma 4. Let (C,C′) ∈ R and u, u′ ∈ T .
If u ∈ C and u �1 u′, then u′ ∈ C.

Proof. Let (C,C′) ∈ R and u, u′ ∈ T such that u ∈ C and u �1 u′. One proves
u′ ∈ C by induction on the construction of (C,C′).
By lemma 1, we have C = NegD(C′) = Var∪D∪¬(C′), with D being ∅, C1×C2,
C1 + C2,

⋂
S or

⋃
S, with C1, C2 ∈ R0 and S ⊆ R0.

One considers the different possibilities for u.
If u ∈ Var, the result is trivial.
Suppose u ∈ ¬(C′). Then u = µx.t with t[v/x] ∈ N , for all v ∈ C′, and u′ = µx.t′

with t �1 t′. Let v ∈ C′; since t[v/x] ∈ N and t �1 t′ we have t′[v/x] ∈ N .
Therefore µx.t′ ∈ C, i.e. u′ ∈ C.
Suppose u ∈ D. One considers the possibilities for D given by lemma 1.
1) D = C1 × C2 with C1, C2 ∈ R0. In this case u = 〈u1, u2〉 with u1 ∈ C1 and
u2 ∈ C2. There are two possibilities for u′: either u′ = 〈u′1, u2〉 with u1 �1 u′1
or u′ = 〈u1, u

′
2〉 with u2 �1 u′2. By induction hypothesis we have u′i ∈ Ci and

therefore u′ ∈ C.
2) D = C1 + C2 with C1, C2 ∈ R0.
In this case there exists i ∈ {1, 2} such that u = σiui with ui ∈ Ci. Since u �1 u′,
we have u′ = σiu

′
i with ui �1 u

′
i. By induction hypothesis we have u′i ∈ Ci and

therefore u′ ∈ C.
3) D = ∩S with S ⊆ R0.
In this case u = a.t with t ∈ E for each E ∈ S. Since u �1 u′, we have u′ = a.t′

with t �1 t′. By induction hypothesis we have t′ ∈ E for each E ∈ S and
therefore u′ ∈ C.
4) D = ∪S with S ⊆ R0.
In this case there exist E ∈ S and t ∈ E such that u = a.t. Since u �1 u′, we
have u′ = a.t′ with t �1 t′. By induction hypothesis we have t′ ∈ E and therefore
u′ ∈ C.

Lemma 5. Let (C,C′) ∈ R and u, u′ ∈ T .
If u ∈ C and u′ ∈ C′, then u ∗ u′ ∈ N .

Proof. Let (C,C′) ∈ R, u ∈ C and u′ ∈ C′. By lemma 3, we have u ∈ N
and u′ ∈ N . Let N(u) (resp. N(u′)) be the sum of the lengths of the reduction
sequences of u (resp. u′). We prove u ∗ u′ ∈ N by a double induction on the
construction of (C,C′) and N(u) +N(u′).
In order to prove u ∗ u′ ∈ N we prove: for all w ∈ T , if u ∗ u′ �1 w then w ∈ N .
We consider the different possibilities for w.
1) w = t[u′/x] with u = µx.t.
By lemma 2, we have µx.t ∈ ¬(C′) and therefore t[u′/x] ∈ N .
2) w = t′[u/x] with u′ = µx.t′.
The proof is analogous to that of case 1).

Strong Normalization of Second Order Symmetric λ-Calculus 451

3) w = ui ∗ u′i with u = 〈u1, u2〉, u′ = σi(u′i) and i ∈ {1, 2}.
By lemma 1, we have C = NegC1×C2

(C′), C′ = NegC′
1+C′

2
(C) with (Ci, C

′
i) ∈ R,

ui ∈ Ci and u′i ∈ C′
i. Since ui ∈ Ci and u′i ∈ C′

i, we have by induction hypothesis
ui ∗ u′i ∈ N .
4) w = ui ∗ u′i with u = σi(ui), u′ = 〈u′1, u′2〉 and i ∈ {1, 2}.
The proof is analogous to that of case 3).
5) w = t ∗ t′ with u = a.t and u′ = e.t′.
By lemma 1, we have C = Neg∩S(C′), C′ = Neg∪S′(C) with
S = {D; there exists D′, (D,D′) ∈ F}, S′ = {D′; there exists D, (D,D′) ∈ F},
F ⊆ R, t ∈ D for all D ∈ S and t′ ∈ D′

0 for a certain D′
0 ∈ S′. Let D0 such that

(D0, D
′
0) ∈ F ; we have t ∈ D0 and t′ ∈ D′

0; by induction hypothesis, it follows
t ∗ t′ ∈ N .
6) w = t ∗ t′ with u = e.t and u′ = a.t′.
The proof is analogous to that of case 5).
7) w = u1 ∗ u′ with u �1 u1.
By lemma 4, we have u1 ∈ C. Because N(u1) < N(u), we have by induction
hypothesis u1 ∗ u′ ∈ N .
8) w = u ∗ u′1 with u′ �1 u′1.
The proof is analogous to that of case 7).

3.3 Interpretation of Formulas

Let ∆ be the set of type variables and negated type variables.

Definition 2. A valuation α is a function from ∆ to R0 such that for each type
variable X, (α(X), α(¬X)) ∈ R. For U ∈ ∆ and C ∈ R0, we denote by α[C/U],
the valuation α′ defined by α′(U) = C and α′(V) = α(V) for V �= U .
The value ‖A‖α of an m-type A for a valuation α is defined inductively as follows:

‖X‖α = α(X), for X a type variable;

‖¬X‖α = α(¬X), for X a type variable;

‖A ∧B‖α = µX.Neg‖A‖α×‖B‖α(Neg‖¬A‖α+‖¬B‖α(X))

‖A ∨B‖α = Neg‖A‖α+‖B‖α(‖¬A ∧ ¬B‖α)

‖∀XA‖α = µX.Neg∩{‖A‖α[C/X,C′/¬X]; (C,C′)∈R}
(Neg∪{‖¬A‖α[C/X,C′/¬X]; (C,C′)∈R}(X))

‖∃XA‖α = Neg∪{‖A‖α[C/X,C′/¬X]; (C,C′)∈R}(‖∀X¬A‖α)

The definition is extended to types by ‖ ⊥ ‖α = N .

Lemma 6. For each valuation α and each m-type A, (‖A‖α, ‖¬A‖α) ∈ R.

Proof. Easy induction on A. The case where A is a type variable is given by the
definition of valuation.

452 Michel Parigot

Lemma 7. Let A,B be m-types and α, α′ valuations.

(1) Suppose that α(X) = α′(X) and α(¬X) = α′(¬X), for each type variable X
free in A. Then ‖A‖α = ‖A‖α′

.

(2) ‖A[B/X]‖α = ‖A‖α[‖B‖α/X, ‖¬B‖α/¬X].

Proof. Easy but tedious inspection (this lemma says only that our notion of
value is correctly defined).

3.4 Proof of Strong Normalization

Lemma 8. Let A1, ..., An be m-types and C a type.
If x1 : A1, ..., xn : An � t : C, then for all u1 ∈ ‖A1‖α, ..., un ∈ ‖An‖α,

t[u1/x1, ..., un/xn] ∈ ‖C‖α.

Proof. By induction on the derivation of x1 : A1, ..., xn : An � t : C. One
considers the different possibilities for t.
1) t = xi and C = Ai. In this case, we have t[u1/x1, ..., un/xn] = ui ∈ ‖C‖α.
2) t = 〈t1, t2〉 and C = C1 ∧ C2. By induction hypothesis we have
t1[u1/x1, ..., un/xn] ∈ ‖C1‖α and t2[u1/x1, ..., un/xn] ∈ ‖C2‖α. Therefore
t[u1/x1, ..., un/xn] ∈ ‖C1‖α × ‖C2‖α and t[u1/x1, ..., un/xn] ∈ ‖C1 ∧ C2‖α.
3) t = σi(ti) with i ∈ {1, 2} and C = C1 ∨C2. By induction hypothesis we have
ti[u1/x1, ..., un/xn] ∈ ‖Ci‖α. Therefore t[u1/x1, ..., un/xn] ∈ ‖C1‖α +‖C2‖α and
t[u1/x1, ..., un/xn] ∈ ‖C1 ∨ C2‖α.
4) t = t1 ∗ t2 and C =⊥. In this case ⊥ is obtained from C1 and ¬C1. By induc-
tion hypothesis we have t1[u1/x1, ..., un/xn] ∈ ‖C1‖α and
t2[u1/x1, ..., un/xn] ∈ ‖¬C1‖α. Therefore by lemmas 6 and 5,
t[u1/x1, ..., un/xn] ∈ N i.e. t[u1/x1, ..., un/xn] ∈ ‖ ⊥ ‖α.
5) t = µx.s andC = ¬A. In this case t[u1/x1, ..., un/xn] = µx.s[u1/x1, ..., un/xn].
By induction hypothesis, we have s[u1/x1, ..., un/xn, v/x] ∈ ‖ ⊥ ‖α = N ,
for all v ∈ ‖A‖α. Therefore by lemma 2, µx.s[u1/x1, ..., un/xn] ∈ ‖¬A‖α i.e
t[u1/x1, ..., un/xn] ∈ ‖C‖α.
6) t = a.s and C = ∀XA. In this case ∀XA is deduced from A[Y/X] with Y not
free in A1, ..., An, ∀XA. We have to show a.s[u1/x1, ..., un/xn] ∈ ‖∀XA‖α. By
definition of ‖∀XA‖α, it suffices to show s[u1/x1, ..., un/xn] ∈ ‖A‖α[C/X,C′/¬X],
for all (C,C′) ∈ R. Let (C,C′) ∈ R. Because Y is not free in A1, ..., An, we have
by lemma 7, ‖Ai‖α[C/Y,C′/¬Y] = ‖Ai‖α and therefore ui ∈ ‖Ai‖α[C/Y,C′/¬Y], for
each i ∈ {1, ..., n}. By induction hypothesis,
s[u1/x1, ..., un/xn] ∈ ‖A[Y/X]‖α[C/Y,C′/¬Y]. Because Y is not free in ∀XA,
‖A[Y/X]‖α[C/Y,C′/¬Y] = ‖A‖α[C/X,C′/¬X] and therefore
s[u1/x1, ..., un/xn] ∈ ‖A‖α[C/X,C′/¬X].
7) t = e.s and C = ∃XA. In this case ∃XA is deduced from A[B/X], for a
certain type B. We have to show e.s[u1/x1, ..., un/xn] ∈ ‖∃XA‖α. By defini-
tion of ‖∃XA‖α, it suffices to show that there exists (C,C′) ∈ R such that
s[u1/x1, ..., un/xn] ∈ ‖A‖α[C/X,C′/¬X]. Let (C,C′) = (‖B‖α, ‖¬B‖α). By in-
duction hypothesis we have s[u1/x1, ..., un/xn] ∈ ‖A[B/X]‖α. By lemma 7, we

Strong Normalization of Second Order Symmetric λ-Calculus 453

have ‖A[B/X]‖α = ‖A‖α[‖B‖α/X,‖¬B‖α/¬X] and therefore s[u1/x1, ..., un/xn] ∈
‖A‖α[C/X,C′/¬X].

Theorem 1. If x1 : A1, ..., xn : An � t : C, then t is strongly normalizable.

Proof. Suppose x1 : A1, ..., xn : An � t : C. For each i ∈ {1, ..., n}, we have
‖Ai‖α ∈ R0 by lemma 6 and xi ∈ ‖Ai‖α by lemma 3. Therefore by lemma
8, t ∈ ‖C‖α. If C =⊥, then ‖C‖α = N and t ∈ N ; otherwise by lemma 6,
‖C‖α ∈ R0 and therefore by lemma 3, t ∈ N .

References

1. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program
extraction. Proceedings TACS’94, Springer LNCS 789 (1994).

2. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program
extraction. Information and Computation 125 (1996) 103-117.

3. F. Barbanera, S. Berardi, M. Schivalocchi : “Classical” programming-with-proofs
in lambda-sym: an analysis of a non-confluence. Proc. TACS’97.

4. M. Felleisen, D.P. Friedman, E. Kohlbecker, B. Duba : A syntactic theory of se-
quential control. Theoretical Computer Science 52 (1987) 205-237.

5. M. Felleisen, R. Hieb : The revised report on the syntactic theory of sequential
control and state. Theoretical Computer Science 102 (1994) 235-271.

6. J.Y. Girard : Linear logic. Theoretical Computer Science. 50 (1987) 1-102.
7. J.Y. Girard, Y. Lafont, and P. Taylor : Proofs and Types. Cambridge University

Press, 1989.
8. T. Griffin : A formulae-as-types notion of control. Proc. POPL’90 (1990) 47-58.
9. M. Hofmann, T. Streicher : Continuation models are universal for λµ-calculus.

Proc. LICS’97 (1997) 387-397.
10. M. Hofmann, T. Streicher : Completeness of continuation models for λµ-calculus.

Information and Computation (to appear).
11. M. Parigot : Free Deduction: an Analysis of ”Computations” in Classical Logic.

Proc. Russian Conference on Logic Programming, 1991, Springer LNCS 592 361-
380.

12. M. Parigot : λµ-calculus: an Algorithmic Interpretation of Classical Natural De-
duction. Proc. LPAR’92, Springer LNCS 624 (1992) 190-201.

13. M. Parigot : Strong normalization for second order classical natural deduction,
Proc. LICS’93 (1993) 39-46.

14. M. Parigot : On the computational interpretation of negation, Proc. CSL’2000,
Springer LNCS 1862 (2000) 472-484.

15. C.H.L. Ong, C.A. Stewart : A Curry-Howard foundation for functional computa-
tion with control. Proc. POPL’97 (1997)

16. P. Selinger : Control categories and duality: on the categorical semantics of lambda-
mu calculus, Mathematical Structures in Computer Science (to appear).

Scheduling to Minimize the Average Completion

Time of Dedicated Tasks�

Foto Afrati1, Evripidis Bampis2, Aleksei V. Fishkin3, Klaus Jansen3, and
Claire Kenyon4

1 National Technical University of Athens,
Heroon Polytechniou 9, 15773, Athens, Greece,

afrati@softlab.ece.ntua.gr
2 LaMI, Université d’Evry, Boulevard François Mitterand, 91025 Evry Cedex, France,

bampis@lami.univ-evry.fr
3 Institut für Informatik und praktische Mathematik, Universität Kiel,

Olshausenstrasse 40, 24098 Kiel, Germany,
{avf,kj}@informatik.uni-kiel.de

4 LRI, Bât 490, Université Paris-Sud, 91405 Orsay Cedex, France,
Claire.Kenyon@lri.fr

Abstract. We propose a polynomial time approximation scheme for
scheduling a set of dedicated tasks on a constant number m of processors
in order to minimize the sum of completion times Pm|fixj |

∑
Cj . In ad-

dition we give a polynomial time approximation scheme for the weighted
preemptive problem with release dates, Pm|fixj , pmtn, rj |

∑
wjCj .

1 Introduction

In the last few years, an important amount of work is devoted to the study of
scheduling problems in which the objective is to minimize the sum of comple-
tion times. In [1], the authors presented the first polynomial-time-approximation-
schemes (PTASs) for scheduling to minimize the average weighted completion
time (in the presence of release dates) in various machine models including one,
identical parallel, unrelated parallel machines, with and without preemption. In
all these models each task is processed on at most one machine at a time. On the
contrary, no PTAS was known for scheduling problems, in which the objective
is to minimize the average completion time, involving multiprocessor tasks i.e.
tasks that may require more than one processors at a time.

In this paper, we propose the first PTASs for the dedicated multiprocessor task
model in which the objectives are the minimization of the average completion
time in the non-preemptive case, and the average weighted completion time in the

� This research was partially supported by the ASP “Approximabilité et Recherche
Locale” of the French Ministry of Education, Research and Technology (MENRT),
by the DFG - Graduiertenkolleg “Effiziente Algorithmen und Mehrskalenmethoden”
and by the EU project APPOL, “Approximation and on-line algorithms”, IST-1999-
14084.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 454–464, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Scheduling to Minimize the Average Completion Time of Dedicated Tasks 455

preemptive case in the presence of release dates. For the dedicated multiprocessor
model, the only known PTAS was for the case where the objective is to minimize
the makespan [2].

Using the standard three field notation [5], the problem of scheduling dedi-
cated tasks on a set of processors in order to minimize the sum of task completion
times is denoted as P |fixj |

∑
Cj . This problem was studied for the first time by

Hoogeveen et al. in [6], where it was shown to be NP-hard in the strong sense,
even in the case where all the tasks have unit execution times. Cai, Lee and Li [4]
proved that the problem is also strongly NP-hard, even in the case where there
are just 2 processors. On the other hand, in [3], Brucker and Krämer proved that
the problem is polynomial in the case where the tasks have unit execution times
and the number of processors is a fixed constant, i.e. for Pm|fixj , pj = 1|

∑
Cj ,

as well as when in addition the tasks have release dates. In terms of approxima-
tion algorithms, in [4], a 2-approximation is given for the 2 processor problem
P2|fixj|

∑
Cj . In this paper an approximation scheme is given for the m proces-

sor problem Pm|fixj|
∑

Cj with m constant, via a reduction to the preemptive
version of the problem.

When the tasks can be preempted, the problem is a bit easier. In fact the
2 processor case P2|fixj, pmtn|

∑
Cj is polynomial [4]. We present an ap-

proximation scheme for the generalization where the tasks have weights and
release dates, and the goal is to minimize the weighted sum of completion times,
Pm|rj , pmtn|

∑
wjCj . Note that Labetoulle et al. [7] proved that the single pro-

cessor version of this problem, P1|rj , pmtn|
∑

wjCj , is already strongly NP-
hard.

In section 2, we present a reduction from the non-preemptive problem
Pm|fixj|

∑
Cj to the preemptive problem Pm|fixj, pmtn|

∑
Cj . In section 3,

we present an approximation scheme for the (more general) preemptive problem
Pm|fixj, pmtn, rj |

∑
j wjCj .

2 A Reduction from Non-preemptive to Preemptive

Formulation of the problem. We are given a set of n tasks T = {1, 2, . . . , n}
and a set of m processors M . The tasks are dedicated: each task j requires for
its execution the simultaneous availability of a prespecified subset of processors
τj ⊆ M for pj units of time. The set τj is called the type of task j. We denote by
Sj and Cj the starting and completion times of task j. The problem is to design
a schedule which minimizes the sum of task completion times,

∑n
j=1 Cj .

2.1 The Algorithm

Let UB denote the upper bound to the optimal cost obtained by processing all
the tasks sequentially in order of non-decreasing processing times. Note that this
upper bound is within a constant factor m of optimal. The lemma below shows
how to separate tasks into “long” tasks and “short” tasks, with a few (negligible)
“medium” tasks in between. Its proof is a simple algebraic manipulation.

456 Foto Afrati et al.

Lemma 1. Let Li denote the set of tasks j with processing time pj ≥ ε5i+5UB,
Mi denote the set of tasks j with processing time ε5i+10UB ≤ pj < ε5i+5UB,
and Si = T \ Li ∪ Mi denote the remaining tasks. If L1 �= ∅, then there exists
an i < log1+ε(1/ε10) such that OPT (Li ∪Mi) ≤ (1 + ε2)OPT (Li).

At a high level, the algorithm is as follows.

1. For every i < log1+ε(1/ε10), partition the tasks into T = Li ∪Mi ∪ Si and
construct a schedule of T as follows.

2. Construct a non-preemptive schedule of Si as follows.
(a) Solve the preemptive problem for Si with relative error ε.
(b) For each subset τ of the machines, consider all the time intervals during

which the schedule executes tasks of type τ , and reorder the tasks of
type τ in these time intervals by order of increasing processing time.

(c) Stretch time by a factor of (1 + ε), so that each task in the schedule
corresponds to an interval or a set of intervals (if preemption occurred)
of total measure (1+ε)pj; leave the first εpj section idle and process task
j during the last pj part of the interval or set of intervals.

(d) Modify the schedule to reduce the number of preemptions in the follow-
ing way. In each interval I = [(1 + ε)k, (1 + ε)k+1], look at the schedule
during that interval, erasing the names of the tasks and only remem-
bering the task types ; at every instant a certain set of task types are
being processed; call this a configuration. We reorder the schedule inside
I so that identical configurations are contiguous; put the tasks back in,
in order of increasing processing time. Note that in this modified sched-
ule, a task can only be preempted when a configuration ends, thus the
number of preemptions in the interval is at most m times the number
A of configurations, which is O(1) since the number m of processors is
bounded and configurations, which are just partitions of {1, 2, . . . ,m}
into task types, are also in constant number.

(e) Modify the schedule to make it non-preemptive in the following way: for
each preempted task j, if its completion time t is greater than Apj/ε

2,
then finish executing j there, otherwise remove task j and insert it in
the gap at time (1 + ε)i such that (1 + ε)i−1 < mt/ε2 ≤ (1 + ε)i.

(f) Remove all times during which all processors are idle from the resulting
schedule.

3. Construct an optimal non-preemptive schedule of Li ∪ Mi by exhaustive
search.

4. Concatenate the schedule of Si and the schedule of Li ∪Mi.
5. Output the best resulting schedule, over all choices of i.

2.2 Analysis of Running Time

There are only O(1) possibilities for i. For each choice of i, we partition the
tasks in O(n), run the preemptive approximation scheme once, reorder the tasks
of the same type in O(n log n), perform the rest of step 2 in O(n), and con-
struct an optimal schedule of Li ∪ Mi in time O(|Li ∪ Mi|!). Since Li ∪ Mi

Scheduling to Minimize the Average Completion Time of Dedicated Tasks 457

consists of tasks with processing time greater than ε5i+10
∑

pk, there can be
at most ε−5i−10 such tasks. By Lemma 1, i < log1+ε(1/ε10) and so |Li ∪
Mi| ≤ (1/ε)O(1/ε10), so that |Li ∪Mi|! = O(1). Thus the overall running time is
O(n log n) +O(preemptive approximation scheme).

2.3 Analysis of the Sum of Completion Times

At the end of step 2a, the schedule of Si has cost at most (1 + ε) times the
optimal preemptive schedule cost, which is at least as good as the non-preemptive
schedule, hence the schedule of Si has cost as most (1+ ε)OPT (Si). Step 2b can
only decrease the cost. Step 2c increases the cost by a factor of (1 + ε). Since
step 2d only modifies the completion times inside the intervals, it also increases
the cost by a factor of (1 + ε) at most.

Step 2e is more difficult to analyze. First, finishing all the short preempted
tasks of interval Ik = [(1 + ε)k, (1 + ε)k+1] creates a delay of at most pj <
ε2(1 + ε)k+1/A for each of the A configurations, adding up to a delay of at most
ε2(1 + ε)k+1 due to interval Ik. Thus a task j completed in interval Il is delayed
by intervals I1, I2, . . . , Il−1, for a total delay of at most

ε2 + ε2(1 + ε) + . . .+ ε2(1 + ε)l−1 ≤ ε(1 + ε)l < εCj .

Thus these delays increase the cost by a factor of (1 + ε) at most.
Secondly, the long tasks displaced in step 2e may also cause further delays.

A gap at time t′ = (1+ ε)l receives only tasks previously scheduled preemptively
to complete at time t ≤ t′ε2/m. These tasks use up a space of at most t′ε2 in
the gap at t′, which again sums to a negligible delay in the schedule, a factor of
at most (1 + ε).

Thirdly, the long tasks displaced see their own completion times greatly in-
creased. Call D the set of such displaced tasks. They were displaced because their
completion time in the preemptive schedule was smaller than Apj/ε

2, and the
displacement increased their completion time by a factor of m/ε2, thus the sum
of their new completion times is at most

∑
j∈D mApj/ε

4. But their processing
times sum to at most m times the makespan of the schedule S.

Let pmax(Si) be the maximum processing time of Si and M the makespan of
S. Considering that at least M/(2pmax) tasks will be executed during the last
M/2 steps of S and hence have completion time greater than M/2, we obtain
that the cost of S is at least M2/(4pmax), hence

M ≤ 2
√

pmaxCOST (S) ≤ 2
√

ε10OPT (T)(1 + ε)5OPT (Si)/m.

Thus the new completion times of the tasks ofD sum to at most 2Aε
√
mOPT (T).

Finally, at the end of step 2, the non-preemptive schedule X of Si has cost
at most (1 + ε)5OPT (Si) + 2A

√
mεOPT (T) and makespan at most M(X) ≤

2
√

pmax(Si)COST (X).
Step 3 constructs an optimal schedule Y of Li ∪ Mi of cost OPT (Li ∪ Mi)

which is at most (1 + ε)2OPT (Li) by Lemma 1.

458 Foto Afrati et al.

Step 4 concatenates the two schedules, for a cost of COST (X)+COST (Y)+
|Li ∪ Mi|M(X) which we now need to analyze. Li satisfies
OPT (Li) > |Li|2pmin(Li)/(2m2), thus

(LiM(X))2 < 2m2OPT (Li)
pmin(Li)

4pmax(Si)COST (X) < 8m2(1 + ε)5ε5OPT (T)2

since the processing times in Li and Si differ by a factor of ε5 at least.
Moreover, Mi satisfies OPT (Mi) > |Mi|2pmin(Mi)/(2m2), and moreover

OPT (Mi) < OPT (Li ∪Mi)−OPT (Li) < ε2OPT (T), thus

(|Mi|M(X))2 < 2m2ε2
OPT (T)
pmin(Mi)

4pmax(Si)COST (X) ≤ 8m2ε2(1+ε)5OPT (T)2.

Thus the concatenated schedule has overall cost

(1 + ε)5OPT (Si) + 2
√
mAεOPT (T) + (1 + ε2)OPT (Li)+

2
√
2m(1 + ε)2.5ε2.5OPT (T) + 2

√
2mε(1 + ε)5OPT (T).

Since OPT (Si) +OPT (Li) ≤ OPT (T), we obtain that the cost of the schedule
is (1 +O(ε))OPT (T).

3 Solving the Preemptive Problem

In this section we present a PTAS for Pm|fixj, rj , pmtn|
∑

wjCj with release
dates rj and weights wj for each task. First, using ideas in [1] and new ideas we
simplify the problem instance. Then, we apply a dynamic programming tech-
nique to find an approximative schedule. Inside of the dynamic program we use
an optimal algorithm of Amoura et al. [2] for Pm|fixj, pmtn|Cmax (makespan
optimization) to test whether tasks can be processed in an interval or not. In
total, we prove the following result:

Theorem 1. There is a PTAS for Pm|fixj , rj , pmtn|
∑

wjCj that constructs
a 1 + ε-approximation in O(n log n) time (with m and ε > 0 constant).

As in section 2 we partition the time (0,∞) into disjoint intervals of the form
Ix := [Rx, Rx+1) with Rx+1 = Rx(1+ε) and Ix = εRx (we use Ix to refer to both
|Ix| and Ix). Let T τ ⊆ T denotes the set of tasks with the same type τ ⊆ M ; T τ

x

is the set of tasks in T τ that are released at Ix. Let Cj be the completion and
Sj be the starting time of task j. The values x(j) and z(j) denote the indices of
the intervals Ix(j) and Iz(j) where task j is released and completed, respectively.

First, we simplify the problem instance. With at most 1 + ε loss in the ob-
jective function, we can assume that all release dates rj and processing times
pj are integer powers of 1 + ε; rj ≥ εpj and pj ≥ 1 [1]. As consequence, the
processing time of each task j is at most 1

ε2 times more than the length of the
interval where this task is released (i.e. pj ≤

Ix(j)

ε2). This means that every task
crosses at most a constant number of intervals.

Scheduling to Minimize the Average Completion Time of Dedicated Tasks 459

Furthermore, we can assume that all quotients pj/wj are different. Let
pj1/wj1 ≤ pj2/wj2 ≤ . . . ≤ pjn/wjn . Suppose that some tasks have the same val-
ues pj/wj . In this case, we can increase the weights such that wj < w′

j ≤ (1+ε)wj
such that all quotients pj/wj are different. The objective value of a schedule with
the new weights

∑
w′
jCj is bounded by (1+ε)

∑
wjCj . Finally, we can rearrange

tasks inside an interval and consider
∑

wjRz(j) instead of our original objective
function

∑
wjCj .

Now we introduce two types of tasks. Using the assumption above, every
release date rj is the left endpoint of an interval Ix(j). A task j is large, if the

processing time pj is larger than
ε2Ix(j)

2m , and is small otherwise. Let LT τ
x be the

set of large tasks and ST τ
x the set of small tasks in T τ

x . We may assume that
ε ≤ 1

2m and log1+ε
1
ε ,

1
ε are integral.

For an optimal schedule and tasks in T τ
x we can assume that each task is

processed completely before another one starts to be processed. In other words
for t, � ∈ T τ

x we have Ct ≤ S� or C� ≤ St.

Lemma 2. With at most 1 + O(ε) loss, we can assume that each task in ST τ
x

is processed completely in one interval.

Proof. Fix an interval Iy where this property does not hold. Consider one pro-
cessor type τ ⊆ M . Using the oberservation above it follows that there is at
most one small task jx released in interval Ix with x ≤ y, such that jx is started
in Iy with x ≤ y but finished later.

The goal is to complete all these small tasks (among all previous intervals
Ix) in Iy . The total processing time of these tasks can be bounded as follows:

∑
x≤y

pjx ≤
∑
x≤y

ε2Ix
2m

≤
∑
t≥0

ε2Iy
2m(1 + ε)t

≤ ε2Iy
2m

∑
t≥0

1
(1 + ε)t

≤ ε(1 + ε)Iy
2m

≤ 2ε
2m

Iy.

Adding the bound for all types τ ⊆ M , the total time to complete all these small
tasks is at most 2εIy. To create 2εIy idle time, we shift the entire schedule two
intervals forward. This increase the objective function by at most 1 + (1 + ε)2.
Using these idle times and preemptions we are able to reschedule and to complete
the small tasks within Iy .

The tasks in ST τ
x are scheduled by Smith’s rule if they are scheduled in order

of increasing pj

wj
. We say that two tasks t ∈ ST τ

x(t) and t′ ∈ ST τ
x(t′) (with

release indices x(t′) ≤ x(t)) are scheduled by Smith’s rule if one of two following
conditions holds:

(1) t′ is completed before t is released,
(2) t′ is not started before t is released and
(2.1) if pt

wt
< pt′

wt′
then t′ starts only after t is completed,

(2.2) if pt

wt
> pt′

wt′
then t starts only after t′ is completed.

The following lemma gives us a powerful tool to handle small tasks.

460 Foto Afrati et al.

Lemma 3. With at most 1+O(ε) loss, for each processor set τ we can assume
that all small tasks in T τ are scheduled by Smith’s rule.

Proof. Consider an optimal schedule where no small task crosses an interval and
where the quotients pj/wj are different. Let Sτ be the set of all small tasks with
processor set τ , and let Sτx ⊆ Sτ be the subset of small tasks that are executed in
Ix. Then, define p(Ix, τ) =

∑
j∈Sτ

x
pj as the total time to process small tasks in

Ix. Furthermore, x(j) denotes the index of the interval where task j is released
and L denotes the index of the last interval. For any type τ ⊆ M , we study the
following linear program:

Minimize
∑

j∈Sτ
wj

∑L
i=x(j) yj,iRi s.t.

(1)
∑L

i=x(j) yj,i = 1, ∀j ∈ Sτ ,
(2)

∑
j :j∈Sτ , x(j)≤i yj,ipj ≤ p(Ii, τ), ∀Ii and τ ⊂ M ,

(3) yj,i ≥ 0, ∀j ∈ Sτ , i = x(j), . . . , L.

First, the objective value of the linear program is not larger than the weighted
average completion time for the small tasks and the fact that the fractional
assignment gives only a smaller value. In other words, the value of an optimal
fractional solution is a lower bound of the weighted completion time. Consider
an optimal solution (y∗j,i) of the linear program. Suppose that two tasks t and
t′ are scheduled not by Smith’s rule. Without loss of generality we suppose that
y∗t,it > 0, y∗t′,it′ > 0, x(t′) ≤ x(t) ≤ it < it′ and

pt′
wt′

< pt

wt
.

Then, there exist values zt and zt′ such that 0 < zt ≤ y∗t,it , 0 < zt′ ≤ y∗t′,it′
and ztpt = zt′pt′ . Now we exchange parts of the variables:

y′t,it = y∗t,it − zt y′t,it′ = y∗t,it′ + zt
y′t′,it′ = y∗t′,it′ − zt′ y

′
t′,it = y∗t′,it + zt′

and y′j,i = y∗j,i for the remaining variables. The new solution (y′j,i) is feasible
and the objective value

∑
j∈Sτ wj

∑L
i=x(j) y

′
j,iRi is equal to

∑
j∈Sτ wj

∑L
i=x(j)

y∗j,iRi+Rt,t′ where Rt,t′ = (Rit −Rit′)(wt′zt′−ztwt). Using zt′ = zt
pt

pt′
, pt′
wt′

< pt

wt

and zt > 0, the second factor (wt′zt′ − ztwt) = zt(wt′ pt

pt′
− wt) is larger than

0. The inequality it < it′ implies Rit < Rit′ and Rt,t′ < 0. In other words, the
new solution (y′j,i) has a lower objective value and gives us a contradiction. This
means that the two tasks t and t′ are scheduled by Smith’s rule.

Now we use some properties about the optimal solution of the linear program
above. There is an optimal solution such that for each interval Ii we have at most
one task j ∈ Sτ with xj,i ∈ (0, 1) and that is assigned for the first time. Otherwise
we can use the same argument as above (and the fact that the quotients pj

wj
are

different) to improve the objective value. To turn the fractional solution into an
integral, we need only to increase the values p(Ii, τ) by at most εIi

2m (because all
tasks are small). Thus for all τ ⊆ M we have to create at most 2εIi idle time.
Then we shift the schedule two intervals forwards and use the created idle time
to reschedule small tasks by Smith’s rule.

Scheduling to Minimize the Average Completion Time of Dedicated Tasks 461

Let p(T ′) be the processing time of all tasks in T ′ ⊂ T . By delaying of tasks
to later intervals we can bound the number of long tasks and the total length of
small tasks for each interval Ix:

Lemma 4. With 1 + O(ε) loss, each instance I of Pm|fix, rj, pmtn|
∑

wjCj
can be transformed in O(n logn) time into an instance I ′ such that for each type
τ ⊆ M and release date Rx:

– |LT τ
x| ≤ K := 2mk

ε2 , where k = 5 log1+ε
1
ε ,

– p(ST τ
x) ≤ 2Ix.

Proof. Consider an interval Ix. Using Lemma 3 we order ST τ
x by Smith’s rule. In

the interval Ix the total available time to schedule tasks from T τ
x is Ix. Thus we

select tasks from ST τ
x until the total processing time of selected tasks is greater

or equal to Ix. Since pj ≤ ε2

2m Ix for each job j in ST τ
x we have at most 2Ix for

selected tasks. Within large tasks in LT τ
x of the same size we select at most 2m

ε2

tasks in order of decreasing weights (only they can be started in Ix). We have
at most 2mk

ε2 selected large jobs. After that we increase the release time of not
selected tasks.

The difficult part in the dynamic programming is to show that it is sufficient
to maintain informations for a small number of tasks. To do this we introduce
a compact representation of small and long tasks. We start with the small tasks
and assume that the small tasks in ST τ

x are ordered by Smith’s rule (i.e. in
increasing order of pj/wj). Then we select the tasks one by one and create
sets ST τ

x,i ⊆ ST τ
x, 1 ≤ i ≤ 2m+3/ε2 (the last sets may be empty) of lengths

roughly equal to ε2Ix

2m+1 (but not greater than ε2Ix

2m). We always create a new set
ST τ

x,i+1 when the total processing time of tasks in ST τ
x,i and the last selected

task is greater than ε2Ix

2m+1 . This last selected task is placed into ST τ
x,i+1. The

following Lemma shows how the small tasks can be scheduled without increasing
the objective function too much.

Lemma 5. With 1 + O(ε) loss we can assume that in each interval Iy, y ≥ x
for all subsets τ ⊆ M , either

– a consecutive sequence of task sets (at least one set) ST τ
x,ay

, ST τ
x,ay+1, . . .,

ST τ
x,by

is scheduled in Iy, or
– all tasks in ST τ

x have already been scheduled.

Proof. Fix one processor set τ ⊆ M and consider all small tasks that require τ .
Using Lemma 3, these small tasks are scheduled by Smith’s rule. Next consider
the first interval Iy , y ≥ x where the properties in the Lemma above does not
hold. Then there is one set ST τ

x,by
that is not completely scheduled in Iy (or there

is no task from ST τ
x). If we increase the processing time p(Iy , τ) by an amount

462 Foto Afrati et al.

of ε2Ix

2m (for each such Ix) then the sets ST τx,by
can be scheduled completely in

Iy. The total enlargement for all Ix, x ≤ y, is bounded by

∑
x≤y

p(ST τ
x,bx

) ≤
∑
x≤y

ε2Ix
2m

≤
∑
t≥0

ε2Iy
2m(1 + ε)t

≤ ε(1 + ε)Iy
2m

≤ 2ε
2m

Iy.

This implies that we have to increase the processing times p(Iy, τ) by at most
2ε
2m Iy . For all processor sets τ ⊆ M we have to create at most 2εIy idle time to
complete the small tasks from previous intervals in Iy. Again we create 2εIy idle
time by shifting the schedule two intervals forward.

The schedule type above allows us now to represent the set ST τ
x in a more

compact way by a set ŜT
τ

x with at most T̄ = 2m+3

ε2 new created small tasks. Each
task Tx,i ∈ ŜT

τ

x represents the corresponding set ST τ
x,i. The processing time of

Tx,i is equal to p(ST τ
x,i) and the weight wx,i of Tx,i is equal to

∑
j∈ST τ

x,i
wj .

Finally the new tasks have to be processed in the total order Tx,1, Tx,2, . . . , Tx,T̄ .
Finally we use a similar idea for the large tasks in LT τ

x. We notice that LT τ
x

contains at most a constant number of at most K = 2mk
ε2 large tasks where

k = 5 log1+ε
1
ε and the processing time pj of each large task j in LT τ

x is bounded
by Ix

ε2 .

Lemma 6. With 1 + O(ε) loss, we can assume that in each interval Iy, y ≥ x
for all subsets τ ⊆ M , the partial time pj,y that is used in Iy to process a large
task j ∈ LT τ

x, either

– is equal to �j,y∆x, where ∆x = ε2Ix

2mK = ε4Ix

k22m , �j,y ∈ {1, . . . , H}, H := Ix

ε2∆x
=

k22m

ε6 and k = 5 log1+ε
1
ε , or

– j has been already completed.

Proof. Notice that the total enlargement needed in Iy for tasks from LT τ
x, x ≤ y

is at most ε2Ix

2m , since there are at most K = 2mk
ε2 large tasks in LT τ

x. The rest
follows as in Lemma 5.

Corollary 1. All tasks in Tx = ∪τ⊆MT τ
x are scheduled completely within the

next O(s) := max{T̄ , H} intervals following Ix.

For the dynamic programming, we introduce now a block structure on the
time line. The basic idea is to decompose the time line into a sequence of blocks.
Let A = {a1, . . . , ar} be the indices of release dates Ra1 , . . . , Rar with a1 < a2 <
. . . < ar. Corollary 1 implies that if ai+1 − ai > O(s) then all tasks that are
released at Rai can be scheduled in the intervals Iai , . . . , Iai+O(s) (further we

Scheduling to Minimize the Average Completion Time of Dedicated Tasks 463

consider only them). Thus, to find an optimal restricted schedule we have to
consider only nO(s) intervals.

Let B = {a1, a1 + 1, . . . , ar+1} be the indices of the corresponding intervals
(at most nO(s)), where ar+1 = ar+O(s). We partition the set B into a sequence
of blocks B1, . . . ,Br where r is at most n and each block Bi, i = 1, . . . , r consists
of O(s) intervals with indices from B. Notice that the tasks that are released in
the intervals of block Bi either finish in Bi or in Bi+1, this set of tasks is denoted
by BT i. Furthermore, there is at most a constant number µ := 2mT̄O(s) of small
and a constant number ν := 2mKO(s) of large tasks in BT i.

Let Gi be the different ways how the tasks from BT i are scheduled in the
intervals of Bi ∪ Bi+1. Each small task is processed completely in one of the T̄
intervals after its release. Each large task can be splitted in at most H intervals
with sizes �j,y∆x where �j,y ∈ {1, . . . , H}. This gives at most HH possibilities for
a large task. The total number of different ways Gi ∈ Gi to schedule these tasks
is bounded by a constant q := (1+O(s))µ(O(s)O(s))ν . Now we can describe our
objective function as follows:

∑
wjRz(j) =

r∑
i=1

∑
z(j)∈Bi

wjRz(j) =
r∑
i=1

W (i, Gi, Gi−1),

where W (i, Gi, Gi−1) is the total weighted completion time of tasks that com-
plete in block Bi corresponding to ways Gi and Gi−1 (we use the fact that in
block Bi only tasks that are released in Bi and Bi−1 can be scheduled).

The dynamic programming table entryO(i, Gi) stores the minimum weighted
completion time among all restricted schedules, where:

(1) Gi represents the way in which the tasks released in Bi are scheduled in the
intervals of block Bi and Bi+1, and

(2) all tasks that are released before block Bi are completely finished.

To compute the table Oi we use the following recursive equation:

O(i, Gi) =

W (1, G1,−), G1 ∈ G1 for i = 1;
minGi−1∈Gi−1 [O(i− 1, Gi−1) +W (i, Gi, Gi−1)],
Gi ∈ Gi for i = 2, . . . , r.

Lemma 7. The time to compute the table O(i) for all 1 ≤ i ≤ r can be bounded
by O(n) ·T (W,n) where T (W,n) denotes the maximal time to compute the func-
tion W for one triple (i, Gi, Gi−1).

In the following we describe the procedure to test the feasibility for the set
of tasks defined by Gi and Gi−1 to be scheduled in Bi and to compute the
value W (i, Gi, Gi−1). First there are O(s) intervals in Bi. Using the information
from Gi and Gi−1 we know precisely the finishing interval Iz(j) of each task
j ∈ BT i−1 ∪ BT i. Thus if Gi and Gi−1 give us a feasible schedule then we
can compute the value W directly. To test the feasibility we use the following

464 Foto Afrati et al.

idea. Consider the intervals in Bi. For each interval Ii,t, t = 1, . . . , O(s) in Bi
we compute the set Vt of tasks that are processed in Ii,t and the set PVt of
processing times that are used to process these tasks. Then we have to verify
whether the set Vt with PVt can be scheduled in Ii,t for each t = 1, . . . , O(s). In
total, the problem of testing is equivalent to a sequence (of constant length O(s))
of problem instances of Pm|fixj , pmtn|Cmax. Each such problem can be solved
in linear time optimally with respect to the number of tasks in the instance [2].
Since the number of tasks in each set Vt, t = 1, . . . , O(s) is at most the number
of tasks defined by Gi and Gi−1 (this number is constant because there are only
O(1) tasks released in Bi and Bi−1), we have obtained the following result:

Lemma 8. Given Gi−1 and Gi, the feasibility test and the computation of the
value W (i, Gi, Gi−1) can be done in O(1) time.

This Lemma implies that the time to compute the entire table is bounded by
O(n) and that our algorithm for the preemptive variant runs in O(n logn) time.

References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, M. Sviridenko, Approximation schemes for
minimizing average weighted completion time with release dates, 40th Annual Sym-
posium on Foundations of Computer Science (FOCS’99), 1999, 32-43.

2. A.K. Amoura, E. Bampis, C. Kenyon, Y. Manoussakis, How to schedule indepen-
dent multiprocessor tasks, Proceedings of the 5th European Symposium on Algo-
rithms (ESA’97), LNCS 1284, 1-12.

3. P. Brucker, A. Krämer, Polynomial algorithms for resource constrained and multi-
processor task scheduling problems, European Journal of Operational Research, 90
(1996) 214-226.

4. X. Cai, C.-Y. Lee, C.-L. Li, Minimizing total completion time in two-processor task
systems with prespecified processor allocations, Naval Research Logistics, 45 (1998)
231-242.

5. R. L. Graham, E. L. Lawler, J. K. Lenstra, K. Rinnooy Kan, Optimization and Ap-
proximation in Deterministic Scheduling: A Survey, Annals Discrete Mathematics,
5 (1979) 287-326.

6. J.A. Hoogeveen, S.L. van de Velde, B. Veltman, Complexity of scheduling multipro-
cessor tasks with prespecified processor allocations, Discrete Applied Mathematics,
55 (1994) 259-272.

7. J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive
scheduling of uniform machines subject to release dates, in: W. R. Pulleyblank
(ed.), Progress in Combinatorial Optimization, Academic Press, New York, 1984,
245-261.

Hunting for Functionally Analogous Genes

Michael T. Hallett1 and Jens Lagergren2

1 McGill Centre for Bioinformatics
McGill University, Montreal, Canada

hallett@cs.mcgill.ca
2 Stockholm Bioinformatics Center and

Dept. of Numerical Analysis of Computing Science, KTH, Stockholm, Sweden
jensl@nada.kth.se

Abstract. Evidence indicates that members of many gene families in
the genome of an organism tend to have homologues both within their
own genome and in the genomes of other organisms. Amongst these ho-
mologues, typically only one or a few per genome perform an analogous
function in their genome. Finding subsets of these genes which show
evidence of performing a common function is an important first step to-
wards, for instance, the creation of phylogenetic trees, multiple sequence
alignments and secondary structure predictions.

Given a collection of taxa P = {P1, P2, . . . , Pk} where Pi contains genes
{pi,1, pi,2, . . . , pi,ni}, we ask to choose one gene from each of the taxa Pi

such that these chosen vertices most agree. We define most agreeing in
three distinct ways: most tree-like, pairwise closest, and pairwise most
similar.

We show these problems to be computationally hard from almost every
angle via classical, parameterized and approximation complexity theory.
However, on the positive side, we give randomized approximation algo-
rithms following ideas from [GGR98] for the pairwise closest and pairwise
most similar variants.

1 Introduction

Given a new nucleo- or peptide sequence, the standard “first step” of any inquiry
into the determination of the evolution, chemical properties, and (ultimately)
function of this biomolecule is to align it against every entry in a large molecular
dataset such as EMBL[S99] or SwissProt[BA]. Since properties such as function
are extremely complex and still largely unknown, no simple search of a dataset
can answer these questions directly. The standard alignment tools [AGMWL90,
PL88] only return entries which show statistically significant signs of pairwise
evolutionary relationships. The end result is that many of the returned sequences
will belong to gene families other than the family of our new sequence.

There are many reasons why this is the case such as partial domain agreement,
long distance homology and parology via gene duplications and losses. We refer
readers to [B99], [BDDEHY98], [GCMRM79], [KTG98], [MMS95], [P98], [PC97],

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 465–476, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

466 Michael T. Hallett and Jens Lagergren

[S99], [SM98], [TKL97], [YEVB98] and the authors’ paper [HL99a] for a more
thorough treatment of the problems, models, and experimental results.

In any study of evolution, chemical properties, and function, care must be
taken to use sequences that are all pairwise homologous (all related by a common
evolutionary ancestor) and that all perform an analogous function1 in their re-
spective genome. When such care is not taken in the selection of sequences, gene
trees will not reflect the true evolutionary relationships of the species, multiple
sequence alignments will not display regions of conservation and change, and
predictions of secondary structure will be inaccurate [B92, BDDEHY98, F88].

We introduce the following model of the above selection problem. A collection
of sets P = {P1, P2, . . . , Pk} is given where Pi corresponds to taxa i and contains
the homologues {p1,i, p2,i, . . . , pni,i} found in the genome of taxa i. The goal is to
choose one gene from each of the Pi such that these genes agree the most. Such
a subset is refered to as a core of the weighted k-partite graph. We introduce
three distinct definitions of most agreeing: most tree-like, pairwise closest, and
pairwise most similar.

Most Tree Like in a k-Partite Graph (Core-Tree)

input: A complete k-partite graphG = (P1, P2, . . . , Pk, E), edge weights
w : E → IR.

output: A set P ′ = {p1, p2, . . . , pk} where pi ∈ Pi such that ||D(P ′)−
A(D(P ′))||z is minimized where D(P ′) is the distance matrix formed
in the obvious way from P ′ and A(D(P ′)) is the closest additive ap-
proximation to D(P ′) under the Lz norm for some z ∈ {1, 2, . . . ,∞}.

That is, one vertex (one gene) is selected from each partition (each genome)
such that the distance matrix formed from the pairwise comparisons of the genes
is as close to additive (as close to “tree-like”) as possible. The assumption behind
this optimization criteria is that genes, which have a different function (hence,
a significantly different underlying sequence) than the gene family, should intro-
duce non-additivity when placed into a distance matrix consisting of genes from
the gene family.

Assume we are given a set of homologous genes where some are functionally
analogous and others are effectively functionally inactive. The functionally in-
active copies of the gene should drift in a random direction through the amino
acid “space” whilst the functionally active genes in our family should mutate
relatively slowly. Therefore the genes performing analogous function should be
identifiable by being mutually similiar or closer in distance than any other homo-
logues. Furthermore, sequences which have domains foreign to the gene family
will also induce distance measures significantly greater than pairwise measure-
ments between members of the gene family. We arrive at our second and third
notions of most agreeing:

1 We say analogous function here and not simply function to stress that the role a
specific gene in a family plays is almost never exactly the same between organisms.

Hunting for Functionally Analogous Genes 467

Minimum Weight Clique in a k-Partite Graphs (Core-Clique)

input: A complete k-partite graphG = (P1, P2, . . . , Pk, E), edge weights
w : E → IR.

output: A set P ′ = {p1, p2, . . . , pk} such that pi ∈ Pi andΣ1≤i<j≤kw(pi, pj)
is minimum.

Note that the edges between vertices in different partitions could correspond
to either (1) an estimate of the distance between the two genes, or (2) a statis-
tical measure of similarity (eg. a maximum likelihood score). The first variant
induces a minimization problem whilst the second variant induces a maximiza-
tion problem. In most cases, the behaviour of either problem is the same and
thus we focus attention on the former. Note also that the gene family is not
assumed to have any sort of nice “tree-like” behavior. This problem may be
particularly suited to studying microbial taxa as it is becoming clear that gene
and species phylogenies are often tentative at best.

In the remainder of this paper we show that choosing cores under any of these
optimization criteria is hard from the classical, parameterized and approximation
complexity frameworks. That is, the general versions of these problems are NP -
complete and hard for complexity class W [1] for versions of the problem when
the number of partitions, the size of each partition, the maximum weight of
an edge, or the overall weight of the core are parameters. We also show that
all of these problems are not approximable within a polynomial function of n
in polynomial time. On the positive side, we give a randomized approximation
algorithm using ideas from [GGR98, RS96] for these last two problems. For a
confidence parameter δ and a accuracy parameter ε, this algorithm will correctly
find a core-clique of weight opt + εσ · k2 with probability 1− δ/2, where opt is
the optimal weight core clique in the input graph, k is the number of partitions
and σ is the maximum difference between the weight of two edges adjacent to
the same vertex.

2 Background

Trees and Graphs A phylogenetic tree T = (V,E) is a binary connected acyclic
graph. A leaf in T has degree 1 and LT is used to denote the subset of V which
contain the leaves of T . For S ⊆ T , we let T [S] represent the subtree of T induced
by S. A weighted phylogenetic tree is a phylogenetic tree with a weight function
associated with the edges, T = (V,E,w) where w : ET → [0,∞). A complete k-
partite graph is (k+1)-tuple P = (P1, P2, . . . , Pk, E) where Pi contains vertices
{pi,1, pi,2, . . . , pi,ni} for some ni where Pi ∩ Pj = ∅, and where E, the edge set,
contains edges between every two vertices in two different partitions Pi and Pj .
Weighted k-partite graphs are defined similarly. A clique of size t in a graph G
is a set of t distinct vertices which are mutually adjacent. The weight of an edge
is written w(x, y) as a short hand for w((x, y)) for some edge (x, y).
Distance/Similarity Matrices A distance matrix D is a 0 diagonal, symmet-
ric, nonnegative matrix, indexed by the set of taxa LT for a phylogenetic tree

468 Michael T. Hallett and Jens Lagergren

T where the entry Dij is the distance (an estimated distance) between taxa i
and taxa j. An n × n distance matrix D is additive, if there exists a weighted
phylogenetic tree T with n leaves such that entry Dij equals to the sum of the
edge weights in the tree along the path connecting i and j. A similarity matrix
S is the same as a distance matrix except that diagonal elements have value ∞
and entry Sij is a similarity score between taxa i and j.

Theorem 1 ([B71]). A matrix D is additive if and only if for all i, j, k, l (not
necessarily distinct), the maximum of Dij + Dkl, Dik + Djl, Dil + Djk is not
unique. The edge weighted tree (with positive weights on internal edges and non-
negative weights on leaf edges) representing the additive distance matrix is unique
among the trees without vertices of degree two.

Error Measurements The Lk norm between distance matrices D and D′,
written ||D−D′||k, is defined as ||D−D′||k = (Σi<j

(∣∣Dij −D′
ij

∣∣)k) 1
k for k ≥ 1.

For k = ∞, the L∞ norm is defined as ||D −D′||∞ = maxi<j

∣∣Dij −D′
ij

∣∣
Approximation Ratios An approximation algorithm is said to achieve an
approximation ratio of α for a maximization problem Π if for each input x, it
computes a solution y of cost at least OPT/α, where OPT is the cost of the
optimum. For a minimization problem, the algorithm must return a solution y
of cost at most α ·OPT . Note that α ≥ 1.

We refer the reader to [DF99] for a complete description of parameterized
complexity. The following three items are the main ingredients of this tool.
FPT , Completeness, Reductions (1) For a parameterized language L, L ⊆
Σ∗×Σ∗ : 〈x, k〉, (k is the parameter) we say that L is (uniformly) fixed parameter
tractable (FPT) if there exists a constant α and an algorithm Φ such that Φ
decides if 〈x, k〉 ∈ L in time f(k)|x|α where f : IN → IN is an arbitrary function.
(2) We say that L reduces to L′ by a standard parameterized m–reduction if
there is an algorithm Φ which transforms 〈x, k〉 into 〈x′, g(k)〉 in time f(k)|x|α,
where f, g : IN → IN are arbitrary functions and α is a constant independent of
k, so that 〈x, k〉 ∈ L if and only if 〈x′, g(k)〉 ∈ L′. (3) k-Clique, parameterized
by the clique set size k, is complete for complexity classW [1]. That is, k-Clique

is not in FPT unless problems like k-Step Turing Machine and many other
problems whose best known algorithms run in time Σ(nk), can be solved in FPT
(f(k) · nα) time.

3 Complexity Results

3.1 Core-Clique. The decision version of this problem takes as input a param-
eter r ∈ IR and answers “yes” iff the core-clique has weight ≤ r. Theorem 2 below
states that even when the number of candidate genes per genome is bounded by
3, an extremely simple weighting function is used, and a bound of 0 is placed
on the size of the core-clique, the problem remains NP -complete. Theorem 3
states that a modified (easier to approximate) version of Core-Clique cannot
be approximated within any function of n (the number of vertices of the input

Hunting for Functionally Analogous Genes 469

graph) in polynomial time. Both these theorems follows easily from the following
lemma.

Lemma 1. Let f(n) be a function such that f(n) > 0 for all n ≥ 1, then Core-

Clique restricted to partitions of size 3 and with a weighting function w which
assigns an edge either 0 or f(n), and r = 0 is NP -complete, where n is the size
of the input graph.

Proof. The problem is inNP . To show hardness, we reduce from 3SATwhich ac-
cepts as input a formula Φ in 3-CNF over a set of variables X = {x1, x2, . . . , xt},
and asks if there is a truth assignment to X such that each clause of Φ has at
least one true literal.

Let X = {x1, x2, . . . , xt} be the set of variables and C = {C1, C2, . . . , Ck} be
the set of clauses of an arbitrary instance of this problem. To construct an in-
stance of the Core-Clique problem (G,w, r), we create k partitions P1, P2, . . . ,
Pk and associate Pi with clause Ci. The 3 vertices in Pi are labeled by the lit-
erals in Ci. The weight of an edge between two vertices in different partitions
corresponding to two negated literals xj and x̄j is f(n). Otherwise, the weight
is 0.
Claim G has a weight 0 core-clique if and only if Φ is satisfiable.
(⇒) Let p1, p2, . . . , pk be the set of vertices which induce a core-clique of weight
0. Now there can be no weight f(n) edges between any pi and pj which implies
that it is never the case that pi is some literal x whilst pj is the negated literal
x̄. Hence, we may set the literal pi to be true. Since we may do this for all k of
the partitions, we have a truth assignment for Φ with at least one true literal in
each clause.

(⇐) Let T : X → {true, false} be a truth assignment to Φ such that at least
one literal x in each clause Ci is true. Consider any two distinct such literals xi
and xj which are true in clauses Ci and Cj . Then the vertex labelled xi in Pi
and the vertex lapelled xj in Pj have no weight f(n) edge between them, since
T is a satisfying assignment for Φ and there is an edge of weight f(n) only if
two literals are negations of each other. Hence, we may place xi and xj in the
core-clique.

Theorem 2. Core-Clique restricted to partitions of size 3 and with a weight-
ing function w which assigns an edge either 0 or 1, and r = 0 is NP -complete.

No minimization problem for which it is NP -complete to distinguish be-
tween instances with 0 minimum cost and instances with cost c > 0 can be
approximated within any ratio in polynomial time. Since this comment applies
to the Core-Clique problem, we formulate a slightly modified version of
the optimization form (Modified-Core-Clique) of the problem which asks
for the P ′ which minimizes 1 + Σ1≤i<j≤kw(pi, pj), for which non-trivial non-
approximability results can be proved.

Theorem 3. If P �= NP , then Modified-Core-Clique is not approximable
within any function of n in polynomial time, where n is the size of the input
graph.

470 Michael T. Hallett and Jens Lagergren

Proof. Assume that Modified Core-Clique can be approximated in polyno-
mial time approximated to within a function g(n). It follows immediately that
g(n) ≥ 1 for all n ≥ 1. By Lemma 1, it is NP-hard to distinguish between
instances of Modified Core-Clique with a minimum of 1 and those with a
minimum of 1 + g(n). However, using the assumed approximation algorithm it
is possible to distinguish between such instances. From this contradiction the
theorem follows.

Next we examine the Core-Clique problem from the perspective of pa-
rameterized complexity (see § 2 and [DF99]). The main principle here is that,
although the general form of the problem is NP -complete, our reduction does
not disclose exactly where the source of intractability lies. We see at least the
following four possible parameterizations of the problem: (1) m = max∀i|Pi|,
the maximum size of a partition, (2) k, the number of partitions, (3) r, the total
weight of the core-tree, and (4) ω, the maximum weight of a distance between
two vertices. Note, Theorem 2 shows that any subset of parameters 1, 3 and 4
are not enough as the problem remains NP -complete. Our next theorem rules
out the possibility of an FPT algorithm for any subset of parameters 2, 3, and 4.

Theorem 4. 2, 3, 4-Core-Clique is hard for W [1].

Proof. Let (C = (V,E),K) be an instance of the K-Clique Problem. We con-
struct an instance of the Core-Clique problem (G = (P1, P2, . . . , Pk, E), w, r),
where r, ω, and k are functions depending only on K and show that (C,K) is a
“yes” instance if and only if (G,w, r) is a “yes” instance.

Let the vertices in VC be labeled by 1, 2, . . . , |VC | = m. Let r =
(
K
2

)
. We create

partitions P1, P2, . . . , PK=k and include vertices labeled pi,j for 1 ≤ j ≤ m in
partition Pi. We place an edge between all vertices in G which are not in the
same partition: for all i, j, 1 ≤ i < j ≤ k, and for all q, q′, 1 ≤ q < q′ ≤ m,
(pi,q, pj,q′) ∈ EG. If (u, v) �∈ EC , then w(pi,u, pj,v) = c for all 1 ≤ i < j ≤ k. c
is an arbitrarily large constant at least as big as

(
K
2

)
+ 1. If (u, v) ∈ EC , then

w(pi,u, pj,v) = 1 for all 1 ≤ i < j ≤ k. For all edges of the form (pi,u, pj,u) ∈ EG,
let w(pi,u, pj,u) = c.

We omit the remainder of the (straightforward) argument due to space lim-
itations.

Observe that 1, 2-Core-Clique is fixed parameter tractable with an algo-
rithm running in time O(mk). We simply try all O(mk) possible ortho-sets.

Theorem 2 shows that the problem remains hard for partition size 3 with
constant edge weight functions and a constant bound on the core-clique. Our
next theorem shows that restricted to partition size 2 and constant edge weight
functions it still stays hard.

Theorem 5. 1, 4-Core-Clique is NP -complete even when the number of ver-
tices in each partition is at most 2 and the edges are assigned a weight of either
0 or 1.

Proof. Reduction from the Maximum 2SAT problem omitted.

Hunting for Functionally Analogous Genes 471

3.2 Most Tree Like. We restrict our attention to the L∞ norm throughout
the following analysis, but note that our reductions also work for other norms.
Clearly, the decision version of the Core-Tree problem, which asks if there is
a P ′ such that ||D(P ′)−A(D(P ′))||∞ ≤ ∆ for input parameter ∆ ∈ IR, is NP -
complete since Numerical Taxonomy [ABFNPT96] 2 is simply a restricted
version (specifically, all partitions having size 1) of it. We begin our analysis with
a sub-version of the problem where we ask if there exists a choice of one leaf from
each partition in the input graph that induces an additive tree. Furthermore, we
are given the unweighted topology of the tree, so the problem reduces to just
choosing one vertex per partition so that the pairwise distances fit to the tree.
This problem, when each partition just has a single vertex, is not NP -complete
[F88].

Exact Tree in a k-Partite Graph (Exact-Core-Tree)

input: As with Core-Tree but also an unweighted leaf-labeled tree T
with each leaf receiving a distinct label from {P1, P2, . . . , Pk}.

question: Does there exist a set P ′ = {p1, p2, . . . , pk} where pi ∈ Pi such
that D(P ′) is additive, where D(P ′) is the distance matrix formed
from P ′, and such that the corresponding tree T (D(P ′)) is isomorphic
to T and for u ∈ T (D(P ′)), u ∈ Pi, the corresponding leaf in T has
label Pi.

Again, we analyze this problem from the perspective of parameterized com-
plexity. Our parameters remain the same: (1) m = max∀i|Pi|, the maximum
size of a partition, (2) k, the number of partitions, (3) r, the total weight of
the core-tree, and (4) ω, the maximum weight of a distance between two leaves.
Our first theorem shows that no FPT algorithms are possible for any subset of
parameters 2, 3, or 4, unless W [1] = FPT .

Theorem 6. 2, 3, 4-Exact-Core-Tree is hard for W [1].

Proof. Given an instance of theK-Clique Problem (C = (V,E),K), we create
an instance of the 2, 3, 4-Exact-Core-Tree problem (G, T) and show that
(C,K) is a “yes” instance if and only if (G,w, T) is a “yes” instance.

We construct K + 4(= k) partitions {A,B,C,D, P1, P2, . . . , PK}. Partition
A contains one vertex a, B contains b, C contains c, and D contains d. Each
partition Pi contains |VC | = m vertices labeled pi,1, pi,2, . . . , pi,m. Our tree T
is created as in Figure 1: the caterpillar with (A,B) and (C,D) as its “head”
and “tail”. That is, our tree has internal vertices {h, t, n1, . . . , nK} with edges
{(h,A), (h,B), (t, C), (t,D), (h, n1), (t, nK)} and {(ni, ni+1) : 1 ≤ i < K}.

Let Da,b = Dc,d = 2, Da,c = Da,d = Db,c = Db,d = 4+(K−1). Let Dx,pi,j =
2 + i for x = {a, b}, 1 ≤ i ≤ K and 1 ≤ j ≤ m. Let Dy,pi,j = 2 + (K − i + 1)
for y = {c, d}, 1 ≤ i ≤ K and 1 ≤ j ≤ m. Let Dpi,j ,pi′,j

= 3K + 10 for all
1 ≤ i �= i′ ≤ K and 1 ≤ j ≤ m. If (u, v) �∈ EC , then Dpi,u,pi′,v = 3K + 10 for all
1 ≤ i �= i′ ≤ K. If (u, v) ∈ EC , then for 1 ≤ i < j ≤ K, Dpi,u,pj,v = 2 + j − i.

2
Numerical Taxonomy. input: An n × n distance matrix D, a bound ∆ ∈ IR.
question: Is ||A(D) − D||∞ ≤ ∆?

472 Michael T. Hallett and Jens Lagergren

(⇒) Let V ′ = {v1, v2, . . . , vK} where vi ∈ VC a clique in C. We show how to
choose one vertex from each of the Pi in G such that the distance matrix formed
from these vertices alongside with a, b, c and d is additive. Note that we must
choose a, b, c and d, and that the distance matrix these four vertices induce is
additive (see Theorem 1) and agrees with the topology T .

Now consider the set of vertices {p1,v1 , p2,v2 , . . . , pK,vK} = P ′ in G. From the
construction, Dpi,vi

,pj,vj
= 2 + j − i as any two distinct vertices pi,vi , pj,vj from

this set are mutually adjacent. We must show how weights can be applied to
the edges of T such that the distances in T between pi,vi and pj,vj , d(pi,vi , pj,vj)
are equal to the entries Dpi,vi

,pj,vj
. This can be accomplished by assigning 1 to

every edge on the path between pi,vi and pj,vj in T . It is easy to verify that
dT (x, pi,vi) = Dx,pi,vi

, for x ∈ {a, b, c, d} and that the matrix can be realized as
a tree.

(⇐) Let P ′ = {a, b, c, d, p1, p2, . . . , pK} be the set of vertices from G which
induces a tree with topology T . By Theorem 1, the underlying distance matrix
D is additive. For a leaf vertex x, let n(x) be the unique neighbour of x in T .
Focus on the four vertices {a, b, c, d}. By Theorem 1, the edge weights in this
subtree must be 1 for edges of the form (x, n(x)) where x ∈ {a, b, c, d}. The
weight of the path between (a, b) and (c, d) receives weight 2+ (K − 1). We now
analyze the “choice” of vertices {p1, p2, . . . , pK}.
Claim: [No Fit] P ′ does not contain two vertices pi,j and pi′,j, i �= i′.
(By contradiction) Suppose there exist pi,j , pi′,j ∈ P ′ simultaneously (w.l.o.g.
i < i′). Then, by the construction, Dpi,j ,a = 2 + i, Dpi,j ,c = 2 + (K − i + 1),
Da,b = 2 and Dpi,j ,pi′,j = 3K+10. Focus on the quartet formed by {a, b, pi,j, c}.
It is easy to verify that the edge (pi,j , n(pi,j)) must have weight 1. Furthermore,
the path from vertex (AB) to n(pi,j) must have total weight i and the path
from vertex (CD) to n(pi,j) must have weight K − i + 1. The same argument
holds for the edge weights in the quartet {a, b, pi′,j , c}, that is, the edge weight
of (pi′,j , n(pi′,j)) is also 1. Allowing n(x) to denote the unique neighbor of a leaf
vertex x in T , it is easy to verify that the weight of the path from n(pi,j) to
n(pi′,j) must be i′ − i. Since i′ − i + 2 < 3K + 10, we reach a contradiction
since we can not assign edge weights to T so that they agree with the distance
matrix induced by {a, b, c, d, pi,j, pi′,j}. Hence, by Theorem 1, this matrix is not
additive.
Claim. P ′ does not contain two vertices pi,j and pi′,j′ , i < i′, j �= j, such that
(vj , vj′) �∈ EC .
This claim can be proved in the same way as Claim No Fit above. Simply note
we assigned Dpi,j ,pi′,j′ to be 3K + 10 when (vj , vj′) �∈ EC .

The previous two claims establish the fact that we must include K distinct
vertices in G which correspond to pairwise adjacent vertices in C. Hardness for
W [1] follows from the fact that our construction required only K +4 partitions,
all edge weights are a function only of K and the overall weight of the clique-tree
is also a function only of K.

Our second theorem shows that this problem is NP -complete even when the
number of candidate homologous genes per genome is at most 3.

Hunting for Functionally Analogous Genes 473

C=(V, E), K=3

1

2

3 4 D[p1,1 p2,1] D[p2,3 p3,2]

a

b

c

dB

A

1

1

1

1

P

PP
1

2

3=K
1,2 1,3 1,41,1

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4p p p p

p p p p

p p p p

1 1 11

D

C

D[p1,1 p]3,4

Fig. 1. Construction for the 2, 3, 4-Exact-Core-Tree.

Theorem 7. 1-Exact-Core-Tree restricted to partitions of size 3 is NP -
complete.

Proof. Proof omitted due to space limitations but uses many of the same ideas
from the proof above. We reduce for 3SAT and map each clause to a partition
with extra partitions A,B,C,D as above.

Parameterizing on both the number of partitions k and the size of each
partitionm leads to a trivial FPT algorithm for 1, 2-Core-Tree with a running
time of O(mk).

Consider the relaxation of Exact-Core-Tree to the optimization version
which asks for the core-set P ′ which best fits to the topology T and we modify
this optimization criteria so that it is always > 0, we can prove the following
non-approximation results via Theorem 7:

Theorem 8. The always positive, optimization version of Exact-Core-Tree

is not approximable within any function of n in polynomial time, where n is the
size of the graph G, unless P = NP .

Proof. Similar to Theorem 3.

4 A Randomized Approximation Algorithm for the
Core-Clique Problem

Following [GGR98], we will now give a randomized approximation algorithm for
the Core-Clique problem. The algorithm runs in linear time if each Pi has size
bounded by a constant m, and polynomial time in the general case. Let σ(G,w)
denote the maximum difference between the weights of two edges adjacent to a
vertex v, over all vertices v of G and its adjacent edges.

Theorem 9. For any ε, δ ∈ (0, 1), there is a randomized algorithm for the
Core-Clique problem that for a given instance G,w with probability ≥ 1− δ/2
in polynomial time finds a solution of cost ≤ c∗ + εσ(G,w)k2, where c∗ is the
cost of the minimum cost core-clique.

474 Michael T. Hallett and Jens Lagergren

Consider a given Core-Clique instance G,w and let σ = σ(G,w). Let ε, our
distance parameter, be such that 0 < ε < 1 and δ, our confidence parameter, be
such that 0 < δ < 1. We use [k] to denote the set {1, 2, . . . , k}.

Let l = �8/ε� and t = Θ(1
ε2 log

1
εδ). Consider a partition of [k] into l sets

A1, . . . , Al of approximately equal size. Let Vj = ∪i∈AjPi and Wj = V (G) \ Vj .
For U = U1, . . . , Ul where Uj ⊆ [k] \Aj , let X(Uj) be the family of all X ⊆ Wj

such that |X ∩ Pi| = 1 for all i ∈ Uj and X ∩ Pi = ∅ for i /∈ Uj , and let
X(U) = {(X1, . . . , Xl) : Xj ∈ X(Ui), i = 1 . . . l}.

Algorithm Randomized A

1. Choose U = U1, . . . , Ul where Uj has size t and is chosen uni-
formly in [k] \Aj .

2. For each X ∈ X(U)
3. Let

OX = {argminv∈Pi
w(v,Xj) : 1 ≤ j ≤ l, i ∈ Aj}.

4. Output the core-clique OX which has minimum weight over all
X ∈ X(U).

We will denote the minimum cost core-clique by O∗.

Lemma 2. With probability 1− δ/2 over the choice of U there is an X ∈ X(U)
such that w(OX) ≤ w(O∗) + εσk2/2.

Proof. The proof is omitted due to space limitations, but very similar proofs can
be found in [GGR98].

Algorithm Randomized B

1. Choose U = U1, . . . , Ul where Uj has size t and is chosen uni-
formly in [k] \Aj .

2. Uniformly chose a subset C = {c1, . . . , cr} of even size
Θ(lt logm+log(1/δ)

ε2) from [k].
3. For each X ∈ X(U)
4. For each i ∈ C, let

vXi = argminv∈Pi,1≤j≤l,i∈Aj
w(v,Xj).

5. Output the tuple X which minimize

r/2∑

i=1

w(vX2i−1, v
X
2i)

over all X ∈ X(U).

Hunting for Functionally Analogous Genes 475

The final version of our algorithm does the following. It computes a tu-
ple X using Algorithm Randomized B and then outputs the core-clique O =
{argminv∈Pi

w(v,Xj) : 1 ≤ j ≤ l, i ∈ Aj}. Since

2
r/2∑

i=1

w(vX2i−1, v
X
2i)/r

has expected value w(OX)/k2, it follows that

PrC [|2
r/2∑

i=1

w(vX2i−1, v
X
2i)/r − w(OX)/k2| > εσ/4] ≤ e−Θ(ε2r) ≤ O(δm−lt).

Since |X(U)| ≤ mlt, it follows that

PrC [∀X ∈ X(U), |2
r/2∑

i=1

w(vX2i−1, v
X
2i)/r − w(OX)/k2| < εσ/4] ≥ 1− δ/2.

Discussion Our experimental results for a family of suspected Rubredoxin
proteins suggest that the Core-Clique optimization critera does in fact allow
us to distinguish families of analogously functioning genes.

All of the algorithms mentioned in this paper have been implemented and
tested. We note that our randomized approximation algorithm performs best
when the input graph is quite large. We have also tried a number of greedy and
randomized greedy heuristics for these problems and we have found that these
simple heuristics tend to out-perform our randomized approximation algorithm
in practice. There are a number of ways that ideas in the approximation algo-
rithms can be used to derive more advanced heuristics (dominating the simpler
ones) and possibly more practical algorithms with proven performance bounds.
This is certainly a very challenging line of research that needs further consider-
ation.

References

[ABFNPT96] Agarwala, R. et. al. (1996) On the approximability of numerical taxon-
omy. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, 365–372.

[AGMWL90] Altschul, S. F. et. al. (1990) Basic local alignment search tool. J. Mol.
Biol., 215, 403-410.

[BA] Bairoch, A. and Apweiler, R.(1999) The SWISS-PROT protein sequence data
bank and its supplement TrEMBL in 1999. Nuc. Acids Res., 27, 49-54.

[BSFDHW00] an Beilen, J. B., Smits, T., Franchini, A., Disch, T., Hallett, M., With-
olt, B. (2000) Two types of rubredoxins involved in alkane oxidation. To be sub-
mitted to Gene. ETH Zürich.

[B92] Benner, S. A. (1992) Predicting de novo the folded structure of proteins. Current
Opinion in Structural Biology, 2:402–412.

476 Michael T. Hallett and Jens Lagergren

[B99] Benner, S. A. (1998) Personal communication.
[BDDEHY98] Bork, P. et. al. (1998) Predicting function: from genes to genomes and

back. J. Mol. Biol. 283, 707–725.
[B71] Buneman, P. (1971) The recovery of trees from measures of dissimilarity.

In: Mathematics in the Archaeological and Historical Sciences, F. R. Hodson,
D. G. Kendall, P. Tauto, eds.: Edinburgh University Press, Edinburgh, 387–395.

[DF99] Downey, R. and Fellows, M. R. (1999) Parameterized Complexity. Springer
Verlag, New York.

[F88] Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reli-
ability. Annual Revue of Genetics, 22, 521-565.

[GGR98] Goldreich et. al. (1998) Property testing and its connection to learning and
approximation. J. of the ACM, 45:4, 653–750.

[GCMRM79] Goodman, M. et. al. (1979) Fitting the Gene Lineage into its Species
Lineage: A parsimony strategy illustrated by cladograms constructed from globin
sequences, Syst.Zool., 28.

[GMS96] Guigó, R. et. al. (1996) Reconstruction of Ancient Molecular Phylogeny.
Molec. Phylogenet. and Evol., 6(2), pp. 189–213, 1996.

[HL99a] Hallett, M. T. and Lagergren. J. (1999) Hunting for Functionally Analogous
Genes: Cores of Partite Graphs (Full Paper). (1999) Tech. Report ETH Zürich,
No. 327.

[HL99b] Hallett, M. T. and Lagergren. J. (2000) New Algorithms for the Duplication-
Loss Model. RECOMB ’00, Tokyo, Japan, p. 136–148.

[H63] W. Hoeffding. (1963) Probability inequalities for sums of bounded random vari-
ables. Amer. Statist. Assoc. J., 58, 13–30.

[KTG98] Koonin, E. V. et. al. (1998) Beyond complete genomes: from sequence to
structure and function. Curr Opin Struct Biol, 8(3), 355-63.

[MMS95] Mirkin, B. et. al. (1995) A biologically consistent model for comparing molec-
ular phylogenies. Journal of computational biology, 2(4), 493–507.

[P98] Page, R. (1998) GeneTree: comparing gene and species phylogenies using recon-
ciled trees. Bioinformatics, 14(9), 819–820.

[PC97] Page, R. and M. Charleston, M. (1997) From Gene to organismal phylogeny:
reconciled trees and the gene tree/species tree problem. Molec. Phyl. and Evol. 7,
231–240.

[PL88] Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci., 85:2444-2448.

[RS96] Rubinfeld, R. and Sudan, M. (1996) Robust characterization of polynomials
with applications to program testing. SIAM J. Comput. 25, 2, 252-271.

[SN87] Saitou, N. and Nei, N. (1987) The neighbour-joining method: a new method
for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, pp. 406–425, 1987.

[SM98] Slonimski et. al. (1998) The first law of genomics. Abstract “Microbial Genomes
II”, Hilton Head, January.

[S99] Stoesser, G. et. al. (1999) The EMBL Nucleotide Sequence Database. Nuc. Acids
Res., 27(1), 18-24.

[TKL97] Tatusov, R. L. et. al. (1997) A genomic perspective on protein families. Sci-
ence, 278(5338), 631-7.

[YEVB98] Yuan, Y. P. et. al. (1998) Towards detection of orthologues in sequence
databases. Bioinformatics, 14(3), 285–289.

Keeping Track of the Latest Gossip in Shared

Memory Systems

Bharat Adsul, Aranyak Mehta, and Milind Sohoni

Dept of Computer Science & Engineering,
Indian Institute of Technology, Mumbai 400 076, India
{abharat, aranyak, sohoni}@cse.iitb.ernet.in

Abstract. In this paper we present a solution to the ‘Latest Gossip
Problem’ for a shared memory distributed system. The Latest Gossip
Problem is essentially one of bounded timestamping in which processes
must locally keep track of the ‘latest’ information, direct or indirect,
about all other processes. A solution to the Latest Gossip Problem is
fundamental to the understanding of information flow in a distributed
computation, and has applications to problems such as global state de-
tection and mutual exclusion. Our solution is along the lines of that for
message passing systems in [6], and for synchronously communicating
systems [8].
Our algorithm uses a modified version of the consume and update proto-
cols of Dwork and Waarts [3], where these were introduced to construct
a ‘Bounded Concurrent Timestamping System (BCTS)’. As applications
of our Gossip Protocol, we also indicate another construction of a BCTS
and a solution to the global state detection problem, which, we believe,
are improvements over older solutions.

1 Introduction

Consider a distributed system of processes which communicate through protocols
utilizing shared memory. The online latest gossip problem for this system is the
following:

Whenever a process q reads the information written by another process
p, q should be able decide which of p and q has more recent information,
direct or indirect, about r, for every other process r in the system.

Once q makes this decision, it can systematically collate and update this infor-
mation to maintain, on-line, its ‘latest gossip’ about every other process. The
latest gossip provides crucial information to each process about the unfolding of
the global computation.
Note that there is a trivial solution to the latest gossip problem if we allow

unbounded labels. For example, each process could label its writes from the set
of integers, labeling its i-th write operation with the number i. This unique
labeling of the writes also reflects their temporal order. Whence the process q,
on reading p, may compare the r-label that p holds, with the r-label that q

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 477–488, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

478 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

holds and update its latest information on r. Unfortunately, as time progresses,
the labels increase in size without bounds. To eliminate this problem we need
an unambiguous labeling of the writes from a finite set of labels. This requires
a careful reuse of ‘old’ labels and a method of comparing ‘latest information’
using these labels. In our solution to the problem, with each write operation,
processes attach a bounded ‘gossip’ information. The ‘gossip’ at each process
is a selection of a finite number of operations in its recent past arranged in a
suitable structure, and constitutes the bounded timestamp.
Bounded timestamping protocols to solve the latest gossip problem have been

exhibited for other distributed models. In [8] the authors introduce the latest
gossip problem and present a solution in a distributed system where processes
use handshake communication to synchronize and exchange information. This
solution has also been extended to the message-passing model in which pro-
cesses exchange information through messages sent from process to process [6].
However, there the underlying computation is restricted to that in which, at ev-
ery instant, the number of ‘unacknowledged messages’ is uniformly bounded. As
shown there, this requirement may be implemented by each process by waiting
for acknowledgments to come in. It is argued in [7] that for applications which
require robust solutions such as mutual exclusion, such wait is essential.
With the same restriction on computations, the solution in [6] may be adapted

to the shared memory model. However, in this model, the results of [7] do not
hold: there are many situations in which computations with unbounded unac-
knowledged writes, are essential. We present here, protocols for reading and
writing shared memory such that gossip information may be maintained in the
general case, without any restrictions on the underlying computation. In other
words, the underlying computation may run ‘wait-free’, and maintain gossip at
the same time. However, this is not without cost: Each request by the compu-
tation for an operation on the shared memory unfolds into a sequence of the
atomic read and write operations of the underlying system. Furthermore, a few
additional synchronization variables are required to implement the label. All the
same, the original computation proceeds wait-free and with identical semantics.
The protocols by which a computation may read or write into shared mem-

ory are called Read andWrite respectively. These protocols are simple adap-
tations of those presented by Dwork and Waarts [3] in their construction of a
Bounded Concurrent Timestamping System (BCTS). In return, our solution in-
dicates another construction of a BCTS in which we permit any number of hops
(indirection) in the flow of information. The solution to the BCTS as presented
in [3] also has the following drawback. Processes label their writes from a pool
of available timestamps. Once this pool is exhausted, the process performs a
‘garbage collection’ operation to replenish its pool of usable timestamps. Thus
a process must stop work every once in a while and perform garbage collection.
Our modification eliminates the need for garbage collection. Processes can keep
track of usable timestamps ‘on-line’ during their normal operation in such a way
that the pool of available timestamps is never exhausted.

Keeping Track of the Latest Gossip in Shared Memory Systems 479

2 The Model

We begin by describing the distributed system as an abstract machine. Let P =
{p1, p2, . . . , pN} be a set of N processes which collaborate via shared memory.
The shared memory is segmented into N parts, with the part Mp associated
with the process p. The ‘public’ memory Mp may be read by any process, while
it may be written into only by process p. Besides this, each process also has
some private memory Lp which is operable only by p. The memories Lp and Mp

will be called p’s local memory, and may be further organized into a sequence of
variables, say,Mp = {p : X1, . . . , p : Xr} and Lp = {p : Y1, . . . , p : Ys}. We use the
typewriter font for public variables, and the italic font for private variables.
The processes are allowed to manipulate their public memory via two atomic

operations – read and write. The read operation can be performed by a pro-
cess p to read some public variable of another process q. The value gets written
into some private variable of p. The write operation enables a process p to copy
the contents of a local private variable to a local public variable. An operation
of the machine is the occurrence of an operation in one of the processes. A com-
putation is a (temporal) sequence of such operations, with obvious semantics.
For any computation, there is the causality partial order on the operations in
the computation. For operations e, f in a computation, we say that e ≤ f if the
outcome of e may affect the outcome of f . The locality of each operation to just
one or two processes usually makes causality coarser than the total order.
Each process p runs a program written in a suitable programming language.

This program may use its local private memory Lp as it chooses. However,
the local public memory Mp may be accessed by two prescribed protocols: (i)
Write(p : X, p : Y), which acts to copy the contents of p : Y ∈ Lp into p : X ∈ Mp

and (ii) Read(q : X), which acts to copy the public variable q : X of another
process q into the local private memory of p. Any execution of the distributed
program must result in a computation. In particular, the above protocols must
be ‘compiled’ into the elementary operations allowed by our machine.
Our task is to supply protocols for Read andWrite which will enable any

computation arising from any program to correctly compute the latest infor-
mation, online. The simplest possibility is to replace Read and Write by the
atomic read and write operations of the machine. However, in this case, un-
ambiguous timestamping from a bounded set becomes impossible, e.g., consider
the situation in which a process p performs onlyWrites and no Reads. Since p
will never know whichWrites have been Read by other processes, it must label
each successiveWrite with a distinct label, eventually exhausting its finite set
of labels. This points to the need for some elaborate handshaking protocols for
Read and Write.

3 The Protocol

We first present our adaptations of the update and consume protocols of [3].
Next, we describe the protocols,Read andWrite, which use the above consume

480 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

and update. Henceforth, for simplicity, we assume that the distributed program
requires only one public variable for each process, viz., p : X.

3.1 Update and Consume Protocols

Each process p maintains, for every other process q, the following additional
public variables: (i) two public bit-variables: p : demandq and p : supplyq, (ii)
two public variables p : B1pq and p : B2pq, and (iii) a public variable p : Apq.
These variables are protocol variables used only in the protocol and may not be
used by the distributed program.
For a process p, the protocol update(p : X, p : Y) writes the value of a pri-

vate variable p : Y in the public variable p : X. On the other hand, the protocol
consume(q : X) reads q’s public variable q : X and copies it into p’s private
memory (into the private variable p : temp). Roughly speaking, the bit demand
is used to indicate a desire of one process to read the public memory of another,
and supply, its satisfaction. During an update, if p discovers unsatisfied demand,
it proceeds to set aside a copy of its public variable. In the consume protocol,
the process p first raises demand, and then proceeds to read q : X successively.
If it notices a stable value, then the consume exits, declaring this stable value
as the contents of q : X. If this fails, then p reads the value set aside by q, and
declares this as the contents of q : X. The detailed protocols are described below.

consume(q : X)

Perform handshake
1. Read q : supplyp

2. Write p : demandq = ¬q : supplyp

Remainder of the first Read-Write-Read (RWR)
3. Read q : X
4. Write p : B1pq := q : X
5. Read q : X
6. If (the label of) q : X is unchanged since Line 3 then p : temp = p : B1pq, else

Remainder of the second Read-Write-Read (RWR)
7. Write p : B2pq := q : X
8. Read q : X
9. If (the label of) q : X is unchanged since Line 5 then p : temp = p : B2pq else

Read Set-Aside
10. Read q : Aqp

11. p : temp = q : Aqp

update(p : X, p : Y)

1. For each q �= p, read q : demandp

2. For each q �= p, if q : demandp �= p : supplyq then p : Apq = p : X

3. Atomically write p : X = p : Y and for each q, p : supplyq = q : demandp

Consume and update operations performed by a process p are called p-consume
and p-update respectively. The label in statement 6 (resp. 9) of the p-consume

Keeping Track of the Latest Gossip in Shared Memory Systems 481

protocol above refers to labels read in statements 3 and 5 (resp. 5 and 8) and
which were attached to the quantity q : X by process q during its q-updates. This
labeling is the central construction of this paper. For the moment, we assume
that if any two of the q : X read in statements 3, 5 and 8 were written in distinct
q-updates then their labels would also be distinct. Next, note that a consume C
may have had a ‘successful’ RWR on the information written by an update U ,
or it may have read the information set aside by a later U ′ but of an earlier U .
In either case the consume C is said to have succeeded on the update U .

3.2 The Read and Write Protocols

The protocols for Read andWrite appear below. Note that eachWrite con-
tains exactly one update operation. Whence, we may define the label of aWrite
to be that of the update within. Also, note that the consume and the update
operations are wait-free - processes can consume and update independent of the
state of other processes. Whence, the Read and Write are also wait-free.

Read(q : X)

1. consume(q : X)

Write(p : X, p : Y)

1. For each process q �= p,
Read q : B1qp and q : B2qp

consume(q : X)
2. update(p : X, p : Y)

3.3 Causal Order

Suppose, now, that each process executes a (distributed) program which, besides
accessing its local private variables, manipulates its public memory by the Read
andWrite operations. Any finite (partial) computation of this program will re-
sult in a sequence of Read/Write operations. These operations will henceforth
be referred as program events, or simply events. The events at the process p will
be called p-events.
For any two events e and e′, we say that e < e′ iff

– Either: e is a Write q-event and e′ is a Read p-event and C′ succeeds on
U , where U is the update in e and C′ is the consume operation in e′. In this
case e′ is called an external successor of e. We also say that e′ succeeds on e.

– Or: e is a Write q-event and e′ is a Write p-event and C′ succeeds on U ,
where U is the update in e and C′ is the consume(q : X) operation in e′.
In this case also e′ is called an external successor of e. We also say that e′

succeeds on e.
– Or: both e and e′ are p-events, and e′ is the very next p-event after e. In this
case e′ is called an internal successor of e.

Define e � e′ if e = e′ or e < e′. Define �∗ as the reflexive transitive closure of <.
The partial order�∗, henceforth referred as causal order, records the information
we require about causality and independence between events. For any event e,

482 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

we denote by e↓ the (partially ordered) set of events e′ such that e′ �∗ e. For a
process p and a p-event ep, ep↓ is the ‘local view’ of p at ep.
Note that the Read andWrite calls can be ‘compiled’ into the elementary

read and write operations using the protocols mentioned above. Hence any
execution of the distributed program will result in a computation of our abstract
machine. The causal order �∗ is really a coarsening of the order ≤ on the atomic
operations of the abstract machine. Indeed, the order�∗ between program events
may be ‘observed’ as the relation ≤ between specific critical atomic operations
encountered during the execution of those events. We state here two interesting
properties satisfied by the causal order:

Regularity If a p-event e succeeds on a q-event e′ then there is no Write
q-event e′′ after e′ which finishes before the consume(q : X) in e starts.
In a sense this means that the Read/Write events do not read very old
information.

Monotonicity If two p-events e and e′ succeed on two q-events f and f ′ re-
spectively, then if e′ occurs after e then f ′ can not occur before f .

These properties follow from the corresponding properties of the consume and
update operations [3].
Let p, q be two processes and let e be a p-event. We define latestp→q(e) as

the �∗-maximum q-event f such that f �∗ e. This is the latest information that
p has about q after e. Note that latestp→q(e) need not exist if there is no q-event
in e↓. We set latestp→p(e) to e itself. Observe that, for q
= p, latestp→q(e) is
always aWrite q-event.
At any point during a computation, let ep be the last p-event. Similarly let eq

be the last q-event. Let e1, e
′
1 denote latestp→r(ep) and latestq→r(eq) respectively.

Suppose that e1 �∗ e′1. Consider a path e1 < e2 · · · < ek · · · < ep from e1 to ep.
Let the next Write operation in the path after e1 be ek, an s-event. Then we
have the following lemma. Refer [1] for the proofs.

Lemma 1 If e1 is maximal (w.r.t. �∗) in ep↓ ∩eq↓, then ek finishes after the
consume(s : X) in e′1 starts.

4 The Gossip Algorithm

The Gossip Algorithm requires each process to maintain a pre-specified set of
events in its recent past. For each process p, besides the events latestp→q, for
all q, this set contains some additional auxiliary ‘unacknowledged’ events. These
events and the �∗-relationship between them constitute the primary graph. Let
us suppose that, at the end of a certain computation, the events within the
primary graphs of each process have been labeled distinctly. If the next event
is, say an event in which p Reads q, then (i) p may correctly compare its latest
gossip with that of q’s, and if it is, say a Write event of p, then (ii) provided
p can discover a suitable label, it may update its primary graph, maintaining
the distinctness invariant. The hunt for a suitable label is aided by secondary
information.

Keeping Track of the Latest Gossip in Shared Memory Systems 483

4.1 Primary Information

Let e be a p-event. We denote by latest(e) = ∪q∈P latestp→q(e), the latest infor-
mation p has about all processes, at e.
To maintain and update the latest information of processes, we need to ex-

pand the set of events that each process keeps track of. This expanded set is
the primary information. The primary information of a process contains not
only its latest information about every other process but also information about
unacknowledgedWrites.

Unacknowledgment Recall that when a process q performs a consume(p : X)
operation C, it writes twice a temporary value (with a label) in its public memory
(this is the ‘W’ of the RWRs of the consume). This information is written in
the public variables B1qp and B2qp. These are the variables that p reads in its
Write events. Also recall that a process p may, during an update, set aside the
previous event for another process q in the variable p : Apq. Now given a fixed
run of Read and Write events we have, for every pair of processes p and q,
functions Fp,q,B1,Fp,q,B2 and Fp,q,A as follows:

– For i = 1, 2, Fp,q,Bi is a function from the set of allWrite p-events to itself.
For any Write p-event e, Fp,q,Bi(e) is the Write p-event whose label was
written by q during some q-consume in its q : Biqp variable and read by p
during e from the q : Biqp variable of q.

– Fp,q,A is a function from the set of all Write p-events to itself. Fp,q,A(e) is
the event which was last set aside by p for q at or before e.

For a process p and for any Write p-event e, we define the set unacklist(e) as
the set of the following events:

– For each q
= p, Fp,q,B1(e),Fp,q,B2(e) and Fp,q,A(e),
– The previousWrite p-event, and
– The event e itself.

Note that the size of unacklist(e) is bounded above by 3N , where N is the
number of processes.
For a p-event e, we define unackr(e) to be the set unacklist(latestp→r(e)) for

r
= p. Define unackp(e) = unacklist(e′) where e′ is the �∗-maximum Write
p-event in e ↓, that is, the last Write p-event before e. We set unack(e) =
∪r∈Punackr(e). Note that unack(e) is defined forWrite as well asRead events.
The following lemma relates the causal order with unacklists.

Lemma 2 Let e1 and e2 be Write r-events and es be a Write s-event for
some two processes r and s. Suppose e1 �∗ e2 and e1 < es. If it is not that
es �∗ e2 then e1 ∈ unacklist(e2).

The primary information of a process p after an event e consists of latest(e)
and unack(e). Events in the primary information are called primary events at e,

484 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

and the set is denoted by primary(e). Note that the size of primary(e) is bounded
above by 3N2+N , 3N2 elements in unack(e) and N elements in latest(e).
To compare and update primary information, processes also need to remem-

ber how their primary events are ordered by �∗.

Primary graph The primary graph of a process p after an event e, denoted by
primary-graph(e), is the directed graph (V, E) where:

– V = the set of primary events at e.
– For v1, v2 ∈ V , let e1 and e2 be the corresponding primary events. Then,
(v1, v2) ∈ E iff e1 �∗ e2.

The primary graph is the basic structure which is recursively maintained
by each process during a computation. We assume that, at any point during a
computation, the events in the primary graphs of the processes have received
distinct labels. In other words, if ep and eq are two �∗-maximal events, and
e, f ∈ primary(ep)∪primary(eq), then e
= f iff label(e)
= label(f). Each process
p maintains this graph as one on labels and writes it into the public variable p : X
during everyWrite event, thus making it available to other processes.

4.2 Comparing Primary Information

Let eq be a q-event and ep aWrite p-event, such that ep < eq, that is, eq is an
external successor of ep. Let e′q be the q-event which immediately precedes eq.
Let Ip = ep↓ and Iq = e′q↓. In general, before the occurrence of eq, the processes
p and q will have incomparable information. The events known to both p and q
lie in Ip∩Iq. Events lying ‘above’ Ip∩Iq are known to only one of the processes.
Let us assume that p has computed primary-graph(ep) at the end of ep, and

that q has computed primary-graph(e′q) at the end of e′q. When q successfully
reads primary-graph(ep), it will have to compare that latest information with
the latest information it itself knows and has kept in primary-graph(e′q).
Now if ep = latestq→p(e′q), then there is nothing to do, as no new information

has reached q from p in eq. So the interesting case is when eq succeeds on a newer
p-event. Our first observation is that if q knows both primary-graph(ep) and
primary-graph(e′q), it can ‘determine’ Ip ∩ Iq, the events in Ip which q already
knew, before eq.

Lemma 3 For each maximal event e (
= ep, e
′
q) in Ip∩Iq, either e ∈ latest(ep)∩

latest(e′q) or e ∈ latest(ep) ∩ unack(e′q) or e ∈ unack(ep) ∩ latest(e′q).
Thus, when q reads p’s primary graph, q can collect together in a set M all

the events that lie in latest(ep)∩latest(e′q), latest(ep)∩unack (e′q) and unack(ep)∩
latest(e′q). By the preceding lemma, the events inM subsume the maximal events
in the intersection Ip ∩ Iq. (It is easy to see that those events in M which are
not actually maximal still lie within the intersection.)
Process q can use M to check whether a primary event e ∈ primary(ep) ∪

primary(e′q) lies inside or outside the intersection — e lies inside the intersection

Keeping Track of the Latest Gossip in Shared Memory Systems 485

iff it lies below one of the elements in M . These comparisons can be made using
the edge information in the graphs primary-graph(ep) and primary-graph(eq).
Now, it is easy for q to compare the events in latest(ep) with those in latest(e′q)

to determine which of p and q have more recent information about every other
process r.

Lemma 4 Let e = latestp→r(ep) and f = latestq→r(e′q) such that e
= f . Then,
e �+ f iff f ∈ Iq − Ip.

Once q has compared all events of the form latestp→r(ep) and latestq→r(e′q), it
can easily update its sets unackr(e′q). The process which has better information
about r also has better information about r’s unacklist. In other words, q inherits
the set unackr(ep) for every process r such that latestp→r(ep) is more recent than
latestq→r(e′q). On the other hand, if latestp→r(ep) is older than latestq→r(e′q),
then q ignores p’s set unackr(ep) since it already has better information about
these events. Furthermore, q has the latest unackq(eq) with it, and does not need
to update this set.
At this stage, q has updated its primary information and formed primary(eq)

using the information in primary-graph(ep) and primary-graph(e′q). We now need
to extend this set to the graph primary-graph(eq).
Let f1, f2 ∈ primary(eq). If both f1 and f2 came from primary(ep), then

we add an edge from f1 to f2 in primary-graph(eq) iff a corresponding edge
existed in primary-graph(ep). A symmetric situation applies if both f1 and f2

were contributed by primary(eq). So, the only interesting case is when f1 and
f2 originally came from different processes. Without loss of generality, suppose
that f1 came from primary(ep) and f2 from primary(eq). Then, from the method
which we used to compare events, we know that f1 must have been in Ip − Iq

and f2 must have been in Iq − Ip. So, it is clear that f1 and f2 are unordered
and there is therefore no edge between them in primary-graph(eq).
We now have the proposition:

Proposition 5 Let eq be a q-event and ep a p-event, such that eq succeeds on
ep (that is, eq is an external successor of ep). Let e′q be the q-event just preceding
eq. Then, q can construct primary-graph(eq) from the graphs primary-graph(ep)
and primary-graph(e′q).

Notice that the procedure for updating primary graphs only checks the labels
of events which actually lie in the primary graphs. Call a q-event e ‘current’ if e
belongs to primary(ep) for the last (�∗-maximum) event ep of some process p.
Recall that N is the number of processes in the system. We know that there are
at most 3N2+N distinct events in primary(ep) for process p. So, at any given
time, the number of events across the system which are current is bounded by
N(3N2+N).
Each event begins by being current. Meanwhile, as the computation pro-

gresses, this event may get added to the primary information of other processes.
However, it gradually recedes into the past, until it drops out of the primary

486 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

information of all processes. At this time, the label assigned to this event can be
reused, since the old event with the same label can never become current again.
A process can keep track of which of its events in the system are current by

keeping track of one additional level of events, called secondary information.

4.3 Secondary Information

Consider a p-event e for some process p. The secondary information of p at e is
the collection of sets primary(f) for each event f in primary(e). This collection
of sets is denoted secondary(e).
The following lemma says that the only p-events which can be current in the

system are those which occur in p’s secondary information.

Lemma 6 Let, at any time, ep be the last p-event, and eq the last q-event, for
some processes p and q. Let Ip = ep ↓ and Iq = eq ↓. If e is a p-event which
belongs to primary(eq), then e ∈ secondary(ep).

We will use the preceding result in the following form.

Corollary 7 Let e be a p-event such that e /∈ secondary(ep). Then e does not
belong to primary(eq) for the last event eq of any q ∈ P.
As long as all processes which refer to the same label in their primary in-

formation are actually pointing to the same event, reusing labels should cause
no confusion. Therefore, if p knows that no p-event labeled � is currently part
of the primary information of any process in the system, it can safely use � to
timestamp the next Write which it performs.
Secondary information can be updated in a straightforward manner when

we update primary information — if q inherits an event e from p’s primary
information, it also inherits the secondary information primary(e) associated
with e. Notice that it suffices to maintain secondary information as an indexed
set — we do not need to maintain secondary graphs in a manner similar to
primary graphs. Note that the number of events in the secondary information is
less than 10N4.

4.4 Labeling from a Bounded Set

In this subsection we describe precisely how bounded timestamping is performed
using the results of this section. For each process p let Lp be a finite set of
labels such that |Lp| > 10N4. Process p uses the set Lp to label its Writes. It
maintains two primary graphs, the public primary graph in its public memory
Mp and the private primary graph in its private memory Lp. It also maintains a
public secondary information in Mp and a private secondary information in Lp.
The public primary graph and the public secondary information of process p are
available to other processes through p : X.
At a Read p-event, only the private primary graph and the private secondary

information are updated. While at a Write p-event, both the primary graphs
and both the secondary informations are updated. We describe next what steps
p has to take at every Read andWrite.

Keeping Track of the Latest Gossip in Shared Memory Systems 487

When p performs a Read : Process p will read q’s public primary graph and
public secondary information and compare it with its own private primary graph
and private secondary information.

– Extract the label � of the �∗-maximum q-event in q’s public primary graph.
– If a new event has been read then update the private primary graph and
private secondary information as described earlier in this section.

When p performs a Write : Let e denote this new Write event and e′ the
previous Write p-event. Recall that a Write consists of N−1 consumes (for
each q
= p, consume(q : X)) and an update (update(p : X, p : Y)).

– On the consume(q : X): The steps are the same as when it performs a Read.
– On the update(p : X, p : Y): Process p does the following:

• Choose a label � for e, from Lp which does not appear in the private
secondary information.

• Replace e′ by e in the latest component of the private primary graph.
• Replace unacklist(e′) in the private primary graph by unacklist(e), con-
sisting of the events B1∗p, B2∗p and Ap∗ read during the present Write
event e, as well as e and e′. The ordering among these is available from
the discarded unacklist.

• Update the private secondary information in accordance with the change
in the private primary graph.

• Copy new private primary graph and private secondary information into
the public primary graph and public secondary information respectively.

Putting together all the results we have proved so far, we can state the following
theorem.

Theorem 8 The algorithm described above solves the latest gossip problem in a
shared memory system for computations consisting of Reads and Writes, with
only a bounded amount of additional information being attached to each Write.

5 Discussion

In this paper, we have presented a solution to the latest gossip problem in a
shared memory system. The gossip construction is extremely powerful and imme-
diately leads to the effective construction of the latest operator, denoted Latest,
with the expected semantics. This operator may be used to define and maintain
auxiliary variables such as p : Latestp→q(q : X) which is a local private variable
of p, but which tracks the latest contents of q : X. The latest operator may
even be composed and (causally) compared, e.g., the program at process p, may
check whether p :Latestp→q(Latestq→p(p :flag)) refers to the current contents
of p : flag. Such variables (and causality comparisons) should prove useful in
writing parallel programs which meet desired behavioural specifications. Refer
[5], for an algorithm for mutual exclusion which uses such auxiliary variables. As
opposed to this, e.g., in [4], for the same mutual exclusion problem, even with

488 Bharat Adsul, Aranyak Mehta, and Milind Sohoni

a BCTS, the bakery algorithm requires an intricate manipulation of another
set of variables p : choosing, one for each process p, which is not part of the
behavioural specification of the mutual exclusion problem.
The gossip construction immediately leads to a BCTS: The scan operation of

a BCTS translates to a sequence ofN−1Reads, one for every other process. The
label operation translates to a Write. The output of the scan operation is the
sequence {Latestp→q | q ∈ P} ordered by �∗. The solution of the global state
detection problem as posed in [2] is even simpler: the primary information at each
process p provides a global state. Furthermore, global states are always current
and may be maintained online without requiring additional communications.
The gossip problem was originally motivated by problems of logical specifi-

cation and verification of distributed systems. The solution for synchronization
systems, as in [8], was crucially used in [9] for the effective construction of a
trace based-extension of linear temporal logic to reason about synchronization
protocols. We believe that the shared-memory solution presented here, besides
being useful in protocol synthesis, will also be useful in developing an automata-
theoretic framework for protocol verification and logics.

AcknowledgmentsWe have benefited greatly from discussions with Madhavan
Mukund and K. Narayan Kumar. The work of Bharat Adsul was supported by
an Infosys Fellowship.

References

1. B. Adsul, A. Mehta and M. Sohoni: Keeping Track of the Latest Gossip in Shared
Memory Systems, Technical Report, Dept of CSE, IIT Bombay. Electronic version
available @ http://www.cse.iitb.ernet.in/~abharat/gossip.html

2. K. M. Chandy and L. Lamport: Distributed Snapshots: Determining Global States
of Distributed Systems, ACM Transactions on Computer Systems 3(1) (1985) 63-75.

3. C. Dwork and O. Waarts: Bounded Concurrent Timestamp Systems are Compre-
hensible!, Proc. ACM STOC (1992) 655-666.

4. N. A. Lynch: Distributed Algorithms, Morgan Kaufmann (1996).
5. A. Mehta: Keeping Track of the Latest Gossip in Shared Memory Systems,

BTech Project Report, Dept of CSE, IIT Bombay. Electronic version available @
http://www.cse.iitb.ernet.in/~abharat/gossip.html

6. M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Track of the Latest Gossip
in Message-Passing Systems, Proc. Structures in Concurrency Theory (STRICT),
Berlin 1995, Workshops in Computing Series, Springer-Verlag (1995) 249–263.

7. M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Robust Asyn-
chronous Protocols are Finite-State, Proc. 25th ICALP, Springer LNCS 1443 (1998)
188–199.

8. M. Mukund and M. Sohoni: Keeping Track of the Latest Gossip in a Distributed
System, Distributed Computing, 10(3) (1997) 137-148.

9. P. S. Thiagarajan: TrPTL: A Trace Based Extension of Linear Time Temporal Logic,
Proc. 9th IEEE LICS (1994) 438–447.

Concurrent Knowledge and Logical Clock

Abstractions

Ajay D. Kshemkalyani

Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
ajayk@eecs.uic.edu

Abstract. Vector and matrix clocks are extensively used in asynchro-
nous distributed systems. This paper asks, “how does the clock abstrac-
tion generalize?” and casts the problem in terms of concurrent knowl-
edge. To this end, the paper motivates and proposes logical clocks of
arbitrary dimensions. It then identifies and explores the conceptual link
between such clocks and knowledge. It establishes the necessary and
sufficient conditions on the size and dimension of clocks required to de-
clare k-level concurrent knowledge about the most recent global facts
for which this is possible without using control messages. It then gives
algorithms to compute the latest global fact about which a specified level
of knowledge is attainable in a given state, and to compute the earliest
state in which a specified level of knowledge about a given global fact is
attainable.

1 Introduction

1.1 Motivation

A large number of application areas in asynchronous distributed message-passing
systems use vector clocks and matrix clocks. Some example areas that use vec-
tor clocks [6,14] are checkpointing, garbage collection, causal memory, maintain-
ing consistency of replicated files, taking efficient snapshots of a system, global
time approximation, termination detection, bounded multiwriter construction of
shared variables, mutual exclusion, debugging, and defining concurrency mea-
sures. Some example areas that use matrix clocks are designing fault-tolerant
protocols and distributed database protocols [9,20], including protocols to dis-
card obsolete information in distributed databases [18], and protocols to solve
the replicated log and replicated dictionary problems [20].

Vector clocks can be thought of as imparting knowledge to a process: when
V [i] = x at process h, process h knows that process i has executed at least x
events. Matrix clocks give one more level of knowledge: when M [i, j] = x at pro-
cess h, process h knows that process i knows that process j has executed at least
x events. Vector and matrix clocks are convenient as they are updated without
sending additional messages; knowledge is imparted via the inhibition-free ambi-
ent message passing that (i) eliminates control messages by using piggybacking,
and (ii) diffuses knowledge using only computation messages, whenever sent.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 489–502, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

490 Ajay D. Kshemkalyani

This paper asks the question: “how does this clock abstraction generalize?”
The problem is cast in terms of concurrent knowledge (“everybody knows on
consistent cuts”), which is a form of knowledge appropriate for (time-free) asyn-
chronous distributed systems [16] — all the applications mentioned above im-
plicitly use concurrent knowledge that is not common knowledge in their clock
algorithms, although this has never been formally studied as such.

1.2 Background

A distributed system can be modeled by a network (N,L), where N is the set of
processes that communicate by message passing over L, the set of logical links.
We assume an asynchronous distributed (message passing) system, i.e., there
is no global clock or shared memory, relative process speeds are independent,
and message delivery times are finite but unbounded [2,16]. Common knowledge,
which has been proposed as a definition of agreement in distributed systems, is
defined as follows [8]. A process i that knows a fact φ is said to have knowledge
Ki(φ), and if “every process in the system knows φ”, then the system exhibits
knowledge E1(φ) =

∧
i∈N Ki(φ). A knowledge level of E2(φ) indicates that every

process knows E1(φ), i.e., E2(φ) = E (E1(φ)). Inductively, a hierarchy of levels
of knowledge Ej(φ) (j > 0) gets defined, where Ek+1(φ) =⇒ Ek(φ). Common
knowledge of φ, denoted as C(φ), is defined as the knowledge X which is the
greatest fixed point of E(φ ∧X) and is equivalent to

∧
j∈Z∗ Ej(φ), where Z∗ is

used to denote the set of whole numbers. Common knowledge requires simulta-
neous action for its achievement and is therefore unattainable in asynchronous
distributed systems [5,7,8,17].

Panangaden and Taylor proposed concurrent common knowledge (CCK)
which is required to be attained simultaneously in logical time based on causality
[13], and is attainable in asynchronous distributed systems [16]. Specifically, CCK
can be attained at a “consistent cut” or possible global state [1] in the system
execution. To define concurrent common knowledge, [16] first defines Pi(φ) to
represent the statement “there is some consistent global state of the current ex-
ecution that includes i’s local state, in which φ is true.” EC(φ) =

∧
i∈N KiPi(φ)

and is attainable by the processes at a consistent global state. Likewise, higher
levels of knowledge (EC)k(φ), for k > 1, are attainable by the processes at a
consistent global state. Concurrent common knowledge of φ, denoted by CC(φ),
is defined as the knowledge X which is the greatest fixed point of EC(φ ∧ X)
and is equivalent to

∧
j∈Z∗(EC)j(φ). This form of knowledge underlies many

existing protocols involving processes reaching agreement about some property
of a consistent global state, defined using logical time and causality.

CC(φ) =⇒ (EC)j(φ)(j ∈ Z∗). Several applications (see Section 1.1) need
only lower levels of such knowledge. Vector clocks [6,14] provide specific knowl-
edge of a global fact/state φ, equivalent to concurrent knowledge (EC)0(φ), in
the application domain. However, vector clocks are not sufficient for other ap-
plications, for which it is necessary to use matrix clocks. Matrix clocks provide
concurrent knowledge (EC)1(φ) about facts φ in the application domain. Thus,
although levels of concurrent knowledge (besides CCK) have not received formal

Concurrent Knowledge and Logical Clock Abstractions 491

attention besides [16], they are implicitly used in a wide range of applications.
Hence, studying levels of concurrent knowledge is important.

Two important and desirable characteristics of the clock protocols used to
achieve (EC)0(φ) and (EC)1(φ) are that they do not use any control messages
and they diffuse knowledge on a continual basis, using piggybacked timestamps
on the application messages as and when they are sent (see Section 1.1). These
clock protocols are not full-information protocols [5], yet for each of the above
applications, they suffice to provide the required degree of concurrent knowledge
because the clocks are defined so as to capture the property of interest.

All other known protocols to attain concurrent common knowledge and levels
of concurrent knowledge are variants of the global state recording algorithm
[1,4,16]. Such global state protocols require (i) O(min(k · |N |, |L|)) messages to
attain (EC)k(φ) and O(|L|) messages to attain CC(φ); (ii) O(d) communication
time steps, where d is the network diameter. In the above, the |L| factor in the
message complexity can be reduced to |N | if inhibitory protocols are used, at the
cost of inhibitory time delays [4]. All protocols based on global state recording
require control messages for a one-time knowledge attainment of each fact, and
may additionally use freezing/inhibition. Hence, they are not considered further.

In Theorem 1, we show that for the class of facts we consider and which
includes the applications listed in Section 1.1, (EC)k(φ) is equivalent to Ek(φ).
So we also refer to (EC)k(φ) as just Ek(φ).

1.3 Objectives

This paper examines the feasibility of and mechanisms for achieving levels of
knowledge Ek(φ) (k > 0, 1) using ambient message passing, i.e.,

1. No control messages can be used. Control information may be piggybacked
on computation messages. Also, no freezing/inhibition is allowed.

2. The latest knowledge about the (past) computation should be diffused as
much as possible, using only the computation messages, whenever sent.

As justified in Section 1.2, we focus only on clock-based protocols. We now for-
malize the objectives. The full-information protocol (FIP) which attains common
knowledge (in a synchronous system) has been defined such that “at each step
(after each local event), a process broadcasts (via control messages) to other pro-
cesses its local state (which captures everything it knows)” [5]. The FIP is very
expensive, and does not meet our criteria. We now define a “no control messages”
protocol, the full-information piggybacking protocol (FIPP), to be one in which
on each computation message of the application, the local state information is
piggybacked by the sender. This protocol meets the criteria but is expensive
in terms of the information piggybacked. We define the k-bounded-information
piggybacking protocol to overcome this drawback of the FIPP.

Definition 1. The k-bounded-information piggybacking protocol (KIPP) is
such that on each computation message of the application, k-bounded state in-
formation1 is piggybacked by the sender j, where k-bounded information is in-
1 Presumably about some property of interest.

492 Ajay D. Kshemkalyani

formation of the form: Kj(Ki1(Ki2 . . . (Kik
(φ)) . . .)), where i1, i2, . . . ik ∈ N , for

any fact φ on the system state.

Facts about the property of interest, which are a function of the system state,
are represented by the timestamp of that system state in the applications of
Section 1.1. Similarly, 0- and 1-bounded information about these facts are also
represented as timestamps in these applications. Therefore, we will assume that
appropriate timestamps can represent facts relevant to the application, and k-
bounded information about them. The type of facts considered in Section 1.1
and which we will consider satisfy monotonicity. Informally, φ is a monotonic
fact in a run if φ holds in some global state, and for every later global state,
some ψ holds and ψ =⇒ φ in that later state (see Definition 5). Monotonic facts
are also stable. The paper answers the following questions.

Problem 1. In a system using the KIPP protocol, what are the necessary and
sufficient conditions on the timestamp information required to achieve and de-
clare Ek(φ), where φ is the greatest possible monotonic fact (most recent possible
system state) about which Ek(φ) is possible to be declared in the current state?

Problem 2. For any global monotonic fact φ on the system state, what is the
earliest global state in which Ek(φ) is attained using the KIPP protocol?

Problem 3. Given a timestamp of a system state, what is the maximum possible
monotonic fact φ (most recent possible system state) about which Ek(φ) can be
declared in the given state in a system using the KIPP protocol?

Section 2 describes the system model and existing clock systems. Section 3
defines monotonic facts. Section 4 proposes α-dimensional clocks. Section 5 an-
alyzes the levels of knowledge that can be inferred using α-dimensional clocks
and answers the above problems. Section 6 concludes. See [12] for the full paper.

2 Preliminaries

2.1 System Model

We assume an asynchronous distributed system (see the first paragraph of Sec-
tion 1.2). The notion of the local state of a process is primitive. An event e at
process i is denoted ei. An event causes a local state transition. The local history
of process i, denoted hi, is a possibly infinite sequence of alternating local states
(beginning with a distinguished initial state) and events [16]. It is equivalently
described by the initial state and the sequence of local events.

Formally, an asynchronous distributed system consists of (i) a network (N,L),
(ii) a set Hi of possible local histories for each process i, (iii) a set A of asyn-
chronous runs or executions, or computations, each of which is a vector of local
histories, one per process, and (iv) a set of messages sent in any possible asyn-
chronous run. The system follows the KIPP protocol (Definition 1).

Concurrent Knowledge and Logical Clock Abstractions 493

A given run of a distributed system has a poset event structure model as in
[13]. Let (H,≺) represent the set of events H in a system run that are related by
the causality relation ≺, an irreflexive partial order [13]. H is partitioned into
local executions, one per process. Each local execution defines the local history.
We assume the initial state of each process is common knowledge.

A global state (or cut) of run a is a n-vector of prefixes of local histories of a,
one prefix per process. It can be viewed equivalently as the union of the events
in prefixes of the local histories of a, one prefix per process. A consistent global
state (consistent cut) is a global state such that if the receipt of a message is
recorded, then the sending of that message is also recorded [1]. It can be viewed
equivalently as a downward-closed subset of H . Let H⊥ denote the empty cut.

For a given run, the set of all cuts, Cuts, forms a lattice ordered by “⊂”
(subset); the set of downward-closed cuts is its sublattice [14]. The seq. of states
in actual time is a chain in this sublattice. The sublattice is not visible to any
process, but gives the possible consistent cuts which could have occurred and
are “valid” views of the run. Our results implicitly deal with such a run.

We define F (Cut) to be the set consisting of the latest event at each process
in cut Cut. F (Cut) denotes the “front” of cut Cut.

Definition 2. F (Cut) =def {ei ∈ Cut | ∀e′i ∈ Cut, e′i � ei}

Given a cut Cut, its projection Fi(Cut) is the element of F (Cut) at process i.
Define ↓e as ↓e =def {e′ | e′ � e}. The cut ↓e has a unique maximal event e

and is downward-closed in (H,≺). As the set of all downward-closed cuts forms
a lattice, therefore

⋂
x∈X ↓x and

⋃
x∈X ↓x , also denoted as ∩⇓X and ∪⇓X,

resp., are downward-closed cuts for any set of events X . These cuts are used to
prove Theorems 6 and 7. Based on the definition of ↓e, we can assert as follows.

Proposition 1. e ∈ ∩⇓X ⇐⇒ ∀x ∈ X, e � x

∩⇓X , the largest set of events that causally precede every x ∈ X , represents
the largest execution prefix with the following property: any fact in this execution
prefix can be known in the local state of each process after event x ∈ X [11].

A Kripkean interpretation of knowledge modality requires the identification
of an appropriate set of possible worlds – in the system model, the possible
worlds are the (consistent) cuts of the set of possible asynchronous runs [7,8].
(a, c) denotes cut c in run a. Standard definitions for the modal operators Ki

and Pi, and for various forms of knowledge are used. The formal semantics are
given by the satisfaction relation |= and are the same as in [16]. Proposition 1
can now be expressed in this logic. Assuming that adequate knowledge about
local histories is propagated, for any cut X , (a,X) |= E(∩⇓F (X)), i.e., all the
processes know ∩⇓F (X) after execution of X .

2.2 Logical Clocks

Logical clocks track causality which determines the extent of the past computa-
tion that could possibly be known at any state/event. A clock is a function that

494 Ajay D. Kshemkalyani

maps cuts in a run to elements in the time domain T . Thus, Clk : Cuts �→ T .
Clocks provide a quantitative identifier for cuts. For any run, the timestamp of
a cut (which is the union of a prefix of the local history of each process), is
defined using timestamps of cuts of the form ↓e. When we say that an event e
is assigned a clock value/timestamp, more formally we mean that the cut ↓e is
assigned that clock value/timestamp. Also, a subscripted timestamp Ti denotes
a timestamp of an event at process i, and |N | is also denoted as n.

Scalar clocks [13], vector clocks [6,14], and matrix clocks [9,18,20] are the only
clocks proposed in the literature. A canonical clock updates the local component
of the clock by one at each local event. Henceforth, we assume canonical clocks.
A canonical vector clock assigns timestamps to an event as follows.

Definition 3. T (e) =def (i ∈ N) T (e)[i] = |{ei | ei � e }|, i.e., T (e)[i] is the
number of events on process i that causally precede or equal e.

For any run, vector clocks of size n track the progress at each process (and are
needed to capture concurrency; see discussion on dimension of (H,≺) [3]). For
cut Cut, we define its timestamp T (Cut) such that its ith component is the ith
component of the timestamp of event Fi(Cut) [11].

Definition 4. T (Cut) =def (i ∈ N) T (Cut)[i] = T (Fi(Cut))[i]

The vector timestamp of a cut identifies the number of events at each process
in the cut. For any run, there is an isomorphism between Cuts and T 1, the set
of canonical vector timestamps such that (T ∈ T 1) T [i] ≤ |hi| in that run.

Proposition 2. For a run (H,≺), (Cuts,⊂) is isomorphic to (T 1, <).

Lemma 1. The timestamp of cut
⋂

x∈X ↓x , denoted T (∩⇓X), is expressed as
a function of the timestamps of the members of X as follows. (i ∈ N) T (∩⇓X)[i]
= minx∈X(T (x)[i]).

In Lemma 1, X can be an arbitrary set of events, also termed a nonatomic
event [10,11]. Lemma 1 will be shown to have a counterpart Lemma 3 that is
based on higher dimensional clocks, and which is used in the proof of Theorem 7.

For any run (H,≺), observe from Definition 2 that there is a bijection from
the set containing each cut Cut to the set containing each front of a cut F (Cut).
So, the timestamp of F (Cut) is defined to be the timestamp of Cut.

3 Monotonic Facts

We now define monotonic facts – such facts capture the relevant properties of
the applications in Section 1.1, and it is this class of facts that we consider. Ex-
amples of such facts are “computation has progressed at least up to global state
state vector”, and “all logs upto global state state vector can be discarded”. As
in the applications in Section 1.1, we assume facts of interest are related by a
semantic inclusion relation “�” (if φ � ψ, then ψ semantically includes φ).

Concurrent Knowledge and Logical Clock Abstractions 495

Definition 5. For a given run a, any fact φ is monotonic iff for every cut c at
which (a, c) |= φ, and for every cut c′ such that c ≺ c′, there exists some fact ψ
such that (a, c′) |= ψ and (a, c′) |= (φ � ψ).

Monotonic facts are also stable; however, not all stable facts are monotonic.

Lemma 2. For a monotonic fact φ, the following are all stable facts: φ, Ki(φ),
KiPi(φ), E(φ), and Ek(φ).

Let ψ be any of φ, Ki(φ), KiPi(φ), E(φ), and Ek(φ), where φ is a monotonic
fact. When process m receives a message with ψ piggybacked on it from process
j at event ey

m resulting in local state sy
m, we have sy

m |= KmPmKj(ψ). Using
Lemma 2, we can show that “the Pm operator can be safely removed”, and hence
sy

m |= KmKj(ψ) (and also sy
m |= Km(ψ)). Similarly,

∧
i KiPi(ψ) is equivalent

to
∧

i Ki(ψ). Developing this idea further leads to Theorem 1 that allows us to
replace concurrent knowledge with the equivalent normal knowledge.

Theorem 1. In a system following the KIPP protocol, the greatest possible
monotonic fact φ about which (EC)k(φ) is possible to be declared in a given
state is the greatest possible monotonic fact φ′ about which Ek(φ′) is possible to
be declared in the given state.

As in the applications of Sect. 1.1, we assume that for any run, the set of
monotonic facts ordered by � is a lattice, there is a semantically greatest fact in
each state, and that there is an (iso/homo)morphism from (Cuts,⊂) to (M,�),
where M is the set that contains the greatest monotonic fact (of interest) at
each cut in (Cuts,⊂). Combining this (iso/homo)morphism with Prop. 2 (and
restricting to consistent states for semantic integrity) leads to Prop. 3.

Proposition 3. The (semantically greatest) monotonic fact of interest in a
global state, whose truth value is a function of that global state, will be uniquely
identified by the timestamp of that global state.

4 Clocks of Arbitrary Dimensions

Definition 6. An α-dimensional clock Clkα defines the mapping Clkα : Cuts �→
(Z∗)nα

(i.e., Clkα is an α-dimensional array of integers, where each dimension
is of size n), satisfying the following properties.

SP1. The local clock component at process j, Clkα
j [j, j, . . . , j], is common knowl-

edge in the initial system state, i.e., (a,H⊥) |= C(Clkα
j [j, j, . . . , j]).

SP2. The local clock component at process j, Clkα
j [j, j, . . . , j], must be incre-

mented by a natural number when a computation event occurs at j.
SP3. Any element Clkα(ej)[i1, i2, . . . , iα] is the maximum scalar clock value φiα

= Clkiα [iα, iα, . . . , iα] at iα such that Kj(Ki1(Ki2(Ki3(. . .Kiα(φiα) . . .)))).

496 Ajay D. Kshemkalyani

R0. (Initial state:) Clkα
i = α dimensional 0-vector

R1. (Internal event:) Before process i executes the event, Clkα
i [i, i, . . . , i] =

Clkα
i [i, i, . . . , i] + d (d > 0)

R2. (Send event:) Before process i executes the event, Clkα
i [i, i, . . . , i] =

Clkα
i [i, i, . . . , i] + d (d > 0). Send message timestamped with Clkα

i .
R3. (Receive event:) When process j receives a message with timestamp Tα from

process i,
1. for β = 1 to α− 1 do

∀q1 ∈ N \ {j}, ∀q2, q3, . . . , qβ ∈ N ,
Clkα

j [j, . . . , j︸ ︷︷ ︸
α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

] =

max(Clkα
j [j, . . . , j︸ ︷︷ ︸

α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

], Tα[i, . . . , i︸ ︷︷ ︸
α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

])

2. ∀q1 ∈ N \ {j}, ∀q2, . . . , qα ∈ N ,
Clkα

j [q1, q2, . . . , qα] = max(Clkα
j [q1, q2, . . . , qα], T

α[q1, q2, . . . , qα])
3. Clkα

j [j, j, . . . , j] = Clkα
j [j, j, . . . , j] + d (d > 0)

4. Deliver the message.

Fig. 1. Protocol to operate α-dimension clocks

With canonical clocks, d = 1 and Clkα(e)[i1, i2, . . . , iα] = |Fiα(. . . ↓ Fi3(↓
Fi2(↓ Fi1 (↓ e))) . . .)|. The value of Clkα assigned as a timestamp is denoted
T α. T α[i], also represented as T α[i, ·], is a timestamp of dimension (α − 1)
and is derived from T α by instantiating the first dimension variable i1 by
i. T α(ep)[i, ·] is the (α − 1) dimensional timestamp of the most recent event
at process i, as known to process p after event ep. Moreover, this most re-
cent event at process i has a scalar timestamp T α(ep)[i, i, . . . , i]. In terms of
knowledge, T α(ex

p)[i, ·] represents the knowledge sx
p |= Kp(KiKi2Ki3 . . .Kiα(φ)),

where only i1 is instantiated by i in Kp(Ki1Ki2Ki3 . . .Kiα(φ)), for all
i1, i2, . . . iα ∈ N . Analogously, T α[a, b, . . . , f︸ ︷︷ ︸

β entries, β≥0

, ·] is a timestamp of

dimension (α − β). T α(ex
p)[a, b, . . . , f, ·] represents the knowledge sx

p |=
Kp(KaKb . . .KfKiβ+1Kiβ+2 . . .Kiα(φ)), where the first β dimension variables
i1, . . . , iβ are instantiated in Kp(Ki1Ki2Ki3 . . .Kiα(φ)), for all i1, i2, . . . iα ∈ N .
When p = (a = b = . . . = f), T α(ex

p)[a, b, . . . , f, ·] is effectively a (α− β) dimen-
sional timestamp of ex

p .

Theorem 2. The protocol in Fig. 1 implements the α-dimensional clock speci-
fication of Definition 6.

The protocol in Fig. 1 has a space and time complexity of Θ(nα). Rules (R3.1
and R3.2) can be simplified using simple observations, as shown in [12]. The size
of each clock of dimension α is nα integers. This clock/timestamp size may
be reduced by using information such as the message pattern, logical network
topology, and the partial order (H,≺), using analysis such as in [15,19,20], or
by using approximations to the true clock, using schemes such as in [9,20].

Concurrent Knowledge and Logical Clock Abstractions 497

The α-dimensional timestamp of a cut is defined using the (α−1)-dimensional
timestamp of the latest event at each process in that cut.

Definition 7. T α(Cut) =def (i ∈ N) T α(Cut)[i, ·] = T α(Fi(Cut))[i, ·]

Lemma 3. The timestamp of cut
⋂

x∈X ↓x , denoted T α(∩⇓X), is expressed
as a function of the timestamps of the members of X as follows. (i ∈
N)T α(∩⇓X)[i, ·] is the (α − 1)-dimensional timestamp T α(x′)[i, ·], where
T α(x′)[i, i, . . . , i] = minx∈X(T α(x)[i, i, . . . , i]).

Lemma 3 gives a way to implement the test for Proposition 1. It will be used
in Theorem 7 to identify the maximum computation prefix φ (cut) about which
knowledge Ek(φ) has been attained at a given cut Cut.

Recall that by Proposition 3, the problem of identifying the minimum possible
computation prefix (cut) c such that (a, c) |= Ek(φ) for a given φ (Problem 2)
is equivalent to the problem of identifying the minimum possible computation
prefix c such that (a, c) |= Ek(Cut), where Cut is the cut in which φ is true.
Likewise, the problem of identifying the maximum possible fact φ such that (a, c)
|= Ek(φ) at a given cut c (Problems 1 and 3), is equivalent to the problem of
identifying the maximum possible computation prefix Cut such that (a, c) |=
Ek(Cut). We now give the main results linking clocks and knowledge.

5 Attaining Knowledge Using Clocks

At process i, k-bounded knowledge (of global facts about a property of interest)
is of the form Ki(Ki1Ki2Ki3 . . .Kik

(φ)). The number of unique permutations of
the Kij operators that represent k-bounded knowledge is computed as follows.
i1 �= i, and ∀j ∈ [2, k], ij �= ij−1. Thus, ∀j ∈ [1, k], ij can take one of n−1 values,
giving (n−1)k permutations; each permutation denotes a global fact about which
k-bounded knowledge exists at process i. Each global fact is represented by a
cut and requires a vector (n integers). Thus, the space for k-bounded knowledge
at i is n · (n − 1)k integers. The space requirement for all levels of knowledge
upto k at process i is n ·

∑k
j=0(n − 1)j integers.

Lemma 4. Representation of k-bounded knowledge (of global facts about a prop-
erty of interest) needs n ·

∑k
j=0(n − 1)j integers.

From the inequality nk <> n ·
∑k

j=0(n−1)j < nk+1, we now get Theorem 3.

Theorem 3. k-bounded knowledge (of global facts about a property of interest)
cannot be represented by a k-dimensional clock system, but can be represented
by a (k + 1)-dimensional clock system.

By definition, Ek(φ) =
∧

i KiPi(Ek−1(φ)), i.e., each process knows Ek−1(φ)
along some (consistent) global state. To identify the bounds on space com-
plexity to determine Ek(φ) knowledge for the latest possible φ in a system

498 Ajay D. Kshemkalyani

(1) Problem Inputs:
(1a) array of int T 1

φ ; //vector timestamp of earliest state in which φ is true
(1b) int k; //level of knowledge Ek(φ) to be attained
(2) Problem Output:
(2a) array of int TS1 = Compute State(T 1

φ , k).

(2b) //vector timestamp of earliest state in which Ek(φ) is attained

(3) function Compute State(array of int T 1
φ ; int k) returns TS1

(4) for lvl = 1 to k + 1 do
(5) ∀p ∈ N do
(6) identify earliest event ep | T 1(ep) ≥ TS1;
(7) T ′1[p] = T 1(ep)[p];
(8) ∀p ∈ N do
(9) TS1[p] = max(T 1(e1)[p], T

1(e2)[p], . . . , T
1(en)[p]);

(10) // (a, TS1) |= Elvl(T 1
φ)

∧ 	 ∃ TS′1 | (TS′1 < TS1 ∧ (a, TS′1) |= Elvl(T 1
φ))

(11) return(TS1).

Fig. 2. Given φ, protocol to compute earliest system state in which Ek(φ) is
achievable

following the KIPP protocol (Problem 1), it can be shown that ∀i1, i2, . . . ik,
Ki(Ki1Ki2 . . . ,Kik

(ψi1,i2,...,ik
)) must be available at each process i, where

ψi1,i2,...,ik
is the max. execution prefix about which the corresponding knowl-

edge is available, i.e., “i knows i1 knows i2 knows . . . ik knows ψi1,i2,...,ik
”. The

max. execution prefix φ about which Ek(φ) is attained is given by
⋂

i1,i2,...,ik∈N

ψi1,i2,...,ik
.

Theorem 4. In a system following the KIPP protocol, k-bounded knowledge at
each process is required to attain and declare Ek(φ), where φ is the maximum
possible monotonic fact (most recent possible system state) about which Ek(φ)
is possible to be declared in the current state.

Theorem 5 (= Thms. 3 + 4) and Theorem 6 answer Problems 1 and 2, resp..

Theorem 5. In a system following the KIPP protocol, a (k+1)-dim clock system
is sufficient but a k-dim clock system is not sufficient to attain and declare Ek(φ),
where φ is the maximum possible monotonic fact (most recent possible system
state) about which Ek(φ) is possible to be declared in the current state.

Theorem 6. Given a global monotonic fact φ, the earliest global state in which
Ek(φ) is attained in a system following the KIPP protocol is given by the protocol
in Fig. 2.

Given the earliest cut where φ becomes true, specified by T 1
φ , (which by

Proposition 3 captures fact φ), Fig. 2 gives a protocol to determine the earliest
global state at which Ek(φ) can be attained. The protocol is iterative. Function
Compute State uses two inputs: (i) T 1

φ , the vector timestamp of the earliest

Concurrent Knowledge and Logical Clock Abstractions 499

state in which φ holds, and (ii) k, the level of knowledge Ek(φ) to be attained.
The output is TS1, the vector timestamp of the earliest state in which assertion
Ek(φ) can be made. The protocol is proved correct by showing that the invariant
in line (10) holds after each iteration. Note that in each iteration, T ′1 (line (7))
identifies a global state that may not be consistent; hence a consistent global
state TS1 (line (9)) is computed.
Complexity: Time complexity is (# send and receive events in (H,≺) after the
cut at which φ is defined). Space complexity is that of a vector clock system,
and also requires each process to store a trace of the timestamps of its send and
receive events beyond the cut at which φ is defined.

To answer Problem 3, “Given a timestamp T β+1 of a state, what is the
maximum φ such that (a, T β+1) |= Eβ(φ)?” we can apply the function min to
the nβ 1-dimensional timestamps of size n in the given T β+1. This requires n ·nβ

comparisons. Theorem 7 gives a solution of Θ(β · (n2 + n)) time complexity.

Theorem 7. Given a timestamp T β, the maximum possible monotonic fact φ
(most recent possible system state) about which Ek(φ), where k ≤ β − 1, can be
declared at the given state T β in a system following the KIPP protocol is given
by the protocol in Fig. 3.

The proof is by construction. Fig. 3 gives a protocol to derive the max.
computation prefix φ about which the processes have knowledge Ek(φ), given the
timestamp Ob T β, where β > k. Compute Phi has inputs (i) T α, the (variable
dim.) timestamp of the maximum cut about which knowledge Eatn is attained
in Ob T β, (ii) m, the level of knowledge that is yet to be attained, and (iii) atn,
the level of knowledge already attained. The output is the timestamp φ of the
max. cut about which Ek knowledge is attained in the given state Ob T β.

Compute Phi is invoked as Compute Phi(Ob T β, k, 0) and is tail-recursive.
T α is progressively decreased at each recursion level to add another level of
knowledge to what is known of T α at cut Ob T β. So at each additional recursion
level, T α therein converges towards φ. Each recursion level behaves as follows.

– Given T α(Cut), the loop in lines (5)-(6) computes the (α − 1)-dimensional
timestamp of Fp(Cut) which is the latest event of the cut Cut at process p,
(p ∈ N). T (α−1)(Fp(Cut)) is simply T α[p, ·].

– Let X denote the events F (Cut) identified in line (6). The loop in lines
(7)-(9) applies Lemma 3 to X to compute ∩⇓X . By doing so, it identifies
the timestamps T (α−2)(Fp(∩⇓X)) for each process p. Then T (α−1)(∩⇓X) is
simply the aggregation of the n timestamps T (α−2)(Fp(∩⇓X)), as shown in
line (10). By Proposition 1, T (α−1) is the timestamp of the maximal prefix
about which all the processes have knowledge at X = F (Cut) and this can
be asserted only at or after F (Cut). Thus, E(T (α−1)) holds in the state with
timestamp T α in this recursion level and we assert the invariant on line (11).

– The above steps also add a level of knowledge to that at the given initial state
Ob T β; we assert this in the invariant on line (13). If this is the desired level
of knowledge, then we have the terminating case for the recursion and the
value of T (α−1) is returned (lines (14)-(16)), else Compute Phi is recursively

500 Ajay D. Kshemkalyani

(1) Problem Inputs:

(1a) β-dim. array of int Ob T β; // timestamp of observation state
(1b) int k, where β > k ≥ 1; // level of knowledge to be attained
(2) Problem Output:
(2a) (β − k) dim. array of int φ = Compute Phi(Ob T β, k, 0).

(2b) //timestamp of maximum possible state such that (a,Ob T β) |= Ek(φ)

(3) function Compute Phi(var dim. array of int Tα; int m, atn) returns φ

(4a) // Tα is timestamp of the max. possible state such that (a,Ob T β) |= Eatn(Tα)
(4b) // m is the level of knowledge yet to be attained
(4c) // atn is the level of knowledge already attained. atn = k −m.
(5) ∀p ∈ N do
(6) Tα−1

p = Tα[p, ·];
(7) ∀p ∈ N do
(8) let r be such that Tα−1

r [p, p, . . . , p] = minq∈N (T
α−1
q [p, p, . . . , p]);

(9) Tα−2
p = Tα−1

r [p, ·];
(10) Tα−1 = [Tα−2

1 , Tα−2
2 , . . . , Tα−2

n];
(11) // (a, Tα) |= E1(Tα−1)

∧ 	 ∃ T ′α−1 | (T ′α−1 > Tα−1 ∧(a, Tα) |= E1(T ′α−1))
(12) atn = atn+ 1; m = m− 1;
(13)// (a,Ob T β) |=Eatn(Tα−1)

∧	 ∃T ′α−1| (T ′α−1>Tα−1∧(a,Ob T β) |=Eatn(T ′α−1))
(14) if m = 0 then
(15) φ = Tα−1;
(16) return(φ);
(17) else
(18) φ = Compute Phi(Tα−1, m, atn);
(19) // (a, Tα−1) |= Em(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a, Tα−1) |= Em(φ′))
(20) // (a, Tα) |= Em+1(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a, Tα) |= Em+1(φ′))
(21) // (a,Ob T β) |= Eatn+m(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a,Ob T β) |= Eatn+m(φ′))
(22) return(φ).

Fig. 3. Protocol to compute latest φ for which Ek(φ) holds in a state with
timestamp T β, where β > k

invoked to determine the greatest φ that is known at T (α−1) for the remaining
m levels of knowledge to be attained (lines (17)-(18)).

The invariants on lines (11,13,19,20,21) are seen to hold. Hence, φ is the max
prefix such that (a,Ob T β) |= Ek(φ), derived from the recursive use of Lemma 3.
Complexity: The time complexity is Θ(k · (n2 + n)). The space complexity is
that of β-dimensional clocks, which is Θ(nβ) integers and meets the tight bound
established by Theorem 5. The time complexity is less than the space complexity
because information is selectively accessed dynamically.
Necessary and sufficient conditions required to declare Ek(φ) using the KIPP:
Lemma 4 and Theorem 4 together give the conditions on the exact size of clocks,
whereas Theorem 5 gave the conditions on the dimension of clocks.

Concurrent Knowledge and Logical Clock Abstractions 501

6 Concluding Remarks

So far, concurrent knowledge has been studied much less than normal knowledge
although asynchronous systems are much more prevalent than synchronous ones.
This paper made significant contributions to the theory of concurrent common
knowledge and proposed logical clock systems of arbitrary dimensions. Specif-
ically, it made the following contributions. (i) It motivated and proposed log-
ical clocks of arbitrary dimensions, and also formalized the KIPP protocol for
knowledge transfer used by such clock systems. (ii) It showed that there exists a
tight relation between the dimension of logical clocks and the level of concurrent
knowledge attainable, and established some complexity bounds. Here it iden-
tified and explored an important conceptual link. (iii) It proposed algorithms
to compute the latest global fact about which a specified level of knowledge is
attainable in a given state, and to compute the earliest state in which a specified
level of knowledge about a given global fact is attainable.
Acknowledgements: This work was supported by the U.S. National Science
Foundation grant CCR-9875617.

References

1. M. Chandy, L. Lamport, Finding global states of a distributed system, ACM Trans-
actions on Computer Systems, 3(1): 63-75, 1985.

2. M. Chandy, J. Misra, How processes learn, Distributed Computing, 1: 40-52, 1986.

3. B. Charron-Bost, Concerning the size of clocks in distributed systems, Information
Processing Letters, 39: 11-16, 1991.

4. C. Critchlow, K. Taylor, The inhibition spectrum and the achievement of causal
consistency, Distributed Computing, 10(1): 11-27, 1996.

5. R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press,
1995.

6. C. Fidge, Timestamps in message-passing systems that preserve partial ordering,
Australian Computer Science Communications, 10(1): 56-66, Feb. 1988.

7. J. Halpern, R. Fagin, Modeling knowledge and action in distributed systems, Dis-
tributed Computing, 3(4): 139-179, 1989.

8. J. Halpern, Y. Moses, Knowledge and common knowledge in a distributed envi-
ronment, Journal of the ACM, 37(3): 549-587, 1990.

9. N. Krishnakumar, A. Bernstein, Bounded ignorance in replicated systems, Proc.
ACM Symp. on Principles of Database Systems, 1991.

10. A. Kshemkalyani, Temporal interactions of intervals in distributed systems, Jour-
nal of Computer and System Sciences, 52(2): 287-298, Apr. 1996.

11. A. Kshemkalyani, Causality and atomicity in distributed computations, Distributed
Computing, 11(4): 169-189, Oct. 1998.

12. A. Kshemkalyani, On continuously attaining levels of concurrent knowledge with-
out control messages, Tech. Rep. UIC-EECS-98-6, Univ. Illinois at Chicago, 1998.

13. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, July 1978.

14. F. Mattern, Virtual time and global states of distributed systems, Parallel and
Distributed Algorithms, North-Holland, pp 215-226, 1989.

502 Ajay D. Kshemkalyani

15. S. Meldal, S. Sankar, J. Vera, Exploiting locality in maintaining potential causality,
Proc. 10th ACM Symp. on Principles of Distributed Computing, 231-239, 1991.

16. P. Panangaden, K. Taylor, Concurrent common knowledge: Defining agreement for
asynchronous systems, Distributed Computing, 6(2): 73-94, Sept. 1992.

17. R. Parikh, P. Krasucki, Levels of knowledge in distributed computing, Sadhana
Journal, 17(1): 167-191, 1992.

18. S. Sarin, N. Lynch, Discarding obsolete information in a distributed database sys-
tem, IEEE Transactions on Software Engineering, 13(1): 39-46, 1987.

19. M. Singhal, A. Kshemkalyani, Efficient implementation of vector clocks, Informa-
tion Processing Letters, 43, 47-52, Aug. 1992.

20. G. Wuu, A. Bernstein, Efficient solutions to the replicated log and dictionary prob-
lems, Proc. 3rd ACM Symp. on Principles of Distributed Computing, 232-242, 1984.

Decidable Hierarchies of Starfree Languages

Christian Glaßer� and Heinz Schmitz��

Theoretische Informatik, Universität Würzburg, 97074 Würzburg, Germany
{glasser,schmitz}@informatik.uni-wuerzburg.de

Abstract. We introduce a strict hierarchy {LB
n} of language classes

which exhausts the class of starfree regular languages. It is shown for
all n ≥ 0 that the classes LB

n have decidable membership problems. As
the main result, we prove that our hierarchy is levelwise comparable by
inclusion to the dot-depth hierarchy, more precisely, LB

n contains all lan-
guages having dot-depth n+1/2. This yields a lower bound algorithm for
the dot-depth of a given language. The same results hold for a hierarchy
{LL

n } and the Straubing-Thérien hierarchy.

1 Introduction

We contribute to the study of starfree regular languages (SF , for short) which
are constructed from alphabet letters using Boolean operations together with
concatenation. To determine for a given language the minimal number of al-
ternations between these two kinds of operations is known as the dot-depth
problem, recently considered as one of the most important open questions on
regular languages [9]. For an overview we refer to [8].

We deal with the dot-depth hierarchy [3] and the Straubing-Thérien hier-
archy [12,15,13], which both formalize the dot-depth problem in terms of the
membership problems of their hierarchy classes. Fix some finite alphabet A with
|A| ≥ 2. For a class C of languages let Pol(C) be its polynomial closure, i.e., the
closure under finite union and concatenation, and denote by BC(C) its Boolean
closure. The classes Bn/2 of the dot-depth hierarchy (DDH) and the classes Ln/2

of the Straubing-Thérien hierarchy (STH) can be defined as follows.

B1/2 := Pol({{a} : a ∈ A} ∪ {A+}) L1/2 := Pol({A∗aA∗ : a ∈ A})

Bn+1 := BC(Bn+1/2) for n ≥ 0 Ln+1 := BC(Ln+1/2) for n ≥ 0

Bn+3/2 := Pol(Bn+1) for n ≥ 0 Ln+3/2 := Pol(Ln+1) for n ≥ 0

By definition, all these classes are closed under union and it is known, that they
are also closed under intersection and under taking residuals [1,10]. Up to now,
levels 1/2, 1 and 3/2 of both hierarchies are known to be decidable [11,7,1,10,6]
while the question is open for any other level. Partial results are known for level
2 of the STH which is decidable if a two-letter alphabet is considered [14].
� Supported by the Studienstiftung des Deutschen Volkes.

�� Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Wa 847/4-1.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 503–515, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

504 Christian Glaßer and Heinz Schmitz

We take up the discussion started in [6] and look at known results of the type
“L belongs to the class C if and only if the accepting automaton does not have
subgraph S in its transition graph”. Such a forbidden pattern characterization
implies decidablility of the membership problem of C, and even more, it reflects
the effect of language operations in the structure of automata. The present paper
continues this approach in a natural way.

More precisely, we observe how the forbidden pattern characterizing L1/2

acts as a building block in the forbidden pattern which characterizes L3/2 [10].
Surprisingly, we find this observation confirmed, if we compare the pattern for
B1/2 [10] with the characterization of B3/2 [6]. Note from the definition above that
in both hierarchies we get with the same operations from one level to the next.
Together, this motivates the introduction of an iteration rule IT on patterns,
which continues the just observed formation procedure.

In general, starting from an initial class of patterns I, our iteration rule
generates for n ≥ 0 classes of patterns PI

n which in turn define language classes
LI

n by prohibiting the patterns PI
n in the transition graphs of deterministic finite

automata. We prove that LI
n ∪coLI

n ⊆ LI
n+1 ∩coLI

n+1 and, as the main technical
result, that Pol(coLI

n) ⊆ LI
n+1 holds (cf. Theorem 1). With the latter we relate

in a very general way Boolean operations and concatenation to the structural
complexity of transition graphs.

Then we apply our results to particular initial classes of patterns B and L
corresponding to the DDH and STH, respectively. As a consequence, we obtain
decidable hierarchies of classes LB

n and LL
n which exhaust the class of starfree

languages and for which it holds that:

B1/2 = LB
0 L1/2 = LL

0

B3/2 = LB
1 L3/2 = LL

1

Bn+1/2 ⊆ LB
n Ln+1/2 ⊆ LL

n

These inclusions imply in particular a lower bound algorithm for the dot-depth
of a given language L. One just has to determine the class LB

n or LL
n for minimal

n to which L belongs and it follows that L has at least dot-depth n (for another
lower bound result see [17]). However, it remains to argue that the forbidden
pattern classes are not too large, e.g., if they all equal SF nothing is won. For
this end, we provide more structural similarities between the DDH and STH and
the forbidden pattern classes: All hierarchies show the same inclusion structure
(see Fig. 4) and, interestingly, the typical languages that separate the levels
of the DDH and STH also separate levelwise our forbidden pattern classes. In
particular, it holds that LL

n (just as Ln+1/2) does not capture Bn+1/2.

2 Preliminaries

All definitions of language classes will be made w.r.t. the fixed alphabet A. The
empty word is denoted by ε, the set of all non-empty words over A is denoted by
A+. We consider all languages as subsets of A+. For a class C of languages the

Decidable Hierarchies of Starfree Languages 505

set of complements is denoted by coC :=
{

A+ \ L
∣∣ L ∈ C }

. For a word w ∈ A∗

denote by |w| its number of letters. A deterministic finite automaton (dfa) F is
given by F = (A, S, δ, s0, S

′), where A is its input alphabet, S is its set of states,
δ : A × S → S is its total transition function, s0 ∈ S is the starting state and
S′ ⊆ S is the set of accepting states. We denote by L(F) the language accepted
by F . As usual, we extend transition functions to input words, and we denote
by |F | the number of states of F . We say that a state s ∈ S has a loop v ∈ A∗

(has a v-loop, for short) if and only if δ(s, v) = s. If a dfa F is fixed we write
s1

w−→ s2 instead of “δ(s1, w) = s2”, and s1 −→ s2 instead of “δ(s1, w) = s2

for some w ∈ A∗”. Every w ∈ A∗ induces a total mapping δw : S → S with
δw(s) := δ(s, w). We define that a total mapping δ′ : S → S leads to a certain
structure in a dfa (for instance a v-loop) if and only if for all s ∈ S the state
δ′(s) has this structure (has a v-loop). We will also say that w ∈ A∗ leads to a
certain structure in a dfa if δw does so. An obvious property of dfa’s is that they
run into loops after a small number of successive words in the input.

Proposition 1. Let F be a dfa, w ∈ A∗, r ≥ |F |. Then wr leads to a wr!-loop.

The following inclusion relations in each hierarchy are easy to see from the
definitions. We can compare the hierarchies to each other in both directions.

Proposition 2. It holds that Bn+1/2 ∪ coBn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 ∩ coBn+3/2

and Ln+1/2 ∪ coLn+1/2 ⊆ Ln+1 ⊆ Ln+3/2 ∩ coLn+3/2 for n ≥ 0.

Proposition 3. For n ≥ 1 the following holds.

1. Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2

2. coLn−1/2 ⊆ coBn−1/2 ⊆ coLn+1/2

3. Ln ⊆ Bn ⊆ Ln+1

By [4] we have
⋃

n≥1 Ln/2 =
⋃

n≥1 Bn/2 = SF . By [5] for n ≥ 1 it holds that
Ln+1/2 = Pol(coLn−1/2) and Bn+1/2 = Pol(coBn−1/2).

3 A Theory of Forbidden Patterns

We consequently take up the idea of forbidden pattern characterizations and
develop a general method for a uniform definition of hierarchies via iterated pat-
terns in transition graphs. Such a definition starts with an initial pattern which
determines the first level of the corresponding hierarchy. Using an iteration rule
we obtain more complicated patterns which define the higher levels. Theorem 1
states that a complementation followed by a polynomial closure operation on
the language side is captured by our iteration rule on the forbidden pattern side.

506 Christian Glaßer and Heinz Schmitz

3.1 Hierarchies of Iterated Patterns

The known forbidden pattern characterizations for the levels 1/2 and 3/2 of the
DDH and STH are of the following form: There appear two states s1, s2 and a
word z such that s1

z−→+, s2
z−→− and we find a certain structure between s1

and s2. Since in the following we consider only patterns of this form it suffices
to describe the structures that occur between s1 and s2. Usually, both states
s1 and s2 have a loop of the same structure in the dfa, the loop-structure. This
structure in turn determines the subgraph we need to find between s1 and s2,
together with the loop-structure we call this the bridge-structure (cf. Fig. 1). Let
us first define what we mean by an initial class of patterns.

Definition 1. We define an initial pattern I to be a subset of A∗×A∗ such that
for all r ≥ 1 and v, w ∈ A∗ it holds that (v, w) ∈ I =⇒ (v, v), (vr , w · vr) ∈ I.
For p = (v, w) ∈ I and given states s, s1, s2 of some dfa F we say:

– p appears at s
def⇐⇒ s has a v-loop, and

– s1, s2 are connected via p (in symbols s1
p
 s2)

def⇐⇒ p appears at s1 and s2,
and s1

w−→ s2.

p
p′

v v

ws1 s2

Fig. 1. The pattern for B1/2 from [10] can be written as the initial pattern
B = A+×A+. Here p = (v, w) ∈ B with loop-structure p′ and bridge-structure
p.

Consider the initial pattern B = A+ × A+ and some p = (v, w) ∈ B. We
interpret p as the structure shown in Fig. 1. In the initial case the loop-structure
of p is simply a v-loop (cf. p′ in Fig. 1), whereas its bridge-structure requires two
states s1, s2 both having a v-loop such that s1

w−→ s2 (cf. p in Fig. 1). We say
that p appears at some state s if we find the loop-structure of p at this state. In
contrast, if two states s1, s2 are connected via p, then we find the bridge-structure
of p between them.

As a next step, we observe how the patterns for the levels 1/2 are used in
those for levels 3/2. In case of the STH the reader may consider the results from
[10] (with an appropriate rewriting of patterns), for the DDH we refer to Fig. 1
and 2. They show that (i) the loop-structures p′i of B1/2 patterns appear on
the path s1 −→ s2 in the B3/2 pattern and (ii) the bridge-structures pi of B1/2

patterns appear as building blocks in the loop-structures of the B3/2 pattern.
We formalize this observation as the following iteration rule.

Decidable Hierarchies of Starfree Languages 507

p′1 p′2

p0

p1

p0

p1

p′m

pm
pm

p′
p

w0

w1

w0

w1w0

w1

wm wm

wm

Fig. 2. The pattern for B3/2 from [6] can be written as PB
1 = IT(B) with

B = A+×A+. Here p = (w0, p0, w1, p1, . . . , wm, pm) ∈ PB
1 with loop-structure

p′ and bridge-structure p. Moreover, pi ∈ B has loop-structure p′i and bridge-
structure pi.

Definition 2. For sets P let IT(P) := {(w0, p0, . . . , wm, pm) : pi ∈ P, wi ∈A+} .

In the following we start with an initial pattern I and generate classes of iterated
patterns by repeated applications of IT.

Definition 3. For an initial pattern I we define PI
0 := I and PI

n+1 := IT(PI
n)

for n ≥ 0. For some p = (w0, p0, . . . , wm, pm) ∈ IT(PI
n) and given states s, s1,

s2 of some dfa F we say:

– p appears at s
def⇐⇒ there exist states q0, r0, . . . , qm, rm such that

s
w0−→ q0

p0
 r0

w1−→ q1
p1
 r1

w2−→· · · wm−→ qm
pm
 rm = s

– s1, s2 are connected via p (in symbols s1
p
 s2)

def⇐⇒ p appears at s1 and s2,
there exist states q0, . . . , qm such that s1

w0−→ q0
w1−→ q1

w2−→· · · wm−→ qm = s2

and pi appears at state qi for 0 ≤ i ≤ m

Again, let us comment on this definition and see how we can understand it
with the known results at hand (cf. Fig. 1 and 2). Consider the initial pattern
B = A+ × A+ and some p ∈ PB

1 . This means that p = (w0, p0, . . . , wm, pm) for
words wi and elements pi ∈ PB

0 = B. The loop-structure described by p is a loop
with factors of words w0, w1, . . . , wm in this ordering such that between each wi,
wi+1 we find the bridge-structure of pi. Here we see how elements of PB

0 appear
as building blocks in the loop-structure of elements of PB

1 . The bridge-structure
of p connects two states s1, s2 such that we find the loop-structure of p at both
of them. Additionally, it holds that s1

w1···wm−→ s2 and after each prefix w0 · · ·wi

we reach a state at which the loop-structure of pi appears (= p′i in Fig. 2). An
example of the next iteration step for initial pattern B is given in Fig. 3.

As mentioned at the beginning of this subsection we use the just defined
patterns in the following way as forbidden patterns in dfa’s.

508 Christian GlaDer and Heinz Schmitz

Fig. 3. Pattern IP; = IT@;). Here p = (wo,po, wl ,p l , . . . , w,,p,) t P;
with loop-structure p' and bridge-structure p. Moreover, pi t P; has loop-
structure pi and bridgestructure pi.

Definition 4. For a dfa F = (A, S, 6, so, St), an initial pattern Z and n > 0 we
say F has pattern P: if and only if there exist s l , s q t S , U,Z t A*, p t IP: such

P that 6(so,u) = s l , 6(sl,z) t St , 6 (~ 2 , ~) $ St and sl- isq.

3.2 Auxiliary Results

To handle patterns p in a better way, we define a word obtained from the
loop-structure of p (call this the loop-word) and a word j5 which is derived from
the bridgestructure of p (bridgeword).

Definition 5. Let Z be an initial pattern. For p = (u, w) t P i let p := w and
- . p .= u. For n > 0 and p = (wo,po, . . . , w,,p,) t P:+l let p := wo . . . w, and - -
p : = W O E . . .w,p,.

The following is clear by definition. If p appears at some state s , then this state
has a F-loop, and if sl and s q are connected via p then the bridge-word p leads
from sl to sq. Moreover, for n > 1 and p = (wo,po,. . . , wm,pm) t IP: we have
- p , p t A+, and if p appears at some state then also p, appears there.

In order to establish a relation between the polynomial closure operation and
the iteration rule, we isolate the main argument of the proof of Theorem 1 in
Lemma 3 below, for which the following two constructions are needed. First, for
every p t P: some X(p) t P: can be defined such that if p appears at some state
s then s , s are connected via X(p) (cf. Definition 6 and Lemma 1). Secondly, in

Decidable Hierarchies of Starfree Languages 509

Definition 7 and Lemma 2 we pump up the loop-structure of p to construct for
given r ≥ 3 some π(p, r) ∈ PI

n such that for every dfa F we have

(i) if two states are connected via p, then they are connected via π(p, r) and
(ii) if |F | ≤ r then π(p, r) and π(p, r)

◦
lead to states where π(p, r) appears.

Definition 6. Let I be an initial pattern. For p = (v, w) ∈ PI
0 let λ(p) := (v, v).

For n ≥ 1 and p = (w0, p0, . . . , wm, pm) ∈ PI
n let λ(p) := (p◦, λ(pm)).

The following lemma is easy to see by an induction on n.

Lemma 1. For every initial pattern I, n ≥ 0 and p ∈ PI
n we have λ(p) ∈ PI

n.
Moreover, if p appears at state s of some dfa, then s, s are connected via λ(p).

Definition 7. Let I be an initial pattern and r ≥ 3. For p = (v, w) ∈ PI
0 let

π(p, r) := (vr!, w · vr!). For n ≥ 1 and p = (w0, p0, . . . , wm, pm) ∈ PI
n we define:

p′i := π(pi, r)

w := w0 · p′0
◦ · p′0 · · ·wm · p′m

◦ · p′m
π(p, r) := (w0 · p′0

◦
, p′0, . . . , wm · p′m

◦
, p′m, w, λ(p′m), . . . , w, λ(p′m)︸ ︷︷ ︸

(r! − 1) times “w, λ(p′
m)”

)

Again, it is immediate by definition that π(p, r) ∈ PI
n. Furthermore, a short

observation makes clear that (i) if p appears at state s of some dfa, then also
π(p, r) appears there and (ii) if the states s1, s2 of some dfa are connected via
p, then these states are also connected via π(p, r). In addition, we prove the
following lemma.

Lemma 2. Let I be an initial pattern, r ≥ 3, n ≥ 0, p ∈ PI
n, and let F be a dfa

with |F | ≤ r.

1. π(p, r)
◦

leads to states in F where π(p, r) appears.
2. π(p, r) leads to states in F where π(p, r) appears.
3. π(p, r)

◦
, π(p, r)

◦
π(p, r) lead to states in F which are connected via π(p, r).

Proof. We prove the lemma by induction on n. For n = 0 we have p = (v, w)
and π(p, r) = (vr!, w · vr!). Since vr! leads to vr!-loops in F , we obtain that
π(p, r)

◦
= vr! and π(p, r) = w · vr! lead to states where π(p, r) appears. Hence

π(p, r)
◦
, π(p, r)

◦ · π(p, r) lead to states which are connected via π(p, r).
For the induction step let n = l + 1, p = (w0, p0, . . . , wm, pm) ∈ PI

l+1, and
let w, p′i as in Definition 7. First of all we show the following claim.
Claim 1: wr!−1 leads to states in F where π(p, r) appears.

Observe that wr!−1 leads to a wr!-loop in F . So let s be a state in F that has
a wr!-loop, we will show that π(p, r) appears at s. Define the witnessing states:

q0 := δ(s, w0 · p′0
◦
) r0 := δ(q0, p′0)

qi := δ(ri−1, wi · p′i
◦
) ri := δ(qi, p′i) for 1 ≤ i ≤ m

qm+j := δ(rm, wj) rm+j := qm+j for 1 ≤ j ≤ r! − 1

510 Christian Glaßer and Heinz Schmitz

So we have the following situation where m′ := m + r! − 1.

s
w0·p′

0
◦

−→ q0
p′
0−→ r0

w1·p′
1
◦

−→ q1
p′
1−→ r1

w2·p′
2
◦

−→ · · ·wm·p′
m

◦
−→ qm

p′
m−→ rm

rm
w−→ qm+1 = rm+1

w−→ qm+2 = rm+2
w−→· · · w−→ qm′ = rm′

Therefore, from induction hypothesis it follows that qi, ri are connected via p′i
for 0 ≤ i ≤ m. Moreover, the hypothesis also shows that p′m appears at qj for
m + 1 ≤ j ≤ m′, since p′m is a suffix of w. From Lemma 1 it follows that qj , rj

are connected via λ(p′m). Finally, by the definition of w we have rm = δ(s, w)
and rm′ = δ(s, wr!) = s. Hence we have shown the following.

s
w0·p′

0
◦

−→ q0
p′
0
 r0

w1·p′
1
◦

−→ q1
p′
1
 r1

w2·p′
2
◦

−→ · · ·wm·p′
m

◦
−→ qm

p′
m
 rm

rm
w−→ qm+1

λ(p′
m)
 rm+1

w−→ qm+2
λ(p′

m)
 rm+2

w−→· · · w−→ qm′
λ(p′

m)
 rm′ = s

So π(p, r) appears at s which shows our claim.
Since p′m is a suffix of w, it follows that w leads to states where p′m appears

(induction hypothesis). From Lemma 1 we obtain that w leads to a λ(p′m)-loop
in F . Hence Claim 1 also holds for

(
w · λ(p′m)

)r!−1. Now observe the following.

π(p, r) = w0 · p′0
◦ · · ·wm · p′m

◦ · wr!−1

π(p, r)
◦

= w0 · p′0
◦ · p′0 · · ·wm · p′m

◦ · p′m ·
(
w · λ(p′m)

)r!−1

It follows that π(p, r) and π(p, r)
◦

lead to states in F where π(p, r) appears. This
shows the statements 1 and 2 of the lemma.

Let us turn to statement 3 and choose an arbitrary state s of F . For s1 :=
δ(s, π(p, r)

◦
) and s2 := δ(s, π(p, r)

◦ · π(p, r)) we show that s1, s2 are connected
via π(p, r). Let m′ := m + r! − 1 and define the following witnessing states.

q0 := δ(s1, w0 · p′0
◦
)

qi+1 := δ(qi, wi+1 · p′i+1

◦
) for 0 ≤ i < m

qj+1 := δ(qj , w) for m ≤ j < m′

We have already seen that π(p, r) appears at s1 and at s2. Observe that qm′ =
δ(s1, π(p, r)) = s2. So it remains to show that (i) p′i appears at qi for 0 ≤ i ≤ m
and (ii) λ(p′m) appears at qj for m + 1 ≤ j ≤ m′.

By induction hypothesis, p′i
◦

leads to states in F where p′i appears. Hence
p′i appears at state qi for 0 ≤ i ≤ m. Note that p′m is a suffix of w. So the
induction hypothesis shows that p′m appears at qj for all j with m+ 1 ≤ j ≤ m′.
From Lemma 1 it follows that qj , qj are connected via λ(p′m). Particularly, λ(p′m)
appears at state qj . This proves the lemma.

Now we isolate the main argument of the proof of Theorem 1. The following
lemma says that under certain assumptions we can replace bridge-words by their
respective loop-words without leaving the language of some dfa.

Decidable Hierarchies of Starfree Languages 511

Lemma 3. Let I be an initial pattern, r ≥ 3, n ≥ 0, p ∈ PI
n+1 and let F be a

dfa with |F | ≤ r which does not have pattern PI
n. Then for all u, z ∈ A∗ we have

uπ(p, r)z ∈ L(F) =⇒ uπ(p, r)
◦
z ∈ L(F) .

Proof. Suppose F = (A, S, δ, s0, S
′) and p = (w0, p0, . . . , wm, pm) for suitable

m ≥ 0, wi ∈ A+ and pi ∈ PI
n. Let u, z ∈ A∗ such that uπ(p, r)z ∈ L(F), and let

p′i and w as in Definition 7. Compare the following factorizations.

π(p, r)
◦

= w0 · p′0
◦ · p′0 · · ·wm · p′m

◦ · p′m ·
(
w · λ(p′m)

)r!−1

(1)

π(p, r) = w0 · p′0
◦ · · · ·wm · p′m

◦ ·
(
w

)r!−1

(2)

We already know that (i) p′m leads to a state in s where p′m appears and that
(ii) such a state has a connection with itself via λ(p′m). It follows that p′m leads
to an λ(p′m)-loop in F , which in turn implies that also w leads to such a loop.
So taking (1) and (2) into account, it remains to show the following for all
u′, z′ ∈ A∗.

u′p′i
◦
z′ ∈ L(F) =⇒ u′p′i

◦ · p′i · z′ ∈ L(F)

Suppose the contrary and let s1 := δ(s0, u
′p′i

◦
), s2 := δ(s0, u

′p′i
◦ · p′i). By

Lemma 2.3 we know that s1, s2 are connected via p′i. Since δ(s1, z
′) is accepting

and δ(s2, z
′) is rejecting, we have found pattern PI

n in F , a contradiction.

3.3 Pattern Iterator versus Polynomial Closure

The proof the following theorem can be carried out with Lemma 3. It says that
pattern iteration captures complementation followed by polynomial closure.

Definition 8. Let I be an initial pattern. For n ≥ 0 we define the class of
languages corresponding to PI

n as

LI
n :=

{
L ⊆ A+ : L is accepted by some dfa F which does not have PI

n

}
.

With Lemma 2 one can show that this is well-defined.

Theorem 1. Let I be an initial pattern and n ≥ 0. Then Pol(coLI
n) ⊆ LI

n+1 .

Proof. We assume that there exists an L ∈ Pol(coLI
n) \ LI

n+1 , this will lead to
a contradiction. Let F = (A, S, δ, s0, S

′) be some dfa with L(F) = L. Since
L ∈ Pol(coLI

n), we have

L =
k⋃

i=1

Li,0Li,1 · · ·Li,ki

for languages Li,j ∈ coLI
n . Choose r ≥ 1 sufficiently large, i.e., larger than k,

ki and the size of some dfa’s accepting L, Li,j and the complement of Li,j .

512 Christian Glaßer and Heinz Schmitz

Since L /∈ LI
n+1 there exist states s1, s2 ∈ S and words u, z ∈ A∗ such that

s1, s2 are connected via some p ∈ PI
n+1, δ(s0, u) = s1, δ(s1, z) is accepting

and δ(s2, z) is rejecting. It follows that s1, s2 are also connected via π(p, r) and

u
(
π(p, r)

◦)r

z ∈ Li′,0Li′,1 · · ·Li′,ki′ for some 1 ≤ i′ ≤ k. Since r > ki′ , the

latter word can be factorized as u′′u′π(p, r)
◦
z′z′′ such that u′′ ∈ Li′,0 · · ·Li′,j′−1,

u′π(p, r)
◦
z′ ∈ Li′,j′ and z′′ ∈ Li′,j′+1 · · ·Li′,ki′ for some j′ ≤ ki′ . Because there

is a dfa of size ≤ r accepting Li′,j′ , the word π(p, r)
◦

leads to a π(p, r)
◦
-loop in

this dfa (Lemma 2.1). Hence for all i ≥ 1 we obtain

u′
(
π(p, r)

◦)i

z′ ∈ Li′,j′ . (3)

Moreover, u′π(p, r)
◦
π(p, r)z′ /∈ Li′,j′ , otherwise we would obtain

u
(
π(p, r)

◦)j

π(p, r)
(
π(p, r)

◦)r−j

z ∈ L

for some j ≤ r, which in turn implies the contradiction uπ(p, r)z ∈ L (recall
that s1, s2 are connected via π(p, r) in F). Observe that some dfa accepting the
complement of Li′,j′ is of size ≤ r and does not have pattern PI

n. From Lemma 3
it follows that u′π(p, r)

◦
π(p, r)

◦
z′ /∈ Li′,j′ . This contradicts (3).

3.4 Hierarchies, Decidability, and Starfreeness

Let I,J be initial patterns and i, j ≥ 0. We say that any pattern from PJ
j can

be interpreted as a pattern from PI
i if and only if for every p ∈ PJ

j there exists
a p′ ∈ PI

i such that (i) if p appears at state s of some dfa, then also p′ appears
at this state and (ii) if the states s1, s2 of some dfa are connected via p, then
they are also connected via p′. An easy induction shows that if any pattern from
PJ

j can be interpreted as a pattern from PI
i , then LI

i+n ⊆ LJ
j+n for all n ≥ 0.

Particularly, if any pattern from PI
1 can be interpreted as a pattern from PI

0

(which is a weak assumption), then we obtain LI
n ⊆ LI

n+1 for n ≥ 0. Together
with Theorem 1 this yields LI

n ∪ coLI
n ⊆ LI

n+1 ∩ coLI
n+1 .

Let us turn to the decidability of pattern classes. It is reasonable to consider
initial patterns I such that for every k ≥ 1 there exists an algorithm Ak which
does the following in nondeterministic logspace NL: On input F , k states of F
and k pairs of states of F it decides whether there is some p ∈ I appearing at
each of the given single states and connecting each of the given pairs. For n ≥ 0
this leads by induction to an NL-algorithm for the membership problem of LI

n .
The pattern iterator IT can be considered as a starfree iterator. Let I be

an arbitrary initial pattern and recall that SF denotes the class of starfree
languages. One can show that for n ≥ 1 it holds that LI

n ⊆ SF if and only if⋃
i≥0 L

I
i ⊆ SF (actually this does not hold for n = 0).

Decidable Hierarchies of Starfree Languages 513

4 Consequences for Concatenation Hierarchies

From now on we consider two special initial patterns. With L := {ε} × A∗ and
B := A+ × A+ we meet the known forbidden pattern characterizations for L1/2

and B1/2 from [10]. Furthermore, if we compare the characterizations for L3/2 and
B3/2 from [10] and [6], respectively, we observe that L3/2 = LL

1 and B3/2 = LB
1 .

From the results of the previous section we obtain for the pattern classes the same
inclusion structure as it is known for the concatenation hierarchies in question
(see Propositions 2 and 3). Moreover, it follows from Theorem 1 that the pattern
classes contain the respective levels of the concatenation hierarchies (cf. Fig. 4).

Theorem 2. For n ≥ 0 the following holds.

1. LL
n ∪ coLL

n ⊆ LL
n+1 ∩ coLL

n+1

2. LB
n ∪ coLB

n ⊆ LB
n+1 ∩ coLB

n+1

3. LL
n ⊆ LB

n ⊆ LL
n+1

Theorem 3. For n ≥ 0 it holds that Ln+1/2 ⊆ LL
n and Bn+1/2 ⊆ LB

n .

starfree

L3/2

L
L
2

L
L
3

L
L
1

B1/2L
B
0

L
L
0 L1/2

L5/2

L
B
1 B3/2

L7/2

B5/2

B7/2

L
B
3

L
B
2

Fig. 4. Concatenation hierarchies and forbidden pattern classes. Inclusions
hold from bottom to top, doubled lines stand for equality

The pattern hierarchies even exhaust the class of starfree languages.

Theorem 4. It holds that
⋃

n≥0 L
B
n =

⋃
n≥0 L

L
n = SF .

514 Christian Glaßer and Heinz Schmitz

Next, we want to show the strictness of {LB
n} and {LL

n} in a certain way,
namely we take witnessing languages from [16] (see also [2]) that were used there
to separate the classes of the DDH. As remarked in [16], these languages can also
be used to show that the STH is strict. W.l.o.g. we assume that A = {a, b}. Let
us recall the definition of a particular family of languages of A+ from [16]. Denote
for w ∈ A+ by |w|a the number of occurrences of the letter a in w. Now define for
n ≥ 1 the language Ln to be the set of words w ∈ A+ such that |w|a − |w|b = n
and for every prefix v of w it holds that 0 ≤ (|v|a − |v|b) ≤ n. It was shown
in [16] that Ln ∈ Bn\Bn−1. So with Bn ⊆ Bn+1/2 we get from Theorem 3 that
Ln ∈ LB

n . We can prove that the minimal dfa Fn with Ln = L(Fn) has pattern
PL

n. It follows that Ln ∈ LB
n \ LL

n .

Theorem 5. Let n ≥ 1. Then the following holds.

1. LB
n−1 (LB

n and Bn+1/2 �⊆ LB
n−1 .

2. LL
n−1 (LL

n and Ln+1/2 �⊆ LL
n−1 .

We adapt the well-known algorithm that solves the graph accessibility problem
to show that the initial patterns L and B allow algorithms Ak as mentioned in
subsection 3.4, so the membership problems for LB

n and LL
n are decidable in NL.

References

1. M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical
Computer Science, 91:71–84, 1991.

2. J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer and System Sciences, 16:37–55, 1978.

3. R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer and System Sciences, 5:1–16, 1971.

4. S. Eilenberg. Automata, languages and machines, volume B. Academic Press, New
York, 1976.

5. C. Glaßer. A normal form for classes of concatenation hierarchies. Technical Report
216, Inst. für Informatik, Univ. Würzburg, 1998.

6. C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In Proceedings 17th
STACS, volume 1770 of LNCS, pages 555–566. Springer Verlag, 2000.

7. R. Knast. A semigroup characterization of dot-depth one languages. RAIRO
Inform. Théor., 17:321–330, 1983.

8. J.-E. Pin. Syntactic semigroups. In G.Rozenberg and A.Salomaa, editors, Handbook
of formal languages, volume I, pages 679–746. Springer, 1996.

9. J.-E. Pin. Bridges for concatenation hierarchies. In Proceedings 25th ICALP,
volume 1443 of LNCS, pages 431–442. Springer Verlag, 1998.

10. J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
computing systems, 30:383–422, 1997.

11. I. Simon. Piecewise testable events. In Proceedings 2nd GI Conference, volume 33
of Lecture Notes in Computer Science, pages 214–222. Springer-Verlag, 1975.

12. H. Straubing. A generalization of the Schützenberger product of finite monoids.
Theoretical Computer Science, 13:137–150, 1981.

13. H. Straubing. Finite semigroup varieties of the form V * D. J.Pure Appl.Algebra,
36:53–94, 1985.

Decidable Hierarchies of Starfree Languages 515

14. H. Straubing. Semigroups and languages of dot-depth two. Theoretical Computer
Science, 58:361–378, 1988.

15. D. Thérien. Classification of finite monoids: the language approach. Theoretical
Computer Science, 14:195–208, 1981.

16. W. Thomas. An application of the Ehrenfeucht–Fräıssé game in formal language
theory. Société Mathématique de France, mémoire 16, 2:11–21, 1984.

17. P. Weil. Some results on the dot-depth hierarchy. Semigroup Forum, 46:352–370,
1993.

Prefix Languages of Church-Rosser Languages

Jens R. Woinowski

TU Darmstadt
Fachbereich Informatik

Fax:+49-(0)6151-16-6185
woinowski@iti.informatik.tu-darmstadt.de

Abstract. Church-Rosser languages are mainly based on confluent
length reducing string rewriting systems. In general, the prefix language
of a Church-Rosser language may not be describable by such a system,
too. In this paper it is shown that under certain conditions it is possible
to give a construction for a system defining the prefix language and to
prove its correctness. The construction also gives a completion of prefixes
to full words in the original language. This is an interesting property for
practical applications, as it shows potential for error recovery strategies
in parsers.

1 Introduction

The Church-Rosser languages (CRL) are a relatively new class of languages.
Basically they are defined by confluent and length reducing string-rewriting sys-
tems with a distinction between terminals and nonterminals and the possibility
to mark word ends. They were defined by McNaughton, Narendran, and Otto
in [MNO88] and are the deterministic variant of the growing context sensitive
languages defined by Dahlhaus and Warmuth in [DW86]. This was proved by
Niemann and Otto in [NO98]. On the one hand, they have some nice properties,
e.g. solvability of the word problem in deterministic linear time, closure against
the mirror operation, and they are a superset of the deterministic context free
languages (detCF). On the other hand, they are a basis of the recursively enu-
merable languages. That means, given an alphabet Σ (c, � �∈ Σ) and any r.e.
language L ⊆ Σ∗ there is a CRL L′ ⊆ Σ∗ · {c} · {�}∗ so that deleting the letters
c and � with a homomorphism h which leaves letters of Σ unchanged leads to
h(L′) = L (see also [OKK97]). Therefore there are prefix languages of CRL’s
which are not CRL’s themselves. So a natural question is, given a rewriting sys-
tem for a CRL, under which conditions a new CRL system can be constructed
and proved to be correct that delivers exactly the prefix language. In this article
it is shown that under some restrictions for the CRL system this is possible.
There also is a practical aspect. Although the theory of parsing programming
languages seems to be fully elaborated (with [Knu65] being a turning point), its
main coverage is the parsing of correct programs. Even relatively new compiler
generators like Cup [App98] do not provide much help to produce useful output

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 516–529, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Prefix Languages of Church-Rosser Languages 517

in the error case. Most error recovery strategies are either relatively simple or
they are very complicated and time consuming [SSS90], [App98]. The prefix
construction for CRL given in this paper offers some new potential. Whenever
the sufficient conditions are fulfilled, the construction does not only produce a
CRL system for the prefix language—it also gives a method to deduce correct
completions to a word of the language.1 This is more than the prefix closure
proof of detCF (see for example [Har78]) delivers.
This paper is organised in the following way: The next section gives the necessary
basic definitions and a technical result about a normal form for CRLS’s. Also, the
construction for socalled prefix systems is introduced. The third section contains
some examples for the effects of the construction and how prefixes are accepted.
The fourth section goes into the details of the correctness problem in a slightly
informal way and adds the construction of an enriched version of prefix systems.
In the fifth section the main result is stated and proved.
Because of the limited space this text can only contain basic ideas. It tries to give
an overview which allows to assess the theoretical value of the results. Proofs of
the theorems are rather technical and lengthy. Because of this they are omitted or
only briefly sketched. Full proofs can be found in the technical report [Woi00b].

2 Basic Definitions and Ideas

The following definitions are mostly necessary to identify the notations used
throughout this paper. See also [Har78], [Jan88], [BO93], and [BO98].
Let Σ be a finite alphabet, Σ∗ denotes the free monoid over Σ, for the empty
word we write 2. A subset L ⊆ Σ∗ is called a language. If w is a word of length n,
we write |w| := n. To address single letters of w we use w = a1 · · · ai · · · an, ai ∈
Σ(1 ≤ i ≤ n). Then Pref(w) (Suff(w)) is the set of prefixes (suffixes) of w. With
L being a language, Pref(L) := ∪

w∈L
Pref(w) and Suff(L) := ∪

w∈L
Suff(w).

A string-rewriting system (or simply rewriting system) R on Σ is a subset of
Σ∗ × Σ∗. For (u, v) ∈ R we also write (u → v) ∈ R and call (u, v) a rule.
The rewriting relation between words in Σ∗ is defined as −→

R
:= {(sut, svt)|s, t ∈

Σ∗, (u, v) ∈ R}. The reflexive and transitive closure is denoted with −→
R

∗. A

word w ∈ Σ∗ is called irreducible modulo R if there exists no w′ with w −→
R
w′.

The set of all irreducible words of R is denoted with Irr(R).
A weight function is a function f : Σ → N. It is recursively extended to a
function on Σ∗ by f(wx) := f(w) + f(x) and f(2) := 0 with w ∈ Σ∗, x ∈ Σ.
An example for a weight function is the length function with f(x) := 1 for all
x ∈ Σ, then f(w) = |w|. A string-rewriting system R will be called a weight
reducing system, if there exists a weight function f so that f(u) > f(v) for all
(u, v) ∈ R.
1 This already has been implemented in a CRL development system [Rot00].

518 Jens R. Woinowski

A string-rewriting system R is confluent if for all w,w1, w2, w −→
R

∗ w1 and

w −→
R

∗ w2 there exists a w3 ∈ Irr(R) so that w1 −→
R

∗ w3 and w2 −→
R

∗ w3. If

so, and if R is a weight reducing system2, w3 is unique and is called irreducible
normal form of w (and, of course, w1 and w2). For a word w we denote its
irreducible normal form with [w]R.

Definition 1. A Church-Rosser language system (CRLS) is a 5-tuple C =
(Γ,Σ,R, kl, kr, y) with finite alphabet Γ , terminal alphabet Σ ⊂ Γ (Γ \Σ is the
alphabet of nonterminals), finite confluent weight reducing system R ⊆ Γ ∗×Γ ∗,
left and right end marker words kl, kr ∈ (Γ \ Σ)∗ ∩ Irr(R), and accepting let-
ter y ∈ Γ ∩ Irr(R) The language defined by C is defined as: LC := {w ∈
Σ∗|kl · w · kr →∗

R y}
A language L is called a Church-Rosser language (CRL) if there exists a CRLS
C with LC = L. We say that a word w is accepted by C if w ∈ LC, thus stressing
the fact that a CRL is defined by a reduction process.
To address the rewriting system R of a CRLS C, we use Rew(C).

The definition of Church-Rosser languages is due to McNaughton, Narendran,
and Otto [MNO88]. The definition of Church-Rosser language systems given
here is a convenient notation for their definition. Nieman and Otto proved in
[NO98] that the expressive power of Church-Rosser languages is not enhanced
by allowing arbitrary weight functions instead of the length function, so this fact
is used, too.
In order to be able to give a prefix construction for CRLS’s, some restrictions
will be made. The first observation is that detecting the left and right end of a
word is relatively difficult because of the arbitrary end marker words kl and kr.
In consequence, only single letters will be used: kl = c and kr = $. Furthermore
it will be required that these are not changed, removed, or added throughout the
reduction process. Only if the word is accepted they will be deleted. Secondly,
we will require all rules to be of a limited form which makes some operations
easier. This form is inspired by the shift-reduce automatons for detCF languages.
Furthermore it is very similar to well known forms of context-sensitive grammars.

Definition 2. A CRLS C = (Γ,Σ,R, c, $, y) is prefix splittable (C is a psCRLS)
if c, $, y ∈ Irr(R) ∩ Γ \Σ (let the inner alphabet be Γinner := Γ \ {c, $, y}) and
for any rule r ∈ R there exists a splitting (u, v, w, x) with:

1. r = (uvw, uxw)
2. v is non-empty.
3. uvw may contain at most one c and if so at its beginning. Also it can have

at most one $ which only may appear at the end. All other letters of uvw
have to be from the inner alphabet Γinner.

2 Or otherwise terminating, but this will not be considered in this text. Also, in case
of terminating rewriting systems, local confluence implies confluence.

Prefix Languages of Church-Rosser Languages 519

4. x is a single letter not equal to c or $ or it is the empty word.
5. If v contains a c or $, then x = y, u and w are empty, and v is of the form

c · Γ ∗
inner · $.

6. If x = y, then u and w are empty, and v is of the form c · Γ ∗
inner · $.

The splitting (u, v, w, x) of a rule r allowed by this is called a potential prefix
splitting, u and w are called the left and right context, respectively.

Also this definition seems to be rather restrictive, it is possible to show that it
is a normal form for CRLS’s. We only state the result because the proof for this
is not in the scope of this text:

Theorem 1. Let C = (Γ,Σ,R, kl, kr, y) be a CRLS (without restriction of gen-
erality let R be length reducing [NO98]) with language LC . Then there exists a
psCRLS C′ with LC′ = LC.

Note on proof. The main idea is to use a compression technique. That is, an
alphabet of non-terminals which can store more than one letter (of the input
or of intermediate reduction results). The biggest problem is to ensure that the
new system is weight reducing. This can be done by spreading weights over more
than one of these compression letters. In order to achieve this it is necessary
to simulate single rules by chains of rules that are linked to each other in a
way delivering confluence. This also requires a system where at any time the
place of the next possible reduction can be uniquely identified. Working on a
compression alphabet, the restriction of the end marker words to special letters
is a very simple problem. For more details see [Woi00a].

Remark 1. A rule may have several different prefix splittings. For our investiga-
tion it will not matter which prefix splitting we choose. Because of this situation
we just choose a prefix splitting arbitrarily (see also [Woi00b]).

The idea of constructing a prefix CRLS to a psCRLS is very basic: Simply cut
off suffixes of rules. To be precise, some efforts are necessary to handle the right
end of words. Given any unique definition of prefix splittings, a prefix system is
defined as follows:

Definition 3. Let C be a psCRLS, r ∈ Rew(C) with prefix splitting (u, v, w, x),
v = a1 · · · ai · · · a|v|, ai ∈ Γ,w = b1 · · · bi · · · b|w|, bi ∈ Γ .
The prefix rules of r (Pref(r)) are defined as:

Pref(r) := ({(uvb1 · · · bj$, uxb1 · · · bj$)|0 ≤ j < |w|}
∪

{
{(a1 · · · aj$, y)|0 < j < |v|} x = y
{(ua1 · · · aj$, ux$)|0 < j < |v|} else

)
\{(w,w)|w ∈ Γ ∗}

520 Jens R. Woinowski

Define the following rewriting system R′:

R′ = R ∪
⋃
r∈R

Pref(r).

If R′ is weight reducing and confluent (which is decidable) then the CRLS C′ =
(Γ,Σ,R′, c, $, y) is called prefix system of C, C′ = Pref(C).
We also use R′ = Pref(R) in that case and call R the origin of R′. If R′ is not
confluent or not weight reducing Pref(R) and Pref(C) are not defined. The
reason for this will be discussed later. The process of building Pref(R) is called
prefix construction.

3 Some Examples

The first example will be used throughout the rest of this paper to show the
effects of the prefix construction:

Example 1. The psCRLS C is defined in the following way: Let Σ = {a, b, c, d, e},
Γ = Σ ∪ {$, c, y} with left and right end markers c and $ and accepting symbol
y. Let the rewriting system R be defined as follows. We mark a prefix splitting3

with concatenation dots ‘·’, these dots do not belong to the rules:

·abc· → ·b·
·abb·bc→ ·a·bc
·bb·$ → ·b·$
·db· → ·b·
·e·c→ ·b·c
·cb$· → ·y·

In figure 1 the prefix system R′ of C′ = Pref(C) is given. The parts appearing
in brackets and the double rules may be ignored at this point. They contain
information about the parts cut off which will be used later.
Since it is easily verified that R′ is confluent and weight reducing we omit this
here. Now have a look at a prefix of the word adabbdecc ∈ LC and its acceptance
in C′. Observe the mixture of rules already in R and those new rules from R′\R:

cadabbde$ →
r12

cadabbdb$→
r9

cadabbb$→
r5

cadab$ →
r2

cadb$ →
r9

cab$ →
r2

cb$ →
r13
y

This seems to work fine, but we cannot always be sure that a prefix system is
doing what we would expect it to do. Regard these three examples:

3 Note that this choice is not necessarily optimal, but here, this will not be discussed
further.

Prefix Languages of Church-Rosser Languages 521

r1 abc → b [2/2]
r2 ab$ → b$ [c/2]
r3 a$ → b$ [bc/2]
r4 abbbc → abc [2/2]
r5 abbb$ → ab$ [2/c]
r6 abb$ → a$ [2/bc]
r7 ab$ → a$ [b/bc]
r8 bb$ → b$ [2/$]
r9 db → b [2/2]
r10 d$ → b$ [b/2]
r11 ec → bc [2/2]
r12 e$ → b$ [2/c]
r13 cb$ → y [2/$]
r14 c$ → y [b/$]

Fig. 1. The prefix system R′ for example 1.

Let the psCRLSs be C1, C2, C3. Let Σ = {a, b, c} and Γ = {a, b, c,D, c, $, y}
be the common alphabets of the three systems. Build prefix rewritings systems
R′

1, R
′
2, R

′
3 with the prefix construction.

Example 2. R1 = {(a, b), (ba, a), (bb, a), (ca$, y)}
R′

1 = R1 ∪ {(b$, a$), (c$, y)}
R′

1 is not weight reducing: a$ −→
R′

1

b$ −→
R′

1

a$

Example 3. R2 = {abb$, a$), (bbc, d), (ca$, y)
R′

2 = R2 ∪ {ab$, a$), (bb$, d$), (b$, d$), (c$, y)}
R′

2 is not confluent:
cabb$ −→

R′
2

∗ y ∈ Irr(R′
2) and cabb$ −→

R′
2

∗ cad$ ∈ Irr(R′
2)

Example 4. R3 = {(cD$, y)}
R′

3 = R3 ∪ {(c$, y)}
LC3 = ∅ but LC′

3
= {2}.

These examples lead to the following definition and a result stated as remark.
They also answer the question why we required R′ to be confluent and weight
reducing in the definition of Pref(C).

Definition 4. Let C be a psCRLS. Then Pref(C) is correct if and only if it is
defined and LPref(C) = Pref(LC).

Remark 2. There are psCRLS C so that Pref(C) is not defined or not correct.

522 Jens R. Woinowski

On the other hand we have a positive result:

Theorem 2. Let C be a psCRLS and C′ = Pref(C) the prefix system with R′

as string-rewriting system of C′. Then Pref(LC) ⊆ LC′ .
The proof is a simple induction over the length of reductions in C.

4 What Is Happening in Prefix Reductions?

A closer look at the rules of psCRLS reveals the different roles of the parts of
the prefix splittings. Let r be a rule with prefix splitting (u, v, w, x). Then in the
prefix construction the left context is never deleted. In contrast to this, parts v
and w are deleted. Still those two differ in their meaning, because by applying r
the information of v is always lost (resp. substituted by x), whereas w remains
unchanged. Obviously, this is important for accepting correct prefixes. In order
to use this, we now define expanded prefix CRLSs which have 4-tuples instead
of pairs as rules. In these, the first two components have the same meaning as
in usual rewriting systems, including the relation →. In the other two we store
what has been cut off during the prefix construction:

Definition 5. Let R be a rewriting system defined on the alphabet Γ , and α ∈ Γ .
Then R\α is the subsystem of R that is obtained by removing all rules containing
the letter α.

Definition 6. Let C be a psCRLS with rewriting system R and r ∈ R with
prefix splitting (u, v, w, x), v = a1 ·a2 · · · ai · · · a|v|, ai ∈ Γ, w = b1 ·b2 · · · bi · · · b|w|,
bi ∈ Γ . If R\$ is confluent and Pref(C) is defined, we define the set CPref(r)
of completion prefix rules of r (or, shorter, completion rules):

CPref(r) = ({(uvb1 · · · bj$, [uxb1 · · · bj$]R\$,2, bj+1 · · · b|w|)|0 ≤ j < |w|}

∪
{
{(a1 · · · aj$, y, aj+1 · · ·a|v|−1, $)|0 < j < |v|} x = y
{(ua1 · · · aj$, [ux$]R\$, aj+1 · · ·a|v|, w)|0 < j < |v|} else

∪{(uvw, uxw,2,2)|vw �∈ Γ ∗ · $}4

)
\{(w′, w′, u′, v′)|w′, u′, v′ ∈ Γ ∗}

– If R \ $ is not confluent, CPref(r) is not defined.5
– Reducing the second component with all rules of R that do not work at the
right end of words (which R\$ means) does not change the defined language.

4 This set is empty or a singleton.
5 It should be possible to avoid this restriction but this is not in the scope of this

investigation.

Prefix Languages of Church-Rosser Languages 523

– The third component of the completion rules is called consumed completion.
– The fourth component is called unconsumed completion
– The system R′ is called completion prefix system of R with R′ =⋃

r∈R CPref(r). With Rew(R′) we denote the extraction of the first two
components, which has a rewriting system as result. Note: If Pref(C) is
defined then Rew(R′) = Rew(Pref(C)).

– In the same manner, CPref will be used for the completion prefix CRLS
given by the alphabets and accepting letter of C and R′ iff Pref(C) is
defined.

– R′
pref := R

′ \ {(u, v,2,2)|(u, v) ∈ Σ∗ ×Σ∗} is the set of rules from R′ with
nonempty completions.

– The set of all (old) rules that do not work at the right end can be identified
with R′ \ $:= R′ \R′

pref.
– C′

pref is the completion prefix which is given by the expanded rewriting sys-
tem R′

pref and the remaining parts being identical to those of C′.
– C′ \ $ is defined accordingly.

Remark 3. By using R′
pref we can speak of all newly generated rules. On the

other hand R′ \ $ are all old rules that do not work at the right end of words.
Those old rules that do work at the right end of words will have a representant
in R′

pref.

Now we can explain the brackets in figure 1. The words left of the slashes are
consumed completions. They will be of no importance for further reductions.
Right of the slashes are the unconsumed completions. They play an important
role for the correctness of prefix systems: they link applications of prefix rules.
To explain this, we have a closer look at a part of the above reduction. Below
the → we write the bracket expression of the respective rules:

cadabbde$ −→
[2/c]

cadabbdb$ −→
[2/2]

cadabbb$ −→
[2/c]

cadab$ −→
[c/2]

cadb$

The application of rule r12 means: “guess that the next letter would be a c and
that it belonged to the unchanged right context.” Then rule r9 is used. Since
this is an old rule, it does not change the guess of a completion. After that, rule
r5 is used. It again assumes an unchanged c to be the next letter of a possible
completion to a correct word. The application of rule r5 fits to that of r12 which
assumed the same. Now rule r2 is used. Here the c is still the same letter, but is
part of the consumed completion. This means in other words: “we guessed the
next letter to be a c, this guess was correct, and now it is completely used, so
we do not need to consider it further.”
In contrast to this, consider using rule r8 twice instead of r5. This rule guesses
the end of the word. So its unconsumed completion will not fit to the completion
of r2. This is of major importance. Because of r8, LC′ would also contain abbbb
which clearly is no prefix of a word in LC .

524 Jens R. Woinowski

This has two consequences: (a) we have to find a method to check such cases
and (b) an extension of remark 2:

Remark 4. There are psCRLS C without true nonterminals, i.e. Γ = Σ∪{c, $, y},
so that Pref(C) is defined but not correct, which means LPref(C) �= Pref(LC).
So, a natural question is, if it is possible to determine whether or not the system
Pref(C) is correct. This will be discussed in the next section.

5 Main Result

Our first step is to introduce a way to store information about the interaction
between old rules and new rules and the involved completions.

Definition 7. Let C be a psCRLS and an expanded CRLS C′ = CPref(C)
with expanded rewriting system R′. A set K of 4-tuples is called candidate set
of C′, if for all u = (u1, u2, u3, u4) ∈ K the following holds:

1. u1 ends with $: u1 ∈ Γ ∗ · $
2. u2 is the accepting letter or ends with $: u2 ∈ ({y} ∪ (Γ ∗ · $))
3. u2 is irreducible w.r.t. all old rules that do not work at the right end: u2 ∈

Irr(R′ \ $)
4. u3 is built from the inner alphabet: u3 ∈ (Γ \ {c, $, y})∗
5. u4 is mainly from the inner alphabet, yet it may have a $ at its end:
u4 ∈ (Γ \ {c, $, y})∗ · {2, $}

6. a) u1 can be reduced to u2 using only old rules that do not work at the word
end: u1 −→

R′\$
∗ u2

or
b) u itself is a new rule: u ∈ R′

pref.

The elements of candidate sets are called candidates. In the above case 6a u is a
representative of a reduction with R′ \ $. We also call u a reduction candidate.
In case 6b we call u a rule candidate from R′

pref.

Now we want to know if two chains of reductions on partial words, each repre-
sented by a candidate, can happen after each other:

Definition 8. Let C be a psCRLS, C′ = CPref(C), K a candidate set of C′

and u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) ∈ K
We say u allows v in K with rest w, u �K,w v, if one of the following conditions
holds:

(i) u2 and v1 overlap so that their right ends are matched together, then w is
empty:
w = 2 and v ∈ C′

pref and u2 ∈ Suff(v1) ∨ v1 ∈ Suff(u2)

Prefix Languages of Church-Rosser Languages 525

(ii) u2 and v1 do not overlap in that way but one of the old rules not working
at the right end of words can be padded at the right end of its first compo-
nent with a word w so that an indirect overlap (via reduction) is possible.
Furthermore the first component of this old rule has an overlap with u2

that reaches into the part of the word which is changed by the reduction
represented by the candidate u:
w �= 2 and ∃(v′1, v′2) ∈ Rew(C \ $), v′ ∈ Γ ∗ so that
|v′1| − |v′| > lcp(u1, u2) and v1 = v′1w = v′u2 and v2 = [v′2w]Rew(C′\$).

With lcp(u1, u2) we denote the length of the longest common prefix of u1 and u2.

In figure 2 the second alternative of the definition, which is more complicated,
is illustrated. Irreducible parts are set in boldface.

v′ u′
| u1

|u′| = lcp(u1, u2)
−→

(u1,u2)

v′ u′
| u2

v′1 w

v1

−→
(v′

1,v′
2)

v′2 w

−→
C\$

∗

v2

Fig. 2. The allows relation �K,w with w �= 2.

The last step is to check if the completions appearing in these reductions fit
together.

Definition 9. Let C be a psCRLS, let C′ = CPref(C), K a candidate set of
C′, and u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) ∈ K.
We say u allows v in K and with rest w and correct completion if u4 ∈
Pref(v3v4) and u �K,w v.
That means the reduction represented by v may safely be applied after the one
represented by u since the rest of the completion left by u fits to the completion
of v.

526 Jens R. Woinowski

Notation: u �K,w v.Also, if we are not interested in w: u �K v, then �+
K and

(�∗
K) denote the transitive (reflexive and transitive) closure.

If u �+
K v and u, v are rule candidates from R′

pref,
and if no u′ exists which is a rule candidate from R′

pref, so that u ��+
K\{u′} v

we say u directly allows v in K with correct completion, short u �⊕
K v.

The definition of u �+
K v does not distinguish how many prefix rules are used

between u and v. By u �⊕
K v we can make sure that v can be reached from u by

using exactly one prefix rule.

Example 5. (for definition 9) There exists no candidate set K so that r8 �+
K r2.

There exists a K so that r5 �⊕
K r2.

Now we can define sets of correctly working right end reductions. This defini-
tion is inductive. In order to understand this definition it helps to think of the
reductions backwards, i.e. from the accepting y to the start of the reductions.

Definition 10. Let C be a psCRLS, C′ = CPref(C), W a candidate set of
C′.
W is a working set of C′ if for all u = (u1, u2, u3, u4) ∈W one of the following
conditions holds:

(i) u4 = 2 (Fully consumed completion means that the next reduction(s) may
be applied without regard of the completion; of course only until a new
unconsumed completion appears.)

(ii) u4 = $ ∧ u2 = y (After an accepting rule where only the word end marker
is left as completion no further harm can be done. The reduction is finished
. . .)

(iii) for all v = (v1, v2, v3, v4) ∈ W,w ∈ Γ ∗ with u �W,w v
exists v′ = (v1, v2, v′3, v′4) ∈ W with u �W,w v

′

(Whenever a reduction with v after u can take place, there is a variant v′

of v with fitting next completion that does exactly the same w.r.t. to the
rewriting relation.)

The set of all working sets of C′ is denoted by Working(C′). Since the definition
is inductive, an algorithm can be given to compute or at least enumerate working
sets. For details, see [Woi00b].

The following lemma shows that working sets can be used to check the correct-
ness of prefix systems:

Lemma 1. Let C be a psCRLS, with Γ = Σ ∪ {c, $, y}, and C′ = {(u1, u
′
2, u3,

u4)|(u1, u2, u3, u4) ∈ CPref(C), u′2 = [u2]C\$} . Let W ∈ Working(C′) and
C′′ be a subset of C′ so that for all rules r ∈ Rew(C′′) either r ∈ Rew(C \ $)
or r ∈ Rew(C′) ∩ Rew(W). Let w ∈ Σ∗ be accepted by C′′: cw$ −→

C′′
∗ y. Then

there exists a w̃ ∈ Σ∗ so that cww̃$ −→
C

∗ y.

Prefix Languages of Church-Rosser Languages 527

Proof. Since for any reduction in a confluent weight reducing system there exists
a right canonical reduction and because of the properties of working sets there
is an n ≥ 1 and a reduction of the form:

w −→
C\$

∗ w1 −→
r1∈Rew(C′′

pref)
w′

1 −→
C\$

∗ w2 −→
r2∈Rew(C′′

pref)
w′

2

→∗ · · · −→
ri∈Rew(C′′

pref)
w′

i →∗ · · ·
−→

rn−1∈Rew(C′′
pref)

w′
n−1 −→

C\$
∗ wn −→

rn∈Rew(C′′
pref)

y

With ri �⊕
W ri+1 or ri = (u, v, s,2) for all 1 ≤ i < n.

We show the lemma with an induction over n.
Basis. n = 1 : Then rule rn is accepting with consumed completion s (possibly
empty) and unconsumed completion $. So w̃ = s is the correct completion.
Claim. Let the lemma hold for n ≥ 1
Induction step. (n→ n+ 1)
We can find w′, w′′

1 , and w
′′′
1 so that w = cw′$, w1 = cw′′

1$, and w
′
1 = cw′′′

1 $.
There are three cases, we will only show the proof for the first one, the other
two cases are similar:

Case 1: r1 = (u$, v$, s,2) With induction claim there always exists a completion
t with
cw′′′

1 t$ −→
C

∗ y. There exists r′1 ∈ Rew(C) with r′1 = (us, v). This leads to

cw′ −→
C

∗ cw′′
1 and in consequence cw′s −→

C

∗ cw′′
1 s −→

r′
1

cw′′′
1 . So, cw

′st −→
C

∗

cw′′
1 st −→

r′
1

cw′′′
1 t. Now, w̃ = st is the correct completion: cw′st$ −→

C

∗ y.

Case 2: r1 �W r2 and r1 = (u, v, s, s′) with s, s′ ∈ (Γ \ {$})∗ (analogous to case
1, because of r1 �⊕

W r2 we know that s′ ∈ Pref(t) and therefore st is the
correct completion).

Case 3: r1 �W r2 and r1 = (u, v, s, s′$) with s, s′ ∈ (Γ \ {$})∗(analogous to case
2, st is the correct completion). 2

This directly gives the following result:

Theorem 3. Let C be a psCRLS, with Γ = Σ ∪ {c, $, y}, let C′ = CPref(C)
(which is equivalent to Pref(C) w.r.t. to the defined words), and W ∈
Working(C′). If for all r = (u, v) ∈ Rew(C′

pref) the condition (u, v) ∈ Rew(W)
holds, then CPref(C) is correct, and therefore also Pref(C) is correct.

Final remark. Obviously, these results can be used for a similar suffix construc-
tion. The problem of true nonterminals (Γinner �= Σ) cannot be discussed here
for lack of space.

528 Jens R. Woinowski

6 Conclusion

We have shown that under certain conditions it is possible to give an effective
construction for CRLS’s defining the prefix language of a CRL. Due to the fact
that prefix splitable systems are a normal form this syntactical restriction is not
a hinderance to this on its own account. But because the CRL’s are a basis for
the r.e. languages there still will be languages whose prefix systems cannot be
correct. To be precise, chances are high that the correctness of prefix systems
is undecidable. Furthermore, there could be CRL’s whose prefix languages are
CRL’s but for which the construction given here fails on any system defining
them. Another problem arises from true nonterminals, that is such letters in Γ
that are neither end markers nor the accepting letters. These questions show a
line of further research in the theoretical aspects of Church-Rosser prefix lan-
guages.
From the practical point of view, one might ask if more than “toy” languages
are possible. In [Rot00] this is answered in the positive. In this diploma thesis a
substantial subset (i.e., covering main syntactical problems) of Java syntax has
been described with a CRLS for which the prefix construction gives a correct
system. One possibility to incorporate this into usable software tools would be
to design something like “hybrid” LR(k)/CRL-compilers.
Altogether one can conclude that under theoretical as well as under practical
aspects prefix languages of CRL’s are worth future investigation.

Acknowledgements

The author wishes to thank the anonymous referees for their helpful comments,
especially for detecting a (correctable) error in figure 1.

References

[App98] A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, 1998.

[BO93] R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, New
York, 1993.

[BO98] G. Buntrock and F. Otto. Growing context-sensitive languages and Church-
Rosser languages. Information and Computation, 141:1–36, 1998.

[DW86] E. Dahlhaus and M.K. Warmuth. Membership for growing context-sensitive
grammars is polynomial. Journal of Computer and System Sciences, 33:456–
472, 1986.

[Har78] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Mass., 1978.

[Jan88] M. Jantzen. Confluent String Rewriting. Springer-Verlag, 1988.
[Knu65] D. E. Knuth. On the translation of languages from left to right. Information

and Control, 8:607–639, 1965.

Prefix Languages of Church-Rosser Languages 529

[MNO88] R. McNaughton, P. Narendran, and F. Otto. Church-Rosser Thue systems
and formal languages. Journal Association Computing Machinery, 35:324–
344, 1988.

[NO98] G. Niemann and F. Otto. The Church-Rosser languages are the determinis-
tic variants of the growing context-sensitive languages. In M. Nivat, editor,
Foundations of Software Sscience and Computation Structures, Proceedings
FoSSaCS’98, volume 1378 of LNCS, pages 243–257, Berlin, 1998. Springer-
Verlag.

[OKK97] F. Otto, M. Katsura, and Y. Kobayashi. Cross-sections for finitely presented
monoids with decidable word problems. In H. Comon, editor, Rewriting
Techniques and Applications, volume 1232 of LNCS, pages 53–67, Berlin,
1997. Springer-Verlag.

[Rot00] T. Rottschäfer. Eine Entwicklungsumgebung für Church-Rosser
Präfixparser. Diplomarbeit, TU-Darmstadt, February 2000.

[SSS90] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Volume II: LR(k) and
LL(k) Parsing. Springer-Verlag, Berlin, 1990.

[Woi00a] J. R. Woinowski. A normal form for Church-Rosser language systems. Re-
port, TU-Darmstadt, www.iti.tu-darmstadt.de/˜woinowsk/, June 2000.

[Woi00b] J. R. Woinowski. Prefixes of Church-Rosser languages. Report TI-2/00,
TU-Darmstadt, www.iti.tu-darmstadt.de/˜woinowsk/, February 2000.

Author Index

Abramov, Sergei, 201
Adsul, Bharat, 477
Afrati, Foto, 454
Amir, Amihood, 302

Bampis, Evripidis, 454
Basin, David, 55
Baswana, Surender, 252
Ben-Ari, Mordechai, 325
Buneman, Peter, 87

Chazelle, Bernard, 46
Clavel, Manuel, 55
Cleaveland, Rance, 312
Crescenzi, Pilu, 290

De Vos, Marina, 227
Del Lungo, Alberto, 290
Deransart, Pierre, 214
Di Gianantonio, Pietro, 429

Emerson, E. Allen, 1

Fages, François, 214
Fellows, Michael R., 240
Fernandez, Mary, 11
Fishkin, Aleksei V., 454
Fournet, Cédric, 397
Franco, Gianluca, 429
Fu, Yuxi, 385
Fujito, Toshihiro, 117

Glaßer, Christian, 503
Glück, Robert, 201
Grötschel, Martin, 81
Grossi, Roberto, 290
Guelev, Dimitar P., 264

Hallett, Michael T., 465

Jansen, Klaus, 454

Kalyanasundaram, Bala, 421
Kenyon, Claire, 454
Khanna, Sanjeev, 87
Köbler, Johannes, 336, 361

König, Barbara, 373
Kshemkalyani, Ajay D., 489
Kupferman, Orna, 151

Lagergren, Jens, 465
Laneve, Cosimo, 397
La Torre, Salvatore, 139
Leonardi, Stefano, 409
Lewenstein, Moshe, 302
Lin, Huimin, 277
Lindner, Wolfgang, 336
Lodi, Elena, 290
Lüttgen, Gerald, 312
Ly, Olivier, 188

Maranget, Luc, 397
Marchetti-Spaccamela, Alberto, 409
McCartin, Catherine, 240
McKenzie, Pierre, 164
Mehta, Aranyak, 477
Meseguer, José, 55
Messner, Jochen, 361
Monrad Favrholdt, Lene, 106

Napoli, Margherita, 139
Narayanan, H., 94
Nyhave Nielsen, Morten, 106

Pagli, Linda, 290
Parigot, Michel, 442
Patkar, Sachin B., 94
Piterman, Nir, 151
Pnueli, Amir, 325
Porat, Ely, 302
Pruhs, Kirk, 421

Radhakrishnan, Jaikumar, 176
Rémy, Didier, 397
Rosamond, Frances A., 240
Rossi, Gianluca, 290

Schmitz, Heinz, 503
Sedletsky, Ekaterina, 325
Sen, Pranab, 176
Sen, Sandeep, 252
Simeon, Jerome, 11
Smaus, Jan–Georg, 214

532 Author Index

Sohoni, Milind, 477
Spakowski, Holger, 348
Stege, Ulrike, 240

Tan, Wang-Chiew, 87

Vardi, Moshe Y., 151
Vermeir, Dirk, 227
Vishwanathan, Sundar, 176
Vitaletti, Andrea, 409

Vogel, Jörg, 348
Vollmer, Heribert, 164

Wadler, Philip, 11
Wagner, Klaus W., 164
Walukiewicz, Igor, 127
Woinowski, Jens R., 516

Yang, Zhenrong, 385
Yi, Wang, 277

	Lecture Notes in Computer Science
	Springer
	FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science
	Preface
	Organization
	Program Committee
	Organizing Committee
	Referees

	Table of Contents
	Invited Presentations
	Contributions

	Model Checking: Theory into Practice
	Introduction
	Limiting State Explosion
	Symmetry
	Parameterized Verification

	Theory and Practice in Model Checking
	Conclusion
	References

	An Algebra for XML Query
	Introduction
	The Algebra by Example
	Data and Types
	Projection
	Iteration
	Selection
	Quantification
	Join
	Restructuring
	Aggregation
	Functions
	Structural Recursion
	Processing Any Well-Formed Document
	Top-Level Queries

	Projection and Iteration
	Relating Projection to Iteration
	Typing Iteration

	Summary of the Algebra
	Expressions
	Types
	Relating Values to Types

	Equivalences and Optimization
	Equivalences
	Optimizations

	Type Rules
	Environments
	Type Rules
	Top-Level Expressions

	Discussion
	References

	Irregularities of Distribution, Derandomization, and Complexity Theory
	Facts from Discrepancy Theory
	Sampling
	Geometric Algorithms
	Linear Circuit Complexity
	References

	Rewriting Logic as a Metalogical Framework
	Introduction
	Reflective Metalogical Frameworks
	Related Work

	Reflective Metalogical Frameworks
	Reflective Logics
	Requirements for a Reflective Metalogical Framework

	Background
	Rewriting Logic
	Membership Equational Logic
	The Maude System

	Induction and Parameterization
	Induction Principles for Membership Equational Theories
	Parameterized Membership Equational Theories

	Rewriting Logic as a Logical Framework
	Reflection in Rewriting Logic and Maude
	Reflection in Rewriting Logic
	Reflection in Maude
	Building an Inductive Theorem Prover

	Rewriting Logic as a Metalogical Framework
	Inductive Theorems versus Inductive Metatheorems
	Metalevel Inference Rules for Parameterized Theories
	Building a Inductive Metatheorem Prover

	An Example
	The Deduction Theorem for Minimal Logic
	Other Examples and Experience

	Conclusion
	Acknowledgments
	References

	Frequency Assignment in Mobile Phone Systems
	Wireless Communication and Frequencies
	Mobile Cellular Networks, GSM
	Channel Spectrum
	BTSs, TRXs, and Cells
	BSCs, MSCs, and the Core Network
	Channel Assignment, Hand-Over
	Interference
	Separation and Blocked Channels
	Interference Graph
	Two “Natural” Approaches
	Minimizing Interference
	References

	Data Provenance: Some Basic Issues
	Introduction
	Computing Provenance: Query Inversion
	Data Citation
	Archiving and Other Problems Associated with Provenance
	References

	Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network and Its Connections with Principal Partition
	Introduction
	Preliminaries and Notation
	Some Relevant Properties of Principal Partition
	An Algorithm Based on Principal Partition for Minimum-Weight Reinforcement
	Algorithm 1
	Proof of Correctness of Algorithm 1

	Minimum Weight Successive Augmentation to Increase the Strength of a Graph
	Another Algorithm for Optimal Reinforcement of a Graph
	An Algorithm to Compute Principal Sequence
	Computation of Principal Sequence Using the Subroutine to Compute the Strength
	 Proof of Correctness of the Above Algorithm for Computation of the Principal Sequence

	Acknowledgement
	References

	On-Line Edge-Coloring with a Fixed Number of Colors
	Introduction
	Notation and Terminology
	The Competitive Ratio
	A Tight Lower Bound for Fair Algorithms
	An Upper Bound for Fair Deterministic Algorithms
	A General Upper Bound

	The Algorithm Next-Fit
	The Algorithm First-Fit
	k-Colorable Graphs
	A Tight Lower Bound for Fair Algorithms
	An Upper Bound for Deterministic Algorithms
	The Algorithm Next-Fit
	The Algorithm First-Fit

	Conclusions
	References

	On Approximability of the Independent/Connected Edge Dominating Set Problems
	Introduction
	Independent Edge Dominating Set
	Connected Edge Dominating Set
	Connected Vertex Cover
	References

	Model Checking CTL Properties of Pushdown Systems
	Introduction
	Preliminaries
	Assumption Semantics
	Model Checking EF
	Model Checking CTL
	References

	A Decidable Dense Branching-Time Temporal Logic
	Introduction
	Timed Tree Automata
	Timed Computation Tree Logic
	Finite Satisfiability
	Restricting the Semantics to Timed Trees

	Decidability of Finite Satisfiability
	Conclusions
	Acknowledgements
	References

	Fair Equivalence Relations
	Introduction
	Definitions
	Expressiveness with ∃-Bisimulation
	Expressiveness with Game-Bisimulation and ∀-Bisimulation
	Discussion
	References

	Arithmetic Circuits and Polynomial Replacement Systems
	Introduction
	Motivation
	Results
	Paper Organization

	Counting Circuits vs. Counting Trees
	How to Generate Polynomials
	Different Types of Replacement Systems
	Simple Polynomial Replacement Systems
	Simple Deterministic or Acyclic Polynomial Replacement Systems
	Idempotent Polynomial Replacement Systems

	Complexity Results for Simple Replacement Systems
	Deterministic Systems
	Acyclic Systems
	Idempotent Systems

	Conclusion
	Acknowledgment
	References

	Depth-3 Arithmetic Circuits for S_n^2(X) and Extensions of the Graham-Pollack Theorem
	Introduction
	The Graham-Pollack Theorem
	The Odd Cover Problem
	ΣΠΣ Arithmetic Circuits

	Our Results
	Computing S_n^2(X) over Finite Fields of Odd Characteristic
	The Odd Cover Problem and Computing S_n^2(X) over GF(2)
	Computing S_n^2(X) over C
	1 mod_p Cover Problem, _p an Odd Prime
	Computing $S_n^2(X) over R and Q

	Upper Bounds
	The Odd Cover Problem and Computing S_n^2(X) over GF(2)

	Lower Bounds
	Preliminaries
	Lower Bounds for GF(2)

	Acknowledgements
	References

	The Bounded Weak Monadic Quantifier Alternation Hierarchy of Equational Graphs Is Infinite
	Introduction
	Acknowledgements
	Preliminary
	Ehrenfeucht-Fraissé Games
	Ehrenfeucht-Fraissé Games for Weak Monadic Second-Order Logic
	First Proof of Theorem 1

	Arithmetical Hierarchy and Graph Hierarchy
	Arithmetical Hierarchy
	Second Proof of Theorem 1
	Thomas Theorem

	References

	Combining Semantics with Non-standard Interpreter Hierarchies
	Introduction
	Foundations for Languages and Semantics
	Semantics Properties and Language Dialects
	Combining Properties

	Programming Languages
	Towers of Non-standard Interpreters
	Classical Interpreter Tower
	Semantics Modifiers
	Non-standard Translation
	Semantics Inversion

	Related Work
	Conclusion and Future Work
	References

	Using Modes to Ensure Subject Reduction for Typed Logic Programs with Subtyping
	Introduction
	The Type System
	Type Expressions
	Typed Programs

	The Subtype and Instantiation Hierarchies
	Modifying Variable Typings
	Typed Substitutions

	Conditions for Ensuring Ordered Substitutions
	Type Inequality Systems
	Computing a Principal Solution
	Principal Variable Typings

	Nicely Typed Programs
	Discussion
	Acknowledgements
	References

	Dynamically Ordered Probabilistic Choice Logic Programming
	Introduction
	Dynamically Ordered Probabilistic Choice Logic Programs
	An Application of DOP-CLPs: Equilibria of Strategic Games
	Strategic Games
	Transforming Strategic Games to DOP-CLPs

	Relationships to Other Approaches
	Logic Programming
	Priorities
	Uncertainty
	Games and Logic Programming
	References

	Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems
	Introduction
	What Is the Nature of This Evidence?
	What Is the Current Status of This "Third Zone'' of Discussion?
	The Substantial Open Question About Parameterized Complexity

	Prototype: An Improved FPT Algorithm for the Max Leaf Spanning Tree Problem
	The Kernelization Lemma and the Method of Coordinatized Kernels
	Catalytic Reduction in Search Tree Branching
	Analysis of the Running Time

	Catalytic Branching as General {it FPT} Technique
	Concluding Remarks
	References

	Planar Graph Blocking for External Searching
	Introduction
	Efficient Blocking of Planar Graphs
	Blocking of Planar Mesh
	Well-Shaped Planar Meshes
	Upper Bound on Speed-Up in a Planar Mesh
	Efficient Blocking of Planar Meshes

	Conclusions
	References

	A Complete Fragment of Higher-Order Duration μ-Calculus
	Introduction
	Preliminaries on HDC with Abstract Semantics
	Languages
	Frames, Models, and Satisfaction
	Abbreviations
	Proof System

	μHDC
	Languages of μHDC
	Frames, Models, and Satisfaction

	Simple μHDC Formulas
	Super-Dense Chop
	Simple Formulas

	A Complete Proof System for the Simple Fragment of μHDC
	The Completeness Theorem

	Acknowledgements
	References

	A Complete Axiomatisation for Timed Automata
	Introduction
	A Language for Timed Automata
	Symbolic Timed Bisimulation
	The Proof System
	Completeness
	Conclusion and Related Work
	References

	Text Sparsification via Local Maxima* Extended Abstract
	Introduction
	The NP-Hardness Result
	The Combinatorial Problem
	The Reduction

	The Sparsification Algorithm
	Experimental Results
	Conclusion and Open Questions
	References

	Approximate Swapped Matching
	Introduction
	Problem Definition
	Intuition and Key Idea
	Randomized Alphabet Reduction
	Deterministic Alphabet Reduction
	Conclusion and Open Problems
	Acknowledgments
	References

	A Semantic Theory for Heterogeneous System Design
	Introduction
	B¨uchi Testing
	Alternative Characterizations and Conservativity
	B¨uchi Testing and Heterogeneous System Design
	Example
	Related Work
	Conclusions and Future Work
	References

	Formal Verification of the Ricart-Agrawala Algorithm
	Introduction
	Implementation of the Ricart-Agrawala Algorithm
	Proof of the Mutual Exclusion Property
	Bottom Up Assertions
	Top Down Assertions

	A Proof Rule for Accessibility
	Representation by Diagrams
	Encapsulation Conventions

	Proof of Accessibility Property
	Auxiliary Assertions Needed for the Proof
	Usage of STeP in the Proof
	Acknowledgment
	References

	On Distribution-Specific Learning with Membership Queries versus Pseudorandom Generation
	Introduction
	Preliminaries
	Predictability

	Weak Pseudorandom Generators
	Weak Pseudorandomness versus Predictability
	References

	Θ_2^p-Completeness: A Classical Approach for New Results
	Introduction
	The Machine Based Technique
	Basic Problems Being Complete for Θ_2^p
	Sufficient Conditions for Θ_2^p
	Remark: We Can Use 2SAT Instead of 3SAT

	Applications of the Method
	Θ_2^p-Complete Combinatorial Problems
	Transcription to Δ_2^p: TSPcompare and TSPequality
	Voting Schemes

	Acknowledgement
	References

	Is the Standard Proof System for SAT P-Optimal?
	Introduction and Overview
	Preliminaries
	Q and the P-Optimality of sat
	Collapse of NPSV and Effective Interpolation
	Relations between Completeness Assumptions
	Existence of (P-)Optimal Proof Systems
	Conclusion
	References

	A General Framework for Types in Graph Rewriting
	Introduction
	Hypergraph Rewriting and Hypergraph Annotation
	Static Analysis and Type Systems for Graph Rewriting
	Case Studies
	A Type System for the Polyadic π-Calculus
	Concurrent Object-Oriented Programming

	Conclusion and Comparison to Related Work
	Acknowledgements
	References

	The Ground Congruence for Chi Calculus
	Introduction and χ-Calculus with Mismatch
	Barbed Congruence
	Axiomatic System
	Ground Congruence
	Remark
	References

	Inheritance in the Join Calculus
	Introduction
	The Objective Join Calculus
	Inheritance and Concurrency
	Inheritance Anomaly
	Related and Future Works
	Conclusions
	References

	Approximation Algorithms for Bandwidth and Storage Allocation Problems under Real Time Constraints
	Introduction
	The RP Problem
	A LP Based Approximation Algorithm
	The LP Formulation
	The Algorithm for Obtaining a Stable Solution
	Obtaining a Feasible Solution

	A Fully Polynomial Algorithm
	A Combinatorial Algorithm
	The Multiple Channel Case
	Conclusions
	References

	Dynamic Spectrum Allocation: The Impotency of Duration Notification
	Introduction
	The Lower Bound Construction
	References

	The Fine Structure of Game Lambda Models
	Introduction
	Categories of Games
	Approximating Strategies
	The Fine Structure of the Game Models
	Conclusions
	References

	Strong Normalization of Second Order Symmetric λ-Calculus
	Introduction
	The Symmetric λ-Calculus of Barbanera and Berardi
	Pure Symmetric λ-Calculus
	Typed Symmetric λ-Calculus
	Second Order Typed Symmetric λ-Calculus
	Extensions

	Proof of Strong Normalization
	Reducibility Candidates
	Properties of Reducibility Candidates
	Interpretation of Formulas
	Proof of Strong Normalization
	References

	Scheduling to Minimize the Average Completion Time of Dedicated Tasks
	Introduction
	A Reduction from Non-preemptive to Preemptive
	The Algorithm
	Analysis of Running Time
	Analysis of the Sum of Completion Times

	Solving the Preemptive Problem
	References

	Hunting for Functionally Analogous Genes
	Introduction
	 Background
	 Complexity Results
	A Randomized Approximation Algorithm for the CORE-CLIQUE Problem
	References

	Keeping Track of the Latest Gossip in Shared Memory Systems
	Introduction
	The Model
	The Protocol
	Update and Consume Protocols
	The READ and WRITE Protocols
	Causal Order

	The Gossip Algorithm
	Primary Information
	Comparing Primary Information
	Secondary Information
	Labeling from a Bounded Set

	Discussion
	Acknowledgments
	References

	Concurrent Knowledge and Logical Clock Abstractions
	Introduction
	Motivation
	Background
	Objectives

	Preliminaries
	System Model
	Logical Clocks

	Monotonic Facts
	Clocks of Arbitrary Dimensions
	Attaining Knowledge Using Clocks
	Concluding Remarks
	References

	Decidable Hierarchies of Starfree Languages
	Introduction
	Preliminaries
	A Theory of Forbidden Patterns
	Hierarchies of Iterated Patterns
	Auxiliary Results
	Pattern Iterator versus Polynomial Closure
	Hierarchies, Decidability, and Starfreeness

	Consequences for Concatenation Hierarchies
	References

	Prefix Languages of Church-Rosser Languages
	Introduction
	Basic Definitions and Ideas
	Some Examples
	What Is Happening in Prefix Reductions?
	Main Result
	Conclusion
	Acknowledgements
	References

	Author Index

