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Preface

The growth in the amount of data collected and generated has exploded in
recent times with the widespread automation of various day-to-day activities,
advances in high-level scientific and engineering research and the development
of efficient data collection tools. This has given rise to the need for automati-
cally analyzing the data in order to extract knowledge from it, thereby making
the data potentially more useful.

Knowledge discovery and data mining (KDD) is the process of identifying
valid, novel, potentially useful and ultimately understandable patterns from
massive data repositories. It is a multi-disciplinary topic, drawing from sev-
eral fields including expert systems, machine learning, intelligent databases,
knowledge acquisition, case-based reasoning, pattern recognition and statis-
tics.

Many data mining systems have typically evolved around well-organized
database systems (e.g., relational databases) containing relevant information.
But, more and more, one finds relevant information hidden in unstructured
text and in other complex forms. Mining in the domains of the world-wide
web, bioinformatics, geoscientific data, and spatial and temporal applications
comprise some illustrative examples in this regard. Discovery of knowledge,
or potentially useful patterns, from such complex data often requires the ap-
plication of advanced techniques that are better able to exploit the nature
and representation of the data. Such advanced methods include, among oth-
ers, graph-based and tree-based approaches to relational learning, sequence
mining, link-based classification, Bayesian networks, hidden Markov models,
neural networks, kernel-based methods, evolutionary algorithms, rough sets
and fuzzy logic, and hybrid systems. Many of these methods are developed in
the following chapters.

In this book, we bring together research articles by active practitioners
reporting recent advances in the field of knowledge discovery, where the in-
formation is mined from complex data, such as unstructured text from the
world-wide web, databases naturally represented as graphs and trees, geoscien-
tific data from satellites and visual images, multimedia data and bioinformatic
data. Characteristics of the methods and algorithms reported here include the
use of domain-specific knowledge for reducing the search space, dealing with
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uncertainty, imprecision and concept drift, efficient linear and/or sub-linear
scalability, incremental approaches to knowledge discovery, and increased level
and intelligence of interactivity with human experts and decision makers. The
techniques can be sequential, parallel or stream-based in nature.

The book has been divided into two main sections: foundations and appli-
cations. The chapters in the foundations section present general methods for
mining complex data. In Chapter 1, Bandyopadhyay and Maulik present an
overview of the field of data mining and knowledge discovery. They discuss
the main concepts of the field, the issues and challenges, and recent trends
in data mining, which provide the context for the subsequent chapters on
methods and applications.

In Chapter 2, Ghosh, Kumar and Crawford address the issue of high di-
mensionality in both the attributes and class values of complex data. Their
approach builds a binary hierarchical classifier by decomposing the set of
classes into smaller partitions and performing a two-class learning problem
between each partition. The simpler two-class learning problem often allows a
reduction in the dimensionality of the attribute space. Their approach shows
improvement over other approaches to the multi-class learning problem and
also results in the discovery of knowledge in the form of the class hierarchy.

Cook, Holder, Coble and Potts describe techniques for mining complex
data represented as a graph in Chapter 3. Many forms of complex data in-
volve entities, their attributes, and their relationships to other entities. It
is these relationships that make appropriate a graph representation of the
data. The chapter describes numerous techniques based on the core Subdue
methodology that uses data compression as a metric for interestingness in
mining knowledge from the graph data. These techniques include supervised
and unsupervised learning, clustering and graph grammar learning. They ad-
dress efficiency issues by introducing an incremental approach to processing
streaming graph data. They also introduce a method for mining graphs in
which relevant examples are embedded, possibly overlapping, in one large
graph. Numerous successes are documented in a number of domains.

In Chapter 4, Gärtner also presents techniques for mining graph data,
but these techniques are based on kernel methods which implicitly map the
graph data to a higher-dimensional, non-relational space where learning is
easier, thus avoiding the computational complexity of graph operations for
matching and covering. While kernel methods have been applied to single
graphs, Gärtner introduces kernels that apply to sets of graphs and shows their
effectiveness on problems from the fields of relational reinforcement learning
and molecular classification.

While graphs represent one of the most expressive forms of complex data
representations, some specializations of graphs (e.g., trees) still allow the rep-
resentation of significant relational information, but with reduced computa-
tional cost. In Chapter 5, Zaki presents a technique called TreeMiner for
finding all frequent subtrees in a forest of trees and compares this approach
to a pattern-matching approach. Zaki shows results indicating a significant
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increase in speed over the pattern-matching approach and applies the new
technique to the problem of mining usage patterns from real logs of website
browsing behavior.

Another specialized form in which complex data might be expressed is a se-
quence. In Chapter 6, Sarawagi discusses several methods for mining sequence
data, i.e., data modeled as a sequence of discrete multi-attribute records. She
reviews state-of-the-art techniques in sequence mining and applies these to two
real applications: address cleaning and information extraction from websites.

In Chapter 7, Getoor returns to the more general graph representation of
complex data, but includes probabilistic information about the distribution
of links (or relationships) between entities. Getoor uses a structured logistic
regression model to learn patterns based on both links and entity attributes.
Results in the domains of web browsing and citation collections indicate that
the use of link distribution information improves classification performance.

The remaining chapters constitute the applications section of the book.
Significant successes have been achieved in a wide variety of domains, indi-
cating the potential benefits of mining complex data, rather than applying
simpler methods on simpler transformations of the data. Chapter 8 begins
with a contribution by Zhang and Wang describing techniques for mining
evolutionary trees, that is, trees whose parent–child relationships represent
actual evolutionary relationships in the domain of interest. A good example,
and one to which they apply their approach, is phylogenetic trees that describe
the evolutionary pathways of species at the molecular level. Their algorithm
efficiently discovers “cousin pairs,” which are two nodes sharing a common
ancestor, in a single tree or a set of trees. They present numerous experimen-
tal results showing the efficiency and effectiveness of their approach in both
synthetic and real domains, namely, phylogenic trees.

In Chapter 9, Jiang and Tan apply a variant of the Apriori-based associ-
ation rule-mining algorithm to the relational domain of Resource Description
Framework (RDF) documents. Their approach treats RDF relations as items
in the traditional association-rule mining framework. Their approach also
takes advantage of domain ontologies to provide generalizations of the RDF
relations. They apply their technique to a synthetically-generated collection of
RDF documents pertaining to terrorism and show that the method discovers
a small set of association rules capturing the main associations known to be
present in the domain.

Saha, Das and Chanda address the task of content-based image retrieval
by mapping image data into complex data using features based on shape,
texture and color in Chapter 10. They also develop an image retrieval sim-
ilarity measure based on human perception and improve retrieval accuracy
using feedback to establish the relevance of the various features. The authors
empirically validate the superiority of their method over competing methods
of content-based image retrieval using two large image databases.

In Chapter 11, Mukkamala and Sung turn to the problem of intrusion
detection. They perform a comparative analysis of three advanced mining
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methods: support vector machines, multivariate adaptive regression splines,
and linear genetic programs. Overall, they found that the three methods per-
formed similarly on the intrusion detection problem. However, they also found
that a significant increase in performance was possible using feature selection,
where the above three mining methods were used to rank features by rele-
vance. Their conclusions are empirically validated using the DARPA intrusion
detection benchmark database.

One scenario affecting the above methods for mining complex data is the
increasing likelihood that data will be collected via a continuous stream. In
Chapter 12, Gaber, Krishnaswamy and Zaslavsky present a theoretical frame-
work for mining algorithms applied to this scenario based on a model of on-
board, resource-constrained mining. They apply their model to the task of
on-board mining of data streams in sensor networks. In addition to this gen-
eral framework they have also developed lightweight mining algorithms for
clustering, classification and frequent itemset discovery. Their model and al-
gorithms are empirically validated using synthetic streaming data and the
resource-constrained environment of a common handheld computer.

Finally, in Chapter 13, Yang, Yan, Han and Wang also consider the task
of mining data streams. They specifically focus on the constraints that the
mining algorithm scan the data only once and adapt to evolving patterns
present in the data stream. They develop an evolutionary classifier based on a
naive Bayesian classifier and employ a train-and-test method combined with
a divergence measure to detect evolving characteristics of the data stream.
They perform extensive empirical testing based on synthetic data to show the
efficiency and effectiveness of their approach.

In summary, the chapters on the foundations and applications of mining
complex data provide a representative selection of the available methods and
their evaluation in real domains. While the field is rapidly evolving into new
algorithms and new types of complex data, these chapters clearly indicate
the importance and potential benefit of developing such algorithms to mine
complex data. The book may be used either in a graduate level course as
part of the subject of data mining, or as a reference book for research workers
working in different aspects of mining complex data.

We take this opportunity to thank all the authors for contributing chapters
related to their current research work that provide the state of the art in
advanced methods for mining complex data. We are grateful to Mr S. Santra
of Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India, for
providing technical assistance during the preparation of the final manuscript.
Finally, a vote of thanks to Ms Catherine Drury of Springer Verlag London
Ltd. for her initiative and constant support.

January, 2005 Sanghamitra Bandyopadhyay
Ujjwal Maulik

Lawrence B. Holder
Diane J. Cook
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Knowledge Discovery and Data Mining

Sanghamitra Bandyopadhyay and Ujjwal Maulik

Summary. Knowledge discovery and data mining has recently emerged as an im-
portant research direction for extracting useful information from vast repositories of
data of various types. This chapter discusses some of the basic concepts and issues
involved in this process with special emphasis on different data mining tasks. The
major challenges in data mining are mentioned. Finally, the recent trends in data
mining are described and an extensive bibliography is provided.

1.1 Introduction

The sheer volume and variety of data that is routinely being collected as a
consequence of widespread automation is mind-boggling. With the advantage
of being able to store and retain immense amounts of data in easily accessible
form comes the challenge of being able to integrate the data and make sense
out of it. Needless to say, this raw data potentially stores a huge amount of
information, which, if utilized appropriately, can be converted into knowledge,
and hence wealth for the human race. Data mining (DM) and knowledge
discovery (KD) are related research directions that have emerged in the recent
past for tackling the problem of making sense out of large, complex data sets.

Traditionally, manual methods were employed to turn data into knowl-
edge. However, sifting through huge amounts of data manually and making
sense out of it is slow, expensive, subjective and prone to errors. Hence the
need to automate the process arose; thereby leading to research in the fields
of data mining and knowledge discovery. Knowledge discovery from databases
(KDD) evolved as a research direction that appears at the intersection of re-
search in databases, machine learning, pattern recognition, statistics, artificial
intelligence, reasoning with uncertainty, expert systems, information retrieval,
signal processing, high performance computing and networking.

Data stored in massive repositories is no longer only numeric, but could be
graphical, pictorial, symbolic, textual and linked. Typical examples of some
such domains are the world-wide web, geoscientific data, VLSI chip layout
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and routing, multimedia, and time series data as in financial markets. More-
over, the data may be very high-dimensional as in the case of text/document
representation. Data pertaining to the same object is often stored in different
forms. For example, biologists routinely sequence proteins and store them in
files in a symbolic form, as a string of amino acids. The same protein may also
be stored in another file in the form of individual atoms along with their three
dimensional co-ordinates. All these factors, by themselves or when taken to-
gether, increase the complexity of the data, thereby making the development
of advanced techniques for mining complex data imperative. A cross-sectional
view of some recent approaches employing advanced methods for knowledge
discovery from complex data is provided in the different chapters of this book.
For the convenience of the reader, the present chapter is devoted to the de-
scription of the basic concepts and principles of data mining and knowledge
discovery, and the research issues and challenges in this domain. Recent trends
in KDD are also mentioned.

1.2 Steps in the Process of Knowledge Discovery

Essentially, the task of knowledge discovery can be classified into data prepa-
ration, data mining and knowledge presentation. Data mining is the core step
where the algorithms for extracting the useful and interesting patterns are
applied. In this sense, data preparation and knowledge presentation can be
considered, respectively, to be preprocessing and postprocessing steps of data
mining. Figure 1.1 presents a schematic view of the steps involved in the pro-
cess of knowledge discovery. The different issues pertaining to KDD are now
described.

Repository
Data Data PreparationRaw

Data

Processed

Data

Cleaned,
Integrated,
Filtered
Data

Processed

Data
Data Mining

Extracted

Patterns Representation
Knowledge

Base
Knowledge

Users

Fig. 1.1. The knowledge discovery process.

1.2.1 Database Theory and Data Warehousing

An integral part of KDD is the database theory that provides the necessary
tools to store, access and manipulate data. In the data preparation step, the
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data is first cleaned to reduce noisy, erroneous and missing data as far as
possible. The different sub tasks of the data preparation step are often per-
formed iteratively by utilizing the knowledge gained in the earlier steps in the
subsequent phases. Once the data is cleaned, it may need to be integrated
since there could be multiple sources of the data. After integration, further
redundancy removal may need to be carried out. The cleaned and integrated
data is stored in databases or data warehouses.

Data warehousing [40, 66] refers to the tasks of collecting and cleaning
transactional data to make them available for online analytical processing
(OLAP). A data warehouse includes [66]:

• Cleaned and integrated data: This allows the miner to easily look across
vistas of data without bothering about matters such as data standardiza-
tion, key determination, tackling missing values and so on.

• Detailed and summarized data: Detailed data is necessary when the miner
is interested in looking at the data in its most granular form and is nec-
essary for extracting important patterns. Summary data is important for
a miner to learn about the patterns in the data that have already been
extracted by someone else. Summarized data ensures that the miner can
build on the work of others rather than building everything from scratch.

• Historical data: This helps the miner in analyzing past trends/seasonal
variations and gaining insights into the current data.

• Metadata: This is used by the miner to describe the context and the mean-
ing of the data.

It is important to note that data mining can be performed without the
presence of a data warehouse, though data warehouses greatly improve the
efficiency of data mining. Since databases often constitute the repository of
data that has to be mined, it is important to study how the current database
management system (DBMS) capabilities may be utilized and/or enhanced
for efficient mining [64].

As a first step, it is necessary to develop efficient algorithms for imple-
menting machine learning tools on top of large databases and utilizing the
existing DBMS support. The implementation of classification algorithms such
as C4.5 or neural networks on top of a large database requires tighter coupling
with the database system and intelligent use of coupling techniques [53, 64].
For example, clustering may require efficient implementation of the nearest
neighbor algorithms on top of large databases.

In addition to developing algorithms that can work on top of existing
DBMS, it is also necessary to develop new knowledge and data discovery
management systems (KDDMS) to manage KDD systems [64]. For this it is
necessary to define KDD objects that may be far more complex than database
objects (records or tuples), and queries that are more general than SQL and
that can operate on the complex objects. Here, KDD objects may be rules,
classifiers or a clustering [64]. The KDD objects may be pre-generated (e.g.,
as a set of rules) or may be generated at run time (e.g., a clustering of the
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data objects). KDD queries may now involve predicates that can return a
classifier, rule or clustering as well as database objects such as records or
tuples. Moreover, KDD queries should satisfy the concept of closure of a query
language as a basic design paradigm. This means that a KDD query may take
as argument another compatible type of KDD query. Also KDD queries should
be able to operate on both KDD objects and database objects. An example
of such a KDD query may be [64]: “Generate a classifier trained on a user
defined training set generated though a database query with user defined
attributes and user specified classification categories. Then find all records in
the database that are wrongly classified using that classifier and use that set
as training data for another classifier.” Some attempts in this direction may
be found in [65, 120].

1.2.2 Data Mining

Data mining is formally defined as the process of discovering interesting, pre-
viously unknown and potentially useful patterns from large amounts of data.
Patterns discovered could be of different types such as associations, subgraphs,
changes, anomalies and significant structures. It is to be noted that the terms
interesting and potentially useful are relative to the problem and the con-
cerned user. A piece of information may be of immense value to one user
and absolutely useless to another. Often data mining and knowledge discov-
ery are treated as synonymous, while there exists another school of thought
which considers data mining to be an integral step in the process of knowledge
discovery.

Data mining techniques mostly consist of three components [40]: a model,
a preference criterion and a search algorithm. The most common model func-
tions in current data mining techniques include classification, clustering, re-
gression, sequence and link analysis and dependency modeling. Model rep-
resentation determines both the flexibility of the model for representing the
underlying data and the interpretability of the model in human terms. This
includes decision trees and rules, linear and nonlinear models, example-based
techniques such as NN-rule and case-based reasoning, probabilistic graphical
dependency models (e.g., Bayesian network) and relational attribute models.

The preference criterion is used to determine, depending on the under-
lying data set, which model to use for mining, by associating some measure
of goodness with the model functions. It tries to avoid overfitting of the un-
derlying data or generating a model function with a large number of degrees
of freedom. Finally, once the model and the preference criterion are selected,
specification of the search algorithm is defined in terms of these along with
the given data.

1.2.3 Knowledge Presentation

Presentation of the information extracted in the data mining step in a format
easily understood by the user is an important issue in knowledge discovery.
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Since this module communicates between the users and the knowledge dis-
covery step, it goes a long way in making the entire process more useful and
effective. Important components of the knowledge presentation step are data
visualization and knowledge representation techniques. Presenting the infor-
mation in a hierarchical manner is often very useful for the user to focus
attention on only the important and interesting concepts. This also enables
the users to see the discovered patterns at multiple levels of abstraction. Some
possible ways of knowledge presentation include:

• rule and natural language generation,
• tables and cross tabulations,
• graphical representation in the form of bar chart, pie chart and curves,
• data cube view representation, and
• decision trees.

The following section describes some of the commonly used tasks in data
mining.

1.3 Tasks in Data Mining

Data mining comprises the algorithms employed for extracting patterns from
the data. In general, data mining tasks can be classified into two categories,
descriptive and predictive [54]. The descriptive techniques provide a summary
of the data and characterize its general properties. The predictive techniques
learn from the current data in order to make predictions about the behavior of
new data sets. The commonly used tasks in data mining are described below.

1.3.1 Association Rule Mining

The root of the association rule mining problem lies in the market basket or
transaction data analysis. A lot of information is hidden in the thousands of
transactions taking place daily in supermarkets. A typical example is that
if a customer buys butter, bread is almost always purchased at the same
time. Association analysis is the discovery of rules showing attribute–value
associations that occur frequently.

Let I = {i1, i2, . . . , in} be a set of n items and X be an itemset where X ⊂
I. A k-itemset is a set of k items. Let T = {(t1, X1), (t2, X2) . . . , (tm, Xm)} be
a set of m transactions, where ti and Xi, i = 1, 2, . . . , m, are the transaction
identifier and the associated itemset respectively. The cover of an itemset X
in T is defined as follows:

cover(X, T ) = {ti|(ti, Xi) ∈ T, X ⊂ Xi}. (1.1)

The support of an itemset X in T is

support(X, T ) = |cover(X, T )| (1.2)
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and the frequency of an itemset is

frequency(X, T ) =
support(X, T )

|T | . (1.3)

In other words, support of an itemset X is the number of transactions where
all the items in X appear in each transaction. The frequency of an itemset
represents the probability of its occurrence in a transaction in T . An itemset is
called frequent if its support in T is greater than some threshold min sup. The
collection of frequent itemsets with respect to a minimum support min sup
in T , denoted by F(T, min sup) is defined as

F(T, min sup) = {X ⊂ I, support(X, T ) > min sup}. (1.4)

The objective in association rule mining is to find all rules of the form
X ⇒ Y , X

⋂
Y = ∅ with probability c%, indicating that if itemset X occurs

in a transaction, the itemset Y also occurs with probability c%. X is called
the antecedent of the rule and Y is called the consequent of the rule. Support
of a rule denotes the percentage of transactions in T that contains both X
and Y . This is taken to be the probability P (X

⋃
Y ). An association rule is

called frequent if its support exceeds a minimum value min sup.
The confidence of a rule X ⇒ Y in T denotes the percentage of the

transactions in T containing X that also contains Y . It is taken to be the
conditional probability P (X|Y ). In other words,

confidence(X ⇒ Y, T ) =
support(X

⋃
Y, T )

support(X, T )
. (1.5)

A rule is called confident if its confidence value exceeds a threshold min conf .
The problem of association rule mining can therefore be formally stated as
follows: Find the set of all rules R of the form X ⇒ Y such that

R = { X ⇒ Y |X, Y ⊂ I, X
⋂

Y = ∅, X⋃Y = F(T, min sup),
confidence(X ⇒ Y, T ) > min conf}. (1.6)

Other than support and confidence measures, there are other measures of
interestingness associated with association rules. Tan et al. [125] have pre-
sented an overview of various measures proposed in statistics, machine learn-
ing and data mining literature in this regard.

The association rule mining process, in general, consists of two steps:

1. Find all frequent itemsets,
2. Generate strong association rules from the frequent itemsets.

Although this is the general framework adopted in most of the research in
association rule mining [50, 60], there is another approach to immediately
generate a large subset of all association rules [132].
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The task of generating frequent itemsets is a challenging issue due to the
huge number of itemsets that must be considered. The number of itemsets
grows exponentially with the number of items |I|. A commonly used algo-
rithm for generating frequent itemsets is the Apriori algorithm [3, 4]. It is
based on the observation that if an itemset is frequent, then all its possible
subsets are also frequent. Or, in other words, if even one subset of an item-
set X is not frequent, then X cannot be frequent. Thus starting from all 1
itemsets, and proceeding in a recursive fashion, if any itemset X is not fre-
quent, then that branch of the tree is pruned, since any possible superset of X
can never be frequent. Chapter 9 describes an approach based on the Apriori
algorithm for mining association rules from resource description framework
documents, which is a data modeling language proposed by the World Wide
Web Consortium (W3C) for describing and interchanging metadata about
web resources.

1.3.2 Classification

A typical pattern recognition system consists of three phases. These are data
acquisition, feature extraction and classification. In the data acquisition phase,
depending on the environment within which the objects are to be classified,
data are gathered using a set of sensors. These are then passed on to the
feature extraction phase, where the dimensionality of the data is reduced
by measuring/retaining only some characteristic features or properties. In a
broader perspective, this stage significantly influences the entire recognition
process. Finally, in the classification phase, the extracted features are passed
on to the classifier that evaluates the incoming information and makes a fi-
nal decision. This phase basically establishes a transformation between the
features and the classes.

The problem of classification is basically one of partitioning the feature
space into regions, one region for each category of input. Thus it attempts
to assign every data point in the entire feature space to one of the possible
(say, k) classes. Classifiers are usually, but not always, designed with labeled
data, in which case these problems are sometimes referred to as supervised
classification (where the parameters of a classifier function D are learned).
Some common examples of the supervised pattern classification techniques
are the nearest neighbor (NN) rule, Bayes maximum likelihood classifier and
perceptron rule [7, 8, 31, 36, 45, 46, 47, 52, 105, 127]. Figure 1.2 provides
a block diagram showing the supervised classification process. Some of the
related classification techniques are described below.
NN Rule [36, 46, 127]
Let us consider a set of n pattern points of known classification {x1,x2, . . . ,
xn}, where it is assumed that each pattern belongs to one of the classes
C1, C2, . . . , Ck. The NN classification rule then assigns a pattern x of unknown
classification to the class of its nearest neighbor, where xi ∈ {x1,x2, . . . ,xn}
is defined to be the nearest neighbor of x if
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Training Set

Test Set

Learn the Classifier Produce Model

Unknown data Classify Data

ABSTRACTION PHASE

Model

GENERALIZATION PHASE

Fig. 1.2. The supervised classification process.

D(xi,x) = min
l
{D(xl,x)}, l = 1, 2, . . . , n (1.7)

where D is any distance measure definable over the pattern space.
Since the aforesaid scheme employs the class label of only the nearest

neighbor to x, this is known as the 1-NN rule. If k neighbors are considered
for classification, then the scheme is termed as the k-NN rule. The k-NN rule
assigns a pattern x of unknown classification to class Ci if the majority of the
k nearest neighbors belongs to class Ci. The details of the k-NN rule along
with the probability of error is available in [36, 46, 127].

The k-NN rule suffers from two severe limitations. Firstly, all the n training
points need to be stored for classification and, secondly, n distance compu-
tations are required for computing the nearest neighbors. Some attempts at
alleviating the problem may be found in [14].

Bayes Maximum Likelihood Classifier [7, 127]
In most of the practical problems, the features are usually noisy and the
classes in the feature space are overlapping. In order to model such systems,
the feature values x1, x2, . . . , xj , . . . , xN are considered as random values in
the probabilistic approach. The most commonly used classifier in such prob-
abilistic systems is the Bayes maximum likelihood classifier, which is now
described.

Let Pi denote the a priori probability and pi(x) denote the class condi-
tional density corresponding to the class Ci (i = 1, 2, . . . , k). If the classifier
decides x to be from the class Ci, when it actually comes from Cl, it incurs
a loss equal to Lli. The expected loss (also called the conditional average loss
or risk) incurred in assigning an observation x to the class Ci is given by
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ri(x) =
k∑

l=1

Lli p(Cl/x), (1.8)

where p(Cl/x) represents the probability that x is from Cl. Using Bayes for-
mula, Equation (1.8) can be written as,

ri(x) =
1

p(x)

k∑
l=1

Lli pl(x)Pl, (1.9)

where

p(x) =
k∑

l=1

pl(x)Pl.

The pattern x is assigned to the class with the smallest expected loss. The
classifier which minimizes the total expected loss is called the Bayes classifier.

Let us assume that the loss (Lli) is zero for correct decision and greater
than zero but the same for all erroneous decisions. In such situations, the
expected loss, Equation (1.9), becomes

ri(x) = 1− Pipi(x)
p(x)

. (1.10)

Since p(x) is not dependent upon the class, the Bayes decision rule is nothing
but the implementation of the decision functions

Di(x) = Pipi(x), i = 1, 2, . . . , k, (1.11)

where a pattern x is assigned to class Ci if Di(x) > Dl(x), ∀l �= i. This
decision rule provides the minimum probability of error. It is to be noted that
if the a priori probabilities and the class conditional densities are estimated
from a given data set, and the Bayes decision rule is implemented using these
estimated values (which may be different from the actual values), then the
resulting classifier is called the Bayes maximum likelihood classifier.

Assuming normal (Gaussian) distribution of patterns, with mean vector
µi and covariance matrix

∑
i, the Gaussian density pi(x) may be written as

pi(x) = 1

(2π)
N
2 |
∑

i|
1
2

exp[ −1
2
(x− µi)′∑

i
−1(x− µi)], (1.12)

i = 1, 2, . . . , k.

Then, Di(x) becomes (taking log)

Di(x) = lnPi − 1
2 ln |

∑
i| −

1
2
(x− µi)′∑

i
−1(x− µi) (1.13)

i = 1, 2, . . . , k



12 Sanghamitra Bandyopadhyay and Ujjwal Maulik

Note that the decision functions in Equation (1.13) are hyperquadrics, since
no terms higher than the second degree in the components of x appear in it.
It can thus be stated that the Bayes maximum likelihood classifier for normal
distribution of patterns provides a second-order decision surface between each
pair of pattern classes. An important point to be mentioned here is that if the
pattern classes are truly characterized by normal densities, then, on average,
no other surface can yield better results. In fact, the Bayes classifier designed
over known probability distribution functions, provides, on average, the best
performance for data sets which are drawn according to the distribution. In
such cases, no other classifier can provide better performance, on average, be-
cause the Bayes classifier gives minimum probability of misclassification over
all decision rules.

Decision Trees
A decision tree is an acyclic graph, of which each internal node, branch and
leaf node represents a test on a feature, an outcome of the test and classes
or class distribution, respectively. It is easy to convert any decision tree into
classification rules. Once the training data points are available, a decision tree
can be constructed from them from top to bottom using a recursive divide
and conquer algorithm. This process is also known as decision tree induction.
A version of ID3 [112] , a well known decision-tree induction algorithm, is
described below.

Decision tree induction (training data points, features)

1. Create a node N.
2. If all training data points belong to the same class (C) then return N as

a leaf node labelled with class C.
3. If cardinality (features) is NULL then return N as a leaf node with the

class label of the majority of the points in the training data set.
4. Select a feature (F) corresponding to the highest information gain label

node N with F.
5. For each known value fi of F, partition the data points as si.
6. Generate a branch from node N with the condition feature = fi.
7. If si is empty then attach a leaf labeled with the most common class in

the data points.
8. Else attach the node returned by Decision tree induction(si,(features-F)).

The information gain of a feature is measured in the following way. Let
the training data set (D) have n points with k distinct class labels. Moreover,
let ni be the number of data points belonging to class Ci (for i = 1, 2, . . . , k).
The expected information needed to classify the training data set is

I(n1, n2, . . . , nk) = −
k∑

i=1

pi logb(pi) (1.14)
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where pi (= ni

n ) is the probability that a randomly selected data point belongs
to class Ci. In case the information is encoded in binary the base b of the log
function is set to 2. Let the feature space be d-dimensional, i.e., F has d
distance values {f1, f2, . . . , fd}, and this is used to partition the data points
D into s subsets {D1, D2, . . . , Ds}. Moreover, let nij be the number of data
points of class Ci in a subset Dj . The entropy or expected information based
on the partition by F is given by

E(A) =
s∑

j=1

(
n1j , n2j . . . nkj

n
)I(n1j , n2j . . . nkj), (1.15)

where

I(n1j , n2j . . . nkj) = −
j=k∑
j=1

pij logb(pij). (1.16)

Here, pij is the probability that a data point in Di belongs to class Ci. The
corresponding information gain by branching on F is given by

Gain(F ) = I(n1, n2, . . . , nk)− E(A). (1.17)

The ID3 algorithm finds out the feature corresponding to the highest informa-
tion gain and chooses it as the test feature. Subsequently a node labelled with
this feature is created. For each value of the attribute, branches are generated
and accordingly the data points are partitioned.

Due to the presence of noise or outliers some of the branches of the deci-
sion tree may reflect anomalies causing the overfitting of the data. In these
circumstances tree-pruning techniques are used to remove the least reliable
branches, which allows better classification accuracy as well as convergence.

For classifying unknown data, the feature values of the data point are
tested against the constructed decision tree. Consequently a path is traced
from the root to the leaf node that holds the class prediction for the test data.

Other Classification Approaches
Some other classification approaches are based on learning classification rules,
Bayesian belief networks [68], neural networks [30, 56, 104], genetic algorithms
[17, 18, 19, 20, 21, 100] and support vector machines [29]. In Chapter 2,
a novel binary hierarchical classifier is built for tackling data that is high-
dimensional in both the attributes and class values. Here, the set of classes is
decomposed into smaller partitions and a two-class learning problem between
each partition is performed. The simpler two-class learning problem often
allows a reduction in the dimensionality of the attribute space.

1.3.3 Regression

Regression is a technique used to learn the relationship between one or more
independent (or, predictor) variables and a dependent (or, criterion) variable.
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The simplest form of regression is linear regression where the relationship
is modeled with a a straight line learned using the training data points as
follows.

Let us assume that for the input vector X (x1, x2, . . . , xn) (known as the
predictor variable), the value of the vector Y (known as the response variable)
(y1, y2, . . . , yn) is known. A straight line through the vectors X,Y can be
modeled as Y = α + βX where α and β are the regression coefficients and
slope of the line, computed as

β =
∑n

i=1(xi − x∗)(yi − y∗)∑n
i=1(xi − x∗)2

(1.18)

α = y∗ − βx∗ (1.19)

where x∗ and y∗ are the average of (x1, x2, . . . , xn) and (y1, y2, . . . , yn).
An extension of linear regression which involves more than one predictor

variable is multiple regression. Here a response variable can be modeled as a
linear function of a multidimensional feature vector. For example

Y = α + β1Xi + β2X2 + . . . + βnXn (1.20)

is a multiple regression model based on n predictor variables (X1, X2, . . . Xn).
For evaluating α, β1 and β2, the least square method can be applied.

Data having nonlinear dependence may be modeled using polynomial re-
gression. This is done by adding polynomial terms to the basic linear model.
Transformation can be applied to the variable to convert the nonlinear model
into a linear one. Subsequently it can be solved using the method of least
square. For example consider the following polynomial

Y = α + β1X + β2X
2 + . . . + βnXn (1.21)

The above polynomial can be converted to the following linear form by
defining the new variables X1 = X, X2 = X2, . . . , Xn = Xn and can be
solved using the method of least squares.

Y = α + β1X1 + β2X2 + . . . + βnXn (1.22)

1.3.4 Cluster Analysis

When the only data available are unlabelled, the classification problems are
sometimes referred to as unsupervised classification. Clustering [6, 31, 55,
67, 127] is an important unsupervised classification technique where a set of
patterns, usually vectors in a multidimensional space, are grouped into clusters
in such a way that patterns in the same cluster are similar in some sense and
patterns in different clusters are dissimilar in the same sense. For this it is
necessary to first define a measure of similarity which will establish a rule
for assigning patterns to a particular cluster. One such measure of similarity
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may be the Euclidean distance D between two patterns x and z defined by
D = ‖x− z‖. The smaller the distance between x and z, the greater is the
similarity between the two and vice versa.

Clustering in N -dimensional Euclidean space IRN is the process of par-
titioning a given set of n points into a number, say K, of groups (or, clus-
ters) based on some similarity/dissimilarity metric. Let the set of n points
{x1,x2, . . . ,xn} be represented by the set S and the K clusters be repre-
sented by C1, C2, . . . , CK . Then

Ci �= ∅ for i = 1, . . . , K,
Ci

⋂
Cj = ∅ for i = 1, . . . , K, j = 1, . . . , K and i �= j, and⋃K

i=1 Ci = S.

Clustering techniques may be hierarchical or non-hierarchical [6]. In hierar-
chical clustering, the clusters are generated in a hierarchy, where every level
of the hierarchy provides a particular clustering of the data, ranging from a
single cluster (where all the points are put in the same cluster) to n clusters
(where each point comprises a cluster). Among the non-hierarchical cluster-
ing techniques, the K-means algorithm [127] has been one of the more widely
used ones; it consists of the following steps:

1. Choose K initial cluster centers z1, z2, . . . , zK randomly from the n points
{x1,x2, . . . ,xn}.

2. Assign point xi, i = 1, 2, . . . , n to cluster Cj , j ∈ {1, 2, . . . , K} iff

‖xi − zj‖ < ‖xi − zp‖, p = 1, 2, . . . , K, and j �= p.

Ties are resolved arbitrarily.
3. Compute new cluster centers z∗

1, z
∗
2, . . . , z

∗
K as follows :

z∗
i =

1
ni

Σxj∈Ci
xj i = 1, 2, . . . , K,

where ni is the number of elements belonging to cluster Ci.
4. If z∗

i = zi, i = 1, 2, . . . , K then terminate. Otherwise continue from Step
2.

Note that if the process does not terminate at Step 4 normally, then it is
executed for a maximum fixed number of iterations.

It has been shown in [119] that the K-means algorithm may converge to
values that are not optimal. Also global solutions of large problems cannot be
found within a reasonable amount of computation effort [122]. It is because of
these factors that several approximate methods, including genetic algorithms
and simulated annealing [15, 16, 91], are developed to solve the underlying
optimization problem. These methods have also been extended to the case
where the number of clusters is variable [13, 92], and to fuzzy clustering [93].

The K-means algorithm is known to be sensitive to outliers, since such
points can significantly affect the computation of the centroid, and hence the
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resultant partitioning. K-medoid attempts to alleviate this problem by us-
ing the medoid, the most centrally located object, as the representative of
the cluster. Partitioning around medoid (PAM) [75] was one of the earliest
K-medoid algorithms introduced. PAM finds K clusters by first finding a rep-
resentative object for each cluster, the medoid. The algorithm then repeatedly
tries to make a better choice of medoids analyzing all possible pairs of objects
such that one object is a medoid and the other is not. PAM is computation-
ally quite inefficient for large data sets and large number of clusters. The
CLARA algorithm was proposed by the same authors [75] to tackle this prob-
lem. CLARA is based on data sampling, where only a small portion of the
real data is chosen as a representative of the data and medoids are chosen
from this sample using PAM. CLARA draws multiple samples and outputs
the best clustering from these samples. As expected, CLARA can deal with
larger data sets than PAM. However, if the best set of medoids is never chosen
in any of the data samples, CLARA will never find the best clustering. Ng and
Han [96] proposed the CLARANS algorithm which tries to mix both PAM and
CLARA by searching only the subset of the data set. However, unlike CLARA,
CLARANS does not confine itself to any sample at any given time, but draws
it randomly at each step of the algorithm. Based upon CLARANS, two spa-
tial data mining algorithms, the spatial dominant approach, SD(CLARANS),
and the nonspatial dominant approach, NSD(CLARANS), were developed. In
order to make CLARANS applicable to large data sets, use of efficient spatial
access methods, such as R*-tree, was proposed [39]. CLARANS had a limita-
tion that it could provide good clustering only when the clusters were mostly
equisized and convex. DBSCAN [38], another popularly used density cluster-
ing technique that was proposed by Ester et al., could handle nonconvex and
non-uniformly-sized clusters. Balanced Iterative Reducing and Clustering us-
ing Hierarchies (BIRCH), proposed by Zhang et al. [138], is another algorithm
for clustering large data sets. It uses two concepts, the clustering feature and
the clustering feature tree, to summarize cluster representations which help
the method achieve good speed and scalability in large databases. Discussion
on several other clustering algorithms may be found in [54].

Deviation Detection

Deviation detection, an inseparably important part of KDD, deals with iden-
tifying if and when the present data changes significantly from previously
measured or normative data. This is also known as the process of detection
of outliers. Outliers are those patterns that are distinctly different from the
normal, frequently occurring, patterns, based on some measurement. Such de-
viations are generally infrequent or rare. Depending on the domain, deviations
may be just some noisy observations that often mislead the standard classifi-
cation or clustering algorithms, and hence should be eliminated. Alternatively,
they may become more valuable than the average data set because they con-
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tain useful information on the abnormal behavior of the system, described by
the data set.

The wide range of applications of outlier detection include fraud detection,
customized marketing, detection of criminal activity in e-commerce, network
intrusion detection, and weather prediction. The different approaches for out-
lier detection can be broadly categorized into three types [54]:

• Statistical approach: Here, the data distribution or the probability model
of the data set is considered as the primary factor.

• Distance-based approach: The classical definition of an outlier in this con-
text is: An object O in a data set T is a DB(p, D)-outlier if at least fraction
p of the objects in T lies greater than distance D from O [77].

• Deviation-based approach: Deviation from the main characteristics of the
objects are basically considered here. Objects that “deviate” from the
description are treated as outliers.

Some algorithms for outlier detection in data mining applications may be
found in [2, 115].

1.3.5 Major Issues and Challenges in Data Mining

In this section major issues and challenges in data mining regarding underlying
data types, mining techniques, user interaction and performance are described
[54].

Issues Related to the Underlying Data Types

• Complex and high dimensional data
Databases with very large number of records having high dimensionality
(large numbers of attributes) are quite common. Moreover, these databases
may contain complex data objects such as, hypertext and multimedia,
graphical data, transaction data, and spatial and temporal data. Conse-
quently mining these data may require exploring combinatorially explosive
search space and may sometimes result in spurious patterns. Therefore, it
is important that the algorithms developed for data mining tasks are very
efficient and can also exploit the advantages of techniques such as dimen-
sionality reduction, sampling, approximation methods, incorporation of
domain specific prior knowledge, etc. Moreover, it is essential to develop
different techniques for mining different databases, given the diversity of
the data types and the goals. Some such approaches are described in dif-
ferent chapters of this book. For example,
– hybridization of several computational intelligence techniques for fea-

ture selection from high-dimensional intrusion detection data is de-
scribed in Chapter 11,
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– complex data that is modeled as a sequence of discrete multi-attribute
records is tackled in Chapter 6, with two real applications, viz., address
cleaning and information extraction from websites,

– mining complex data represented as graphs forms the core of Chapters
3, 4 and 7, and

– tree mining is dealt with in Chapters 5 and 8.
• Missing, incomplete and noisy data

Sometime data stored in a database either may not have a few important
attributes or may have noisy values. These can result from operator error,
actual system and measurement failure, or from a revision of the data col-
lection process. These incomplete or noisy objects may confuse the mining
process causing the model to overfit/underfit the data. As a result, the ac-
curacy of the discovered patterns can be poor. Data cleaning techniques,
more sophisticated statistical methods to identify hidden attributes and
their dependencies, as well as techniques for identifying outliers are there-
fore required.

• Handling changing data and knowledge
Situations where the data set is changing rapidly (e.g., time series data
or data obtained from sensors deployed in real-life situations) may make
previously discovered patterns invalid. Moreover, the variables measured
in a given application database may be modified, deleted or augmented
with time. Incremental learning techniques are required to handle these
types of data.

Issues Related to Data Mining Techniques

• Parallel and distributed algorithms
The very large size of the underlying databases, the complex nature of the
data and their distribution motivated researchers to develop parallel and
distributed data mining algorithms.

• Problem characteristics
Though a number of data mining algorithms have been developed, there
is none that is equally applicable to a wide variety of data sets and can
be called the universally best data mining technique. For example, there
exist a number of classification algorithms such as decision-tree classi-
fiers, nearest-neighbor classifiers, neural networks, etc. When the data is
high-dimensional with a mixture of continuous and categorical attributes,
decision-tree-based classifiers may be a good choice. However they may
not be suitable when the true decision boundaries are nonlinear multivari-
ate functions. In such cases, neural networks and probabilistic models may
be a better choice. Thus, the particular data mining algorithm chosen is
critically dependent on the problem domain.

Issues Related to Extracted Knowledge

• Mining different types of knowledge
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Different users may be interested in different kinds of knowledge from the
same underlying database. Therefore, it is essential that the data mining
method allows a wide range of data analysis and knowledge discovery tasks
such as data characterization, classification and clustering.

• Understandability of the discovered patterns
In most of the applications, it is important to represent the discovered pat-
terns in more human understandable form such as natural language, visual
representation, graphical representation, rule structuring. This requires the
mining techniques to adopt more sophisticated knowledge representation
techniques such as rules, trees, tables, graphs, etc.

Issues Related to User Interaction and Prior Knowledge

• User interaction
The knowledge discovery process is interactive and iterative in nature as
sometimes it is difficult to estimate exactly what can be discovered from
a database. User interaction helps the mining process to focus the search
patterns, appropriately sampling and refining the data. This in turn results
in better performance of the data mining algorithm in terms of discovered
knowledge as well as convergence.

• Incorporation of a priori knowledge
Incorporation of a priori domain-specific knowledge is important in all
phases of a knowledge discovery process. This knowledge includes integrity
constraints, rules for deduction, probabilities over data and distribution,
number of classes, etc. This a priori knowledge helps with better conver-
gence of the data mining search as well as the quality of the discovered
patterns.

Issues Related to Performance of the Data Mining Techniques

• Scalability
Data mining algorithms must be scalable in the size of the underlying data,
meaning both the number of patterns and the number of attributes. The
size of data sets to be mined is usually huge, and hence it is necessary either
to design faster algorithms or to partition the data into several subsets,
executing the algorithms on the smaller subsets, and possibly combining
the results [111].

• Efficiency and accuracy
Efficiency and accuracy of a data mining technique is a key issue. Data
mining algorithms must be very efficient such that the time required to
extract the knowledge from even a very large database is predictable and
acceptable. Moreover, the accuracy of the mining system needs to be better
than or as good as the acceptable range.
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• Ability to deal with minority classes
Data mining techniques should have the capability to deal with minority
or low-probability classes whose occurrence in the data may be rare.

1.4 Recent Trends in Knowledge Discovery

Data mining is widely used in different application domains, where the data is
not necessarily restricted to conventional structured types, e.g., those found in
relational databases, transactional databases and data warehouses. Complex
data that are nowadays widely collected and routinely analyzed include:

• Spatial data – This type of data is often stored in Geographical Informa-
tion Systems (GIS), where the spatial coordinates constitute an integral
part of the data. Some examples of spatial data are maps, preprocessed
remote sensing and medical image data, and VLSI chip layout. Clustering
of geographical points into different regions characterized by the presence
of different types of land cover, such as lakes, mountains, forests, residen-
tial and business areas, agricultural land, is an example of spatial data
mining.

• Multimedia data – This type of data may contain text, image, graphics,
video clips, music and voice. Summarizing an article, identifying the con-
tent of an image using features such as shape, size, texture and color,
summarizing the melody and style of a music, are some examples of mul-
timedia data mining.

• Time series data – This consists of data that is temporally varying. Exam-
ples of such data include financial/stock market data. Typical applications
of mining time series data involve prediction of the time series at some fu-
ture time point given its past history.

• Web data – The world-wide web is a vast repository of unstructured infor-
mation distributed over wide geographical regions. Web data can typically
be categorized into those that constitute the web content (e.g., text, im-
ages, sound clips), those that define the web structure (e.g., hyperlinks,
tags) and those that monitor the web usage (e.g., http logs, application
server logs). Accordingly, web mining can also be classified into web con-
tent mining, web structure mining and web usage mining.

• Biological data – DNA, RNA and proteins are the most widely studied
molecules in biology. A large number of databases store biological data
in different forms, such as sequences (of nucleotides and amino acids),
atomic coordinates and microarray data (that measure the levels of gene
expression). Finding homologous sequences, identifying the evolutionary
relationship of proteins and clustering gene microarray data are some ex-
amples of biological data mining.

In order to deal with different types of complex problem domains, spe-
cialized algorithms have been developed that are best suited to the particular
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problem that they are designed for. In the following subsections, some such
complex domains and problem solving approaches, which are currently widely
used, are discussed.

1.4.1 Content-based Retrieval

Sometimes users of a data mining system are interested in one or more pat-
terns that they want to retrieve from the underlying data. These tasks, com-
monly known as content-based retrieval, are mostly used for text and image
databases. For example, searching the web uses a page ranking technique that
is based on link patterns for estimating the relative importance of different
pages with respect to the current search. In general, the different issues in
content-based retrieval are as follows:

• Identifying an appropriate set of features used to index an object in the
database;

• Storing the objects, along with their features, in the database;
• Defining a measure of similarity between different objects;
• Given a query and the similarity measure, performing an efficient search

in the database;
• Incorporating user feedback and interaction in the retrieval process.

Text Retrieval

Text retrieval is also commonly referred to as information retrieval (IR).
Content-based text retrieval techniques primarily exploit the semantic con-
tent of the data as well as some distance metric between the documents and
the user queries. IR has gained importance with the advent of web-based
search engines which need to perform this task extensively. Though most of
the users or text retrieval systems would want to retrieve documents closest in
meaning to their queries (i.e., on the basis of semantic content), practical IR
systems usually ignore this aspect in view of the difficulty of the problem (this
is an open and extremely difficult problem in natural language processing).
Instead, the IR systems typically match terms occurring in the query and the
stored documents. The content of a document is generally represented as a
term vector (which typically has very high dimensionality). A widely used
distance measure between two term vectors V1 and V2 is the cosine distance,
which is defined as

Dc(V1, V2) =

∑T
j=1
∑T

i=1 v1iv2j√∑T
i=1 v2

1i

∑T
i=1 v2

2i

, (1.23)

where Vk = {vk1vk2 . . . vkT }. This represents the inner product of the two
term vectors after they are normalized to have unit length, and it reflects the
similarity in the relative distribution of their term components.
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The term vectors may have Boolean representation where 1 indicates that
the corresponding term is present in the document and 0 indicates that it is
not. A significant drawback of the Boolean representation is that it cannot
be used to assign a relevance ranking to the retrieved documents. Another
commonly used weighting scheme is the Term Frequency–Inverse Document
Frequency (TF–IDF) scheme [24]. Using TF, each component of the term vec-
tor is multiplied by the frequency of occurrence of the corresponding term. The
IDF weight for the ith component of the term vector is defined as log(N/ni),
where ni is the number of documents that contain the ith term and N is the
total number of documents. The composite TF–IDF weight is the product of
the TF and IDF components for a particular term. The TF term gives more
importance to frequently occurring terms in a document. However, if a term
occurs frequently in most of the documents in the document set then, in all
probability, the term is not really that important. This is taken care of by the
IDF factor.

The above schemes are based strictly on the terms occurring in the docu-
ments and are referred to as vector space representation. An alternative to this
strategy is latent semantic indexing (LSI). In LSI, the dimensionality of the
term vector is reduced using principal component analysis (PCA) [31, 127].
PCA is based on the notion that it may be beneficial to combine a set of

features in order to obtain a single composite feature that can capture most
of the variance in the data. In terms of text retrieval, this could identify the
similar pattern of occurrences of terms in the documents, thereby capturing
the hidden semantics of the data. For example, the terms “data mining” and
“knowledge discovery” have nothing in common when using the vector space
representation, but could be combined into a single principal component term
since these two terms would most likely occur in a number of related docu-
ments.

Image Retrieval

Image and video data are increasing day by day; as a result content-based
image retrieval is becoming very important and appealing. Developing in-
teractive mining systems for handling queries such as Generate the N most
similar images of the query image is a challenging task. Here image data does
not necessarily mean images generated only by cameras but also images em-
bedded in a text document as well as handwritten characters, paintings, maps,
graphs, etc.

In the initial phase of an image retrieval process, the system needs to un-
derstand and extract the necessary features of the query images. Extracting
the semantic contents of a query image is a challenging task and an active
research area in pattern recognition and computer vision. The features of an
image are generally expressed in terms of color, texture, shape. These features
of the query image are computed, stored and used during retrieval. For exam-
ple, QBIC (Query By Image Content) is an interactive image mining system
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developed by the scientists in IBM. QBIC allows the user to search a large
image database with content descriptors such as color (a three-dimensional
color feature vector and k-dimensional color histogram where the value of k
is dependent on the application), texture (a three-dimensional texture vector
with features that measure coarseness, contrast and directionality) as well as
the relative position and shape (twenty-dimensional features based on area,
circularity, eccentricity, axis orientation and various moments) of the query
image. Subsequent to the feature-extraction process, distance calculation and
retrieval are carried out in multidimensional feature space. Chapter 10 deals
with the task of content-based image retrieval where features based on shape,
texture and color are extracted from an image. A similarity measure based
on human perception and a relevance feedback mechanism are formulated for
improved retrieval accuracy.

Translations, rotations, nonlinear transformation and changes of illumi-
nation (shadows, lighting, occlusion) are common distortions in images. Any
change in scale, viewing angle or illumination changes the features of the dis-
torted version of the scene compared to the original version. Although the
human visual system is able to handle these distortions easily, it is far more
challenging to design image retrieval techniques that are invariant under such
transformation and distortion. This requires incorporation of translation and
distortion invariance into the feature space.

1.4.2 Web Mining

The web consists of a huge collection of widely distributed and inter-related
files on one or more web servers. Web mining deals with the application of
data mining techniques to the web for extracting interesting patterns and
discovering knowledge. Web mining, though essentially an integral part of
data mining, has emerged as an imporant and independent research direction
due to the typical characteristics, e.g., the diversity, size, dynamic and link-
based nature, of the web. Some reviews on web mining are available in [79, 87].

As already mentioned, the information contained in the web can be broadly
categorized into:

• Web content – the component that consists of the stored facts, e.g., text,
images, sound clips and structured records such as lists and tables,

• Web structure – the component that defines the connections within the
content of the web, e.g., hyperlinks and tags, and

• Web usage – the components that describes the user’s interaction with the
web, e.g., http logs and application server logs.

Depending on which category of web data is being mined, web mining has
been classified as:

• Web content mining,
• Web structure mining, or
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• Web usage mining.

Web content mining (WCM) is the process of analyzing and extracting
information from the contents of web documents. Research in this direction
involves using techniques of other related fields, e.g., information retrieval,
text mining, image mining, natural language processing.

In WCM, the data is preprocessed to extract text from HTML documents,
eliminating the stop words, and identifying the relevant terms and computing
some measures such as the term frequency (TF) and document frequency
(DF). The next issue in WCM involves adopting a strategy for representing
the documents in such a way that the retrieval process is facilitated. Here
the common information retrieval techniques are used. The documents are
generally represented as a sparse vector of term weights; additional weights
are given to terms appearing in title or keywords. The common data mining
techniques applied on the resulting representation of the web content are:

• Classification, where the documents are assigned to one or more exising
categories,

• Clustering, where the documents are grouped based on some similarity
measure (the dot product between two document vectors being the more
commonly used measure of similarity), and

• Association, where association between the documents is identified.

Other issues in WCM include topic identification, tracking and drift analysis,
concept hierarchy creation and computing the relevance of the web content.

In web structure mining (WSM) the structure of the web is analyzed in
order to identify important patterns and inter-relations. For example, WSM
may reveal information about the quality of a page, ranking, page classification
according to topic and related/similar pages.

Typically, the web may be viewed as a directed graph as shown in Fig-
ure 1.3. Here the nodes represent the web pages, and the edges represent
the hyperlinks. The hyperlinks contain important information which can be
utilized for efficient information retrieval. For example, in Figure 1.3 the in-
formation that several hyperlinks (edges) point to page A may indicate that
A is an authority [76] on some topic. Again, based on the structure of the web
graph, it may be possible to identify web communities [41]. A web commu-
nity is described as a collection of web pages, such that each member of the
collection contains many more links to other members in the community than
outside it.

The web pages are typically maintained on web servers, which are ac-
cessed by different users in client–server transactions. The access patterns,
user profiles and other data are maintained at the servers and/or the clients.
Web usage mining (WUM) deals with mining such data in order to discover
meaningful patterns such as associations among the web pages and catego-
rization of users. An example of discovered associations could be that 60%
of users who accessed some site www.isical.ac.in/∼sanghami, also accessed
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A

Fig. 1.3. Example of a part of the web viewed as a directed graph

www.isical.ac.in/∼sanghami/pub pointer.htm. WUM can be effectively uti-
lized in commercial applications, for designing new product promotions and
evaluating existing ones, determining the value of clients and predicting user
behavior based on users’ profiles. It can also be used in reorganizing the web
more rationally.

Resource Description Framework (RDF) is becoming a popular encoding
language for describing and interchanging metadata of web resources. Chapter
9 describes an Apriori-based algorithm for mining association rules from RDF
documents. User behavior analysis, distributed web mining, web visualization
and web services [88, 89, 95, 124] are some of the recent research directions
in web mining. Semantic webs, where the stored documents have attached
semantics, are also a recent development, and hence semantic web mining is
also a promising area.

1.4.3 Mining Biological Data

Over the past few decades, major advances in the field of molecular biol-
ogy, coupled with advances in genomic technology, have led to an explosive
growth in the biological information generated by the scientific community.
Bioinformatics, viewed as the use of computational methods to make biolog-
ical discoveries, has evolved as a major research direction in response to this
deluge of information. The main purpose is to utilize computerized databases
to store, organize and index the data and to use specialized tools to view
and analyze the data. The ultimate goal of the field is to enable the discov-
ery of new biological insights as well as to create a global perspective from
which unifying principles in biology can be derived. Sequence analysis, phy-
logenetic/evolutionary trees, protein classification and analysis of microarray
data constitute some typical problems of bioinformatics where mining tech-
niques are required for extracting meaningful patterns. A broad classification
of some (not all) bioinformatic tasks is provided in Figure 1.4. The mining
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tasks often used for biological data include clustering, classification, prediction
and frequent pattern identification [130]. Applications of some data mining
techniques in bioinformatics and their requirements are mentioned below.
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Fig. 1.4. Broad classification of certain bioinformatic tasks.

The huge amount of biological data stored in repositories distributed all
around the globe is often noisy. Moreover, the same information may be stored
in different formats. Therefore data preprocessing tasks such as cleaning and
integration is important in this domain [130]. Clustering and classification of
gene-expression profiles or microarray data is performed in order to identify
the genes that may be responsible for a particular trait [22]. Determining or
modeling the evolutionary history of a set of species from genomic DNA or
amino acid sequences using phylogenetic trees is widely studied in bioinfor-
matics [32]. Mining such trees to extract interesting information forms the
basis of study in Chapter 8. Classification of proteins and homology modeling
are two important approaches for predicting the structure of proteins, and
may be useful in drug design [11, 28, 34]. Motif-based classification of pro-
teins is also another important research direction [62]. A motif is a conserved
element of a protein sequence that usually correlates with a particular func-
tion. Motifs are identified from a local multiple sequence alignment of proteins
corresponding to a region whose function or structure is known. Motif iden-
tification from a number of protein sequences is another mining task that is
important in bioinformatics.

Data analysis tools used earlier in bioinformatics were mainly based on
statistical techniques such as regression and estimation. Recently, computa-
tional intelligence techniques such as genetic algorithms and neural networks
are being widely used for solving certain bioinformatics problems with the
need to handle large data sets in biology in a robust and computationally
efficient manner [101, 116]. Some such techniques are discussed later in this
chapter.
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1.4.4 Distributed Data Mining

Sometimes the data to be mined may not be available in a centralized node;
rather, it is distributed among different sites with network connections. Dis-
tributed data mining (DDM) algorithms are designed to analyse these dis-
tributed data without necessarily downloading everything to a single site, due
to the following reasons:

• Network cost and traffic
Downloading large volumes of data from different sites to a single node
requires higher bandwidth of the network system with the problem of
associated traffic congestion.

• Privacy preservation
Sometimes, privacy may be a key consideration that precludes the transfer
of data from one site to another. For example, credit card companies may
not want to share their databases with other users, though they would
want to extract meaningful and potentially useful information from the
data.

In general, data may be distributed either homogeneously or heterogeneously.
For a homogeneous (or heterogeneous) distributed system one can assume the
whole data set is horizontally (or vertically) fragmented and the fragmented
modules are kept in different sites. An example of homogeneously distributed
data is a banking database where the different sites have the same attributes
related to customer accounts but for different customers. An example of het-
erogeneously distributed data is astronomy data in which different sites ob-
serve the same region of the sky, but take readings corresponding to different
properties, e.g., in different frequency bands.

In general the goal of DDM algorithms [69, 70, 73] is to analyze homo-
geneously or heterogeneously distributed data efficiently using the network
and resources available in different sites. Several distributed algorithms have
been developed in recent times. Principal component analysis is a useful tech-
nique for feature extraction that has been used successfully to design DDM
algorithms [72]. In [35] a decision-tree-based classifier has been designed from
distributed data. The idea of the K-means clustering algorithm has been ex-
tended for clustering distributed data [12, 37, 129].

1.4.5 Mining in Sensor and Peer-to-Peer Networks

In recent times, data that are distributed among different sites that are dis-
persed over a wide geographical area are becoming more and more common. In
particular, sensor networks, consisting of a large number of small, inexpensive
sensor devices, are gradually being deployed in many situations for monitoring
the environment. The nodes of a sensor network collect time-varying streams
of data, have limited computing capabilities, small memory storage, and low
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communication and battery power capabilities. One of the modes of commu-
nication among the nodes in a sensor network is of the peer-to-peer style. Here
each node exchanges messages only with its direct neighbors. Mining in such
a scenario offers many challenges, including:

• limited communication bandwidth,
• constraints on computing resources,
• limited power supply,
• the need for fault-tolerance, and
• the asynchronous nature of the network.

Chapters 12 and 13 describe some mining techniques for data streams in
a sensor network scenario where memory constraints, speed and the dynamic
nature of the data are taken into consideration. In designing algorithms for
sensor networks, it is imperative to keep in mind that power consumption has
to be minimized. Even gathering the distributed sensor data in a single site
could be expensive in terms of battery power consumed. LEACH, LEACH-C,
LEACH-F [58, 59], and PEGASIS [84] are some of the attempts towards mak-
ing the data collection task energy efficient. The issue of the energy–quality
trade-off has been studied in [121] along with a discussion on energy–quality
scalability of three categories of commonly used signal-processing algorithms
viz., filtering, frequency domain transforms and classification. In [114], Radi-
vojac et al. develop an algorithm for intrusion detection in a supervised frame-
work, where there are far more negative instances than positive (intrusions). A
neural-network-based classifier is trained at the base station using data where
the smaller class is over-sampled and the larger class is under-sampled [25].
An unsupervised approach to the outlier detection problem in sensor networks
is presented in [103], where kernel density estimators are used to estimate the
distribution of the data generated by the sensors, and then the outliers are
detected depending on a distance-based criterion. Detecting regions of inter-
esting environmental events (e.g., sensing which regions in the environment
have a chemical concentration greater than a threshold) has been studied in
[81] under the assumption that faults can occur in the equipment, though
they would be uncorrelated, while environmental conditions are spatially cor-
related.

Clustering the nodes of the sensor networks is an important optimization
problem. Nodes that are clustered together can easily communicate with each
other. Ghiasi et al. [48] have studied the theoretical aspects of this problem
with application to energy optimization. They illustrate an optimal algorithm
for clustering the sensor nodes such that each cluster (that is characterized by
a master) is balanced and the total distance between the sensor nodes and the
master nodes is minimized. Some other approaches in this regard are available
in [26, 135].

Algorithms for clustering the data spread over a sensor network are likely
to play an important role in many sensor-network-based applications. Seg-
mentation of data observed by the sensor nodes for situation awareness and
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detection of outliers for event detection are only two examples that may re-
quire clustering algorithms. The distributed and resource-constrained nature
of the sensor networks demands a fundamentally distributed algorithmic so-
lution to the clustering problem. Therefore, distributed clustering algorithms
may come in handy [71] when it comes to analyzing sensor network data or
data streams.

1.4.6 Mining Techniques Based on Soft Computing Approaches

Soft computing [137] is a consortium of methodologies that works synergis-
tically and provides, in one form or another, flexible information processing
capability for handling real-life ambiguous situations. Its aim is to exploit
the tolerance for imprecision, uncertainty, approximate reasoning, and partial
truth in order to achieve tractability, robustness, and low-cost solutions. The
guiding principle is to devise methods of computation that lead to an accept-
able solution at low cost, by seeking an approximate solution to an imprecisely
or precisely formulated problem. In data mining, it is often impractical to
expect the optimal or exact solution. Moreover, in order for the mining algo-
rithms to be useful, they must be able to provide good solutions reasonably
fast. As such, the requirements of a data mining algorithm are often found to
be the same as the guiding principle of soft computing, thereby making the
application of soft computing in data mining natural and appropriate.

Some of the main components of soft computing include fuzzy logic, neural
networks and probabilistic reasoning, with the latter subsuming belief net-
works, evolutionary computation and genetic algorithms, chaos theory and
parts of learning theory [1]. Rough sets, wavelets, and other optimization
methods such as tabu search, simulated annealing and ant colony optimiza-
tion are also considered to be components of soft computing. In the following
subsections, some of the major components in the soft computing paradigm,
viz., fuzzy sets, genetic algorithms and neural networks, are discussed followed
by a brief description of their applications in data mining.

Fuzzy Sets

Fuzzy set theory was developed in order to handle uncertainties, arising from
vague, incomplete, linguistic or overlapping patterns, in various problem-
solving systems. This approach is developed based on the realization that
an object may belong to more than one class, with varying degrees of class
membership. Uncertainty can result from the incomplete or ambiguous in-
put information, the imprecision in the problem definition, ill-defined and/or
overlapping boundaries among the classes or regions, and the indefiniteness
in defining or extracting features and relations among them.

Fuzzy sets were introduced in 1965 by Lotfi A. Zadeh [136, 137], as a
way to represent vagueness in everyday life. We almost always speak in fuzzy
terms, e.g., he is more or less tall, she is very beautiful. Hence, concepts of tall
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and beautiful are fuzzy, and the gentleman and lady have membership values
to these fuzzy concepts indicating their degree of belongingness. Since this
theory is a generalization of the classical set theory, it has greater flexibility
to capture various aspects of incompleteness, imprecision or imperfection in
information about a situation. It has been applied successfully in computing
with words or the matching of linguistic terms for reasoning.

Fuzzy set theory has found a lot of applications in data mining [10, 107,
134]. Examples of such applications may be found in clustering [82, 106, 128],
association rules [9, 133], time series [27], and image retrieval [44, 94].

Evolutionary Computation

Evolutionary computation (EC) is a computing paradigm comprising problem-
solving techniques that are based on the principles of biological evolution.
The essential components of EC are a strategy for representing or encod-
ing a solution to the problem under consideration, a criterion for evaluating
the fitness or goodness of an encoded solution, and a set of biologically in-
spired operators applied on the encoded solutions. Because of the robustness
and effectiveness of the techniques in the EC family, they have widespread
applications in various engineering and scientific circles such as pattern recog-
nition, image processing, VLSI design, and embedded and real-time systems.
The commonly known techniques in EC are genetic algorithms (GAs) [51],
evolutionary strategies [118] and genetic programming [80]. Of these, GAs
appear to be the most well-known and widely used technique in this comput-
ing paradigm.

GAs, which are efficient, adaptive and robust search and optimization pro-
cesses, use biologically-inspired operators to guide the search in very large,
complex and multimodal search spaces. In GAs, the genetic information of
each individual or potential solution is encoded in structures called chromo-
somes. They use some domain or problem-dependent knowledge for direct-
ing the search into more promising areas; this is known as the fitness func-
tion. Each individual or chromosome has an associated fitness function, which
indicates its degree of goodness with respect to the solution it represents.
Various biologically-inspired operators such as selection, crossover and mu-
tation are applied on the chromosomes to yield potentially better solutions.
GAs represent a form of multi-point, stochastic search in complex landscapes.
Applications of genetic algorithms and related techniques in data mining in-
clude extraction of association rules [85], predictive rules [42, 43, 97], clus-
tering [13, 15, 16, 91, 92, 93], program evolution [117, 126] and web mining
[98, 99, 108, 109, 110].

Neural Networks

Neural networks can be formally defined as massively-parallel interconnections
of simple (usually adaptive) processing elements that interact with objects of
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the real world in a manner similar to biological systems. Their origin can
be traced to the work of Hebb [57], where a local learning rule is proposed.
The benefit of neural nets lies in the high computation rate provided by their
inherent massive parallelism. This allows real-time processing of huge data sets
with proper hardware backing. All information is stored distributed among
the various connection weights. The redundancy of interconnections produces
a high degree of robustness resulting in a graceful degradation of performance
in the case of noise or damage to a few nodes/links.

Neural network models have been studied for many years with the hope
of achieving human-like performance (artificially), particularly in the field of
pattern recognition, by capturing the key ingredients responsible for the re-
markable capabilities of the human nervous system. Note that these models
are extreme simplifications of the actual human nervous system. Some com-
monly used neural networks are the multi-layer perceptron, Hopfield network,
Kohonen’s self organizing maps and radial basis function network [56].

Neural networks have been widely used in searching for patterns in data
[23] because they appear to bridge the gap between the generalization capabil-
ity of human beings and the deterministic nature of computers. More impor-
tant among these applications are rule generation and classification [86], clus-
tering [5], data modeling [83], time series analysis [33, 49, 63] and visualization
[78]. Neural networks may be used as a direct substitute for autocorrelation,
multivariable regression, linear regression, trigonometric and other regression
techniques [61, 123]. Apart from data mining tasks, neural networks have
also been used for data preprocessing, such as data cleaning and handling
missing values. Various applications of supervised and unsupervised neural
networks to the analysis of the gene expression profiles produced using DNA
microarrays has been studied in [90]. A hybridization of genetic algorithms
and perceptrons has been used in [74] for supervised classification in microar-
ray data. Issues involved in the research on the use of neural networks for data
mining include model selection, determination of an appropriate architecture
and training algorithm, network pruning, convergence and training time, data
representation and tackling missing values. Hybridization of neural networks
with other soft computing tools such as fuzzy logic, genetic algorithms, rough
sets and wavelets have proved to be effective for solving complex problems.

1.4.7 Case-Based Reasoning

Case-based reasoning (CBR) is a model of reasoning where the systems ex-
pertise is embodied in a library of past cases (stored as a case base) already
experienced by the system, rather than being encoded explicitly as rules, or
implicitly as decision boundaries. In CBR, a problem is solved by first match-
ing it to problems encountered in the past and retrieving one or a small set of
similar cases. The retrieved cases are used to suggest a solution to the present
problem, which is tested, and, if necessary, revised. The present problem and
its solution is updated in the case base as a new case.
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All case-based systems iterate in the following manner:

1. Retrieve the most similar case (or a small set of cases) by comparing the
current case to the cases in the case base.

2. Reuse the retrieved case (or cases) to formulate a mechanism for solving
the current problem.

3. Revise and adapt the proposed solution if necessary.
4. Update the case base by storing the current problem and the final solution

as part of a new case.

The major tasks in CBR are case representation and indexing, case retrieval,
case adaptation, case learning and case-base maintenance [102]. The represen-
tation of a case in a case base usually includes specification of the problem,
relevant attributes of the environment that describe the circumstances of the
problem, and a description of the solution that was adopted when the case
was encountered. The cases stored in the case base should be stored in such
a way that future retrieval and comparison tasks are facilitated. The issue of
case indexing refers to this. A good choice of indexing strategy is one that
reflects the important features of a case and the attributes that influence the
outcome of the case, and also describes the circumstances in which a case is
expected to be retrieved in the future.

Case retrieval refers to the process of finding the cases most similar to the
current query case. The important issues involved are the case base search
mechanism and the selection/match criteria. Several criteria, e.g., the number
of cases to be searched and the availability of domain knowledge, are used for
determining a suitable retrieval technique. The most commonly used retrieval
approaches are the nearest neighbor and decision-tree-based methods.

Once a matching case is retrieved, case adaptation is used to transform the
solution for the retrieved case to one that is suitable for the current problem.
Some common approaches of case adaptation are to use the retrieved solution,
derive a consensus solution, or provide multiple solutions, if multiple cases are
retrieved.

Case learning deals with the issue of adding any new information that
is gained while processing the current case into the case base, so that its
information content is increased. This will be beneficial when processing future
cases. One common learning method is to add the new problem, its solution,
and the outcome to the case base. Case-base maintenance refers to the task
of pruning the case base so that redundant and noisy information is removed,
while important information is retained. Some important considerations here
are the coverage and reachability [113]. While coverage refers to the set of
problems that each could solve, reachability refers to the set of cases that
could provide solutions to the current problem.

Case-based reasoning first appeared in commercial tools in the early 1990s
and since then has been applied in a wide range of domains. These in-
clude medical diagnosis, product/service help desk, financial/marketing as-
sessments, decision-support systems and assisting human designers in archi-
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tectural and industrial design. Details about CBR may be found in [131] and
more recently in [102].

1.5 Conclusions

This chapter presented the basic concepts and issues in KDD, and also dis-
cussed the challenges that data mining researchers are facing. Such challenges
arise due to different reasons, such as very high dimensional and extremely
large data sets, unstructured and semi-structured data, temporal and spatial
patterns and heterogeneous data. Some important application domains where
data mining techniques are heavily used have been elaborated. These include
web mining, bioinformatics, and image and text mining. The recent trends in
KDD have also been summarized, including brief descriptions of some common
mining tools. An extensive bibliography is provided.

Traditional data mining generally involved well-organized database sys-
tems such as relational databases. With the advent of sophisticated technol-
ogy, it is now possible to store and manipulate very large and complex data.
The data complexity arises due to several reasons, e.g., high dimensionality,
semi- and/or un-structured nature, and heterogeneity. Data related to the
world-wide web, the geoscientific domain, VLSI chip layout and routing, mul-
timedia, financial markets, sensor networks, and genes and proteins constitute
some typical examples of complex data. In order to extract knowledge from
such complex data, it is necessary to develop advanced methods that can
exploit the nature and representation of the data more efficiently. The fol-
lowing chapters report the research work of active practitioners in this field,
describing recent advances in the field of knowledge discovery from complex
data.

References

[1] The Berkeley Initiative in Soft Computing. URL:
www-bisc.cs.berkeley.edu/

[2] Agrawal, C. C., and Philip S. Yu, 2001: Outlier detection for high di-
mensional data. Proccedings of the SIGMOD Conference.

[3] Agrawal, R., T. Imielinski and A. N. Swami, 1993: Mining associa-
tion rules between sets of items in large databases. Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data,
P. Buneman and S. Jajodia, eds., Washington, D.C., 207–16.

[4] Agrawal, R., and R. Srikant, 1994: Fast algorithms for mining associa-
tion rules. Proc. 20th Int. Conf. Very Large Data Bases, VLDB , J. B.
Bocca, M. Jarke, and C. Zaniolo, eds., Morgan Kaufmann, 487–99.

[5] Alahakoon, D., S. K. Halgamuge, and B. Srinivasan, 2000: Dynamic self
organizing maps with controlled growth for knowledge discovery. IEEE
Transactions on Neural Networks , 11, 601–14.



34 Sanghamitra Bandyopadhyay and Ujjwal Maulik

[6] Anderberg, M. R., 1973: Cluster Analysis for Application. Academic
Press.

[7] Anderson, T. W., 1958: An Introduction to Multivariate Statistical Anal-
ysis. Wiley, New York.

[8] Andrews, H. C., 1972: Mathematical Techniques in Pattern Recognition.
Wiley Interscience, New York.

[9] Au, W. H. and K. Chan, 1998: An effective algorithm for discovering
fuzzy rules in relational databases. Proceedings of IEEE International
Conference on Fuzzy Systems FUZZ IEEE , IEEE Press, Alaska, USA,
1314–19.

[10] Baldwin, J. F., 1996: Knowledge from data using fuzzy methods. Pattern
Recognition Letters, 17, 593–600.

[11] Bandyopadhyay, S., 2005: An Efficient Technique for Superfamily Classi-
fication of Amino Acid Sequences: Feature Extraction, Fuzzy Clustering
and Prototype Selection. Fuzzy Sets and Systems (accepted).

[12] Bandyopadhyay, S., C. Giannella, U. Maulik, H. Kargupta, K. Liu and
S. Datta, 2005: Clustering distributed data streams in peer-to-peer en-
vironments. Information Sciences (accepted).

[13] Bandyopadhyay, S., and U. Maulik, 2001: Non-parametric genetic clus-
tering: Comparison of validity indices. IEEE Transactions on Systems,
Man and Cybernetics Part-C , 31, 120–5.

[14] — 2002: Efficient prototype reordering in nearest neighbor classification.
Pattern Recognition, 35, 2791–9.

[15] — 2002: An evolutionary technique based on k-means algorithm for
optimal clustering in rn. Information Sciences, 146, 221–37.

[16] Bandyopadhyay, S., U. Maulik and M. K. Pakhira, 2001: Clustering us-
ing simulated annealing with probabilistic redistribution. International
Journal of Pattern Recognition and Artificial Intelligence, 15, 269–85.

[17] Bandyopadhyay, S., C. A. Murthy and S. K. Pal, 1995: Pattern classifi-
cation using genetic algorithms. Pattern Recognition Letters , 16, 801–8.

[18] — 1998: Pattern classification using genetic algorithms: Determination
of H. Pattern Recognition Letters , 19, 1171–81.

[19] — 1999: Theoretical performance of genetic pattern classifier. J.
Franklin Institute. 336, 387–422.

[20] Bandyopadhyay, S., and S. K. Pal, 1997: Pattern classification with ge-
netic algorithms: Incorporation of chromosome differentiation. Pattern
Recognition Letters, 18, 119–31.

[21] Bandyopadhyay, S., S. K. Pal and U. Maulik, 1998: Incorporating chro-
mosome differentiation in genetic algorithms. Information Science, 104,
293–319.

[22] Ben-Dor, A., R. Shamir and Z. Yakhini, 1999: Clustering gene expression
patterns. Journal of Computational Biology, 6, 281–97.

[23] Bigus, J. P., 1996: Data Mining With Neural Networks: Solving Business
Problems from Application Development to Decision Support . McGraw-
Hill.



References 35

[24] Chakrabarti, S., 2002: Mining the Web: Discovering Knowledge from
Hypertext Data. Morgan Kaufmann.

[25] Chawla, N. V., K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, 2002:
Smote: Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research, 16, 321–57.

[26] Chen, W., J. C. Hou and L. Sha, 2004: Dynamic clustering for acous-
tic target tracking in wireless sensor networks. IEEE Transactions on
Mobile Computing, 3, 258–71.

[27] Chiang, D. A., L. R. Chow and Y. F. Wang, 2000: Mining time series
data by a fuzzy linguistic summary system. Fuzzy Sets and Systems,
112, 419–32.

[28] Chiba, S., K. Sugawara, and T. Watanabe, 2001: Classification and func-
tion estimation of protein by using data compression and genetic algo-
rithms. Proc. Congress on Evolutionary Computation, 2, 839–44.

[29] Cristianini, N. and J. Shawe-Taylor, 2000: An Introduction to Support
Vector Machines (and other kernel-based learning methods). Cambridge
University Press, UK.

[30] Dayhoff, J. E., 1990: Neural Network Architectures: An Introduction.
Van Nostrand Reinhold, New York.

[31] Devijver, P. A. and J. Kittler, 1982: Pattern Recognition: A Statistical
Approach. Prentice-Hall, London.

[32] Dopazo, H., J. Santoyo and J. Dopazo, 2004: Phylogenomics and the
number of characters required for obtaining an accurate phylogeny of
eukaryote model species. Bioinformatics, 20, Suppl 1, I116–I121.

[33] Dorffner, G., 1996: Neural networks for time series processing. Neural
Network World , 6, 447–68.

[34] Dorohonceanu, B. and C. G. Nevill-Manning, 2000: Accelerating pro-
tein classification using suffix trees. Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB), 128–
33.

[35] Du, W. and Z. Zhan, 2002: Building decision tree classifier on private
data. Proceedings of the IEEE International Conference on Data Mining
Workshop on Privacy, Security, and Data Mining, Australian Computer
Society, 14, 1–8.

[36] Duda, R. O. and P. E. Hart, 1973: Pattern Classification and Scene
Analysis. John Wiley, New York.

[37] Eisenhardt, M., W. Muller and A. Henrich, 2003: Classifying Docu-
ments by Distributed P2P Clustering. Proceedings of Informatik 2003,
GI Lecture Notes in Informatics, Frankfurt, Germany.

[38] Ester, M., H.-P. Kriegel, J. Sander and X. Xu, 1996: Density-based
algorithm for discovering clusters in large spatial databases. Proc. of the
Second International Conference on Data Mining KDD-96 , Portland,
Oregon, 226–31.

[39] Ester, M., H.-P. Kriegel and X. Xu, 1995: Knowledge discovery in large
spatial databases: Focusing techniques for efficient class identification.



36 Sanghamitra Bandyopadhyay and Ujjwal Maulik

Proc. 4th Int. Symp. on Large Spatial Databases (SSD’95), Portland,
Maine, 67–82.

[40] Fayyad, U., G. Piatetsky-Shapiro and P. Smyth, 1996: The KDD process
for extracting useful knowledge from volumes of data. Communications
of the ACM , 39, 27–34.

[41] Flake, G. W., S. Lawrence and C. L. Giles, 2000: Efficient identifica-
tion of the web communities. Proceedings on the 6th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining , 150–160.

[42] Flockhart, I. W., 1995: GA-MINER: Parallel data mining with hierar-
chical genetic algorithms–final report. Technical Report EPCC-AIKMS-
GA-MINER-REPORT 1.0, University of Edinburgh, UK.

[43] Flockhart, I. W. and N. J. Radcliffe, 1996: A genetic algorithm-based ap-
proach to data mining. Proceedings of the Second International Confer-
ence on Knowledge Discovery and Data Mining (KDD-96), E. Simoudis,
J. W. Han and U. Fayyad, eds., AAAI Press, Portland, Oregon, USA,
299–302.

[44] Frigui, H., 1999: Adaptive image retrieval using the fuzzy integral. Pro-
ceedings of NAFIPS 99 , IEEE Press, New York, USA, 575–9.

[45] Fu, K. S., 1982: Syntactic Pattern Recognition and Applications . Aca-
demic Press, London.

[46] Fukunaga, K., 1972: Introduction to Statistical Pattern Recognition.
Academic Press, New York.

[47] Gelsema, E. S. and L. N. Kanal, eds., 1986: Pattern Recognition in
Practice II . North Holland, Amsterdam.

[48] Ghiasi, S., A. Srivastava, X. Yang and M. Sarrafzadeh, 2002: Optimal
energy aware clustering in sensor networks. Sensors, 2, 258–69.

[49] Giles, C. L., S. Lawrence and A. C. Tsoi, 2001: Noisy time series pre-
diction using a recurrent neural network and grammatical inference.
Machine Learning , 44, 161–83.

[50] Goethals, B., 2002: Efficient Frequent Pattern Mining . Ph.D. thesis,
University of Limburg, Belgium.

[51] Goldberg, D. E., 1989: Genetic Algorithms: Search, Optimization and
Machine Learning . Addison-Wesley, New York.

[52] Gonzalez, R. C. and M. G. Thomason, 1978: Syntactic Pattern Recog-
nition: An Introduction. Addison-Wesley, Reading, MA.

[53] Hammond, K., R. Burke, C. Martin and S. Lytinen, 1995: FAQ finer:
A case-based approach to knowledge navigation. Working notes of the
AAAI Spring Symposium: Information gathering from heterogeneous,
distributed environments, AAAI Press, Stanford University, 69–73.

[54] Han, J. and M. Kamber, 2000: Data Mining: Concepts and Techniques.
Morgan Kaufmann, San Francisco, USA.

[55] Hartigan, J. A., 1975: Clustering Algorithms. John Wiley.
[56] Haykin, S., 1994: Neural Networks, A Comprehensive Foundation.

McMillan College Publishing Company, New York.



References 37

[57] Hebb, D. O., 1949: The Organization of Behavior . John Wiley, New
York.

[58] Heinzelman, W., A. Chandrakasan and H. Balakrishnan, 2000: Energy-
efficient communication protocol for wireless microsensor networks. Pro-
ceedings of the Hawaii Conference on System Sciences.

[59] — 2002: An application-specific protocol architecture for wireless mi-
crosensor networks. IEEE Transactions on Wireless Communications,
1, 660–70.
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[63] Hüsken, M. and P. Stagge, 2003: Recurrent neural networks for time
series classification. Neurocomputing , 50(C).

[64] Imielinski, T. and H. Mannila, 1996: A database perspective on knowl-
edge discovery. Communications of the ACM , 39, 58–64.

[65] Imielinski, T., A. Virmani and A. Abdulghani, 1996: A discovery board
application programming interface and query language for database
mining. Proceedings of KDD 96 , Portland, Oregon, 20–26.

[66] Inmon, W. H., 1996: The data warehouse and data mining. Communi-
cations of the ACM , 39, 49–50.

[67] Jain, A. K. and R. C. Dubes, 1988: Algorithms for Clustering Data.
Prentice-Hall, Englewood Cliffs, NJ.

[68] Jensen, F. V., 1996: An Introduction to Bayesian Networks . Springer-
Verlag, New York, USA.

[69] Kargupta, H., S. Bandyopadhyay and B. H. Park, eds., 2005: Special
Issue on Distributed and Mobile Data Mining, IEEE Transactions on
Systems, Man, and Cybernetics Part B . IEEE.

[70] Kargupta, H. and P. Chan, eds., 2001: Advances in Distributed and
Parallel Knowledge Discovery . MIT Press.

[71] Kargupta. H, R. Bhargava, K. Liu, M. Powers, P. Blair and M. Klein,
2004: VEDAS: A mobile distributed data stream mining system for real-
time vehicle monitoring. Proceedings of the 2004 SIAM International
Conference on Data Mining .

[72] Kargupta, H., W. Huang, S. Krishnamoorthy and E. Johnson, 2000:
Distributed clustering using collective principal component analysis.
Knowledge and Information Systems Journal , 3, 422–48.

[73] Kargupta, H., A. Joshi, K. Sivakumar and Y. Yesha, eds., 2004: Data
Mining: Next Generation Challenges and Future Directions. MIT/AAAI
Press.



38 Sanghamitra Bandyopadhyay and Ujjwal Maulik

[74] Karzynski, M., A. Mateos, J. Herrero and J. Dopazo, 2003: Using a
genetic algorithm and a perceptron for feature selection and supervised
class learning in DNA microarray data. Artificial Intelligence Review ,
20, 39–51.

[75] Kaufman, L. and P. J. Rousseeuw, 1990: Finding Groups in Data: An
introduction to cluster analysis. John Wiley.

[76] Kleinberg, J. M., 1998: Authoritative sources in a hyperlinked envi-
ronment. Proceedings of the ninth annual ACM-SIAM symposium on
discrete algorithms.

[77] Knorr, E. M. and R. T. Ng, 1998: Algorithms for mining distance-based
outliers in large datasets. Proceedings of the 24th International Confer-
ence on Very Large Data Bases, VLDB, 392–403.

[78] Koenig, A., 2000: Interactive visualization and analysis of hierarchical
projections for data mining. IEEE Transactions on Neural Networks ,
11, 615–24.

[79] Kosala, R. and H. Blockeel, 2000: Web mining research: A survey.
SIGKDD Explorations, 2, 1–15.

[80] Koza, J. R., 1992: Genetic Programming: On the programming of com-
puters by means of natural selection. MIT Press, Cambridge, USA.

[81] Krishnamachari, B. and S. Iyengar, 2004: Distributed Bayesian algo-
rithms for fault tolerant event region detection in wireless sensor net-
works. IEEE Trans. Comp., 53, 241–50.

[82] Krishnapuram, R., A. Joshi, O. Nasraoui and L. Yi, 2001: Low complex-
ity fuzzy relational clustering algorithms for web mining. IEEE Trans-
actions on Fuzzy Systems, 9, 595–607.

[83] Lin, Y. and G. A. Cunningham III, 1995: A new approach to fuzzy-
neural system modeling. IEEE Transactions on Fuzzy Systems, 3, 190–
8.

[84] Lindsey, S., C. Raghavendra and K. M. Sivalingam, 2002: Data gath-
ering algorithms in sensor networks using energy metrics. IEEE Trans-
actions on Parallel and Distributed Systems, special issue on Mobile
Computing , 13, 924–35.

[85] Lopes, C., M. Pacheco, M. Vellasco and E. Passos, 1999: Rule-evolver:
An evolutionary approach for data mining. Proceedings of RSFDGrC
99 , Yamaguchi, Japan, 458–62.

[86] Lu, H. J., R. Setiono and H. Liu, 2003: Effective data mining using neu-
ral networks. IEEE Transactions on Knowledge and Data Engineering ,
15, 14–25.

[87] Madria, S. K., S. S. Bhowmick, W. K. Ng and E. P. Lim, 1999: Research
issues in web data mining. Proceedings of First International Conference
on data warehousing and knowledge discovery DaWaK , M. K. Mohania
and A. M. Tjoa, eds., Springer, volume 1676 of Lecture Notes in Com-
puter Science, 303–12.



References 39

[88] Masand, B., M. Spiliopoulou, J. Srivastava and O. Zaiane, 2002: We-
bkdd 2002: Web mining for usage patterns & profiles. SIGKDD Explor.
Newsl., 4, 125–7, URL: doi.acm.org/10.1145/772862.772888.

[89] — eds., 2003: WEBKDD 2002 – Mining Web Data for Discovering Us-
age Patterns and Profiles, Proceedings of 4th International Workshop,
volume 2703 of Lecture Notes in Artificial Intelligence. Springer, Ed-
monton, CA.

[90] Mateos, A., J. Herrero, J. Tamames and J. Dopazo, 2002: Supervised
neural networks for clustering conditions in DNA array data after reduc-
ing noise by clustering gene expression profiles. Microarray data analysis
II , Kluwer Academic Publishers, 91–103.

[91] Maulik, U. and S. Bandyopadhyay, 2000: Genetic algorithm-based clus-
tering technique. Pattern Recognition, 33, 1455–65.

[92] — 2002: Performance evaluation of some clustering algorithms and va-
lidity indices. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 24, 1650–4.

[93] — 2003: Fuzzy partitioning using a real-coded variable-length genetic
algorithm for pixel classification. IEEE Trans. Geoscience and Remote
Sensing , 41, 1075– 81.

[94] Medasani, S. and R. Krishnapuram, 1999: A fuzzy approach to complex
linguistic query based image retrieval. Proceedings of NAFIPS 99 , IEEE
Press, New York, USA, 590–4.

[95] Mohan, C., 2002: Dynamic e-business: Trends in web services. Invited
talk at the 3rd VLDB Workshop on Technologies for E-Services (TES).

[96] Ng, R. and J. Han, 1994: Efficient and effective clustering method for
spatial data mining. Proc. 1994 Int. Conf. Very Large Data Bases, San-
tiago, Chile, 144–55.

[97] Noda, E., A. A. Freitas and H. S. Lopes, 1999: Discovering interesting
prediction rules with a genetic algorithm. Proceedings of IEEE Congress
on Evolutionary Computation CEC 99 , Washington D. C., USA, 1322–
9.
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2

Automatic Discovery of Class Hierarchies via
Output Space Decomposition

Joydeep Ghosh, Shailesh Kumar and Melba M. Crawford

Summary. Many complex pattern classification problems involve high-dimensional
inputs as well as a large number of classes. In this chapter, we present a modular
learning framework called the Binary Hierarchical Classifier (BHC) that takes
a coarse-to-fine approach to dealing with a large number of output classes. BHC de-
composes a C-class problem into a set of C−1 two-(meta)class problems, arranged
in a binary tree with C leaf nodes and C−1 internal nodes. Each internal node
is comprised of a feature extractor and a classifier that discriminates between the
two meta-classes represented by its two children. Both bottom-up and top-down ap-
proaches for building such a BHC are presented in this chapter. The Bottom-up
Binary Hierarchical Classifier (BU-BHC) is built by applying agglomerative
clustering to the set of C classes. The Top-down Binary Hierarchical Classi-
fier (TD-BHC) is built by recursively partitioning a set of classes at any internal
node into two disjoint groups or meta-classes. The coupled problems of finding a
good partition and of searching for a linear feature extractor that best discrimi-
nates the two resulting meta-classes are solved simultaneously at each stage of the
recursive algorithm. The hierarchical, multistage classification approach taken by
the BHC also helps with dealing with high-dimensional data, since simpler feature
spaces are often adequate for solving the two-(meta)class problems. In addition,
it leads to the discovery of useful domain knowledge such as class hierarchies or
ontologies, and results in more interpretable results.

2.1 Introduction

A classification problem involves identifying a set of objects, each represented
in a suitable common input space, using one or more class labels taken from
a pre-determined set of possible labels. Thus it may be described as a four-
tuple: (I,Ω, PX×Ω ,X ), where I is the input space, in which the raw data is
available (e.g. the image of a character), Ω is the output space, comprised of
all the class labels that can be assigned to an input pattern (e.g. the set of
26 alphabetic characters in English), PX×Ω is the unknown joint probability
density function over random variables X ∈ I and Ω ∈ Ω, and X ⊂ I ×Ω is
the training set sampled from the distribution PX×Ω . The goal is to determine
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the relationship between the input and output spaces, a full specification of
which is given by modeling the joint probability density function PX×Ω .

Complexity in real-world classification problems can arise from multiple
causes. First, the objects (and their representation) may themselves be com-
plex, e.g. XML trees, protein sequences with 3-D folding geometry, variable
length sequences, etc. [18]. Second, the data may be very noisy, the classes
may have significant overlap and the optimal decision boundaries may be
highly nonlinear. In this chapter we concentrate simultaneously on complex-
ity due to high-dimensional inputs and a large number of class labels that
can be potentially assigned to any input. Recognition of characters from the
English alphabet (C = 26 classes) based on a (say) 64× 64 binary input im-
age and labeling of a piece of land into one of 10–12 land-cover types based
on 100+ dimensional hyperspectral signatures are two examples that exhibit
such complex characteristics.

There are two main approaches to simplifying such problems:

• Feature extraction: A feature extraction process transforms the input
space, I, into a lower-dimensional feature space, F , in which discrimina-
tion among the classes Ω is high. It is particularly helpful given finite
training data in a high-dimensional input space, as it can alleviate fun-
damental problems arising from the curse of dimensionality [2, 15]. Both
domain knowledge and statistical methods can be used for feature extrac-
tion [4, 9, 12, 16, 27, 33]. Feature selection is a specific case of linear
feature extraction [33].

• Modular learning: Based on the divide-and-conquer precept that “learn-
ing a large number of simple local concepts is both easier and more useful
than learning a single complex global concept” [30], a variety of modular
learning architectures have been proposed by the pattern recognition and
computational intelligence communities [28, 36, 47]. In particular, multi-
classifier systems develop a set of M classifiers instead of one, and sub-
sequently combine the individual solutions in a suitable way to address
the overall problem. In several such architectures, each individual classi-
fier addresses a simpler problem. For example, it may specialize in only
part of the feature space as in the mixture of experts framework [26, 41].
Alternatively, a simpler input space may effectively be created per clas-
sifier by sampling/re-weighting (as in bagging and boosting), using one
module for each data source [48]; different feature subsets for different
classes (input decimation) [49], etc. Advantages of modular learning in-
clude the ease and efficiency in learning, scalability, interpretability, and
transparency [1, 21, 36, 38, 42].

This chapter focuses on yet another type of modularity which is possible
for multi-class problems, namely, the decomposition of a C-class problem into
a set of binary problems. Such decompositions have attracted much interest
recently because of the popularity of certain powerful binary classifiers, most
notably the support vector machine (SVM), which was originally formulated
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for binary dichotomies [50]. Although several extensions of SVMs to multi-
class problems have been subsequently suggested (see papers referred to in
[25]), the results of [25] show that such direct approaches are inferior to de-
composing the multiclass problem into several binary classification problems,
each addressed by a binary SVM.

Over the years, several approaches to decomposing the output space have
been proposed. The most popular approaches, described in more detail in Sec-
tion 2.2, are: (i) solving C “one-versus-rest” two-class problems; (ii) examining(
C
2

)
pairwise classifications; (iii) sequentially looking for or eliminating a sin-

gle class at a time and (iv) applying error correcting output codes [10]. These
approaches have been met with varying degrees of success. For the moment,
we note that they typically do not take into account the natural affinities
among the classes, or simultaneously determine simpler feature spaces that
are tailored for specific output decompositions.

In this chapter, we propose an alternative approach to problem decom-
position in output space that involves building a Binary Hierarchical
Classifier (BHC) in which a C-class problem is addressed using a set of
M = C−1 two-(meta)class feature extractor/classifier modules. These mod-
ules are arranged to form the C−1 internal nodes of a binary tree with C
leaf nodes, one for each class. At each internal node, the partitioning of the
parent meta-class into two child meta-classes is done simultaneously with the
identification of an appropriately small but discriminating feature space for
the corresponding classification problem. This is unlike the commonly used
decision trees in which there may be several leaf nodes per class and the par-
titionings are explicitly done only in the input space. Instead the BHC can
be considered as an example of a coarse-to-fine approach to multi-class prob-
lems. In earlier pattern recognition literature, several multistage approaches,
including hierarchical ones were considered in which classes were progressively
eliminated for an unlabelled sample [8, 43]. One of the goals of this work is
to motivate the reader to reconsider such approaches as they often provide
valuable domain information as a side-effect.

In addition to reducing the number of binary classifiers from O(C2) in
the pairwise classifier framework to O(C), the BHC framework also generates
a class taxonomy that often provides useful domain knowledge. Indeed, the
hierarchical problem decomposition viewpoint was motivated by the observa-
tion that many real-world classification problems have inherent taxonomies
associated with them. Examples of such hierarchically structured classes can
be found in domains as diverse as Biology, where all life forms are arranged in
a multilevel taxonomy, and Internet portals such as Yahoo!, where all articles
are arranged in a hierarchical fashion for ease of navigation and organization.

In fact, the BHC was developed by us while attempting to produce ef-
fective solutions to classification of land cover from remotely sensed hyper-
spectral imagery. Land covers have natural hierarchies and inter-class affini-
ties, which the BHC was able to automatically infer and exploit. Figure 2.1
shows an example of a simple two-level hierarchy of various land-cover types
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Scrub
Willow Swamp
Cabbage Palm Hammock
Cabbage Palm/Oak Hammock
Slash Pine
Broadleaf/Oak Hammock
Hardwood Swamp

Graminoid Marsh
Spartin Marsh
Cattail Marsh
Salt Marsh
Mud flats

WATERLAND

Mid-infrared band

UPLANDS WETLANDS

NDVI

Fig. 2.1. A simple two-level hierarchy for a site with one WATER class and 12
LAND classes divided into seven UPLANDS and five WETLANDS meta-classes.
The land versus water distinction is made by the response in the mid-infrared band
while the distinction between uplands and wetlands is made using the Normalized
Difference Vegetation Index (NDVI).

in the Bolivar peninsula [7]. In this example, 13 original (base) classes are
first decomposed into two groups, LAND and WATER. WATER and LAND
“meta-classes” can be readily separated based on the pixel responses in the
mid-infrared frequency bands. WATER is one of the 13 base classes, while the
LAND meta-class comprises 12 classes and is thus further partitioned into
UPLANDS and WETLANDS meta-classes comprised of seven and five base
classes respectively. The distinction between the UPLANDS and WETLANDS
is made using the Normalized Difference Vegetation Index (NDVI) [45]. In-
stead of solving a 13-class problem, the hierarchy shown in Figure 2.1 can
be used to first solve a binary problem (separating WATER from LAND),
and then solve another binary problem to separate UPLANDS from WET-
LANDS. Note that both the feature space as well as the output space of the
two problems are different. The seven-class problem of discriminating among
the UPLANDS classes and the five-class problem of discriminating among the
WETLANDS classes can be further addressed in appropriate feature spaces
using appropriate classifiers. Thus, a 13-class problem is decomposed using an
existing hierarchy into simpler classification problems in terms of their output
spaces.

Section 2.2 summarizes existing approaches to solving multi-class prob-
lems through output space decomposition. The BHC framework is formally



2.2 Background: Solving Multi-Class Problems 47

defined in Section 2.3. The Bottom-up Binary Hierarchical Classifier
(BU-BHC) algorithm for building the BHC using ideas from agglomerative
clustering [11] in a bottom-up fashion is described in Section 2.4. The Top-
down Binary Hierarchical Classifier (TD-BHC) algorithm for building
the BHC using ideas from our GAMLS framework [30] in a top-down approach
is described in Section 2.5. Section 2.6 discusses both hard and soft ways of
combining the results from individual binary classifiers to solve the original
multi-class problem, for both top-down and bottom-up approaches. An ex-
perimental evaluation of the BHC framework over several large classification
tasks follows in Section 2.7, and several class hierarchies extracted from the
data are displayed in Section 2.8.

2.2 Background: Solving Multi-Class Problems

In this section we summarize and compare four main types of approaches
that have been developed over the years to address multi-class problems using
binary classifiers.

2.2.1 One-versus-rest

The traditional approach to multiclass problems is to develop C classifiers,
each focussed on distinguishing one particular class from the rest. Often this
is achieved by developing a discriminant function for each of the C classes.
A new data point is assigned the class label corresponding to the discrimi-
nant function that gives the highest value for that data point. For example,
in Nilsson’s classic linear machine [37], the discriminant functions are linear,
so the decision boundaries are constrained to be hyperplanes that intersect at
a point. This is an example of the discriminant analysis family of algorithms,
that includes Quadratic Discriminant Analysis [22, 34], Regularized Discrim-
inant Analysis [13], and Kernel Discriminant Analysis [6, 20]. The essential
difference among different discriminant analysis methods is the nature and
bias of the discriminant function used.

2.2.2 Pairwise classification

Also known as round robin classification [17], these approaches learn one clas-
sifier for each pair of classes (employing a total of

(
C
2

)
classifiers in the process)

and then combine the outputs of these classifiers in a variety of ways to de-
termine the final class label. This approach has been investigated by several
researchers [14, 23, 39, 46]. Typically the binary classifiers are developed and
examined in parallel, a notable exception being the efficient DAG-structured
ordering given in [39]. A straightforward way of finding the winning class is
through a simple voting scheme used for example in [14], which evaluates
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pairwise classification for two versions of CART and for the nearest neighbor
rule. Alternatively, if the individual classifiers provide good estimates of the
two-class posterior probabilities, then these estimates can be combined using
an iterative hill-climbing approach suggested by [23].

Our first attempts at output space decomposition [7, 31] involved applying
a pairwise classifier framework for land-cover prediction problems involving
hyperspectral data. Class-pair-specific feature extraction was used to obtain
superior classification accuracies. It also provided important domain knowl-
edge with regard to what features were more useful for discriminating specific
pairs of classes. While such a modular-learning approach for decomposing a
C-class problem is attractive for a number of reasons including focussed fea-
ture extraction, interpretability of results and automatic discovery of domain
knowledge, the fact that it requires O(C2) pairwise classifiers might make
it less attractive for problems involving a large number of classes. Further,
the combiner that integrates the results of all the

(
C
2

)
classifiers must resolve

the couplings among these outputs that might increase with the number of
classes.

2.2.3 Error correcting output codes (ECOC)

Inspired by distributed output representations in biological systems, as well
as by robust data communication ideas, ECOC is one of the most innovative
and popular approaches to have emerged recently to deal with multi-class
problems [10]. A C-class problem is encoded as C̄ binary problems. For each
binary problem, one subset of the classes serves as the positive class (target
= 1) while the rest form the negative class (target = 0). As a consequence,
each original class is encoded into a C̄-dimensional binary vector. The C × C̄
binary matrix is called the coding matrix. A given test input is labelled as
belonging to the class whose code is closest to the code formed by the outputs
of the C̄ classifiers in response to that input.

2.2.4 Sequential methods

These approaches impose an ordering among the classes, and the classifiers
are developed in sequence rather than in parallel. For example, one can first
discriminate between class “1” and the rest. Then for data classified as “rest”,
a second classifier is designed to separate class “2” from the other remaining
classes, and so on. Problem decomposition in the output space can also be ac-
complished implicitly by having C classifiers, each trying to solve the complete
C-class problem, but with each classifier using input features most correlated
with only one of the classes. This idea was used in [49] for creating an en-
semble of classifiers, each using different input decimations. This method not
only reduces the correlation among individual classifiers in an ensemble, but
also reduces the dimensionality of the input space for classification problems.
Significant improvements in misclassification error together with reductions
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in the number of features used were obtained on various public-domain data
sets using this approach.

2.2.5 Comments and comparisons

A common characteristic of the approaches described above is that they do
not take into account the underlying affinities among the individual classes
(for example, how close or separated they are) while deciding on class se-
lection/grouping for binary classification. Both one-versus-rest and pairwise
methods treat each class the same way while, in ECOC, design of the code
matrix is based on the properties of this matrix rather than the classes they
represent. That is why it is helpful to have a strong base learner when ap-
plying ECOC since some of the groupings may lead to complicated decision
boundaries. In contrast, the groupings in BHC are determined by the proper-
ties of the class distributions. Not being agnostic to class affinities helps us in
determining natural groupings that facilitate both the discrimination process
and the interpretation of results.

Three noteworthy studies have emerged recently that compare the three
major approaches. Furnkranz [17] shows that the

(
C
2

)
learning problems of

pairwise classification can be learned more efficiently than the C problems of
the one-versus-rest technique. His analysis is independent of the base learn-
ing algorithm. He also observes that both these approaches are more efficient
than ECOC. A large number of empirical results are shown using Ripper
and C5.0 as base classifiers. The BHC uses only C−1 classifiers, similar to
one-versus-rest, but since the class groupings are based on affinities, the bi-
nary classifications are simpler in general. Hence BHCs do not compromise
much on efficiency in the process of reducing the number of classifiers needed.
Hsu and Lin [25] did a detailed study comparing one-versus-rest and pairwise
classification, both using the SVM as base classifier, to two approaches for
directly generalizing the SVM algorithm to multi-class problems. The pair-
wise method performed best both in terms of accuracy and training time.
One-versus-rest was second and both methods were better than the direct
generalizations of SVM. Finally, a recent intriguing study [44] shows that no
one of these methods performs significantly better than any other as far as test
errors are concerned. The study is carefully done, but it is not clear whether
the results are affected by the choice of SVMs with Gaussian kernels as the
base classifiers.

2.3 The Binary Hierarchical Classifier Framework

Definition 1 A binary hierarchical classifier for a C-class problem P(I,Ω,
PX×Ω ,X ) is defined as an ensemble of C−1 two-(meta)class problems, ar-
ranged as a binary tree T (Ω1), (Ω1 = Ω) recursively defined as follows:
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T (Ωn) =

{[
P(Fn, Ω̃n, PYn×Ω̃n

,Yn), T (Ω2n), T (Ω2n+1)
]

if |Ωn| > 1
Ωn if |Ωn| = 1,

(2.1)
in which each internal node n (i.e. n : |Ωn| > 1) has an associated two-
(meta)class problem:

P(Fn, Ω̃n, PYn×Ω̃n
,Yn) (2.2)

where n is the index of a node in the tree. For each node n, Ωn is a set of
classes in the associated meta-class. For each internal node n, {2n, 2n+1} are
indices of the left and right children, Ω̃n = {Ω2n,Ω2n+1}, Fn is the feature
space for the binary problem, Yn are random variables in Fn, and Ω̃n are
random variables in Ω̃n. Further, each internal node n is comprised of meta-
class feature extractors ψn : I → Fn, such that discrimination between Ω2n

and Ω2n+1 is high in Fn, and meta-class classifiers φn for classes Ω̃n. Finally,
a tree combiner Ξ integrates the outputs of all the internal node classifiers
{φn} into a single output. The classifiers φn can be hard classifiers defined
by the mapping φH

n : Fn → Ω̃n, or soft classifiers given by the mapping
φS

n : Fn → Pn(Ω̃n = Ω2n|Yn). (Note that Pn(Ω̃n = Ω2n+1|yn(x)) is simply
1− Pn(Ω̃n = Ω2n|yn(x)).)
Correspondingly the combiner Ξ can be a hard combiner ΞH : {Ω̃n}n:|Ωn|>1 →
Ω, where inputs to ΞH are the C−1 (meta)class labels and output is one of
the C class labels in Ω, or a soft combiner ΞS : {Pn(Ω̃n|Yn)}n:|Ωn|>1 →
{P (ω|X)}ω∈Ω, where inputs to ΞS are the meta-class posterior probabilities
generated by the C−1 classifiers.

Figure 2.2 shows an example of a five-class BHC with four internal nodes
and five leaf nodes. In general, the BHC tree T (Ω) contains C = |Ω| leaf nodes
and C−1 internal nodes. Each internal node n has its own feature extractor
and classifier that discriminates the two meta-classes Ω2n and Ω2n+1. The de-
composition of the set of classes Ωn into two disjoint subsets Ω2n and Ω2n+1 is
an NP problem with O(2|Ωn|) possible alternatives. Further, the feature space
Fn depends on the decomposition of Ωn. Hence the two coupled problems of
finding the best possible decomposition of Ωn and the best feature space that
discriminates the two resulting meta-classes must be solved simultaneously.
The bottom up and top-down approaches of building such binary hierarchical
classifiers are described next.

2.4 Bottom-up BHC

The Bottom-up Binary Hierarchical classifier (BU-BHC) algorithm
is analogous to hierarchical agglomerative clustering [11]. Instead of merging
data points or clusters at each stage, ] classes or meta-classes are merged
in the BU-BHC algorithm. Starting from the set of C meta-classes ΠC =
{Ω(c)}Cc=1, where Ω(c) = {ωc}, a sequence ΠC → ΠC−1 → . . . Π2 → Π1 with



2.4 Bottom-up BHC 51

3 5

1 4

2

Ω

Ω Ω

Ω

Ω Ω

Ω

1

3

4 7

12
13

2

= {1,2,3,4,5}

= {3,5} = {1,2,4}

= {2}

= {4}= {1}

= {3}

= {1,4}Ω
6

Ω5= {5}

1

2 3

6

φ
3

Feature
Extractor

Classifier

3
ψ

Leaf node

Fig. 2.2. An example of a Binary Hierarchical Classifier for a C = 5 class
problem with four internal nodes and five leaf nodes. Each internal node n comprises
a feature extractor ψn and a classifier φn. Each node n is associated with a set of
classes Ωn. The left and right children of internal node n are indexed 2n and 2n+1,
respectively.

an associated decreasing number of meta-classes is generated by merging two
meta-classes Ωα and Ωβ in ΠK to obtain the set ΠK−1.

In order to decide which of the K meta-classes in ΠK are to be merged to
obtain ΠK−1, a “distance” between every pair of meta-classes, ϑ(Ωα, Ωβ) is
defined as the separation between the two meta-classes in the most discrimina-
tory feature space F(Ωα, Ωβ). Any suitable family of feature extractors can be
used to quantify the distance between two meta-classes. In this chapter, since
we are largely concerned with numeric data, two variants of the Fisher dis-
criminant based linear feature extractors are proposed: Fisher(1), in which a
one-dimensional projection of the D-dimensional input space is sought for the
two-meta class problem, and Fisher(m), in which an m-dimensional feature
space where m = min{D, |Ωα|+ |Ωβ | − 1} is sought.

2.4.1 Fisher(1) Feature Extraction

The dimensionality of the Fisher projection space for a C-class problem with
a D-dimensional input space is min{D, C−1}. At each internal node in the
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BHC, a two-class problem is solved, and hence only a one-dimensional feature
space can be obtained for discriminating these two meta-classes. The distance
function and the feature space obtained by the Fisher(1) feature extractor
for the two meta-classes Ωα and Ωβ are defined in this section.

Let {µρ ∈ 
D×1, ρ ∈ {α, β}} and {Σρ ∈ 
D×D, ρ ∈ {α, β}} be the means
and covariances of the two meta-classes and let {P (Ωρ), ρ ∈ {α, β}} be their
priors. The statistics of meta-class Ωρ can be defined in terms of the estimated
mean vectors, {µ̂ω ∈ 
D×1, ω ∈ Ωρ}, covariance matrices, {Σ̂ω ∈ 
D×D, ω ∈
Ωρ} and class priors {P̂ (ω), ω ∈ Ωρ} as follows:

P̂ (Ωρ) =
∑

ω∈Ωρ

P̂ (ω) =

∑
ω∈Ωρ

|Xω|∑
γ∈Ω |Xγ |

, ρ ∈ {α, β}, (2.3)

µ̂ρ =

∑
ω∈Ωρ

∑
x∈Xω

x∑
ω∈Ωρ

|Xω|
=

∑
ω∈Ωρ

P̂ (ω)µ̂ω∑
ω∈Ωρ

P̂ (ω)
, ρ ∈ {α, β}, (2.4)

Σ̂ρ =
∑

ω∈Ωρ

∑
x∈Xω

(x−µ̂ρ)(x−µ̂ρ)T

∑
ω∈Ωρ

|Xω|

=
∑

ω∈Ωρ
P̂ (ω)[Σ̂ω+(µ̂ρ−µ̂ω)(µ̂ρ−µ̂ω)T ]∑

ω∈Ωρ
P̂ (ω)

(2.5)

The Fisher discriminant depends on the D×D symmetric within class covari-
ance matrix Wα,β given by:1

Wα,β = P (Ωα)Σα + P (Ωβ)Σβ , (2.6)

and the D ×D, rank 1, between class covariance matrix Bα,β given by:

Bα,β = P (Ωα)P (Ωβ)(µα − µβ)(µα − µβ)T . (2.7)

The corresponding one-dimensional Fisher projection is given by:

vαβ = arg max
v∈�D×1

vT Bα,βv
vT Wα,βv

∝W−1
α,β

(
µα − µβ

)
. (2.8)

Thus, the Fisher(1) feature extractor ψ
(1)
fisher(X|Ωα, Ωβ) = vT

αβx, where
x ∈ 
D×1 and y ∈ 
 is a one-dimensional feature. The distance between the
two meta-classes Ωα and Ωβ is the Fisher(1) discriminant along the Fisher
projection vαβ of Equation (2.8).

2.4.2 Fisher(m) Feature Extraction

The basic assumption in Fisher’s discriminant is that the two classes are
unimodal. Even if this assumption is true for individual classes, it is not true

1Substituting estimated parameters for expected ones (e.g. P̂ ≡ P , µ̂ ≡ µ, and
Σ̂ ≡ Σ).
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for meta-classes comprised of two or more classes. Moreover, as the number
of classes in the meta-classes Ωα and Ωβ increases, the dimensionality of the
feature space should also increase to compensate for the more complex decision
boundaries between the two meta-classes. In the Fisher(1) feature extractor,
irrespective of the sizes of the two meta-classes (in terms of the number of
original classes), the Fisher projection is always one-dimensional because the
rank of the between-class covariance matrix Bα,β defined in Equation (2.7) is
1.

To alleviate this problem, we replace Bα,β by a pairwise between-class co-
variance matrix B̃α,β that is defined in terms of the between-class covariances
Bω,ω′ = P (ω)P (ω′)(µω − µω′)(µω − µω′)T , ∀(ω, ω′ ∈ Ωα ×Ωβ as follows:

B̃α,β =
∑

ω∈Ωα

∑
ω′∈Ωβ

P (ω)P (ω′)(µω − µω′)(µω − µω′)T =
∑

ω∈Ωα

∑
ω′∈Ωβ

Bω,ω′ .

(2.9)
The rank of B̃α,β is mαβ = min{D, |Ωα| + |Ωβ | − 1}. The within-class co-
variance matrix for Fisher(m) is the same as in Equation (2.6). The Fisher
projection matrix Vαβ ∈ 
D×mαβ for the Fisher(m) feature extractor is
given by:

Vαβ = arg max
V∈�D×mαβ

tr
{(

VT Wα,βV
)−1 (

VT Bα,βV
)}

. (2.10)

The optimal solution is the first mαβ eigenvectors of
(
W−1

α,βBα,β

)
. Thus, the

Fisher(m) feature extractor ψ
(m)
fisher(X|Ωα, Ωβ) = VT

αβx, where y ∈ 
mαβ×1

is an mαβ-dimensional feature vector. The distance between the two meta-
classes Ωα and Ωβ is the Fisher(m) discriminant along the projection Vαβ

of Equation (2.10).
The dimensionality of the feature space using the Fisher(m) feature ex-

tractor depends on the size of the meta-classes that are merged. In terms of
the notation of the BHC introduced in Definition 1, the dimensionality of the
feature space Fn at the internal node n is min{D, |Ωn|−1}. In particular, the
dimensionality at the root node n = 1 is min{D, |Ω1| − 1} = min{D, C − 1}.
This is the same as the dimensionality of the Fisher projection of the origi-
nal C-class problem, the key difference being that in BHC, a two meta-class
problem is solved in this space instead of the C-class problem. The tradeoff
between the reduction in the number of classes from C to two and the in-
crease in the complexity of the two meta-classes determines the utility of such
a feature space.

2.4.3 Merging the Meta-Classes

Let Ωα and Ωβ be the two closest (in terms of the Fisher projected dis-
tances defined in Sections 2.4.1 and 2.4.2) classes that are merged to form the
meta-class Ωαβ = merge(Ωα, Ωβ). The estimated mean vector µ̂αβ ∈ 
D×1,
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covariance matrix Σ̂αβ
D×D, and prior probability P̂ (Ωαβ) of the meta-class
Ωαβ are related to the means, covariances, and priors of the two merged meta-
classes as follows:

P̂ (Ωαβ) =
∑

ω∈Ωαβ

P̂ (ω) = P̂ (Ωα) + P̂ (Ωβ), (2.11)

µ̂αβ =

∑
ω∈Ωαβ

∑
x∈Xω

x∑
ω∈Ωαβ

|Xω|
=

P̂ (Ωα)µ̂α + P̂ (Ωβ)µ̂β

P̂ (Ωα) + P̂ (Ωβ)
, (2.12)

Σ̂αβ =
∑

ω∈Ωαβ

∑
x∈Xω (x−µ̂αβ)(x−µ̂αβ)T

∑
ω∈Ωαβ

|Xω|

=
∑

ρ∈{α,β} P̂ (Ωρ)
[
Σ̂ρ+(µ̂ρ−µ̂αβ)(µ̂ρ−µ̂αβ)T

]

P̂ (Ωα)+P̂ (Ωβ)
.

(2.13)

Once the mean and covariance of the new meta-class Ωαβ are obtained, its
distance from the remaining classes Ωγ ∈ ΠK − {Ωα, Ωβ} is computed as
follows. The within-class covariance Wαβ,γ is given by:2,3

Wαβ,γ = P (Ωαβ)Σαβ + P (Ωγ)Σγ

= 1
2 [Wα,γ + Wβ,γ + Wα,β ] + Bα,β

P (Ωα)+P (Ωβ) .
(2.14)

Similarly, the between-class covariance Bαβ,γ for the fisher(1) case is defined
as:

Bαβ,γ = P (Ωαβ)P (Ωγ)
(
µαβ − µγ

) (
µαβ − µγ

)T
Bαβ,γ

= Bα,γ + Bβ,γ − P (Ωγ)
P (Ωα)+P (Ωβ)Bα,β .

(2.15)

Finally, the pairwise between-class covariance B̃αβ,γ for fisher(m) case is
defined as:

B̃αβ,γ =
∑

ω∈Ωαβ

∑
ω′∈Ωγ

P (ω)P (ω′) (µω − µω′) (µω − µω′)T = B̃α,γ + B̃β,γ

(2.16)
The recursive updates of Wαβ,γ , Bαβ,γ and B̃αβ,γ can be used to efficiently

compute the distance ϑ(Ωαβ , Ωγ) and continue to build the tree bottom-up
efficiently.

2.5 Top-down BHC

The bottom-up BHC algorithm is O(C2) as the distance between all pairs
of classes must be computed at the very first stage. Each of the C−1 sub-
sequent stages is O(C). For a large number of classes this might make the

2Substituting estimated parameters for expected ones (e.g. P̂ ≡ P , µ̂ ≡ µ, and
Σ̂ ≡ Σ).

3See [29] for details of simplifications.
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BU-BHC algorithm less attractive. In this section, we propose an alternate
approach to building the BHC, i.e., the Top-down Binary Hierarchi-
cal classifier (TD-BHC) algorithm. This algorithm is motivated by our
GAMLS framework [30]. In TD-BHC, starting from a single meta-class set
Π1 at the root node comprising of all the C classes, an increasing sequence
Π1 → Π2 → . . . ΠC−1 → ΠC of meta-classes is obtained. At each stage,
ΠK , one of the meta-classes is partitioned into two disjoint subsets leading
to ΠK+1. Using the notation introduced in Definition 1, the basic TD-BHC
algorithm, BuildTree(Ωn), can be written as follows:

1. Partition Ωn into two meta-classes (Ω2n,Ω2n+1)← PartitionNode(Ωn)
2. Recurse on each child:
• if |Ω2n| > 1 then BuildTree(Ω2n)
• if |Ω2n+1| > 1 then BuildTree(Ω2n+1)

The purpose of the PartitionNode function is to find a partition of the
set of classes Ωn into two disjoint subsets such that the discrimination between
the two meta-classes Ω2n and Ω2n+1 is high. The feature space that best
discriminates between the two meta-classes is also discovered simultaneously.
Fisher(1) and Fisher(m) are two examples of such feature extractors. The
two problems of finding a partition, as well as the feature extractor that
maximizes discrimination between the meta-classes obtained as a result of
this partition, are coupled. These coupled problems are solved simultaneously
using association and specialization ideas of the GAMLS framework [30].

2.5.1 The PartitionNode Algorithm

When partitioning a set of classes into two meta-classes, initially each class
is associated with both the meta-classes. The update of these associations
and meta-class parameters is performed alternately while gradually decreas-
ing the temperature, until a hard partitioning is achieved. The complete Par-
titionNode algorithm which forms the basis of the TD-BHC algorithm is
described in this section.

Let Ω = Ωn be some meta-class at internal node n with K = |Ωn| > 2
classes that needs to be partitioned into two meta-classes, Ωα = Ω2n and
Ωβ = Ω2n+1. The “association” A = [aω,ρ] between class ω ∈ Ω and meta-
class Ωρ, (ρ ∈ {α, β}) is interpreted as the posterior probability of ω belong-
ing to Ωρ: P (Ωρ|ω). The completeness constraint of GAMLS [30] implies that
P (Ωα|ω) + P (Ωβ |ω) = 1, ∀ω ∈ Ω.

PartitionNode(Ω)

1. Initialize associations {aω,α = P (Ωα|ω), ω ∈ Ω} (aω,β = 1− aω,α):

P (Ωα|ω) =
{

1 for some ω = ω(1) ∈ Ω
0.5 ∀ ω ∈ Ω − {ω(1)}

(2.17)
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The association of one of the classes ω(1) ∈ Ω with the meta-class Ωα

is fixed to 1, while all other classes are associated equally with both the
meta-classes. This deterministic, non-symmetric and unbiased association
initialization is possible only because PartitionNode seeks to divide Ω
into two meta-classes only and not more. As a result of this initialization,
the TD-BHC algorithm always yields the same partition for a given data
set and learning parameters, irrespective of the choice of ω(1). The tem-
perature parameter T is initialized to 1 in this chapter, and then decayed
geometrically, as indicated in Step 6 of the algorithm below. Although the
partition is not affected by the choice of the class ω(1), the class that is
“farthest” (in terms of e.g. Bhattacharya distance) from the meta-class Ω
should be chosen for faster convergence.

2. Find the most discriminating feature space F(Ωα, Ωβ): For the
current set of “soft” meta-classes (Ωα, Ωβ) defined in terms of the associ-
ations A, the feature extractor ψ(X|A) : I → F(Ωα, Ωβ) that maximally
discriminates the two meta-classes is sought. This step depends on the
the feature extractor used. Section 2.5.3 describes how the Fisher(1) and
Fisher(m) feature extractors can be extended to soft meta-classes.

3. Compute the mean log-likelihoods of classes ω ∈ Ω in the feature
space F(Ωα, Ωβ):

L(ω|Ωρ) =
1

Nω

∑
x∈Xω

log p(ψ(x|A)|Ωρ), ρ ∈ {α, β}, ∀ ω ∈ Ω, (2.18)

where the pdf p(ψ(x|A)|Ωρ) can be modeled using any distribution func-
tion. A single Gaussian per class is used in this chapter.

4. Update the meta-class posteriors by optimizing Gibb’s free en-
ergy [30]:

aω,α = P (Ωα|ω) =
exp(L(ω|Ωα)/T )

exp(L(ω|Ωα)/T ) + exp(L(ω|Ωβ)/T )
. (2.19)

5. Repeat Steps 2 through 4 until the increase in Gibb’s free energy is in-
significant.

6. If
(

1
|Ω|
∑

ω∈ΩH(aω)
)

< θH (user-defined threshold) stop, otherwise:
• Cool temperature: T ← TθT (θT < 1 is a user-defined cooling param-

eter).
• Go to Step 2.

As the temperature cools sufficiently and the entropy decreases to near
zero (θH = 0.01 in our implementation), the associations or the posterior
probabilities {P (Ωα|ω), ω ∈ Ω} become close to 0 or 1. The meta-class Ω =
Ωn is then split as follows:

Ω2n = {ω ∈ Ωn|aω,α = P (Ωα|ω) > P (Ωβ |ω) = aω,β}
Ω2n+1 = {ω ∈ Ωn|aω,β = P (Ωβ |ω) > P (Ωα|ω) = aω,α} . (2.20)
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2.5.2 Soft Meta-Class Parameter Updates

For any set of associations A, the estimates of the meta-class mean vectors
{µ̂ρ ∈ 
D×1, ρ ∈ {α, β}}, the covariance matrices {Σ̂ρ ∈ 
D×D, ρ ∈ {α, β}},
and priors {P̂ (Ωρ), ρ ∈ {α, β}} are updated using the mean vectors {µ̂ω ∈

D×1, ω ∈ Ω}, covariance matrices {Σ̂ω ∈ 
D×D, ω ∈ Ω}, and class priors
{P̂ (ω), ω ∈ Ω}, of the classes in Ω. Let Xω denote the training set compris-
ing Nω = |Xω| examples of class ω. For any given associations or posterior
probabilities A = {aω,ρ = P (Ωρ|ω), ρ ∈ {α, β}, ω ∈ Ω}, the estimate of the
mean is computed by µ̂ρ =

∑
ω∈Ω P (ω|Ωρ)µ̂ω, ρ ∈ {α, β}. The corresponding

covariance is:

Σ̂ρ =
∑

ω∈Ω
P (ω|Ωρ)

Nω

[∑
x∈Xω

(x− µ̂ρ)(x− µ̂ρ)T
]

=
∑

ω∈Ω P (ω|Ωρ)
[
Σ̂ω + (µ̂ω − µ̂ρ)(µ̂ω − µ̂ρ)T

]
, ρ ∈ {α, β}. (2.21)

Using Bayes theorem, P (ω|Ωρ) = P̂ (ω)P (Ωρ|ω)
P̂ (Ωρ)

, where

P̂ (Ωρ) =
1

P̂ (Ω)

∑
ω∈Ω

P (Ωρ|ω)P̂ (ω) : ρ ∈ {α, β}. (2.22)

2.5.3 Soft Fisher-Based Feature Extractor

The Fisher(1) feature extractor is computed exactly as described in Sec-
tion 2.4.1. The only difference is that in the soft meta-classes case the mean
and covariance of the two meta-classes are estimated as shown in the previous
section. Using these, the within-class covariance Wα,β and the between-class
covariance Bα,β are computed as in Equation (2.6) and Equation (2.7) re-
spectively. The one-dimensional Fisher projection is given by Equation (2.8).
The one-dimensional projection obtained byFisher(1) may not be sufficient
for discriminating meta-classes with a large number of classes. Thus, the
Fisher(m) feature extractor proposed in Section 2.4.2 is also extended to
the soft meta-classes case.

In the BU-BHC algorithm at any merge step, each class belongs to either
of the two meta-classes while in the TD-BHC, at any stage of the Partition-
Node algorithm, a class ω ∈ Ω partially belongs to both the meta-classes.
To reflect this soft assignment of classes to the two meta-classes, the pair-
wise between-class covariance matrix B̃α,β used in Fisher(m) is modified as
follows:

B̃α,β = 1
2

∑
ω∈Ω

∑
ω′∈Ω−{ω} |aω,α − aω′,α|P (ω)P (ω′)(µω − µω′)(µω − µω′)T

= 1
2

∑
ω∈Ω

∑
ω′∈Ω−{ω} |aω,α − aω′,α|Bω,ω′ ,

(2.23)
where |aω,α − aω′,α| is large if the associations of ω and ω′ with the two
meta-classes are different. Thus, the weight corresponding to the between-
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class covariance component is large only when the associations with the re-
spective classes are different. In the limiting case, when the associations be-
come hard i.e. 0 or 1, then Equation (2.23) reduces to Equation (2.9). The
rank of the pairwise between-class covariance matrix is min{D, |Ω| − 1} and
hence the dimensionality of the feature space Fn at internal node n remains
min{D, |Ωn| − 1} as it was in the BU-BHC algorithm. Either Fisher(1) or
Fisher(m) can be used as the feature extractors ψ(X|A) in Step 2 of the
PartitionNode algorithm.

If the original class densities are Gaussian (G(x|µ, Σ)), the class density
functions in Step 3 of the PartitionNode algorithm in Equation (2.18) for
Fisher(1) is:

p(ψ(1)
fisher(x|A)|Ωρ) = G

(
vT

αβx|vT
αβµρ,vT

αβΣρvαβ

)
, ρ ∈ {α, β}, (2.24)

where vαβ is defined in Equation (2.8). Similarly the class density functions
for the Fisher(m) feature extractor can be defined as a multivariate (mαβ-
dimensional) Gaussians,

p(ψ(m)
fisher(x|A)|Ωρ) = G

(
VT

αβx,VT
α,βµρ,VT

αβΣρVαβ

)
, ρ ∈ {α, β}, (2.25)

where Vαβ is defined in Equation (2.10).

2.6 Combining in BHCs

As mentioned in Definition 1, either a hard or a soft classifier can be used at
each internal node in the BHC, leading to two types of combiners: hard and
soft. In this section both the hard and soft combining schemes are presented.
The hard combiner ΞH essentially uses ideas from decision tree classifiers [3]
to propagate a novel example to one of the leaf nodes based on the outputs of
all the internal nodes, while the soft combiner ΞS estimates the true posteriors
of the leaf-node classes from the posteriors of the internal node classifiers.

2.6.1 The Hard Combiner

A novel test example is classified by the hard combiner ΞH of BHC by pushing
it from the root node to a leaf node. The output of the hard classifier at
internal node n, φH

n (ψn(x)), is a class label Ω2n or Ω2n+1. Depending on the
output at node n, x is pushed either to the left child or the right child. The
basic hard combiner is implemented as follows:

1. Initialize n = 1 (start at root node).
2. while node n is an internal node, recursively push point x to the appro-

priate child:

n←
{

2n if φH
n (ψn(x)) = Ω2n

2n + 1 if φH
n (ψn(x)) = Ω2n+1

(2.26)

3. Assign the (unique) class label Ωn at the leaf node n to x.
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2.6.2 The Soft Combiner

If a soft classifier is used at each internal node, the results of these hierar-
chically arranged classifiers can be combined by first computing the overall
posteriors {P (ω|x), ω ∈ Ω} and then applying the maximum a posteriori
probability (MAP) rule: ω(x) = arg maxω∈Ω P (ω|x), to assign the class la-
bel ω(x) to x. The posteriors P (ω|x) can be computed by multiplying the
posterior probabilities of all the internal node classifiers on the path to the
corresponding leaf node.

Theorem 1. The posterior probability P (ω|x) for any input x is the product
of the posterior probabilities of all the internal classifiers along the unique path
from the root node to the leaf node n(ω) containing the class ω, i.e.

P (ω|x) =
D(ω)−1∏

	=0

P (Ω(	+1)
n(ω) |x, Ω

(	)
n(ω)), (2.27)

where D(ω) is the depth of n(ω) (depth of the root node is 0), Ω
(	)
n is the meta-

class at depth  in the path from the root node to n(ω), such that Ω
(D(ω))
n(ω) = {ω}

and Ω
(0)
n(ω) = Ω1 = root node. (See [32] for proof.)

Remark 1 The posterior probabilities Pn(Ωk|x,Ωn), k ∈ {2n, 2n + 1} are
related to the overall posterior probabilities {P (ω|x), ω ∈ Ω} as follows:4

Pn(Ωk|x,Ωn) =

∑
ω∈Ωk

P (ω|x)∑
ω∈Ωn

P (ω|x)
, k ∈ {2n, 2n + 1} (2.28)

2.7 Experiments

Both BU-BHC and TD-BHC algorithms are evaluated in this section on
public-domain data sets available from the UCI repository [35] and National
Institute of Standards and Technology (NIST) and two additional hyperspec-
tral data sets. The classification accuracies of eight different combinations of
the BHC classifiers (bottom-up vs top-down, Fisher(1) vs Fisher(m) fea-
ture extractor and soft vs hard combiners) are compared with multilayered
perceptron-based and maximum likelihood classifiers. The class hierarchy that
is automatically discovered from both the BU-BHC and TD-BHC for these
data sets are shown for some of these data sets to provide concrete examples
of the domain knowledge discovered by the BHC algorithms.

2.7.1 Data Sets Used

The BHC was originally formulated by us to tackle the challenging problem
of labeling land cover based on remotely-sensed hyperspectral images, but it

4This relationship can also be used to indirectly prove Theorem 1.
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Table 2.1. The twelve classes in the AVIRIS/KSC hyperspectral data set

Num Class Name
Upland Classes

1 Scrub
2 Willow Swamp
3 Cabbage palm hammock
4 Cabbage oak hammock
5 Slash pine
6 Broad leaf/oak hammock
7 Hardwood swamp

Wetland Classes
8 Graminoid marsh
9 Spartina marsh
10 Cattail marsh
11 Salt marsh
12 Mud flats

clearly has broader applicability. Therefore in this section we shall evaluate it
on five public-domain data sets in addition to two hyperspectral data sets. The
four public-domain data sets obtained from the UCI repository [35] consist of
two 26-class English letter recognition data sets (LETTER-I and LETTER-II)
with classes A–Z, a 10-class DIGITS data set with classes 0–9 and a six-class
SATIMAGE data set with the following classes: red soil, cotton crop, gray
soil, damp gray soil, soil with vegetation stubble, and very damp gray soil.
See [29] for more details about these data sets.

The two high-dimensional hyperspectral data sets are AVIRIS and HYMAP,
both obtained from NASA. AVIRIS covers 12 classes or land-cover types, and
we used a 183-band subset of the 224 bands (excluding water absorption
bands) acquired by NASA’s Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) sensor over Kennedy Space Center in Florida. The seven upland
and five wetland cover types identified for classification are listed in Table 2.1.
Classes 3–7 are all trees. Class 4 is a mixture of Class 3 and oak hammock.
Class 6 is a mixture of broad leaf trees (maples and laurels) and oak hammock.
Class 7 is also a broad leaf tree. These classes have similar spectral signatures
and are very difficult to discriminate in multispectral, and even hyperspectral,
data using traditional methods.

The HYMAP data set represents a nine-class land-cover prediction prob-
lem, where the input is 126 bands across the reflective solar wavelength region
of 0.441–2.487 µm with contiguous spectral coverage (except in the atmo-
spheric water vapor bands) and bandwidths between 15 and 20 nm. This data
set was obtained over Stover Point (South Texas) in September of 1999. The
vegetation here consists of common high estuarine marsh species including
Spartina spartinae, Borrichia frutescens, Monanthochloa littoralis, and Batis
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Table 2.2. The nine classes in the STOVER/HYMAP data set.

Num Class Name
1 Water
2 Spartina Spartinae
3 Batis maritima
4 Borrichia frutescens + Spartina spartinae + Monanthocloa littoralis
5 Sand flats (bare soil)
6 Pure Borrichia frutescens
7 Trees
8 Dense bushes
9 Borrichia frutescens + Spartina spartinae

maritima. Adjacent to the resaca (which is a generic term that refers to an
old river bed which has been cut off by the meandering of the river resulting
in an ox-bow) is an almost impregnable layer of dense shrubs and trees. The
nine classes determined for Stover Point are listed in Table 2.2.

2.7.2 Classification Results

The eight versions of the BHC framework that are evaluated on the data sets
described in the previous section are generated by the following sets of choices:

• Building the tree: The BHC tree can be built either bottom-up or top-
down. The biases of the BU-BHC and the TD-BHC algorithms are dif-
ferent. The BU-BHC tries to find the most similar meta-classes from the
available set and hence is more greedy at each step than the TD-BHC,
which attempts to partition a meta-class into two subsets with a more
global perspective. As a result of the differences of these biases, different
BHC trees and therefore different classification accuracies can be obtained.

• Feature extractor used: Both the Fisher(1) and Fisher(m) feature
extractors based on Fisher’s discriminant are investigated. While the tree
structure for the two Fisher projections may be different, the discrimina-
tion between classes at any internal node using Fisher(m) projections is
higher than the discrimination with Fisher(1) projection and therefore
Fisher(m)-based BHC performs better in general than the corresponding
BHC with Fisher(1) feature extractor.

• Nature of combiner: Both hard and soft combiners were investigated. In
general, the soft combiner performs slightly better than the hard combiner,
as is expected.

The classification accuracy averaged over 10 experiments on each data set
is reported in Table 2.3. In each experiment, stratified sampling was used to
partition the data set into training and test sets of equal size.5 Eight versions

510-fold cross validation is currently in vogue in some circles but is an overkill
for fairly large data sets.
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of the BHC classifiers were compared to two standard classifiers leading to
the following 10 classifiers for each data set:

• MLP: a finely-tuned multilayered perceptron-based classifier for each data
set;

• MLC: a maximum-likelihood classifier using a full covariance matrix wher-
ever possible and using a diagonal covariance matrix if the full covariance
matrix is ill-conditioned due to high input dimensionality;

• BU-BHC(1,H): BU-BHC with Fisher(1) and hard combiner;
• BU-BHC(1,S): BU-BHC with Fisher(1) and soft combiner;
• BU-BHC(m,H): BU-BHC with Fisher(m) and hard combiner;
• BU-BHC(m,S): BU-BHC with Fisher(m) and soft combiner;
• TD-BHC(1,H): TD-BHC with Fisher(1) and hard combiner;
• TD-BHC(1,S): TD-BHC with Fisher(1) and soft combiner;
• TD-BHC(m,H): TD-BHC with Fisher(m) and hard combiner;
• TD-BHC(m,S): TD-BHC with Fisher(m) and soft combiner.

Table 2.3. Classification accuracies on public-domain data sets from the UCI repos-
itory [35] (satimage, digits, letter-i) and NIST(letter-ii) and remote-sensing
data sets from the Center for Space Research, The University of Texas at Austin
(hymap, aviris). The input dimensions and number of classes are also indicated for
each data set.

satimage digits letter-I letter-II hymap aviris

Dimensions 36 64 16 30 126 183
Classes 6 10 26 26 9 12
MLP 79.77 82.33 79.28 76.24 78.21 74.54
MLC 77.14 74.85 82.73 79.48 82.73 72.66
BU-BHC(1,H) 83.26 88.87 71.29 78.45 95.18 94.97
BU-BHC(1,S) 84.48 89.00 72.81 79.93 95.62 95.31
BU-BHC(m,H) 85.29 91.71 76.55 80.94 95.12 95.51
BU-BHC(m,S) 85.35 91.95 78.41 81.11 95.43 95.83
TD-BHC(1,H) 83.77 90.11 70.45 74.59 95.31 96.33
TD-BHC(1,S) 84.02 90.24 72.71 75.83 95.95 97.09
TD-BHC(m,H) 84.70 91.44 77.85 81.48 96.48 97.15
TD-BHC(m,S) 84.95 91.61 79.13 81.99 96.64 97.93

The finely tuned MLP classifiers and the MLC classifiers are used as bench-
marks for evaluating the BHC algorithms. Almost all the BHC versions per-
formed significantly better than the MLP and MLC classifiers on all data sets
except LETTER-I and LETTER-II. In general the TD-BHC was slightly bet-
ter than the BU-BHC mainly because its global bias leads to less greedy trees
than the BU-BHC algorithm. Further, the Fisher(m) feature extractor con-
sistently yields slightly better results than the Fisher(1) feature extractor,
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as expected. Finally, the soft combiner also performed sightly better than the
hard combiner. This again is an expected result as the hard combiner loses
some information as it thresholds the posteriors at each internal node.

2.7.3 Discussion of Results and Further Comparative Studies

From Table 2.3, we see that the BHC classifiers did not perform as well on
the LETTER-I data set. This turns out to be due to the presence of some
bimodal classes in this data set, which is problematic for the simple Fisher
discriminant. For such data sets it is preferable to use more powerful binary
classifiers at the internal nodes of the BHC, i.e. use the BHC framework only
to obtain the class hierarchy and then use other, more appropriate, feature-
extractors/classifiers for the two-class problems at each internal node. This
intuition is borne out in our recent work [40] where gaussian-kernel based
SVMs were used for the internal nodes, leading to statistically significant per-
formance improvements for all the nine data sets considered. Also of interest
is the comparison of this BHC-SVM architecture with an ECOC-based en-
semble (using well-tuned SVMs as the base classifiers) given in this work. The
outcome of this comparison is not obvious since two very different philoso-
phies are being encountered. While the BHC groups the classes according to
their natural affinities in order to make each binary problem easier, it cannot
exploit the powerful error correcting properties of an ECOC ensemble that
can provide good results even when individual classifiers are weak. This em-
pirical study showed that while is no clear advantage to either technique in
terms of classification accuracy, the BHCs typically achieve this performance
using fewer classifiers. Note that each dichotomy in an ECOC setup can be
addressed using all the training data, while for the BHC the data available de-
creases as one moves away from the root since only a subset of the classes are
involved in lower-level dichotomies. Thus one may expect the ECOC approach
to be less affected by a paucity of training data. However the experiments in
[40] showed that BHC was competitive even for small sample sizes, indicat-
ing that the reduction in data is compensated for by the simpler dichotomies
resulting from affinity-based grouping of classes.

All the results above assume equal penalty for each type of misclassifica-
tion. In many real applications, classification into a nearby class is less costly
than being labeled as a distant class. For example, wet gray soil being clas-
sified as damp gray soil is not as costly as being labeled as red, dry soil.
If such asymmetric costs are considered, the coarse-to-fine approach of the
BHC framework provides an additional advantage over all the other methods
considered.

2.8 Domain Knowledge Discovery

One of the important aspects of the BHC classifiers is the domain knowledge
that is discovered by the automatic BU-BHC and TD-BHC tree construction
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algorithms. The trees constructed by the BU-BHC(m) and TD-BHC(m) are
shown in Figures 2.3 to 2.10 for the most common of the trees obtained in the
ten experiments for each data set. The numbers at the internal nodes of the
binary trees represent the mean training and test set classification accuracies
at that internal node over all the experiments for which this tree is obtained.

• IRIS: It is well known that Iris Versicolour and Virginica are “closer” to
each other than Iris Setosa. So, not surprisingly, the first split for both BU-
BHC(m) and TD-BHC(m) algorithms invariably separates Setosa from the
other two classes.

• SATIMAGE: Figures 2.3 and 2.4 show the BU-BHC(m) and TD-BHC(m)
trees generated for the SATIMAGE data set. In the BU-BHC tree, the
Classes 4 (damp gray soil) and 6 (very damp gray soil) merged first. This
was followed by Class 3 (gray soil) merging in the meta-class (4,6). The
right child of the root node contains the remaining three classes out of
which the vegetation classes i.e. Class 2 (cotton crop) and Class 5 (soil
with vegetation stubble) were grouped first. The tree formed in the TD-
BHC is even more informative as it separates the four bare soil classes from
the two vegetation classes at the root node and then separates the four
soil classes into red-soil (Class 1) and gray-soil (Classes 3, 4, and 6) meta-
classes. The gray-soil meta-class is further partitioned into damp-gray-soil
(Classes 4 and 6) and regular-gray-soil (Class 3). Thus reasonable class hi-
erarchies are discovered by the BHC framework for the SATIMAGE data
set.
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Fig. 2.3. BU-BHC(m) class hierarchy for the satimage data set.
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• LETTER: The 26-class LETTER-I data set is only 16-dimensional. Al-
though relatively lower dimensionality makes it an “easier” problem from
the curse of dimensionality perspective, the fact that the number of classes
is more than the dimensionality makes it a “harder” problem from the
problem decomposition perspective. As seen in Table 2.3, the performance
of BHC classifiers actually is poorer than other approaches, the reasons
for which have already been discussed. Nevertheless, it is interesting to see
the trees obtained by the BHC algorithms for such a large (in terms of
output space) classification problem (Figures 2.5 and 2.6). Several inter-
esting groups of characters are merged in the BU-BHC tree. For example
meta-classes like {M,W,N,U} {F,P}, {V,Y,T}, {S,Z,B,E}, {I,J}, {K,R},
and {G,Q,C} are discovered. These conform well with the shapes of the
letters. The TD-BHC tree is different from the BU-BHC tree but also
has several interesting meta-classes like {M,W,U,H,N}, {K,R}, {V,Y,T},
{F,P}, {S,Z}, {C,G,O}, and {B,D,E}. Even for a small dimensional input
space, as compared to the number of classes, the BHC algorithm was able
to discover a meaningful class hierarchy for this 26-class problem. How-
ever, note that one could have obtained other reasonable hierarchies as
well, and it is difficult to quantify the quality of a specific hierarchy other
than through its corresponding classification accuracy.

• LETTER-II: Since the output space is still the same, the BHC trees
for LETTER-II should be similar to the LETTER-I trees. In our experi-
ments, similar interesting meta-classes such as {M,W,N,U}, {F,P}, {V,T},
{S,Z,B,E}, {I,J} and {G,Q,C} were discovered in the BU-BHC tree. The
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Fig. 2.5. BU-BHC(m) class hierarchy for the letter-I data set.
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Fig. 2.6. TD-BHC(m) class hierarchy for the letter-I data set.

TD-BHC classifier for LETTER-II data set resulted in a few new groupings
as well, including {O,Q}, {H,K,A,R} and {P,D}.

• Hyperspectral data: Figures 2.7, 2.8, 2.9 and 2.10 show the bottom-up
and top-down trees obtained for AVIRIS and HYMAP. By considering the
meaning of the class labels it is evident that this domain provided the most
useful knowledge. Invariably, when water was present, it was the first to
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be split off. Subsequent partitions would, for example, distinguish between
marshy wetlands and uplands, as in Figure 2.1. Note that the trees shown
are representative results. While there are sometimes small variations in
the trees obtained by perturbing the data, invariably all the trees produce
hierarchies that are meaningful and reasonable to a domain expert [24].
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Fig. 2.7. BU-BHC(m) class hierarchy for the AVIRIS data set.
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2.9 Conclusions

This chapter presented a general framework for certain difficult classification
problems in which the complexity is primarily due to having several classes
as well as high-dimensional inputs. The BHC methodology relies on progres-
sively partitioning or grouping the set of classes based on their affinities with
one another. The BHC, as originally conceived, uses a custom Fisher’s dis-
criminant feature extraction for each partition, which is quite fast as it only
involves summary class statistics. Moreover, as a result of the tree building
algorithms, a class taxonomy is automatically discovered from data, which of-
ten leads to useful domain knowledge. This property was particularly helpful
in our analysis of hyperspectral data.

The hierarchical BHC approach is helpful only if some class affinities are
actually present, i.e. it will not be appropriate if all the classes are essen-
tially “equidistant” from one another. In practice, this is not very restrictive
since many applications involving multiple class labels, such as those based
on biological or text data, do have natural class affinities, quite often reflected
in class hierarchies or taxonomies. In fact it has been shown that exploiting
a known hierarchy of text categories substantially improves text classifica-
tion [5]. In contrast, the BHC attempts to induce a hierarchy directly from
the data where no pre-existing hierarchy is available. Another recent approach
with a similar purpose is presented in [19] where Naive Bayes is first used to
quickly generate a confusion matrix for a text corpus. The classes are then
clustered based on this matrix such that classes that are more confused with
one another tend to be placed in the same group. Then SVMs are used in
a “one-versus-all” framework within each group of classes to come up with
the final result. Thus this approach produces a two-level hierarchy of classes.
On text benchmarks, this method was three to six times faster than using
“one-vs-all” SVMs directly, while producing comparable or better classifica-
tion results.

We note that one need not be restricted to our choices of a Fisher dis-
criminant and a simple Bayesian classifier at each internal node of the class-
partitioning tree. In Section 2.7.3, we summarized our related work on using
SVMs as the internal classifiers on a tree obtained via the Fisher discrimi-
nant/Bayesian classifier combination. The feature extraction step itself can
also be customized for different domains such as image or protein sequence
classification. In this context, recollect that the trees obtained for a given
problem can vary somewhat depending on the specific training set or classi-
fier design, indicative of the fact that that there are often multiple reasonable
ways of grouping the classes. The use of more powerful binary classifiers pro-
vides an added advantage in that the overall results are more tolerant to the
quality of the tree that is obtained.

The design space for selecting an appropriate feature extractor–classifier
combination is truly rich and needs to be explored further. A well-known
trade-off exists between these two functions. For example, a complex feature
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extraction technique can compensate for a simple classifier. With this view-
point, let us compare the top-down BHC with decision trees such as C5.0,
CART and CHAID. One can view the action at each internal node of a de-
cision tree as the selection of a specific value of exactly one variable (feature
extraction stage), followed by a simple classifier that just performs a sim-
ple comparison against this value. Thus the BHC node seems more complex.
However, the demands on a single node in a decision tree are not that strong,
since samples from the same class can be routed to different branches of the
tree and still be identified correctly at later stages. In contrast, in the hard
version of BHC, all the examples of a given class have to be routed to the
same child at each internal node visited by them.

Acknowledgments: This research was supported in part by NSF grant IIS-
0312471, the Texas Advanced Technology Research Program (CSRA-ATP-
009), and a grant from Intel Corp. We thank members of CSR, and in partic-
ular Jisoo Ham and Alex Henneguelle, for helpful comments.

References

[1] Ballard, D., 1987: Modular learning in neural networks. Proc. AAAI-87 ,
279–84.

[2] Bellman, R. E., ed., 1961: Adaptive Control Processes. Princeton Univer-
sity Press.

[3] Breiman, L., J. H. Friedman, R. Olshen and C. J. Stone, 1984: Clas-
sification and Regression Trees. Wadsworth and Brooks, Pacific Grove,
California.

[4] Brill, F. Z., D. E. Brown and W. N. Martin, 1992: Fast genetic selection
of features for neural network classifiers. IEEE Transactions on Neural
Networks , 3, 324–28.

[5] Chakrabarti, S., B. Dom, R. Agrawal and P. Raghavan, 1998: Scalable
feature selection, classification and signature generation for organizing
large text databases into hierarchical topic taxonomies. VLDB Journal ,
7, 163–78.

[6] Chakravarthy, S., J. Ghosh, L. Deuser and S. Beck, 1991: Efficient train-
ing procedures for adaptive kernel classifiers. Neural Networks for Signal
Processing , IEEE Press, 21–9.

[7] Crawford, M. M., S. Kumar, M. R. Ricard, J. C. Gibeaut and A. Neuensh-
wander, 1999: Fusion of airborne polarimetric and interferometric SAR
for classification of coastal environments. IEEE Transactions on Geo-
science and Remote Sensing , 37, 1306–15.

[8] Dattatreya, G. R. and L. N. Kanal, 1985: Decision trees in pattern recog-
nition. Progress in Pattern Recognition 2 , L. N. Kanal and A. Rosenfeld,
eds., Elsevier Science, 189–239.



References 71

[9] Deco, G. and L. Parra, 1997: Nonlinear feature extraction by redundancy
reduction in an unsupervised stochastic neural network. Neural Networks,
10, 683–91.

[10] Dietterich, T. G. and G. Bakiri, 1995: Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Artificial Intelligence
Research, 2, 263–86.

[11] Duda, R. and P. Hart, 1973: Pattern Classification and Scene Analysis.
Addison-Wesley.

[12] Etemad, K. and R. Chellappa, 1998: Separability-based multiscale basis
selection and feature extraction for signal and image classification. IEEE
Transactions on Image Processing , 7, 1453–65.

[13] Friedman, J., 1989: Regularized discriminant analysis. Journal of the
American Statistical Association, 84, 165–75.

[14] — 1996: Another approach to polychotomous classification. Technical
report, Stanford University.

[15] — 1996: On bias, variance, 0/1 loss, and the curse-of-dimensionality.
Technical report, Department of Statistics, Stanford University.

[16] Fukunaga, K., 1990: Introduction to Statistical Pattern Recognition (2nd
Ed.), Academic Press, NY.

[17] Furnkranz, J., 2002: Round robin classification. Jl. Machine Learning
Research, 2, 721–47.

[18] Ghosh, J., 2003: Scalable clustering. The Handbook of Data Mining ,
N. Ye, ed., Lawrence Erlbaum Assoc., 247–77.

[19] Godbole, S., S. Sarawagi and S. Chakrabarti, 2002: Scaling multi-class
support vector machines using inter-class confusion. Proceedings of the
8th International Conference on Knowledge Discovery and Data Mining
(KDD-02), 513–18.

[20] Hand, D., 1982: Kernel Discriminant Analysis. Research Studies Press,
Chichester, UK.

[21] Happel, B. and J. Murre, 1994: Design and evolution of modular neural
network architectures. Neural Networks, 7:6/7, 985–1004.

[22] Hastie, T. and R. Tibshirani, 1996: Discriminant adaptive nearest neight-
bor classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-18, 607–16.

[23] — 1998: Classification by pairwise coupling. Advances in Neural Infor-
mation Processing Systems, M. J. K. Michael, I. Jordan and S. A. Solla,
eds., MIT Press, Cambridge, Massachusetts, 10, 507–13.

[24] Henneguelle, A., J. Ghosh and M. M. Crawford, 2003: Polyline feature
extraction for land cover classification using hyperspectral data. Proc.
IICAI-03 , 256–69.

[25] Hsu, C. W. and C. J. Lin, 2002: A comparison of methods for multiclass
support vector machines. IEEE Transactions on Neural Networks , 13,
415–25.

[26] Jordan, M. and R. Jacobs, 1994: Hierarchical mixture of experts and the
EM algorithm. Neural Computation, 6, 181–214.



72 Joydeep Ghosh, Shailesh Kumar and Melba M. Crawford

[27] Khotanzad, A. and Y. Hong, 1990: Invariant image recognition by zernike
moments. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12, 28–37.

[28] Kittler, J. and F. Roli, eds., 2001: Multiple Classifier Systems. LNCS Vol.
1857, Springer.

[29] Kumar, S., 2000: Modular learning through output space decomposition.
Ph.D. thesis, Dept. of ECE, Univ. of Texas at Austin, USA.

[30] Kumar, S. and J. Ghosh, 1999: GAMLS: A generalized framework for
associative modular learning systems (invited paper). Proceedings of
the Applications and Science of Computational Intelligence II , Orlando,
Florida, 24–34.

[31] Kumar, S., J. Ghosh and M. M. Crawford, 1999: A versatile framework
for labeling imagery with a large number of classes. Proceedings of the
International Joint Conference on Neural Networks, Washington, D.C.

[32] — 2002: Hierarchical fusion of multiple classifiers for hyperspectral data
analysis. Pattern Analysis and Applications, splecial issue on Fusion of
Multiple Classifiers, 5, 210–20.

[33] Mao, J. and A. K. Jain, 1995: Artificial neural networks for feature ex-
traction and multivariate data projection. IEEE Transactions on Neural
Networks , 6 (2), 296–317.

[34] McLachlan, G. J., 1992: Discriminant Analysis and Statistical Pattern
Recognition. John Wiley, New York.

[35] Merz, C. and P. Murphy, 1996: UCI repository of machine learning
databases. URL: www.ics.uci.edu/∼mlearn/MLRepository.html.

[36] Murray-Smith, R. and T. A. Johansen, 1997: Multiple Model Approaches
to Modelling and Control . Taylor and Francis, UK.

[37] Nilsson, N. J., 1965: Learning Machines: Foundations of Trainable
Pattern-Classifying Systems. McGraw Hill, NY.

[38] Petridis, V. and A. Kehagias, 1998: Predictive Modular Neural Networks:
Applications to Time Series. Kluwer Academic Publishers, Boston.

[39] Platt, J. C., N. Cristianini and J. Shawe-Taylor, 2000: Large margin
DAGs for multiclass classification. MIT Press, 12, 547–53.

[40] Rajan, S. and J. Ghosh, 2004: An empirical comparison of hierarchical
vs. two-level approaches to multiclass problems. Multiple Classifier Sys-
tems, F. Roli, J. Kittler and T. Windeatt, eds., LNCS Vol. 3077, Springer,
283–92.

[41] Ramamurti, V. and J. Ghosh, 1998: On the use of localized gating in
mixtures of experts networks (invited paper), SPIE Conf. on Applications
and Science of Computational Intelligence, SPIE Proc. Vol. 3390 , 24–35.

[42] — 1999: Structurally adaptive modular networks for nonstationary envi-
ronments. IEEE Trans. on Neural Networks, 10, 152–60.

[43] Rasoul Safavian, S. and D. Landgrebe, 1991: A survey of decision tree
classifier methodology. IEEE Transactions on Systems, Man, and Cyber-
netics, 21, 660–74.



References 73

[44] Rifkin, R. and A. Klautau, 2004: In defense of one-vs-all classification.
Jl. Machine Learning Research, 5, 101–41.

[45] Sakurai-Amano, T., J. Iisaka and M. Takagi, 1997: Comparison of land
cover indices of AVHRR data. International Geoscience and Remote
Sensing Symposium, 916–18.

[46] Schölkopf, B., C. Burges and A. J. Smola, eds., 1998: Advances in Kernel
Methods: Support Vector Learning . MIT Press.

[47] Sharkey, A., 1999: Combining Artificial Neural Nets. Springer-Verlag.
[48] Sharkey, A. J. C., N. E. Sharkey, and G. O. Chandroth, 1995: Neural

nets and diversity. Proceedings of the 14th International Conference on
Computer Safety, Reliability and Security, Belgirate, Italy.

[49] Tumer, K. and N. C. Oza, 1999: Decimated input ensembles for improved
generalization. Proceedings of the International Joint Conference on Neu-
ral Networks, Washington, D.C.

[50] Vapnik, V., 1995: The Nature of Statistical Learning Theory. Springer.



3

Graph-based Mining of Complex Data

Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

Summary. We describe an approach to learning patterns in relational data rep-
resented as a graph. The approach, implemented in the Subdue system, searches
for patterns that maximally compress the input graph. Subdue can be used for
supervised learning, as well as unsupervised pattern discovery and clustering.

Mining graph-based data raises challenges not found in linear attribute–value
data. However, additional requirements can further complicate the problem. In par-
ticular, we describe how Subdue can incrementally process structured data that
arrives as streaming data. We also employ these techniques to learn structural con-
cepts from examples embedded in a single large connected graph.

3.1 Introduction

Much of current data-mining research focuses on algorithms to discover sets
of attributes that can discriminate data entities into classes, such as shop-
ping or banking trends for a particular demographic group. In contrast, we
are developing data-mining techniques to discover patterns consisting of com-
plex relationships between entities. The field of relational data mining, of
which graph-based relational learning is a part, is a new area investigating
approaches to mining relational information by finding associations involving
multiple tables in a relational database.

Two main approaches have been developed for mining relational infor-
mation: logic-based approaches and graph-based approaches. Logic-based ap-
proaches fall under the area of inductive logic programming (ILP) [16]. ILP
embodies a number of techniques for inducing a logical theory to describe
the data, and many techniques have been adapted to relational data mining
[6]. Graph-based approaches differ from logic-based approaches to relational
mining in several ways, the most obvious of which is the underlying represen-
tation. Furthermore, logic-based approaches rely on the prior identification
of the predicate or predicates to be mined, while graph-based approaches are
more data-driven, identifying any portion of the graph that has high support.
However, logic-based approaches allow the expression of more complicated



76 Diane J. Cook, Lawrence B. Holder, Jeff Coble and Joseph Potts

patterns involving, e.g., recursion, variables, and constraints among variables.
These representational limitations of graphs can be overcome, but at a com-
putational cost.

Our research is particularly applicable to domains in which the data is
event-driven, such as counter-terrorism intelligence analysis, and domains
where distinguishing characteristics can be object attributes or relational at-
tributes. This ability has also become a crucial challenge in many security-
related domains. For example, the US House and Senate Intelligence Commit-
tees’ report on their inquiry into the activities of the intelligence community
before and after the September 11, 2001 terrorist attacks revealed the necessity
for “connecting the dots” [18], that is, focusing on the relationships between
entities in the data, rather than merely on an entity’s attributes. A natu-
ral representation for this information is a graph, and the ability to discover
previously-unknown patterns in such information could lead to significant im-
provement in our ability to identify potential threats. Similarly, identifying
characteristic patterns in spatial or temporal data can be a critical compo-
nent in acquiring a foundational understanding of important research in many
of the basic sciences.

Problems of such complexity often present additional challenges, such as
the need to assimilate incremental data updates and the need to learn models
from data embedded in a single input graph. In this article we review tech-
niques for graph-based data mining and focus on a method for graph-based
relational learning implemented in the Subdue system. We describe meth-
ods of enhancing the algorithm to handle challenges associated with complex
data, such as incremental discovery of streaming structural data and learning
models from embedded instances in supervised graphs.

3.2 Related Work

Graph-based data mining (GDM) is the task of finding novel, useful, and
understandable graph-theoretic patterns in a graph representation of data.
Several approaches to GDM exist, based on the task of identifying frequently
occurring subgraphs in graph transactions, i.e., those subgraphs meeting a
minimum level of support. Kuramochi and Karypis [15] developed the FSG
system for finding all frequent subgraphs in large graph databases. FSG starts
by finding all frequent single and double edge subgraphs. Then, in each itera-
tion, it generates candidate subgraphs by expanding the subgraphs found in
the previous iteration by one edge. In each iteration the algorithm checks how
many times the candidate subgraph occurs within an entire graph. The candi-
dates whose frequency is below a user-defined level are pruned. The algorithm
returns all subgraphs occurring more frequently than the given level.

Yan and Han [19] introduced gSpan, which combines depth-first search
and lexicographic ordering to find frequent subgraphs. Their algorithm starts
from all frequent one-edge graphs. The labels on these edges, together with
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labels on incident vertices, define a code for every such graph. Expansion of
these one-edge graphs maps them to longer codes. The codes are stored in a
tree structure such that if α = (a0, a1, ..., am) and β = (a0, a1, ..., am, b), the
β code is a child of the α code. Since every graph can map to many codes, the
codes in the tree structure are not unique. If there are two codes in the code
tree that map to the same graph and one is smaller than the other, the branch
with the smaller code is pruned during the depth-first search traversal of the
code tree. Only the minimum code uniquely defines the graph. Code ordering
and pruning reduces the cost of matching frequent subgraphs in gSpan.

Inokuchi et al. [12] developed the Apriori-based Graph Mining (AGM)
system, which uses an approach similar to Agrawal and Srikant’s [2] Apriori
algorithm for discovering frequent itemsets. AGM searches the space of fre-
quent subgraphs in a bottom-up fashion, beginning with a single vertex, and
then continually expanding by a single vertex and one or more edges. AGM
also employs a canonical coding of graphs in order to support fast subgraph
matching. AGM returns association rules satisfying user-specified levels of
support and confidence.

We distinguish graph-based relational learning (GBRL) from graph-based
data mining in that GBRL focuses on identifying novel, but not necessarily
the most frequent, patterns in a graph representation of data [10]. Only a few
GBRL approaches have been developed to date. Subdue [4] and GBI [20] take
a greedy approach to finding subgraphs, maximizing an information theoretic
measure. Subdue searches the space of subgraphs by extending candidate sub-
graphs by one edge. Each candidate is evaluated using a minimum description
length metric [17], which measures how well the subgraph compresses the in-
put graph if each instance of the subgraph were replaced by a single vertex.
GBI continually compresses the input graph by identifying frequent triples
of vertices, some of which may represent previously-compressed portions of
the input graph. Candidate triples are evaluated using a measure similar to
information gain. Kernel-based methods have also been used for supervised
GBRL [14].

3.3 Graph-based Relational Learning in Subdue

The Subdue graph-based relational learning system1 [4, 5] encompasses several
approaches to graph-based learning, including discovery, clustering and super-
vised learning, which will be described in this section. Subdue uses a labeled
graph G = (V,E,L) as both input and output, where V = {v1, v2, . . . , vn} is
a set of vertices, E = {(vi, vj)|vi, vj ∈ V } is a set of edges, and L is a set of la-
bels that can appear on vertices and edges. The graph G can contain directed
edges, undirected edges, self-edges (i.e., (vi, vi) ∈ E), and multi-edges (i.e.,

1Subdue source code, sample data sets and publications are available at
ailab.uta.edu/subdue.
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more than one edge between vertices vi and vj). The input graph need not be
connected, but the learned patterns must be connected subgraphs (called sub-
structures) of the input graph. The input to Subdue can consist of one large
graph or several individual graph transactions and, in the case of supervised
learning, the individual graphs are classified as positive or negative examples.

3.3.1 Substructure Discovery

Subdue searches for a substructure that best compresses the input graph.
Subdue uses a variant of beam search for its main search algorithm. A sub-
structure in Subdue consists of a subgraph definition and all its occurrences
throughout the graph. The initial state of the search is the set of substructures
consisting of all uniquely labeled vertices. The only operator of the search is
the ExtendSubstructure operator. As its name suggests, it extends a substruc-
ture in all possible ways by a single edge and a vertex, or by only a single
edge if both vertices are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each
substructure in the current state. The resulting state, however, does not con-
tain all the substructures generated by the ExtendSubstructure operator. The
substructures are kept on a queue and are ordered based on their description
length (sometimes referred to as value) as calculated using the MDL principle
described below.

The search terminates upon reaching a user-specified limit on the number
of substructures extended, or upon exhaustion of the search space. Once the
search terminates and Subdue returns the list of best substructures found, the
graph can be compressed using the best substructure. The compression pro-
cedure replaces all instances of the substructure in the input graph by single
vertices, which represent the substructure definition. Incoming and outgoing
edges to and from the replaced instances will point to, or originate in the
new vertex that represents the instance. The Subdue algorithm can be in-
voked again on this compressed graph. This procedure can be repeated a
user-specified number of times, and is referred to as an iteration.

Subdue’s search is guided by the minimum description length (MDL) [17]
principle, which seeks to minimize the description length of the entire data
set. The evaluation heuristic based on the MDL principle assumes that the
best substructure is the one that minimizes the description length of the input
graph when compressed by the substructure [4]. The description length of the
substructure S given the input graph G is calculated as DL(S) + DL(G|S),
where DL(S) is the description length of the substructure, and DL(G|S) is
the description length of the input graph compressed by the substructure. De-
scription length DL() is calculated as the number of bits in a minimal encoding
of the graph. Subdue seeks a substructure S that maximizes compression as
calculated in Equation (3.1).

Compression =
DL(S) + DL(G|S)

DL(G)
(3.1)
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As an example, Figure 3.1a shows a collection of geometric objects de-
scribed by their shapes and their “ontop” relationship to one another. Fig-
ure 3.1b shows the graph representation of a portion (“triangle on square”) of
the input graph for this example and also represents the substructure minimiz-
ing the description length of the graph. Figure 3.1c shows the input example
after being compressed by the substructure.

S1

S1 S1 S1

object

object

triangle

square

on

shape

shape

(a) Input (b) Substructure (c) Compressed

Fig. 3.1. Example of Subdue’s substructure discovery capability.

3.3.2 Graph-Based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and
then compress the graph with this pattern, iterating over this process until
the graph can no longer be compressed will produce a hierarchical, conceptual
clustering of the input data. On the ith iteration, the best subgraph Si is used
to compress the input graph, introducing new vertices labeled Si in the graph
input to the next iteration. Therefore, any subsequently-discovered subgraph
Sj can be defined in terms of one or more Si, where i < j. The result is a
lattice, where each cluster can be defined in terms of more than one parent
subgraph. For example, Figure 3.2 shows such a clustering done on a portion
of DNA. See [13] for more information on graph-based clustering.

3.4 Supervised Learning from Graphs

Extending a graph-based discovery approach to perform supervised learning
involves, of course, the need to handle negative examples (focusing on the
two-class scenario). In the case of a graph the negative information can come
in two forms. First, the data may be in the form of numerous small graphs,
or graph transactions, each labelled either positive or negative. Second, data
may be composed of two large graphs: one positive and one negative.
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The first scenario is closest to the standard supervised learning problem in
that we have a set of clearly defined examples. Figure 3.3a depicts a simple set
of positive and negative examples. Let G+ represent the set of positive graphs,
and G− represent the set of negative graphs. Then, one approach to supervised
learning is to find a subgraph that appears often in the positive graphs, but not
in the negative graphs. This amounts to replacing the information-theoretic
measure with an error-based measure. For example, we would find a subgraph
S that minimizes

|{g ∈ G+|S �⊆ g}|+ |g ∈ G−|S ⊆ g}|
|G+|+ |G−| ,

where S ⊆ g means S is isomorphic to a subgraph of g. The first term of the
numerator is the number of false negatives and the second term is the number
of false positives.

This approach will lead the search toward a small subgraph that discrim-
inates well, e.g., the subgraph in Figure 3.3b. However, such a subgraph does
not necessarily compress well, nor represent a characteristic description of the
target concept. We can bias the search toward a more characteristic descrip-
tion by using the information-theoretic measure to look for a subgraph that
compresses the positive examples, but not the negative examples. If I(G) rep-
resents the description length (in bits) of the graph G, and I(G|S) represents
the description length of graph G compressed by subgraph S, then we can look
for an S that minimizes I(G+|S) + I(S) + I(G−) − I(G−|S), where the last
two terms represent the portion of the negative graph incorrectly compressed
by the subgraph. This approach will lead the search toward a larger subgraph
that characterizes the positive examples, but not the negative examples, e.g.,
the subgraph in Figure 3.3c.

Finally, this process can be iterated in a set-covering approach to learn
a disjunctive hypothesis. If using the error measure, then any positive ex-
ample containing the learned subgraph would be removed from subsequent
iterations. If using the information-theoretic measure, then instances of the
learned subgraph in both the positive and negative examples (even multiple
instances per example) are compressed to a single vertex. See [9] for more
information on graph-based supervised learning.

3.5 Incremental Discovery from Streaming Data

Many challenging problems require processing and assimilation of periodic
increments of new data, which provides new information in addition to that
which was previously processed. We introduce our first enhancement of Sub-
due, called Incremental-Subdue (I-Subdue), which summarizes discoveries
from previous data increments so that the globally-best patterns can be com-
puted by examining only the new data increment.
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Fig. 3.3. Graph-based supervised learning example with (a) four positive and four
negative examples, (b) one possible graph concept and (c) another possible graph
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In our work, we assume that data is received in incremental blocks, as
is the case for many long-term analytical tasks. Continuously reprocessing
the accumulated graph after each increment would be intractable, so instead
we wish to develop methods to iteratively refine the substructure discoveries
with a minimal amount of reexamination of old data so that the globally-best
patterns can be identified based on previous local discoveries.

This work is related to the problem of online sequential learning in which
training data is received sequentially [3, 8]. Because learning must start again
with each increment, a summary must be generated of prior data to lighten
the computational load in building a new model. Online approaches also deal
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with this incremental mining problem, but restrict the problem to itemset data
and assume the data arrives in complete and independent units [1, 7, 11].

Fig. 3.4. Incremental data can be viewed as a unique extension to the accumulated
graph.

In our approach, we view each new data increment as a distinct data
structure. Figure 3.4 illustrates one conceptual approach to mining sequential
data, where each new increment received at time step ti is considered indepen-
dently of earlier data increments so that the accumulation of these structures
is viewed as one large, but disconnected, graph. The original Subdue algo-
rithm would still work equally well if we applied it to the accumulated graph
after each new data increment is received. The obstacle is the computational
burden required for repeated full batch processing.

The concept depicted in Figure 3.4 can be intuitively applied to real prob-
lems. For example, a software agent deployed to assist an intelligence analyst
would gradually build up a body of data as new information streams in over
time. This streaming data could be viewed as independent increments from
which common structures are to be derived. Although the data itself may
be generated in very small increments, we would expect to accumulate some
minimum amount before we mine it. Duplicating nodes and edges in the accu-
mulated graph serves the purpose of giving more weight to frequently-repeated
patterns.
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3.5.1 Sequential Discovery

Storing all accumulated data and continuing to periodically repeat the entire
structure discovery process is intractable both from a computational perspec-
tive and for data storage purposes. Instead, we wish to devise a method by
which we can discover structures from the most recent data increment and
simultaneously refine our knowledge of the globally-best substructures dis-
covered so far. However, we can often encounter a situation where sequential
applications of Subdue to individual data increments will yield a series of
locally-best substructures that are not the globally-best substructures, that
would be found if the data were evaluated as one aggregate block.

Figure 3.5 illustrates an example where Subdue is applied sequentially to
each data increment as it is received. At each increment, Subdue discovers
the best substructure for the respective data increment, which turns out to be
only a local best. However, if we aggregate the same data, as depicted in Fig-
ure 3.6, and then apply the baseline Subdue algorithm we get a different best
substructure, which in fact is globally best. This is illustrated in Figure 3.7.
Although our simple example could easily be aggregated at each time step,
realistically large data sets would be too unwieldy for this approach.

In general, sequential discovery and action brings with it a set of unique
challenges, which are generally driven by the underlying system that is gen-
erating the data. One problem that is almost always a concern is how to re-
evaluate the accumulated data at each time step in the light of newly-added
data. There is a tradeoff between the amount of data that can be stored and
re-evaluated, and the quality of the result. A summarization technique is of-
ten employed to capture salient metrics about the data. The richness of this
summarization is a tradeoff between the speed of the incremental evaluation
and the range of new substructures that can be considered.

3.5.2 Summarization Metrics

We need to develop a summarization metric that can be maintained from each
incremental application of Subdue and will allow us to derive the globally-best
substructure without reapplying Subdue when new data arrives. To accom-
plish this goal, we rely on a few artifacts of Subdue’s discovery algorithm.
First, Subdue maintains a list of the n best substructures discovered from any
data set, where n is configurable by the user.

Second, we modify the Compression measure used by Subdue, as shown
in Equation (3.2).

Compressm(Si) =
DL(Si) +

∑m
j=1 DL(Gj |Si)∑m

j=1 DL(Gj)
(3.2)

I-Subdue calculates compression achieved by a particular substructure, Si,
through the current data increment m. The DL(Si) term is the description
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Fig. 3.5. Three data increments received serially and processed individually by
Subdue. The best substructure is shown for each local increment.
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Fig. 3.6. Accumulated graph for Subdue batch processing.

length of the substructure, Si, under consideration. The term
∑m

j=1 DL(Gj |Si)
represents the description length of the accumulated graph after it is com-
pressed by substructure Si. Finally, the term

∑m
j=1 DL(Gj) represents the full

description length of the accumulated graph. I-Subdue then can re-evaluate
substructures using Equation (3.3) (an inverse of Equation (3.2)), choosing
the one with the lowest value as globally best.

argmax(i)

[
DL(Si) +

∑m
j=1 DL(Gj |Si)∑m

j=1 DL(Gj)

]
(3.3)

The process of computing the global substructure value takes place in
addition to the normal operation of Subdue on the isolated data increment. We
only need to store the requisite description-length metrics after each iteration
for use in our global computation.

As an illustration of our approach, consider the results from the example
depicted in Figure 3.6. The top n = 3 substructures from each iteration are
shown in Figure 3.8. Table 3.1 lists the values returned by Subdue from the
local top n substructures discovered in each increment. The second best sub-
structures in increments 2 and 3 (S22, S32) are the same as the second best
substructure in increment 1 (S12), which is why the column corresponding
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Fig. 3.7. Result from applying Subdue to the three aggregated data increments.

Fig. 3.8. The top n=3 substructures from each local increment.
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Table 3.1. Substructure values computed independently for each iteration.

Substructures from Substructures from Substructures from
Increment Increment #1 Increment #2 Increment #3

S11 S12 S13 S21 S23 S31 S33

1 1.2182 1.04808 0.9815
2 1.04808 1.21882 0.981511
3 1.03804 1.15126 0.966017

Table 3.2. Using I-Subdue to calculate the global value of each substructure.

Substructures from Substructures from Substructures from
Increment Increment #1 Increment #2 Increment #3

S11 S12 S13 S21 S23 S31 S33 DL(Gj)
1 1.2182 1.04808 0.9815 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117
3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si) 15 15 25.7549 15 25.7549 15 26.5098

to S12 has a value for each iteration. The values in Table 3.1 are the result
of the compression evaluation metric from Equation (3.1). The locally-best
substructures illustrated in Figure 3.5 have the highest values overall.

Table 3.2 depicts our application of I-Subdue to the increments from Fig-
ure 3.5. After each increment is received, we apply Equation (3.3) to select
the globally-best substructure. The values in Table 3.2 are the inverse of
the compression metric from Equation (3.2). As an example, the calcula-
tion of the compression metric for substructure S12 after iteration 3 would
be DL(S12)+DL(G1|S12)+DL(G2|S12)+DL(G3|S12)

DL(G1)+DL(G2)+DL(G3)
. Consequently the value of S12

would be (117 + 117 + 116) / (15 + 96.63 + 96.63 + 96.74) = 1.1474.
For this computation, we rely on the metrics computed by Subdue when it

evaluates substructures in a graph, namely the description length of the dis-
covered substructure, the description length of the graph compressed by the
substructure, and the description length of the graph. By storing these values
after each increment is processed, we can retrieve the globally-best substruc-
ture using Equation (3.3). In circumstances where a specific substructure is
not present in a particular data increment, such as S31 in iteration 2, then
DL(G2|S31) = DL(G2) and the substructure’s value would be calculated as
(117 + 117 + 116) / (15 + 117 + 117 + 85.76) = 1.0455.

3.5.3 Experimental Evaluation

To illustrate the relative value of I-Subdue with respect to performance in
processing incremental data, we have conducted experiments with a synthetic
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data generator. This data generator takes as input a library of data labels,
configuration parameters governing the size of random graph patterns and
one or more specific substructures to be embedded within the random data.
Connectivity can also be controlled.
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Fig. 3.9. Comparison of I-Subdue with Subdue on 10–50 increments, each with 220
new vertices and 0 or 1 outgoing edges.

For the first experiment, illustrated in Figure 3.9, we compare the per-
formance of I-Subdue to Subdue at benchmarks ranging from 10 to 50 in-
crements. Each increment introduced 220 new vertices, within which five in-
stances of the four-vertex substructure pictured in Figure 3.9 were embedded.
The quality of the result, in terms of the number of discovered instances, was
the same.

The results from the second graph are depicted in Figure 3.10. For this
experiment, we increased the increment size to 1020 vertices. Each degree
value between 1 and 4 was shown with 25% probability, which means that on
average there are about twice as many edges as vertices. This more densely
connected graph begins to illustrate the significance of the run-time difference
between I-Subdue and Subdue. Again, five instances of the four-vertex sub-
structure shown in Figure 3.10 were embedded within each increment. The
discovery results were the same for both I-Subdue and Subdue with the only
qualitative difference being in the run time.
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Fig. 3.10. Comparison of I-Subdue with Subdue on 10–50 increments, each with
1020 new vertices and 1 to 4 outgoing edges.

3.5.4 Learning from Supervised Graphs

In a highly relational domain, the positive and negative examples of a concept
are not easily separated. We call such a graph a supervised graph, in that
the graph as a whole contains embedded class information which may not
easily be separated into individual labeled components. For example, consider
a social network in which we seek to find relational patterns distinguishing
various income levels. Individuals of a particular income level can appear
anywhere in the graph and may be related to individuals at other income
levels, so we cannot easily partition the graph into separate training cases
without potentially severing the target relationships.

This scenario presents a challenge to any data mining system, but espe-
cially to a graph-based relational learning system, where clearly classified data
(data labeled with a class value) may be tightly related to less clearly classified
data. This is the second challenge discussed in this chapter. We are investi-
gating two approaches to this task. We assume that the class values of certain
vertices and edges are specified in the input data file. Not all vertices and
edges will have such a value, as some may provide supplementary supporting
information.

For the first approach, we rely upon a cost mechanism available in Subdue.
A cost mechanism was added because expenses might be associated with the
retrieval of portions of data. For example, adding personal details such as
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credit history to our social network can enhance the input data, but may be
acquired at a price in terms of money, time, or other resources. To implement
the cost feature, the cost of specific vertices and edges is specified in the input
file. The cost for substructure S averaged over all of its instances, Cost(S),
is then combined with the MDL value of S using the equation E(S) =
(1 − Cost(S)) × MDL(S). The evaluation measure, E(S), determines the
overall value of the substructure and is used to order candidate substructures.

Class membership in a supervised graph can now be treated as a cost,
which varies from no cost for clearly positive members to +1 for clearly neg-
ative members. As an example, we consider the problem of learning which
regions of the ocean surface can expect a temperature increase in the next
time step. Our data set contains gridded sea surface temperatures (SST) de-
rived from NASA’s Pathfinder algorithm and a five-channel Advanced Very
High Resolution Radiometer instrument. The data contains location, time of
year, and temperature data for each region of the globe.

The portion of the data used for training is represented as a graph with
vertices for each month, discretized latitude and longitude values, hemisphere,
and change in temperature from one month to the next. Vertices labelled with
“increase” thus represent the positive examples and “decrease” or “same” la-
bels represent negative examples. A portion of the graph is shown in Fig-
ure 3.11. The primary substructure discovered by Subdue for this data set
reports the rule that when there are two regions in the Southern hemisphere,
one just north of the other, an increase in temperature can be expected for
the next month in the southernmost of the two regions. Using three-fold cross
validation experimentation, Subdue classified this data set with 71% accuracy.
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Fig. 3.11. Graph representation of a portion of NASA’s SST data.

The second approach we intend to explore involves modifying the MDL
encoding to take into account the amount of information necessary to describe
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the class membership of the compressed graph. Substructures would now be
discovered that not only compress the raw data of the graph but also express
class membership for vertices and edges within the graph.

3.6 Conclusions

There are several future directions for our graph-based relational learning
research that will improve our ability to handle such challenging data as de-
scribed in this chapter. The incremental discovery technique described in this
chapter did not address data that is connected across increment boundaries.
However, many domains will include event correlations that transcend mul-
tiple data iterations. For example, a terrorist suspect introduced in one data
increment may be correlated to events that are introduced in later incre-
ments. As each data increment is received it may contain new edges that
extend from vertices in the new data increment to vertices received in pre-
vious increments. We are investigating techniques of growing substructures
across increment boundaries. We are also considering methods of detecting
changes in the strengths of substructures across increment boundaries, that
could represent concept shift or drift.

The handling of supervised graphs is an important direction for mining
structural data. To extend our current work, we would like to handle embed-
ded instances without a single representative instance node (the “increase”
and “decrease” nodes in our NASA example) and instances that may possibly
overlap.

Finally, improved scalability of graph operations is necessary to learn pat-
terns, evaluate their accuracy on test cases and, ultimately, to use the patterns
to find matches in future intelligence data. The graph and subgraph isomor-
phism operations are a significant bottleneck to these capabilities. We need
to develop faster and approximate versions of these operations to improve the
scalability of graph-based relational learning.
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Predictive Graph Mining with Kernel Methods

Thomas Gärtner

Summary. Graphs are a major tool for modeling objects with complex data struc-
tures. Devising learning algorithms that are able to handle graph representations
is thus a core issue in knowledge discovery with complex data. While a significant
amount of recent research has been devoted to inducing functions on the vertices of
the graph, we concentrate on the task of inducing a function on the set of graphs.
Application areas of such learning algorithms range from computer vision to biology
and beyond. Here, we present a number of results on extending kernel methods to
complex data, in general, and graph representations, in particular. With the very
good performance of kernel methods on data that can easily be embedded in a Eu-
clidean space, kernel methods have the potential to overcome some of the major
weaknesses of previous approaches to learning from complex data. In order to apply
kernel methods to graph data, we propose two different kernel functions and compare
them on a relational reinforcement learning problem and a molecule classification
problem.

4.1 Introduction

Graphs are an important tool for modeling complex data in a systematic way.
Technically, different types of graphs can be used to model the objects. Con-
ceptually, different aspects of the objects can be modeled by graphs: (i) Each
object is a vertex in a graph modeling the relation between the objects, and
(ii) each object is modeled by a graph. While a significant amount of recent
research is devoted to case i, here we are concerned with case ii. An important
example for this case is the prediction of biological activity of molecules given
their chemical structure graph.

Suppose we know of a function that estimates the effectiveness of chemical
compounds against a particular illness. This function would be very helpful in
developing new drugs. One possibility for obtaining such a function is to use
in-depth chemical knowledge. A different – and for us more interesting – pos-
sibility is to try to learn from chemical compounds with known effectiveness
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against that illness. We will call these compounds “training instances”. Super-
vised machine learning tries to to find a function that generalizes over these
training instances, i.e., a function that is able to estimate the effectiveness of
other chemical compounds against this disease. We will call this function the
“hypothesis” and the set of all functions considered as possible hypotheses,
the “hypothesis space”.

Though chemical compounds are three-dimensional structures, the three-
dimensional shape is often determined by the chemical structure graph. That
is, the representation of a molecule by a set of atoms, a set of bonds con-
necting pairs of atoms, and a mapping from atoms to element-types (carbon,
hydrogen, ...) as well as from bonds to bond-types (single, double, aromatic,
...). Standard machine learning algorithms can not be applied to such a rep-
resentation.

Predictive graph mining is interested in supervised machine learning prob-
lems with graph-based representations. This is an emerging research topic at
the heart of knowledge discovery from complex data. In contrast with other
graph mining approaches it is not primarily concerned with finding interesting
or frequent patterns in a graph database but only with supervised machine
learning, i.e., with inducing a function on the set of all graphs that approxi-
mates well some unknown functional or conditional dependence. In the above
mentioned application this would be effectiveness against an illness depending
on the chemical structure of a compound.

Kernel methods are a class of learning algorithms that can be applied to
any learning problem as long as a positive-definite kernel function has been
defined on the set of instances. The hypothesis space of kernel methods is
the linear hull (i.e., the set of linear combinations) of positive-definite kernel
functions “centered” at some training instances. Kernel methods have shown
good predictive performance on many learning problems, such as text classi-
fication. In order to apply kernel methods to instances represented by graphs,
we need to define meaningful and efficiently computable positive-definite ker-
nel functions on graphs.

In this article we describe two different kernels for labeled graphs together
with applications to relational reinforcement learning and molecule classifica-
tion. The first graph kernel is based on comparing the label sequences corre-
sponding to walks occurring in each graph. Although these walks may have
infinite length, for undirected graphs, such as molecules, this kernel function
can be computed in polynomial time by using properties of the direct product
graph and computing the limit of a power series. In the molecule classifica-
tion domain that we will look at, however, exact computation of this kernel
function is infeasible and we need to resort to approximations. This motivates
the search for other graph kernels that can be computed more efficiently on
this domain. We thus propose a graph kernel based on the decomposition of
each graph into a set of simple cycles and into the set of connected compo-
nents of the graph induced by the set of bridges in the graph. Each of these
cycles and trees is transformed into a pattern and the cyclic-pattern kernel
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for graphs is the cardinality of the intersection of two pattern sets. Although
cyclic-pattern kernels can not be computed in polynomial time, empirical re-
sults on a molecule classification problem show that, while walk-based graph
kernels exhibit higher predictive performance, cyclic-pattern kernels can be
computed much faster. Both kernels perform better than, or at least as good
as, previously proposed predictive graph mining approaches over different sub-
problems and parameter settings.

Section 4.2 introduces kernel methods, kernels for structured instances
spaces, and discusses the relation between kernels and distances for structured
instances. Section 4.3 begins with the introduction of general set kernels and
conceptually describes kernels for other data structures afterwards. Section
4.4 describes walk-based graph kernels and cyclic-pattern kernels for graphs.
Two applications of predictive graph mining are shown in Section 4.5, before
Section 4.6 concludes.

4.2 Learning with Kernels and Distances

In this section we first define what is meant by a positive-definite kernel func-
tion and briefly introduce the basics of kernel methods. We illustrate the
importance of choosing the “right” kernel function on a simple example. Af-
ter that, we summarise different definitions of kernel functions for instances
represented by vertices in a graph. Last but not least, we discuss the relation
between well known distance functions for complex data and kernel functions.

4.2.1 Kernel Methods

Kernel methods [41] are a popular class of algorithms within the machine-
learning and data-mining communities. Being theoretically well founded in
statistical learning theory, they have shown good empirical results in many
applications. One particular aspect of kernel methods such as the support vec-
tor machine is the formation of hypotheses by linear combination of positive-
definite kernel functions “centered” at individual training instances. By the re-
striction to positive-definite kernel functions, the regularized risk minimization
problem (we will define this problem once we have defined positive-definite
functions) becomes convex and every locally optimal solution is globally op-
timal.

Kernel Functions
Kernel methods can be applied to different kinds of (structured) data by using
any positive-definite kernel function defined on the data.

A symmetric function k : X×X → R on a set X is called a positive-definite
kernel on that set if, for all n ∈ Z

+, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ R, it
follows that
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i,j∈{1,...,n}

ci cj k(xi, xj) ≥ 0.

Kernel Machines
The usual supervised learning model [44] considers a set X of individuals and
a set Y of labels, such that the relation between individuals and labels is a
fixed but unknown probability measure on the set X ×Y. The common theme
in many different kernel methods such as support vector machines, Gaussian
processes, or regularized least squares regression is to find a hypothesis func-
tion that minimizes not just the empirical risk (the training error) but also
the regularized risk . This gives rise to the optimization problem

min
f(·)∈H

C

n

n∑
i=1

V (yi, f(xi)) + ‖f(·)‖2H

where C is a parameter, {(xi, yi)}ni=1 is a set of individuals with known label
(the training set), H is a set of functions forming a Hilbert space (the hypoth-
esis space) and V is a function that takes on small values whenever f(xi) is a
good guess for yi and large values whenever it is a bad guess (the loss func-
tion). The representer theorem shows that under rather general conditions on
V , solutions of the above optimization problem have the form

f(·) =
n∑

i=1

cik(xi, ·). (4.1)

Different kernel methods arise from using different loss functions.

Regularized Least Squares
Choosing the square loss function, i.e., V (yi, f(xi)) = (yi−f(xi))2, we obtain
the optimization problem of the algorithm [39, 40]:

min
f(·)∈H

C

n

n∑
i=1

(yi − f(xi))2 + ‖f(·)‖2H

Plugging in our knowledge about the form of solutions and taking the direc-
tional derivative with respect to the parameter vector c of Equation (4.1), we
can find the analytic solution to the optimization problem as:

c =
(
K +

n

C
I
)−1

y

where I denotes the identity matrix of appropriate size.

Support Vector Machines
Support vector machines [2, 41] are a kernel method that can be applied to
binary-supervised classification problems. They are derived from the above
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optimization problem by choosing the so-called hinge loss V (y, f(x)) =
max{0, 1−yf(x)}. The motivation for support vector machines often given in
the literature is that the solution can be interpreted as a hyperplane that sep-
arates both classes (if it exists) and is maximally distant from the convex hulls
of both classes. A different motivation is the computational attractiveness of
sparse solutions of Equation (4.1) used for classification.

For support vector machines the problem of minimizing the regularized
risk can be transformed into the so-called “primal” optimization problem of
soft-margin support vector machines:

min
c∈Rn

C
n

n∑
i=1

ξi + c�Kc

subject to: yi

∑
j

cjk(xi, xj) ≥ 1− ξi i = 1, . . . n

ξi ≥ 0 i = 1, . . . n.

Gaussian Processes
Gaussian processes [35] are an incrementally learnable Bayesian regression
algorithm. Rather than parameterizing some set of possible target functions
and specifying a prior over these parameters, Gaussian processes directly put
a (Gaussian) prior over the function space. A Gaussian process is defined by
a mean function and a covariance function, implicitly specifying the prior.
The choice of covariance functions is thereby only limited to positive-definite
kernels. It can be seen that the mean prediction of a Gaussian process corre-
sponds to the prediction found by a regularized least squares algorithm. This
links the regularization parameter C with the variance of the Gaussian noise
distribution assumed in Gaussian processes.

Illustration
To illustrate the importance of choosing the “right” kernel function, we next
illustrate the hypothesis found by a Gaussian process with different kernel
functions.

In Figure 4.1 the training examples are pairs of real numbers x ∈ X = R
2

illustrated by black discs and circles in the figure. The (unknown) tar-
get function is an XOR-type function, the target variable y takes values
−1 for the black discs and +1 for the black circles. The probability of
a test example being of class +1 is illustrated by the color of the corre-
sponding pixel in the figure. The different kernels used are the linear ker-
nel k(x, x′) = 〈x, x′〉, the polynomial kernel k(x, x′) = (〈x, x′〉 + l)p, the
sigmoid kernel k(x, x′) = tanh(γ 〈x, x′〉), and the Gaussian kernel function
k(x, x′) = exp

[
−‖x− x′‖2/σ2

]
.

Figure 4.2 illustrates the impact of choosing the parameter of a Gaussian
kernel function on the regularization of the solution found by a Gaussian
process. Training examples are single real numbers and the target value is
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(a) (b)

(c) (d)

Fig. 4.1. Impact of different kernel functions on the solution found by Gaussian
processes. Kernel functions are (a) linear kernel, (b) polynomial kernel of degree 2,
(c) sigmoid kernel and (d) Gaussian kernel.

also a real number. The unknown target function is a sinusoid function shown
by a thin line in the figure. Training examples perturbed by random noise are
depicted by black circles. The color of each pixel illustrates the likeliness of a
target value given a test example, with the most likely value colored white.
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Fig. 4.2. Impact of the bandwidth of a Gaussian kernel function on the regulariza-
tion of the solution found by Gaussian processes. The bandwidth is decreasing from
left to right, top to bottom.

4.2.2 Kernels for Structured Instance Spaces

To model the structure of instance spaces, undirected graphs or hypergraphs
are often used. While the use of hypergraphs is less common in the literature,
it appears more systematic and intuitive.

A hypergraph is described by a set of vertices V – the instances – and a set
of edges E , where each edge corresponds to a set of vertices. Each edge of the
hypergraph can be interpreted as some property that all vertices of the edge
have in common. For documents, for example, the edges could correspond to
words or citations that they have in common; in a metric space the hyperedge
could include all vertices with distance less than a given threshold from some
point.
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For a hypergraph with n vertices and m edges, we define the n×m matrix
B by Bij = 1 if and only if vi ∈ ej and Bij = 0, otherwise. Let then the n×n
matrix D be defined by Dii =

∑
j

[
B�B

]
ij

=
∑

j

[
B�B

]
ji

. The matrices
B�B and L = D −B�B are positive-definite by construction. The matrix L
is known as the graph Laplacian. Often also the normalized Laplacian is used.

Conceptually, kernel matrices are then defined as the limits of matrix
power series of the form

K =
∞∑

i=0

λi

(
B�B

)i
or K =

∞∑
i=0

λi (−L)i

with parameters λi. These power series can be interpreted as measuring the
number of walks of different lengths between given vertices.

Limits of such power series can be computed by means of an eigenvalue
decomposition of −L or B�B, and a “recomposition” with modified eigen-
values. The modification of the eigenvalues is usually such that the order of
eigenvalues is kept, while all eigenvalues are forced to become positive.

Examples for such kernel functions are the diffusion kernel [29]

K =
∞∑

i=0

βi

i!
(−L)i ,

the von Neumann kernel [25]

K =
∞∑

i=1

γi−1 (B�B
)i

,

and the regularized Laplacian kernel [42]

K =
∞∑

i=1

γi(−L)i .

For exponential power series such as the diffusion kernel, the limit can
be computed by exponentiating the eigenvalues, while for geometrical power
series, the limit can be computed by the formula 1/(1 − γe), where e is an
eigenvalue of B�B or −L, respectively. A general framework and analysis of
these kernels is given in [42].

4.2.3 Kernels versus Distances for Structured Instances

Previous approaches to predictive graph mining mostly used decision trees
[20] or distance-based algorithms. Due to the close relation between kernels
and distances1 we thus investigate how distances on structured instances are
defined.

1Every inner product space is a metric space.
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In the literature, distances are often defined using the minima and/or max-
ima over a set of distances, e.g., all distances described in [12] between point
sets, the string edit distance [13] between sequences, or the subgraph dis-
tance [3, 36] between graphs. It is thus interesting to investigate whether in
general kernel functions can be defined as the minimum and/or maximum of
a set of kernels. In this section we investigate whether certain uses of minima
and/or maxima give rise to positive-definite kernels and discuss minima- and
maxima-based kernels on instances represented by sets.

Minimal and Maximal Functions
We begin our discussion with two very simple uses of minima and maxima.

The function min{x, x′} defined on non-negative real numbers is positive-
definite: Let θx(·) be the function such that θx(z) = 1 if z ∈ [0;x] and θx(z) = 0
otherwise. Then,

min{x, x′} =
∫

R

θx(·) ∗ θx′(·)dµ

coincides with the usual (L2) inner product between the functions θx(·) and
θx′(·). Thus it is positive-definite.

The function max{x, x′} defined on non-negative real numbers is not
positive-definite. Setting x = 0, x′ = 1 we obtain the indefinite matrix(

0 1
1 1

)
.

We show next, that – in general – functions built from positive-definite
kernels using the min or max function are not positive-definite.

The function mini ki(x, x′) where each ki is a positive-definite kernel, is not
necessarily positive-definite: Setting x = 1;x′ = 2; k1(x, x′) = xx′; k2(x, x′) =
(3− x)(3− x′) gives rise to the indefinite matrix(

1 2
2 1

)
.

The function maxi ki(x, x′) where again each ki is a positive-definite kernel,
is not necessarily positive-definite: If this function was positive-definite then
the component wise maximum of two positive-definite matrices would also be
positive-definite. Consider the matrices

A =

⎛
⎝1 1 0

1 1 0
0 0 1

⎞
⎠ ; B =

⎛
⎝1 0 0

0 1 1
0 1 1

⎞
⎠ .

Here, A has the eigenvectors (1, 1, 0)�; (0, 0, 1)�; (1,−1, 0)� with correspond-
ing eigenvalues 2, 1, 0 ≥ 0, showing that both matrices are positive-definite.
The component wise maximum of A and B
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D =

⎛
⎝1 1 0

1 1 1
0 1 1

⎞
⎠

is, however, indefinite: (1, 0, 0)D(1, 0, 0)� = 1 > 0 and (1,−1, 1)D(1,−1, 1)� =
−1 < 0.

Minimal and Maximal Functions on Sets
We now proceed with two simple cases in which positive-definiteness holds for
kernels on sets using minima or maxima functions.

The function minx∈X,x′∈X′ x∗x′ defined on sets of non-negative real num-
bers X, X ′ ⊂ R

+ is positive-definite as

min
x∈X,x′∈X′

x ∗ x′ =
(

min
x∈X

x

)
∗
(

min
x′∈X′

x′
)

.

The function maxx∈X,x′∈X′ x∗x′ defined on sets of non-negative real num-
bers X, X ′ ⊂ R

+ is positive-definite as

max
x∈X,x′∈X′

x ∗ x′ =
(

max
x∈X

x

)
∗
(

max
x′∈X′

x′
)

.

Now we turn to the more general functions minx∈X,x′∈X′ k(x, x′) and
maxx∈X,x′∈X′ k(x, x′). These are strongly related to the functions mini ki(x, x′)
and maxi ki(x, x′) considered above. To see this let X = {xi}; X ′ = {x′

j} and
kij(X, X ′) = k(xi, x

′
j). Then

min
x∈X,x′∈X′

k(x, x′) = min
ij

kij(X, X ′)

and
max

x∈X,x′∈X′
k(x, x′) = max

ij
kij(X, X ′) .

Though this indicates that minx∈X,x′∈X′ k(x, x′) and maxx∈X,x′∈X′ k(x, x′)
are not positive-definite, it does not prove it yet. Thus we continue with two
counter-examples. For minx∈X,x′∈X′ k(x, x′) with X =

{
(1, 2)�, (2, 1)�, (2, 0)�},

X ′ =
{
(2, 1)�}, and using k(x, x′) = 〈x, x′〉 we obtain the indefinite matrix(

2 4
4 5

)
.

Similarly, for maxx∈X,x′∈X′ k(x, x′) with x1 =
{
(1, 0)�}, x2 =

{
(1, 0)�, (0, 1)�},

x3 =
{
(0, 1)�}, and again k(x, x′) = 〈x, x′〉 we obtain the matrix

D =

⎛
⎝1 1 0

1 1 1
0 1 1

⎞
⎠
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which is again indefinite.
The observations made above indicate that kernels for complex data can

not be made up such that they directly correspond to the previously defined
distances for complex data. This motivates the search for alternative kernel
functions such as the ones described below.

4.3 Sets and Beyond

An integral part of many kernels for complex data is the decomposition of
an object into a set of its parts and the intersection of two sets of parts.
The kernel on two objects is then defined as a measure of the intersection of
the two corresponding sets of parts. In this section we first summarise some
basics about kernels on sets. Then we give a brief overview of different kernel
functions for complex data.

The general case of interest for set kernels is when the instances Xi are
elements of a semi-ring of sets S and there is a measure µ with S as its
domain of definition.

A natural choice of a kernel on such data is the intersection kernel defined
as

k∩(Xi, Xj) = µ(Xi ∩Xj);Xi, Xi ∈ S . (4.2)

It is known [28] that for any X1, . . . Xn belonging to S there is a finite system
of pairwise disjoint sets A = {A1, . . . Am} ⊆ S such that every Xi is a union
of some Al. Let Bi ⊆ A be such that Xi =

⋃
B∈Bi

B. Furthermore let the
characteristic function ΓX : A → {0; 1} be defined as ΓX(A) = 1⇔A ⊆ X
and ΓX(A) = 0 otherwise. With these definitions we can write

µ(Xi ∩Xj) =
∑

B∈Bi∩Bj

µ(B) =
∑
A∈A

ΓXi(A)ΓXj (A)µ(A) .

The intersection kernel is then positive-definite on X1, . . . Xn as∑
ij

cicjµ(Xi ∩Xj) =
∑
ij

cicj

∑
A∈A

ΓXi
(A)ΓXj

(A)µ(A)

=
∑
A∈A

(∑
i

ciΓXi
(A)

)2

µ(A)

≥0 .

Note that in the simplest case (finite sets with µ(·) being the set cardinal-
ity) the intersection kernel coincides with the inner product of the bitvector
representations of the sets.

In the case that the sets Xi are finite or countable sets of elements on
which a kernel has been defined, it is often beneficial to use set kernels other
than the intersection kernel. For example the crossproduct kernel
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k×(Xi, Xj) =
∑

xi∈Xi,xj∈Xj

k(xi, xj) . (4.3)

The crossproduct kernel with the right kernel set to the matching kernel (de-
fined as kδ(xi, xj) = 1⇔ xi = xj and 0 otherwise) coincides with the inter-
section kernel.

In the remainder of this section we are more interested in the case that S is
a Borel algebra with unit X , and µ is countably additive with µ(X ) <∞. We
can then extend the definition of the characteristic functions to X =

⋃
C∈S C

such that ΓX(x) = 1⇔ x ∈ X and ΓX(x) = 0 otherwise. We can then write
the intersection kernel as

k∩(Xi, Xj) = µ(X ∩X ′) =
∫

X
ΓXi

(x) ∗ ΓXj
(x)dµ (4.4)

this shows the relation of the intersection kernel to the usual (L2) inner prod-
uct between the characteristic functions ΓX(·), ΓX′(·) of the sets.

Similarly, for the crossproduct kernel in Equation (4.3) we obtain in this
setting the integral equation∫

X×X′
k(x, x′)dµdµ =

∫
X×X

ΓX(x) ∗ k(x, x′) ∗ ΓX′(x′)dµdµ

with any positive-definite kernel k defined on the elements.
Note, that with the matching kernel kδ we recover the intersection kernel

from Equation (4.4) albeit with different measure.
In the remainder of this section we describe kernels for complex data that

have been defined in the literature. For a more complete survey of kernels for
structured data we recommend [16].

4.3.1 Convolution Kernels

The best known kernel for representation spaces that are not mere attribute-
value tuples is the convolution kernel proposed by Haussler [22]. The basic idea
of convolution kernels is that the semantics of composite objects can often be
captured by a relation R between the object and its parts. The kernel on the
object is then made up from kernels defined on different parts.

Let x, x′ ∈ X be the objects and x,x′ ∈ X1 × · · · × XD be tuples of parts
of these objects. Given the relation R : (X1× · · ·×XD)×X we can define the
decomposition R−1 as R−1(x) = {x : R(x, x)}. Then the convolution kernel
is defined as

kconv(x, x′) =
∑

x∈R−1(x),x′∈R−1(x′)

D∏
d=1

kd(xd, x
′
d) .

The term “convolution kernel” refers to a class of kernels that can be
formulated in the above way. The advantage of convolution kernels is that
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they are very general and can be applied in many different problems. How-
ever, because of that generality, they require a significant amount of work to
adapt them to a specific problem, which makes choosing R in “real-world”
applications a non-trivial task.

4.3.2 String Kernels

The idea of most string kernels [34, 47] defined in the literature is to base
the similarity of two strings on the number of common subsequences. These
subsequences need not occur contiguously in the strings but the more gaps
in the occurrence of the subsequence, the less weight is given to it in the
kernel function. For example, the string “cat” would be decomposed in the
subsequences “c”, “a”, “t”, “ca”, “at”, “ct”, and “cat”. These subsequences
also occur in the string “cart”, albeit with different length of the occurrence.
Usually the length of the occurrence of the substring is used as a penalty.
With an exponentially decaying penalty, the weight of every occurrence
in “cat”/“cart” becomes: “c”:(λ1λ1), “a”:(λ1λ1), “t”:(λ1λ1), “ca”:(λ2λ2),
“at”:(λ2λ3), “ct”:(λ3λ4), “cat”:(λ3λ4) and the kernel of “cat” and “cart” be-
comes k(“cat”, “cart”) = 2λ7 + λ5 + λ4 + 3λ2. Using a divide and conquer
approach, computation of this kernel can be reduced to O(n|s||t|) [34]. In [45]
and [32] other string kernels are proposed and it is shown how these can be
computed efficiently by using suffix and mismatch trees, respectively.

4.3.3 Tree Kernels

A kernel function that can be applied in many natural language processing
tasks is described in [4]. The instances of the learning task are considered
to be labeled ordered directed trees. The key idea for capturing structural
information about the trees in the kernel function is to consider all subtrees
occurring in a parse tree. Here, a subtree is defined as a connected subgraph
of a tree such that either all children or no child of a vertex is in the subgraph.
The children of a vertex are the vertices that can be reached from the vertex
by traversing one directed edge. The kernel function is the inner product in
the space which describes the number of occurrences of all possible subtrees.

Recently, [45] proposed the application of string kernels to trees by repre-
senting each tree by the sequence of labels generated by a depth-first traversal
of the trees, written in preorder notation. To ensure that trees only differing in
the order of their children are represented in the same way, the children of each
vertex are ordered according to the lexical order of their string representation.

4.3.4 Kernels for Higher-Order Terms

In [19], a framework has been been proposed that allows for the application of
kernel methods to different kinds of structured data. This approach is based
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on the idea of having a powerful representation that allows for modeling the
semantics of an object by means of the syntax of the representation. The
underlying principle is that of representing individuals as (closed) terms in a
typed higher-order logic [33]. The biggest difference to terms of a first-order
logic is the use of types and the presence of abstractions that allow explicit
modeling of sets, multisets, and so on.

The typed syntax is important for pruning search spaces and for modeling
as closely as possible the semantics of the data in a human- and machine-
readable form. The individuals-as-terms representation is a natural general-
ization of the attribute-value representation and collects all information about
an individual in a single term.

Basic terms represent the individuals that are the subject of learning and
fall into one of three categories: basic structures that represent individuals that
are lists, trees, and so on; basic abstractions that represent sets, multisets, and
so on; and basic tuples that represent tuples. Basic abstractions are almost
constant mappings β → γ that can be regarded as lookup tables, where all
basic terms of type β in the table are mapped to some basic term of type γ
and all basic terms not in the table are mapped to one particular basic term,
the default term of type γ.

Applications of this kernel are spatial clustering of demographic data,
multi-instance learning for drug-activity prediction and predicting the struc-
ture of molecules from their NMR spectra.

Multi-instance learning problems [8] occur whenever example objects, in-
dividuals, can only be described by a set of which any single element could be
responsible for the classification of the set. Here, it can be shown that with
a particular abstraction kernel, the number of iterations needed by a kernel
perceptron to converge to a consistent hypothesis is bound by a polynomial
in the number of elements in the sets.

4.4 Graphs, Graphs, Graphs ...

The obvious approach to defining kernels on objects that have a natural rep-
resentation as a graph is to decompose each graph into a set of subgraphs and
measure the intersection of two decompositions. With such a graph kernel,
one could decide whether a graph has a Hamiltonian path or not [18]. As
this problem is known to be NP-hard, it is strongly believed that the obvious
graph kernel can not be computed in polynomial time. This holds even if the
decomposition is restricted to paths only.

In the literature different approaches are described to overcome this prob-
lem. Graepel [21] restricted the decomposition to paths up to a given size,
and Deshpande et al. [6] only considers the set of connected graphs that oc-
cur frequently as subgraphs in the graph database. The approach taken there
to compute the decomposition of each graph is an iterative one [31]. The al-
gorithm starts with a frequent set of subgraphs with one or two edges only.
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Then, in each step, from the set of frequent subgraphs of size l, a set of can-
didate graphs of size l + 1 is generated by joining those graphs of size l that
have a subgraph of size l− 1 in common. Of the candidate graphs only those
satisfying a frequency threshold are retained for the next step. The iteration
stops when the set of frequent subgraphs of size l is empty.

Conceptually, the graph kernels presented in [15, 18, 26, 27] are based on
a measure of the walks in two graphs that have some or all labels in common.
In [15] walks with equal initial and terminal label are counted, in [26, 27] the
probability of random walks with equal label sequences is computed, and in
[18] walks with equal label sequences, possibly containing gaps, are counted.
In [18] computation of these – possibly infinite – walks is made possible in
polynomial time by using the direct product graph and computing the limit
of matrix power series involving its adjacency matrix. The work on rational
graph kernels [5] generalizes these graph kernels by applying a general trans-
ducer between weighted automata instead of forming the direct product graph.
However, only walks up to a given length are considered in the kernel com-
putation. More recently, Horvath et al. [23] suggested that the computational
intractability of detecting all cycles in a graph can be overcome in practical
applications by observing that “difficult structures” occur only infrequently
in real-world databases. As a consequence of this assertion, Horvath et al.
[23] use a cycle-detection algorithm to decompose all graphs in a molecule
database into all simple cycles occurring.

In the remainder of this section we will describe walk- and cycle-based
graph kernels in more detail.

4.4.1 Walk-Based Graph Kernels

A labeled directed graph G is described by a finite set of vertices V, a finite
set of edges E , and a function . The set of edges is a subset of the Cartesian
product of the set of vertices with itself (E ⊆ V×V) such that that (νi, νj) ∈ E
if and only if there is an edge from νi to νj in graph G. The function  maps
each edge and/or vertex to a label. The adjacency matrix of the graph is a
|V| × |V| matrix E where the Eij = 1 if and only if (νi, νj) ∈ E and Eij = 0
otherwise.

We concentrate now on one type of kernel introduced in [18], measuring the
number of walks with common label sequence in two graphs. There, efficient
computation of these – possibly infinite – walks is made possible by using the
direct product graph and computing the limit of matrix power series involving
its adjacency matrix.

The two graphs generating the product graph are called the factor graphs.
The vertex set of the direct product of two graphs is a subset of the Cartesian
product of the vertex sets of the factor graphs. The direct product graph has
a vertex if and only if the labels of the corresponding vertices in the factor
graphs are the same. There is an edge between two vertices in the product
graph if and only if there is an edge between the corresponding vertices in
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both factor graphs and both edges have the same label. For unlabeled graphs,
the adjacency matrix of the direct product graph corresponds to the tensor
product of the adjacency matrices of its factors.

With a sequence of weights λ0, λ1, . . . (λi ∈ R; λi ≥ 0 for all i ∈ N) the
direct product kernel is defined as

k×(G1, G2) =
|V×|∑
i,j=1

[ ∞∑
n=0

λnEn
×

]
ij

if the limit exists.
For symmetric E×, limits of such power series can be computed by means

of an eigenvalue decomposition of E, and a “recomposition” with modified
eigenvalues. The modification of the eigenvalues is usually such that the order
of eigenvalues is kept.

To illustrate these kernels, consider a simple graph with four vertices la-
beled “c”, “a”, “r”, and “t”, respectively. We also have four edges in this
graph: one from the vertex labeled “c” to the vertex labeled “a”, one from
“a” to “r”, one from “r” to “t”, and one from “a” to “t”. The non-zero fea-
tures in the label sequence feature space are φc = φa = φr = φt =

√
λ0,

φca = φar = φat = φrt =
√

λ1, φcar = φcat = φart = λ2, and φcart =
√

λ3.
The λi are user defined weights and the square-roots appear only to make
the computation of the kernel more elegant. The above kernel function corre-
sponds to the inner product between such feature vectors (of possibly infinite
dimension).

4.4.2 Cyclic-Pattern Kernels

A labeled undirected graph can be seen as a labeled directed graph where the
existence of an edge between two vertices implies the existence of an edge in
the other direction and both edges are mapped to the same label. Each edge
of an undirected graph is usually represented by a subset of the vertex set
with cardinality two. A path in an undirected graph is a sequence v1, . . . vn of
distinct vertices vi ∈ V where {vi, vi+1} ∈ E . A simple cycle in an undirected
graph is a path, where also {v1, vn} ∈ E . A bridge is an edge not part of any
simple cycle; the graph made up by all bridges is a forest, i.e., a set of trees.

We describe now the kernel proposed in [23] for molecule classification.
The key idea is to decompose every undirected graph into the set of cyclic
and tree patterns in the graph. A cyclic pattern is a unique representation of
the label sequence corresponding to a simple cycle in the graph. A tree pattern
in the graph is a unique representation of the label sequence corresponding to
a tree in the forest made up by all bridges. The cyclic-pattern kernel between
two graphs is defined by the cardinality of the intersection of the pattern sets
associated with each graph.

Consider a graph with vertices 1, . . . 6 and labels (in the order of vertices)
“c”, “a”, “r”, “t”, “e”, and “s”. Let the edges be the set
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{{1, 2}, {2, 3}, {3, 4}, {2, 4}, {1, 5}, {1, 6}}.

This graph has one simple cycle and the lexicographically smallest represen-
tation of the labels along this cycle is the string “art”. The bridges of the
graph are {1, 2}, {1, 5}, {1, 6} and the bridges form a forest consisting of a
single tree. The lexicographically smallest representation of the labels of this
tree (in pre-order notation) is the string “aces”.

If the cyclic-pattern kernel between any two graphs could be computed
in polynomial time, the Hamiltonian cycle problem could also be solved in
polynomial time. Furthermore, the set of simple cycles in a graph can not be
computed in polynomial time – even worse, the number of simple cycles in
a graph can be exponential in the number of vertices of the graph. Consider
a graph consisting of two paths v0, . . . vn and u0, . . . un with additional edges
{{vi, ui} : 0 ≤ i ≤ n} ∪ {{vi, ui−2} : 2 ≤ i ≤ n} where the number of paths
from v0 to un is lower bound by 2n. It follows directly that the number of
simple cycles in the graph with the additional edge {un, v0} is also lower
bound by 2n.

The only remaining hope for a practically feasible algorithm is that the
number of simple cycles in each graph can be bound by a small polynomial.
Read and Tarjan [38] proposed an algorithm with polynomial delay complex-
ity, i.e., the number of steps that the algorithm needs between finding one
simple cycle and finding the next simple cycle is polynomial. This algorithm
can be used to enumerate all cyclic patterns. Note that this does not imply
that the number of steps the algorithm needs between two cyclic patterns is
polynomial.

In the next section we will compare walk- and cycle-based graph kernels in
the context of drug design and prediction of properties of molecules. It is illus-
trated there that indeed for the application considered, only a few molecules
exist that have a large number of simple cycles. Before that we describe an
application of walk-based graph kernels in a relational reinforcement learning
setting.

4.5 Applications of Predictive Graph-Mining

In this section we describe two applications of graph kernels. The first appli-
cation is a relational reinforcement learning task in the blocks world. The sec-
ond application is a molecule classification task on a relatively large database
(> 40, 000 instances) of molecules classified according to their ability to pro-
tect human cells from the HIV virus.

4.5.1 Relational Reinforcement Learning

Reinforcement learning [43], in a nutshell, is about controlling an autonomous
agent in an environment about which he has no prior knowledge. The only
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information the agent can get about the environment is its current state and
whether it received a reward. The goal of reinforcement learning is to maximize
this reward. One particular form of reinforcement learning is Q-learning [46].
It tries to learn a map from state-action-pairs to real numbers (Q-values)
reflecting the quality of that action in that state.

Relational reinforcement learning [10, 11] (RRL) is a Q-learning technique
that can be applied whenever the state-action space can not easily be repre-
sented by tuples of constants but has an inherently relational representation
instead. In this case, explicitly representing the mapping from state-action-
pairs to Q-values is usually not feasible.

The RRL-system learns through exploration of the state-space in a way
that is very similar to normal Q-learning algorithms. It starts with running
an episode2 just like table-based Q-learning, but uses the encountered states,
chosen actions and the received rewards to generate a set of examples that
can then be used to build a Q-function generalization. These examples use a
structural representation of states and actions.

To build this generalized Q-function, RRL applies an incremental rela-
tional regression engine that can exploit the structural representation of the
constructed example set. The resulting Q-function is then used to decide which
actions to take in the following episodes. Every new episode can be seen as a
new experience and is thus used to updated the Q-function generalization.

A rather simple example of relational reinforcement learning takes place
in the blocks world. The aim there is to learn how to put blocks that are in
an arbitrary configuration into a given configuration.

v5

v4

v1

v2

v

v3

0

4

1

2 3

{on}

{block, a/2}

{on}

{on}

{on}{on}

{on}
{action}

{clear}

{block, a/1}

{block}

{block}

{floor}

Fig. 4.3. Simple example of a blocks world state and action (left) and its represen-
tation as a graph (right).

2An “episode” is a sequence of states and actions from an initial state to a
terminal state. In each state, the current Q-function is used to decide which action
to take.
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In this section we describe an application of Gaussian processes to learn
the mapping from relational state-action spaces to Q-values in the blocks
world. One advantage of using Gaussian processes in RRL is that rather than
predicting a single Q-value, they actually return a probability distribution
over Q-values. In order to employ Gaussian processes in a relational reinforce-
ment learning setting, we use graph kernels as the covariance function between
state-action pairs. For that we needed to extend the above described graph
kernels to graphs that may have multiple edges between the same vertices.
The details of this extension are described in [17].

State and Action Representation
A blocks world consists of a constant number of identical blocks. Each block
is put either on the floor or on another block. On top of each block is ei-
ther another block or the top of the block is clear. Figure 4.3 illustrates a
(state, action)-pair in a blocks world with four blocks in two stacks. The right
side of Figure 4.3 shows the graph representation of this blocks world. The
vertices of the graph correspond either to a block, the floor, or “clear”. This
is reflected in the labels of the vertices. Each edge labeled “on” (solid arrows)
denotes that the block corresponding to its initial vertex is on top of the block
corresponding to its terminal vertex. The edge labeled “action” (dashed ar-
row) denotes the action of putting the block corresponding to its initial vertex
on top of the block corresponding to its terminal vertex; in the example “put
block 4 on block 3”. The labels “a/1” and “a/2” denote the initial and ter-
minal vertex of the action, respectively. Every blocks world state–action pair
can be represented by a directed graph in this way.

Blocks World Kernel
In finite state–action spaces, Q-learning is guaranteed to converge if the map-
ping between state–action pairs and Q-values is represented explicitly. One
advantage of Gaussian processes is that for particular choices of the covari-
ance function, the representation is explicit.

A frequently used kernel function for instances that can be represented by
vectors is the Gaussian radial basis function kernel (RBF). Given the band-
width parameter σ the RBF kernel is defined as: krbf(x, x′) = exp(−||x −
x′||2/σ2). For small enough σ the RBF kernel behaves like the matching ker-
nel. In other words, the parameter σ can be used to regulate the amount of
generalization performed in the Gaussian process algorithm: For very small
σ all instances are very different and the Q-function is represented explicitly;
for large enough σ all examples are considered very similar and the resulting
function is very smooth.

In order to have a similar way to regulate the amount of generalization in
the blocks world setting, we do not use the above proposed walk-based graph
kernel directly, but use a Gaussian modifier with it. Let k be the graph kernel
with exponential weights, then the kernel used in the blocks world is given by
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k∗(x, x′) = exp[−(k(x, x)− 2k(x, x′) + k(x′, x′))/σ2].

Evaluation
We evaluated RRL with Gaussian processes and walk-based graph kernels on
three different goals: stacking all blocks, unstacking all blocks and putting two
specific blocks on top of each other. The RRL-system was trained in worlds
where the number of blocks varied between three and five, and given “guided”
traces [9] in a world with 10 blocks. The Q-function and the related policy
were tested at regular intervals on 100 randomly generated starting states in
worlds where the number of blocks varied from 3 to 10 blocks.

In our empirical evaluation, RRL with Gaussian processes and walk-based
graph kernels proved competitive or better than the previous implementa-
tions of RRL. However, this is not the only advantage of using graph kernels
and Gaussian processes in RRL. The biggest advantages are the elegance and
potential of our approach. Very good results could be achieved without sophis-
ticated instance selection or averaging strategies. The generalization ability
can be tuned by a single parameter. Probabilistic predictions can be used to
guide exploration of the state–action space.

4.5.2 Molecule Classification

One of the most interesting application areas for predictive graph mining
algorithms is the classification of molecules.

We used the HIV data set of chemical compounds to evaluate the predictive
power of walk- and cycle-based graph kernels. The HIV database is maintained
by the US National Cancer Institute (NCI) [37] and describes information of
the compounds’ capability to inhibit the HIV virus. This database has been
used frequently in the empirical evaluation of graph-mining approaches (for
example [1, 7, 30]). However, the only approaches to predictive graph mining
on this data set are described in [6, 7]. There, a support vector machine
was used with the frequent subgraph kernel mentioned at the beginning of
Section 4.4.

Figure 4.4 shows the number of molecules with a given number of simple
cycles. This illustrates that in the HIV domain the assumption made in the
development of cyclic-pattern kernels holds.

Data set
In the NCI HIV database, each compound is described by its chemical struc-
ture and classified into one of three categories: confirmed inactive (CI), mod-
erately active (CM), or active (CA). A compound is inactive if a test showed
less than 50% protection of human CEM cells. All other compounds were
re-tested. Compounds showing less than 50% protection (in the second test)
are also classified inactive. The other compounds are classified active, if they
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Fig. 4.4. Log-log plot of the number of molecules (y) versus the number of simple
cycles (x).

provided 100% protection in both tests, and moderately active, otherwise.
The NCI HIV data set we used3 contains 42, 689 molecules, 423 of which are
active, 1081 are moderately active, and 41, 185 are inactive.

Vertex coloring
Though the number of molecules and thus atoms in this data set is rather
large, the number of vertex labels is limited by the number of elements oc-
curring in natural compounds. For that, it is reasonable to not just use the
element of the atom as its label. Instead, we use the pair consisting of the
atom’s element and the multiset of all neighbouring elements as the label. In
the HIV data set, this increases the number of different labels from 62 to 1391.

More sophisticated vertex coloring algorithms are used in isomorphism
tests. There, one would like two vertices to be colored differently iff they do
not lie on the same orbit of the automorphism group [14]. As no efficient algo-
rithm for the ideal case is known, one often resorts to colorings such that two
differently colored vertices can not lie on the same orbit. One possibility there
is to apply the above simple vertex coloring recursively. This is guaranteed to
converge to a “stable coloring”.

Implementation Issues
The size of this data set, in particular the size of the graphs in this data set,
hinders the computation of walk-based graph kernels by means of eigen decom-
positions on the product graphs. The largest graph contains 214 atoms (not
counting hydrogen atoms). If all had the same label, the product graph would

3http://cactus.nci.nih.gov/ncidb/download.html
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have 45, 796 vertices. As different elements occur in this molecule, the prod-
uct graph has fewer vertices. However, it turns out that the largest product
graph (without the vertex coloring step) still has 34, 645 vertices. The vertex
coloring above changes the number of vertices with the same label, thus the
product graph is reduced to 12, 293 vertices. For each kernel computation,
either eigendecomposition or inversion of the adjacency matrix of a product
graph has to be performed. With cubic time complexity, such operations on
matrices of this size are not feasible.

The only chance to compute graph kernels in this application is to approx-
imate them. There are two choices. First we consider counting the number of
walks in the product graph up to a certain depth. In our experiments it turned
out that counting walks with 13 or fewer vertices is still feasible. An alter-
native is to explicitly construct the image of each graph in feature space. In
the original data set 62 different labels occur and after the vertex coloring
1391 different labels occur. The size of the feature space of label sequences of
length 13 is then 6213 > 1023 for the original data set and 139113 > 1040 with
the vertex coloring. We would also have to take into account walks with fewer
than 13 vertices but at the same time not all walks will occur in at least one
graph. The size of this feature space hinders explicit computation. We thus
resorted to counting walks with 13 or fewer vertices in the product graph.

Experimental Methodology
We compare our approach to the results presented in [6] and [7]. The clas-
sification problems considered there were: (1) distinguish CA from CM, (2)
distinguish CA and CM from CI, and (3) distinguish CA from CI. For each
problem, the area under the ROC curve (AUC), averaged over a five-fold
crossvalidation, is given for different misclassification cost settings.

In order to choose the parameters of the walk-based graph kernel we
proceeded as follows. We split the smallest problem (1) into 10% for pa-
rameter tuning and 90% for evaluation. First we tried different parameters
for the exponential weight (10−3, 10−2, 10−1, 1, 10) in a single nearest neigh-
bor algorithm (leading to an average AUC of 0.660, 0.660, 0.674, 0.759, 0.338)
and decided to use 1 from now. Next we needed to choose the complexity
(regularization) parameter of the SVM. Here we tried different parameters
(10−3, 10−2, 10−1 leading to an average AUC of 0.694, 0.716, 0.708) and found
the parameter 10−2 to work best. Evaluating with an SVM and these param-
eters on the remaining 90% of the data, we achieved an average AUC of 0.820
and standard deviation of 0.024.

For cyclic-pattern kernels, only the complexity constant of the support
vector machine has to be chosen. Here, the heuristic as implemented in SVM-
light [24] is used. Also, we did not use any vertex coloring with cyclic pattern
kernels.
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Table 4.1. Area under the ROC curve for different costs and problems (•: significant
loss against walk-based kernels at 10% / ••: significant loss against walk-based ker-
nels at 1% / ◦: significant loss against cyclic-pattern kernels at 10% / ◦◦: significant
loss against cyclic-pattern kernels at 1%).

walk-based cyclic-pattern
problem cost kernels kernels FSG FSG∗

CA vs CM 1.0 0.818(±0.024) 0.813(±0.014) 0.774 ••◦◦ 0.810
CA vs CM 2.5 0.825(±0.032) 0.827(±0.013) 0.782 • ◦◦ 0.792 • ◦◦

CA vs CM+CI 1.0 0.926(±0.015) 0.908(±0.024) • — —
CA vs CM+CI 100.0 0.928(±0.013) 0.921(±0.026) — —
CA+CM vs CI 1.0 0.815(±0.015) 0.775(±0.017) •• 0.742 ••◦◦ 0.765 ••
CA+CM vs CI 35.0 0.799(±0.011) 0.801(±0.017) 0.778 ••◦ 0.794

CA vs CI 1.0 0.942(±0.015) 0.919(±0.011) • 0.868 ••◦◦ 0.839 ••◦◦
CA vs CI 100.0 0.944(±0.015) 0.929(±0.01) • 0.914 ••◦ 0.908 ••◦◦

Results of Experimental Evaluation
To compare our results to those achieved in previous work, we fixed these
parameters and reran the experiments on the full data of all three problems.
Table 4.1 summarises these results and the results reported in [6]. In [7] the
authors of [6] describe improved results (FSG∗). There, the authors report
results obtained with an optimized threshold on the frequency of patterns.4

Clearly, the graph kernels proposed here outperform FSG and FSG∗ over all
problems and misclassification cost settings

To evaluate the significance of our results we proceeded as follows: As
we did not know the variance of the area under the ROC curve for FSG,
we assumed the same variance as obtained with graph kernels. Thus, to test
the hypothesis that graph kernels significantly outperform FSG, we used a
pooled sample variance equal to the variance exhibited by graph kernels. As
FSG and graph kernels were applied in a five-fold crossvalidation, the esti-
mated standard error of the average difference is the pooled sample variance

multiplied by
√

2
5 . The test statistic is then the average difference divided

by its estimated standard error. This statistic follows a t distribution. The
null hypothesis — graph kernels perform no better than FSG — can be re-
jected at the significance level α if the test statistic is greater than t8(α), the
corresponding percentile of the t distribution.

Table 4.1 shows the detailed results of this comparison. Walk-based graph
kernels always perform better or at least not significantly worse than any
other kernel. Cyclic-pattern kernels are sometimes outperformed by walk-
based graph kernels but can be computed much more efficiently. For example,
in the classification problem where we tried to distinguish active compounds

4In [7], including a description of the three-dimensional shape of each molecule
is also considered. We do not compare our results to those obtained using the three-
dimensional information. We are also considering including three-dimensional infor-
mation in our future work and expect similar improvements.
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from moderately active compounds and inactive compounds, five-fold cross-
validation with walk-based graph kernels finished in about eight hours, while
changing to cyclic-pattern kernels reduced the run time to about 20 minutes.

4.6 Concluding Remarks

In this article we described a kernel based approach to predictive graph-
mining. In contrast to other graph mining problems, predictive graph min-
ing is concerned with the predictive performance of classifiers rather than
interestingness or frequency of patterns. In contrast to other predictive learn-
ing approaches, predictive graph mining is concerned with learning problems
where each example has a natural graph-based representation.

We described different kernel functions on objects with complex data struc-
tures and made clear why these approaches can not easily be extended to
handle graphs – the obvious way to do this would result in a kernel function
that, if it could be computed in polynomial time, would allow us to solve the
Hamiltonian path problem in polynomial time. We then described walk-based
graph kernels and cyclic-pattern kernels for graphs in more detail.

Walk-based graph kernels circumvent the computational problems by re-
sorting to a measure of the common walks in graphs rather than common
paths. Using a few computational tricks, walk-based graph kernels can be
computed in polynomial time.

Cyclic pattern kernels explicitly compute the set of cyclic and tree pat-
terns of each graph. Although computing this set is, in general, computa-
tionally hard, for graph databases where the number of simple cycles in each
graph is small, cyclic pattern kernels can be computed efficiently. This is,
for example, the case in a database with more than 40, 000 molecules, used
in the empirical evaluation in this paper. There, using cyclic-pattern kernels
instead of walk-based kernels leads to a small decrease in predictive perfor-
mance but to a large improvement of the run time of support vector machines.
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[9] Driessens, K. and S. Džeroski, 2002: Integrating experimentation
and guidance in relational reinforcement learning. Proceedings of the
19th International Conference on Machine Learning , C. Sammut and
A. Hoffmann, eds., Morgan Kaufmann, 115–22.
URL: www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=38637

[10] Driessens, K., J. Ramon and H. Blockeel, 2001: Speeding up relational
reinforcement learning through the use of an incremental first order de-
cision tree learner. Proceedings of the 13th European Conference on Ma-
chine Learning , L. De Raedt and P. Flach, eds., Springer-Verlag, Lecture
Notes in Artificial Intelligence, 2167, 97–108.
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TreeMiner: An Efficient Algorithm for Mining
Embedded Ordered Frequent Trees

Mohammed J. Zaki

Summary. Mining frequent trees is very useful in domains like bioinformatics,
web mining, mining semi-structured data, and so on. We formulate the problem of
mining (embedded) subtrees in a forest of rooted, labeled, and ordered trees. We
present TreeMiner, a novel algorithm to discover all frequent subtrees in a forest,
using a new data structure called a scope-list. We contrast TreeMiner with a
pattern-matching tree-mining algorithm (PatternMatcher). We conduct detailed
experiments to test the performance and scalability of these methods. We find that
TreeMiner outperforms the pattern matching approach by a factor of 4 to 20,
and has good scale-up properties. We also present an application of tree mining to
analyze real web logs for usage patterns.

5.1 Introduction

Frequent structure mining (FSM) refers to an important class of exploratory
mining tasks, namely those dealing with extracting patterns in massive
databases representing complex interactions between entities. FSM not only
encompasses mining techniques like associations [3] and sequences [4], but it
also generalizes to more complex patterns like frequent trees and graphs [17,
20]. Such patterns typically arise in applications like bioinformatics, web min-
ing, mining semi-structured documents, and so on. As one increases the com-
plexity of the structures to be discovered, one extracts more informative pat-
terns; we are specifically interested in mining tree-like patterns.

As a motivating example for tree mining, consider the web usage min-
ing [13] problem. Given a database of web access logs at a popular site, one
can perform several mining tasks. The simplest is to ignore all link informa-
tion from the logs, and to mine only the frequent sets of pages accessed by
users. The next step can be to form for each user the sequence of links they
followed and to mine the most frequent user access paths. It is also possible to
look at the entire forward accesses of a user, and to mine the most frequently
accessed subtrees at that site. In recent years, XML has become a popular way
of storing many data sets because the semi-structured nature of XML allows
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the modeling of a wide variety of databases as XML documents. XML data
thus forms an important data mining domain, and it is valuable to develop
techniques that can extract patterns from such data. Tree-structured XML
documents are the most widely occurring in real applications. Given a set
of such XML documents, one would like to discover the commonly occurring
subtrees that appear in the collection.

Tree patterns also arise in Bioinformatics. For example, researchers have
collected vast amounts of RNA structures, which are essentially trees. To get
information about a newly sequenced RNA, they compare it with known RNA
structures, looking for common topological patterns, which provide important
clues to the function of the RNA [28].

In this paper we introduce TreeMiner, an efficient algorithm for the
problem of mining frequent subtrees in a forest (the database). The key con-
tributions of our work are as follows:

• We introduce the problem of mining embedded subtrees in a collection of
rooted, ordered, and labeled trees.

• We use the notion of a scope for a node in a tree. We show how any tree
can be represented as a list of its node scopes, in a novel vertical format
called a scope-list.

• We develop a framework for non-redundant candidate subtree generation,
i.e., we propose a systematic search of the possibly frequent subtrees, such
that no pattern is generated more than once.

• We show how one can efficiently compute the frequency of a candidate
tree by joining the scope-lists of its subtrees.

• Our formulation allows one to discover all subtrees in a forest, as well as
all subtrees in a single large tree. Furthermore, simple modifications also
allow us to mine unlabeled subtrees, unordered subtrees and also frequent
sub-forests (i.e., disconnected subtrees).

We contrast TreeMiner with a base tree-mining algorithm based on
pattern matching, PatternMatcher. Our experiments on several synthetic
data sets and one real data set show that TreeMiner outperforms Pattern-
Matcher by a factor of 4 to 20. Both algorithms exhibit linear scale up with
increasing number of trees in the database. We also present an application
study of tree mining in web usage mining. The input data is in the form of
XML documents that represent user sessions extracted from raw web logs.
We show that the mined tree patterns do indeed capture more interesting
relationships than frequent sets or sequences.

5.2 Problem Statement

A tree is an acyclic connected graph and a forest is an acyclic graph. A forest
is thus a collection of trees, where each tree is a connected component of the
forest. A rooted tree is a tree in which one of the vertices is distinguished from
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others and called the root. We refer to a vertex of a rooted tree as a node of
the tree. An ordered tree is a rooted tree in which the children of each node
are ordered, i.e., if a node has k children, then we can designate them as the
first child, second child, and so on up to the kth child. A labeled tree is a tree
where each node of the tree is associated with a label. In this paper, all trees
we consider are ordered, labeled, and rooted trees. We choose to focus on
labeled rooted trees, since those are the types of data sets that are most com-
mon in a data mining setting, i.e., data sets represent relationships between
items or attributes that are named, and there is a top root element (e.g., the
main web page on a site). In fact, if we treat each node as having the same
label, we can mine all ordered, unlabeled subtrees as well!

Ancestors and Descendants
Consider a node x in a rooted tree T with root r. Any node y on the unique
path from r to x is called an ancestor of x, and is denoted as y ≤l x, where l is
the length of the path from y to x. If y is an ancestor of x, then x is a descen-
dant of y. (Every node is both an ancestor and descendant of itself.) If y ≤1 x
(i.e., y is an immediate ancestor), then y is called the parent of x and x the
child of y. We say that nodes x and y are siblings if they have the same par-
ent and we say they are embedded siblings if they have some common ancestor.

Node Numbers and Labels
We denote a tree as T = (N, B), where N is the set of labeled nodes, and
B the set of branches. The size of T , denoted |T |, is the number of nodes
in T . Each node has a well-defined number, i, according to its position in a
depth-first (or pre-order) traversal of the tree. We use the notation ni to refer
to the ith node according to the numbering scheme (i = 0 . . . |T | − 1). The
label (also referred to as an item) of each node is taken from a set of labels
L = {0, 1, 2, 3, ..., m−1}, and we allow different nodes to have the same label,
i.e., the label of node number i is given by a function, l : N → L, which
maps ni to some label l(ni) = y ∈ L. Each node in T is thus identified by its
number and its label. Each branch, b = (nx, ny) ∈ B, is an ordered pair of
nodes, where nx is the parent of ny.

Subtrees
We say that a tree S = (Ns, Bs) is an embedded subtree of T = (N, B), denoted
as S � T , provided Ns ⊆ N , and b = (nx, ny) ∈ Bs if and only if ny ≤l nx,
i.e., nx is an ancestor of ny in T . In other words, we require that a branch
appears in S if and only if the two vertices are on the same path from the
root to a leaf in T . If S � T , we also say that T contains S. A (sub)tree
of size k is also called a k-(sub)tree. Note that in the traditional definition
of an induced subtree , for each branch b = (nx, ny) ∈ Bs, nx must be a
parent of ny in T . Embedded subtrees are thus a generalization of induced
subtrees; they allow not only direct parent–child branches, but also ancestor–
descendant branches. As such embedded subtrees are able to extract patterns
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“hidden” (or embedded) deep within large trees which might be missed by
the traditional definition.

 B

 CA

 B  C

C

 B  B

 A

 A

 B

 CA  CA

Embedded Subtree

T3T2T1

Fig. 5.1. Embedded subtree

As an example, consider Figure 5.1, which shows three trees. Let’s assume
we want to mine subtrees that are common to all three trees (i.e., 100% fre-
quency). If we mine induced trees only, then there are no frequent trees of
size more than one. On the other hand, if we mine embedded subtrees, then
the tree shown in the box is a frequent pattern appearing in all three trees; it
is obtained by skipping the “middle” node in each tree. This example shows
why embedded trees are of interest. Henceforth, a reference to subtree should
be taken to mean an embedded subtree, unless indicated otherwise. Also note
that, by definition, a subtree must be connected. A disconnected pattern is
a sub-forest of T . Our main focus is on mining subtrees, although a simple
modification of our enumeration scheme also produces sub-forests.

Scope
Let T (nl) refer to the subtree rooted at node nl and let nr be the right-most
leaf node in T (nl). The scope of node nl is given as the interval [l, r], i.e., the
lower bound is the position (l) of node nl, and the upper bound is the position
(r) of node nr. The concept of scope will play an important part in counting
subtree frequency.

Tree Mining Problem
Let D denote a database of trees (i.e., a forest), and let subtree S � T for
some T ∈ D. Each occurrence of S can be identified by its match label, which
is given as the set of matching positions (in T ) for nodes in S. More formally,
let {t1, t2, . . . , tn} be the nodes in T , with |T | = n, and let {s1, s2, . . . , sm} be
the nodes in S, with |S| = m. Then S has a match label {ti1 , ti2 , . . . tim}, if
and only if: 1) l(sk) = l(tik

) for all k = 1, . . . m, and 2) branch b(sj , sk) in S
iff tij

is an ancestor of tik
in T . Condition 1 indicates that all node labels in

S have a match in T , while Condition 2 indicates that the tree topology of
the matching nodes in T is the same as S. A match label is unique for each
occurrence of S in T .

Let δT (S) denote the number of occurrences of the subtree S in a tree T .
Let dT (S) = 1 if δT (S) > 0 and dT (S) = 0 if δT (S) = 0. The support of a
subtree S in the database is defined as σ(S) =

∑
T∈D dT (S), i.e., the number
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of trees in D that contain at least one occurrence of S. The weighted support
of S is defined as σw(S) =

∑
T∈D δT (S), i.e., the total number of occurrences

of S over all trees in D. Typically, support is given as a percentage of the total
number of trees in D. A subtree S is frequent if its support is more than or
equal to a user-specified minimum support (minsup) value. We denote by Fk

the set of all frequent subtrees of size k. Given a user specified minsup value
our goal is to efficiently enumerate all frequent subtrees in D. In some domains
one might be interested in using weighted support, instead of support. Both of
them are supported by our mining approach, but we focus mainly on support.

S1

 1

 1 2

S2

2 2 1 2

 0

 1 2

 3

 1

 0

2

 2

T (a tree in D)

S3

2

 1

 3

 1

 0

support = 1

T’s String Encoding: 0 1 3 1 −1 2 −1 −1 2 −1 −1 2 −1

not a subtree; a sub−forestweighted support = 2

string = 1 1 −1 2 −1

support = 1
weighted support = 1

string = 0 1 −1 2 −1 2 −1 2 −1

n4, s = [4, 4]

n5, s = [5, 5]

n6, s = [6, 6]

n2, s = [2, 4]

n3, s =[3, 3]

n1, s = [1, 5]

n0, s = [0, 6]

match label = {03456}match labels = {134, 135}

Fig. 5.2. An example tree with subtrees.

Example 1. Consider Figure 5.2, which shows an example tree T with node
labels drawn from the set L = {0, 1, 2, 3}. The figure shows for each node, its
label (circled), its number according to depth-first numbering, and its scope.
For example, the root occurs at position n = 0, its label l(n0) = 0, and since
the right-most leaf under the root occurs at position 6, the scope of the root
is s = [0, 6]. Tree S1 is a subtree of T ; it has a support of 1, but its weighted
support is 2, since node n2 in S1 occurs at positions 4 and 5 in T , both of
which support S1, i.e., there are two match labels for S1, namely 134 and 135
(we omit set notation for convenience). S2 is also a valid subtree. S3 is not a
(sub)tree since it is disconnected; it is a sub-forest.
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5.3 Generating Candidate Trees

There are two main steps for enumerating frequent subtrees in D. First, we
need a systematic way of generating candidate subtrees whose frequencies
are to be computed. The candidate set should be non-redundant, i.e., each
subtree should be generated at most once. Second, we need efficient ways of
counting the number of occurrences of each candidate in the database D, and
to determine which candidates pass the minsup threshold. The latter step is
data-structure dependent and will be treated later. Here we are concerned
with the problem of non-redundant pattern generation. We describe below
our tree representation and candidate generation procedure.

Representing Trees as Strings
Standard ways of representing a labeled tree are via an adjacency matrix or
adjacency list. For a tree with n nodes and m branches (note, m = n− 1 for
trees), adjacency matrix representation requires n + fn = n(f + 1) space (f
is the maximum fanout; n is for storing labels and fn for storing adjacency
information), while adjacency lists require 2n + 2m = 4n− 2 space (2n is for
storing labels and header pointers for adjacency lists and 2m is for storing
label and next pointer per list node). Since f can possibly be large, we expect
adjacency lists to be more space-efficient. If we directly store a labeled tree
node as a (label, child pointer, sibling pointer) triplet, we would require 3n
space.

For efficient subtree counting and manipulation we adopt a string rep-
resentation of a tree. We use the following procedure to generate the string
encoding, denoted T , of a tree T . Initially we set T = ∅. We then perform
a depth-first preorder search starting at the root, adding the current node’s
label x to T . Whenever we backtrack from a child to its parent we add a
unique symbol −1 to the string (we assume that −1 �∈ L). This format (see
Figure 5.2) allows us to conveniently represent trees with an arbitrary number
of children for each node. Since each branch must be traversed in both forward
and backward directions, the space usage to store a tree as a string is exactly
2m + 1 = 2n− 1. Thus our string encoding is more space-efficient than other
representations. Moreover, it is simpler to manipulate strings rather than ad-
jacency lists or trees for pattern counting. We use the notation l(T ) to refer
to the label sequence of T , which consists of the node labels of T in depth-
first ordering (without backtrack symbol −1), i.e., label sequence ignores tree
topology.

Example 2. In Figure 5.2, we show the string encodings for the tree T as well
as each of its subtrees. For example, subtree S1 is encoded by the string
1 1 −1 2 −1. That is, we start at the root of S1 and add 1 to the string. The
next node in preorder traversal is labeled 1, which is added to the encoding.
We then backtrack to the root (adding −1) and follow down to the next node,
adding 2 to the encoding. Finally we backtrack to the root adding −1 to the
string. Note that the label sequence of S1 is given as 112.
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5.3.1 Candidate Subtree Generation

We use the anti-monotone property of frequent patterns for efficient candidate
generation, namely that the frequency of a super-pattern is less than or equal
to the frequency of a sub-pattern. Thus, we consider only a known frequent
pattern for extension. Past experience also suggests that an extension by a
single item at a time is likely to be more efficient. Thus we use information
from frequent k-subtrees to generate candidate (k + 1)-subtrees.

Equivalence Classes
We say that two k-subtrees X, Y are in the same prefix equivalence class iff
they share a common prefix up to the (k − 1)th node. Formally, let X ,Y be
the string encodings of two trees, and let function p(X , i) return the prefix up
to the ith node. X, Y are in the same class iff p(X , k− 1) = p(Y, k− 1). Thus
any two members of an equivalence class differ only in the position of the last
node.

Equivalence Class 3

 4

 2  1

Prefix String: 3 4 2 −1 1

 x

 x

 x x

n0

n1

n2 n3  (x, 1) // attached to n1:   3 4 2 −1 1 −1 x −1 −1

 (x, 3) // attached to n3:   3 4 2 −1 1 x −1 −1 −1

(x, 0) // attached to n0:   3 4 2 −1 1 −1 −1 x −1

Element List: (label, attached to position)

Class Prefix

Fig. 5.3. Prefix equivalence class.

Example 3. Consider Figure 5.3, which shows a class template for subtrees of
size 5 with the same prefix subtree P of size 4, with string encoding P =
3 4 2 −1 1. Here x denotes an arbitrary label from L. The valid positions
where the last node with label x may be attached to the prefix are n0, n1 and
n3, since in each of these cases the subtree obtained by adding x to P has
the same prefix. Note that a node attached to position n2 cannot be a valid
member of class P, since it would yield a different prefix, given as 3 4 2 x.

The figure also shows the actual format we use to store an equivalence
class; it consists of the class prefix string, and a list of elements. Each element
is given as a (x, p) pair, where x is the label of the last node, and p specifies
the depth-first position of the node in P to which x is attached. For example
(x, 1) refers to the case where x is attached to node n1 at position 1. The figure
shows the encoding of the subtrees corresponding to each class element. Note
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how each of them shares the same prefix up to the (k − 1)th node. These
subtrees are shown only for illustration purposes; we only store the element
list in a class.

Let P be a prefix subtree of size k − 1; we use the notation [P ]k−1 to refer
to its class (we omit the subscript when there is no ambiguity). If (x, i) is an
element of the class, we write it as (x, i) ∈ [P ]. Each (x, i) pair corresponds
to a subtree of size k, sharing P as the prefix, with the last node labeled x,
attached to node ni in P . We use the notation Px to refer to the new prefix
subtree formed by adding (x, i) to P .

Lemma 1. Let P be a class prefix subtree and let nr be the right-most leaf node
in P , whose scope is given as [r, r]. Let (x, i) ∈ [P ]. Then the set of valid node
positions in P to which x can be attached is given by {i : ni has scope [i, r]},
where ni is the ith node in P .

This lemma states that a valid element x may be attached to only those nodes
that lie on the path from the root to the right-most leaf nr in P . It is easy
to see that if x is attached to any other position the resulting prefix would be
different, since x would then be before nr in depth-first numbering.

Candidate Generation
Given an equivalence class of k-subtrees, how do we obtain candidate (k +1)-
subtrees? First, we assume (without loss of generality) that the elements (x, p)
in each class are kept sorted by node label as the primary key and position
as the secondary key. Given a sorted element list, the candidate generation
procedure we describe below outputs a new class list that respects that order,
without explicit sorting. The main idea is to consider each ordered pair of
elements in the class for extension, including self extension. There can be up
to two candidates from each pair of elements to be joined. The next theorem
formalizes this notion.

Theorem 1 (Class Extension). Let P be a prefix class with encoding P,
and let (x, i) and (y, j) denote any two elements in the class. Let Px denote
the class representing extensions of element (x, i). Define a join operator ⊗
on the two elements, denoted (x, i)⊗(y, j), as follows:
case I – (i = j):

(a) If P �= ∅, add (y, j) and (y, ni) to class [Px], where ni is the depth-first
number for node (x, i) in tree Px.

(b) If P = ∅, add (y, j + 1) to [Px].

case II – (i > j): add (y, j) to class [Px].
case III – (i < j): no new candidate is possible in this case.

Then all possible (k + 1)-subtrees with the prefix P of size k − 1 will be enu-
merated by applying the join operator to each ordered pair of elements (x, i)
and (y, j).



5.3 Generating Candidate Trees 131

 1

 2  4

 1

 2  4  4

 1

 2  4

 4

 1

 2

 3

 3

 1

 2

 3  3

 1

 2

 3

Equivalence Class
Prefix: 1 2

Element List: (3,1) (4,0)

Prefix: 1 2 3
Element List: (3,1) (3,2) (4,0)

Prefix: 1 2 −1 4
Element List: (4,0) (4,1)

 1

 2

 3

 4

 +  +

Fig. 5.4. Candidate generation

Example 4. Consider Figure 5.4, showing the prefix class P = (1 2), which
contains two elements, (3, 1) and (4, 0). The first step is to perform a self join
(3, 1)⊗(3, 1). By case I(a) this produces candidate elements (3, 1) and (3, 2)
for the new class P3 = (1 2 3). That is, a self join on (3, 1) produces two
possible candidate subtrees, one where the last node is a sibling of (3, 1) and
another where it is a child of (3, 1). The left-most two subtrees in the figure
illustrate these cases.

When we join (3, 1)⊗(4, 0) case II applies, i.e., the second element is joined
to some ancestor of the first one, thus i > j. The only possible candidate
element is (4, 0), since 4 remains attached to node n0 even after the join (see
the third subtree in the left-most class in Figure 5.4). We thus add (4, 0) to
class [P3]. We now move to the class on the right with prefix P4 = (1 2 −1 4).
When we try to join (4, 0)⊗(3, 1), case III applies, and no new candidate is
generated. Actually, if we do merge these two subtrees, we obtain the new
subtree 1 2 3 − 1 − 1 4, which has a different prefix, and was already added
to the class [P3]. Finally we perform a self-join (4, 0)⊗(4, 0) adding elements
(4, 0) and (4, 2) to the class [P4] shown on the right hand side.

Case I(b) applies only when we join single items to produce candidate 2-
subtrees, i.e., we are given a prefix class [∅] = {(xi,−1), i = 1, . . . , m}, where
each xi is a label, and −1 indicates that it is not attached to any node. If we
join (xi,−1)⊗(xj ,−1), since we want only (connected) 2-subtrees, we insert
the element (xj , 0) into the class of xi. This corresponds to the case where xj

is a child of xi. If we want to generate sub-forests as well, all we have to do
is to insert (xj ,−1) in the class of xi. In this case xj would be a sibling of
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xi, but since they are not connected, they would be roots of two trees in a
sub-forest. If we allow such class elements then one can show that the class
extension theorem would produce all possible candidate sub-forests. However,
in this paper we will focus only on subtrees.

Corollary 1 (Automatic Ordering). Let [P ]k−1 be a prefix class with ele-
ments sorted according to the total ordering < given as follows: (x, i) < (y, j)
if and only if x < y or (x = y and i < j). Then the class extension method
generates candidate classes [P ]k with sorted elements.

Corollary 2 (Correctness). The class extension method correctly generates
all possible candidate subtrees and each candidate is generated at most once.

5.4 TreeMiner Algorithm

TreeMiner performs depth-first search (DFS) for frequent subtrees, using
a novel tree representation called a scope-list for fast support counting, as
discussed below.
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n2, [2,2] n3, [3, 3]

n4, [4, 4] n5, [5,5]

 1

 2  3

 4

 2

 1

 3  5n1, [1,2]

n2, [2,2]

n3, [3,7]

n4, [4,7]

n5, [5,5]

n6, [6,7]

n7, [7,7]

n0, [0,7]

Tree T2
D in Horizontal Format : (tid, string encoding)

(T0,  1 2 −1 3 4 −1 −1)

(T1,  2 1 2 −1 4 −1 −1 2 −1 3 −1)

(T2,  1 3 2 −1 5 1 2 −1 3 4 −1 −1 −1 −1)

D in Vertical Format: (tid, scope) pairs

Tree T1

Database D of 3 Trees

1 2 3 4 5

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

0, [1, 1]
1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

0, [2, 3]
1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

2, [3, 7]

Tree T0

 1

 2  3

 4

n0, [0,3]

n1, [1,1]
n2, [2,3]

n3, [3,3]

Fig. 5.5. Scope-lists.

5.4.1 Scope-List Representation

Let X be a k-subtree of a tree T . Let xk refer to the last node of X. We
use the notation L(X) to refer to the scope-list of X. Each element of the
scope-list is a triple (t, m, s), where t is a tree id (tid) in which X occurs, m is
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a match label of the (k − 1) length prefix of X, and s is the scope of the last
item xk. Recall that the prefix match label gives the positions of nodes in T
that match the prefix. Since a given prefix can occur multiple times in a tree,
X can be associated with multiple match labels as well as multiple scopes.
The initial scope-lists are created for single items (i.e., labels) i that occur
in a tree T . Since a single item has an empty prefix, we don’t have to store
the prefix match label m for single items. We will show later how to compute
pattern frequency via joins on scope-lists.

Example 5. Figure 5.5 shows a database of three trees, along with the hori-
zontal format for each tree and the vertical scope-list format for each item.
Consider item 1; since it occurs at node position 0 with scope [0, 3] in tree T0,
we add (0, [0, 3]) to its scope list L(1). Item 1 also occurs in T1 at position n1
with scope [1, 3], so we add (1, [1, 3]) to L(1). Finally, item 1 occurs with scope
[0, 7] and [4, 7] in tree T2, so we add (2, [0, 7]) and (2, [4, 7]) to its scope-list.
In a similar manner, the scope-lists for other items are created.

5.4.2 Frequent Subtree Enumeration

Figure 5.6 shows the high-level structure of TreeMiner. The main steps in-
clude the computation of the frequent items and 2-subtrees, and the enumera-
tion of all other frequent subtrees via DFS search within each class [P ]1 ∈ F2.
We will now describe each step in more detail.

TreeMiner (D, minsup):
F1 = { frequent 1-subtrees };
F2 = { classes [P ]1 of frequent 2-subtrees };
for all [P ]1 ∈ E do Enumerate-Frequent-Subtrees([P ]1);

Enumerate-Frequent-Subtrees([P ]):
for each element (x, i) ∈ [P ] do

[Px] = ∅;
for each element (y, j) ∈ [P ] do

R = {(x, i)⊗(y, j)};
L(R) = {L(x) ∩⊗ L(y)};
if for any R ∈ R, R is frequent then

[Px] = [Px] ∪ {R};
Enumerate-Frequent-Subtrees([Px]);

Fig. 5.6. TreeMiner algorithm.

Computing F1 and F2: TreeMiner assumes that the initial database is in
the horizontal string-encoded format. To compute F1, for each item i ∈ T , the
string encoding of tree T , we increment i’s count in a one-dimensional array.
This step also computes other database statistics such as the number of trees,
maximum number of labels, and so on. All labels in F1 belong to the class
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with empty prefix, given as [P ]0 = [∅] = {(i,−1), i ∈ F1}, and the position
−1 indicates that i is not attached to any node. Total time for this step is
O(n) per tree, where n = |T |.

By Theorem 1 each candidate class [P ]1 = [i] (with i ∈ F1) consists of
elements of the form (j, 0), where j ≥ i. For efficient F2 counting we compute
the supports of each candidate by using a two-dimensional integer array of size
F1 × F1, where cnt[i][j] gives the count of candidate subtrees with encoding
(i j −1). Total time for this step is O(n2) per tree. While computing F2 we
also create the vertical scope-list representation for each frequent item i ∈ F1.

Computing Fk(k ≥ 3): Figure 5.6 shows the pseudo-code for the depth-first
search for frequent subtrees (Enumerate-Frequent-Subtrees). The input
to the procedure is a set of elements of a class [P ], along with their scope-
lists. Frequent subtrees are generated by joining the scope-lists of all pairs of
elements (including self-joins). Before joining the scope-lists, a pruning step
can be inserted to ensure that subtrees of the resulting tree are frequent.
If this is true, then we can go ahead with the scope-list join, otherwise we
can avoid the join. For convenience, we use the set R to denote the up to
two possible candidate subtrees that may result from (x, i)⊗(y, j), according
to the class extension theorem, and we use L(R) to denote their respective
scope-lists. The subtrees found to be frequent at the current level form the
elements of classes for the next level. This recursive process is repeated until
all frequent subtrees have been enumerated. If [P ] has n elements, the total
cost is given as O(ln2), where l is the cost of a scope-list join (given later). In
terms of memory management it is easy to see that we need memory to store
classes along a path in the DFS search. At the very least we need to store
intermediate scope-lists for two classes, i.e., the current class [P ] and a new
candidate class [Px]. Thus the memory footprint of TreeMiner is not large.

5.4.3 Scope-List Joins (L(x) ∩⊗ L(y))

Scope-list join for any two subtrees in a class [P ] is based on interval algebra
on their scope lists. Let sx = [lx, ux] be a scope for node x, and sy = [ly, uy]
a scope for y. We say that sx is strictly less than sy, denoted sx < sy, if and
only if ux < ly, i.e., the interval sx has no overlap with sy, and it occurs
before sy. We say that sx contains sy, denoted sx ⊃ sy, if and only if lx ≤ ly
and ux ≥ uy, i.e., the interval sy is a proper subset of sx. The use of scopes
allows us to compute in constant time whether y is a descendant of x or y
is a embedded sibling of x. Recall from the candidate extension Theorem 1
that when we join elements (x, i)⊗(y, j) there can be at most two possible
outcomes, i.e., we either add (y, j + 1) or (y, j) to the class [Px].

In-Scope Test
The first candidate (y, j + 1) is added to [Px] only when i = j, and thus refers
to the candidate subtree with y as a child of node x. In other words, (y, j + 1)
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represents the subtree with encoding (Px y). To check if this subtree occurs
in an input tree T with tid t, we search for triples (ty, sy, my) ∈ L(y) and
(tx, sx, mx) ∈ L(x), such that:

• ty = tx = t, i.e., the triples both occur in the same tree, with tid t.
• my = mx = m, i.e., x and y are both extensions of the same prefix

occurrence, with match label m.
• sy ⊂ sx, i.e., y lies within the scope of x.

If the three conditions are satisfied, we have found an instance where y is a
descendant of x in some input tree T . We next extend the match label my

of the old prefix P , to get the match label for the new prefix Px (given as
my ∪ lx), and add the triple (ty, sy, {my ∪ lx}) to the scope-list of (y, j + 1) in
[Px]. We refer to this case as an in-scope test.

Out-Scope Test
The second candidate (y, j) represents the case when y is a embedded sibling
of x, i.e., both x and y are descendants of some node at position j in the prefix
P , and the scope of x is strictly less than the scope of y. The element (y, j),
when added to [Px] represents the pattern (Px −1 ... −1 y) with the number
of -1’s depending on the path length from j to x. To check if (y, j) occurs in
some tree T with tid t, we need to check for triples (ty, sy, my) ∈ L(y) and
(tx, sx, mx) ∈ L(x), such that:

• ty = tx = t, i.e., the triples both occur in the same tree, with tid t.
• my = mx = m, i.e., x and y are both extensions of the same prefix

occurrence, with match label m.
• sx < sy, i.e., x comes before y in depth-first ordering and their scopes do

not overlap.

If these conditions are satisfied, we add the triple (ty, sy, {my ∪ lx}) to the
scope-list of (y, j) in [Px]. We refer to this case as an out-scope test. Note that
if we just check whether sx and sy are disjoint (with identical tids and prefix
match labels), i.e., either sx < sy or sx > sy, then the support can be counted
for unordered subtrees!

Computation Time
Each application of in-scope or out-scope test takes O(1) time. Let a and b
be the distinct (t, m) pairs in L(x, i) and L(y, j), respectively. Let α denote
the average number of scopes with a match label. Then the time to perform
scope-list joins is given as O(α2(a + b)), which reduces to O(a + b) if α is a
small constant.

Example 6. Figure 5.7 shows an example of how scope-list joins work, using
the database D from Figure 5.5, with minsup = 100%, i.e., we want to mine
subtrees that occur in all three trees in D. The initial class with empty pre-
fix consists of four frequent items (1, 2, 3 and 4), with their scope-lists. All
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1

2

1

2

1 2 3 4

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

0, [1, 1]
1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

0, [2, 3]
1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

1

4

0, 0, [1, 1]
1, 1, [2, 2]
2, 0, [2, 2]
2, 0, [5, 5]
2, 4, [5, 5]

0, 0, [3, 3]
1, 1, [3, 3]
2, 0, [7, 7]
2, 4, [7, 7]

4

0, 01, [3, 3]
1, 12, [3, 3]
2, 02, [7, 7]
2, 05, [7, 7]
2, 45, [7, 7]

Elements = (1,−1), (2,−1), (3,−1), (4,−1)
Prefix = {}

Elements = (2,0), (4,0)
Prefix = 1

Infrequent Elements
(1,0) : 1 1 −1
(3,0) : 1 3 −1

(5,−1): 5
Infrequent Elements

Prefix = 12
Elements = (4,0)

Infrequent Elements
(2,0) : 1 2 −1 2

(4,1) : 1 2 4 −1 −1
(2,1) : 1 2 2 −1 −1

Fig. 5.7. Scope-list joins: minsup = 100%.

pairs of elements are considered for extension, including self-join. Consider the
extensions from item 1, which produces the new class [1] with two frequent
subtrees: (1 2 − 1) and (1 4 − 1). The infrequent subtrees are listed at the
bottom of the class.

While computing the new scope-list for the subtree (1 2 −1) from L(1)∩⊗
L(2), we have to perform only in-scope tests, since we want to find those
occurrences of 2 that are within some scope of 1 (i.e., under a subtree rooted at
1). Let si denote a scope for item i. For tree T0 we find that s2 = [1, 1] ⊂ s1 =
[0, 3]. Thus we add the triple (0, 0, [1, 1]) to the new scope-list. In like manner,
we test the other occurrences of 2 under 1 in trees T1 and T2. Note that for
T2 there are three instances of the candidate pattern: s2 = [2, 2] ⊂ s1 = [0, 7],
s2 = [5, 5] ⊂ s1 = [0, 7], and s2 = [5, 5] ⊂ s1 = [4, 7]. If a new scope-list occurs
in at least minsup tids, the pattern is considered frequent.

Consider the result of extending class [1]. The only frequent pattern is
(1 2 −1 4 −1), whose scope-list is obtained from L(2, 0)∩⊗L(4, 0), by appli-
cation of the out-scope test. We need to test for disjoint scopes, with s2 < s4,
which have the same match label. For example we find that s2 = [1, 1] and
s4 = [3, 3] satisfy these condition. Thus we add the triple (0, 01, [1, 1]) to
L(4, 0) in class [1 2]. Notice that the new prefix match label (01) is obtained
by adding to the old prefix match label (0) to the position where 2 occurs (1).
The final scope list for the new candidate has three distinct tids, and is thus
frequent. There are no more frequent patterns at minsup= 100%.

Reducing Space Requirements
Generally speaking the most important elements of the in-scope and out-scope
tests are to make sure that sy ⊂ sx and sx < sy, respectively. Whenever the
test is true we add (t, sy, {my ∪ lx}) to the candidate’s scope-list. However,
the match labels are only useful for resolving the prefix context when an item
occurs more than once in a tree. Using this observation it is possible to reduce
the space requirements for the scope-lists. We add lx to the match label my if



5.5 PatternMatcher Algorithm 137

and only if x occurs more than once in a subtree with tid t. Thus, if most items
occur only once in the same tree, this optimization drastically cuts down the
match label size, since the only match labels kept refer to items with more
than one occurrence. In the special case that all items in a tree are distinct,
the match label is always empty and each element of a scope-list reduces to a
(tid, scope) pair.

Example 7. Consider the scope-list of (4, 0) in class [12] in Figure 5.7. Since 4
occurs only once in T0 and T1 we can omit the match label from the first two
entries altogether, i.e., the triple (0, 01, [3, 3]) becomes a pair (0, [3, 3]), and
the triple (1, 12, [3, 3]) becomes (1, [3, 3]).

Opportunistic Candidate Pruning
We mentioned above that before generating a candidate k-subtree, S, we per-
form a pruning test to check if its (k − 1)-subtrees are frequent. While this
is easily done in a BFS pattern search method like PatternMatcher (see
next section), in a DFS search we may not have all the information available
for pruning, since some classes at level (k − 1) would not have been counted
yet. TreeMiner uses an opportunistic pruning scheme whereby it first de-
termines if a (k− 1)-subtree would already have been counted. If it had been
counted but is not found in Fk−1, we can safely prune S. How do we know if a
subtree was counted? For this we need to impose an ordering on the candidate
generation, so that we can efficiently perform the subtree pruning test. Fortu-
nately, our candidate extension method has the automatic ordering property
(see Corollary 1). Thus we know the exact order in which patterns will be
enumerated. To apply the pruning test for a candidate S, we generate each
subtree X, and test if X < S according to the candidate ordering property.
If yes, we can apply the pruning test; if not, we test the next subtree. If S is
not pruned, we perform a scope-list join to get its exact frequency.

5.5 PatternMatcher Algorithm

PatternMatcher serves as a base pattern matching algorithm against
which to compare TreeMiner. PatternMatcher employs a breadth-first
iterative search for frequent subtrees. Its high-level structure, as shown in
Figure 5.8, is similar to Apriori [3]. However, there are significant differences
in how we count the number of subtree matches against an input tree T . For
instance, we make use of equivalence classes throughout and we use a prefix-
tree data structure to index them, as opposed to hash-trees. The details of
pattern matching are also completely different. PatternMatcher assumes
that each tree T in D is stored in its string encoding (horizontal) format (see
Figure 5.5). F1 and F2 are computed as in TreeMiner. Due to lack of space
we describe only the main features of PatternMatcher; see [37] for details.
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PatternMatcher (D, minsup):
1. F1 = { frequent 1-subtrees };
2. F2 = { classes of frequent 2-subtrees };
3. for (k = 3; Fk−1 �= ∅; k = k + 1) do
4. Ck = { classes [P ]k−1 of candidate k-subtrees };
5. for all trees T in D do
6. Increment count of all S 	 T , S ∈ [P ]k−1

7. Ck = { classes of frequent k-subtrees };
8. Fk = { hash table of frequent subtrees in Ck};
9. Set of all frequent subtrees =

⋃
k Fk;

Fig. 5.8. PatternMatcher algorithm.

Pattern Pruning
Before adding each candidate k-subtree to a class in Ck we make sure that all
its (k − 1)-subtrees are also frequent. To perform this step efficiently, during
creation of Fk−1 (line 8), we add each individual frequent subtree into a hash
table. Thus it takes O(1) time to check each subtree of a candidate, and since
there can be k subtrees of length k − 1, it takes O(k) time to perform the
pruning check for each candidate.

Prefix Tree Data Structure
Once a new candidate set has been generated, for each tree in D we need to
find matching candidates efficiently. We use a prefix tree data structure to
index the candidates (Ck) to facilitate fast support counting. Furthermore,
instead of adding individual subtrees to the prefix tree, we index an entire
class using the class prefix. Thus if the prefix does not match the input tree
T , then none of the class elements would match either. This allows us to
rapidly focus on the candidates that are likely to be contained in T . Let [P ]
be a class in Ck. An internal node of the prefix tree at depth d refers to the dth
node in P ’s label sequence. An internal node at depth d points to a leaf node
or an internal node at depth d + 1. A leaf node of the prefix tree consists of a
list of classes with the same label sequence, thus a leaf can contain multiple
classes. For example, classes with prefix encodings (1 2 −1 4 3), (1 2 4 3),
(1 2 4 −1 −1 3), etc., all have the same label sequence 1243, and thus belong
to the same leaf.

Storing equivalence classes in the prefix tree as opposed to individual pat-
terns results in considerable efficiency improvements while pattern matching.
For a tree T , we can ignore all classes [P ]k−1 where P �� T . Only when the
prefix has a match in T do we look at individual elements. Support counting
consists of three main steps: finding a leaf containing classes that may po-
tentially match T , checking if a given class prefix P exactly matches T , and
checking which elements of [P ] are contained in T .
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Finding Potential Matching Leaf Nodes
Let l(T ) be the label sequence for a tree T in the database. To locate matching
leaf nodes, we traverse the prefix tree from the root, following child pointers
based on the different items in l(T ), until we reach a leaf. This identifies classes
whose prefixes have the same label sequence as a subsequence of l(T ). This
process focuses the search to some leaf nodes of Ck, but the subtree topology
for the leaf classes may be completely different. We now have to perform an
exact prefix match. In the worst case there may be

(
n
k

)
≈ nk subsequences of

l(T ) that lead to different leaf nodes. However, in practice it is much smaller,
since only a small fraction of the leaf nodes match the label sequences, espe-
cially as the pattern length increases. The time to traverse from the root to
a leaf is O(k log m), where m is the average number of distinct labels at an
internal node. Total cost of this step is thus O(knk log m).

Prefix Matching
Matching the prefix P of a class in a leaf against the tree T is the main step in
support counting. Let X[i] denote the ith node of subtree X, and let X[i, . . . , j]
denote the nodes from positions i to j, with j ≥ i. We use a recursive routine
to test prefix matching. At the rth recursive call we maintain the invariant
that all nodes in P [0, 1, ..., r] have been matched by nodes in T [i0, i1, ..., ir],
i.e., prefix node P [0] matches T [i0], P [1] matches T [i1], and so on, and finally
P [r] matches T [ir]. Note that while nodes in P are traversed consecutively,
the matching nodes in T can be far apart. We thus have to maintain a stack
of node scopes, consisting of the scope of all nodes from the root i0 to the
current right-most leaf ir in T . If ir occurs at depth d, then the scope stack
has size d + 1.

Assume that we have matched all nodes up to the rth node in P . If the
next node P [r + 1] to be matched is the child of P [r], we likewise search for
P [r + 1] under the subtree rooted at T [ir]. If a match is found at position
ir+1 in T , we push ir+1 onto the scope stack. On the other hand, if the next
node P [r + 1] is outside the scope of P [r], and is instead attached to position
l (where 0 ≤ l < r), then we pop from the scope stack all nodes ik, where
l < k ≤ r, and search for P [r + 1] under the subtree rooted at T [il]. This
process is repeated until all nodes in P have been matched. This step takes
O(kn) time in the worst case. If each item occurs once it takes O(k +n) time.

Element Matching
If P � T , we search for a match in T for each element (x, k) ∈ [P ], by
searching for x starting at the subtree T [ik−1]. (x, k) is either a descendant
or an embedded sibling of P [k − 1]. Either check takes O(1) time. If a match
is found the support of the element (x, k) is incremented by one. If we are
interested in support (at least one occurrence in T ), the count is incremented
only once per tree; if we are interested in weighted support (all occurrences
in T ), we continue the recursive process until all matches have been found.
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5.6 Experimental Results

All experiments were performed on a 500MHz Pentium PC with 512MB mem-
ory running RedHat Linux 6.0. Timings are based on total wall-clock time,
and include preprocessing costs (such as creating scope-lists for TreeMiner).

Synthetic Data Sets
We wrote a synthetic data generation program mimicking website browsing
behavior. The program first constructs a master website browsing tree, W,
based on parameters supplied by the user. These parameters include the max-
imum fanout F of a node, the maximum depth D of the tree, the total number
of nodes M in the tree, and the number of node labels N . We allow multiple
nodes in the master tree to have the same label. The master tree is generated
using the following recursive process. At a given node in the treeW, we decide
how many children to generate. The number of children is sampled uniformly
at random from the range 0 to F . Before processing child nodes, we assign
random probabilities to each branch, including an option of backtracking to
the node’s parent. The sum of all the probabilities for a given node is 1. The
probability associated with a branch b = (x, y), indicates how likely is a visi-
tor at x to follow the link to y. As long as tree depth is less than or equal to
maximum depth D this process continues recursively.

Once the master tree has been created we create as many subtrees ofW as
specified by the parameter T . To generate a subtree we repeat the following
recursive process starting at the root: generate a random number between 0
and 1 to decide which child to follow or to backtrack. If a branch has already
been visited, we select one of the other unvisited branches or backtrack. We
used the following default values for the parameters: the number of labels
N = 100, the number of nodes in the master tree M = 10, 000, the maximum
depth D = 10, the maximum fanout F = 10 and total number of subtrees
T = 100, 000. We use three synthetic data sets: D10 data set had all the de-
fault values, F5 had all values set to default except for fanout F = 5, and for
T1M we set T = 1, 000, 000, with remaining default values.

CSLOGS Data Set
This data set consists of web log files collected over one month at the CS de-
partment. The logs touched 13,361 unique web pages within our department’s
web site. After processing the raw logs we obtained 59,691 user browsing sub-
trees of the CS department website. The average string encoding length for a
user-subtree was 23.3.

Figure 5.9 shows the distribution of the frequent subtrees by length for
the different data sets used in our experiments; all of them exhibit a symmet-
ric distribution. For the lowest minimum support used, the longest frequent
subtrees in F5 and in T1M had 12 and 11 nodes, respectively. For cslogs and
D10 data sets the longest subtrees had 18 and 19 nodes.
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Fig. 5.9. Distribution of frequent trees by length.

Performance Comparison
Figure 5.10 shows the performance of PatternMatcher versus Tree-
Miner. On the real cslogs data set, we find that TreeMiner is about twice
as fast as PatternMatcher until support 0.5%. At 0.25% support Tree-
Miner outperforms PatternMatcher a factor of by more than 20! The
reason is that cslogs had a maximum pattern length of 7 at 0.5% support.
The level-wise pattern matching used in PatternMatcher is able to easily
handle such short patterns. However, at 0.25% support the maximum pat-
tern length suddenly jumped to 19, and PatternMatcher is unable to deal
efficiently with such long patterns. Exactly the same thing happens for D10
as well. For supports lower than 0.5% TreeMiner outperforms Pattern-
Matcher by a wide margin. At the lowest support the difference is a fac-
tor of 15. Both T1M and F5 have relatively short frequent subtrees. Here
too TreeMiner outperforms PatternMatcher but, for the lowest support
shown, the difference is only a factor of four. These experiments clearly indi-
cate the superiority of the scope-list-based method over the pattern-matching
method, especially as patterns become long.

Scaleup Comparison
Figure 5.11 shows how the algorithms scale with increasing number of trees
in the database D, from 10,000 to 1 million trees. At a given level of support,
we find a linear increase in the running time with increasing number of trans-
actions for both algorithms, though TreeMiner continues to be four times
as fast as PatternMatcher.

Effect of Pruning
In Figure 5.12 we evaluated the effect of candidate pruning on the performance
of PatternMatcher and TreeMiner. We find that PatternMatcher
(denoted PM in the graph) always benefits from pruning, since the fewer
the number of candidates, the lesser the cost of support counting via pat-
tern matching. On the other hand TreeMiner (labeled TM in the graph)
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Fig. 5.10. Performance comparison
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Fig. 5.12. Pruning.

does not always benefit from its opportunistic pruning scheme. While prun-
ing tends to benefit it at higher supports, for lower supports its performance
actually degrades by using candidate pruning. TreeMiner with pruning at
0.1% support on D10 is twice as slow as TreeMiner with no pruning. There
are two main reasons for this. First, to perform pruning, we need to store
Fk in a hash table, and we need to pay the cost of generating the (k − 1)
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subtrees of each new k-pattern. This adds significant overhead, especially for
lower supports when there are many frequent patterns. Second, the vertical
representation is extremely efficient; it is actually faster to perform scope-list
joins than to perform a pruning test.

Table 5.1. Full vs opportunistic pruning.

minsup No Pruning Full Pruning Opportunistic
1% 14595 2775 3505
0.5% 70250 10673 13736
0.1% 3555612 481234 536496

Table 5.1 shows the number of candidates generated on the D10 data
set with no pruning, with full pruning (in PatternMatcher), and with
opportunistic pruning (in TreeMiner). Both full pruning and opportunistic
pruning are extremely effective in reducing the number of candidate patterns,
and opportunistic pruning is almost as good as full pruning (within a factor
of 1.3). Full pruning cuts down the number of candidates by a factor of 5 to
7! Pruning is thus essential for pattern-matching methods, and may benefit
scope-list methods in some cases (for high support).

5.7 Application: Web/XML Mining

To demonstrate the usefulness of mining complex patterns, we present below
a detailed application study on mining usage patterns in web logs. Mining
data that has been collected from web server log files, is not only useful for
studying customer choices, but also helps to better organize web pages. This
is accomplished by knowing which web pages are most frequently accessed by
the web surfers.

We use LOGML [25], a publicly available XML application, to describe log
reports of web servers. LOGML provides an XML vocabulary to structurally
express the contents of the log file information in a compact manner. LOGML
documents have three parts: a web graph induced by the source–target page
pairs in the raw logs, a summary of statistics (such as top hosts, domains, key-
words, number of bytes accessed, etc.), and a list of user-sessions (subgraphs
of the web graph) extracted from the logs.

There are two inputs to our web mining system: the website to be analyzed
and raw log files spanning many days, or extended periods of time. The website
is used to populate a web graph with the help of a web crawler. The raw logs
are processed by the LOGML generator and turned into a LOGML document
that contains all the information we need to perform various mining tasks.
We use the web graph to obtain the page URLs and their node identifiers.

For enabling web mining we make use of user sessions within the LOGML
document. User sessions are expressed as subgraphs of the web graph and
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contain a complete history of the user clicks. Each user session has a session
id (IP or host name) and a list of edges (uedges) giving source and target
node pairs and the time (utime) when a link is traversed. An example user
session is shown below:

<userSession name="ppp0-69.ank2.isbank.net.tr" ...>
<uedge source="5938" target="16470" utime="7:53:46"/>
<uedge source="16470" target="24754" utime="7:56:13"/>
<uedge source="16470" target="24755" utime="7:56:36"/>
<uedge source="24755" target="47387" utime="7:57:14"/>
<uedge source="24755" target="47397" utime="7:57:28"/>
<uedge source="16470" target="24756" utime="7:58:30"/>

Itemset Mining
To discover frequent sets of pages accessed we ignore all link information and
note down the unique nodes visited in a user session. The user session above
produces a user “transaction” containing the user name, and the node set,
as follows: (ppp0-69.ank2.isbank.net.tr, 5938 16470 24754 24755 47387 47397
24756).

After creating transactions for all user sessions we obtain a database that
is ready to be used for frequent set mining. We applied an association mining
algorithm to a real LOGML document from the CS website (one day’s logs).
There were 200 user sessions with an average of 56 distinct nodes in each
session. An example frequent set found is shown below. The pattern refers to
a popular Turkish poetry site maintained by one of our department members.
The user appears to be interested in the poet Akgun Akova.

Let Path=http://www.cs.rpi.edu/∼name/poetry
FREQUENCY=16, NODE IDS = 16395 38699 38700 38698 5938

Path/poems/akgun akova/index.html
Path/poems/akgun akova/picture.html
Path/poems/akgun akova/biyografi.html
Path/poems/akgun akova/contents.html
Path/sair listesi.html

Sequence Mining
If our task is to perform sequence mining, we look for the longest forward
links [7] in a user session, and generate a new sequence each time a back edge
is traversed. We applied sequence mining to the LOGML document from
the CS website. From the 200 user sessions, we obtain 8208 maximal forward
sequences, with an average sequence size of 2.8. An example frequent sequence
(shown below) indicates in what sequence the user accessed some of the pages
related to Akgun Akova. The starting page sair listesi contains a list of
poets.

Let Path=http://www.cs.rpi.edu/∼name/poetry
FREQUENCY = 20, NODE IDS = 5938 -> 16395 -> 38698

Path/sair listesi.html ->
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Path/poems/akgun akova/index.html ->
Path/poems/akgun akova/contents.html

Tree Mining
For frequent tree mining, we can easily extract the forward edges from the
user session (avoiding cycles or multiple parents) to obtain the subtree corre-
sponding to each user. For our example user-session we get the tree: (ppp0-
69.ank2.isbank.net.tr, 5938 16470 24754 -1 24755 47387 -1 47397 -1 -1 24756
-1 -1).

We applied the TreeMiner algorithm to the CS logs. From the 200 user
sessions, we obtain 1009 subtrees (a single user session can lead to multiple
trees if there are multiple roots in the user graph), with an average record
length of 84.3 (including the back edges, -1). An example frequent subtree
found is shown below. Notice how the subtree encompasses all the partial
information of the sequence and the unordered information of the itemset
relating to Akgun Akova. The mined subtree is clearly more informative,
highlighting the usefulness of mining complex patterns.

Let Path=http://www.cs.rpi.edu/˜name/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700

Path/sair_listesi.html
|

Path/poems/akgun_akova/index.html
/ | \

Akova/picture.html Akova/contents.html Akova/biyografi.html

We also ran detailed experiments on log files collected over one month
at the CS department, which touched a total of 27,343 web pages. After
processing, the LOGML database had 34,838 user graphs. We do not have
space to show the results here (we refer the reader to [25] for details), but these
results lead to interesting observations that support the mining of complex
patterns from web logs. For example, itemset mining discovers many long
patterns. Sequence mining takes a longer time but the patterns are more
useful, since they contain path information. Tree mining, though it takes more
time than sequence mining, produces very informative patterns beyond those
obtained from item-set and sequence mining.

5.8 Related Work

Tree mining, being an instance of frequent structure mining, has an obvious
relationship to association [3] and sequence [4] mining. Frequent tree mining
is also related to tree isomorphism [27] and tree pattern matching [11]. Given
a pattern tree P and a target tree T , with |P | ≤ |T |, the subtree isomorphism
problem is to decide whether P is isomorphic to any subtree of T , i.e., there
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is a one-to-one mapping from P to a subtree of T , that preserves the node
adjacency relations. In tree pattern-matching, the pattern and target trees
are labeled and ordered. We say that P matches T at node v if there exists
a one-to-one mapping from nodes of P to nodes of T such that: a) the root
of P maps to v, b) if x maps to y, then x and y have the same labels, and
c) if x maps to y and x is not a leaf, then the ith child of x maps to the
ith child of y. Both subtree isomorphism and pattern matching deal with
induced subtrees, while we mine embedded subtrees. Further we are interested
in enumerating all common subtrees in a collection of trees. The tree inclusion
problem was studied in [19], i.e., given labeled trees P and T , can P be
obtained from T by deleting nodes? This problem is equivalent to checking if
P is embedded in T . The paper presents a dynamic programming algorithm for
solving ordered tree inclusion, which could potentially be substituted for the
pattern matching step in PatternMatcher. However, PatternMatcher
utilizes prefix information for fast subtree checking, and its three-step pattern
matching is very efficient over a sequence of such operations.

Recently tree mining has attracted a lot of attention. We developed
TreeMiner [37, 38] to mine labeled, embedded and ordered subtrees. The
notions of scope-lists and rightmost extension were introduced in that work.
TreeMiner was also used in building a structural classifier for XML data [39].
Asai et al. [5] presented FreqT, an Apriori-like algorithm for mining labeled
ordered trees; they independently proposed the rightmost candidate genera-
tion scheme. Wang and Liu [32] developed an algorithm to mine frequently
occurring subtrees in XML documents. Their algorithm is also reminiscent
of the level-wise Apriori [3] approach, and they mine induced subtrees only.
There are several other recent algorithms that mine different types of tree pat-
terns, including FreeTreeMiner [9] which mines induced, unordered, free trees
(i.e., there is no distinct root); FreeTreeMiner for graphs [26] for extracting
free trees in a graph database; and PathJoin [33], uFreqt [23], uNot [6], and
HybridTreeMiner [10] which mine induced, unordered trees. TreeFinder [30]
uses an Inductive Logic Programming approach to mine unordered, embed-
ded subtrees, but it is not a complete method, i.e, it can miss many frequent
subtrees, especially as support is lowered or when the different trees in the
database have common node labels. SingleTreeMining [29] is another algo-
rithm for mining rooted, unordered trees, with application to phylogenetic
tree pattern mining. Recently, XSpanner [31], a pattern-growth-based method
has been proposed for mining embedded ordered subtrees. They report that
XSpanner outperforms TreeMiner, however, note that TreeMiner mines
all embeddings, whereas XSpanner counts only the distinct trees.

There has been active work in indexing and querying XML documents [2,
15, 22, 40], which are mainly tree (or graph) structured. To efficiently answer
ancestor–descendant queries, various node numbering schemes similar to ours
have been proposed [1, 22, 40]. Other work has looked at path query evaluation
that uses local knowledge within data graphs based on path constraints [2] or
graph schemas [15]. The major difference between these works and ours is that
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instead of answering user-specified queries based on regular path expressions,
we are interested in finding all frequent tree patterns among the documents.
A related problem of accurately estimating the number of matches of a small
node-labeled tree in a large labeled tree, in the context of querying XML data,
was presented in [8]. They compute a summary data structure and then give
frequency estimates based on this summary, rather than using the database
for exact answers. In contrast, we are interested in the exact frequency of
subtrees. Furthermore, their work deals with traditional (induced) subtrees,
while we mine embedded subtrees.

There has also been recent work in mining frequent graph patterns. The
AGM algorithm [18] discovers induced (possibly disconnected) subgraphs.
The FSG algorithm [21] improves upon AGM and mines only the connected
subgraphs. Both methods follow an Apriori-style level-wise approach. Recent
methods to mining graphs using a depth-first tree based extension have been
proposed in [34, 35]. Another method uses a candidate generation approach
based on Canonical Adjacency Matrices [16]. The GASTON method [24]
adopts an interesting step-wise approach using a combination of path, free
tree and finally graph mining to discover all frequent subgraphs. There are
important differences in graph mining and tree mining. Our trees are rooted
and thus have a unique ordering of the nodes based on depth-first traversal.
In contrast, graphs do not have a root and allow cycles. For mining graphs the
methods above first apply an expensive canonization step to transform graphs
into a uniform representation. This step is unnecessary for tree mining. Graph
mining algorithms are likely to be overly general (thus not efficient) for tree
mining. Our approach utilizes the tree structure for efficient enumeration.

The work by Dehaspe et al. [14] describes a level-wise Inductive Logic
Programming technique to mine frequent substructures (subgraphs) describ-
ing the carcinogenesis of chemical compounds. They reported that mining
beyond six predicates was infeasible due to the complexity of the subgraph
patterns. The SUBDUE system [12] also discovers graph patterns using the
Minimum Description Length principle. An approach termed Graph-Based In-
duction (GBI), which uses beam search for mining subgraphs, was proposed
in [36]. However, both SUBDUE and GBI may miss some significant pat-
terns, since they perform a heuristic search. We perform a complete (but not
exhaustive) search, which guarantees that all patterns are found. In contrast
to these approaches, we are interested in developing efficient algorithms for
tree patterns.

5.9 Conclusions

In this paper we introduced the notion of mining embedded subtrees in a
(forest) database of trees. Among our novel contributions is the procedure for
systematic candidate subtree generation, i.e., no subtree is generated more
than once. We utilize a string encoding of the tree that is space-efficient to
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store the horizontal data set, and we use the notion of a node’s scope to develop
a novel vertical representation of a tree, called a scope-list. Our formalization
of the problem is flexible enough to handle several variations. For instance,
if we assume the label on each node to be the same, our approach mines all
unlabeled trees. A simple change in the candidate tree extension procedure
allows us to discover sub-forests (disconnected patterns). Our formulation can
find frequent trees in a forest of many trees or all the frequent subtrees in a
single large tree. Finally, it is relatively easy to extend our techniques to find
unordered trees (by modifying the out-scope test) or to use the traditional
definition of a subtree. To summarize, this paper proposes a framework for
tree mining which can easily encompass most variants of the problem that
may arise in different domains.

We introduced a novel algorithm, TreeMiner, for tree mining. TreeM-
iner uses depth-first search; it also uses the novel scope-list vertical represen-
tation of trees to quickly compute the candidate tree frequencies via scope-list
joins based on interval algebra. We compared its performance against a base
algorithm, PatternMatcher. Experiments on real and synthetic data con-
firmed that TreeMiner outperforms PatternMatcher by a factor of 4 to
20, and scales linearly in the number of trees in the forest. We studied an
application of TreeMiner in web usage mining.

For future work we plan to extend our tree mining framework to incorpo-
rate user-specified constraints. Given that tree mining, though able to extract
informative patterns, is an expensive task, performing general unconstrained
mining can be too expensive and is also likely to produce many patterns that
may not be relevant to a given user. Incorporating constraints is one way to
focus the search and to allow interactivity. We also plan to develop efficient
algorithms to mine maximal frequent subtrees from dense data sets which
may have very large subtrees. Finally, we plan to apply our tree mining tech-
niques to other compelling applications, such as finding common tree patterns
in RNA structures within bioinformatics, as well as the extraction of struc-
ture from XML documents and their use in classification, clustering, and so on.
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Sequence Data Mining

Sunita Sarawagi

Summary. Many interesting real-life mining applications rely on modeling data as
sequences of discrete multi-attribute records. Existing literature on sequence mining
is partitioned on application-specific boundaries. In this article we distill the basic
operations and techniques that are common to these applications. These include
conventional mining operations, such as classification and clustering, and sequence
specific operations, such as tagging and segmentation. We review state-of-the-art
techniques for sequential labeling and show how these apply in two real-life appli-
cations arising in address cleaning and information extraction from websites.

6.1 Introduction

Sequences are fundamental to modeling the three primary media of human
communication: speech, handwriting and language. They are the primary
data types in several sensor and monitoring applications. Mining models for
network-intrusion detection view data as sequences of TCP/IP packets. Text
information-extraction systems model the input text as a sequence of words
and delimiters. Customer data-mining applications profile buying habits of
customers as a sequence of items purchased. In computational biology, DNA,
RNA and protein data are all best modeled as sequences.

A sequence is an ordered set of pairs (t1 x1) . . . (tn xn) where ti denotes an
ordered attribute like time (ti−1 ≤ ti) and xi is an element value. The length n
of sequences in a database is typically variable. Often the first attribute is not
explicitly specified and the order of the elements is implicit in the position of
the element. Thus, a sequence x can be written as x1 . . . xn. The elements of a
sequence are allowed to be of many different types. When xi is a real number,
we get a time series. Examples of such sequences abound – stock prices over
time, temperature measurements obtained from a monitoring instrument in a
plant or day to day carbon monoxide levels in the atmosphere. When si is of
discrete or symbolic type we have a categorical sequence. Examples of such
sequences are protein sequences where each element is an amino acid that can
take one of 20 possible values, or a gene sequence where each element can
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take one of four possible values, or a program trace consisting of a sequence of
system calls [18]. In the general case, the element could be any multi-attribute
record.

We will study the basic operations used for analyzing sequence data. These
include conventional mining operations like classification (Section 6.2) and
clustering (Section 6.3) and sequence specific operations like tagging (Sec-
tion 6.4) and segmentation (Section 6.6). In Section 6.5 we present two ap-
plications of sequence tagging. These operators bring out interesting issues
in feature engineering, probabilistic modeling and distance function design.
Lack of space prevents us from covering a few other popular sequence min-
ing primitives including frequent subsequence discovery, periodicity detection,
and trend analysis.

We will use bold-faced symbols to denote vectors or sequences and non-
bold-faced symbols to denote scalars.

6.2 Sequence Classification

Given a set of classes C and a number of example sequences in each class,
the goal during classification is to train a model so that for an unseen se-
quence we can predict to which class it belongs. This arises in several real-life
applications:

• Given a set of protein families, find the family of a new protein.
• Given a sequence of packets, label a session as intrusion or normal.
• Given several utterances of a set of words, classify a new utterance to the

right word.
• Given a set of acoustic and seismic signals generated from sensors below

a road surface, recognize the category of the moving vehicle as truck, car
or scooter.

Classification is an extensively researched topic in data mining and ma-
chine learning. The main hurdle to leveraging the existing classification meth-
ods is that these assume record data with a fixed number of attributes. In
contrast, sequences are of variable length with a special notion of order that
seems important to capture. To see how the wide variety of existing methods
of classification can be made to handle sequence data, it is best to categorize
them into the following three types: generative classifiers, boundary-based
classifiers and distance/kernel-based classifiers.

6.2.1 Boundary-based Classifiers

Many popular classification methods like decision trees, neural networks, and
linear discriminants like Fisher’s fall in this class. These differ a lot in what
kind of model they produce and how they train such models but they all
require the data to have a fixed set of attributes so that each data instance
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can be treated as a point in a multidimensional space. The training process
partitions the space into regions for each class. When predicting the class label
of an instance x, we use the defined region boundaries to find the region to
which x belongs and predict the associated class.

A number of methods have been applied for embedding sequences in a
fixed-dimensional space in the context of various applications.

The simplest of these ignore the order of attributes and aggregate the ele-
ments over the sequence. For example, in text-classification tasks a document
that is logically a sequence of words is commonly cast as a vector where each
word is a dimension and its coordinate value is the aggregated count or the
TF-IDF score of the word in the document [9].

Another set of techniques are the sliding window techniques where for a
fixed parameter, called the window size k, we create dimensions corresponding
to k-grams of elements. Thus, if the domain size of elements is m, the number
of possible coordinates is mk. The a-th coordinate is the number of times
the k-gram a appears in the sequence. In Figure 6.1 we present an example
of these alternatives. The first table shows the coordinate representation of
the sequence on the left with the simplest method of assuming no order. The
second table shows the coordinates corresponding to a size 3 sliding window
method. The sliding window approach has been applied to classify sequences
of system calls as intrusions or not [29, 48].

The main shortcoming of the sliding window method is that it creates an
extremely sparse embedded space. A clever idea to get around this problem
is proposed in [30] where the a-th coordinate is the number of k-grams in the
sequence with at most b mismatches where b < k is another parameter. The
third table of Figure 6.1 shows an example of this method with mismatch
score b = 1. Accordingly, the coordinate value of the first 3-gram “ioe” is 2
since in the sequence we have two 3-grams “ioe” and “ime” within a distance
of one of this coordinate. Methods based on k-grams have been applied to
classify system call sequences as intrusion or not [29].

The next option is to respect the global order in determining a fixed set
of properties of the sequence. For categorical elements, an example of such
order-sensitive derived features is the number of symbol changes or the aver-
age length of segments with the same element. For real-valued elements, ex-
amples are properties like Fourier coefficients, Wavelet coefficients, and Auto-
regressive coefficients. In an example application, Deng et al. [14] show how
the parameters of the Auto Regression Moving Average (ARMA) model can
help distinguish between sober and drunk drivers. The experiments reported
in [14] showed that sober drivers have large values of the second and third
coefficients, indicating steadiness. In contrast, drunk drivers exhibit close to
zero values of the second and third coefficients, indicating erratic behavior. In
the area of sensor networks, a common application of time series classification
is target recognition. For example, [31] deploys Fast Fourier Transform-based
coefficients and Autoregressive coefficients on seismic and acoustic sensor out-
puts to discriminate between tracked and wheeled vehicles on a road.
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Fig. 6.1. Three different coordinate representations for a categorical sequence.

6.2.2 Generative Classifiers

As the name suggests, generative classifiers require a generative model of the
data in each class. For each class i, the training process constructs a generative
model Mi to maximize the likelihood over all training instances in the class
i. Thus, Mi models the probability Pr(x|ci) of generating any instance x in
class i. Also, we estimate the prior or background probability of a class Pr(ci)
as the fraction of training instances in class i.

For predicting the class of an instance x, we apply Bayes rule to find the
posterior probability Pr(ci|x) of each class as follows:

Pr(ci|x) =
Pr(x|ci) Pr(ci)∑
j Pr(x|cj) Pr(cj)

The class with the highest posterior probability is chosen as the winner.
This method has been extensively applied to classification tasks. We can

apply it to sequence classification provided we can design a distribution that
can adequately model the probability of generating a sequence while being
trainable with realistic amounts of training data. We discuss models for doing
so next.

Denote a sequence x of n elements as x1, . . . , xn. Applying the chain rule
we can express the probability of generating a sequence Pr(x) as a product of
n terms as follows:

Pr(x1, . . . , xn) = Pr(x1) Pr(x2|x1) Pr(x3|x1x2) . . . P r(xn|x1 . . . xn−1)
=
∏n

i=1 Pr(xi|x1 . . . xi−1)

This general form, where the probability of generating the i-th element
depends on all previous elements, is too complex to train and too expensive
to compute. In practice, simpler forms with limited amounts of dependency
suffice. We list them in increasing order of complexity below.
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For ease of explanation we will assume sequences with m categorical el-
ements v1 . . . vm. We will illustrate each model with an example sequence
comprising of one of two possible elements “A” and “C”, thus m = 2. As-
sume the training set T is a collection of N sequences x1 . . .xN . An example
sequence “AACA” will be used to explain the computation of the probability
of generating a sequence from each model.

The Independent Model
The simplest is the independent model where we assume that the probability
distribution of an element at position i is independent of all elements before
it, i.e., Pr(xi|x1 . . . xi−1) = Pr(xi). If xi is categorical with m possible values
in the domain v1 . . . vm, then Pr(xi) can be modeled as a multinomial dis-
tribution with m possible parameters of the form p(vj) and

∑n
j=1 p(vj) = 1.

The number of parameters to train are then m− 1. Given a set T of training
sequences, the parameter p(vj) can be easily estimated as the fraction of se-
quence positions over T where the element value is equal to vj . For example, a
sequence that is generated by the outcomes of an m-faced die rolled n times,
is modeled perfectly by this independent model.

Figure 6.2(a) shows an example trained independent model with two pos-
sible elements. In this example, the probability of a sequence AACA is calcu-
lated as Pr(AACA) = Pr(A)3 Pr(C) = 0.13 × 0.9.
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Fig. 6.2. Models of increasing complexity for a sequence data set with two cate-
gorical elements “A” and “C”.

First-order Markov Model
In a first-order Markov model, the probability of generating the i-th ele-
ment is assumed to depend on the element immediately preceding it. Thus,
Pr(xi|x1 . . . xi−1) = Pr(xi|xi−1). This gives rise to m2 parameters of the form
Pr(vj |vk) plus m parameters that denote the probability of starting a sequence
with each of the m possible values denoted by πj .
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Figure 6.2(b) shows an example trained Markov model with two possible
elements. In this example, the probability of a sequence AACA is calculated
as Pr(AACA) = Pr(A) Pr(A|A) Pr(C|A) Pr(A|C) = 0.5× 0.1× 0.9× 0.4.

During training the maximum likelihood value of the parameter Pr(vj |vk)
is estimated as the ratio of vkvj occurrences in T over the number of vk oc-
currences. The value of πj is the fraction of sequences in T that start with
value vj .

Higher-order Markov Model
In general the probability of generating an element at position i could de-
pend on a fixed length  of symbols before it. Thus, Pr(xi|x1 . . . xi−1) =
Pr(xi|xi−	 . . . xi−1). The number of parameters in the model then becomes
m	+1 for the conditional probabilities and m	 for the starting probabilities.

Figure 6.2c shows an example Markov model with two possible elements
and  = 2. In this example, the probability of a sequence AACA is calculated
as Pr(AACA) = Pr(AA) Pr(C|AA) Pr(A|AC) = 0.5× 0.9× 0.7.

During training the maximum likelihood value of the parameter

Pr(vj |vk�
. . . vk1)

is estimated as the ratio of vk�
. . . vk1vj occurrences in T over the number of

vk�
. . . vk1 occurrences. For each l-gram vk�

. . . vk1 , the value of the starting
probability is the fraction of sequences in T that start with that l-gram.

Variable-Memory Markov Model
The number of parameters in higher-order Markov models increases expo-
nentially in the order of the model. In many cases, it may not be neces-
sary to model large memories uniformly for all elements. This motivated the
need for variable-memory models where each element value vj is assumed
to have a variable number of elements on which it depends. An impor-
tant special class of variable-memory models is a Probabilistic Suffix Au-
tomata (PSA) introduced in [41]. A PSA is a Markov model where each
state comprises symbol sequences of length no more than  (the maximum
memory length) and the state labels are such that no label is a suffix of
another. Figure 6.2d shows an example PSA for maximum memory  = 2.
The probability of a sequence AACA here is calculated as Pr(AACA) =
Pr(A) Pr(A|A) Pr(C|A) Pr(A|AC) = 0.5× 0.3× 0.7× 0.1.

The training process for these models is not as for straightforward as the
previous models because we need to simultaneously discover a subset of states
that capture all significant dependencies in the model. A closely related struc-
ture to PSA that enables efficient discovery of such states is the probabilistic
suffix tree (PST). A PST is a suffix tree with emission probabilities of obser-
vation attached with each tree node. In Figure 6.2e we show the PST that
is roughly equivalent to the PSA to its left. The j-th emission probability
attached to each node denotes the probability of generating vj provided the
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label of the node is the largest match that can be achieved with the suffix of
the sequence immediately before vj . The probability of an example sequence
Pr(AACA) is evaluated as 0.28× 0.3× 0.7× 0.1. The first 0.28 is for the first
“A” in “AACA” obtained from the root node with an empty history. The
second 0.3 denotes the probability of generating “A” from the node labeled
“A”. The third “0.7” denotes the probability of generating a “C” from the
same node. The fourth multiplicand “0.1” is the probability of generating “A”
from the node labeled “AC”. The “AC”-labeled node has the largest suffix
match with the part of the sequence before the last “A”. This example, shows
that calculating the probability of generating a sequence is more expensive
with a PST than with a PSA. However, PSTs are amenable to more efficient
training. Linear time algorithms exist for constructing such PSTs from train-
ing data in one single pass [2]. Simple procedures exist to convert a PST to
the equivalent PSA after the training [41].

PSTs/PSAs have been generalized to even sparser Markov models and ap-
plied to protein classification in [17] and for classifying sequences of system
calls as intrusions or not [18].

Hidden Markov Model
In the previous models, the probability distribution of an element in the se-
quence depended just on symbols before some distance but on no other factor.
Often in real-life it is necessary to allow for more general distributions where
an element’s distribution also depends on some external cause. Consider the
example of the dice sequence captured by an independent model. Suppose in-
stead of rolling a single die to generate the sequence, we probabilistically pick
any one of a set of s dice each with a different probability distribution and
roll that for a while before switching to another. Then, none of the models
presented earlier can capture this distribution. However a set of s indepen-
dent distributions with some probability of switching between them models
this perfectly. Such distributions are generalized elegantly by hidden Markov
hodels (HMMs). In HMMs, states do not correspond to observed sequence
elements hence the name “hidden”. The basic HMM model consists of:

• a set of s states,
• a dictionary of m output symbols,
• an s× s transition matrix A where the ijth element aij is the probability

of making a transition from state i to state j,
• an s×m emission matrix B where entry bjk = bj(vk) denotes the proba-

bility of emitting the k-th element vk in state j and
• an s-vector π where the j-th entry denotes the probability of starting in

state j.

HMMs have been extensively used for modeling various kinds of sequence
data. HMMs are popularly used for word recognition in speech processing [39].
[48] reports much higher classification accuracy with HMMs when used for
detecting intrusions compared to previous k-grams approach. A lot of work
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Fig. 6.3. A hidden Markov model with four states, transition and emission prob-
abilities as shown and starting probability π = [1 0 0 0].

has been done on building specialized hidden Markov models for capturing
the distribution of protein sequences within a family [16].

The probability of generating a sequence

The probability of generating a sequence x = x1, x2, . . . , xn from a trained
HMM model is not as straightforward to find as in the previous models where
a sequence could be generated only from a single path through the states of
the model. In the case of an HMM, a sequence in general could have been
generated from an exponential number of paths. For example, for AACA and
the HMM in Figure 6.3 each element of the sequence can be generated from
any of the four states giving rise to 44 possible state sequences over which
the sum has to be computed. Thus, the total probability of generating AACA
from the HMM in Figure 6.3 is given by

Pr(AACA) =
∑

ijkl Pr(AACA, SiSjSkSl)
=
∑

ijkl Pr(Si) Pr(A|Si) Pr(Sj |Si)..Pr(A|Sl).

Given a state sequence S1S2S4S4, the probability of generating AACA
through this sequence is

Pr(AACA, S1S2S4S4) = 1× 0.9× 0.9× 0.6× 0.5× 0.7× 0.2× 0.3.

We can exploit the Markov property of the model to design an efficient dy-
namic programming algorithm to avoid enumerating the exponential number
of paths. Let α(i, q) be the value of

∑
q′∈qi:q

Pr(x1..i,q′) where qi:q denotes
all state sequences from 1 to i with the i-th state q and x1..i denotes the part
of the sequence from 1 to i, that is x1 . . . xi. α() can be expressed recursively
as

α(i, q) =
{∑

q′∈S α(i− 1, q′)aq′qbq(xi) if i > 1
πqbq(xi) if i = 1

The value of Pr(x) can then be written as Pr(x) =
∑

q α(|x|, q).
The running time of this algorithm is O(ns) where n is the sequence length

and s is the number of states.
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Training an HMM

The parameters of the HMM comprising of the number of states s, the set
of symbols in the dictionary m, the edge transition matrix A, the emission
probability matrix B, and starting probability π are learnt from training data.
The training of an HMM has two phases. In the first phase we choose the
structure of the HMM, that is, the number of states s and the edges amongst
states. This is often decided manually based on domain knowledge. A number
of algorithms have also been proposed for learning the structure automatically
from the training data [42, 45]. We will not go into a discussion of these
algorithms. In the second phase we learn the probabilities, assuming a fixed
structure of the HMM.

Learning transition and emission probabilities

The goal of the training process is to learn the model parameters Θ =
(A, B, π) such that the probability of the HMM generating the training se-
quences x1 . . .xN is maximized. We write the training objective function as

argmaxΘL(Θ) = argmaxΘ

N∏
	=1

Pr(x	|Θ). (6.1)

Since a given sequence can take multiple paths, direct estimates of the
maximum likelihood parameters is not possible. An expectation maximization
(EM) algorithm is used to estimate these parameters. For HMMs the EM
algorithm is popularly called the Baum-Welch algorithm. It starts with initial
guesses of the parameter values and then makes multiple passes over the
training sequence to iteratively refine the estimates. In each pass, first in
the E-step the previous values of parameters are used to assign the expected
probability of each transition and each emission for each training sequence.
Then, in the M -step the maximum-likelihood values of the parameters are
recalculated by a straight aggregation of the weighted assignments of the E-
step. Exact formulas can be found elsewhere [38, 39]. The above algorithm is
guaranteed to converge to the locally optimum value of the likelihood of the
training data.

6.2.3 Kernel-based Classifiers

Kernel-based classification is a powerful classification technique that includes
well-known classifiers like Support Vector Machines, Radial Basis functions,
and Nearest Neighbor classifiers.

Kernel classifiers require a function K(xi,xj) that intuitively defines the
similarity between two instances and satisfies two properties: K is symmetric
i.e., K(xi,xj) = K(xj ,xi), and, K is positive definite, i.e., the kernel matrix
defined on training instance pairs is positive definite [7]. Each class c is as-
sociated with a set of weight values wc

i over each training sequence xi and a
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bias term bc. These parameters are learnt during training via classifier-specific
methods [7]. The predicted class of a sequence x is found by computing for
each class c, f(x, c) =

∑
i wc

i K(xi,x) + bc and choosing the class with the
highest value of f(x, c).

We can exploit kernel classifiers like SVMs for sequence classification, pro-
vided we can design appropriate kernel functions that take as input two data
points and output a real value that roughly denotes their similarity. For near-
est neighbor classifiers it is not necessary for the function to satisfy the above
two kernel properties but the basic structure of the similarity functions is of-
ten shared. We now discuss examples of similarity/kernel functions proposed
for sequence data.

A common approach is to first embed the sequence in a fixed dimen-
sional space using methods discussed in Section 6.2.1 and then compute
similarity using well-known functions like Euclidean, or any of the other
Lp norms, or a dot-product. For time series data, [31] deploys a degree
three polynomial over a fixed number of Fourier coefficients computed as
K(x,x′) = (FFT (x).FFT (x′)+1)3. The mismatch coefficients for categorical
data described in Section 6.2.1 were used in [30] with a dot-product kernel
function to perform protein classification using SVMs.

Another interesting technique is to define a fixed set of dimensions from
intermediate computations of a structural generative model and then super-
impose a suitable distance function on these dimensions. Fisher’s kernel is
an example of such a kernel [23] which has been applied to the task of pro-
tein family classification. A lot of work has been done on building specialized
hidden Markov models for capturing the distribution of protein sequences
within a family [16]. The Fisher’s kernel provides a mechanism of exploit-
ing these models for building kernels to be used in powerful discriminative
classifiers like SVMs. First we train the parameters Θp of an HMM using all
positive example sequences in a family. Now, for any given sequence x the
Fisher’s co-ordinate is derived from the HMM as the derivative of the gen-
erative probability Pr(x|Θp) with respect to each parameter of the model.
Thus x is expressed as a vector ∇Θ Pr(x|Θ) of size equal to the number of
parameters of the HMM. This intuitively captures the influence of each of the
model parameters on the sequence x and thus captures the key characteristics
of the sequence as far as the classification problem is concerned. Now, given
any two sequences x and x′ the distance between them can be measured using
either a scaled Euclidean or a general scaled similarity computation based on
a co-variance matrix. [23] deployed such a distance computation on a Gaus-
sian kernel and obtained accuracies that are significantly higher than with
applying the Bayes rule on generative models as discussed in Section 6.2.2.

Finally, a number of sequence-specific similarity measures have also been
proposed. For real-valued elements these include measures such as the Dy-
namic Time Warping method [39] and for categorical data these include mea-
sures such as the edit distance, the more general Levenstein distance [3], and
sequence alignment distances like BLAST and PSI-BLAST protein data.
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6.3 Sequence Clustering

Given a set of sequences, during clustering the goal is to create groups such
that similar sequences are in the same group and sequences in different groups
are dissimilar. Like classification, clustering is also an extensively researched
topic with several formulations and algorithms. With the goal of mapping the
problem of clustering sequences to clustering normal record data, we partition
the clustering algorithms into three main types.

6.3.1 Distance-based Clustering

This is the most popular clustering method and includes the famous K-
means and K-medoid clustering algorithms and the various hierarchical al-
gorithms [21]. The primary requirement for these algorithms is to be able to
design a similarity measure over a pair of sequences. We have already discussed
sequence similarity measures in Section 6.2.3.

6.3.2 Model-based Algorithms

Model-based clustering assumes that data is generated from a mixture of
K underlying distributions in which each distribution represents a group
or a cluster. Each group k is associated with a mixing parameter called τk

(
∑K

k=1 τk = 1) in addition to the parameters Θk of the distribution function
of that group. The goal during clustering is to recover the K sets of parame-
ters of the distributions and the mixing value τk such that the probability of
generating the data is maximized. This clustering method is better known in
terms of the expectation maximization (EM) algorithm used to discover these
clusters.

The only primitive needed to adapt the algorithms of model-based cluster-
ing to sequence data is designing a suitable generative model. We have already
presented sequence-specific generative models in Section 6.2.2 and these apply
directly to sequence data clustering.

6.3.3 Density-based Algorithms

In density-based clustering [21], the goal is to define clusters such that regions
of high point density in a multidimensional space are grouped together into a
connected region. The primary requirement to be able to deploy these algo-
rithms is to be able to embed the variable-length sequence data into a fixed
dimensional space. Techniques for creating such embeddings are discussed in
Section 6.2.1.
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6.4 Sequence Tagging

The sequence tagging problem is defined as follows: We are given a set of
tags L and several training examples of sequences showing the breakup of
the sequence into the set of tags. During training we learn to assign tags
to elements of the sequence so that given a sequence x = x1 . . . xn we can
classify each of its elements into one of L tags giving rise to a tag sequence
y = y1 . . . yn. Tagging is often referred as sequential labeling.

This operation has several applications. Information extraction or Named
Entity Recognition (NER) is a tagging problem. Well-studied cases of NER
are identifying personal names and company names in newswire text (e.g., [5]),
identifying gene and protein names in biomedical publications (e.g., [6, 22]),
identifying titles and authors in on-line publications (e.g., [28, 35]), breaking
an address record into tag labels like Road, City name, etc.[4]. In continu-
ous speech recognition, the tagging problem arises in trying to identify the
boundary of individual words from continuous speech. In bio-informatics, the
problem of identifying coding regions from gene sequences is a tagging prob-
lem. Figure 6.4 shows a sequence of nine words forming an address record
tagged using six label elements.

A number of solutions have been proposed for the tagging problem par-
ticularly in the context of information extraction.

House
number Building Road City Zip

4089 Whispering Pines Nobel Drive  San Diego CA 92122

State

Fig. 6.4. An example showing the tagging of a sequence of nine words with six
labels.

6.4.1 Reduce to Per-element Tagging

As for whole sequence classification, one set of methods for the sequence tag-
ging problems is based on reduction to existing classification methods. The
simplest approach is to independently assign for each element xi of a sequence
x a label yi using features derived from the element xi. This ignores the con-
text in which xi is placed. The context can be captured by taking a window
of w elements around xi. Thus, for getting predictions for xi we would use
as input features derived from the record (xi−w . . . xi−1xixi+1 . . . xi+w). Any
existing classifier like SVM or decision trees can be applied on such fixed-
dimensional record data to get a predicted value for yi. However, in several
applications the tags assigned to adjacent elements of a sequence depend on
each other and assigning independent labels may not be a good idea. A pop-
ular method of capturing such dependency is to assign tags to the sequence
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elements in a fixed left to right or right to left order. The predicted labels
of the previous h positions are added as features in addition to the usual x
context features. During training, the features corresponding to each position
consist of the x-window features and the true labels of the previous h posi-
tions. This method has been applied for named-entity recognition by [46] and
for English pronunciation prediction by [15]. In Section 6.4.3 we will consider
extensions where instead of using a fixed prediction from the previous labels,
we could exploit multiple predictions each attached with a probability value
to assign a globally optimum assignment.

6.4.2 Probabilistic Generative Models

A more unified approach is to build a joint global probability distribution
relating the x and y sequences with varying amounts of memory/dependency
information as discussed in Section 6.2.2. Hidden Markov models provide a
ready solution where each state is associated with a label from the set L and
the distribution of the elements xi is modeled via the emission probabilities
attached with a dictionary. Each state of the HMM is marked with exactly
one of the L elements, although more than one state could be marked with
the same element. The training data consists of a sequence of element-symbol
pairs. This imposes the restriction that for each pair 〈e, x〉 the symbol x can
only be emitted from a state marked with element e.

In Section 6.5.1 we present an application where HMMs are used for text
segmentation.

After training such a model, predicting the y sequence for a given x se-
quence reduces to the problem of finding the best path through the model,
such that the ith symbol xi is emitted by the ith state in the path. The label
associated with this state is the predicted label of xi. Given s states and a
sequence of length n, there can be O(ns) possible paths that the sequence can
go through. This exponential complexity is cut down to O(ns2) by the famous
dynamic programming-based Viterbi Algorithm [39].

The Viterbi algorithm for HMMs

Given a sequence x = x1, x2, . . . , xn of length n, we want to find out the most
probable state sequence y = y1 . . . yn such that Pr(x,y) is maximized.

Let δ(i, y) be the value of maxy′∈yi:y Pr(x1..i,y′) where yi:y denotes all
state sequences from 1 to i with the i-th state y and x1..i denotes the part of
the sequence from 1 to i, that is x1 . . . xi. δ() can be expressed recursively as

δ(i, y) =
{

maxy′∈L δ(i− 1, y′)ay′yby(xi) if i > 1
πyby(xi) if i = 1

The value of the highest probability path corresponds to maxy δ(|x|, y).
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6.4.3 Probabilistic Conditional Models

A major shortcoming of generative models like HMMs is that they maximize
the joint probability of sequence x and labels y. This does not necessarily
maximize accuracy. During testing, x is already known and we are only in-
teresting in finding the best y corresponding to this x. Hence, a number of
models have been proposed to directly capture the distribution of Pr(y|x)
through discriminative methods. There are two categories of models in this
space.

Local Models
A common variant is to define the conditional distribution of y given x as

P (y|x) =
n∏

i=1

P (yi|yi−1, xi)

This is the formalism used in maximum-entropy taggers [40] and it has
been variously called a maximum- entropy Markov model (MEMM) [34] and
a conditional Markov model (CMM) [24].

Given training data in the form of pairs (x,y), the “local” conditional
distribution P (yi|yi−1, xi) can be learned from derived triples (yi, yi−1, xi), for
example by using maximum- entropy methods. For maximum-entropy taggers
the value of P (yi|yi−1, xi) is expressed as an exponential function of the form:

P (yi|yi−1, xi) =
1

Z(xi)
eW.f(yi,xi,yi−1) (6.2)

where f(yi, xi, yi−1) is the set of local features at position xi, current label yi

and previous label yi−1. The normalization term Z(xi) =
∑

y′ eW.f(y′,xi,yi−1).
Inferencing in these models is discussed along with the global models of

the next section.

Global Conditional Models: Conditional Random Fields
Conditionally-structured models like the CMM have been improved recently
by algorithms that learn a single global conditional model for P (y|x)[26]. A
CRF models Pr(y|x) a Markov random field, with nodes corresponding to el-
ements of the structured object y and potential functions that are conditional
on (features of) x. For sequential learning tasks, NP chunking [43] and POS
tagging [26] the Markov field is a chain, and y is a linear sequence of labels
from a fixed set Y and the label at position i depends only on its previous
label. For instance, in the NER application, x might be a sequence of words,
and y might be a sequence in {I, O}|x|, where yi = I indicates “word xi is
inside a name” and yi = O indicates the opposite.

Assume a vector f of local feature functions f = 〈f1, . . . , fK〉, each of
which maps a pair (x,y) and a position i in the vector x to a measurement
fk(i,x,y) ∈ R. Let f(i,x,y) be the vector of these measurements, and let
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F(x,y) =
|x|∑
i

f(i,x,y). (6.3)

For the case of NER, the components of f might include the measurement
f13(i,x,y) = [[xi is capitalized]]·[[yi = I]], where the indicator function [[c]] = 1
if c if true and zero otherwise; this implies that F 13(x,y) would be the number
of capitalized words xi paired with the label I.

For sequence learning, any feature fk(i,x,y) is local in the sense that the
feature at a position i will depend only on the previous labels. With a slight
abuse of notation, we claim that a local feature fk(i,x,y) can be expressed
as fk(yi, yi−1,x, i). Some subset of these features can be simplified further to
depend only on the current state and are independent of the previous state.
We will refer to these as state features and denote them by fk(yi,x, i) when
we want to make the distinction explicit. The term transition features refers
to the remaining features that are not independent of the previous state.

A conditional random field (CRF) [26, 43] is an estimator of the form

Pr(y|x,W) =
1

Z(x)
eW·F(x,y) (6.4)

where W is a weight vector over the components of F, and the normalizing
term Z(x) =

∑
y′ eW·F(x,y′).

The only difference between the CRF equation above and the maximum-
entropy (Maxent) Equation (6.2) is in the normalization term. The normal-
ization for Maxent models is local to each position i causing all positions to
have the same normalized weight equal to 1. Thus, even if there is a particular
xi which is not too sure about discriminating between two possible labels it
will still have to contribute a weight of 0.5 at least to the objective function
(assuming |L| = 2). This leads to a problem, termed label bias in [26]. A CRF
through global optimization and normalization can more effectively suppress
the weight of such weak predictors and avoid the label bias.

An efficient inference algorithm

The inference problem for a CRF and the Maxent classifier of Equation (6.2) is
identical and is defined as follows: given W and x, find the best label sequence,
argmaxy Pr(y|x,W), where Pr(y|x,W) is defined by Equation (6.4).

argmaxy Pr(y|x,W) = argmaxyW · F(x,y)

= argmaxyW ·
∑

j

f(yj , yj−1,x, j)

An efficient inference algorithm is possible because all features are assumed
to be local. Let yi:l denote the set of all partial labels starting from 1 (the first
index of the sequence) to i, such that the i-th label is y. Let δ(i, y) denote
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the largest value of W · F(x,y′) for any y′ ∈ yi:l. The following recursive
calculation implements the usual Viterbi algorithm:

δ(i, y) =
{

maxy′ δ(i− 1, y′) + W · f(y, y′,x, i) if i > 0
0 if i = 0 (6.5)

The best label then corresponds to the path traced by maxy δ(|x|, y).

Training algorithm

Learning is performed by setting parameters to maximize the likelihood of a
training set T = {(x	,y	)}N	=1 expressed as

L(W) =
∑

	

log Pr(y	|x	,W) =
∑

	

(W · F(x	,y	)− log ZW(x	))

We wish to find a W that maximizes L(W). The above equation is convex,
and can thus be maximized by gradient ascent, or one of many related methods
like a limited-memory quasi-Newton method [32, 33]. The gradient of L(W)
is the following:

∇L(W) =
∑

	

F(x	,y	)−
∑

y′ F(y′,x	)eW·F(x�,y′)

ZW(x	)

=
∑

	

F(x	,y	)− EPr(y′|W)F(x	,y′)

The first set of terms is easy to compute. However, we must use the
Markov property of F and a dynamic programming step to compute the
normalizer, ZW(x	), and the expected value of the features under the cur-
rent weight vector, EPr(y′|W)F(x	,y′). We thus define α(i, y) as the value of∑

y′∈yi:y
eW·F(y′,x) where again yi:y denotes all label sequences from 1 to i

with i-th position labeled y. For i > 0, this can be expressed recursively as

α(i, y) =
∑
y′∈L

α(i− 1, y′)eW·f(y,y′,x,i)

with the base cases defined as α(0, y) = 1. The value of ZW(x) can then be
written as ZW(x) =

∑
y α(|x|, y).

A similar approach can be used to compute the expectation∑
y′

F(x	,y′)eW·F(x�,y′).

For the k-th component of F, let ηk(i, y) be the value of the sum∑
y′∈yi:y

F k(y′,x	)eW·F(x�,y′),
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restricted to the part of the label ending at position i. The following recursion
can then be used to compute ηk(i, y):

ηk(i, y) =
∑
y′∈L

(ηk(i− 1, y′) + α(i− 1, y′)fk(y, y′,x, i))eW·f(y,y′,x,i)

Finally we let EPr(y′|W)F
k(y′,x) = 1

ZW(x)

∑
y ηk(|x|, y).

As in the forward-backward algorithm for chain CRFs [43], space require-
ments here can be reduced from K|L| + |L|n to K + |L|n, where K is the
number of features, by pre-computing an appropriate set of β values.

6.4.4 Perceptron-based Models

Another interesting mechanism for sequence tagging, is based on an extension
of the perceptron model for discriminative classification [12]. The structure
of the model is similar to the global CRF model involving the feature vector
F(x,y) defined as in Equation (6.3) and corresponding weight parameters
W. Inferencing is done by picking the y corresponding to which WF(x,y)
is maximum. The predicted label sequence can be efficiently found using the
same Viterbi procedure as for CRFs. The goal during training is to learn the
value of W so as to minimize the error between the correct labels and the
predicted Viterbi labels. This “best” W is found by repeatedly updating W to
improve the quality of the Viterbi decoding on a particular example (xt,yt).
Specifically, Collin’s algorithm starts with W0 = 0. After the t-th example
xt,yt, the Viterbi sequence ŷt is computed, and Wt is replaced with

Wt+1 = Wt + F(xt,yt)− F(xt, ŷt)

= Wt +
M∑
i=1

f(i,xt,yt)− f(i,xt, ŷt) (6.6)

After training, one takes as the final learned weight vector W the average
value of Wt over all time steps t.

This simple perceptron-like training algorithm has been shown to perform
surprisingly well for sequence learning tasks in [12].

6.4.5 Boundary-based Models

Boundary-based models learn to identify start and end boundaries of each
label by building two classifiers for accepting its two boundaries along with
the classifiers that identify the content part of the tag. Such an approach is
useful in applications like NER where we need to identify a multi-word entity
name (like person or company) from a long word sequence where most of
the words are not part of the entity. Although any classifier could be used to
identify the boundaries, the rule-based method has been most popular [8, 44].
Rapier [8] is one such rule-learning approach where a bottom-up algorithm is
used to learn the pattern marking the beginning, the ending and the content
part of each entity type.
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6.5 Applications of Sequence Tagging

In this section we present two applications of the sequence-tagging operation.
The first is an example of text segmentation where noisy text strings like
addresses are segmented based on a fixed set of labels using hidden Markov
models [4]. The second is an example of learning paths leading to informative
pages in a website using conditional random fields [47].

6.5.1 Address Segmentation using Hidden Markov Models

Large customer-oriented organizations like banks, telephone companies, and
universities store millions of addresses. In the original form, these addresses
have little explicit structure. Often for the same person, there are different
address records stored in different databases. During warehouse construction,
it is necessary to put all these addresses in a standard canonical format where
the different structured fields like names of street, city and state comprising
an address are identified and duplicates removed. An address record broken
into its structured fields not only enables better querying, it also provides a
more robust way of doing deduplication and householding — a process that
identifies all addresses belonging to the same household.

Existing commercial approaches rely on hand-coded rule-based methods
coupled with a database of cities, states and zipcodes. This solution is not
practical and general because postal addresses in different parts of the world
have drastically different structures. In some countries, zip codes are five-digit
numbers whereas in others they are allowed to have letters. The problem is
more challenging in older countries like India because most street names do
not follow a uniform building numbering scheme, the reliance on ad hoc de-
scriptive landmarks is common, city names keep changing, state abbreviations
are not standardized, spelling mistakes are rampant and zip codes optional.
Further each region has evolved its own style of writing addresses that dif-
fers significantly from those of the other regions. Consider for instance the
following two valid addresses from two different Indian cities:
7D-Brijdham 16-B Bangur Nagar Goregaon (West) Bombay 400 090
13 Shopping Center Kota (Raj) 324 007
The first address consists of seven elements: house number: ‘‘7D’’, building
name: ‘‘Brijdham’’, building number: ‘‘16-B’’, colony name: ‘‘Bangur
Nagar’’, area: ‘‘Goregaon (West)’’, city: ‘‘Bombay’’ and zip code: ‘‘400
090’’. The second address consists of the following five elements: house num-
ber: ‘‘13’’, Colony name: ‘‘Shopping center’’, city: ‘‘Kota’’, State:
‘‘(Raj)’’ and zip code: ‘‘324 007’’. In the first address, “West” was en-
closed in parentheses and depicted direction while in the second the string
“Raj” within parentheses is the name of a geographical State. This element
is missing in the first address. In the second address building name, colony
name and area elements are missing.



6.5 Applications of Sequence Tagging 171

We propose an automated method for elementizing addresses based on
hidden Markov models. An HMM combines information about multiple dif-
ferent aspects of the record in segmenting it. One source is the characteristic
words in each elements, for example the word “street” appears in road-names.
A second source is the limited partial ordering between its element. Often the
first element is a house number, then a possible building name and so on
and the last few elements are zipcode and state name. A third source is the
typical number of words in each element. For example, state names usually
have one or two words whereas road names are longer. Finally, the HMM si-
multaneously extracts each element from the address to optimize some global
objective function. This is in contrast to existing rule learners used in tradi-
tional information tasks [1, 13, 25, 36, 37] that treat each element in isolation.

Structure of the HMM for Address Elementization
An easy way to exploit HMMs for address segmentation is to associate a state
for each label or tag as described in Section 6.4.2. In Figure 6.5 we show an
example HMM for address segmentation. The number of states s is 10 and the
edge labels depict the state transition probabilities (A Matrix). For example,
the probability of an address beginning with House Number is 0.92 and that of
seeing a City after Road is 0.22. The dictionary and the emission probabilities
are not shown for compactness. The dictionary would comprise of words that
appeared in the training sequences.
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Fig. 6.5. Structure of an HMM used for tagging addresses.

However, the above model does not provide a sufficiently detailed model of
the text within each tag. We therefore associate each tag with another inner
HMM embedded within the outer HMM that captures inter-tag transitions.
We found a parallel-path HMM as shown in Figure 6.6 to provide the best
accuracy while requiring little or no tuning over different tag types. In the
figure, the start and end states are dummy nodes to mark the two end points
of a tag. They do not output any token. All records of length one will pass
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through the first path, length two will go through the second path and so on.
The last path captures all records with four or more tokens. Different elements
would have different numbers of such parallel paths depending on the element
lengths observed during training.

Start End

Fig. 6.6. A four-length parallel path structure.

Estimating Parameters during Training
During training, we get examples of addresses where structured elements have
been identified. Each training token maps to exactly one state of the HMM
even with the above multi-state nested structure for each tag. Therefore, we
can deploy straight maximum likelihood estimates for the transition and emis-
sion probabilities.

An important issue in practice is dealing with zero probability estimates
arising when the training data is insufficient. The traditional smoothing
method is Laplace smoothing [27] according to an unseen symbol k, state j
will be assigned probability 1

Tj+m where Tj is the number of training symbols
in state j and m is the number of distinct symbols. We found this smooth-
ing method unsuitable in our case. An element like “road name”, that dur-
ing training has seen more distinct words than an element like “country”,
is expected to also encounter unseen symbols more frequently during test-
ing. Laplace smoothing does not capture this intuition. We use a method
called absolute discounting. In this method we subtract a small value, say ε
from the probability of all known mj distinct words seen in state j. We then
distribute the accumulated probability equally amongst all unknown values.
Thus, the probability of an unknown symbol is mjε

m−mj
. The choice of ε de-

pends on whether the unknown symbol is unseen over all states of the HMM
or just a subset of the sets. We want ε to be lower in the second case, which
we arbitrarily fix to be a factor of 1000 lower. The value of ε is then chosen
empirically.

We experimented with a number of more principled methods of smoothing
including cross-validation but we found them not to perform as well as the
above ad hoc method.
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Experimental Evaluation

We report evaluation results on the following three real-life address data sets:

• US address: The US address data set consisted of 740 addresses down-
loaded from an Internet directory.1 The addresses were segmented into six
elements: House No, Box No. Road Name, City, State, Zip.

• Student address: This data set consisted of 2388 home addresses of stu-
dents in the author’s university. These addresses were partitioned into 16
elements based on the postal format of the country. The addresses in this
set do not have the kind of regularity found in US addresses.

• Company address: This data set consisted of 769 addresses of customers
of a major national bank in a large Asian metropolis. The address was
segmented into six elements: Care Of, House Name, Road Name, Area,
City, Zipcode.

For the experiments all the data instances were first manually segmented into
their constituent elements. In each set, one-third of the data set was used
for training and the remaining two-thirds used for testing as summarized in
Table 6.1.

Table 6.1. Data sets used for the experiments.

Data set Number of Number of Number of
elements (E) training test instances

instances
US address 6 250 490
Student address 16 650 1738
Company address 6 250 519

All tokens were converted to lower case. Each word, digit and delimiter in
the address formed a separate token to the HMM. Each record was prepro-
cessed where all numbers were represented by a special symbol “digit” and all
delimiters where represented with a special “delimit” symbol.

We obtained accuracy of 99%, 88.9% and 83.7% on the US, Student and
Company data sets respectively. The Asian addresses have a much higher
complexity compared to the US addresses. The company data set had lower
accuracy because of several errors in the segmentation of data that was handed
to us.

We compare the performance of the proposed nested HMM with the fol-
lowing three automated approaches.

1www.superpages.com
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Naive HMM

This is the HMM model with just one state per element. The purpose here is
to evaluate the benefit of the nested HMM model.

Independent HMM

In this approach, for each element we train a separate HMM to extract just its
part from a text record, independent of all other elements. Each independent
HMM has a prefix and suffix state to absorb the text before and after its
own segment. Otherwise the structure of the HMM is similar to what we
used in the inner HMMs. Unlike the nested-model there is no outer HMM
to capture the dependency amongst elements. The independent HMMs learn
the relative location in the address where their element appears through the
self-loop transition probabilities of the prefix and suffix states. This is similar
to the approach used in [19] for extracting location and timings from talk
announcements.

The main idea here is to evaluate the benefit of simultaneously tagging all
the elements of a record exploiting the sequential relationship amongst the
elements using the outer HMM.

Rule learner

We compare HMM-based approaches with a rule learner, Rapier [8], a bottom-
up inductive learning system for finding information extraction rules to mark
the beginning, content and end of an entity. Like the independent HMM ap-
proach it also extracts each tag in isolation from the rest.

Student Data Company Data US Data
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Fig. 6.7. Comparison of four different methods of text segmentation

Figure 6.7 shows a comparison of the accuracy of the four methods naive
HMM, independent HMM, rule learner and nested HMM. We can make the
following observations:
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• The independent HMM approach is significantly worse than the nested
model because of the loss of valuable sequence information. For example,
in the former case there is no restriction that tags cannot overlap – thus
the same part of the address could be tagged as being part of two different
elements. With a single HMM the different tags corroborate each other’s
finding to pick the segmentation that is globally optimal.

• Naive HMM gives 3% to 10% lower accuracy than the nested HMM. This
shows the benefit of a detailed HMM for learning the finer structure of
each element.

• The accuracy of Rapier is considerably lower. Rapier leaves many tokens
untagged by not assigning them to any of the elements. Thus it has low
recall. However, the precision of Rapier was found to be competitive to
our method – 89.2%, 88%, and 98.3% for Student, Company and US data
sets respectively. The overall accuracy is acceptable only for US addresses
where the address format is regular enough to be amenable to rule-based
processing. For the complicated sixteen-element Student data set such rule-
based processing could not successfully tag all elements.

6.5.2 Learning Paths in Websites using Conditional Random
Fields

Another interesting application of sequential tagging models is in learning the
sequence of links that lead to a specific goal page on a large website. Often
websites within a domain are structurally similar to each other. Humans are
good at navigating these websites to reach specific information within large
domain-specific websites. Our goal is to learn the navigation path by observing
the user’s clicks on as few example websites as possible. Next, when presented
with a list of new websites, we use the learnt model to automatically crawl
the desired pages using as few redundant page fetches as possible.

We present a scenario where such a capability would be useful. Citation
portals, such as Citeseer, need to gather publications on a particular discipline
from home pages of faculty starting from lists of universities easily obtained
from web directories such as Dmoz. This requires following a path starting
from the root page of the university, to the home pages of departments rele-
vant to the discipline, from there visiting the home pages of faculty members,
and then searching for links such as “Papers”, “Publications”, or “Research
Interests” that lead to the publications page, if it exists. Several universities
follow this template website, although there is lot of variation in the exact
words used on pages and around links and the placement of links. We expect
such a learning-based approach to capture the main structure in a few exam-
ples so as to automatically gather all faculty publications from any given list
of universities without fetching too many superflous pages.

There are two phases to this task: first is the training phase, where the
user teaches the system by clicking through pages and labeling a subset with
a dynamically defined set of classes, one of them being the goal class. The
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classes assigned on intermittent pages along the path can be thought of as
“milestones” that capture the structural similarity across websites. At the end
of this process, we have a set of classes L, and a set of training paths where a
subset of the pages in the path are labeled with a class from L. All unlabeled
pages before a labeled page are represented with a special prefix state for that
label. The system trains a model using the example paths, modeling each class
in L as a milestone state. The second phase is the foraging phase where the
given list of websites is automatically navigated to find all goal pages.

The ratio of relevant pages visited to the total number of pages visited
during the execution is called the harvest rate. The objective function is to
maximize the harvest rate.

We treat this as a sequence-tagging problem where the path is a sequence
of pages ending in a goal page. We first train a CRF to recognize such paths.
We then superimpose ideas from reinforcement learning to prioritize the or-
der in which pages should be fetched to reach the goal page. This provides
an elegant and unified mechanism of modeling the path learning and foraging
problem. Also, as we will see in the experimental results section, it provides
very high accuracy.

Model Training
During training, we are given examples of several paths of labeled pages where
some of the paths end in goal pages and others end with a special “fail” label.
We can treat each path as a sequence of pages denoted by the vector x and
their corresponding labels denoted by y. Each xi is a web page represented
suitably in terms of features derived from the words in the page, its URL, and
anchor text in the link pointing to xi.

A number of design decisions about the label space and feature space need
to be made in constructing a CRF to recognize characteristics of valid paths.
One option is to assign a state to each possible label in the set L which consists
of the milestone labels and two special labels “goal” and “fail”. An example
of such a model for the publications scenario is given in Figure 6.8(a) where
each circle represents a label.

State features are defined on the words or other properties comprising
a page. For example, state features derived from words are of the form
fk(i,x, yi) = [[xi is “computer” and yi = faculty]]. The URL of a page also
yields valuable features. For example, a “tilda” in the URL is strongly associ-
ated with a personal home page and a link name with the word “contact” is
strongly associated with an address page. We tokenize each URL on delimiters
and add a feature corresponding to each feature.

Transition features capture the soft precedence order amongst labels. One
set of transition features is of the form:
fk(i,x, yi, yi−1) = [[yi is “faculty” and yi−1 is “department”]]. They are inde-
pendent of xi and are called edge features since they capture dependency
amongst adjacent labels. In this model, transition features are also derived
from the words in and around the anchor text surrounding the link leading to
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Fig. 6.8. State transition diagram for the Publications domain.

the next state. Thus, a transition feature could be of the form fk(i,x, yi, yi−1)
= [[xi is an anchor word “advisor”, yi is “faculty”, and yi−1 is “student”]].

A second option is to model each given label as a dual-state — one for
the characteristics of the page itself (page-states) and the other for the
information around links that lead to such a page (link-states). Hence, every
path alternates between a page-state and a link-state.

In Figure 6.8(b), we show the state space corresponding to this option
for the publications domain. There are two advantages of this labeling. First,
it reduces the sparcity of parameters by making the anchor word features
be independent of the label of the source page. In practice, it is often found
that the anchor text pointing to the same page are highly similar and this is
captured by allowing multiple source labels to point to the same link state
of label. Second for the foraging phase, it allows one to easily reason about
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intermediate probability of a path prefix where only the link is known and the
page leading to it has not been fetched.

In this model, the state features of the page states are the same as in the
previous model and the state features of the link states are derived from the
anchor text. Thus, the anchor-text transition features of the previous model,
become state features of the link state. Thus the only transition features in
this model are the edge features that capture the precedence order between
labels.

Path Foraging
Given the trained sequential model M and a list of starting pages of websites,
our goal is to find all paths from the list that lead to the “goal” state in M
while fetching as few unrelated pages.

The key issue in solving this is to be able to score from a prefix of a path
already fetched, all the set of outgoing links with a value that is inversely pro-
portional to the expected work involved in reaching the goal pages. Consider
a path prefix of the form P1L2P3 . . . Li where Li−1 is a link to page Pi in
the path. We need to find for link Li a score value that would indicate the
desirability of fetching the page pointed to by Li. This score is computed in
two parts. First, we estimate for each state y, the proximity of the state to
the goal state. We call this the reward associated with the state. Then we
compute for the link Li the probability of its being in state y.

Reward of a state

We apply techniques from reinforcement learning to compute the reward score
that captures the probability of a partially-observed sequence to end up in a
goal state of the CRF model M . Reinforcement learning is a machine learning
paradigm that helps in choosing the optimal action at each state to reach
the goal states. The goal states are associated with rewards that start to
depreciate as the goal states get farther from the current state. The actions
are chosen so as to maximize the cumulative discounted reward. We estimate
this probability based on the training data by learning a reward function R for
each state. For each position i of a given sequence x we estimate the expected
proximity to the goal state from a state y Rx

i (y) recursively as follows:

Rx
i (y) =

{∑
y′ eW·f(y′,y,x,i+1)Rx

i+1(y
′) 1 ≤ i < n

[[y == goal]] i = n
(6.7)

When i = n, the reward is 1 for the goal state and 0 for every other label.
Otherwise the values are computed recursively from the proximity of the next
state and the probability of transition to the next state from the current state.

We then compute a weighted sum of these positioned reward values to
get position-independent reward values. The weights are controlled via γ, a
discount factor that captures the desirability of preferring states that are closer
to the goal state as follows:
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Rx =

n∑
k=1

γk ·Rx
n−k

n∑
k=1

γk

(6.8)

where n is the length of the sequence.
The final reward value of a state is computed by averaging over all training

sequences x1 . . .xN as

R =
∑N

	=1 Rx�

N
. (6.9)

Probability of being in a state

Consider a path prefix of the form P1L2P3 . . . Li where Li−1 is a link to page
Pi in the path. We need to find for link Li the probability of its being in
any one of the link states. We provide a method for computing this. Let αi(y)
denote the total weight of ending in state y after i states. We thus define αi(y)
as the value of

∑
y′∈yi:y

eW·F(y′,x) where yi:y denotes all label sequences from
1 to i with i-th position labeled y. For i > 0, this can be expressed recursively
as

αi(y) =
∑
y′∈Y

αi−1(y′)eW·f(y,y′,x,i) (6.10)

with the base cases defined as α0(y) = 1.
The probability of Li being in the link state y is then αi(y)∑

y′∈YL αi(y′) where

YL denotes the link states.

Score of a link

Finally, the score of a link Li, after i steps, is calculated as the sum of the
product of reaching a state y and the static reward at state y.

Score(Li) =
∑

y

αi(y)∑
y′∈YL αi(y′)

R(y) (6.11)

If a link appears in multiple paths, we sum over its score from each path.
Thus, at any give snapshot of the crawl we have a set of unfetched links

whose scores we compute and maintain in a priority queue. We pick the link
with the highest score to fetch next. The links in the newly fetched page are
added to the queue. We stop when no more unfetched links have a score above
a threshold value.

Experimental Results
We present a summary of experiments over two applications — a task of fetch-
ing publication pages starting from university pages and a task of reaching
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company contact addresses starting from a root company web page. The re-
sults are compared with generic focused crawlers [10] that are not designed to
exploit the commonality of the structure of groups such as university websites.
More details of the experiment can be found in [47].

Publications data set

The data sets were built manually by navigating sample websites and en-
listing the sequence of web pages from the entry page to a goal page. Se-
quences that led to irrelevant pages were identified as negative examples. The
Publications model was trained on 44 sequences (of which 28 were positive
paths) from seven university domains and computer science departments of
US universities chosen randomly from an online list.2

We show the percentage of relevant pages as a function of pages fetched for
two different websites where we applied the above trained model for finding
publications:

• www.cs.cmu.edu/, henceforth referred to as the CMU domain.
• www.cs.utexas.edu/, henceforth referred to as the UTX domain.

Performance is measured in terms of harvest rates. The harvest rate is
defined as the ratio of relevant pages (goal pages, in our case) found to the
total number of pages visited.

Figure 6.9 shows a comparison of how our model performs against the
simplified model of the accelerated focused crawler (AFC). We observe that
the performance of our model is significantly better than the AFC model. The
relevant pages fetched by the CRF model increases rapidly at the beginning
before stabilizing at over 60%, when the Crawler model barely reaches 40%.

Address data set

The Address data set was trained on 32 sequences out of which 17 sequences
were positive. There was a single milestone state “About-us” in addition to
the start, goal and fail states.

The foraging experimentation on the address data set differs slightly from
the one on the Publications data set. In the Publications data set, we have
multiple goal pages with a website. During the foraging experiment, the model
aims at reaching as many goal pages as possible quickly. In effect, the model
tries to reach a hub — i.e. a page that links many desired pages directly such
that the outlink probability from the page to goal state is maximum.

In the Address data set, there is only one (or a countable few) goal pages.
Hence, following an approach similar to that of the Publications data set
would lead to declining harvest rates once the address page is fetched. Hence
we modify the foraging run to stop when a goal page is reached. We proceed

2www.clas.ufl.edu/CLAS/american-universities.html
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Fig. 6.9. Comparison with simplified accelerated focused crawler. The graphs
labeled PathLearner show the performance of our model.
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with the crawling only when we have a link with a higher score of reaching
the goal state than the current page score.

The experiment was run on 108 domains of company addresses taken ran-
domly from the list of companies available at www.hoovers.com. We calculate
the average number of pages required to reach the goal page from the company
home page.

The average length of path from home page to goal page was observed to
be 3.426, with the median and mode value being 2. This agrees with the usual
practice of having a “Contact Us” link on the company home page that leads
in one link access to the contact address.

Summary

This study showed that conditional random fields provide an elegant, unified
and high-performance method of solving the information foraging task from
large domain-specific websites. The proposed model performs significantly bet-
ter than a generic focused crawler and is easy to train and deploy.

6.6 Sequence Segmentation

In sequence segmentation we need to break up a sequence along boundaries
where the sequence appears to be transitioning to a different distribution.
This is unlike the tagging problem above in that there is no fixed labeled set
to be assigned to each tag. The basic premise behind this operation is that
the given sequence was generated from multiple models one after another and
the goal during segmentation is to identify the point of switching from one
model to the next.

The segmentation operation has applications in bioinformatics and in ex-
ploratory mining to detect shifts in measures like the buying rate of a prod-
uct. For example, [20] discusses a bioinformatics application where a DNA se-
quence needs to be segmented to detect viral or microbial inserts. [11] discusses
an application in market basket analysis where 0/1 buying patterns of prod-
ucts over time are segmented to detect surprising changes in co-occurrence
patterns of groups of products.

We first consider a simpler formulation of the segmentation problem where
our goal is to recover the segments of a sequence under the simplifying as-
sumption that the segments are independent of each other. This problem has
been studied by a number of researchers and for a variety of scoring functions,
dynamic programming can be used to find the segments in time proportional
to O(n2k) where n is the length of the segment and k is the number of seg-
ments.

In the previous formulation each segment is assumed to be independent
of every other, requiring a user to fit as many model parameters as the num-
ber of segments. [20] addresses a more general formulation called the (k, h)
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segmentation problem where a fixed number h of models is to be used for
segmenting into k parts an n-element sequence (k > h). Unfortunately, this
new formulation is NP-hard for the general case. A number of approximation
algorithms are proposed in [20]. We present one of these here. The first step is
to get a (k, k) segmentation that is solvable using the dynamic programming
algorithm of independent segments. The second step is to solve (n, h) to get h
models: that is to find the best h models to describe the n unordered sequence
elements. Finally, assign each of the k segments of the first step to the best of
the h models found in the second step. The second step can be replaced with
a variant where for each of the k segments we find the best fit model, cluster
these k models into h groups and choose a representative of the h clusters as
the h chosen model.

6.7 Conclusions

In this article we reviewed various techniques for analyzing sequence data. We
first studied two conventional mining operations, classification and clustering,
that work on whole sequences. We were able to exploit the wealth of existing
formalisms and algorithms developed for fixed attribute record data by defin-
ing three primitive operations on sequence data. The first primitive was to map
variable length sequences to a fixed-dimensional space using a wealth of tech-
niques ranging from aggregation after collapsing order, k-grams, to capturing
limited order and mismatching scores on k-grams. The second primitive was
defining generative models for sequences where we considered models starting
from simple independent models to variable- length Markov models to the
popular hidden Markov models. The third primitive was designing kernels or
similarity functions between sequence pairs where amongst standard sequence
similarity functions we discussed the interesting Fisher’s kernels that allow a
powerful integration of generative and discriminative models such as SVMs.

We studied two sequence specific operations, tagging and segmentation,
that operate on parts of the sequence and can be thought of as the equiva-
lent of classification and clustering respectively for whole sequences. Sequence
tagging is an extremely useful operation that has seen extensive applications
in the field of information extraction. We explored generative approaches like
hidden Markov models and conditional approaches like conditional random
fields (CRFs) for sequence tagging.

The field of sequence mining is still being actively explored, spurred by
emerging applications in information extraction, bio-informatics and sensor
networks. We can hope to witness more exciting research in the techniques
and application of sequence mining in the coming years.
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7

Link-based Classification

Lise Getoor

Summary. A key challenge for machine learning is the problem of mining richly
structured data sets, where the objects are linked in some way due to either an
explicit or implicit relationship that exists between the objects. Links among the
objects demonstrate certain patterns, which can be helpful for many machine learn-
ing tasks and are usually hard to capture with traditional statistical models. Re-
cently there has been a surge of interest in this area, fuelled largely by interest in
web and hypertext mining, but also by interest in mining social networks, biblio-
graphic citation data, epidemiological data and other domains best described using
a linked or graph structure. In this chapter we propose a framework for modeling
link distributions, a link-based model that supports discriminative models describing
both the link distributions and the attributes of linked objects. We use a structured
logistic regression model, capturing both content and links. We systematically eval-
uate several variants of our link-based model on a range of data sets including both
web and citation collections. In all cases, the use of the link distribution improves
classification performance.

7.1 Introduction

Traditional data mining tasks such as association rule mining, market basket
analysis and cluster analysis commonly attempt to find patterns in a data set
characterized by a collection of independent instances of a single relation. This
is consistent with the classical statistical inference problem of trying to identify
a model given a random sample from a common underlying distribution.

A key challenge for machine learning is to tackle the problem of mining
more richly structured data sets, for example multi-relational data sets in
which there are record linkages. In this case, the instances in the data set are
linked in some way, either by an explicit link, such as a URL, or a constructed
link, such as join between tables stored in a database. Naively applying tradi-
tional statistical inference procedures, which assume that instances are inde-
pendent, can lead to inappropriate conclusions [15]. Care must be taken that
potential correlations due to links are handled appropriately. Clearly, this is
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information that should be exploited to improve the predictive accuracy of
the learned models.

Link mining is a newly emerging research area that is at the intersection
of the work in link analysis [10, 16], hypertext and web mining [3], relational
learning and inductive logic programming [9] and graph mining [5]. Link min-
ing is potentially useful in a wide range of application areas including bio-
informatics, bibliographic citations, financial analysis, national security, and
the Internet. Link mining includes tasks such as predicting the strength of
links, predicting the existence of links, and clustering objects based on similar
link patterns.

The link mining task that we focus on in this chapter is link-based clas-
sification. Link-based classification is the problem of labeling, or classifying,
objects in a graph, based in part on properties of the objects, and based in
part on the properties of neighboring objects. Examples of link-based classifi-
cation include web-page classification based both on content of the web page
and also on the categories of linked web pages, and document classification
based both on the content of a document and also the properties of cited,
citing and co-cited documents.

Three elements fundamental to link-based classification are:

• link-based feature construction – how do we represent and make use
of properties of the neighborhood of an object to help with prediction?

• collective classification – the classifications of linked objects are usu-
ally correlated, in other words the classification of an object depends on
the classification of neighboring objects. This means we cannot optimize
each classification independently, rather we must find a globally optimal
classification.

• use of labeled and unlabeled data – The use of labeled and unlabeled
data is especially important to link-based classification. A principled ap-
proach to collective classification easily supports the use of labeled and
unlabeled data.

In this chapter we examine each of these elements and propose a statistical
framework for modeling link distributions and study its properties in detail.
Rather than an ad hoc collection of methods, the proposed framework extends
classical statistical approaches to more complex and richly structured domains
than commonly studied.

The framework we propose stems from our earlier work on link uncertainty
in probabilistic relational models [12]. However in this work, we do not con-
struct explicit models for link existence. Instead we model link distributions,
which describe the neighborhood of links around an object, and can capture
the correlations among links. With these link distributions, we propose algo-
rithms for link-based classification. In order to capture the joint distributions
of the links, we use a logistic regression model for both the content and the
links. A key challenge is structuring the model appropriately; simply throwing
both links and content attributes into a “flat” logistic regression model does
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not perform as well as a structured logistic regression model that combines one
logistic regression model built over content with a separate logistic regression
model built over links.

Having learned a model, the next challenge is classification using the
learned model. A learned link-based model specifies a distribution over link
and content attributes and, unlike traditional statistical models, these at-
tributes may be correlated. Intuitively, for linked objects, updating the cat-
egory of one object can influence our inference about the categories of its
linked neighbors. This requires a more complex classification algorithm. Iter-
ative classification and inference algorithms have been proposed for hypertext
categorization [4, 28] and for relational learning [17, 25, 31, 32]. Here, we
also use an iterative classification algorithm. One novel aspect is that un-
like approaches that make assumptions about the influence of the neighbor’s
categories (such as that linked objects have similar categories), we explicitly
learn how the link distribution affects the category. We also examine a range
of ordering strategies for the inference and evaluate their impact on overall
classification accuracy.

7.2 Background

There has been a growing interest in learning from structured data. By struc-
tured data, we simply mean data best described by a graph where the nodes
in the graph are objects and the edges/hyper-edges in the graph are links or
relations between objects. Tasks include hypertext classification, segmenta-
tion, information extraction, searching and information retrieval, discovery of
authorities and link discovery. Domains include the world-wide web, biblio-
graphic citations, criminology, bio-informatics to name just a few. Learning
tasks range from predictive tasks, such as classification, to descriptive tasks,
such as the discovery of frequently occurring sub-patterns.

Here, we describe some of the most closely related work to ours, however
because of the surge of interest in recent years, and the wide range of venues
where research is reported (including the International World Wide Web Con-
ference (WWW), the Conference on Neural Information Processing (NIPS),
the International Conference on Machine Learning (ICML), the International
ACM conference on Information Retrieval (SIGIR), the International Confer-
ence of Management of Data (SIGMOD) and the International Conference on
Very Large Databases (VLDB)), our list is sure to be incomplete.

Probably the most famous example of exploiting link structure is the use
of links to improve information retrieval results. Both the well-known page
rank [29] and hubs and authority scores [19] are based on the link-structure
of the web. These algorithms work using in-links and out-links of the web
pages to evaluated the importance or relevance of a web-page. Other work,
such Dean and Henzinger [8] propose an algorithm based on co-citation to find
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related web pages. Our work is not directly related to this class of link-based
algorithms.

One line of work more closely related to link-based classification is the
work on hypertext and web page classification. This work has its roots in the
information retrieval community. A hypertext collection has a rich structure
beyond that of a collection of text documents. In addition to words, hyper-
text has both incoming and outgoing links. Traditional bag-of-words models
discard this rich structure of hypertext and do not make full use of the link
structure of hypertext.

Beyond making use of links, another important aspect of link-based classi-
fication is the use of unlabeled data. In supervised learning, it is expensive and
labor-intensive to construct a large, labeled set of examples. However in many
domains it is relatively inexpensive to collect unlabeled examples. Recently
several algorithms have been developed to learn a model from both labeled
and unlabeled examples [1, 27, 34]. Successful applications in a number of ar-
eas, especially text classification, have been reported. Interestingly, a number
of results show that while careful use of unlabeled data is helpful, it is not
always the case that more unlabeled data improves performance [26].

Blum and Mitchell [2] propose a co-training algorithm to make use of un-
labeled data to boost the performance of a learning algorithm. They assume
that the data can be described by two separate feature sets which are not
completely correlated, and each of which is predictive enough for a weak pre-
dictor. The co-training procedure works to augment the labeled sample with
data from unlabeled data using these two weak predictors. Their experiments
show positive results on the use of unlabeled examples to improve the per-
formance of the learned model. In [24], the author states that many natural
learning problems fit the problem class where the features describing the ex-
amples are redundantly sufficient for classifying the examples. In this case, the
unlabeled data can significantly improve learning accuracy. There are many
problems falling into this category: web page classification; semantic classifi-
cation of noun phrases; learning to select word sense and object recognition
in multimedia data.

Nigam et al. [27] introduce an EM algorithm for learning a naive Bayes
classifier from labeled and unlabeled examples. The algorithm first trains a
classifier based on labeled documents and then probabilistically classifies the
unlabeled documents. Then both labeled and unlabeled documents participate
in the learning procedure. This process repeats until it converges. The ideas of
using co-training and EM algorithms for learning from labeled and unlabeled
data are fully investigated in [13].

Joachims et al. [18] proposes a transductive support vector machine
(TSVM) for text classification. A TSVM takes into account a particular test
set and tries to optimize the classification accuracy for that particular test
set. This also is an important means of using labeled and unlabeled examples
for learning.
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In other recent work on link mining [12, 25, 31], models are learned from
fully labeled training examples and evaluated on a disjoint test set. In some
cases, the separation occurs naturally, for example in the WebKB data set
[6]. This data set describes the web pages at four different universities, and
one can naturally split the data into a collection of training schools and a test
school, and there are no links from the test school web pages to the training
school pages. But in other cases, the data sets are either manipulated to
extract disconnected components, or the links between the training and test
sets are simply ignored. One major disadvantage of this approach is that it
discards links between labeled and unlabeled data which may be very helpful
for making predictions or may artificially create skewed training and test sets.

Chakrabarti et al. [4] proposed an iterative relaxation labeling algorithm
to classify a patent database and a small web collection. They examine us-
ing text, neighboring text and neighbor class labels for classification in a
rather realistic setting wherein some portion of the neighbor class labels are
known. In the start of their iteration, a bootstrap mechanism is introduced
to classify unlabeled documents. After that, classes from labeled and unla-
beled documents participate in the relaxation labeling iteration. They showed
that naively incorporating words from neighboring pages reduces performance,
while incorporating category information, such has hierarchical category pre-
fixes, improves performance.

Oh et al. [28] also suggest an incremental categorization method, where the
classified documents can take part in the categorization of other documents in
the neighborhood. In contrast to the approach used in Chakrabarti et al., they
do not introduce a bootstrap stage to classify all unlabeled documents. In-
stead they incrementally classify documents and take into account the classes
of unlabeled documents as they become available in the categorization process.
They report similar results on a collection of encyclopedia articles: merely in-
corporating words from neighboring documents was not helpful, while making
use of the predicted class of neighboring documents was helpful.

Popescul et al. [30] study the use of inductive logic programming (ILP) to
combine text and link features for classification. In contrast to Chakrabarti
et al. and Oh et al., where class labels are used as features, they incorporate
the unique document IDs of the neighborhood as features. Their results also
demonstrate that the combination of text and link features often improves
performance.

These results indicate that simply assuming that link documents are on the
same topic and incorporating the features of linked neighbors is not generally
effective. One approach is to identify certain types of hypertext regularities
such as encyclopedic regularity (linked objects typically have the same class)
and co-citation regularity (linked objects do not share the same class, but
objects that are cited by the same object tend to have the same class). Yang et
al. [33] compare several well-known categorization learning algorithms: naive
Bayes [22], kNN [7], and FOIL on three data sets. They find that adding words
from linked neighbors is sometimes helpful for categorization and sometimes
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harmful. They define five hypertext regularities for hypertext categorization.
Their experiments indicate that application of this knowledge to classifier
design is crucial for real-world categorization. However, the issue of discovering
the regularity is still an open issue.

Here, we propose a probabilistic method that can learn a variety of dif-
ferent regularities among the categories of linked objects using labeled and
unlabeled examples. Our method differs from the previous work in several
ways. First, instead of assuming a naive Bayes model [4] for the class labels
in the neighborhood, we adopt a logistic regression model to capture the con-
ditional probability of the class labels given the object attributes and link
descriptions. In this way our method is able to learn a variety of different
regularities and is not limited to a self-reinforcing encyclopedic regularity. We
examine a number of different types of links and methods for representing
the link neighborhood of an object. We propose an algorithm to make pre-
dictions using both labeled and unlabeled data. Our approach makes use of
the description of unlabeled data and all of the links between unlabeled and
labeled data in an iterative algorithm for finding the collective labeling which
maximizes the posterior probability for the class labels of all of the unlabeled
data given the observed labeled data and links.

7.3 Link-based Models

Here we propose a general notion of a link-based model that supports rich
probabilistic models based on the distribution of links and based on attributes
of linked objects.

7.3.1 Definitions

The generic link-based data we consider is essentially a directed graph, in
which the nodes are objects and edges are links between objects.

• O – The collection of objects, O = {X1, . . . , XN} where Xi is an object,
or node in the graph. O is the set of nodes in the graph.

• L – The collections of links between objects. Li→j is a link between object
Xi and object Xj . L is the set of edges in the graph.

• G(O,L) – The directed graph defined over O by L.

Our model supports classification of objects based both on features of the
object and on properties of its links. The object classifications are a finite set
of categories {c1, . . . , ck} where c(X) is the category c of object X. We will
consider the neighbors of an object Xi via the following relations:

• In(Xi) – the set of incoming neighbors of object Xi, {Xj | Lj→i ∈ L}.
• Out(Xi) – the set of outgoing neighbors of object Xi, {Xj | Li→j ∈ L}.
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• Co-In(Xi) – The set of objects co-cited with object Xi, {Xj | Xj �= Xi

and there is a third object Xk that links to both Xi and Xj}. We can think
of these as the co-citation in-links (Co-In), because there is an object Xk

with in-links to both Xi and Xj .
• Co-Out(Xi) – The set of objects co-cited by object Xi, {Xj | Xj �= Xi

and there is a third object Xk to which both Xi and Xj link}. We can
think of these as the co-citation out-links (Co-Out), because both Xi and
Xj have out links to some object Xk.

7.3.2 Object Features

The attributes of an object provide a basic description of the object. Tra-
ditional classification algorithms are based on object attributes. In a linked-
based approach, it may also make sense to use attributes of linked objects.
Furthermore, if the links themselves have attributes, these may also be used.1

However, in this paper, we simply use object attributes, and we use the no-
tation OA(X) for the attributes of object X. As an example, in the scientific
literature domain, the object features might consist of a variety of text in-
formation such as title, abstract, authorship and content. In the domains we
examined, the objects are text documents and the object features we use are
word occurrences.

7.3.3 Link Features

To capture the link patterns, we introduce the notion of link features as a
way of capturing the salient characteristics of the objects’ links. We examine
a variety of simple mechanisms for doing this. All are based on statistics com-
puted from the linked objects rather than the identity of the linked objects.
Describing only the limited collection of statistics computed from the links
can be significantly more compact than storing the link incidence matrix. In
addition, these models can accommodate the introduction of new objects, and
thus are applicable in a wider range of situations.

We examine several ways of constructing link features. All are constructed
from the collection of the categories of the linked objects. We use LD(X) to
denote the link description.

The simplest statistic to compute is a single feature, the mode, from each
set of linked objects from the in-links, out-links and both in and out co-citation
links. We call this the mode-link model.

We can use the frequency of the categories of the linked objects; we refer
to this as the count-link model. In this case, while we have lost the information

1Essentially this is a propositionalization [11, 20] of the aspects of the neighbor-
hood of an object in the graph. This is a technique that has been proposed in the
inductive logic programming community and is applicable here.



196 Lise Getoor

B

A

?

A

C

BB

B

A

A

A

In Links:

•mode: A

•binary: (1,1,1)

•count: (3,1,1)

Co-In Links:

•mode: A

•binary: (1,0,0)

•count: (2,0,0)

Out Links:

•mode: B

•binary: (1,1,0)

•count: (1,2,0)

Co-Out Links:

•mode: B

•binary: (1,1,0)

•count: (2,1,0)

BB

Fig. 7.1. Assuming there are three possible categories for objects, A, B and C, the
figure shows examples of the mode, binary and count link features constructed for
the object labeled with ?.

about the individual entity to which the object is connected, we maintain the
frequencies of the different categories.

A middle ground between these two is a simple binary feature vector; for
each category, if a link to an object of that category occurs at least once,
the corresponding feature is 1; the feature is 0 if there are no links to this
category. In this case, we use the term binary-link model. Figure 7.1 shows
examples of the three types of link features computed for an object for each
category of links (In links, Out links, Co-In links and Co-Out links).

7.4 Predictive Model for Object Classification

Clearly we may make use of the object and link features in a variety of models
such as naive Bayes classifiers, SVMs and logistic regression models. For the
domains that we have examined, logistic regression models have outperformed
naive Bayes models, so these are the models we have focused on.

For our predictive model, we used a regularized logistic regression model.
Given a training set of labeled data (xi, ci), where i = 1, 2, . . . , n and ci ∈
{−1,+1}, to compute the conditional probability P (c | w, x) is to find the
optimal w for the discriminative function, which is equivalent to the following
regularized logistic regression formulation [35]:

ŵ = arginfw
1
n

n∑
i=1

ln(1 + exp(−wT xici)) + λw2

where we use a zero-mean independent Gaussian prior for the parameter w:
P (w) = exp(λw2).
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The simplest model is a flat model, which uses a single logistic regression
model over both the object attributes and link features. We found that this
model did not perform well, and instead we found that a structured logistic
regression model, which uses separate logistic regression models (with differ-
ent regularization parameters) for the object features and the link features,
outperformed the flat model. Now the MAP estimation for categorization be-
comes

Ĉ(X) = argmaxc∈C

P (c | OA(X))
∏

t∈{In,Out,Co-In,Co-Out} P (c | LDt(X))

P (c)

where OA(X) are the object features and LDt(X) are the link features for
each of the different types of links t and we make the (probably incorrect)
assumption that they are independent. P (c | OA(X)) and P (c | LDt(X)) are
defined as

P (c | OA(X)) =
1

exp(−wT
o OA(X)c) + 1

P (c | LDt(X)) =
1

exp(−wT
l LDt(X)c) + 1

where wo and wl are the parameters for the regularized logistic regression
models for P (c | OA(X)) and the P (c | LDt(X)) respectively.

7.5 Link-based Classification using Labeled and
Unlabeled Data

Given data D consisting of labeled data Dl and unlabeled data Du, we define
a posterior probability over Du as

P (c(X) : X ∈ Du | D) =∏
X∈Du

P (c(X) | OA(X), LDIn(X), LDOut(X), LDCo-In(X), LDCo-Out(X))

We use an EM-like iterative algorithm to make use of both labeled data
Dl = {(xi, c(xi) : i = 1, .., n} and unlabeled data Du = {(x∗

j , c(x
∗
j ) : j =

1, ..., m} to learn our model. Initally a structured logistic regression model is
built using labeled data Dl. First, we categorize data in Du

c(x∗
j ) = argmaxc∈C

P (c | OA(x∗
j ))
∏

t P (c | LDt(x∗
j ))

P (c)

where j = 1, ..., m. Next this categorized Du and labeled data Dl are used to
build a new model.

Step 1: (Initialization) Build an initial structured logistic regression classifier
using content and link features using only the labeled training data.
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Step 2: (Iteration) Loop while the posterior probability over the unlabeled
test data increases:
1. Classify unlabeled data using the current model.
2. Recompute the link features of each object. Re-estimate the parame-

ters of the logistic regression models.

In our above iterative algorithm, after we categorize the unlabeled data,
the link descriptions for all labeled and unlabeled data will change due to the
links between labeled and unlabeled data. The first step is to recompute the
link descriptions for all data based on the results from the current estimates
and the link graph over labeled and unlabeled data.

In the iterative step there are many possible orderings for objects. One
approach is based simply on the number of links; Oh et al. [28] report no
significant improvement using this method. Neville and Jensen [25] propose
an iterative classification algorithm where the ordering is based on the infer-
ence posterior probability of the categories. They report an improvement in
classification accuracy. We explore several alternate orderings based on the
estimated link statistics. We propose a range of link-based adaptive strategies
which we call Link Diversity. Link diversity measures the number of different
categories to which an object is linked. The idea is that, in some domains at
least, we may be more confident of categorizations of objects with low link –
diversity in essence, the object’s neighbors are all in agreement. So we may
wish to make these assignments first, and then move on to the rest of the
pages. In our experiments, we evaluate the effectiveness of different ordering
schemes based on link diversity.

7.6 Results

We evaluated our link-based classification algorithm on two variants of the
Cora data set [23], a data set that we constructed from CiteSeer entries [14]
and WebKB [6].

The first Cora data set, CoraI, contains 4187 machine learning papers,
each categorized into one of seven possible topics. We consider only the 3181
papers that are cited or cite other papers. There are 6185 citations in the data
set. After stemming and removing stop words and rare words, the dictionary
contains 1400 words.

The second Cora data set, CoraII,2 contains 30,000 papers, each catego-
rized into one of ten possible topics: information retrieval, databases, artifi-
cial intelligence, encryption and compression, operating systems, networking,
hardware and architecture, data structure algorithms and theory, program-
ming and human–computer interaction. We consider only the 3352 documents
that are cited or cite other papers. There are 8594 citations in the data set.

2www.cs.umass.edu/∼mccallum/code-data.html
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After stemming and removing stop words and rare words, the dictionary con-
tains 3174 words.

The CiteSeer data set has 3312 papers from six categories: Agents, Artifi-
cial Intelligence, Database, Human Computer Interaction, Machine Learning
and Information Retrieval. There are 7522 citations in the data set. After
stemming and removing stop words and rare words, the dictionary for Cite-
Seer contains 3703 words.

The WebKB data set contains web pages from four computer science de-
partments, categorized into topics such as faculty, student, project, course
and a catch-all category, other. In our experiments we discard pages in the
“other” category, which generates a data set with 700 pages. After stemming
and removing stop words, the dictionary contains 2338 words. For WebKB,
we train on three schools, plus 2/3 of the fourth school, and test on the last
1/3.

On Cora and CiteSeer, for each experiment, we take one split as a test
set, and the remaining two splits are used to train our model: one for training
and the other for a validation set used to find the appropriate regularization
parameter λ. Common values of λ were 10−4 or 10−5. On WebKB, we learned
models for a variety of λ; here we show the best result.

In our experiments, we compared a baseline classifier (Content) with our
link-based classifiers (Mode, Binary, Count). We compared the classifiers:

• Content: Uses only object attributes.
• Mode: Combines a logistic regression classifier over the object attributes

with separate logistic regression classifiers over the mode of the In Links,
Out Links, Co-In Links, and Co-Out Links.

• Binary: Combines a logistic regression classifier over the object attributes
with a separate logistic regression classifier over the binary link statistics
for all of the links.

• Count-Link: Combines a logistic regression classifier over the object at-
tributes with a separate logistic regression classifier over the counts link
statistics for all of the links.

7.6.1 Link Model Comparison

Table 7.1 shows details of our results using four different metrics (accuracy,
precision, recall and F1 measure)3 on the four data sets. Figure 7.2 shows a
summary of the results for the F1 measure.

3A true positive is a document that is correctly labeled. Let TP be the number
of true positives, FP be the number of false positive, TN be the number of true
negatives, FP be the number of false negatives. Accuracy is the percentage of cor-
rectly labeled documents, TP+TN

TP+FP+TN+FN
. Precision, recall and the F1 measure are

macro-averaged over each of the categories. Precision is the percentage of documents
that are predicted to be of a category, that actually are of that category TP

TP+FP
.

Recall is the percentage of documents that are predicted to be of a category, out of
all the documents of the category TP

TP+FN
. The F1 measure is 2PR

R+P
.
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Table 7.1. Results with Content, Mode, Binary and Count models on CoraI,
CoraII, CiteSeer and WebKB. Statistically significant results (at or above 90% con-
fidence level) for each row are shown in bold.

CoraI
Content Mode Binary Count

avg accuracy 68.14 82.35 77.53 83.14
avg precision 67.47 81.01 77.35 81.74
avg recall 63.08 80.08 76.34 81.20
avg F1 measure 64.17 80.0 75.69 81.14

CoraII
Content Mode Binary Count

avg accuracy 67.55 83.03 81.46 83.66
avg precision 65.87 78.62 74.54 80.62
avg recall 47.51 75.27 75.69 76.15
avg F1 measure 52.11 76.52 74.62 77.77

CiteSeer
Content Mode Binary Count

avg accuracy 60.59 71.01 69.83 71.52
avg precision 55.48 64.61 62.6 65.22
avg recall 55.33 60.09 60.3 61.22
avg F1 measure 53.08 60.68 60.28 61.87

WebKB
Content Mode Binary Count

avg accuracy 87.45 88.52 78.91 87.93
avg precision 78.67 77.27 70.48 77.71
avg recall 72.82 73.43 71.32 73.33
avg F1 measure 71.77 73.03 66.41 72.83
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Fig. 7.2. Average F1 measure for different models (Content, Mode, Binary and
Count) on four data sets (CoraI, CoraII, CiteSeer and WebKB).

In this set of experiments, all of the links (In Links, Out Links, Co-In
Links, Co-Out Links) are used and we use a fixed ordering for the iterative
classification algorithm.
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For all four data sets, the link-based models outperform the content only
models. For three of the four data sets, the difference is statistically significant
at the 99% significance level. For three of the four data sets, count outper-
forms mode at the 90% significance level or higher, for both accuracy and F1
measure. Both mode and count outperform binary; the difference is most
dramatic for CoraI and WebKB.

Clearly, the mode, binary and count link-based models are using infor-
mation from the description of the link neighborhood of an object to improve
classification performance. Mode and count seem to make the best use of
the information; one explanation is that while binary contains more informa-
tion in terms of which categories of links exist, it loses the information about
which link category is most frequent. In many domains one might think that
mode should be enough information, particulary bibliographic domains. So it
is somewhat surprising that the count model is the best for our three citation
data sets.

Our results on WebKB were less reliable. Small changes to the ways that
we structured the classifiers resulted in different outcomes. Overall, we felt
there were problems because the link distributions were quite different among
the different schools. Also, after removing the other pages, the data set is
rather small.

7.6.2 Effect of Link Types

Different Link Types
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Fig. 7.3. Average F1 measure for Count on four data sets (CoraI, CoraII, CiteSeer
and WebKB) for varying content and links (Content, Links, In Links & Content,
Out Links & Content, Co-In Links & Content, Co-Out links & Content and Links
& Content).

Next we examined the individual effect of the different categories of links:
In Links, Out Links, Co-In Links and Co-Out links. Using the count
model, we included in the comparision Content, with a model which used
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all the links, but no content (Links),4 and Link & Content (which gave
us the best results in the previous section). Figure 7.3 shows the average F1
accuracy for the four of the data sets using different link types.

Clearly using all of the links performs best. Individually, the Out Links
and Co-In Links seem to add the most information, although again, the
results for WebKB are less definitive.

More interesting is the difference in results when using only Links versus
Links & Content. For CoraI and Citeseer, Links only performs reasonably
well, while for the other two cases, CoraII and WebKB, it performs horribly.
Recall that the content helps give us an initial starting point for the iterative
classification algorithm. Our theory is that, for some data sets, especially
those with fewer links, getting a good initial starting point is very important.
In others, there is enough information in the links to overcome a bad starting
point for the iterative classification algorithm. This is an area that requires
further investigation.

7.6.3 Prediction with Links Between Training and Test Sets

Next we were interested in investigating the issue of exploiting the links be-
tween test and training data for predictions. In other work, Neville and Jensen
[25], Getoor et al. [12] and Taskar et al. [31] used link distributions for cate-
gorization; the experimental data set are split into training set and test set,
and any links across training and test sets are ignored.

In reality, in domains such as web and scientific literature, document col-
lections are constantly expanding. There are new papers published and new
web sites created. New objects and edges are being added to the existing
graph. A more realistic evaluation, such as that done in Chakrabarti et al. [4],
exploits the links between test and training.

In an effort to understand this phenomenon more fully, we examined the
effect of ignoring links between training and test sets. Here we compared a
method which discards all link information across training set and test set,
which is denoted as “Test Links Only”, with a more realistic method which
keeps all the links between test and training sets which is denoted as “Com-
plete Links”. The results are shown in Table 7.2. With “Test Links Only”, in
our iterative classification process, the link descriptions of test data are con-
structed based only on the link graph over test data, while with “Complete
Links” link descriptions of test data are formulated over the link graph using
both training and test data. These results demonstrate that the complete link
structure is informative and can be used to improve overall performance.

7.6.4 Link-based Classification using Labeled and Unlabeled Data

In the previous section we experimented with making use of labeled data
from the training set during testing. Next we explore the more general setting

4This model was inspired by results in [21].
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Table 7.2. Avg F1 results using “Test Links Only” and “Complete Links” on CoraI,
CoraII, CiteSeer and WebKB.

Test Links Only Complete Links
Mode Binary Count Mode Binary Count

CoraI 75.85 71.57 79.16 80.00 75.69 81.14
CoraII 58.70 58.19 61.50 76.52 74.62 77.77
CiteSeer 59.06 60.03 60.74 60.68 60.28 61.87
WebKB 73.02 67.29 71.79 73.03 66.41 72.83

of learning with labeled and unlabeled data using the iterative algorithm
proposed in Section 7.5. To better understand the effects of unlabeled data, we
compared the performance of our algorithm with varying amounts of labeled
and unlabeled data.

For two of the domains, CoraII and CiteSeer, we randomly choose 20%
of the data as test data. We compared the performance of the algorithms
when different percentages (20%, 40%, 60%, 80%) of the remaining data is
labeled. We compared the accuracy when only the labeled data is used for
training (Labeled only) with the case where both labeled and the remaining
unlabeled data is used for training (Labeled and Unlabeled).

• Content: Uses only object attributes.
• Labeled Only: The link model is learned on labeled data only. The only

unlabeled data used is the test set.
• Labeled and Unlabeled: The link model is learned on both labeled and

all of the unlabeled data.

Figure 7.4 shows the results averaged over five different runs. The algo-
rithm which makes use of all of the unlabeled data gives better performance
than the model which uses only the labeled data.

For both data sets, the algorithm which uses both labeled and unlabeled
data outperforms the algorithm which uses Labeled Only data; even with 80%
of the data labeled and only 20% of the data unlabeled, the improvement in
error on the test set using unlabeled data is statistically significant at the 95%
confidence level for both Cora and Citeseer.

7.6.5 Ordering Strategies

In the last set of experiments, we examined various ICA ordering strategies.
Our experiments indicate that final test errors with different ordering strategy
have a standard deviation around 0.001. There is no significant difference
with various link diversity to order the predictions. We also compared with
an ordering based on the posterior probability of the categories as done in
Neville and Jensen [25], denoted PP.

While the different iteration schemes converge to about the same accuracy,
their convergence rate varies. To understand the effect of the ordering scheme
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Fig. 7.4. (a) Results varying the amount of labeled and unlabeled data used for
training on CoraII (b) and on CiteSeer. The results are averages of five runs.
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at a finer level of detail, Figure 7.5 shows an example of the accuracy of
the different iteration schemes for the CoraII data set (to make the graph
readable, we show only ordering by increasing diversity of out links (INC-Out)
and decreasing diversity of out-links (DEC-Out); the results for in links, co-in
links and co-out links are similar). Our experiments indicate that ordering
by increasing link diversity converges faster than ordering by decreasing link
diversity, and the RAND ordering converges the most quickly at the start.



References 205

7.7 Conclusions

Many real-world data sets have rich structures, where the objects are linked
in some way. Link mining targets data-mining tasks on this richly-structured
data. One major task of link mining is to model and exploit the link distribu-
tions among objects. Here we focus on using the link structure to help improve
classification accuracy.

In this chapter we have proposed a simple framework for modeling link
distributions, based on link statistics. We have seen that for the domains we
examined, a combined logistic classifier built over the object attributes and
link statistics outperforms a simple content-only classifier. We found the ef-
fect of different link types is significant. More surprisingly, the mode of the
link statistics is not always enough to capture the dependence. Avoiding the
assumption of homogeneity of labels and modeling the distribution of the link
categories at a finer grain is useful.
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Knowledge Discovery from Evolutionary Trees

Sen Zhang and Jason T. L. Wang

Summary. In this chapter we present new techniques for discovering knowledge
from evolutionary trees. An evolutionary tree is a rooted unordered labeled tree in
which there is a root and the order among siblings is unimportant. The knowledge to
be discovered from these trees refers to “cousin pairs” in the trees. A cousin pair is
a pair of nodes sharing the same parent, the same grandparent, or the same great-
grandparent, etc. Given a tree T , our algorithm finds all interesting cousin pairs
of T in O(|T |2) time where |T | is the number of nodes in T . We also extend this
algorithm to find interesting cousin pairs in multiple trees. Experimental results
on synthetic data and real trees demonstrate the scalability and effectiveness of
the proposed algorithms. To show the usefulness of these techniques, we discuss an
application of the cousin pairs to evaluate the consensus of equally parsimonious
trees and compare them with the widely used clusters in the trees. We also report
the implementation status of the system built based on the proposed algorithms,
which is fully operational and available on the world-wide web.

8.1 Introduction

Data mining, or knowledge discovery from data, refers to the process of ex-
tracting interesting, non-trivial, implicit, previously unknown and potentially
useful information or patterns from data [13]. In life sciences, this process
could refer to detecting patterns in evolutionary trees, extracting clustering
rules for gene expressions, summarizing classification rules for proteins, infer-
ring associations between metabolic pathways and predicting genes in genomic
DNA sequences [25, 26, 28, 29], among others. This chapter presents knowl-
edge discovery algorithms for extracting patterns from evolutionary trees.

Scientists model the evolutionary history of a set of taxa (organisms or
species) that have a common ancestor using rooted unordered labeled trees,
also known as phylogenetic trees (phylogenies) or evolutionary trees [20]. The
internal nodes within a particular tree represent older organisms from which
their child nodes descend. The children represent divergences in the genetic
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composition in the parent organism. Since these divergences cause new or-
ganisms to evolve, these organisms are shown as children of the previous or-
ganism. Evolutionary trees are usually constructed from molecular data [20].
They can provide guidance in aligning multiple molecular sequences [24] and
in analyzing genome sequences [6].

The patterns we want to find from evolutionary trees contain “cousin
pairs.” For example, consider the three hypothetical evolutionary trees in
Figure 8.1. In the figure, a and y are cousins with distance 0 in T1; e and f
are cousins with distance 0.5 in T2; b and f are cousins with distance 1 in all
the three trees.
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Fig. 8.1. Three trees T1, T2 and T3. Each node in a tree may or may not have
a label, and is associated with a unique identification number (represented by the
integer outside the node).

The measure “distance” represents kinship of two nodes; two cousins with
distance 0 are siblings, sharing the same parent node. Cousins of distance
1 share the same grandparent. Cousins of distance 0.5 represent aunt–niece
relationships. Our algorithms can find cousin pairs of varying distances in a
single tree or multiple trees. The cousin pairs in the trees represent evolution-
ary relationships between species that share a common ancestor. Finding the
cousin pairs helps one to better understand the evolutionary history of the
species [22], and to produce better results in multiple sequence alignment [24].

The rest of the chapter is organized as follows. Section 8.2 introduces
notation and terminology. Section 8.3 presents algorithms for finding frequent
cousin pairs in trees. Section 8.4 reports experimental results on both synthetic
data and real trees, showing the scalability and effectiveness of the proposed
approach. Section 8.5 reports implementation efforts and discusses several
applications where we use cousin pairs to define new similarity measures for
trees and to evaluate the quality of consensuses of equally parsimonious trees.
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Section 8.6 compares our work with existing methods. Section 8.7 concludes
the chapter and points out some future work.

8.2 Preliminaries

We model evolutionary trees by rooted unordered labeled trees. Let Σ be a
finite set of labels. A rooted unordered labeled tree of size k > 0 on Σ is a
quadruple T = (V, N, L, E), where

• V is the set of nodes of T in which a node r(T ) ∈ V is designated as the
root of T and |V | = k;

• N : V �→ {1 . . . , k} is a numbering function that assigns a unique identifi-
cation number N(v) to each node v ∈ V ;

• L : V ′ �→ Σ, V ′ ⊆ V , is a labeling function that assigns a label L(v) to
each node v ∈ V ′; the nodes in V − V ′ do not have a label;

• E ⊂ N(V )×N(V ) contains all parent–child pairs in T .

For example, refer to the trees in Figure 8.1. The node numbered 6 in T1
does not have a label. The nodes numbered 2, 3 in T3 have the same label d
and the nodes numbered 5, 6 in T3 have the same label c. We now introduce
a series of definitions that will be used in our algorithms.

Cousin Distance
Given two labeled nodes u, v of tree T where neither node is the parent of
the other, we represent the least common ancestor, w, of u and v as lca(u, v),
and represent the height of u, v respectively, in the subtree rooted at w as
H(u, w), H(v, w) respectively. We define the cousin distance of u and v, de-
noted c dist(u, v), as shown in Equation (8.1).

c dist(u, v) =
{

H(u, w)− 1 if H(u, w) = H(v, w)
max{H(u, w), H(v, w)} − 1.5 if |H(u, w)−H(v, w)| = 1

(8.1)
The cousin distance c dist(u, v) is undefined if |H(u, w) − H(v, w)| is

greater than 1, or one of the nodes u, v is unlabeled. (The cutoff of 1 is a
heuristic choice that works well for phylogeny. In general there could be no
cutoff, or the cutoff could be much greater.)

Our cousin distance definition is inspired by genealogy [12]. Node u is a
first cousin of v, or c dist(u, v) = 1, if u and v share the same grandparent. In
other words, v is a child of u’s aunts or vice versa. Node u is a second cousin
of v, or c dist(u, v) = 2, if u and v have the same great-grandparent, but not
the same grandparent. For two nodes u, v that are siblings, i.e. they share the
same parent, c dist(u, v) = 0.

We use the number “0.5” to represent the “once removed” relationship.
When the word “removed” is used to describe a relationship between two
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nodes, it indicates that the two nodes are from different generations. The
words “once removed” mean that there is a difference of one generation. For
any two labeled nodes u and v, if u is v’s parent’s first cousin, then u is
v’s first cousin once removed [12], and c dist(u, v) = 1.5. “Twice removed”
means that there is a two-generation difference. Our cousin distance definition
requires |H(u, w)−H(v, w)| ≤ 1 and excludes the twice removed relationship.
As mentioned above, this is a heuristic rather than a fundamental restriction.

For example, consider again T1 in Figure 8.1. There is a one-generation
difference between the aunt–niece pair y, x and c dist(y, x) = 0.5. Node b is
node f ’s first cousin and c dist(b, f) = 1. Node d is node g’s first cousin
once removed, and c dist(d, g) = 1.5. Node f is node g’s second cousin,
and c dist(f, g) = 2. Node f is node p’s second cousin once removed, and
c dist(f, p) = 2.5.

Notice that parent–child relationships are not included in our work be-
cause the internal nodes of evolutionary trees usually have no labels. (Each
leaf in these trees has a label, which is a taxon name.) So, we do not treat
parent–child pairs at all. This heuristic works well in phylogenetic applica-
tions, but could be generalized. We proposed one such generalization using
the UpDown distance [27]. Another approach would be to use one upper limit
parameter for inter-generational (vertical) distance and another upper limit
parameter for horizontal distance.

Cousin Pair Item
Let u, v be cousins in tree T . A cousin pair item of T is a quadruple
(L(u), L(v), c dist(u, v), occur(u, v)) where L(u) and L(v) are labels of u, v,
respectively, c dist(u, v) is the cousin distance of u, v and occur(u, v) > 0 is
the number of occurrences of the cousin pair in T with the specified cousin
distance. Table 8.1 lists all the cousin pair items of tree T3 in Figure 8.1.
Consider, for example, the cousin pair item (d, c, 0.5, 2) in the second row
of Table 8.1. Nodes 2 and 6, and nodes 3 and 5 are an aunt–niece pairs with
cousin distance 0.5. When taking into account labels of these nodes, we see
that the cousin pair (d, c) with distance 0.5 occurs 2 times totally in tree T3,
and hence (d, c, 0.5, 2) is a valid cousin pair item in T3.

Table 8.1. Cousin pair items of T3 in Figure 8.1.

Cousin Distance Cousin Pair Items
0 (b, c, 0, 1), (c, f, 0, 1), (d, d, 0, 1)

0.5 (d, b, 0.5, 1), (d, c, 0.5, 2), (d, f, 0.5, 1)
1 (b, f, 1, 1), (b, c, 1, 1), (c, c, 1, 1), (c, f, 1, 1)

We may also consider the total number of occurrences of the cousins u and
v regardless of their distance, for which case we use λ in place of c dist(u, v) in
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the cousin pair item. For example, in Table 8.1, T3 has (b, c, 0, 1) and (b, c, 1, 1),
and hence we obtain (b, c, λ, 2). Here, the cousin pair (b, c) occurs once with
distance 0 and occurs once with distance 1. Therefore, when ignoring the
distance, the total number of occurrences of (b, c) is 2. Likewise we can ig-
nore the number of occurrences of a cousin pair (u, v) by using λ in place of
occur(u, v) in the cousin pair item. For example, in Table 8.1, T3 has (b, c, 0, λ)
and (b, c, 1, λ). We may ignore both the cousin distance and the number of oc-
currences and focus on the cousin labels only. For example, T3 has (b, c, λ, λ),
which simply indicates that b, c are cousins in T3.

Frequent Cousin Pair
Let S = {T1, T2, . . . , Tn} be a set of n trees and let d be a given distance value.
We define δu,v,i to be 1 if Ti has the cousin pair item (L(u), L(v), d, occur(u, v)),
occur(u, v) > 0; otherwise δu,v,i is 0. We define the support of the cousin pair
(u, v) with respect to the distance value d as Σ1≤i≤nδu,v,i. Thus the sup-
port value represents the number of trees in the set S that contain at least
one occurrence of the cousin pair (u, v) having the specified distance value
d. A cousin pair is frequent if its support value is greater than or equal to a
user-specified threshold, minsup.

For example, consider Figure 8.1 again. T1 has the cousin pair item
(c, f, 1, 1), T2 has the cousin pair item (c, f, 0.5, 1) and T3 has the cousin
pair item (c, f, 1, 1) and (c, f, 0, 1). The support of (c, f) w.r.t. distance 1 is
2 because both T1 and T3 have this cousin pair with the specified distance.
One can also ignore cousin distances when finding frequent cousin pairs. For
example, the support of (c, f) is 3 when the cousin distances are ignored.

Given a set S of evolutionary trees, our approach offers the user several
alternative kinds of frequent cousin pairs in these trees. For example, the
algorithm can find, in a tree T of S, all cousin pairs in T whose distances
are less than or equal to maxdist and whose occurrence numbers are greater
than or equal to minoccur, where maxdist and minoccur are user-specified
parameters. The algorithm can also find all frequent cousin pairs in S whose
distance values are at most maxdist and whose support values are at least
minsup for a user-specified minsup value. In the following section, we will
describe the techniques used in finding these frequent cousin pairs in a single
tree or in multiple trees.

8.3 Tree-Mining Algorithms

Given a tree T and a node u of T , let children set(u) contain all children of
u. Our algorithm preprocesses T to obtain children set(u) for every node u
in T . We also preprocess T to be able to locate a list of all ancestors of any
node u in O(1) time using a conventional hash table.

Now, given a user-specified value maxdist, we consider all valid distance
values 0, 0.5, 1, 1.5, . . ., maxdist. For each valid distance value d, we define
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my level(d) and mycousin level(d) as follows:

my level(d) = 1 + �d� (8.2)
mycousin level(d) = my level(d) + R (8.3)

where

R = 2× (d− �d�) (8.4)

Let m = my level(d) and n = mycousin level(d). Intuitively, given a node
u and the distance value d, beginning with u, we can go m levels up to reach an
ancestor w of u. Then, from w, we can go n levels down to reach a descendant v
of w. Referring to the cousin distance definition in Equation (8.1), c dist(u, v)
must be equal to the distance value d. Furthermore, all the siblings of u must
also be cousins of the siblings of v with the same distance value d. These
nodes are identified by their unique identification numbers. To obtain cousin
pair items having the form (L(u), L(v), c dist(u, v), occur(u, v)), we check the
node labels of u, v and add up the occurrence numbers for cousin pairs whose
corresponding node labels are the same and whose cousin distances are the
same. Figure 8.2 summarizes the algorithm.

Notice that within the loop (Steps 3 to 10) of the algorithm in Figure 8.2,
we find cousin pairs with cousin distance d where d is incremented from 0
to maxdist. In Step 8 where a cousin pair with the current distance value d
is formed, we check, through node identification numbers, to make sure this
cousin pair is not identical to any cousin pair with less distance found in a
previous iteration in the loop. This guarantees that only cousin pairs with
exact distance d are formed in the current iteration in the loop.

Lemma 1. Algorithm Single Tree Mining correctly finds all cousin pair items
of T where the cousin pairs have a distance less than or equal to maxdist and
an occurrence number greater than or equal to minoccur.
Proof. The correctness of the algorithm follows directly from two observa-
tions: (i) every cousin pair with distance d where 0 ≤ d ≤ maxdist is found
by the algorithm; (ii) because Step 9 eliminates duplicate cousin pairs from
consideration, no cousin pair with the same identification numbers is counted
twice.

Lemma 2. The time complexity of algorithm Single Tree Mining is O(|T |2).
Proof. The algorithm visits each children set of T . For each visited node, it
takes at most O(|T |) time to go up and down to locate its cousins. Thus, the
time spent in finding all cousin pairs identified by their unique identification
numbers is O(|T |2). There are at most O(|T |2) such cousin pairs. Through the
table lookup, we get their node labels and add up the occurrence numbers of
cousin pairs whose distances and corresponding node labels are the same in
O(|T |2) time.
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Procedure: Single Tree Mining
Input: A tree T and a maximum distance value allowed, maxdist, and a minimum

occurrence number allowed, minoccur.
Output: All cousin pair items of T where the cousin pairs have a distance less

than or equal to maxdist and an occurrence number greater than or
equal to minoccur.

1. for each node p where children set(p) �= ∅ do
2. begin
3. for each valid distance value d ≤ maxdist do
4. begin
5. let u be a node in children set(p);
6. calculate m = my level(d) and n = mycousin level(d) as defined

in Equations (8.2), (8.3);
7. beginning with u, go m levels up to reach an ancestor w and

then from w, go n levels down to reach a descendant v of w;
8. combine all siblings of u and all siblings of v to form cousin pairs

with the distance value d;
9. if a specific pair of nodes with the distance d has been found

previously, don’t double-count them;
10. end;
11. end;
12. add up the occurrence numbers of cousin pairs whose corresponding node

labels are the same and whose cousin distances are the same to get
qualified cousin pair items of T .

Fig. 8.2. Algorithm for finding frequent cousin pair items in a single tree.

To find all frequent cousin pairs in a set of trees {T1, . . . , Tk} whose dis-
tance is at most maxdist and whose support is at least minsup for a user-
specified minsup value, we first find all cousin pair items in each of the trees
that satisfy the distance requirement. Then we locate all frequent cousin pairs
by counting the number of trees in which a qualified cousin pair item occurs.
This procedure will be referred to as Multiple Tree Mining and its time com-
plexity is clearly O(kn2) where n = max{|T1|, . . . , |Tk|}.

8.4 Experiments and Results

We conducted a series of experiments to evaluate the performance of the pro-
posed tree-mining algorithms, on both synthetic data and real trees, run under
the Solaris operating system on a SUN Ultra 60 workstation. The synthetic
data was produced by a C++ program based on the algorithm developed in
[15]. This program is able to generate a large number of random trees from
the whole tree space. The real trees were obtained from TreeBASE, available
at www.treebase.org [21].
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Table 8.2 summarizes the parameters of our algorithms and their default
values used in the experiments. The value of 4 was used for minimum support
because the evolutionary trees in TreeBASE differ substantially and using this
support value allowed us to find interesting patterns in the trees. Table 8.3
lists the parameters and their default values related to the synthetic trees.
The fanout of a tree is the number of children of each node in the tree. The
alphabet size is the total number of distinct node labels these synthetic trees
have.

Table 8.2. Parameters and their default values used in the algorithms.

Name Meaning Value
minoccur minimum occurrence number of an interesting cousin pair 1

in a tree
maxdist maximum distance allowed for an interesting cousin pair 1.5
minsup minimum number of trees in the database that contain 4

an interesting cousin pair

Table 8.3. Parameters and their default values related to synthetic trees.

Name Meaning Value
tree size number of nodes in a tree 200

database size number of trees in the database 1000
fanout number of children of each node in a tree 5

alphabet size size of the node label alphabet 200

Figure 8.3 shows how changing the fanout of synthetic trees affects the
running time of the algorithm Single Tree Mining. 1000 trees were tested and
the average was plotted. The other parameter values are as shown in Table 8.2
and Table 8.3. Given a fixed tree size value, a large fanout value will result in
a small number of children sets, which will consequently reduce the times of
executing the outer for-loop of the algorithm, see Step 1 in Figure 8.2. There-
fore, one may expect that the running time of Single Tree Mining drops as
fanout increases. To our surprise, however, Figure 8.3 shows that the running
time of Single Tree Mining increases as a tree becomes bushy, i.e. its fanout
becomes large. This happens mainly because for bushy trees, each node has
many siblings and hence more qualified cousin pairs could be generated, see
Step 8 in Figure 8.2. As a result, it takes more time in the postprocessing
stage to aggregate those cousin pairs, see Step 12 in Figure 8.2.

Figure 8.4 shows the running times of Single Tree Mining with different
maxdist values for varying node numbers of trees. 1000 synthetic trees were
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Fig. 8.4. Effect of maxdist and tree size.

tested and the average was plotted. The other parameter values are as shown
in Table 8.2 and Table 8.3. It can be seen from the figure that as maxdist
increases, the running time becomes large, because more time will be spent
in the inner for-loop of the algorithm for generating cousin pairs, Steps 3
to 10 in Figure 8.2. We also observed that a lot of time needs to be spent in
aggregating qualified cousin pairs in the postprocessing stage of the algorithm,
Step 12 in Figure 8.2. This extra time, though not explicitly described by the
asymptotic time complexity O(|T |2) in Lemma 2, is reflected by the graphs
in Figure 8.4.
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The running times of Multiple Tree Mining when applied to 1 million syn-
thetic trees and 1,500 evolutionary trees obtained from TreeBASE are shown
in Figures 8.5 and 8.6, respectively. Each evolutionary tree has between 50
and 200 nodes and each node has between two and nine children (most in-
ternal nodes have two children). The size of the node label alphabet for the
evolutionary trees is 18,870. The other parameter values are as shown in Ta-
ble 8.2 and Table 8.3. We see from Figure 8.6 that Multiple Tree Mining can
find all frequent cousin pair items in the 1,500 evolutionary trees in less than
150 seconds. The algorithm scales up well – its running time increases linearly
with increasing number of trees (Figure 8.5).
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8.5 Implementation and Applications

8.5.1 Evolutionary Tree Miner

Fig. 8.7. Interface of the proposed evolutionary tree miner.

We have implemented the proposed algorithms into a system, called evo-
lutionary tree miner, that runs on a collection of phylogenies obtained from
TreeBASE. Figure 8.7 shows the interface of the evolutionary tree miner. The
user can input a set of tree IDs as described in TreeBASE and specify ap-
propriate parameter values through the interface shown in the left window
of the system. The data mining result is shown in the right window of the
system. Each discovered cousin pair has the format (label1, label2, c dist, oc-
currence): k, where k is the number of input trees in which the cousin pair
occurs. For example, (Scutellaria californica, Scutellaria siphocampyloides, 0,
1): 5 indicates that Scutellaria californica and Scutellaria siphocampyloides is
a cousin pair of distance 0 that occurs in five input trees, with the occurrence
number in each tree being one. The cousin pairs in the output list shown
in the right window are sorted and displayed based on cousin distances and
support values. By clicking on a tree ID (e.g. Tree873), the user can see a
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graphical display of the tree via a pop-up window, as shown in Figure 8.8.
In this figure, the found cousin pair (Scutellaria californica and Scutellaria
siphocampyloides) is highlighted with a pair of bullets.

Fig. 8.8. A discovered cousin pair highlighted with bullets.

8.5.2 New Similarity Measures for Trees

We develop new similarity measures for comparing evolutionary trees based
on the cousin pairs found in the trees. Specifically, let T1 and T2 be two trees.
Let cpi(T1) contain all the cousin pair items of T1 and let cpi(T2) contain all
the cousin pair items generated from T2. We define the similarity of T1 and
T2, denoted t sim(T1, T2), as

t sim(T1, T2) =
|cpi(T1) ∩ cpi(T2)|
|cpi(T1) ∪ cpi(T2)|

(8.5)

Depending on whether the cousin distance and the number of occurrences of a
cousin pair in a tree are considered, we have four different types of cousin pair
items in the tree. Consequently we obtain four different tree similarity mea-
sures. We represent them by t simnull(T1, T2) (considering neither the cousin
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distance nor the occurrence number in each tree), t simcdist(T1, T2) (consid-
ering the cousin distance only in each tree), t simocc(T1, T2) (considering the
occurrence number only in each tree), and t simocc cdist(T1, T2) (considering
both the cousin distance and the occurrence number in each tree), respectively.

For example, referring to the trees T2 and T3 in Figure 8.1, we have
t simnull (T2, T3) = 4

12 = 0.33, t simcdist(T2, T3) = 2
16 = 0.125, t simocc(T2,

T3) = 4
12 = 0.33, t simocc cdist(T2, T3) = 2

16 = 0.125. The intersection and
union of two sets of cousin pair items take into account the occurrence num-
bers in them. For example, suppose cpi(T1) = {(a, b, m, occur1)} and cpi(T2) =
{(a, b, m, occur2)}. Then cpi(T1) ∩ cpi(T2) = {(a, b, m,min(occur1, occur2))}
and cpi(T1)∪cpi(T2) = {(a, b, m,max(occur1, occur2))}. These similarity mea-
sures can be used to find kernel trees in a set of phylogenies [22].

8.5.3 Evaluating the Quality of Consensus Trees

One important topic in phylogeny is to automatically infer or reconstruct
evolutionary trees from a set of molecular sequences or species. The most
commonly used method for tree reconstruction is based on the maximum
parsimony principle [11]. This method often generates multiple trees rather
than a single tree for the input sequences or species. When the number of
equally parsimonious trees is too large to suggest an informative evolution
hypothesis, a consensus tree is sought to summarize the set of parsimonious
trees. Sometimes the set is divided into several clusters and a consensus tree
for each cluster is derived [23].

There are five most popular methods for generating consensus trees:
Adams [1], strict [8], majority [17], semi-strict [2], and Nelson [18]. We de-
velop a method to evaluate the quality of these consensus trees based on a
similarity measure defined in the previous subsection.

Specifically, let C be a consensus tree and let S be the set of original
parsimonious trees from which the consensus tree C is generated. Let T be a
tree in S. We define the similarity score, based on cousins, between C and T ,
denoted δcus(C, T ), as

δcus(C, T ) = t simcdist(C, T ) (8.6)

where the similarity measure t simcdist is as defined in the previous subsec-
tion.

The average similarity score, based on cousins, of the consensus tree C
with respect to the set S, denoted ∆cus(C, S), is

∆cus(C, S) =
∑

T ∈S δcus(C,T )
|S| (8.7)

where |S| is the total number of trees in the set S. The higher the average
similarity score ∆cus(C, S) is, the better consensus tree C is.

Figure 8.9 compares average similarity scores of the consensus trees gener-
ated by the five methods mentioned above for varying number of parsimonious
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trees. The parameter values used by our algorithms for finding the cousin
pairs are as shown in Table 8.2. The parsimonious trees were generated by
the PHYLIP tool [10] using the first 500 nucleotides extracted from six genes
representing paternally, maternally, and biparentally inherited regions of the
genome among 16 species of Mus [16]. There are 33 trees in total. We randomly
choose 10, 15, 20, 25, 30 or 33 trees for each test. In each test, five different
individual runs of the algorithms are performed and the average is plotted. It
can be seen from Figure 8.9 that the majority consensus method and Nelson
consensus method are better than the other three consensus methods – they
yield consensus trees with higher average similarity scores.
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Fig. 8.9. Comparing the quality of consensus trees using cousin pairs.

In addition to cousin patterns, we have also considered another type of
patterns, namely clusters, for evaluating the quality of consensus trees. Given
an evolutionary tree T and a non-leaf node n of T , the cluster in T with
respect to n is defined to be the set of all leaves in the subtree rooted at n
[19]. The cluster set of T , denoted cluster set(T ), is the set of clusters with
respect to all non-leaf nodes in T . For example, consider T3 in Figure 8.1. The
cluster set of T3 is {{4, 5},{6, 7}, {4, 5, 6, 7}} where each integer represents
a node identification number in T3.

Now, let C be a consensus tree and let S be the set of original parsimonious
trees from which the consensus tree C is generated. Let T be a tree in S.
We define the similarity score, based on clusters, between C and T , denoted
δclu(C, T ), as

δclu(C, T ) =
|cluster set(C) ∩ cluster set(T )|
|cluster set(C) ∪ cluster set(T )| (8.8)

The average similarity score, based on clusters, of the consensus tree C with
respect to the set S, denoted ∆clu(C, S), is
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∆clu(C, S) =
∑

T∈S δclu(C, T )
|S| (8.9)

For example, let us assume the cluster set of tree C, cluster set(C), is {{a,
b, c},{d, e}}. Assume the cluster set of tree T , cluster set(T ), is {{a, b},{a,
b, c}, {a, b, c, d}}. Since only {a, b, c} appears in both sets, δclu(C, T ) is

δclu(C, T ) =
|cluster set(C) ∩ cluster set(T )|
|cluster set(C) ∪ cluster set(T )|

= 1/4
= 0.25
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Fig. 8.10. Comparing the quality of consensus trees using clusters.

Figure 8.10 shows the experimental results in which clusters are used to
evaluate the quality of consensus trees. The data used here are the same as the
data for cousin pairs. In comparing the graphs in Figure 8.9 and Figure 8.10,
we observe that majority consensus and Nelson consensus trees are the best
consensus trees, yielding the highest average similarity scores between the
consensus trees and the original parsimonious trees. A close look at the data
reveals why this happens. All the original parsimonious trees are fully resolved;
i.e. the resolution rate [23] of these trees is 100%. This means every node
in an original parsimonious tree has two children, i.e. the tree is a binary
tree. Furthermore the average depth of these trees is eight. When considering
10 out of 33 parsimonious trees, the average resolution rate and the depth
of the obtained majority consensus trees are 73% and 7 respectively. The
average resolution rate and the depth of the obtained Nelson consensus trees
are 66% and 7 respectively. The average resolution rate and the depth of
Adams consensus trees are 60% and 6 respectively. The average resolution rate
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and the depth of the strict consensus trees are only 33% and 4 respectively.
This shows that the majority consensus trees and Nelson consensus trees are
closest to the original parsimonious trees. On average, the majority consensus
trees differ from the Nelson consensus trees by only two clusters and five cousin
pairs. These small differences indicate that these two kinds of consensus trees
are close to each other. Similar results were observed for the other input data.

Notice that, in Figure 8.10 where clusters are used, the average similar-
ity scores for strict consensus trees decrease monotonously as the number of
equally parsimonious trees increases. This happens because when the number
of equally parsimonious trees is large, the number of common clusters shared
by all the parsimonious trees becomes small. Thus, the obtained strict con-
sensus trees become less resolved; i.e., they are shallow and bushy. As a result,
the similarity scores between the strict consensus trees and each fully resolved
parsimonious tree become small.

Notice also that, in both Figure 8.9 and Figure 8.10, the average similarity
scores of semi-strict consensus trees and strict consensus trees are almost the
same. This happens because the parsimonious trees used in the experiments
are all generated by the PHYLIP tool, which produces fully resolved binary
trees. It is well known that a semi-strict consensus tree and a strict consensus
tree are exactly the same when the original equally parsimonious trees are
binary trees [2].

8.6 Related Work

In this section, we compare the proposed cousin-finding method and similarity
measures with existing approaches. Computational biologists have developed
several metrics for analyzing phylogenetic trees. The best known tree metrics
include the quartet metric, triplet metric, partition metric, nearest neighbor
interchange (NNI) metric and maximum agreement subtree metric. All of
these metrics have been implemented in Page’s COMPONENT toolbox [19].

The quartet metric, designed mainly for unrooted trees, is to check whether
two given trees have similar “quartets”, which are obtained based on adja-
cency relationships among all possible subsets of four leaves (species or taxa).
The similarity between the two trees is then computed as the proportion of
quartets that are shared in the two trees. A naive algorithm for calculating
the quartet metric between two trees has the time complexity of O(n4) where
n is the number of nodes in the trees. Douchette [9] proposed an efficient
algorithm with the time complexity of O(n3), which is implemented in COM-
PONENT. More recently, Bryant et al. [5] proposed a method to compute the
quartet metric between two trees in time O(n2). Brodal et al. [3] presented
an algorithm that runs in time O(n log n) with the constraint that the trees
have to be fully resolved. When using COMPONENT to calculate the quartet
metric for rooted trees, these trees are treated as unrooted trees.



8.6 Related Work 227

The triplet metric is similar to the quartet metric except that we enumerate
triplets (three leaves) as opposed to quartets (four leaves). In other words, the
triplet metric counts the number of subtrees with three taxa that are different
in two trees. This metric is useful for rooted trees while the quartet metric is
useful for unrooted trees. The algorithm for calculating the triplet metric of
two trees runs in time O(n2).

The partition metric treats each phylogenetic tree as an unrooted tree and
analyzes the partitions of species resulting from removing one edge at a time
from the tree. By removing one edge from a tree, we are able to partition
that tree. The distance between two trees is defined as the number of edges
for which there is no equivalent (in the sense of creating the same partitions)
edge in the other tree. The algorithm implemented in COMPONENT for
computing the partition metric runs in time O(n).

An agreement subtree between two trees T1 and T2 is a substructure of T1
and T2 on which the two trees are the same. Commonly such a subtree will
have fewer leaves than either T1 or T2. A maximum agreement subtree (MAS)
between T1 and T2 is an agreement subtree of T1 and T2. Furthermore there
is no other agreement subtree of T1 and T2 that has more leaves (species or
taxa) than MAS. The MAS metric is defined as the number of leaves removed
from T1 and T2 to obtain an MAS of T1 and T2. In COMPONENT, programs
have been written to find the MAS for two (rooted or unrooted) fully resolved
binary trees.

Given two unrooted, unordered trees with the same set of labeled leaves,
the NNI metric is defined to be the number of NNI operations needed to trans-
form one tree to the other. DasGupta et al. [7] showed that calculating the
NNI metric is NP-hard, for both labeled and unlabeled unrooted trees. Brown
and Day [4] developed approximation algorithms, which were implemented in
COMPONENT. The time complexities of the algorithms are O(nlogn) and
O(n2logn), respectively, for rooted trees and unrooted trees, respectively.

Another widely used metric for trees is the edit distance, defined through
three edit operations, change node label, insert a node and delete a node, on
trees. Finding the edit distance between two unordered trees is NP-hard, and
hence a constrained edit distance, known as the degree-2 edit distance, was
developed [30]. In contrast to the above tree metrics, the similarity measures
between two trees proposed in this chapter are defined in terms of the cousin
pairs found in the two trees. The definition of cousin pairs is different from
the definitions for quartets, triplets, partitions, maximum agreement subtrees,
NNI operations and edit operations, and consequently the proposed similarity
measures are different from the existing tree metrics. These measures provide
complementary information when applied to real-world data.
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8.7 Conclusion

We presented new algorithms for finding and extracting frequent cousin pairs
with varying distances from a single evolutionary tree or multiple evolu-
tionary trees. A system built based on these algorithms can be accessed at
http://aria.njit.edu/mediadb/cousin/main.html. The proposed single
tree mining method, described in Section 8.3, is a quadratic-time algorithm.
We suspect the best-case time complexity for finding all frequent cousin pairs
in a tree is also quadratic. We have also presented some applications of the
proposed techniques, including the development of new similarity measures
for evolutionary trees and new methods to evaluate the quality of consensus
trees through a quantitative measure. Future work includes (i) extending the
proposed techniques to trees whose edges have weights, and (ii) finding differ-
ent types of patterns in the trees and using them in phylogenetic data cluster-
ing as well as other applications (e.g. the analysis of metabolic pathways [14]).
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Ontology-Assisted Mining of RDF Documents

Tao Jiang and Ah-Hwee Tan

Summary. Resource description framework (RDF) is becoming a popular encoding
language for describing and interchanging metadata of web resources. In this paper,
we propose an Apriori-based algorithm for mining association rules (AR) from RDF
documents. We treat relations (RDF statements) as items in traditional AR mining
to mine associations among relations. The algorithm further makes use of a domain
ontology to provide generalization of relations. To obtain compact rule sets, we
present a generalized pruning method for removing uninteresting rules. We illustrate
a potential usage of AR mining on RDF documents for detecting patterns of terrorist
activities. Experiments conducted based on a synthetic set of terrorist events have
shown that the proposed methods were able to derive a reasonably small set of
association rules capturing the key underlying associations.

9.1 Introduction

Resource description framework (RDF) [19, 20] is a data modeling language
proposed by the World Wide Web Consortium (W3C) for describing and
interchanging metadata about web resources. The basic element of RDF is
statements, each consisting of a subject, an attribute (or predicate), and an
object. A sample RDF statement based on the XML syntax is depicted in
Figure 9.1. At the semantic level, an RDF statement could be interpreted
as “the subject has an attribute whose value is given by the object” or “the
subject has a relation with the object”. For example, the statement in Fig-
ure 9.1 represents the relation: “Samudra participates in a car bombing event”.
For simplicity, we use a triplet of the form <subject, predicate, object> to
express an RDF statement. The components in the triplets are typically de-
scribed using an ontology [15], which provides the set of commonly approved
vocabularies for concepts of a specific domain. In general, the ontology also
defines the taxonomic relations between concepts in the form of a concept
hierarchy.

Due to the continual popularity of the semantic web, in a foreseeable future
there will be a sizeable amount of RDF-based content available on the web.
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<rdf:Description about="http://localhost:8080/TerroristOntoEx.rdfs#Samudra ">

<TerroristOntoEx: participate  

rdf:resource = "http://localhost:8080/TerroristOntoEx.rdfs#CarBombing"/>

</rdf:Description> 

Fig. 9.1. A sample RDF statement based on the XML syntax. “Samudra” denotes
the subject, “participate” denotes the attribute (predicate), and “CarBombing” de-
notes the object.

A new challenge thus arises as to how we can efficiently manage and tap the
information represented in RDF documents.

In this paper, we propose a method, known as Apriori-based RDF Asso-
ciation Rule Mining (ARARM), for discovering association rules from RDF
documents. The method is based on the Apriori algorithm [2], whose sim-
plistic underlying principles enable it to be adapted for a new data model.
Our work is motivated by the fact that humans could learn useful patterns
from a set of similar events or evidences. As an event is typically decomposed
into a set of relations, we treat a relation as an item to discover associations
among relations. For example, many terrorist attack events may include the
scenario that the terrorists carried out a robbery before the terrorist attacks.
Though the robberies may be carried out by different terrorist groups and
may have different types of targets, we can still derive useful rules from those
events, such as “<Terrorist, participate, TerroristAttack>→ <Terrorist, rob,
CommercialEntity>”.

The flow of the proposed knowledge discovery process is summarized in
Figure 9.2. First, the raw information content of a domain is encoded using
the vocabularies defined in the domain ontology to produce a set of RDF
documents. The RDF documents, each containing a set of relations, are used
as the input of the association rule mining process. For RDF association rule
mining, RDF documents and RDF statements correspond to transactions and
items in the traditional AR mining context respectively. Using the ontology,
the ARARM algorithm is used to discover generalized associations between
relations in RDF documents. To derive compact rule sets, we further present
a generalized pruning method for removing uninteresting rules.

The rest of this chapter is organized as follows. Section 9.2 provides a
review of the related work. Section 9.3 discusses the key issues of mining
association rules from RDF documents. Section 9.4 formulates the problem
statement for RDF association rule mining. Section 9.5 presents the proposed
ARARM algorithm. An illustration of how the ARARM algorithm works is
provided in Section 9.6. Section 9.7 discusses the rule redundancy issue and
presents a new algorithm for pruning uninteresting rules. Section 9.8 reports
our experimental results by evaluating the proposed algorithms on an RDF
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Fig. 9.2. The flow of the proposed RDF association rule mining process.

document set in the Terrorist domain. Section 9.9 concludes and highlights
the future work.

9.2 Related Work

Association rule (AR) mining [1] is one of the most important tasks in the
field of data mining. It was originally designed for well-structured data in
transaction and relational databases. The formalism of typical AR mining
was presented by Agrawal and Srikant [2]. Many efficient algorithms, such as
Apriori [2], Close [16], and FP-growth [10], have been developed. A general
survey of AR mining algorithms was given in [12]. Among those algorithms,
Apriori is the most popular one because of its simplicity.

In addition to typical association mining, variants of the Apriori algo-
rithm for mining generalized association rules have been proposed by Srikant
and Agrawal [17] to find associations between items located in any level of a
taxonomy (is-a concept hierarchy). For example, a supermarket may want to
find not only specific associations, such as “users who buy the Brand A milk
usually tend to buy the Brand B bread”, but also generalized associations,
such as “users who buy milk tend to buy bread”. For generalized rule min-
ing, several optimization strategies have been proposed to speed up support
counting. An innovative rule pruning method based on taxonomic information
was also provided. Han and Fu [9] addressed a similar problem and presented
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an approach to generate frequent itemsets in a top-down manner using an
Apriori-based algorithm.

In recent years, AR mining has also been used in the field of text mining.
Some basic differences between text mining and data mining were described
in [8]. Whereas data mining handles relational or tabular data with relatively
low dimensions, text mining generally deals with unstructured text docu-
ments with high feature dimensions. A framework of text mining techniques
was presented in [18]. According to [13], text mining involves two kinds of
tasks, namely deductive text mining (DTM) and inductive text mining (ITM).
Deductive text mining (or information extraction) involves the extraction of
useful information using predefined patterns from a set of text. Inductive text
mining, on the other hand, detects interesting patterns or rules from text
data. In [5], an AR mining algorithm, known as the Close algorithm, was
proposed to extract explicit formal concepts and implicit association rules
between concepts with the use of a taxonomy. However, the method was de-
signed to discover statistical relations between concepts. It therefore can not
be used to extract semantic relations among concepts from unstructured text
data.

Recently, some interesting work on mining semi-structured XML data has
been reported [3, 4, 6, 7, 14]. A general discussion of the potential issues in
applying data mining to XML was presented in [4]. XML is a data markup
language that provides users with a syntax specification to freely define el-
ements, to describe their data and to facilitate data exchange on the web.
However, the flexibility has resulted in a heterogeneous problem for knowl-
edge discovery on XML. Specifically, XML documents that describe similar
data content may have very different structures and element definitions. In
[14], this problem was discussed and a method for determining the similarity
between XML documents was proposed. In contrast to relational and trans-
action databases, XML data have a tree structure. Therefore, the context for
knowledge discovery in XML documents should be redefined. Two approaches
for mining association rules from XML documents have been introduced [3, 7].
In general, both approaches aimed to find similar nested element structures
among the branches of the XML Document Object Model (DOM) trees [21].
At the semantic level, the detected association rules represent the correlation
among attributes (nested elements) of a certain kind of elements. In [6], an
approach was presented that used association rule mining methods for detect-
ing patterns among RDF queries. The detected association rules were then
used to improve the performance of RDF storage and query engines. How-
ever, the method was designed for mining association rules among subjects
and attributes, but not among RDF statements.



9.4 Problem Statement 235

9.3 Mining Association Rules from RDF

RDF/RDFS data consist of a set of RDF statements in the form of triplets.
The RDF triplets form a directed graph (RDF Graph) with labels (attributes
or predicates) on its edges. For the purpose of data exchange, RDF/RDFS
uses an XML-based syntax. Mining association rules from RDF/RDFS data
presents a number of unique challenges, described as follows.

First, each RDF statement is composed of a subject, an attribute (or
predicate), and an object, that are described using the vocabularies from a
predefined domain ontology. Suppose the ontology includes 100 concepts and
an average of three predicates between each pair of concepts, the number of
possible RDF statements is already 30,000. In real applications, the number
of concepts defined in domain ontology could far exceed 100. Therefore, the
number of distinct statements may be so large that each single RDF statement
only appears a very small number of times, far below the typical minimum
support threshold. This motivates our approach in mining generalized associ-
ation rules.

Second, RDF statements with the same attributes can be generalized, if
both their subjects and objects share common super-concepts. Recursively
generalizing a set of statements creates a relation lattice. The information
in the relation lattices can be used to improve the performance of itemset
candidate generation and frequency counting (see Section 9.5).

Third, in contrast to items in relational databases, statements in RDF
documents may be semantically related. Intuitively, semantically related state-
ments should be statistically correlated as well. This motivates us to define a
new interestingness measure for pruning uninteresting rules.

Furthermore, RDF statements express a rich set of explicit semantic re-
lations between concepts. This makes the association rules discovered from
RDF documents more understandable for humans.

9.4 Problem Statement

The problem formulation of association rule mining on RDF documents is
given as follows. As we are interested in mining the associations among RDF
statements, i.e., relations, we will use the term “relationset” instead of “item-
set” in our description.

Let O = <E , S , H> be an ontology, in which E={e1,e2,. . . ,em} is a set of
literals called entities; S={s1,s2,. . . ,sn} is a set of literals called predicates (or
attributes); and H is a tree whose nodes are entities. An edge in H represents
an is-a relationship between two entities. If there is an edge from e1 to e2, we
say e1 is a parent of e2, denoted by e1 > e2; and e2 is a child of e1, denoted by
e2 < e1. We call e+ an ancestor of e, if there is a path from e+ to e in H ,
denoted by e+ >> e. If e >> e1, e >> e2. . . .e>> ek, we call e a common
ancestor of e1,e2,. . . ,ek, denoted by e >> e1,e2,. . . ,ek. For a set of entities
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e1, e2, . . . e k, if e′ ∈{ e | e >> e1, e2, . . . e k } and not exists e′′ ∈{ e | e >>
e1, e2, . . . e k } such that e′ >> e′′, e′ is called the least common ancestor
of e1, e2, . . . e k, denoted by e′ = lca(e1, e2, . . . e k).

Thing

Terrorist
Terrorist

Activity

Samudra Omar 

Financial

Crime 

Terrorist

Attack

Bank

Robbery 

Card

Cheating Bombing Kidnapping 

Fig. 9.3. A simple concept hierarchy for the Terrorist domain ontology.

Table 9.1. A sample RDF knowledge base SD in the terrorist domain.

Transaction Relation
1 <Samudra, raiseFundBy, BankRobbery >

< Samudra, participate, Bombing>

2 <Omar, raiseFundBy, CardCheating>
<Omar, participate, Kidnapping>

3 <Omar, participate, Bombing>

Typically, there is a top-most entity in the ontology, called thing , which
is the ancestor of all other entities in E . Thus, E and H define a concept
hierarchy. A sample concept hierarchy for the Terrorist domain is shown in
Figure 9.3. The ontology O defines a set of vocabularies for describing knowl-
edge in a specific domain.

Let D be a set of transactions, called a knowledge base . Each trans-
action T is a set of relations (RDF statements), where each relation r is
a triplet in the form of <x, s, y>, in which x, y∈E , and s∈S . We call x the
subject of the relation r, denoted by sub(r)=x; we call s the predicate of



9.5 The ARARM Algorithm 237

the relation r, denoted by pred(r)=s; we call y the object of the relation r,
denoted by obj(r) = y.

A sample knowledge base SD in the terrorist domain is shown in Table 9.1.
There are three transactions in the knowledge base, each of which contains a
set of relations describing a terrorist event.

A set of relations R = {r1, r2, . . ., rd} (where ri =< xi, si, yi > for i =
1, . . ., d) is called an abstract relation of r1, r2, . . ., rd in D , if and only if s1 =
s2 = . . . = sd and there exist e′ and e′′ ∈ E , such that e′=lca{x1, x2, . . ., xd},
e′′ = lca{y1, y2, . . ., yd}, e′ �= thing , and e′′ �= thing , and not exist r′ =<
x′, s′, y′ > in transactions of D where r′ /∈ R, s′ = s1 = ... = sd, e

′ >> x′ and
e′′ >> y′. We also define the subject of R as sub(R) = e′ = lca{x1, x2, . . ., xd};
the predicate of R as pred(R) = s′, where s′ = s1 = s2. . . = sd; and the object
of R as obj(R) = e′′ = lca{y1, y2, . . ., yd}. For simplicity, we use the triplet
< e′, s′, e′′ >, similar to that for denoting relations, to represent abstract
relations. We call an abstract relation R a sub-relation of an abstract relation
R′, if R ⊂ R′ hold. An abstract relation R is the most abstract relation ,
if and only if there does not exist another abstract relation R′ in D where
R⊂ R′.

We say a transaction T supports a relation r if r ∈ T . We say a trans-
action T supports an abstract relation R if R∩T �= ∅. We assume that each
transaction T has an id, denoted by tid. We use r.tids = {tid1, tid2,. . ., tidn}
to denote the set of ids of the transactions in D that support the relation r.
We define the support of r, denoted by support(r) = |r.tids|. Similarly, for
an abstract relation R, we define R.tids = ∪r.tids, for all r ∈ R. We further
define the support of R, denoted by support(R) = |R.tids|. In this paper,
we use A, B, or C to represent a set of abstract relations {R1, R2. . .Rn},
named relationset . We define the support of a relationset A, denoted by
support(A) = | ∩ Ri.tids|, i = 1, 2, . . .n. We call a relationset A a fre-
quent relationset , if support(A) is greater than a user-defined minimum
support (minSup). An association rule in D is of the form A→B, where
A, B, and A∪B are frequent relationsets and its confidence , denoted by
confidence(A→B) = support(A∪B)/support(A), is greater than a user-defined
minimum confidence (minConf).

9.5 The ARARM Algorithm

Following the method presented in [2], our Apriori-based approach for mining
association rules can be decomposed into the following steps.

1. Find all 1-frequent relationsets. Each 1-frequent relationset contains only
one abstract relation R, which may contain one or more relations r1. . . rn

(n≥1).
2. Repeatedly generate k-frequent (k ≥2) relationsets based on k−1-frequent

relationsets, until no new frequent relationsets could be generated.
3. Generate association rules and prune uninteresting rules.
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9.5.1 Generation of 1-Frequent Relationsets

For generating 1-frequent relationsets, we use a top-down strategy. We first
find all the most abstract relations by scanning the RDF knowledge base D
and merging similar relations that have common abstract relations. Next, we
repeatedly split the frequent abstract relations into their sub-relations until
all abstract relations are not frequent. We then keep all the frequent abstract
relations as the 1-frequent relationsets. The procedure of identifying most
abstract relations is summarized in Figure 9.4.

Algorithm 1: Find Most Abstract Relations

Input: A set of transactions D
Output: A set of most abstract relations 

(1) Rlist:=

(2) for each transaction T D do 

(3) for each relation r in T do 

(4) if (exist an abstract relation R in Rlist AND

(5)             (r R OR (pred(r) == pred(R) AND lca(sub(R), sub(r)) != thing AND

(6)                                 lca(obj(R), obj(r)) != thing)))
(7)             R := {r} R    //For the set of transactions D’ scanned, R is an abstract relation. 

(8)             R.r.tids := R.r.tids {T.tid} //In R, R.r.tids represents the set of ids of the 

transactions that have been scanned and support r. If r doesn’t exist in R before, R.r.tids represents .

(9) else

(10)             R’ :={r} //if r could not be merged into an existing abstract relation, create a 

new abstract relation R’ for r. 

(11)             R’.r.tids := {T.tid} 

(12)             Rlist :={R’} Rlist

(13) Output Rlist 

Fig. 9.4. The algorithm for identifying most abstract relations.

Through the algorithm defined in Figure 9.4, we obtain a set of most ab-
stract relations (Rlist). Each abstract relation and its sub-relations form a
relation lattice. An example of a relation lattice is shown in Figure 9.5. In this
lattice, <Terrorist, participate, TerroristAttack> is the most abstract relation
subsuming the eight relations at the bottom levels. The middle-level nodes in
the lattice represent sub-abstract-relations. For example, <Samudra, partici-
pate, Bombing> represents a sub-abstract-relation composed of two relations,
namely <Samudra, participate, CarBombing> and <Samudra, participate,
SuicideBombing>.

The algorithm for finding all 1-frequent relationsets is given in Figure 9.6.
For each most abstract relation R in Rlist, if R is frequent, we add R into 1-
frequent relationsets L1 and we traverse the relation lattice whose top vertex
is R to find all 1-frequent sub-relations of R (Figure 9.6a).

Figures 9.6b and 9.6c define the procedures of searching the abstract rela-
tion lattice. First, we recursively search the right children of the top relation
to find 1-frequent relationsets and add them into L1. Then, we look at each



9.5 The ARARM Algorithm 239

<Terrorist, participate, TerroristAttack> 

<Terrorist, participate, Bombing> 

<Terrorist, participate, Kidnapping> <Samudra, participate, TerroristAttack > 

<Omar, participate, TerroristAttack > 

< Samudra, participate, Bombing> 

< Omar, participate, Bombing > 

<Samudra, participate, Kidnapping > 

<Omar, participate, Kidnapping > 

< Samudra, participate, CarBombing> 

< Omar, participate, CarBombing > 

< Samudra, participate, SuicideBombing> 

< Omar, participate, SuicideBombing > 

<Samudra, participate, Kidnapping1 > 

<Omar, participate, Kidnapping1 > 

<Samudra, participate, Kidnapping2 > 

<Omar, participate, Kidnapping2 > 

< Terrorist, participate, CarBombing> 

< Terrorist, participate, SuicideBombing>

< Terrorist, participate, Kidnapping1 > 

< Terrorist, participate, Kidnapping2 > 

1

2

3

4

5

Fig. 9.5. The flow of searching in a sample relation lattice.

left child of the top abstract relation. If it is frequent, we add it into L1 and re-
cursively search the sub-lattice using this left child as the new top relation. In
Figure 9.5, the dashed arrows and the order numbers of the arrows illustrate
the process of searching the lattice for 1-frequent relationsets.

Here, we define the notions of right/left children, right/left sibling, and
left/right parent of an abstract relation in a relation lattice. In Figure 9.5,
<Terrorist, participate, Bombing> and <Terrorist, participate, Kidnapping>
are sub-relations of <Terrorist, participate, TerroristAttack>. They are de-
rived from their parent by drilling down its object based on the domain
concept hierarchy. We call them the right children of <Terrorist, partici-
pate, TerroristAttack> and call <Terrorist, participate, TerroristAttack> the
left parent of <Terrorist,participate, Bombing> and <Terrorist, participate,
Kidnapping>. Similarly, if some sub-relations are derived from their parent
by drilling down its subject, we call them the left children of their parent
and call their parent the right parent of these sub-relations. If there exists
an abstract relation that has a left child A and a right child B, A is called a
left sibling of B and B is called a right sibling of A.

Lemma 1. (Abstract Relation Lattice) Given an abstract relation R =
<x, s, y> with a right parent Rrp = <x+, s, y> (or left parent Rlp = <x,
s, y+>), if support(Rrp) < minSup (or support(Rlp) < minSup), it can be
derived that support(R) < minSup.
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Algorithm 2: Find 1-frequent relationsets

Input: A set of transactions D
Output: A set of 1-frequent relationsets 

(1) marList := getMostAbsRelations(D)

(2) for each most abstract relation R in marList do 

(3)     if (support(R)   minSup) 

(4) L1 := {R} L1

(5)         L1’:=searchAbsRelationLattice(R, NULL); //NULL means that most abstract relations 

don’t have right siblings. 

(6)         L1 := L1 L1’

(7) Output L1

(a)

Procedure searchAbsRelationLattice

Input: Abstract relation R; hash table that stores right siblings of R, rSiblings

Output: 1-frequent relationsets in the relation lattice of R (excluding R)

(1) L1’:=

(2) L1’ :=searchRightChildren(R, rSiblings) 

(3) for each left children Rlc of R do //get left child by drilling down the subject of R 

(4) if  support(Rlc)  minSup 

(5) L1’ := { Rlc } L1’

(6)      Rlc.rightParent := R 

(7)         R.leftChildren.insert(Rlc)

(8)         L1’’:=searchAbsRelationLattice(Rlc, R.rightChildren) 

(9) L1’ := L1’ L1’’

(10) Output L1’

(b)

Procedure searchRightChildren

Input: Abstract relation R; hash table that stores right siblings of R, rSiblings

Output: 1-frequent relationsets among the right descendants of R 

(1) L1
R:=

(2) for each right children Rrc of R do 

(3)     rParent := getRParent(Rrc, rSiblings) //get the right parent of Rrc by finding the right 

sibling of R that has the same object with Rrc.

(4) if support(rParent) < minSup 

(5)         continue;  //Optimization 1. 

(6)     if support(Rrc)  minSup 

(7)         if rParent != NULL 

(8) rParent.leftChildren.insert(Rrc);

(9)             Rrc.rightParent := rParent 

(10) R.rightChildren.insert(Rrc)

(11)         Rrc.leftParent := R 

(12) L1
R := { Rrc } L1

R

(13)         L1
R’:=searchRightChildren(Rrc,

rParent.rightChildren)

(14)          L1
R := L1

R L1
R’

(15) Output L1
R

(c)

Fig. 9.6. The algorithm for generating 1-frequent relationsets.
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Proof. We only need to prove support(R) ≤ support(Rrp) (and support(R)
≤ support(Rlp)). Since R is a sub-relation of Rrp (or Rlp), for each relation
r∈R, r∈Rrp(or r∈Rlp) holds. Therefore, ∪r.tids (r∈R) is a subset of ∪r′.tids
(r′ ∈Rrp or r′ ∈Rlp). Then the cardinality of ∪r.tids is smaller than or equals
to the cardinality of ∪r′.tids, i.e. support(R) ≤ support(Rrp) (support(R) ≤
support(Rlp)).

According to Lemma 1, once we find that the left parent or right parent
of an abstract relation is not frequent, we do not need to calculate the sup-
port of this abstract relation and can simply prune it away. This forms our
Optimization Strategy 1.

9.5.2 Generation of k-Frequent Relationsets

Observation 1. Given two abstract relations R1 and R2, if R1∩R2 �= ∅
and |R1| ≥ |R2|, either R2 is a sub-abstract-relation of R1 (i.e. R1∩R2=
R2), or R1 and R2 have a common sub-abstract-relation R3 in the rela-
tion lattice (i.e. R1∩R2=R3). For example, in Figure 9.5, two abstract re-
lations <Samudra, participate, TerroristAttack> and <Terrorist, participate,
Kidnapping> have a common sub-abstract-relation <Samudra, participate,
Kidnapping> = {<Samudra, participate, Kidnapping1>, <Samudra, partic-
ipate, Kidnapping2>}.

Lemma 2. Given a k-relationset A={R1,R2, . . . ,Rk}, if there are two ab-
stract relations Ri and Rj (1≤i, j≤k and i �=j), such that |Ri| ≥ |Rj | and
Ri∩Rj �= ∅, there exists a k−1-relationset B with support(B) = support(A).

Proof. According to Observation 1, there exists an abstract relation R′,
where either R′=Rj or R′ is a common sub-abstract-relation of Ri and Rj

(Ri∩Rj=R′). Therefore, there exists a k−1-relationset B = A∪{R′} <minus>
{Ri, Rj} and support(B) = support(A).

According to Lemma 2, a k-relationset that includes two intersecting ab-
stract relations is redundant and should be discarded. This is the basis of our
Optimization Strategy 2.

Observation 2. Given two 2-frequent relationsets A={R1, R2} and B={R1,
R2+}, where R1, R2, and R2+ are frequent abstract relations and R2+ is an
ancestor of R2, if the support of the relationset {R1, R2} equals the support
of the relationset {R1, R2+}, the relationset B is redundant because A and
B are supported by the same set of transactions. As {R1, R2} provides a
more precise semantics than {R1, R2+}, the latter is redundant and should
be discarded. This is Optimization Strategy 3.

The procedure of generating k-frequent relationsets Lk is described in Fig-
ure 9.7. To generate Lk, we need to first generate k-candidate relationsets
based on k− 1-frequent relationsets. We search the k− 1-frequent relationset
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Algorithm 3: Find k-frequent relationsets 

Input: 1-frequent relationset list L1

Output: k-frequent relationsets(k 2) 

(1) k:=2

(2) L:=

(3) while |L k-1|  k do 

(4)     Ck:= generateCandidate(L k-1)

(5)     for each candidate relationset A Ck do 

(6) if support(A) minSup  

(7)             Lk ={A} U Lk

(8)     prune(Lk) //Optimization 3 

(9)     L := L Lk

(10)     k := k+1 

(11) Output L 

Fig. 9.7. The algorithm for identifying k-frequent relationsets.

pair (A, B), where A, B ∈ Lk−1, A={R1,R2,. . . ,Rk−1}, B={R′
1,R

′
2,. . . ,R

′
k−1},

Ri= R′
i (i=1,2,. . . , k−2), and Rk−1∩R’k−1 = ∅ (Optimization Strategy 2 ). For

each such pair of k-1-frequent relationsets (A, B), we generate a k-candidate
relationset A∪B={R1,R2,. . . ,Rk−1,R′

k−1}. We use Ck to denote the entire
set of k-candidate relationsets. We further generate Lk by pruning the k-
candidate relationsets whose supports are below minSup. In Lk, some redun-
dant k-frequent relationsets also need to be removed according to Optimization
Strategy 3.

9.5.3 Generation of Association Rules

For each frequent relationset A, the algorithm finds each possible sub-
relationset B and calculates the confidence of the association rule B → A
< minus > B, where A < minus > B denotes the set of relations in A but not
in B. If confidence(B→A<minus>B) is larger than minConf, B→A<minus>B
is generated as a rule.

9.6 Illustration

In this section, we illustrate our ARARM algorithm by mining associations
from the sample knowledge base SD depicted in Table 9.1. Suppose that the
minimum support is 2 and the minimum confidence is 66%. The relations
(RDF statements) in the knowledge base are constructed using the ontology
as shown in Figure 9.3. The predicate set is defined as S = {raiseFundBy,
participate}.

First, we aggregate all relations in SD (as described in Figure 9.4) and
obtain two most-abstract relations (Table 9.2). Because the supports of those
two abstract relations are all greater than or equal to minimum support of 2,
they will be used in the next step to generate 1-frequent relationsets.
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Table 9.2. The most-abstract relations obtained from the knowledge base SD .

Most-Abstract Relations Support
<Terrorist, raiseFundBy, FinancialCrime> 2
<Terrorist, participate, TerroristAttack> 3

(a)

(b)

<Terrorist, participate, TerroristAttack> , support 3

<Terrorist, participate, 

Bombing>, support 2 

<Terrorist, participate, 

Kidnapping>, support 1 

<Samudra, participate, 

TerroristAttack >, support 1 

<Omar, participate, 

TerroristAttack >, support 2 

< Samudra, participate, Bombing>, support 1 

< Omar, participate, Bombing >, support 1 

<Samudra, participate, Kidnapping >, support 0 

<Omar, participate, Kidnapping >, support 1 

<Terrorist, raiseFundBy, FinancialCrime> , support 2

<Terrorist, raiseFundBy, 

BankRobbery>, support 1 

<Terrorist, raiseFundBy, 

CardCheating>, support 1 

<Samudra, raiseFundBy, 

FinancialCrime>, support 1 

<Omar, raiseFundBy, 

FinancialCrime >, support 1 

< Samudra, raiseFundBy, BankRobbery>, support 1 

< Omar, raiseFundBy, BankRobbery >, support 0 

<Samudra, raiseFundBy, CardCheating >, support 0 

<Omar, raiseFundBy, CardCheating >, support 1 

Fig. 9.8. The relation lattices of the two most-abstract relations.

Next, we search the relation lattices to find 1-frequent relationsets. The
relation lattices of the two most-abstract relations are shown in Figure 9.8.
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In Figure 9.8a, because all of the relations in the second level are be-
low the minimum support, the relations at the bottom of the lattice will
not be considered. In Figure 9.8b, because the relations <Omar, participate,
TerroristAttack> and <Terrorist, participate, Bombing> are frequent, their
child relation <Omar, participate, Bombing> at the bottom of the lattice will
still be considered. Other relations will be directly pruned because either the
support of their left parent or right parent is below the minimum support.

Table 9.3. The 1-frequent relationsets identified from the sample knowledge base
SD .

1-Frequent Relationsets Support

{<Terrorist, raiseFundBy, FinancialCrime>} 2 {1,2}
{<Terrorist, participate, TerroristAttack>} 3 {1,2,3}
{<Omar, participate, TerroristAttack >} 2 {2,3}
{<Terrorist, participate, Bombing>} 2 {1,3}

Table 9.4. The k-frequent relationsets (k ≥2) identified from the sample knowledge
base SD .

k-Frequent Relationsets Support

{<Terrorist, raiseFundBy, FinancialCrime>,
<Terrorist, participate, TerroristAttack> }

2{1,2}

Table 9.5. The association rules discovered from the sample knowledge base SD .

Association rules Support/
Confidence

<Terrorist, raiseFundBy, FinancialCrime>
→<Terrorist, participate, TerroristAttack>

2/66.6%

<Terrorist, participate, TerroristAttack>
→<Terrorist, raiseFundBy, FinancialCrime>

2/100%

After traversing the relation lattices, we obtain the 1-frequent relationsets
as shown in Table 9.3. Using the k-frequent relationset generation algorithm,
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we obtain the k-frequent relationsets (k ≥ 2), depicted in Table 9.4. The
association rule generation algorithm then derives the two association rules
as shown in Table 9.5.

9.7 Pruning Uninteresting Rules

Association rule mining algorithms typically produce a large number of rules.
Therefore, efficient methods for detecting and pruning uninteresting rules are
usually needed. A general survey on rule interestingness measures was pre-
sented in [11]. In [13], a set of commonly used properties for defining the
interestingness of the associations were introduced. The issues of pruning re-
dundant rules with the use of a concept hierarchy were discussed in [9] and
[17]. Srikant and Agrawal presented a method for calculating the expected
support and confidence of a rule according to its “ancestors” in a concept
hierarchy. A rule is considered as “redundant” if its support and confidence
can be estimated from those of its “ancestors”. The method however assumes
that the items appearing in an association are independent.

For mining association rules among the relations in RDF documents, the
problem of measuring interestingness becomes more complex on two accounts.
First, generalization and specialization of RDF relations are more compli-
cated. For example, a relation may have two direct parents in the relation
lattice. Second, the relations may be semantically related. For example, the
relations <Samudra, raiseFundBy, BankRobbery> and <Samudra, partici-
pate, Bombing> refer to the same subject Samudra. They are thus more likely
to appear together than two unrelated relations. To improve upon Srikant’s
method [17], we develop a generalized solution for calculating the expected
support and confidence of a rule based on its ancestors.

We call a relationset A+ an ancestor of relationset A if A+ and A have
the same number of relations and A+ can be derived from A by replacing one
or more concepts in A with their ancestors in a concept hierarchy. Given an
association rule A→B, we call the association rules A+→B, A+→B+, and
A→B+, the ancestors of A→B. We call A+→B+ a close ancestor of A→B,
if there does not exist a rule A′ → B′ such that A′ → B′ is an ancestor of
A→B and A+→B+ is an ancestor of A′ → B′. A similar definition applies to
both A+→B and A→B+.

For calculating the expected support and confidence of an association rule
based on its close ancestors’ support and confidence, the contribution of the
concept replacement could be estimated according to the three cases described
below.

• Concept replacement in both the left- and right-hand sides. For example,
an association rule AR1: <a, rel1, b> → <c, rel2, a> could be derived
from an association rule AR2: <a+, rel1, b>→ <c, rel2, a+> by replacing
concept “a+” with its sub-concept “a”. This kind of concept replacement
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only influences the support of the association rule. The expected support
and confidence of AR1 is given by

supportE(AR1) = support(AR2) · P (a|a+) (9.1)

and
confidenceE(AR1) = confidence(AR2) (9.2)

where P(a|a+) is the conditional probability of a, given a+.
• Concept replacement in the left-hand side only. For example, an associ-

ation rule AR1: <a, rel1, b> → <c, rel2, d> could be generated from
an association rule AR2: <a+, rel1, b> → <c, rel2, d> by replacing the
concept “a+” with its sub concept “a”. This kind of concept replacement
influences only the support of the association rule. We can calculate the
support and confidence of AR1 by using Eqns. (9.1) and (9.2).

• Concept replacement in the right-hand side only. For example, an associ-
ation rule AR1: <c, rel1, d> → <a, rel2, b> could be generated from an
association rule AR2: <c, rel1, d> → <a+, rel2, b> by replacing concept
“a+” with its sub concept “a”. This kind of concept replacement influ-
ences both the support and the confidence of the association rule. We can
calculate the expected support and confidence of AR1 by

supportE(AR1) = support(AR2) · P (a|a+) (9.3)

and
confidenceE(AR1) = confidence(AR2) · P (a|a+) (9.4)

respectively.

Note that the above three cases may be combined to calculate the overall
expected support and confidence of an association rule. The conditional prob-
ability P(a|a+) can be estimated by the ratio of the number of the leaf sub-
concepts of “a” and the number of the leaf sub-concepts of “a+” in the domain
concept hierarchy. For example, in Figure 9.3, the number of the leaf sub-
concepts of “Financial Crime” is two and the number of the leaf sub-concepts
of “Terrorist Activity” is four. The conditional probability P(Financial Crime
|Terrorist Activity) is thus estimated as 0.5.

Following the idea of Srikant and Agrawal [17], we define the interesting-
ness of a rule as follows. Given a set of rules S and a minimum interest factor
F , a rule A→B is interesting , if there is no ancestor of A→B in S or both
the support and confidence of A→B are at least F times the expected support
and confidence of its close ancestors respectively. We name the above inter-
estingness measure expectation measure with semantic relationships (EMSR).
EMSR may be used in conjunction with other pruning methods, such as those
described in [13].
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9.8 Experiments

Experiments were conducted to evaluate the performance of the proposed
association rule mining and pruning algorithms both quantitatively and qual-
itatively. Our experiments were performed on an IBM T40 (1.5GHz Pentium
Mobile CPU, 512MB RAM) running Windows XP. The RDF storage system
was Sesame (release 1.0RC1) running on MySQL database (release 4.0.17).
The ARARM algorithm was implemented using Java (JDK 1.4.2).

(1) Every event includes an RDF relation <Terrorist, participate, TerroristActivity>.  

(2) 90% of the events, which include an RDF relation <Terrorist, participate, Bombing> 

also include an RDF relation <Terrorist, participate, Robbery>.  

(3) 85% of the events include an RDF relation <Terrorist, takeVehicle, Vehicle>. 

(4) For any event containing an RDF relation <Terrorist, participate, SuicideBombing >, 

if it also includes (probability of 85%)  <Terrorist, takeVehicle, Vehicle>, there is a 

probability of 80% that <Terrorist, takeVehicle, Vehicle> is in specialized form 

<Terrorist, takeVehicle, Truck>. 

(5) 85% of the events include an RDF relation <Terrorist, useWeapon, Weapon>. 

(6) For any event containing <Terrorist, participate, Bombing>, if it also includes 

(probability of 85%) <Terrorist, useWeapon, Weapon>, there is a probability of 100% 

that <Terrorist, useWeapon, Weapon> is in specialized form <Terrorist, useWeapon, 

Bomb>, and there is a probability of 70% that <Terrorist, useWeapon, Weapon> is in 

specialized form <Terrorist, useWeapon, PlasticBomb>. 

(7) For any event containing an RDF relation <Terrorist, participate, Kidnapping >, if it 

also includes (probability of 85%) <Terrorist, useWeapon, Weapon>, there is a 

probability of 100% that <Terrorist, useWeapon, Weapon> is in specialized form 

<Terrorist, useWeapon, NormalWeapon>, and there is a probability of 90% that 

<Terrorist, useWeapon, Weapon> is in specialized form <Terrorist, useWeapon, 

AK-47>.

Fig. 9.9. The seven domain axioms for generating the terrorist events.

Due to a lack of large RDF document sets, we created a synthetic data
set, which contained a large number of RDF statements related to the ter-
rorist domain. The data set has enabled us to conduct empirically extensive
experiments of the various algorithms. The ontology for encoding terrorist
events contained a total of 44 concepts (including classes and instances) and
four predicates (attributes). Among the four predicates, three were used for
describing the relationships between concepts in the terrorist events and one
was used to provide additional information, such as the start time of terrorist
events. To perform empirical evaluation, 1000 RDF documents were gener-
ated using a set of domain axioms (Figure 9.9). The maximum number of
RDF statements in a single RDF document was four. We then performed as-
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sociation rule mining according to the ARARM algorithm and evaluated if the
extracted rules captured the underlying associations specified by the domain
axioms. With a 5% minimum support and a 50% minimum confidence, the
ARARM algorithm generated 76 1-frequent and 524 k-frequent (k ≥2) rela-
tionsets, based on which 1061 association rules were extracted. With a 10%
minimum support and a 60% minimum confidence, the algorithm produced 42
1-frequent relationsets, 261 k-frequent relationsets, and 516 association rules.

We observed that although the events were generated based on only
seven domain axioms, a much larger number of rules were extracted. For
example, axiom 2 may cause the association rule “<Terrorist, participate,
Bombing> → <Terrorist, participate, Robbery>” to be generated. Axiom 2
may also result in the association rule “<Terrorist, participate, Robbery> →
<Terrorist, participate, Bombing>”, as <Terrorist, participate, Bombing>
tended to co-occur with <Terrorist, participate, Robbery>. In addition, ax-
ioms can be combined to generate new rules. For example, axioms 1, 3, and
5 can combine to generate association rules, such as “<Terrorist, partici-
pate, TerroristActivity> → <Terrorist, takeVehicle, Vehicle>, <Terrorist,
useWeapon, Weapon>”. As the association rule sets generated using the
ARARM algorithm may still be quite large, pruning methods were further
applied to derive more compact rule sets.

We experimented with a revised version of Srikant’s interestingness mea-
sure method [17] and the EMSR method for pruning the rules. The exper-
imental results are summarized in Table 9.6 and Table 9.7. We further ex-
perimented with two simple statistical interestingness measure methods [13]
described below:

• Statistical correlations measure (SC): Given a rule R1→R2, where R1 and
R2 are relationsets, if the conjunctive probability P(R1,R2) �= P(R1)·P(R2),
R1 and R2 are correlated and the rule R1→R2 is considered as interesting.

• Conditional independency measure (CI): Given two rules R1→R2 and R1,
R3→R2 where R1, R2 and R3 are relationsets, if the conditional prob-
ability P(R2|R1) = P(R2|R1,R3), we say R2 and R3 are conditionally
independent and the rule R1, R3→R2 is considered as redundant and un-
interesting.

Table 9.6. The experimental results using Srikant’s method.

minSup/
minConf

Number of rules
before pruning

Number of rules
after applying

Srikant’s method

Number of rules after
combining with

SC and CI

5%/50% 1061 297 148
10%/60% 516 162 72
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Table 9.7. The experimental results using the EMSR interestingness measure
method.

minSup/
minConf

Number of rules
before pruning

Number of rules
after applying

EMSR

Number of rules after
combining with

SC and CI

5%/50% 1061 277 91
10%/60% 516 177 46

When pruning association rules, we first applied Srikant’s and the EMSR
methods on the rule sets produced by the ARARM algorithm and derived
association rule sets considered as interesting for each strategy. Then we com-
bined Srikant’s method and the EMSR method individually with the SC and
CI interestingness measures to derive even smaller rule sets.

We observed that there was no significant difference between the numbers
of rules obtained using the EMSR method and Srikant’s method. However, by
combining with other pruning methods, the resultant rule sets of EMSR were
about 40% smaller than those produced by Srikant’s method. The reason was
that the rule sets produced by Srikant’s method contained more rules similar
to those produced using the SC and CI measures. In other words, Srikant’s
method failed to remove those uninteresting rules that could not be detected
by the SC and CI measures.

For evaluating the quality of the rule sets produced by the EMSR method,
we analyzed the association rule set obtained using a 5% minimum support
and a 50% minimum confidence. We found that the heuristics of all seven ax-
ioms were represented in the rules discovered. In addition, most of the associa-
tion rules can be traced to one or more of the domain axioms. A representative
set of the association rules is shown in Table 9.8.

9.9 Conclusions

We have presented an Apriori-based algorithm for discovering association
rules from RDF documents. We have also described how uninteresting rules
can be detected and pruned in the RDF AR mining context.

Our experiments so far have made use of a synthetic data set, created
based on a set of predefined domain axioms. The data set has allowed us to
evaluate the performance of our algorithms in a quantitative manner. We are
in the process of building a real Terrorist data set by annotating web pages.

Our ARARM algorithm assumes that all the RDF relations of interest
could fit into the main memory. In fact, the maximum memory usage of our
algorithm is proportional to the number of relations. When the number of
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Table 9.8. Sample association rules obtained by ARARM and EMSR.

Examples of association
rules discovered

Explanation Domain
axioms

<Terrorist, participate, Kidnapping>→
<Terrorist, useWeapon, AK-47>
{support:0.166; confidence:0.817}

The rule reflects the
heuristics of a do-
main axiom directly.

7

<Terrorist, useWeapon, AK-47>→
<Terrorist, participate, Kidnapping>
{support:0.166; confidence:0.790}

The rule reflects
the heuristics of
a domain axiom
indirectly.

7

<Terrorist, participate, Kidnapping>→
<Terrorist, useWeapon, Gun>
{support:0.168; confidence:0.827}

The rule is a general-
ized form of a domain
axiom.

7

<Terrorist, useWeapon, PlasticBomb>→
<Terrorist, participate, Robbery>
{support:0.251; confidence:0.916}

The rule reflects the
interaction of two or
more domain axioms.

2, 6

<terroristA, participate,TerroristActivity
>→ <terroristA, useWeapon,
Weapon>{support:0.051; confidence:0.809}

The rule is gener-
ated due to spurious
events. The support
for this type of rule is
usually very low.

relations is extremely large, an optimization strategy should be developed to
maintain the efficiency of the AR mining process.

For simplicity, we assume that the subjects and objects of the RDF state-
ments in the document sets are in the form of RDF Unified Resource Identifier
(URI), each referring to a term defined in a domain ontology. According to
the RDF/RDFS specification [19, 20], an RDF statement could also include
RDF literals and blank nodes. We will address these issues in our future work.
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Image Retrieval using Visual Features and
Relevance Feedback

Sanjoy Kumar Saha, Amit Kumar Das and Bhabatosh Chanda

Summary. The present paper describes the design and implementation of a novel
CBIR system using a set of complex data that comes from completely different kinds
of low-level visual features such as shape, texture and color. In the proposed system,
a petal projection technique is used to extract the shape information of an object. To
represent the texture of an image, a co-occurrence matrix of a texture pattern over a
2× 2 block is proposed. A fuzzy index of color is suggested to measure the closeness
of the image color to six major colors. Finally, a human-perception-based similarity
measure is employed to retrieve images and its performance is established through
rigorous experimentation. Performance of the system is enhanced through a novel
relevance feedback scheme as evident from the experimental results. Performance of
the system is compared with that of the others.

10.1 Introduction

Image search and retrieval has been a field of very active research since the
1970s and this field has observed an exponential growth in recent years as a
result of unparalleled increase in the volume of digital images. This has led
to the development and flourishing of Content-based Image Retrieval (CBIR)
systems [12, 18, 34]. There are, in general, two fundamental modules in a

CBIR system, visual feature extraction and retrieval engine. An image may
be considered as the integrated representation of a large volume of complex
information. Spatial and spectral distribution of image data or pixel values to-
gether carry some complex visual information. Thus visual feature extraction
is crucial to any CBIR scheme, since it annotates the image automatically
using its contents. Secondly, these visual features may be completely different
from one another suggesting complex relations among them inherent in the
image. So the retrieval engine handles all such complex data and retrieves
the images using some sort of similarity measure. Quality of retrieval can be
improved deploying the relevance feedback scheme. Proper indexing improves
efficiency of the system considerably.
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Visual features may be classified into two broad categories: high-level fea-
tures and low-level features. High-level features mostly involve semantics of
the region(s) as well as that of the entire image. On the other hand, low-
level features are more elementary and general and are computed from pixel
values. In this work, we confine ourselves to extraction of low-level features
only. Shape, texture and color are three main independent groups of low-level
features that are used in CBIR systems.

Most of the CBIR systems measure shape features either by geometric
moments or by Fourier descriptor [4, 38] methods. Hu [14] suggested seven
moment invariants by combining raw geometric moments. Teh and Chin [53]
studied various types of moments and their capabilities for characterizing vi-
sual patterns. Fourier descriptor methods use as shape features the coefficients
obtained by Fourier transformation of object boundaries [35]. Other methods
proposed for shape matching include features like area, perimeter, convex-
ity, aspect ratio, circularity and elongatedness [4, 38]. Elastic deformation of
templates [3], comparison of directional histograms of edges [17], skeletal rep-
resentation [20] and polygonal approximation [42] of shapes are also used.

Texture is another feature that has been extensively explored by various
research groups. Texture features are measured using either a signal processing
or statistical model [28] or a human perception model [52]. In [13], Haralick et
al. proposed the co-occurrence matrix representation of texture features. Many
researchers have used wavelets [2, 27] and their variants to extract appropriate
texture features. Gabor Filters [9] and fractal dimensions [19] are also used as
a measure of the texture property.

Another widely used visual feature for CBIR is color. The main advantage
of this feature is its invariance to size, position, orientation and arrangements
of the objects. On the other hand, the disadvantage is its immense varia-
tion within a single image. In CBIR systems, a color histogram is most com-
monly used for representing color features. Various color similarity measures
based on histogram intersection have been reported [50, 51]. Other than color
histogram, color layout vectors [24], color correlograms [16], color coherence
vectors [7], color sets [47] and color moments [22, 56] are also commonly used.

The retrieval engine is responsible for finding the set of similar images from
the database against a query on the basis of certain similarity measures on the
feature set. It is evident from the literature that various distance/similarity
measures have been adopted by CBIR systems. Mukherjee et al. [31] have
used template matching for shape-based retrieval. A number of systems [29,
33, 49] have used Euclidean distance (weighted or unweighted) for matching.
Other schemes include the Minkowski metric [9], self-organizing maps [22],
proportional transportation distance [55], the CSS matching algorithm [30],
etc. For matching multivalued features such as a color histogram or texture
matrix, a variety of distance measures are deployed by different systems. They
include schemes like quadratic form distance [33], Jaccard’s co-efficient [23], L1
distance [2, 7, 21], histogram intersection [11], etc. The details on combining
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the distance of various types of features is not available. But, it is clear that
Euclidean distance is the most widely used similarity measure.

The quality of retrieved images can be improved through a relevance feed-
back mechanism. As the importance of the features varies for different queries
and applications, to achieve better performance, different emphases have to be
given to different features and the concept of relevance feedback (RF) comes
into the picture. Relevance feedback, originally developed in [54], is a learn-
ing mechanism to improve the effectiveness of information retrieval systems.
For a given query, the CBIR system retrieves a set of images according to a
predefined similarity measure. Then, the user provides feedback by marking
the retrieved images as relevant to the query or not. Based on the feedback,
the system takes action and retrieves a new set. The classical RF schemes can
be classified into two categories: query point movement (query refinement)
and re-weighting (similarity measure refinement) [37, 41]. The query point
movement method tries to improve the estimate of the ideal query point by
moving it towards the relevant examples and away from bad ones. Rocchio’s
formula [37] is frequently used to improve the estimation iteratively. In [15],
a composite query is created based on relevant and irrelevant images. Various
systems like WebSEEk [46], Quicklook [5], iPURE [1] and Drawsearch [44]
have adopted the query refinement principle. In the re-weighting method, the
weight of the feature that helps in retrieving the relevant images is enhanced
and the importance of the feature that hinders this process is reduced. Rui
et al. [39] and Squire et al. [48] have proposed weight adjustment techniques
based on the variance of the feature values. Systems like ImageRover [45] and
RETIN [9] use a re-weighting technique.

Here in this paper we have given emphasis to the extraction of shape,
texture and color features which together form a complex data set as they
bear diverse kinds of information. A human-perception-based similarity mea-
sure and a novel relevance feedback scheme are designed and implemented to
achieve the goal. This paper is organised as follows. Section 10.2 deals with
the computation of features. Section 10.3 describes a new similarity measure
based on human perception. A relevance feedback scheme based on the Mann-
Whitney test has been elaborated in Section 10.4. Results and discussions are
given in Section 10.5 followed by the concluding remarks in Section 10.6.

10.2 Computation of Features

The images we usually deal with may be classified into two groups: one consists
of photos of our friends, relatives, leaders, monuments, articles of interest, etc.
and the other group consists of landscape, outdoor scenery, pictures of crowds,
etc. Our present system works on the images of the first group where images
consist of only one dominant object, and other objects are less emphasized in
the shot. We apply a fast and automatic segmentation method to extract the
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∆θ

R

Fig. 10.1. Petal projection.

desired object [40]. All the visual features are then computed on the segmented
region of interest.

10.2.1 Shape Features

Fourier descriptors and moment invariants are the two widely used shape
features. In the case of Fourier descriptors, data is transformed to a completely
different domain where co-coefficients may not have direct correlation with
the shape perception except whether the boundary is smooth or rough, etc.
They do not, in general, straightaway indicate properties like symmetry or
concavity. This is also true for higher-order moments. Moreover, moments of
different order vary so widely that it becomes difficult to balance their effects
on distance measures. These observations have led us to look for different
shape descriptors.

It is known that projection signatures retain the shape information, which
is confirmed by the existence of image reconstruction algorithms from pro-
jection data [38]. Horizontal and vertical projection of image gray levels are
already used in image retrieval [36]. In this work we propose petal projection
which explicitly reveals the symmetricity, circularity, concavity and aspect ra-
tio.

Petal Projection
After segmentation the object is divided into a number of petals where a
petal is an angular strip originating from the center of gravity as shown in
Figure 10.1. The area of the object lying within a petal is taken as the pro-
jection along it. Thus, Sθi

, the projection on the ith petal can be represented
as:

Sθi =
∫ θi+�θ

θi

∫ R

r=0
f(r, θ)drdθ (10.1)

where, f(r, θ) represents the segmented object, R is greater than or equal to
the radius of the minimum bounding circle,  θ = θi+1 − θi is the angular
width of the petal and the ith petal lies within the angle θi to θi + θ.
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In order to make the projection size invariant we consider the normalised
values of Sθi

so that
∑

i Sθi
becomes 1. Thus, an n-dimensional vector

(Sθ0 , Sθ1 , . . . Sθn−1) is obtained by taking the projection on n petals (note
that n should be even). As the projections are taken from the center of
gravity, the dimension of the vector can be reduced to n/2 and it becomes
(sθ0 , sθ1 , . . . sθn/2−1), where sθi

= (Sθi
+ Sθi+180)/2.

The vector thus obtained is scale and translation invariant. To make it
rotation invariant, a cyclic shift on the data set is applied. Through successive
cyclic shifts n/2 different cases are obtained. For each case, a plot of sθi

versus i is made (conceptually). The set of discrete points in each plot is
approximated by a straight line using the least square regression technique.
To make it flip invariant, projection data are considered in reverse order too.
The case for which the slope of the line takes maximum value is considered and
the corresponding data set forms the actual n/2 dimensional petal projection
vector. Along with the vector, the slope and error which indicate bulging and
smoothness of boundary, respectively are also used as two features. Now, using
the petal projection, symmetricity, circularity, aspect ratio and concavity can
be measured based on Sθm

= max{Sθi
} as follows.

Linear symmetricity: It can be measured from the projection vector
(Sθ0 , Sθ1 , . . . Sθn−1) and expressed as:

Symmetry =
1
n

n/2∑
k=1

| Sθ(m+n−k) mod n
− Sθ(m+k−1) mod n

| (10.2)

For a perfectly symmetric object, the value is zero and it gives a positive value
for an asymmetric one.
Circularity: It can be expressed as:

Circularity =
1
n

n/2−1∑
i=0

| sθm
− sθi

| (10.3)

For a perfectly circular object it gives zero and a positive value otherwise.
Aspect ratio: In order to compute the aspect ratio, sθm is obtained first.
Then pθi

, the projection of sθi
along the direction orthogonal to θm is com-

puted for all sθi
other than sθm

. Finally, the aspect ratio can be represented
as:

Asp.Ratio =
sθm

max{pθi
} (10.4)

Concavity: Consider the the triangle BOA as shown in Figure 10.2. Suppose
OC of length r is the angular bisector of ∠BOA. The point c is said to be a
concave point with respect to AB if

r <
ra.rb

(ra + rb)2cos2α

Hence, Ci, the concavity due to the ith petal zone can be obtained as
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Fig. 10.2. Concavity measure.

Ci =

⎧⎨
⎩

0; if sθi
≥ sθi+1×sθi−1

(sθi+1+sθi−1 )×2cos2�θ
sθi+1×sθi−1

(sθi+1+sθi−1 )×2cos2�θ − sθi
; otherwise

Thus

Concavity =
n/2−1∑

i=0

Ci (10.5)

can act as the measure for concavity.

Supplementary Features
Petal-projection-based measures of shape features are very effective when ∆θ
is sufficiently small. However, since the mathematical formulation for measur-
ing the shape features available in the literature, including the proposed ones,
are based on intuition and heuristics, it is observed that more features usually
improves performance of the system particularly for a wide variety of images.
For this reason, similar types of shape features may also be computed in a
different manner as described next. These supplementary features improve the
performance by about 2 to 3% and do not call for much extra computation.

Three different measures for circularity, Ci, (see Figure 10.3a) are defined
and computed as follows:

C1 = (object area)/(π D2/4)

C2 =
Length of the object boundary

πD + length of the object boundary

C3 = (2×min{ri})/D

where D is the diameter of the smallest circle enclosing the object and ri is
same as Sθi

for very small ∆θ. D can be determined by taking projections of
ris along θm.

To compute the aspect ratio the principal axis (PA) and the axis orthogo-
nal to it (OA) are obtained first [38] using ri. Two different aspect ratio, ARi

features (see Figure 10.3b) are computed as

AR1 = OA length/PA length

AR2 = Median of{OLi}/median of{PLi}
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Fig. 10.3. Computing (a) circularity and (b) aspect ratio.

where the length of the lines parallel to PA (or OA) forms {PLi} ({OLi}).
Symmetricity (see Figure 10.3b) about various axes are measured in the

following way.

Symmetricity about PA =
1
n

n∑
i=1

dui − dbi

dui + dbi

where n denotes the number of pixels on PA. Similarly;

Symmetricity about OA =
1
m

m∑
i=1

dli − dri

dli + dri

where m denotes the number of pixels on OA. Note that dui and dbi are the
lengths of line segments parallel to OA drawn on either side of PA from the
ith pixel on PA. dli and dri can be defined in a similar way. Here again, dui

(or dbi) and dli (dri) may be obtained by taking projections of Sθi
along OA

and PA respectively for very small ∆θ. However, we have implemented it by
pixel counting along the lines.

The convex hull of the object is obtained first and then the concavity
features (Coni) are computed as follows:
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Con1 =
Object area

Area of the convex hull

Con2 =
Perimeter of the convex hull

Perimeter of the object

10.2.2 Texture Feature

By the term ”texture” we mean, in general, roughness or coarseness of the
object surface. Texture is an innate property of virtually all object surfaces,
including fabric, bark, water ripple, brick, skin, etc. In satellite images tex-
ture of a region can distinguish among grassland, beach, water body, urban
area, etc. In an intensity image, texture puts its signature as the variation
in intensity from pixel to pixel. Usually a small patch is required to feel or
measure a local texture value. The smallest region for such a purpose could be
a 2× 2 block. Based on this idea, we propose a texture co-occurrence matrix
for texture representation.

Texture Co-occurrence Matrix
Computation of the texture co-occurrence matrix is carried on with the in-
tensity of image. As mentioned above, an image is divided into blocks of size
2× 2 pixels. Then the gray-level pattern of the block is converted to a binary
pattern by thresholding at the average value of the intensities. This operation
is same as the method of obtaining the binary pattern in the case of block
truncation coding [8]. The 2×2 binary pattern obtained this way provides an
idea of distribution of high and low intensities or, in other words, the kind of
local texture within the block.

By arranging this pattern in raster order, a binary string is formed. It is
considered as the gray code and the corresponding decimal equivalent is its
texture value. Thus, by virtue of the gray code, blocks with similar texture
are expected to have closer values.

Gray Code 1100 0101 1010 1001 1001

8 126 14 14Texture value

20 22

8 7

1 1

0 0

9

11

19

20

0 1

0 1

18

1

20 7

6 23

1 0

0 1

7

6 8

8

1 0

0 1

17 11

1 0

0

9Block

Binary
Pattern

Intensity

(a) (b) (c) (d) (e)

Fig. 10.4. Blocks and texture values.

Some examples of blocks and corresponding texture values are shown in
Figure 10.4. Thus we get 15 such texture values since a block of all 1s does
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Fig. 10.5. An image and corresponding texture image.

not occur. A problem of this approach is that a smooth intensity block (see
Figure 10.4e) and a coarse textured block (see Figure 10.4d) may produce
same binary pattern and, hence, the same texture value. To surmount this
problem we define a smooth block as having an intensity variance less than
a small threshold. In our experiment, the threshold is 0.0025 of the average
intensity variance computed over all the blocks. All such smooth blocks have
texture value 0. Thus we get the scaled (both in space and value) image whose
height and width are half of that of the original image and the pixel values
range from 0 to 15 except 10 (all 1 combination). This new image may be
considered as the image representing the texture of the original image (see
Figure 10.5).

Finally, considering left-to-right and top-to-bottom directions, the co-
occurence matrix of size 15 × 15 is computed from this texture image. To
make this matrix translation invariant the 2 × 2 block frames are shifted by
one pixel horizontally and vertically. For each case, the co-occurence matrix is
computed. To make the measure flip invariant, co-occurence matrices are also
computed for the mirrored image. Thus, we have sixteen such matrices. Then,
we take the element-wise average of all the matrices and normalize them to
obtain the final one. In the case of landscape, this is computed over the whole
image; while in the case of an image containing dominant object(s) the texture
feature is computed over the segmented region(s) of interest only.

The texture co-occurrence matrix provides the detailed description of the
image texture, but handling of such multivalued features is always difficult,
particularly in the context of indexing and comparison cost. Hence, to obtain
more perceivable features, statistical measures like entropy, energy and tex-
ture moments [13] are computed based on this matrix. We have considered
moments up to order 4 as the higher orders are not perceivable. The use of
gray code has enabled us to measure homogeneity and variation in texture.

10.2.3 Color Feature

It is quite common to use a 3-D color histogram of an image as its color
feature. However, one important issue is to decide about the color space to
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use. Lim and Lu [25] have suggested that among various color models, the
HSV (Hue, Saturation, Value) model is most effective for CBIR applications
and is less sensitive to quantization. Hence, in our system, the color feature
is computed based on the HSV model. As, H controls the luminance, it has
more impact on the perception of color and we have used a fuzzy index of
color based on hue histogram to improve the performance of the system.

Color is represented using the HSV model. A hue histogram is formed. The
hue histogram thus obtained can not be used directly to search for similar
images. As an example, a red image and an almost red image (with similar
contents) are visually similar but their hue histogram may differ. Hence, to
compute the color features the hue histogram is first smoothed with a Gaussian
kernel and normalized. Then, for each of the six major colors (red, yellow,
green, blue, cyan and magenta), an index of fuzziness is computed as follows.

30012060 180 240−60
(or 300)

0
(or 360)

Ideal distributionActual distribution

HUE

Fig. 10.6. Computation of Bhattacharya distance.

It is assumed that in the ideal case for an image with one dominant color
of hue h, the hue histogram would follow the Gaussian distribution p(i) with
mean h and standard deviation, say, σ. In our experiment we have chosen σ =
20 so that 99% of the population falls within h−60 to h+60. Figure 10.6 shows
the ideal distribution for h = 120 and actual hue distribution of an image.
The Bhattacharya distance [10], dh, between the actual distribution pa(i) and
this ideal one p(i) indicates the closeness of the image color to hue h, where
dh =

∑
i

√
p(i)pa(i). Therefore, dh gives a measure of similarity between two

distributions. Finally, an S-function [26] maps dh to fuzzy membership F (h)
where

F (h) =
1

1 + e−θ(dh−0.5)

For h = 0, 60, 120, . . . membership values corresponding to red, yellow, green
etc. are obtained. In our experiment θ is taken as 15.

10.3 Human-Perception-Based Similarity Measure

In the previous section we have suggested some formulae to compute visual
features from pixel values. The collection of features (often referred to as the
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feature vector) thus formed conveys, to some extent, the visual appearance of
the image in quantitative terms. Image retrieval engines compare the feature
vector of the query image with those of the database images and presents
to the users the images of highest similarity (i.e., least distance) in order as
the retrieved images. However, it must be noted that this collection is highly
complex as its elements carry different kinds of information, shape, texture
and color, which are mutually independent. Hence, they should be handled
differently as suited to their nature. In other words, if there are n features
altogether, one should not consider the collection as a point in n-dimensional
space and apply a single distance measure to find similarity between two such
collections. For example, in the set of shape features, circularity indicates
a particular appearance of the object. If the object in the query image is
circular, then objects present in the retrieved images must be circular. If those
objects are not circular the images are rejected; it does not matter whether
the objects of those rejected images are triangular or oblong or something
else. Simply speaking, two images are considered to be similar in terms of
circularity, if their circularity feature exceeds a predefined threshold. It may
be observed that almost every shape feature presented in this work, as well as
in the literature, usually carries some information about the appearance of the
object independently. On the other hand, texture features as mentioned in the
previous section together represent the type of texture of the object surface,
and none of them can represent the coarseness or periodicity independently.
Hence, a distance function comprising all the texture features can be used
to determine the similarity between two images. Color features like redness,
greenness etc. convey, in some sense, the amount of a particular color and its
associated color present in the image. However, they are not as independent
as the shape features (circularity, convexity etc.). Secondly, these features are
represented in terms of a fuzzy index which are compared (a logical operation)
to find similarity between two images. Thus, it is understandable that though
these features together annotate an image, they are not in the same scale of
unit nor they are evenly interpretable. Moreover, it is very difficult to find
out the correlations hidden among the various features, color and texture
features especially. On the other hand, there are strong implications in the
retrieval of similar images against a query. As the similarity (distance) measure
establishes the association between the query image and the corresponding
retrieved images based on these features only, it becomes the major issue.

The early work shows that most of the schemes deal with Euclidean dis-
tance, which has a number of disadvantages. One pertinent question is how to
combine the distance of multiple features. Berman and Shapiro [2] proposed
the following operations to deal with the problem:

Addition : distance =
∑

i

di (10.6)

where di is the Euclidean distance of the ith features of the images being
compared. This operation may declare visually similar images as dissimilar due
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to the mismatch of only a few features. The effect will be further pronounced
if the mismatched features are sensitive enough even for a minor dissimilarity.
The situation may be improved by using

Weighted Sum : distance =
∑

i

cidi (10.7)

where ci is the weight for the Euclidean distance of ith feature. The problem
with this measure is that selection of the proper weight is again a difficult
proposition. One plausible solution could be taking ci as some sort of recip-
rocal of the variance of the ith feature. An alternative measure could be

Max : distance = Max(d1, d2, . . . , dn) (10.8)

It indicates that similar images will have all their features lying within a range.
It suffers from similar problems as the addition method. On the other hand,
the following measure

Min : distance = Min(d1, d2, . . . , dn) (10.9)

helps in finding images which have at least one feature within a specified
threshold. The effect of all other features are thereby ignored and the measure
becomes heavily biased. Hence, it is clear that for high-dimensional data, Eu-
clidean distance-based neighbor searching can not do justice to the problem.
This observation motivates us to develop a new distance-measuring scheme.

A careful investigation of a large group of perceptually similar images
reveals that similarity between two images is not usually judged by all possible
attributes. Which means visually similar images may be dissimilar in terms
of some features as shown in Figures 10.7, 10.8 and 10.9.

(a) (b) (c)

Fig. 10.7. Figure shows similar images: (a) and (b) are symmetric but differ in
circularity; whereas (b) and (c) are similar in circularity but differ in symmetricity.
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Fig. 10.8. Figures show similar textured objects with different shapes.

Fig. 10.9. Figures show similar shapes with different textures.

It leads us to propose that if k out of n features of two images match then
they are considered similar. A low value of k will make the measurement too
liberal and a high value may make the decision very conservative. Depending
on the composition of the database, the value of k can be tuned.

Distance or range-based search basically looks into a region for similar im-
ages. In the case of Euclidean distance as defined in Equation (10.6) the region
is a hypersphere. Weighted Euclidean distance as given by Equation (10.7)
results in a hyperellipsoid. Equation (10.8) suggests a hypercube. While in
range, the search region is hypercuboid. Our proposed similarity measure,
i.e., matching k features out of n features leads to a star-shaped region. Fig-
ure 10.10 shows some examples of such regions. When k = n we arrive at
the region defined by Equation (10.8), and that defined by Equation (10.9) if
k = 1. Hence, our similarity measure is much more generalized and flexible.

Now, the question is how to measure whether a feature of two images
matches or not. If the Euclidean distance of features is considered, then sen-
sitivity of the different features poses a problem. The same distance corre-
sponding to a different set of features may not reflect the same quantity of
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Feature 1

Feature 2
Feature 3

Feature 2

Feature 1

Feature 1

Feature 2
Feature 3

(a) (b) (c)

Fig. 10.10. Search regions for (a) 1 out of 2; (b) 2 out of 3; (c) 1 out of 3.

dissimilarity. Secondly, in the beginning of the section we mentioned that the
collection of the features is of complex nature as they carry different kinds of
information and are to be treated differently, appropriate to their characteris-
tics. To cope with this problem, we propose the following scheme to map real
feature values to character-based tag. The mapping algorithm is as follows:

Assume n is the number of features, N is the number of images in the
database and D is the number of divisions into which each feature range will
be divided.

for i = 1 to n do
begin
Divide the entire range of i-th feature values into D divisions.
Sort the i-th feature values in ascending order.
For all the feature values belonging to the topmost division, set the i-th

feature tag = “A”, for the feature values belonging to next division the
corresponding value is “B” and so on.

end

The divisions may be imposed based on absolute values, percentiles or
some other criterion. Thus the n dimensional feature vector is converted into
a tag consisting of n characters. For example, if n = 8 and D = 10, then a tag
may look like ADGACBIH. The same division thresholds are used to generate
a tag for the query image.

When we perform a query on the database on the basis of Euclidean dis-
tance, nearest neighbors are searched in the hypercube/hypersphere domain.
Basically, for each feature, images within a value range participate. When
characters representing the feature values are compared to check their prox-
imity in our scheme, it also deals with a range. The differences are that there
is no floating point operation and that the sensitivity factor of different fea-
tures are also reduced as their ordered grades are considered instead of their
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absolute values. To avoid the boundary problem, at the time of comparing
neighboring groups may be considered by setting a tolerance range t. As the
tags represent the ordered grades based on the actual numerical values, these
can be used to implement range search, comparison of linguistic terms, and
thresholded comparison straightaway.

Thus in the proposed scheme, similarity between two images is measured
by matching corresponding features or subsets of features based on the criteria
suitable to them rather than using a single distance measure considering all
the features. A counter, initially set to zero, is increased if a feature is matched
and similarity is declared by comparing the count with k. The retrieved images
may be ordered based on this count for top-order retrieval.

10.4 Relevance Feedback Scheme

In the previous section, the difficulty in finding the correlation among the
features has been mentioned. To cope with this problem, the concept of rel-
evance feedback can be used. Once a set of images is retrieved, they may be
marked as relevant or irrelevant. This information can be used for discovering
the relations and for refining the association of the features with the query
as well as the retrieved images. Accordingly, the similarity measure can be
refined for better performance.

In the proposed relevance feedback (RF) scheme, the distance (similarity)
measure is refined by updating the emphasis of the useful features. The term
useful feature means features capable of discriminating relevant and irrelevant
images within the retrieved set. The most crucial issue is to identify the useful
features. Once, it is done then the question arises how to adjust the emphasis.

10.4.1 Identification of Useful Features

A close study of past work indicates that a re-weighting technique is widely
used for relevance feedback. But most of the systems address how to update
the weight without identifying the good features. In this paper, we present an
RF scheme that first identifies the useful features following a non-parametric
statistical approach and then updates their weights.

Useful features are identified using the Mann-Whitney test. In a two-
sample situation where two samples are taken from different populations, the
Mann-Whitney test is used to determine whether the null hypothesis that the
two populations are identical can be rejected or not.

Let, X1, X2, . . . , Xn be random samples of size n from population-1 and
Y1, Y2, . . . , Ym be random samples of size m from population-2. The Mann-
Whitney test determines whether X and Y come from the same population or
not. It proceeds as follows [6]. X and Y are combined to form a single ordered
sample set and ranks 1 to n+m are assigned to the observations from smallest
to largest. In case of a tie (i.e. if the sample values are equal), the average of
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the ranks that would have been assigned in the case of no ties, are assigned.
Based on the ranks, a test statistic is generated to check the null hypothesis.
If the value of the test statistic falls within the critical region then the null
hypothesis is rejected. Otherwise, it is accepted.

In CBIR systems, a set of images are retrieved according to a similarity
measure. Then feedback is taken from the user to identify the relevant and
irrelevant outcomes. For the time being, let us consider only the jth feature
and Xi = dist(Qj , fij), where Qj is the jth feature of the query image and fij

is the jth feature of the ith relevant image retrieved by the process. Similarly,
Yi = dist(Qj , f

′
ij) where f ′

ij is the jth feature of ith irrelevant image. Thus,
Xi and Yi form the different random samples. Then, the Mann-Whitney test
is applied to judge the discriminating power of the jth feature. Let F (x) and
G(x) be the distribution functions corresponding to X and Y respectively. The
null hypothesis, H0, and alternate hypothesis, H1, may be stated as follows:
H0: The jth feature cannot discriminate X and Y (X and Y come from same
population) i.e.,

F (x) = G(x) for all x.
H1: The jth feature can discriminate X and Y (X and Y come from different
population) i.e.,

F (x) �= G(x) for some x.
It becomes a two-tailed test Because, H0 is rejected for any of the two cases:
F (x) < G(x) and F (x) > G(x).

It can be understood that a useful feature can separate the two sets and
X may be followed by Y or Y may be followed by X in the combined ordered
list. Thus, if H0 is rejected then the jth feature is taken to be a useful feature.
The steps are as follows:

1. Combine X and Y to form a single sample of size N , where N = n + m.
2. Arrange them in ascending order
3. Assign a rank starting from 1. If required, resolve ties.
4. Compute the test statistic, T , as follows.

T =
∑n

i=1 R(Xi)− n× N + 1
2√

nm
N(N − 1)

∑N
i=1 R2

i −
nm(N + 1)2

4(N − 1)

where R(Xi) denotes the rank assigned to Xi and
∑

R2
i denotes the sum

of the squares of the ranks of all X and Y .
5. If the value of T falls within the critical region then H0 is rejected and

the jth feature is considered useful otherwise it is not.

The critical region depends on the level of significance α which denotes the
maximum probability of rejecting a true H0. If T is less than its α/2 quantile
or greater than its 1 − α/2 quantile then H0 is rejected. In our experiment,
the distribution of T is assumed to be normal and α is taken as 0.1. If the
concerned feature discriminates and places the relevant images at the begin-
ning of the combined ordered list, then T will fall within the lower critical
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region. On the other hand, if the concerned feature discriminates and places
the relevant images at the end of the same list then T will fall within the
upper critical region.

It may be noted that, the proposed work proceeds only if the retrieved set
contains both relevant and irrelevant images. Otherwise, samples from two
different populations will not be available and no feedback mechanism can be
adopted.

10.4.2 Adjustment of the Emphasis of Features

Adjustment of the emphasis of features is closely related with the dis-
tance/similarity measure adopted by the system. In the current work we have
adopted a human-perception-based similarity measure. However, for easy un-
derstanding we first present an emphasis adjustment scheme for Euclidean
distance. Subsequently we will transfer the idea to the perception-based sim-
ilarity measure.

Euclidean distance is a widely used metric for CBIR systems. If an image
is described by M features, the distance between two images can be expressed
as
∑M

j=1 wjdj where dj denotes the Euclidean distance between them with
respect to the jth feature and wj is the weight assigned to the feature.

d1

d 2

w
1 w2= w2w

1 >

Fig. 10.11. Variation of search space with the weights of the features.

In the proposed scheme, wj is adjusted only if the jth feature is useful.
To explain the strategy for adjustment of the weights of the features, let us
consider a system that relies on two features only, say, f1 and f2. The difference
in feature values between the query image and the database image are d1 and
d2. With w1 = w2, the search space corresponding to Euclidean distance is
a circle (as shown in Figure 10.11 by the solid line). Now suppose f1 is a
useful feature such that the test statistic of d1 lies in the lower critical region.
That means f1 can discriminate between relevant and irrelevant images and
the d1 of a relevant image is, in general, less than the d1 of an irrelevant
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image. By making w1 > w2, the search space is changed to an ellipse (as
shown in Figure 10.11 by the dashed line) and thereby discarding irrelevant
images as much as possible from the retrieved set. Similarly, if f1 is a useful
feature and the test statistic of d1 lies in the upper critical region then the d1
of relevant images are, in general, greater than ithe d1 of irrelevant images.
Hence, by making w1 < w2, more relevant images can be included in the
retrieved set. Thus by increasing the weight of the useful feature with the
lower test statistic, we try to exclude the irrelevant images from the retrieved
set. On the other hand, by decreasing the weight of the useful feature with
the higher test statistic, we try to include the relevant images in the retrieved
set.

Once images are retrieved, feedback is taken from the user and useful
features are identified. Finally, weight adjustment is done according to the
following steps:

1. Initialize all wj to 1.
2. For each jth useful feature where the test statistic falls within the lower

critical region, set wj as follows:

wj = wj + σ2
x

where σ2
x is the variance of X.

3. For each jth useful feature where the test statistic falls within the upper
critical region, set wj as follows:

if wj > σ2
x then wj = wj − σ2

x

where σ2
x is the variance of X.

4. Repeat steps 2 and 3 for successive iterations.

In the case of the human-perception-based similarity measure, features are
identified following the same technique. But the adjustment of emphasis of a
feature is addressed in a slightly different manner. In this method, whether or
not an image would be retrieved is decided by the count of matched features
with the query image. Hence, updating the emphasis of a feature must have
a direct impact on feature matching, so that irrelevant images are excluded
and relevant ones are included by deploying the user feedback. It can be
achieved by changing the match tolerance or threshold for the useful features.
The basic principle is similar to the Euclidean distance-based search. When
similar images lie in the close vicinity of the query image in terms of the
useful features i.e. the test statistic falls within the lower critical region, in
that case tolerance is reduced to restrict the inclusion of irrelevant images.
The situation is reversed for useful features with the test statistic falling in the
upper critical region. In that case, the similar images are lying in the distant
buckets. Thus, to increase the possibility of inclusion of similar images, the
match tolerance is increased. The steps are as follows:

1. Initialize the tolerance for all features to t.
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2. For all jth useful features with the test statistic in the lower critical region
set, tolerancej = tolerancej − 1.
If tolerancej < MIN then tolerancej = MIN.

3. For all jth useful features with the test statistic in the upper critical region
set, tolerancej = tolerancej + 1.
If tolerancej > MAX then tolerancej = MAX.

4. Repeat steps 2 and 3 for successive iterations.

MIN and MAX denote the minimum and maximum possible tolerance
values. In our experiment, we have considered t as 2, MIN as 0 and MAX as
B − 1 where B is the number of buckets in the feature space.

10.5 Results and Discussion

In our experiment, we used two databases. The first one, referred to as our
database, consists of around 2000 images. Each of these images has only one
dominant object. The database was prepared by taking some images from
the Corel database and downloading some thumbnails from the Internet. The
database was “groundtruthed” manually. It consists of five distinct categories
of images (car, airplane, flower, animal and fish) and for each category there is
a large variety of examples. So we use this database for controlled experiments.
The second database is the well-known COIL-100 database from Columbia
University which consists of 7200 images of 100 different objects. For each
object, 72 images are taken by rotating it at an interval of 5 degrees. A
retrieved image is considered relevant if it is an instances of the same category
of object as the query image.

Table 10.1. Comparison of precision (in %) using shape features.

using shape features using shape and texture fea-
tures

No. of Our database COIL-100 Our database COIL-100
retrieved database database
images Our Prasad Our Prasad Our Sciascio Our Sciascio

system system system system system system system system
10 64.74 56.63 58.14 36.62 73.62 70.24 66.84 60.72
20 59.49 53.78 48.77 32.32 68.26 64.81 57.01 50.68
50 52.98 49.10 36.54 25.58 64.10 60.96 43.46 36.76

Each image is described by 47 features of which 23 are the shape features,
18 denote texture and remaining six are fuzzy indexes of six major colors. To
measure the retrieval performance, all the database images have been used as
query images. As Euclidean distance is the most widely used similarity mea-
sure for CBIR systems, we used it to study the performance of the proposed
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(a)

(b)

Fig. 10.12. Recall–precision graphs for our database (a) using shape features and
(b) using shape and texture features.

features. Finally, we carried out our experiment using the perception-based
similarity measure. An exhaustive search was made on the entire database.
To compare the performance of the proposed shape features, we implemented
the shape feature proposed by Prasad et al. [36]. We also implemented the
Hough-transform based features, proposed by Sciascio and Celentano, [43],
which take care of shape and texture. In the experiment using our database,
the recall–precision graphs in Figure 10.12 and Table 10.1 show that the per-
formance of the proposed features is better. The same result is also established
when the experiments are carried out on the COIL-100 database. It is evident
in the recall–precision graphs in Figure 10.13 and in Table 10.1. Table 10.2
and the recall–precision graphs of Figure 10.14 show the performance of the
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proposed system for various types of features using the two databases. Some
sample results are shown in Figures 10.15 and 10.16 for our database and the
COIL-100 database respectively.

(a)

(b)

Fig. 10.13. Recall–precision graphs for the COIL-100 database (a) using shape
features and (b) using shape and texture features.

In order to check the capability of the proposed human-perception-based
similarity measure, the experiment is carried on using both the databases. In
order to deal with our database, each feature space is divided into 10 buckets
and k is taken as 35. For the COIL-100 database, the corresponding values
are 20 and 30 respectively. In both the cases, t, the tolerance for matching the
character tag is taken as 2. In the case of retrieval using the perception-based-
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(a)

(b)

Fig. 10.14. Recall–precision graphs for (a) our database and (b) the COIL-100
database.

Table 10.2. Precision (in %) of the proposed system.

Our database COIL-100 database
No. of Only Shape Shape & Shape, Only Shape Shape & Shape,

retrieved Petal Petal & Texture Texture & Texture Texture &
images suppl. Color Color

10 61.89 64.74 73.62 76.16 58.14 66.84 82.46
20 57.25 59.49 68.26 70.87 48.77 57.01 73.59
50 51.03 52.98 64.10 66.05 36.54 43.46 58.54
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similarity measure, as it is quite likely that similar images may spread over
multiple divisions of a feature space, achievement of high recall is quite diffi-
cult. Hence, performance is studied based on top order retrievals. Moreover,
Muller et al. [32] have mentioned that, from the perspective of a user, top
order retrievals are of major interest. Table 10.3 shows that retrieval precision
is higher in the case of the human-perception-based similarity measure and it
proves the retrieval capability of the proposed similarity measure.

The proposed relevance feedback scheme is also applied to improve the
retrieval performance. It has been checked for both the databases and using
both Euclidean distance and the proposed human-perception-based measure.
Tables 10.4 and 10.5 along with the recall–precision graphs in Figures 10.17
and 10.18 reflect the improvement achieved through the proposed scheme for
the measures.

Table 10.3. Precision (in %) of retrieval using different similarity measures.

Our database COIL-100 database
Number of re-
trieved images

Euclidean
distance
based

Proposed
similarity
measure

Euclidean
distance
based

Proposed
similarity
measure

10 76.16 81.10 82.46 88.52
20 70.87 76.39 73.59 79.25
30 68.05 73.15 67.31 72.25

Table 10.4. Precision (in %) using relevance feedback for our database.

Euclidean distance Proposed similarity measure
No. of No No

retrieved relevance Relevance feedback relevance Relevance feedback
images feedback Iter1 Iter2 Iter3 feedback Iter1 Iter2 Iter3

10 76.16 77.91 79.61 81.40 81.10 87.39 89.32 91.17
20 70.87 74.50 76.03 78.48 76.39 82.39 84.85 86.63
30 68.05 69.89 71.38 72.63 73.15 78.61 81.34 83.20

10.6 Conclusions

In this paper we have established the capability of petal projection and other
types of shape features for content-based retrieval. The use of the texture
co-occurrence matrix and fuzzy indexes of color based on a hue histogram
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Fig. 10.15. Retrieval results (using our database): first image of each row is the
query image and the others are the top five images matched.
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Fig. 10.16. Retrieval results (using the COIL-100 database): first image of each
row is the query image and the others are the top five images matched.
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Fig. 10.17. Recall–precision graphs for different classes; they are (in raster order)
Airplane, Car, Fish and Overall database.

Table 10.5. Precision (in %) using relevance feedback for COIL-100 database.

Euclidean distance Proposed similarity measure
No. of No relevance Relevance No relevance Relevance

retrieved feedback feedback feedback feedback
images (after iteration 3) (after iteration 3)

10 82.46 84.74 88.52 91.07
20 73.59 76.47 79.25 83.91
30 67.31 70.40 72.25 79.57

further improves the performance. Comparison with similar systems was also
made, as a benchmark. A new measure of similarity based on human percep-
tion was presented and its capability has been established. To improve the
retrieval performance, a novel feedback mechanism was described and experi-
ment shows that the enhancement is substantial. Hence, our proposed retrieval
scheme in conjunction with the proposed relevance feedback strategy are able
to discover knowledge about the image content by assigning various emphases
to the annotating features.
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Fig. 10.18. Recall–precision graphs for different objects from the COIL-100
database; they are (in raster order) objects 17, 28, 43 and 52.

A proper multidimensional indexing scheme may be adopted in future for
faster response times.

Acknowledgments: In this work, we have used databases available with
Corel DRAW software from Corel Corporation and the COIL-100 database
from Columbia University.

References

[1] Aggarwal, G., P. Dubey, S. Ghosal, A. Kulshreshtha and A. Sarkar, July
2000: IPURE: Perceptual and user-friendly retrieval of images. Proceed-
ings of IEEE Conference on Multimedia and Exposition (ICME 2000),
New York, USA, volume 2, 693–6.

[2] Berman, A. P., and L. G. Shapiro, 1999: A flexible image database system
for content-based retrieval. Computer Vision and Image Understanding ,
75, 175–95.



280 Sanjoy Kumar Saha, Amit Kumar Das and Bhabatosh Chanda

[3] Bimbo, A. D., P. Pala and S. Santini, 1996: Image retrieval by elastic
matching of shapes and image patterns. Proceedings of Multimedia’96 ,
215–18.

[4] Chanda, B., and D. D. Majumdar, 2000: Digital Image Processing and
Analysis. Prentice Halla, New Delhi, India.

[5] Ciocca, G., I. Gagliardi and R. Schettini, 2001: Quicklook2: An integrated
multimedia system. International Journal of Visual Languages and Com-
puting, Special issue on Querying Multiple Data Sources Vol 12 (SCI
5417), 81–103.

[6] Conover, W. J., 1999: Practical nonparametric statistics, 3rd edition. John
Wiley and Sons, New York.

[7] Cox, I. J., M. L. Miller, T. P. Minka, T. Papathomas and P. N. Yiani-
los, 2000: The Bayesian image retrieval system, pichunter: Theory, imple-
mentation and psychophysical experiments. IEEE Transactions on Image
Processing , 9(1), 20–37.

[8] Delp, E. J., and O. R. Mitchell, 1979: Image compression using block
truncation coding. IEEE Trans. on Comm., 27, 1335–42.

[9] Fournier, J., M. Cord and S. Philipp-Foliguet, 2001: RETIN: A content-
based image indexing and retrieval system. Pattern Analysis and Appli-
cations, 4, 153–73.

[10] Fukunaga, K., 1972: Introduction to Statistical Pattern Recognition. Aca-
demic Press, NY, USA.

[11] Gevers, T., and A. Smeulders, 2000: Pictoseek: Combining color and shape
invariant features for shape retrieval. IEEE Transactions on Image Pro-
cessing , 9(1), 102–19.

[12] Gudivada, V. N., and V. V. Raghavan, 1995: Content-based image re-
trieval systems. IEEE Computer , 28(9), 18–22.

[13] Haralick, R. M., K. Shanmugam and I. Dinstein, 1973: Texture features
for image classification. IEEE Trans. on SMC , 3(11), 610–22.

[14] Hu, M. K., 1962: Visual pattern recognition by moment invariants. IRE
Trans. on Info. Theory, IT-8, 179–87.

[15] Huang, J., S. R. Kumar, and M. Mitra, 1997: Combining supervised learn-
ing with color correlogram for content-based retrieval. 5th ACM Intl. Mul-
timedia Confernce, 325–34.

[16] Huang, J., S. R. Kumar, M. Mitra, W. J. Zhu and R. Zabih, 1997: Image
indexing using color correlogram. IEEE Conference on Computer Vision
and Pattern Recognition, 762–8.

[17] Jain, A. K., and A. Vailaya, 1998: Shape-based retrieval: A case study
with trademark image database. Pattern Recognition, 31(9), 1369–90.

[18] Jain, R., ed., 1997: Special issue on visual information management.
Comm. ACM .

[19] Kaplan, L. M., 1998: Fast texture database retrieval using extended frac-
tal features. SPIE 3312 , SRIVD VI, 162–73.



References 281

[20] Kimia, B., J. Chan, D. Bertrand, S. Coe, Z. Roadhouse and H. Tek, 1997:
A shock-based approach for indexing of image databases using shape.
SPIE 3229 , MSAS II, 288–302.

[21] Ko, B., J. Peng and H. Byun, 2001: Region-based image retrieval using
probabilistic feature relevance learning. Pattern Analysis and Applica-
tions, 4, 174–84.

[22] Laaksonen, J., M. Koskela, S. Laakso and E. Oja, 2000: Picsom: content-
based image retrieval with self-organizing maps. PRL, 21, 1199–1207.

[23] Lai, T.-S., January 2000: CHROMA: a Photographic Image Retrieval Sys-
tem. Ph.D. thesis, School of Computing, Engineering and Technology,
University of Sunderland, UK.

[24] Li, Z. N., D. R. Zaiane and Z. Tauber, 1999: Illumination invariance and
object model in content-based image and video retrieval. Journal of Visual
Communication and Image Representation, 10(3), 219–44.

[25] Lim, S. and G. Lu, 2003: Effectiveness and efficiency of six colour spaces
for content based image retrieval. CBMI 2003 , France, 215–21.

[26] Lin, C., and C. S. G. Lee, 1996: Neural Fuzzy Systems. Prentice-Hall, NJ.
[27] Ma, W. Y., and B. S. Manjunath, 1995: A comparison of wavelet trans-

form features for texture image annotation. IEEE Intl. Conf. on Image
Processing , 256–9.

[28] Manjunath, B. S., and W. Y. Ma, 1996: Texture features for browsing
and retrieval of image data. IEEE Trans. on PAMI , 18, 837–42.

[29] Mills, T. J., D. Pye, D. Sinclair and K. R. Wood, 2000: Shoebox: A digital
photo management system. technical report 2000.10.

[30] Mokhtarian, F., S. Abbasi and J. Kittler, August 1996: Efficient and
robust retrieval by shape content through curvature scale space. Image
Database and Multi-Media Search, Proceedings of the First International
Workshop IDB-MMS’96 , Amsterdam, The Netherlands. Amsterdam Uni-
versity Press, 35–42.

[31] Mukherjee, S., K. Hirata and Y. Hara, 1999: A world wide web image
retrieval engine. The WWW journal , 2(3), 115–32.

[32] Muller, H., W. Muller, S. Marchand-Mallet, T. Pun and D. M. Squire,
2001: Automated benchmarking in content-based image retrieval. ICME
2001 , Tokyo, Japan, 22–5.

[33] Niblack, W., 1993: The QBIC project: Querying images by content using
color, texture and shape. SPIE , SRIVD.

[34] Pentland, A., and R. Picard, 1996: Introduction to special section on the
digital libraries: Representation and retrieval. IEEE Trans. on PAMI , 18,
769–70.

[35] Persoon, E., and K. S. Fu, 1977: Shape discrimination using Fourier de-
scriptors. IEEE Trans. on SMC , 7, 170–9.

[36] Prasad, B. G., S. K. Gupta and K. K. Biswas, 2001: Color and shape index
for region-based image retrieval. IWVF4 , volume LNCS 2059, 716–25.



282 Sanjoy Kumar Saha, Amit Kumar Das and Bhabatosh Chanda

[37] Rocchio, J. J., 1971: Relevance feedback in information retrieval. The
SMART Retrieval System: Experiments in Automatic Document Process-
ing, G. Salton, ed., Prentice Hall, 313–23.

[38] Rosenfeld, A., and A. C. Kak, 1982: Digital Picture Processing , volume II.
Academic Press, N.Y.

[39] Rui, Y., T. S. Haung, S. Mehrotra and M. Ortega, 1998: Relevance feed-
back: A power tool in interactive cotent-based image retrieval. IEEE Tran.
on Circuits and Systems for Video Technology, Special issue on interactive
Multimedia Systems for the Internet , 8(5), 644–55.

[40] Saha, S. K., A. K. Das and B. Chanda, 2003: Graytone image retrieval
using shape feature based on petal projection. ICAPR 2003 , India, 252–6.

[41] Salton, G., and M. J. McGill, 1983: Introduction to Modern Information
Retrieval for Image and Video Databases. McGraw-Hill.

[42] Schettini, R., 1994: Multicolored object recognition and location. PRL,
15, 1089–97.

[43] Sciascio, E. D., and A. Celentano, 1997: Similarity evaluation in image
retrieval using simple features. SPIE , 3022, 467–77.

[44] Sciascio, E. D., G. Mingolla and M. Mongiello, 1999: Content-based im-
age retrieval over the web using query by sketch and relevance feedback.
Visual Information and Information Systems, Proceedings of the Third In-
ternational Conference VISUAL ’99 , Amsterdam, The Netherlands, June
1999, Lecture Notes in Computer Science 1614, Springer, 123–30.

[45] Sclaroff, S., L. Taycher and M. L. Cascia, 1997: ImageRover: A content-
based image browser for the world wide web. IEEE Workshop on content-
based Access of Image and Video Libraries, San Juan, Puerto Rico, 2–9.

[46] Smith, J. R., February 1997: Integrated Spatial and Feature Image
Systems: Retrieval, Compression and Analysis. Ph.D. thesis, Graduate
School of Arts and Sciences, Columbia University.

[47] Smith, J. R., and S. F. Chang, 1995: Tools and techniques for color image
retrieval. SPIE 2420 , SRIVD III.

[48] Squire, D. M., W. Muller, H. Muller and T. Pun, 2000: Content-based
query of image databases: inspirations from text retrieval. PRL, 21, 1193–
98.

[49] Srihari, R., Z. Zhang, and A. Rao, 2000: Intelligent indexing and semantic
retrieval of multimodal documents. Information Retrieval, 2(2), 245–75.

[50] Stricker, M., and M. Orengo, 1995: Similarity of color images. SPIE ,
SRIVD, 381–92.

[51] Swain, M., and D. Ballard, 1991: Color indexing. International Journal
of Computer Vision, 7(1), 11–32.

[52] Tamura, H., S. Mori and T. Yamawaki, 1978: Texture features correspond-
ing to visual perception. IEEE Trans. on SMC , 8(6), 460–73.

[53] Teh, C., and R. T. Chin, 1988: On image analysis by the methods of
moments. IEEE Trans. on PAMI , 10, 496–13.

[54] Turtle, H. R., and W. B. Croft, 1982: A comparison of text retrieval
models. The Computer Journal , 35(3), 279–90.



References 283

[55] Vleugels, J., and R. C. Veltkamp, 2002: Efficient image retrieval through
vantage objects. Pattern Recognition, 35(1), 69–80.

[56] Yu, H., M. Li, H. Jiang Zhang and J. Feng, 2002: Color texture moments
for content-based image retrieval. IEEE Int. Conf. on Image Proc., New
York, USA.



11

Significant Feature Selection Using
Computational Intelligent Techniques for
Intrusion Detection

Srinivas Mukkamala and Andrew H. Sung

Summary. Due to increasing incidence of cyber attacks and heightened concerns for
cyber terrorism, implementing effective intrusion detection and prevention systems
(IDPSs) is an essential task for protecting cyber security as well as physical security
because of the great dependence on networked computers for the operational control
of various infrastructures.

Building effective intrusion detection systems (IDSs), unfortunately, has re-
mained an elusive goal owing to the great technical challenges involved; and com-
putational techniques are increasingly being utilized in attempts to overcome the
difficulties. This chapter presents a comparative study of using support vector ma-
chines (SVMs), multivariate adaptive regression splines (MARSs) and linear genetic
programs (LGPs) for intrusion detection. We investigate and compare the perfor-
mance of IDSs based on the mentioned techniques, with respect to a well-known set
of intrusion evaluation data.

We also address the related issue of ranking the importance of input features,
which itself is a problem of great interest. Since elimination of the insignificant
and/or useless inputs leads to a simplified problem and possibly faster and more
accurate detection, feature selection is very important in intrusion detection. Ex-
periments on current real-world problems of intrusion detection have been carried
out to assess the effectiveness of this criterion. Results show that using significant
features gives the most remarkable performance and performs consistently well over
the intrusion detection data sets we used.

11.1 Introduction

Feature selection and ranking is an important issue in intrusion detection.
Of the large number of features that can be monitored for intrusion detection
purposes, which are truly useful, which are less significant, and which may be
useless? The question is relevant because the elimination of useless features
(audit trail reduction) enhances the accuracy of detection while speeding up
the computation, thus improving the overall performance of an IDS. In cases
where there are no useless features, by concentrating on the most important
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ones we may well improve the time performance of an IDS without affecting
the accuracy of detection in statistically significant ways.

The feature selection and ranking problem for intrusion detection is similar
in nature to various engineering problems that are characterized by:

• Having a large number of input variables x = (x1, x2,. . . , xn) of vary-
ing degrees of importance to the output y; i.e., some elements of x are
essential, some are less important, some of them may not be mutually
independent, and some may be useless or irrelevant (in determining the
value of y);

• Lacking an analytical model that provides the basis for a mathematical
formula that precisely describes the input–output relationship, y = F (x);

• Having available a finite set of experimental data, based on which a model
(e.g. a neural network) can be built for simulation and prediction purposes;

• Excess features that can reduce classifier accuracy;
• Excess features that can be costly to collect;
• Excess features that can reduce classifier operating speed independent of

data collection;
• Excess features that can be costly to store.

Feature selection is typically viewed as a search for the feature subset resulting
in the best classifier error rate. Usually, the best error rate is equated with
the smallest magnitude, since we hope that the error rate is a measurement
of future classifier performance. The procedure is to use operators which map
from a feature subset to other feature subsets, analyze these subsets, and
select one of these to continue searching from. However, we immediately see
how difficult a problem this is; there are an exponential number of feature
sets to search through. Although for small numbers of features this search
is tractable, it does not scale. Many search algorithms sacrifice a “complete”
search and explore only a fraction of the space in order to find a “good”
feature set. Techniques include sequential search and best-first search with a
limited “queue” of states to expand to limit the search time.

Feature selection is designed to select important features and produce
better classifiers. However, the very process of feature selection can introduce
bias into the feature sets searched. Each time a new feature set is examined, we
must build a classifier and analyze it using the same data set. The more often
this data set is used, the more our results will be biased towards classifiers
which perform well on this data. Recent work has shown that we can create
operators which search the space more efficiently, thereby using the data less
often and creating better, unbiased feature sets which perform better on future
data.

Through a variety of experiments and analysis of different computational
intelligent techniques, it is found that, with appropriately chosen population
size, program size, crossover rate and mutation rate, LGPs outperform other
techniques in terms of detection accuracy at the expense of time. SVMs out-
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perform MARSs and artificial neural networks (ANNs) in three critical aspects
of intrusion detection: accuracy, training time, and testing time [9].

A brief introduction to SVMs and SVM-specific feature selection is given in
Section 11.2. Section 11.3 introduces LGPs and LGP-specific feature selection.
In Section 11.4 we introduce MARSs and MARS-specific feature selection. An
experimental data set used for evaluation is presented in Section 11.5. Sec-
tion 11.6 describes the significant feature identification problem for intrusion
detection systems, a brief overview of significant features as identified by dif-
ferent ranking algorithms and the performance of classifiers using all features
and significant features. Conclusions of our work are given in Section 11.7.

11.2 Support Vector Machines

The support vector machine (SVM) approach transforms data into a feature
space F that usually has a huge dimension. It is interesting to note that SVM
generalization depends on the geometrical characteristics of the training data,
not on the dimensions of the input space [5, 6]. Training an SVM leads to a
quadratic optimization problem with bound constraints and one linear equal-
ity constraint. Vapnik shows how training an SVM for the pattern recognition
problem leads to the following quadratic optimization problem [14].

Minimize

W (α) = −
l∑

i=1

αi +
1
2

l∑
i=1

l∑
j=1

yiyjαiαjk(xi, xj) (11.1)

subject to
l∑

i=1
yiαi

∀i : 0 ≤ αi ≤ C
(11.2)

where l is the number of training examples, α is a vector of l variables and
each component αicorresponds to a training example (xi, yi). The solution of
Equation (11.1) is the vector α∗ for which Equation (11.1) is minimized and
Equation (11.2) is fulfilled.

In the first phase of the SVM, called the learning phase, the decision
function is inferred from a set of objects. For these objects the classification
is known a priori. The objects of the family of interest are called, for ease
of notation, the positive objects and the objects from outside the family, the
negative objects.

In the second phase, called the testing phase, the decision function is ap-
plied to arbitrary objects in order to determine, or more accurately predict,
whether they belong to the family under study, or not.
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Linear case SVM
The objects are represented by vectors in Rn where each coefficient represents
a feature of the object: weight, size, etc. An example of a linear case SVM is
briefly shown in Figure 11.1.
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Fig. 11.1. Linear case SVM.

The positive examples form a cloud of points, say the points labelled “+”
(referred to as a set Xb), while the negative examples form another cloud of
points, say, the points labelled “*” (referred to as Xr). The aim is to find a
hyper-plane H separating the two clouds of points in some optimal way.

Definition of Margin and Maximal Margin
Let H be a separating hyper-plane, Hb a separating hyper-plane parallel to H
and passing through the points in Xb that are closest to H, Hr a separating
hyper-plane parallel to H and passing through the points in Xr that are closest
to H.

The margin, γ, is the distance between two parallel separating hyper-
planes Hb and Hr (as shown in Figure 11.1). Vapnik’s theory of risk mini-
mization shows that hyper-planes for which γ is maximum have better gener-
alization potential than others, and so the problem of a linear SVM is to find
a separating hyper-plane with maximum margin.

There are many ways to represent mathematically such an optimization
problem. We have two concerns here. The first is to find a formulation that
can be handled by standard optimization techniques (quadratic programming
in our case). The second concern is of major significance from an application
point of view: is it indeed possible to find a formulation that will allow us to
construct nonlinear separating surfaces while remaining in the previous com-
putational framework of linear separation?

Quadratic Programming:
A constrained optimization problem consists of two parts: a function to op-
timize and a set of constraints to be satisfied by the variables. Constraint
satisfaction is typically a hard combinatorial problem; while, for an appro-
priate choice of function, optimization is a comparatively easier analytical
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problem. Hence, we choose the design of formulations where the constraints
are simple linear constraints and we use duality to move expressions from the
set of constraints to the function we seek to optimize. In the maximum margin
case, we want to maximize a distance. In order to express distances of points
to a hyper-plane W ∗ X + b = 0, we require that ||W||2= 1. Equivalently we
can divide the expression by ||W||2.

However either formulation gives us a nonlinear constraint, which does
not lead to efficient computation. We will therefore formulate the problem to
move the nonlinear constraint into the function to optimize.

Let W * X + b = 0 be the equation of a separating hyperplane, situated
halfway between the two sets, so that for some t>0 we have all the points in
Xb on one side and all the points in Xr on the other:

(W * Xr+ b)/||W||2 >= t/||W||2

and

(W * Xb + b)/||W||2 <= -t/||W||2,

and there exist points in Xb and Xr for which the inequalities are replaced
by equalities. Consequently we have the margin:

γ = g2t/||W ||2

Assume the maximum margin is reached for W= W0, b = b0, t = t0. Dividing
W0 and b0 by t0 shows that the maximal margin is reached for hyper-planes
such that γ =2/||W||2.

Without loss of generality we may therefore assume that t = 1. The prob-
lem of maximizing γ is replaced by the problem of minimizing the norm of
W,

1
2
∗ < W, W > (11.3)

under the linear constraints:

Yi ∗ (W ∗Xi + b) ≥ 1 for any I (11.4)

where Xi, is a data point and Yi is the label of the data point, equal to 1 or
–1 depending on whether the point is a positive or a negative example.

We now have a typical quadratic programming problem and we will change
this formulation with nonlinear separability in mind.

Nonlinear Separation
It can be shown that if you have fewer points than the dimension, then any
two sets are separable. It is therefore tempting, when the two sets are not
linearly separable, to map the problem into a higher dimension where it will
become separable. There is however a price to pay as quadratic programming
problems are quite sensitive to high dimensions. SVM handles this problem



290 Srinivas Mukkamala and Andrew H. Sung

very well, by simulating in the original space a computation in an arbitrarily
higher (even infinite) dimension space.

Consider Figure 11.2 and Figure 11.3 of a mapping Φ from the original
space to a higher-dimensional space.

Fig. 11.2. Nonlinear case SVM.

Fig. 11.3. Nonlinear case SVM.

Two conditions have to be met:

1. find a formulation such that the data appears only as vector dot products
such as <W, W>.

2. find an appropriate function K, called a kernel function, such that
< Φ(V),Φ(W)> = K(V,W).

In such a case there is no need to represent the vectors in high dimension as
the computation is performed by K in the original space. This might superfi-
cially appear as a contrived trick, so the reader is referred to Vapnik’s books
[14] in order to realize that there is in fact a very deep theory behind the
design of kernel functions.

Wolfe’s Dual
The preceding formulation can be transformed by duality, which has the ad-
vantage of simplifying the set of constraints, but more importantly, Wolfe’s
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dual gives us a formulation where the data appears only as vector dot prod-
ucts. As a consequence we can handle nonlinear separation.

Minimizing 1/2*||W||2 under the constraint of Equation (11.4) is equivalent
to maximizing the dual Lagrangian obtained by computing variables from the
stationary conditions and replacing them by the values so obtained in the
primal Lagrangian. Details can be found in [3].

Yi ∗ (W ∗Xi + b) ≥ 1 for any I (11.5)

The primal Lagrangian is:

L =
1
2
(W ∗W )−

∑
αi ∗ (Yi ∗ (W ∗Xi + b)− 1), (11.6)

where the αi is the Lagrange multiplier and Yi is the label of the corresponding
data point under the constraint:

αi ≥ 0 for any i (11.7)

The stationary conditions are:

∂L/∂b =
∑

αi ∗ Yi = 0 (11.8)

∂L/∂w = W −
∑

αi ∗ Yi ∗Xi = 0. (11.9)

Substituting the value of w from Equation (11.8) in the primal Lagrangian
(Equation (11.5)) gives us the Wolfe Dual Lagrangian:

W (a) =
∑

αi −
1
2
∗
∑

αi ∗ αjYi ∗ Yj ∗ (Xi ∗Xj) (11.10)

This must be maximized subject to the constraints of Equations (11.7) and
(11.8). It is then straightforward to implement nonlinearity by simply replac-
ing the vector products by kernel functions.

Support Vectors
It is clear that the maximum margin is not defined by all points to be sep-
arated, but by only a subset of points called support vectors. Indeed from
Equation (11.9) we know that W =

∑
Yi* αi *Xi, and the data points Xi

whose coefficients αi= 0 are irrelevant to W, are therefore irrelevant to the
definition of the separating surface; the others are the support vectors.

Over-fitting and Soft Margin Trade Off
Figure 11.4 shows an example where, by choosing a kernel of sufficient degree
we can find a surface complex enough to separate the two clouds of points.
When there is noise we can make this surface extremely complex in order
to fit the data. This phenomenon is called over-fitting, as perhaps some of
these noisy points should be in fact ignored, leading to a simpler surface of
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Fig. 11.4. Over-fitting an SVM.

Fig. 11.5. Soft margin trade-off in an SVM.

separation. In Figure 11.5 we have a trade-off: a simple linear separation rather
than a complex one at the cost of a training error, which could in fact be noise
or erroneous data.

So there exists a trade-off between the degree of the kernel function and
the extent to which training errors are allowed. This has a very important
consequence as the algorithm we described will not work when the sets are
not separable. Therefore to have the algorithm work we must increase the
nonlinearity, and therefore the complexity of the surface, and therefore the
risk of grossly over-fitting.

The problem is solved by relaxing the conditions in such a way that a
certain degree of misclassification is allowed, leading to simpler solutions at
the cost of some erroneous, or potentially erroneous, predictions.

We refer the reader to [3] for the description of the techniques involved.
The user has to define the value of a parameter that controls the extent of
misclassification allowed. This value is heavily dependent on the data at hand.

11.2.1 SVM-specific Feature Ranking Method

It is of great interest and use to find exactly which features underline the
nature of connections of various classes. This is precisely the goal of data
visualization in data mining. The problem is that the high-dimensionality of
data makes it hard for human experts to gather any knowledge. If we knew
the key features, we could greatly reduce the dimensionality of the data and
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thus help human experts become more efficient and productive in learning
about network intrusions.

The information about which features play key roles and which are more
neutral is “hidden” in the SVM decision function. Equation (11.11) is the
formulation of the decision function in the case of using linear kernels.

F (X) =< W, X > +b (11.11)

The point X is predicted to be in class A or “positive class” if F(X) is
positive, and class B or “negative class” if F(X) is negative. We can rewrite
Equation (11.11) to expand the dot product of W and X.

F (X) = ΣWiXi + b (11.12)

One can see that the value of F(X) depends on the contribution of each
factor, WiXi. Since Xi can take only b ≥ g0, the sign of Wi indicates whether
the contribution is towards positive classification or negative classification.
The absolute size of Wi measures the strength of this contribution. In other
words if Wi is a large positive value, then the ith feature is a key factor of
“positive class” or class A. Similarly if Wi is a large negative value then the
ith feature is a key factor of the “negative class” or class B. Consequently the
Wi, that are close to zero, either positive or negative, carry little weight. The
feature, which corresponds to this Wi, is said to be a garbage feature and
removing it has very little effect on the classification.

Having retrieved this information directly from the SVM’s decision func-
tion, we rank the Wi, from largest positive to largest negative. This essentially
provides the soft partitioning of the features into the key features of class A,
neutral features, and key features of class B. We say soft partitioning, as it
depends on either a threshold on the value of Wi that will define the parti-
tions or the proportions of the features that we want to allocate to each of
the partitions. Both the threshold and the value of proportions can be set by
the human expert.

Support Vector Decision Function Ranking
The input ranking is done as follows: First the original data set is used for
the training of the classifier. Then the classifier’s decision function is used to
rank the importance of the features. The procedure is:

1. Calculate the weights from the support vector decision function.
2. Rank the importance of the features by the absolute values of the weights.

11.2.2 Performance-Based Ranking

We first describe a general (i.e., independent of the modeling tools being used),
performance-based input ranking (PBR) methodology [12]: One input feature
is deleted from the data at a time; the resultant data set is then used for
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the training and testing of the classifier. Then the classifier’s performance is
compared to that of the original classifier (based on all features) in terms of
relevant performance criteria. Finally, the importance of the feature is ranked
according to a set of rules based on the performance comparison.

The procedure is summarized as follows:

1. Compose the training set and the testing set.
2. For each feature do the following:
• delete the feature from the (training and testing) data;
• use the resultant data set to train the classifier;
• analyze the performance of the classifier using the test set, in terms of

the selected performance criteria;
• rank the importance of the feature according to the rules.

11.3 Linear Genetic Programming

Linear Genetic Programming (LGP) is a variant of the Genetic Programming
(GP) technique that acts on linear genomes [1]. The linear genetic program-
ming technique used for our current experiment is based on machine code level
manipulation and evaluation of programs. Its main characteristics, in compar-
ison to tree-based GP, are that the evolvable units are not the expressions of
a functional programming language (like LISP), instead the programs of an
imperative language (like C) are evolved. In the automatic induction of ma-
chine code by genetic programming, individuals are manipulated directly as
binary code in memory and executed directly without passing an interpreter
during fitness calculation. The LGP tournament selection procedure puts the
lowest selection pressure on the individuals by allowing only two individuals
to participate in a tournament. A copy of the winner replaces the loser of
each tournament. The crossover points only occur between instructions. In-
side instructions the mutation operation randomly replaces the instruction
identifier. In LGP the maximum size of the program is usually restricted to
prevent programs without bounds.

In genetic programming, an intron is defined as part of a program that
has no influence on the fitness calculation of outputs for all possible inputs.

Ranking Algorithm using Evolutionary Algorithms
The performance of each of the selected input feature subsets is measured by
invoking a fitness function with the correspondingly reduced feature space and
training set and evaluating the intrusion detection accuracy. Once the required
number of iterations is completed, the evolved high-ranking programs are
analyzed for the number of times each input appears in a way that contributes
to the fitness of the programs that contain them. The best feature subset found
is then output as the recommended set of features to be used in the actual
input for the classifier.
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Fig. 11.6. LGP intron elimination and fitness evaluation.

In the feature selection problem the main interest is in the representation
of the space of all possible subsets of the given input feature set. Each feature
in the candidate feature set is considered as a binary gene and each individual
consists of a fixed-length binary string representing some subset of the given
feature set. An individual of length d corresponds to a d-dimensional binary
feature vector Y, where each bit represents the elimination or inclusion of the
associated feature. Then, yi = 0 represents elimination and yi = 1 indicates
inclusion of the ith feature. Fitness F of an individual program p is calculated
as the mean square error (MSE ) between the predicted output (Opred

ij ) and
the desired output (Odes

ij ) for all n training samples and m outputs [2].

F (p) =
1

n ·m

n∑
i=1

m∑
j=1

(Opred
ij −Odes

ij )2 +
w

n
CE = MSE + w ·MCE (11.13)

Classification Error (CE ) is computed as the number of misclassifications.
Mean Classification Error (MCE ) is added to the fitness function while its
contribution is multiplied by an absolute value of weight (w).

11.4 Multivariative Adaptive Regression Splines

Splines can be considered as an innovative mathematical process for compli-
cated curve drawings and function approximation. To develop a spline the
X-axis is broken into a convenient number of regions. The boundary between
regions is also known as a knot. With a sufficiently large number of knots
virtually any shape can be well approximated. While it is easy to draw a
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spline in two-dimensions by keying on knot locations (approximating using
linear, quadratic or cubic polynomial etc.), manipulating the mathematics in
higher dimensions is best accomplished using basis functions. The multivaria-
tive adaptive regression splines (MARS) model is a regression model using
basis functions as predictors in place of the original data. The basis func-
tion transform makes it possible to selectively blank out certain regions of
a variable by making them zero, and allows the MARS model to focus on
specific sub-regions of the data. It excels at finding optimal variable transfor-
mations and interactions, and the complex data structure that often hides in
high-dimensional data [4, 13].

Fig. 11.7. MARS data estimation using splines and knots (actual data on the right).

Given the number of records in most data sets, it is infeasible to approxi-
mate the function y = f(x) by summarizing y in each distinct region of x. For
some variables, two regions may not be enough to track the specifics of the
function. If the relationship of y to some x is different in three or four regions,
for example, the number of regions requiring examination is even larger than
34 billion with only 35 variables. Given that the number of regions cannot
be specified a priori, specifying too few regions in advance can have serious
implications for the final model. A solution is needed that accomplishes the
following two criteria:

• judicious selection of which regions to look at and their boundaries;
• judicious determination of how many intervals are needed for each variable.

Given these two criteria, a successful method will essentially need to be adap-
tive to the characteristics of the data. Such a solution will probably ignore
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quite a few variables (affecting variable selection) and will take into account
only a few variables at a time (also reducing the number of regions). Even if
the method selects 30 variables for the model, it will not look at all 30 simul-
taneously. Such simplification is accomplished by a decision tree at a single
node, only ancestor splits being considered; thus, at a depth of six levels in
the tree, only six variables are used to define the node.

Ranking Algorithm using MARS
Generalized cross-validation is an estimate of the actual cross-validation which
involves more computationally intensive goodness of fit measures. Along with
the MARS procedure, a generalized cross-validation (GCV) procedure is used
to determine the significant input features. Non-contributing input variables
are thereby eliminated.

GCV =
1
N

N∑
i=1

[
yi − f(xi)2

1− k/N
] (11.14)

where N is the number of records and x and y are independent and dependent
variables respectively. k is the effective number of degrees of freedom whereby
the GCV adds penalty for adding more input variables to the model. The con-
tribution of the input variables may be ranked using the GCV with/without
an input feature [13].

11.5 The Experimental Data

A subset of the DARPA intrusion detection data set is used for off-line anal-
ysis. In the DARPA intrusion detection evaluation program, an environment
was set up to acquire raw TCP/IP dump data for a network by simulating
a typical US Air Force LAN. The LAN was operated like a real environ-
ment, but blasted with multiple attacks [7, 15]. For each TCP/IP connection,
41 various quantitative and qualitative features were extracted [8]. The 41
features extracted fall into three categories: “intrinsic” features that describe
the individual TCP/IP connections can be obtained from network audit trails;
“content-based” features that describe the payload of the network packet can
be obtained from the data portion of the network packet; “traffic-based” fea-
tures that are computed using a specific window (connection time or number
of connections). Attack types fall into four main categories:

• Probing: surveillance and other probing
• DoS: denial of service
• U2Su: unauthorized access to local super user (root) privilege
• R2U: unauthorized access from a remote machine

As DoS and probing attacks involve several connections in a short time frame,
whereas R2U and U2Su attacks are embedded in the data portions of the



298 Srinivas Mukkamala and Andrew H. Sung

connection and often involve just a single connection, “traffic-based” features
play an important role in deciding whether a particular network activity is
engaged in probing or not.

11.5.1 Probing

Probing is a class of attacks where an attacker scans a network to gather
information or find known vulnerabilities. An attacker with a map of machines
and services that are available on a network can use the information to look
for exploits. There are different types of probes (see Table 11.1): some of them
abuse the computer’s legitimate features; some of them use social engineering
techniques. This class of attacks is the most commonly known and requires
very little technical expertise.

Table 11.1. Probe attacks.

Attack Type Service Mechanism Effect of the attack
Ipsweep Icmp Abuse of feature Identifies active machines
Mscan Many Abuse of feature Looks for known vulnerabilities
Nmap Many Abuse of feature Identifies active ports on a machine
Saint Many Abuse of feature Looks for known vulnerabilities
Satan Many Abuse of feature Looks for known vulnerabilities

11.5.2 Denial of Service Attacks

Denial of service (DoS) is a class of attacks where an attacker makes some
computing or memory resource too busy or too full to handle legitimate re-
quests, thus denying legitimate users access to a machine. There are different
ways to launch DoS attacks: by abusing the computer’s legitimate features;
by targeting implementation bugs; or by exploiting the system’s misconfigura-
tions. DoS attacks are classified based on the services that an attacker renders
unavailable to legitimate users (Table 11.2).

11.5.3 User to Super user Attacks

User to super user (U2Su) exploits are a class of attacks where an attacker
starts out with access to a normal user account on the system and is able to
exploit a vulnerability to gain root access to the system. The most common
exploits in this class of attacks are buffer overflows, which are caused by
programming mistakes and environment assumptions (see Table 11.3).
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Table 11.2. Denial of service attacks.

Attack Type Service Mechanism Effect of the attack
Apache2 http Abuse Crashes httpd
Back http Abuse/Bug Slows down server response
Land http Bug Freezes the machine
Mail bomb Abuse Annoyance
SYN Flood TCP Abuse Denies service on one or more

ports
Ping of Death Icmp Bug None
Process table TCP Abuse Denies new processes
Smurf Icmp Abuse Slows down the network
Syslogd Syslog Bug Kills the Syslogd
Teardrop Bug Reboots the machine
Udpstrom Echo/Chargen Abuse Slows down the network

Table 11.3. User to super user attacks.

Attack Type Service Mechanism Effect of the attack
Eject User session Buffer overflow Gains root shell
Ffbconfig User session Buffer overflow Gains root shell
Fdformat User session Buffer overflow Gains root shell
Loadmodule User session Poor environment sanitation Gains root shell
Perl User session Poor environment sanitation Gains root shell
Ps User session Poor temp file management Gains root shell
Xterm User session Buffer overflow Gains root shell

11.5.4 Remote to User Attacks

A remote to user (R2U) attack is a class of attacks where an attacker sends
packets to a machine over a network, then exploits machine’s vulnerability to
illegally gain local access as a user. There are different types of R2U attacks;
the most common attack in this class is done using social engineering (see
Table 11.4).

11.6 Significant Feature Selection for Intrusion Detection

Feature selection and ranking is an important issue in intrusion detection
[10, 11]. Of the large number of features that can be monitored for intrusion
detection purposes, which are truly useful, which are less significant, and
which may be useless? The question is relevant because the elimination of
useless features (audit trail reduction) enhances the accuracy of detection
while speeding up the computation, thus improving the overall performance
of an IDS. In cases where there are no useless features, by concentrating on
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Table 11.4. Remote to user attacks.

Attack Type Service Mechanism Effect of the attack
Dictionary telnet, rlogin,

pop, ftp, imap
Abuse feature Gains user access

Ftp-write ftp Misconfiguration Gains user access
Guest telnet, rlogin Misconfiguration Gains user access
Imap imap Bug Gains root access
Named dns Bug Gains root access
Phf http Bug Executes commands as

http user
Sendmail smtp Bug Executes commands as root
Xlock smtp Misconfiguration Spoof user to obtain pass-

word
Xnsoop smtp Misconfiguration Monitor key stokes re-

motely

the most important ones we may well improve the time performance of an IDS
without affecting the accuracy of detection in statistically significant ways.

The feature ranking and selection problem for intrusion detection is similar
in nature to various engineering problems that are characterized by:

• Having a large number of input variables x = (x1, x2,. . . , xn) of vary-
ing degrees of importance to the output y; i.e., some elements of x are
essential, some are less important, some of them may not be mutually
independent, and some may be useless or irrelevant (in determining the
value of y);

• Lacking an analytical model that provides the basis for a mathematical
formula that precisely describes the input–output relationship, y = F (x);

• Having available a finite set of experimental data, based on which a model
(e.g. a neural network) can be built for simulation and prediction purposes.

Due to the lack of an analytical model, one can only seek to determine the
relative importance of the input variables through empirical methods. A com-
plete analysis would require examination of all possibilities, e.g., taking two
variables at a time to analyze their dependence or correlation, then taking
three at a time, etc. This, however, is both infeasible (requiring 2n experi-
ments!) and not infallible (since the available data may be of poor quality in
sampling the whole input space). Features are ranked based on their influence
towards the final classification. Description of the most important features as
ranked by three feature-ranking algorithms (SVDF, LGP, and MARS) is given
in Tables 11.5, 11.6, and 11.7. The (training and testing) data set contains
11,982 randomly generated points from the five classes, with the amount of
data from each class proportional to its size, except that the smallest class
is completely included. The normal data belongs to class 1, probe belongs to
class 2, denial of service belongs to class 3, user to super user belongs to class
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Table 11.5. Most important feature descriptions as ranked by SVDF.

Data class Feature description
Normal • destination bytes: number of bytes received by the source host

from the destination host
• dst host count: number of connections from the same host to

the destination host during a specified time window
• logged in: binary decision (1 successfully logged in, 0 failed login)
• dst host same srv rate: % of connections to same service ports

from a destination host
• flag: normal or error status of the connection

Probe • source bytes: number of bytes sent from the host system to the
destination system

• dst host srv count: number of connections from the same host
with same service to the destination host during a specified time
window

• count: number of connections made to the same host system in
a given interval of time

• protocol type: type of protocol used to connect (e.g. tcp, udp,
icmp, etc.)

• srv count: number of connections to the same service as the
current connection during a specified time window

DoS • count: number of connections made to the same host system in
a given interval of time

• srv count: number of connections to the same service as the
current connection during a specified time window

• dst host srv serror rate: % of connections to the same service
that have SYN errors from a destination host

• serror rate: % of connections that have SYN errors
• dst host same src port rate: % of connections to same service

ports from a destination host
U2Su • source bytes: number of bytes sent from the host system to the

destination system
• duration: length of the connection
• protocol type: type of protocol used to connect (e.g. tcp, udp,

icmp, etc.)
• logged in: binary decision (1 successfully logged in, 0 failed login)
• flag: normal or error status of the connection

R2U • dst host count: no of connections from the same host to the
destination host during a specified time window

• service: type of service used to connect (e.g. finger, ftp, telnet,
ssh, etc.)

• duration: length of the connection
• count: number of connections made to the same host system in

a given interval of time
• srv count: number of connections to the same service as the

current connection during a specified time window
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Table 11.6. Most important feature descriptions as ranked by LGP.

Data class Feature description
Normal • hot: number of “hot” indicators

• source bytes: number of bytes sent from the host system to the
destination system

• destination bytes: number of bytes received by the source host
from the destination host

• num compromised: number of compromised conditions
• dst host rerror rate: % of connections that have REJ errors from

a destination host
Probe • dst host diff srv rate: % of connections to different services from

a destination host
• rerror rate: % of connections that have REJ errors
• srv diff host rate: % of connections that have the same service

to different hosts
• logged in: binary decision (1 successfully logged in, 0 failed login)
• service: type of service used to connect (e.g. finger, ftp, telnet,

ssh, etc.)
DoS • count: number of connections made to the same host system in

a given interval of time
• num compromised: number of compromised conditions
• wrong fragments: number of wrong fragments
• land: binary decision (1 if connection is from/to the same

host/port; 0 otherwise)
• logged in: binary decision (1 successfully logged in, 0 failed login)

U2Su • root shell: binary decision (1 if root shell is obtained; 0 other-
wise)

• dst host srv serror rate: % of connections to the same service
that have SYN errors from a destination host

• num file creations: number of file creations
• serror rate: % of connections that have SYN errors
• dst host same src port rate: % of connections to same service

ports from a destination host
R2U • guest login: binary decision (1 if the login is guest, 0 otherwise)

• num file access: number of operations on access control files
• destination bytes: number of bytes received by the source host

from the destination host
• num failed logins: number of failed login attempts
• logged in: binary decision (1 successfully logged in, 0 failed login)
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Table 11.7. Most important feature descriptions as ranked by MARS.

Data class Feature description
Normal • destination bytes: number of bytes received by the source host

from the destination host
• source bytes: number of bytes sent from the host system to the

destination system
• service: type of service used to connect (e.g. finger, ftp, telnet,

ssh, etc.)
• logged in: binary decision (1 successfully logged in, 0 failed login)
• hot: number of “hot” indicators

Probe • dst host diff srv rate: % of connections to different services from
a destination host

• dst host srv count: : number of connections from the same host
with same service to the destination host during a specified time
window

• source bytes: number of bytes sent from the host system to the
destination system

• dst host same srv rate: % of connections to same service ports
from a destination host

• srv count: number of connections to the same service as the
current connection during a specified time window

DoS • count: number of connections made to the same host system in
a given interval of time

• srv count: number of connections to the same service as the
current connection during a specified time window

• dst host srv diff host rate: % of connections to the same service
from different hosts to a destination host

• source bytes: number of bytes sent from the host system to the
destination system

• destination bytes: number of bytes received by the source host
from the destination host

U2Su • dst host srv count: number of connections from the same host
with the same service to the destination host during a specified
time window

• count: number of connections made to the same host system in
a given interval of time

• duration: length of the connection
• srv count: number of connections to the same service as the

current connection during a specified time window
• dst host count: number of connections from the same host to

the destination host during a specified time window
R2U • srv count: number of connections to the same service as the

current connection during a specified time window
• count: number of connections made to the same host system in

a given interval of time
• service: type of service used to connect (e.g. finger, ftp, telnet,

ssh, etc.)
• dst host srv count: number of connections from the same host

with same service to the destination host during a specified time
window

• logged in: binary decision (1 successfully logged in, 0 failed login)
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4, remote to user belongs to class 5. Attack data is a collection of 22 differ-
ent types of attack instances that belong to the four classes probe, denial of
service, user to super user, and remote to local. A different randomly selected
set of 6890 points of the total data set (11,982) is used for testing different
intelligent techniques. Classifier performance using all 41 features and the six
most important features as inputs to the classifier is given in Tables 11.8 and
11.9, respectively. SVM performance using performance-based feature ranking
and SVDF are reported in Table 11.10.

Table 11.8. Performance of classifiers using all 41 features.

Class LGP Accuracy (%) MARS Accuracy (%) SVM Accuracy (%)
Normal 99.89 96.08 99.55
Probe 99.85 92.32 99.70
DOS 99.91 94.73 99.25
U2Su 99.80 99.71 99.87
R2U 99.84 99.48 99.78

Table 11.9. Performance of classifiers using six most important features.

Class LGP Accuracy (%) MARS Accuracy (%) SVM Accuracy (%)
Normal 99.77 94.34 99.23
Probe 99.87 90.79 99.16
DOS 99.14 95.47 99.16
U2Su 99.83 99.71 99.87
R2U 99.84 99.48 99.78

Table 11.10. Performance of SVM using important features.

Class No of Features
Identified

Training
Time (sec)

Testing
Time (sec)

Accuracy (%)

PBR SVDF PBR SVDF PBR SVDF PBR SVDF
Normal 25 20 9.36 4.58 1.07 0.78 99.59 99.55
Probe 7 11 37.71 40.56 1.87 1.20 99.38 99.36
DOS 19 11 22.79 18.93 1.84 1.00 99.22 99.16
U2Su 8 10 2.56 1.46 0.85 0.70 99.87 99.87
R2U 6 6 8.76 6.79 0.73 0.72 99.78 99.72
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11.7 Conclusions

Three different significant feature identification techniques along with a com-
parative study of feature selection metrics for intrusion detection systems are
presented. Another contribution of this work is a novel significant feature
selection algorithm (independent of the modeling tools being used) that con-
siders the performance of a classifier to identify significant features. One input
feature is deleted from the data at a time; the resultant data set is then used
for the training and testing of the classifier. Then the classifier’s performance
is compared to that of the original classifier (based on all features) in terms of
relevant performance criteria. Finally, the importance of the feature is ranked
according to a set of rules based on the performance comparison.

Regarding feature ranking, we observe that

• The three feature-ranking methods produce largely consistent results. Ex-
cept for the class 1 (Normal) and class 4 (U2Su) data, the features ranked
as important by the three methods heavily overlap.

• The most important features for the two classes of Normal and DoS heavily
overlap.

• U2Su and R2U are the two smallest classes representing the most serious
attacks. Each has a small number of important features and a large number
of insignificant features.

• Using the important features for each class gives the most remarkable per-
formance: the testing time decreases in each class, the accuracy increases
slightly for Normal, decreases slightly for Probe and DoS, and remains the
same for the two most serious attack classes.

• Performance-based and SVDF feature ranking methods produce largely
consistent results: except for the class 1 (Normal) and class 4 (U2Su) data,
the features ranked as important by the two methods heavily overlap.
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On-board Mining of Data Streams in Sensor
Networks

Mohamed Medhat Gaber, Shonali Krishnaswamy and Arkady Zaslavsky

Summary. Data streams are generated in large quantities and at rapid rates from
sensor networks that typically monitor environmental conditions, traffic conditions
and weather conditions among others. A significant challenge in sensor networks is
the analysis of the vast amounts of data that are rapidly generated and transmitted
through sensing. Given that wired communication is infeasible in the environmen-
tal situations outlined earlier, the current method for communicating this data for
analysis is through satellite channels. Satellite communication is exorbitantly ex-
pensive. In order to address this issue, we propose a strategy for on-board mining
of data streams in a resource-constrained environment. We have developed a novel
approach that dynamically adapts the data-stream mining process on the basis of
available memory resources. This adaptation is algorithm-independent and enables
data-stream mining algorithms to cope with high data rates in the light of finite
computational resources. We have also developed lightweight data-stream mining
algorithms that incorporate our adaptive mining approach for resource constrained
environments.

12.1 Introduction

In its early stages, data-mining research was focused on the development of
efficient algorithms for model building and pattern extraction from large cen-
tralized databases. The advance in distributed computing technologies had its
effect on data mining research and led to the second generation of data mining
technology – distributed data mining (DDM) [46]. There are primarily two
models proposed in the literature for distributed data mining: collect the data
to a central site to be analyzed (which is infeasible for large data sets) and
mine data locally and merge the results centrally. The latter model addresses
the issue of communication overhead associated with data transfer, however,
brings with it the new challenge of knowledge integration [38]. On yet another
strand of development, parallel data mining techniques have been proposed
and developed to overcome the problem of length execution times of complex
machine learning algorithms [53].
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Recently, we have witnessed a new wave in data mining research, that of
mining streams of data. The emergence of sensor networks and dissemination
of mobile devices along with the increase of computational power in such de-
vices have opened up new vistas, opportunities and challenges for data mining.
The data generated from sensors and other small devices are continuous and
rapid and there is a real-need to analyze these data in real-time. Examples of
such data streams include:

• the NASA Earth Observation System (EOS) and other NASA satellites
that generate around 1.5 TB/day [14],

• the pair of Landsat 7 and Terra spacecraft which generates 350 GB of data
per day [46],

• oil drills that can transmit data about their current drilling conditions at
1 Mb/second [42], and

• NetFlow from AT&T that generates a total of 100 GB/day of data [14].

The transfer of such vast amounts of data streams for analysis from sensor
networks is dependent on satellite communication, which is exorbitantly ex-
pensive. A potential and intuitive solution to this problem is to develop new
techniques that are capable of coping with the high data rate of streams and
deliver mining results in real-time with application-oriented acceptable accu-
racy [24]. Such predictive or analytical models of streamed data can be used
to reduce the transmission of raw data from sensor networks since they are
compact and representative. The analysis of data in such ubiquitous environ-
ments has been termed ubiquitous data mining(UDM) [20, 32]. The research
in the field has two main directions: the development of lightweight analysis
algorithms that are capable of coping with rapid and continuous data streams
and the application of such algorithms for real-time decision making [34, 35].

The applications of UDM can vary from critical astronomical and geophys-
ical applications to real-time decision support in business applications. There
are several potential scenarios for such applications:

• Analyzing biosensor measurements around a city for security reasons is
one of the emerging applications [13].

• Analysis of simulation results and on-board sensors in science has potential
in changing the mission plan or the experimental settings in real time.

• Web log and web click-streams analysis is an important application in the
business domain. Such analysis of web data can lead to real time intrusion
detection.

• The analysis of data streams generated from the marketplace, such as stock
market information [35], is another important application.

One-pass algorithms have been proposed as the typical approach to dealing
with the new challenges introduced by the resource constraints of wireless
environments. We have developed lightweight one-pass algorithms: LWC for
clustering, LWClass for classification and LWF for counting frequent items.
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These algorithms have proved their efficiency [20, 21, 28]. However, we realized
that one-pass algorithms don’t address the problem of resource constraints
with regard to high data rates of incoming streams.

Algorithm output granularity (AOG) introduces the first resource-aware
data analysis approach that can cope with fluctuating data rates according
to available memory and processing speed. AOG was first introduced in [20,
28]. Holistic perspective and integration of our lightweight algorithms with
the resource-aware AOG approach is discussed. Experimental validation that
demonstrates the feasibility and applicability of our proposed approach is
presented in this chapter.

This chapter is organized as follows. In Section 12.2, an overview of the field
of data-stream processing is presented. Data-stream mining is discussed in Sec-
tion 12.3. Section 12.4 presents our AOG approach in addressing the problem.
Our lightweight algorithms that use AOG are discussed in Section 12.5. The
experimental results of using the AOG approach are shown and discussed in
Section 12.5.3. Finally, open issues and challenges in the field conclude our
chapter.

12.2 Data Streams: An Overview

A data stream is a flow of rapid data items that challenges the computing
system’s abilities to transmit, process, and store these massive amounts of
incoming elements. Data streams have three models:

• time series: data items come in ascending order without increments or
decrements;

• cash-register model: data items increment temporally;
• turnstile model: data items increment and decrement temporally.

The complexity of stream processing increases with the increase in model com-
plexity [41]. Most data-stream applications deal with the cash-register model.
Figure 12.1 shows the general processing model for mining data streams.

Fig. 12.1. Mining data stream process model.

Stream-processing systems [26] deal with stream storage, mining and
querying over data streams. Storage and querying [54] on data streams have
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been addressed in research recently. STREAM [5], Aurora [1] and Tele-
graphCQ [37] are representative work for such prototypes and systems. STan-
ford stREam datA Manager (STREAM) [5] is a data-stream management sys-
tem that handles multiple continuous data streams and supports long-running
continuous queries. The intermediate results of a continuous query are stored
in a Scratch Store. The results of a query could be a data stream transferred
to the user or it could be a relation that could be stored for re-processing.
Aurora [1] is a data work-flow system under construction. It directs the input
data stream using pre-defined operators to the applications. The system can
also maintain historical storage for ad hoc queries. The Telegraph project is a
suite of novel technologies developed for continuous adaptive query process-
ing implementation. TelegraphCQ [37] is the next generation of that system,
which can deal with continuous data stream queries.

Querying over data streams faces the problem of the unbounded memory
requirement and the high data rate [39]. Thus, the computation time per data
element should be less than the data rate. Also, it is very hard, due to un-
bounded memory requirements, to have an exact result. Approximating query
results have been addressed recently. One of the techniques used in solving
this problem is the sliding window, in which the query result is computed
over a recent time interval. Batch processing, sampling, and synopsis data
structures are other techniques for data reduction [6, 24].

12.3 Mining Data Streams

Mining data streams is the process of extracting application-oriented accept-
able accuracy models and patterns from a continuous, rapid, possibly non-
ended flow of data items. The state of the art of this recent field of study is
given in this section. Data-stream mining techniques address three research
problems:

• Unbounded memory requirements due to the continuous feature of the
incoming data elements.

• Mining algorithms require several passes and this is not applicable because
of the high data rate feature of the data stream.

• Data streams generated from sensors and other wireless data sources are
very challenging to transfer to a central server to be analyzed.

12.3.1 Techniques

There are different algorithms proposed to tackle the high speed nature of
mining data streams using different techniques. In this section, we review the
state of the art of mining data streams.

Guha et al. [29, 30] have studied clustering data streams using the K-
median technique. Their algorithm makes a single pass over the data and uses
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little space. It requires O(nk) time and O(nε) space where k is the number of
centers, n is the number of points and ε <1. The algorithm is not implemented,
but the analysis of space and time requirements of it are studied analytically.
They proved that any k-median algorithm that achieves a constant factor
approximation can not achieve a better run time than O(nk). The algorithm
starts by clustering a calculated size sample according to the available memory
into 2k, and then at a second level, the algorithm clusters the above points
for a number of samples into 2k and this process is repeated to a number of
levels, and finally it clusters the 2k clusters to k clusters.

Babcock et al. [8] have used an exponential histogram (EH) data structure
to enhance the Guha et al. algorithm. They use the same algorithm described
above, however they try to address the problem of merging clusters when the
two sets of cluster centers to be merged are far apart by marinating the EH
data structure. They have studied their proposed algorithm analytically.

Charikar et al. [12] have proposed a k-median algorithm that overcomes
the problem of increasing approximation factors in the Guha et al. algorithm
by increasing the number of levels used to result in the final solution of the
divide and conquer algorithm. This technique has been studied analytically.

Domingos et al. [16, 17, 33] have proposed a general method for scaling up
machine-learning algorithms. This method depends on determining an upper
bound for the learner’s loss as a function in a number of examples in each
step of the algorithm. They have applied this method to K-means clustering
(VFKM) and decision tree classification (VFDT) techniques. These algorithms
have been implemented and tested on synthetic data sets as well as real web
data. VFDT is a decision-tree learning system based on Hoeffding trees. It
splits the tree using the current best attribute taking into consideration that
the number of examples used satisfies a statistical result which is “Hoeffd-
ing bound”. The algorithm also deactivates the least promising leaves and
drops the non-potential attributes. VFKM uses the same concept to deter-
mine the number of examples needed in each step of the K-means algorithm.
The VFKM runs as a sequence of K-means executions with each run using
more examples than the previous one until a calculated statistical bound is
satisfied.

O’Callaghan et al. [43] have proposed STREAM and LOCALSEARCH al-
gorithms for high quality data-stream clustering. The STREAM algorithm
starts by determining the size of the sample and then applies the LO-
CALSEARCH algorithm if the sample size is larger than a pre-specified equa-
tion result. This process is repeated for each data chunk. Finally, the LO-
CALSEARCH algorithm is applied to the cluster centers generated in the
previous iterations.

Aggarwal et al. [2] have proposed a framework for clustering data steams,
called the CluStream algorithm. The proposed technique divides the clus-
tering process into two components. The online component stores summary
statistics about the data streams and the offline one performs clustering on
the summarized data according to a number of user preferences such as the
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time frame and the number of clusters. A number of experiments on real data
sets have been conducted to prove the accuracy and efficiency of the proposed
algorithm. Aggarwal et al. [3] have recently proposed HPStream, a projected
clustering for high dimensional data streams. HPStream has outperformed
CluStream in recent results. The idea of micro-clusters introduced in CluS-
tream has also been adopted in On-Demand classification in [4] and it shows
a high accuracy.

Keogh et al. [36] have proved empirically that most cited clustering time-
series data-stream algorithms proposed so far in the literature come out with
meaningless results in subsequence clustering. They have proposed a solution
approach using a k-motif to choose the subsequences that the algorithm can
work on.

Ganti et al. [19] have described an algorithm for model maintenance un-
der insertion and deletion of blocks of data records. This algorithm can be
applied to any incremental data mining model. They have also described a
generic framework for change detection between two data sets in terms of
the data mining results they induce. They formalize the above two techniques
into two general algorithms: GEMM and Focus. The algorithms are not imple-
mented, but are applied analytically to decision tree models and the frequent
itemset model. The GEMM algorithm accepts a class of models and an incre-
mental model maintenance algorithm for the unrestricted window option, and
outputs a model maintenance algorithm for both window-independent and
window-dependent block selection sequences. The FOCUS framework uses
the difference between data mining models as the deviation in data sets.

Papadimitriou et al. [45] have proposed AWSOM (Arbitrary Window
Stream mOdeling Method) for interesting patterns discovery from sensors.
They developed a one-pass algorithm to incrementally update the patterns.
Their method requires only O(log N) memory where N is the length of the
sequence. They conducted experiments on real and synthetic data sets. They
use wavelet coefficients for compact information representation and correlation
structure detection, and then apply a linear regression model in the wavelet
domain.

Giannella et al. [25] have proposed and implemented a frequent itemsets
mining algorithm over data streams. They proposed to use tilted windows to
calculate the frequent patterns for the most recent transactions based on the
fact that people are more interested in the most recent transactions. They
use an incremental algorithm to maintain the FP-stream, which is a tree data
structure, to represent the frequent itemsets. They conducted a number of
experiments to prove the algorithm’s efficiency. Manku and Motwani [40] have
proposed and implemented approximate frequency counts in data streams.
The implemented algorithm uses all the previous historical data to calculate
the frequent patterns incrementally.

Wang et al. [52] have proposed a general framework for mining concept-
drifting data streams. They observed that data-stream mining algorithms
don’t take notice of concept drifting in the evolving data. They proposed
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using weighted classifier ensembles to mine data streams. The expiration of
old data in their model depends on the data’s distribution. They use synthetic
and real life data streams to test their algorithm and compare between the
single classifier and classifier ensembles. The proposed algorithm combines
multiple classifiers weighted by their expected prediction accuracy. Also the
selection of a number of classifiers instead of using all is an option in the
proposed framework without losing accuracy.

Ordonez [44] has proposed several improvements to the K-means algo-
rithm to cluster binary data streams. He proposed an incremental K-means
algorithm. The experiments were conducted on real data sets as well as syn-
thetic data sets. They demonstrated that the proposed algorithm outperforms
the scalable K-means in most of the cases. The proposed algorithm is a one-
pass algorithm in O(Tkn) complexity, where T is the average transaction
size, n is number of transactions and k is number of centers. The use of bi-
nary data simplifies the manipulation of categorical data and eliminates the
need for data normalization. The main idea behind the proposed algorithm
is that it updates the centers and cluster weights after reading a batch of
transactions which equals square root of the number of transactions rather
than updating them one by one.

Datar et al. [15] have proposed a sketch-based technique to identify the
relaxed period and the average trend in a time-series data stream. The pro-
posed methods are tested experimentally showing an acceptable accuracy for
the approximation methods compared to the optimal solution. The main idea
behind the proposed methods is the use of sketches as a dimensionality reduc-
tion technique. Table 12.1 shows a summary of mining data stream techniques.

12.3.2 Systems and Applications

Recently systems and applications that deal with data streams have been
developed. These systems include:

• Burl et al. [10] have developed Diamond Eye for NASA and JPL. They
aim by this project to enable remote systems as well as scientists to extract
patterns from spatial objects in real-time image streams. The success of
this project will enable “a new era of exploration using highly autonomous
spacecraft, rovers, and sensors” [3].

• Kargupta et al. [35, 46] have developed the first UDM system: MobiMine.
It is a client/server PDA-based distributed data mining application for
financial data. They develop the system prototype using a single data
source and multiple mobile clients; however the system is designed to han-
dle multiple data sources. The server functionalities in the proposed system
are data collection from different financial web sites; storage; selection of
active stocks using common statistics; and applying online data mining
techniques to the stock data. The client functionalities are portfolio man-
agement using a mobile micro database to store portfolio data and user’s
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Table 12.1. Summary of mining data stream techniques.

Algorithm Mining Task Technique Implementation
VFKM K-means Sampling and reducing the

number of passes at each
step of the algorithm

Implemented and
tested.

VFDT Decision trees Sampling and reducing the
number of passes at each
step of the algorithm

Implemented and
tested.

Approximate
Frequent
Counts

Frequent item-
sets

Incremental pruning and up-
date of itemsets with each
block of transactions

Implemented and
tested.

FP-Stream Frequent item-
sets

Incremental pruning and up-
date of itemsets with each
block of transactions and
time-sensitive patterns ex-
tension

Implemented and
tested.

Concept-
Drifting Clas-
sification

Classification Ensemble classifiers Implemented and
tested.

AWSOM Prediction Incremental wavelets Implemented and
tested. (This algo-
rithm is designed
to run on a sensor
but the implemen-
tation is not on a
sensor).

Approximate
K-median

K-median Sampling and reducing the
number of passes at each
step of the algorithm

Analytical Study.

GEMM Applied to
decision tress
and frequent
itemsets

Sampling Analytical study.

CDM Decision trees,
Bayesian nets
and clustering

Fourier spectrum representa-
tion of the results to save the
limited bandwidth

Implemented and
tested.

ClusStream Clustering Online summarization and
offline clustering

Implemented and
tested.

STREAM,
LOCAL
SEARCH

Clustering Sampling and incremental
learning

Implemented and
tested against
other techniques.
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preference information, and construction of the WatchList and this is the
first point of interaction between the client and the server. The server com-
putes the most active stocks in the market, and the client in turn selects a
subset of this list to construct the personalized WatchList according to an
optimization module. The second point of interaction between the client
and the server is that the server performs online data mining and repre-
sents the results as a Fourier spectrum and then sends this to the client,
and the client in turn displays the results on the screen. Kargupta and his
colleagues believe that a PDA may not be the right place to perform data
analysis.

• Kargupta et al. [34] have developed a Vehicle Data Stream Mining System
(VEDAS ). It is a ubiquitous data-mining system that allows continuous
monitoring and pattern extraction from data streams generated on board
a moving vehicle. The mining component is located at the PDA. VEDAS
uses online incremental clustering for modeling of driving behavior and
road safety.

• Tanner et al.[48] have developed an environment for on-board processing
(EVE ). The system mines data streams continuously generated from mea-
surements of different on-board sensors. Only interesting patterns are sent
to the ground stations for further analysis, preserving the limited band-
width.

• Srivastava and Stroeve [47] work in a NASA project for onboard detection
of geophysical processes, such as snow, ice and clouds. They use kernel
clustering methods for data compression to preserve limited bandwidth
when sending image streams to the ground centers. The kernel methods
have been chosen due to their low computational complexity.

• Cai et al. [11] are developing an integrated mining and querying system.
The system can classify, cluster, count frequency and query over data
streams. Mining alarming incidents of data streams (MAIDS ) is currently
under development and recently they had a prototype presentation.

The above systems and techniques use different strategies to overcome the
three main problems discussed earlier. The following is an abstraction of these
strategies [27]:

• Input data rate adaptation: This approach uses sampling, filtering,
aggregation, and load shedding on the incoming data elements. Sampling
is the process of statistically selecting the elements of the incoming stream
that will be analyzed. Filtering is the semantics sampling in which the
data element is checked for its importance, for example to be analyzed or
not. Aggregation is the representation of number of element in one aggre-
gated elements using some statistical measure such as the average. Load
shedding, which has been proposed in the context of querying data streams
[7, 49, 50, 51] rather than mining data streams, is the process of eliminating
a batch of subsequent elements from being analyzed rather than checking
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each element that is used in the sampling technique. Figure 12.2 illustrates
the idea of data rate adaptation from the input side using sampling.

Fig. 12.2. Data rate adaptation using sampling.

• Knowledge abstraction level: This approach uses the higher knowl-
edge level to categorize the incoming elements into a limited number of
categories and replace each incoming element with the matching category
according to a specified measure or a look-up table. This producs fewer
results, conserving the limited memory. Moreover, it requires fewer pro-
cessing CPU cycles.

• Approximation algorithms: In this approach, one-pass mining algo-
rithms are designed to approximate the mining results according to some
acceptable error margin. Approximation algorithms have been studied ex-
tensively in addressing hard problems in computer algorithms.

The above strategies have attempted to solve the research problems raised
from mining streams of information; however the issue of resource-awareness
with regard to high data rates has not been addressed. We have proposed
algorithm output granularity (AOG) as a novel strategy to solve this problem.
The details and formalization of the approach is given in the next section.

12.4 Algorithm Output Granularity

AOG uses data rate adaptation from the output side. Figure 12.3 [20] shows
our strategy. We use the algorithm output granularity to preserve the limited
memory size according to the incoming data rate and the remaining time to
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Fig. 12.3. The algorithm output granularity approach.

mine the incoming stream without incremental integration; this represents a
sufficient time for model stability given that the more frequent the knowledge
integration, the less the algorithm accuracy. The algorithm threshold is a
controlling distance-based parameter that is able to change the algorithm
output rate according to data rate, available memory, algorithm output rate
history and remaining time for mining without integration.

The algorithm output granularity approach is based on the following ax-
ioms:

• The algorithm rate (AR) is a function of the data rate (DR), i.e., AR =
f(DR).

• The time needed to fill the available memory by the algorithm results
(TM) is a function of (AR), i.e., TM = f(AR).

• The algorithm accuracy (AC) is a function of (TM), i.e., AC = f(TM).

AOG is a three-stage, resource-aware, distance-based data-streams mining
approach. The process of mining data streams using AOG starts with a mining
phase. In this step, a threshold distance measure is determined. The algorithm
can have only one look at each data element. Using a distance threshold in
clustering has been introduced in BIRCH [32] for mining large data sets. In
the mining stage, there are three variations in using this threshold according
to the mining technique:

• Clustering: the threshold is used to specify the minimum distance between
the cluster center and the data element;
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• Classification: In addition to using the threshold in specifying the distance,
the class label is checked. If the class label of the stored items and the new
item that is similar (within the accepted distance) are the same, the weight
of the stored item is increased along with the weighted average of the other
attributes, otherwise the weight is decreased and the new item is ignored;

• Frequent patterns: the threshold is used to determine the number of coun-
ters for the heavy hitters.
The second stage in the AOG mining approach is the adaptation phase.
In this phase, the threshold value is adjusted to cope with the data rate
of the incoming stream, the available memory, and time constraints to
fill the available memory with generated knowledge. This stage gives the
uniqueness of our approach in adjusting the output rate according to the
available resources of the computing device. The last stage in the AOG
approach is the knowledge integration phase. This stage represents the
merging of generated results when the memory is full. This integration
allows the continuity of the mining process. Figure 12.4 [28] shows the
AOG mining process.

Fig. 12.4. The AOG mining approach.

12.4.1 Concept and Terminology of AOG

Algorithm Threshold
The algorithm threshold is a controlling parameter built into the algorithm
logic that encourages or discourages the creation of new outputs according to
three factors that vary over temporal scale:

• Available memory.
• Remaining time to fill the available memory.
• Data stream rate.
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The algorithm threshold is the maximum acceptable distance between the
group means and the data element of the stream. The higher the threshold,
the lower the output size produced. The algorithm threshold can use Eu-
clidean or Manhattan distance functions and a normalization process would
be done online in the case of a multidimensional data stream.

Threshold Lower Bound
The threshold lower bound is the minimum acceptable distance (similarity
measure) that can be used. As a matter of fact, the lower the threshold the
higher the algorithm accuracy. If the distance measure is very small, it has two
major drawbacks. It is meaningless in some applications, such as astronomical
once, to set the distance measure to a very small value. The distance between
some of data elements in such applications is relatively high. And the smaller
the threshold, the greater the run time for the model use.

Threshold Upper Bound
The threshold upper bound is the maximum acceptable similarity measure
that can be accepted to produce meaningful results. If the distance measure
is high, the model building is faster; however it has the limitation of needing
to produce meaningful results; that is, it should not group data elements that
are totally different in the same class or cluster.

Output Granularity
The output granularity is the amount of generated results that are acceptable
according to a pre-specified accuracy measure. This amount should be resi-
dent in memory before doing any incremental integration.

Time Threshold
The time threshold is the required time to generate the results before any in-
cremental integration. This time might be specified by the user or calculated
adaptively based on the history of running the algorithm.

Time Frame
The time frame is the time between each two consecutive data rate measure-
ments. This time varies from one application to another and from one mining
technique to another.

12.4.2 The Process of Mining Data Stream

i. Determine the frequency of adaptation and mining.
ii. According to the data rate, calculate the algorithm output rate and the

algorithm threshold.
iii. Mine the incoming stream using the calculated algorithm threshold.
iv. Adjust the threshold after a time frame to adapt with the change in the

data rate using linear regression.
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v. Repeat steps 3 and 4 till the algorithm lasts the time interval threshold.
vi. Perform knowledge integration of the results

The algorithm output granularity in mining data streams has primitive
parameters, and operations that operate on these parameters. AOG algebra
is concerned with defining these parameters and operations. The develop-
ment of AOG-based mining techniques should be guided by these primitives
depending on empirical studies. That means defining the timing settings of
these parameters to get the required results. Thus the settings of these pa-
rameters depend on the application and technique used. For example, we can
use certain settings for a clustering technique when we use it in astronomi-
cal applications that require higher accuracy; however we can change these
settings in business applications that require less accuracy. Figure 12.5 and
Figure 12.6 show the conceptual framework of AOG.

AOG parameters:

• TFi: The time frame i
• Di: Input data stream during the time frame i
• I(Di): Average data rate of the input stream Di
• O(Di): Average output rate resulting from mining the stream Di

AOG operations:

• α(Di) Mining process of the Di stream
• β([I(D1), O(D1)],. . . ,[I(Di), O(Di)]) Adaptation process of the algo-

rithm threshold at the end of time frame i
• Ω (Oi, ...,Ox) Knowledge integration process done on the output i to

the output x

AOG settings:

• D(TF) Time duration of each time frame
• D(Ω) Time duration between each two consecutive knowledge integration

processes

Fig. 12.5. AOG-based mining.
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Fig. 12.6. AOG-based mining (detailed).

12.4.3 Mathematical Formalization

The following is a mathematical formalization of AOG-based data-stream min-
ing. Table 12.2 shows the symbols used in the mathematical formulation.

Table 12.2. AOG symbols.

Symbol Meaning
AAO Atomic algorithm output size. The size of smallest the el-

ement produced from the mining algorithm. For example,
in clustering, the AAO represents the size of storing the
cluster center and the weight of the cluster.

D Duration of the time frame.
Mi Remaining memory size by the end of time frame i (Mi=

Mi−1 – (AAO x O(TF i))).
TF i Time frame i by which the threshold is adjusted to cope

with the data rate.
N(TF i) Number of data elements that arrived during the time

frame i.
O(TF i) Number of outputs produced during the time frame i.
ARi The average algorithm rate during TFi (O(TF i)/D).
DRi The average data rate during TFi(N(TF i)/D).
ti Remaining time from the time interval threshold needed

by the algorithm to fill the main memory (Ti = Ti−1 –
D).

thi Threshold value during the time frame i.
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The main idea behind our approach is to change the threshold value that
in turn changes the algorithm rate according to three factors:

• History of data rate to algorithm rate ratio
• Remaining time
• Remaining memory

The target is to keep the balance between the algorithm rate and the data
rate from one side and the remaining time and remaining memory from the
other side.

[(ARi+1/DRi+1)/(ARi/DRi)] = [(Mi/ARi)/ti] (12.1)

ARi+1 = (Mi/ti).(DRi+1/DRi) (12.2)

Using the ARi+1 in the following equation to determine the new threshold
value:

thi+1 = [(ARi+1/DRi+1).thi]/(ARi/DRi) (12.3)

After a time frame we can use linear regression to estimate the threshold using
the values obtained from the AR and th.

th = a.AR + b, b = Σ(th.AR)/ΣAR2, a = (Σth/ΣN)− (bΣth/N) (12.4)

Linear regression is used because of the fluctuating distribution of the
incoming data elements. Data stream distribution is an effective factor in
determining the algorithm output rate.

12.5 AOG-based Mining Techniques

In this section, we show the application of the algorithm output granularity
to clustering, classification and frequent items.

12.5.1 Lightweight Clustering (LWC)

LWC is a one-pass similarity-based algorithm. The main idea behind the algo-
rithm is to incrementally add new data elements to existing clusters according
to an adaptive threshold value. If the distance between the new data point
and all existing cluster centers is greater than the current threshold value,
then create a new cluster. Figure 12.7 shows the algorithm.
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1. x = 1, c = 1, M = number of memory blocks
available

2. Receive data item DI[x]
3. Center[c] = DI[x]
4. M = M - 1
5. Repeat
6. x = x + 1
7. Receive DI[x]
8. For i = 1 to c
9. Measure the distance between Center[i]

and DI[x]
10. If distance > dist (the threshold)
11. Then
12. c = c + 1
13. If (M <> 0)
14. Then
15. Center[c] = DI[x]
16. Else
17. Merge DI[]
18. Else
19. For j = 1 to c
20. Compare between Center[j] and DI[x] to

find shortest distance
21. Increase weight for Center[j] by the

shortest distance
22. Center[j] = (Center[j] * weight + DI[x]) /

(weight + 1)
24. Until Done.

Fig. 12.7. Lightweight clustering algorithm.

12.5.2 Lightweight Classification (LWClass)

LWClass starts with determining the number of instances according to the
available space in the main memory. Once a new classified data element ar-
rives, the algorithm searches for the nearest instance already stored in the
main memory according to a pre-specified distance threshold. The threshold
here represents the similarity measure acceptable by the algorithm to consider
two or more elements as one element according to the element’s attribute val-
ues. If the algorithm finds this element, it checks the class label. If the class
label is the same, it increases the weight for this instance by one, otherwise it
decrements the weight by one. If the weight becomes zero, this element will be
released from the memory. Given that CL is the class label vector, Figure 12.8
shows the LWClass algorithm.
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1. x = 1, c = 1, M = number of memory blocks available
2. Receive data item DI[x]
3. Center[c] = DI[x]
4. M = M - 1
5. Repeat
6. x = x + 1
7. Receive DI[x]
8. For i = 1 to c
9. Measure the distance between Center[i] and DI[x]
10. If distance > dist (The threshold)
11. Then
12. c = c + 1
13. If (M <> 0)
14. Then
15. Center[c] = DI[x]
16. Else
17. Merge DI[]
18. Else
19. For j = 1 to c
20. Compare between Center[j] and DI[x] to find

shortest distance
21. If CL[j] = CL[x]
22. Then
23. Increase weight for Center[j] with shortest

distance
24. Center[j] = (Center[j] * weight + DI[x]) /

(weight + 1)
25. Else
26. Increase weight for Center[j] with shortest

distance
27.Until Done

Fig. 12.8. Lightweight classification algorithm.

12.5.3 Lightweight Frequent Items (LWF)

LWF starts by setting the number of frequent items that will be calculated
according to the available memory. This number changes over time to cope
with the high data rate. The algorithm receives the data elements one by
one, tries to find a counter for any new item and increases the item for the
registered items. If all the counters are occupied, any new item will be ignored
and the counters will be decreased by one till the algorithm reaches some
time threshold. A number of the least frequent items will be ignored and their
counters will be re-set to zero. If the new item is similar to one of the items
in memory, the counter will be increased by one. The main parameters that
can affect the algorithm accuracy are time threshold, number of calculated
frequent items and number of items that will be ignored. Their counters will
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be re-set after some time threshold. Figure 12.9 shows the algorithm outline
for the LWF algorithm.

1. Set the number of top frequent items to k
2. Set the counter for each k
3. Repeat
4. Receive the item
5. If the item is new and one of the k counters are 0
6. Then
7. Put this item and increase the counter by 1
8. Else
9. If the item is already in one of the k counters
10. Then
11. Increase the counter by 1
12. Else
13. If the item is new and all the counters are full
14. Then
15. Check the time
16. If time > Threshold Time
17. Then
18. Re-set number of least n of k counters to 0
19. Put the new item and increase the counter by 1
20. Else
21. Ignore the item
22. Decrease all the counters by 1
23. Until Done

Fig. 12.9. Lightweight frequent item algorithm.

12.6 Experimental Results

The experiments have been developed on an iPAQ with 64 MB of RAM and a
strongARM processor, running Microsoft Windows CE version 3.0.9348. The
data sets used are synthetic data with low dimensionality generated randomly
with uniform distribution. Different domains were used in the experiments.
The program was developed using Microsoft embedded Visual C++ 3.0. We
ran several experiments using AOG with LWC, LWClass and LWF. The aim
of these experiments was to measure the accuracy of the generated results
with and without adding the AOG in addition to measuring the AOG cost
overhead. Figure 12.10 and Figure 12.11 show that the AOG overhead is sta-
ble with the increase in data set size which indicates the applicability of this
approach in such a resource-constrained environment. Figure 12.12 shows the
feasibility of AOG using the concept of the number of generated knowledge
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structures. The number of generated clusters is comparable with and without
AOG. Thus using AOG adds resource awareness to mining data-stream algo-
rithms while maintaining a high degree of accuracy. The accuracy is measured
as the number of created knowledge structures.

Fig. 12.10. LWC with AOG overhead.

Fig. 12.11. LWClass with AOG overhead.
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Fig. 12.12. Number of knowledge structures created with and without AOG.

12.7 RA-UDM

Having developed the theoretical model and experimental validation, we are
now implementing a resource-aware UDM system (RA-UDM) [22, 27]. In this
section, we describe the architecture, design and operation of each compo-
nent of this system. The system architecture of our approach is shown in
Figure 12.13 [27]. The detailed discussion about each component is given in
the following.

Resource-aware Component
Local resource information is a resource monitoring component which is
able to inform the system by the number of running processes in a mobile de-
vice, battery consumption status, available memory and scheduled resources.
Context-aware middleware is a component that can monitor the environ-
mental measurements such as the effective bandwidth. It can use reasoning
techniques to reason about the context attributes of the mobile device.
Resource measurements is a component that can receive the information
from the above two modules and formulate this information to be used by the
solution optimizer.
Solution optimizer is a component determines the data mining task scenario
according to the available information about the local and context informa-
tion. The module can choose from different scenarios to achieve the UDM
process in a cost-efficient way. The following is a formalization of this task.
Table 12.3 shows the symbols used.
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Fig. 12.13. RA-UDM system architecture.

In the UDM process, we have three main strategies:

• Fully distributed data mining, in which the DM processes are done locally:

Cost(UDM) = Σn
i=1DMi + Σm

j=1DMj + Σz∈{1,2,...,n+m−1}KIz +
Σt∈{1,2,...,n+m−1}(Kt/bandt) + (KFinal/bandFinal) +

Σe∈{1,2,...,n+m}(age/bande) (12.5)

• Central data mining, in which the DM process is done centrally:

Cost(UDM) = Σn+m
i=1 (Di/bandi) + DM + KI + (KFinal/bandFinal)

(12.6)
• Partially distributed data mining, in which the DM processes are done

locally at some sites to which the other sites transfer their data:

Cost(UDM) = Σc
i=1Di + Σn+m−c

j=1 DMj + Σz∈{1,2,...,n+m−c−1}KIz +
Σt∈{1,2,...,n+m−c−1}(Kt/bandt) + (KFinal/bandFinal) +

Σe∈{1,2,...,n+m−c}(age/bande) (12.7)
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Table 12.3. Solution optimizer symbols.

Symbol Meaning
DM The time needed for the data mining

process centrally
DMi The time needed for the data process

at site i

n Number of stationary data sources
m Number of mobile data sources
KI The time needed for knowledge inte-

gration process at the central site
KIz The time needed for KI at site z

bandt The effective bandwidth between two
devices

Kt The generated knowledge at site t

age The mobile agent e transferred to a
specific data source

Mobile Lightweight Data Analysis Agent
Lightweight data-mining agent is a component that incorporates our AOG
methodology in mining data streams. The module has the ability to continue
the process at another device in case of a sudden lack of computational re-
sources. This is done by using mobile agents to perform this process.
Incremental learning and knowledge integration: is a component that
can merge the results when the device runs out of memory. It also has the
ability to integrate knowledge that has been sent from other mobile devices.
Data stream generator Most mobile devices have the ability to generate
data streams. Sensors are a typical example. Handheld devices can generate
data streams about the user context.
High performance data-mining computing facility is component that
runs a grid computing facility. This is the manager for the whole process and
can inform the mobile device of the solution if the solution optimizer can’t
achieve the required information to make a decision.

12.8 Conclusions

Mining data streams is in its infancy. The last two years have witnessed in-
creasing attention this area of research because of the increase in sensor net-
works that generate vast amounts of data streams and the increase of com-
putational power of small devices. In this chapter, we have presented our
contribution to the field represented in three mining techniques and a general
strategy that adds resource-awareness which is a highly demanded feature in
pervasive and ubiquitous environments. AOG has proved its applicability and
efficiency.
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The following open issues need to be addressed to realize the full potential
of this exciting field [18, 23]:

• Handling the continuous flow of data streams: Data items in data streams
are characterized by continuity. That dictates the design of non-stopping
management and analysis techniques that can cope with the continuous,
rapid data elements.

• Minimizing energy consumption of the mobile device [9]: The analysis
component in the UDM is local to the mobile device site. Mobile devices
face the problem of battery life-time.

• Unbounded memory requirements: Due to the continuous flow of data
streams, sensors or handheld devices have the problem of lack of sufficient
memory size to run traditional data-mining techniques.

• Transferring data mining results over a wireless network with limited band-
width: The wireless environment is characterized by unreliable connections
and limited bandwidth. If the number of mobile devices involved in a UDM
process is high, the process of sending the results back to a central site
becomes a challenging process.

• Data mining results visualization on the small screen of mobile device: The
user interface on a handheld device for visualizing data-mining results is
a challenging issue. The visualization of data mining results on a desk-
top is still a challenging process. Novel visualization techniques that are
concerned with the size of image should be investigated.

• Modeling changes of mining results over time: Due to the continuity of data
streams, some researchers have pointed out that capturing the change of
mining results is more important in this area than the mining results. The
research issue is how to model this change in the results.

• Interactive mining environment to satisfy user requirements: The user
should be able to change the process settings in real time. The problem is
how the mining technique can use the generated results to integrate with
the new results after the change in the settings.

• Integration between data-stream management systems and ubiquitous
data-stream mining approaches: There is a separation between the research
in querying and management of data streams and mining data streams.
The integration between the two is an important research issue that should
be addressed by the research community. The process of management and
analysis of data streams is highly correlated.

• The relationship between the proposed techniques and the needs of real-
world applications: The needs of real-time analysis of data streams is af-
fected by the application needs. Most of the proposed techniques don’t
pay attention to real-world applications: they attempt to achieve the min-
ing task with low computational and space complexity regardless of the
applicability of such techniques. One of the interesting studies in this area
is by Keogh et al.[36] who have proved that the results of the most cited
clustering techniques in times series are meaningless.
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• Data pre-processing in the stream-mining process: One of the important
issues in data mining is data pre-processing. In data streams, data pre-
processing is a challenging process, because the global view over the data
set is missed. The need for real-time lightweight data pre-processing is an
urgent need that should be addressed in order to come out with meaningful
results.

• The technological issue of mining data streams: The real-time aspect of
UDM raises some issues about the technologies that should be used. Tools
that can be used for offline business applications are not sufficient to de-
velop real-time applications.

• The formalization of real-time accuracy evaluation: There is a need to
formalize the accuracy evaluation, so the user can know the degree of
reliability of the extracted knowledge.

• The data-stream computing formalization: The mining of data streams
could be formalized within a theory of data stream computation [31].
This formalization will facilitate the design and development of algorithms
based on a concrete mathematical foundation.
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13

Discovering an Evolutionary Classifier over a
High-speed Nonstatic Stream

Jiong Yang, Xifeng Yan, Jiawei Han and Wei Wang

Summary. With the emergence of large-volume and high-speed streaming data,
mining data streams has become a focus of increasing interest. The major new chal-
lenges in streaming data mining are as follows: since streams may flow in and out
indefinitely and at fast speed, it is usually expected that a stream-mining process
can only scan a data stream once; and since the characteristics of the data may
evolve over time, it is desirable to incorporate the evolving features of data streams.
This paper investigates the issues of developing a high-speed classification method
for streaming data with concept drifts. Among several popular classification tech-
niques, the näıve Bayesian classifier is chosen due to its low construction cost, ease of
incremental maintenance, and high accuracy. An efficient algorithm, called EvoClass
(Evolutionary Classifier), is devised. EvoClass builds an incremental, evolutionary
Bayesian classifier on streaming data. A train-and-test method is employed to dis-
cover the changes in the characteristics of the data and the need for construction
of a new classifier. In addition, divergence is utilized to quantify the changes in the
classifier and inform the user what aspects of the data characteristics have evolved.
Finally, an intensive empirical study has been performed that demonstrates the
effectiveness and efficiency of the EvoClass method.

13.1 Introduction

Data mining has been an active research area in the past decade. With the
emergence of sensor nets, the world-wide web, and other on-line data-intensive
applications, mining streaming data has become an urgent problem. Recently,
a lot of research has been performed on data-stream mining, including clus-
tering [12, 20], aggregate computation [5, 11], classifier construction [3, 15],
and frequent counts computation [18]. However, a lot of issues still need to
be explored to ensure that high-speed, nonstatic streams can be mined in
real-time and at a reasonable cost.

Let’s examine some application areas that pose a demand for real-time
classification of nonstatic streaming data:
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• Online shopping. At different times, shoppers may have different shopping
patterns. For instance, some shoppers may be interested in buying a t-shirt
and shorts while other shoppers would be interested in leather jackets and
sweaters. In addition, new items may appear at any time. As a result, the
classifier may evolve over time. Thus, it is necessary to devise an adaptive
classifier.

• Target marketing. In business advertisement campaigns, mailing out coupons
(or credit card pre-approval applications) is an expensive operation due to
handling costs and mailing fees. If a coupon recipient does not use the
coupon, the overhead is wasted. It is essential to identify the set of cus-
tomers who will use the coupons for further purchases. To identify these
customers, a classifier can be built based on the customer’s shopping his-
tory to determine to whom a coupon should be sent. This classifier will
have to evolve over time due to the change of economic environment, fash-
ion, etc. As a result, it is important to find the best classifier for the current
trend.

• Sensor nets. A sensor net continuously collects information from nearby
sites and sends signals. The stream of sensor data can be used to detect
the malfunction of sensors, outliers, congestions, and so on. For instance,
based on the data from traffic sensors in a major city, a model has to be
constructed dynamically based on the current traffic and weather situation,
such as accidents, traffic jams, storms, special events, and so on.

The above examples show that there is a need to dynamically construct
classifiers based on the history and current information of streaming data,
which poses the following challenges:

• The classifier construction process should be fast and dynamic because
the data may arrive at a high rate, with dramatic changes. For example,
thousands of packets can be collected from sensor nets every second, and
millions of customers may make purchases every day.

• The classifier should also evolve over time since the label of each record
may change from time to time. As a result, how to keep trace of this type
of evolution and how to discover the cause that leads to the evolution is
an important and difficult problem.

• The classifier should not only be suitable for peer prediction, but also for
future prediction. In some applications, the behaviors of one peer is not a
good indication of another, but rather the behavior in the past is a better
indication for the future. For instance, the price of stocks may not follow
the same trend, but the previous fluctuation of the stock price may be a
good indication of future stock price.

Let’s first examine what kinds of classifiers may be good candidates for
building fast, adaptive, and evolving classifiers in the data-stream environ-
ment. Classification is one of the most popularly studied fields in data mining,
machine learning and statistics [13, 14, 19, 21]. There have been many well-
studied classifiers, such as decision trees, Bayesian networks, näıve Bayesian
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classifiers, support vector machines, neural networks, and so on. In many stud-
ies, researchers have found that each classifier has advantages for certain types
of data sets. Among these classifiers, some, such as neural networks and sup-
port vector machines, are obviously not good candidates for single-scan, very
fast model reconstruction while handling the huge amount of data streams.

In the previous studies on classification of streaming data, decision trees
have been popularly used as the first choice for their simplicity and easy
explanation, such as [3, 13, 15]. However, it is difficult to dynamically and
drastically change decision trees due to the costly reconstruction once they
have been built. In many real applications, dynamic changes in stream data
could be normal, such as in stock market analysis, traffic or weather modeling,
and so on. In addition, a large amount of raw data is needed to build a decision
tree. According to the model proposed in [15], it has to keep them in memory
or on disk since they may be used later for updating the statistics when
old records leave the window and for reconstructing parts of the tree. If the
concept drifts very often, the related data needs to be scanned multiple times
so that the decision tree can be kept updated. This is usually unaffordable
for streaming data. Also, after detecting the drift in the model, it may take
a long time to accumulate sufficient data to build an accurate decision tree
[15]. Any drift taking place during that period either cannot be caught or will
make the tree unstable. In addition, the method presented in this paper only
works for peer prediction, but not for future prediction.

Based on the above analysis, we do not use the decision tree model, in-
stead we choose the näıve Bayesian classifier scheme because it is easy to
construct and adapt. The näıve Bayesian classifier, in essence, maintains a set
of probability distributions P (ai|v) where ai and v are the attribute value and
the class label, respectively. To classify a record with several attribute values,
it is assumed that the conditional probability distributions of these values
are independent of each other. Thus, one can simply multiply the conditional
probabilities together and label the record with the class label of the greatest
probability. Despite its simplicity, the accuracy of the näıve Bayesian classifier
is comparable to other classifiers such as decision trees [4, 19].

The characteristics of the stream may change at any moment. Table 13.1
illustrates an example of a credit card pre-approval database, constructed by
a target marketing department in a credit card company. Suppose it is used
to trace the customers to whom the company sent credit card pre-approval
packages and the applications received from the customers. In the first portion
of the stream, client 1578 is sent a pre-approval package. However, in the
second portion of the stream, client 7887 has similar attribute values, but is
not delivered such a package due to a change in the economic situation.

The above example shows that it is critical to detect the changes in the
classifier and construct a new classifier in a timely manner to reflect the
changes in the data. Furthermore, it is nice to know which attribute is dom-
inant for such a change. Notice that almost all the classifiers require a good
amount of data to build. If the data for constructing a classifier is insufficient,
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Table 13.1. Example of credit card pre-approval database.

Client ID Age Salary Credit Year Approval
History

1578 30–34 25k–30k Good 2000 Yes
1329 40–44 30k–35k Bad 2000 Yes
2345 35–39 30k–35k Good 2000 Yes
3111 25–29 25k–30k Bad 2000 No
... ... ... ... ... ...
7887 30-34 30k-35k Good 2002 No

the accuracy of the classifier may degrade significantly. On the other hand, it
is impractical to keep all the data in memory especially when the arrival rate
of the data is high, e.g., in network monitoring. As a result, we have to keep
only a small amount of summarized data. The näıve Bayesian classifier can
work for this scenario nicely, where the summarized data structure is just the
occurrence frequency of each attribute value for every given class label.

Since the change of underlying processes may occur at any time, the stream
can be partitioned into disjoint windows. Each window contains a portion of
the stream. The summarized data (occurrence frequency) of each window is
computed and stored. When the stream is very long, even the summarized
data may not be able to fit in the main memory. With a larger window size,
the memory can store the summarized data for a larger portion of the stream.
However, this can make the summarized data too coarse. During the process
of constructing a new classifier, we may not be able to recover much useful
information from the coarse summarized data. To overcome this difficulty, a
tilted window [2] is employed for summarizing the data. In the tilted window
scheme, the most recent window contains the finest frequency counts. The
window size increases exponentially for older data. This design is based on the
observation that more recent data is usually more important. With this tilted
window scheme, the summarized counts for a large portion of the stream can fit
in memory. During the construction of the classifier, more recent information
can be obtained, and the classifier can be updated accordingly.

Based on the above observation, an evolutionary stream data classification
method is developed in this study, with the following contributions:

• The proposal of a model for the construction of an evolutionary classifier
(e.g., näıve Bayesian) over streaming data.

• A novel two-fold algorithm, EvoClass, is developed with the following fea-
tures:
– A test-and-update technique is employed to detect the changes of con-

ditional probability distributions of the näıve Bayesian.
– The näıve Bayesian is adaptive to new data by continuous refinement.
– A tilted window is utilized to partition the data so that more detailed

information is maintained for more recent data.
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– Variational divergence and Kullback-Leibler divergence are used to dis-
cover the dominant attributes that contribute to the classifier changes.

– The algorithm can also be adapted to future prediction in addition to
the peer prediction.

• An extensive performance study has been conducted on the proposed
method using synthetic data, which shows the correctness and high ef-
ficiency of the EvoClass algorithm.

The remainder of the paper is organized as follows. Related work is pre-
sented in Section 13.2. We briefly describe the problem of streaming-data
classification in Section 13.3. We formulate the EvoClass approach in Sec-
tion 13.4 and report the experimental results in Section 13.5. Related work and
comparison between EvoClass and decision-tree-based algorithms are given in
Section 13.6. We also discuss other issues related to EvoClass in that section.
Finally, we draw our conclusion in Section 13.7.

13.2 Related Work

Querying and mining streaming data has raised great interest in the database
community. An overview of the current state of the art of stream data man-
agement systems, stream query processing, and stream data mining can be
found in [1, 9]. Here, we briefly introduce the major work on streaming data
classification.

Building classifiers on streaming data has been studied in [3, 15], with
decision trees as the classification approach. In [3], it is assumed that the
data is generated by a static Markov process. As a result, each portion of the
stream can be viewed as a sample of the same underlying process, which may
not handle well dynamically evolving data. A new decision-tree construction
algorithm, VFDT is proposed. The first portion (window) of the stream data
is used to determine the root node. The second portion (window) of the stream
data is used to build the the second node of the tree, and so on. The window
size is determined by the desired accuracy. The higher the accuracy desired,
the more data in a window. According to [3], this method can achieve a higher
degree of accuracy and it outperforms some other decision-tree construction
methods, such as C4.5.

The algorithm proposed in [15], CVFDT, relaxed the assumption of static
classification modeling in VFDT. It allows concept drift, which means the
underlying classification model may change over time. CVFDT keeps its un-
derlying model consistent with the ongoing data. When the concept in the
streaming data changes, CVFDT can adaptively change the decision tree by
growing alternative subtrees in questionable portions of the old tree. When
the accuracy of the alternative subtree outperforms the old subtree, the old
one will be replaced with the new one. CVFDT achieves better performance
than VFDT because of its fitness to changing data. However, because of the
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inherent properties of constructing decision tree, CVFDT has the following
difficulties in processing highly variant streaming data:

• CVFDT needs to store the records of the current window in memory or
on disk. These records are prepared for reconstruction of the tree when
concept drift takes place. When the window size is large, or when the
concept drifts frequently, it often needs multiple scans over the records in
order to partially rebuild the tree.

• In CVFDT, the window on which the decision tree is built is fixed, which
means that the decision tree covers all the records in the window. If there is
a concept drift in the middle of the window, it cannot discard the first part
of the records in the window. Thus it may not reflect the newest concept
trend accurately. The window size cannot be reduced further since there
is a lower bound of necessary records to build a tree.

• The entire decision tree may become bushy over time due to the mainte-
nance of a large number of alternative subtrees.

• If the alternative subtrees do not lead to replacements for old ones, the
computation time spent on these subtrees is wasted.

EvoClass avoids the above problems using a tilted window scenario and
näıve Bayesian classifier. Since näıve Bayesian needs only the summary in-
formation of records, EvoClass does not need to store data records, it is a
truly one-scan algorithm. EvoClass can refine the minimum window size to
small granularity without much loss of efficiency. Thus EvoClass can catch
high frequency significant concept drifts. Furthermore, the additive property
of the näıve Bayesian classifier makes the merging of two probability distribu-
tions simple and robust. Finally, the cost per record for EvoClass is O(|V ||A|),
which is much cheaper than that for CVFDT, O(dNt|V |

∑
∀j |Aj |) [15] (where

d is the maximum depth of the decision tree and Nt is the number of alternate
trees; the notation is introduced in the next section).

13.3 Problem Definition and Analysis

We assume that a data stream consists of a sequence of data records, r1, r2, . . . ,
rn, where n could be an arbitrarily large integer. Each record consists of a
set of attributes and a class label. Let A = {A1, A2, . . . , Am} be a set of
attributes. A data record, r = 〈a1, a2, . . . , am, v〉, where aj is the value of
attribute Aj , and v is the class label of r.

Streaming Data Classification
The problem is to build a classifier based on streaming data in order to predict
the class label of unknown, coming records. In this paper, we focus on the
problem that the underlying process behind the streaming data may not be
static, i.e., it may change over time. We call such changes concept drifts. It is
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challenging to build an adaptive classifier over streaming data, as well as to
represent how the concepts drift.

We assume that the values in each attribute are categorical values. In the
case that an attribute has real values, we first discretize the data into bins via
either equal-width or equal-depth binning techniques [17], which will not be
elaborated here.

Comparing with other classification methods, the näıve Bayesian classifi-
cation approach is an affordable solution for data stream classification due to
the following characteristics:

• The construction cost and memory consumption are relatively low.
• It is easy to update the näıve Bayesian classifier with new data.
• Its accuracy is comparable to other classifiers, e.g., Bayesian network and

decision trees [19].

We first introduce the concept of the näıve Bayesian classification. Let
V = v1, v2, . . . , vk be the set of target class labels. As we know, the conditional
probability distribution, P (vi|a1, a2, . . . , an), can be used to predict the class
label of records where aj is the value of the j-th attribute. By applying the
Bayes theory, we can obtain the following formula.

P (vi|a1, . . . , an) =
P (a1, . . . , an|vi)× P (vi)

P (a1, a2, . . . , an)
∝ P (a1, a2, . . . , an|vi)× P (vi) (13.1)
∝ P (a1|vi)× · · · × P (an|vi)× P (vi) (13.2)

For a given record 〈a1, a2, . . . , an〉, we compute the probability for all vi. The
class label of this record is that vj (for some j where 1 ≤ j ≤ k) which yields
the maximum probability in Equation (13.1). The number of conditional prob-
abilities that need to be stored is |A1| × |A2| × · · · × |Am| × |V | where |Ai| is
the number of distinct values in the ith attribute. If there are 10 attributes
and 100 distinct values for each attribute and 10 class labels, there will be
10010 × 10 conditional probabilities to be computed which is prohibitively
expensive. On the other hand, the näıve Bayesian classifier assumes the inde-
pendence of each variable, i.e., P (ai, aj |v) = P (ai|v) × P (aj |v). In this case,
Equation (13.1) can be simplified to Equation (13.2). Then we need only track∑

∀i |Ai| × |V | probabilities. In the previous example, we only need to track
10,000 probabilities, a manageable task. The set of conditional probabilities
that can be learned from the data seen so far is, P (ai|v) = P (ai,v)

P (v) , where
P (ai, v) is the joint probability distribution of attribute value ai and class
label v, and P (v) is the probability distribution of the class label.

Classifier Evolution
The problem is to catch the concept drifts and identify them. For discovery of
the evolution of a classifier, one needs to keep trace of the changes of the data
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or conditions closely related to the classifier [8]. The näıve Bayesian classifier
captures the probability distributions of attribute values and class labels, and
thus becomes a good candidate for the task. It is important to capture and
measure the difference between two probability distributions. There exist some
methods which assess the difference between two probability distributions,
among which the variational distance and the Kullback-Leibler divergence are
the most popular ones [16].

• Variational Distance: Given two probability distributions, P1 and P2,
of the variable σ, the variational distance is defined as V (P1, P2) =∑

σ∈Ω |P1(σ)− P2(σ)|.
• Kullback-Leibler Divergence: The Kullback-Leibler divergence is one of the

well-known divergence measures rooted in information theory. There are
two popular versions of the Kullback-Leibler Divergence. The asymmetric
measure (sometimes referred as the I-directed divergence) is defined as

I(P1, P2) =
∑
σ∈Ω

P1(σ) log
P1(σ)
P2(σ)

.

Since the I-divergence does not satisfy the metric properties, its sym-
metrized measure, J-divergence, is often used to serve as a distance mea-
sure.

J(P1, P2) = I(P1, P2) + I(P2, P1)

=
∑
σ∈Ω

(P1(σ)− P2(σ)) log
P1(σ)
P2(σ)

(13.3)

In this paper, we also adopt the J-divergence to measure the differ-
ence between two probability distributions. One limitation to applying
the Kullback-Leibler divergence is that the measure is undefined if either
P1(σ) = 0 or P2(σ) = 0. To resolve this issue, a smoothing process can be
performed on the probability distributions. Probabilities with zero value
will be assigned to a small but positive probability after the smoothing pro-
cess. A simple way to implement the smoothing probability is to slightly
decrease the value of each non-zero empirical probability and uniformly
distribute the small amount of probability to the zero probability virtu-
ally. The decrement of each non-zero probability is done in proportion to
its value.

13.4 Approach of EvoClass

As discussed before, a näıve Bayesian classifier is essentially a set of prob-
ability distributions induced from data. The probability P (ai, v) and P (v)
are crucial to the accuracy of a classifier. In this section, we are to present a
novel approach that dynamically estimates the probability distributions over
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the stream data, which may evolve over time. We first present a high level
overview of our approach and then give the detailed description of each com-
ponent in the algorithm.

13.4.1 Overview

As mentioned previously, the näıve Bayesian classifier is chosen for its efficient
construction, incremental update, and high accuracy. Since data may arrive at
a high rate and the set of overall data stream can be very large, it is expected
that the computer system cannot store the complete set of data in the main
memory, especially for sensor nets. As a result, only part of the raw data and
some summarized data may be stored. Most of the raw data is only processed
once and discarded. Thus, one needs to know the count of the number of
records in which the value ai and the class label v occurred together.

The stream is partitioned into a set of disjoint windows, each of which
consists of a portion of the stream. The coming data is continuously used
to test the classifier to see whether the classifier is still sufficiently accurate.
Once the data in a window is full, the counts of the occurrences of all distinct
ai ∩ v are computed. After computing the counts, the raw data of the stream
can be discarded. These counts are used to train the classifier, i.e., to update
the probability distributions.

There are two cases to be considered. First, if the accuracy of the classifier
degrades significantly, one needs to discard the old classifier and build a new
one. In many occasions, the changes in the classifier are also interesting to the
users because based on the changes, they may know what occurred in the data.
Therefore, the major changes in the classifier will be reported. The procedure
is depicted in Figure 13.1. Second, when the probability distribution does not
change for a long time, there may be a significant amount of information
accumulated on the counts. In this case, some of the windows will need to be
combined to reduce the amount of information.

In the following subsections, we will present the details of each step.

13.4.2 Window Size

The size of the window is a critical factor that may influence the classification
quality. The probability distribution is updated when the accumulated data
has filled a window. When the window size is small, the evidence in a window
may be also small, and the induced probability distribution could be inac-
curate, which may lead to a low-quality näıve Bayesian classifier. However,
when the window size is too large, it will be slow in detecting the change of
probability distribution, and the classifier may not be able to reflect the true
state of the current stream.

The summary information of a window includes the number of occurrences
of each distinct pair of aj ∩ v, the number of occurrences of each v, and the
number of records in the window. There are in total |V |×∑∀j |Aj | counts (for
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Fig. 13.1. Flowchart of EvoClass.

all distinct v∩aj) where |V | and |Aj | are respectively the number of class labels
and the number of distinct values for attribute Aj . As a result, the number
of counts for summarizing a window is |V | ×∑∀j |Aj | + |V | + 1. First, let
us assume that each count can be represented by an integer which consumes
four bytes. Then the total number of windows (summary information), Nw,
that can fit in the allocated memory is M

4×(|V |×∑
∀j |Aj |+|V |+1) where M is the

size of the allocated memory. Now the problem becomes how to partition the
stream into Nw windows.

First, we want to know the minimum window size, wmin. Let us assume
that each record has |A| attributes. There are overall |V | ×∑1≤j≤|A| |Aj |
counts that need to be tracked for the purpose of computing conditional prob-
abilities. Each record can update |A| counts. The minimum window size is set

to q× |V |×∑
1≤j≤|A| |Aj |
|A| , where q is a small number. In Section 13.5, we exper-

iment with various wmin. We found that with large wmin, the accuracy is low
and the delay of evolution detection may be large. This is because the change
of the data characteristics may take place at any time but the construction
of a new classifier is done only at the end of a window. On the other hand,
although a smaller wmin can improve the accuracy, the average response time
is prolonged. After a window is full, we need to update the classifier. Since the
cost of classifier update is the same regardless of window size, the per record
cost of classifier updating can be large with a small wmin. In Section 13.5, we
will discuss how to decide wmin empirically.

To approximate the exponential window growth, we use the following al-
gorithm. When the summary information can fit in the allocated memory,
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we keep the size of each window as wmin. Once the memory is full, some
windows may have to be merged, and the newly freed space can be utilized
for the summary data of a new window. We choose to merge the consecutive
windows with the smallest growth ratio i.e., wi and wi−1 where |wi−1|

|wi| is the
smallest ratio. The rationale behind this choice is that we want the growth of
the window size to be as smooth as possible. If there exists a tie, we choose the
oldest windows to merge because recent windows contain more updated infor-
mation than older ones. Figure 13.2 shows the process of window merging. At
the beginning, there are four windows, each of which contains a record. For
illustration, we assume the memory can only store the summary data for four
windows (in Figure 13.2a). When a new window of data arrives, some windows
have to be merged. Since the ratio between any two consecutive windows is
the same, the earliest two windows are merged (as shown in Figure 13.2b). As
a result, the size ratios between windows 3 and 4 and windows 2 and 3 is 1
while the size ratio between windows 1 and 2 is 2. Thus, windows 2 and 3 are
merged when the new data is put in window 4 as illustrated in Figure 13.2c.

Window 4 Window 3 Window 2 Window 1

Window 4 Window 3 Window 2 Window 1

Window 4 Window 3 Window 2 Window 1

(a)

(c )

(b)

Fig. 13.2. Merging windows.

After the merge of two existing windows, some space is freed to store the
new data. Once wmin new records have been obtained, the counts for the
new window of data are calculated. For instance, assuming that the window
consists of the first four records in Table 13.1, Table 13.2 shows the summary
counts after processing the window of data. This structure is similar to AVC-
Set (Attribute–Value–ClassLabel) in [7].
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Table 13.2. Counts after processing first four records in Table 13.1.

Pre-ApprovalAttribute Value
Yes No

25–29 0 1
30–34 1 0

Age 35–39 1 0
40–44 1 0
45–49 0 0
20k–25k 0 0
25k–30k 1 1
30k–35k 1 1

Salary 35k–40k 0 0
40k–45k 0 0
45k–50k 0 0

Credit History Good 2 0
Bad 1 1

13.4.3 Classifier Updating

The classifier is updated once the current window is full and there is no
significant error increasing (see Section 13.4.4). Let’s assume that we have
a näıve Bayesian classifier, i.e., a set of probability distribution P (ai|v) and
P (v) and a set of new counts c(ai ∩ v) and c(v) where c(ai ∩ v) and c(v)
are the number of records having Ai = ai with class label v and the number
of records having class label v in the new window, respectively. If there is no
prior knowledge about the probability distribution, we can assume the uniform
prior distribution which yields the largest entropy, i.e., uncertainty. Based on
the current window, we can obtain the probability distribution within the
window Pcur(ai|v) = c(ai∩v)

c(v) . For example, based on the data in Table 13.2,
Pcur(25k–30k|yes) = 1

2 = 0.5. Next we need to merge the current and the prior
probability distributions. Let’s assume that the overall number of records in
the current window is w, and the number of records for building the classifier
before this window is s. The updated probability distribution is

Pnew(v) =
µPpast(v) + Pcur(v)

µ + 1

Pnew(ai|v) =
µPpast(v)Ppast(ai|v) + Pcur(ai|v)Pcur(v)

µPpast(v) + Pcur(v)

where µ = s
w if the importance of the current and past records are equal. µ

can be used to control the weight of the windows. For example, in the fading
model, i.e., the recent data can reflect the trend much better than the past
data, µ can be less than s

w , even equal to 0.
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13.4.4 Detect Changes

Due to noise and randomness, it is very difficult to tell whether a set of
probability distribution has changed. In this paper, we adopt a train-and-test
technique as follows. In each window, the training records are also used to
test the model after their final class labels are known. If the accuracy of the
classifier decreases significantly, e.g., by an amount of γ, then we may consider
the data has changed, and a new classifier is needed. The main challenge is
what the value of γ should take. If γ is too large, we may miss the concept
change. However, since there may exist noise in the data set, the accuracy
may vary from one test data set to another. On the other hand, if γ is too
small, the system may over-react to the noise in the data set. Therefore, we
want to set γ to the value that enables one to separate noise from the real
changes of the underlying data.

We assume that whether a record is correctly classified by our classifier
is a random variable X. X = 1 if the class label is correct, 0 otherwise. The
accuracy of a classifier with a test data set is equal to the expected value
of X in the test data set. Let accuracy0 be the maximum accuracy of the
classifier on recent test data sets, and ξ be the true mean (accuracy of our
classifier). According to the Hoeffding bound [14, 15], the true mean ξ is at
least accuracy0 − ε with 1 − δ confidence, where ε can be computed by the
following formula:

ε = R

√
ln(1/δ)

2N
(13.4)

where N is the number of records in the test data set, 1− δ is the confidence
level, and R is the range of X which is 1 in this case.

Let accuracy1 be the accuracy of the classifier on the current test data
set. Based on the Hoeffding bound, with 1 − δ confidence, accuracy1 is at
least ξ − ε. Therefore, with 1− δ confidence, we can conclude that accuracy1
is at least accuracy0 − 2ε. When accuracy1 falls below accuracy0 − 2ε, we
may consider that the concept has changed and it is time to construct a new
classifier.

There is one drawback of this approach. When the change of the underlying
process is gradual, it may lead to a situation in which accuracy of the classifier
may also degrade gradually. For instance, if the accuracy of the classifier for
window i, i−1, i−2, i−3 is 0.65, 0.7, 0.75, 0.8, respectively, and the threshold
2ε is 0.06, then our scheme would not detect the gradual change. To overcome
this problem, we compare the accuracy of the classifier for this window with
the best accuracy yielded by the current classifier. In the same example, let us
assume that 0.8 is the best accuracy achieved by the current classifier. Then
we can detect the change at window i− 1.
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13.4.5 Under-representing

There is one major drawback of the Bayesian classifier: underestimation. For
example, if the joint probability of aj and v is 10−6 and there exist 100,000
records, then it is very likely that there exists no record having aj with class
label v. Thus, it is natural to assign P (aj |v) = 0. As a result, v will not
be assigned to any record with attribute Aj = aj because the probability is
zero. It can lead to a significant misclassification. This problem may become
severe especially when the number of attributes and distinct attribute values
is large. A smoothing technique is applied to remove zero probabilities. Let

P (ai|v) be the probability value before smoothing and P ′(ai|v) =
P (ai|v)+ ω

|Ai|
1+ω

be the probability after smoothing, where ω is a small constant, e.g., 10−10.

13.4.6 Change Representation

As mentioned before, the näıve Bayesian classifier can be viewed as a set of
joint probability distributions, P (ai, v). There exist several methods to qualify
the difference between two probability distributions, e.g., mutual information,
divergence, and so on. In this paper, the divergence is employed for this pur-
pose because it is one of the most popular measures. However, from the di-
vergence, one may know only that there exists a probability change, but not
how the probability changes. As a result, we compute the Kullback-Leibler
divergence for each individual conditional probability distribution. In other
words, for each given class label v, we calculate the divergence of P (ai|v).
The divergence of P (v) is also computed to catch the class label distribu-
tion changes. In reality, the majority of the probability distributions does not
change significantly during a short period. Only a small number of probabil-
ities in P (ai|v) distribution may change dramatically, which finally leads to
the change of the classifier and the record labels. It is meaningful to let the
users know where the probability changes significantly. For instance, if the
probability distribution for one particular class label changes largely, the user
may conjecture that something related to this class label and its attributes
has taken place and can investigate it further.

Because there are thousands of probabilities in P (ai|v), it is unaffordable
to ask the user to check the divergences one by one. Thus we propose to present
only the top-k probabilities which have the greatest divergence for a small k
chosen by an expert or a user. Our experiments show that it can usually catch
more than half of the major causes that contribute to the classifier changes.

13.4.7 Estimation of Processing Cost

By putting together all the techniques discussed so far, we present a general
view of the cost for each step depicted in Figure 13.1. The total processing
time can be partitioned roughly into four parts: accumulating records, testing
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the classifier, updating the classifier, and rebuilding a new classifier. Assume
the minimum window size is wmin, the number of testing records in each
window is T , and the number of windows in record is Nw. We have,

• Accumulating records: The cost to count each record (updating c(ai ∩ v)
and c(v)) is O(|A|).

• Testing the classifier: The cost is O(T |V ||A|) per window.
• Updating the classifier: The cost to merge two windows is O(|V |∑∀j |Aj |).

The cost to update the current probability distribution is O(|V |∑∀j |Aj |).
• Rebuilding a new classifier: Since each time we have to scan the history

windows and build a best näıve Bayesian classifier based on the testing
records, the cost is O(Nw|V |

∑
∀j |Aj |+ NwT |V ||A|).

We set wmin = q
|V | ∑

∀j |Aj |
|A| and T = σwmin, where usually q > 1 and

σ < 1. Based on the above analysis, we can calculate the lower bound and
the upper bound of the amortized cost for processing one single record. To
calculate the lower bound cost, one extreme case is that the concept does not
change at all over time. Then it will not rebuild any classifiers except the
initial one. Therefore, the lower bound for the total cost per record is

O

(
|A|+

2|V |∑∀j |Aj |
wmin

)
∼ O(|A|).

For the upper bound, the worst case is that the concept changes dramatically
in each window. The cost is

O

(
|A|+

2|V |∑∀j |Aj |+ Nw|V |
∑

∀j |Aj |+ NwT |V ||A|
wmin

)

which can be simplified to O(|V ||A|) if q is larger than Nw, and σNw is a
small constant. Therefore, the amortized upper bound of processing cost for
each record is O(|V ||A|), which is equal to the cost of classifying one record.

13.5 Experimental Results

We conducted an empirical study to examine the performance of EvoClass,
which is implemented using C++ with the standard template library. The ex-
periments were conducted on an Intel Pentium III PC (1.13GHz) with 384MB
main memory, running Windows XP Professional. The result demonstrated
the characteristics of EvoClass in terms of accuracy, response time, sensitivity,
and scalability for varying concept drift level and frequency.

13.5.1 Synthetic Data Generation

We experimented on several synthetic data sets embedded with changing con-
cept over time. The data sets are produced by a synthetic data generator
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using a rotating hyperplane. The general description of the generator can be
found in [15]. Here, we briefly introduce the concept behind this generator. A
d-dimensional hyperplane can be viewed as a set of points which satisfy

d∑
i=1

wiai = w0 (13.5)

where ai is the coordinate of the ith dimension. We can treat the vector
〈a1, a2, ..., ad〉 as a data record, where ai is the value of attribute Ai. The class
label v of the record can be determined by the following rule: if

∑d
i=1 wiai >

w0, it is assigned the positive label; otherwise (i.e.,
∑d

i=1 wiai � w0), it is
assigned the negative label. By randomly assigning the value of ai in a record,
an infinite number of data records can be generated in this way. One can
regard wi as the weight of Ai. The larger wi is, the more dominant is the
attribute Ai. Therefore, through rotating the hyperplane to some degree by
changing the magnitude of wi, the possible distribution of the class label
vs 〈a1, a2, . . . , ad〉 changes, which is equal to saying the underlying concept
drifts. This also means that some records are relabelled according to the new
concept. In our experiments, we set w0 to 0.1d and restrict the value of vi in
[0.0, 1.0]. We increase the value of wi with +0.01d or −0.01d gradually. After
it reaches either 0.1d or 0.0, it then changes in the opposite direction.

While generating the synthetic data, we also inject noise into the data.
With the probability pnoise, the data is arbitrarily assigned to the class labels.
pnoise is randomly selected from [0, Pnoise,max] each time the concept drifts.
We do not use a fixed probability of noise injection such as that performed in
[15] since we want to test the robustness and sensitivity of our algorithm. The
concept drift from small changes of wi cannot be detected since the drift and
the noise are not distinguishable. The average probability of noise is around
Pnoise,max/2 for the synthetic data set. Because there are only two class labels
in the data set, so with 50% probability (assume Ppositive = Pnegative = 0.5),
the injected noise produces wrong class labels. Therefore, the error caused
by the noise is around Pnoise,max/4 on average. This is a background error
that cannot be removed for any kind of classification algorithm. We denote
pne = Pnoise,max/4. In Table 13.3, we collect the parameters used in the
synthetic data sets and our experiments.

13.5.2 Accuracy

The first two experiments show how quickly our algorithm can respond to the
underlying concept changes by checking the classifier error of EvoClass after
a concept drift.

We assume that the Bayesian classifier has an error rate pb which means
without the injection of any noise and concept drift, given a synthetic data
set described above, the Bayesian classifier can achieve the accuracy of 1−pb.
Suppose the noise does not affect pb significantly if the noise is not very large
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Table 13.3. Parameters for the synthetic data set.

Symbol Meaning
|A| Number of attributes
C Cardinality
N Number of records
Nw Number of windows
wmin Minimum window size (records)
fc Concept drift frequency (per records)
pnoise,max Max noise rate

(which is justified in Section 13.5.3), we can achieve the average error rate
perror = pb + pne. We denote the new error rate p′

error for the classifier we
build after the concept changes. We want to see how fast our algorithm can
catch it. Drift level [15], pde, is the error rate if we still use the old concept
Cold (before one drift) to label the new data (after that drift). It is expected
that p′

error should evolve from perror + pde to some value close to perror. The
problem is how fast this procedure takes place.

In this experiment, we set |A| = 30, C = 8, N = 4, 800, 000, Nw = 32,
wmin = 12, 000, fc = 400, 000, and pnoise,max = 5%. Figure 13.3a shows three
kinds of errors: the error from concept drift (the percentage of records that
change their labels at each concept drift point), the error from our EvoClass
algorithm without any concept drift, and the error from our EvoClass algo-
rithm with concept drift. It illustrates that the EvoClass algorithm can start
of respond to the concept drift very quickly. The very start of Figure 13.3a
shows that when a huge drift happens (> 10% records change their labels),
EvoClass can respond with a spike and quickly adapt to the new concept.
For the small concept drifts taking place in the middle of the figure, EvoClass
struggles to absorb the drift. It takes much longer because it is more difficult
to separate the concept drift from noise in the middle of a stream. Further-
more, since the ε-error tolerance (by Equation (13.4)) in this experiment is
0.034, it makes EvoClass oscillate around its average classifier error.

Figure 13.3b depicts the result of another experiment where fc is set to
20, 000. It means the concept drifts in 20 times faster than in the first experi-
ment. Again the curves show that the change of classifier error rate can follow
the concept drift.

Next we want to test the model described in Section 13.3, which represents
the set of attributes causing the concept drift. Here we use Kullback-Leibler
divergence to rank the top-k greatest changes (Equation (13.3)) discovered in
the distribution of P (ai|v). We vary the value of w1, w2, . . . , wk simultaneously
for each concept drift. Then the average recall and precision are calculated.
Figure 13.4 shows the recall and precision from the top-k divergence list when
k is between 1 and 5. The overall recall and precision are around 50–60%. It
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Fig. 13.3. Accuracy over time when the concept drifts over a)400,000 records and
b) 20,000 records.

demonstrates EvoClass not only helps build an evolutionary classifier adapt
to the concept drift but also discovers which attributes lead to the drift.

13.5.3 Sensitivity

Sensitivity is used to measure how the fluctuation of noise level may influence
the quality of a classifier. Sensitivity is involved with the percentage of noise in
the data set, the concept drift frequency, and the minimum window size. We
use the same experimental setting mentioned previously. Figure 13.5a shows
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Fig. 13.4. Recall and precision vs number of changing attributes.

the relationship between the noise rate and the classifier error rate. The error
rate of the classifier increases proportionally to the percentage changes of the
noise. The dotted line shows pne caused by the average noise rate. The formula
perror = pb + pne holds very well based on the result in Figure 13.5a. That
means that the performance of our EvoClass algorithm will not degrade even
when lots of noise presents in the data set.

We next conduct an experiment to see the influence of the concept drift
frequency in the classifier error rate. We set the minimum window size wmin

to 10k and then vary the concept drift frequency fc from 200 to 100k. Fig-
ure 13.5b shows that the classifier cannot update its underlying structure to
fit the new concept if fc is below 10k. This is because our minimum processing
unit is 10k, and the classifier cannot catch up with the changing frequency
below that minimum processing unit.

In Figure 13.5c, we vary the minimum window size from 100 to 40k and fix
the concept drift frequency to 20k. It shows that when the minimum window
size is below 10k, the error rate will be in the range [popt, 1.1popt], where popt

is the best error rate achieved in this series of experiments. When the concept
does not drift very frequently, the minimum window size can be selected freely
in a very large range and EvoClass can still achieve a nearly optimal result.
When wmin is close to 100, the error rate increases steadily because of over-
fitting. Figure 13.5c also shows the processing time for a varying minimum
window size: generally it will take a longer time to complete the task if we
choose a smaller minimum window size.

We then check the performance of EvoClass when the total available
number of windows, Nw, varies. We have the following experiment settings:
|A| = 30, C = 32, N = 480, 000, wmin = 400, and fc = 400. We intentionally
change w0 to 0.001 and pnoise,max to 0.10 such that in a long period, the con-
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Fig. 13.5. Sensitivity: noise, concept drift frequency, window size

cept drift cannot be detected from noise. With the increase of cardinality (or
number of attributes), one window is not enough to build an accurate clas-
sifier. The increment of minimum window size does not work because of the
small concept drift frequency. The tilt window scenario performs well in this
case. The result is depicted in Figure 13.6. As we can see, only maintaining
one window will result in a significant increase of errors when compared with
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Fig. 13.6. Accuracy and run time vs number of windows.

maintaining several windows. In terms of processing time, a large number of
windows does not affect the performance too much. In fact, the time spent
updating the classifier is dominant when compared with that for completely
rebuilding the classifier in this case. The former is unavoidable for all the
situations where different numbers of windows are used.

13.5.4 Scalability

Finally, the scalability of our EvoClass algorithm is tested in our experiments.
The scalability is measured in two aspects in terms of processing time and
accuracy: when the number of attributes increases, and when the cardinality
for each attribute increases.

First, we fix the cardinality of each attribute to 8, and vary the number
of attributes from 10 to 200. Figure 13.7a shows that both the total process-
ing time and the classifier construction time increase linearly as the number
of attributes increases. The reason is obvious: näıve Bayesian classification,
the processing time is proportional to the number of attributes as shown in
Equation (13.2). Figure 13.7a also tells us that the average classifier error rate
decreases from 15% to 9%. To some extent, this is because the independence
assumption in näıve Bayesian classification becomes more realistic when the
number of attributes increases.

Second, we fix the number of dimensions to 30 and vary the cardinality
from 3 to 50. The minimum window size is 10, 000. The result is depicted in
Figure 13.7b. It shows that the processing time is basically unrelated to the
cardinality. However, the cardinality affects the accuracy a little bit. In the
case of C = 3, the error rate increases mainly because the discretization is too
coarse. In this case, many cells cross the hyperplane defined in Equation (13.5),
thus they cannot be labelled accurately.
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Fig. 13.7. Accuracy and run time as the system scales.

13.5.5 Path Length Measurement

Figure 13.7a also illustrates the computational time in different parts of the
EvoClass algorithm. We roughly divide the processing time into two parts:
classifier construction time, which includes classifier initialization, change de-
tection, testing, and classifier updating; and the classification time, which
includes the time to predict the class label of each record when it arrives. The
experiments show that the first part occupies 1/6 to 1/2 of the total process-
ing time. This ratio can be further reduced if the concept changes slow down
or the minimum window size is enlarged. We collect the data that shows the
number of records that can be processed each second. For a 200-attribute data
set, the processing speed is around 20,000 records per second. For 10-attribute
data set, it can achieve processing of 100,000 records per second. Since our
implementation is based on C++/STL, we believe that it can be further im-
proved using a C implementation and a more compact data structure.
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13.6 Discussion

We first discuss why we chose the naive Bayesian classifier as the base classi-
fier for streaming data and then consider other issues for improvements and
extensions of EvoClass.

13.6.1 Classifier Selection

There have been numerous studies on classification methods in the statistics,
machine learning and data-mining communities. Several types of popular clas-
sifiers, including decision trees, neural networks, näıve Bayesian classifiers and
support vector machines [6, 19], have been constructed and popularly used in
practice. Here we first examine a few classification methods and see why we
have selected the näıve Bayesian method for classification of stream data.

The decision tree is a widely studied classifier, where each node in a de-
cision tree specifies a test of some attribute of the instance, and each branch
descending from that node corresponds to one of the possible values of this
attribute. An instance is classified by starting at the root node of the tree,
testing the attribute specified by this node, then moving down the tree branch
corresponding to the value of the attribute in the given examples. This pro-
cess is then repeated for the subtree rooted at the new node. The time to
construct a decision tree is usually high and requires multiple scans of the
data. The recent decision tree construction algorithms (for large databases),
such as BOAT [10], proposed a two-scan algorithm. It first uses a subset of
data to construct an initial decision tree, then makes a scan over the whole
database to build the final tree. BOAT can also be extended to a dynamic
environment where the classifier may change over time. However, BOAT has
similar problems to CVFDT [15].

A neural network is another popular method to learn real-valued, discrete-
valued, and vector-valued target functions. A neural network is usually con-
structed by iteratively scanning the data, which is slow and is not suitable for
the streaming data environment. The same problem exists for support vector
machines and several other classification methods. Thus among several ma-
jor classification methods, we have selected the näıve Bayesian classification
method as the major candidate for extension to classification of streaming
data.

13.6.2 Other Related Issues

In this subsection, we are going to discuss a few related issues, including choos-
ing the window size, handling high frequent data streams, window weighting,
and alternative classifiers.
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Window Size

In the previous section, we mentioned that a window has a minimum size,
q × |V |×∑

1≤j≤|A| |Aj |
|A| . When the cardinality of attributes is large, the mini-

mum number of records in a window can also be quite large. Certainly, we
can arbitrarily reduce the minimum size, in the extreme to 1. A smaller win-
dow size means updating the classifier more frequently, which degrades the
performance a lot. A user can determine the window size based on the trade-
off between processing speed and data arriving rate. Once the size of the
minimum window is fixed, it may need to wait until a window is full before
EvoClass can process the data. This may lead to longer delay in detecting the
evolution of the classifier. To solve this problem, we test the classifier at the
same time as data accumulating. Let accuracy1 be the best accuracy of the
classifier for all previous windows. A change will be detected if the accuracy
falls below accuracy1 − 2ε. This means that we will detect a change if more
than wmin × (1 + 2ε− accuracy1) records are mislabeled in the current win-
dow. Thus, we can keep track of the number of misclassified records. If the
number of records exceeds this threshold, a change is detected and we will
immediately build a new classifier. Under this scheme, the new classifier can
be done much earlier.

High Frequent Data Stream

When the data arrival rate is extremely high, it is possible that our algorithm
may not be able to process the data in time. In turn, more data have to
be buffered. Over time, the system would become unstable. To solve this
problem, we propose to use a sampling method. Let’s assume that the time
for processing a window of data is wmin, and wnew new records arrive in
that time. If wnew ≤ wmin, it means that we are able to process the new
data. Otherwise, we only can process a fraction of the new data. As a result,
among the new wnew records, we use a random sample to pick wmin records,
each having the probability wmin

wnew
of being chosen. The unchosen records are

discarded because it is important to process the new data as soon as possible
so that one can detect the changes as early as possible.

Window Weighting

In this paper, µ is the parameter that controls the weight that a new window
carries. This value can easily be adjusted to fit the needs of different users. µ
will be set to a smaller value if a user believe that the current data is a better
indicator of the classifier. In the extreme case, we can set µ = 0 when a user
only wants a classifier that is solely built on the current window. On the other
hand, if the user thinks that each record contributes equally to the classifier,
we should set µ = s

w where s and w are the number of records in previous
windows and the current window, respectively.
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Alternative Classifiers

In this paper, we presented an algorithm for building a näıve Bayesian classifier
for streaming data. However, the framework we proposed is not restricted to
this specific classification algorithm, instead, it can be generalized to other
classifiers, e.g., decision trees. To construct a decision tree on the evolving
stream data, the new arrival window of data can be used first to test the
accuracy of the decision tree. If the accuracy of the decision tree does not
degrade significantly, then the new data will be used to refine the decision
tree, e.g., building more leaf nodes. On the other hand, if the accuracy of
the decision tree degrades significantly with respect to the current window of
data, then it may signal the characteristics have changed and a new decision
tree needs to be constructed. The new decision tree can be constructed in the
same manner as the Bayesian classifier proposed in this paper. We trace back
the previous windows of data, for a new set of windows, and a new decision
tree is built. Among these new decision trees, the most accurate one (with
respect to the current window of data) is chosen as the current decision tree.

13.7 Conclusions

We have investigated the major issues in classifying large-volume, high-speed
and dynamically evolving streaming data, and proposed a novel approach,
EvoClass, which integrates the näıve Bayesian classification method with ti-
tled window, boosting, and several other optimization techniques, and achieves
high accuracy, high adaptivity, and low construction cost.

Compared with other classification methods, the EvoClass approach offers
several distinct features:

• It is highly scalable and dynamically adaptive, since it does not need to
buffer streaming data in memory, and it integrates the newly arriving
summary information smoothly with the existing summary, which makes it
especially valuable for dynamic model re-construction for streaming data.

• The introduction of tilted windows facilitates the effective maintenance for
flexible weight/fading adjustment of historical information.

• The usage of Kullback-Leibler divergence provides us with the power to
catch the important factors that are likely lead to concept drifts.

EvoClass represents a new methodology for effective classification of dy-
namic, fast-growing, and large volume data streams. It works well with low
dimensional data. However, classification of high-dimensional streaming data
(such as web documents, e-mails, etc.) is an interesting topic for future re-
search.



362 Jiong Yang, Xifeng Yan, Jiawei Han and Wei Wang

References

[1] Babcock, B., S. Babu, M. Datar, R. Motwani and J. Widom, 2002: Models
and issues in data stream systems. In Proceedings of ACM Symp. on
Principles of Database Systems, 1–16.

[2] Chen, Y., G. Dong, J. Han, B. W. Wah and J. Wang, 2002: Multidimen-
sional regression analysis of time-series data streams. In Proceedings of
International Conference on Very Large Databases.

[3] Domingos, P., and G. Hulten, 2000: Mining high-speed data streams. Pro-
ceedings of ACM Conference on Knowledge Discovery and Data Mining,
71–80.

[4] Domingos, P., and M. J. Pazzani, 1997: On the optimality of the simple
bayesian classifier under zero-one loss. Machine Learning, 29, no. 2–3,
103–30.

[5] Dobra, A., M. N. Garofalakis, J. Gehrke and R. Rastogi, 2002: Process-
ing complex aggregate queries over data streams. In Proceedings of ACM
Conference on Management of Data, 61–72.

[6] Duda, R., P. E. Hart and D. G. Stork, 2000: Pattern Classification. Wi-
leyInterscience.

[7] Gehrke, J., R. Ramakrishnan and V. Ganti. RainForest: A framework for
fast decision tree construction of large datasets, 1998: In Proceedings of
International Conference on Very Large Databases, 416–27.

[8] Ganti, V., J. Gehrke, R. Ramakrishnan and W. Loh, 1999: A framework
for measuring changes in data characteristics. In Proceedings of ACM
Symp. Principles of Database Systems, 126–37.

[9] Garofalakis, M., J. Gehrke and R. Rastogi, 2002: Querying and mining
data streams: you only get one look. Tutorial in Proc. 2002 ACM Con-
ference on Management of Data.

[10] Gehrke, J., V. Ganti, R. Ramakrishnan and W. Loh, 1999: BOAT: opti-
mistic decision tree construction. Proceedings of Conference on Manage-
ment of Data, 169–80.

[11] Gehrke, J., F. Korn and D. Srivastava, 2001: On computing correlated
aggregates over continuous data streams. In Proceedings of ACM Confer-
ence on Management of Data, 13–24.

[12] Guha, S., N. Mishra, R. Motwani and L. O’Callaghan, 2000: Clustering
data streams. In Proc. IEEE Symposium on Foundations of Computer
Science, 359–66.

[13] Han, J., and M. Kamber, 2000: Data Mining Concepts and Techniques.
Morgan Kaufmann.

[14] Hastie, T., R. Tibshirani and J. Friedman, 2001: The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer-Verlag.

[15] Hulton, G., L. Spencer and P. Domingos, 2001: Mining time-changing
data streams. Proceedings of ACM Conference on Knowledge Discovery
in Databases, 97–106.



References 363

[16] Lin, J., 1991: Divergence measures based on the Shannon entropy. IEEE
Tran. on Information Theory, 37, 1, 145–51.

[17] Liu, H., F. Hussain, C.L. Tan and M. Dash, 2002: Discretization: An
enabling technique. Data Mining and Knowledge Discovery, 6, 393–423.

[18] Manku, G., and R. Motwani, 2002: Approximate frequency counts over
data streams. In Proc. 2002 Int. Conf. on Very Large Databases.

[19] Mitchell, T., 1997: Machine Learning. McGraw-Hill.
[20] O’Callaghan, L., N. Mishra, A. Meyerson, S. Guha and R. Motwani, 2002:

High-performance clustering of streams and large data sets. In Proceedings
of IEEE International Conference on Data Engineering.

[21] Witten, I., and E. Frank, 2001: Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann.



Index

Apriori, 9, 233, 237
Apriori-based RDF association rule

mining (ARARM), 232
Apriori-based graph mining, 77
K -means algorithm, 15
K -medoid, 15
k -NN rule, 10
TreeMiner algorithm, 132

adjacency matrix, 109
agglomerative clustering, 43
algorithm output granularity, 309, 320
aspect ratio, 257, 258
association rule mining, 7, 233

Bayes Maximum Likelihood Classifier,
10, 11

beam search, 78
Binary Hierarchical Classifier, 43, 45
binary-link model, 196
bioinformatics, 25
biological data mining, 25
BIRCH, 15

candidate subtree generation, 129
case, 31

adaptation, 32
learning, 32
retrieval, 32
reuse, 32
update, 32

case-based reasoning,CBR, 31
CBIR, 22, 253

low-level features, 254

circularity, 257, 258
CLARA, 15
CLARANS, 15
classification, 9, 196

hypertext, 192
link-based, 190
supervised, 9
unsupervised, 14
web page, 192

clustering, 14, 77
hierarchical, 15
nonhierarchical, 15

co-training, 192
collective classification, 190
color feature, 261
complex data, 17
compressed graph, 78, 79
compression metric, 88
concavity, 259
conceptual clustering, 79
Conditional Random Fields, 166
content-based image retrieval, 22, 253
count-link model, 195
cousin distance, 213
cousin pair, 211, 214
coverage, 32
CRF, 166
CVFDT, 359

data
biological, 20
cleaned and integrated, 5
historical, 5
missing, 18



366 Index

multimedia, 20
noisy, 18
preparation, 4
spatial, 20
summarized, 5
time series, 20
unlabeled, 197
warehousing, 5
web, 20

data acquisition, 9
data mining, 3, 4, 6, 82, 90, 211

accuracy, 19
efficiency, 19
minority class, 20
model selection, 6
preference criterion, 6
recent trends, 20
scalability, 19
search algorithm, 6
tasks, 7

data stream, 27, 307, 309
data-mining, 75
database theory, 4
DBSCAN, 15
DDM, 27, 307
decision tree, 12, 339
deductive text mining, 234
denial of service, 298
depth-first search, 76, 77
deviation detection, 16
distance, 21

cosine, 21
measure, 21

distributed data mining, 27, 307
distributed systems

heterogeneous, 27
homogeneous, 27

DNA molecule, 79
document classification, 190

EM algorithm, 192, 197
embedded subtree, 124, 125
equivalence class, 129
event-driven, 76
EvoClass, 344
evolutionary computation, 30
evolutionary tree, 211
evolutionary tree miner, 221

feature extraction, 9
feature ranking, 285, 286, 292, 299
feature selection, 285, 286, 295, 299
Fisher’s kernel, 162
forest, 124
frequent cousin pair, 212, 215
frequent itemset mining, 144
frequent sequence mining, 144
frequent structure mining, 123
frequent subtree enumeration, 133
frequent tree mining, 123, 145
fuzzy index of color, 262
fuzzy set, 29

GA, 30
Gaussian processes, 99
generalized association rule, 233
genetic algorithm (GA), 30
GIS, 20
graph, 77

bridge, 110
direct product, 109
directed, 24
factor, 109
labeled directed, 109
labeled undirected, 110
Laplacian, 102
mining, 190

graph-based approaches, 75
graph-based data mining, 76, 77
graph-based relational learning, 77

hidden Markov model, 159
hubs and authorities, 191
hypergraph, 101
hyperlink, 24
hypertext, 192

ID3, 12
IDF, 22
IDS, 285
image

content descriptor, 22
distortion, 23
feature, 22
retrieval, 22
semantic content, 22

incremental discovery, 76
incremental Subdue, 81
induced subtree, 125



Index 367

inductive logic programming, 190, 193
inductive text mining, 234
information gain, 12
information retrieval (IR), 21
information-theoretic measure, 81
intrusion detection, 285
itemset

cover, 8
frequent, 8
support, 8

iterative classification, 191

KDD, 3
KDDMS, 5
kernel

convolution, 106
crossproduct, 105
cyclic pattern, 110
diffusion, 102
direct product, 110
functions, 97
Gaussian, 99
intersection, 105
linear, 99
polynomial, 99
positive-definite, 97
regularized Laplacian, 102
sigmoid, 99
von Neumann, 102

kernel methods, 97
kernel-based methods, 77
knowledge discovery from databases, 3
knowledge incorporation, 19
knowledge presentation, 6
Kullback-Leibler divergence, 344

latent semantic indexing, 22
lattice, 79
learning paths in websites, 175
linear genetic programming (LGP), 294
linear regression, 14
link

analysis, 190
diversity, 198
mining, 190
uncertainty, 190

link-based
classification, 190, 197
models, 194

logic-based approaches, 75
logistic regression, 190
LOGML, 143
loss, 98

hinge, 99
square, 98

LSI, 22
LWC, 322
LWClass, 323
LWF, 324

Mann-Whitney test, 267
MARS, 295, 297
maximum entropy taggers, 166
metadata, 5
minimum description length, 78
mining data stream, 310
mode-link model, 195
modular learning, 43
motif, 26
multi-relational data, 189

naive Bayes classifier, 192, 339
naive Bayes model, 194
Named Entity Recognition, 164
nearest neighbor rule, 9
neural network, 30, 359
Nilsson’s classic linear machine, 47
NN rule, 9
normal distribution, 11

online analytical processing,OLAP, 5
ontology, 231
ordering strategies, 203
outlier detection, 16

page rank, 191
PAM, 15
pattern, 211

cyclic, 110
tree, 110

pattern recognition, 9
PCA, 22
peer to peer network, 27
perception based similarity measure,

262, 265
performance-based ranking, 293
petal projection, 256
phylogenetic tree, 211
predictive graph mining, 96



368 Index

prefix equivalence class, 129
principal component analysis, 22
privacy preservation, 27
probabilistic relational models, 190
probing, 298

QBIC, 22

RA-UDM, 327
random graph patterns, 89
RDF statement, 235
reachability, 32
regression, 13
regularized least squares, 98
regularized risk, 98
reinforcement learning, 111
relational data mining, 75
relational learning, 75
relational reinforcement learning, 112
relevance feedback, 267
remote to user, 299
representer theorem, 98
resource description framework (RDF),

231
retrieval

content-based, 21
image, 22
text, 21
TF–IDF, 22

rooted, ordered, labeled trees, 124, 125
rule, 8

confidence, 8
frequency, 8
interestingness measure, 8

scope-list, 132
join, 134

semantic web, 25
sensor network, 27
sequence, 153
sequence clustering, 163
sequence segmentation, 182
sequence tagging, 164
sequential discovery, 84
simple cycle, 110
soft computing, 29
spatial data, 76
streaming data classification, 342
sub-forest, 126

Subdue, 77
substructure discovery, 78
summarization metric, 84
supervised graph, 90, 91
supervised learning, 77, 79
support vector machine, 44, 98, 192,

196, 287, 289
support vectors, 291
SVM, 44, 98, 192, 196, 287, 289
symmetricity, 257, 259

temporal data, 76
term vector, 21, 22
text segmentation, 170
texture co-occurrence matrix, 260
TF, 22
transductive support vector machine,

192
tree, 124

ancestor, 125
descendent, 125
embedded sibling, 125
immediate ancestor, 125
labeled, 125
number, 125
ordered, 125
rooted, 124
scope, 126
sibling, 125
size, 125

tree encoding, 128
tree mining, 126

unlabeled data, 190
unordered labeled tree, 211
user interaction, 19
user to super user, 298

variable-memory Markov models, 158
vector space representation, 22
vertex coloring, 115
Viterbi algorithm, 165

web
authority, 24
community, 24
content, 20
structure, 20
usage, 20
world-wide, 20



Index 369

web mining, 23, 143, 191
content, 24
structure, 24
usage, 24

WebKB, 193

webpage classification, 190
weighted support, 127

XML, 123, 234
XML mining, 143




